Overview of Shape Theory

Alex Chigogidze

College of Staten Island, CUNY

August 27, 2012
We now consider only metrizable compact spaces. For each such X there exists an ANE-sequence associated with it. In other words, there exists an inverse sequence $S_X = \{X_n, p_n^{n+1}, \omega\}$ such that $X = \lim S_X$.

More sophisticated observation (Freudenthal): Any (n-dimensional) metrizable compactum is the limit of an inverse sequence consisting of (n-dimensional) ANE-compacta (even polyhedra) with surjective projections.
We now consider only metrizable compact spaces. For each such X there exists an ANE-sequence associated with it. In other words, there exists an inverse sequence $S_X = \{X_n, p_n^{n+1}, \omega\}$ such that $X = \lim S_X$.

To see this embed X into the Hilbert cube \mathbb{I}^ω, fix a metric d on it and for each n choose a closed ANE-neighborhood X_n of X such that $d(x, X) < \frac{1}{n}$ for every point $x \in X_n$. We may assume that the sequence of X_n’s is decreasing. Then this sequence together with inclusion maps forms an ANE-sequence.
We now consider only metrizable compact spaces. For each such X there exists an ANE-sequence associated with it. In other words, there exists an inverse sequence $S_X = \{X_n, p_n^{n+1}, \omega\}$ such that $X = \lim S_X$.

To see this embed X into the Hilbert cube I^ω, fix a metric d on it and for each n choose a closed ANE-neighborhood X_n of X such that $d(x, X) < \frac{1}{n}$ for every point $x \in X_n$. We may assume that the sequence of X_n’s is decreasing. Then this sequence together with inclusion maps forms an ANE-sequence.

More sophisticated observation (Freudenthal): Any (n-dimensional) metrizable compactum is the limit of an inverse sequence consisting of (n-dimensional) ANE-compacta (even polyhedra) with surjective projections.
Freudenthal’s theorem is not valid for non-metrizable compact spaces. There exists a 1-dimensional compact space that cannot be represented as the limit space of an inverse spectrum consisting of metrizable ANE-compacta and surjective limit projections. Any compactum with $1 = \dim X < \text{ind } X$ will serve as an example.
Shape in terms of ANE-sequences

By a morphism

\[\alpha: S_X = \{X_n, p_n^{n+1}, \omega\} \to S_Y = \{Y_n, q_n^{n+1}, \omega\} \]

between two ANE-sequences we understand a system
\((\varphi, \{f_n\})\), where \(\varphi: \omega \to \omega\) is an increasing function and maps
\(f_n: X_{\varphi(n)} \to Y_n\) are such that
\(f_m \circ p_{\varphi(m)}^{\varphi(n)} \simeq q^n_m \circ f_n\) for every
\(m \leq n\)
Shape in terms of ANE-sequences

By a morphism

\[\alpha : S_X = \{X_n, p_n^{n+1}, \omega\} \rightarrow S_Y = \{Y_n, q_n^{n+1}, \omega\} \]

between two ANE-sequences we understand a system \((\varphi, \{f_n\})\), where \(\varphi : \omega \rightarrow \omega\) is an increasing function and maps \(f_n : X_{\varphi(n)} \rightarrow Y_n\) are such that \(f_m \circ p^{\varphi(m)}_{\varphi(n)} \simeq q^n_m \circ f_n\) for every \(m \leq n\).

Here is the diagram (commutes homotopically!)

\[
\begin{array}{ccc}
X_{\varphi(n)} & \xrightarrow{f_n} & Y_n \\
p^{\varphi(n)}_{\varphi(m)} & & q^n_m \\
X_{\varphi(m)} & \xrightarrow{f_m} & Y_m
\end{array}
\]
Suppose that we have two morphisms

\[\alpha = (\varphi, \{f_n\}): \mathcal{S}_X = \{X_n, p_n^{n+1}, \omega\} \to \mathcal{S}_Y = \{Y_n, q_n^{n+1}, \omega\} \]

and

\[\beta = (\psi, \{g_n\}): \mathcal{S}_X = \{X_n, p_n^{n+1}, \omega\} \to \mathcal{S}_Y = \{Y_n, q_n^{n+1}, \omega\} \]

between two ANE-sequences.
Suppose that we have two morphisms

\[\alpha = (\varphi, \{f_n\}): S_X = \{X_n, p_n^{n+1}, \omega\} \to S_Y = \{Y_n, q_n^{n+1}, \omega\} \]

and

\[\beta = (\psi, \{g_n\}): S_X = \{X_n, p_n^{n+1}, \omega\} \to S_Y = \{Y_n, q_n^{n+1}, \omega\} \]

between two ANE-sequences.

