Lecture 9: Axiomatic Set Theory

December 16, 2014

Today

Today

Key points of today's lecture:

Today

Key points of today's lecture:

- The iterative concept of set.

Today

Key points of today's lecture:

- The iterative concept of set.
- The language of set theory (LOST).

Today

Key points of today's lecture:

- The iterative concept of set.
- The language of set theory (LOST).
- The axioms of Zermelo-Fraenkel set theory (ZFC).

Today

Key points of today's lecture:

- The iterative concept of set.
- The language of set theory (LOST).
- The axioms of Zermelo-Fraenkel set theory (ZFC).
- Justification of the axioms based on the iterative concept of set.

The language of set theory, I

The language of set theory, I

The language of set theory (LOST) consists of the logical symbols and $=$, and a single binary relation symbol, \in, called membership.

The language of set theory, I

The language of set theory (LOST) consists of the logical symbols and $=$, and a single binary relation symbol, \in, called membership. Note that the atomic formulas of LOST are of the form

The language of set theory, I

The language of set theory (LOST) consists of the logical symbols and $=$, and a single binary relation symbol, \in, called membership.

Note that the atomic formulas of LOST are of the form

$$
x=y \text { and } x \in y
$$

The language of set theory, I

The language of set theory (LOST) consists of the logical symbols and $=$, and a single binary relation symbol, \in, called membership. Note that the atomic formulas of LOST are of the form

$$
x=y \text { and } x \in y .
$$

We will write

The language of set theory, I

The language of set theory (LOST) consists of the logical symbols and $=$, and a single binary relation symbol, \in, called membership.

Note that the atomic formulas of LOST are of the form

$$
x=y \text { and } x \in y
$$

We will write

$$
x \neq y \text { and } x \notin y
$$

The language of set theory, I

The language of set theory (LOST) consists of the logical symbols and $=$, and a single binary relation symbol, \in, called membership. Note that the atomic formulas of LOST are of the form

$$
x=y \text { and } x \in y
$$

We will write

$$
x \neq y \text { and } x \notin y
$$

for the negation of $x=y$ and $x \in y$, respectively.

The language of set theory, II

The language of set theory, II

In addition to the variables of our formal language, v_{1}, v_{2}, \ldots, we will also use the letters

The language of set theory, II

In addition to the variables of our formal language, v_{1}, v_{2}, \ldots, we will also use the letters

$$
x, y, z, u, w, x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \ldots, w_{1}, w_{2}, \ldots
$$

The language of set theory, II

In addition to the variables of our formal language, v_{1}, v_{2}, \ldots, we will also use the letters

$$
x, y, z, u, w, x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \ldots, w_{1}, w_{2}, \ldots
$$

to stand for arbitrary formal variables.

The language of set theory, II

In addition to the variables of our formal language, v_{1}, v_{2}, \ldots, we will also use the letters

$$
x, y, z, u, w, x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \ldots, w_{1}, w_{2}, \ldots
$$

to stand for arbitrary formal variables.
We will allow ourselves to use the standard abbreviations: $\vee, \wedge, \leftrightarrow$ and \exists for "or", "and", "if and only if", and "there exists".

Axioms 0 and 1

Axioms 0 and 1

0. Axiom of Set Existence:

Axioms 0 and 1

0. Axiom of Set Existence:

$$
\exists v_{1} v_{1}=v_{1} .
$$

Axioms 0 and 1

0. Axiom of Set Existence:

$$
\exists v_{1} v_{1}=v_{1} .
$$

(There is a set.)

Axioms 0 and 1

0. Axiom of Set Existence:

$$
\exists v_{1} v_{1}=v_{1} .
$$

(There is a set.)

1. Axiom of Extensionality:

Axioms 0 and 1

0. Axiom of Set Existence:

$$
\exists v_{1} v_{1}=v_{1} .
$$

(There is a set.)

