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Abstract

We show that the q-Digamma function ψq for 0 < q < 1 appears in an
iteration studied by Berg and Durán. This is connected with the deter-
mination of the probability measure νq on the unit interval with moments
1/
∑n+1

k=1(1 − q)/(1 − qk), which are q-analogues of the reciprocals of the
harmonic numbers. The Mellin transform of the measure νq can be ex-
pressed in terms of the q-Digamma function. It is shown that νq has a
continuous density on ]0, 1], which is piecewise C∞ with kinks at the pow-
ers of q. Furthermore, (1− q)e−xνq(e

−x) is a standard p-function from the
theory of regenerative phenomena.
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1 Introduction

For a measure µ on the unit interval [0, 1] we consider its Bernstein transform

B(µ)(z) =

∫ 1

0

1 − tz

1 − t
dµ(t), <z > 0, (1)

as well as its Mellin transform

M(µ)(z) =

∫ 1

0

tzdµ(t), <z > 0. (2)

These functions are clearly holomorphic in the right half-plane <z > 0.

∗Corresponding author
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The two integral transformations are combined in the following theorem from
[4] about Hausdorff moment sequences, i.e., sequences (an)n≥0 of the form

an =

∫ 1

0

tn dµ(t), (3)

for a positive measure µ on the unit interval.

Theorem 1.1 Let (an)n≥0 be a Hausdorff moment sequence as in (3) with µ 6= 0.
Then the sequence (T (an))n≥0 defined by T (an)n = 1/(a0 + . . . + an) is again a

Hausdorff moment sequence, and its associated measure T̂ (µ) has the properties

T̂ (µ)({0}) = 0 and

B(µ)(z + 1)M(T̂ (µ))(z) = 1 for <z > 0. (4)

This means that the measure T̂ (µ) is determined as the inverse Mellin transform
of the function 1/B(µ)(z + 1).

It follows by Theorem 1.1 that T maps the set of normalized Hausdorff mo-
ment sequences (i.e., a0 = 1) into itself. By Tychonoff’s extension of Brouwer’s
fixed point theorem, T has a fixed point (mn). Furthermore, it is clear that a
fixed point (mn) is uniquely determined by the equations

(1 +m1 + . . .+mn)mn = 1, n ≥ 1. (5)

Therefore
m2

n+1 +
mn+1

mn
− 1 = 0, (6)

giving

m1 =
−1 +

√
5

2
, m2 =

√
22 + 2

√
5 −

√
5 − 1

4
, . . . .

Similarly, T̂ maps the set M1
+([0, 1]) of probability measures on [0, 1] into

itself. It has a uniquely determined fixed point ω and

mn =

∫ 1

0

tn dω(t), n = 0, 1, . . . . (7)

Berg and Durán studied this fixed point in [5],[6], and it was proved that the
Bernstein transform f = B(ω) is meromorphic in the whole complex plane and
characterized by a functional equation and a log-convexity property in analogy
with Bohr-Mollerup’s characterization of the Gamma function, cf. [2]. Let us also
mention that ω has an increasing and convex density with respect to Lebesgue
measure m on the unit interval.

An important step in the proof of these results is to establish that ω is an
attractive fixed point so that in particular the iterates T̂ ◦n(δ1) converge weakly
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to ω. Here and in the following δa denotes the Dirac measure with mass 1
concentrated in a ∈ R.

It is easy to see that T̂ (δ1) = m, because

T (1, 1, . . .)n =
1

n + 1
=

∫ 1

0

tn dt.

It is well-known that the Bernstein transform of Lebesgue measure m on
[0, 1] is related to the Digamma function ψ, i.e., the logarithmic derivative of the
Gamma function, since

∫ 1

0

1 − tz

1 − t
dt = ψ(z + 1) + γ =

∞∑

n=1

z

n(n+ z)
, <z > 0, (8)

cf. [10, 8.36]. Here γ = −ψ(1) is Euler’s constant.

Therefore ν1 := T̂ (m) = T̂ ◦2(δ1) is determined by

M(ν1)(z) =
1

B(m)(z + 1)
=

1

ψ(z + 2) + γ
.

