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Abstract. We show that for determinate measures µ having moments of every

order and finite index of determinacy, (i.e., a polynomial p exists for which the mea-

sure |p|2µ is indeterminate) the space L2(µ) consists of entire functions of minimal
exponential type in the Cartwright class.

1. Introduction

Let M∗ denote the set of positive Borel measures on the real line having moments
of every order and infinite support. We are interested in finding conditions on
µ ∈ M∗ such that L2(µ) consists of entire functions in the following sense: (i) There
exists a continuous linear injection E : L2(µ) → H(C), where H(C) denotes the set
of entire functions with the topology of compact convergence. (ii) For all f ∈ L2(µ)
we have E(f) = f µ-a.e.. We say that E is a realization of L2(µ) as entire functions.
In the discussion of this problem we need for µ ∈ M∗ the corresponding sequence
of orthonormal polynomials (pn). It is uniquely determined by the orthonormality
condition and the requirement that pn is a polynomial of degree n with positive
leading coefficient. The sequence of orthonormal polynomials depends only on the
moments of µ, so if µ is indeterminate, i.e. there are other measures having the
same moments as µ, all these measures lead to the same sequence (pn).

When the measure µ is indeterminate, the Fourier expansion of f ∈ L2(µ)

∞∑

n=0

(∫
f(t)pn(t)dµ(t)

)
pn(z) (1.1)

converges in L2(µ) and uniformly on compact subsets of C to an entire function
F (f)(z), which is the orthogonal projection of f onto the closure in L2(µ) of the
set C[t] of polynomials. We recall that z 7→ (pn(z))n is an entire function with

values in the Hilbert space ℓ2, so in particular (p
(m)
n (z))n ∈ ℓ2 for all z ∈ C,

m ∈ N, cf. [4]. By a theorem of M. Riesz ([8], [1]) F (f) is of minimal exponential
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type. If the indeterminate measure µ is Nevanlinna extremal (N-extremal in short),
which means that C[t] is dense in L2(µ), then µ is discrete and F (f)(x) = f(x) for
x ∈ supp(µ). This means that F (f) is an extension of f to an entire function of
minimal exponential type.

Furthermore f 7→ F (f) is a continuous injection of L2(µ) into H(C). In fact, for
any compact set K ⊆ C we find by (1.1) and Parsevals formula

sup
z∈K

|F (f)(z)| ≤ ‖f‖2 sup
z∈K

ρ(z) ,

where

ρ(z) =

(
∞∑

k=0

|pk(z)|2

) 1

2

is continuous. Riesz ([8]) also showed that
∫ ∞

−∞

log ρ(t)

1 + t2
dt < ∞ ,

and it follows that ∫ ∞

−∞

log+ F (f)(t)

1 + t2
dt < ∞ .

For a survey of the interplay between entire functions and indeterminate moment
problems see [2].

In the following we denote by C0 the class of entire functions f of minimal
exponential type satisfying

∫ ∞

−∞

log+ |f(t)|dt

1 + t2
< ∞ .

It is the functions in the Cartwright class which are of minimal exponential type.
In the case of an N -extremal measure µ we have thus seen that L2(µ) consists

of entire function of class C0. The function F (f) given by (1.1) will be called the
canonical extension of f .

The purpose of the present paper is to establish that also for certain determinate
measures µ ∈ M∗ the space L2(µ) consists of entire functions. A determinate
measure µ with this property must necessarily be discrete, as we shall see below.
It turns out that L2(µ) consists of entire functions of class C0, if µ is a determinate
measure of finite index, meaning that there exists a polynomial p such that the
measure |p|2µ is indeterminate. If k is the smallest possible degree of a polynomial
p such that |p|2µ is indeterminate, then k − 1 is the index of µ. This concept was
studied in previous papers of the authors, cf. [4], [5].

