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Non-Symmetric 
Translation Invariant Dirichlet Forms 

Christian Berg (Kobenhavn) and Gunnar Forst (Kobenhavn) 

Introduction 

In order to treat certain "non-symmetric" potential theories, It6 I-4] 
and Bliedtner [1] have generalized Beurling and Deny's theory of 
Dirichlet spaces by replacing the inner product in the Dirichlet space 
with a bilinear form defined on a real, regular functional space. This 
bilinear form, called a Dirichlet form, is supposed to be continuous and 
coercive, and furthermore to satisfy a "contraction"-condition. 

When the underlying space is a locally compact abelian group, there 
is a complete characterization of translation invariant Dirichlet spaces 
in terms of real, negative definite functions on the dual group. The 
main purpose of the paper is to obtain an analogous characterization 
(Theorem 3.7) of translation invariant Dirichlet forms, in terms of 
complex, negative definite functions on the dual group. 

The contents of the paper may be summarized in the following way: 
In w 1 we study positive closed sesquilinear forms on an abstract complex 
Hilbert space, and using the Lax-Milgram theorem, it is shown, that 
with every such form is associated a resolvent. The theory is specialized 
in w 2 to sesquilinear forms on the Hilbert space L 2 (X, ~), where some 
relations with normal contractions are discussed. In particular an example 
of a positive closed form fl is given, such that the unit contraction operates 
with respect to fl, but not with respect to the form fl*, which is adjoint 
to ft. However, in the case of a translation invariant, positive closed 
form fl on L 2 (G), where G is a locally compact abelian group, it is shown 
in w 3, that the unit contraction operates with respect to fl if and only if 
it operates with respect to fl*, and we finish by establishing the above 
mentioned characterization of translation invariant Dirichlet forms. 

w 1. Positive Closed Sesquilinear Forms 

Let E be a complex Hilbert space with scalar product (., .) and 
norm II'll. Furthermore let V be a dense subspace and fl: Vx V-~C a 
sesquilinear form. The adjoint form fl* is defined by fl*(x, y)=fl(y, x), 
and the hermitian part of fl by ct = �89 + fl*). 
14 lnventioncs math.,Vol. 21 
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1.I. Definition. A sesquilinear form /7, or more precisely (fl, V), is 
called a positive closed form on E, if the following three conditions are 
fulfilled: 

i) Re ~(x, x)>=O for all xe  V. 
ii) There is a constant C>O such that 

II~(x,y)l<Cllxll~Jly[[~ for all x,y~V, 

where Ilxll~=(~(x,x))+ is the Hilbert seminorm associated with the 
positive hermitian form ct. 

iii) The subspace V is complete under the norm I1" IIv, given by 
Ilxll2v= Ilxl12+ IIxL2 = Ilxl12+ Re/~(x, x), and with associated scalar product 

(x, Y)v =(x, y) + ~(x, y). 

1.2. Remark. If E is a real Hilbert space, V a dense subspace of E and 
fl: V x V ~ P ,  a real bilinear form satisfying the three conditions of 1.1, 
we will also say that fl is a (real) positive dosed form on E. 

Let ~ be a real, regular functional space on (X, ~) and fl a continuous, 
coercive bilinear form on ~ (cf. Bliedtner [1]). The restriction of fl to 
( , ~ L 2 ( X ,  r215 (~a~L2(X, ~))is then a positive closed form on the 
real Hilbert space L 2 (X, ~). 

1.3. Let (fl, V) be a positive closed form on E. Then there exists a 
continuous linear mapping P from the Hilbert space E to the Hilbert 
space (V, [l" IIv) such that 

(x,y)=(Px, y)v for all x~E, y~V. 

This follows from the estimate 

t(x, y)l < Itxlt �9 Ilyll < [Ixll �9 Ilyllv, 

which also shows that IlPxllv---Ilxll. 
For  later use we note that P(E) is dense in (V, I1" Ilv). 

