
LECTURE 5: ARITHMETIZATION OF SYNTAX

In the previous lectures we have introduced:

‚ A notion of computability for number-theoretic functions, namely the recursive (and prim-

itive recursive) functions.

‚ The syntactical1 notions of a first-order language: symbols, expressions, terms, formulas.

‚ The semantic2 notions associated with interpreting the language: models (structures), eval-

uation of terms when variables are assigened values, and the notion of satisfaction of a

formula, and truth of a sentence, and logical implication.

In this development it has been clear how the semantic notions rest upon the syntactical notions,

but so far, it is not clear how the computability-theoretic notions connect to the rest. The goal of

this lecture is to now connect the syntactical notions to computability.

Warning: In this lecture, we will be using the normal round parentheses, (and), to enclose

tuples, and not the angled parenthesis. The angled parentheses, x and y, will now be be used for

something else, namely it will be used for a number which codes a tuple of elements of ω. Though

this may seem confusing at a first glance, you will get used to this fairly quickly; and only in part

(ii) of the warning on p. 4 does a conflict of notation arise, albeit briefly.

Acknowledgment: I gratefully acknowledge that these notes owe their existence to the efforts of

Jonas Jensen, a student who took the course in 2013. They are based on a set of notes TEX’ed

up by Jonas Jensen, who selflessly took the time to convert my original handwritten notes for the

benefit of all future students of the course.

1. Coding and decoding sequences of numbers using recursive functions

Throughout, we shall take for granted the fact that there is a recursive (in fact primitive recursive)

function, ω Ñ ω : i ÞÑ pi, where pi is the pi`1qst prime. (So p0 “ 2, p1 “ 3 , p3 “ 5 etc.) Eventually

you will be asked to prove this fact in the exercises. We also remind the reader of the relation Div,

defined by

Div “ tpm,nq P ω2 : m divides nu,

and that this is a primitive recursive relation.

Definition 1.1. For pa0, . . . , am´1q P ω
m, let

xa0, . . . , am´1y “ pa0`10 ¨ ¨ ¨ p
am´1`1
m´1 “

ź

iăm

pai`1i P ω.

So xa0, . . . , am´1y is a single number3 in ω. By the uniqueness of prime factorization, we can

recover (“decode”) the tuple pa0, . . . , am´1q from xa0, . . . , am´1y. In other words,

ωm Ñ ω : pa0, . . . , am´1q ÞÑ xa0, . . . , am´1y

1Syntactical: Pertaining to the rules of arranging symbols correctly, according to grammatical laws.
2Semantic: Pertaining to the meaning of symbols.
3The number xa0, . . . , am´1y is sometimes called the code for the sequence pa0, . . . , am´1q

1

2 LECTURE 5: ARITHMETIZATION OF SYNTAX

is an injection.

The next lemma shows that this coding is “nice” in the sense that recursive (and primitive recur-

sive) functions can decode and perform elementary sequence operations on the codes for sequences.

Lemma 1.2. (1) For each m P ω, the map

ωm Ñ ω : pa0, . . . , am´1q ÞÑ xa0, . . . , am´1y

is primitive recursive.

(2) There is a recursive function ω2 Ñ ω : pa, bq ÞÑ paqb, such that if a “ xa0, . . . , am´1y for some

m P ω and b ă m, then paqb “ ab.

(3) The set of “sequence numbers”,

Seq “ tn P ω : pDmqpDa0, . . . , am´1 P ωqn “ xa0, . . . , am´1yu

is primitive recursive

(4) There is a recursive function `h : ω Ñ ω such that `hpxa0, . . . , am´1yq “ m.

(5) There is a recursive function ω2 Ñ ω : pa, bq ÞÑ a æ b, such that if a “ xa0, . . . , am´1y for some

m P ω and some a0, . . . , am´1 P ω, then a æ b “ xa0, . . . , ab´1y for any b ď m.

