I^ω- and R^ω-manifolds

Alex Chigogidze

College of Staten Island, CUNY

August 20, 2012
We consider the set $C(Y, X)$ of all continuous maps. For $\mathcal{U} \in \text{cov}(X)$ let $B(f, \mathcal{U})$ denote the set of all \mathcal{U}-close to f maps.
We consider the set $C(Y, X)$ of all continuous maps. For $U \in \text{cov}(X)$ let $B(f, U)$ denote the set of all U-close to f maps.

The limitation topology on $C(Y, X)$ is defined as follows: a set G is open if for each $f \in G$, there is $U \in \text{cov}(X)$ such that $B(f, U) \subset G$.

If X is Polish, then $C(Y, X)$ has the Baire property.
We consider the set $C(Y, X)$ of all continuous maps. For $U \in \text{cov}(X)$ let $B(f, U)$ denote the set of all U-close to f maps.

The limitation topology on $C(Y, X)$ is defined as follows: a set G is open if for each $f \in G$, there is $U \in \text{cov}(X)$ such that $B(f, U) \subset G$.

A map $f: Y \to X$ is a U-map, where $U \in \text{cov}(Y)$, if there exists $V \in \text{cov}(X)$ such that $f^{-1}(V)$ refines U.
We consider the set \(C(Y, X) \) of all continuous maps. For \(U \in \text{cov}(X) \) let \(B(f, U) \) denote the set of all \(U \)-close to \(f \) maps.

The limitation topology on \(C(Y, X) \) is defined as follows: a set \(G \) is open if for each \(f \in G \), there is \(U \in \text{cov}(X) \) such that \(B(f, U) \subset G \).

A map \(f : Y \to X \) is a \(U \)-map, where \(U \in \text{cov}(Y) \), if there exists \(V \in \text{cov}(X) \) such that \(f^{-1}(V) \) refines \(U \).

The limitation topology coincides with the topology of uniform convergence with respect to all bounded metrics.
We consider the set $C(Y, X)$ of all continuous maps. For $\mathcal{U} \in \text{cov}(X)$ let $B(f, \mathcal{U})$ denote the set of all \mathcal{U}-close to f maps.

The limitation topology on $C(Y, X)$ is defined as follows: a set G is open if for each $f \in G$, there is $\mathcal{U} \in \text{cov}(X)$ such that $B(f, \mathcal{U}) \subset G$.

A map $f : Y \to X$ is a \mathcal{U}-map, where $\mathcal{U} \in \text{cov}(Y)$, if there exists $\mathcal{V} \in \text{cov}(X)$ such that $f^{-1}(\mathcal{V})$ refines \mathcal{U}.

The limitation topology coincides with the topology of uniform convergence with respect to all bounded metrics.

If X is Polish, then $C(Y, X)$ has the Baire property.
When are maps close to homeomorphisms (near-homeomorphisms)?

Bing’s Shrinking Criterion: A map \(f: Y \to X \) between Polish spaces is a near-homeomorphism if and only if \(f(Y) \) is dense in \(X \) and the following condition is satisfied:

\[(⋆) \text{ For each } U \in \text{cov}(Y) \text{ and } V \in \text{cov}(X) \text{ there exist an open cover } W \in \text{cov}(X) \text{ and a homeomorphism } h: Y \to Y \text{ such that } f \circ h \in B(f, V) \text{ and } h^{-1}(W) \preceq U.\]

A closed surjection \(f: Y \to X \) between Polish spaces is a near-homeomorphism if and only if the following condition is satisfied:

\[(⋆⋆) \text{ For each } U \in \text{cov}(Y) \text{ and each } V \in \text{cov}(X) \text{ there exists a homeomorphism } h: Y \to Y \text{ such that } f \circ h \in B(f, V) \text{ and the collection } \{ h^{-1}(x) : x \in X \} \text{ refines } U.\]
Limitation Topology

- When are maps close to homeomorphisms (near-homeomorphisms)?
- Bing’s Shrinking Criterion: A map $f: Y \to X$ between Polish spaces is a near-homeomorphism if and only if $f(Y)$ is dense in X and the following condition is satisfied:

 \begin{itemize}
 \item[(\star)] For each $\mathcal{U} \in \text{cov}(Y)$ and $\mathcal{V} \in \text{cov}(X)$ there exist an open cover $\mathcal{W} \in \text{cov}(X)$ and a homeomorphism $h: Y \to Y$ such that $f \circ h \in B(f, \mathcal{V})$ and $hf^{-1}(\mathcal{W}) \prec \mathcal{U}$.
 \end{itemize}
When are maps close to homeomorphisms (near-homeomorphisms)?

