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Abstract. In the paper, the authors find necessary and sufficient condi-
tions for a difference between the exponential function αeβ/t, α, β > 0,
and the trigamma function ψ′(t) to be completely monotonic on (0,∞).
While proving the complete monotonicity, the authors discover some
properties related to the first order modified Bessel function of the first
kind I1, including inequalities, monotonicity, unimodality, and convex-
ity.

Mathematics Subject Classification (2010). Primary 26A48, 33C10; Sec-
ondary 26A51, 33B10, 33B15, 44A10.

Keywords. Complete monotonicity, difference, trigamma function, ex-
ponential function, necessary and sufficient condition, inequality, mono-
tonicity, convexity, unimodality, modified Bessel function.

1. Introduction

Recall from [8, Chapter XIII], [14, Chapter 1] and [15, Chapter IV] that
a function f is said to be completely monotonic on an interval I if f has
derivatives of all orders on I and satisfies

(−1)nf (n)(x) ≥ 0 (1.1)

for x ∈ I and n ∈ {0} ∪ N.
The exponential function e1/z for z ∈ C with z 6= 0 can be expanded

into the Laurent series

e1/z =

∞∑
k=0

1

k!

1

zk
, z 6= 0. (1.2)
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In [16, Theorem 2.1], derivatives of the function e1/t were inductively and
explicitly derived to be(

e1/t
)(i)

= (−1)ie1/t
1

t2i

i−1∑
k=0

ai,kt
k (1.3)

for i ∈ N and t 6= 0, where

ai,k =

(
i

k

)(
i− 1

k

)
k! (1.4)

for 0 ≤ k ≤ i− 1. The series (1.2) and (1.3) both show that the function e1/t

is completely monotonic on (0,∞).
The classical Euler gamma function Γ(z) and the digamma function

ψ(z) may be defined respectively by

Γ(z) =

∫ ∞
0

uz−1e−u du (1.5)

and

ψ(z) =
Γ′(z)

Γ(z)
(1.6)

for <z > 0. It is well known that for n ∈ N

ψ(n)(z) = (−1)n+1

∫ ∞
0

un

1− e−u
e−zu du (1.7)

for <z > 0, see [1, p. 260, 6.4.1], and that

ψ(n)(z) = (−1)n+1n!

∞∑
k=0

1

(z + k)n+1
(1.8)

for z ∈ C \ {0,−1,−2, . . . }, see [1, p. 260, 6.4.10]. These formulas show that
the trigamma function ψ′(t) is completely monotonic on (0,∞).

In [11, Lemma 2], the function

h(t) = e1/t − ψ′(t), (1.9)

a difference between two completely monotonic functions, was stated to be
completely monotonic on (0,∞). But since the complete monotonicity was
not used in [4] and there was a mistake in the proof in [11], the statement
on complete monotonicity of h(t) was removed from the formally published
version [4]. However, the validity of the inequality

ψ′(t) < e1/t − 1 (1.10)

on (0,∞) was obtained and applied in [4, Lemma 2].
Recently, the complete monotonicity of h(t) was established in [13, The-

orem 1.1].
The first aim of this paper is to provide a simpler proof for [13, Theo-

rem 1.1] and to find a necessary and sufficient condition for the function

hα(t) = αe1/t − ψ′(t) (1.11)
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to be completely monotonic on (0,∞). The first main result is formulated as
Theorem 3.1 below.

It is natural to consider the more general function

hα,β(t) = αeβ/t − ψ′(t) (1.12)

for α, β > 0 on (0,∞). The second aim of this paper is to discover necessary
and sufficient conditions for the function hα,β(t) to be completely monotonic
on (0,∞). The second main result is formulated as Theorems 4.1 and 6.1
below.

While discovering necessary and sufficient conditions for the functions
h(t), hα(t), and hα,β(t) to be completely monotonic on (0,∞), some proper-
ties such as monotonicity, unimodality, convexity, and inequalities related to
the first order modified Bessel function of the first kind I1(t) are established,
where

Iν(z) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(
z

2

)2k+ν

(1.13)

for ν ∈ R and z ∈ C.
In the final section of this paper, we list several remarks about inequal-

ities related to I1(t).

2. Lemmas

We need the following lemmas.

Lemma 2.1 ([13, Theorem 1.2]). For k ∈ {0} ∪ N and z 6= 0, let

Hk(z) = e1/z −
k∑

m=0

1

m!