1.4. Definition. The generator (A, Da) of a positive closed form ~ is 
the operator in E with domain 

Da={x~ V]3 x* ~E V y~ V: fl(x, y)= - (x* ,  y)} 

and defined by 
Ax=x* for x~DA. 

We shall now see that (A, DA) is the infinitesimal generator of a 
strongly continuous contraction semigroup (Pt)t>o of operators in E. By 
the HiUe-Yosida theorem (cf. Meyer [5] and Yosida [6]) this is contained 
in the following theorem. 
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1.5. Theorem. Let fl be a positive closed form on E. For each ) .>0 
there exists a uniquely determined bounded operator R~ in E, which maps E 
into V such that 

f l (R~x,y)=(x-) .R~x,y)  forall xeE, y~V. (*) 

The family (R~)~> o is a strongly continuous contraction resolvent satis- 
fying ( ) . I -A)  -1 =R~ for all ).>0. 

Proof. For ) .>0 we define a sesquilinear form fl~ on V by 

fl~(x, y) = fl(x, y) +).(x,  y), 

and the inequalities 

I/~(x, y)t _-_5 C Ilxll~ Ilyll~ +) .  llxll l[yl[ 

< max(C, A)IIxllv [lyllv 
and 

Re fix(x, x ) = R e  fl(x, x)+).  Ilxll 2 

>_- min(1, ).) Ilxlt2v 

show that fl~ is a continuous coercive sesquilinear form on the Hilbert 
space (V, I1" IIv). 

By the Lax-Milgram theorem (cf. Yosida [6], p. 92) there is an iso- 
morphism Sz of(V, 11" 1Iv) such that 

(x,y)=(Px, y)v=fla(SaPx, y) for all x~E, y~V. 

This shows that the operator R~ = S~ P satisfies 

fl~(R~x,y)=(x,y) for all x~E, y~V (**) 

and hence 

fl(Rzx, y )=(x- ) .R~x ,y )  for all xeE, yeV. 

Obviously Ra is uniquely determined by (**). 
The following calculation shows that ~. Ra is a contraction in E. 

). II R~ x II 2 = _ ( x - ) .  R x x, Rx x) + (x, Ra x) 

= -fl(R~x, R~x)+(x, R~ x) 

= - R e  fl(R~x, R~x)+Re(x, R;~x) 

< Re (x, Rx x) 

< Ilxll IIRx xll �9 

From (*) it follows by the definition of (A, D,0 that Rx(E)~_Da and 
that 0 . 1 -  A) R x x = x  for all xeE. 
14" 
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Furthermore, by (**) and the definition of (A, DA) we get 

fla(x,y)=(().I-A)x,y)=fl~(Rx(2I-A)x,y) forall x~DA, y~V, 

and on account of the coerciveness of fla on (V, II" II v) it follows that 

x=Rx(2 I -A)x  for all xeDA. 

We have now shown that Rx=(2I-A)  -~, 2 > 0  is a contraction 
resolvent, so in order to prove the strong continuity of (Rx)x>o on E, it 
suffices to verify that DA is dense in E (cf. Meyer [51, p. 260), and this 
follows from Lemma 1.6 below, since V is dense in E. D 

1.6. Lemma. The subspaee Da is dense in (V, I[" Hv) and lim2Rx=I 
strongly in (V,, [[" [Iv). ~ 0o 

Proof. We first show that the operators (2Rx)x>o are uniformly 
bounded in (V, I[" [Iv). By (.) we have 

[[x-2Rxx[12=fl(Rxx, x--2Rxx)>=O for all xeV, 

and this implies 
2 []Rx xll~ =2  Re fl(Rx x, R~ x) 

<=Refl(Rxx, x) 

<CllRxxli~llxll~, 
hence 

II,lR~ xll~< C Ilxll~. 

Since also 112 R~ xll < IIx[[ we find 

ll2Raxllv<max(C 2, 1) ~ Ilxl[v for all xeV. 

By Lax-Milgram's theorem Sa is an isomorphism of the Hilbert 
space V onto itself, and this implies that Da=Rx(E)=Sa(P(E)) is dense 
in (V, I1" IIv) because P(E) is so. 