1. Axiom of Extensionality:

$$
\forall v_{1} \forall v_{2}\left(\forall v_{3}\left(v_{3} \in v_{1} \leftrightarrow v_{3} \in v_{2}\right) \rightarrow v_{1}=v_{2}\right) .
$$

Axioms 0 and 1

0. Axiom of Set Existence:

$$
\exists v_{1} v_{1}=v_{1} .
$$

(There is a set.)

1. Axiom of Extensionality:

$$
\forall v_{1} \forall v_{2}\left(\forall v_{3}\left(v_{3} \in v_{1} \leftrightarrow v_{3} \in v_{2}\right) \rightarrow v_{1}=v_{2}\right) .
$$

(Sets that have the same members are identical.)

Axiom 2

Lecture 9: Axiomatic Set Theory

Axiom 2

2. Axiom of Foundation:

Axiom 2

2. Axiom of Foundation:

$$
\forall v_{1}\left(\exists v_{2} v_{2} \in v_{1} \rightarrow \exists v_{2}\left(v_{2} \in v_{1} \wedge \forall v_{3} v_{3} \notin v_{1} \vee v_{3} \notin v_{2}\right)\right) .
$$

Axiom 2

2. Axiom of Foundation:

$$
\forall v_{1}\left(\exists v_{2} v_{2} \in v_{1} \rightarrow \exists v_{2}\left(v_{2} \in v_{1} \wedge \forall v_{3} v_{3} \notin v_{1} \vee v_{3} \notin v_{2}\right)\right) .
$$

(Every non-empty set has a member which has no members in common with it.)

Axiom 3

Lecture 9: Axiomatic Set Theory

Axiom 3

3. Axiom Schema of Comprehension: For each LOST formula $\varphi\left(x, z, w_{1}, \ldots, w_{n}\right)$ with the (distinct) free variables among those shown, the following is an axiom:

Axiom 3

3. Axiom Schema of Comprehension: For each LOST formula $\varphi\left(x, z, w_{1}, \ldots, w_{n}\right)$ with the (distinct) free variables among those shown, the following is an axiom:

$$
\forall w_{1} \cdots \forall w_{n} \forall z \exists y \forall x(x \in y \leftrightarrow(x \in z \wedge \varphi)) .
$$

Axiom 3

3. Axiom Schema of Comprehension: For each LOST formula $\varphi\left(x, z, w_{1}, \ldots, w_{n}\right)$ with the (distinct) free variables among those shown, the following is an axiom:

$$
\forall w_{1} \cdots \forall w_{n} \forall z \exists y \forall x(x \in y \leftrightarrow(x \in z \wedge \varphi)) .
$$

(For any sets z and any property P which can be expressed by a formula of LOST, there is a set whose members are those members of z that have property P.)

Axiom 3

3. Axiom Schema of Comprehension: For each LOST formula $\varphi\left(x, z, w_{1}, \ldots, w_{n}\right)$ with the (distinct) free variables among those shown, the following is an axiom:

$$
\forall w_{1} \cdots \forall w_{n} \forall z \exists y \forall x(x \in y \leftrightarrow(x \in z \wedge \varphi)) .
$$

(For any sets z and any property P which can be expressed by a formula of LOST, there is a set whose members are those members of z that have property P.)

Axioms 4 and 5

Axioms 4 and 5

4. Axiom of Pairing:

Axioms 4 and 5

4. Axiom of Pairing:

$$
\forall v_{1} \forall v_{2} \exists v_{3}\left(v_{1} \in v_{3} \wedge v_{2} \in v_{3}\right)
$$

Axioms 4 and 5

4. Axiom of Pairing:

$$
\forall v_{1} \forall v_{2} \exists v_{3}\left(v_{1} \in v_{3} \wedge v_{2} \in v_{3}\right)
$$

(For any two sets, there is a set to which they both belong, i.e., of which they are both members.)

