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Preface

This monograph concerns itself with the theory of continuous-time martingales with continu-

ous paths and the theory of stochastic integration with respect to continuous semimartingales.

To set the scene for the theory to be developed, we consider an example. Assume given a
probability space (Q, F, P) endowed with a Brownian motion W, and consider a continuous
mapping f : [0,00) — R. We would like to understand whether it is possible to define an
integral fot f(s) dWj in a fashion analogous to ordinary Lebesgue integrals. In general, there is
a correspondence between bounded signed measures on [0,¢] and mappings of finite variation
on [0,t]. Therefore, if we seek to define the integral with respect to Brownian motion in a
pathwise sense, that is, by defining fot f(s)dW(w)s for each w separately, by reference to
ordinary Lebesgue integration theory, it is necessary that the sample paths W (w) have finite
variation. However, Brownian motion has the property that its sample paths are almost
surely of infinite variation on all compact intervals. Our conclusion is that the integral of
f with respect to W cannot in general be defined pathwisely by immediate reference to

Lebesgue integration theory.

We are thus left to seek an alternate manner of defining the integral. A natural starting point
Wir_ ), where ) = kt27", and
attempt to prove their convergence in some sense, say, in £2. By the completeness of £2, it

is to consider Riemann sums of the form Zill ) (Wi —
suffices to prove that the sequence of Riemann sums constitute a Cauchy sequence in £2. In
order to show this, put n(5) = sup{|f(s) — f(u)| | s,u € [0,t],|s —u| < B}. n(B) is called
the modulus of continuity for f over [0,¢]. As f is continuous, f is uniformly continuous on
[0,t], and therefore n(8) tends to zero as § tends to zero. Now note that for m > n, with

= () — f(t}_) where k" is such that ¢}, _; <t7* | < t},, we find by the independent
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and normally distributed increments of Brownian motion that

2m 2n 2
E <Z FUR ) (W = W ) =Y ftr_ ) (Wip — Wt',';l)>
k=1 k=1
2 om

gm
= FE <Z E'" (Wim — thl)> = ZE( g (Wi — Wt;nil))Q
k=1 k=1
gm
< 2T E(Wip — Wi )2 = tn(t27")?,
k=1
which tends to zero as n tends to infinity. We conclude that as m and n tend to infinity,
the £2 distance between the corresponding Riemann sums tend to zero, and so the sequence
of Riemann sums Zill ftg_)(Wip — Wyn_ ) is a Cauchy sequence in £*. Therefore, by
completeness, the sequence converges in £2 to some limit. Thus, while we cannot in general
obtain pathwise convergence of the Riemann sums, we can in fact obtain convergence in £2,
and may then define the stochastic integral fot f(s) dWy as the limit.

Our conclusion from the above deliberations is that we cannot in general define the stochastic
integral with respect to a Brownian motion using ordinary Lebesgue integration theory, but in
certain circumstances, we may define the integral using an alternate limiting procedure. This
provides evidence that a theory of stochastic integration may be feasible. In the following

chapters, we will develop such a theory.

The structure of what is to come is as follows. In Chapter 1, we will develop the basic tools
of continuous-time martingale theory, as well as develop the general concepts used in the
theory of continuous-time stochastic processes. Using these results, we will in Chapter 2
define the stochastic integral fot HydX, for all processes such that X belongs to the class
of processes known as continuous semimartingales, which in particular includes continuous
martingales and processes with continuous paths of finite variation, and H is a process
satisfying certain measurability and integrability conditions. In this chapter, we also prove
some basic properties of the stochastic integral, such as the dominated convergence theorem

and It6’s formula, which is the stochastic version of the fundamental theorem of analysis.

As regards the prerequisites for this text, the reader is assumed to have a reasonable grasp
of basic analysis, measure theory and discrete-time martingale theory, as can be obtained
through the books Carothers (2000), Ash (2000) and Rogers & Williams (2000a).
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Chapter 1

Continuous-time stochastic

processes

In this chapter, we develop the fundamental results of stochastic processes in continuous
time, covering mostly some basic measurability results and the theory of continuous-time

continuous martingales.

Section 1.1 is concerned with stopping times and various measurability properties for pro-
cesses in continuous time. In Section 1.2, we introduce continuous martingales in continuous
time. We define the spaces cM, cM™ and cM? consisting of continuous martingales, uni-
formly integrable martingales and bounded martingales, respectively, all with initial value
zero. Mainly by discretization and reference to the classical results from discrete-time mar-
tingale theory, we show that the main theorems of discrete-time martingale theory carry over
almost verbatim to the continuous-time case.

In Section 1.3, we introduce the space cM? of continuous martingales bounded in £2 with
initial value zero. Analogously to the special properties of £2 among the spaces £P for p > 1,
the space cM? has some particularly pleasant properties. We prove results on convergence
properties of martingales in cM?, we show a completeness property of cM? and a type of
Riesz representation theorem for cM?2, and we use these results to demonstrate the existence
of a process, the quadratic variation process, for elements of cM?, which will be essential to

our development of the stochastic integral.



2 Continuous-time stochastic processes

Finally, in Section 1.4, we introduce the space cM; of continuous local martingales with
initial value zero. We prove the basic stability properties of the space of local martingales
and extend the notion of quadratic variation and quadratic covariation to continuous local

martingales.

1.1 Measurability and stopping times

We begin by reviewing basic results on continuous-time stochastic processes. We will work
in the context of a filtered probability space (2, F, (F:), P). Here, Q denotes some set, F is
a o-algebra on Q, P is a probability measure on (2, F) and (F;)¢>o is a family of o-algebras
such that F;, C F; whenever 0 < s < t and such that F7; C F for all t > 0. We refer to
(Ft)e>0 as the filtration of the probability space. We define Foo = 0(Us>0F:). We will require
that the filtered probability space satisfies certain regularity properties given in the following
definition. Recall that a P null set of F is a set F' C Q) with the property that there exists
G € F with P(G) = 0 such that F C G.

Definition 1.1.1. A filtered probability space (0, F, (Fi)i>0, P) is said to satisfy the usual
conditions if it holds that the filtration is right-continuous in the sense that Fy = NgsFs for
allt >0, and for all t > 0, F; contains all P null sets of F. In particular, all P null sets of
F are F measurable.

We will always assume that the usual conditions hold. Note that because of this permanent
assumption, our results a priori only hold for such filtered probability spaces. Therefore, we
also need to ensure that the usual conditions may be assumed in practical cases, for example

when dealing with Brownian motion. These issues are considered in Section A.4.

A stochastic process is a family (X;);>¢ of R-valued random variables. The sample paths of
the stochastic process X are the functions ¢t — X;(w) for w € Q. We refer to X as the initial

value of X. In particular, we say that X has initial value zero if X is zero.

In the following, B denotes the Borel-o-algebra on R. We put R, = [0, 00) and let B, denote
the Borel-c-algebra on R, and we let B; denote the Borel-o-algebra on [0,¢]. We say that
two processes X and Y are versions of each other if P(X; =Y;) = 1 for all ¢t > 0. In this
case, we say that Y is a version of X and vice versa. We say that two processes X and Y are
indistinguishable if their sample paths are almost surely equal, in the sense that the set where
X and Y are not equal is a null set, meaning that the set {w € Q| 3t >0: X;(w) # Yi(w)}
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is a null set. We then say that X is a modification of Y and vice versa. We call a process
evanescent if it is indistinguishable from the zero process, and we call a set A € By @ F
evanescent if the process 14 is evanescent. We say that a result holds up to evanescence, or

up to indistinguishability, if it holds except perhaps on an evanescent set.

We have the following three measurability concepts for stochastic processes.

Definition 1.1.2. Let X be a stochastic process. We say that X is adapted if X; is Fy
measurable for allt > 0. We say that X is measurable if (t,w) — Xi(w) is B+ @F measurable.
We say that X is progressive if X[ )xq, the restriction of X to [0,t]xQ, is B;®F; measurable
fort>0.

If a process X has sample paths which are all continuous, we say that X is continuous.
Note that we require that all paths of X are continuous, not only that X has continuous
paths almost surely. Next, we introduce the progressive g-algebra ¥™ and consider its basic

properties.

Lemma 1.1.3. Let 7 be the family of sets A € By @ F such that AN[0,t] x Q € B; @ F;
for allt > 0. Then ¥™ is a o-algebra, and a process X is progressive if and only if it is X7
measurable.

Proof. We first show that X7 is a o-algebra. It holds that ¥™ contains Ry x Q. If A € X7,
we have AN[0,t] xQ € By @ F; forall t > 0. As A°N[0,t] x Q= ([0,¢] x Q) \ (AN][0,t] x ),
A°N[0,t] x Q is the complement of AN [0, ] x Q relative to [0, t] x . Therefore, as B; ® F; is
stable under complements, we find that A°N[0,¢] x  is in B; ® F; as well for all ¢ > 0. Thus,
37 is stable under taking complements. Analogously, we find that 37 is stable under taking
countable unions, and so X" is a g-algebra. As regards the statement on measurability, we
first note for any A € B the equality

{(s,w) eRy x Q| X(s,w) € A} N[0,1] x Q@ = {(s,w) € [0,] x Q| X|j0,x0(s,w) € A}.

Now assume that X is progressive. Fix a set A € B. From the above, we then obtain
{(t,w) e Ry x Q| X(t,w) € A} N[0,t] x Q € B, ® Fy, so that X is ¥™ measurable. In order
to obtain the converse implication, assume that X is X™ measurable. The above then shows
{(t,w) € [0,1] x Q| Xjjogxa(t,w) € A} € B; ® F;. Thus, being progressive is equivalent to
being ¥™ measurable. U

Lemma 1.1.3 in particular shows that being progressive is the same as being measurable with

respect to the progressive og-algebra, which we also refer to as being progressively measurable.
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Lemma 1.1.4. Let X be adapted. If X has left-continuous paths, then X is progressive.
If X has right-continuous paths, then X is progressive. In particular, if X is a continuous,

adapted process, then X s progressive.

Proof. First consider the case where X is adapted and has left-continuous paths. In this case,
X; = lim, X" pointwise, where X™ is the process X;" = > ;7 KXo Ljga—n, (kt1)2-7) (1)
Therefore, using the result from Lemma 1.1.3 that being progressive means measurability
with respect to the o-algebra 3™, we find that in order to show the result, it suffices to show
that the process t — Xyo—nljpo—n (k41)2-n)(t) is progressive for any n > 1 and k > 0, since
in this case, X inherits measurability with respect to X™ as a limit of X™ measurable maps.
In order to show that ¢ = Xjo—nl[ko—n (k41)2-)(t) is progressive, let A € B with 0 ¢ A. For
any t > 0, we then have

{(s,w) S [O,ﬂ x | Xk27n (w)l[k27n’(k+1)277z)(3) € A}
= k2 (R 1)27) A[0,8] X (Xpon € A).

If k27" > t, this is empty and so in B; ® F;, and if k27" < ¢, this is in B; ® F; as a product
of a set in B; and a set in F;. Thus, in both cases, we obtain an element of B; ® F;, and from
this we conclude that the restriction of ¢ > Xjpo-nljpa—n (k41)2-7)(t) to [0,2] x Qis B; @ F;

measurable, demonstrating that the process is progressive. This shows that X is progressive.