Bing’s Shrinking Criterion: A map $f : Y \to X$ between Polish spaces is a near-homeomorphism if and only if $f(Y)$ is dense in X and the following condition is satisfied:

(\star) For each $\mathcal{U} \in \text{cov}(Y)$ and $\mathcal{V} \in \text{cov}(X)$ there exist an open cover $\mathcal{W} \in \text{cov}(X)$ and a homeomorphism $h : Y \to Y$ such that $f \circ h \in B(f, \mathcal{V})$ and $hf^{-1}(\mathcal{W}) \prec \mathcal{U}$.

A closed surjection $f : Y \to X$ between Polish spaces is a near-homeomorphism if and only if the following condition is satisfied:

$(\star\star)$ For each $\mathcal{U} \in \text{cov}(Y)$ and each $\mathcal{V} \in \text{cov}(X)$ there exists a homeomorphism $h : Y \to Y$ such that $f \circ h \in B(f, \mathcal{V})$ and the collection $\{hf^{-1}(x) : x \in X\}$ refines \mathcal{U}.
A closed subset A of a space X is said to be a Z-set in X if the set $\{ f \in C(X, X): f(X) \cap A = \emptyset \}$ is dense in the space $C(X, X)$. If the set $\{ f \in C(X, X): \text{cl}_X f(X) \cap A = \emptyset \}$ is dense in $C(X, X)$, then we say that A is a strong Z-set in X.

The concepts of the Z-set and the strong Z-set differ even for very simple spaces.
A closed subset A of a space X is said to be a Z-set in X if the set \(\{ f \in C(X, X) : f(X) \cap A = \emptyset \} \) is dense in the space $C(X, X)$. If the set \(\{ f \in C(X, X) : \text{cl}_X f(X) \cap A = \emptyset \} \) is dense in $C(X, X)$, then we say that A is a strong Z-set in X.

The concepts of the Z-set and the strong Z-set differ even for very simple spaces.
Consider the subset

\[X = ([0, 1] \times \{0\}) \cup \left(\bigcup_{n=1}^{\infty} \left\{ \left\{ \frac{1}{n} \right\} \times [0, 1] \right\} \right) \]

of the plane:
The point \((0, 0)\) is a \(Z\)-set, but not a strong \(Z\)-set.
The point $(0,0)$ is a Z-set, but not a strong Z-set.

Every Z-set in a locally compact ANE-space is a strong Z-set.
The point $(0, 0)$ is a Z-set, but not a strong Z-set.
Every Z-set in a locally compact ANE-space is a strong Z-set.
Boundary of a manifold is Z-set.
The point $(0, 0)$ is a Z-set, but not a strong Z-set.

Every Z-set in a locally compact ANE-space is a strong Z-set.

Boundary of a manifold is Z-set.

One point set is a Z-set in the Hilbert cube.
The point \((0, 0)\) is a \(Z\)-set, but not a strong \(Z\)-set.

Every \(Z\)-set in a locally compact ANE-space is a strong \(Z\)-set.

Boundary of a manifold is \(Z\)-set.

One point set is a \(Z\)-set in the Hilbert cube.

Compact subsets are \(Z\)-sets in the Hilbert space.
Z-set Unknotting Theorems

- Z-set Unknotting Theorem: Let $f : Z \rightarrow F$ be a homeomorphism between Z-sets of \mathbb{I}^ω (or \mathbb{R}^ω). Then there is an autohomeomorphism $F : \mathbb{I}^\omega \rightarrow \mathbb{I}^\omega$ (respectively, $F : \mathbb{R}^\omega \rightarrow \mathbb{R}^\omega$) which extends f.

Several versions of this result exist. \mathbb{I}^ω can be replaced by any \mathbb{I}^ω-manifold X as long as f is homotopic to the inclusion map $i_Z : Z \hookrightarrow X$. Same is true for \mathbb{R}^ω-manifolds.
Z-set Unknotting Theorems

- Z-set Unknotting Theorem: Let $f : Z \rightarrow F$ be a homeomorphism between Z-sets of \mathbb{I}^ω (or \mathbb{R}^ω). Then there is an autohomeomorphism $F : \mathbb{I}^\omega \rightarrow \mathbb{I}^\omega$ (respectively, $F : \mathbb{R}^\omega \rightarrow \mathbb{R}^\omega$) which extends f.

- Several versions of this result exist.
Z-set Unknotting Theorems

- **Z-set Unknotting Theorem:** Let \(f : Z \rightarrow F \) be a homeomorphism between Z-sets of \(\mathbb{I}^\omega \) (or \(\mathbb{R}^\omega \)). Then there is an autohomeomorphism \(F : \mathbb{I}^\omega \rightarrow \mathbb{I}^\omega \) (respectively, \(F : \mathbb{R}^\omega \rightarrow \mathbb{R}^\omega \)) which extends \(f \).

- Several versions of this result exist.

