
THE COMPLETENESS THEOREM: A GUIDED TOUR

Theorem 1 (Completeness of first order logic, first version; Gödel, 1930). Let Γ is a set of formulas

in a language L and ϕ a formula in L. Suppose Γ |= ϕ. Then Γ ` ϕ.

In other words, if in all possible models of Γ it is the case that ϕ also holds (under the same

assignment of the variables), then there is a formal proof (i.e., a deduction) of ϕ from Γ. This is

quite impressive, and also somewhat reassuring. It also means that we can dispense with ` and

only work with |= from now on. Since most human beings (of the mathematical persuasion anyhow)

vastly prefer to work with semantical notions rather than syntactical ones, this should be a relief.

This note contains a guided tour of the proof of the completeness theorem. The details can be

filled in from reading the relevant parts of our textbook, or taking notes in lecture.

Recall that a set of formulas Γ is satisfiable (or has a model) if there is some model (i.e. structure)

A of L and some s : V → |A| such that |=A Γ[s]. Recall also that the set Γ is consistent (sometimes

called deductively consistent for clarity) if there is no formula β such that Γ ` β and Γ ` (¬β).

Theorem 2 (Completeness of first order logic, second version). Let Γ is a set of formulas in a

language L. If Γ is consistent, then Γ is satisfiable.

The fact that version 1 and 2 of the completeness theorem are equivalent is an exercise (2.5.2 in

the book).

We will prove version 2 of the completeness theorem. The approach we took in lecture isn’t truly

different than that of our textbook, except that it breaks the proof into two natural parts. The

proof (either one) essentially is due to Leon Henkin (1949). It has become the standard proof of

the completeness theorem.

Definition 3. Let ∆ be a set of formulas in some language L. We say that ∆ has the Henkin

witness property if for any formula ϕ and any variable x, there is a constant symbol c of L such

that ∃xϕ→ ϕx
c ∈ ∆. (Here we have, as usual, used ∃x to abbreviate ¬∀x¬.)

Lemma 4 (“Henkin models”). Let L be a language. Suppose ∆ is a set of formulas in L such that

(i) ∆ is consistent;

(ii) for each formula α of L, either α ∈ ∆ or (¬α) ∈ ∆;

(iii) ∆ has the Henkin witness property.

Then ∆ is satisfiable.

This lemma should be viewed in the following way: It’s conclusion is the same as that of the

completeness theorem (v. 2), but it has stronger assumptions (namely (ii) and (iii), which do

not appear in the completeness theorem). The stronger assumptions (hopefully) make it easier to

prove the lemma. Eventually, the completeness theorem is proved by arranging that the situation

described in the previous lemma happens.
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Exercise 1.

(1) Prove that a set of formulas ∆ which satisfy (i) and (ii) above is deductively closed. Is this

still true if we only require (ii) to hold?

(2) Let ∆ be as in Lemma 4. Show that for any formula ϕ and variable x, there is constant c

such that ϕx
c → ∀x ϕ ∈ ∆.

The proof of this lemma (which in the lecture was called the “main lemma”) relies on a few other

facts and Lemmas, which we now list:

Lemma 5 (Properties of =). Let L be a language with = included. Let R and f denote n-place

relation and function symbols in L, respectively, if such exist in L. Then

Eq1: ` ∀x x = x

Eq2: ` ∀x∀y(x = y → y = x)

Eq3: ` ∀x∀y∀z(x = y → (y = z → z = x))

Eq4: ` ∀x1 · · · ∀xn∀y1 · · · ∀yn(x1 = y1 → (x2 = y2 → (· · · (xn = yn → (Px1 · · ·xn → Py1 · · · yn)) · · · )))
Eq5: ` ∀x1 · · · ∀xn∀y1 · · · ∀yn(x1 = y1 → (x2 = y2 → (· · · (xn = yn → (fx1 · · ·xn = fy1 · · · yn)) · · · ))).

Exercise 2. Prove the previous lemma (properties of =). Parts of it are proved on pp. 127–128

in the textbook, so you can use these pages as an extended hint.

