
Inventiones math, 32, 49-  100 (1976) InuentioHe$ 
mathematicae 
~) by Springer-Verlag 1976 

Potential Theory on the Infinite Dimensional Torus* 

Christian Berg (Ucla and Copenhagen) 

1. Introduction 

During the last 15 years there has been developped an extensive potential theory 
for harmonic spaces. The main motivation has been to unify the study of the 
solutions to various elliptic and parabolic partial differential equations of second 
order on an open subset of IR" or more generally on a differentiable manifold. 

Classical potential theory in IR" is translation invariant and it is therefore 
natural to consider harmonic spaces (G, Of'), where the underlying space G is a 
group and the harmonic sheaf o~g is invariant under the translations of G. We 
say then that (G, ~ )  is a harmonic group. Harmonic groups were studied by 
Bliedtner in [3]. The only existing examples of harmonic groups seem to be 
defined on a Lie group G and the sheaf 9 f  is the sheaf of solutions to an invariant 
second order differential operator of elliptic or parabolic type. 

In [4] there was an attempt to prove that the base space of a harmonic group 
is a Lie group, but as pointed out in [17] the proof was not correct although the 
result might still be true. 

The purpose of this paper is to prove that such a result can not be true, be- 
cause we construct a harmonic group with base space T ~ (countable product 
of circle groups). More precisely we construct a translation invariant sheaf 
on T ~ such that (T ~ out ") is a ~-Brelot space in the sense of Constantinescu and 
Cornea [7]. A similar construction may be carried out for the groups lR"x T ~. 

In [9] Forst considered the problem of constructing a harmonic group from 
a special Dirichlet space in the case of the base space being a locally compact 
abelian group G. The Dirichlet space is given in terms of a symmetric convolution 
semigroup on G, which in turn is the transition semigroup of a Hunt  process on 
G. Then Forst proves that if the convolution semigroup satisfies certain axioms 
(cf. Theorem 1.12 below), then the harmonic functions defined in terms of the 
Hunt  process satisfy the axioms of a harmonic group. 

However, no examples of convolution semigroups were given which satisfied 
the axioms, except that it was clear that the Brownian semigroup in IR" satisfied 
the axioms. 

* Supported partially by Grant 511-3598 from Statens Naturvidenskabelige Forskningsraad. 
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One possible way of proving the existence of a harmonic sheaf ~ on T ~ 
such that (T ~, iF) is a harmonic group would then be to construct a convolution 
semigroup (/0t>o on T ~~ satisfying the axioms of Forst. This will be done in the 
first part  of this work. 

It is interesting however to have a construction of the harmonic sheaf Jq~ on 
T ~ which does not depend on the Hunt  process, and a proof of the main properties 
of ogg which does not depend on the results of Forst. In the second part  of this 
paper we carry this out: The harmonic functions on T ~ are constructed as the 
solutions to the equation Af=O, where A is the infinitesimal generator of the 
(Brownian) convolution semigroup on T ~ constructed in the first part. 

The two parts of the paper are to some extent independent of each other, but 
some of the estimates obtained in the first part will be used in the second part. 
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In w we recall some fundamental concepts which will be used throughout 
the paper. Although we are only going to deal with the compact  groups T p and 
T ~ we have preferred to present the material in w 1 for arbitrary locally compact  
abelian groups. 

In w we define the Brownian convolution semigroup on T. The measure #t 

which is equal to the theta function 0 3 (~, e-t). It is to time t has a density g t ( 0 )  
/ 

essential for the following to have thorough knowledge of this function, in parti- 
cular to have estimates of the function when t is small or large. All the necessary 
estimates are proved in this paragraph. 

In w we use the estimates of w to give information about the Brownian 
semigroup on T p. This paragraph is only a prelude to w 4 where the main topic 
of part  I is developed. 

For an arbitrary sequence ~ = ( a  1, a 2, --.) of positive numbers we define a 
Brownian semigroup (/z~t) t > o on T ~ as 

cO 

for t>0, 
k = l  
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and we use the estimates of w 2 to examine h o w / ~  depends on d .  It is proved 
that ~ is absolutely continuous with respect to Haar measure on T ~ if and only 

i f ~ e - Z t a ~ < ~  (cf. 4.3), and that /~t has a continuous density if and only if 
k=l  

e ta~< O0. Furthermore, if - - <  oo we prove an estimate for the density 
k= l k= l ] / /~k  

g~t for/~t  which implies that the resolvent (cf. 1.8) has densities which are finite 
and continuous on T~'-.{0}. This shows that (/~t)t>o satisfies the axioms of 
Forst, cf. 1.12 and 1.13. 

In w we introduce the harmonic functions on T | as solutions in a distribution 
sense to the equation 

oo t~2h 
~, a k ~ - 2 h - - 0 ,  (1) 

k=l OOk 

where ~=(a l ,  a2, ...) is as above and 2>0 ,  and we prove that the solutions 
form a sheaf ~t~r An important approximation lemma in w 6 states that harmonic 
functions on T ~ can be approximated by solutions to (1) on T p for p sufficiently 
large. (When we use (1) for functions on T p we take only terms in the series with 
indices <p.) This approximation technique permits us to obtain information 
about ~ from known results on "harmonic functions" on T p and therefore we 
state some useful facts about harmonic functions on T p in w 5. A few results from 
w 5 deserve being mentioned. Let V be a bounded domain in IR p with smooth 
boundary and let Pa(x, 4) denote the Poisson kernel for V for the differential 
operator 

P 0 2 

a k - 2  k=l  ~ ' (2) 

where 2>0 ,  and xel/ ,  {eald. 
1) For every compact subset K~_ V there exist constants A , B > O  such that 

P~(x,~)<Ae -By7 for x e K ,  ~ e ~ V  and 2>1 .  

2) For xe  V and ~e(3V the mapping 2 ~ Pz(x, 4) is completely monotone. 
In w 7 we prove that if U _  T p is a regular subset of T p with respect to (2) then 

U • T ~ is a regular subset of T ~ with respect to ~r thus establishing the existence 
of a base of regular sets for the sheaf ~,ug~. 

In 96 and w 7 the only assumptions on the sequence d is that a k > 0 for all 
keN.  In order to prove that ~r ~' has the Brelot convergence property we must 
impose a growth condition on d .  In w 8 we prove the Brelot convergence property 
under the assumption on d that 

k= 1 Vrak (Z). 

The proof depends on explicit knowledge of the Poisson kernel for special 
domains in T ~ of the form U • T% and this permits us to prove Harnack-type 
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inequalities for positive harmonic functions. In the proof of the existence of a 
Poisson kernel for U x T ~ we make use of the results 1) and 2) mentioned above. 

In w we finally prove that if d = ( 1 ,  1, ..-) then the Brelot convergence pro- 
perty is not satisfied. 

In the reading of this paper we recommend the reader to start with w167 6-8 in 
order to get familiar with the main ideas, and then go back to the previous para- 
graphs when it is needed. 

This work was done while the author visited University of California at 
Los Angeles and he wants to thank the Department of Mathematics for its 
helpfulness and hearty atmosphere. The author wants in particular to thank 
John Garnett, James Ralston and Raymond Redheffer for many stimulating 
discussions. 

Part I. Convolution Semigroups on T ~ 

I. Convolution Semigroups on Locally Compact Abelian Groups 

In the following we will recall parts of the theory of convolution semigroups on 
locally compact abelian groups. A detailed exposition can be found in [2]. 

1.1. Let G denote a locally compact abelian group with Haar measure dx. 
The neutral element in G is always denoted 0. The dual group of G is denoted F 
and the dual Haar measure on F is denoted dr. 

The set of continuous functions f :  G ~ IR is denoted C(G). The set of functions 
f e  C(G) which tend to zero at infinity, resp. which have compact support, is 
denoted Co(G) resp. Co(G). Under the uniform norm Co(G ) is a Banach space. 

1.2. A family (#~)t>o of positive measures on G is called a convolution semi- 
group on G if 

#,(G)< 1 for t>0 ,  (1) 

~ ,  #s=~t+~ for t,s>O, (2) 

lim ~ = e o vaguely. (3) 
t ~ 0  

The condition (3) simply means that lira (#t,  f )  =f (0)  for all f e  Cc(G ). 
t~O 

A continuous function ~: F ~ I I ;  is called negative definite if the following 
condition is satisfied: 

For every nEN and for every n-tuple (71 . . . .  ,7.) of elements from F the n x n 
matrix 

(4, (~,,) + q,(~) - q, (~,,- ~)) 

is non-negative hermitian. 
To every convolution semigroup (#t)t>o on G is associated a continuous 

negative definite function ~,: F--, 112 such that 

[Lt(~)=e -t~'t~) for 7~F and t>0 .  (4) 

Conversely, if qt: F - , ~  is a continuous negative definite function on F there 
exists a uniquely determined convolution semigroup (/~t)~>o on G such that (4) 
holds. 
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1.3 A convolution semigroup (/~t)t > o on G is called symmetric if all the measures 
(#t)t > o are symmetric. This is true if and only if the associated negative definite 
function ~ is real-valued. 

For a symmetric convolution semigroup (#t)t> o on G we have (cf. [ I ] )  

supp(#)={y~Fl~k(y)=~k(0)} • for all t>0 .  (5) 

1.4. A continuous function f :  F ~  IR is called a quadratic form if 

q(7+b)+q(7-f)=2q(y)+2q(6) for 7, 6ieF. 

A quadratic form q satisfies q(0)=0 and q(ny)=n 2 q(y) for n~Z and y~F. 
A non-negative quadratic form is negative definite. 

1.5. A convolution semigroup (/~t)t>o on G induces a strongly continuous 
contraction semigroup (P~)t> o on Co(G), namely 

Ptf=lz,*f  for t > 0  and feCo(G). 

The infinitesimal generator is denoted (A, DA) and defined as follows 

DA={ feC~ l } ,~o t ( P J - f )  exists in Co(G) 

Af=l im ~ ~ ( P , f - f )  for f e D  a. 

The convolution semigroup (#t)t> o is said to be of local type if the infinitesimal 
generator (A, Da) is a local operator in the following sense: 

For  every f 6D  a we have supp (A f)c_ supp (f).  
The following theorem concerning convolution semigroups of local type is a 

special case of Theorem 18.27 in [2]. 

1.6. Theorem. A symmetric convolution semigroup (#t)t>o on G is of local type 
if and only if the associated negative definite function ~b on F is of the form ~b(~) = 
c + q(7)for ~ ~F, where c > 0 and q is a non-negative quadratic form. 

1.7. Theorem. Let (#t)t>o be a symmetric I convolution semigroup on G with 
associated negative definite function ~ on F. For each t > 0 the following conditions 
are equivalent: 

(i) Pt has a continuous density gt with respect to Haar measure on G. 
(ii) e-t~'~12(F). 

I f  (ii) holds for every t > 0 then gt ~ D a and 

d 
Agt(x)=~gt(x)  for t > 0  and x6G. 

Furthermore, the function g: ]0, 0o [ x G ~ ~,, defined by g(t, x)= gt(x) is continuous. 

Proof Each measure pt is positive definite because fit = e-t~ is positive since 
is real. If #t has a continuous density gt then g, is necessarily a positive definite 

1 The symmetry is only needed in the proof of (i) ~ (ii). 
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function, so (ii) follows from Bochner's theorem and the inversion theorem, 
cf. [15]. 

On the other hand (i i)~ (i) follows from the inversion theorem which implies 
that 

gt(x)=~(x, 7)e-'q'(~)d7 for x~G (6) 
F 

is a continuous density for/~t if (ii) holds. By the Riemann-Lebesgue lemma we 
get that g, eGo(G). 

Suppose now that (ii) holds for all t>0.  Since sup xe-tX= ! e -~ for t > 0  we 
4 

get that x>=o t 

.Ir ~ " ~  for t>0 .  
F F 

For t and s > 0 and x E G we have 

~(P~ g,(x) - g , ( x ) )  = s (g '  + s (x )  - g , ( x ) )  
1 

= ! (x, 7) e-t~(') (! (e- S~(')- l ) ) d7 

which converges uniformly for x ~ G to 

- f ( x ,  7) r  e tq,(~) aT. 
F 

The dominated convergence theorem can be applied on account of the inequality 

l fe-S~'(~)- l l<r  for s > 0  and 7eF. 
S 

It follows that gt~Da and 

d 
Ag,(x)=dt g,(x)---- - ~(x, 7) r e-'~'(" d7 

for t > 0  and xEG. 
Using (6) it is straightforward to prove that g(t, x)= g,(x) is continuous. D 

1.8. Let (/2t)t> o be a convolution semigroup on G. The family (Pz)~>o of 
positive bounded measures defined by 

oo 

(pa, f ) =  fe-~t(pt , f )  dt for 2 > 0  and f~Cc(G) (7) 
0 

is called the resolvent for (#t)t> o. 
The Fourier transform of pz is t3z = 1/(r + 2). 
The convolution semigroup is called transient if 

co 

~(#t, f)dt<oo for all f~C~+(G). 
0 
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If (&)t>o is transient there exists a positive measure ~c called the potential kernel 
for (#,)t > o and defined by 

( ~ , f ) =  ~ ( # t , f )  dt for f~C~(G). 
0 

Notice that for 2>0(e-~ '&) ,>  o is a transient convolution semigroup with 
potential kernel p~. 

t.9. Proposition. Let (&)~> 0 be a symmetric convolution semigroup on G. With 
the notation fi'om above we have 

( p ~ , A f - 2 f ) =  - f (O)  for f~D A. 

Proof It is well known that 

p ~ , ( A f - 2 f ) = - f  for f ~ O  A. 

Since (&)t > o is symmetric f ~  D A implies ,/~6 D A and A(f )  = (A f ) .  and we therefore 
get for f ~ D  a 

<p~., A f - -  2 f )  = p~, �9 ( A ( f ) -  2f)(0) = - f ( 0 ) =  - f (0 ) .  D 

t.10. Let (Pt)t>o be a symmetric convolution semigroup on G and suppose 
that each measure & has a continuous density g,. In this case we consider the 
integrals 

o0 

~z(x)=~e-~tgt(x)dt  for 2_>_0 and x~G. (8) 
O 

It is clear that Pz is a density for pa. with respect to Haar  measure when 3.>0, 
and in the transient case that P0 is a density for the potential kernel to. 

By the last part of Theorem 1.7 follows that Pa is a lower semicontinuous 
function on G for 2~0 .  In the cases we will be dealing with we have ha(0)= 
for 2 > 0. We are interested in cases where h,  satisfy further regularity conditions. 
Due to the result 1.12 below it is interesting to know if Pa is a continuous function 
on G- .  {0}. 

t.I1. In the theory of harmonic spaces we follow the terminology of Con- 
stantinescu and Cornea [7]. 