- \(\mathbb{I}^\omega \) can be replaced by any \(\mathbb{I}^\omega \)-manifold \(X \) as long as \(f \) is homotopic to the inclusion map \(i_Z : Z \hookrightarrow X \).
Z-set Unknotting Theorems

- **Z-set Unknotting Theorem:** Let \(f : Z \to F \) be a homeomorphism between Z-sets of \(\mathbb{I}^\omega \) (or \(\mathbb{R}^\omega \)). Then there is an autohomeomorphism \(F : \mathbb{I}^\omega \to \mathbb{I}^\omega \) (respectively, \(F : \mathbb{R}^\omega \to \mathbb{R}^\omega \)) which extends \(f \).

- Several versions of this result exist.

- \(\mathbb{I}^\omega \) can be replaced by any \(\mathbb{I}^\omega \)-manifold \(X \) as long as \(f \) is homotopic to the inclusion map \(i_Z : Z \hookrightarrow X \).

- Same is true for \(\mathbb{R}^\omega \)-manifolds.
Z-set Unknotting Theorems

- **Z-set Unknotting Theorem**: Let \(f : Z \to F \) be a homeomorphism between \(Z \)-sets of \(\mathbb{I}^\omega \) (or \(\mathbb{R}^\omega \)). Then there is an autohomeomorphism \(F : \mathbb{I}^\omega \to \mathbb{I}^\omega \) (respectively, \(F : \mathbb{R}^\omega \to \mathbb{R}^\omega \)) which extends \(f \).

- Several versions of this result exist.

- \(\mathbb{I}^\omega \) can be replaced by any \(\mathbb{I}^\omega \)-manifold \(X \) as long as \(f \) is homotopic to the inclusion map \(i_Z : Z \hookrightarrow X \).

- Same is true for \(\mathbb{R}^\omega \)-manifolds.
Strong universality: A locally compact (Polish) space X is strongly universal if for any compact (Polish) space B, its closed subset A, any $U \in \text{cov}(X)$ and any map $f : B \to X$ such that the restriction $f|A$ is a Z-embedding, there is a Z-embedding $g : B \to X$ which is U-close to f and such that $g|A = f|A$.

A space X has DD$_n$P if the set
$$\{f \in C(D^n_1 \oplus D^n_2, X) : f(D^n_1) \cap f(D^n_2) = \emptyset\}$$
is dense in $C(D^n_1 \oplus D^n_2, X)$.

A space X has a Strong Discrete Approximation Property (SDAP) if the set
$$\{f \in C(\bigoplus\{D^n : n \in \omega\}, X) : \{f(D^n) : n \in \omega\} \text{ is discrete}\}$$
is dense in $C(\bigoplus\{D^n : n \in \omega\}, X)$.

Alex Chigogidze
Iω- and Rω-manifolds
Strong universality: A locally compact (Polish) space X is strongly universal if for any compact (Polish) space B, its closed subset A, any $\mathcal{U} \in \text{cov}(X)$ and any map $f: B \to X$ such that the restriction $f|A$ is a Z-embedding, there is a Z-embedding $g: B \to X$ which is \mathcal{U}-close to f and such that $g|A = f|A$.

A space X has DD^nP if the set
\[\{ f \in C(D^n_1 \oplus D^n_2, X): f(D^n_1) \cap f(D^n_2) = \emptyset \} \] is dense in $C(D^n_1 \oplus D^n_2, X)$.

ω- and \mathbb{R}^ω-manifolds
Universality Properties; Disjoint (Discrete) Disks Properties

- Strong universality: A locally compact (Polish) space X is strongly universal if for any compact (Polish) space B, its closed subset A, any $U \in \text{cov}(X)$ and any map $f : B \to X$ such that the restriction $f|A$ is a Z-embedding, there is a Z-embedding $g : B \to X$ which is U-close to f and such that $g|A = f|A$.

- A space X has DD^nP if the set
\[\{ f \in C(D_1^n \oplus D_2^n, X) : f(D_1^n) \cap f(D_2^n) = \emptyset \} \] is dense in
\[C(D_1^n \oplus D_2^n, X). \]

- A space X has a Strong Discrete Approximation Property (SDAP) if the set
\[f \in C(\bigoplus\{ D^n : n \in \omega \}, X) : \{ f(D^n) : n \in \omega \} \text{ is discrete} \]

is dense in
\[C(\bigoplus\{ D^n : n \in \omega \}, X). \]
A (locally) compact A(N)E is homeomorphic to \mathbb{I}^ω (to a \mathbb{I}^ω-manifold) if and only if it is strongly universal for compact spaces (or equivalently, has the DDnP for each n).
A (locally) compact A(N)E is homeomorphic to \mathbb{I}^ω (to a \mathbb{I}^ω-manifold) if and only if it is strongly universal for compact spaces (or equivalently, has the DDnP for each n).