We need a lemma to deal with situations where substitutions can’t safely be made in a formula

because of an unfortunate choice of variables. Roughly speaking, we may want to substitute some

term t into for some variable x in a formula ϕ, but t is not substitutable in for x in ϕ because a

variable that appears in t is quantified over in ϕ. However, since the variables we use to quantify

over are “dummy variables”, the specific choice of which is unimportant, it should always be possible

to sidestep this problem by changing the variables we quantify over in ϕ so that none of them occur

in t, and the resulting formula – call it ϕ′ – would express the same fact as the old formula. The

next lemma is a formal expression of what this fact.

Lemma 6 (Existence of alphabetic variants, Theorem 24I, pp. 126–127). Fix a language L. Let

ϕ be a formula, t a term, and x a variable symbol. Then there is a formula ϕ′, which differs only

from ϕ by the variables which are quantified over in ϕ′, and such that

(a) ϕ ` ϕ′ and ϕ′ ` ϕ;

(b) t is substitutable for x in ϕ′.

The proof of this lemma is not suited for going through on a blackboard, so you should read it on

your own. That is, if you care to do so, because you may (should?) be convinced that the lemma

is true by what was said in the paragraph right before it, above. However, the point of the Lemma

(and of proving it) is of course to show that our deductive system is strong enough to prove that

what was said above (and which may seem at first obvious) is true.

Proof of Lemma 4. Follow steps 4–6 in our textbook’s proof of the completeness theorem. These

steps prove exactly Lemma 4. The language used in step 4 (where we remove equality) is what in

lecture was defined as L′ = L ∪ {E} \ {=}, where E is some new two-place relation symbol. �

Exercise 3. When defining the initial structure A in step 4 in the book, which will be a model of

L′, we also define an assignment of variables by letting s : V → |A| be the identity. As was pointed
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out in lecture, this is a bit sloppy (though essentially correct): What we really do is that we let

s : V → |A| be the map vi 7→ 〈vi〉.
Prove that for any term t in L′ we have s̄(t) = t. (This fact is stated without proof on lines 4,

7, and 8 on page 138 in the textbook; read this if you need a hint.)

The next step on the path to completeness is:

Lemma 7. Suppose Γ is a consistent set of formulas in some countable language L. Then there

is a language L̄ ⊇ L, obtained by adding countably many distinct, new constant symbols to L, and

a set of formulas ∆ ⊇ Γ such that

(i) ∆ is consistent;

(ii) for all formulas α in L̄, either α ∈ ∆ or (¬α) ∈ ∆;

(iii) ∆ has the Henkin witness property.

Let us assume without proof for the moment that this lemma holds, and finish the proof of the

completeness theorem, at least in the case where the language L is countable:

Proof of completeness (v.2), given the above. Let Γ be a consistent set of formulas in the countable

language L. Apply Lemma 7 above to obtain L̄ and ∆ ⊇ Γ as described there. Apply Lemma 4 to

obtain a model B of L̄ and s : V → |B| such that |=B ∆[s]. Note that |=B Γ[s]. Let B|L denote

the reduct of B to L, that is, B|L is the model we obtain by throwing away the interpretations of

symbols not in L. Then B|L |= Γ[s], and so Γ is satisfiable, as required. �

The proof of Lemma 7 requires two other, prefatory lemmata. Bellow, ϕc
y denotes the result of

replacing the constant c with the variable y wherever c appears in ϕ.

Lemma 8 (Generalization on constants, Theorem 24F). Assume Γ ` ϕ and that c is a constant

symbol that does not occur in Γ. Then there is a variable y, not occurring in ϕ, such that Γ ` ∀y ϕc
y.

Moreover, there is a deduction of ∀y ϕc
y from Γ in which c does not appear (occur).

Proof. pp. 123–124 in the textbook. �

Lemma 9 (Corollary 24G). Assume Γ ` ϕx
c , where c is a constant symbol not occurring in ϕ or

any formula in Γ. Then Γ ` ∀xϕ, and there is a deduction of ∀x ϕ from Γ in which c does not

appear.

Proof. p. 124 in the textbook. �

Proof of Lemma 7. Follow steps 1–3 in our textbook’s proof of the completeness theorem; these

steps prove exactly what Lemma 7 claims. �

Having thus accounted for all the lemmas above, the proof of the completeness theorem is

now done in the case when L is countable. However, with just a small amount of set-theoretic

sophistication, we can also prove Lemma 7 for uncountable languages; see the last paragraph on p.

141 in the textbook. Thus the proof of the completeness theorem is now complete.
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