A harmonic sheaf Jog on G is called translation invariant if for every open 
subset U~_G, every aeG and every heYf(U)  the translated function %h belongs 
to ~*f(a + U), where ~, h(x) = h(x - a). 

We say that ~ is symmetric if for every open subset U _  G and every heal (U)  
the reflected function ~ belongs to ~ ( -  U). 

1.12. Theorem. (Forst [9]). Let G be a non-discrete second countable locally 
compact abelian group and let (&),> o be a symmetric convolution semigroup on G 
satisfying the following axioms 2 

(i) {&)t'> o is of local type. 
(ii) (&)t> o is transient with potential kernel ~, 

(iii) ~: has a lower semicontinuous density N which is finite and continuous on 
G'-. {0}. 

One can prove that (i)-(ii~ implies that the connected component of the neutral element in G is 
open, cf. [1] Proposition 9. 
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Then there exists a translation invariant harmonic sheaf 2~ on G such that 
(G, 9f') is a ~-Brelot space. 

The harmonic sheaf o~ is constructed as the harmonic functions of the Hunt 
process associated with (#t)t> o via the (sub) markov transition semigroup 

P,(x, B) = u , ( B -  x), 

where xeG,  t > 0  and B is a Borel subset of G. 
As an application of Theorem 1.12 to the compact group T ~ we find the 

following result. 

1.13. Theorem. Let (Pt)t > o be a symmetric convolution semigroup of probability 
measures on T ~ with the following properties: 

(i) ~t),> o is of  local type. 
(ii) Pt has a continuous density gt for every t > 0. 

(iii) p~ is finite and continuous on r ~ 1 7 6  {0} for ever), 2 > O. 

Then for ever), 2 > 0  there exists a translation invariant harmonic sheaf ~'ff~ on 
r ~176 such that ( r z  ~ )  is a ~-Brelot space. 

In w we will construct a convolution semigroup (#t)t:,o on T ~ verifying the 
hypotheses of Theorem 1.13. 

1.14. Remark. A convolution semigroup (Pt)t)o of probability measures on 
T ~ is never transient and we are therefore forced to consider the convolution 
semigroup (e-at#t)t>o with potential kernel p~ for 2>0.  Under the hypotheses 
of Theorem 1.13 it is easy to �9 �9 - zt see that each of the convolution semlgroups (e #~)t, o 
satisfies the axioms from Theorem 1.12. 

1.15. A function ~o: ]0, oo[-~lR is called completely monotone if it is C ~ and 
satisfies ( -  1)" q~t")(x) > 0 for all x > 0 and n > 0. 

We shall make use of the following result. 

1.16. Proposition. Let ~k: F-~ IR be a real-valued continuous negative definite 
function and let (p: [0, oc[ -~R be continuous and completely monotone. Then 
~o o ~ : F-* R is continuous and positive definite. 

Proof By Bernstein's theorem there exists a positive bounded measure # on 
[0, oe[ such that 

co 

tp(x)= ~e-'~dll(t)  for x > 0 ,  
0 

(cf. e.g. [13]), and therefore 

oo 

~o(tp(V))= ~ e -t~ dl~(t) for ?eF.  
o 

The composition makes sense because 0(7)>0 for all 7eF, From 1.2 follows that 
e - t~ is positive definite for all t ~ 0  and therefore ~po ~h is positive definite. D 

Using the canonical extension of ~0 to the half-plane Re z > 0, (cf. [2]), Pro- 
position t.16 remains true for complex-valued negative definite functions. 
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2. The Brownian Semigroup on T 

2.1. The Brownian convolution semigroup (#)t>o on IR is the family of pro- 
bability measures Pt = Pt(x) dx on IR, where 

pt(x)=(4rct)-�89 - ~  for xelR. (1) 

The Fourier transform of Pt is equal to 

~t(y)=~e-iXYpt(x)dx=e-'Y2 for yelR. (2) 

2.2. The Brownian convolution semigroup on T(= {ze r  Izl = 1}) is perhaps 
less well-known. It is the family (/~z)~> 0 of probability measures on T given by the 
densities gt with respect to normalized Haar measure on T, where 

gt(O)=~e- '"2ei"~ for 0ciR. (3) 
n~Z n = l  

(Here and in the following we describe functions on T as functions on ~ which 
are periodic with period 2 ~.) 

The Fourier transform (coefficients) of gt is equal to 

~,(n) = 1  S e -i"~ -'"~ for n~7/, (4) 

and it follows that gt(0)> 0 because the function n ~ e-tn2 is positive definite on Z, 
cf. (2). It also follows from (4) that (/l)t>o is a convolution semigroup on T. The 
negative definite function (cf. 1.2) associated with (#t)t>o is q(n)=n 2 for n~Z 
which is a non-negative quadratic form on 7/, so (#~)~> o is of local type. Note 
that every non-negative quadratic form on 7/has the form n ~ a n  2 where a>0 ,  
so (/~t)t>o is essentially the only symmetric convolution semigroup of probability 
measures on T which is of local type. 

The following expression for gt is very important. 

2.3. Proposition. For OEIR and t > 0  we have 

(O+2~k) 2 ] 

Proof Let co denote the discrete measure on IR which has the mass 1 in each 
of the points 2~n, n~7/. The function Gt=~o,pt , where Pt is given by (1), is a 
continuous periodic function, and the Fourier coefficients of G, are given for ne7/ 
by 

~,(n) = ~. Ip,(O+27zk)e-i"~ 
keZ 0 

= - - I  2 ~ _  P'(x)e-i"Xdx= t(n)= e-'"~" 

This shows that 2r~G, and gt have the same Fourier coefficients, and the for- 
mula follows, rl 
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2.4. The function g,(0) is essentially a theta function. With the notation of 
Hille [11], p. 156 we put 

83(X ' q)= )-~, q.2 e2in x 
n~Z (o,) 

and then g,(0)=8 3 ~, e- . Proposition 2.3 is a special case of a well-known 

formula for 8 3 . The function g,(0) is called the heat-kernel forT because it satisfies 
the heat-equation 

8 2 O 
•02 g t ( 0 ) = ~  g,(0), 

and g,(0) has the physical interpretation of representing the temperature at the 
point e i~ to time t in a ring of radius 1(~ T), when a "unit of heat" is put at the 
point 1 to time 0. It is therefore to expect that g,(O) for fixed t > 0  is an even func- 
tion, decreasing for 0e [0, re]. It is clearly even, but it is not at all obvious by the 
previous formulas that it is decreasing on [0, re]. This follows however from the 
classical product formula of Jacobi for 83 (cf. [11], p. 163) which in this context 
reads 

00 oo 

gt(O) = H(l_e-2tn) l~( l+2e-(2n- l i tcosO+e (4n 2)t). 
n = l  n = l  

In fact all the factors are decreasing for 0 e [0, re]. 
The formula in Proposition 2.3 shows that the heat-kernel g,(0) for T is ob- 

tained by summing equidistant shifts of the heat-kernel Pt for IR, as could be 
expected physically. 

2.5. We introduce the following notation 

(p(t, 0)= ~ e -'nz cos (nO) for t > 0  and 0elR, (5) 
n = l  

~o(t)=~o(t, 0)= ~ e  -t"2 for t>0.  (6) 
n = l  

Clearly ]q~(t, 0)1 NO(t) for t > 0  and 0~IR. 

2.6. Lemma. The function qo(t) has the following properties 

(i) q~(t)<=~ for t>O, 

1r 
(ii) ~o ( t )~  for t-*O, 

(iii) q~(t)~e-' for t-+oe. 

Proof. We have 

q~(t)< I e-'"= dx= ~ e -"= du= 1 ] f n  
o o 2 [ / t  
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and 
el3 o0 

hence 

lira l f/q~(t)=1 1/n. 
I 4 0  

The property (iii) is obvious. 
2.7. Proposition. The following estimate holds 

gt(0)__< 1+2 exp - ~  for 0e[ -n ,n] , t>0 .  

In particular 

}ira g,(0) = 0 for 06[-n ,  n ] \  {0}. 

We have also g,(O)~l/ t f o r  t-~ O. 

Proof By Proposition 2.3 we get 

g , ( 0 , = r  exp ( -~ t ) {1+_~  1 [exp ( - ~  (nn+0,)+exp ( - ~  (nn-0))]}. 

It is clearly enough to prove the inequality for 06 [0, n] and for such 0 we find 

g , (0)<~exp  (-40~){l+n__~ 1 [exp ( - ~ ) + e x p  ( 7c2n(t--1))] } 
--< 2 ~  exp ( -  40~) {1 + ~lexp ( - ~ - ~ ) }  

Using Lemma 2.6(0 the inequality follows. By Lemma 2.6(ii) we finally get that 
7 -  

gt(0) ,-~|/~ for t ~ 0. 
F t 

For later use we put 
/t  

and the 

2.8. 
(i) 

(ii) 

(iii) 

for t > 0, (7) 

following result about the behavior of p will turn out to be important. 

Proposition. The function p has the properties 
0<p(t)< 1 for t>0, 
lim p(t) = O, 

1-p(t),,~�88 -a' for t--.oe. 
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Proof The inequality p(t) < 1 follows from the Cauchy-Schwarz inequality. 
By Proposition 2.7 we get 

p(t)<= 1+2  - - ~ e  ~dO<_(8t+16V~)~-- fe-"2du 
~ o  - -  7~ o 

which proves (ii). 
For t > n we have 

< ~mt~, <-!-1 _/_/~_ < ,  1 - le(t' 0)l='~, ' =  2 [/ T 2, 

and therefore 

[~\  2" "'t ,=o ~n] q9 t ,0)  uniformly for 0elR 

so that 
/•  1 ~ 

Since 

lim e'"&(t, 0)=cos"0 uniformly for 0slR 
t ~ c O  

we finally get 

lim eZt(p(t)- 1)= - 2 -  2 2 - -  j cos2OdO= 0 

2.9. The resolvent (Pz)~> o for the Brownian semigroup on Thas the following 
densities (cf. 1.8 and 1.10) 

~3 

~ ( 0 ) =  ~ e-~tg,(O)dt for 0EIR. (8) 
o 

2.10. Proposition. For each 2 > 0  the function ~. is a continuous function with 
the absolutely convergent Fourier series 

1 
~(0)  = ~ q~-7-S e~"~ (9) 

n~zn + A 

For O~[-  n, n] we have 

cosh ((~--101) l/r2) 
~(0)  = 1/~ sinh (rq/~) (10) 

Proof. By Lemma 2.6(i) it follows that 

g,(0) < 1 + ~ , ~  for 0elR, 

so the dominated convergence theorem implies that t3a is continuous. We also 
have (cf. 1.8) ~3~(n)= 1/(n z +2)  for ne2g and ~ (n 2 +2)-1 < oe, so the right hand 

n ~ Z  

side of (9) is a continuous density for p~ and hence equal to t3~. 
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By Proposition 2.3 we get 

( ( 0 + 2 n n ) 2  ~ 
tsa(0)=k/~E I e -a t t -}exp  " ~ } dt for OtlR, 

n E Z  0 

and using 

l (a)  I e-* ' t  ~exp - ~ -  d t = l f ~ 2 - ~ e x p ( - V / ~ )  for a>0 ,  2>0,  
0 

cf. [8] p. 146, we get 

tS~(0) = re2- ~ ~ e x p ( - l / ~  10 + 2 toni). 
n E Z  

For 0 t [ -  7t, rc] it is easy to reduce this sum to the expression in (10). 

2.11. Corollary. Let a t [0 ,  1]. Then the following functions are completely 
monotone on ]0, oo [ 

1 cosh(a]/~) 
(i)  2 - - -  

1/2 sinh(1/2) ' 

(ii) 2 -  sinh(al/2) 
sinh (1/~) �9 

Proof The function 2 -- t3a(0) is completely monotone for fixed 0 because it is 
the Laplace transform of the positive function t -- g,(0). It follows that (i) is com- 
pletely monotone. 

For 0 t [0, n] we find 

oo sinh ((n - 0 )  l/~) e_a,g ' 
= I t(O) dt, /3~(0)  = - rc s i n h  (rr l / ~  ) o 

and since gt(0) is decreasing for 0t[0 ,  rr] it follows that 2 -  -r is completely 
monotone and hence (ii) is completely monotone. [7 

2.12. Remark. The classical infinite product expansion for sinhx can also be 
used to prove that the function (ii) of Corollary 2.11 is completely monotone. 
In the same way it can also be proved that the function 

cosh (a ]/~) 
2--+ 

cosh q/~) 

is completely monotone when a t [0 ,  1]. 
The infinitesimal generator (A, Da) for the semigroup (Pt),>0 on C(T) induced 

by the Brownian semigroup, cf. 1.5, can easily be identified. 

2.13. Proposition. The domain D a contains C2(T) and for f t  C2(T) w e  have 
A~ d2f  
J = - d ~  " 
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d 
Proof. We know by Theorem 1.7 that gt~DA and that Agt=d~gt, but since 

d 2 d 
dO 2 g t=~  gt we find 

d 2 

A g t = ~ g t .  

It is easy to see that DA,C(T)~_D A and A(f*g)=(Af)*g for feD A and 
gr C(T). For f ~  C2(T) we get in particular 

A(gt,f)=(Agt),f  = ( ~  ' "  d2f gt]*J=g, * ~ ,  

hence 

l i m A ( g , , f ) = ~ / 2  (and l i m g t , f = f )  
t ~ 0  ( , / U  t ~ 0  

, r  d 2 f  
in C(T). The operator (A, DA) being closed we get f ~ O  A and Aj=d-0~. 0 

3. The Brownian Semigroup on T p 

3.1. The Brownian semigroup (&)t > o on T p, p > 1, is defined as the direct product 
ofp copies of the Brownian semigroup on T. The measure & has therefore a density 
g~pl with respect to Haar measure on T p given as 

P 

glPJ(0) = [ I  g,(01) for 0=(01 . . . . .  Op)elRP, 
i=1  

where gt is defined in 2.2. Here and in the following we describe functions on T p 
as functions on NP periodic in each variable with period 2 n. 

By reasons which become clear later we want to consider a slight generalization 
of this semigroup. 

