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Abstract

We prove that the functions ®(z) = [[(z + 1)]"/*(1 + 1/x)*/z and
log ®(x) are Stieltjes transforms.
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1 Introduction and main results

In [11] the authors introduce a subclass of the completely monotonic functions
which they call logarithmically completely monotonic, and the main result in [12]

is that the function y
r D= 1\°
d(z) = [+ D" <1 + _> (1)
z T

is logarithmically completely monotonic.

We characterize the class of logarithmically completely monotonic functions
as the infinitely divisible completely monotonic functions studied by Horn in [14].
We prove that Stieltjes transforms (see (8) below) belong to this class and that
® and log ® are both Stieltjes transforms. Each of these statements imply the
result of [12]. The following explicit representations are obtained:

)
log ®(z) = d 2
og ®(z) /o P s, x>0, (2)
where ;
1—s fo<s<l1
SO(S)_{]__”/S lfn§3<n—|—17n:172, (3)
and o
B(r) =1+ / W s aso, (4)
o Stz



with
1 ssfl

T rl—s[fT(1 = s)|s

Note that the density ¢(s) takes its values in the interval [0, 1], and this is the
clue to the fact that also ® is a Stieltjes transform. The density A is continuous
on [0, 00[ with h(0) = exp(—7), where 7 is Euler’s constant, and h(n) = 0 for
n € N.

h(s) sin(mp(s)), s > 0. (5)

Recall that a function f :]0, 00[— R is said to be completely monotonic, if f
has derivatives of all orders and satisfies

(=1)"f"(x) >0 forall >0 and n=0,1,2, ...

Bernstein’s Theorem, cf. [15, p. 161], states that f is completely monotonic if
and only if

f(x) = / " e dus), (©)

where 1 is a nonnegative measure on [0, 00) such that the integral converges for
all x > 0. The set of completely monotonic functions is denoted C.

In [12] the authors call a function f :]0, co[—]0, co| logarithmically completely
monotonic if it is C*° and

(=D)¥[log f(x)]®) >0, for k=1,2,.... (7)

If we denote the class of logarithmically completely monotonic functions by L,
we have f € L if and only if f is a positive C*°-function such that —(log f)" € C.
The functions of class £ have been implicitly studied in [3], and Lemma 2.4(ii)
in that paper can be stated as the inclusion £ C C, a fact also established in [11].
The class £ can be characterized in the following way, established by Horn[14,
Theorem 4.4]:

Theorem 1.1 For a function f :]0,00[—]0, 00[ the following are equivalent:

(i) feL
(i) f*€C foralla>0

(iii) /f €C foralln=1,2,....

Another way of expressing the conditions of Theorem 1.1 is that the functions
in £ are those completely monotonic functions for which the representing measure
w in (6) is infinitely divisible in the convolution sense: For each n € N there
exists a positive measure v on [0,00[ with n’th convolution power equal to f,
viz. v*" = p. By condition (ii) there exists a convolution semigroup (fio)a>0 Of
positive measures such that the Laplace transform of p, is f*. Note that the
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convolution of any two positive measures on [0, co[ is well-defined and we have
Ha * 1 = Ha+p-

In the special case of f(0+) = 1 this is very classical: This is the description
of infinitely divisible distributions in probability. Since there are probabilities
which are not infinitely divisible we have C \ £ # 0.

In various papers complete monotonicity for special functions has been estab-
lished by proving the stronger statement that the function is a Stieltjes transform,

i.e. is of the form * duu(s)
(s

— 8

fla) =as [ S22 (5)

where a > 0 and p is a nonnegative measure on [0, co| satisfying

/OOO : dp(s) < oc.

1+s

See [2],[3],[5],[6],(8],[9]-
The set of Stieltjes transforms will be denoted S. We clearly have S C C. For
more information about this class see [7].

Theorem 1.2 S\ {0} C L.

Theorem 1.3 The functions

P(z) = INCRRY) (1 - l)r

x x
and
_logI'(z +1)

log ®(x)
T

1
— logx + xlog (1 + —)

T
are Stieltjes transforms with the representations (4) and (2).

Remark 1.4 The class S has the following stability properties: If f € S, f # 0
then 1/f(1/x) and 1/(zf(z)) are again Stieltjes transforms, cf. [5]. Therefore
the following functions belong to S:
1 1
T+ @) (1 + 1) T+ 1) (1 + )1/
It was proved in [3] that [['(1 4+ 1/x)]* € S, so also the following functions are
Stieltjes transforms:
[T(1+ z)]V 1 1
T P4 2D+ 1 x))
In [2] it was proved that (1 + 1/x)* € S. Therefore the function ® given by

(1) is a quotient of known Stieltjes transforms, but this does not imply that the
function itself is a Stieltjes transform.

