▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

## Combinatorial aspects of pyramids of one-dimensional pieces of fixed integer length

Bergfinnur Durhuus Søren Eilers {durhuus,eilers}@math.ku.dk

> Department of Mathematical Sciences University of Copenhagen

AofA'10, Vienna, 02.07.10



Background (3D)









### Outline

Background (3D)

2 Motivation (2D)

#### 3 Results





◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

## LEGO Company profile 2004



#### LEGO facts and figures

- It would take 40,000,000,000 LEGO bricks stacked on top of each other to reach from the Earth to the Moon.
- A LEGO set is sold across the counter somewhere in the world every 7 seconds.
- The eight robots in the LEGO Warehouse in Billund can move 660 crates of LEGO bricks an hour.
- Children all over the world spend 5 billion hours a year playing with LEGO bricks.
- There are 102,981,500 different ways of combining six eight-stud bricks of the same colour.

- On average each person on earth owns 52 LEGO bricks.







#### Selected LEGO statistics

- More than 400,000,000 children and adults will play with LEGO bricks this year.
- LEGO products are on sale in more than 130 countries.
- If you built a column of about 40,000,000,000 LEGO bricks, it would reach the moon.
- Approx. four LEGO sets are sold each second.

- There are 915,103,765 different ways of combining six eight-stud bricks of the same colour.
- On average every person on earth has 52 LEGO bricks.
- With a production of about 306 million tyres a year, the LEGO Group is the world's largest tyre manufacturer.
- If all the LEGO sets sold over the past 10 years were placed end to end, they would reach from London, England, to Perth, Australia.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

#### Theorem (Abrahamsen/Durhuus-E)

The number of LEGO buildings constructable by n blocks of size  $b \times w$  grows asymptotically as  $h_{b \times w}^n$  with

$$w^{2} + b^{2} + 6bw - 4b - 4w + 2 \le h_{b \times w} \le 24w^{2} + 36bw - 48w$$

if  $b \neq w$ , and

$$4b^2 - 4b + 1 \le h_{b \times b} \le 18b^2$$

otherwise. We have

$$78 \le h_{2 \times 4} \le 192$$

## Quadratic dependence (empirical evidence)



◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の Q @ >





## 2 Motivation (2D)







| Bac | kgrou | nd ( | (3D) | ) |
|-----|-------|------|------|---|
|     |       |      |      |   |

## Flat buildings



・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

#### Theorem (Abrahamsen-E)

The number of flat LEGO buildings constructable by n blocks of size  $1 \times w$  grows asymptotically as  $\hat{h}_w^n$  with

$$2w - 1 \le \widehat{h}_w \le 7w$$

#### Conjecture and wild guess





$$\widehat{h}_2 = 5$$



シックシード エー・ボット 中国マート

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

#### Theorem [Bousquet-Mélou & Rechnitzer]

The number of pyramids constructable by m dimers equals

$$\binom{2m-1}{m-1}$$

and hence grows like

$$\frac{1}{\sqrt{4\pi m}}4^m$$

The average width of such a pyramid is (caveat!) asymptotic to

 $16\sqrt{\pi m}$ 

Results

## Bousquet-Mélou & Rechnitzer



▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

#### Worth pondering

 $\binom{2m-1}{m-1}$  is the number of strings of 2m symbols drawn from  $\{0,1\}$  with exactly m ones and starting with a one, like

#### 10010011

# visualizable as

| Background (3D) | Motivation (2D) | Results | Decoding |
|-----------------|-----------------|---------|----------|
| Outline         |                 |         |          |



2 Motivation (2D)







▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

#### Theorem

The number of pyramids constructable by m polymers/LEGOs of width a equals

$$\binom{am-1}{m-1}$$

and hence grows like

$$\frac{1}{\sqrt{2\pi a(a-1)m}} \left(\frac{a^a}{(a-1)^{a-1}}\right)^m$$

The average width of such a pyramid is asymptotic to

$$\sqrt{\frac{\pi}{2}a(a-1)m}$$

| Background (3D |
|----------------|
|----------------|

## Outline

Background (3D)

Motivation (2D)

#### 3 Results



★□> <団> < E> < E> = のQ@

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

## Positive strings

#### Definition

A string

 $x_1 \cdots x_n$ 

with *n* symbols in  $\{0,1\}$  is *a*-positive when

$$orall j \in \{1,\ldots,n\}: \sum_{i=1}^j \left( \mathsf{ax}_i - 1 
ight) \geq 0$$

We say that  $x_n \cdots x_1$  is *a*-negative in this case.