Let a = (a I . . . . .  %) be a p-tuple of positive numbers and consider the convolution 
semigroup (#~')t>o on T p defined by 

#~=&a, |  | for t>O,  (1) 

where (#,)t> o is the Brownian semigroup on T. The measure #~ has the following 
density with respect to Haar measure on T p 

p 

g~(O) = H g,o,(~ for OelR p. (2) 
i=1  

The Fourier series for ~ is 

g~(0)= ~ e x p ( -  t(a 1 n~ +... +apn~)) d <"' 0> (3) 
nE/,P 

which converges absolutely and uniformly. Here we use the standard notation 

<n,O>=nlOl+...+npOp for nEZ  p and O~IR v. 
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The negative definite function associated with (#~)t~o is the non-negative 
quadrat ic  form 

q(n) = a 1 n z + . . .  + apnZp, (4) 

so (#~)t > o is of local type, cf. 1.6. 
Int roducing ~ = m i n ( a  1 . . . . .  ap) and f l = m a x ( a  1 . . . . .  ap) we get from 2.6 and 

2.7 that  

g~(O)< 1+  for 0 e N  p and t > 0  (5) 

and 

g~(0)__< ( \1 + for 0 e [ - r ~ ,  ~]P and t > 0 ,  (6) 

so in part icular  

lim g~(0)=0 for 0s  [ -  r~, g]P'-. {0}. 
t ~ O  

The resolvent (p,~)a > o for (#t)t> o has densities (~)a  > o given by (cf. 1.10) 

of) 

~,~(0)= ~ e ~tg~(O)dt for 0eIR p. (7) 
o 

3.2. Proposition, For each 2 > 0 the function ~a is lower semicontinuous on T p x 
and continuous on T P \  {0}, where 0 denotes the neutral element in T p. For p >  
2 we have ~aZ(o ) = ~ .  Furthermore ~ E LZ(T p) if and only if  p < 3. 

Proo f  F r o m  (5) it follows that  

oo 

0--+ ~ e -~ t~ (O)d t  
1 

is finite and cont inuous on IR p, and from (6) it follows that 

1 

0 --* ~ e - a t ~ ( O ) d t  
0 

is finite and cont inuous  on [ - r e ,  re]P\  {0}. Therefore  tS~ is finite and cont inuous  
on T P \  {0}. In the case p = 1 t3~ is finite and cont inuous  at every point  of T (cf. 
2.10), but since 

g~(O) ~ for t ~ O, 
i = l t  t a i  

cf. 2.7, it follows that tS~(0) = ~ for p > 2. 
The Fourier  t ransform of  the measure p] is given by f3~ = l / ( q +  2) where q 

is defined in (4), and this function is square summable on 7/p if and only if p < 3, so 
the last assertion follows from Plancherel 's theorem. [q 

By the same method  of p roof  as in Proposi t ion  2.13 it is easy to obtain the 
following result: 



64 Ch. Berg  

3.3. Proposition. Let (A, D a) denote the infinitesimal generator for the semigroup 
~ on C(T p) induced by (#t t>0. Then CZ(TP)~_Da and 

a:f Af=k~ak's 00~ for f~CZ(TP). 

4. Brownian Semigroups on T03, 

4.t. The product of countably many copies of a set X is denoted X ~ The set T03 
is a compact abetian group with respect to the ordinary product structures. The 
neutral element of T03 is denoted 0. The normalized Haar measure on T ~ is the 
product of thenormalizedHaar measures on the countably many factors 7". 

The subgroup of Z03 consisting of all sequences in ~E03 which are eventually 
zero is denoted Z {03). The dual group of T03 can be identified with 7/(~ in the follow- 
ing way, cf. [15]: Each n=(nl,n 2 . . . . .  np, O, .. .)~Z (03} determines a character ~, 
on T ~ namely 

P 

V,(z)= I'Iz~ ~ for z=(z l , z  2 ... .  )ET ~ 
k = l  

The mapping n ~ ?, is an isomorphism of Z (03} onto the dual group of T ~. 
We will often describe functions on T ~ as functions on 1R03 which are periodic 

with (2zr2~)03 as periodicity group. 

4.2. Let (~Qt > 0 be the Brownian semigroup on T. One could define the Brownian 
semigroup (#[03t)~>0 on T ~ as the infinite product  

(;0 

~t~03~= @ # ,  for t > 0  

of countably many copies of/a t. However, by the theorem of Kakutani [12], #}~ 
is singular with respect to Haar  measure for every t > 0, and therefore the convolu- 
tion semigroup (tt[~ does not  lead to a satisfactory potential theory on T ~ 

We consider therefore a sequence d = ( a l ,  a2, . . . )  of positive numbers (a i > 0 
for all/) and define for each t > 0 the product measure 

03 

= | u,o  (1) 
k = l  

and will study the convolution semigroup (g~ct)~>o and its dependence on the se- 
quence .~r We call all these semigroups on T ~ for Brownian semigroups on T03. 

In order to see that (/t~)t> o is indeed a convolution semigroup on T03 we find 
the Fourier transform o f / ~ :  

~ ( n ) =  ~t~(nk)=exp - t  ~, akn for n ~ Z  (03). (2) 
k = l  k = t  

Note that the infinite product  and sum above are "finite" because n~Tg(03} is 
eventually zero. 
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From (2) follows easily that (~ ) t  > o is a symmetric convolution semigroup of 
probability measures on T ~ and the associated negative definite function is 

o0 

q(n)= ~ akn ~ for n ~ Z  (~). 
k = l  

Since q is a non-negative quadratic form on Z (~) we get that (/gift) t > o is of local type, 
and since q(n)>0 for n4=0 we get by 1.3(5) that supp(/tfft)=T ~ for all t>0 .  3 
(This contradicts of course not that /~t  is concentrated on a set of Haar  measure 
zero in the case d = ( 1 ,  1 . . . .  ).) 

By means of Kakutani ' s  theorem we can determine for which sequences 
~r ~ is absolutely continuous with respect to Haar  measure on T ~. 

4.3. Theorem. Let t > 0  be fixed. Then ~ defined by (1) is absolutely continuous 
with respect to Haar measure on T ~ if and only if 

~ e-  2tak ~ ot3. 
k = l  

In the affirmative case the infinite product 

l~ gt,k(Ok) 
k = l  

converges almost everywhere to a density for I~t . 

Proof By Kakutani 's  theorem [12] we know that /~t  is absolutely continuous 
with respect to Haar  measure on T ~ if and only if 

Or 

l~ p(t ak) > O, 
k = l  

where p is the function introduced in w 2 formula (7). This is however equivalent 
with 

r 

Z (1 - p(tak))< o0, 
k = l  

which in turn is equivalent with 

~ e- 2tak < oO 
k = l  

on account of the properties ofp  proved in Proposition 2.8. The rest of Theorem 4.3 
follows from Kakutani 's  theorem. The n'th partial product 

f i  gtak ( Ok) 

shall be considered as a function on T ~ which depends only on the first n variab- 
les. 

3 This follows also from supp Cu~)= T for all t>0. 
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4.4. Remark. Defining 

to=inf{ t~]0 ,  ~ [  k~=le-2'a~<~}, 

it follows from the above result and Kakutani's theorem tha t /~ t  is singular for 
0<  t < t o and /~t is absolutely continuous for t o < t. Whether ~ is singular or 
absolutely continuous in the case 0 < t o < ~ depends on d .  

1 
If we put ak=~-a  l~ (k+ 1) ~ l f ~  k = l , 2  . . . . .  where ~>0, we get t o=a  and 

is singular. If we put a k = ~ - ~ l o g ( k + l ) + ~ l o g l o g ( k + 2 ) f o r  k = l , 2  . . . . .  where 

a>0 ,  we get t o =a  and ~ is absolutely continuous. 
Convolution semigroups (/~t),> o on ~ with the property of being singular for 

t <  t o and absolutely continuous for t > t o have been constructed by Rubin and 
Stratton, cf. [16]. 

It is also possible to determine the sequences ~ for which/~, has a continuous 
density. We begin with a lemma. 

4.5. Lemma. For every sequence dg and every t > 0  we have 

Z U 
n ~ Z  ( ~ )  k =  1 

Proof We have 
P 

E exp(-- t (aln2+"'+apn2))  = Hgtak(0) 
nl,  ..., n v ~ Z  k = 1 

and the supremum over p e n  of the left and right hand side of this equation is 
respectively the left and right hand side of the equation of the lemma. [7 

4.6. Theorem. For fixed t > 0 the following conditions are equivalent, 
(i) /~t has a continuous density g[t with respect to Haar measure on T ~ 

(ii) Z /2~t(n)< oo, 
n~Z(oo) 

(iii) ~ e-'"k < oo. 
k = l  

I f  the condition (i)-(iii) are satisfied we have 

g~t (0) = f i  gtak(Ok) for Oe]R ~ (3) 
k = l  

and the convergence is uniform for OeIR ~ 

Proof The equivalence of (i) and (ii) is a special case of Theorem 1.7. By 
Lemma 4.5 (ii) is satisfied if and only if the infinite product 

oo 

1-] g,o  (0) 
k = l  
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is convergent, and since gtak(O)= 1 + 2 ~p(t ak) this is equivalent to the convergence 
of the series 

~ ~o(tak), 
k = l  

which by Lemma 2.6 is equivalent to (iii). 
If the conditions (i)-(iii) are satisfied we know from Theorem 4.3 that 

f i  gt,k(0k) 
k = l  

converges almost everywhere to a density for / i f ,  so it suffices to prove that this 
product converges uniformly for 0e~,. ~. For 0eIR ~ we find 

n+p n n n+p 

kgl -- k=t~I gt,~(Ok) = k=aI-I gt,~(Ok) k:,+lI] gt,~(Ok)- 1 I[ 
n I n+p 

kglgtak(O) k--g+ 1 (1 + 2tp(tak' Ok))-- 1 

n [ n+p \ 

{ 1-I (1 + ) (*) < H gt ak (0) 2 (p (t ak) ) - -  1 
k=l = \ k = n + l  

k = l  k = l  

where the inequality (*) can be seen by carring out the multiplication. By Lemma 
4.5 the infinite product 

oo 

1-I gt,~(0) 
k = l  

is convergent, so the uniform convergence follows. 0 

4.7. Remark. With the notation of the Remark 4.4 we find that ~ is absolutely 
continuous but without a continuous density for t e ] t  o, 2to[, and ~ has a con- 
tinuous density for t > 2 t o. 

Since gt(0) is a decreasing function of t, the inequality in the proof of Theorem 
4.6 also shows that the convergence of (3) is uniform in 0elR ~176 and t e [ to+e ,  | 
for every e>0. Therefore g~/(0) is a continuous function of (t, 0)e]t o, oo[ x IR~ 
In particular we have the following Corollary which also follows from Theorem 1.7. 

4.8. Corollary. Suppose that d satisfies 

~ e - t " ~ < ~  forall t>O. 
k = l  

Then the function 
oo 

[I 
k = l  

is continuous for (t, O)e]O, ~[- • ]R ~176 
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The sequence d given by a k - . - =  k ~ for k = 1, 2 .. . .  satisfies the condition of Corol- 
lary 4.8 for every e > 0. 

We shall now consider a condition on the sequence ~ which implies that all 
the measures tt~ have continuous densities and which furthermore allows us to 
estimate these densities. The condition is the following 

co 1 

~= ~ ~ <  oo. (4) 
k= l C a  k 

4.9. Theorem. Suppose that d verifies (4). Then every ~ has a continuous density 
g~ given as 

g~t (0) = 1~ gt~(Ok) for OelR ~, 
k=l 

and the following estimates hold 

g~t(0)=<g~t(0)<exp(~Vt ) for O~IR ~ and t>0.  (5) 

r g~/(0)_<exp (2e exp (-~-~ k_~l a~) for 06[--~z,~] ~ and t>0.  (6) 

In particular we have 

limo g~(0) = 0 .for 0 E [ - ~, re] ~ "-. {0}. 

Proof For t>0  there exists a constant Xo=Xo(t) such that e - '~<  1/1/~ for 

x > x  o, and therefore (4) implies that ~ e-t"~<co for all t>0. It follows from 
k = l  

Theorem 4.6 that ~t~ has a continuous density ~ given by (3), so it is clear that 
o9 

g~t (0)=<g~t (0) = I~ g,~(O) = I~ (1 +2q~(tak) ). 
k = l  k : l  

Using the elementary inequality 1 + x N @  for x > 0  we get 

(l+2q)(tak))~ex p q~(ta k <exp ct , 
k = l  

where we have used Lemma 2.60) and the number c~ from (4). By Proposition 2.7 
we have for k = 1, 2 .... 

gt,~(0k)< 1+2 exp - - 4 ~ a  k 

and for 0e[ - -~ ,  ~]~ we therefore get 

(_oi t g~/(0)< I~I ( l + 2 ( ~ a k )  )exp  
k=l \ 4tak!  

=< exp (2c~ ]/~-i) exp ( -  1 k~l 0k2 t. 
_ ak ! 

if Oke[--r~, re], 
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Note that (4) implies the convergence of the series ~ 1/a k. If 0 e l - n ,  n] ~'-. {0} 
then 

~ 0 ~ > 0  ' 
k = l  ak 

and since 

l imexp - t  = 0  for A , B > 0 ,  
t ~ 0  

the last assertion follows. D 

4.10. The resolvent of the Brownian semigroup (/z~t)t>o is the family of measures 
(P~a)a> o defined by the vector integral (cf. 1.8) 

p~z= ~e Z'l~t dt for 2>0 .  
0 

If the measure /t~ is absolutely continuous for all t > 0  and hence having a 
continuous density ~ for all t > 0  by 4.3 and 4.6, we know by 1.10 that p~ has a 
lower semicontinuous density t~  given by 

oo 

~ ( 0 ) - -  ~e-Ztg~t(O)dt for 061R ~. (7) 
0 

If z~' satisfies (4) even more can be proved. 

4.11. Theorem. Suppose that d verifies condition (4) and let 2 > 0  be fixed. 
7hen the function ~ given by (7) is finite and continuous on T ~ \  {0} and 

~im ~r (0)= p~'~ (0)= ~ .  (8) 

Proof The inequality 

g~t(0) ---- f i  gtak(0) > gta, (0) gta2(O) 
k = l  

together with the asymptotic formula (cf. 2.7) 

n l 
gt"l(0)gta2(0) ] / a l a  2 t for t ~ 0  

show that ~ ( 0 ) =  ~ ,  and since t~  is lower semicontinuous (8) follows. For the 
rest of the proof it is convenient to put 

1 ov 

hx(O)---~e-~tg~ct (O)dt and hz(O)= ~e-~tg~ct (O)dt. 
0 1 

By (5) we have 

g~(0)<exp(~] /~)  for 0~IR ~ and t > l ,  
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so it follows by the dominated convergence theorem that h e is finite and contin- 
uous on T ~. 

