Corners of Cuntz-Krieger algebras

Theorem (A-Ruiz)

Let E be a countable directed graph. TFAE:

- $C^*(E)$ is a Cuntz-Krieger algebra,
- E is finite with no sinks,
- $C^*(E)$ is unital and $\text{rank } K_0(C^*(E)) = \text{rank } K_1(C^*(E))$.

Theorem (A-Ruiz)

Let A be a unital C^*-algebra and assume that A is stably isomorphic to a Cuntz-Krieger algebra. Then A is a Cuntz-Krieger algebra.

Corollary (A-Ruiz)

Corners of Cuntz-Krieger algebras are Cuntz-Krieger algebras.
Extensions of purely infinite Cuntz-Krieger algebras

Definition

A C^*-algebra A looks like a purely infinite Cuntz-Krieger algebra if

- A is unital, purely infinite, nuclear, separable, and of real rank zero,
- A has finitely many ideals,
- for all $I \subseteq J \subseteq A$, the group $K_*(J/I)$ is finitely generated, the group $K_1(J/I)$ is free, and $\text{rank } K_0(J/I) = \text{rank } K_1(J/I)$,
- the simple subquotients of A are in the bootstrap class.

Observation

Consider a unital extension $I \hookrightarrow A \twoheadrightarrow B$. If A is a purely infinite Cuntz-Krieger algebra, then

1. B is a purely infinite Cuntz-Krieger algebra,
2. I is stably isomorphic to a purely infinite Cuntz-Krieger algebra,
3. $K_0(B) \to K_1(I)$ vanishes.

If 1–3 holds, then A looks like a purely infinite Cuntz-Krieger algebra.
Classification of purely infinite Cuntz-Krieger algebras

Theorem (Restorff)

Let A and B be purely infinite Cuntz-Krieger algebras with $\text{Prim}(A) \cong \text{Prim}(B)$. Then $\text{FK}_R(A) \cong \text{FK}_R(B)$ implies $A \otimes K \cong B \otimes K$.

Example (Reduced filtered K-theory FK_R)

For a C^*-algebra A with ideal lattice

\[
\begin{array}{ccc}
A & \xrightarrow{K_0(I)} & K_0(J_n) \\
\downarrow & & \uparrow \\
J_1 & & K_0(J_n/I) \\
\downarrow & & \\
J_2 & & K_1(I), \\
\downarrow & & n \in \{1, 2\} \\
I & & \\
\downarrow & & \\
0 & &
\end{array}
\]

its $\text{FK}_R(A)$ consists of $K_0(J_n/I)$.

Theorem (A-Bentmann-Katsura)

Let A be a C^*-algebra that looks like a purely infinite Cuntz-Krieger algebra. Then there exists a purely infinite Cuntz-Krieger algebra B with $\text{Prim}(A) \cong \text{Prim}(B)$ and $\text{FK}_R(A) \cong \text{FK}_R(B)$.

Sara Arklint — Closure properties for the class of Cuntz-Krieger algebras — COSy, May 2013
Slide 4/5
Applying classification to extensions of Cuntz-Krieger algebras

Theorem (A-Bentmann-Katsura)

Let A be a C^*-algebra that look like a purely infinite Cuntz-Krieger algebra. Then there exists a purely infinite Cuntz-Krieger algebra B with $\text{Prim}(A) \cong \text{Prim}(B)$ and $\text{FK}_R(A) \cong \text{FK}_R(B)$.

Theorem (Kirchberg, Meyer-Nest, Bentmann-Köhler)

Let A and B be Kirchberg X-algebras with X an accordion space. Then $\text{FK}_K(A) \cong \text{FK}_K(B)$ implies $A \otimes K \cong B \otimes K$.

Theorem (A-Bentmann-Katsura)

Let A and B be C^*-algebras that looks like purely infinite Cuntz-Krieger algebras and assume that $\text{Prim}(A)$ and $\text{Prim}(B)$ are homeomorphic accordion spaces. Then $\text{FK}_R(A) \cong \text{FK}_R(B)$ implies $\text{FK}(A) \cong \text{FK}(B)$.

Corollary

Let A be a C^*-algebra with $\text{Prim}(A)$ an accordion space. Then A is a purely infinite Cuntz-Krieger algebra if and only if it looks like one.