Axioms 4 and 5

4. Axiom of Pairing:

$$
\forall v_{1} \forall v_{2} \exists v_{3}\left(v_{1} \in v_{3} \wedge v_{2} \in v_{3}\right)
$$

(For any two sets, there is a set to which they both belong, i.e., of which they are both members.)
5. Axiom of Union:

Axioms 4 and 5

4. Axiom of Pairing:

$$
\forall v_{1} \forall v_{2} \exists v_{3}\left(v_{1} \in v_{3} \wedge v_{2} \in v_{3}\right)
$$

(For any two sets, there is a set to which they both belong, i.e., of which they are both members.)
5. Axiom of Union:

$$
\forall v_{1} \exists v_{2} \forall v_{3} \forall v_{4}\left(\left(v_{4} \in v_{3} \wedge v_{3} \in v_{1}\right) \rightarrow v_{4} \in v_{2}\right) .
$$

Axioms 4 and 5

4. Axiom of Pairing:

$$
\forall v_{1} \forall v_{2} \exists v_{3}\left(v_{1} \in v_{3} \wedge v_{2} \in v_{3}\right)
$$

(For any two sets, there is a set to which they both belong, i.e., of which they are both members.)
5. Axiom of Union:

$$
\forall v_{1} \exists v_{2} \forall v_{3} \forall v_{4}\left(\left(v_{4} \in v_{3} \wedge v_{3} \in v_{1}\right) \rightarrow v_{4} \in v_{2}\right) .
$$

(For any set, there is another set to which all members of members of the first set belongs.)

Axioms 4 and 5

4. Axiom of Pairing:

$$
\forall v_{1} \forall v_{2} \exists v_{3}\left(v_{1} \in v_{3} \wedge v_{2} \in v_{3}\right)
$$

(For any two sets, there is a set to which they both belong, i.e., of which they are both members.)
5. Axiom of Union:

$$
\forall v_{1} \exists v_{2} \forall v_{3} \forall v_{4}\left(\left(v_{4} \in v_{3} \wedge v_{3} \in v_{1}\right) \rightarrow v_{4} \in v_{2}\right) .
$$

(For any set, there is another set to which all members of members of the first set belongs.)

Axiom 6

Axiom 6

In the statement of the next axiom, the notation $\exists!v_{i}$ is shorthand for the obvious way of expressing "there is exactly one v_{i} ".

Axiom 6

In the statement of the next axiom, the notation $\exists!v_{i}$ is shorthand for the obvious way of expressing "there is exactly one v_{i} ".
6. Axiom Schema of Replacement:

Axiom 6

In the statement of the next axiom, the notation $\exists!v_{i}$ is shorthand for the obvious way of expressing "there is exactly one v_{i} ".
6. Axiom Schema of Replacement: For each LOST formula $\varphi\left(x, y, z, w_{1}, \ldots, w_{n}\right)$ with free variables among those shown, the following is an axiom:

Axiom 6

In the statement of the next axiom, the notation $\exists!v_{i}$ is shorthand for the obvious way of expressing "there is exactly one v_{i} ".
6. Axiom Schema of Replacement: For each LOST formula $\varphi\left(x, y, z, w_{1}, \ldots, w_{n}\right)$ with free variables among those shown, the following is an axiom:

$$
\begin{aligned}
\forall w_{1} \cdots \forall w_{n} \forall z & (\forall x(x \in z \rightarrow \exists!y \varphi) \\
& \rightarrow \exists u \forall x(x \in z \rightarrow \exists y(y \in u \wedge \varphi))) .
\end{aligned}
$$

Axiom 6

In the statement of the next axiom, the notation $\exists!v_{i}$ is shorthand for the obvious way of expressing "there is exactly one v_{i} ".
6. Axiom Schema of Replacement: For each LOST formula $\varphi\left(x, y, z, w_{1}, \ldots, w_{n}\right)$ with free variables among those shown, the following is an axiom:

$$
\begin{aligned}
\forall w_{1} \cdots \forall w_{n} \forall z & (\forall x(x \in z \rightarrow \exists!y \varphi) \\
& \rightarrow \exists u \forall x(x \in z \rightarrow \exists y(y \in u \wedge \varphi))) .
\end{aligned}
$$

(For any set z and relation R (which must be expressible by some first order formula φ of LOST), if each member x of z bears the relation R to exactly one set y_{x}, then there is a set to which all these y_{x} belong.)

