
LECTURE 11: AXIOMATIC SET THEORY PART 3

1. Natural numbers and the ordinal ω

Recall from last lecture that a set x is an ordinal just in case it is transitive and wellordered by

P (membership). Note that H is an ordinal, and we often denote this particular ordinal by 0.

Exercise 1. Let x be a set of ordinal numbers. Prove that Upxq is an ordinal number.

Definition 1.1. The set ω is defined by

x P ω ðñ p@ypH P y ^ p@zpz P y Ñ Spzq P yqq Ñ x P yq.

The elements of ω are called natural numbers.

Note that

H P ω ^ @zpz P ω Ñ Spzq P ωq.
So the definition of ω makes it the smallest set which contains H and is closed on S. This now

makes it possible to do proofs by the familiar method of mathematical induction on ω: If y is a set

such that H P y and whenever z P y then Spzq P y, then by definition of ω we must have ω Ď y.

Theorem 1.2. (1) Every natural number (i.e., element of ω) is an ordinal.

(2) ω is an ordinal.

Proof. This is Exercise 3 for Thursday, January 8. �

2. Classes, ON, and definition by recursion

For each formula ϕpw0, . . . , wnq and sets a1, . . . , an we could informally consider the collection

tx : ϕpx, a1, . . . , anqu.

A collection of this form, i.e., defined by a formula with set parameters, will be called a class. We

will usually use capital letters for classes, and reserve lowercase letters for sets.

A class may sometimes not exist formally in our theory (only sets exist): For example, if we take

ϕ to be v1 “ v1, then

V “ tx : x “ xu

is the class of all sets. This is not a set: Indeed, if it were a set, then by comprehension we would

get that y “ tx : x R xu is a set. But y is self-contradictory, because if y P y, then y R y, and if

y R y then y P y.1

1This is called Russell’s paradox. When discovered by Bertand Russell in 1901, it temporarily sent the development

of set theory and first order logic back to square one. The seemingly restrictive version of Comprehension that set

theory has today was adopted as a result of the paradox.

1



2 LECTURE 11: AXIOMATIC SET THEORY, PART 3

A class which is not a set is called a proper class. Apart from V , another example of a proper

class is

P“ tpx, yq : x P yu.

Exercise 2. Prove that P is a proper class.

The (proper) class of all ordinals is

ON “ tx : x is an ordinal numberu.

This makes sense because to say that x is an ordinal can be expressed by a formula.

Theorem 2.1. The class relation P æON is a wellordering of ON. In fact, if A Ď ON is any

non-empty class then A has a least element.

Proof. �

We will write α ă β whenever α, β P ON and α ă β.

Exercise 3. Let α P ON.

(1) Prove that Spαq P ON .

(2) Prove that Spαq is the immediate successor of α in the ordering ă.

Theorem 2.2. If α P ON then exactly one of the following holds:

(1) Dβpα “ Spβq;
(2) α “ Upαq.

Proof. Suppose we are not in case (1). Since α is transitive we have that Upαq Ď α, so it suffices

to show that α Ď Upαq. For this, let β P α. Since Spβq ‰ α, we must have Spβq ă α. But then

β P Spβq P α. �

Remark 2.3. Ordinals satisfying (1) are called successor ordinals; Non-zero ordinals satisfying (2)

are called limit ordinals.

Despite some classes not having a formal existence, it is practical to be able to speak about classes,

but one must keep in mind that classes simply are a practical way of talking about formulas. One

situation where classes are practical is in stating theorem schemata: That is, Theorems that assert

that for each formula ϕ some sentence derived from ϕ is a theorem (of ZFC).

The notions relation, function, domain, wellfounded, etc., and associate notations, are defined

for classes just as they are for sets.

Theorem 2.4 (Schema of Definition by Recursion on ω). Let F : V Ñ V be a class function.2

Then there is a unique set g : ω Ñ V such that

@n P ωpgpnq “ F pg ænqq.