In the case of an N -extremal measure µ the canonical extension F (f) of f ∈
L2(µ) has the additional property that F (p)(z) = p(z) for all z ∈ C, when p is a
polynomial. We shall see that this property cannot subsist in the determinate case.
It will be replaced by a condition which involves discrete differential operators of
the form

T =

N∑

l=1

kl∑

j=0

al,jδ
(j)
zl

, al,j ∈ C (1.2)
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associated to a system (zi, ki), i = 1, · · · , N of mutually different points zi ∈ C and
multiplicities ki ∈ N. These operators act on entire functions F via the formula

T (F ) =
N∑

l=1

kl∑

j=0

al,jF
(j)(zl) .

It is well-known that any T of the form (1.2) has a unique continuous extension

from C[t] to L2(µ) if µ is N -extremal. This extension T̃ satisfies

T̃ (f) = T (F (f)) , f ∈ L2(µ) , (1.3)

where F (f) is the canonical extension of f ∈ L2(µ). In fact, if (qn) ∈ C[t] converges
in L2(µ) to f ∈ L2(µ) then qn = F (qn) converges in H(C) to F (f) and hence
limn→∞ T (qn) = T (F (f)). We notice that (T (pn)) ∈ ℓ2, and if f ∈ L2(µ) has the
Fourier expansion

∑
cnpn then

T̃ (f) =

∞∑

n=0

cnT (pn) . (1.4)

If µ is determinate then T given by (1.2) has a (unique) continuous extension from
C[t] to L2(µ) if and only if (T (pn)) ∈ ℓ2. Although (pn(z)) /∈ ℓ2 for z /∈ supp(µ), it
is possible to characterize the differential operators T for which (T (pn)) ∈ ℓ2. This
was done in [5]. For determinate measures µ of finite index there are “many” of
these operators, see below, and we shall prove the following:

Theorem 1.1. Let µ be a determinate measure of finite index. Then L2(µ) consists
of entire functions of class C0 via a continuous linear injection E : L2(µ) → H(C)
with the additional property that

T̃ (f) = T (E(f)) (1.5)

for all f ∈ L2(µ) and all operators T of the form (1.2) for which (T (pn)) ∈ ℓ2.

A realization f 7→ E(f) satisfying (1.5) is not uniquely determined. We give
several different realizations, and to complete the paper, we characterize for given
f ∈ L2(µ) the set of entire functions F satisfying

T̃ (f) = T (F )

for all operators T such that (T (pn)) ∈ ℓ2. All these functions F turn out to be of
class C0.

2. Preliminary results

As claimed in the introduction it imposes severe restrictions on a determinate
measure µ, if L2(µ) consists of entire functions.
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Proposition 2.1. Let µ ∈ M∗ be determinate and assume that E : L2(µ) → H(C)
is a realization of L2(µ) as entire functions. Then µ is a discrete measure, and for
each z ∈ C \ supp(µ) there exists p ∈ C[t] such that p(z) 6= E(p)(z).

Proof. If the support S of µ is non-discrete we can choose x0 ∈ S and a compact
subset F ⊆ S \ {x0} having accumulation points. Let f : R → R be a continuous
function with compact support vanishing on F and such that f(x0) = 1. The
extension E(f) of f to an entire function must necessarily vanish identically, but
this is a contradiction.

For a discrete determinate measure µ it is known that
∑

|pn(z)|2 = ∞ for all
z /∈ supp(µ). Fix z /∈ supp(µ) and let us assume that the realization E has the
property E(p)(z) = p(z) for all p ∈ C[t]. We define a sequence Sn of continuous
linear functionals on ℓ2 by

Sn(c) =

n∑

k=0

ckpk(z), c = (cn) ∈ ℓ2 .

For any c ∈ ℓ2 there exists f ∈ L2(µ) such that

n∑

k=0

ckpk → f in L2(µ) ,

and hence

Sn(c) = E

(
n∑

k=0

ckpk

)
(z) → E(f)(z) .

By the Banach-Steinhaus Theorem this implies that

sup
n

‖Sn‖ =

(
∞∑

0

|pk(z)|2

) 1

2

< ∞ ,

which is a contradiction. �

The determinate measures of finite index are discrete, and we shall realize L2(µ)
as entire functions for this class of measures.

