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Abstract

Using the notion of quantum integers associated with a complex number
q 6= 0, we define the quantum Hilbert matrix and various extensions. They
are Hankel matrices corresponding to certain little q-Jacobi polynomials
when |q| < 1, and for the special value q = (1 −

√
5)/(1 +

√
5) they are

closely related to Hankel matrices of reciprocal Fibonacci numbers called
Filbert matrices. We find a formula for the entries of the inverse quantum
Hilbert matrix.
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1 Introduction

In [9] Hilbert introduced the Hilbert matrices

Hn = (1/(`+ j + 1)) , 0 ≤ `, j ≤ n, n = 0, 1, . . . , (1)

and found the following expression for their determinants

detHn =

(
n∏
k=1

(2k + 1)
(

2k
k

)2

)−1

, (2)

showing that they are the reciprocal of integers. This fact is also a consequence
of the observation that the inverse matrices H−1

n have integer entries and Collar
[7] found the following integer expression for them

(H−1
n )`,j = (−1)`+j(`+ j + 1)

(
n+`+1
n−j

)(
n+j+1
n−`

)(
`+j
`

)(
`+j
j

)
. (3)
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Collar [7] actually found the inverse of a one parameter extension H(α)
n =

(α/(`+ j + α)) of the Hilbert matrices, where α > 0,

(H(α)
n )−1

`,j = (−1)`+j `+j+α
α

(
n+`+α
n−j

)(
n+j+α
n−`

)(
`+j+α−1

`

)(
`+j+α−1

j

)
. (4)

This formula was rederived by the second author in [4, Theorem 4.1] without
know-ledge of Collar’s paper, which was not mentioned in the survey by Choi [6].

The idea of proof of (4) is to observe that H(α)
n , n ≥ 0 are the Hankel matrices

of a moment problem. After having determined the corresponding orthonormal
polynomials (Pn) and their kernel polynomials

Kn(x, y) =
n∑
k=0

Pk(x)Pk(y) =
n∑

`,j=0

a
(n)
`,j x

`yj (5)

one uses the result that the matrix

(a
(n)
`,j ), 0 ≤ `, j ≤ n

of coefficients of the kernel polynomial is the inverse of the Hankel matrix. This
result is called the ABC theorem in the survey paper [15] by Simon. It is equiv-
alent to formula (1) in [7], and it was rediscovered as [4, Theorem 2.1] with the
remark that it also holds for orthonormal polynomials with respect to signed
measures. We add that the determinant formula for the kernel polynomials given
in [1, p.9] is equivalent to the ABC theorem.

In [14] Richardson noticed that the Filbert matrices

Fn = (1/F`+j+1) , 0 ≤ `, j ≤ n, n = 0, 1, . . . , (6)

where Fn, n ≥ 0 is the sequence of Fibonacci numbers, have the property that all
elements of the inverse matrices are integers. Richardson gave an explicit formula
for the elements of the inverse matrices and proved it using computer algebra.
It is the special case α = 1, sinh θ = 1

2
of (44) given below. The formula shows

a remarkable analogy with formula (3) in the sense that one shall replace the
binomial coefficients

(
n
k

)
by the analogous Fibonomial coefficients(
n

k

)
F

=
k∏
j=1

Fn−j+1

Fj
, 0 ≤ k ≤ n, (7)

with the usual convention that empty products are defined as 1. These coefficients
are defined and studied in [12] and are integers. We recall that the sequence of
Fibonacci numbers is F0 = 0, F1 = 1, . . . , with the recursion formula Fn+1 =
Fn + Fn−1, n ≥ 1.

The Hilbert matrices are the Hankel matrices (s`+j) corresponding to the
moment sequence

sn = 1/(n+ 1) =

∫ 1

0

xn dx, n ≥ 0, (8)
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and the corresponding orthogonal polynomials are the Legendre polynomials for
the interval [0, 1], see [2, Section 7.7]. This was used in [7],[4] and in the survey
paper [3] to prove Collar’s formula (4).

In [4] it was noticed that for α ∈ N the sequence (Fα/Fn+α)n≥0 is the moment
sequence of a signed measure of total mass one. The corresponding orthogonal
polynomials were identified as special little q-Jacobi polynomials for the value
q = (1 −

√
5)/(1 +

√
5), and from this Richardson’s formula for the elements of

the inverse Filbert matrices was derived as the case α = 1 of [4, (29)].
The results about Fibonacci numbers have been extended by Ismail in [11]

to a one-parameter family of sequences (Fn(θ))n≥0, θ > 0, determined by the
recursion

Fn+1(θ) = 2 sinh θFn(θ) + Fn−1(θ), n ≥ 1, F0(θ) = 0, F1(θ) = 1. (9)

When sinh θ = 1
2

we have Fn(θ) = Fn, and when 2 sinh θ is a positive integer then
all Fn(θ) are integers.

