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Abstract

This paper is mainly a survey of published results.
We recall the definition of positive definite and (conditionally) negative

definite functions on abelian semigroups with involution, and we consider
three main examples: Rk, [0,∞[k, N0–the first with the inverse involution
and the two others with the identical involution.

Schoenberg’s theorem explains the possibility of constructing rotation
invariant positive definite and conditionally negative definite functions on
euclidean spaces via completely monotonic functions and Bernstein func-
tions.

It is therefore important to be able to decide complete monotonicity of
a given function.

We combine complete monotonicity with complex analysis via the re-
lation to Stieltjes functions and Pick functions and we give a survey of
the many interesting relations between these classes of functions and com-
pletely monotonic functions, logarithmically completely monotonic func-
tions and Bernstein functions. In Section 6 it is proved that log x −
Ψ(x) and Ψ′(x) are logarithmically completely monotonic (where Ψ(x) =
Γ′(x)/Γ(x)), and these results are new as far as we know. We end with a
list of completely monotonic functions related to the Gamma function.

2000 Mathematics Subject Classification: primary 42A82,26A48; secondary
43A35.
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1 Positive definite and completely monotonic

functions

Positive definite functions on groups or semigroups have a long history and have
many applications in probability theory, operator theory, potential theory, mo-
ments problems and several other areas. They enter as an important chapter
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in all treatments of harmonic analysis. They can be traced back to papers by
Carathéodory, Herglotz, Bernstein, Matthias, culminating in Bochner’s theorem
from 1932-1933. See [37] for details.

Shortly after Bochner’s characterization of continuous positive definite func-
tions on R or Rk, his theorem was extended to the framework of locally compact
abelian groups: The continuous positive definite functions on a LCA-group are
the Fourier transforms of positive finite Radon measures on the dual group.

Completely monotonic functions were characterized by Bernstein in 1928 as
Laplace transforms of positive measures on [0,∞[, see [17].

Stieltjes moment sequences, i.e. moment sequences of positive measures on
[0,∞[ were introduced and characterized by Stieltjes in 1894 in the pioneering
work [45], where he introduced the Stieltjes integral with respect to a distribution
of mass. His results were extended to a characterization of moment sequences
of measures on the real line by Hamburger in 1920-21. However all the results
mentioned so far are strongly interrelated and they all depend on measure theory
based on Stieltjes’ and Lebesgue’s ideas.

Positive definite functions, completely monotonic functions and moment se-
quences share many properties. For example, each of these functions or sequences
form a set which is stable under sums, products and multiplication with non-
negative constants, and it is also closed in a suitable topology. This is explained
in harmonic analysis: They are the transforms of positive measures on certain
sets with a commutative operation leading to a convolution of measures. The
convolution of two measures is transformed into the product of the transforms of
each of the measures. This classical point of view is elaborated in [13].

Let us consider an abelian semigroup (S,+), i.e. the composition + is com-
mutative and associative, and let us assume that S has a neutral element 0 and
an involution ∗, i.e. ∗ : S → S is a bijection satisfying (s + t)∗ = s∗ + t∗ and
(s∗)∗ = s. We recall that a function f : S → C is called positive definite if for
all n ∈ N and for all s1, . . . , sn ∈ S the n × n-matrix (f(si + s∗j)) is positive
hermitian, i.e.

n∑
i,j=1

f(si + s∗j)cicj ≥ 0, ∀ (c1, . . . , cn) ∈ Cn. (1)

In the case of S = Rk considered as an abelian group with addition, we choose
the involution x∗ = −x and can formulate the famous theorem of Bochner:

Theorem 1.1 A function f : Rk → C is positive definite and continuous if and
only if it is the Fourier transform of a positive finite measure µ on Rk, i.e. if and
only if

f(x) =

∫
Rk

e−i〈x,ξ〉 dµ(ξ).
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In the case of S = [0,∞[k considered as an abelian semigroup with the iden-
tical involution x∗ = x, we have the following result of Bernstein and Widder (cf.
[47, Ch. VI, Th. 21] and [13, Th. 6.5.8].):

Theorem 1.2 A function f : [0,∞[k→ R is positive definite and continuous if
and only if it is the Laplace transform of a positive finite measure µ on Rk, i.e.
if and only if

f(x) =

∫
Rk

e−〈x,ξ〉 dµ(ξ). (2)

Note that in the group case (Theorem 1.1) a positive definite function is
automatically bounded, whereas in the semigroup case (Theorem 1.2), this is
certainly not true, since exp(−〈x, ξ〉) is unbounded if ξ /∈ [0,∞[k.

There is another important remark concerning Theorem 1.2. A function f
satisfying the conditions of the theorem has a holomorphic extension to the tube

Ck
+ =]0,∞[k+iRk

given by

f(x+ iy) =

∫
[0,∞[k

e−〈x+iy,ξ〉 dµ(ξ).