Axiom 7

Lecture 9: Axiomatic Set Theory

Axiom 7

For the next axiom, let $\mathcal{S}(x)=x \cup\{x\}$.

Axiom 7

For the next axiom, let $\mathcal{S}(x)=x \cup\{x\}$.
7. Axiom of Infinity:

Axiom 7

For the next axiom, let $\mathcal{S}(x)=x \cup\{x\}$.
7. Axiom of Infinity:

$$
\exists v_{1}\left(\emptyset \in v_{0} \wedge \forall v_{1}\left(v_{1} \in v_{0} \rightarrow \mathcal{S}\left(v_{1}\right) \in v_{0}\right)\right)
$$

Axiom 7

For the next axiom, let $\mathcal{S}(x)=x \cup\{x\}$.
7. Axiom of Infinity:

$$
\exists v_{1}\left(\emptyset \in v_{0} \wedge \forall v_{1}\left(v_{1} \in v_{0} \rightarrow \mathcal{S}\left(v_{1}\right) \in v_{0}\right)\right)
$$

(There is a set that has the empty set as a member and is closed under the operation \mathcal{S}.)

Axiom 8

Lecture 9: Axiomatic Set Theory

Axiom 8

For the next axiom, let " $v_{3} \subseteq v_{1}$ " abbreviate $" \forall v_{4}\left(v_{4} \in v_{3} \rightarrow v_{4} \in v_{1}\right)$ ".

Axiom 8

For the next axiom, let " $v_{3} \subseteq v_{1}$ " abbreviate $" \forall v_{4}\left(v_{4} \in v_{3} \rightarrow v_{4} \in v_{1}\right)$ ".
8. Axiom of Power Set:

Axiom 8

For the next axiom, let " $v_{3} \subseteq v_{1}$ " abbreviate $" \forall v_{4}\left(v_{4} \in v_{3} \rightarrow v_{4} \in v_{1}\right)$ ".
8. Axiom of Power Set:

$$
\forall v_{1} \exists v_{2} \forall v_{3}\left(v_{3} \subseteq v_{1} \rightarrow v_{3} \in v_{2}\right)
$$

Axiom 8

For the next axiom, let " $v_{3} \subseteq v_{1}$ " abbreviate
" $\forall v_{4}\left(v_{4} \in v_{3} \rightarrow v_{4} \in v_{1}\right)$ ".
8. Axiom of Power Set:

$$
\forall v_{1} \exists v_{2} \forall v_{3}\left(v_{3} \subseteq v_{1} \rightarrow v_{3} \in v_{2}\right)
$$

(For any set, there is a set to which all subsets of that set belong.)

Axiom 9

Axiom 9

9. Axiom of Choice:

Axiom 9

9. Axiom of Choice:

$$
\begin{aligned}
& \forall v_{1}\left(\forall v _ { 2 } \forall v _ { 3 } \left(\left(v_{2} \in v_{1} \wedge v_{3} \in v_{1}\right)\right.\right. \\
& \rightarrow\left(v_{2} \neq \emptyset\right. \wedge \\
&\left.\left.\left(v_{2}=v_{3} \vee v_{2} \cap v_{3}=\emptyset\right)\right)\right) \\
&\left.\rightarrow \exists v_{4} \forall v_{5}\left(v_{5} \in v_{1} \rightarrow \exists!v_{6} v_{6} \in v_{4} \cap v_{5}\right)\right)
\end{aligned}
$$

Axiom 9

9. Axiom of Choice:

$$
\begin{aligned}
& \forall v_{1}\left(\forall v _ { 2 } \forall v _ { 3 } \left(\left(v_{2} \in v_{1} \wedge v_{3} \in v_{1}\right)\right.\right. \\
& \rightarrow\left(v_{2} \neq \emptyset\right.\left.\left.\wedge\left(v_{2}=v_{3} \vee v_{2} \cap v_{3}=\emptyset\right)\right)\right) \\
&\left.\rightarrow \exists v_{4} \forall v_{5}\left(v_{5} \in v_{1} \rightarrow \exists!v_{6} v_{6} \in v_{4} \cap v_{5}\right)\right)
\end{aligned}
$$

(If x is a set of pairwise disjoint non-empty sets, then there is a set that has exactly one member in common with each member of x.)