2So this means there is a formula ϕpx, y, . . .q with set parameters, and F pxq “ y iff ϕpx, y, . . .q.
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Proof. We first show that

(1) @nD!gpg : nÑ V ^ @m P npgpmq “ F pg æmqq.

For n “ H, the empty function g “ H works. Suppose g : n Ñ V is known to be the unique

function satisfying gpmq “ F pg æmq for all m P n. Then let g1 “ g Y tpn, F pgqqu. We leave it to

the reader to show that g1 : Spnq Ñ V is the unique function satisfying g1pmq “ F pg1 æmq for all

m P Spnq. The induction principle on ω now implies that (1) holds.

By Replacement and Comprehension

z “ ty : Dn P ωpy : nÑ V ^ @m P npypmq “ F py æmqqu

exists as a set. Suppose y1, y2 P z, and y1 : n1 Ñ V , y2 : n2 Ñ V . If n1 “ n2 then the uniqueness

assertion of (1) shows that y1 “ y2. If n1 P n2 then y2 æn1 “ y1 by the uniqueness assertion of (1).

Similarly n2 P n1.

Let g “ Upzq. By the previous paragraph, g is a function, and (1) guarantees that dompgq “ ω.

Since gpnq “ ypnq for any y P z with dompgq, it follows that gpnq “ F pg ænq. That g is unique

follows since if h : ω Ñ V was a function satisfying hpnq “ F ph ænq for all n, then ph æmq P z for

all m, from which h “ g can easily be proved. �

Definition 2.5. For any class A, we let
č

A “ tz : @y P A : z P yu.

Prima facie, if ϕpyq is the formula defining A,
Ş

A is the class defined by the formula @ypϕpyq^z P

yq (having z a free variable). However, if A is not empty, then
Ş

A is a set by comprehension

(applied to any element of A; notice that elements of classes are always sets). If A is empty then
Ş

A “ V by definition (!).

2.1. Transitive closure. As a useful example of using Theorem 2.4 we will show the following:

Theorem 2.6. @xDypy is transitive^ x Ď yq.

Proof. Informally, we would like to take y “ xYUpxq YUpUpxqq Y ¨ ¨ ¨Unpxq Y ¨ ¨ ¨ , where Un is the

union operation n times (for n “ 0 we let U0pxq “ x). Notice that any member z of y is a member

of some Unpxq, and so the members of z are members of Un`1pxq, proving that y is transitive. So

the only problem remaining is showing that y formally exists.

Suppose, as an intermediate step, we can find a function g : ω Ñ V such that gpnq “ Unpxq. Then

y “ Upranpgqq, so we would be done. It turns out to be easier to define gpnq “ xYUpxqY¨ ¨ ¨YUnpxq,
but we can still use y “ Upranpgqq.

For this, define F : V Ñ V by F pzq “ x if z is either empty or z is not a function whose domain is

some n P ω, or else we define F pzq “ xYUpranpzqq (where ranpzq is the range of z). Let g : ω Ñ V

be given by the recursion theorem. An easy induction shows that gpnq “ x Y Upxq Y ¨ ¨ ¨ Y Unpxq,
as required. �
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Definition 2.7. The transitive closure of a set x, denoted trclpxq, is the smallest transitive set

having x as a subset. I.e.,

trclpxq “
č

ty : y is transitive^ x Ď yu.

By the previous theorem, trclpxq always exists (as a set).

2.2. Recursion on the ordinals. Theorem 2.4 has the following powerful generalization:

Theorem 2.8 (Schema of Definition by Transfinite Recursion.). Let F : V Ñ V be a class function.

Then there is a (unique) G : ON Ñ V such that

@α P ONpGpαq “ F pG æαq.

Proof. The proof of this can be found in the lecture 12 notes. �

Remark 2.9. The proof gives an explicit formula defining G from the formula defining F . So the

previous theorem really is a theorem schema, and the use of classes in its statement could be avoided

by instead talking only about formulas.