For bounded functions Theorem 1.2 takes the form:

Corollary 1.3 A function f : [0,∞[k→ R is positive definite, bounded and con-
tinuous if and only if it is the Laplace transform of a positive finite measure µ on
[0,∞[k, i.e. if and only if

f(x) =

∫
[0,∞[k

e−〈x,ξ〉 dµ(ξ). (3)

Proof A function given by (3) is clearly bounded. Conversely, if f is a bounded,
continuous and positive definite function, it has a representation (2), and we
have to show that supp(µ) ⊆ [0,∞[k. In fact, if there exists ξ0 ∈ supp(µ) with a
negative j’th coordinate, we can choose ε > 0 such that U := {ξ ∈ Rk | ξj < −ε}
is an open neighbourhood of ξ0. Therefore, with ej denoting the usual j’th
standard basis vector in Rk and for xj ≥ 0 we get

f(xjej) =

∫
Rk

e−xjξj dµ(ξ) ≥
∫

U

e−xjξj dµ(ξ) ≥ eεxjµ(U),

which contradicts the boundedness since µ(U) > 0. �

Finally, if we consider S = N0 = {0, 1, 2, . . .} as an abelian semigroup under
addition and the identical involution n∗ = n, we can formulate Hamburger’s
theorem:
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Theorem 1.4 A sequence s : N0 → R is positive definite if and only if it is a
moment sequence of a positive finite measure µ on R, i.e.

sn =

∫ ∞

−∞
xn dµ(x), n ∈ N0. (4)

Note that a moment sequence (sn) is bounded if and only if the corresponding
measure µ is supported by [−1, 1]. While the measure µ in Theorem 1.1 and 1.2
is uniquely determined by f , this need not be the case in Theorem 1.4: There
exist so-called indeterminate moment sequences (sn), where (4) has more than
one and hence infinitely many solutions µ. However, if there is one solution µ
with compact support, then (4) has no other solutions.

There is another way of characterizing the functions of Corollary 1.3, namely
as completely monotonic functions.

For simplicity we shall assume k = 1.
A function f : ]0,∞[ → R is called completely monotonic if it is C∞ and

(−1)nf (n)(x) ≥ 0, n ≥ 0, x > 0.

The set of completely monotonic functions is denoted C. It is a convex cone
and stable under multiplication as is seen directly from the definition. It is less
obvious that C is closed under pointwise convergence, but follows from the famous
theorem of Bernstein proved in [17]:

Theorem 1.5 A function f : ]0,∞[ → R is completely monotonic if and only if
it is the Laplace transform of a positive measure µ on [0,∞[, i.e.

f(x) = Lµ(x) =

∫ ∞

0

e−xξ dµ(ξ), x > 0. (5)

The measure µ in Theorem 1.5 is not necessarily finite. Since f ∈ C is
decreasing, limx→0+ f(x) = f(0+) exists and equals µ([0,∞[).

For rotation invariant functions f : Rk → R, i.e. functions of the form
f(x) = ϕ(||x||2) for some function ϕ : [0,∞[→ R and || · || denoting the euclidean
norm, Schoenberg proved the following important result, cf. [41] (I.J. Schoenberg
(1903-1990), Romanian/American):

Theorem 1.6 Let ϕ : [0,∞[→ R be given. Then ϕ(||x||2) is continuous and
positive definite on Rk for all k ≥ 1 if and only if ϕ is the Laplace transform of
a positive finite measure on [0,∞[.

Schoenberg’s Theorem is an important tool for constructing rotation invariant
positive definite functions on euclidean spaces. It leads to the question of deciding
if a function on the half-line is completely monotonic.

There have appeared many proofs of Schoenberg’s Theorem. We mention
the abstract approach via Schoenberg triples in the monograph [13], which also
works for non-continuous positive definite functions. In [43] there is a beautiful
analytical proof based on Scheffé’s Lemma.
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2 Conditionally negative definite functions

Conditionally negative definite kernels and functions play an important role in
probability theory, Dirichlet spaces, potential theory, and in relation with iso-
metric embeddings of metric spaces into Hilbert spaces, see Schoenberg [42] and
the treatment in [13].

Let (S,+, ∗) be an abelian semigroup with neutral element and involution ∗
like in Section 1.

Definition 2.1 A function ψ : S → C is called (conditionally) negative definite
if ψ has the following properties:

(i) ψ is hermitian, i.e. ψ(s∗) = ψ(s), s ∈ S,

(ii) For all n ≥ 2 and for all s1, . . . , sn ∈ S

n∑
i,j=1

ψ(si + s∗j)cicj ≤ 0, ∀ (c1, . . . , cn) ∈ Cn verifying
n∑

j=1

cj = 0. (6)

Inspired by the work of Beurling and Deny about Dirichlet spaces, we called
these functions negative definite in [14] and [13]. It is reasonable to include
“conditionally” in the terminology because of the classical different concept of a
negative definite matrix, but it is longer to write.

We note the following easy result going back to Schoenberg, cf. [13, Th.
3.2.2]:

Theorem 2.2 A function ψ : S → C is conditionally negative definite if and
only if exp(−tψ) is positive definite for all t > 0.