The measure ν1 = T̂ (m) is given explicitly in [4] as

ν1 = (
∞∑

n=0

αnt
ξn) dt, (9)

where ξ0 = 0, ξn ∈ (n, n + 1), n = 1, 2, . . . is the solution to ψ(1 − ξn) = −γ and
αn = 1/ψ′(1 − ξn). The moments of the measure ν1 are the reciprocals of the
harmonic numbers, i.e.,

∫ 1

0

tn dν1(t) =
1

Hn+1
=

(
n+1∑

k=1

1

k

)−1

. (10)

The purpose of the present paper is to study the first two elements of the
sequence T̂ ◦n(δq), where 0 < q < 1 is fixed. The reason for excluding q = 0 is

that T̂ (δ0) = δ1. Since ω is an attractive fixed point, we know that the sequence
converges weakly to ω.

The first step in the iteration is easy:

T̂ (δq) = (1 − q)

∞∑

k=0

qkδqk , (11)

because ∫ 1

0

tz d T̂ (δq)(t) =
1 − q

1 − qz+1
= (1 − q)

∞∑

k=0

qkqkz. (12)
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This shows that T̂ (δq) is the Jackson dqt-measure on [0, 1] used in the theory
of q-integrals, cf. [9]. It is a q-analogue of Lebesgue measure in the sense that
dqt→ m weakly for q → 1.

It is therefore to be expected that νq := T̂ (dqt) = T̂ ◦2(δq) is a q-analogue of
the measure ν1, and we are going to determine νq. We have

M(νq)(z) =
1

fq(z + 1)
, (13)

where fq is defined as the Bernstein transform of dqt:

fq(z) =

∫ 1

0

1 − tz

1 − t
dqt = (1 − q)

(

z +

∞∑

k=1

qk 1 − qkz

1 − qk

)

. (14)

This formula is a q-analogue of (8) and the relationship between fq and q-versions
of Euler’s constant and the Digamma function is given in (20).

The moments of νq are q-analogues of (10)

∫ 1

0

tn dνq(t) =

(
n∑

k=0

1 − q

1 − qk+1

)−1

. (15)

It is easily seen that q →
∫ 1

0
tn dνq(t) is an increasing function mapping [0, 1]

onto [(n + 1)−1,H−1
n+1].

Formally νq is the inverse Mellin transform of 1/fq(z + 1), i.e.,

νq =
1

2πi

∫ i∞

−i∞

t−z

fq(z + 1)
dz,

and we shall exploit that in section 3, where we transfer the harmonic analysis
on the multiplicative group ]0,∞[ to the additive group of real numbers, hence
replacing the Mellin transformation by the ordinary Fourier transformation. If
we denote by τq the image measure of νq under the transformation log(1/t), we
formally get

τq(x) =
1

2π

∫ ∞

−∞

eiyx dy

fq(1 + iy)
, (16)

but since y → 1/fq(1 + iy) is a square integrable and non-integrable function as
shown in Section 3, this only yields that τq is a square integrable function. In
Theorem 3.1 we prove that τq is the restriction to [0,∞[ of a continuous symmetric
positive definite function.

The main tool to obtain further regularity properties of νq will be a direct
approach using convolution. In fact, we realize (1− q)τq as the convolution of an
exponential density and an elementary kernel

∑∞

0 N∗n, see (26), which makes it
possible to prove that

τq(x) = e−(1+cq)xpn(x), x ∈ [n log(1/q), (n+ 1) log(1/q)], n = 0, 1, . . .
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for a certain constant cq, cf. (22), and a polynomial pn of degree n the coefficients
of which are given explicitly as functions of q, see (31). In Remark 2.2 we point
out that (1 − q)τq(x) is a standard p-function in the sense of [11].