The purpose of this paper is to give a common generalization of all these
results by the use of quantum integers defined by

[n]q =
qn/2 − q−n/2

q1/2 − q−1/2
, n = 0, 1, . . . (10)

where q ∈ C \ {0}. To make the definition precise, we consider q1/2 as the
holomorphic branch in the cut plane C\] − ∞, 0] which is positive for q > 0,
and extend it to the cut by (−q)1/2 = i

√
q for q > 0. In this way q → [n]q is

holomorphic in the cut plane and for q ∈ ]−∞, 0[ we have

[n]q = lim
ε→0+

[n]q+iε. (11)

Clearly [n]q = n for n = 0, 1 and [n]1 = n for all n ∈ N. The quantum integer [n]q
vanishes for n ≥ 1 precisely if q is an n’th root of unity different from 1. Note
also that [n]q = [n]1/q = [n]q̄ for q in the cut plane. For q = eiθ, θ ∈ ]−π, π[ we
find

[n]eiθ = Un−1(θ/2), n ≥ 1, (12)

where Un(θ) = sin((n + 1)θ)/ sin θ is the Chebyshev polynomial of the second
kind. Inserting θ = ±π in (12) yields the following value, which agrees with [n]−1

defined according to (11):

[n]−1 =

{
0 if n = 2k
(−1)k if n = 2k + 1.

(13)

We see in (38) below that the quantum integers for q = (1 −
√

5)/(1 +
√

5)
are closely related to the Fibonacci numbers.
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It should be mentioned that some authors define quantum integers differently,
namely as (1− qn)/(1− q).

Assume now 0 < |q| < 1. We consider the complex measure in the complex
plane depending on α ∈ N and q, defined by

µ(α)(q) = (1− qα)
∞∑
k=0

qkαδqk+1/2 , (14)

where δc is the Dirac measure concentrated at c ∈ C. It is easy to see the following
q-analogue of (8)

1

[n+ 1]q
=

∫
xn dµ(1)(q)(x), n ≥ 0 (15)

as well as
[α]q

[n+ α]q
=

∫
xn dµ(α)(q)(x), n ≥ 0. (16)

The Hankel matrices corresponding to µ(1)(q) are defined as

Hn(q) =

(
1

[`+ j + 1]q

)
, 0 ≤ `, j ≤ n, n = 0, 1, . . . , (17)

and are called the quantum Hilbert matrices. We will also consider the generalized
quantum Hilbert matrices (α ∈ N)

H(α)
n (q) =

(
[α]q

[`+ j + α]q

)
, 0 ≤ `, j ≤ n, n = 0, 1, . . . . (18)

These matrices are well-defined for non-zero complex numbers q which are not
roots of unity of order ≤ 2n + α. When 0 < q < 1 the measure µ(1)(q) is
a probability measure on [0, 1] which for q → 1 converges weakly to Lebesgue
measure on [0, 1]. The quantum Hilbert matrices Hn(q) converge to the ordinary
Hilbert matrices when q → 1.

We prove in section 2 that the generalized quantum Hilbert matrices are
regular and find a formula for the elements of the inverse matrix, see Theorem 2.1.
This is a q-analogue of Collar’s formula (4). The proof uses that the orthogonal
polynomials with respect to µ(α)(q) are little q-Jacobi polynomials.

In section 3 we consider the special values q = −e−2θ, θ > 0, which for
sinh θ = 1

2
gives q = (1 −

√
5)/(1 +

√
5). We prove that H(α)

n (q) is unitarily
related to the generalized Filbert matrix

F (α)
n (θ) = (Fα(θ)/F`+j+α(θ)), 0 ≤ `, j ≤ n, n = 0, 1, . . . (19)

in the sense that
H(α)
n (q) = UnF (α)

n (θ)Un, (20)

where Un is a unitary diagonal matrix with diagonal elements i`, ` = 0, 1, . . . , n.
This makes it possible to deduce Richardson’s formula for the elements of the
inverse of Fn and its generalizations F (α)

n (θ) from the q-analogue of Collar’s for-
mula.
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2 Quantum Hilbert matrices

Let us recall the definition of the basic hypergeometric function 2φ1. For details
see [8]. We have

2φ1

(
α, β
γ

; q, z

)
=
∞∑
n=0

(α; q)n(β; q)n
(γ; q)n(q; q)n

zn, (21)

where the q-shifted factorial is defined as

(w; q)n =
n∏
k=1

(1− wqk−1)

for a complex number w and n = 0, 1, . . .. If |q| < 1 we can consider the infinite
product (w; q)∞.