In the important case of S = Rk with the involution x∗ = −x, the counterpart
of Bochner’s theorem is the Lévy-Khinchin formula. (Note that in the group case
conditionally negative definite functions automatically satisfy <ψ(s) ≥ ψ(0) by
Theorem 2.2 and the fact that positive definite functions are bounded):

Theorem 2.3 A function ψ : Rk → C is conditionally negative definite and
continuous if and only if it has an integral representation of the form

ψ(x) = a+ i〈b, x〉+Q(x) +

∫
Rk\{0}

(
1− e−i〈x,ξ〉 − i〈x, ξ〉

1 + ||ξ||2

)
dν(ξ), (7)

where a ∈ R, b ∈ Rk, Q is a positive semidefinite quadratic form on Rk and
ν (the Lévy-measure) is a positive measure on Rk \ {0} satisfying

∫
||ξ||2/(1 +

||ξ||2) dν(ξ) <∞.
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Remark 2.4 For a continuous positive definite function f : Rk → C and c ∈ R
we see that ψ(x) = c − f(x) is a bounded, continuous, conditionally negative
definite function. Conversely, any bounded, continuous, conditionally negative
definite function on Rk has this form. This was proved (even for LCA-groups)
by Harzallah [27], cf. [14, Prop. 7.13].

In the case of S = [0,∞[k considered as an abelian semigroup with the iden-
tical involution x∗ = x, we have the following result, which is the counterpart of
Theorem 1.2 (noting that hermitian functions are real-valued):

Theorem 2.5 A function ψ : [0,∞[k→ R is conditionally negative definite and
continuous if and only if it has a representation of the form

ψ(x) = a+ 〈b, x〉 −Q(x) +

∫
Rk\{0}

(
1− e〈x,ξ〉 +

〈x, ξ〉
1 + ||ξ||2

)
dν(ξ), (8)

where a ∈ R, b ∈ Rk, Q is a positive semidefinite quadratic form on Rk and ν
(the Lévy-measure) is a positive measure on Rk \ {0} satisfying∫

0<||ξ||≤1

||ξ||2 dν(ξ) <∞,

∫
||ξ||>1

e〈x,ξ〉 dν(ξ) <∞, ∀x ∈ [0,∞[k.

A complete proof of the above theorem can be found in [8].
In the case of k = 1 and nonnegative functions, Theorem 2.5 reduces to the

following result, see [13, Th. 4.4.3]:

Theorem 2.6 A function ψ : [0,∞[→ [0,∞[ is conditionally negative definite
and continuous if and only if it has a representation of the form

ψ(x) = a+ bx+

∫ ∞

0

(
1− e−xξ

)
dν(ξ), (9)

where a, b ≥ 0 and ν (the Lévy measure) is a positive measure on ]0,∞[ satisfying∫
ξ/(ξ + 1) dν(ξ) <∞.

These functions, which are the counterparts of completely monotonic func-
tions, are called Bernstein functions. They are considered in detail in Section
5.

Finally, if we consider S = N0 = {0, 1, 2, . . .} as an abelian semigroup under
addition and the identical involution n∗ = n, we can formulate the counterpart
of Hamburger’s theorem:

Theorem 2.7 A function ψ : N0 → R is conditionally negative definite if and
only if it has an integral representation of the form

ψ(n) = a+ bn− cn2 +

∫
R\{1}

(1− xn − n(1− x)) dν(x), (10)
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where a, b ∈ R, c ≥ 0 and ν (the Lévy measure) is a positive measure on R \ {1}
satisfying∫

0<|x−1|<1

(1− x)2 dν(x) <∞,

∫
|x−1|≥1

|x|n dν(x)∞, ∀n ∈ N0.

For the proof of Theorem 2.7 we refer to [13].
Theorem 2.7 is related to infinitely divisible moment sequences in the sense

of Tyan [46]. He defined a moment sequence (sn) to be infinitely divisible if

(i) sn ≥ 0 for all n ≥ 0,

(ii) (sc
n) is a moment sequence for all c > 0.

The main result of Tyan can be formulated:

Theorem 2.8 A moment sequence (sn) such that sn > 0 for all n is infinitely
divisible if and only if (− log sn) is conditionally negative definite on (N0,+).

Tyan’s result was reexamined in the case of Stieltjes moment sequences in the
recent paper [11], which contains several examples of infinitely divisible Stieltjes
moment sequences.

Coming back to rotation invariant functions on Rk we have the following
counterpart of Theorem 1.6. It follows by combination of the previous results.

Theorem 2.9 Let ψ : [0,∞[→ [0,∞[ be given. Then ψ(||x||2) is continuous and
conditionally negative definite on Rk for all k ≥ 1 if and only if ψ is a Bernstein
function, i.e. has the form (9).

3 Stieltjes functions

It can be quite difficult to prove that a certain function is completely monotonic,
simply because the expression for the n’th derivative can be too complicated to
handle.

We shall now consider an important subclass of completely monotonic func-
tions:

Definition 3.1 A function f : ]0,∞[ → R is called a Stieltjes function, if it is of
the form

f(x) = a+

∫ ∞

0

dµ(ξ)

x+ ξ
(11)

where a ≥ 0, and µ is a positive measure on [0,∞[. (The condition on µ imposed
by (11) can be summarized in

∫
1/(1 + ξ) dµ(ξ) <∞.)
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The set S of Stieltjes functions is a convex cone such that S ⊂ C. The
inclusion holds simply because

f (n)(x) = (−1)nn!

∫ ∞

0

dµ(ξ)

(x+ ξ)n+1
, x > 0, n ≥ 1.

(T. J. Stieltjes (1856-1894), Dutch/French).
It is, however, also important to realize that the function (11) can be written

f(x) = L[aδ0 + Lµ(ξ)1]0,∞[(ξ) dξ](x), (12)

(where δa here and in the following denotes the Dirac measure with mass 1 con-
centrated in the point a), i.e. f is grosso modo an iterated Laplace transform.
This also shows that f ∈ S is completely monotonic.