Going back to the interval ]0, 1] we can state our main result that νq is a
C∞-spline, i.e. it has a piecewise C∞-density with respect to Lebesgue measure
on [0, 1]:

Theorem 1.2 The measure νq has a continuous and piecewice C∞-density de-

noted νq(t) on ]0, 1]. We have

νq(t) = tcqpn(log(1/t)), t ∈ [qn+1, qn], n = 0, 1, . . . , (17)

where cq is given by (22) and pn is a polynomial of degree n given by (31). The

derivative of νq has a jump of size 1/(1− qn)(1− q) at the point qn, n = 1, 2, . . ..

Remark 1.3 It follows that the behaviour of νq(t) is oscillatory, and therefore
quite different from that of ν1(t) given by (9), which is increasing and convex.
See Figure 1 and 2 which shows the graph of (1 − q)νq for q = 0.5 and q = 0.9.

Figure 1: The graph of (1 − q)νq(t) on [q3, 1] for q = 0.5

2 Proofs

Jackson’s q-analogue of the Gamma function is defined as

Γq(z) =
(q; q)∞
(qz; q)∞

(1 − q)1−z,
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Figure 2: The graph of (1 − q)νq(t) on [q3, 1] for q = 0.9

cf. [9], and its logarithmic derivative

ψq(z) =
d

dz
log Γq(z) = − log(1 − q) + log q

∞∑

k=0

qk+z

1 − qk+z
(18)

has been proposed in [12] as a q-analogue of the Digamma function ψ. See also
the recent paper [13]. We define the q-analogue of Euler’s constant as

γq = −ψq(1) = log(1 − q) − log q

∞∑

k=1

qk

1 − qk
. (19)

The Bernstein transform fq of dqt is given in (14), hence

fq(z)

1 − q
= z +

∞∑

k=1

qk

∞∑

n=0

qkn(1 − qkz)

= z +

∞∑

n=0

(
∞∑

k=1

(qk(n+1) − qk(n+1+z))

)

= z +
1

log(1/q)
(γq + ψq(z + 1)) ,

showing that

fq(z) = (1 − q)z +
1 − q

log(1/q)
(γq + ψq(z + 1)) , (20)
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so fq has a close relationship with the q-Digamma function and the q-version of
Euler’s constant.

We will be using another expression for fq(z)/(1−q) derived from (14), namely

fq(z)

1 − q
= z + cq −

∞∑

k=1

qk

1 − qk
qkz, (21)

with

cq =

∞∑

k=1

qk

1 − qk
. (22)

Clearly, q/(1 − q) < cq < q/(1 − q)2 for 0 < q < 1 and q 7→ cq is a strictly
increasing map of ]0, 1[ onto ]0,∞[. We mention two other expressions

cq =
∞∑

n=1

d(n)qn =
∞∑

n=1

(1 − (qn; q)∞) ,

where d(n) is the number of divisors in n, see [8, p. 14].
In order to replace the Mellin transformation by the Laplace transformation

we introduce the probability measure τq on [0,∞[ which has νq as image measure
under t→ e−t, hence

L(τq)(z) =

∫ ∞

0

e−tz dτq(t) =
1

fq(z + 1)
.

The analogue of Theorem 1.2 about the measure τq is given in the next theorem,
which we shall prove first.

Theorem 2.1 The measure τq has a continuous density also denoted τq with

respect to Lebesgue measure on [0,∞[. It is C∞ in each of the open intervals

]n log(1/q), (n+ 1) log(1/q)[, n = 0, 1, . . . with jump of the derivative of size

Jn =
q2n

(1 − qn)(1 − q)
(23)

at the point n log(1/q), n = 1, 2, . . ..
Furthermore, τq(0) = 1/(1 − q) and limt→∞ τq(t) = 0.

