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Abstract

Starting from a probability σ on the half-line with moments of any order

A.G. Pakes has defined probabilities σr by length biasing of order r and gr by

the stationary-excess operation of order r, r = 1, 2, . . . . Examples are given

to show that σ can be determined in the Stieltjes sense while σ1 and g1 are

indeterminate in the Stieltjes sense. This shows that a statement in a recent

paper by Pakes does not hold.
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1 Introduction

In a recent paper [11] Pakes is considering the criteria of Carleman and Krein to-
gether with some converse results. We shall use the notation of [11]. For a measure
σ on the half-line R+ with moments of any order and distribution function F , Pakes
introduces the measure σr with distribution function Fr given by

Fr(x) = µ−1
r

∫ x

0

vr dF (v),

where {µn} is the moment sequence of F . The moment sequence of Fr is µn(r) =
µr+n/µr. The construction is called length biasing of order r, and r can be any
non-negative integer.

In [11, page 92] Pakes remarks: ‘Obviously {µn} is S-determining if and only if
{µn(r)} is.’

This is not true. While it is clear indeed that S-indeterminacy of σ implies
S-indeterminacy of σr, the converse is false.

In fact, in our paper with Thill [6] we completely characterized the probabilities σ
on the half-line which are S-determinate but for which σ1 is not S-determinate. This
characterization was the starting point for the solution of the Challifour problem
solved in [6].
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This lead us in [6] to introduce an index of determinacy:
For a measure σ on the half-line with moments of any order and which is S-

determinate (det(S) in short) the index (of determinacy) of σ is

ind(σ) = sup{r ∈ N0|σr is det(S)} .

Theorems 5.5 and 5.6 of [6] contain a complete characterization of the measures
with ind(σ) = k. In a continuation [7] we considered the relation between the index
and the denseness of the polynomials in L2-spaces.

I later papers with Duran [4, 5] we extended this to the Hamburger case, that
is, for measures on the real line with moments of any order. For a survey of the
these results see [2]. It should be added that the remark of Pakes is true if σ
is a non-discrete measure, because such a measure is either S-indeterminate or S-
determinate with ind(σ) = ∞. Our observation has also the consequence that σ can
be S-determinate although the stationary-excess operation of order 1 defined in [11]
leads to an S-indeterminate probability density

g1(x) = F (x)/µ1, F (x) = 1 − F (x).

In particular, the first part of Theorem 5 in [11] is not true:

Theorem 1.1 There exists S-determinate measures σ for which

∫ ∞

x′

x−3/2(− log F (x)) dx < ∞, x′ > 0, (1)

and the density g1(x) is S-indeterminate.

We shall explain why the result fails and also give a concrete counterexample in
the next section.

2 Counterexamples

For the general theory of the moment problem see [1]. Let us first recall that
if σ is S-indeterminate, there are infinitely many solutions to the corresponding
Stieltjes moment problem. Among those are the N(evanlinna)-extremal solutions νt

supported by [0,∞[. Here the parameter t can be any real number in a well-defined
interval [α, 0] where α < 0, see [9, page 179] for details. The particular value t = 0
gives a measure of the form

ν0 = β0ε0 +

∞
∑

n=1

βnεxn
, (2)
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where the masses βn > 0 sum to 1 and 0 < x1 < x2 < · · · tend to infinity. If the
mass at zero is removed from ν0, and we rescale to a probability σ, that is

σ = (ν0 − β0ε0)/(1 − β0), (3)

then σ is S-determinate and determinate even for the corresponding Hamburger
moment problem. For different proofs of this see [1, page 115] and [3]. Let as before
{µn} be the moment sequence of σ.

The probability measure of length biasing of order 1

σ1 =
t

µ1

dσ(t)

is indet(S) because σ1 is proportional to tdν0(t), which is clearly indet(S) because
ν0 is so.

Let F be the distribution function of σ and define F (x) = 1 − F (x), g1(x) =
F (x)/µ1.

Then g1 is a probability density with moments of any order and moment sequence

µn(1) =
1

1 + n

µn+1

µ1
.

We claim that g1 is indet(S), because it is the product of the S-indeterminate
sequence µn+1/µ1 with the moment sequence of Lebesgue measure on [0, 1], see
Lemma 2.1 below.

As a preparation for Lemma 2.1 we shall recall the Mellin transformation.
The (open) positive half-line is a locally compact abelian group under multipli-

cation, and the Mellin transformation is the Fourier transformation in the sense of
harmonic analysis on such groups.

The corresponding convolution of measures is denoted ⋄, so τ ⋄ χ is the image
measure under (x, y) 7→ xy of the product measure τ⊗χ. The Mellin transformation
M is defined for finite (complex) measures by

M(τ)(x) =

∫ ∞

0

tix dτ(t), x ∈ R.

The Mellin transform of the convolution product is the ordinary product of
the Mellin transforms. Furthermore, for the n’th moments we have µn(τ ⋄ χ) =
µn(τ)µn(χ).