1

zm
. (2.1)

For <z > 0, the function Hk(z) has the integral representation

Hk(z) =
1

k!(k + 1)!

∫ ∞
0

1F2(1; k + 1, k + 2; t)tke−zt d t, (2.2)

where the hypergeometric series is given by

pFq(a1, . . . , ap; b1, . . . , bq;x) =

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

xn

n!
(2.3)

for bi /∈ {0,−1,−2, . . . } using the shifted factorial (a)0 = 1 and

(a)n = a(a+ 1) · · · (a+ n− 1) (2.4)

for n > 0 and any complex number a.

Lemma 2.2 ([15, p. 161, Theorem 12b]). A necessary and sufficient condition
that f(x) should be completely monotonic for 0 < x <∞ is that

f(x) =

∫ ∞
0

e−xt dµ(t), (2.5)
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where µ is a positive measure on [0,∞) such that the integral converges for
0 < x <∞.

Remark 2.1. Lemma 2.2 means that a function f is completely monotonic
on (0,∞) if and only if it is a Laplace transform of a positive measure µ.

Lemma 2.3 ([3]). Let ak and bk for k ∈ {0}∪N be real numbers and the power
series

A(x) =

∞∑
k=0

akx
k and B(x) =

∞∑
k=0

bkx
k (2.6)

be convergent on (−R,R) for some R > 0. If bk > 0 and the ratio ak
bk

is

(strictly) increasing for k ∈ N, then the function A(x)
B(x) is also (strictly) in-

creasing on (0, R).

Remark 2.2. Lemma 2.3 have several different proofs and various applica-
tions. For more information, please refer to the first sentence after [2, p. 582,
Lemma 2.1], the papers [9, 12], and closely related references therein. We
emphasize that Lemma 2.3 has been generalized in [6, Lemma 2.2].

3. Complete monotonicity of hα(t)

In this section, we will supply a simpler proof for the complete monotonicity
of h(t) and find a necessary and sufficient condition for hα(t) to be completely
monotonic on (0,∞).

Theorem 3.1. The function h(t) defined by (1.9) is completely monotonic on
(0,∞) and

lim
t→∞

h(t) = 1. (3.1)

The function hα(t) defined by (1.11) is completely monotonic on (0,∞) if
and only if α ≥ 1.

Proof. From the integral representation (1.7) or the series expansion (1.8), it
is obvious that limt→∞ ψ′(t) = 0. So the limit (3.1) follows immediately.

From the recurrence formula

ψ(n)(z + 1) = ψ(n)(z) + (−1)n
n!

zn+1
, n ≥ 0, (3.2)

see [1, p. 260, 6.4.7], we see that

h(t)− h(t+ 1) = e1/t − e1/(t+1) + ψ′(t+ 1)− ψ′(t)

= e1/t − e1/(t+1) − 1

t2

= − 1

t2
+

∞∑
k=1

1

k!

[
1

tk
− 1

(t+ 1)k

]

=
1

6t3(t+ 1)3
+

∞∑
k=4

1

k!

[
1

tk
− 1

(t+ 1)k

]
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=
1

6t3(t+ 1)3
+

∞∑
k=4

1

(k − 1)!

∫ 1

0

dx

(t+ x)k+1
.

Since 1
t3(t+1)3 and 1

(t+x)k
are completely monotonic with respect to t ∈ (0,∞)

for k ≥ 1 and x ≥ 0, so is the difference h(t)− h(t+ 1). Accordingly,

h(t)− h(t+ n+ 1) =

n∑
k=0

[h(t+ k)− h(t+ k + 1)]

is completely monotonic on (0,∞), and so is the pointwise limit

lim
n→∞

[h(t)− h(t+ n+ 1)] = h(t)− 1.

If the function hα(t) is completely monotonic on (0,∞), then its first
derivative should be non-positive, that is,

− α
t2
e1/t − ψ′′(t) ≤ 0,

which can be rearranged as

α ≥ − t
2ψ′′(t)

e1/t
→ − lim

t→∞
[t2ψ′′(t)] = 1

as t→∞, where the limit

lim
x→∞

[
(−1)k+1xkψ(k)(x)

]
= (k − 1)!, (3.3)

see [10, p. 81, (41)], is used. As a result, the condition α ≥ 1 is necessary.
Since

αe1/t − ψ′(t) = (α− 1)e1/t + h(t)

and both of the functions e1/t and h(t) are completely monotonic on (0,∞),
the condition α ≥ 1 is also sufficient. Theorem 3.1 is thus proved. �

4. Complete monotonicity of hα,β(t)

In this section, with the help of Theorem 3.1, we will discover necessary and
sufficient conditions for hα,β(t) to be completely monotonic on (0,∞).