The index of determinacy of a determinate measure µ was introduced and studied
by the authors in [4]. This index checks the determinacy under multiplication by
even powers of |t − z| for z a complex number, and it is defined as

indz(µ) = sup{k ∈ N | |t − z|2kµ is determinate}. (2.1)

Using the index of determinacy, determinate measures can be classified as follows:
If µ is constructed from an N-extremal measure by removing the mass at k + 1

points in the support, then µ is determinate with

indz(µ) =

{
k, for z /∈ supp(µ)

k + 1, for z ∈ supp(µ).
(2.2)
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For an arbitrary determinate measure µ the index of determinacy is either infinite
for every z, or finite for every z. In the latter case the index has the form (2.2),
and µ is derived from an N-extremal measure by removing the mass at k+1 points.
Such an N-extremal measure is highly non-unique by a perturbation result of Berg
and Christensen, cf. [3, Theorem 8].

Using that the index of determinacy is constant at complex numbers outside of
the support of µ, we define the index of determinacy of µ by

ind(µ) := indz(µ), z /∈ supp(µ). (2.3)

We stress that a measure µ of finite index is discrete and ind(µ) + 1 is the smallest
degree of a polynomial p such that |p|2µ is indeterminate.

To each measure µ which is either N -extremal or determinate of finite index we
associate an entire function Fµ with simple zeros at the points of supp(µ). We
recall from [4] that

Fµ(w) = exp

(
−w

∞∑

n=0

1

xn

)
∞∏

n=0

(
1 −

w

xn

)
exp(

w

xn

), (2.4)

where {xn : n ∈ N} is the support of µ. This function Fµ is the uniquely determined
entire function of minimal exponential type having supp(µ) as its set of zeros and
satisfying Fµ(0) = 1. In the above formulation we tacitly assume 0 6∈ supp(µ). If
however 0 ∈ supp(µ), the above expression for Fµ shall be multiplied with w and
{xn : n ∈ N} = supp(µ) \ {0}.

That Fµ is of minimal exponential type follows by a theorem of M. Riesz [8],
according to which the entire functions in the Nevanlinna matrix for an indetermi-
nate moment problem are of minimal exponential type. The function Fµ is also in
the Cartwright class.

Theorem 2.2. Let µ be N -extremal. For each f ∈ L2(µ) we have

F (f)(z) =
∑

x∈supp(µ)

Fµ(z)

F ′
µ(x)(z − x)

f(x) , z ∈ C ,

where the series converges uniformly on compact subsets of C.

Proof. Without loss of generality we may assume that 0 ∈ supp(µ), so Fµ is pro-
portional to the function D from the Nevanlinna matrix, cf. [1], and it is well known
that

∞∑

n=0

pn(z)pn(x) =
B(z)D(x) − B(x)D(z)

z − x
,

cf. [4], [7], where

B(z) = −1 + z
∞∑

n=0

qn(0)pn(z) .

Here (qn) denotes the sequence of polynomials of the second kind given by

qn(z) =

∫
pn(z) − pn(x)

z − x
dµ(x) .
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Since D vanishes on supp(µ) we get

F (f)(z) =

∫ ( ∞∑

n=0

pn(z)pn(x)

)
f(x)dµ(x) = −D(z)

∫
B(x)f(x)

z − x
dµ(x) ,

and
B(x)f(x)

z − x
= −

f(x)

z − x
+

xf(x)

z − x

∞∑

n=0

qn(0)pn(x)

belongs to L1(µ) because
∑

qn(0)pn(x) ∈ L2(µ).
The mass at x ∈ supp(µ) is given by ([1, p. 114])

µ({x}) =
−1

B(x)D′(x)

showing that

F (f)(z) =
∑

x∈supp(µ)

D(z)

D′(x)(z − x)
f(x)

and the series converges uniformly on compact subsets of C. Since D and Fµ are
proportional the result follows. �

From Theorem 2.2 it is easy to verify that the realization F (L2(µ)) is a Hilbert
space of entire functions in the sense of de Branges, see [6, p. 57]. For details see
Corollary 3.3 below.

