

The *C**-algebras of right-angled Artin–Tits monoids

Søren Eilers Department of Mathematical Sciences

Outline

- 1 Isometries
- 3 The co-irreducible case
- 4 The general case
- **5** n = 5 case by case

Isometric operators on Hilbert space

Let H be a separable Hilbert space.

Lemma

An operator $S \in \mathbb{B}(H)$ is an isometry precisely when $S^*S = I$.

Isometric operators on Hilbert space

Let H be a separable Hilbert space.

Lemma

An operator $S \in \mathbb{B}(H)$ is an isometry precisely when $S^*S = I$.

Proof

We have

$$||Sx|| = ||x|| \iff \langle (S^*S - I)x, x \rangle = 0$$

so the result follows by the polarization identity.

Example

On $\ell^2(\mathbb{N})$, we have

$$S_{\text{even}}e_n = e_{2n}$$
 $S_{\text{odd}}e_n = e_{2n-1}$

Example

On $\ell^2(\mathbb{N} \times \mathbb{N})$, we have

$$S_{\rightarrow}e_{n,m}=e_{n+1,m}$$
 $S_{\uparrow}e_{n,m}=e_{n,m+1}$

Example

On $\ell^2(\mathbb{N})$, we have

$$S_{\text{even}}e_n = e_{2n}$$
 $S_{\text{odd}}e_n = e_{2n-1}$

Example

On $\ell^2(\mathbb{N} \times \mathbb{N})$, we have

$$S_{\rightarrow}e_{n,m}=e_{n+1,m}$$
 $S_{\uparrow}e_{n,m}=e_{n,m+1}$

Observation

$$S_{\text{even}}^* S_{\text{odd}} = 0$$
 $S_{\rightarrow} S_{\uparrow} = S_{\uparrow} S_{\rightarrow}$ $S_{\rightarrow}^* S_{\uparrow} = S_{\uparrow} S_{\rightarrow}^*$

Stable relations

An almost isometry is close to an isometry, i.e.

Lemma

For any $\epsilon > 0$, there exists $\delta > 0$ such that whenever $T \in \mathbb{B}(H)$ satisfies

$$||T^*T - I|| < \delta$$

there exists $S \in \mathbb{B}(H)$ satisfying

$$S^*S = I$$
 $||S - T|| < \epsilon$

Stable relations

An almost isometry is close to an isometry, i.e.

Lemma

For any $\epsilon > 0$, there exists $\delta > 0$ such that whenever $T \in \mathbb{B}(H)$ satisfies

$$||T^*T - I|| < \delta$$

there exists $S \in \mathbb{B}(H)$ satisfying

$$S^*S = I$$
 $||S - T|| < \epsilon$

Proof

We can let

$$S = T(T^*T)^{-1/2}$$

when $\delta < 1$.

A pair of almost orthogonal almost isometries is close to a pair of orthogonal isometries:

Lemma

For any $\epsilon > 0$, there exists $\delta > 0$ such that whenever $T_1, T_2 \in \mathbb{B}(H)$ satisfy

$$||T_i^*T_i - I|| < \delta$$
 $||T_1^*T_2|| < \delta$

there exist $S_1, S_2 \in \mathbb{B}(H)$ satisfying

$$S_i^* S_i = I$$
 $S_1^* S_2 = 0$ $||S_i - T_i|| < \epsilon$

A pair of almost commuting almost isometries is **not** close to a pair of commuting orthogonal isometries:

Theorem

Irrespective of $\delta > 0$, there is $T_1, T_2 \in \mathbb{B}(H)$ satisfying

$$||T_i^*T_i - I|| < \delta$$
 $||T_1T_2 - T_2T_1|| < \delta$ $||T_1^*T_2 - T_2T_1^*|| < \delta$

where no $S_1, S_2 \in \mathbb{B}(H)$ can satisfy

$$S_i^* S_i = I$$
 $S_1 S_2 = S_2 S_1$ $S_1^* S_2 = S_2^* S_1$ $||S_i - T_i|| < 1/\sqrt{2}$