We next prove that h 1 is finite and continuous on T ~'-. {0}. Let 

0eE-~, ~]'~-. {0} 

be given and let O(' )e[-n ,  n] ~" be a sequence such that lim 0(")=0 in I - n ,  n]~', 

i.e. lim 0~")= 0k for every keN .  Since ~ 1/ak< ~ it is clear that 
n ~  k = l  

tim ~ (Or))2= ~ 02=A>O 
n ~  k = l  ak k=l ak 

so there exists a number n o e N  such that 

(0~"))2 >�89 for n>=n o. 
k= 1 ak 

By (6) we then have tbr n >= n o and t > 0 

The expression on the right side of this inequality tends to zero for t ~ 0, in parti- 
cular it is integrable over ]0, 1 [, so by the dominated convergence theorem we get 

lim h i (0 (")) = h i (0) < ~ .  

4.12. Conclusion. In the previous sections we have proved the following: For 

every sequence ~ of positive numbers satisfying ~ 1 / ] f a k < ~  the Brownian 
k = l  

semigroup (/~t)t>o satisfies the conditions of Theorem 1.13. For every such o~ 
and every 2 > 0  there exists a translation invariant harmonic sheaf ~ on T "~ 
such that (T ~, Jf~r is a ~3-Brelot space. 

4.13. Let M be an arbitrary sequence of positive numbers, and let (Pt)t>o be 
the semigroup of operators on C(T ~) induced by (/tt~),>0, cf. 1.5. We shall now 
describe the infinitesimal generator (A, DA) for (Pt)t>o, and since (/tt~)~>0 is of 
local type we know that (A, DA) is a local operator in the sense of 1.5, so it is to 
expect that A is a differential operator in some sense. 

For p ~ N  we define rcp: T:'~---> T v by 

7rp(z) = (z 1 . . . . .  Zp) for z =(zl ,  z 2 . . . .  )e T% 

For f e  C(T  ~) the function f o  7:~ e C(T  ~) depends only on the first p variables. 

4.14. Proposition. For every p e n  and every f e C 2 ( T  p) we have fOTZpeD A and 

~2f 
k~=l - o 7 ~  A ( f o , , ) =  = ak ~0~ P" 

Proof F o r f e  C2(T0 we easily find 

P 
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and by Proposition 3.3 we have 

lim 1 [(k=~)t ) - -  ] P~I 632fake3 2 t~O t _ ttt"k * f - - f  = k  Ok 

uniformly on T p, hence 

~ ~?2f 
lim I [ g ~ ,  (fo rcp)-fo rcp] = a k ~ o rcp 
;~0 t k=~l ~Ok 

uniformly on T ~. D 

4.15, In the preceding sections we have seen that certain growth conditions 
on the sequence ,N' imply that the convolution semigroup (F()t>o has nice pro- 
perties. In w 8 we need an estimate which essentially deals with another convolution 
semigroup on T ~, namely the analogue of the Cauchy semigroup. 

The function ~: 7/~'~-~ lR defined by 

O(n) = a k n for n e Z  (~) (9) 
k = l  

is negative definite as the square root of a negative definite function (cf. [2], p. 45). 
There exists consequently a symmetric convolution semigroup (cry)t> o on T ~, 
called the Cauchy semigroup, such that 

&/(n)=e t,~,) for t > 0  and ne7/~).  

We want to find a condition on ,~' which ensures that all the measures ~r, ~, t > 0, 
have continuous densities. By Theorem 1.7 this is equivalent with finding a con- 
dition which ensures that 

e-t~ for all t>0 ,  
neZ(~) 

and this is exactly what is needed in w 8. 

4,16. Proposition. I f  d satisfies the condition 

k = l ~k < 0(3 ~ 

then 

e '*(")<~ foral l  t>0 ,  
neZ(~) 

(10) 

where ~ is given by (9). 

Proof We put 

a(a 1 . . . . .  ap; t) = • exp ( -  t(a 1 nf +. . .  + ap nZp)~), 
neZP 

To estimate (11) we use the inequalities 

(11) 

] ~ >  ~22 (]fa + I/b) for a,b>_O, 
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and 

~ e-Zl"l< 1+ -2- for t>O, 
nEZ t 

and procede in the following way: 

a(al '  ap;t)<~exp[-t] /~l  ) ( ~2)  .... . ,~z \ 1/~ Inll a a 2 . . . . .  ap; 

<____ 1 + ~ / o -  a 2 . . . . .  ap; 
t 

__< 1 + ~ - ~ 1  ) 1+ a a 3 . . . . .  a p ; ( ~  2 

<PH 1 [1+  2(V'2'k'~ (ap; t t ~1 (1+ 2(t/2'k'~ 

We therefore get 
( 2(1/~)k \ ,/Ta. 

,~z~ ~ e- '~ sup a ( axp~  . . . . .  ap; t ) S k H  1= l + - - t v . . a )  

which is finite because the infinite series in (10) is convergent. 

4.17. Corollary. If~r satisfies (10) then for all t>O, 2 > 0  and p>O 

exp - t  2 +  ap+kn <0(3 
n~Z(~) k=  1 

Proof. The Corollary follows because the sum in question is majorized by 

e -tO(n). [] 
nETl(~) 

4.18. Remark. It is clear that (10) implies (4). We have not been able to decide 
whether (4) suffices to ensure the convergence of 

E e tqJ(n) 

for all t > O. 

Part  II. H a r m o n i c  Funct ions  on T ~ 

5. Harmonic Functions on T p 

5.1. In this paragraph pEN is fixed and a =(a  1, a2, . . . ,  ap) is a p-tuple of numbers 
all >0. For every 2 > 0  we define a differential operator L a on lR p by 

p 62 
L~= ~ a k ~ - L  (1) 

k = l  
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Let V be an open subset of IR p. A function f~  C~ is called Lz-harmonic if 
Laf=O in V. The sheaf of L ; h a r m o n i c  functions on IR p turns RP into a Brelot 
space. We refer the reader to [10] for information about the properties of this 
harmonic space. We will often make use of the boundary minimum principle for 
Lz-superharmonic functions. 

We can also consider L~ as a differential operator on the differentiable mani- 
fold T p by the following device: 

Let ~: IR p ~ T p be the mapping 

~(01 . . . . .  io, �9 0p)=(e . . . . .  e '~ for (01 . . . . .  Op)eIR p. 

For an open subset U~_T p and a function fEC~ we consider La(.foT) on 
y-l(U),  and it is easy to see that there exists a uniquely determined function 
Lz f :  U --* IR such that 

L~(foT)=(L~f)o 7 on 7-1(U). (2) 

We will simply write 

P r 
L a f = k ~  ak 30~--2f f o r f e C ~ ( U ) .  

A function f e  C~176 is called L;harmonic in U if Lzf=O in U. The set of Lz- 
harmonic functions in U is denoted ~aP(U). Of course Jegx;(U) depends also on 
a I . . . . .  ap but these numbers will be fixed throughout the paragraph so we avoid 
them in the notation. 

Since f e~P(U)  if and only if La ( fo~)=0  on 7-1(U), it is clear that ~ P  is a 
harmonic sheaf on TV; (we use the terminology of Constantinescu and Cornea [7])�9 
From the fact that the sheaf of solutions to (1) on IR p turns IR p into a Brelot space, 
it is easy to see that (T p, ~ v )  is a Brelot space. 

To construct Jf~V-regular sets on T p one may proceed in the following way: 
Let f2_~ IR v be an open set such that ~: f2 ~ T v is a homeomorphism of ~2 onto 
y(f2) (which is necessarily open in TV). If V is a regular subset of O in the sense of 
classical potential theory then V is also regular with respect to the sheaf of solu- 
tions to (1) ([7], p. 79) and U=7(V) is regular on T p with respect to ovfzP. In fact, 
for f~C(c~U) let HSo ~ be the solution to the L;Dir ich le t  problem for V with 
boundary function foy~C(c~V). Then H s = H I o o y - I E ~ v ( U )  is the solution to 
the ~ff~P-Dirichlet problem for U with boundary function f By ~ 1 we mean the 
inverse function of ~, [ O. 

The property of a subset U ~_ T p being regular with respect to WzP is inde- 
pendent of 2 > 0  and the p-tuple (a I . . . . .  ap) as is easily seen invoking the cor- 
responding result in IR p. We can therefore talk about regular subsets of T p without 
specifying the sheaf. 

We will later make use of regular sets with smooth boundaries and this concept 
is made precise in the following definition. 

5.2. Definition. Let t2 be an open subset of IRP such that ~ is a homeomorphism 
of Y2 onto ~,(t2). If V is a bounded domain with C~ such that ~'___ t2 
then U=~(V) is called a strongly regular subset of T p. 
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It is clear that T p has a base of strongly regular domains. 
For an open subset U_~ T p we define 

C~(U)= {fe C~(TP) lsupp(f)~_ U}, (3) 

and using the normalized Haar measure on T p, denoted dO or dz, we can regard 
locally integrable functions on T p as distributions and we can talk about distri- 
bution solutions to L~.f= O. 

Along these lines we have the following result. 

5.3. Proposition. Let U c_ T r be open and suppose that f ~ C(U) satisfies L a f  =O 
in the sense of distributions on U. Then f 6 ~P(U). 

Proof Since both hypothesis and conclusion are of local nature the result 
reduces to an analogous statement for an open subset of IR ~', and this case is 
settled by the ellipticity of La. 0 

5.4. Proposition. Let U ~_ T p be a domain and let f ~ C ~ (U) satisfy L~ f <__ 0 in U~ 
If  there exists a point xo~U such that f(xo)=inf f <=O , then f is constant. 

U 

Proof Putting 

A = {x~ U If(x)= inff} 

we have that A is non-empty and closed in U. By the Hopf minimum principle 
(cf, [14], p. 64) it follows that A is open and the conclusion follows. D 

The following boundary minimum principle will be crucial later: 

5.5. Proposition. Let U ~_ T p be open, U +- T p, and let f: 0 ~ IR be continuous 
and satisfying L~f  <O on U in the distribution sense. 

If f >O on OU then f >O on U. 

Proof The proof follows classical lines. Let 6: U ~ ] 0 ,  oe[ denote the distance 
to T p'-. U, i.e. 

6(x)= inf ]Ix-Yll, 
y~ TP" .  U 

where If'It is the ordinary distance in C'.  By B~ we denote the open ball in T p 
with radius e,>0 and center at (1, 1 . . . . .  1). For all sufficiently small e > 0  we 
choose a C~-function q~: T p -* [0, oo[ such that supp(~0~)__qB~ and ~ q~ dO= 1, 
and then (%)~ > o is an approximate unit. r~ 

In U~= {xeUl6(x)>e} we define f ~ = f ,  q~, where the convolution �9 is on the 
group T p. Then f~ e C~'(L~), L~. ~ ~ 0 in L~ and s has a continuous extension to ~ .  

Let a > 0  be arbitrary. Since f i s  uniformly continuous on U and f > 0  on ~U 
there exists a number b > 0 such that 

xeU,  6(x)<b~f(x)+a>O. 

For 2e<b we get f ~ + a ~ 0  on t3U~ and since L z ( f ~ + a ) = L ~ - 2 a N O  in U~ we get 
by Proposition 5.4 that s  in ~7~. In fact, if in f ( f~+a)<0  there would exist 
Xoe U~ such that v, 

f~(Xo)+a=inf(L +a)<O, 
U~ 

and an application of Proposition 5.4 leads to a contradiction. 
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For xeU fixed we therefore have f~(x)+a>O for all sufficiently small e>0 ,  
and letting e tend to zero we obtain f(x) + a > 0 and hence f(x) > O. D 

5.6. Remark. One can prove that a continuous function f :  U ~ IR is super- 
harmonic in the harmonic space (T p, ~r if and only if L~f<O in the sense of 
distributions, but we shall not need this result. 

5.7. Proposition. (i) I f  2 =0  then ~oP( T p) consists of the constant functions, and 
the only potential on T p is zero. 

(ii) / f  2 > 0  then ~ P ( T P ) =  {0}, and (T p, ~P) is a ~3-Brelot space. The function 
~ defined in 3.1 (7) is a strictly positive potential which is L;-harmonic in TP \  {0}. 

Proof (i) 2=0.  It is clear that every constant function belongs to ~ffoP(TP). If 
fe~oP(T p) there exists a point xoeT  p such that f(Xo)=irnf f and it follows by 

Proposition 5.4 that g =f - f (Xo)  is constantly zero. If s is a potential on T p there 
exists by the lower semicontinuity of s a point x o e T p such that S(Xo)=inf s, and 

TP 
S(Xo)=0 because S(Xo) is a non-negative harmonic minorant of s. Since (T p, ~o  p) 
is a Brelot space we conclude that s=0 ,  cf. [7], p. 138. 

(ii) 2>0.  Let f e ~ P ( T  p) and assume that i n f f < 0  (if not we replace f by - f ) .  
TP 

There exists Xoe T p such that f(Xo)= ~ f f ,  and by Proposition 5.4 we get that f is 

constant, but then L z f =  - 2 f =  0 implies that f =  0. 
Let (#~'),>o be the convolution semigroup studied in w 3 and let (P~)~>o be the 

resolvent. If (A, Oa) denotes the infinitesimal generator for the semigroup on 
C(T p) induced by (#t)t> o we have by Proposition 1.9 that 

<p~, A f - 2 f > =  -f(O) for T~D A, 

in particular by 3.3 

<P"z, Lzf> = - f ( 0 )  for f z  C~(TV), 

and it follows that L~ p,~ = - e  0 in the distribution sense. Since ~a is continuous on 
T v'-. {0}, Proposition 5.3 implies that t5 ax is Lx-harmonic in TV',. {0}. 

In the case p > 2  we conclude that tS~ is superharmonic because it is lower 
semicontinuous and has the value ~ at 0 (cf. 3.2). 

In the case p = 1 ~a is continuous and has a global maximum at 0, and therefore 
it is clear that IS] is superharmonic. 

Since 0 is the only L~-harmonic function on T v every non-negative super- 
harmonic function is a potential. 

