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Abstract

We prove positivity results about linearization and connection coeffi-
cients for Bessel polynomials. The proof is based on a recursion formula
and explicit formulas for the coefficients in special cases. The result implies
that the distribution of a convex combination of independent Student-
t random variables with arbitrary odd degrees of freedom has a density
which is a convex combination of certain Student-t densities with odd
degrees of freedom.
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1 Introduction

In this paper we consider the Bessel polynomials qn of degree n

qn (u) =
n∑

k=0

α
(n)
k uk, (1)

where

α
(n)
k = (n

k)
(2n

k )
2k

k! =
n! (2n− k)! 2k

(2n)! (n− k)! k!
. (2)

The first examples of these polynomials are

q0 (u) = 1, q1 (u) = 1 + u, q2 (u) = 1 + u +
u2

3
.

They are normalized according to

qn (0) = 1,

and thus differ from the polynomials θn (u) in Grosswald’s monograph [12] by
the constant factor (2n)!

n!2n , i.e.

θn(u) =
(2n)!
n!2n

qn(u).
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The polynomials θn are sometimes called the reverse Bessel polynomials and
yn(u) = unθn(1/u) the ordinary Bessel polynomials. Two-parameter extensions
of these polynomials are studied in [12], and we refer to this work concerning
references to the vast literature and the history about Bessel polynomials. For
a study of the zeros of the Bessel polynomials we refer to [5].

For ν > 0 we recall that the probability density on R

fν(x) =
Aν

(1 + x2)ν+
1
2

, Aν =
Γ(ν + 1

2)
Γ(1

2)Γ(ν)
(3)

has the characteristic function∫ ∞

−∞
eixyfν(x) dx = kν(|y|), y ∈ R, (4)

where

kν(u) =
21−ν

Γ (ν)
uνKν (u) , u ≥ 0, (5)

and Kν is the modified Bessel function of the third kind. If ν = n + 1
2 with

n = 0, 1, 2, . . . then
kν(u) = e−uqn(u), u ≥ 0, (6)

and fν is called a Student-t density with 2ν = 2n + 1 degrees of freedom. For
ν = 1

2 then fν is density of a Cauchy distribution. Note that for simplicity we
have avoided the usual scaling of the Student-t distribution.

In this paper, we provide the solutions of the three following problems:

1. Explicit values of the connection coefficients c
(n)
k (a) and their positivity

for a ∈ [0, 1] in the expansion

qn (au) =
n∑

k=0

c
(n)
k (a) qk (u) . (7)

2. Explicit value of the linearization coefficients β
(n)
i (a) and their positivity

for a ∈ [0, 1] in the expansion

qn(au)qn((1− a)u) =
n∑

i=0

β
(n)
i (a)qn+i (u) . (8)

3. Positivity of the linearization coefficients β
(n,m)
k (a) for a ∈ [0, 1] in the

expansion

qn(au)qm((1− a)u) =
n+m∑

k=n∧m

β
(n,m)
k (a)qk (u) . (9)
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Note that β
(n)
i (a) = β

(n,n)
n+i (a) and that (7) is a special case of (9) corresponding

to m = 0 with c
(n)
k (a) = β

(n,0)
k (a). Note also that u = 0 in (9) yields

n+m∑
k=n∧m

β
(n,m)
k (a) = 1,

so (9) is a convex combination. As polynomial identities, (7)-(9) of course hold
for all complex a, u, but as we will see later, the positivity of the coefficients
holds only for 0 ≤ a ≤ 1.

Because of (4) and (6) formula (9) is equivalent with the following identity
between Student-t densities

1
a
f

n+
1
2

(x

a

)
∗ 1

1− a
f

m+
1
2

(
x

1− a

)
=

n+m∑
k=n∧m

β
(n,m)
k (a)f

k+
1
2
(x) (10)

for 0 < a < 1 and ∗ is the ordinary convolution of densities.
Although (9) is more general than (7),(8), we stress that we give explicit

formulas below for c
(n)
k (a) and β

(n)
i (a) from which the positivity is clear. The

positivity of β
(n,m)
k (a) for the general case can be deduced from the special cases

via a recursion formula, see Lemma 3.4 below.
Our use of the words “linearization coefficients” is not agreeing completely

with the terminology of [2], which defines the linearization coefficients for a
polynomial system {qn} as the coefficients a(k, n,m) such that

qn(u)qm(u) =
n+m∑
k=0

a(k, n,m)qk(u).