Proof of Theorem 2.1. Introducing the discrete measure

µ =

∞∑

k=1

q2k

1 − qk
δk log(1/q)

of finite total mass
||µ||1 = cq − q/(1 − q) < cq, (24)
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we can write
fq(z + 1)

1 − q
= 1 + cq + z −L(µ)(z),

hence

1 − q

fq(z + 1)
=

(
(1 + cq + z)(1 − L(µ)(z)

1 + cq + z
)

)−1

=

∞∑

n=0

(L(µ)(z))n

(1 + cq + z)n+1 . (25)

Let ρq denote the following exponential density restricted to the positive half-line

ρq(t) = exp(−(1 + cq)t)Y (t),

where Y is the usual Heaviside function equal to 1 for t ≥ 0 and equal to zero
for t < 0. Its Laplace transform is given as

∫ ∞

0

e−tzρq(t) dt = (1 + cq + z)−1,

but this shows that (25) is equivalent to the following convolution equation

(1 − q)τq = ρq ∗
∞∑

n=0

(µ ∗ ρq)
∗n =

∞∑

n=0

ρ∗(n+1)
q ∗ µ∗n. (26)

This equation expresses a factorization of (1 − q)τq as the convolution of the
exponential density ρq and an elementary kernel

∑∞

0 N∗n with N = µ ∗ ρq. For
information about the basic notion of elementary kernels in potential theory, see
[7, p.100]. All three measures in question τq, ρq and

∑∞

0 (µ ∗ ρq)
∗n are potential

kernels on R in the sense of [7].
The measure µ∗n, n ≥ 1 is a discrete measure concentrated in the points

k log(1/q), k = n, n+ 1, . . .. The convolution powers of ρq are Gamma densities

ρ∗(n+1)
q (t) =

tn

n!
e−(1+cq)tY (t),

as is easily seen by Laplace transformation.
Clearly, ρq ∗ µ is a bounded integrable function with

||ρq ∗ µ||∞ ≤ ||ρq||∞||µ||1 < cq, ||ρq ∗ µ||1 = ||ρq||1||µ||1 <
cq

1 + cq
, (27)

and then ρq ∗ (ρq ∗µ)∗n, n ≥ 1 is a continuous integrable function on R, vanishing
for t ≤ n log(1/q) and for t→ ∞. Furthermore,

||ρq ∗ (ρq ∗ µ)∗n||∞ < (cq/(1 + cq))
n,

and this shows that the right-hand side of (26) converges uniformly on [0,∞[, so
(1 − q)τq has a continuous density on [0,∞[ tending to 0 at infinity. Note that
(1 − q)τq(0) = ρq(0) = 1.
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For n ≥ 1 and x ∈ [n log(1/q),∞[ we get

ρ∗(n+1)
q ∗ µ∗n(x)

=

∫ x

0

(x− t)n

n!
e−(1+cq)(x−t)Y (x− t) dµ∗n(t)

= e−(1+cq)x
∞∑

k=n

(x− k log(1/q))n

n!
q−k(1+cq)Y (x− k log(1/q))µ∗n(k log(1/q))

which is a finite sum, and

µ∗n(k log(1/q)) =
∑

p1+...+pn=k

n∏

j=1

q2pj

1 − qpj
, k = n, n + 1, . . . .

In particular,

µ∗n(n log(1/q)) =

(
q2

1 − q

)n

, µ∗n((n+ 1) log(1/q)) =
nq2n+2

(1 − q)n(1 + q)
.

For n ≥ 0 and 0 ≤ x < (n+ 1) log(1/q) we then get

(1 − q)τq(x) = (28)

e−(1+cq)x
n∑

j=0

q−j(1+cq)Y (x− j log(1/q))

j∑

k=0

(x− j log(1/q))k

k!
µ∗k(j log(1/q)).

On [0, log(1/q)] it is equal to exp(−(1 + cq)x), on [log(1/q), 2 log(1/q)] it is equal
to

exp(−(1 + cq)x)

(
1 +

q1−cq

1 − q
(x− log(1/q))

)
,

on [2 log(1/q), 3 log(1/q)[ it is equal to

exp(−(1 + cq)x)

(
1 +

q1−cq

1 − q
(x− log(1/q))+

q2(1−cq)

1 − q2
(x− 2 log(1/q)) +

q2(1−cq)

2(1 − q)2
(x− 2 log(1/q))2

)
.