Remark 1.3. In (2), (4) and (5) above, we are describing recursive functions that have required

properties on a subset of their domain. For instance, in (2), you may rightfully wonder what

happens when b ě m and we try to compute paqb. The truth is that we don’t care, as long as

the recursive function does the right thing on the part of the domain we care about (which in (2)

means for a of the form a “ xa0, . . . , am´1y and b ď m). In computer programming this principle

is often called “garbage in, garbage out”: If your input is not of the form required by the prorgam,

the programmer takes no responsibility for what nonsense output the computer may produce.

Proof. (1) this follows from that multiplication and exponentiation are primitive recursive.

(2) Let

R “ tpa, b, nq : a ‰ 0^ pn`1b | au “ tpa, b, nq P ω3 : a ‰ 0^ ppn`1b , aq P Divu,

where Div is as defined above (and in the recursion theory notes). It is not hard to see that R is

primitive recursive (do it!). (2) now follows since

paqb “ µnrpa, b, nq R Rs´ 1.

(3) Let now R “ tpa, iq P ω2 : a ą 0 ^ pDivppi`1, aq Ñ Divppi, aqqu. Then this is primitive

recursive (check this!), and consider

R@
ă

“ tpa, nq P ω2 : p@i ă nqRpa, iqu.

This is primitive recursive, and it is easy to see that

Seq “ ta P ω : pa, a` 1q P R@
ă

u.

(4) `hpaq “ µnrppn, aq R Divs.

(5) We have

a æ b “ µnra “ 0_ pn ‰ 0^ p@j ă bqp@k ă aqDivppkj , aq Ñ Divppkj , nqqs,

from which it is easy to check that pa, bq ÞÑ a æ b is recursive. �

LECTURE 5: ARITHMETIZATION OF SYNTAX 3

Exercise 1. Give the details of the proof of (1) in the previous lemma.

Exercise 2. Fill in the details in the proofs of (4) and (5) in the previous lemma. What this

amounts to two things: First proving why the definitions given above actually work to produce the

desired functions, and the proving that the definition, after suitable unpacking, define recursive

functions.

Remark 1.4. In the lemma above, with some additional work we could show that all these functions

are in fact primitive recursive, but we don’t need this strengthening.

Our last sequence operation, which we need to check can be done “recursively in the codes”, is

concatenation, that is, the act of putting two sequences together by sticking the second one on the

end of the first. That is taken care of by (1) in the next Lemma, while (2) allows concatenation

of possibly more than two sequences. In fact, (2) expresses the fact that concatenation of a P ω

sequences can be done in a recursive way uniformly in a.

Lemma 1.5 (Concatenation operations).

(1) There is a recursive function ω2 Ñ ω : pa, bq ÞÑ a˚b, such that xa0, . . . , am´1y˚xb0, . . . , bk´1y “

xa0, . . . , am´1, b0, . . . , bk´1y for any m, k P ω and pa0, . . . , am´1q P ω
m and pb0, . . . , bk´1q P ω

k.

(2) More generally, if f : ωn`1 Ñ ω is a recursive function, then there is a recursive function

F : ωn`1 Ñ ω, such that whenever a, b1, . . . , bn P ω and for all i ă a we have fpi, b1, . . . , bnq P Seq,

then

F pa, b1, . . . , bnq “ ˚iăafpi, b1, . . . , bnq
def!
“ fp0, b1, . . . , bnq ˚ ¨ ¨ ¨ ˚ fpa´ 1, b1, . . . , bnq

Proof. We will return to this in the future, or you can find a proof on p. 223 in our textbook. �

2. Gödel numbering

We will now see that our syntactical notions can be “coded” by natural numbers, and ”decoded”

and described by (primitive) recursive functions and relations.

