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Abstract

We show that the g-Digamma function v, for 0 < ¢ < 1 appears in an
iteration studied by Berg and Duran. This is connected with the deter-
mination of the probability measure v, on the unit interval with moments
1/ ZZJ:F%(l —q)/(1 — ¢¥), which are g-analogues of the reciprocals of the
harmonic numbers. The Mellin transform of the measure v, can be ex-
pressed in terms of the g-Digamma function. It is shown that v, has a
continuous density on ]0, 1], which is piecewise C'*° with kinks at the pow-
ers of g. Furthermore, (1 —g)e *v4(e™") is a standard p-function from the
theory of regenerative phenomena.
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1 Introduction

For a measure p on the unit interval [0, 1] we consider its Bernstein transform

P11
Bi)() = [ Trdutt), R0, (1)
, 1—
as well as its Mellin transform
1
M(p)(z) :/ tdu(t), Rz > 0. (2)
0

These functions are clearly holomorphic in the right half-plane Rz > 0.
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The two integral transformations are combined in the following theorem from
[4] about Hausdorff moment sequences, i.e., sequences (a,),>o of the form

an:/o t" du(t), (3)

for a positive measure p on the unit interval.

Theorem 1.1 Let (ay,)n>0 be a Hausdorff moment sequence as in (3) with p # 0.
Then the sequence (T (ay))n>o defined by T(ay), = 1/(ap + ...+ ay,) is again a
Hausdorff moment sequence, and its associated measure T'(j) has the properties
T()({0}) = 0 and

B(u)(z + DM(T(w)(z) =1 for Rz>0. (4)

This means that the measure 7'(y) is determined as the inverse Mellin transform
of the function 1/B(u)(z + 1).

It follows by Theorem 1.1 that T" maps the set of normalized Hausdorff mo-
ment sequences (i.e., ap = 1) into itself. By Tychonoft’s extension of Brouwer’s
fixed point theorem, T has a fixed point (m,). Furthermore, it is clear that a
fixed point (m,) is uniquely determined by the equations

(I+mi+...4+my)m, =1, n>1. (5)
Therefore m
m2,, +—22 1 =0, (6)
giving

_ —1+45
-—r

Similarly, 7 maps the set M3 ([0,1]) of probability measures on [0, 1] into
itself. It has a uniquely determined fixed point w and

my mo

CV2+25-Vb—1
= T

1
mn:/ t"dw(t), n=0,1,.... (7)
0

Berg and Durédn studied this fixed point in [5],[6], and it was proved that the
Bernstein transform f = B(w) is meromorphic in the whole complex plane and
characterized by a functional equation and a log-convexity property in analogy
with Bohr-Mollerup’s characterization of the Gamma function, cf. [2]. Let us also
mention that w has an increasing and convex density with respect to Lebesgue
measure m on the unit interval.

An important step in the proof of these results is to establish that w is an
attractive fixed point so that in particular the iterates T°"(d;) converge weakly
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to w. Here and in the following ¢, denotes the Dirac measure with mass 1
concentrated in a € R.
It is easy to see that T'(d;) = m, because

1 1
T(,1,...), = :/ t" dt.
n+1 0
It is well-known that the Bernstein transform of Lebesgue measure m on
[0, 1] is related to the Digamma function 1, i.e., the logarithmic derivative of the
Gamma function, since

N = z
dt = 1 = — R 0 8
[ T e =3 e Reso 8
cf. [10, 8.36]. Here 7 = —¢(1) is Euler’s constant.
Therefore v, := T(m) = T°2(8;) is determined by

1 1
Bm)(z+1)  ¥(z+2)+

M(n)(2) =

A~

The measure v; = T'(m) is given explicitly in [4] as

= (i ) dt, (9)

where § =0, &, € (n,n+1),n =1,2,... is the solution to (1 — &,) = —v and
a, = 1/¢/(1 —&,). The moments of the measure vy are the reciprocals of the
harmonic numbers, i.e.,