Next, consider the case where X is adapted and has right-continuous paths. In this case, we fix
2" -1

t > 0 and define, for 0 < s <t, X7 = Xol{03(8) +> g Xetht1)2- Lith2—n t(kt+1)2-7(t). By

right-continuity, X, = lim,, X7 pointwise for 0 < s <t. Also, each term in the sum defining

X™is B; ® F; measurable, and therefore, X” is B; ® F; measurable. As a consequence, the

restriction of X to [0,¢] x Q is B; ® F;, and so X is progressive. This concludes the proof. O

Lemma 1.1.5. Let X be continuous. If X; is almost surely zero for allt > 0, X is evanes-

cent.

Proof. We claim that {w € Q| V¢ >0: Xy(w) = 0} = Ngeg,{w € Q| Xy(w) = 0}.
The inclusion towards the right is obvious. In order to show the inclusion towards the left,
assume that w is such that X,(w) is zero for all ¢ € Q4. Let ¢ € Ry. Since Q4 is dense
in Ry, there is a sequence (g,) in Q4 converging to ¢. As X has continuous paths, X (w)
is continuous, and so X;(w) = lim,, X,, (w) = 0. This proves the inclusion towards the left.
Now, as a countable intersection of almost sure sets again is an almost sure set, we find that
Ngeq; {w € Q| Xy(w) = 0} is an almost sure set. Therefore, {w € Q| V¢ >0: X;(w) =0}

is an almost sure set, showing that X is evanescent. O
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Lemma 1.1.6. Let X be progressive. Then X is measurable and adapted.

Proof. By definition ¥™ C B, ® F. Therefore, as X is progressive, we have for any A € B
that {(t,w) € Ry x Q| Xy(w) € A} € ¥™ C By ® F. This proves that X is measurable. To
show that X is adapted, note that when X is progressive, X|j0,qxq is By ® F; measurable,
and therefore w — X;(w) is F; measurable. O

Next, we define stopping times in continuous time and consider their interplay with measur-
ability concepts on Ry x Q. A stopping time is a random variable T : Q — [0, o] such that
(T <t)e F;for any t > 0. We say that T is finite if T maps into R;. We say that T
is bounded if T" maps into a bounded subset of Ry. If X is a stochastic process and T is a
stopping time, we denote by X7 the process X! = Xr,; and call X7 the process stopped
at T. Furthermore, we define the stopping time o-algebra Fr of events determined at T' by
putting Fr = {A € F| AN (T <t) € F for all t > 0}. Clearly, Fr is a o-algebra, and if T’
is constant, the stopping time o-algebra is the same as the filtration o-algebra, in the sense
that {Ae Fl|AN(s<t)e F forallt>0}=F,.

Our first goal is to develop some basic results on stopping times and their interplay with
stopping time o-algebras. In the following, we use the notation that S AT = min{S, T} and
SVT =max{S,T}.

Lemma 1.1.7. The following statements hold about stopping times:

1. Any constant in [0,00] is a stopping time.

2. A nonnegative variable T is a stopping time if and only if (T < t) € F; fort > 0.

8. If S and T are stopping times, so are SAT, SVT and S+ T.

4. If T is a stopping time and F € Frp, then Tp = T1p+o0olpe is a stopping time as well.

5. If S <T, then Fs C Fr.

Proof. Proof of (1). Let ¢ be a constant in Ry.. Then (¢ < ¢) is either @) or 2, both of which
are in F; for any ¢ > 0. Therefore, any constant ¢ in R, is a stopping time.

Proof of (2). Assume first that T is a stopping time. Then (T < t) = U3, (T < t—1) € F,
since (T <t — 1) € F,_1. Conversely, assume (T < t) € F; for all t > 0. We then obtain

n
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(T <t)=nE, (T <t+ 1) for all n. This shows (I' < t) € F, 1 for all n > 1. Since (F) is
increasing and n is arbitrary, we find (7' <t) € N32  F 1 = Mp2g Nesyy 1 Fs = NeseFs. By
right-continuity of the filtration, F; = M=t Fs, so we conclude (T < t) € F;, proving that T

is a stopping time.

Proof of (3). Assume that S and T are stopping times and let ¢ > 0. We then have
(SAT <t)=(S<t)u(T <t)e Fi, soSAT is a stopping time. Likewise, we obtain
(SVT <t)=(S<t)N(T <t) e F,so SVT is a stopping time as well. Finally, consider
the sum S+ 7. Let n > 1 and fix w. If S(w) and T'(w) are finite, there are ¢,¢’ € Q4 such
that ¢ < S(w) < ¢+ 1 and ¢ < T(w) < ¢ + L. In particular, ¢+ ¢ < S(w) + T(w) and
S(w) 4+ T(w) < g+ ¢ + 2. Next, if S(w) + T'(w) < ¢, it holds in particular that both S(w)
and T'(w) are finite. Therefore, with ©; = {¢,¢' € Q4 | ¢+ ¢’ < t}, we find

(S+T <t) =M Uggneo, (S<a+ )N (T <d +3).

Now, the sequence of sets U(g ¢1co, (S < ¢+ 2)N(T < ¢'+2) is decreasing in n, and therefore
we have for any k > 1 that (S+7T < t) = N2, Uggee, (S<q+2)N(T < ¢ +1) € Fiq1-
In particular, (S + T < t) € F; for any s > ¢, and so, by right-continuity of the filtration,
(S4+T <t) €NgstFs = Ft, proving that S+ T is a stopping time.

Proof of (4). Let T be a stopping time and let ' € Fr. Then (ITp <t) = (T <t)NF € F,
as was to be proven.

Proof of (5). Let A € Fg, so that AN (S <t) € F for all t > 0. Since S < T, we have
(T<t)C(S<t)andso AN(T <t)=AN(S<t)N(T <t) € F, yielding A € Fr. O

For the next results, we recall that for any A C R, it holds that inf A < ¢ if and only if there
is s € A such that s < t.

Lemma 1.1.8. Let (T,,) be a sequence of stopping times, then sup,, T,, and inf, T, are

stopping times as well.

Proof. Assume that T, is a stopping time for each n. Fix ¢t > 0, we then then have that
(sup,, T, <t) = NS4 (T,, < t) € F, so sup,, Ty, is a stopping time as well. Likewise, using
the second statement of Lemma 1.1.7, we find (inf,, T), < t) = US2 (T}, < t) € F3, so inf, T),

is a stopping time as well. O

Lemma 1.1.9. Let X be a continuous adapted process, and let U be an open set in R. Define
T=inf{t >0| X; € U}. Then T is a stopping time.
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Proof. Note that if s > 0 and (s,,) is a sequence converging to s, we have by continuity that
X, converges to X, and so, since U is open, (X; € U) CUSZ (X, € U). Using that Q; is

dense in R, we find

(T'<t) = (IseRi:s<tand X;€U)
= (3s€Qy:s<tand X, € U) = Useq, ,s<t(Xs € U),

and since X is adapted, we have (X; € U) € F; C F; whenever s < t, proving that
(T <t) € F;. By Lemma 1.1.7, this implies that T is a stopping time. O

Lemma 1.1.10. Let X be a continuous adapted process, and let F' be a closed set in R.
Define T =inf{t > 0| X; € F}. Then T is a stopping time.

Proof. Define U, = {z € R| 3y € F: |v —y| < £}. We claim that U, is open, that U,
decreases to F and that U, C U,, where U, ,; denotes the closure of U, 1. As we have
that U, = Uyep{z € R| |z —y| < 1}, U, is open as a union of open sets. We have F C U,

oo

for all n, and conversely, if © € NS, U,,, we have that there is a sequence (y,) in F' such that

lyn — x| < % for all n. In particular, y, tends to x, and as F is closed, we conclude = € F'.
Thus, F = N2 ,U,. Furthermore, if z is in the closure U, 1, there is a sequence (zy) in
Un1 such that |z, — x| < 4, and there is a sequence (y) in F such that |zx — yi| < n%_l,

showing that |z —yg| < %—i— n%_l Taking k so large that %—i— n_lH < %, we see that U, 41 C U,.

Now note that whenever t > 0, we have
(T<t):(E|S€R+38<tandXs€F):U;O:1(E|S€R+ZSSt—%andXseF)7

so by Lemma 1.1.7, it suffices to prove that (3 s € Ry : s <t and X, € F) is F; measurable
for all t > 0. We claim that

(I3seRy:s<tand X; € F)=Np21(3¢€ Q4 : g <tand X, € Uy).

To see this, first consider the inclusion towards the right. If there is s € Ry with s <¢ and
X, € F, then we also have X € Uy, for all k. As Uy, is open, there is € > 0 such that the ball
of size ¢ around X is in Ug. In particular, there is ¢ € Q1 with ¢ <t such that X, € Uj.
This proves the inclusion towards the right. In order to obtain the inclusion towards the left,
assume that for all k, there is g, € Q1 with ¢ < ¢ such that X,, € Uy. As [0,¢] is compact,
there exists s € R4 with s < ¢ such that for some subsequence, lim,, gx,, = s. By continuity,
Xs = lim,, Xy, . As X, € Uy, we have for any i that X, € U; for m large enough.
Therefore, we conclude X, € ﬂ;’ilﬁi C N2, U; = F, proving the other inclusion. This shows
the desired result. O
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Lemma 1.1.11. Let X be any continuous adapted process with initial value zero. Defining
T, = inf{t > 0| |X¢| > n}, (Tn) is a sequence of stopping times increasing pointwise to

infinity, and the process X is bounded by n.

Proof. By Lemma 1.1.9, (T;,) is a sequence of stopping times. We prove that X7 is bounded

by n. If T}, is infinite, X; < n for all t > 0, so on (T, = c0), X™ is bounded by n. If T},
is finite, note that for all € > 0, there is t > 0 with T;, < ¢t < T, + € such that | X;| > n.
Therefore, by continuity, | X7,
the value zero. Therefore, there is ¢ > 0 with ¢t < T,,. For all such ¢, |X;| < n. Therefore,

again by continuity, | X7, | < n, and we conclude that in this case as well, X is bounded

> n. In particular, as X has initial value zero, T}, cannot take

by n. Note that we have also shown that | X7, | = n whenever T,, is finite.

It remains to show that T, converges almost surely to infinity. To obtain this, note that as
X is continuous, X is bounded on compacts. If for some samle path we have that T, < a
for all n, we would have | X7, | = n for all n and so X would be unbounded on [0, a]. This is
a contradiction, since X has continuous sample paths and therefore is bounded on compact
sets. Therefore, (T;,) is unbounded for every sample path. As T, is increasing, this shows

that T,, converges to infinity pointwise. O

Lemma 1.1.12. Let X be progressively measurable, and let T be a stopping time. Then

X1l(T<o0) s Fr measurable and X7 is progressively measurable.