In [5] we obtained the following result:

Theorem 2.3. Let µ ∈ M∗ be determinate and let (pn) be the sequence of or-
thonormal polynomials corresponding to µ. Let (z1, k1), . . . , (zN , kN ) be given,
where the z’s are different complex numbers and the k’s are nonnegative integers.

Putting M =
∑N

l=1(kl + 1) and

T = {T =
N∑

l=1

kl∑

j=0

al,jδ
(j)
zl

| al,j ∈ C}

we have:

(i) If

ind(µ) ≥




∑

l:µ({zl})>0

kl +
∑

l:µ({zl})=0

(kl + 1)


− 1,

then the sequence (T (pn)) belongs to ℓ2 only in the trivial cases, i.e., if and
only if T is a linear combination of Dirac deltas evaluated at points zl which
are mass points of the measure µ.

(ii) If

0 ≤ ind(µ) ≤




∑

l:µ({zl})>0

kl +
∑

l:µ({zl})=0

(kl + 1)


− 2,
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then,

dim
{
T ∈ T | (T (pn)) ∈ ℓ2

}
= M − ind(µ) − 1 ≥ 1.

Furthermore, (T (pn)) ∈ ℓ2 if and only if T (zkFµ(z)) = 0 for k =
0, 1, . . . , ind(µ).

Corollary 2.4. Let µ ∈ M∗ be a determinate measure of finite index. For an
operator T ∈ T we have (T (pn)) ∈ ℓ2 if and only if T (zkFµ(z)) = 0 for k =
0, 1, · · · , ind(µ).

Proof. It is enough to consider the case (i), and to prove that the equations T (zkFµ(z)) =
0 for k ≤ ind(µ) imply that T is a linear combination of Dirac deltas at mass points
of µ. To simplify the notation we assume that the system is ordered such that there
exist positive integers 0 ≤ N1 ≤ N2 ≤ N for which






µ({zl}) > 0 and kl = 0 for l = 1, · · · , N1

µ({zl}) > 0 and kl > 0 for l = N1 + 1, · · · , N2

µ({zl}) = 0 for l = N2 + 1, · · · , N .

Using Fµ(zl) = 0 for l = 1, · · · , N2, the equations T (zkFµ(z)) = 0 can be written

N2∑

l=N1+1

kl∑

j=1

al,jδ
(j)
zl

(zkFµ(z)) +

N∑

l=N2+1

kl∑

j=0

al,jδ
(j)
zl

(zkFµ(z)) = 0 .

This system has

p :=

N2∑

l=N1+1

kl +
N∑

l=N2+1

(kl + 1)

variables al,j and ind(µ) + 1 equations, and p ≤ ind(µ) + 1 since we consider the
case (i). We claim that the system of equations with k ≤ p − 1 (≤ ind(µ)) has a
non-singular matrix, and therefore the variables involved are 0, i.e.

T =

N2∑

l=1

al,0δzl
.

The columns of the matrix can be put together in blocks
{
δ(j)
zl

(zkFµ(z))
}

k=0,··· ,p−1
j=1,··· ,kl

, l = N1 + 1, · · · , N2

and {
δ(j)
zl

(zkFµ(z))
}

k=0,··· ,p−1
j=0,··· ,kl

, l = N2 + 1, · · · , N .

Since Fµ(zl) = 0, F ′
µ(zl) 6= 0 for l = N1 + 1, · · · , N2 and Fµ(zl) 6= 0 for l =

N2 + 1, · · · , N , column operations show that these blocks are equivalent to the
blocks {

δ(j)
zl

(zk)
}

k=0,··· ,p−1
j=0,··· ,kl−1

,
{
δ(j)
zl

(zk)
}

k=0,··· ,p−1
j=0,··· ,kl

.

The determinant of the matrix formed by these blocks is a variant of Vandermondes
determinant and is non-zero. �
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3. The determinate case

For a given measure µ ∈ M∗ of finite index of determinacy we denote by D(µ)
the set of operators of the form (1.2) for which (T (pn)) ∈ ℓ2, allowing the system
(zi, ki) and N to vary. It is an infinite dimensional vector space. Any T ∈ D(µ)

can be extended from C[t] to a continuous linear operator T̃ in the space L2(µ) via
Fourier expansions:

T̃ (f) =
∑

n

(∫

R

f(t)pn(t)dµ(t)

)
T (pn), for f ∈ L2(µ).