A pair of almost commuting almost isometries is **not** close to a pair of commuting orthogonal isometries:

Theorem

Irrespective of $\delta > 0$, there is $T_1, T_2 \in \mathbb{B}(H)$ satisfying

$$||T_i^*T_i - I|| < \delta$$
 $||T_1T_2 - T_2T_1|| < \delta$ $||T_1^*T_2 - T_2T_1^*|| < \delta$

where no $S_1, S_2 \in \mathbb{B}(H)$ can satisfy

$$S_i^* S_i = I$$
 $S_1 S_2 = S_2 S_1$ $S_1^* S_2 = S_2^* S_1$ $||S_i - T_i|| < 1/\sqrt{2}$

Proof idea

Voiculescu matrices or BDF-theory and the Bott element of $K^0(S^2)$.

Question

For families T_1, \ldots, T_n of almost isometries, where each pair is given to either be orthogonal or to commute, are the relations stable?

Encoding by graphs

Graphs

We work with finite, simple, undirected graphs with no loops and call them

$$\Gamma = (V, E), \quad \Gamma' = (V', E').$$

Definition

For $\Gamma = (V, E)$ we let $\Gamma^{op} = (V, E^{op})$ with

$$E^{\mathsf{op}} = (V \times V) \setminus (E \cup \{(v, v) \mid v \in V\}).$$

We call Γ co-irreducible when Γ ^{op} is irreducible.

Graphs

We work with finite, simple, undirected graphs with no loops and call them

$$\Gamma = (V, E), \quad \Gamma' = (V', E').$$

Definition

For $\Gamma = (V, E)$ we let $\Gamma^{op} = (V, E^{op})$ with

$$E^{\mathsf{op}} = (V \times V) \setminus (E \cup \{(v, v) \mid v \in V\}).$$

We call Γ co-irreducible when Γ^{op} is irreducible, and for non-co-irreducible graphs consider co-irreducible components:

$$\Gamma = \Gamma_1 * \Gamma_2 * \cdots * \Gamma_n$$

Graphs (cont'd)

Graphs (cont'd)

Definition (Euler characteristic)

$$\chi(\Gamma) = \sum_{K \text{ }\Gamma\text{-simplex}} (-1)^{|K|}$$

 χ is multiplicative over co-irreducible components.

n = 5

Outline

- 1 Isometries
- **2** Encoding by C^* -algebras and monoids
- 3 The co-irreducible case
- 4 The general case
- **5** n = 5 case by case

Examples of C^* -algebras

- C(X), X a compact Hausdorff space
- $M_n(\mathbb{C})$
- $\mathbb{K} = \mathbb{K}(H)$
- $\mathcal{T} = C^* \langle S \mid S^*S = 1 \rangle$
- $\mathcal{E}_2 = C^* \langle S_1, S_2 \mid S_i^* S_i = 1, S_1^* S_2 = 0 \rangle$
- $\mathcal{O}_2 = C^* \langle S_1, S_2 \mid S_i^* S_i = 1, S_1 S_1^* + S_2 S_2^* = I \rangle$
- $A \otimes B$ when A and B are C^* -algebras

Examples of C^* -algebras

- C(X), X a compact Hausdorff space
- $M_n(\mathbb{C})$
- $\mathbb{K} = \mathbb{K}(H)$
- $\mathcal{T} = C^* \langle S \mid S^*S = 1 \rangle$
- $\mathcal{E}_2 = C^* \langle S_1, S_2 \mid S_i^* S_i = 1, S_1^* S_2 = 0 \rangle$
- $\mathcal{O}_2 = C^* \langle S_1, S_2 \mid S_i^* S_i = 1, S_1 S_1^* + S_2 S_2^* = I \rangle$
- $A \otimes B$ when A and B are C^* -algebras

Key notions

Simplicity, nuclearity, pure infiniteness.

The Elliott Program

Goal

Classify nuclear C^* -algebras by K-theoretical invariants.

The Elliott Program

Goal

Classify nuclear C^* -algebras by K-theoretical invariants.