Since, in the Bessel case

q1(u)2 = −q0(u)− q1(u) + 3q2(u)

the linearization coefficients in the proper sense are not non-negative.
It is interesting to note that in [13] Koornwinder proved that the Laguerre

polynomials

L(α)
n (u) =

n∑
k=0

(
n + α

n− k

)
(−u)k)

k!

satisfy a positivity property like (9), i.e.

L(α)
n (au)L(α)

n ((1− a)u) =
n+m∑
k=0

κ
(n,m)
k (a)L(α)

k (u),

with κ
(n,m)
k (a) ≥ 0 for a ∈ [0, 1] provided α ≥ 0.

In this connection it is worth pointing out that there is an easy established
relationship between qn and the Laguerre polynomials with α outside the range
of orthogonality for the Laguerre polynomials, namely

qn(u) =
(−1)n(

2n
n

) L(−2n−1)
n (2u).
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The problems discussed have an important application in statistics: the Behrens-
Fisher problem consists in testing the equality of the means of two normal
populations. Fisher [7]1 has shown that this test can be performed using the
d−statistics defined as

df1,f2,θ = t1 sin θ − t2 cos θ,

where t1 and t2 are two independent Student-t random variables with respec-
tive degrees of freedom f1 and f2 and θ ∈

[
0, π

2

]
. Many different results have

been obtained on the behaviour of the d−statistics. Tables of the distribution
of df1,f2,θ have been provided in 1938 by Sukhatme [15] at Fisher’s suggestion.
In 1956, Fisher and Healy explicited the distribution of df1,f2,θ as a mixture of
Student-t distributions (Student-t distribution with a random, discrete num-
ber of degrees of freedom) for small, odd values of f1 and f2. This work was
extended by Walker and Saw [16] who provided, still in the case of odd num-
bers of degrees of freedom, an explicit way of computing the coefficients of the
Student-t mixture as solutions of a linear system; however, they did not prove
the positivity of these coefficients, claiming only

“Extensive numerical investigation indicates also that ηi ≥ 0 for
all i; however, an analytic proof has not been found.”

This conjecture is proved in Theorem 2 and 3 below. Section 2 of this paper
gives the explicit solutions to problems 1, 2 and 3, whereas section 3 is dedicated
to their proofs. The last section gives an extension of Theorem 2 in terms of
inverse Gamma distributions.

To relate the Behrens-Fisher problem to our discussion we note that due
to symmetry df1,f2,θ has the same distribution as t1 sin θ + t2 cos θ, which for
θ ∈]0, π

2 [ is a scaling of a convex combination of independent Student-t variables.
Using the fact that the Student-t distribution is a scale mixture of normal

distributions by an inverse Gamma distribution our positivity result is equiv-
alent to an analogous positivity result for inverse Gamma distributions. This
result has been observed for small values of the degrees of freedom in [18]. In [9]
the coefficients are claimed to be non-negative but the paper does not contain
any arguments to prove it.

2 Results

2.1 Solution of problem 1 and a stochastic interpretation

Theorem 2.1 The coefficients c
(n)
k (a) in (7) are expressed as follows

c
(n)
k (a) = ak (n

k)
(2n
2k)

(n−k)∧(k+1)∑
r=1

(
n + 1

k + 1− r

)(
n− k − 1

r − 1

)
(1− a)r

for 0 ≤ k ≤ n− 1 while c
(n)
n (a) = an. Hence they are positive for 0 ≤ a ≤ 1.

1the collected papers of R.A. Fisher are available at the following address
http://www.library.adelaide.edu.au/digitised/fisher/
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A stochastic interpretation of Theorem 2.1 is obtained as follows: replacing u
by |u| and multiplying equation (7) by exp (−|u|), we get

e−(1−a)|u|e−a|u|qn (a|u|) =
n∑

k=0

c
(n)
k (a) qk(|u|)e−|u|. (11)

Equation (11) can be expressed that the convex combination of an independent
Cauchy variable C and a Student-t variable Xn with 2n + 1 degrees of freedom
follows a Student-t distribution with random number 2K (ω) + 1 of degrees of
freedom:

(1− a) C + aXn
d= XK(ω),

where K (w) ∈ [0, n] is a discrete random variable such that

Pr{K (w) = k} = c
(n)
k (a) , 0 ≤ k ≤ n.