The little q-Jacobi polynomials are given by

pn(x; a, b; q) = 2φ1

(
q−n, abqn+1

aq
; q, xq

)
, (22)

where a, b are complex parameters satisfying |a|, |b| ≤ 1. In [8, Section 7.3] one
finds a discussion of the little q-Jacobi polynomials, and it is proved that

∞∑
k=0

pn(qk; a, b; q)pm(qk; a, b; q)
(bq; q)k
(q; q)k

(aq)k =
δn,m

hn(a, b; q)
, (23)

where

hn(a, b; q) =
(abq; q)n(1− abq2n+1)(aq; q)n(aq; q)∞

(q; q)n(1− abq)(bq; q)n(abq2; q)∞
(aq)−n. (24)

In [8] it is assumed that 0 < q, aq < 1, but the derivation shows that it holds
for 0 < |q| < 1, |a| ≤ 1, |b| ≤ 1, in particular in the case of interest here: a =
qα−1, α ∈ N, b = 1, in the case of which we get

∞∑
k=0

pn(qk; qα−1, 1; q)pm(qk; qα−1, 1; q)qαk = δn,m
qαn(q; q)2

n

(qα; q)2
n(1− q2n+α)

. (25)

The Gaussian q-binomial coefficients[
n
k

]
q

=
(q; q)n

(q; q)k(q; q)n−k

are polynomials in q. Using the quantum integers (10) we get[
n
k

]
q

=
k∏
j=1

[n− j + 1]qq
(n−j)/2

[j]qq(j−1)/2
= qk(n−k)/2

k∏
j=1

[n− j + 1]q
[j]q

,
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and introducing the notation

[n]q! =
n∏
k=1

[k]q, [0]q! = 1,

we define the quantum binomial coefficients by(
n

k

)
q

=
k∏
j=1

[n− j + 1]q
[j]q

=
[n]q!

[k]q![n− k]q!
, (26)

hence [
n
k

]
q

= qk(n−k)/2

(
n

k

)
q

. (27)

This formula shows that
(
n
k

)
q

is a holomorphic function of q in the cut plane

C\]−∞, 0] with a continuous extension to the upper part of the cut.
Defining

p(α)
n (q;x) :=

(
n+ α− 1

n

)
q

pn(x/q1/2; qα−1, 1; q), (28)

some calculation leads to the simple expression

p(α)
n (q;x) =

n∑
j=0

(
n

j

)
q

(
n+ j + α− 1

n

)
q

(−1)jxj, (29)

which is a q-analogue of the polynomials r
(α)
n of [4].

The equation (25) can be written∫
p(α)
n (q;x)p(α)

m (q;x) dµ(α)(q)(x) = δn,m
[α]q

[2n+ α]q
(30)

showing that
P (α)
n (q;x) = ([2n+ α]q/[α]q)

1/2p(α)
n (q;x),

are orthonormal polynomials. The corresponding kernel polynomials are defined
by

K(α)
n (q;x, y) =

n∑
k=0

P
(α)
k (q;x)P

(α)
k (q; y) =

n∑
k=0

([2k + α]q/[α]q) p
(α)
k (q;x)p

(α)
k (q; y).

(31)

While P
(α)
n (q;x) depends on the choice of a square root, the kernel polynomials

K
(α)
n (q;x, y) are independent of this choice. Since the orthogonal polynomials

exist with respect to µ(α)(q) and the moments are given by (16), it follows by

[5, Theorem 3.1] that H(α)
n (q) is regular for each n. For q → 1 and α = 1
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the expressions (29)–(31) tend to classical formulas for Legendre polynomials for
[0, 1].

Writing

K(α)
n (q;x, y) =

n∑
`,j=0

a
(n)
`,j (q;α)x`yj,

it follows by (29) that the coefficients a
(n)
`,j (q;α) are given by

a
(n)
`,j (q;α) = (−1)`+j

n∑
k=max (`,j)

[2k+α]q
[α]q

(
k
`

)
q

(
k
j

)
q

(
k+`+α−1

k

)
q

(
k+j+α−1

k

)
q
. (32)

Theorem 2.1 The `, j’th element of the inverse matrix of the generalized quan-
tum Hilbert matrix H(α)

n (q) defined in (18) is given as

(−1)`+j [`+j+α]q
[α]q

(
n+`+α
n−j

)
q

(
n+j+α
n−`

)
q

(
`+j+α−1

`

)
q

(
`+j+α−1

j

)
q
. (33)

Furthermore,

detH(α)
n (q) = [α]nq

(
n∏
k=1

[2k + α]q
(

2k+α−1
k

)2

q

)−1

. (34)

Proof. As explained in the introduction the coefficients a
(n)
`,j (q) of the kernel

polynomial are the entries of the inverse of the Hankel matrix.
Let R(n; `, j) denote the expression in (33), and define

C(k; `, j) = (−1)`+j [2k+α]q
[α]q

(
k
`

)
q

(
k
j

)
q

(
k+`+α−1

k

)
q

(
k+j+α−1

k

)
q
, k ≥ `, j.