Progress bars	
Simple, purely infinite C^* -algebras	98%
Simple C*-algebras	91%
Purely infinite C^* -algebras with	
finitely many ideals	37%
C*-algebras with finitely many ideals	8%

Artin-Tits constructions

Let Γ be a graph.

Right-angled Artin-Tits group

$$A_{\Gamma} = \langle \{\sigma_v\}_{v \in V} \mid \sigma_v \sigma_w = \sigma_w \sigma_v \text{ if } (v, w) \in E \rangle$$

Right-angled Artin-Tits monoid

$$A_{\Gamma}^{+} = \langle \{\sigma_{v}\}_{v \in V} \mid \sigma_{v}\sigma_{w} = \sigma_{w}\sigma_{v} \text{ if } (v, w) \in E \rangle^{+}$$

Definition (Crisp-Laca '02)

The C^* -algebra associated to the Artin-Tits monoid of Γ is

$$C^*(A_{\Gamma}^+) = C^* \left\langle \{s_v\}_{v \in V} \middle| egin{array}{ll} s_v s_w = s_w s_v & (v,w) \in E \ s_v s_w^* = s_w^* s_v & (v,w) \in E \ s_v^* s_w = \delta_{v,w} \cdot 1 & (v,w)
otin E \end{array}
ight
angle.$$

Observation

$$C^*(A_{\Gamma}^+) = C^*(A_{\Gamma_1}^+) \otimes C^*(A_{\Gamma_2}^+) \otimes \cdots \otimes C^*(A_{\Gamma_n}^+)$$

when

$$\Gamma = \Gamma_1 * \Gamma_2 * \cdots * \Gamma_n.$$

Example

- $C^*(A^+) = T$
- $C^*(A^+_{\bullet} \bullet) = \mathcal{T} \otimes \mathcal{T}$
- $C^*(A^+) = \mathcal{E}_2$

Semiprojectivity

Stability of relations \mathcal{R} on generators x_1, \ldots, x_n is ensured by semiprojectivity of the universal C^* -algebra $C^*\langle x_1, \ldots, x_n \mid \mathcal{R} \rangle$:

Definition (Semiprojectivity)

Theorem (Thiel-Sørensen)

C(X) is semiprojective precisely when X is a 1-dimensional ANR.

Theorem (Thiel-Sørensen)

C(X) is semiprojective precisely when X is a 1-dimensional ANR.

Example

- $C^*(A^+) = \mathcal{T}$ is semiprojective
- $C^*(A^+_{\bullet}) = \mathcal{T} \otimes \mathcal{T}$ is not semiprojective
- $C^*(A^+) = \mathcal{E}_2$ is semiprojective

Outline

- 1 Isometries
- 3 The co-irreducible case
- 4 The general case
- **5** n = 5 case by case

Ideal structure

Theorem (Coburn)

$$0 \longrightarrow \mathbb{K} \longrightarrow \mathcal{T} \longrightarrow C(S^1) \longrightarrow 0$$

Ideal structure

Theorem (Coburn)

$$0 \longrightarrow \mathbb{K} \longrightarrow \mathcal{T} \longrightarrow C(S^1) \longrightarrow 0$$

Observation (Li)

 \mathbb{K} is always an ideal of $C^*(A_{\Gamma}^+)$. When Γ is co-irreducible with $|\Gamma| > 1$,

$$C^*(A_{\Gamma}^+)/\mathbb{K}$$

is simple and purely infinite.