A Polish A(N)E is homeomorphic to \mathbb{R}^ω (to a \mathbb{R}^ω-manifold) if and only if it is strongly universal for Polish spaces (equivalently, has the SDAP).
Properties of \mathbb{I}^ω- and \mathbb{R}^ω-manifolds

- $X \times \mathbb{I}^\omega$ is an \mathbb{I}^ω-manifold iff X is a locally compact ANE.
- $X \times \mathbb{I}^\omega \approx \mathbb{I}^\omega$ iff X is a compact AE.

- Product of countably many non-degenerate compact AE's is \mathbb{I}^ω.
- Product of countably many non-compact Polish AE's is \mathbb{R}^ω.

- Homotopy equivalent \mathbb{R}^ω-manifolds are homeomorphic.

- If X and Y are homotopy equivalent \mathbb{I}^ω-manifolds, then $X \times \mathbb{I}^\omega \approx Y \times \mathbb{I}^\omega$.
Properties of I^ω- and R^ω-manifolds

- $X \times I^\omega$ is an I^ω-manifold iff X is a locally compact ANE.
 $X \times I^\omega \approx I^\omega$ iff X is a compact AE.

- $X \times R^\omega$ is an R^ω-manifold iff X is a Polish ANE.
 $X \times R^\omega \approx R^\omega$ iff X is a Polish AE.

▶ Product of countably many non-degenerate compact AE's is I^ω.
▶ Product of countably many non-compact Polish AE's is R^ω.
▶ Homotopy equivalent R^ω-manifolds are homeomorphic.
▶ If X and Y are homotopy equivalent I^ω-manifolds, then $X \times [0,1) \approx Y \times [0,1)$.

Alex Chigogidze
I^ω- and R^ω-manifolds
Properies of \mathbb{I}^ω- and \mathbb{R}^ω-manifolds

- $X \times \mathbb{I}^\omega$ is an \mathbb{I}^ω-manifold iff X is a locally compact ANE. $X \times \mathbb{I}^\omega \approx \mathbb{I}^\omega$ iff X is a compact AE.
- $X \times \mathbb{R}^\omega$ is an \mathbb{R}^ω-manifold iff X is a Polish ANE. $X \times \mathbb{R}^\omega \approx \mathbb{R}^\omega$ iff X is a Polish AE.
- Product of countably many non-degenerate compact AE’s is \mathbb{I}^ω.

Alex Chigogidze
Properties of \mathbb{I}^ω- and \mathbb{R}^ω-manifolds

- $X \times \mathbb{I}^\omega$ is an \mathbb{I}^ω-manifold iff X is a locally compact ANE. $X \times \mathbb{I}^\omega \approx \mathbb{I}^\omega$ iff X is a compact AE.

- $X \times \mathbb{R}^\omega$ is an \mathbb{R}^ω-manifold iff X is a Polish ANE. $X \times \mathbb{R}^\omega \approx \mathbb{R}^\omega$ iff X is a Polish AE.

- Product of countably many non-degenerate compact AE’s is \mathbb{I}^ω.

- Product of countably many non-compact Polish AE’s is \mathbb{R}^ω.
Properies of \mathbb{I}^ω- and \mathbb{R}^ω-manifolds

- $X \times \mathbb{I}^\omega$ is an \mathbb{I}^ω-manifold iff X is a locally compact ANE.

 $X \times \mathbb{I}^\omega \approx \mathbb{I}^\omega$ iff X is a compact AE.

- $X \times \mathbb{R}^\omega$ is an \mathbb{R}^ω-manifold iff X is a Polish ANE.

 $X \times \mathbb{R}^\omega \approx \mathbb{R}^\omega$ iff X is a Polish AE.

- Product of countably many non-degenerate compact AE’s is \mathbb{I}^ω.

- Product of countably many non-compact Polish AE’s is \mathbb{R}^ω.

- Homotopy equivalent \mathbb{R}^ω-manifolds are homeomorphic.
Properties of \mathbb{I}^ω- and \mathbb{R}^ω-manifolds

- $X \times \mathbb{I}^\omega$ is an \mathbb{I}^ω-manifold iff X is a locally compact ANE. $X \times \mathbb{I}^\omega \approx \mathbb{I}^\omega$ iff X is a compact AE.
- $X \times \mathbb{R}^\omega$ is an \mathbb{R}^ω-manifold iff X is a Polish ANE. $X \times \mathbb{R}^\omega \approx \mathbb{R}^\omega$ iff X is a Polish AE.
- Product of countably many non-degenerate compact AE’s is \mathbb{I}^ω.
- Product of countably many non-compact Polish AE’s is \mathbb{R}^ω.
- Homotopy equivalent \mathbb{R}^ω-manifolds are homeomorphic.
- If X and Y are homotopy equivalent \mathbb{I}^ω-manifolds, then $X \times [0, 1) \approx Y \times [0, 1)$.