#### Examples

110100 is 2-positive. 100011 is not.

| Background (3D)        | Motivation (2D) | Results | Decoding |
|------------------------|-----------------|---------|----------|
| P case ( <i>a</i> = 2) |                 |         |          |
|                        |                 |         |          |





▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → の Q @

| Background (3D)        | Motivation (2D) | Results | Decoding |
|------------------------|-----------------|---------|----------|
| P case ( <i>a</i> = 2) |                 |         |          |
|                        |                 |         |          |





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

| Background (3D)        | Motivation (20 | D)    | Results | Decoding |
|------------------------|----------------|-------|---------|----------|
| P case ( <i>a</i> = 2) |                |       |         |          |
|                        |                |       |         |          |
|                        | 1 1            | 0 1 0 | 0       |          |
|                        |                |       |         |          |
|                        |                |       |         |          |
|                        |                |       |         |          |
|                        |                |       |         |          |



| Background (3D)        | Motivation (2D) | Results | Decoding |
|------------------------|-----------------|---------|----------|
| P case ( <i>a</i> = 2) |                 |         |          |
|                        |                 |         |          |
|                        | 1 1 0 1         | 0 0     |          |
|                        |                 |         |          |
|                        |                 |         |          |
|                        |                 |         |          |
|                        |                 | l       |          |



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶







◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

## P case (a = 2)





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

| Background (3D)   | Motivation (2D) | Results | Decoding |
|-------------------|-----------------|---------|----------|
| PN case $(a = 2)$ |                 |         |          |





◆□ ▶ ◆■ ▶ ◆ ■ ◆ ● ◆ ● ◆

| Background (3D)         | Motivation (2D) | Results | Decoding |
|-------------------------|-----------------|---------|----------|
| PN case ( <i>a</i> = 2) |                 |         |          |





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

| PN case $(a = 2)$ | ecoding |
|-------------------|---------|
| FN Case (a = 2)   |         |





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

| Background (3D)   | Motivation (2D) | Results | Decoding |
|-------------------|-----------------|---------|----------|
| PN case $(a = 2)$ |                 |         |          |





▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の�?

| Background (3D)        | Motivation (2D) | Results | Decoding |
|------------------------|-----------------|---------|----------|
| P case ( <i>a</i> = 2) |                 |         |          |





▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

## PN case (a = 2)





## PN case (a = 2)





◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

## Generalizing to a > 2



Indecomposability 
$$(a = 3)$$
  
100010

| Background (3D)  | Motivation (2D) | Results | Decoding |
|------------------|-----------------|---------|----------|
|                  | 0               |         |          |
|                  | 1 0 0 0         | 1 0     |          |
| Coding automator | 1               |         |          |
|                  |                 |         |          |

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

#### Lemma

Any  $\{0,1\}$ -string of length am which starts with one and has exactly m ones may be uniquely decomposed into a sequence of strings P, N, T, U satisfying the constraints of



▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

#### Lemma

Fix  $a \ge 2$ . The number  $A_n$  of one-sided pyramids coincides with the number of sequences in  $P_n$ , or  $N_n$ , by the coding procedure outlined earlier. Thus the number of pyramids is

$$\sum_{r\geq 1}\sum_{m_1+\cdots+m_r=m}(a-1)^{r-1}A_{m_1}\ldots A_{m_r},$$

ヘロト ヘ戸ト ヘヨト ヘヨト

#### Observation

The number of  $\{0,1\}$ -strings of length *am* which starts with one and has exactly *m* ones can be written in the form

$$\sum_{r\geq 1}\sum_{m_1+\cdots+m_r=m}a_r\,A_{m_1}\ldots A_{m_r},$$

where *r* denotes the total number of substrings P or N, with sizes  $m_1, \ldots, m_r \ge 1$ , in a composition and the factor  $a_r$  counts the number of admissible compositions subject to the boundary conditions specified by



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

#### Theorem

$$a_r = (a-1)^{r-1}$$

#### Corollary

The exponential rate of growth is

$$rac{a^a}{(a-1)^{a-1}}\sim e(a-1)$$

| Backgroun | d (3D) |   |   | Mo | tivation ( | (2D) |   |   | Res | ults |   |   | Decoding |
|-----------|--------|---|---|----|------------|------|---|---|-----|------|---|---|----------|
|           |        |   |   |    |            |      |   |   |     |      |   |   |          |
|           |        |   |   |    |            |      |   |   |     |      |   |   |          |
|           |        |   |   |    |            |      |   |   |     |      |   |   |          |
|           |        |   |   | (  | )          |      |   |   |     |      |   |   |          |
|           |        | 1 | 0 |    |            | 0    | 1 | 0 | 0   | 1    | 0 |   |          |
|           |        |   |   |    |            |      |   |   |     |      |   |   |          |
|           |        |   |   |    |            |      |   |   |     |      |   | 0 |          |
|           | 1      | 0 | 0 |    |            |      | 0 |   |     |      | 1 | 0 |          |

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