The potential tS] is > 0  at every point. This follows either from [7] p. 138 or 
directly from the concrete expression for ~5~. 0 

5.8. Remark. The sheaf Jg~P is translation invariant on T p for every 2 > 0. 

5.9. Let ocg be a harmonic sheaf on a locally compact space X and let V _  X 
be an iF-regular set ([7] p. 12). Then every fr  has a unique continuous 
extension H{; to V such that HIIVE~(V), and there exists a family of positive 
measures (co~)~ v such that 

Hi(x)=~fdo~V for f~C(OV) and xr 
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Let a be a privileged positive measure on 0V such that supp(a)=•V. If there 
exists a continuous function P: V • OV~ [0, oo[ such that 

o9 v = P(x, 4) da(~) for all x e V, 

i.e. such that 

Hf(x)= .f P(x, ~)f(~) da(~) for J'~ C(0 V) and x~ V, 
ov 

then P is called the Poisson kernel for V with respect to ~ff (and o-). If the Poisson 
kernel exists it is uniquely determined due to the requirement that supp (o-)=~1/: 

5.10. Proposition. Suppose that for each open set U ~_ X the vector space ~Z(U) 
is closed in C(U) in the topology of compact convergence. Suppose further that the 
Poisson kernel P exists for a regular set V c_ X. 7hen the function x ~ P(x, 4) belongs 
to ~ ( V )  for every ~EOV. 

Proof Let B' be a base of compact neighbourhoods of ~o~0V and choose for 
every WeB' a function f w ~ C + ( ~ V) such that 

supp(Jw)_c W and S fwda=l .  

Then it is easy to see that 

lim HIw(x ) = lim .f P(x, ~)fw(~)da(~) = n(x, 40) 
B" 8" 

uniformly for x in compact subsets of V, and the assertion foltows due to the closed- 
ness assumption about jug. 

5.11. Let Zr ~ be the sheaf of C~176 to L z f = 0  in ~P and let V~_IR p 
be a bounded domain with Coo-boundary. Then it is well known that V is ~ -  
regular and there exists a Poisson kernel Pz for Vwith respect to ~ and the surface 
measure a v on ~V. In fact it follows by Green's formula that 

Pz(x,~)=~vGz(x,~ ) for x ~ V  and ~ ,  

where Gz is the Green function for V with respect to L~, and ~ is the inward 

conormal derivative applied above to the function y ~  Ga(x, y) at the boundary 
point ~OV, cfi [14] p. 88. 

It follows by the maximum principle at the boundary, cfi [14] p. 68, that 
Pz(x, ~)>0 for x 6 V a n d  ~EclV. 

The following estimate of Pa is crucial. 

5.12. Theorem. Let V~_IR p be a bounded domain with C~176 and let 
Pz be the Poisson kernel for V as defined in 5.11. 

For every compact subset K ~ V there exist constants A and B > 0 such that 

P~(x,~)<Ae -vxB for x ~ K ,  ~ V  and 2>1. 4 

4 There exist actually constants A and B such that the inequality holds for all 2>0. This follows 
from the proof below when p>3, but for p=  1,2 Special estimates are needed. Since we are only 
interested in large 2 we do not develop this further. 
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Proqf Let p~ denote the probability density on IRP defined by 

p'](x)=p~,~(xi)o., p,~(x,,) for x~IR p and t>0 ,  

where p~(x) is given by 2. i (1). Putting o~ = (a t .... av) lip and 

1 P ~c2\�89 
llxll.={ ~ i  l for xe tR e 

\i=I ai] 
we have 

pT(x)=(4nte) 2exp \ - - ~ - ] ,  

For 2 > 0 a fundamental solution to the differential operator L,. in IR" is - N~ 
where 

r 

.~.(x)= ~ e-a'pr(x)dt for xslR~ 
o 

cf. 1.9. Introducing 

az(r)= ~ (4ntez)-~e-~Z'e-gidt for r~ 0  and 2>0 
0 

we get the following estimate 

N~(x)~cq(r[xl[.)exp(-�89 for xelRV and 2>1. (4) 

In fact, putting 

~(t)=e_a,ex p [ _  I~xii~] for xetR v fixed. 
\ 4t ] 

we find 

max ~o(t)= exp( - l /~  ]]xl].), 
t > 0  

and hence 

~o(t) _~ l/~70 exp(-�89 t[xl[.), 

so that 

1"~ (x) =< a~( [Ix [I,) exp( -~  1/-2 Itx 1I,) 

and (4) follows. 
We suppose from now on that ) ~  1. 
The Green function Ga for V is equal to 

Gz(x ,y )=Nx(x-y ) -ha(x ,y )  for x ~ V  and yeV,  

where y -+ ha(x, y) is the solution to the Lx-Dirichlet problem for Vwith boundary 
values y ~ N x ( x - y ) .  By the boundary minimum principle ha(x,y)~O and 
Ga(x, y)>O and hence by (4) 

05-_ Ga(x, Y) =< Na(x-y)< a~ ([Ix-Y 11.) exp (-�89 [tx-y[[.). 
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Let K be a compact subset of V. We define 

26= in f{  ] lx-yl l .  Jxe K, y ~ ' ~ P \  V} 

and choose a domain V 1 with C~~ such that K __ V~ _ ~ _c V and 

inf{ I lx-  ytlalxeK, Ye ~x-p~ gl} ~ (~. 

Let H be chosen as the continuous function on ~" \ V 1 which is 1 on 0V1,0 on 0V 
and which satisfies L o H -- 0 in V \ ~ .  The function H is even C ~ up to the boundary 
and in particular we have 

OH 
sup _ - - <  oo 
ov ~v 

0 
where ~vv is the inward conormal derivative. 

For x e K  and y e 0 V  1 we have I[x-yH,>6 and hence 

G z(x, y) < a 1 (6) exp( - �89 6). (5) 

Let x e K. The function 

r = G x(x, y ) -  a1(6 ) e x p ( -  �89 6) H (y) 

defined for ye  V'-. V 1 has the following properties: 

(i) Lotpx(y)=2Gz(x,y)>=O for y e V ' - . ~ ,  

(ii) ~ox(y)=0 for ye~V, 

(iii) ~o (y )<0  for y e 0 V  1 (on account of(5)). 

By (i) (px is Lo-subharmonic, and by the boundary maximum principle for such 
functions we get q0~ =< 0 in V "-. V 1 . The function q0~ being __< 0 and 0 on t? V it is clear 

0 
that Ov q~x =< 0 on ~ V, and hence 

,~(x,~)=SvGa(x,~)Na,(6)exp(-�89 for ~ et? V. 

OH 
Putting A = al(6) sup ~ and B=�89 we finally have 

ov 

Pa(x,~)<Ae-nFx for xeK,  ~eOV and 2>1 .  D 

5.13. Theorem. Let V~_IR" be a bounded domain with C~176 and let Px 
denote the Poisson kernel for V as defined in 5.11. 

(i) For every xe  Vand {e~Vthefunction 

is continuous on [0, ~ [  and completely monotone. 
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(ii) For every x 6 V and f E C + (0 V) the function 

2 ~ S Pz( x, ~)f(~) dav(~) 

is continuous on [0, ~ [  and completely monotone. 

Proof For f~  C + (0V) we denote by Hy(x, 2) the value at xE V of the solution 
to the Lz-Dirichlet problem for V with boundary function f. 

Suppose first that f6C+(OV) is the restriction to 0V of a non-negative C ~~ 
function in ~P. Then Hy(x, 2) has the following regularity properties: 

a) For each xeV the function Hi(x, .) is continuous on [0, ~ [ ,  C ~ on ]0, ~ [ .  
0" 

b) For n>0 and 2>0 the function ~ HI(., 2) is continuous on V. 

c) H ~ C ~ ( V  • ]0, ~[) .  

Differentiating the equation 

L o H I (x, 2 ) :  2 Hf(x, 2) 

n times with respect to 2 we get by c) 

8" 
) n a~;~f H I (x, 2), 

and hence 

Lz ~ H i ( x ,  2) = n ~ H i ( x ,  2) for x e V  and 2>0. (6) 

We have clearly Hy(x, 2)>0 for x~ V and 2>0, and suppose for the purpose 
of induction that for some n> 1 

n-- 1 

(-1)"-1~2" 1Hl(x, 2)>O for x~V and 2>0.  

Let 2 >0 be fixed and put 

0" 
~(x) = ( -  1)"~. H~(x, 2) 

O2 
f o r  x ~ V .  

By (6) and the induction hypothesis we get Lzq~ =0 so ~p is L;superharmonic in V. 
For x ~ V  we have Hi(x, p)=f(x) for p > 0  and therefore q~(x)=0. Using b) and 
the boundary minimum principle for L;superharmonic functions we get q~ >__0, 
and this completes the induction. We have now proved that 2 ~ Hi(x, 2) is con- 
tinuous and completely monotone on [0, ~ [  for fixed x~ V and f~  C+(OV) being 
the restriction of a non-negative C~-function in IR v. 

To prove (i) let x~ V and ~o e~V be fixed and let f .~ C+ (IR p) be a sequence of 
functions such that f .de  v converges vaguely to the Dirac measure ~o at ~o. 
For every 2 >0 we then have 

~irn Hf. (x, 2)= !ifn ~ Px(x, ~)f~(~)dav(~ ) = Px(x, ~o), 
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so the function 2 ~ Pa(x, 40) is pointwise limit of completely monotone functions 
hence itself completely monotone. It is somewhat tedious to verify that 2 --, Pa(x, 4o) 
is continuous for 2=0.  

Finally it is easy to see that (i) implies (ii). 

5.14. Remark. Theorem 5.13 is valid for more general linear second order 
elliptic operators and we shall treat this in a subsequent paper. Using the iterated 
differences characterization of completely monotone functions (cf. [13]) we can 
avoid the tedious verifications of differentiability needed in the above proof. 

The result in Theorem 5.13 is also hidden in the following formula for hitting 
distributions, cf. [5] p. 61 : 

P~f(x)=EX{e 2TAf(XTA); TA< 00}. 

5.15. Let ~z  p be the sheaf of Lz-harmonic functions on T p. Every strongly 
regular domain U c  T p (cf. 5.2) has a Poisson kernel with respect to ~ P  and the 
surface measure a v on the boundary of U. 

Using the terminology of Definition 5.2 and denoting by Pz v the Poisson kernel 
for V defined in 5.11, then Pff defined by 

P~U(x, 4)=P2V(7-1(x), ~) 1(4)) for x ~ U  and 4~0U,  

where 7-~ = (yl f2)-~, is the Poisson kernel for U. To verify this one makes use of 
the fact that the Jacobian of 7 is identically 1, and therefore 7 maps the surface 
measure of V onto the surface measure of U. It is also clear that the results from 
Theorem 5.12 and 5.13 carry over, so we have the following theorem: 

5.16. Theorem. Let U ~  T p be a strongly regular domain. The Poisson kernel 
P~ for U with respect to the sheaf ~a p and the surface measure a U exists and satisfies: 

(i) Pa(x, 4)>0 for x ~ U ,  4~OU and 2>0.  

(ii) 2~P~(x,  4) is continuous and completely monotone on [0, ~ [  for x 6 U  
and 460U.  

(iii) For every compact subset K ~_ U there exist constants A and B > 0 such that 

P~(x, 4 ) < A e  -vT~ for xEK,  4~3U and 2 > 1 .  

6. Definition of  Harmonic Functions on T ~ 

In all of this paragraph ~r (a 1 , a 2 . . . .  ) is an arbitrary sequence of positive numbers. 

6.1. For p~IN we define np: T ~ T  p by 

np(z) = (z 1 . . . . .  zp) for z = (zl, z 2 . . . .  )~ T ~. (1) 

For p,q~]N such that p < q  we define 7zp, q: T q ~ T  p by 

rcp, q(z)=(z 1 . . . . .  zp) for z = ( z  1 . . . . .  zq)~T q. (2) 

Then we have 

~p, q o ~q = rcp for p < q. (3) 
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For A~_ T p we denote by A x T ~ the following subset of T ~ 

A x T ~ =ztp-l(A)= {zET| 

This notation is very convenient although not quite correct. It leads to the 
following easily verified formulas 

(A x T~) - = A  x T | (A x T~176 ~ =A  x T ~ (3(A x T~)=OA x T ~ 

where the topological operations - ,  o, 0 (closure, interior, boundary) should be 
understood being with respect to T ~ on the left-hand side and with respect to 
T p on the right-hand side. 

If for every p e n  we choose a base Mp for the topology of T p, then the set of 
subsets of T | 

{U x T ~ l U e d ~ p ,  veiN} (4) 

is a base for the topology of T ~. 
Let X ~_ T ~ and consider a function f :  X ~ IR, We say that f only depends on 

the first p variables, if there exists a function g: 7rv(X ) ~ 1R such that 

f(z)=g(rrp(z)) for all z e X ,  

and we say that f only depends on .finitely many variables, if there exists a p e n  
such that f only depends on the first p variables. 

The normalized Haar measure on T p for p e l N u { ~ }  is always denoted 
dO, dx, dz . . . .  , and it should be clear from the context which Haar measure these 
symbols are referring to. 

6.2. For every p e n  we consider the set C~ v) of real-valued C~-functions 
on the differentiable manifold T v. Every function f on T p may be considered as a 
function on T ~ depending only on the first p variables by composing f with 
r~p. We define 

~(T~ = 0 {f~ %lfe C| 
p = l  

If g e ~ ( T  ~) there exist p e n  and f e  C| p) such that g =f~  For any q>=p 
there exists a function fqe C~(T q) such that g=fqo;~q. We only have to put f~= 
fo rcp, q, cf. (3). 

From this remark it is clear that ~ ( T  ~ is an algebra of functions on T ~~ The 
set 9 ( T  ~) is exactly the set of regular functions on T ~ in the sense of Bruhat, cf. [6], 
but this paper is independent of [6]. 

For an open subset O_c T ~ we define 

~(~2) = {fe ~(T~)tsupp ([)_c ~2}. 

6.3. Motivated by w we consider an arbitrary sequence d = ( a l , a  2 . . . .  ) 
of positive numbers and a non-negative number 2 and form the expression 

L~ = ~ a k - 2. (5) 
k=l k 
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For every p e n  we define 
p 02 

L~ = ~ a k ~ -  2, (6) 
,=1 •0, 

which is the differential operator on T p studied in w 5. 
We will now define L~g for ge~(Too). For ge~(Too) there exist p e N  and 

f e  Coo(T p) such that g=fo~p ,  and we then define 

L~g=(L~f) orcp. (7) 

It is easy to see that the expression on the right-hand side of (7) is independent 
of the choice of p e N and f e  C ~o (T p) such that g = fo ~p. 

We remark in passing that L~ is a differential operator on Too in the sense of 
Bruhat [6]. 