On account of the uniform boundedness of 2 Rx on (V, II �9 I Iv) the second 
part of the lemrna is proved when we have seen that lim 2 Rx x=x 

in (V, II" IIv) for all x in the dense subspace Da. For xeDA we find 

I Ix -2  Rx xll~, = I I x - 2  Ra xll 2 + R e  f l ( x - 2  R~x, x - 2  R;~ x) 

= I I x - 2  Rxxll 2 + Re fl(x, x - 2  Rax)-2 IIx-2 Rxxlff 

< IIx--2Rxxll2--Re(Ax, x -2Rxx)  

< IIx--2Raxll2+ IIAxll IIx-2gxxll, 

which tends to zero as 2 ~ o0, because (Rxh>0 is strongly continuous 
onE .  13 
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1.7. Remark. To every positive closed form fl we have associated a 
strongly continuous contraction semigroup (Pt)t>o of operators in E, 
with resolvent (R~)~> o and infinitesimal generator (A, DA). 

The corresponding objects for the adjoint form fl* are the adjoint 
operators (Pt*)t>0, (R~)a>0, (A*,DA*). To see this, let /~  denote the 
resolvent for the form fl*. We then have 

fl*(Ray, x )=(y -2R~y ,x )  for alt yEE, xEV, 

and in particular 

/~* (/~ y, R~ x) = ( y -  2 / ~  y, R~ x) 

Likewise we get from (.) that 

fl(R~ x ,R~y)=(x-) ,R~ x,R~y) 

and it follows that 

( x - 2  Rax, [~y) =(R a x, y-2/~xY) 
and then 

(Ra x, y)= (x,/~x Y) 

and the proof is easily accomplished. 

for all x, y~E. 

for all x, y~ E, 

for all x, y~E, 

for all x, yeE, 

w 2. Dirichlet Forms 

Let X be a locally compact space endowed with a positive Radon 
measure r We shall consider positive closed forms (fl, V) on the complex 
Hilbert space Lz(x, O. 

2.1. Definition. We will say that a normal contraction T of the 
complex plane operates on V with respect to fl, if the following holds: 

For every f~  V we have Tf~ V and 

Ref l ( f  + Tf, f -Tf)>=O. 

Here T f  is defined as the composite function Tof (cf. Deny [2] and 
Bliedtner [1]). 

The modulus contraction T(z)=lzl operates on V with respect to fl if 
and only if it operates on V with respect to fl*, as is easily seen. An analo- 
gous result is however false for the unit contraction 7"i (T~ is the projection 
of C onto the unit interval I = [0, 1]) as the following example shows. 
This gives an answer to It6 [4]. 

2.2. Example. Let X be a two point set X={1,2}  and r  
The space L 2 (X, 0 can thus be identified with r The sesquilinear forms 
in question are given as 2 x 2-matrices: To the matrix (fl~i)~,J= 1,2 we 
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associate 2 
fl (x, y) = ~ fl,j x, yj. 

i , j=l  

( 2 0).  It is easily seenthat  We consider the form fl defined by (/3~)= _ 1 2 

Re fl(x, x)>�88 Ilxll 2 and it follows that/~ is a positive closed form. It can 
be seen directly, that T~ operates with respect to fl, by going through the 
nine possibilities for f = (fl,  f2) 

f~<0,  0 < f ~ < l ,  l< f~ ,  i=1 ,2 ,  

in which cases T~ f can be given explicitly. (It is enough to look at real f 's .)  
On the other hand T~ does not operate with respect to 1~*, for if 

f = ( 1 , { )  we have T i f= (1 ,  1), and 

~*( f  + Tlf, f - T~f)= -3 .  

2.3. Definition. A positive closed form (/~, V) on L2(X, ~) is called a 
Dirichlet form, if the unit contraction T~ operates on V with respect to/~ 
as well as/~*, i.e. 

For all f ~  V we have Tl f ~  V and 

Re # ( f  + T1f, f - Tl f)>=O 

Re # ( f  - T1f, f + Tx f)>O. 