2.2 Solution of problem 2 and a probabilistic interpretation

Theorem 2.2 The coefficients β
(n)
i (a) in (8) are expressed as follows

β
(n)
i (a) = (4a(1− a))i

(
n!

(2n)!

)2

2−2n (2n− 2i)!(2n + 2i)!
(n− i)!(n + i)!

×
n−i∑
j=0

(
2n + 1

2j

)(
n− j

i

)
(2a− 1)2j .

Hence they are positive for 0 ≤ a ≤ 1.

A probabilistic interpretation of this result can be formulated as follows.

Corollary 2.3 Let X, Y be independent Student-t variables with 2n+1 degrees
of freedom, then the distribution of aX+(1−a)Y follows a Student-t distribution
with a random number of degrees of freedom F (ω) distributed according to

Pr {F (ω) = 2n + 2i + 1} = β
(n)
i (a) , 0 ≤ i ≤ n.

2.3 Problem 3

Theorem 2.4 The coefficients β
(n,m)
k (a) in (9) are positive for 0 ≤ a ≤ 1.

We are unable to derive the explicit values of the coefficients β
(n,m)
k (a). However,

their positivity allows us to claim the following Corollary.

Corollary 2.5 Let X, Y be independent Student-t variables with resp. 2n +
1, 2m + 1 degrees of freedom, then the distribution of aX + (1 − a)Y follows
a Student-t distribution with a random number of degrees of freedom F (ω)
distributed according to

Pr {F (ω) = 2k + 1} = β
(n,m)
k (a) , n ∧m ≤ k ≤ n + m.
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Theorem 2.6 For k ≥ 2 let n1, . . . , nk be nonnegative integers and let a1, . . . , ak

be positive real numbers with sum 1. Then

qn1(a1u)qn2(a2u) · · · qnk
(aku) =

L∑
j=l

βjqj(u), u ∈ R, (12)

where the coefficients βj are nonnegative with sum 1, l = min(n1, . . . , nk) and
L = n1 + · · ·+ nk.

3 Proofs

3.1 Generalities about Bessel polynomials

As a preparation to the proofs we give some recursion formulas for qn. They
follow from corresponding formulas for θn from [12], but they can also be proved
directly from the definitions (1) and (2). The formulas are

qn+1(u) = qn(u) +
u2

4n2 − 1
qn−1(u), n ≥ 1, (13)

q′n(u) = qn(u)− u

2n− 1
qn−1(u), n ≥ 1. (14)

We can write

un =
n∑

i=0

δ
(n)
i qi(u), n = 0, 1, . . . (15)

and δ
(n)
i is given by a formula due to Carlitz [6], see [12, p. 73] or [16]:

δ
(n)
i =

{
(n+1)!

2n
(−1)n−i(2i)!

(n−i)!i!(2i+1−n)! for n−1
2 ≤ i ≤ n

0 for 0 ≤ i < n−1
2

. (16)

Later we need the following extension of (13) which we formulate using the
Pochhammer symbol (z)n := z(z + 1) · · · (z + n− 1) for z ∈ C, n = 0, 1, . . . .

Lemma 3.1 For 0 ≤ k ≤ n we have

u2kqn−k(u) =
k∑

i=0

γ
(n,k)
i qn+i(u)

where

γ
(n,k)
i = 22k

(
k

i

)
(n− k + 1

2)k+i(−n− 1
2)k−i. (17)

Proof: The Lemma is trivial for k = 0 and reduces to the recursion (13) for
k = 1 written as

u2qn−1(u) = 22(n− 1
2)2 (qn+1(u)− qn(u)) . (18)
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We will prove the formula (17) by induction in n, so assume it holds for some
n and all 0 ≤ k ≤ n. Multiplying the formula of the lemma by u2 we get

u2k+2qn−k(u) =
k∑

i=0

γ
(n,k)
i u2qn+i(u),

hence by (18)

u2(k+1)qn+1−(k+1)(u) =
k∑

i=0

γ
(n,k)
i 22(n + i + 1

2)2 [qn+i+2(u)− qn+i+1(u)]

= γ
(n,k)
k 22(n + k + 1

2)2 qn+k+2(u)

+
k∑

i=1

22(n + i + 1
2)

[
γ

(n,k)
i−1 (n + i− 1

2)− γ
(n,k)
i (n + i + 3

2)
]
qn+1+i(u)

− γ
(n,k)
0 22(n + 1

2)2 qn+1(u).