Axiom 9

9. Axiom of Choice:

$$
\begin{aligned}
\forall v_{1}\left(\forall v_{2} \forall v_{3}(\right. & \left(v_{2} \in v_{1} \wedge v_{3} \in v_{1}\right) \\
\rightarrow\left(v_{2} \neq \emptyset\right. & \left.\left.\wedge\left(v_{2}=v_{3} \vee v_{2} \cap v_{3}=\emptyset\right)\right)\right) \\
& \left.\rightarrow \exists v_{4} \forall v_{5}\left(v_{5} \in v_{1} \rightarrow \exists!v_{6} v_{6} \in v_{4} \cap v_{5}\right)\right)
\end{aligned}
$$

(If x is a set of pairwise disjoint non-empty sets, then there is a set that has exactly one member in common with each member of x.)

Work in groups to justify

Work in groups to justify

GROUP 1: Axiom Schema of Comprehension: For each LOST formula $\varphi\left(x, z, w_{1}, \ldots, w_{n}\right)$ with the (distinct) free variables among those shown, the following is an axiom:

$$
\forall w_{1} \cdots \forall w_{n} \forall z \exists y \forall x(x \in y \leftrightarrow(x \in z \wedge \varphi)) .
$$

GROUP 2: Axiom of Union:

$$
\forall v_{1} \exists v_{2} \forall v_{3} \forall v_{4}\left(\left(v_{4} \in v_{3} \wedge v_{3} \in v_{1}\right) \rightarrow v_{4} \in v_{2}\right) .
$$

GROUP 3: Axiom of Infinity:

$$
\exists v_{1}\left(\emptyset \in v_{1} \wedge \forall v_{2}\left(v_{2} \in v_{1} \rightarrow \mathcal{S}\left(v_{2}\right) \in v_{1}\right)\right)
$$

Work in groups to justify

GROUP 1: Axiom Schema of Comprehension: For each LOST formula $\varphi\left(x, z, w_{1}, \ldots, w_{n}\right)$ with the (distinct) free variables among those shown, the following is an axiom:

$$
\forall w_{1} \cdots \forall w_{n} \forall z \exists y \forall x(x \in y \leftrightarrow(x \in z \wedge \varphi)) .
$$

GROUP 2: Axiom of Union:

$$
\forall v_{1} \exists v_{2} \forall v_{3} \forall v_{4}\left(\left(v_{4} \in v_{3} \wedge v_{3} \in v_{1}\right) \rightarrow v_{4} \in v_{2}\right) .
$$

GROUP 3: Axiom of Infinity:

$$
\exists v_{1}\left(\emptyset \in v_{1} \wedge \forall v_{2}\left(v_{2} \in v_{1} \rightarrow \mathcal{S}\left(v_{2}\right) \in v_{1}\right)\right)
$$

Group 1: Justification of Comprehension

$$
\forall w_{1} \cdots \forall w_{n} \forall z \exists y \forall x(x \in y \leftrightarrow(x \in z \wedge \varphi)) .
$$

Group 2: Justification of Union

$$
\forall v_{1} \exists v_{2} \forall v_{3} \forall v_{4}\left(\left(v_{4} \in v_{3} \wedge v_{3} \in v_{1}\right) \rightarrow v_{4} \in v_{2}\right) .
$$

Group 3: Justification of Infinity

$$
\exists v_{1}\left(\emptyset \in v_{1} \wedge \forall v_{2}\left(v_{2} \in v_{1} \rightarrow \mathcal{S}\left(v_{2}\right) \in v_{1}\right)\right) .
$$