Proof. We first prove that the stopped process X7 is progressively measurable. Fix t > 0,
we need to show that X ‘?0’ %0 is By ® F; measurable, which means that we need to show
that the mapping from [0, ] x © to R given by (s,w) = Xp(,)rs(w) is By ® F-B measurable.
To this end, note that whenever 0 < s < ¢,

{(u,w) €[0,t] x Q| T(w) Au<st = ([0,t] x (T <s)U([0,s] x Q) € By ® F,

so the mapping from [0,¢] x £ to [0,¢] given by (s,w) — T'(w) A s is By ® F-B; measurable.
And as the mapping from [0,¢] x Q to Q given by (s,w) — w is B; ® F;-F; measurable, we
conclude that the mapping from [0,¢] x Q to [0,¢] x © given by (s,w) — (T'(w) A s,w) is
B: ® Fi-By ® F; measurable, since it has measurable coordinates. As X is progressive, the
mapping from [0, t] x 2 to R given by (s,w) — X¢(w) is B; ® F:-B measurable. Therefore, the
composite mapping from [0,¢] x Q2 to R given by (s, w) = Xp)as(w) is B;® F-B measurable.

This shows that X7 is progressively measurable.

In order to prove that Xp is Fp measurable, we note that for any B € B, we have that
(Xrlircooy € B)N(T < t) = (X € B)N (T < t). Now, X{ is F; measurable since X7 is
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progressive and therefore adapted by Lemma 1.1.6, and (T < t) € F; since T is a stopping
time. Thus, (X71(7<o0) € B) N (T <t) € F, and we conclude (X7l(r<o0) € B) € Fp. [

Lemma 1.1.13. Let T and S be stopping times. Assume that Z is Fg measurable. It then
holds that both Z1(s<1y and Z1(g<T) are Fsar measurable.

Proof. We first show (S < T') € Fsar. To prove the result, it suffices to show that the
set (S <T)N(SAT <t)isin F for all ¢ > 0. To this end, we begin by noting that
(S<T)NSAT <t)=(S<T)N(S <t). Consider some w € 2 such that S(w) < T'(w) and
Sw) <t. Ift < T(w), S(w) <t <T(w). If T(w) <t, there is some ¢ € Q N [0,¢] such that
S(w) < g <T(w). We thus obtain (S <T)N(SAT <t) = Ugeqnioquiey (S < q) N (g <T),
which is in F, showing (S < T') € Fsar. We next show that Z1(s<T) is Fsar measurable.
Let B € B with B not containing zero. As this type of sets generate B, it will suffice to show
that (Z1(g<1) € B)N (S AT <t) € F; for all t > 0. To obtain this, we rewrite

(Zls<ry € B)N(SAT <t) = (ZeB)N(S<T)N(SAT <)
= (ZeB)Nn(S<T)Nn(S<t).

—

Since Z is Fg measurable, (Z € B)N (S < t) € F;. And by what we have already shown,
(S<T)e Fs,s0(S<T)N(S <t)e Fi. Thus, the above is in Fy, as desired.

Finally, we show that Z1(g<7) is Fsar measurable. Let B € B with B not containing zero.
As above, it suffices to show that for any ¢t > 0, (Z1(s<1) € B)N(SAT <t) € F;. To obtain
this, we first write

(ZI(SST) S B) n (S/\T < t)

(ZeB)N(S<T)N(SAT <t)
= (ZeB)N(S<H)HNES<T)N(SAT <t).
Since Z € Fg, we find (Z € B)N (S < t) € F. And since we know (T' < S) € Frag,

(S <T)=(T < 8)° € Fsar, s0 (S <T)N(SAT < t) € F. This demonstrates
(Z1(s<m) € B)N(SAT <t) € Fi, as desired. O

1.2 Continuous-time martingales

In this section, we consider continuous martingales in continuous time. We say that a process
M is a continuous-time martingale if for any 0 < s < ¢, E(M;|F,) = M, almost surely. In

the same manner, if for any 0 < s < ¢, E(M;|F;) < M, almost surely, we say that M is a
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supermartingale, and if for any 0 < s < t, E(M;|Fs) > M almost surely, we say that M
is a submartingale. We are interested in transferring the results known from discrete-time
martingales to the continuous-time setting, mainly the criteria for almost sure convergence,
L' convergence and the optional sampling theorem. The classical results from discrete-time
martingale theory are reviewed in Appendix A.3.

We will for the most part only take interest in martingales M whose initial value is zero,
My = 0, in order to simplify the exposition. We denote the space of continuous martingales
in continuous time with initial value zero by cM. By cM", we denote the elements of cM
which are uniformly integrable, and by cM?®, we denote the elements of cM™ which are
bounded in the sense that there exists ¢ > 0 such that |M;| < ¢ for all ¢ > 0. Clearly, cM

and cM? are both vector spaces, and by Lemma A.2.4, cM™ is a vector space as well.

We begin by presenting our most basic example of a continuous martingale in continuous
time, the p-dimensional F; Brownian motion. Recall from Appendix A.4 that a p-dimensional
Brownian motion is a continuous process W with values in R? such that the increments are
independent over disjoint intervals, and for 0 < s < ¢, W; — W, follows a p-dimensional
normal distribution with mean zero and variance (¢t — s)I,, where I, is the identity matrix
of order p. Furthermore, as in Definition A.4.4, a p-dimensional F; Brownian motion is a
process W with values in RP adapted to (F;) such that for any ¢ > 0, the distribution of
s — Wirs — Wy is an p-dimensional Brownian motion independent of F;. The difference
between a plain p-dimensional Brownian motion and a p-dimensional F; Brownian motion
is that the p-dimensional F; Brownian motion possesses a certain regular relationship with
the filtration. The following basic result shows that the martingales associated with ordinary

Brownian motions reoccur when considering F; Brownian motions.

Theorem 1.2.1. Let W be a p-dimensional F; Brownian motion. For i < p, W and
(Wi)? — t are martingales, where W* denotes the i’th coordinate of W. For i,j < p with
i # 3§, WiW] is a martingale.

Proof. Let i < p and let 0 < s < t. W' is then an F; Brownian motion, so W} — W¢ is

normally distributed with mean zero and variance ¢t — s and independent of F;. Therefore,
we obtain E(W}|Fs) = E(W; — Wi Fs) + Wi=EW;—-W!) +W!=W! proving that W*
is a martingale. Furthermore, we find

E((W)* —t|F) = B((W; — W) — (W)? + 2W W[ |F,) — t

S

E((W} = Wi |F) — (WP + 2W E(W{|Fy) —t = (W)* — s,

so (W})2 —t is a martingale. Next, let 4, j < p with i # j. We then obtain that for 0 < s < ¢,
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using independence and the martingale property,
EWW]|F) = BWW] - WW{|F,)+WW{
= EW{W{ - WiW] + WiW{] - WIW/]|F,) + WW/
= BW/(W] = W) = Wi(W} = W)|F,) + WW!
= E(Wz(WJ W)|Fs) + WiW!
E((W{ = W)W} = WI)IF) + BEWLW] — W)|F,) + WiW!

= WiWi,

where we have used that the variables E(WJ (W{—W1)|F,), E((W} —Wi) (W} —W7)|F,) and

E(W{W] —Wi)|F,) are all equal to zero, because t — Wiy, — W, is independent of F, and
has the distribution of a p-dimensional Brownian motion. Thus, W*W/ is a martingale. [

Furthermore, when W is a p-dimensional F; Brownian motion, W* has the distribution
of a Brownian motion, so all ordinary distributional results for Brownian motions transfer
verbatim to F; Brownian motions, for example that the following results hold almost surely:
Wi Wi Wi

lim sup =1, liminf ———— = —1, lim

t—oo /2tloglogt t—oo +/2t1oglogt Tt—oo ¢

After introducing this central example, we will in the remainder of this section work on
transferring the results of discrete-time martingale theory to continuous-time martingale
theory. The main lemma for doing so is the following.

Lemma 1.2.2. Let M be a continous-time martingale, supermartingale or submartingale,
and let (t,) be an increasing sequence in Ry. Then (Fy, )n>1 1S a discrete-time filtration,
and the process (My, )n>1 is a discrete-time martingale, supermartingale or submartingale,
respectively, with respect to the filtration (Fy, )n>1-

Proof. This follows immediately from the definition of continuous-time and discrete-time

martingales, supermartingales and submartingales. O

Lemma 1.2.3 (Doob’s upcrossing lemma). Let Z be a continuous supermartingale bounded
in L', Define U(Z,a,b) =sup{n| 30<s1 <ty < -8, <ty:Zs <a,Zy, >bk<n} for
any a,b € R with a < b. We refer to U(Z,a,b) as the number of upcrossings from a to b by
Z. Then U(Z,a,b) is F measurable and it holds that

|al +sup, E|Z:|

EU(Z,a,b) < ;
—a
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Proof. We will prove the result by reducing to the case of upcrossings relative to a countable
number of timepoints and applying Lemma 1.2.2 and the discrete-time upcrossing result of
Lemma A.3.1. For any D C R, we define

U(Z,a,b,D) =sup{m | 30< 81 <1 <+ S$m <tm:8,ti € D, Zs, < a,Zy, >b,i <m},

and we refer to U(Z, a,b, D) as the number of upcrossings from a to b at the timepoints in
D. Define Dy = {k27" | k > 0,n > 1}, we refer to D as the dyadic nonnegative rationals.
It holds that D is dense in Ry. Now as Z is continuous, we find that for any finite sequence
0<s1 <ty < 8m <ty such that s;,t; € Ry with Zs, < a and Z;, > b for i < m, there
exists 0 < p1 < @1 < -+ Ppm < gm such that p;,¢; € D with Z,, < a and Z,;, > b for i < m.
Therefore, U(Z,a,b) = U(Z,a,b,D;). In other words, it suffices to consider upcrossings at
dyadic nonnegative rational timepoints. In order to use this to prove that U(Z,a,b) is F

measurable, note that for any m > 1, we have

(F0<s1 <ty <+ 8 <t 8t €Dy, Zs, <a,Zy, >b,i <m)
= W(Zs, <a,Zy, >bforalli <m) |0<s1 <t1 < Sy <t sit; €Dy}

which is in F, as (Z,, < a, Z;, > b for all i < m) is F measurable, and all subsets of Up2 D"
are countable. Here, D" denotes the n-fold product of D, . From these observations, we
conclude that the set (30 < s1 <ty <+ 8 <ty @ S5yt €Dy, Zs, < a,Z;, >b,i < m)is
F measurable. Denote this set by A,,, we then have U(Z,a,b)(w) =sup{m € N |w € A,,},
so that in particular (U(Z,a,b) > m) = U2, Ay € F and so U(Z,a,b) is F measurable.

It remains to prove the bound for the mean of U(Z, a,b). Putting ¢} = k2~" and defining
D,, ={t} | k > 0}, we obtain D} = U2, D,,. We then have

sup{m | 30< 81 <t <+ -8 <t : 8t €Dy, Zs, < a,Zy, >byi <m}
= supUp {m | 30<s1 <t1 <+ 8 <ty :8i,ti € Dy, Zs, < a,Zy, >b,i < m}
= supsup{m | F30<51 <ty < 8y <t : 8t € Dy, Zs, < a,Zy, >byi < m},
n

soU(Z,a,b,D;) =sup, U(Z,a,b,D,,). Now fix n € N. As (t})x>0 is an increasing sequence,
Lemma 1.2.2 shows that (Ziy)r>0 is a discrete-time supermartingale with respect to the
filtration (Fip)r>0. As (Z;)i>0 is bounded in L', s0 is (Zi»)r>0. Therefore, Lemma A.3.1
yields

la| + supy E|Zn | < lal+sup, E|Z)]

EU(Z,a,b,D,) <
()a7’ )— bia — bia

As (D,,) is increasing, U(Z, a, b, D,,) is increasing, so the monotone convergence theorem and
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our previous results yield

EU(Z,a,b) = FEU(Z,a,b,D;)=EsupU(Z, a,b,D,)
E|Z
= ElmU(Z,a,b,Dy) = lim EU(Z, a,b, Dy,) < la] + sup, B|Zi|
n n b—a
This concludes the proof of the lemma. O

Theorem 1.2.4 (Doob’s supermartingale convergence theorem). Let Z be a continuous
supermartingale. If Z is bounded in L', then Z is almost surely convergent to an integrable
limit. If Z is uniformly integrable, then Z also converges in L', and the limit Zo, satisfies
that for allt > 0, E(Zw|F) < Zy almost surely. If Z is a martingale, the inequality may be

exchanged with an equality.