Using the induction hypothesis we easily get

γ
(n,k)
k 22(n + k + 1

2)2 = 22k+2(n− k + 1
2)2k+2 = γ

(n+1,k+1)
k+1 ,

and

−γ
(n,k)
0 22(n + 3

2)(n + 1
2) = 22k+2(n− k + 1

2)k+1(−n− 3
2)k+1 = γ

(n+1,k+1)
0 .

Concerning the coefficient C to qn+1+i(u) above we have

C = 22k+2(n + i + 1
2)

[(
k

i− 1

)
(n− k + 1

2)k+i−1(−n− 1
2)k−i+1(n + i− 1

2)

−
(

k

i

)
(n− k + 1

2)k+i(−n− 1
2)k−i(n + i + 3

2)
]

= 22k+2(n− k + 1
2)k+1+i(−n− 1

2)k−i

×
[(

k

i− 1

)
(−n− 1

2 + k − i)−
(

k

i

)
(n + i + 3

2)
]

= 22k+2(n− k + 1
2)k+1+i(−n− 1

2)k−i

[(
k + 1

i

)
(−n− 3

2)
]

= 22k+2

(
k + 1

i

)
(n− k + 1

2)k+1+i(−n− 3
2)k+1−i = γ

(n+1,k+1)
i .

�
We stress that Lemma 3.1 is the special case ν = n + 1

2 of the following
recursion for modified Bessel functions of the third kind.

Lemma 3.2 For all ν > 0 and all nonnegative integers j < ν we have for
u > 0

uν+jKν−j (u) =
j∑

i=0

(−2)j−i

(
j

i

)
Γ(ν + 1)

Γ(ν + 1− (j − i))
uν+iKν+i (u)
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and

u2jkν−j (u) =
j∑

i=0

(−1)j−i 22j

(
j

i

)
Γ (ν + 1) Γ (ν + i)

Γ (ν + 1− (j − i)) Γ (ν − j)
kν+i (u) .

Proof: The second formula follows from the first using formula (5), and
the first can be proved by induction using the following recursion formula for
modified Bessel functions of the third kind, cf. [17, p. 79]

Kν−1(u) = Kν+1(u)− 2ν

u
Kν(u).

We skip the details. �

3.2 Proof of Theorem 2.1

From (1) and (15) we get

qn (au) =
n∑

j=0

α
(n)
j aj

j∑
i=0

δ
(j)
i qi (u) =

n∑
k=0

c
(n)
k (a)qk (u)

with

c
(n)
k (a) =

n∑
j=k

ajα
(n)
j δ

(j)
k

= ak n!
(2n)!

(2k)!
k!

n∑
j=k,j≤2k+1

(−a)j−k (2n− j)! (j + 1)
(n− j)! (j − k)! (2k + 1− j)!

In particular c
(n)
n (a) = an and for 0 ≤ k ≤ n− 1

c
(n)
k (a) = ak n!

(2n)!
(2k)!
k!

p(a), (19)

where

p(a) =
(n−k)∧(k+1)∑

i=0

(−a)i (2n− k − i)!(k + i + 1)
(n− k − i)!i!(k + 1− i)!

.

We clearly have

p(a) =
(n−k)∧(k+1)∑

r=0

(−1)r p(r)(1)
r!

(1− a)r

with

p(r)(1) =
(n−k)∧(k+1)∑

i=r

(−1)i (2n− k − i)!(k + i + 1)
(n− k − i)!(i− r)!(k + 1− i)!

and we only consider 0 ≤ r ≤ (n − k) ∧ (k + 1). To sum this we shift the
summation by r. For simplicity we define T := (n− k− r)∧ (k +1− r) and get

(−1)rp(r)(1) =
T∑

i=0

(−1)i (2n− k − r − i)! (k + r + i + 1)
(n− k − r − i)! i! (k + 1− r − i)!

.
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We write k + r + 1 + i = (2k + 2) − (k + 1 − r − i) and split the above sum
accordingly

(−1)rp(r)(1) = (2k + 2)
T∑

i=0

(−1)i (2n− k − r − i)!
(n− k − r − i)! i! (k + 1− r − i)!

−
T∑

i=0

(−1)i (2n− k − r − i)!
(n− k − r − i)! i! (k − r − i)!

.

Note that for nonnegative integers a, b, c with b, c ≤ a we have

b∧c∑
i=0

(−1)i (a− i)!
(b− i)!(c− i)!i!