/0 £ dun () = Hiﬂ - <Z %) | (10)

k=1

The purpose of the present paper is to study the first two elements of the
sequence T°"(4,), where 0 < ¢ < 1 is fixed. The reason for excluding ¢ = 0 is

that f(éo) = 01. Since w is an attractive fixed point, we know that the sequence
converges weakly to w.
The first step in the iteration is easy:

TO) =19 ¢"op, (11)
k=0
because

/OltZdﬂaq)o— l-a__ 1—qzqk e (12

1— qz+1



This shows that T (04) is the Jackson d,t-measure on [0, 1] used in the theory
of g-integrals, cf. [9]. It is a g-analogue of Lebesgue measure in the sense that
d,t — m weakly for ¢ — 1.

It is therefore to be expected that v, := f(dqt) = f°2(5q) is a g-analogue of
the measure vy, and we are going to determine v,. We have

1

M) (z) = ——, 13
W) = 5577 (13
where f, is defined as the Bernstein transform of d,t:
L - [ > 1— qkz
o= [ A== (s et ). (14)
o 11—t — 1—gq

This formula is a g-analogue of (8) and the relationship between f, and g-versions
of Euler’s constant and the Digamma function is given in (20).
The moments of v, are g-analogues of (10)

n

/0 £ duy (1) = (Z%) | (15)

k=0

It is easily seen that ¢ — fol t" dv,(t) is an increasing function mapping [0, 1]
onto [(n+ 1)~ H, 1]
Formally v, is the inverse Mellin transform of 1/f,(z + 1), i.e.,

| e
Vg = —— —
T omi fo(z+1)

and we shall exploit that in section 3, where we transfer the harmonic analysis
on the multiplicative group |0, co[ to the additive group of real numbers, hence
replacing the Mellin transformation by the ordinary Fourier transformation. If
we denote by 7, the image measure of v, under the transformation log(1/t), we

formally get
[~ . dy
_ wr  d 1
Tq(x) 271’ /_006 fq(l“_ly)’ ( 6)

but since y — 1/f,(1 +4y) is a square integrable and non-integrable function as
shown in Section 3, this only yields that 7, is a square integrable function. In
Theorem 3.1 we prove that 7, is the restriction to [0, oo[ of a continuous symmetric
positive definite function.

The main tool to obtain further regularity properties of v, will be a direct
approach using convolution. In fact, we realize (1 — ¢)7, as the convolution of an
exponential density and an elementary kernel > ;" N**, see (26), which makes it
possible to prove that

= e~ (UFezy (2), z € [nlog(1/q), (n+1)log(1/q)], n=0,1,...

dz,

74(7)
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for a certain constant ¢,, cf. (22), and a polynomial p,, of degree n the coefficients
of which are given explicitly as functions of ¢, see (31). In Remark 2.2 we point
out that (1 — ¢)7,(z) is a standard p-function in the sense of [11].

Going back to the interval ]0,1] we can state our main result that v, is a
C*-spline, i.e. it has a piecewise C'*°-density with respect to Lebesgue measure
on [0, 1]:

Theorem 1.2 The measure v, has a continuous and piecewice C*-density de-
noted v,(t) on ]0,1]. We have

v, (t) = tp,(log(1/t)), te[¢d",¢"], n=0,1,..., (17)

where ¢, is gien by (22) and p, is a polynomial of degree n given by (31). The
deriwvative of v, has a jump of size 1/(1 — ¢™)(1 — q) at the point ¢",n =1,2,....

Remark 1.3 It follows that the behaviour of v,(t) is oscillatory, and therefore
quite different from that of vy (¢) given by (9), which is increasing and convex.
See Figure 1 and 2 which shows the graph of (1 — ¢)v, for ¢ = 0.5 and ¢ = 0.9.
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Figure 1: The graph of (1 — q)v,(t) on [¢?,1] for ¢ = 0.5

2 Proofs

Jackson’s g-analogue of the Gamma function is defined as

_ 6D ) i
Fq(z) - (qZ7Q)oo (1 q) )
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Figure 2: The graph of (1 — q)v,(¢) on [¢3,1] for ¢ = 0.9

cf. 9], and its logarithmic derivative

d o qk+z
Ye(z) = s logI'y(2) = —log(1 —q) + loquz:; 1—7q’f+z (18)

has been proposed in [12] as a g-analogue of the Digamma function 1. See also
the recent paper [13]. We define the g-analogue of Euler’s constant as