The hermitian part ~ of a Dirichlet form /~ is easily seen to be a 
Dirichlet form in the sense of Deny [2], i.e. 

For all f~  V we have Tx fE  V and 

ot(T1f, Ti f)<ot(f,  f ) .  

w 3. Translation lnvariant Dirichlet Forms 

Let G be a locally compact abelian group with Haar measure dx. 

3.1. A vaguely continuous convolution semigroup on G is a semigroup 
of positive measures (Pt)t>o with total mass S d/~t<l, and such that 
l i m / ~ = %  vaguely. Vaguely continuous convolution semigroups (P~)t>o 
t~O 
are in one-to-one correspondence with continuous, negative definite func- 
tions ~b defined on the dual group F, by the Fourier transformation 
(cf. Deny 1"2]), 

~ ( y ) = e  -~ r  for all t>0 ,  y~F. 

3.2. A positive measure/z on G with total mass S d/z < 1 determines 
a bounded operator M on L2(G) by convolution, M f = p , f  for f ~ L  2. 
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The operator M commutes with the translations on G and is sub- 
markovian, and conversely any bounded operator on L 2 (G) with these 
properties is given as convolution with a positive measure # on G, of 
total mass S dp<__ 1. 

3.3. If (#t)t>o is a vaguely continuous convolution semigroup on G, 
we get a strongly continuous contraction semigroup (Pt),, o of operators 
on L 2 (G), defined by Pt f = / A * f  for f e L  2 (G). 

We shall now prove a useful characterization of the infinitesimal 
generator (A, D,0 of the semigroup (Pt)t > o, by using the Fourier-Plancherel 
transformation of L 2 (G) onto L 2 (F) (here L 2 (F) means L 2 (F, dy), where d7 
is a Haar measure on F, normalized in such a way that the Plancherel 
theorem holds with respect to dx and dy). 

Proposition. The domain D A of A is given by 

Oa = {fE L 2 (G)I fqJ r L 2 (F)}, 
and 

~ f = - f ~ ,  for f~Oa. 

Proof. If f~D a we have 

and then 

l i m l ( p t f - f ) = A f  in LZ(G) 

l i m l ( e - ' C ' - l ) f = A ~ f "  in L2(F). 
t~O t 

Since lira 1 ( e - ' * ~ ' - 1 ) =  -~ ,  (~) for all ~, e F, it follows that 
t ~ 0  /: 

Aff = - f o  in L2(F). 

Next, suppose that f~L2(G) and fO~L2(F). By the mean-value 
theorem we get 

l ( e - ' ~ ' - l )  _<[tp[ forall t > 0 ,  

because Re 0 > 0, and then we have 

l i m l ~ ( e - ' * - l ) f = - f f f /  in L2 (F), 
t~O t 

which shows that f~DA. D 
3.4. Definition. A positive closed form (fl, V) on L2(G) is called 

translation invariant if the following holds. 
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For all f ~  V, xeG we have f*  exe V and 

[3(f.ex, g ,ex)=[3(f ,g)  for all f ,  g6 V. 

It is easy to see that ([3, V) is translation invariant if and only if the 
associated resolvent operators (Ra), ~ > 0 commute with the translations: 

Rx( f*e~)=(Rf f )*ex  for all g>O,f~L2(G), x~G. 

3.5. Theorem. Let ([3, V) be a translation invariant positive closed 
form on L 2 (G) and suppose that T1f~ V for all f~  V (where 7"i is the unit 
contraction, cfi 2.1). The following properties are equivalent. 

(i) T~ operates with respect to [3. 
(ii) 2 Rx is sub-markovian for all ~ > O. 

(iii) 2 R* is sub-markovian for all ~ > O. 
(iv) T I operates with respect to [3*. 

Proof. (i) ~ (ii). We prove that 2 R x +~ is sub-markovian for all 4, ~t > 0, 
and this implies (ii). 