On [n log(1/q), (n+ 1) log(1/q)], n ≥ 1 we can write

(1 − q)τq(x) (29)

= e−(1+cq)x

(
1 +

n∑

j=1

q−j(1+cq)

j∑

k=1

(x− j log(1/q))k

k!
µ∗k(j log(1/q))

)
,

because µ∗0(j log(1/q)) = 0 for j ≥ 1.
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This shows that

τq(x) = e−(1+cq)xpn(x), x ∈ [n log(1/q), (n+ 1) log(1/q)], n = 0, 1, . . . , (30)

where pn is the polynomial of degree n given by

pn(x) =
1

1 − q

(
1 +

n∑

j=1

q−j(1+cq)

j∑

k=1

(x− j log(1/q))k

k!
µ∗k(j log(1/q))

)
. (31)

The derivative of the expression (29) is

−(1 + cq)(1 − q)τq(x) (32)

+ e−(1+cq)x

n∑

j=1

q−j(1+cq)

j∑

k=1

(x− j log(1/q))k−1

(k − 1)!
µ∗k(j log(1/q)),

and the value Rn at the point x = n log(1/q), n ≥ 1 is

Rn

= qn(1+cq)

[
−(1 + cq)

(
1 +

n∑

j=1

q−j(1+cq)

j∑

k=1

((n− j) log(1/q))k

k!
µ∗k(j log(1/q))

)

+

n∑

j=1

q−j(1+cq)

j∑

k=1

((n− j) log(1/q))k−1

(k − 1)!
µ∗k(j log(1/q))

]

= qn(1+cq)

[

−(1 + cq)

(

1 +

n−1∑

j=1

q−j(1+cq)

j∑

k=1

((n− j) log(1/q))k

k!
µ∗k(j log(1/q))

)

+

n−1∑

j=1

q−j(1+cq)

j∑

k=1

((n− j) log(1/q))k−1

(k − 1)!
µ∗k(j log(1/q))

+ q−n(1+cq)µ(n log(1/q))
]
.

The value Ln+1 of (32) at x = (n+ 1) log(1/q) is

Ln+1 = q(n+1)(1+cq)×[
−(1 + cq)

(
1 +

n∑

j=1

q−j(1+cq)

j∑

k=1

((n+ 1 − j) log(1/q))k

k!
µ∗k(j log(1/q))

)

+
n∑

j=1

q−j(1+cq)

j∑

k=1

((n+ 1 − j) log(1/q))k−1

(k − 1)!
µ∗k(j log(1/q))

]
.

The difference
Rn − Ln = q2n/(1 − qn)
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is the jump of (1 − q)τq at x = n log(1/q), and this gives the jump Jn of (23). �

To transfer the results of Theorem 2.1 to give Theorem 1.2, we use that νq is
the image measure of τq under t 7→ e−t, hence

νq(t) = (1/t)τq(log(1/t)), 0 < t ≤ 1.

We then get

D+νq(t)|t=qn

= − 1

t2
[D−τq(log(1/t)) + τq(log(1/t))]t=qn

= − 1

q2n
[D−τq(n log(1/q)) + τq(n log(1/q))] ,

and similarly

D−νq(t)|t=qn = − 1

q2n
[D+τq(n log(1/q)) + τq(n log(1/q))] ,

hence

[D+νq(t) −D−νq(t)]t=qn =
1

q2n
(D+τq(n log(1/q)) −D−τq(n log(1/q))) ,

and the assertion follows.

Remark 2.2 The representation (25) and Theorem 2.1 show that (1 − q)τq is a
standard p-function in the terminology from the theory of regenerative phenom-
ena. This follows from [11, Theorem 3.1], and the measure µ + (1/(1 − q))δ∞
plays the role of the measure “µ”in [11]. The size Jn of the jump of the derivative
at n log(1/q) equals

µ({n log(1/q)}) =
q2n

1 − qn
.

This is in accordance with [11, Theorem 3.4].

Figure 3 and 4 show the graph of (1 − q)τq for q = 0.5 and q = 0.9.