Using the idea of distributions we now define harmonic functions in the follow- 
ing way: 

6.4. Definition. Let f2_~ T ~ be an open set. A continuous function h: s2-*IR is 
called L~-harmonic if 

h(O)L~g(O)dO=O for all ge~(f2). 
f/ 

The set of L~-harmonic functions in Y2 is denoted ~,vt~ (f2). In the terminology 
of [6] a continuous function h: f 2 ~ N  belongs to Jfff(f2) if and only if L~h=0  in 
the distribution sense. 

It is clear that 3/fff(12) is a closed subspace of C(Y2), when the vector space 
C(f2) of continuous real-valued functions on f2 is equipped with the topology of 
uniform convergence on compact subsets of 12. The following proposition exhibits 
a large class of L~-harmonic functions. 

6.5. Proposition. Let f2= U x Too, where U is an open subset of T p for some 
peN. If  ~oe~P(U) then h=q~onpeWff(O). 

Proof Let ge ~(~). We shall prove that 

I h(O)L~g(O)dO =0. 

There exists q>p such that g=forcq where f e  Coo(rq), and using f2= rcq(f2)x T ~ 
we find 

I h(O)L~g(O)dO= ~ ~p(np(O))12zf(nq(O))dO = I q~(n;,q(O))12zf(O)dO. 
~ ~q(~) 

Using partial integration and the fact that supp(f)_~nq(f2) we see that the last 
integral is equal to 

I 13z(~po np, q)(O)f(O)dO, 
nq(O) 

which is zero because 

/~ (~o o np, q) (0) = LPz q~ (Trp, q (0)) = 0 for ,ge rcq (g2) 

by hypothesis. D 
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6.6. Theorem. The mapping ~ which to an open subset 0 ~_ T ~ associates the 
vector space 9fz~(Q) is a sheaf 

Proof If 01 and O 2 are open subsets of Too such that O~ ~ 2 ,  it is clear that 
h~0~4~(~22) implies that h ] f 2 1 ~ ( O 1 ) .  

Suppose next that Oc_ Too is the union of a family (O~)i~t of open subsets of 
T ~ and that a function h: O ~ I R  satisfies h[Oi~Jg~r for all i~I. We shall 
prove that heNex~(O). 

Without loss of generality we may assume that each t?~ has the form O~= 
U i x T ~, where U/is an open subset of T p' for some pieN. 

Let g~@(~2) and put K=supp(g) .  There exists a finite set Io~_I such that 
K _  ~ O  i. Choosing p>=max{pilieIo} such that g = f o n p  for f~COO(TP), it is 

iElo 
possible for each i e I  o to write Oi= V i x Too where V~= U~ x T p-p~ is an open subset 
o f  T p. W e  then have 

supp ( f )  = top(K) c_ U Vii, 
i~lo 

and it is well-known 
i~I o ~oieCoo(TP ) and 

Z (~i (Z) = 1 for z6rcp(K). 
ir 

We therefore have 

f(z) = ~ f(z) (Di(Z) f o r  z e T p, 
i~Io 

and hence 

g(0)= ~ g,(O) for OeToo, 
i~Io 

that there exists a partition of unity (~0~)i~to, i.e. for each 
supp (q)z) c_ Vii, and furthermore 

where gi---g. (r TOp). Since gfi~(O~) for each i e I  o we finally get 

S h(O) L~ g(0) dO = Z ~ h(O) L~ g,(0) dO 

= Z I h(O)L~g~(O)dO=O. [1 
i~lo ~i 

6.7. In the following we shall often approximate functions on Too with func- 
tions on Too which only depend on finitely many variables. We will use the fol- 
lowing notation: 

Let f :  U x Too ~ IR be a given function, where U is a subset of T p for some 
p e N .  

For  r=p, p +  1 . . . .  we define T,f:  U • T r - P ~  by 

T , f (x )=  ~ f(x,O)dO for x z U x T  '-p. (8) 
T m 

Eq. (8) shall be understood in the following way. For x e  U x T" p and 0e T ~ 
we identify (x, 0) with the point in U x Too whose first r coordinates are given by x 
and the following coordinates by 0, and therefore f (x ,  O) is well-defined. In the 
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case r =p  we of course define U x T o = U. We also assume that f is sufficiently 
regular so the integral in (8) makes sense. 

6.8. Lemma of Approximation. Let  U be a subset o f  T p and let f :  U x Too -~ P, 
be continuous. 

(i) For each r=p ,  p +  1 . . . .  the function T~f is continuous in U x T "-p and 

lirn T~f(=~(z))=f(z) for  all z e  U • T ~ (9) 

I f  U is open the convergence in (9) is uniform on compact subsets o f  U x Too. 
(ii) I f  f is L~-harmonic in U x Too, where U is open in T p, then T~f  is a Coo- 

function in U x T r-p and satisfies E~(T~f )=0,  i.e. T ~ f e ~ ( U  x T'-P).  Furthermore 
T~ f o ~ is L~-harmonic in U x Too. 

Proo f  (i) Let r > p  be fixed and let x e U  • T "-v  be given. The continuity o f f  
on the product space U x T ~, where Too is compact, implies that 

lim f ( y ,  O)=f (x ,  O) uniformly for 0e Too, 
y ~ X  

where y tends to x in U x  T r-p. This clearly implies that ~ f  is a continuous 
function. 

Let ze  U x T ~ and e > 0  be given. By the continuity o f f  there exists ro> p 
such that [ f (z ) - f (w)[  <e  for all we U • Too for which 7r,o(W ) = ~,o(z), and therefore 
for r > r  o 

I T, f (~r , ( z ) ) - f ( z ) t  < ~ lf(nr(z), 0) - f ( z )  t dO < ~. 
T ~ 

Let now K be an arbitrary compact subset of U supposed open in T p. We will 
prove that 

lim T J O r , ( z ) ) = f ( z )  uniformly for z e K  x Too. 
r ~ o o  

Let e > 0  be given. For every z e K  x T ~ there exists an open neighbourhood 
~2~ of z, Qz E U x Too, such that 

I f (w t ) - f (w2) l<=e  for all w 1, w z e ~  ~, 

and we may assume that ~ has the form ~:  = Lr~ • T ~176 where U z is an open subset 
of T p~ for some p~eN. By compactness there exist finitely many points z~ . . . . .  z, 
in K • Too such that 

It 

K x  T ~  U f2~,, 
i = 1  

and putting r o = m a x  {Pzi I i=  1 . . . .  , n} we can write 

f2~ = V i x Too for i = 1 . . . . .  n, 

where V i = U~, • T "~ is an open subset of T r~ 

For w 1, w z e K  x Too such that rcro(wl)=r~,o(w2) there exists ie{1 . . . . .  n} such 
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that w 1, wzef2z,, and therefore 

If(wl)-f(Wz)l  <= ~. 

For z ~ K  x Too and r > m a x  (p, %) we then find 

I T J ( G ( z ) ) - f ( z ) l  < ~ If(G(z), O)- f (z) l  dO<e. 
T~O 

Since every compact subset of U x T oo is contained in a compact set of the form 
K x Too, where K is a compact subset of U, we have proved (i). 

(ii). Suppose that f~Jg f f (U  x Too) and r>p.  We will show that E z ( T J ) = 0  in 
the distribution sense on U x T '-p. Once this is done, it follows from Proposition 

r • 5.3 that T~fe;,~;(U T'-P), and by Proposition 6.5 we finally get that T, f o G e  
~ ( U  x Too). 

Let q~aCF(U x T'-P). We shall prove that 

I T~f(x) E z r dx = O. 
U x T r - P  

Since g = r  oTz E~ ( U  • Too) we have 

f ( z )  L~g(z )dz=  ~ f ( z )  E atpOz(z))dz=O, 
U x T~O U x T o0 

and splitting z6 U x Too as z = (x, 0) where x e  U x T "-p and 06 T ~, and using that 
d z = d x |  with dx and dO being normalized Haar measure on T" and Too 
respectively, we get 

0 =- ~ ~ f (x ,  O) E,  qo(x) dO dx 
U •  T ~ 

= j TJ(x) G ~ ( x ) d x .  D 
U x  T r - p  

6.9. Corollary. I f  2 = 0  the set ~o (Too) of L~o-harmonic functions on Too is the 
constant functions. 

I f 2 > 0  then ~ ( T o o ) =  {0}. 

Proof. Every constant function belongs to ~J(Too) ,  e.g. because of Pro- 
position 6.5. If h 6 ~ ( T o o )  we have by Lemma 6.8 that T ~ h 6 ~ ' ( T ' )  for r_> 1. By 
Proposition 5.7 follows that T~h is constant in the case 2 = 0  and zero in the case 
2 > 0. Letting r--* ~ the assertion follows. Ft 

The approximation Lemma 6.8 leads to the characterization of L~-harmonic 
functions as functions which are locally approximable by "ordinary harmonic"  
functions. 

6.10. Theorem. Let f2 be an open subset of Too. A function h: f 2 ~ .  is L~- 
harmonic if and only if the following holds: 

For each z~f2 there exist an open neighbourhood f2 ~_f2 of z and a sequence 
h,: f2 z ~ ~ of functions satisfying. 

(i) For each nMN there exist a number p.6lN and a function f.e~zP"Ozp.(f2z)) 
such that h. = f .  o rcp. , 

(ii) 2irn h .=h  uniformly on compact subsets off2 z. 



86 Ch.  Berg  

Proof The "if-part". By Proposition 6.5 we know that h . e ~ ( ~ 2 = )  for all n, 
hence by (ii) that he~c(f2~).  The sheaf property finally assures that h e ~ ( ~ 2 ) .  

The "only if-part". Suppose that h e ~ f ~  (f2) and that zerO. There exist p e n  
and an open set U_~ T p such that ze  U x Too _c f2 and we put ~2~ = U x Too. The 
sequence of functions h=(T,+ph)on,+p defined on f2 for n >  1 satisfies (i) and 
(ii) on account of Lemma 6.8. [7 

7. Construction of Regular Sets 

In this paragraph s~'=(a 1, a 2 . . . .  ) is an arbitrary sequence of positive numbers 
and 2 is an arbitrary non-negative number. 

7.1. Definition. Let ~ be an open subset of T ~. A continuous function f: ~ - - ,~  
is called L~-superharmonic if 

~f(z)L~g(z)dz<O for all g e ~ +  (~2). 
D 

The set of continuous L~-superharmonic functions in f~ is a convex cone 
containing ~e(~2). Every non-negative constant function h: ~ ~ IR is L~-super- 
harmonic: 

If ge~+(f2) has the form g = f o n p  with f e  COO(TP), we get 

h(z) L~ g(z) dz = h ~ L• f(np(Z)) dz 
D s upp ( f )  x T ~ 

=h ~ L ~ f ( x ) d x = - 2 h  ~ f ( x )dx<O,  
supp (f)  supp (f)  

and the assertion follows. 

7.2. Lemma. Let U be an open subset of T p such that U oe T p and put (2 = U x Too. 
For a continuous function f:  ~ --* IR such that f l f2 is L~-superharmonic the boundary 
minimum principle holds, i.e. 

I f  f >= 0 on Of 2 then f >= 0 in f2. 

Proof For r>p the function T~f: [7x T r - P ~ I R  is continuous and satisfies 
Ea(TJ)>O in the distribution sense in U x T ~-p. Actually, the same calculation 
as in the proof of Lemma 6.8 gives for ~oe C~(U x T "-p) that 

TJ(x )  Exqo(x) dx = ~ f (z) L~(q) o nr)(z) dz, 
U x  T r - P  g? 

which by Definition 7.1 is __0 if ~o>0, because then ~oor~re~+(O). 
Furthermore T~f(x)>O for xeO(U x r r-p) (boundary in T ") because 

T~f(x) = ~ f (x ,  O) dO 
T ~ 

and for xeO(U x T r-p) and 0e T ~ we have rcp(x)eOU (boundary in T p) and hence 
(x, O)eOU x Too =~?Q, so by hypothesis f (x ,  0)>0. 
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From the boundary minimum principle in Proposition 5.5 we get T , f > 0  in 
U x T r P, and hence 

f ( z )  = lim T~ f(rt (z)) > 0 
r ~  oo 

for a l lzeQ.  0 

7.3. Corollary. Let U be an open subset of T P such that U 4= T p and put fJ= 
U x T ~. For a continuous function h: ~--*I(  such that h I f JeSse(Q) we have 

sup Ihl=sup [hi. 
D ~12 

Proof If we put a = s u p  Ih[ both of the functions a+_h are continuous on f2, 
0~ 

L~-superharmonic in f2 and >0  on ~I2. By Lemma 7.2 follows that a + h > O  
in f2, i.e. sup [hi<a, and the assertion follows, rl 

We are now able to construct open sets in T + which are regular with respect 
to ~ d .  

7.4. Theorem. Let U be a regular subset of T p. Then g2 = U • T ~ is regular 
with respect to the sheaf JUt~ d on T +. 

Proof For a continuous function f :  0f2--* IR there exists at most one solution 
to the L~-Dirichlet problem for f2, i.e. at most one continuous function F : ~  ~ IR 
for which F I Q e ~ d ( f J )  and FIO~2=f If namely F~ and F 2 denote two such 
functions, we know that G = F a - F  z is continuous on ~, G - 0  on ~?(J, and that 
G I fJeo~ffz~(Q), and hence by Corollary 7.3 that G - 0 .  

To prove the existence of a solution to the L~-Dirichlet problem we introduce 

A = {f~ C(t?f2) ] 3 F~ C(~): F ] c~(2 =f,  F ] (2~ ~ ( f 2 ) } .  

We shall prove that A -- C(r which will be accomplished by the following steps: 

a) A is a closed subspace of C(3f2). 
b) Construction of a subset B ~ A which is dense in C(~?f2). 

Proof of a). It is clear that A is a subspace of C(3(2). Let ( f , ) . ~  be a sequence 
from A converging uniformly on Of 2 to a function fE  C(Of2). If (F,),~q denotes the 
corresponding sequence of "solutions", we have by Corollary 7.3 that 

suplF.-F=l=suplf.-f,.I for all n, m e N .  
f~ Of~ 

This implies that (F.).~ N is a Cauchy sequence in the Banach space C(f~), and 
there exists consequently a function F e  C(f~) such that F,---, F uniformly on ~. 
Clearly f l0O=f ,  and since ~f~(f2) is closed in the topology of uniform conver- 
gence on compact subsets of Q, we also have F I f 2 e ~ ( f 2 ) .  This proves that 
f ~ A .  

b) For each n~iU ~) we consider the character ?. on T ~ defined in 4.1. For 
n ~ 7Z~+) and ~o ~ C(~? U) the tensor product 9 | ?, determines a continuous function 
on c?U x T + = (?fJ, namely 

~o| for x~OU and z ~ T  +. (1) 
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The subspace of C(80) generated by the functions (1) when q~e C(8U) and n e Z  (~176 
is denoted B, i.e. 