The cone S is closed under pointwise convergence. For the proof of this and
applications of Stieltjes functions see [28].

Formula (11) also shows that a Stieltjes function has a holomorphic extension
to the cut plane A := C\]−∞, 0].

The formula
1

x(1 + x2)
=

∫ ∞

0

e−xξ(1− cos(ξ)) dξ

shows that 1/x(1 + x2) is completely monotonic, but it cannot be a Stieltjes
function, since it has poles at ±i.

One can also remark that x−α ∈ C for all α ≥ 0, but x−α ∈ S if and only if
0 ≤ α ≤ 1.

(For 0 < α < 1 we have∫ ∞

0

dξ

(x+ ξ)ξα
= x−α

∫ ∞

0

dt

(1 + t)tα
,

showing that x−α ∈ S. That x−α /∈ S for α > 1 follows from Theorem 3.2 below
since sin(αArg z) < 0 for some z in the upper half-plane. See Example (c) in
Section 4.)

The holomorphic extension of f ∈ S to z = x+ iy ∈ A is given as

=f(x+ iy) =

∫ ∞

0

−iy dµ(ξ)

(x+ ξ)2 + y2
, (13)

which shows the “only-if” part of the following characterization of Stieltjes func-
tions:

Theorem 3.2 A function f : ]0,∞[ → R is a Stieltjes function if and only if
f(x) ≥ 0 for x > 0 and it has a holomorphic extension (also denoted f) to the
cut plane A satisfying =f(x+ iy) ≤ 0 for y > 0.
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The holomorphic extension of a Stieltjes function has of course a non-negative
imaginary part in the lower half-plane. On the other hand, a holomorphic func-
tion f : A → C, which is real on the positive axis, must satisfy f(z) = f(z) by
the reflection principle.

Theorem 3.2 is proved in [1, p. 127] and there attributed to Krein. It is very
much connected to the theory of Pick functions, which will be discussed in the
next section.

We shall now list some useful stability properties of the cone of Stieltjes func-
tions:

(i) f ∈ S \ {0} ⇒ 1
f(1/x)

∈ S

(ii) f ∈ S \ {0} ⇒ 1
xf(x)

∈ S

(iii) f ∈ S, λ > 0 ⇒ f
λf+1

∈ S

(iv) f, g ∈ S \ {0} ⇒ f ◦ 1
g
, 1

f◦g ∈ S

(v) f, g ∈ S, 0 < α < 1 ⇒ fαg1−α ∈ S.

(vi) f ∈ S, 0 < α < 1 ⇒ fα ∈ S.

The properties (i),(iii) and (iv) were proved by Hirsch in [28]. Property (ii)
was established by Reuter [36] and independently by Itô [31], but already Stieltjes
noticed it in a letter to Hermite, see [5, Lettre 426]. The property (v), showing
that the cone S is logarithmically convex, was established in [6]. Property (vi)
is a special case of (v) with g = 1. All the above properties of S can easily be
deduced from Theorem 3.2 as was pointed out in [7].

Examples of Stieltjes functions
(a) x−α, 0 < α ≤ 1.

(b) log((x+ b)/(x+ a)) =
∫ b

a
(x+ ξ)−1 dξ, 0 ≤ a < b.

(c) 1/ log(1 + x); (log(1 + x))/x (Apply (i) above to example (b) with a =
0, b = 1 and apply then (ii)).

(d) (x log x)/ log Γ(x+ 1), cf. [15].
(e) (1 + 1/x)−x, cf. [2].
(f) See [2]

(x+ 1)

[
e−

(
1 +

1

x

)x]
=
e

2
+

1

π

∫ 1

0

ξξ(1− ξ)1−ξ sin(πξ)

x+ ξ
dξ.

(g) [Γ(1 + 1/x)]x, cf. [3].
(h) See [9]

Φ(x) =
[Γ(x+ 1)]1/x

x

(
1 +

1

x

)x

; log Φ.
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4 Pick functions

Pick functions have a long history and a whole book is dedicated to them, see
[22].

The upper half-plane is denoted H, i.e. H = {z ∈ C | =z > 0}, and the set of
holomorphic functions in a domain G is denoted H(G).

Definition 4.1 A function f ∈ H(H) is called a Pick function if =f(z) ≥ 0 for
z ∈ H.

The set of Pick functions is a convex cone N ⊆ H(H). (G. Pick (1859-1942),
Austrian/Czech).

Pick functions are also called Nevanlinna functions. This is reflected in the
notation N . (R. Nevanlinna (1895-1980), Finnish).

Pick and Nevanlinna studied interpolation problems for Pick functions, see
[35],[33] and Nevanlinna related this class to the indeterminate moment problem,
see [33].

Pick functions are closely related to operator monotone functions studied by
Loewner, see [22]. We return to this in Theorem 4.10.

Examples of Pick functions
(a) f(z) = αz + β , α ≥ 0 , β ∈ R.
(b) Any Möbius transformation

f(z) =
az + b

cz + d
, where

(
a b
c d

)
∈ SL2(R).