Proof. Assume that Z is bounded in £'. Fix a,b € Q with a < b. By Lemma 1.2.3, the
number of upcrossings from a to b made by Z has finite expectation, in particular it is almost
surely finite. As Q is countable, we conclude that it almost surely holds that the number of
upcrossings from a to b made by Z is finite for any a,b € Q. Therefore, Lemma A.1.16 shows
that Z is almost surely convergent to a limit in [—oo, 00]. Using Fatou’s lemma, we obtain
E|Zy| = Eliminf, |Z;| < liminf; F|Z;| < sup,>q E|Z;|, which is finite, so we conclude that
the limit Z., is integrable.

Assume next that Z is uniformly integrable. In particular, Z is bounded in £!, so Z; converges
almost surely to some variable Z.,. Then Z; also converges in probability, so Lemma A.2.5
shows that Z, converges to Z,, in £'. We then find that for any ¢ > 0 that, using Jensen’s
inequality, E|E(Zwo|F;) — E(Zs|Fi)| < E|Zo — Zs|, so E(Zs|F;) tends to E(Zuo|F;) in L1 as
s tends to infinity, and we get E(Zoo|Ft) = lims— oo E(Zs|F:) < Z;. This proves the results

on supermartingales.

In order to obtain the results for the martingale case, next assume that Z is a continuous
submartingale bounded in £'. Then —Z is a continuous supermartingale bounded in £'.
From what we already have proved, —Z is almost surely convergent to a finite limit, yielding
that Z is almost surely convergent to a finite limit. If Z is uniformly integrable, so is —Z,
and so we obtain convergence in £ as well for —Z and therefore also for Z. Also, we have
E(—Zx|Ft) < —=Z4, s0 E(Zso|F:) > Z;. Finally, assume that Z is a martingale. Then Z is
both a supermartingale and a submartingale, and the result follows. O

Theorem 1.2.5 (Uniformly integrable martingale convergence theorem). Let M € cM. The

following are equivalent:
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1. M is uniformly integrable.
2. M is convergent almost surely and in L.

3. There is some integrable variable & such that My = E(§|F:) almost surely for t > 0.

In the affirmative, with M., denoting the limit of M; almost surely and in L', we have for
allt > 0 that My = E(My|Ft) almost surely, and My, = E(§|Foo), where Foo = 0(Ui>0Ft).

Proof. We show that (1) implies (2), that (2) implies (3) and that (3) implies (1).

Proof that (1) implies (2). Assume that M is uniformly integrable. By Lemma A.2.3, M
is bounded in £!, and Theorem 1.2.4 shows that M converges almost surely. In particular, M

is convergent in probability, and so Lemma A.2.5 allows us to conclude that M is convergent
in 1.

Proof that (2) implies (3). Assume now that M is convergent almost surely and in £.
Let M, be the limit. Fix F € F, for some s > 0. As M, converges to My, in L', 1xM,
converges to 1M, in £ as well, and we then obtain

ElpM, = lim E1pM; = lim E1pE(M,|F,) = ElpM,,
t—o0 t—o0

proving that F(My|Fs) = M, almost surely for any s > 0.

Proof that (3) implies (1). Finally, assume that there is some integrable variable £ such
that M; = E(¢|F;). By Lemma A.2.6, M is uniformly integrable.

It remains to prove that in the affirmative, with M., denoting the limit, it holds that for all
t >0, My = E(Mu|F:) almost surely, and My, = E(§|Fx). By what was already shown,
in the affirmative case, My = F(M|F;). We thus have E(My|F:) = E(€]|F:) almost surely
for all t > 0. In particular, for any F' € U;>oFy, we have EMo1lp = EE(€|Fx)lp. Now let
D ={F € FIEMx1lr = EE(§|Fx)lp}. We then have that D is a Dynkin class containing
Ut>0F:, and Ug>oF: is a generating class for Foo, stable under intersections. Therefore,
Lemma A.1.19 shows that Foo €D, so that EMy1p = EE({|Fs)lp for all F € Fo. Since
My, is Fs measurable as the almost sure limit of F,, measurable variables, this implies

Mo = E(€|Fx) almost surely, proving the result. O

Lemma 1.2.6. If Z is a continuous martingale, supermartingale or submartingale, and

c > 0, then the stopped process Z¢ is also a continuous martingale, supermartingale or
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submartingale, respectively. Z° is always convergent almost surely and in L' to Z.. In the

martingale case, Z¢ is a uniformly integrable martingale.

Proof. Fix ¢ > 0. Z¢ is adapted and continuous. Let 0 < s < ¢ and consider the super-
martingale case. If ¢ < s, we also have ¢ <t and the adaptedness of Z allows us to conclude
E(Z{\Fs) = E(Zinc| Fs) = E(Z.|Fs) = Z. = Z5. If instead ¢ > s, the supermartingale prop-
erty yields E(Zf|Fs) = E(Zinel Fsne) < Zsne = Z<. This shows that Z¢ is a supermartingale.
From this, it follows that the submartingale and martingale properties are preserved by stop-
ping at ¢ as well. Also, as Z¢ is constant from a deterministic point onwards, Z¢ converges
almost surely and in £! to Z.. If Z is a martingale, Theorem 1.2.5 shows that Z is uniformly

integrable. O

Theorem 1.2.7 (Optional sampling theorem). Let Z be a continuous supermartingale, and
let S and T be two stopping times with S < T. If Z is uniformly integrable, then Z is almost
surely convergent, Zg and Zr are integrable, and E(Zrp|Fs) < Zg. If Z is nonnegative, then
Z is almost surely convergent as well and E(Zr|Fs) < Zg. If instead S and T are bounded,
E(Zr|Fs) < Zg holds as well, where Zg and Zr are integrable. Finally, if Z is a martingale
in the uniformly integrable case or the case of bounded stopping times, the inequality may be

exchanged with an equality.

Proof. Assume that Z is a supermartingale which is convergent almost surely and in £!, and
let S < T be two stopping times. We will prove E(Z7|Fs) < Zs in this case and obtain the
other cases from this. To prove the result in this case, we will use a discretization procedure
along with Lemma 1.2.2 and Theorem A.3.5 to obtain the result. First, define a mapping S,
by putting S,, = co whenever S = oo, and S, = k27" when (kK —1)27" < § < k27". We
then find

(S, <t) = U (S, =k2"")N (k27" <t)
U o((E—1)27" < S < k27N (k27" < 1),

whichisin F, as (k—1)27" < S < k27") isin F; when k27" < t. Therefore, S,, is a stopping
time. Furthermore, we have S < S,, with S,, converging downwards to .S, in the sense that
Sy, is decreasing and converges to S. We define (7;,) analogously, such that (T,) is a sequence
of stopping times converging downwards to T, and (T}, = k27") = ((k—1)27" < T < k27").
We then obtain that (T, = k27") = ((k—1)27" <T < k2™") C (S < k27") = (S, < k277"),
from which we conclude S,, < T,.
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We would like to apply the discrete-time optional sampling theorem to the stopping times
S, and T,. To this end, first note that with ¢} = k27", we obtain that by Lemma 1.2.2,
(Ztg)kzo is a discrete-time supermartingale with respect to the filtration (.7-};;);920. As Z
is convergent almost surely and in L', so is (Zi)r>0, and then Lemma A.2.5 shows that
(Zin k>0 is uniformly integrable. Therefore, (Z;n )0 satisfies the requirements in Theorem
A.3.5. Furthermore, it holds that th converges to Z,,. Putting K, = S,2", K,, takes its
values in NU {oo} and (K, < k) = (S, < k27") € Fin, so K, is a discrete-time stopping

time with respect to (Fy

k) k>0. As regards the discrete-time stopping time o-algebra, we have

Fin. = {FeF|Fn(K,<k)e Fp forall k >0}
= {FeF|FN(S,<ty) € Fip forall k >0}
— [FEeF|FN(S,<t)eF foralt>0}=Fs

where Fin . denotes the stopping time o-algebra of the discrete filtration (.7-};5) k>0 Putting
L, = T,2", we find analogous results for the sequence (L,). Also, since S, < T, we
obtain K,, < L,,. Therefore, we may now apply Theorem A.3.5 with the uniformly integrable
discrete-time supermartingale (Z;r )x>o to conclude that Zs, and Zr, are integrable and that
E(Zr, |Fs,) = E(thn ]—"t?{n) < Zt?(” =Zs,.

Next, we show that Zr, converges almost surely and in £! to Zz. This will in particular
show that Zr is integrable. As before, (Z t;:ﬂ) k>0 is a discrete-time supermartingale satisfy-
ing the requirements in Theorem A.3.5. Also, (2L, < k) = (21,,2" < k) = (T,, < k2= (1),
which is in ]:tzﬂ, so 2L, is a discrete-time stopping time with respect to (]-"tzﬂ)kzo, and
Ly = T2 < 1,271 = 2L,,. Therefore, applying Theorem A.3.5 to the stopping
times 2L,, and L1, we obtain E(Zr,|Fr, ,) = E(Ztgfﬂftﬁzil) < thzil =Zr,.,. It-
erating this relationship, we find that for n > k, Zp, > E(Zrp,|Fr,). Thus, (Z71,) is a
backwards submartingale with respect to (Fr,)n>0. Therefore, (—Zr, ) is a backwards su-
permartingale. Furthermore, as Zp, > E(Zp,|Fr,) for n > k, we have EZy, > EZp,,
so E(—Zr,) < E(—Z,). This shows that sup,,~; E(—Zr,) is finite, and so we may apply
Theorem A.3.6 to conclude that (—Z7, ), and therefore (Z7,), converges almost surely and
in £!. By continuity, we know that Zz, also converges almost surely to Zr. By uniqueness
of limits, the convergence is in £! as well, which in particular implies that Z7 is integrable.
Analogously, Zs, converges to Zg almost surely and in £!.

Now fix F' € Fs. As S < S,,, we have Fg C Fg,. Using the convergence of Zr, to Zp and
Zs, to Zg in L', we find that 1pZr, converges to 1pZr and 1pZg, converges to 1pZs in
,Cl, so that E].FZT = hmn E]-FZTn = hmn ElFE(ZTnLFSn) S hmn E‘].FZS71 = E].FZS, and
therefore, we conclude E(Zr|Fs) < Zg, as desired.
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This proves that the optional sampling result holds in the case where Z is a supermartingale
which is convergent almost surely and in £! and S < T are two stopping times. We will now

obtain the remaining cases from this case.