B=span  {~o| I q~e C(SU), neE(~)}. (2) 

B is a subalgebra of C(812) and it is easy to see that the Stone-Weierstrass 
theorem can be applied to the effect that B is dense in C(80). In order to see that 
B~_A it suffices to prove that f = q ) |  for every q)~C(SU) and n~7/(~, and 
this is done in Theorem 7.5 below. 

We finally have to prove that if f e  C+(80) and if F is the solution to the 
L~-Dirichlet problem with boundary function f, then F > 0 on f2. This however 
follows from Lemma 7.2. [3 

7.5. Theorem. Let U be a regular subset of T p and put f2 = U x T ~. Let f =  
q) | 7, ~ C(~?O) be given, where q)~ C(~U) and ne Z (~). 

The solution to the L~-Dirichlet problem for s with boundary function f is 
F=(b |  where cI) is the solution to the L~-Dirichlet problem for U with 
boundary function q). 

The constant c is given by 

q 

c - A +  ~ ap+ gnu, (3) 
k ~ l  

where n e Z  (~ is equal to n =(n~, n 2 . . . . .  nq, 0, 0 . . . .  ). 

Proof Since U c T p is regular, in particular ~V-regular, there exists a uniquely 
determined function (bE C(L 7) such that ~l  8U=~o and q~[ U e ~ g ( U ) .  Therefore 
�9 eC~ and L{ q~=0 in U. The function F=~b |  i.e. the function defined by 

F(x,z)=cb(x)7,(z)  for ( x , z ) e f 2 = U x T  ~~ 

is continuous on ~ and F lS f2=q~ |  Furthermore we have F IO~ff(K2).  
To see this we define P: U x T q ~ R by 

q 

for x e U  and z ~ T  q, 
k = l  

so that F~-Ponp+q on f2, and by Proposition 6.5 it therefore suffices to prove 
that the C~-function P satisfies L~+qP=0 in U • T q. This means by definition 
that L~+q(G)=0 in 7-~(U)• IR q, where 7: IRP~ TP is the mapping defined in 5.1 
and G: 7 - 1 ( U ) •  is defined by 

q 

G(O) = ~b(7(O 1 . . . . .  Op) H e'"~ op+k 
k = l  

for 

0=(01 . . . . .  0p, 0,+1 . . . . .  Op+)eT-l(U) x R ~. 
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We find 

t t;32 ~ ~  7 (01,  . .  0p) l - I  einkOp§ L~ +q G(O)= a k ~ - -  ., 
k=l OOk k=l  

- ~ o 7 ( 0  t, ..., Op) k=l~ ap+k nk/k=l i,~%+~_2G(0) 

02(i~~ O p ) - - C ~ ~  1 . . .  Op e '"k~ = a k ~ - -  . . ,  , , 
k=l  OOk 

q 
= LPc(~ o 7)(01 . . . . .  Op)I~  e inkoP+k=O 

k=l  

because L~(~ o 7) = 0 in 7- I(U). D 

7.6. Corollary. There exists a basis for the topology of T ~ consisting of ~ ' -  
regular domains. 

7.7. Summarizing the results of w 6 and w 7 we have for an arbitrary sequence 
a '  of positive numbers and an arbitrary 2 > 0 constructed a harmonic sheaf ~ '  
on T ~ and proved the existence of a base of ~ - r e g u l a r  domains. 

Our goal is to prove that (T ~, ~ r  is a Brelot space and this will be done in 
the next paragraph, but for the result to hold we must impose a growth condition 
on a ' .  

8. Existence of the Poisson Kernel and lts Consequences 

In this paragraph we will assume that the sequence d = ( a l ,  a 2 . . . .  ) of positive 
numbers tends to infinity so rapidly that 

k=t ~ ~" (1) 

This is the condition (10) of 4.16. 
As before 2 is an arbitrary non-negative number. 

8.1. Let f2___ T ~ be an open set of the form ~/= U x T ~, where U is a strongly 
regular domain in T p. We know that t2 is ~ - r e g u l a r  (7.4) and will now show 
that there exists a Poisson kernel for O with respect to ~ and the measure 
~v |  on ~t2=0U • T ~, where % is the surface measure on the boundary of U 
and dw is the Haar measure on T ~. 

We first define a function A: 7/~~176 [0, ~ [  by 

A ( n ) = 2 +  ~ ap+ k n z for n~Z ~~176 (2) 
k=l  

Note that the sum is finite since n~Z ~~ is eventually zero. The function A depends 
on ~t and 2 and furthermore on p equal to the dimension of U (or TP). The function 
A is negative definite as sum of a non-negative constant 2 and a non-negative 
quadratic form. The Poisson kernel for U with respect to ~ P  and % is denoted 
P~, cf. 5.15 and 5.16. 
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8.2. Lemma. With the above notation the Fourier series on T ~ 

~(x, ~, z)= ~ PA(,)(X, ~) 7,(Z) (3) 
n~Z(~) 

where x~U,  ~ O U  and z~ T ~, converges absolutely and uniformly on compact 
subsets of  U x OU x T ~ to a continuous function ~ :  U x t?U x T ~ ~ [0, ~ [ .  

Proof Since 0 < a  k and a k ~  for k - . ~  there exists a finite subset D___2~ I~) 
such that 

A(n)> 1 for all nCZr D. 

Let K be a compact subset of U. By Theorem 5.16 there exist constants A 
and B > 0 such that 

IPA(m(X, ~) ~/n(,7)l = Pa(n)(x, ~) <= A e -BA(n)�89 

for n6~E(*)\D, x~K,  ~ t 3 U  and z~ T ~. Furthermore 

Z e-BA(n)�89 09 
nEZ(~) 

because of Corollary 4.17, where the hypothesis (1) is used. It follows now by 
classical arguments that the series in (3) converges absolutely and uniformly on 
K • t3U x T ~176 and consequently the series in (3) converges absolutely and uni- 
formly on compact subsets of U x t3U x T ~ to a continuous function ~ .  

For fixed x ~ U  and ~c~U the function 

n~Pa(,)(x,~ ) for n~ 7 / ~  (4) 

is positive definite on the group 7/~). In fact it is equal to h o A, where h is the 
function h(2)=Pa(x, ~), i.e. equal to the composition of the completely monotone 
function h (cf. 5.16) and the negative definite function A, and Proposition 1.16 
can be applied. 

The function (4) being positive definite and summable, it follows by Bochner's 
theorem and the inversion theorem that ~ > 0. [1 

8.3. Theorem. Let f2~ T ~ be of the form f2= U x T ~, where U is a strongly 
regular domain in T p. Let points in f2---U • T ~ and ~(2=~3U • T ~ be represented 
respectively as (x, z) and (4, w) where x~ U, r and z, we T ~. 

Then the Poisson kernel for f2 with respect to ~ and the measure a v | dw is 
the continuous function P: f2 • c~(2--+ [0, ~ [ given by 

p((x, z); (~, w))=~(x, ~, z~)= ~ P~,~(x, ~) ~.(z~). (5) 
n~Z(~) 

Proof We know by Lemma 8.2 that the function P: ~2 • c~f2~ [0, ~ [  defined 
by (5) is continuous, and we shall prove that 

Hi(x, z)= ~ ~ P((x, z); (~, w))f(~, w) dw dtrv(~) (6) 
OU T ~ 

holds for all (x, z)~f2 and all feC(t30), where H s denotes the solution to the 
L~-Dirichlet problem for Q with boundary function f. 
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By the properties of the set B defined in the proof of Theorem 7.4 formula (2) 
it clearly suffices to prove (6) for functions of the form f =  ~p | ?,o, where q~ e C(0 U) 
and no~Z (~ 

With the terminology of Theorem 7.5 this amounts to prove that 

~ P((x, z); (~, w)) q~(~) 7,o(W) dw day(4)= t0(x) y,o(Z). (7) 
OU T m 

Because of the uniform convergence in w of the series in (5) we get 

j P((x, z); (4, w)) y,o(W) dw=Pat,o)(X, 4) ~,o(Z), 
T o 

so the left-hand side of (7) is equal to 

?.o(Z) j Pa t,o)(X, 4) ~(4) d%t4), 
which by Theorem 7.5 is equal to 7,o(Z) to(x), because A(no) is equal to the constant 
c in  7.5(3). 0 

8.4. Remark. The preceding proof shows that (6) holds even without knowledge 
of P being non-negative. On the other hand, once (6) is established, it follows from 
(6) that P must be non-negative because f e  C + (Of/) implies that H I > 0. Therefore 
the non-negativity of P may be established without making use of Theorem 5.16(ii). 

We now deduce some important consequences of Theorem 8.3. 

8.5. Theorem. Let g2 be a domain in T ~ Every function h~ f f ( (2 )  + is either 
identically zero or positive at every point of (2. 

Proof For h ~ ( Q )  + we put 

A = {e~6 Q I h(o) = 0}, 

and it is clear that A is closed relatively to •. We will prove that A is also open 
relatively to Q, and the statement then follows since Q is supposed connected. 

Assume that ~o~A. There exist p ~ N  and a domain U 1 _~ T p such that o~E Ut x 
T~___t~. We next choose a strongly regular domain U in T p such that f f c  U~ 
and ~ U x T ~ The Poisson kernel for Q '=  U x T ~ is denoted P. Due to the 
uniqueness of the solution to the Dirichlet problem for Q' we have 

0=h(co)= ~ j P(co; (4, w))h(~,w)dwdav(~) 
OU T ~ 

and therefore 

Pffo,(4, w))h(~,w)=O for all (~,w)~OUxT | (8) 

Let ~p be a strictly positive L~-harmonic function defined in a neighbourhood 
of t.7 in T p (such a function clearly_ exists) and put h 1 = ~p o %. Then h 1 is L~+-har- 
monic in a neighbourhood of f f  in T% and as above we find 

O<h~(co)= ~ j P(to; (~, w)) h,(4, w) dw day(4), 
~U T ~ 

and it follows that there exists a non-empty open subset G of ~ U x T ~ such that 
Pffo; (4, w)) > 0 for (~, w)e G, hence by (8) that h(4, w) = 0 for (~, w)e G. We can choose 
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G of the form G = 1/1 x V 2 x T + where V 1 is an open subset of (3U and V 2 is an 
open subset of T q for some q eN .  

Since U 1 x T ~ ~f2 we may consider the function T~h for r>p, cf. 6.7. We have 
T, heJ,~f~(Ux x T ~-p) and T , h > 0  in U 1 x T ~-p. 

Let ~eV~ and r /eV 2 be chosen. Then (4, r/)e U~ x T q. Let r be arbitrary > p + q  
and let z be chosen in T r-(p+q). Considering x=(~ ,  t/, z) as a point in U 1 x T '  p 
in the obvious way, we have 

T~h(x) = I h(x, z)dz=O 
T ~ 

because (x, z)=(4, r/, ~, z)eG for all z~ T +. 
Since (T' ,  ~vgf) is a Brelot space we conclude that T~h is identically zero in the 

domain U1 x T ~-p. However, r was arbitrary > p + q, so letting r ~ oo we get by 
Lemma 6.8 that h is identically zero in U~ x T ~. This shows that toe U~ x T + _ A  
and we have proved that A is open. 0 

8.6. Corollary. Let P denote the Poisson kernel for a domain f2= U x T ~ 
where U is a strongly regular domain in T p. 

For every (4, w)eSO the function P(. ;  (4, w)) is strictly positive and belongs to 
(a). 

Proof Proposition 5.10 can be applied to the effect that the function in question 
belongs to ~ ' ( f 2 ) ,  and it is also known to be non-negative, hence either identically 
zero or strictly positive. 

If P((x, z); (4, w))=0 for all (x, z)eO we get by (5) putting z = w  

F. 4)=0, 
nEZ(~) 

which is impossible because Pa(,)(x, 4 )>0  for all n e Z  (+). 0 

From the existence of a strictly positive and continuous Poisson kernel it is 
possible to deduce all the classical "Harnack- type  results" for positive L~-harmonic 
functions. 

8.7. Theorem. Let Y2 be an open subset of T ~ and let moeY2. For every e > 0  
there exists a neighbourhood Y2(O~o) of co o contained in t2 such that 

(1 -- ~) htcoo) < h(co) <(1 + e) h (COo) 

for all cseQ(COo) and all he ~ (f2) +. 

Proof Let ~ be a neighbourhood of co o of the form f2 '= U x TO~ where U 
is a strongly regular domain in T p for some p e N ,  and such that ~ '~ f2 .  Let P 
denote the Poisson kernel for f2'. By the uniqueness of the solution to the L~- 
Dirichlet problem for f2' we have 

h(m)= SP(o),~)h(4)d4 for ogef2' and h e ~ ( f 2 ) ,  
092' 

where we write d4 for the measure on 0f2' equal to av |  Since P(o~, 4 )>0  for 
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co~ff and ~egff  the continuity of P: O' x gf2' -+IR implies that 

lim P(co '4)=l  
,~-,oo P(coo, 4) 

uniformly for ~ 8 0 ' .  To every ~>0 there exists then a neighbourhood O(co o) of 
co o contained in O' such that 

/~i~O+o~)~[_ - , ,  1+5] for cocO(co o) and ~eaO'. 

For h e ~ ( O )  + and cocO(co 0) we then get 

h" , ~ p ( c o ,  ~ )  . . . . . . . . . .  f _ _ ( l + e ) h ( % ) ,  
icon= ! ,b~oT,.- rtcoo, gmtoar  > 1 e h co 0 �9 d; ( o , ~ )  - ) . = ( -  ) (  o)- 

8.8. Theorem. Let 0 be a domain it+ T ~ and let o ~ be a family of positive I~- 
harmonic functions in 0. Then the function h = sup ~ is either identically infinite 
in ~ or finite and continuous everywhere in Q. 

Proof Defining A={coeQth(co)<oo}, it follows from TheoremS.7 that A 
is open and closed relatively to f2 and furthermore that ~ is equicontinuous at 
every point of A. D 

8.9. Theorem. The sheaf ~ has the Brelot convergence property, i.e. the limit 
function of an increasing sequence of L~-harmonic functions in a domain is either 
identically infinite or a L~-harmonic Jhnction in the domain. 