Theorem 4.1. For α, β > 0,

1. the function h1,β(t) is completely monotonic on (0,∞) if and only if
β ≥ 1;

2. if β ≥ 1 and αβ ≥ 1, the function hα,β(t) is completely monotonic on
(0,∞);

3. a necessary condition for the function hα,β(t) to be completely mono-
tonic on (0,∞) is αβ ≥ 1;

4. if 0 < β < 1, the condition

αβ ≥ max
u∈(0,∞)

Fβ(u) > 1, (4.1)

where

Fβ(u) =
u

1− e−u

√
βu

I1
(
2
√
βu
) (4.2)
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on (0,∞) with

lim
u→0+

Fβ(u) = 1 and lim
u→∞

Fβ(u) = 0 (4.3)

for all β > 0, is necessary and sufficient for hα,β(t) to be completely
monotonic on (0,∞).

Proof. Combining the integral representations (1.7) for n = 1 and (2.2) for
k = 0 leads to

hα,β(z) = α

[
1 +

∫ ∞
0

I1
(
2
√
u
)

√
u

e−zu/β du

]
−
∫ ∞
0

u

1− e−u
e−zu du

= α+

∫ ∞
0

[
α

√
β

u
I1
(
2
√
βu
)
− u

1− e−u

]
e−zu du

= α+

∫ ∞
0

[
αβ

I1
(
2
√
βu
)

√
βu

− u

1− e−u

]
e−zu du (4.4)

for <z > 0.
Since, by Theorem 3.1, the function h(t) = h1,1(t) is known to be com-

pletely monotonic on (0,∞), it follows from Lemma 2.2 that the inequality

I1
(
2
√
u
)

√
u

≥ u

1− e−u
(4.5)

holds true for u > 0.
An easy calculation gives

I1
(
2
√
u
)

√
u

= 1 +
u

2
+
u2

12
+

u3

144
+ o
(
u3
)

and
u

1− e−u
= 1 +

u

2
+
u2

12
− u4

720
+ o
(
u4
)

for u→ 0. Consequently,

αβ
I1
(
2
√
βu
)

√
βu

− u

1− e−u
= αβ − 1 +

αβ2 − 1

2
u+

αβ3 − 1

12
u2 + o

(
u2
)

(4.6)

for u → 0. By (4.5), (4.6), and the fact that the function I1(2s)
s is strictly

increasing on (0,∞), it follows that the inequality

I1
(
2
√
βu
)

√
βu

≥ u

1− e−u
(4.7)

is valid on (0,∞) if and only if β ≥ 1. As a result, by Lemma 2.2, the function
h1,β(t) is completely monotonic on (0,∞) if and only if β ≥ 1.

If β ≥ 1 and αβ ≥ 1, then

αβ
I1
(
2
√
βu
)

√
βu

≥
I1
(
2
√
u
)

√
u

≥ u

1− e−u
(4.8)

is valid on (0,∞), so, by Lemma 2.2 once again, the function hα,β(t) is com-
pletely monotonic on (0,∞) for β ≥ 1 and αβ ≥ 1.
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By (4.6) or by a straightforward computation, it is easy to obtain that

lim
u→0+

[
αβ

I1
(
2
√
βu
)

√
βu

− u

1− e−u

]
= αβ − 1. (4.9)

So αβ ≥ 1 is a necessary condition for the function hα,β(t) to be completely
monotonic on (0,∞).

When β < 1, the complete monotonicity of hα,β(t) is equivalent to the
inequality

αβ ≥ u

1− e−u

√
βu

I1
(
2
√
βu
)

for all u ∈ (0,∞). It is not difficult to see that the function u
1−e−u is increasing

on (0,∞), with

lim
u→0+

u

1− e−u
= 1 and lim

u→∞

u

1− e−u
=∞,

and that the function
√
βu

I1(2
√
βu )

is decreasing on (0,∞) for any given number

β > 0, with

lim
u→0+

√
βu

I1
(
2
√
βu
) = 1 and lim

u→∞

√
βu

I1
(
2
√
βu
) = 0.

On the other hand, the function Fβ(u) may be rearranged as

Fβ(u) =
eu

eu − 1

u
√
βu∑∞

k=0
1

k!(k+1)!