If Z is a uniformly integrable supermartingale, it is in particular convergent almost surely
and in £!, so we find that the result holds in this case as well. Next, consider the case where
we merely assume that Z is a supermartingale and that S < T are bounded stopping times.
Letting ¢ > 0 be a bound for S and T, Lemma 1.2.6 shows that Z¢ is a supermartingale,
and it is convergent almost surely and in £'. Therefore, as Z7 = Z%, we find that Zp is
integrable and that E(Zp|Fs) = E(Z$|Fs) < Z§ = Zg, proving the result in this case as

well.

Finally, consider the case where Z is nonnegative and S < T are any two stopping times.
We then find that E|Z;| = EZ; < EZy, so Z is bounded in £!. Therefore, Theorem 1.2.4
shows that Z is almost surely convergent and so Zp is well-defined. From what we already
have shown, Zpn, is integrable and E(Zpan|Fsan) < Zsan. For any F € Fg, we find
FN(S<n)e& Fsap for any n by Lemma 1.1.13. Therefore, we obtain

ElpZrann = Elplis<n)Zran + Elrl(ssn)Zran
E]-F]-(Sgn)ZS/\n + E].F]-(S>n)ZS/\n = ElpZsnn,

N

and so, by Lemma A.1.14, E(Zran|Fs) < Zsan- Applying Fatou’s lemma for conditional

expectations, we obtain
E(ZT|fs) = E(hmmf ZT/\n|-7:S) § lim inf E(ZTAnlfS) S lim inf ZS/\n = Zs,

as was to be shown. We have now proved all of the supermartingale statements in the
theorem. The martingale results follow immediately from the fact that a martingale is both

a supermartingale and a submartingale. O

Lemma 1.2.8. Let T be a stopping time. If Z is a supermartingale, then Z* is a super-
martingale as well. In particular, if M € cM, then MT € cM as well, and if M € cMY,
then MT € cM™ as well.

Proof. Let a supermartingale Z be given, and let T be some stopping time. Fix two time-
points 0 < s < t, we need to prove E(ZL'|F,) < ZI' almost surely, and to this end, it suffices
to show that ElFZ;F < Elng for any F' € F,;. Let F € F; be given. By Lemma 1.1.13,
Fn(s < T)is Fsar measurable, and so Theorem 1.2.7 applied with the two bounded stopping
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times T'A s and T At yields

E1pZ{ = Elpag<r)Zrat+ Elpagst)Zrae
< Elpns<ryZras + ElpaesT)Zrat

= Elpni<r)Zrrs + Elpnss>1)ZTAs
= FE1pz7%.

Thus, E(ZF|Fs) < ZT and so Z7 is a supermartingale. From this it follows in particular
that if M € cM, it holds that M7T € ¢M as well. And if M € cM", we find that M7 € cM
from what was already shown. Then, by Theorem 1.2.5, M = E(M.|Fra¢), so by Lemma
A.2.6, M7 is uniformly integrable, and so M7 € cM". O

We end the section with two extraordinarily useful results, first a criterion for determining
when a process is a martingale or a uniformly integrable martingale, and secondly a result

showing that a particular class of continuous martingales consists of the zero process only.

Lemma 1.2.9 (Komatsu’s lemma). Let M be a continuous adapted process with initial value
zero. It holds that M € cM if and only if My is integrable with EMp = 0 for any bounded
stopping time T. If the limit lim;_, o, My exists almost surely, it holds that M € cM™ if and
only if M s integrable with EMy = 0 for any stopping time T.

Proof. We first consider the case where we assume that the limit lim;_, o, M; exists almost
surely. By Theorem 1.2.7, we have that if M € cM™, Mr is integrable and EMp = 0 for
any for any stopping time 7. Conversely, assume that My is integrable and EMp = 0 for
any stopping time 7. We will prove that M; = E(My|F;) for any ¢ > 0. To this end, let
F € F; and note that by Lemma 1.1.7, tr is a stopping time, where tp = t1p + colpe,
taking only the values ¢ and infinity. We obtain EM;, = El1pM; + Elp- M, and we also
have EM,, = ElpMy, + ElpcM,,. By our assumptions, both of these are zero, and so
ElpM; = ElpMy. As M, is F; measurable by assumption, this proves M; = E(Myo|Fy).
From this, we see that M is in cM, and by Theorem 1.2.5, M is in cM™.

Consider next the case where we merely assume that M is a continuous process with initial
value zero. If M € cM, Theorem 1.2.7 shows that Mr is integrable with EMp = 0 for
any bounded stopping time. Assume instead that Mr is integrable and EMp = 0 for any
bounded stopping time 7. From what we already have shown, we then find that M? is in
cM™ for any t > 0 and therefore, M € c M. O

For the statement of the final result, we say that a process X is of finite variation if it has



1.2 Continuous-time martingales 19

sample paths which are functions of finite variation, see Appendix A.1 for a review of the
properties of functions of finite variation. If the process X has finite variation, we denote the
variation over [0, t] by (Vx)¢, such that (Vx); =sup > r_; | Xi, — X, .|, where the supremum
is taken over partitions 0 = tg < -+ < t, =t of [0,¢].

Lemma 1.2.10. Let X be adapted and continuous with finite variation. Then the variation

process Vx is adapted and continuous as well.

Proof. By Lemma A.1.4, Vx is continuous. As for proving that Vx is adapted, note that
from Lemma A.1.9, we have (Vx); =sup > ,_, | Xy, — X, |, where the supremum is taken
over partitions of [0,¢] with elements in Q4 U {t}. As U2 ,(Q4 U {t})™ is countable, there
are only countably many such partitions, and so we find that (Vx); is F; measurable, since
Xg is F; measurable whenever g < t. Therefore, Vx is adapted. O

Lemma 1.2.11. Let X be adapted and continuous with finite variation. Then (Vx)T = Vxr.

Proof. Fix w € Q. With the supremum being over all partitions of [0,T(w) A t], we have

(Vx)i (w)

(Vx)7(wynt(w) = sup z”: | Xty (W) — Xy, (W)
k=1
=YX (w) — XE (@) = (Vi) < (Vr ().
k=1
Conversely, with the supremum being over all partitions of [0, ¢], we also have
(Vxr)i(w) = Supzn: X4, (@) = X ()]
k=1

= Supz |thAT(w) (w) — th,lAT(w)(WN < (VX)t/\T(w) (w).
k=1

Combining our conclusions, the result follows. O

Lemma 1.2.12. If M € cM with paths of finite variation, then M is evanescent.

Proof. We first consider the case where M € cM? and the variation process V), is bounded,
(V)¢ being the variation of M over [0,¢]. Fix t > 0 and let ¢} = kt2~". Now note that by
the martingale property, EMin (M — Myr ) = EMyn  E(Mp — Myp |Fir ) = 0, and

1
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by rearrangement, Mzg - Mtzz;1 = 2Mt2_1(Mt2 — My )+ (Mtg - Mt;j_l)2~ Therefore, we

k—1
obtain
2'7L 27’1, 2'7l
EM = BY (M —Mj ) =2B% My (Mg =My )+ B (Mg =My )?
k=1 k=1 k=1

2"1
— 2

k—1

Now, as M is continuous, (Var): maxg<p |Mt£ — M| | tends pointwisely to zero as n tends to
infinity. The boundedness of M and V}; then allows us to apply the dominated convergence

theorem and obtain
EM} < lim E(Vi), max [ M, — My, | < B lim (Vag)e max [ My, — My, [ =0,

so that M, is almost surely zero by Lemma A.1.15, and so by Lemma 1.1.5, M is evanescent.
In the case of a general M € cM, define T,, = inf{t > 0| (Vas)¢ > n}. By Lemma 1.1.11, (T},)
is a sequence of stopping times increasing almost surely to infinity, and (Va7)7" is bounded
by n. By Lemma A.1.6 and Lemma 1.2.11, |M ™| < |(Vagra )e = |(Var)i™| < n for all t > 0.
Therefore, M7 is a bounded martingale with bounded variation, so our previous results
show that M7 is evanescent. Letting n tend to infinity, T}, tends to infinity, and so we
almost surely obtain M; = lim,, MtT " = (, allowing us to conclude by Lemma 1.1.5 that M

is evanescent. O

1.3 Square-integrable martingales

In this section, we consider the properties of square-integrable martingales, and we ap-
ply these properties to prove the existence of the quadratic variation process for bounded
continuous martingales. We say that a continuous martingale M is square-integrable if
sup;>o EM? is finite.  The space of continuous square-integrable martingales with initial
value zero is denoted by cM?. We note that cM? is a vector space. For any M € cM?2,
we put M; = sup,<, |M,| and M7, = sup,>q|M;|. We use the notational convention that
M;? = (M})?, and likewise M*2 = (M%)?.

Theorem 1.3.1. Let M € cM?. Then, there exists a square-integrable variable My, such
that My = E(Muo|F:) for all t > 0. Furthermore, My converges to My, almost surely and in
L2, and EM? <4EM?Z.
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Proof. As M is bounded in £2, M is in particular uniformly integrable by Lemma A.2.4,
so by Theorem 1.2.5, M; converges almost surely and in £! to some variable M., which is
integrable and satisfies that M; = E(My|F;) almost surely for ¢ > 0. It remains to prove
that M. is square-integrable, that we have convergence in £2 and that EM*2 < 4EM?2
holds.

Put t} = k27" for n,k > 0. Then (Mtg)kzo is a discrete-time martingale for n > 0 with
SUPy>0 EM,%CL finite. By Lemma A.3.4, M;» converges almost surely and in L£? to some
square-integrable limit as k tends to infinity. By uniqueness of limits, the limit is M., so we
conclude that M is square-integrable. Lemma A.3.4 also yields Esupy> Min < AEMZ,.
We then obtain by the monotone convergence theorem and the continuity of M that

EM3? = E lim sup M{. = lim Esup M <4EMZ,.

This proves the inequality FM*? < 4EM?2 . It remains to show that M; converges to M, in
L£2. To this end, note that as we have (M; — My,)? < (2M2)? = 4M*2 which is integrable,
the dominated convergence theorem yields limy E(M; — My.)? = Elim;(M; — My,)? = 0, so
M, also converges in £2 to M, as desired. O

Lemma 1.3.2. Assume that M € cM?. Then MT € cM? as well.

Proof. By Lemma 1.2.8, M7 is a martingale. Furthermore, we have
sup E(M™)? < Esup(M}')? < Esup M} = EM?2,
t>0 >0 >0

and this is finite by Theorem 1.3.1, proving that M7T € cM?2. O

Theorem 1.3.3. Assume that (M™) is a sequence in cM? such that (M) is convergent in
L2 to a limit M,. Then there is some M € cM? such that for allt > 0, My = E(My|F).
Furthermore, E sup,sq(M* — My)? tends to zero.