> k
q
Vg = —1hg(1) = log(1 — q) —longl_qk- (19)
k=1
The Bernstein transform f, of d,t is given in (14), hence
> [ee] [ee) . .
—{q£> = 24> "> "1 -d")
q k=1  n=0
= 24+ <Z(qk(n+l) . qk(n-i-l-i-z)))
n=0 \k=1
= Z+m(’yq+¢q(z+1))>
showing that
l—q
=(1- —_— 1 20
e = (1= 0 + s (b v+ 1), (20)



so f, has a close relationship with the g-Digamma function and the g-version of
Euler’s constant.
We will be using another expression for f,(2)/(1—q) derived from (14), namely

o0 k
z
_{qi) =z+c,— 13 quz, (21)
k=1 q
with
o0 k
q
Cqg= g e (22)
k=1

Clearly, ¢/(1 —q) < ¢, < ¢/(1 —q)? for 0 < ¢ < 1 and q — ¢, is a strictly
increasing map of ]0, 1[ onto |0, co[. We mention two other expressions

cg=Y dn)"=> (1-(¢";0)),

= n=1

where d(n) is the number of divisors in n, see [8, p. 14].

In order to replace the Mellin transformation by the Laplace transformation
we introduce the probability measure 7, on [0, co[ which has v, as image measure
under ¢t — e~!, hence

b
fo(z+1)

The analogue of Theorem 1.2 about the measure 7, is given in the next theorem,
which we shall prove first.

£l = | " et dny(t) =

Theorem 2.1 The measure 7, has a continuous density also denoted T, with
respect to Lebesgue measure on [0,00[. It is C* in each of the open intervals
Inlog(1/q), (n+ 1)log(1/q)[,n = 0,1,... with jump of the derivative of size

q2n
Jn = 23
C=FDIr) >
at the point nlog(1/q),n=1,2,....
Furthermore, 7,(0) = 1/(1 — q) and lim;_,o 7,(t) = 0.
Proof of Theorem 2.1. Introducing the discrete measure
X g2
H= D T Okt
q
k=1
of finite total mass
plls = ¢g —a/(1=q) <, (24)
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we can write

BEED 1y +a- o)
hence
l1—gq L)) N\ = (L))"
TErD ((1 gt 2)(1 - Therts H)) - ; Trc o (25)

Let p, denote the following exponential density restricted to the positive half-line

pa(t) = exp(—=(1 4 c)1)Y (1),

where Y is the usual Heaviside function equal to 1 for ¢ > 0 and equal to zero
for t < 0. Its Laplace transform is given as

/ e p,t)dt = (1 +c,+2)7",
0

but this shows that (25) is equivalent to the following convolution equation

(1= )7y = pgx Y (1 py)” Z e (26)
n=0

This equation expresses a factorization of (1 — ¢)7, as the convolution of the
exponential density p, and an elementary kernel ) ° N** with N = p * p,. For
information about the basic notion of elementary kernels in potential theory, see
7, p.100]. All three measures in question 7,4, p, and > " (u * p,)*" are potential
kernels on R in the sense of [7].

The measure p**,n > 1 is a discrete measure concentrated in the points
klog(1/q),k =n,n+1,.... The convolution powers of p, are Gamma densities

*(n tn — C,
P (1) = e ety (@),
n:

as is easily seen by Laplace transformation.
Clearly, p, * ¢ is a bounded integrable function with

[1pq * ptlloe < Hlpglloolialls < cq, Nlpg * pll = llpgllallpelly < (27)

1+q

and then p, * (pg* p)*",n > 1 is a continuous integrable function on R, vanishing
for t < nlog(1/q) and for t — oco. Furthermore,

[[0g * (g * 1) oo < (cq/(1 4 ¢g))",

and this shows that the right-hand side of (26) converges uniformly on [0, oo, so
(1 — q)7, has a continuous density on [0, co] tending to 0 at infinity. Note that

(1 = q)74(0) = py(0) = 1.