[D(1+ 1/2))" (1 4 2)'*,




2 Proofs

For completeness we include a proof of Theorem 1.1.

”(i) = (ii)” Since f € £ implies f* € L for all @ > 0, it is enough to prove
the inclusion £ C C. Although this is done in [3] and [11] we include the easy
proof. By assumption —(log f) = —f'/f € C, so in particular —f’ > 0. Assume
now that (—1)%f® >0 for k < n. Then

(1) = (=1 (~log 1))

n

= 3 (1) DM o e 2

k=0
and (ii) follows by induction.

7 (ii) = (iii)” is obvious.

”(iii) = (1)” If fY/™ € C we have in particular —(fY/") = (—1/n)f~ 1V f" ¢
C. Multiplying by n and letting n — oo we see that the limit function — f'/f

belongs to C, because C is closed under pointwise limits, cf. [7]. This establishes

i). O

Proof of Theorem 1.2: Let f € S be non-zero, and let > 0. By Theorem
1.1 it is enough to prove that f* € C. Writing « = n +a with n =0,1,... and
0 <a<1wehave f* = f"f* and using the stability of C under multiplication
and that f* € S, cf. [4], the assertion follows. [

Proof of Theorem 1.3: Using the expression (3) for ¢ we find

[e%e] 11_ o0 k+11_
o St 0o St 1k s+

- —1+(x+1)10g(1 > kZKH >log(1+ﬂ)—§10g<l+%)}

Therefore,
/ #(s) ds = log ®(x)
0

s+
if and only if

- 1 1
logl(x+1) = z(log(1+x)—1) +Z { (k + x)log (1+—k> — klog (14—%)}
— T+
(9)

for x > 0. Both sides vanish for x = 0, and they have the same derivative
¥(x + 1), where 9 is the digamma function. This follows easily by the classical

formula
= 1 1
=1 l 1 —
(x) ogx+;[og< +x—|—k‘> I—I—k}
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cf. [13, 8.362(2)]. This shows that log ® is a Stieltjes transform with the rep-
resentation (2). In particular ® is completely monotonic with the limit 1 at
infinity.

To see that a function f is a Stieltjes transform we will use the characterization
of these functions via complex analysis, see [1, p. 127] or [5]. It is necessary and
sufficient that f has a holomorphic extension to the cut plane A = C\| — o0, 0]
and satisfies Im f(z) < 0 for Imz > 0 and f(z) > 0 for x > 0. For a Stieltjes
transform f given by (8) we have a = lim, ., f(z), and the measure u is the
limit in the vague topology of

1
——Im f(—x +iy) dz
s

asy — 0T,

We clearly have ®(xz) > 0 for z > 0 and the holomorphic extension of @
is given by ®(z) = exp(log ®(z)), where log ®(z) is the holomorphic extension
obtained by the representation (2). This can also be described in the following
way: For z € A we let log'(z) be the unique holomorphic branch, which is real
for x > 0, and we let Log denote the principal logarithm. Then

logI'(z 4+ 1)

1
— Logz + z Log (1+—> (10)
z z

is a holomorphic branch of log ®(z) in A, and since it agrees with log ®(z) for
x > 0, we have

log I 1 1 o
10g¢(z):M—Logz+zLog (14—;) :/ f_(s)zds, ze A (11)
< 0

For z =z 4+ 1wy,y > 0 we get

: < p(s)y
Imlog ®(x + = —/ —— s,
mlog & (x + iy) . Grariy S

and since 0 < p(s) <1 for s > 0 we get
Imlog ®(x + iy) € |—m, 0],

hence
Im ®(z + 1y) = |P(z + iy)|sin(Im log ¢(z + iy)) < 0,

which shows that ® is a Stieltjes transform. For z > 0,y — 0% we further get
1 1
——Im ®(—z +iy) — h(x) = —=|P(—z)|sin(mp(z)), (12)
T T
which is is a continuous nonnegative function on [0, 00[. Therefore the conver-

gence is uniform for z in compact subsets of [0,00[, so h is the density of the
representing measure as a Stieltjes transform.
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This shows the following integral representation of ®:

O(z) = 1+/ hls) ds, z€ A (13)
0o Stz
where
W)= L in(r(s)), 5 > 0
S _7r|1_3|5|1—‘(1_3)|1/381n 7T(,08 ,S_ .
]

Remark 2.1 There is a close relationship between Stieltjes transforms and Pick
functions. For the latter see [1] and [10]. It is possible to find the integral
representation (2) of log ®(x) using integral representations of the three terms of
(10). Here Log(z) and z Log(1 + 1/z) are Pick functions. The author first found
the density (3) in this way, but once ¢ is found the present direct approach seems
easier.
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