Classifying C^* -algebras with 1 ideal

Goal

Classify C^* -algebras E with a unique ideal I by their six-term exact sequence

$$K_0(I) \longrightarrow K_0(E) \longrightarrow K_0(E/I)$$

$$\downarrow \qquad \qquad \downarrow$$

$$K_1(E/I) \longleftarrow K_1(E) \longleftarrow K_1(I)$$

Classifying C^* -algebras with 1 ideal

Goal

Classify C^* -algebras E with a unique ideal I by their six-term exact sequence

$$K_0(I) \longrightarrow K_0(E) \longrightarrow K_0(E/I)$$

$$\uparrow \qquad \qquad \downarrow$$

$$K_1(E/I) \longleftarrow K_1(E) \longleftarrow K_1(I)$$

Progress bars

Stable, purely infinite 98%
Unital, purely infinite 98%
Stable, mixed 41%
Unital, mixed 7%

Theorem (E–Restorff–Ruiz)

Unital C*-algebras E of the form

$$0 \longrightarrow \mathbb{K} \longrightarrow E \longrightarrow Q \longrightarrow 0$$

with Q a purely infinite and simple C^* -algebra (nuclear, UCT) are classified by their six-term exact sequence when moreover

- K_{*}(Q) finitely generated
- K₁(Q) free
- rank $K_1(Q) \leq \operatorname{rank} K_0(Q)$

C*-algebras of Artin-Tits monoids (cont'd)

Theorem (Cuntz-Echterhoff-Li)

For any Γ,

$$K_*(C^*(A_\Gamma^+)) = \mathbb{Z} \oplus 0$$

with [1] = 1.

Proof

The Baum–Connes conjecture holds for the group A_{Γ} since it has the Haagerup property.

Case I

When Γ is co-irreducible with $|\Gamma| > 1$ and $\chi(\Gamma) \neq 0$, we have

$$0 \longrightarrow \mathbb{K} \longrightarrow C^*(A_{\Gamma}^+) \longrightarrow \mathcal{O}_{|\chi(\Gamma)|+1} \longrightarrow 0$$

with K-theory

$$\mathbb{Z} \xrightarrow{\chi(\Gamma)} \mathbb{Z} \longrightarrow \mathbb{Z}/\chi(\Gamma)\mathbb{Z}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longleftarrow 0 \longleftarrow 0 \longleftarrow 0$$

Case II

When Γ is co-irreducible with $|\Gamma| > 1$ and $\chi(\Gamma) = 0$, we have

$$0 \longrightarrow \mathbb{K} \longrightarrow C^*(A_{\Gamma}^+) \longrightarrow \mathcal{O}_1 \longrightarrow 0$$

with *K*-theory

$$\mathbb{Z} \xrightarrow{0} \mathbb{Z} \longrightarrow \mathbb{Z} \\
\uparrow \\
\mathbb{Z} \longleftarrow 0 \longleftarrow 0$$

Here \mathcal{O}_1 is the unique unital Kirchberg algebra with the indicated K-theory and [1] = 1.

Theorem (E-Li-Ruiz)

When Γ, Γ' are co-irreducible with $|\Gamma|, |\Gamma'| > 1$ we have

$$C^*(A_{\Gamma}^+) \simeq C^*(A_{\Gamma'}^+) \Longleftrightarrow \chi(\Gamma) = \chi(\Gamma')$$

Theorem (E-Li-Ruiz)

When Γ, Γ' are co-irreducible with $|\Gamma|, |\Gamma'| > 1$ we have

$$C^*(A_{\Gamma}^+) \simeq C^*(A_{\Gamma'}^+) \Longleftrightarrow \chi(\Gamma) = \chi(\Gamma')$$

Note that, e.g., $C^*(A^+_{\bullet} _ \bullet) \simeq C^*(A^+_{\bullet})$. Since the latter is semiprojective, so is the former.

Theorem (E-Li-Ruiz)

When Γ, Γ' are co-irreducible with $|\Gamma|, |\Gamma'| > 1$ we have

$$C^*(A_{\Gamma}^+) \simeq C^*(A_{\Gamma'}^+) \Longleftrightarrow \chi(\Gamma) = \chi(\Gamma')$$

Note that, e.g., $C^*(A^+_{\bullet} _ \bullet) \simeq C^*(A^+_{\bullet})$. Since the latter is semiprojective, so is the former.