=
a!
b!c!

b∧c∑
i=0

(−b)i(−c)i

(−a)ii!
=

a!
b!c! 2F1(−b,−c;−a; 1),

where we use that the sum is an 2F1 evaluated at 1. Its value is given by the
Chu-Vandermonde formula, see [1], hence

b∧c∑
i=0

(−1)i (a− i)!
(b− i)!(c− i)!i!

=
a!(c− a)b

(−a)bb!c!
.

The two sums above are of this form and we get

(−1)rp(r)(1) =
(2n− k − r)!

(n− k − r)!(k + 1− r)!
Q,

where

Q = (2k + 2)
(2k − 2n + 1)n−k−r

(k + r − 2n)n−k−r
− (k + 1− r)

(2k − 2n)n−k−r

(k + r − 2n)n−k−r

=
(2k − 2n + 1)n−k−r−1

(k + r − 2n)n−k−r
[(2k + 2)(k − r − n)− (k + 1− r)(2k − 2n)]

= 2r(n + 1)
(n + r + 1− k)n−k−r−1

(n + 1)n−k−r
,

where we used (a)n = (−1)n(1− a− n)n twice. This gives

(−1)rp(r)(1) = 2r

(
n + 1

k + 1− r

)
(2n− 2k − 1)!
(n− k − r)!

and finally

p(a) =
(n−k)∧(k+1)∑

r=0

(1− a)r 2r

r!

(
n + 1

k + 1− r

)
(2n− 2k − 1)!
(n− k − r)!

.

Note that the term corresponding to r = 0 is zero. If we insert this expression
for p(a) in (19), we get the formula of Theorem 2.1. �

Remark 3.3 The evaluation above of (−1)rp(r)(1) can be done using generat-
ing functions like in [16]. The authors want to thank Mogens Esrom Larsen for
the idea to use the Chu-Vandermonde identity twice.
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3.3 Proof of Theorem 2.2

The starting point is the following formula of Macdonald, see [17]

Kν(z)Kν(X) =
1
2

∫ ∞

0
exp[−s

2
− z2 + X2

2s
]Kν(

zX

s
)
ds

s
, (20)

which we will use for ν = n + 1
2 , z = au, X = (1− a)u. Multiplying (20) by(

21−ν

Γ(ν)

)2

(a(1− a)u2)ν

and using (5) we find
kν(au)kν((1− a)u) =

1
2νΓ(ν)

∫ ∞

0
exp

[
−s

2
− u2 a2 + (1− a)2

2s

]
sν−1kν

(
a(1− a)u2

s

)
ds.

We now insert that with ν = n + 1
2 we have kν(|u|) = e−|u|qn(|u|) and hence

after some simplification

e−|u|qn(a|u|)qn((1− a)|u|) =

1

2n+ 1
2 Γ(n + 1

2)

∫ ∞

0
exp

[
−s

2
− u2

2s

]
sn− 1

2 qn

(
a(1− a)u2

s

)
ds.

We next insert the expression (1) for qn under the integral sign. This gives

e−|u|qn(a|u|)qn((1− a)|u|) =

n∑
k=0

α
(n)
k (a(1− a))ku2k 1

2n+ 1
2 Γ(n + 1

2)

∫ ∞

0
exp

[
−s

2
− u2

2s

]
sn−k− 1

2 ds.

Using the following formula from [10, 3.471(9)]∫ ∞

0
xν−1 exp

(
−β

x
− γx

)
dx = 2

(
β

γ

)ν/2

Kν

(
2
√

βγ
)

(21)

and again (5) the above is equal to

=
n∑

k=0

α
(n)
k (a(1− a))k 2n−k+ 1

2 Γ(n− k + 1
2)

2n+ 1
2 Γ(n + 1

2)
e−|u|u2kqn−k(|u|).

Finally, using Pochhammer symbols and skipping absolute values since we are
now dealing with a polynomial identity, we get

qn(au)qn((1− a)u) =
n∑

k=0

α
(n)
k (a(1− a))k (1

2)n−k

2k(1
2)n

u2kqn−k(u). (22)
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Using the expression for u2kqn−k(u) from Lemma 3.1 and the expression for
α

(n)
k in (22) we then get

qn(au)qn((1− a)u) =
n∑

k=0

(
n
k

)
(1
2)n−k(

2n
k

)
(1
2)nk!

(a(1− a))k
k∑

i=0

γ
(n,k)
i qn+i(u)

=
n∑

i=0

qn+i(u)
n∑

k=i

(a(1− a))k

(
n
k

)
(1
2)n−k(

2n
k

)
(1
2)nk!