We choose different real numbers x0, · · · , xind(µ) outside of the support of µ and
consider the measure

σ = µ +

ind(µ)∑

i=0

δxi
. (3.1)

From the above, cf. Theorem 3.9 (1) in [4], it follows that the measure σ is N-
extremal.

Given a function f ∈ L2(µ), we extend it to a function f̃ in the space L2(σ) in
the following way

f̃(t) =

{
f(t), for t ∈ supp(µ)

0, for t = xi, i = 0, · · · , ind(µ).
(3.2)

Clearly, f 7→ f̃ is a linear isometry of L2(µ) into L2(σ).

Since σ is N-extremal, f̃ has a canonical extension to an entire function of class
C0 given by

F (f̃)(z) =
∑

n

(∫

R

f̃(t)qn(t)dσ(t)

)
qn(z), (3.3)

where (qn) is the sequence of orthonormal polynomials with respect to σ. We can
now formulate:

Theorem 3.1. Let µ be a determinate measure with finite index of determinacy
ind(µ). The mapping E(f) := F (f̃) given by (3.3) is a realization of L2(µ) as entire
functions of class C0 such that for any operator T ∈ D(µ)

T̃ (f) = T (E(f)) , f ∈ L2(µ) . (3.4)

Proof. It is clear that E(f) = F (f̃) is a realization of L2(µ) as entire functions of
class C0.

The set of functions f ∈ L2(µ) for which (3.4) holds is a closed subspace, and
therefore it suffices to prove (3.4) for f = χ{x}, x ∈ supp(µ), where χA denotes the
indicator function of the set A. This is a consequence of the following result:
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Proposition 3.2. For x ∈ supp(µ) we have

E(χ{x})(z) =
Fµ(z)p(z)

F ′
µ(x)p(x)(z − x)

, z ∈ C ,

where p is the unique monic polynomial of degree ind(µ) + 1 which vanishes at
x0, · · · , xind(µ).

The function
Fµ(z)

F ′
µ(x)(z − x)

is an entire function of class C0 equal to χ{x} on supp(µ) and we have

T̃ (χ{x}) = T (E(χ{x})) = T

(
Fµ(z)

F ′
µ(x)(z − x)

)
for T ∈ D(µ) .

Proof. For f = χ{x} we find

f̃(t) =

{
f(t), if t ∈ supp(µ)

0, for t = xi, i = 0, · · · , ind(µ).

=

{
1, for t = x,

0, otherwise.

= χ{x}(t).

For T ∈ D(µ) we denote by T̃ and T̃σ the continuous extensions of T from C[t] to

L2(µ) and L2(σ) respectively. We then have T̃ (f) = T̃σ(f̃) for f ∈ L2(µ) because

‖f − p‖L2(µ) ≤ ‖f̃ − p‖L2(σ) when p ∈ C[t], and in particular T̃ (χ{x}) = T̃σ(χ{x})
when x ∈ supp(µ).

By Theorem 2.2 we have

F (f̃)(z) =
Fσ(z)

F ′
σ(x)(z − x)

=
Fµ(z)p(z)

F ′
µ(x)p(x)(z − x)

,

because Fσ(z) = βp(z)Fµ(z) for a certain constant β, and hence F ′
σ(x) = βp′(x)Fµ(x)+

βp(x)F ′
µ(x) = βp(x)F ′

µ(x). This gives by (1.3)

T̃ (χ{x}) = T

(
Fµ(z)p(z)

F ′
µ(x)p(x)(z − x)

)
,

but since
Fµ(z)p(z)

F ′
µ(x)p(x)(z − x)

=
Fµ(z)

F ′
µ(x)(z − x)

+ q(z)Fµ(z) ,

where

q(z) =
p(z) − p(x)

F ′
µ(x)(z − x)p(x)

is a polynomial of degree ind(µ), we have T (qFµ) = 0 by Corollary 2.4, and the
second assertion follows. �



10 CHRISTIAN BERG1 AND ANTONIO J. DURAN2

Corollary 3.3. With the notation above we have

E(f)(z) =
∑

x∈supp(µ)

Fµ(z)p(z)

F ′
µ(x)p(x)(z − x)

f(x) for f ∈ L2(µ) , (3.5)

where the series converges uniformly on compact subsets of C.
The realization E(L2(µ)) ⊆ H(C) is a Hilbert space of entire functions in the

sense of de Branges.