In fact, =f(x+ iy) = y/|cz + d|2.
In particular 1/(c− z) ∈ N for c ∈ R.
(c) The principal logarithm, i.e. Log z = log |z| + iArg z, since the principal

argument Arg z ∈ ]0, π[ for z ∈ H.
(d) zα = eα Log z for 0 < α ≤ 1.
(e) tan z, since

= tan(x+ iy) =
sinh y cosh y

cos2 x+ sinh2 y
.

(f) See [16]
log Γ(x+ 1)

x log x
;

log Γ(x+ 1)

x
.

(g) See [34] for Pick functions related to canonical products with negative
zeros.

In 1911 G. Herglotz gave an integral representation of the holomorphic func-
tions defined in the unit disc and having nonnegative real part. Via a conformal
mapping of the unit disc onto the upper half-plane, Herglotz’ representation is
equivalent with the following integral representation of Pick functions.
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Theorem 4.2 The formula

f(z) = αz + β +

∫ ∞

−∞

tz + 1

t− z
dτ(t) , z ∈ H (14)

establishes a one-to-one correspondence between Pick functions f and triples
(α, β, τ), where α ≥ 0, β ∈ R and τ is a positive finite measure on R.

Remark 4.3 Using the identity

(1 + t2)

(
1

t− z
− t

1 + t2

)
=
tz + 1

t− z
,

the representation (14) can be written

f(z) = αz + β +

∫ ∞

−∞

(
1

t− z
− t

1 + t2

)
dσ(t), (15)

where the positive measure σ on R satisfies
∫

(1 + t2)−1dσ(t) <∞.
The connection between the measures τ and σ is σ = (1 + t2)dτ(t).
It is important to notice that integration term by term in (15) is not permitted.

The difference is σ-integrable but t(1+ t2)−1 need not be σ-integrable as is shown
by Example 4.5 below.

We shall next express the triple (α, β, σ) from (15) in terms of the Pick func-
tion f .

Theorem 4.4 For a Pick function f with representation (15) we have

α = lim
y→∞

f(iy)

iy
, β = <f(i), σ = lim

y→0+

1

π
=f(x+ iy)dx vaguely,

i.e.

lim
y→0+

1

π

∫
=f(x+ iy)ϕ(x) dx =

∫
ϕ(x) dσ(x)

for all continuous functions ϕ : R → R with compact support.

Example 4.5 For the Pick function f(z) = Log z we have

lim
y→0+

1

π
Arg(x+ iy) =


0 for x > 0

1
2

for x = 0

1 for x < 0

,
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and the convergence is uniform on compact subsets of ]0,∞[ and of ] − ∞, 0[.
By Theorem 4.4 we see that σ is 0 on [0,∞[ and equal to Lebesgue measure on
]−∞, 0[. In fact, for any continuous function ϕ with compact support we have

lim
y→0+

1

π

∫ ∞

−∞
ϕ(x) Arg(x+ iy)dx =

∫ 0

−∞
ϕ(x)dx

by the dominated convergence theorem. It follows that the representation (15) is

Log z =

∫ 0

−∞

(
1

t− z
− t

1 + t2

)
dt. (16)

The imaginary part of a Pick function f is a non-negative harmonic function
in the upper half-plane. It therefore either vanishes identically and f is a real
constant, or it never vanishes.

Corollary 4.6 Let f ∈ N . Then either f is a real constant or f(H) ⊆ H. In
particular f ∈ N \ {0} has no zeros in H and −1/f ∈ N .

The Pick functions f such that f(H) ⊆ H are called non-degenerate, and we
notice the following result.

Proposition 4.7 Let f1, f2 be non-degenerate Pick functions. Then f1 ◦ f2 is a
non-degenerate Pick function.

For f ∈ H(H) the function z 7→ f(z) is holomorphic in the lower half-plane
=z < 0, and it is called the reflection of f in the real axis. The reflection
of a Pick function f is given in the lower half-plane by the expression (14) or
(15). Whenever it is convenient, we shall therefore consider Pick functions as
holomorphic functions in C \ R. Given f ∈ N it is natural to ask, if there is an
analytic continuation of f across some part of the real axis. This is formalized
in the following:

Definition 4.8 For a closed set A ⊆ R we denote by NA the set of f ∈ N for
which there exists F ∈ H(C \ A) such that

F (z) =


f(z), =z > 0

f(z), =z < 0.

For f ∈ NA the extension F is necessarily unique and is given for x ∈ R \ A
by

F (x) = lim
y→0+

f(x+ iy) = lim
y→0+

f(x+ iy),

and the convergence is uniform on compact subsets of R\A. It follows that F (x)
is real for x ∈ R \ A, so the representing measure σ from (15) is zero on R \ A.
This shows the non-trivial part of the following characterization of NA.
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Theorem 4.9 A Pick function f with representation (15) belongs to NA if and
only if supp(σ) ⊆ A, and in the affirmative case the right-hand side of (15)
defines the holomorphic extension to C \ A.

Note that Log ∈ N]−∞,0].
Let f be a Stieltjes function and assume that f 6= 0. Then clearly −f , f(−x)

and 1/f are Pick functions.
Given an open interval I =]a, b[ a function f : I → R is called operator

monotone if f(A) ≤ f(B) for all self-adjoint operators A,B in a Hilbert space
satisfying A ≤ B and having spectrum contained in I. Loewner proved that for
a function to be operator monotone it is enough to consider n× n-matrices A,B
of arbitrary size n. In the matrix case f(A) is defined in an elementary way using
diagonalization. In the general case f(A) is defined via the functional calculus.
Loewner further proved, that the set of operator monotone functions is exactly
NR\I .