Definition 2.1. (1) We assign (once and for all) to each logical symbol (and “) a number as

follows:
Symbol @ p q Ñ “ vi
Number 0 1 3 5 7 9 9` 2i

(2) Let L be a countable language, and let h : L Ñ ω be an injection from the non-logical

symbols of L to the positive even numbers. We say that h is a recursive numbering4 of L if the sets

FL “ txk,my P ω : k is the value of h at some m-place function symbol of Lu

and

RL “ txk,my P ω : k is the value of h at some m-place relation symbol of Lu,
are recursive.

Remark 2.2. In p2q above we identify constant symbols with 0-place function symbols. If L is finite

(i.e., has finitely many non-logical symbols) then FL and RL are finite, and so any numbering h is

a recursive numbering.

4Also called a recursive presentation.

4 LECTURE 5: ARITHMETIZATION OF SYNTAX

Example 2.3. For LPA “ t0̂, Ŝ, ˆ̀ ,ˆ̈, ă̂u, we make (once and for all) the following numbering:

Symbol 0̂ Ŝ ă̂ ˆ̀ ˆ̈

Number 2 4 6 8 10

since LPA is finite, this numbering is recursive.

Definition 2.4. Let L be a recursively numbered language, numbered by some h : L Ñ ω. Let

ε “ s0 ¨ ¨ ¨ sn´1 be an expression in L (i.e. a finite string of symbols in L). The Gödel number of ε

is

#ε
def
“ xhps0q, . . . , hpsn´1qy.

Warnings: (i) The Gödel number #ε depends on h, unless no non-logical symbol occur in ε.

(ii) When we write #s, where s P L is some symbol, we (of course) really mean #xsy. (Here xsy

means the one-element sequence consisting of s, that is, the angled parenthesis are being used in

their previous meaning!) (iii) For any symbol s P L, #s ‰ hpsq (think about this!).

Example 2.5. Let LPA be numbered as before, and consider the expression5 p@v6qv6 “ 0̂. Then

#p@v6qv6 “ 0̂ is

x1, 0, 21, 3, 21, 9, 2y “ 21`130`1521`173`11121`1139`1172`1 “ 22315227411221310173

The Gödel number #p@v6qv6 “ 0̂ is larger than 1047, which is more than the number of water

molecules in all the oceans on Earth.

Definition 2.6. Let L be a recursive presented language, and let Φ be a set of expressions in L.

We define

#Φ “ t#ε : ε P Φu,

and say that the set of Gödel numbers for elements of Φ is recursive (respectively primitive recursive)

if #Φ is recursive (respectively primitive recursive) as a subset of ω.

Lemma 2.7. The set of Gödel numbers of expression that consist of a single variable symbol is

primitive recursive. In other words, #tvi : i ě 1u is primitive recursive.

Proof. We have

t#vi : i ě 1u “ ta P ω : pDb ď aqa “ 211`2bu.

To see that this is primitive recursive, note first that

R “ tpb, aq P ω2 : a “ 211`2bu

is primitive recursive since it is the graph of the primitive recursive function b ÞÑ 211`2b, which is

itself a composition of primitive recursive functions.

By bounded quantification

RD
ă

“ tpc, aq P ω2 : pDb ă cqpb, aq P Ru

is primitive recursive, and now note that t#vi : i ě 1u “ ta : pa` 1, aq P RD
ă

u. �

5I am well aware that p@v6qv6 “ 0̂ for at least two reasons is not a wff according to our definitions, but that doesn’t

matter for this example.

LECTURE 5: ARITHMETIZATION OF SYNTAX 5

What the next theorem means to us is that deciding if a number codes a term or a formula can

be done by a recursive function.

Theorem 2.8. Let L be a recursively numbered language. Then:

(1) The set of Gödel numbers for terms in L is recursive, i.e. # TermpLq is recursive.

(2) The set of Gödel numbers for formulas in L is recursive, i.e. # FormulapLq is recursive.

We need a little more preparation before we can prove this, so we will get back to this in the

future.

Asger Törnquist