We shall prove that

R(n; `, j) =
n∑

k=max(`,j)

C(k; `, j) (35)

by induction in n, and can assume ` ≥ j without loss of generality. The equation
(35) is easy for n = k = ` and is left to the reader. We shall establish the
induction step

R(n+ 1; `, j)−R(n; `, j) = C(n+ 1; `, j). (36)

The left-hand side of this expression can be written

(−1)`+j [`+j+α]q
[α]q

(
`+j+α−1

`

)
q

(
`+j+α−1

j

)
q
T,

where
T =

(
n+`+α+1
n+1−j

)
q

(
n+j+α+1
n+1−`

)
q
−
(
n+`+α
n−j

)
q

(
n+j+α
n−`

)
q

= ([n+`+α]q ···[`+j+α+1]q)([n+j+α]q ···[`+j+α+1]q)

[n+1−j]q ![n+1−`]q ! ·
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{[n+ `+ α + 1]q[n+ j + α + 1]q − [n+ 1− j]q[n+ 1− `]q} .
The quantity in braces equals [2n + 2 + α]q[` + j + α]q, and now it is easy to
complete the proof of (36).

From the general theory of orthogonal polynomials, cf. [1],[5],[10], it is known

that the leading coefficient of the orthonormal polynomial P
(α)
n (q;x) is

√
Dn−1/Dn,

where
Dn = detH(α)

n (q).

From (29) and (30) we then get

Dn−1/Dn = ([2n+ α]q/[α]q)
(

2n+α−1
n

)2

q
,

hence
1

Dn

=
n∏
k=1

Dk−1

Dk

=
n∏
k=1

([2k + α]q/[α]q)
(

2k+α−1
k

)2

q
,

and (34) follows. �

Remark 2.2 By analytic continuation, the formulas (33) and (34) of Theorem
2.1 are valid for q 6= 0 which is not a root of unity of order ≤ 2n+ α.

We have not been able to derive (35) from known summation formulas for
q-series.

3 Filbert matrices

In this section we specialize to q = −e−2θ for θ > 0. It is easy to see that the
unique solution Fn(θ), n ≥ 0 to (9) is given by

Fn(θ) =
enθ − (−1)ne−nθ

eθ + e−θ
, (37)

which is Ismail’s definition in [11], hence

[n]q = (−i)n−1Fn(θ). (38)

For θ = θ0 > 0 such that sinh θ0 = 1
2

we get q = (1 −
√

5)/(1 +
√

5) and
Fn = Fn(θ0). For information about Fibonacci numbers, see [12],[13],[16]. Ismail
[11] also considered the generalized Fibonomial coefficients(

n

k

)
F(θ)

=
k∏
j=1

Fn−j+1(θ)

Fj(θ)
, 0 ≤ k ≤ n, (39)

with the usual convention that empty products are 1, and gave the following
recursion(

n

k

)
F(θ)

= Fk−1(θ)

(
n− 1

k

)
F(θ)

+ Fn−k+1(θ)

(
n− 1

k − 1

)
F(θ)

, n > k ≥ 1, (40)
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which shows that they are integers when 2 sinh θ is an integer. Using (38) we next
get that the quantum binomial coefficients can be expressed by the Fibonomial
coefficients of (39) as (

n

k

)
q

= (−i)k(n−k)

(
n

k

)
F(θ)

, (41)

hence for 0 ≤ `, j ≤ n, α ∈ N
[α]q

[`+ j + α]q
= i`+j

Fα(θ)

F`+j+α(θ)
. (42)

Letting Un denote the unitary diagonal (n+1)×(n+1)-matrix with `’th diagonal
element equal to i`, ` = 0, 1, . . . , n, then formula (42) implies

H(α)
n (q) = UnF (α)

n (θ)Un, F (α)
n (θ)−1 = UnH(α)

n (q)−1Un. (43)

This leads to Berg’s and Ismail’s generalizations of Richardson’s formula, cf. [4],
[11].

