Classification of graph algebras

Søren Eilers eilers@math.ku.dk

Department of Mathematical Sciences University of Copenhagen

5AMC, Kuala Lumpur, 25.06.09

Program

Question

Suppose we know how to classify the simple C^* -algebras in some class C. What does it take to classify the C^* -algebras in C with finitely many ideals?

Observation (cf. Jordan-Hölder)

A finite decomposition exists

$$0 = I_0 \triangleleft I_1 \triangleleft \cdots \triangleleft I_n = A, \qquad I_j/I_{j-1} \text{ simple}$$

with

$$(I_1, I_2/I_1, \ldots, I_n/I_{n-1})$$

essentially unique.

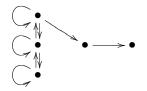
Observation

The classification of C^* -algebras has progressed rather independently for finite and infinite C^* -algebras although, at least in the real rank zero case, the classifying invariants are the same.

Question

Is it possible to give a unified proof of classification results covering both finite and infinite C^* -algebras?

Graph algebras



Graph algebras

Any countable graph G defines a C^* -algebra $C^*(G)$ which is an isomorphism invariant

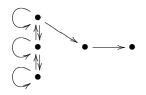
Standard assumption

We will consider only graphs with **property** (K) and without breaking vertices. This ensures that all associated C^* -algebras have real rank zero and that their ideals are in 1 - 1 correspondence with vertex sets that are

- Hereditary (no exit)
- Saturated (nothing outside points only there)

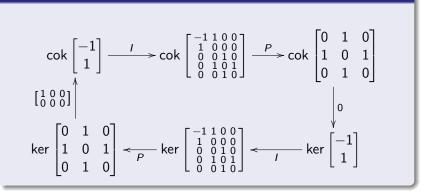
Theorem (RS; DT; CET)

For
$$C^*(G)$$
 with $M_G = \begin{bmatrix} A & \alpha & 0 & 0 \\ * & * & 0 & 0 \\ X & \xi & B & \beta \\ * & * & * & * \end{bmatrix}$ the six-term exact sequence in *K*-theory becomes

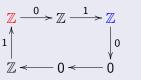


$$B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \qquad X = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad \xi = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad A = \begin{bmatrix} 0 \end{bmatrix} \qquad \alpha = \begin{bmatrix} 1 \end{bmatrix}$$

Computation, continued



Computation, continued



$\mathfrak{K}(A)$:

The collection of all six term exact sequences

whenever $I \triangleleft J \triangleleft K \triangleleft A$.

Remark

Each subquotient may occur several times, in which case the K-groups of the various six-term exact sequences are identified. Thus the invariant is also called the "K-web".

$\mathfrak{K}(A)_+$:

As above, but with each K_0 -group

$$K_0(J/I) \longrightarrow K_0(K/I) \longrightarrow K_0(K/J)$$

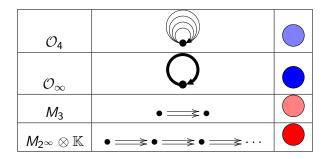
considered as an ordered group.

Working conjecture

 $\mathfrak{K}(-)_+$ is a complete invariant for stable isomorphism of all graph algebras with finitely many ideals.

Theorem

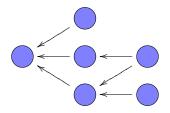
A simple graph algebra is either purely infinite or AF.



Elliott/Kirchberg-Phillips

 $\mathfrak{K}(A)_+ = K_*(A)_+$ is a complete invariant for simple graph algebras.

Cuntz-Krieger



Theorem [Restorff]

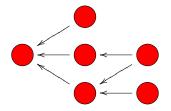
 $\mathfrak{K}(-)$ provides a complete invariant for stable isomorphism of Cuntz-Krieger algebras with finitely many ideals.

Theorem [E-Tomforde]

 $\mathfrak{K}(-)_+$:

is a complete invariant up to stable isomorphism for the class of graph algebras with precisely one non-trivial ideal.

AF case

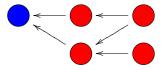


Theorem [Elliott]

 $K_*(A)_+$

(and hence also $\mathfrak{K}(A)_+$) is a complete invariant for the class of graph algebras A which are AF.

Mixed case



Theorem [E-Tomforde]

(and hence also $\Re(A)_+$) is a complete invariant for the class of graph algebras A with a maximal nontrivial ideal I which is AF.

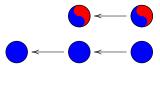
Theorem [Restorff (3), Meyer-Nest (*n*)]

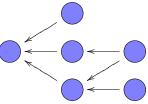
 $\mathfrak{K}(-)$ is a complete invariant for the class of purely infinite $C^*\text{-}\mathsf{algebras}$ with linear ideal lattices.

Proposition [E-Restorff-Ruiz]

 $\mathfrak{K}(-)$ is a complete invariant for the class of extension of purely infinite C^* -algebras with one ideal by finite-diemsnional C^* -algebras.

- Inductive
- UCT + Kirchberg classification
- Flow equivalence of SFTs





Challenge: Inductive approach

Theorem [E-Restorff-Ruiz]

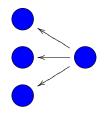
Let two C^* -algebras A, A' each have precisely one non-trivial ideal I, I'. When

- I, A/I, I', A'/I' are KK-strongly classified by K-theory
- I, I' have the CFP
- The Busby maps $A/I \rightarrow M(I)/I$, $A'/I' \rightarrow M(I')/I'$ have full images
- (· · ·)

we get

$$\mathfrak{K}(A)_+ \simeq \mathfrak{K}(A')_+ \Rightarrow A \otimes \mathcal{K} \simeq A' \otimes \mathcal{K}.$$

Challenge: UCT approach



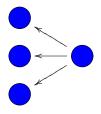
Theorem (Kirchberg)

Any $\alpha \in KK_X(A, B)^{-1}$ induces a stable isomorphism between A and B when these are purely infinite and nuclear with Prim(A) = Prim(B) = X.

Theorem (Meyer-Nest)

When A, B are in the bootstrap class and $p.\dim(\mathfrak{K}(A)) \leq 1$ we have a UCT

$$0 \longrightarrow \mathsf{Ext}(\mathfrak{K}(A), \mathfrak{K}(B)) \longrightarrow \mathsf{KK}_X(A, B) \longrightarrow \mathsf{Hom}(\mathfrak{K}(A), \mathfrak{K}(B)) \longrightarrow 0$$



Problem

For a certain purely infinite C^* -algebra A with 7 ideals, p. dim $(\mathfrak{K}(A)) > 1$. Consequently, $\mathfrak{K}(-)$ is **not** a complete invariant for all nuclear, purely infinite C^* -algebras in the bootstrap class with real rank zero.

However, the K-theory of this example is not obtainable by graph algebras.

Challenge: Flow equivalence approach

