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Key points of today's lecture:

» The iterative concept of set.
The language of set theory (LOST).
The axioms of Zermelo-Fraenkel set theory (ZFC).
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v

Justification of the axioms based on the iterative concept of
set.
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The language of set theory, |

The language of set theory (LOST) consists of the logical symbols
and =, and a single binary relation symbol, €, called membership.

Note that the atomic formulas of LOST are of the form

x=yand x €y.
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The language of set theory, |

The language of set theory (LOST) consists of the logical symbols
and =, and a single binary relation symbol, €, called membership.

Note that the atomic formulas of LOST are of the form

x=yand x €y.

We will write
x#yandx¢y

for the negation of x = y and x € y, respectively.
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The language of set theory, Il

In addition to the variables of our formal language, vi, vo, ..., we
will also use the letters

X, VY, Z, U, W, X1,X2,...,Y1,Y2,...,W1,Wo,...

to stand for arbitrary formal variables.

We will allow ourselves to use the standard abbreviations: Vv, A, <+

and d for “or", “and”, “if and only if", and “there exists”.
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Axioms 0 and 1

0. Axiom of Set Existence:
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0. Axiom of Set Existence:

E|V1V1 = V1.
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(There is a set.)
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Axioms 0 and 1

0. Axiom of Set Existence:
E|V1 Vi = V1.

(There is a set.)

1. Axiom of Extensionality:
VviVva(Yvz(vs € vi <> v3 € va) = vi = »2).

(Sets that have the same members are identical.)
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2. Axiom of Foundation:
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2. Axiom of Foundation:

VV1(3V2 Vo € v — 3V2(V2 € viAVvz v3 ¢ viVvs ¢ V2)).
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2. Axiom of Foundation:
VV1(3V2 Vo € v — 3V2(V2 € viAVvz v3 ¢ viVvs ¢ V2)).

(Every non-empty set has a member which has no members in
common with it.)
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3. Axiom Schema of Comprehension: For each LOST formula
o(x,z, wi,...,wp) with the (distinct) free variables among those
shown, the following is an axiom:
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Axioms 4 and 5

4. Axiom of Pairing:
VV1VV23V3(V1 EWVvzAwmE V3).

(For any two sets, there is a set to which they both belong, i.e., of
which they are both members.)

5. Axiom of Union:
VV1§|V2VV3VV4((V4 EwvzA\vz E V1) — V4 € Vg).
(For any set, there is another set to which all members of members

of the first set belongs.)
|
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In the statement of the next axiom, the notation 3!v; is shorthand
for the obvious way of expressing “there is exactly one v;".
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In the statement of the next axiom, the notation 3!v; is shorthand
for the obvious way of expressing “there is exactly one v;".

6. Axiom Schema of Replacement: For each LOST formula
o(x,y,z,wi,...,w,) with free variables among those shown, the
following is an axiom:

Vwy - Vw,Vz(Vx(x € z — Flyyp)
— JuVx(x € z = Fy(y € u A p))).
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In the statement of the next axiom, the notation 3!v; is shorthand
for the obvious way of expressing “there is exactly one v;".

6. Axiom Schema of Replacement: For each LOST formula
o(x,y,z,wi,...,w,) with free variables among those shown, the
following is an axiom:

Vwy - Vw,Vz(Vx(x € z — Flyyp)
— JuVx(x € z = Fy(y € u A p))).

(For any set z and relation R (which must be expressible by some
first order formula ¢ of LOST), if each member x of z bears the
relation R to exactly one set yy, then there is a set to which all
these y, belong.)
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For the next axiom, let S(x) = x U {x}.
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For the next axiom, let S(x) = x U {x}.

7. Axiom of Infinity:

E|V1(@ € v /\Vvl(vl € vy — S(Vl) € Vo)).
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For the next axiom, let S(x) = x U {x}.

7. Axiom of Infinity:
E|V1(@ € v /\Vvl(vl € vy — S(Vl) € Vo)).

(There is a set that has the empty set as a member and is closed
under the operation S.)
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For the next axiom, let “v3 C vy" abbreviate
“Yva(vg € v3 = v4 € v1)".
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For the next axiom, let “v3 C vy" abbreviate
“Yva(vg € v3 = v4 € v1)".

8. Axiom of Power Set:
VV1§|V2VV3(V3 Cvi —v3€ V2).

(For any set, there is a set to which all subsets of that set belong.)
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Axiom 9
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9. Axiom of Choice:
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9. Axiom of Choice:

Vvl(VVQVVg,((VQ € viAvz € v1)
—)(VQ#@/\(VQZV3\/VQQV3:®)))
— FvVvs(vs € vi — Flvgvs € va N vs))
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9. Axiom of Choice:

Vvl(VVQVVg,((VQ € viAvz € v1)
—)(VQ#@/\(VQZV3\/VQQV3:®)))
— FvVvs(vs € vi — Flvgvs € va N vs))

(If x is a set of pairwise disjoint non-empty sets, then there is a set
that has exactly one member in common with each member of x.)
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9. Axiom of Choice:

Vvl(VVQVVg,((VQ € viAvz € v1)
—)(VQ#@/\(VQZV3\/VQQV3:®)))
— FvVvs(vs € vi — Flvgvs € va N vs))

(If x is a set of pairwise disjoint non-empty sets, then there is a set

that has exactly one member in common with each member of x.)
1
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Work in groups to justify

GROUP 1: Axiom Schema of Comprehension: For each LOST
formula ¢(x,z, wi,. .., w,) with the (distinct) free variables
among those shown, the following is an axiom:

Vwy - VYw,Vz3yVx(x € y <> (x € z A )).

GROUP 2: Axiom of Union:

YvidwnVvsVva((va € v3 A vz € vi) = v4 € v2).

GROUP 3: Axiom of Infinity:

E|V1(@ (S%] /\VV2(V2 cEvi— S(Vz) € Vl)).
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GROUP 1: Axiom Schema of Comprehension: For each LOST
formula ¢(x,z, wi,. .., w,) with the (distinct) free variables
among those shown, the following is an axiom:

Vwy - VYw,Vz3yVx(x € y <> (x € z A )).

GROUP 2: Axiom of Union:

YvidwnVvsVva((va € v3 A vz € vi) = v4 € v2).

GROUP 3: Axiom of Infinity:

E|V1(@ (S%] /\VV2(V2 cEvi— S(Vz) € Vl)).

Lecture 9: Axiomatic Set Theory



Group 1: Justification of Comprehension

Ywy - - - Yw,Vz3yVx(x € y <> (x € z A @)).
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Group 2: Justification of Union

VV1§|V2VV3VV4((V4 EwvzA\v3 E V1) — V4 € VQ).
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Group 3: Justification of Infinity

E|V1(@ eEwv /\VVQ(VQ cEvi — S(VQ) € Vl)).
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