For n > 1 and z € [nlog(1/q), oo we get
P e ()

T — )"
_ / Me—(lﬂq)(z—t)y(x — 1) du(¢)
0

n!
[e e}

_ ey klog YO —k0ey (5 — klog(1/q)u™ (k log(1/q))

k=n

which is a finite sum, and

2p;
- q
w(klog(1/q)) = E ”7_,/{::71,71—1-1,....

p1+...+pn=Fk j=1

In particular,

2n+2

u*"(nlog(l/Q))Z( 1 ) W (n + 1) log(1/q)) = — 4

(1=g"(1+q)
Forn>0and 0 <z < (n+1)log(1/q) we then get
(1= q)7q(x) = | (28)
0400 32 Iy (o log(1 /) Y0 ETBDE k10514,

=0 k=0

.

On [0,log(1/q)] it is equal to exp(—(1+ ¢4)z), on [log(1/q),2log(1/q)] it is equal

to
1—cq

- 1og<1/q>>) ,

exp(~(1+)a) (14

on [2log(1/q),3log(1/q)] it is equal to

1—cq

exp(—(1+ ¢,)x) (1 + (il — q(x —log(1/q))+
2(1 cq)
e~ 2log1 /o) +

q2(l—cq)

W@ - 210g(1/Q))2) '

On [nlog(1/q), (n+ 1)log(1/q)],n > 1 we can write

(1 - o) 29)
_ qu(HZq—ﬂw o glosl/a)f, k(jlog(l/q»),

k=1

because p*°(jlog(1/q)) =0 for j > 1.



This shows that

ra(@) = e (@), 3 € [nlog(1/g), (n+ 1) log(1/g)],n = 0,1,..., (30)
where p,, is the polynomial of degree n given by

J

pn( ) 1 — <1 + Zq‘](l—i—cq Z I —J log 1/Q)) [ k(] log(l/q))) ‘ (31)

k=1

The derivative of the expression (29) is

—(1+ cg) (1 — g7y (x) (32)
4 (i) xzn: —j(1+cq) XJ: v —jlog 1/q)) 1w (jlog(1/q)),

and the value R,, at the point z = nlog(1/q),n > 1is
Ry,

— q”(1+cq)

(1+cq) <1+Zq‘3 e Z (n_j);;g(l/q» ’“(jlog(l/q))>

k=1

+ Zq j(14+cq) Z (n j()klO_g(ll)/CI)) [ k(] log(l/q))

k=1

_ e [ e <1+Zq (”‘”}jg“/ ) u*’fulog(l/q)))
N Z_:q_j(HCQ)Z((n_j()klig%!/q)) - (G log(1/q))

+ ¢ " p(nlog(1/q))] -

The value L, of (32) at x = (n+ 1) log(1/q) is

(n+1)(1+cq)

Ln+1 — q X

J

(1+e) <1+Zq—ﬂ+% (1= plot/a)), k(jlogu/q)))

k=1

n

b Yy (LR log<1/q>>] -

The difference

R,—L,=¢"/(1-q")
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is the jump of (1 — q)7, at x = nlog(1/q), and this gives the jump J, of (23). O

To transfer the results of Theorem 2.1 to give Theorem 1.2, we use that v, is
the image measure of 7, under ¢ — e, hence

ve(t) = (1/t)7y(log(1/t)), 0 <t < 1.

We then get

Dy (t)]=gn
_ _t% [D_r,(log(1/1)) + 74(10g(1/t)],_pn
_ _q% [D_7y(nlog(1/q)) + 74(nlog(1/q))]

and similarly

Doty = =5z [Diry(mlog(1/) + i log(1/a))],
hence
(Do(t) = Do (0] = = (Domy(1og(1/0)) = Dy 1os(1/)
and the assertion follows.