Let us introduce a homotopy relation between \(\alpha \) and \(\beta \). We say that \(\alpha \simeq \beta \) if for each \(n \) there exists \(m \) such that \(m \geq \varphi(n), \psi(n) \) and \(f_n \circ p_{\varphi(n)}^m \simeq g_n \circ p_{\psi(n)}^m \).
Here is the diagram (commutes homotopically!)

\[
\begin{array}{ccc}
X_m & \xrightarrow{p^m_{\varphi(n)}} & X_{\varphi(n)} \\
\downarrow \quad p^m_{\psi(n)} & & \downarrow \quad f_n \\
X_{\psi(n)} & \xrightarrow{g_n} & Y_n
\end{array}
\]
Suppose we have two morphisms \(\alpha : S_X \to S_Y \) and \(\beta : S_Y \to S_X \). We say that \(S_X \simeq S_Y \) if \(\alpha \circ \beta \simeq \text{id}_{S_Y} \) and \(\beta \circ \alpha \simeq \text{id}_{S_X} \).
Suppose we have two morphisms $\alpha : S_X \to S_Y$ and $\beta : S_Y \to S_X$. We say that $S_X \simeq S_Y$ if $\alpha \circ \beta \simeq \text{id}_{S_Y}$ and $\beta \circ \alpha \simeq \text{id}_{S_X}$.

Turns out that the relation \simeq is an equivalence relation for ANE-sequences.
Suppose we have two morphisms $\alpha: S_X \to S_Y$ and $\beta: S_Y \to S_X$. We say that $S_X \simeq S_Y$ if $\alpha \circ \beta \simeq \text{id}_{S_Y}$ and $\beta \circ \alpha \simeq \text{id}_{S_X}$.

Turns out that the relation \simeq is an equivalence relation for ANE-sequences.

Two ANE-sequences associated with the same compactum are homotopy equivalent.
Suppose we have two morphisms $\alpha : S_X \to S_Y$ and $\beta : S_Y \to S_X$. We say that $S_X \simeq S_Y$ if $\alpha \circ \beta \simeq \text{id}_{S_Y}$ and $\beta \circ \alpha \simeq \text{id}_{S_X}$.

Turns out that the relation \simeq is an equivalence relation for ANE-sequences.

Two ANE-sequences associated with the same compactum are homotopy equivalent.

We say that two compact spaces X and Y have the same shape (notation: $\text{Sh}(X) = \text{Sh}(Y)$) if X and Y have homotopy equivalent ANE-sequences associated with them.
Suppose we have two morphisms $\alpha : S_X \to S_Y$ and $\beta : S_Y \to S_X$. We say that $S_X \cong S_Y$ if $\alpha \circ \beta \cong \text{id}_{S_Y}$ and $\beta \circ \alpha \cong \text{id}_{S_X}$.

Turns out that the relation \cong is an equivalence relation for ANE-sequences.

Two ANE-sequences associated with the same compactum are homotopy equivalent.

We say that two compact spaces X and Y have the same shape (notation: $\text{Sh}(X) = \text{Sh}(Y)$) if X and Y have homotopy equivalent ANE-sequences associated with them.

Note that choice of ANE-sequences is irrelevant.
Suppose A and B are compact subsets of the Hilbert cube \mathbb{I}^ω. Translating above definitions to this situation by a shape morphism from A to B we mean a sequence of maps $f = \{f_n : \mathbb{I}^\omega \to \mathbb{I}^\omega\}$ with the following properties:

- For each neighborhood V of B there exists a neighborhood U of A and an integer N such that for each $n \geq N$, $f_n(U) \subset V$ and $f_n|U \simeq f_{n+1}|U$ in V.

If $f = \{f_n\}$ and $g = \{g_n\}$ are two shape morphisms from A to B then we say that f and g are homotopic if for any neighborhood V of B there exist a neighborhood U of A and an integer N such that for each $n \geq N$ we have $f_n|U \simeq g_n|U$ in V.
Suppose A and B are compact subsets of the Hilbert cube \mathbb{I}^ω. Translating above definitions to this situation by a shape morphism from A to B we mean a sequence of maps $f = \{f_n: \mathbb{I}^\omega \to \mathbb{I}^\omega\}$ with the following properties:

(⋆) for each neighborhood V of B there exists a neighborhood U of A and an integer N such that for each $n \geq N$, $f_n(U) \subset V$ and $f_n|U \simeq f_{n+1}|U$ in V.

If $f = \{f_n\}$ and $g = \{g_n\}$ are two shape morphisms from A to B then we say that f and g are homotopic if for any neighborhood V of B there exist a neighborhood U of A and an integer N such that for each $n \geq N$ we have $f_n|U \simeq g_n|U$ in V.
Let us note that if we have two morphisms $f : A \to B$ and $g : B \to A$ such that $gf \simeq \text{id}_A$ and $fg \simeq \text{id}_B$, then $Sh(A) = Sh(B)$ as defined above (routine verification - pen and paper).
Borsuk’s (original) Definition of Shape

Let us note that if we have two morphisms $f : A \rightarrow B$ and $g : B \rightarrow A$ such that $gf \simeq \text{id}_A$ and $fg \simeq \text{id}_B$, then $\text{Sh}(A) = \text{Sh}(B)$ as defined above (routine verification - pen and paper).

This definition does not depend on the given embedding of A (or B) into I^ω.
Let us note that if we have two morphisms $f: A \to B$ and $g: B \to A$ such that $gf \simeq \text{id}_A$ and $fg \simeq \text{id}_B$, then $Sh(A) = Sh(B)$ as defined above (routine verification - pen and paper).

This definition does not depend on the given embedding of A (or B) into \mathbb{I}^ω.

A good and simple exercise: if A and B are ANE's then $Sh(A) = Sh(B)$ if and only if $A \simeq B$.