(√
βu
)2k+1

=
eu

eu − 1

u∑∞
k=0

βk

k!(k+1)!u
k

and it tends to 0 as u → ∞. Accordingly, the condition (4.1) and the limits
in (4.3) are obtained. The proof of Theorem 4.1 is complete. �

5. Monotonicity and unimodality of Fβ(u)

In this section, we will find monotonicity, unimodality, and convexity of the
function Fβ(u). Some of these properties will be used in Theorem 6.1 below
to recover necessary and sufficient conditions for hα,β(t) to be completely
monotonic on (0,∞).

Theorem 5.1. When β ≥ 1, the function Fβ(u) defined by (4.2) is decreasing
on (0,∞); when 0 < β < 1, it is unimodal and its reciprocal 1

Fβ(u)
is convex

on (0,∞).

Proof. For simplicity, we consider the reciprocal

1

Fβ(u)
=

1− e−u

u

I1
(
2
√
βu
)

√
βu

=
1

eu
eu − 1

u

I1
(
2
√
βu
)

√
βu

, Gβ(u). (5.1)

By (1.13) and the power series expansion of eu, we have

eu − 1

u

I1
(
2
√
βu
)

√
βu

=

∞∑
n=0

un

(n+ 1)!

∞∑
n=0

βn

n!(n+ 1)!
un =

∞∑
n=0

anu
n,
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where

an =

n∑
k=0

βk

k!(k + 1)!(n+ 1− k)!
=

1

(n+ 1)!

n∑
k=0

(
n+ 1

k

)
βk

(k + 1)!
.

Hence,

Gβ(u) =

∑∞
n=0 anu

n∑∞
n=0 u

n/n!
.

When β ≥ 1, let cn = n!an for n ∈ {0} ∪ N. It is clear that c0 = 1,

c1 = 1+β
2 , and c2 = 1

3 + β
2 + β2

6 satisfy c0 ≤ c1 ≤ c2. For n ≥ 2,

cn+1 − cn =
1

n+ 2

n+1∑
k=0

(
n+ 2

k

)
βk

(k + 1)!
− 1

n+ 1

n∑
k=0

(
n+ 1

k

)
βk

(k + 1)!

=
βn+1

(n+ 2)!
+

n∑
k=2

(
n

k − 2

)
βk

k(k + 1)!
− 1

(n+ 2)(n+ 1)

≥ β2

12
− 1

(n+ 2)(n+ 1)

≥ 0.

In other words, when β ≥ 1, the sequence cn = n!an is increasing. From this
and Lemma 2.3, it follows that, when β ≥ 1, the function Gβ(u) is increasing
on (0,∞). Equivalently, when β ≥ 1, the function Fβ(u) is decreasing on
(0,∞).

A direct computation yields

G′β(u) =
1

eu

{[
eu − 1

u

I1
(
2
√
βu
)

√
βu

]′
− eu − 1

u

I1
(
2
√
βu
)

√
βu

}
=

∑∞
n=0 bnu

n∑∞
n=0 u

n/n!
,

where bn = (n+ 1)an+1 − an satisfy

b0 = a1 − a0 =
β − 1

2
, b1 = 2a2 − a1 =

β2 − 1

6
,

and for n ≥ 2

bn =
1

n!

[
n+1∑
k=0

1

n+ 2

(
n+ 2

k

)
βk

(k + 1)!
−

n∑
k=0

1

n+ 1

(
n+ 1

k

)
βk

(k + 1)!

]

=
1

n!

[
βn+1

(n+ 2)!
− 1

(n+ 1)(n+ 2)
+

n∑
k=2

(
n

k − 2

)
βk

k(k + 1)!

]
.

When 0 < β < 1, let Cn = n!bn. Then

C0 =
β − 1

2
< C1 =

β2 − 1

6
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and for n ≥ 1

Cn+1 − Cn =
βn+1

(n+ 2)!

(
β

n+ 3
− 1 +

n

2

)
+

2

(n+ 1)(n+ 2)(n+ 3)
+

n∑
k=3

(
n

k − 3

)
βk

k(k + 1)!
.

Therefore,

C2 − C1 =
β2(β − 2)

24
+

1

12
> 0

and for n ≥ 2

Cn+1 − Cn >
βn+1

(n+ 2)!

β

n+ 3
> 0.