3 Further properties of τq

Formally, by Fourier inversion we get that

τq(x) =
1

2π

∫ ∞

−∞

eiyx dy

fq(1 + iy)
.
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Figure 3: The graph of (1 − q)τq(x) on [0, 3 log(1/q)] for q = 0.5

The function 1/fq(1 + iy) is a non-integrable L2-function, so the formula holds
in the L2-sense. To see this we notice that

fq(z)

z
= 1 − q +

∫ ∞

0

e−tzhq(t) dt, <z > 0,

where

hq(t) = (1 − q)
∑

k>t/ log(1/q)

qk

1 − qk
. (33)

In particular
fq(1 + iy)

1 + iy
= 1 − q +

∫ ∞

0

e−itye−thq(t) dt,

and since e−thq(t) is integrable, it follows from the Riemann-Lebesgue Lemma
that we get the asymptotic behaviour

fq(1 + iy) ∼ (1 − q)(1 + iy), |y| → ∞. (34)

Furthermore, from (21) we get

<fq(1 + iy) = 1 − q + (1 − q)
∞∑

k=1

qk

1 − qk

(
1 − qk cos(ky log(q))

)
,

hence

1 ≤ <fq(1 + iy) ≤ 1 − q +
∞∑

k=1

qk(1 + qk),
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Figure 4: The graph of (1 − q)τq(x) on [0, 3 log(1/q)] for q = 0.9

showing that <fq(1 + iy) is bounded below and above. It follows that the sym-
metrized density

ϕq(x) =






τq(x) if x ≥ 0,

τq(−x) if x < 0,

(35)

is the Fourier transform of the non-negative integrable function

2<fq(1 + iy)

|fq(1 + iy)|2 ,

and therefore ϕq(x) is continuous and positive definite, so τq is the restriction to
[0,∞[ of such a function. Summing up we have proved

Theorem 3.1 For x ≥ 0

τq(x) = 4

∫ ∞

0

cos(xy)
<fq(1 + iy)

|fq(1 + iy)|2 dy

is the restriction of a continuous symmetric positive definite function (35). For

0 < t ≤ 1

tνq(t) = 4

∫ ∞

0

cos(y log t)
<fq(1 + iy)

|fq(1 + iy)|2 dy.
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Remark 3.2 The function fq defined in (14) is a Bernstein function in the sense
of [7], but not a complete Bernstein function in the sense of [14], because fq(z)/z
is not a Stieltjes function as shown by formula (33). This is in contrast to

lim
q→1

fq(z) = ψ(z + 1) + γ,

which is a complete Bernstein function, cf. [4].

4 Relation to other work

The transformation T can be extended from normalized Hausdorff moment se-
quences to the set K = [0, 1]N of sequences (xn) = (xn)n≥1 of numbers from the
unit interval [0, 1]. This was done in [3], where T : K → K is defined by

(T (xn))n =
1

1 + x1 + . . .+ xn
, n ≥ 1. (36)

The connection is that a normalized Hausdorff moment sequence (an)n≥0 is con-
sidered as the element (an)n≥1 ∈ K.

Since T is a continuous transformation of the compact convex set K in the
space R

N of real sequences equipped with the product topology, it has a fixed
point by Tychonoff’s theorem, and this is (mn)n≥1.

There is no reason a priori that the fixed point (mn) of (36) should be a
Hausdorff moment sequence, but as we have seen above, the motivation for the
study of T comes from the theory of Hausdorff moment sequences.

Although T is not a contraction on K in the natural metric

d((an), (bn)) =

∞∑

n=1

2−n|an − bn|, (an), (bn) ∈ K,

it was proved in [3] that T maps K into the compact convex subset

C =
{
(an) ∈ K | a1 ≥ 1

2

}
,

and the restriction of T to C is a contraction. It is therefore possible to infer that
(mn) is an attractive fixed point from the fixed point theorem of Banach.

Acknowledgment The first author wants to thank Fethi Bouzzefour, Tune-
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[14] Schilling, R., Song, R. and Vondraček, Z., Bernstein functions: Theory and

Applications, de Gruyter, Berlin 2010.

Christian Berg, Helle Bjerg Petersen
Department of Mathematical Sciences
University of Copenhagen
Universitetsparken 5

15



DK-2100 København Ø, Denmark
E-mail addresses: berg@math.ku.dk (C. Berg)
hellebp@gmail.com (H. B. Petersen).

16