Proof. The difficulty in the proof lies in demonstrating that the martingale M obtained by
putting M; = E(My|F;) has a continuous version. First note that M™ — M™ € cM? for
all n and m, so for any d > 0 we may apply Chebyshev’s inequality and Theorem 1.3.1 to
obtain, using (x + y)? < 222 + 292,

P((M™ = M™)5, >06) < 6 2E(M"—M™)2
< 45E(ML - ML)
< 86 2(E(ML — My)?* + E(My — MT)?)
< 16072 sup E(MFE — M)

k>mAn
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Now let (n;) be a strictly increasing sequence of naturals such that for each ¢, it holds that

16(27) 7% sup E(ML, — Mw)® <277,

k>n;

this is possible as supy>,, E(MEY — M.,)? tends to zero as n tends to infinity. In particular,
P((Mm™+r — M™): > 27%) < 27" for all i > 1. Then Y ;o) P((M™+* — M™)% > 277
is finite, so therefore, by the Borel-Cantelli Lemma, the event that (M™i+1 — M) > 27
infinitely often has probability zero. Therefore, (M™+1 — M"™i)* < 27% from a point onwards
almost surely. In particular, it almost surely holds that for any two numbers k& < m large

enough that

m oo
(M — M ™) < Y (MM =M™ )5 < Y 27t =27k,
i=k+1 i=k+1

Thus, it holds almost surely that M™ is Cauchy in the uniform norm on R, and therefore
almost surely uniformly convergent to some continuous limit. Define M to be the uniform
limit when it exists and zero otherwise, M is then a process with continuous paths. With F
being the null set where we do not have uniform convergence, our assumption that the usual
conditions hold allows us to conclude that F' € F; for all t > 0. As uniform convergence
implies pointwise convergence, we have M; = 1pclim; o, M;", so M is also adapted. We

now claim that M € cM?2. To see this, note that by Jensen’s inequality, we have

E(M]" — E(Mw|F,))? = E(B(ML|F)— E(Mx|F))? = EE(MZ — M| F)?

< BE((MY — Mx)?|F) = B(MY, — Mx)?,

which tends to zero, so for any t > 0, M tends to E(Mu|F;) in £2. As M;" tends to M,
almost surely, we conclude that M; = E(M|F;) almost surely by uniqueness of limits. This
shows that M is a martingale, and as EM}? < EE(MZ2Z|F;) = EMZ,
conclude that M is bounded in £2. As M has initial value zero, we then obtain M € cM?2.
Finally, limsup,, E sup,so(M{—M;)? < 4lim, E(MZ,—M)? = 0 by Theorem 1.3.1, yielding

the desired convergence of M™ to M. O

which is finite, we

We now introduce a seminorm || - || on the space cM? by putting | M|s = (EMOQO)%
Note that this is possible as we have ensured in Theorem 1.3.1 that for any M € cM?2,
M; = E(My|F:) for some almost surely unique square-integrable M., so that the limit
determines the entire martingale. Note that || - ||z is generally not a norm, only a seminorm,

in the sense that ||M]|2 = 0 does not imply that M is zero, only that M is evanescent.

Theorem 1.3.4. The space cM? is complete under the seminorm | - ||2, in the sense that

any Cauchy sequence in cM? has a limit.
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Proof. Assume that (M") is a Cauchy sequence in cM?2. By our definition of the seminorm
on cM?2, we have (E(M?, — M™)?)z = |[M™ — M™||5, and so (M) is a Cauchy sequence
in £2. As £? is complete, there exists M., such that M converges in £ to M. By
Theorem 1.3.3, there exists M € c¢M? such that for any t > 0, M; = E(M|F;) almost
surely. Therefore, M™ tends to M in cM?. O

Theorem 1.3.5 (Riesz’ representation theorem for cM?). Let M € cM?. Then, the map-
ping ¢ : cM? — R defined by p(N) = EMy Ny is linear and continuous. Conversely,
assume that ¢ : cM? — R is linear and continuous. Then, there exists M € cM?, unique
up to indistinguishability, such that ¢(N) = EMNo for all N € cM?.

Proof. First consider M € cM? and define ¢ : cM? — R by putting ¢(N) = EM,N. @ is
then linear, and [o(N —N')| = |EMyo(Noo — N'.)| < ||M]||2]|N — N'||5 for all N, N’ € cM? by
the Cauchy-Schwartz inequality, showing that ¢ is Lipschitz with Lipschitz constant ||M |2,

therefore continuous.

Conversely, assume given any ¢ : cM? — R which is linear and continuous, we need to
find M € cM? such that p(N) = EM, Ny for all N € cM?. If ¢ is identically zero,
this is trivially satisfied with M being the zero martingale. Therefore, assume that ¢ is not
identically zero. In this case, there is M’ € c¢M? such that ¢(M’) # 0. Define the set
C CeM?by C={LecM?|o(L)=|M>}. As ¢ is continuous, C is closed. And as ¢ is

linear, C' is convex.

We claim that there is M"” € C such that such that |[M" ||z = infrec ||L||2. To prove this, it
suffices to put a = infrcc ||L||3 and identify M € C such that ||[M"” |3 = a. Take a sequence
(L™) in C such that |[L"||3 converges to . Since 3(L™ + L™) € C by convexity, we have

1™ — L3 2L™5 + 22715 — 12™ + L3
= 2[L™5 + 2 L"13 - 4ll5 (L™ + L3

< 2|L™3 + 2L — da

As m and n tend to infinity, ||[L™||3 and ||L"||3 tend to «, so ||[L™ — L"™||3 tends to zero.
Therefore, (L™) is Cauchy. By Theorem 1.3.4, (L") is convergent towards some M". As C'is
closed, M" € C, and we furthermore find ||M"||3 = lim,, || L"||3 = a. Thus, M" is an element
of C satisfying that | M"||2 = infrec ||L]|2.

We next claim that for any N € eM? with p(N) = 0, EM/” Ny, = 0. This is true if N

is evanescent, assume therefore that N is not evanescent, so that | N2 # 0. By linearity,
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o(M" —tN) = o(M") for any ¢t € R, so that M"” —tN € C. We then find that
n2 — : 2 "o 2 - "2
173 = f L3 < g M7 — V] < )3

so that ||M"||3 is the minimum of the mapping ¢ +— |[M"” —tN||3, attained at zero. However,
|M" —tN|% =t?|N||3 —2tEM/ Noo + || M"]|3, so t = || M2 —tN|3 is a quadratic polyno-
mial, and as | N||z # 0, it attains its unique minimum at |N||;2EM/. N.,. As we also know

that the minimum is attained at zero, we conclude EM. N, = 0.

We have now proven the existence of a process M” in cM?2 which is nonzero and satisfies
EM! N, = 0 whenever ¢(N) = 0. We then note for any N € cM? that, using the linearity
of ¢, (p(M")N — p(N)M") = o(M")o(N) — p(N)p(M") = 0, yielding the relationship
0 = EMZ(o(M")Now — @o(N)YMZ) = o(M"YEM!. N, — o(N)||M" |3, so that we finally
obtain the relation

_ M// M//
o) = 112" BML N = B (20T ),
2

which proves the desired result using the element (o(M”)M")||M"||5? of cM?. Tt remains
to prove uniqueness. Assume therefore that M, M’ € cM? such that EMy No, = EM! N
for all N € eM?. Then E(My — M. )Ny = 0 for all N € eM?, in particular we have
E(My—M!)? = 0so that My, = M/ almost surely and so M and M’ are indistinguishable.
This completes the proof. O

Finally, we apply our results on cM? to prove the existence of the quadratic variation process
for continuous bounded martingales. In the next section on continuous local martingales, we
will then extend the quadratic variation process to continuous local martingales and introduce

the quadratic covariation process as well.

We say that a nonnegative process X is increasing if its sample paths are increasing. In this
case, the limit of X exists almost surely as a variable with values in [0, co] and is denoted
by Xo. We say that an increasing process is integrable if its limit X, is integrable. In
this case, X is in particular almost surely finite. We denote by c.A® the set of stochastic

processes with initial value zero which are continuous, adapted, increasing and integrable.

Theorem 1.3.6. Let M € cMP®. There exists a process [M] in cA?, unique up to indis-
tinguishability, such that M? — [M] € cM?. We call [M] the quadratic variation process of
M.

Proof. We first consider uniqueness. Assume that A and B are two processes in cA? such
that M2 — A and M? — B are in cM?2. In particular, A — B is in cM? and has paths of



1.3 Square-integrable martingales 25

finite variation, so Lemma 1.2.12 shows that A — B is evanescent, such that A and B are

indistinguishable. This proves uniqueness.

Next, we consider the existence of the process. Let ¢} = k27" for n, k > 0, we then find

oo oo o0
MP =73 Miy = Miyg =2 Mingg_ (Mengg = Mengy_ ) + D (Miney = Mingy_, )%,
k=1 -

k=1 k=1

where the terms in the sum are zero from a point onwards, namely for such k that t}_; > ¢.
Define N =237, Mipen (Mt/\t;? — MtAt}cll)' Our plan for the proof is to show that N"
is in ¢cM? and that (N),,>1 is bounded in £2. This will allow us to apply Lemma A.2.7 in
order to obtain some N € cM? which is the limit of appropriate convex combinations of the
(N™). We then show that by putting [M] = M? — N, we obtain a process with the desired
qualities.

We first show that N” is a martingale by applying Lemma 1.2.9. As N" is continuous and
adapted with initial value zero, it suffices to prove that N} is integrable and that EN} =0
for all bounded stopping times T'. To this end, note that as M is bounded, there is ¢ > 0
such that [M;| < ¢ for all t > 0. Therefore, for any k, [2Maep_ (Miaep — Miper )| < 4c2.
As T is also bounded, N7 is integrable, as it is the sum of finitely many terms bounded by

4c?, and we have

ENf = 2EY Mrpp  (Mrag — Mppgg )
k=1

_ T T T _ T T T
= 2) EMy (Mf - Mg )=2) EMj E(Mg - M |Fy ),
k=1 k=1

where the interchange of summation and expectation is allowed, as the only nonzero terms
in the sum are for those k such that ¢}}_; < T, and there are only finitely many such terms.
As M7T is a martingale by Lemma 1.2.8, E(Mt:: - Mg;::l | Fir_,) = 0, so the above is zero and
N™ is a martingale by Lemma 1.2.9. Next, we show that N™ is bounded in £2. Fix k > 1,

we first consider a bound for the second moment of Nt’%}z. To obtain this, note that for i < j,

E(Mt?_1 (Mt? — Mt?_1>)(Mt?_1 (Mt? — Mt}”_1))
= BE(My (M — Mgz JE(Myz | (Mg — My )| Fiz )
= BE(My (My — My )My E(Myr — Myr_ | Fir ),

which is zero, as E((Mt;_z - Mt;1_1)|]-'t?_l) = 0, and by the same type of argument, we obtain
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E(Myp — My )(Myn — Myn_ ) = 0. Therefore, we obtain

2 k

k
2
E(Nj)* = 4E (Z My (Myy — Mt?J) =43 B (M, (Mg — My )

i=1 i=1

IN

2
k k
4> BE(Myn — Myn |)* = AC’E (Z My — Mt71> = 4 EM, < 4",
i=1 =1

Finally, note that for any 0 < s < t, BE(N")? = E(E(N]'|Fs)?) < E(N]*)? by Jensen’s
inequality, so ¢ — E(N{")? is increasing, and thus sup,so E(N/")? = supy>; E(Nf)? < 4c'.
Therefore, N* € ¢M?, and in particular, E(N2)? = lim; E(N]*)? < 4c*, so (NZ),>1 is
bounded in £2.