Let f~L2(G), 0=<f_<l loc.-p.p., and let 4,/a>0. We put g=2Rx+z f .  
By hypothesis we have 

Re [3(g + T~g, g -  Tlg)>-_O, 

and it is evident that 

~'l~gl2dx~ J'tg? dx. 
G G 

This implies that 

Re B~(g, g -  Txg)~ - R e  [3. (T~ g, g -  T~ g). 

We have the following inequalities 

~t Jig- T~gl[2 ~ Re B~(g- Txg, g -  T~g) 

2 Re/~  (g, g - T~ g) 

--2,~. Re( f - -g ,  g -  T~ g) 

= - 2 2  [[f_g[[2 +22  R e ( f - g , f -  T~ g) 

- 2 4  l l f -g l l2+2~  l if-glf  it f -  T~gll. 

We now use that f =  T~f so that 

It f -  Ttgll = IlTrf - T~gH ~= IIf -gH,  

which shows, that the last expression in the above inequalities is <__ O. 
It follows that # Jig-TxgH 2--0, and this implies that O=<g=< 1 loc.-p.p. 
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(ii) ~ (iii). Under the assumption (ii) there exists a positive measure 
p~ with ~2dpz<l  such that R z f = p z , f  (el. 3,2). It follows that the 
adjoint operator R* is given by R*f---~a * f  where ka is the reflection of 
p~ in the neutral element in G. This shows that 2 R~' is sub-markovian. 

(ii) ~ (i). There exists a positive measure Pa with ~ 2 dpa< 1, such 
that Raf  =pa * f for f~L2(G), 2>0.  

Let f e  V. It suffices to prove that 

Re fi(T~ f, f - T~ f)>-.O, 
because we then have 

Re f l ( f  + T~ f , f -  Ttf)  = Re f l ( f  - Ttf, f -  Tl f)  +2 Re fl(Ttf, f -  T~f) >0. 

By Lemma 1.6 it follows that 

lim fl (2 R z f ,  g) ~ fl ( f ,  g) ) ~  

or equivalently 

l im2( f  - 2R~f,g)=fi[f ,g)  

for all f ,  g eV  

for all f g e V .  

It is therefore enough to prove that 

Re(T x f -  2 Rx(T ~ f) ,  f -  T t f} >0.  

The left hand side of this inequality is equal to I t+ lz where 

It=(1 - j  2 dpa) J T~ f(x)(Re f ( x ) -  T,f(x)) dx 
G 

and 

Since 

12 = 2 ~ (~ (7"i f(x) - T~ f ( x  - y)) (Re f(x) - Tx f(x)) dx) dpa (y). 
G G 

0 if Re f ( x ) < 0  

T~f(x) (Ref (x) -  Tif(x))= 0 if 0<Ref (x )_ -  < 1 
( R e f ( x ) - I  if l < R e f ( x )  

we find that It >_-0. 
If we put A={xeGlRef (x)<O},  B={xeGtRe f (x )> l } ,  the inner 

integral of I s can be written 

- ~ T~ f ( x -  y) Ref(x)  dx + ~ (1 - TI f ( x -  y))(Re f(x) - 1) dx 
A 11 

which is non-negative for all y~G. This implies that I2 >0. Q 
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3.6. Corollary. A translation invariant positive closed form (fl, V) on 
L 2 (G) is a Dirichlet form if and only if the unit contraction operates on V 
with respect to ft. 

We now come to our main result. 

3.7. Theorem. Let (fl, V) be a translation invariant Dirichlet form on 
L 2 (G). Then there exists a continuous, negative definite function ~b: F ~ C 
satisfying an inequality of the form 

[Im ~b[_-< C . R e  ~ (1) 

for a suitable constant C > O, such that 

V= {f~ L 2 (G)[~ [f[2 Re ~b d 7 < oo } (2) 

and such that 

f l ( f , g ) = I f ~ O d y  for f g e V .  (3) 

Conversely, let ~: F - ~  be a continuous, negative definite function 
satisfying (1) for a C >0. Then the pair (fl, V) with V as in (2) and fl defined 
by (3), constitutes a translation invariant Dirichlet form on L 2 (G). 