γ
(n,k)
i

hence

qn(au)qn((1− a)u) =
n∑

i=0

β
(n)
i (a)qn+i(u)

with

β
(n)
i (a) =

n∑
k=i

(a(1− a))k

(
n
k

)
(1
2)n−k(

2n
k

)
(1
2)nk!

22k

(
k

i

)
(n− k +

1
2
)k+i(−n− 1

2
)k−i

= (a(1− a))i
n−i∑
l=0

(a(1− a))l

(
n

i+l

)
(1
2)n−i−l(

2n
i+l

)
(1
2)n(i + l)!

22i+2l

(
i + l

i

)
× (n− i− l +

1
2
)l+2i(−n− 1

2
)l

Collecting

(
1
2
)n−i−l(n− i− l +

1
2
)l+2i = (

1
2
)n+i

we get

β
(n)
i (a) = (a(1− a))i

n−i∑
l=0

(a(1− a))l

(
n

i+l

)
(1
2)n+i(

2n
i+l

)
(1
2)n

22i+2l

i! l!
(−n− 1

2
)l

= (a(1− a))i n!(1
2)n+i22i

(2n)! (1
2)n i!

n−i∑
l=0

(4a(1− a))l (2n− i− l)! (−n− 1
2)l

(n− i− l)! l!

= (a(1− a))i

(
n!

(2n)!

)2 (2n + 2i)!
(n + i)!i!

n−i∑
l=0

(
1− (2a− 1)2

)l (2n− i− l)! (−n− 1
2)l

(n− i− l)! l!
.

Expanding (1 − (2a − 1)2)l using the binomial formula and interchanging the
sums we get

n−i∑
l=0

(1− (2a− 1)2)l (2n− i− l)!(−n− 1
2)l

(n− i− l)!l!

=
n−i∑
j=0

(−1)j (2a− 1)2j

j!

n−i∑
l=j

(2n− i− l)!(−n− 1
2)l

(n− i− l)!(l − j)!
.

11



We claim that

S : =
n−i∑
l=j

(2n− i− l)!(−n− 1
2)l

(n− i− l)!(l − j)!

=
(2n− 2i)!
(n− i)!

22i−2n(−1)jj!i!
(

2n + 1
2j

)(
n− j

i

)
. (23)

and we have obtained the final formula

β
(n)
i (a) = (4a(1− a))i

(
n!

(2n)!

)2

2−2n (2n− 2i)!(2n + 2i)!
(n− i)!(n + i)!

×
n−i∑
j=0

(
2n + 1

2j

)(
n− j

i

)
(2a− 1)2j .

We will see that (23) is a Chu-Vandermonde formula. In fact, shifting the
summation index putting l = j + m we get

S = (−n− 1
2
)j

n−i−j∑
m=0

(2n− i− j −m)!(−n + j − 1
2)m

m!(n− i− j −m)!
,

and calling the general term in this sum cm we get

cm+1

cm
=

(m + i + j − n)(m + j − n− 1
2)

(m + 1)(m + i + j − 2n)
,

which shows that the sum is a 2F1. We have

S = (−n− 1
2)j c0 × 2F1(−(n− i− j), j − n− 1

2
; i + j − 2n; 1),

and using the Chu-Vandermonde identity, cf. [1]:

2F1(−n, a; c; 1) =
(c− a)n

(c)n
,

we get

S = (−n− 1
2
)j

(2n− i− j)!
(n− i− j)!

(−n + i + 1
2)n−i−j

(i + j − 2n)n−i−j

= (−n− 1
2
)j

(2n− i− j)!
(n− i− j)!

(j + 1
2)n−i−j

(n + 1)n−i−j
,

where we used (a)n = (−1)n(1− a− n)n twice. We can now simplify to get

S = (−n− 1
2
)j

n!
(n− i− j)!

(1
2)n−i

(1
2)j

,

and applying the formula

(
1
2
)p =

(2p)!
p!22p

12



twice we get

S =
(2n− 2i)!
(n− i)!

22i−2n(−n− 1
2
)j

n!
(n− i− j)!

j!22j

(2j)!
.

Now we can write

(−n− 1
2
)j22j = (−1)j (2n + 1)!(n− j)!

n!(2n− 2j + 1)!
,

and hence

S =
(2n− 2i)!
(n− i)!

22i−2n(−1)jj!i!
(

2n + 1
2j

)(
n− j

i

)
.