Proof. Formula (3.5) follows immediately from Theorem 2.2 and Proposition 3.2.
To see that E(L2(µ)) is a Hilbert space of entire functions in the sense of de Branges
we shall verify the properties (H1)–(H3) from [6, p. 57]. We shall only comment on
(H1): If w ∈ C \ R is a zero of E(f) we have

∑

x∈supp(µ)

f(x)

F ′
µ(x)p(x)(w − x)

= 0 ,

and hence for z 6= w

E

(
f(x)

x − w

x − w

)
(z) = Fµ(z)p(z)

∑

x∈supp(µ)

f(x)

F ′
µ(x)p(x)(z − x)

(
1 +

w − w

x − w

)

= E(f)(z) + Fµ(z)p(z)(w − w)S(z),

where

S(z) =
∑

x∈supp(µ)

f(x)

F ′
µ(x)p(x)

(
1

(z − x)(x − w)
+

1

(z − w)(w − x)

)
.

Therefore we get

E

(
f(x)

x − w

x − w

)
(z) = E(f)(z)

z − w

z − w
,

which shows (H1). �

In Theorem 3.1, to get an extension of f ∈ L2(µ) to an entire function, we add
mass points to the measure µ until we reach an N-extremal measure σ. We next
extend f by zero to a function in L2(σ), and use its canonical extension to an
entire function. However, there is a different way to obtain N-extremal measures
from a determinate measure µ having finite index of determinacy. We prove that
this approach can also be used to find entire extensions of functions in L2(µ), such
that (3.4) holds.

For a determinate measure µ with finite index of determinacy ind(µ), we take a
polynomial

R(t) =

N∏

l=1

(t − zl)
kl+1 , with

N∑

l=1

(kl + 1) = ind(µ) + 1 ,
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where zl 6∈ supp(µ), l = 1, · · · , N.

It follows from Lemma 2.1 in [5] that σ = |R|2µ is an indeterminate measure, but

the measure |R(t)/(t− z1)|
2
µ is determinate. According to Lemma A in Section 3

of [4], we conclude that the measure σ = |R|2µ is N-extremal.

Given a function f ∈ L2(µ), we define f ♮ ∈ L2(σ) by f ♮ = f/R. Since σ is
N-extremal, f ♮ has a canonical extension F (f ♮) and we define

E(f)(z) := R(z)F (f ♮)(z). (3.6)

Theorem 3.4. Let µ be a determinate measure of finite index and let R be as
above. Then L2(µ) is realized as entire functions of class C0 via (3.6), and it has
the property

T̃ (f) = T (E(f)) , f ∈ L2(µ) (3.7)

for any discrete differential operator T ∈ D(µ).

Proof. The set of functions f ∈ L2(µ) for which (3.7) holds is a closed subspace,
and therefore it suffices to prove (3.7) for f = χ{x} , x ∈ supp(µ).

In this case f ♮(t) = (1/R(x))χ{x}(t), and since Fµ = Fσ we get

F (f ♮)(z) =
Fµ(z)

R(x)F ′
µ(x)(z − x)

,

hence

R(z)F (f ♮)(z) =
Fµ(z)

F ′
µ(x)(z − x)

+ r(z)Fµ(z),

where

r(z) =
1

R(x)F ′
µ(x)

R(z) − R(x)

z − x

is a polynomial of degree ind(µ). Now formula (3.7) follows from Corollary 2.4 and
Proposition 3.2. �

Like in Corollary 3.3 we have

E(f)(z) =
∑

x∈supp(µ)

Fµ(z)R(z)

F ′
µ(x)R(x)(z − x)

f(x) for f ∈ L2(µ) .