Theorem 3.1 Let A be the matrix (1/F`+j+α(θ)), 0 ≤ `, j ≤ n. Then A−1 has
the entries

(−1)n(`+j+α)−(`2)−(j2)F`+j+α(θ)
(
n+`+α
n−j

)
F(θ)

(
n+j+α
n−`

)
F(θ)

(
`+j+α−1

`

)
F(θ)

(
`+j+α−1

j

)
F(θ)

,

(44)
and

detA = (−1)α(
n+1

2 )

(
Fα(θ)

n∏
k=1

F2k+α(θ)
(

2k+α−1
k

)2

F(θ)

)−1

. (45)

Proof. We use

detUn = i(
n+1

2 ), detH(α)
n (q) = (−1)(

n+1
2 ) detF (α)

n (θ)

and the formulas (38) and (41) to make the calculation, the only non-obvious
thing being the sign in the two formulas. In the proof of (44) we get the following
sign for the `j’th element of A−1:

i`+j(−1)`+j(−i)`+j+(n−j)(`+j+α)+(n−l)(`+j+α)+`(j+α−1)+j(`+α−1)

= (−1)`+j(−i)2n(`+j+α)−`(`+1)−j(j+1) = (−1)n(`+j+α)−(`2)−(j2).

In the proof of (45) we get the sign

(−1)(
n+1

2 )(−i)(α−1)n

(
n∏
k=1

(−i)2k+α−1+2k(k+α−1)

)−1

= (−1)(
n+1

2 )

(
n∏
k=1

(−i)2k(k+1)+2k(α−1)

)−1

= (−1)(
n+1

2 )

(
n∏
k=1

(−1)k(α−1)

)−1

= (−1)α(
n+1

2 ).

�
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Remark 3.2 For q = −e2θ, θ > 0 we get [n]q = in−1Fn(θ) with Fn(θ) given by

(37). Thus, for q < 0 we have [n]1/q = [n]q.

Acknowledgment. The authors want to thank the referees for their com-
ments.

References

[1] N. I. Akhiezer, The classical moment problem. Oliver and Boyd, Edinburgh,
1965.

[2] G.E. Andrews, R. Askey and R. Roy, Special functions. Cambridge Univer-
sity Press, Cambridge 1999.

[3] C. Berg, Ortogonale polynomier og Hilbert matricen. (In Danish) NORMAT
54 no 3 (2006), 116–133.

[4] C. Berg, Fibonacci numbers and orthogonal polynomials,
ArXiv:math.NT/0609283.

[5] T. S. Chihara, An introduction to orthogonal polynomials. Gordon and
Breach, New York-London-Paris, 1978.

[6] Man-Duen Choi, Tricks or Treats with the Hilbert Matrix, Amer. Math.
Monthly 90 (1983), 301–312.

[7] A. R. Collar, On the Reciprocation of Certain Matrices, Proc. Roy. Soc.
Edinburgh 59 (1939), 195–206.

[8] G. Gasper and M. Rahman, Basic hypergeometric series. Cambridge Uni-
versity Press, Cambridge 1990, second edition 2004.

[9] D. Hilbert, Ein Beitrag zur Theorie des Legendreschen Polynoms, Acta
Math. 18 (1894), 155–159. (367–370 in “Gesammelte Abhandlungen II”,
Berlin 1933.)

[10] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One
Variable. Cambridge University Press, Cambridge 2005.

[11] M. E. H. Ismail, One Parameter Generalizations of the Fibonacci and Lucas
Numbers. ArXiv:math.CA/0606743.

[12] D. E. Knuth, The Art of Computer Programming. Vol. 1, 2nd Ed., Addison-
Wesley, 1973

[13] T. Koshy, Fibonacci and Lucas Numbers With Applications. John Wiley,
New York, 2001.

10



[14] T. M. Richardson, The Filbert matrix, Fibonacci Quart. 39 no. 3 (2001),
268–275.

[15] B. Simon, The Christoffel-Darboux Kernel. in ”Perspectives in PDE, Har-
monic Analysis and Applications,” a volume in honor of V.G. Maz’ya’s
70th birthday, Proceedings of Symposia in Pure Mathematics 79 (2008),
295-335.

[16] S. Vajda, Fibonacci and Lucas Numbers and the Golden Section: Theory
and Applications. Ellis Horwood, Chichester, England 1989. New printing
by Dover Press, 2008.

Jørgen Ellegaard Andersen, Department of Mathematics, University of Aarhus,
Ny Munkegade, DK-8000 Aarhus C, Denmark. email: andersen@imf.au.dk

Christian Berg, Department of Mathematics, University of Copenhagen, Uni-
versitetsparken 5, DK 2100 Copenhagen Ø, Denmark. email: berg@math.ku.dk

11