Proof. The hermitian part (ct, V) of (fl, V) is a translation invariant 
Dirichlet form, in the sense of Deny l-2], on L 2 (G), and it follows (cf. I-2], 
p. 190) that there exists a continuous, negative definite function ~k~: F --* R 
such that 

V={feL2(G)I  I if[2 ~ ' d y <  oo} 
and such that 

~ ( f , g ) = ~ f ~  r d? f o r f ,  geV.  

The operators (2Ra)x>o, where (Rx)x>o is the resolvent associated 
with fl, are sub-markovian and commute with the translations of G, and 
this implies that the semigroup (P,)t>o associated with fl consists of sub- 
markovian operators which commute with the translations of G. It is then 
easy to see that the associated family of positive measures (/4),>o on G 
with total mass S d/4 < 1 (cf. 3.2) constitutes a vaguely continuous con- 
volution semigroup on G. Let ~k: F ~ C be the corresponding continuous, 
negative definite function (cf. 3.1). 

For all feD, t  and g e V w e  find (cf. 1.4 and 3.3) 

and in particular 

~(f, g ) = ( - A  f, g)=I f~  r d?, 

:t ( f , f ) = R e  fl(f,,f)=~ Ill 2 Re ~h dy 
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for all feD,, .  By Proposition 3.3 we have 

.~q~eD,,c_V for all tp e ag'(F), 

where ~ ( F )  is the set of continuous, complex functions on F with com- 
pact support, and this implies that 

j" }~0[2 Re ~/, dy = j" [q~[2 ~U d? ' for all q~ oU (F) 

hence that 
Re ~O=~U. 

Since fl is continuous with respect to [[. I],, there is a constant C > 0  
such that for all ~0eJg(F) 

or  

hence that 

I~ q,q, d~,l<= C i q, Re~, & 

and it is easy to see that this implies 

lira ~,[< C. Re ~, 

--C~lq~[2 R e O d y ,  

for all q~ ~ ~ff + (F), 

on F. 

Let f, ge  V. Since D`* is dense in (V, L[" [Iv) (cf. Lemma 1.6) there exists 
a sequence (f.) with f .  ~ D`* and such that [[ f . - f  []~ ~ 0. By the inequality 
(1) the integral 

is well-defined, and we find 

]fl(f, g ) -  ~ f g ~ d71<-_ [fl(f - f , ,  g) -  ~ ( f  - f o ~ ~ dy[ 

<-_ C Hf - f.H~ [[g[[~ + ~ [f  - f~[ [g[ [~b[ dy 

<(2 C +  1) ] l f -LI l~ IIgH~ 

which shows that (3) is fulfilled. 
Conversely, suppose that ~b: F ~ ~E is a continuous, negative definite 

function satisfying an inequality of the form (1) with a constant C>0 .  
The function Re ~b is then a real, continuous, negative definite function 
on F, and it defines a translation invariant Dirichlet form (0t, V) on 
L 2 (G), in the sense of Deny [2]. Here the domain V is given by 

V= {feLa(G)[~ [fla Re 0 dy<  oo} 
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and for f, g~ V we have 

For f, g~ V we now put 

f l ( f ,g)=~ f~  @dy, 

which is well-defined in view of (1). It is clear that fl: V• V-~E is a 
sesquilinear form, and for f ,  ge  V we find 

[fl(f, g)l = ISfg" i lm @ dy + ~ f ~ .  Re @ dy[ 

<S Ifl" I~t C Re ~ dT+ ~ Ill '  I~1 Re ff dy 

=(1 + C) ~ Ill(Re ff)~ I~l (Re ~k)* d~ 
hence 

Jfl(f, g)l 2 <(1 + C) 2 ~ Ifl ~ Re ~k d 7 �9 ~ 1~[ 2 Re ~b d 7 

=(1 + C) 2 ct ( f , f )  ~(g, g), 

and it follows that (fl, V) is a positive closed form on L 2 (G). 
It is clear that the form fl is translation invariant, and the proof will 

thus be finished when we have seen that the unit contraction operates 
on V with respect to fl, or equivalently (cf. 3.5) that the family (2 Rxh>o, 
where (R~)x > o is the resolvent associated with fl, consists of sub-markovian 
operators. This is indeed the case, because (Rx) is for 2 >0  given as con- 
volution with the measure px defined by 

~=(~+~)-~ 

(the function (2 + ~,)- ~ is continuous and positive definite). To see this, we 
remark that feLZ(G) implies Pa *fff V because 

[px-~,f[ e Re @=lfl  2 Re ~k IA+~,l-2_-<A - '  Ifl 2. 

