Beyond classification of Cuntz-Krieger algebras

Sara Arklint
Theorem (Restorff)

Filtrated K-theory \overline{FK} stably classifies Cuntz-Krieger algebras satisfying condition (II).

Definition

Filtrated K-theory $\overline{FK}(A)$ of A consist of all groups $K_*(J/I)$ with $I \subseteq J$ ideals in A, together with all maps

\[K_*(J/I) \xrightarrow{i} K_*(K/I) \]

\[K_*(K/J) \xleftarrow{r} K_*(J/I) \xleftarrow{\delta} K_*(K/J) \]

induced by $J/I \hookrightarrow K/I \twoheadrightarrow K/J$ when $I \trianglelefteq J \trianglelefteq K \trianglelefteq A$.
• Does \overline{FK} strongly classify the Cuntz-Krieger algebras up to stable isomorphism?
• Does $(\overline{FK}, [1_A])$ classify the Cuntz-Krieger algebras up to unital isomorphism?
• Does \overline{FK} stably classify the purely infinite graph C^*-algebras with a finite ideal lattice?
• Let A be a purely infinite, separable, nuclear C^*-algebra in the bootstrap class and with a finite ideal lattice. If $\overline{FK}(A) \cong \overline{FK}(B)$ for B a Cuntz-Krieger algebra, is A then stably isomorphic to a Cuntz-Krieger algebra?

Theorem (Kirchberg)

Let A and B be O_∞-absorbing, separable, nuclear C^*-algebras with $\text{Prim}(A) \cong \text{Prim}(B) \cong X$. Then any $KK(X)$-equivalence between A and B lifts to an X-equivariant isomorphism between $A \otimes \mathbb{K}$ and $B \otimes \mathbb{K}$.

Sara Arklint — Beyond classification of Cuntz-Krieger algebras — September 22, 2010
Slide 3/8
Theorem (Meyer-Nest)

For X finite linear space, the UCT holds, i.e. the sequence

$$\text{Ext}(FK_X(A), FK_X(B)) \hookrightarrow KK_*(X; A, B) \twoheadrightarrow \text{Hom}(FK_X(A), FK_X(B))$$

is exact for all separable C^*-algebras A and B over X where A lies in the bootstrap class $B(X)$.

Theorem (Bentmann)

For X finite accordion space, the UCT holds.

Corollary

For purely infinite, separable, nuclear C^*-algebras A and B with all simple subquotients in the bootstrap class and with $\text{Prim}(A) \cong \text{Prim}(B) \cong X$ finite accordion space, any isomorphism between $FK_X(A) = \overline{FK}(A)$ and $FK_X(B) = \overline{FK}(B)$ lifts to an X-equivariant isomorphism between $A \otimes K$ and $B \otimes K$.
• Does FK strongly classify the Cuntz-Krieger algebras up to stable isomorphism?
• Does FK stably classify the purely infinite graph C^*-algebras with a finite ideal lattice?
• Let A be a purely infinite, separable, nuclear C^*-algebra in the bootstrap class and with a finite ideal lattice. If $\text{FK}(A) \cong \text{FK}(B)$ for B a Cuntz-Krieger algebra, is A then stably isomorphic to a Cuntz-Krieger algebra?
Theorem (Meyer-Nest)

There exist a finite space X_0 and purely infinite, separable, nuclear C^*-algebras A and B with $\text{Prim}(A) \cong \text{Prim}(B) \cong X_0$ and $A, B \in \mathcal{B}(X_0)$ satisfying that

$$FK_{X_0}(A) \cong FK_{X_0}(B), \quad KK_*(X; A, B)^{-1} = \emptyset.$$
Theorem (Meyer-Nest)

For the space X_0 there exists a functor FK' for which the sequence

$$\text{Ext}(FK'(A), FK'(B)) \hookrightarrow KK_*(X_0; A, B) \twoheadrightarrow \text{Hom}(FK'(A), FK'(B))$$

is exact for all separable C*-algebras A and B over X_0 where A lies in the bootstrap class $B(X_0)$.

Theorem (A-Restorff-Ruiz)

For C*-algebras A and B over X_0 with A of real rank zero, any isomorphism between $FK_{X_0}(A)$ and $FK_{X_0}(B)$ lifts to an isomorphism between $FK'(A)$ and $FK'(B)$.
Corollary

For purely infinite, separable, nuclear C*-algebras A and B with all simple subquotients in the bootstrap class, with $\text{Prim}(A) \cong \text{Prim}(B) \cong X_0$ and with A of real rank zero, any isomorphism between $\text{FK}_{X_0}(A) = \overline{\text{FK}}(A)$ and $\text{FK}_{X_0}(B) = \overline{\text{FK}}(B)$ lifts to an X_0-equivariant isomorphism between $A \otimes K$ and $B \otimes K$.