�

3.4 Proof of Theorem 2.4

For n, m ≥ 0 and a ∈ R, we can write

qn (au) qm ((1− a) u) =
m+n∑
k=0

β
(n,m)
k (a) qk (u) (24)

for some uniquely determined coefficients since the left-hand side is a polynomial
in u of degree ≤ n + m. Clearly β

(n,m)
k (a) is a polynomial in a satisfying

β
(n,m)
k (a) = β

(m,n)
k (1− a) . (25)

We shall prove that β
(n,m)
k (a) ≥ 0 for 0 ≤ a ≤ 1 and that β

(n,m)
k (a) = 0 if

k < n ∧m, which will be a consequence of the following recursion formula.

Lemma 3.4 For n, m ≥ 1, we have

1
2k + 1

β
(n,m)
k+1 (a) =

a2

2n− 1
β

(n−1,m)
k (a) +

(1− a)2

2m− 1
β

(n,m−1)
k (a) , (26)

where k = 0, 1, . . . ,m + n− 1.

Furthermore β
(n,m)
0 (a) = 0.

Proof: Differentiating (24) with respect to u gives

aq′n (au) qm ((1− a) u) + (1− a) qn (au) q′m ((1− a) u) =
m+n∑
k=1

β
(n,m)
k (a) q′k (u)

and using the formula (14) we find

a
(
qn (au)− au

2n−1qn−1 (au)
)

qm ((1− a) u)

+ (1− a) qn (au)
(
qm ((1− a) u)− (1−a)u

2m−1 qm−1 ((1− a) u)
)

=
∑m+n

k=1 β
(n,m)
k (a)

(
qk (u)− u

2k−1qk−1 (u)
)

13



and using (24) once more we get

− a2u
2n−1qn−1 (au) qm ((1− a) u)− (1−a)2u

2m−1 qn (au) qm−1 ((1− a) u)

= −β
(n,m)
0 (a)− u

∑n+m−1
k=0 β

(n,m)
k+1 (a) (2k + 1)−1qk(u).

For u = 0 this gives β
(n,m)
0 (a) = 0 and dividing by −u and equating the coeffi-

cients of qk (u), we get the desired formula. �
Now the proof of Theorem 2.4 is easy by induction in k and by the symmetry

formula (25), we can assume n ≥ m. Let 0 ≤ a ≤ 1. We prove that β
(n,m)
k (a) ≥ 0

for k ≤ n + m and that it is zero for k < m (under the assumption n ≥ m).
This is true for k = 0 by Lemma 3.4 when m ≥ 1, and for m = 0 it follows
by Theorem 2.1. Assume now that the results hold for k = k0 and assume
k0 + 1 ≤ n + m. The nonnegativity for k = k0 + 1 now follows by Lemma 3.4,
and likewise if k0 + 1 < m ≤ n the coefficient is 0 since k0 < (n− 1) ∧ (m− 1).
�

3.5 Proof of Theorem 2.6

By Theorem 2.4 the result holds for k = 2. Assuming it holds for k− 1 ≥ 2 we
have

qn1(a1u) · · · qnk−1
(ak−1u) =

L′∑
j=l′

γjqj((1− ak)u), u ∈ R (27)

with l′ = min(n1, . . . , nk−1), L′ = n1 + · · · + nk−1 and γj ≥ 0 because we can
write

aju =
aj

1− ak
(1− ak)u, j = 1, . . . , k − 1.

If we multiply (18) with qnk
(aku) we get

L′∑
j=l′

γjqnk
(aku)qj((1− ak)u) =

L′∑
j=l′

γj

nk+j∑
i=nk∧j

β
(nk,j)
i (ak)qi(u),

and the assertion follows. �

4 Inverse Gamma distribution

Grosswald proved [11] that the Student-t distribution is infinitely divisible. This
is a consequence of the infinite divisibility of the inverse Gamma distribution
because of subordination. It was proved later that the inverse Gamma distri-
bution is a generalized Gamma convolution in the sense of Thorin, which is
stronger than self-decomposability and in particular stronger than infinite di-
visibility, see e.g. Bondesson [4] and the recent book by Steutel and van Harn
[14].