Corollary

When Γ is co-irreducible with $\chi(\Gamma) < 0$, $C^*(A_{\Gamma}^+)$ is semiprojective.

n = 5

Outline

- 1 Isometries
- 3 The co-irreducible case
- 4 The general case
- **5** n = 5 case by case

Classifying C^* -algebras with finitely many ideals

Progress bars	
Stable, purely infinite	32%
Unital, purely infinite	15%
Stable, mixed	3%
Unital, mixed	1%

The general case

Definition

When
$$\Gamma = \Gamma_1 * \Gamma_2 * \cdots * \Gamma_n$$
, define

$$t(\Gamma) = \#\{i \mid |\Gamma_i| = 1\}$$

$$N_k(\Gamma) = \#\{i \mid \chi(\Gamma_i) = k\}$$

The general case

Definition

When $\Gamma = \Gamma_1 * \Gamma_2 * \cdots * \Gamma_n$, define

$$t(\Gamma) = \#\{i \mid |\Gamma_i| = 1\}$$

$$N_k(\Gamma) = \#\{i \mid \chi(\Gamma_i) = k\}$$

Theorem (E-Li-Ruiz)

For general graphs Γ, Γ' we have

$$C^*(A_{\Gamma}^+) \simeq C^*(A_{\Gamma'}^+)$$

precisely when

- $1 t(\Gamma) = t(\Gamma')$
- $N_k(\Gamma) + N_{-k}(\Gamma) = N_k(\Gamma') + N_{-k}(\Gamma') for all k$
- 3 $N_0(\Gamma) > 0$ or $\sum_{k>0} N_k(\Gamma) \equiv \sum_{k>0} N_k(\Gamma') \mod 2$

n = 5

Subtler isomorphisms

Semiprojectivity

Theorem (Enders)

 $\mathcal{T} \otimes A$ is only semiprojective when A is finite-dimensional.

Semiprojectivity

Theorem (Enders)

 $\mathcal{T} \otimes A$ is only semiprojective when A is finite-dimensional.

Observation (Szymański)

The graph C^* -algebra $C^*(E)$ given by a finite directed graph E is semiprojective.

Semiprojectivity

Theorem (Enders)

 $\mathcal{T} \otimes A$ is only semiprojective when A is finite-dimensional.

Observation (Szymański)

The graph C^* -algebra $C^*(E)$ given by a finite directed graph E is semiprojective.

Theorem (E-Li-Ruiz)

When $t(\Gamma) = 0$, $C^*(A_{\Gamma}^+)$ is a graph C^* -algebra precisely when

$$\sum_{|k| \neq 1} N_k \le 1$$

Corollary

- When $t(\Gamma) > 1$, $C^*(A_{\Gamma}^+)$ is not semiprojective.
- When $t(\Gamma) = 1$, $C^*(A_{\Gamma}^+)$ is semiprojective precisely when

$$\sum_k N_k = 0$$

• When $t(\Gamma) = 0, C^*(A_{\Gamma}^+)$ is semiprojective when

$$\sum_{|k| \neq 1} N_k \leq 1$$

First open case

Outline

- 1 Isometries
- 3 The co-irreducible case
- 4 The general case
- **6** n = 5 case by case

$N_{-4} = 1$: Semiprojective

$N_{-3} = 1$: Semiprojective

$N_{-2} = 1$: Semiprojective

$N_{-1} = 1$: Semiprojective

$N_0 = 1$: Semiprojective

$N_1 = 1$: Semiprojective

$N_{-1} = 1$, t = 1: Not semiprojective

$N_{-2}=1, N_{-1}=1$: Semiprojective

 $N_{-2} = 1, t = 1$: Not semiprojective

$N_{-1} = 2$: Semiprojective

$N_{-1} = 1$, t = 1: Not semiprojective

$N_1 = 1, t = 1$: Not semiprojective

 $N_0 = 1, t = 1$: Semiprojective

$N_{-2} = 1$, t = 2: Not semiprojective

 $N_{-1} = 2$, t = 1: Not semiprojective

$N_{-1} = 1, t = 2$: Not semiprojective

 $N_{-1} = 1, t = 3$: Not semiprojective

t = 5: Not semiprojective

