Combinatorial aspects of pyramids of one-dimensional pieces of fixed integer length

Bergfinnur Durhuus Søren Eilers
\{durhuus,eilers\}@math.ku.dk
Department of Mathematical Sciences
University of Copenhagen

AofA'10, Vienna, 02.07.10

Content

(1) Background (3D)
(2) Motivation (2D)
(3) Results

4 Decoding

Outline

(1) Background (3D)
(2) Motivation (2D)
(3) Results
4. Decoding

LEGO Company profile 2004

LEGO facts and figures

- It would take $40,000,000,000$ LEGO bricks stacked on top of each other to reach from the Earth to the Moon.
- A LEGO set is sold across the counter somewhere in the world every 7 seconds.
- The eight robots in the LEGO Warehouse in Billund can move 660 crates of LEGO bricks an hour.
- Children all over the world spend 5 billion hours a vear playing with LEGO bricks.
- There are 102,981,500 different ways of combining six eight-stud bricks of the same colour.
- On average each person on earth owns 52 LEGO bricks.

Selected LEGO statistics

- More than $400,000,000$ children and adults will play with LEGO bricks this year.
- LEGO products are on sale in more than 130 countries.
- If you built a column of about $40,000,000,000$ LEGO bricks, it would reach the moon.
- Approx. four LEGO sets are sold each second.

There are $915,103,765$ different ways of combining six eight-stud bricks of the same colour

- On average every person on earth has 52 LEGO bricks.
- With a production of about 306 million tyres a year, the LEGO Group is the world's largest tyre manufacturer.
- If all the LEGO sets sold over the past 10 years were placed end to end, they would reach from London, England, to Perth, Australia.

Theorem (Abrahamsen/Durhuus-E)

The number of LEGO buildings constructable by n blocks of size $b \times w$ grows asymptotically as $h_{b \times w}^{n}$ with

$$
w^{2}+b^{2}+6 b w-4 b-4 w+2 \leq h_{b \times w} \leq 24 w^{2}+36 b w-48 w
$$

if $b \neq w$, and

$$
4 b^{2}-4 b+1 \leq h_{b \times b} \leq 18 b^{2}
$$

otherwise. We have

$$
78 \leq h_{2 \times 4} \leq 192
$$

Quadratic dependence (empirical evidence)

Outline

(1) Background (3D)

(2) Motivation (2D)
(3) Results
4. Decoding

Flat buildings

Theorem (Abrahamsen-E)

The number of flat LEGO buildings constructable by n blocks of size $1 \times w$ grows asymptotically as \widehat{h}_{w}^{n} with

$$
2 w-1 \leq \widehat{h}_{w} \leq 7 w
$$

Conjecture and wild guess

\widehat{h}_{w} grows linearly in w

$\widehat{h}_{2}=5$

Theorem [Bousquet-Mélou \& Rechnitzer]

The number of pyramids constructable by m dimers equals

$$
\binom{2 m-1}{m-1}
$$

and hence grows like

$$
\frac{1}{\sqrt{4 \pi m}} 4^{m}
$$

The average width of such a pyramid is (caveat!) asymptotic to

$$
16 \sqrt{\pi m}
$$

Bousquet-Mélou \& Rechnitzer

Worth pondering

$\binom{2 m-1}{m-1}$ is the number of strings of $2 m$ symbols drawn from $\{0,1\}$ with exactly m ones and starting with a one, like

10010011
visualizable as

Outline

(1) Background (3D)

(2) Motivation (2D)
(3) Results
4. Decoding

Theorem

The number of pyramids constructable by m polymers/LEGOs of width a equals

$$
\binom{a m-1}{m-1}
$$

and hence grows like

$$
\frac{1}{\sqrt{2 \pi a(a-1) m}}\left(\frac{a^{a}}{(a-1)^{a-1}}\right)^{m}
$$

The average width of such a pyramid is asymptotic to

$$
\sqrt{\frac{\pi}{2} a(a-1) m}
$$

Outline

(1) Background (3D)

(2) Motivation (2D)
(3) Results
(4) Decoding

Positive strings

Definition

A string

$$
x_{1} \cdots x_{n}
$$

with n symbols in $\{0,1\}$ is a-positive when

$$
\forall j \in\{1, \ldots, n\}: \sum_{i=1}^{j}\left(a x_{i}-1\right) \geq 0
$$

We say that $x_{n} \cdots x_{1}$ is a-negative in this case.

Examples

110100 is 2-positive. 100011 is not.

P case $(\mathrm{a}=2)$

$\begin{array}{llllll}1 & 1 & 0 & 1 & 0 & 0\end{array}$

P case $(\mathrm{a}=2)$

$\begin{array}{llllll}1 & 1 & 0 & 1 & 0 & 0\end{array}$

P case $(\mathrm{a}=2)$

$\begin{array}{llllll}1 & 1 & 0 & 1 & 0 & 0\end{array}$

P case $(\mathrm{a}=2)$

$\begin{array}{llllll}1 & 1 & 0 & 1 & 0 & 0\end{array}$

P case $(\mathrm{a}=2)$

\square
$1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}$

P case $(\mathrm{a}=2)$

\square

PN case $(a=2)$

$$
\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1
\end{array}
$$

PN case $(a=2)$

$\begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 1\end{array}$

PN case $(a=2)$

\section*{| 1 | 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |}

PN case $(a=2)$

P case $(\mathrm{a}=2)$

\square

PN case $(a=2)$

PN case $(a=2)$

Generalizing to a>2

Ambiguity ($a=3$)

Indecomposability ($a=3$)
100010

Coding automaton

Lemma

Any $\{0,1\}$-string of length am which starts with one and has exactly m ones may be uniquely decomposed into a sequence of strings P, N, T, U satisfying the constraints of

Lemma

Fix $a \geq 2$. The number A_{n} of one-sided pyramids coincides with the number of sequences in P, or N, by the coding procedure outlined earlier. Thus the number of pyramids is

$$
\sum \sum(a-1)^{r-1} A_{m_{1}} \ldots A_{m_{r}}
$$

Observation

The number of $\{0,1\}$-strings of length am which starts with one and has exactly m ones can be written in the form

$$
\sum_{r \geq 1} \sum_{m_{1}+\cdots+m_{r}=m} a_{r} A_{m_{1}} \ldots A_{m_{r}}
$$

where r denotes the total number of substrings P or N, with sizes $m_{1}, \ldots, m_{r} \geq 1$, in a composition and the factor a_{r} counts the number of admissible compositions subject to the boundary conditions specified by

Theorem

$$
a_{r}=(a-1)^{r-1}
$$

Corollary

The exponential rate of growth is

$$
\frac{a^{a}}{(a-1)^{a-1}} \sim e(a-1)
$$