The following density on the half-line is an inverse Gamma density with
scale parameter 1

4 and shape parameter ν > 0:

14



Cν exp(− 1
4t

)t−ν−1, t > 0, Cν =
1

22νΓ(ν)
. (28)

Let the corresponding probability measure be denoted γ̃ν and let further

gt(x) =
1√
4πt

exp(−x2

4t
), t > 0, x ∈ R

denote the Gaussian semigroup of normal densities (in the normalization of [3]).
Then the mixture

fν(x) =
∫ ∞

0
gt(x) dγ̃ν(t) (29)

is the Student-t density (3) with 2ν degrees of freedom. The corresponding
probability measure is denoted by σν . This formula says that σν is subordi-
nated to the Gaussian semigroup by an inverse Gamma distribution, and it
implies the infinite divisibility of Student-t from the infinite divisibility of in-
verse Gamma. Since the Laplace transformation is one-to-one, it is clear that
if two probabilities γ1, γ2 on ]0,∞[ lead to the same subordinated density∫ ∞

0
gt(x) dγ1(t) =

∫ ∞

0
gt(x) dγ2(t), x ∈ R,

then γ1 = γ2.
If we denote τa(x) = ax, the distribution τa(σ

n+
1
2
) ∗ τ1−a(σ

m+
1
2
) is given in

(10). However note that τa(gt(x)dx) = gta2(x)dx, so

τa(σν) =
∫ ∞

0
gta2(x)dγ̃ν(t) dx, (30)

hence

τa(σν1) ∗ τ1−a(σν2) =
∫ ∞

0

∫ ∞

0
(gta2dx) ∗ (gs(1−a)2dx) dγ̃ν1(t)dγ̃ν2(s)

=
∫ ∞

0

∫ ∞

0
(gta2+s(1−a)2dx) dγ̃ν1(t)dγ̃ν2(s)

=
∫ ∞

0
gu(x) dτa2(γ̃ν1) ∗ τ(1−a)2(γ̃ν2)(u) dx.

Therefore, using (30) we see that for ν1 = n+ 1
2 , ν2 = m+ 1

2 with n, m = 0, 1, . . .
the formula (10) rewritten as

τa(σ
n+

1
2
) ∗ τ1−a(σ

m+
1
2
) =

n+m∑
k=n∧m

β
(n,m)
k (a)σ

k+
1
2

is equivalent to

τa2(γ̃
n+

1
2
) ∗ τ(1−a)2(γ̃m+

1
2
) =

n+m∑
k=n∧m

β
(n,m)
k (a)γ̃

k+
1
2
. (31)
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This shows that Theorem 2.4 is equivalent to the following result about inverse
Gamma distributions:

The distribution of a2Zn+(1−a)2Zm, where Zn, Zm are independent inverse
Gamma random variables with distribution (28) for ν = n+ 1

2 ,m+ 1
2 respectively,

has a density which is a convex combination of inverse Gamma densities.

This result can be extended to the multivariate Student-t distributions as
follows. A rotation invariant N−variate Student-t probability density is given
for x = (x1, . . . , xN ) ∈ RN by

fN,ν (x) = AN,ν

(
1 + |x|2

)−ν−N
2 , AN,ν =

Γ
(
ν + N

2

)
Γ (ν) (Γ(1

2))N
,

where

〈x,y〉 =
N∑

i=1

xiyi, |x| = (〈x,x〉)
1
2 , x,y ∈ RN .

It is easy to verify that fN,ν(x) is subordinated to the N-variate Gaussian
semigroup

gN,t(x) = (4πt)−
N
2 exp

(
−|x|

2

4t

)
, t > 0,x ∈ RN

by the inverse Gamma density (28), i.e.

fN,ν(x) =
∫ ∞

0
gN,t(x) dγ̃ν(t). (32)

Therefore the characteristic function is given by∫
RN

ei〈x,y〉fN,ν (x) dx = kν(|y|) (33)

generalizing (4). In fact∫
RN

ei〈x,y〉fN,ν (x) dx =
∫ ∞

0

(∫
RN

ei〈x,y〉gN,t (x) dx
)

dγ̃ν(t)

=
∫ ∞

0
e−t|y|2 dγ̃ν(t)

and the result follows by (21).
As a conclusion, the Theorems 2.1, 2.2 and 2.4 apply in the multivariate

case. For example, an equivalent form of (10) writes as follows: with 0 < a < 1,

1
aN

fN,n+ 1
2

(
a−1x

)
∗ 1

(1− a)N
fN,m+ 1

2

(
(1− a)−1 x

)
=

n+m∑
k=n∧m

β
(n,m)
k (a) fN,k+ 1

2
(x) .
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