We shall now give a characterization of the non-negative operator monotone
functions on the positive half-line, thereby bringing the Stieltjes functions in
focus.

Theorem 4.10 For a function f : ]0,∞[ → [0,∞[ the following conditions are
equivalent:

(i) f can be extended to a function in N]−∞,0].

(ii) f has a representation

f(x) =

∫ ∞

0

x(1 + t)

x+ t
dµ(t),

where µ is a positive finite measure on [0,∞].

(iii) f has the representation

f(x) = αx+ x

∫ ∞

0

dσ(t)

x+ t
,

where α ≥ 0 and σ is a positive measure on [0,∞[ satisfying∫
(1 + t)−1 dσ(t) <∞.

(iv) f(x)/x is a Stieltjes function.

Proof The equivalence of (ii) and (iii) follows by putting α = µ({∞}) and
dσ(t) = (1 + t)1[0,∞[(t) dµ(t).

The equivalence of (iii) and (iv) is easy.
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“(iii) ⇒ (i)”. From (iii) it is clear that f has a holomorphic extension to the
cut plane A, and for z = x+ iy, y > 0 we find

=f(x+ iy) = αy +

∫ ∞

0

yt

(x+ t)2 + y2
dσ(t) ≥ 0.

“(i) ⇒ (iii)”. We know that

f(z) = αz + β +

∫ 0

−∞

tz + 1

t− z
dτ(t),

where α ≥ 0, β ∈ R and τ is a positive finite measure on ]−∞, 0]. Denoting by
τ̌ the reflection of τ in the origin, we find

f ′(z) = α+

∫ ∞

0

1 + t2

(z + t)2
dτ̌(t),

so f ′(x) ≥ 0 for x > 0, i.e. f is increasing on ]0,∞[. For x > 0 we have

f(x) ≤ αx+ β + x

∫ ∞

0

t

x+ t
dτ̌(t),

and since f(0+) exists and is nonnegative, because f is nonnegative and increas-
ing, we get for x→ 0+: ∫ ∞

0

dτ̌(t)

t
+ f(0+) = β.

This shows that τ has no mass at 0 and that
∫∞

0
(1/t) dτ̌(t) < ∞. We can

therefore write

f(x) = β −
∫ ∞

0

dτ̌(t)

t
+ αx+

∫ ∞

0

(
1

t
− 1

x+ t

)
dτ̌(t) + x

∫ ∞

0

t

x+ t
dτ̌(t),

which shows (iii) with

σ =

(
β −

∫ ∞

0

dτ̌(t)

t

)
δ0 +

(
t+

1

t

)
dτ̌(t).�

Remark 4.11 A proof of Theorem 4.10 is also given in Schilling [39] as well
as in his Dissertation [38]. The functions of Theorem 4.10 are called complete
Bernstein functions by Schilling.

5 Bernstein functions

The terminology Bernstein function is not universally accepted. It has been used
in potential theory in the work of Jacques Deny, which was the source of inspi-
ration for [14]. Bernstein functions are called completely monotone mappings
in Bochner [19], who used them in connection with subordination of convolu-
tion semigroups. They also appear in connection with the functional calculus of
contraction semigroups in Banach spaces, see e.g. [39] and references therein.
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Definition 5.1 A function f : ]0,∞[ → [0,∞[ is called a Bernstein function, if
it is C∞ and f ′ ∈ C. The set of Bernstein functions is denoted B.

The set B is a convex cone closed under pointwise convergence.
Since a Bernstein function in nonnegative and increasing, it has a nonneg-

ative limit f(0+). Integrating the Bernstein representation of the completely
monotonic function f ′ gives the following integral representation

f(x) = αx+ β +

∫ ∞

0

(1− e−xξ) dν(ξ), (17)

where α, β ≥ 0 and ν, called the Lévy measure, is a positive measure on ]0,∞[
satisfying ∫ ∞

0

ξ

1 + ξ
dν(ξ) <∞.

See [14] for details and compare with Theorem 2.6. It follows easily that

α = lim
x→∞

f(x)

x
, f ′(x) = L

[
αδ0 + ξ1]0,∞[(ξ) dν(ξ)

]
(x), (18)

and in particular f(x) = O(x) for x→∞.
In [18] Bernstein functions are called Laplace exponents because of the follow-

ing result, which shall be compared with Theorem 2.2:

Theorem 5.2 For a function f : ]0,∞[ → [0,∞[ the following are equivalent

(i) f ∈ B,

(ii) exp(−tf) ∈ C for all t > 0,

(iii) There exists a convolution semigroup (ηt)t>0 of positive measures on [0,∞[
with ηt([0,∞[) ≤ 1 such that for all t > 0 and x ≥ 0

Lηt(x) =

∫ ∞

0

e−xξ dηt(ξ) = e−tf(x). (19)

(In Theorem 5.2 (iii) a convolution semigroup satisfies by definition ηs ∗ ηt = ηs+t

and limt→0 ηt = δ0 vaguely, cf. [14, p. 48].)