The realization E(L2(µ)) is a Hilbert space in the sense of de Branges if R is a real
polynomial.

For given f ∈ L2(µ) we shall now describe the set of all entire functions F
satisfying

T̃ (f) = T (F ) for all T ∈ D(µ) . (3.8)
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Theorem 3.5. Let µ be a determinate measure of finite index and let f ∈ L2(µ).
(i) Given (z1, k1), · · · , (zN , kN ), where z1, · · · , zN are different points of C, k1, · · · , kN ∈

N, and assume that 0 ≤ N2 ≤ N exists such that zl ∈ supp(µ) and kl > 0 for
l = 1, · · · , N2 and zl /∈ supp(µ) for l = N2 + 1, · · · , N and that

N2∑

l=1

kl +

N∑

l=N2+1

(kl + 1) = ind(µ) + 1 , (3.9)

then there exists a unique entire function F satisfying (3.8) and the interpolation
conditions

F (j)(zl) = αl,j

{
j = 1, · · · , kl , l = 1, · · · , N2

j = 0, · · · , kl , l = N2 + 1, · · · , N
(3.10)

where αl,j are arbitrarily given. This entire function F is of class C0.

(ii) If F is an entire function satisfying (3.8), then F + pFµ, where p is any
polynomial of degree not bigger than ind(µ), are the only entire functions satisfying
(3.8). All of them are of class C0.

Proof. (i) We first prove the existence. Assume that F is an entire function sat-
isfying (3.8). From the hypothesis on the zl’s and since Fµ has simple zeros, we
deduce that F ′

µ(zl) 6= 0 for l = 1, · · · , N2 and Fµ(zl) 6= 0 for l = N2 + 1, · · · , N .
Hence, if p denotes a polynomial, the equations

δ(j)
zl

(p(z)Fµ)(z)) = F (j)(zl) − αl,j ,

{
j = 1, · · · , kl, l = 1, · · · , N2

j = 0, · · · , kl , l = N2 + 1, · · · , N

determine the quantities p(j)(zl) uniquely for j = 0, · · · , kl−1, l = 1, · · · , N2 and for
j = 0, · · · , kl, l = N2 +1, · · · , N. The hypothesis (3.9) guarantees that p is uniquely
determined as a polynomial of degree ≤ ind(µ). This means that F − pFµ satisfies
the interpolation conditions (3.10), and F − pFµ still satisfies (3.8) by Corollary
2.4.

To prove uniqueness, assume that F and G are entire functions satisfying (3.8)
and (3.10). We shall prove that F (x) = G(x) for all x ∈ C\(supp(µ)∪{zN2+1, · · · , zN}).
This clearly implies F ≡ G. For x as above we consider the linear system

N2∑

l=1

kl∑

j=1

al,jδ
(j)
zl

(
zkFµ(z)

)
+

N∑

l=N2+1

kl∑

j=0

al,jδ
(j)
zl

(
zkFµ(z)

)
= xkFµ(x)

where 0 ≤ k ≤ ind(µ). The system is quadratic by (3.9), and it has a unique
solution (al,j), cf. the proof of Corollary 2.4. This means that the operator

T :=

N2∑

l=1

kl∑

j=1

al,jδ
(j)
zl

+
N∑

l=N2+1

kl∑

j=0

al,jδ
(j)
zl

− δx

belongs to D(µ), so T (F ) = T (G) = T̃ (f) by (3.8), but since F and G both satisfy
(3.10) we conclude that F (x) = G(x).
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Since (3.8) has a solution F which is of class C0, the solution F − pFµ from the
existence part is again of class C0.

(ii) Let F, G be entire functions satisfying (3.8). The method in (i) shows that
it is possible to find a polynomial p of degree ≤ ind(µ) such that G − pFµ satisfies
the interpolation conditions

δ(j)
zl

(G − pFµ) = F (j)(zl)

with l, j as in (3.10). By the uniqueness assertion G − pFµ = F . �
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