Theorem 2.10. There is a unique function V : ON Ñ V such that (writing Vα for Vpαq):

(a) V0 “ H.

(b) VSpαq “ PpVαq.
(c) Vλ “ UpVα : α ă λuq when λ is a limit ordinal.

Proof. Let F pzq “ H if either x “ H or x is not a function whose domain is an ordinal number. If

α is an ordinal and x : Spαq Ñ V , then let F pxq “ Ppxpαqq. If λ is a limit ordinal and x : λÑ V

we let F pxq “ Upranpxqq. The desired function is given by Theorem 2.8. �

Warning: Despite using uppercase letters for the Vα, the Vα are sets, not proper classes.

Exercise 4. Show that α ă β Ñ Vα Ď Vβ.

As you may have realized on your own by now, the ordinals, ON, are the formal equivalent of

the “stages” in the iterative concept of set, and Vα is the set of those sets formed before stage α.

The role of the Axiom of Foundation is that it (along with all the other axioms used so far3) makes

the set-theoretic universe described by our axioms take exactly the form that the iterative concept

of set envisions. This is in some sense the content of the next theorem.

Theorem 2.11 (Uses Foundation). @xDαpx P Vαq.

Proof. The proof is rather peculiar when you look at it first, so I’ve tried to write it in a semi-

informal style.

We consider the set y “ xY trclx. Since we are assuming Foundation holds, P æ y is wellfounded.

So if x R Vα for any α, then

z “ tu P y : p@α P ONqu R Vαu

3I haven’t been keeping track, but I think all the axioms except Choice have been in use by now.
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is non-empty. Note also that all u P z are non-empty (since otherwise u belongs to V1). The

wellfoundedness of P æ y then implies that z has a P æ y-least element, which is to say that there is

u P z which has no elements in common with z (which is literally what Foundation gives us). Then

for every w P u there is some unique least αw P ON such that w P Vαw . Replacement then gives

us that a “ tαw : w P uu exists as a set. Let β “ Upaq. Notice that every element of u belongs to

VSpβq, so u Ď VSpβq. But then u P VSpSpβqq, a contradiction. �

Here is an alternative way of viewing the proof4: Suppose x R Vα for any α. Then there must

be some x1 P x such that x1 R Vα for any α, since otherwise the argument at the end of the above

proof shows that x P Vα for some α. Choose (!) such an x1 P x. Since x1 R Vα for any α, repeat

the argument to get x2 P x1 such that x2 R Vα for any α. And continue. This produces a sequence

x Q x1 Q x2 Q x3 Q ¨ ¨ ¨

which contradict Foundation! (To see this, consider for instance txi : i P ωu; One would have to

show this exists as a set, but this can be handled using the recursion theorem for ω, say.)

3. Ordinal arithmetic

By transfinite recursion, we define addition, multiplication and exponentiation of ordinal numbers

as follows:

Addition:

α` 0 “ α;

α` Spβq “ Spα` βq;

α` λ “ Uptα` β : β ă λu if λ is a limit ordinal.

Multiplication:

α ¨ 0 “ 0;

α ¨ Spβq “ α ¨ β ` α;

α ¨ λ “ Uptα ¨ β : β ă λu if λ is a limit ordinal.

Exponentiation:

α0 “ 1 “ Sp0q;

αSpβq “ αβ ¨ α;

αλ “ Uptαβ : β ă λu if λ is a limit ordinal.

4The drawback of the alternative view is that it uses the Axiom of Choice, which we would like to avoid when

possible. However, it actually only needs a weaker version of Choice called the Axiom of Dependent Choices.
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Warning: The definition of these arithmetic operations ` and ¨ on ON are highly asymmet-

rical with respect to α and β, and so we should have no expectation that they are commutative

operations. Indeed, they are not, as the next exercise shows.

Exercise 5. Show that ω ` 1 ‰ 1` ω and that 2 ¨ ω ‰ ω ¨ 2.

Asger Törnquist