Corollary 5.3 The following composition results hold:

f, g ∈ B ⇒ f ◦ g ∈ B, f ∈ C, g ∈ B ⇒ f ◦ g ∈ C.
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Proof For t > 0 and g(x) ∈ B we have exp(−tg) ∈ C by (ii). Therefore

1− e−tg ∈ B

so the composition results follow from (17) and (5). �

Examples of Bernstein functions
(a) f(x) = αx+ β, where α, β ≥ 0.
(b) f(x) = 1− e−xt, where t > 0.
(c) f(x) = log(1 + x).
(d) f(x) = xα, where 0 ≤ α ≤ 1.
(e) f(x) = log Γ(x+ 1)/x log(x), cf. [15].
(f) f(x) = (1 + 1/x)x, f(x) = (1 + x)1+1/x, cf. [2].
(g) f(x) =

∑∞
n=0 log(1 + xqn), where 0 < q < 1. The corresponding convolu-

tion semigroup is studied in [10].
(h) (logPρ(x))/x

1/ρ, where ρ > 1 and Pρ is the canonical product (cf. [34])

Pρ(x) =
∞∏

n=1

(
1 +

x

nρ

)
.

The paper [32] contains a supplementary list of Bernstein functions.

As an important application of Corollary 5.3 we note that

f ∈ B, 0 < α < 1 ⇒ f(x)α, f(xα) ∈ B, (20)

f ∈ C, 0 < α < 1 ⇒ f(xα) ∈ C. (21)

We mention the following stability property of B from [12, p. 265]

f ∈ B, n ∈ N ⇒ (f(x1/n))n ∈ B. (22)

Theorem 5.4 The following relations between B, C,S hold:

f ∈ B \ {0} ⇒ 1

f
∈ C; f ∈ S \ {0} ⇒ 1

f
∈ B; f ∈ B ⇒ f(x)

x
∈ C.

Proof Integrating the equation (19) with respect to Lebesgue measure on the
half-line, we get (for f ∈ B \ {0})

L
(∫ ∞

0

ηt dt

)
(x) =

1

f(x)
,

which shows that 1/f is the Laplace transform of the positive measure κ =∫∞
0
ηt dt called the potential kernel of the convolution semigroup (ηt)t>0.
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The reciprocal of a completely monotonic function need not be a Bernstein
function (f(x) = x2 /∈ B). However, it holds for f ∈ S \ {0}. In fact, by the
stability property (ii) for S we have

1

xf(x)
= a+

∫ ∞

0

dµ(ξ)

x+ ξ
,

hence
1

f(x)
= ax+

∫ ∞

0

x

x+ ξ
dµ(ξ)

and for each ξ ≥ 0 the function

x 7→ x

x+ ξ
= 1− ξ

x+ ξ

is a Bernstein function.
The third implication follows from formula (17) by dividing with x. �

Remark 5.5 The following observation is a simple counterpart of a theorem of
Harzallah, cf. Remark 2.4:

f ∈ B is bounded ⇔ f = c− g where c ≥ g ∈ C. (23)

Proof Only “⇒” needs a comment. If f is a bounded Bernstein function then
(17) shows that α = 0 and f(∞) = β + ν(]0,∞[) < ∞ by the monotonicity
theorem of Lebesgue. Since ν is a finite measure we can integrate term by term
in (17), and the result follows. �

6 Logarithmically completely monotonic func-

tions

In [24] the authors call a function f :]0,∞[→]0,∞[ logarithmically completely
monotonic if it is C∞ and

(−1)k[log f(x)](k) ≥ 0, for k = 1, 2, . . . . (24)

If we denote the class of logarithmically completely monotonic functions by L,
we have f ∈ L if and only if f is a positive C∞-function such that −(log f)′ ∈ C.

The functions of class L have been implicitly studied in [3], and Lemma 2.4(ii)
in that paper can be stated as the inclusion L ⊂ C, a fact also established in [23].

The class L can be characterized in the following way, established by Horn[29,
Theorem 4.4]:

Theorem 6.1 For a function f : ]0,∞[ →]0,∞[ the following are equivalent:
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(i) f ∈ L,

(ii) fα ∈ C for all α > 0,

(iii) n
√
f ∈ C for all n = 1, 2, . . ..

Another way of expressing the conditions of Theorem 6.1 is that the functions
in L are those completely monotonic functions for which the representing measure
µ in (5) is infinitely divisible in the convolution sense: For each n ∈ N there
exists a positive measure ν on [0,∞[ with n’th convolution power equal to µ, viz.
ν∗n = µ. By condition (ii) there exists a family (µα)α>0 of positive measures such
that the Laplace transform of µα is fα. Note that the family (µα)α>0 satisfies the
convolution equation µα ∗ µβ = µα+β and µα([0,∞[) = f(0+) ≤ ∞ for all α > 0.

In the special case of f(0+) = 1 this is very classical: This is the description
of infinitely divisible probability distributions on the half-line. Since there are
probability measures on [0,∞[ which are not infinitely divisible, we have C\L 6= ∅.

A proof of Theorem 6.1 is included in [9]. From the proof it is clear that
condition (iii) can be replaced by the condition

(iv) f εn ∈ C for some sequence (εn) of positive numbers tending to zero.

From property (ii) it is clear that L ⊂ C, that L is closed under pointwise
convergence and that L is stable under products and positive powers.