Now, by Lemma A.2.7, there exists a sequence of naturals (K,) with K, > n and for
each n a finite sequence of reals A7,..., A% in the unit interval summing to one, such that
Zfi”n AN is convergent in £2 to some variable N,. By Theorem 1.3.3, it then holds that
there is N € cM? such that E sup,q(N; — STEn APN)2 tends to zero. Define A = M2 — N,

we claim that there is a modification of A satisfying the criteria of the theorem.

To prove this, first note that as M? and N are continuous and adapted, so is A. We will
prove that A is almost surely increasing. To this end, define D, = {k27"|k > 0,n > 1}.
Then D is dense in R4. Let p,q € Dy with p < g, we will show that A, < A, almost surely.
There exists j > 1 and naturals n, < n, such that p = n,277 and ¢ = n,277. We then find,
with the limits being in £2,

K Ky 0o
Ap = Mz? —Np = nh_{r;o Z /\?(M;? -N,) = nh_{rgoz Ail Z(Mp/\ti - Mp/\t']"cil)Z'
i=n i=n k=1

Now note that for i > j, we have pAth = n,2 9 Ak270 = n, 207927 A k270 = (n, 279 Nk)27°
and analogously for g A t%, so we obtain that almost surely, by Lemma A.2.2,

K, oo K, np2’
1im§ ”EM:—Mv 2 = 1im§ ’?E M, — M, )?
T 00 /\z ( p/\t,‘c p/\t}cil) n—s00 >\’L ( t,‘C tlbc—l)
i=n k=1 i=n k=1
K, nq2"’j
< i E n E i — M, )?
< nlgréo Al (M — My )
i=n k=1
K, e}
_ : n ) ) 2
= nlggo§ Ai E (Mth; _Mth;_l) )
i=n k=1

allowing us to make the same calculations in reverse and conclude that A, < A, almost

surely. As D is countable, we conclude that A is increasing on D, almost surely, and by



1.4 Local martingales 27

continuity, we conclude that A is increasing almost surely. Furthermore, as Ao, = M2 — N4,

and both M2 and N, are integrable, we conclude that A, is integrable.

Finally, let F' be the null set where A is not increasing and put [M] = Alpc. As we have
assumed that all null sets are in F; for ¢ > 0, [M] is adapted as A is adapted. Furthermore,
[M] is continuous, increasing and [M]., exists and is integrable. As M? — [M] = N + Alp,

where Alp is evanescent and continuous and therefore in ¢ M2, the theorem is proven. [

1.4 Local martingales

In this section, we consider continuous local martingales, which is a convenient extension of
the concept of martingales. When we define the stochastic integral with respect to a local
martingale, we will see that the integral of a progressive process with respect to a martingale
is not necessarily a martingale, but the integral of a progressive process with respect to a
local martingale is always a local martingale. This stability property makes local martingales

a natural type of integrator.

We say that an increasing sequence of stopping times tending almost surely to infinity is a
localising sequence. We then say that a process M is a continous local martingale if M is
continuous and adapted and there is a localising sequence (7},) such that MT» is a continuous
martingale for all n, and in this case, we say that (7},) is a localising sequence for M. The

space of continuous local martingales with initial value zero is denoted by cMy.

Lemma 1.4.1. It holds that cM® C cM? C eM¥ C eM C eM,.

Proof. That cM? C ¢ M? is immediate. By Lemma A.2.4, cM? C ¢ MU, and by construction
we have cM* C eM. If M € cM, MT € ¢M for any stopping time by Lemma 1.2.8, and
so cM C cMy, using the localising sequence (7)) with T, = n. O

Lemma 1.4.2. Let (S,) and (T,) be localising sequences. Then (Sn, ATy) is a localising
sequence as well. If M, N € cMy, with localising sequences (Sy,) and (Ty,), then (S, AT,) is
a locasing sequence for both M and N.

Proof. As S,, AT, is a stopping time by Lemma 1.1.7 and S,, A T}, tends almost surely to
infinity, (S, A T,) is a localising sequence. Now assume that M, N € cM, with localising
sequences (T},) and (S,,), respectively. Then MT# 9 = (MT»)% is a martingale by Lemma
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1.2.8, and so (T, A S,,) is a localising sequence for M. Analogously, (T,, A S,) is also a

localising sequence for N. O

Lemma 1.4.3. cM, is a vector space. If T is any stopping time and M € cM,, then
MT € eMy as well. If F € Fy and M € cM,, then 1M is in cMy as well, where 1pM
denotes the process (1p M)y = 1p M.

Proof. Let M,N € cM,; and let o, € R. Using Lemma 1.4.2, let (T,) be a localising
sequence for both M and N. Then (aM + BN)T» = aM™ + BNT» is a martingale, so
aM + BN € cM, and c My is a vector space. As regards the stopped process, let M € c M,
and let T be any stopping time. Let (7},) be a localising sequence for M. As M™ € cM, we
obtain that (M) = (M™)T € e M, proving that (T},) is also a localising sequence for M7,
so that MT € cM,. Finally, let M € cM; and F € Fy. Let (T},) be a localising sequence
such that M7» € cM. For any bounded stopping time T, ElFMYT" = ElF(EM%F"U:O) =0
by Theorem 1.2.7, so by Lemma 1.2.9, 1M is a martingale. As (1pM)T = 1M 1M
is in c M. O

Lemma 1.4.4. Let M € cM,. There exists a localising sequence (T,,) such that M is a

bounded continuous martingale for all n. In particular, M™ € cM? and M™ € cMY™.

Proof. Let S, be a localising sequence for M and let U,, = inf{¢t > 0 | |M¢| > n}. By Lemma
1.1.11, (U,,) is a localising sequence and MU= is bounded. Defining T}, = S,, A U,, (T},) is a
localising sequence by Lemma 1.4.2. By definition, M*" is in eM. As M™» = (M®»)U» and
M*5» is in cM, Lemma 1.2.8 shows that M7» is in cM as well. And as MT» = (MU»)S» and
MUY= is bounded, MT" is bounded as well. Thus, M ™ is a bounded continuous martingale.
M7 is then also bounded in £2, so we also obtain M™ € cM? and M™» € cM™. O

Lemma 1.4.5. If M € c M, with paths of finite variation, then M is evanescent.

Proof. Using Lemma 1.4.4, let (T},) be a localising sequence for M such that MT» € cM.
Then M7 also has paths of finite variation, so by Lemma 1.2.12, M7”» is evanescent. As T},

tends to infinity, we conclude that M is evanescent as well. O

Next, in order to extend the notion of the quadratic variation process from bounded contin-
uous martingales to c My, we introduce some further spaces of stochastic processes. By cA,
we denote the space of continuous, adapted and increasing processes with initial value zero,

and by cV, we denote the space of continuous, adapted processes with finite variation and
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initial value zero. If A € cV, we have that V4 € cA. Clearly, cA’ are the elements of cA
such that A, is integrable. We also define cV’ as the elements of cV such that V4 € cA?,
implying that (V4)e is integrable.

Lemma 1.4.6. If A € cA, there is a localising sequence (T},) such that AT» € cA*, and if
A € ¢V, there is a localising sequence such that ATr € cV".

Proof. Consider first A € cA, such that A is continuous, adapted and increasing. Define
T, = inf{t > 0| A; > n}. By Lemma 1.1.11, (7},) is a localising sequence such that A" is
bounded, so ALz is integrable, and so AT" € cA?, as desired. Considering the case A € cV,
we may instead define T, = inf{t > 0| (Va); > n} and obtain the same result. O

Theorem 1.4.7. Let M € cM,. There exists a process [M] € cA, unique up to indistin-
guishability, such that M? —[M) € cMy. If M, N € cMy, there exists a process [M, N] € cV,
unique up to indistinguishability, such that MN — [M, N] € cM,. We call [M] the quadratic
variation of M, and we call [M, N] the quadratic covariation of M and N.

Proof. Consider first the case of the quadratic variation. As M € cMy, there exists by
Lemma 1.4.4 a localising sequence (T},) such that M7= € c¢M. By Theorem 1.3.6, there
exists a process [M7T"] in cA’, unique up to indistinguishability, with the property that
(MT2)2 — [MT»] € cM?. Note that (MTn)2 — [MTr+1]Tn = (MTn+1)2 — [MTn+1])Tn | which
is in ¢M? by Lemma 1.3.2. Therefore, by uniqueness, [MTn+1]7n = [MT»] up to indistin-
guishability. In particular, [MT"“]l(thn) and [MT"]l(thn) are indistinguishable. Now,
with Ty = 0, define

o0

(M) = M) 1 (7, <o<1y)-
k=1

It then holds that, up to indistinguishability,

[M]?'L = [M]Tn,l(t>Tn) + Z[MTk]tl(Tk71<t§Tk)
k=1

n
(M1, s,y + > Mg, <o<my = [M™]e.
k=1
As [MT] is in cA?, this shows that [M] is in cA. Also, (M? — [M])T» = (MT#)? — [MT],
which is in e M2, yielding M? — [M] € cM,. This proves the existence of [M]. Uniqueness

follows from Lemma 1.4.5.

As for the quadratic covariation, consider any two processes M, N € cM,. Recalling the
polarization identity AM N = (M +N)?—(M—N)?2, we define [M, N] = i([M—l—N]—[M—N]).
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We then obtain MN — [M, N] = 1((M + N)?— [M + N]) — 2((M — N)? — [M — NJ), so that
MN — [M,N] is in ¢cMy. Furthermore, as [M + N] and [M — N] are in cA, we find that
[M, N] € cV. This proves the existence of [M, N]. As in the case of the quadratic variation

process, uniqueness follows from Lemma 1.4.5. O

The quadratic covariation process of Theorem 1.4.7 will be indispensable to our construction
of the stochastic integral. As an essential example, we next consider the quadratic covariation

process of the coordinates of a p-dimensional F; Brownian motion.

Theorem 1.4.8. Let W be a p-dimensional F; Brownian motion. Fori < p, [Wi; =t up
to indistinguishability, and fori,j < p with i # j, [W* W] is zero up to indistinguishability.

Proof. By Theorem 1.2.1, it holds for i < p that (W/)? —t is a martingale, in particular an
element of cMy, and so [W]; =t up to indistinguishability, by the characterization given
in Theorem 1.4.7. Likewise, Theorem 1.2.1 shows that for 7,j < p with i # j, Wt’WtJ is a
martingale, in particular an element of cMy, so [W? W] is zero up to indistinguishability
by Theorem 1.4.7. O

Before ending the section, we prove some general properties of the quadratic covariation

process.

Lemma 1.4.9. Let M and N be in cMy, and let T by any stopping time. The quadratic

covariation satisfies the following properties up to indistinguishability.

1. [M,M] = [M].

2. [-,¢] is symmetric and linear in both of its arguments.

3. For any a € R, [aM] = o?[M].

4. [M + N] = [M]+2[M,N]+ [N].

5. [M,N|T = [MT,N] = [M,NT] = [MT,NT].

6. [M,N] is zero if and only if MN € cM,.

7. M is evanescent if and only if [M] is evanescent.

8. M is evanescent if and only if [M, N] is zero for all N € cM,.

9. M is evanescent if and only if [M, N] is zero for all N € cMP.
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10. If F € Fy, ].F[M,N] = [1FM,N] = [M, 1FN] = [].FM, 1FN]

Proof. Proof of (1). We know that [M] is in c.A and satisfies M? — [M] € cM,. Therefore,
[M] is in particular in ¢V, and therefore satisfies the requirements characterizing [M, M]. By
uniqueness, we conclude that [M, M] = [M] up to indistinguishability.

