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Abstract

We prove that the functions Φ(x) = [Γ(x + 1)]1/x(1 + 1/x)x/x and
log Φ(x) are Stieltjes transforms.
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1 Introduction and main results

In [11] the authors introduce a subclass of the completely monotonic functions
which they call logarithmically completely monotonic, and the main result in [12]
is that the function

Φ(x) =
[Γ(x+ 1)]1/x

x

(
1 +

1

x

)x

(1)

is logarithmically completely monotonic.
We characterize the class of logarithmically completely monotonic functions

as the infinitely divisible completely monotonic functions studied by Horn in [14].
We prove that Stieltjes transforms (see (8) below) belong to this class and that
Φ and log Φ are both Stieltjes transforms. Each of these statements imply the
result of [12]. The following explicit representations are obtained:

log Φ(x) =

∫ ∞

0

ϕ(s)

s+ x
ds, x > 0, (2)

where

ϕ(s) =

{
1− s if 0 ≤ s < 1
1− n/s if n ≤ s < n+ 1, n = 1, 2, . . .

(3)

and

Φ(x) = 1 +

∫ ∞

0

h(s)

s+ x
ds, x > 0, (4)
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with

h(s) =
1

π

ss−1

|1− s|s|Γ(1− s)|1/s
sin(πϕ(s)), s ≥ 0. (5)

Note that the density ϕ(s) takes its values in the interval [0, 1], and this is the
clue to the fact that also Φ is a Stieltjes transform. The density h is continuous
on [0,∞[ with h(0) = exp(−γ), where γ is Euler’s constant, and h(n) = 0 for
n ∈ N.

Recall that a function f :]0,∞[→ R is said to be completely monotonic, if f
has derivatives of all orders and satisfies

(−1)nf (n)(x) ≥ 0 for all x > 0 and n = 0, 1, 2, ....

Bernstein’s Theorem, cf. [15, p. 161], states that f is completely monotonic if
and only if

f(x) =

∫ ∞

0

e−xsdµ(s), (6)

where µ is a nonnegative measure on [0,∞) such that the integral converges for
all x > 0. The set of completely monotonic functions is denoted C.

In [12] the authors call a function f :]0,∞[→]0,∞[ logarithmically completely
monotonic if it is C∞ and

(−1)k[log f(x)](k) ≥ 0, for k = 1, 2, . . . . (7)

If we denote the class of logarithmically completely monotonic functions by L,
we have f ∈ L if and only if f is a positive C∞-function such that −(log f)′ ∈ C.

The functions of class L have been implicitly studied in [3], and Lemma 2.4(ii)
in that paper can be stated as the inclusion L ⊂ C, a fact also established in [11].

The class L can be characterized in the following way, established by Horn[14,
Theorem 4.4]:

Theorem 1.1 For a function f :]0,∞[→]0,∞[ the following are equivalent:

(i) f ∈ L

(ii) fα ∈ C for all α > 0

(iii) n
√
f ∈ C for all n = 1, 2, . . ..

Another way of expressing the conditions of Theorem 1.1 is that the functions
in L are those completely monotonic functions for which the representing measure
µ in (6) is infinitely divisible in the convolution sense: For each n ∈ N there
exists a positive measure ν on [0,∞[ with n’th convolution power equal to µ,
viz. ν∗n = µ. By condition (ii) there exists a convolution semigroup (µα)α>0 of
positive measures such that the Laplace transform of µα is fα. Note that the
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convolution of any two positive measures on [0,∞[ is well-defined and we have
µα ∗ µβ = µα+β.

In the special case of f(0+) = 1 this is very classical: This is the description
of infinitely divisible distributions in probability. Since there are probabilities
which are not infinitely divisible we have C \ L 6= ∅.

In various papers complete monotonicity for special functions has been estab-
lished by proving the stronger statement that the function is a Stieltjes transform,
i.e. is of the form

f(x) = a+

∫ ∞

0

dµ(s)

s+ x
, (8)

where a ≥ 0 and µ is a nonnegative measure on [0,∞[ satisfying∫ ∞

0

1

1 + s
dµ(s) <∞.

See [2],[3],[5],[6],[8],[9].
The set of Stieltjes transforms will be denoted S. We clearly have S ⊂ C. For

more information about this class see [7].

Theorem 1.2 S \ {0} ⊂ L.

Theorem 1.3 The functions

Φ(x) =
[Γ(x+ 1)]1/x

x

(
1 +

1

x

)x

and

log Φ(x) =
log Γ(x+ 1)

x
− log x+ x log

(
1 +

1

x

)
are Stieltjes transforms with the representations (4) and (2).

Remark 1.4 The class S has the following stability properties: If f ∈ S, f 6= 0
then 1/f(1/x) and 1/(xf(x)) are again Stieltjes transforms, cf. [5]. Therefore
the following functions belong to S:

1

[Γ(1 + x)]1/x(1 + 1/x)x
, [Γ(1 + 1/x)]x(1 + x)1/x,

1

x[Γ(1 + 1/x)]x(1 + x)1/x
.

It was proved in [3] that [Γ(1 + 1/x)]x ∈ S, so also the following functions are
Stieltjes transforms:

[Γ(1 + x)]1/x

x
,

1

[Γ(1 + x)]1/x
,

1

x[Γ(1 + 1/x)]x
.