Proof Let O be a domain in T ~ and let (h,),~ be an increasing sequence of 
functions from off'(O). Putting ~ = { h , - h ,  I n~2}, it follows by Theorem 8.8 
that h=  sup ~" is either identically infinite in Q or finite and continuous in 12. 
In the latter case Dini's theorem implies that lira ( h , - h , ) = h  uniformly on com- 

pact subsets of O and therefore h and h+h, belong to ~ ( D ) .  13 

We have now proved that (T +, acg~ ~) is a Brelot space. Like in Proposition 5.7 
the existence of positive potentials depends on 2. 

8.10. Theorem. Suppose ~t satisfies (1) and let 2>0. Then ~ is a translation 
invariant, symmetric harmonic sheaf, amt ( T ~~ ~ )  is a Brelot space, 

(i) I f  2 =O then every superharmonic function on T ~ is constant and every potentiat 
is zero. 

(ii) I f2>0  then (T% ~ )  is a ~3-Brelot space. The function ~ defined in 4.10(7) 
is a strictly positive potential which is L~-harmonic in T + \  {0}. 

Proof It is clear that , ~  is symmetric and translation invariant. The proof of 
(i) and (ii) is similar to that of Proposition 5.7. In particular we have that 

( p ~ a , A g - 2 g ) = - g ( 0 )  for g~D A, 

where (A, D A) is the infinitesimal generator for the semigroup on C(T ~ induced 
by (#~t)t>o. By Proposition 4.14 we then have 

(p~, U~.g) = -g(0)  for ge~(T~~ 
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hence by Theorem 4.11 that IY~r is L~-harmonic in Too\  {0}. Since ~ is lower 
semicontinuous and ~ ( 0 )  = oo we get that t3f is superharmonic, and it is a potential 
because aC~J(Too)= {0}. 0 

8.11. Remarks. (i) The axiom of domination is verified for the Brelot space 
(T +, afS) when 2>0.  In fact the domination axiom is true for any symmetric 
strong harmonic group, cf. Forst [9]. 

(ii). Let g2 be an open subset of T ~ and let f :  g2 --+ IR be a continuous function. 
Then f is superharmonic in the harmonic space (Too, Jg~r if and only if f is L~- 
superharmonic in the sense of Definition 7.1. 

(iii). Let g2_<Too be a domain, let ~oeO and let K be a compact subset of f2. 
Then there exists a constant a > 0 such that 

1 
- h(co) < inf h < sup h < a h(co) 
a K K 

for all he~a'r +. 

8.12. The preceding constructions show that there exist harmonic groups 
(G, ~ )  where the base space is G = T ~176 It is easy to modify the construction to the 
case G = ~ "  x Too. This shows that the base space G of a harmonic group need not 
be a Lie group, (Too is not a Lie group in the classical sense, neither is it a Lie group 
of infinite dimension), which settles a problem studied in [4], cf. also [17]. 

9. A Counterexample 

In this paragraph we will assume that the sequence d is a I = a 2 . . . . .  1 and that 
2 = 0. The sheaf ~ is simply denoted ~ in this case. 

The sequence ~r does of course not satisfy the hypothesis (1) ofw 8 and therefore 
the proof of the Brelot convergence property of the sheaf breaks down. It is the 
purpose of this paragraph to prove that the Brelot convergence property is really 
violated in this case. 

9.1. We consider the open interval V=]0,  1[. The Poisson kernel for V with 
respect to the differential operator 

d 2 
L~ =~-x2  - 2 ,  2 > 0 ,  

and the measure ~ = e o + e 1 on ~? V is given by 

Pa (x, 4) = 

sinh(1/2 (1 - x ) )  

sinh(l/~) 

sinh(lf2x) 

s inh( l /~  

for x e V a n d  ~=0 ,  

for x e V a n d  ~=1 .  
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For  2 = 0 this should be interpreted as 

P 0 ( x , ~ ) = ~ ' l - x  for x ~ V  and 3 = 0 ,  
lx for x ~ V a n d  ~=1 .  

As a special case of Theorem 5.13 we get that the function 

2 ~  s inh(V~x)  (1) 

s inh(v~)  

is cont inuous and completely mono tone  on [0, ~ [  for every x~ V. This should also 
be compared  with Corol lary  2.11. 

9.2. Theorem. For every p~lN the Fourier series 

sinh(ll nil x) e l < .  ' 0>, ( 2 )  
hp(x,O)= ~ sinh(llnll) 

n~Z p 

where x~ V and OEIR p, converges in the Fr~chet space C~(V • IR p) to a C~-function 
hp which satisfies the differential equation 

02 hp g2 hp t32 hp 0 
4--~12 + ... + ~-p2 = . (3) Ox 2 

Furthermore h is strictly positive. 

Proof For  x e  Vand  n 4:0 (hence [Infl > 1) we have 

sinh(4lnll x) =e-I1,11 (1-x) 1 - e - 2  Jl.II ~ 1 
sinh(llnli) 1 - -e  -2  I1.11 <e-IInH O - x )  = 1 - - e  - 2  " 

Since ~ e -  t II. II < ~ (cf. 9.4 below) for t > 0, it follows that the series in (2) converges 
n ~ Z  p 

uniformly on [e, I - e ]  • P~v for every ee]0, �89 
Along the same lines it is easy to see that  any of the series 

~. D~ sinh(llnllx) 
,~z" sinh(llnll) ei("~ (4) 

w h e r e / T  is an arbi t rary partial derivative with respect to x, 01 . . . .  ,0p, converges 
uniformly on [e, I - e ]  x RP for e~]0,�89 and therefore hp is a C~-funct ion and 
D~hp is the sum of (4). It is then easy to check that hp satisfies (3). 

For  each x~ V the function 

sinh(llnll x) 
n ~  for n~7ZP 

sinh( II n II) 

is positive definite on 7/p as the composi t ion of the completely mono tone  function 
(1) and the negative definite function n ~ [Inll 2 on 7zp, cf. 1.16. It follows that hp 
is > 0, and since hp is harmonic  in the ordinary  sense and obviously not  identically 
zero it must be strictly positive. D 
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9.3. Let s : ] 0 , 1 [ ~ T  be the mapping s(O)=e i~ Then U=s(]O, 1D=s(V) 
is a domain in T and g2-- U x T ~176 is a domain in T% Since hp is periodic with 
period 2r~ in each of the last p variables we will consider hp as a function on V x T p 
without further comment.  We then define a function (pp: O ~ I R  by 

(pp(x, z)=hp(s-l(x), 7rp(z)) for x e  g and ze  r ~176 (5) 

Then (pp depends only on the first p + l  variables, and by Proposition 6.5 
(ppe~(f + (~). We will use the sequence ((pp)p~q to construct an increasing sequence 
which violates the Brelot convergence property, but we first need some estimates 
of (pp. 

For t>O and p e n  we define 

ap(t)= ~ e -'11"11 (6) 
nEZ p 

9.4. Lemma. Let s>O be arbitrary. The infinite series 

%(t) 
.=  1 % ( s )  

converges for every t > s and uniformly for t > s +e for every e >0.  In particular we 
have 

l i m % ( 0 = 0  for t>s  
p~ ~ %(s)  

and 

r %( t )  lm - - =  oo for t<s .  
p~ Qo tTp(S) 

Proof. We will compare the quantity ap(t) with the quantity 

Zp(t)= Se-tllXlldx where t > 0  and p e N .  
RP 

One easily finds Zp(t)= Cpt -p where Cp is a constant depending only on p. 
For n e 7/p we put A, = n + [0, 1 [P and we then find 

e x p ( - t  sup [ I x l l ) < r p ( t ) < ~ e x p ( - t  inf Irxll). 
n~ p An An 

However, we clearly have 

llnlI-v~<[[xll<HnJ[+I/p for x e A , ,  

and hence 

e-rVPap(t)<=zp(t)<=etVTap(t) for p e n  and t > 0 .  

For s>0 ,  e > 0  and t>=s+e we then find 

ap(t) <ap(s+e) <et2S+~lv~ zp(s+g) et2S+.)g- ~ ( s )P 
% ( s )  = % ( s )  = ~,(s)  - ~ ' 
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and putting b v = e (2+ § ~) v7 we have lim bp§ = 1, and hence 
p~oo 

s ;<+, 
p=l \ s + e /  

so the assertion follows. 0 

9.5. For the sequence q ~ p ~ +  (f2) defined by (5) we have 

�9 sinh (�89 tl n II) 
(p,(e 'i, 0)= hp(�89 0)= 

.~z- sinh(lInll) ' 

where 0~ T ~~ as usual denotes the neutral element. The functions 

~kp= ~0j~op(e ir 0), pc]N, (7) 

belong to ~r (f2) and are all equal to 1 at the point (e i+, 0)~f2. We finally define 

L neN, (8) 
p = l  

and ( f , ) ,~  is an increasing sequence in ~ff+ (f2). 

9.6. Proposition. Let f2 be the domain in T ~ defined by f2=s(]O, ID x T + and 
let (f,),~N be the increasing sequence of functions from J'ff+ (f2) defined in (8). 

(i) For points ro in the subdomain f2'=s(]0, t 3[) x r of  I"2 the limit f(o))= 
~imf,(ro) exists and the convergence is uniform over compact subsets of  f2'. In parti- 

cular fe~f~(Q'). 
(ii). For points ogef2 of the form e) = (e ~x, O) where xe  [�89 1[ we have ~imf.(co)= m. 

Proof. For points meg2 of the form co=(e +x, 0) where xe]0 ,  1[ we have 

sinh(llnll x) 
E ,~z~ sinh ( fin II) 

For n ~ Z P \  {0} and x~]O, 1[ we have 

(1 - e - 2 ~ ) e  - I1.1I (~-~)< sinh (ltnll x) 1 e-t lntl  (l-x) 
= sinh(ttnll) - - < ~  

which together with 

1 
�89 1--e - 2  

implies that (cf. (6)) 
1 

I(1 - e  -zx) ap(1 - x ) < r  %(1 - x ) .  

For x =1 we have in particular 

1 
�89 (1 - e -  t) a,(�89 < q~p(e' �89 O) N - I . _ ~  %(�89 
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so there exist positive constants c a, c 2 such that 

cx(l_e_2X) av(~l x ) <=t~p(eix, o)<=c2 ap(1--x) avU ap(�89 for x~]0,  1[. (9) 

(i). Suppose now that co=(ei~,z) with x e ] 0 , � 8 9  for some ee]0,�89 and 
z e T  ~ By (9) we find 

0 <_ Op(co) <= Ov(e ix, O) <= c 2 ap(1 - x) 
- % ( � 8 9  ' 

and it follows by Lemma 9.4 that !imf,(co)exists uniformly for x e ] 0 , � 8 9  and 
ze Too and this proves (i). 

(ii). Suppose next that o)=(e ix, 0) with xe]�89 1[. By (9) and Lemma 9.4 we get 
lim Op(e~) = oo and afor t ior i  lim f,(co) = oe. 

p ~ o o  n ~ o o  

For ~o = (e i 21, 0) we have f,(~o) = n. [q 

9.7. Proposition 9.6 shows that the sheaf ~r ~ r  with sr 1 . . . .  ) and 2 = 0  
does not have the Brelot convergence property. The proof above can be modified 
to show that the Brelot convergence property also fails for the sheaf ~f~ where 
~r 1 . . . .  ) and 2>0.  

Addendum 

a) Let d be an arbitrary sequence of positive numbers and let 2 > 0. 
We know from w 7 that T oo has a base of ~ ' - r e g u l a r  domains, and we claim that 

the associated sweeping is elliptic. 
To be precise, let U be a regular subset of T p for some p > 1, put f2 = U • Too 

and let #~ denote the harmonic measure associated with e)=(x,  z)~O. We will 
prove that 

supp #~ = •Q = c~U x T ~ 

which implies the ellipticity. 
Let ~0 e C § (~ U). With the terminology of the proof of Theorem 5.13 we denote 

by Ho(x, 2) the value at x~ U of the solution to the LP-Dirichlet problem for U 
with boundary function ~0. By Theorem 5.13(ii) there exists a positive bounded 
measure a x on [0, oo[ Such that 

co 

H~(x, 2)= ~ e aSdax(s) for 2_->0. (1) 
0 

The function A defined in (2) w is negative definite, and the associated convolu- 
tion semigroup on T ~ is 

o9 

zt=e-~t@#ta,+ k for t > 0 ,  
k = l  

where (#t)t>o is the Brownian semigroup on T. 
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Put t ing  

oo 

vx = S ~,d~x(t), 
0 

we get a posi t ive b o u n d e d  measure  v x or T ~ the Fou r i e r  t r ans form of which is 
given by  

~ ,x (n )=H~(x ,  A(n) )  for neT7 (~). 

The so lu t ion  to the L~-Dir ichlet  p r o b l e m  for f2 with b o u n d a r y  funct ion f =  
(P | 7, is by T h e o r e m  7.5 given as 

F ( x ,  z ) =  H~,(x,  A ( n ) ) 7 , ( z )  = ~,:,(n)7,(z) = 7, * Vx(Z) 

for x ~ U  and z ~ T  ~. 
F r o m  this formula  follows immed ia t e ly  that  the so lu t ion  to the L~-Dir ichle t  

p rob lem for f2 with b o u n d a r y  funct ion f =  ~p | Z, where Z ~  C(T~ is 

F ( x ,  z) = Z * Vx(Z). 

Now, if supp #~ 4: ?Q, there exist q ~  C + (0U) and Z~ C + (T  ~ with ~p, ~ 4:0 such 
tha t  

d ~ ~(* v~(z)=0.  (2) F ( x , z ) = ~ o |  ~ =  

Since ~0+0 the measure  a x in (1) is non-zero ,  and  using that  supp z t =  T ~ for all 
t > 0  (cf. 4.2), we get supp  v x = T ~, which con t rad ic t s  (2) because  Z > 0 ,  4= 0. 

R e m a r k .  It is easy to deduce  T h e o r e m  8.5 from the ell ipticity.  It follows that  
the result  in T h e o r e m  8.5 is val id  wi thout  any growth  cond i t ion  on the sequence d .  

b) The m e t h o d  of  w 9 app l i ed  to the sheaf ~ leads to the fol lowing resul t :  
Suppose  inf a k > 0 and let s k = a 1 q - . . .  -k- a k . I f  l im ( s l /~k+ ~ -- ~ k )  = 0 the sheaf  )ffff 

k e n  k ~  oo 

does not  have the Brelot  convergence  proper ty .  In par t i cu la r  the Brelot  conver-  
gence p rope r ty  fails for the sheafs ~ with a k = k e for 0 ~ ~ < 1. 
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Note added in proof. Professor Fuglede has kindly pointed out for us that condition (4) in paragraph 4 
implies the convergence of the series in 4.18. 