Furthermore we have for all f~L2(G) and g~ V that 

fl (p~ . f ,  g)= ~f.  (2 + ~b)-' ~. ~, dy 

=(f ,  g ) -2 (px  *f, g), 
and this shows that 

R~f=p~*f for feL2(G). D 

3.8. Remarks. Let (fl, V) be a translation invariant Dirichlet form on 
L2(G) with associated continuous, negative definite function ~k. Let 
(ct, V) be the hermitian part of (fl, V). 
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1. It is seen from the proof of Theorem 3.7, that the continuous, 
negative definite function associated with (ct, V) is simply Re ~, and it 
follows that the strongly continuous contraction semigroup (P,'),>o 
associated with (ct, V) (cf. 1.5) is given by 

~ t  =Pt/2 Pt~2 for t>O, 

where (Pt)t> 0 is the semigroup associated with (fl, V). 

2. Let f~Da and ge V be real functions. Then 

f l ( f , , g )=( -A f ,  g) is real, 

because the semigroup (Pt) is given as convolution with positive measures 
on G. For  real f , g ~ V  we have that 2 R x f E D  a and 2 R z f ~ f  in [1, I1~, 
and hence that 

I/3(2 Rzf ,  g)--/3(f, g)t < C I1~ R z f - f l l ~  IIg[l~, 

which implies that/3(f,  g) is real. 

3. From Deny [2], p. 190, we know that (ct, V) is positive definite if 
(Re ~,)-l~L~o r and in this case the completion l? ~ of V with respect to 
the norm I[" I1~ is a regular, translation invariant Dirichlet space. The 
form/3 can be extended to a positive closed form (also denoted/3) on V~. 
It can be seen (cf. a proof in Bliedtner [1], p. 34) that the unit contraction 
operates on 1 ~ with respect to fl and fl*. 

4. Suppose that (Re~b)-l~L~oc. Then ~k -1 is dT-locally integrable, 
and the measure ~/J- ~ dT is positive definite. Let x be the (generalized) 
Fouriertransform (cf. Godement [3]) of ~b -1 d T, i.e. the measure x on G 
determined by 

f ,  ~ (y)(~ (y))- ' d), = .[ if:f (x) ~g (x )  d~c(x) 

for f, g~r~(F)  (where ~(T)=g(-T)) .  It is easy to see that 

oo 
it---- ~ #t dt vaguely, 

O 

and it follows that 
Pa ~ x vaguely as 2 -o O. 

For f~  W (G) and 2 > 0 we find 

IIp~*fll~ =~ Ifl 212+~1-2 Re ~ a T 

_<_~ Ifl 2 (Re I]/) -1 dT, 

and the right hand side is finite since it is equal to x ~ ( f . f )  where r ~ is 
the Fouriertransform of the measure (Re ~b)- 1 dy. It follows that there 
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exists an element ue I7~ and a sequence (2.) such that 2 . - ,  0 and 

p ~ . * f - ,  u weakly in ~ .  

On the other hand 

p ~ , * f - ,  r * f  uniformly on compact sets, 

and it follows that 
p = ~: * f  loc.-p, p. in G, 

and that 
fl(~ *f, v)= lim fl(p~, , f ,  v) 

= lim S pz'~**f. ~ ~b d ? 
n ~ o o  

= ! i fn j  f ~  ~0. .  + ~b) - t  d? 

=If~d? 

= fvax, 
for all v~ V, and K * f  is thus the fl-potential generated by f~ (G) .  
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