In [2] it was proved that (1 + 1/x)−x ∈ S. Therefore the function Φ given by
(1) is a quotient of known Stieltjes transforms, but this does not imply that the
function itself is a Stieltjes transform.
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2 Proofs

For completeness we include a proof of Theorem 1.1.
”(i) ⇒ (ii)” Since f ∈ L implies fα ∈ L for all α > 0, it is enough to prove

the inclusion L ⊂ C. Although this is done in [3] and [11] we include the easy
proof. By assumption −(log f)′ = −f ′/f ∈ C, so in particular −f ′ ≥ 0. Assume
now that (−1)kf (k) ≥ 0 for k ≤ n. Then

(−1)n+1f (n+1) = (−1)n((− log f)′f)(n)

=
n∑

k=0

(
n

k

)
(−1)k((− log f)′)(k)(−1)n−kf (n−k) ≥ 0,

and (ii) follows by induction.

”(ii) ⇒ (iii)” is obvious.

”(iii) ⇒ (i)” If f 1/n ∈ C we have in particular −(f 1/n)′ = (−1/n)f−1+1/nf ′ ∈
C. Multiplying by n and letting n → ∞ we see that the limit function −f ′/f
belongs to C, because C is closed under pointwise limits, cf. [7]. This establishes
(i). �

Proof of Theorem 1.2: Let f ∈ S be non-zero, and let α > 0. By Theorem
1.1 it is enough to prove that fα ∈ C. Writing α = n + a with n = 0, 1, . . . and
0 ≤ a < 1 we have fα = fnfa, and using the stability of C under multiplication
and that fa ∈ S, cf. [4], the assertion follows. �

Proof of Theorem 1.3: Using the expression (3) for ϕ we find∫ ∞

0

ϕ(s)

s+ x
ds =

∫ 1

0

1− s

s+ x
ds+

∞∑
k=1

∫ k+1

k

1− k/s

s+ x
ds

= −1 + (x+ 1) log

(
1 +

1

x

)
+

∞∑
k=1

[(
1 +

k

x

)
log

(
1 +

1

x+ k

)
− k

x
log

(
1 +

1

k

)]
.

Therefore, ∫ ∞

0

ϕ(s)

s+ x
ds = log Φ(x)

if and only if

log Γ(x+1) = x(log(1+x)−1)+
∞∑

k=1

[
(k + x) log

(
1 +

1

x+ k

)
− k log

(
1 +

1

k

)]
(9)

for x ≥ 0. Both sides vanish for x = 0, and they have the same derivative
ψ(x + 1), where ψ is the digamma function. This follows easily by the classical
formula

ψ(x) = log x+
∞∑

k=0

[
log

(
1 +

1

x+ k

)
− 1

x+ k

]
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cf. [13, 8.362(2)]. This shows that log Φ is a Stieltjes transform with the rep-
resentation (2). In particular Φ is completely monotonic with the limit 1 at
infinity.

To see that a function f is a Stieltjes transform we will use the characterization
of these functions via complex analysis, see [1, p. 127] or [5]. It is necessary and
sufficient that f has a holomorphic extension to the cut plane A = C\] −∞, 0]
and satisfies Im f(z) ≤ 0 for Im z > 0 and f(x) ≥ 0 for x > 0. For a Stieltjes
transform f given by (8) we have a = limx→∞ f(x), and the measure µ is the
limit in the vague topology of

− 1

π
Im f(−x+ iy) dx

as y → 0+.
We clearly have Φ(x) > 0 for x > 0 and the holomorphic extension of Φ

is given by Φ(z) = exp(log Φ(z)), where log Φ(z) is the holomorphic extension
obtained by the representation (2). This can also be described in the following
way: For z ∈ A we let log Γ(z) be the unique holomorphic branch, which is real
for x > 0, and we let Log denote the principal logarithm. Then

log Γ(z + 1)

z
− Log z + z Log

(
1 +

1

z

)
(10)

is a holomorphic branch of log Φ(z) in A, and since it agrees with log Φ(x) for
x > 0, we have

log Φ(z) =
log Γ(z + 1)

z
−Log z+ z Log

(
1 +

1

z

)
=

∫ ∞

0

ϕ(s)

s+ z
ds, z ∈ A. (11)

For z = x+ iy, y > 0 we get

Im log Φ(x+ iy) = −
∫ ∞

0

ϕ(s)y

(s+ x)2 + y2
ds,

and since 0 ≤ ϕ(s) ≤ 1 for s ≥ 0 we get

Im log Φ(x+ iy) ∈ ]−π, 0[ ,

hence
Im Φ(x+ iy) = |Φ(x+ iy)| sin(Im log Φ(x+ iy)) < 0,

which shows that Φ is a Stieltjes transform. For x ≥ 0, y → 0+ we further get

− 1

π
Im Φ(−x+ iy) → h(x) :=

1

π
|Φ(−x)| sin(πϕ(x)), (12)

which is is a continuous nonnegative function on [0,∞[. Therefore the conver-
gence is uniform for x in compact subsets of [0,∞[, so h is the density of the
representing measure as a Stieltjes transform.
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This shows the following integral representation of Φ:

Φ(z) = 1 +

∫ ∞

0

h(s)

s+ z
ds, z ∈ A (13)

where

h(s) =
1

π

ss−1

|1− s|s|Γ(1− s)|1/s
sin(πϕ(s)), s ≥ 0.

�

Remark 2.1 There is a close relationship between Stieltjes transforms and Pick
functions. For the latter see [1] and [10]. It is possible to find the integral
representation (2) of log Φ(x) using integral representations of the three terms of
(10). Here Log(z) and z Log(1 + 1/z) are Pick functions. The author first found
the density (3) in this way, but once ϕ is found the present direct approach seems
easier.
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