Remark 2.2 The representation (25) and Theorem 2.1 show that (1 —¢)7, is a
standard p-function in the terminology from the theory of regenerative phenom-
ena. This follows from [11, Theorem 3.1], and the measure p + (1/(1 — ¢))deo

plays the role of the measure “u”in [11]. The size J,, of the jump of the derivative
at nlog(1/q) equals
2n

pl{nlog(1/a)}) = 1=

This is in accordance with [11, Theorem 3.4].

Figure 3 and 4 show the graph of (1 — ¢)7, for ¢ = 0.5 and ¢ = 0.9.

3 Further properties of 7,

Formally, by Fourier inversion we get that

(x) ! /00 e dy
T, = — . S
e 2 J_ o fo(1+1y)
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Figure 3: The graph of (1 — ¢)7,(z) on [0, 3log(1/q)] for ¢ = 0.5

The function 1/f,(1 + iy) is a non-integrable L*-function, so the formula holds

in the L%-sense. To see this we notice that

@:1—%/ e Phy(t)dt, Rz >0,
0

where

h(t)=1-q S

1— ¢~
k>t/log(1/a) © 1

fq( + 1Y) / —ity —t
ity
153 =1—q+ ; e e hq(t) dt,

In particular

(33)

and since e "h,(t) is integrable, it follows from the Riemann-Lebesgue Lemma

that we get the asymptotic behaviour
fol+iy) ~ Q=)L +1dy), |yl — oo

Furthermore, from (21) we get

7"
1-—

Rf(L+iy)=1-q+(1-q))
k=1

hence

L<Rf(L+iy) <1 —q+ Y ¢" 1+,
k=1

12

(kylog(q))) .

(34)
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Figure 4: The graph of (1 — ¢)7,(z) on [0, 3log(1/q)] for ¢ = 0.9

showing that R f,(1 + iy) is bounded below and above. It follows that the sym-
metrized density
7,(x) if x>0,

pq(r) = (35)
1,(—z) ifz <0,

is the Fourier transform of the non-negative integrable function

2Rf,(1 4 1y)
| fo(L+iy)[*

and therefore ¢,(z) is continuous and positive definite, so 7, is the restriction to
[0, 0o of such a function. Summing up we have proved

Theorem 3.1 Forxz >0

o Rf,(1+4
T,(x) = 4/ cos(xy)L—i__Zy)2
0 | fo(1 +iy)]
is the restriction of a continuous symmetric positive definite function (35). For

O0<t<l1 ‘
3%fq(l“'zy)

th(t) = 4/0 COS(y lOgt)m Y.

13



Remark 3.2 The function f, defined in (14) is a Bernstein function in the sense
of [7], but not a complete Bernstein function in the sense of [14], because f,(z)/z
is not a Stieltjes function as shown by formula (33). This is in contrast to

lim fo(2) =¥ (2 +1) + 17,

g—1

which is a complete Bernstein function, cf. [4].

4 Relation to other work

The transformation 7" can be extended from normalized Hausdorff moment se-
quences to the set K = [0,1]N of sequences (z,,) = (Z)n>1 of numbers from the
unit interval [0, 1]. This was done in [3], where T : K — K is defined by

L > 1 (36)
= , n>1.
l1+x214+... 4+ 2,

(T(xn))n

The connection is that a normalized Hausdorff moment sequence (ay,),>o is con-
sidered as the element (a,),>1 € K.

Since T is a continuous transformation of the compact convex set K in the
space RY of real sequences equipped with the product topology, it has a fixed
point by Tychonoft’s theorem, and this is (m;,),>1.

There is no reason a priori that the fixed point (m,) of (36) should be a
Hausdorff moment sequence, but as we have seen above, the motivation for the
study of T comes from the theory of Hausdorff moment sequences.

Although T is not a contraction on K in the natural metric

d((an), (bn)) = Zz_n‘an —bal|, (an), (bn) €K,

it was proved in [3] that 7" maps K into the compact convex subset
C={(a) eK|a >3},

and the restriction of 7" to C is a contraction. It is therefore possible to infer that
(my,) is an attractive fixed point from the fixed point theorem of Banach.

Acknowledgment The first author wants to thank Fethi Bouzzefour, Tune-
sia for having raised the question of determining the measure v,.
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