Consequently, when 0 < β < 1, the sequence Cn = n!bn is strictly increasing.
By Lemma 2.3 again, it follows that G′β(u) is strictly increasing, and so

Gβ(u) = 1
Fβ(u)

is convex, on (0,∞) for 0 < β < 1. Since

bn ≥ −
1

(n+ 2)!
+

β3

72(n− 1)!

for n ≥ 3, we get for such n
∞∑
n=0

bnu
n ≥ b0 + b1u+ b2u

2 −
∞∑
n=3

un

(n+ 2)!
+
β3

72

∞∑
n=3

un

(n− 1)!

> b0 + b1u+ b2u
2 − eu

u2
+
β3u

72
(eu − 1− u),

thus

G′β(u) >
b0 + b1u+ b2u

2

eu
− 1

u2
+
β3u

72

(
1− 1 + u

eu

)
→∞

as u→∞. On the other hand, when 0 < β < 1,

G′β(0) = b0 =
β − 1

2
< 0.

As a result, when 0 < β < 1, by the above proved monotonicity of G′β(u), the

derivative G′β(u) has a unique zero, and so the positive function Gβ(u) has

a unique minimum, on (0,∞). In other words, when 0 < β < 1, the positive
function Fβ(u) has a unique maximum on (0,∞). Theorem 5.1 is proved. �

6. Recovery of complete monotonicity of hα,β(t)

In this section, with the aid of Theorem 5.1, we will simply recover necessary
and sufficient conditions in Theorem 4.1.

Theorem 6.1. For α, β > 0, the function hα,β(t) defined by (1.12) is com-
pletely monotonic on (0,∞) if and only if the condition (4.1) holds true.

Proof. By Lemma 2.2 and the integral representation (4.4), we easily see that
the condition (4.1) is necessary and sufficient. Theorem 6.1 is thus proved. �
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Corollary 6.1. When β ≥ 1, the function hα,β(t) defined by (1.12) is com-
pletely monotonic on (0,∞) if and only if αβ ≥ 1.

Proof. This follows from monotonicity of Fβ(u) established in Theorem 5.1,
the first limit in (4.3), and Theorem 6.1. �

7. Inequalities for the modified Bessel function

By observing the proof of Theorem 4.1 or by Theorem 5.1, we conclude the
following inequalities which give new lower bounds for I1.

Theorem 7.1. The inequalities

αI1(x) >
(x/2)3

1− e−(x/2)2
(7.1)

and

I1(x) ≥
1
β

(
x
2

)3
1− exp

[
− 1
β

(
x
2

)2] (7.2)

are valid on (0,∞) if and only if α ≥ 1 and β ≥ 1.

Proof. The inequality (7.2) follows from replacing u by 1
β

(
x
2

)2
in (4.7) and

further simplifying.
The inequality (7.1) follows from combining the second part of Theo-

rem 3.1 with the formula (4.4) for hα,1 = hα and Lemma 2.2.
The inequality (7.2) can also be deduced from Theorem 5.1. The proof

of Theorem 7.1 is complete. �

8. Remarks

In this section, we would like to compare the inequalities (7.1) and (7.2) with
other known ones.

Remark 8.1. When β = 1, the inequality (7.2) is quite good for 0 < x < 2,

but for large x the right-hand side of (7.2) increases like x3

8 , while I1(x)
increases faster than any power of x.

Remark 8.2. We refer to the following known inequalities

I1(x) >
1− x/2
2 + x

xex, (8.1)

cf. [7, (6.23)], and

I1(x) >
x

2

(
1 +

x2

j21,1

)j21,1/8
, (8.2)

cf. [5, (3.20)], for x > 0, where j1,1 = 3.83 . . . is the first zero of J1 and

Jν(z) =

(
z

2

)ν ∞∑
k=0

(−1)k(z/2)2k

k!Γ(ν + k + 1)
(8.3)



Complete Monotonicity and Properties of Bessel Function 11

for ν ∈ R and z ∈ C is the Bessel function of the first kind. Looking at graphs
of the lower bounds in (7.2), (8.1), and (8.2) reveals that the lower bound
in (7.2) for β = 1 is the largest of the three for 0 < x < 5.

Remark 8.3. The inequality (7.1) and the second part of Theorem 3.1 are
equivalent to each other, so are the inequality (7.2) and the necessary and suf-
ficient condition β ≥ 1 in Theorem 4.1 for h1,β(t) to be completely monotonic
on (0,∞).
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