We also note that S ⊂ L, because if f ∈ S then fα ∈ S ⊂ C for any 0 < α ≤ 1
by property (vi) of Section 3, hence f ∈ L by (iii) above.

Let us recall the classical notion of a logarithmically convex function as a
positive function on an interval such that its logarithm is convex. It is a surprising
fact that the sum of two such functions is logarithmically convex. A similar thing
does not hold for the class L:

Example 6.2 We have e−tx ∈ L for each t > 0, but e−x + e−2x /∈ L. In fact, we
have

e−x + e−2x ∈ L ⇔ −
(
−x+ log(1 + e−x)

)′ ∈ C,
but

1 +
e−x

1 + e−x
= L

(
δ0 +

∞∑
k=1

(−1)k−1δk

)
(x)

so this function is not completely monotonic.

For the Digamma function Ψ(x) = Γ′(x)/Γ(x) we have the classical formula,
see [25]

log x−Ψ(x) = L[
1

1− e−ξ
− 1

ξ
](x), (25)

which shows that this function is completely monotonic. We even have

log x−Ψ(x) ∈ L. (26)
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To see this we note that

k(x) :=
1

x

(
1

1− e−x
− 1

x

)
= L[ρ](x),

where ρ is a nonnegative function on ]0,∞[ given by ρ(ξ) = n + 1 − ξ for ξ ∈
]n, n+ 1] , n = 0, 1, 2, . . ., so k ∈ C.

For any ε > 0 the expression

e−εx

(
1

1− e−x
− 1

x

)
= xe−εxk(x)

is a positive integrable function on ]0,∞[. Normalized to a probability density,
it is an infinitely divisible distribution by the Steutel-Kristiansen theorem, cf.
[44, Theorem 4.5], since e−εxk(x) ∈ C. It now follows from Theorem 6.1 that
log(x+ ε)−Ψ(x+ ε) ∈ L for all ε > 0, which proves (26).

It is also well-known that

Ψ′(x) =
∞∑

k=0

1

(x+ k)2
= L

[
ξ

1− e−ξ

]
(x), (27)

so Ψ′ ∈ C. As before we also have Ψ′ ∈ L since 1/(1− e−x) ∈ C. The latter holds
because

1

1− e−x
=

∞∑
k=0

e−kx = L

[
∞∑

k=0

δk

]
(x).

The following result was given in Grinshpan and Ismail [26]:

Lemma 6.3 Let αk, βk, k = 1, . . . , n be real numbers such that
∑n

k=1 αk = 0 and
βk ≥ 0 for all k. Then

u(x) :=
n∏

k=1

Γαk(x+ βk) ∈ L

if and only if

v(ξ) =
n∑

k=1

αkξ
βk ≥ 0 for ξ ∈ ]0, 1] .

They apply it to prove that certain products and quotients of shifted Γ-
functions belong to L. To formulate one of their main results we need some no-
tation. For k = 1, 2, . . . , n let Pn,k denote the set of all vectors m = (m1, . . . ,mk)
whose components are natural numbers such that 1 ≤ mν < mµ ≤ n for
1 ≤ ν < µ ≤ k; and let Pn,0 = ∅.
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Theorem 6.4 For any ak > 0, k = 1, . . . , n, define

Ln(x) =
Γ(x)

∏[n/2]
k=1

[∏
m∈Pn,2k

Γ(x+
∑2k

j=1 amj
)
]

∏[(n+1)/2]
k=1

[∏
m∈Pn,2k−1

Γ(x+
∑2k−1

j=1 amj
)
] .

Then Ln ∈ L.

For n = 2 the theorem states that for any a1, a2 > 0

ga1,a2(x) =
Γ(x)Γ(x+ a1 + a2)

Γ(x+ a1)Γ(x+ a2)
∈ L.

It was earlier established by Bustoz and Ismail that ga1,a2 ∈ C, see [20].
In [30, Theorem 6.1] is given a list of functions in L.

7 Some completely monotonic functions related

to the Gamma function

There are many completely monotonic functions related to the Γ-function, see
[30].

For the Digamma function Ψ(x) = Γ′(x)/Γ(x) we have the classical formula,
see [25]

(−1)n+1Ψ(n)(x) = n!
∞∑

k=0

1

(x+ k)n+1
= L

[
ξn

1− e−ξ

]
(x), n = 1, 2, . . . , (28)

which show that these functions are completely monotonic.
In [21] Clark and Ismail introduced the functions

Gm(x) = xmΨ(x) and Φm(x) = −xmΨ(m)(x).

They proved that G
(m+1)
m is completely monotonic for m = 1, 2, ... and that Φ

(m)
m

is completely monotonic for m = 1, 2, ..., 16. Clark and Ismail conjectured that
Φ

(m)
m is completely monotonic for all natural numbers m. This was disproved

in [4], where it was shown that the sequence stops being completely monotonic
when m becomes very large.

For α, β > 0 the generalized Mittag-Leffler function is defined by

Fα,β(x) = Γ(β)
∞∑

k=0

(−x)k

Γ(αk + β)
, x > 0. (29)

It was established by Schneider [40] that

Fα,β ∈ C ⇔ 0 < α ≤ 1, α ≤ β.

Note that F1,1(x) = e−x. The complete monotonicity of Fα,β for 0 < α <
1, β = 1 was established by Feller and Pollard.
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