The Mellin transform of the Lebesgue measure m on the unit interval [0, 1] is

M(m)(x) =
1

1 + ix
,

hence non-vanishing. The Mellin transformation is one-to-one which implies the
first statement of Lemma 2.1.
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Lemma 2.1 The mapping τ 7→ τ ⋄ m is one-to-one. If τ is indet(S), then so is
τ ⋄ m.

The second statement follows from the first, because if τ and χ are different
positive measures with the same moments, then τ ⋄ m and χ ⋄ m are different, and
they also have identical moments. �

Remark 2.2 There exists a measure τ which is det(S) and yet τ ⋄ m is indet(S).

The measure ν0 from (2) can be written ν0 = β0ε0 + ρ and ν0 ⋄m = β0ε0 + ρ ⋄m
is indet(S) by Lemma 2.1. Since ρ ⋄ m is absolutely continuous we can conclude
that ρ ⋄m is indeterminate. In fact, if ρ ⋄m was determinate, then the polynomials
are dense in L2(ρ ⋄ m) and hence in L2(ν0 ⋄ m) by [3, Lemma 2]. Therefore the
indeterminate measure ν0 ⋄ m is N-extremal, but this contradicts the fact that it is
non-discrete.

The probability τ = ρ/(1− β0) (= σ from (3)) satisfies the claim of the remark.
The author does not know if the phenomenon of Remark 2.2 can hold if τ is

non-discrete or absolutely continuous. �

Remark 2.3 The Krein condition (1) cannot distinguish between the measures ν0

and σ given by (2) and (3).

If we let F and G denote the corresponding distribution functions, condition (1)
for F takes the form

2

∞
∑

n=N

− log(1 − β0 − · · · − βn)

(

1√
xn

− 1
√

xn+1

)

< ∞, (4)

while for G it has the form

2
∞

∑

n=N

− log(
1 − β0 − · · · − βn

1 − β0

)

(

1√
xn

− 1
√

xn+1

)

< ∞. (5)

Since
∞

∑

n=N

(

1√
xn

− 1
√

xn+1

)

=
1√
xN

,

the two series in (4), (5) converge simultaneously, and we know that ν0 is indet(S),
but σ is det(S). �

We shall now give a concrete example of a probability of the form (2), which leads
to a probability σ which is det(S) and for which the Krein condition (1) nevertheless
holds by direct verification. This gives a concrete example showing that the first
part of Theorem 5 in [11] is not correct.
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The example comes from a birth and death process with quartic rates studied
by Berg and Valent, see [8, 9].

A birth and death process is defined by the sequences (λn)n≥0 of birth rates and
(µn)n≥0 of death rates, restricted by λn > 0, µn+1 > 0 for n ≥ 0 and µ0 ≥ 0, see for
example [10].

In order to solve the so-called Kolmogorov equation, one studies the polynomials
Fn(x) defined by the recurrence

(λn + µn − x)Fn(x) = µn+1Fn+1(x) + λn−1Fn−1(x) , n ≥ 0

with the initial conditions

F−1(x) = 0, F0(x) = 1.

Defining

π0 = 1, πn =
λ0 · · ·λn−1

µ1 · · ·µn

, n ≥ 1

and
an = λn + µn , bn =

√

λnµn+1 , n ≥ 0 ,

it is wellknown that the polynomials

Pn(x) = (−1)n 1√
πn

Fn(x)

satisfy the three term recurrence relation

xPn(x) = bnPn+1(x) + anPn(x) + bn−1Pn−1(x) , n ≥ 1

together with the initial conditions

P0(x) = 1 , P1(x) =
1

b0

(x − a0).

By Favard’s Theorem the polynomials {Pn} form an orthonormal system with
respect to some probability measure on the half-line and the corresponding moment
sequence is a Stieltjes moment sequence.

We shall consider the following quartic rates

λn = (4n + 1)(4n + 2)2(4n + 3) , µn = (4n − 1)(4n)2(4n + 1) , n ≥ 0

initially considered in [12, 13, 14]. Note that µ0 = 0 and

πn =
1

4n + 1

(

(1/2)n

n!

)2

∼ 1

4π

1

n2
, λn−1πn−1 = µnπn ∼ 64

π
n2,

and it follows from known criteria that the corresponding moment problem is in-
det(S), see for example [8].
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The N-extremal measure ν0 is given by

ν0 =
π

K2
0

εx0
+

4π

K2
0

∞
∑

n=1

2nπ

sinh(2nπ)
εxn

, xn =

(

2nπ

K0

)4

,

and the constant K0 is given by en elliptic integral, see [8].
From the general theory mentioned above

σ = c

∞
∑

n=1

2nπ

sinh(2nπ)
εxn

is determinate. The normalization constant c (expressible by K0) is chosen so that
σ is a probability. The function F is piecewise constant and to establish (1), we
have to prove that

∞
∑

n=1

− log(yn)

(

1√
xn

− 1
√

xn+1

)

< ∞, (6)

where xn is as above and

yn = c
∞

∑

k=n+1

2kπ

sinh(2kπ)
.

Using

yn ≥ c

∫ ∞

n+1

2xπ

sinh(2xπ)
dx ≥ 4πc

∫ ∞

n+1

xe−2πx dx ≥ 2c(n + 1)e−2π(n+1),

we see that (6) holds.
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