Proof of (2). As MN — [M, N] is in cM, if and only if this holds for NM — [M, N], we
have that the quadratic covariation is symmetric in the sense that [M, N] = [N, M] up to
indistinguishability. In particular, it suffices to prove that the quadratic covariation is linear
in its first coordinate. Fix M, M’ € cM,; and «, 8 € R, then

(@M + BM')N — (o[M,N] + B[M', N]) = a(MN — [M,N]) + B(M'N — [M', N]),

so (aM + BM')N — («[M,N] + B[M’,N]) is in cM, and so by uniqueness, we have the
linearity relationship [«M + SM’', N] = a[M, N] + S[M’, N] up to indistinguishability.

Proof of (3). This is immediate from [aM] = [aM,aM]| = o?[M, M| = o*[M], using the

linearity properties already proven.

Proof of (4). This follows as

[M + N] [M + N,M + N]
[M; M] + [M, N] + [N, M] + [N, N]

[M] + 2[M, N] + [N],

using the symmetry and linearity properties already proven.

Proof of (5). Note that as M7 and N7 are in ¢ My, the conclusion is well-defined by Lemma
1.4.3. To prove the result, first note that by symmetry, it suffices to prove [M, N]T = [M7T N],
and this will be accomplished if we can show that MTN — [M, N|T is in cM;. We have
MTN — [M,N]* = (MN — [M,N))T + MT(N — NT), where (MN — [M,N))T € eM, by
Lemma 1.4.3. Therefore, it suffices to prove that M7 (N — NT) is in eM,.

To this end, first consider the case of N, M € cM?. For any stopping time S, we then find
EMZ(Ng — N¥) = EMgarE(Ns — Nsar|Fsar) = 0 by the optional sampling theorem.
Therefore, by Lemma 1.2.9, M7 (N — NT) € eM". In the case where M, N € cM,, we
may let (S,) be a localising sequence such that M°» and N are in cMP. As we have the
relation (MT(N — NT))% = (MS)T(NS» — (N)T) we conclude that (MT(N — NT))S»
is in eM", and so MT(N — NT) is in cMy, as desired.
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Proof of (6). This is immediate from the definition of the quadratic covariation.

Proof of (7). If M is the zero process, then the zero process satisfies the requirements for
being the quadratic variation of M. Conversely, assume that [M] is evanescent. Then M?>
is in cM,. Letting T}, be a localising sequence for M? such that (M?2)™ is in cM, we find
that EM3 ., = E(M?){™ =0, so that M3 ,, is almost surely zero. Therefore, M, is almost
surely zero as well. As t > 0 was arbitrary and M is continuous, we conclude that M is

evanescent.

Proof of (8). Assume that M is evanescent. Then the zero process satisfies the requirements
characterizing [M, N] for all N € c¢My, and so [M, N] is evanescent for all N € cM,.
Conversely, assume that [M, N] is evanescent for all N € cM,. In particular, [M, M] is

evanescent, so by what was already shown, M is evanescent.

Proof of (9). If M is evanescent, the results already shown yield that [M, N] is evanescent
for all N € eM; and in particular for all N € cM". Conversely, assume that [M, N] is
evanescent for all N € cM?. Let N € cM,. By Lemma 1.4.4, there exists a localising
sequence (T},) such that NT» € eMb. We have [M, N|T» = [M, NT»], which is zero, so we

conclude that [M, N] is evanescent, and so M is evanescent by the results above.

Proof of (10). Note that the conclusion is well-defined, as 1pM is in ¢M; by Lemma
1.4.3. By the properties already proven for the quadratic covariation, it suffices to prove
that for any F' € Fy and M,N € cMy, 1p[M,N] = [1pM,N]. However, we know that
MN — [M,N] is in cMy, and so by Lemma 1.4.3, 1z MN — 1p[M, N] is in cMy. Therefore,
by the characterisation of the quadratic covariation, 1p[M, N] is the quadratic covariation
process of 1pM and N, meaning that 1x[M, N| = [1pM, N], as desired. O

Lemma 1.4.10. Let M € cM,;. M € cM? if and only if [M] is integrable, and in the
affirmative, M? — [M] € eM®. If M and N are in cM?, then [M, N] is in cV*, in particular
[M, N]s exists and is integrable as well, and MN — [M, N] € cM™.

Proof. First assume M € cM?2. We know that M? — [M] € cM,. Using Lemma 1.4.4, let
(T,,) be a localising sequence with (M? — [M])™T» € cM™. By the optional sampling theorem
and Theorem 1.3.1, E[M]|r, = E[M]l» = E(M1)? = EMYQ“n < 4EM?2, and then, as [M] is
increasing, EF[M|s = Elim,[M|r, = lim, E[M]7, < 4EM?2 by the monotone convergence
theorem, so that [M] is integrable. Assume conversely that [M]., is integrable. Let (T},) be
a localising sequence with M7» € cM? and (M? — [M])™ € cM™. Applying Theorem 1.3.1,
Esupgc,cr, M2 = E(M™):2) < 4E(M1)* = AE[M]1; = 4E[M]r,. Using the monotone
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convergence theorem, we then obtain EM*2 < 4E[M].,, in particular Sup;>g EM? is finite
and so M € cM?, as desired.

It remains to prove that in the case where [M],, is integrable and M € cM?, we have
M? — [M] € eM¥. We use Lemma 1.2.9. Note that M? — [M] is continuous with initial
value zero and convergent to an almost sure limit. Let T' be any stopping time. As [M]y
is integrable and M € c¢M?, we know that M2 — [M]r is integrable as well, we need to
show that F(MZ — [M]r) is zero. To this end, let (7},) be a localising sequence such that
(M? — [M])*» € eM™. We then obtain

E[M)r = Elim[M]rar, = lim E[M]7" = lim E(M?)™ = lim EMZ, . .

Now, as (Mg —Mrar, )? < 4M*2, which is integrable by Theorem 1.3.1, and My, 1, converges
almost surely to My, we find that My, converges in £ to My, so that EMZ,,. tends to
EM2, finally allowing us to conclude that E[M]r = EM? and so Lemma 1.2.9 shows that
M? — [M] € cM™.

Finally, consider two elements M and N of cM?. As [M,N] = 1([M + N] — [M] — [N]), we
find by our previous results that [M, N] is in ¢V’ and that the limit [M, N exists and is
integrable. Noting that M N —[M, N] = (M +N)*—[M+N])—1(M?—[M])—1(N?—[N)),
we find that that M N — [M, N] is in cM™ as a linear combination of elements in cM¥. [

Lemma 1.4.11. Let (M™) be a sequence in cMy and let T be some stopping time. Then
(M™)% 50 if and only if [M"]|r .

Proof. First note that (M™)% = ((M™)T)%, and [M"]p = [(M™)], so it suffices to prove
that (M™)%, 5 0if and only if [M"] oo L5 0. First assume (M™)%, 250, Fixe > 0, we
need to show lim, P([M"]o > ¢) = 0. To do so, we take § > 0, and define the stopping
time T), by putting T,, = inf{t > 0| |M}*| > 6}. We then have (T}, < c0) = (M")%, > 9).

Markov’s inequality shows

P([M"]ec > ¢€)

P([M"]oe > £, T, < 00) + P([M")oo > &, Ty = 00)
< P(T, < o)+ P(IM")y, > )
< P((M™)% > 6) + ZE(M"]r,).

Now note that (M™)T» is bounded by &, in particular it is in cM?, so by Lemma 1.4.10,
(M™)T)2 — [(M™)T"] is in eM® and so E[(M™)|r, = E(M")%n < §2. We now conclude
that for any 6 > 0, P((M"]c > £) < P((M")3, > 6)+ L2, so limsup,, P([M"] > &) < 162,

and as § > 0 was arbitrary, we conclude that [M"] £, 0, as desired. Consider the converse
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statement. We assume that [M"] %5 0 and we wish to prove (M™)%, 250, Let e > 0.
As before, we fix § > 0 and define T;, = inf{¢t > 0 | [M"]; > ¢}, so that T,, is a stopping time
and (T;, < 00) = ([M™] > 8). We then use Chebychev’s inequality to see that

P((M™)% > ¢)

P(M™)5, > e, T, <o)+ P((M")% >¢e,T, = 0)

< P(T, <o00)+P((M")7, >e¢)
< P(M"oo > 8) + HE(M")E.

Now, as [(M"™)T"]o <6, [(M™)T"], is in particular integrable, and so Lemma 1.4.10 shows
that (M™)T» is in eM? and ((M™)T7)%2 — [(M™)T#] is in eM®. Therefore, Theorem 1.3.1
yields E(M™)3? = E((M™)"):2 < AE(M™)™)2, = 4E[(M™")™]s = 4E[M"]z,, which
is less than 44, so all in all, we find P((M™)%, > ¢) < P([M"]s > 0) + %46. Thus, we
may now conclude limsup, P((M™)%, > €) < 44, and as § > 0 was arbitrary, we obtain
(M™)z, 55 0. 0

We end the section with a proof of the Kunita-Watanabe inequality. Recall that integrals of
the form fg h(s)|dfs| denote integration with respect to the variation of f, see Appendix A.1
for the definition of the Lebesgue integral with respect to the variation of a mapping with

finite variation.

Theorem 1.4.12 (Kunita-Watanabe). Let M, N € cMy, and let X and Y be measurable

processes. Then it almost surely holds that

| piane < (7 de[MLs)é ([ demt)é.

Proof. First note that the result is well-defined for each w, as [M, N], [M] and [N] have paths
of finite variation for each w, and the mappings | X;Y;|, X? and Y;? from R, to R are Borel

measurable for each w.

Applying Lemma A.1.11, it suffices to prove that we almost surely have the inequality
|[M,N]; — [M,N]s] < /[M]; — [M]s\/[N]; = [N]s for all 0 < s < ¢. As the processes

are continuous, it suffices to prove the result almost surely for any pair of rational s and

t. Fix any such pair, by Lemma A.1.10 it suffices to prove that for all A € Q, we have the
inequality A?([M]; — [M]s) + 2X\([M, N]; — [M,N]s) + [N]; — [N]s > 0. Thus, we need to
prove that this inequality holds almost surely for rational s, ¢ and A with 0 < s < ¢t. To
this end, note that A2[M]s + 2A[M, N]s + [N]s = [AM]s + 2[AM, N]s + [N]s = [AM + N]s,
and [AM 4+ N]; < [AM + NJ;, so by performing the same calculations in reverse, we obtain
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A2[M]s+2MM, N4 +[N]s < AN2[M]; +2M[M, N]; +[N]s, yielding the desired conclusion. The
theorem now follows from Lemma A.1.11. O
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1.5 Exercises

Exercise 1.1. Let S and T be two stopping times. Show that Fsyr = o(Fs, Fr).

Exercise 1.2. Let X be a continuous and adapted stochastic process, and let a € R. Put
T = inf{t > 0 | X; = a}. Prove that T is a stopping time and that X; = a whenever
T < 0.

Exercise 1.3. Let T' be exponentially distributed and let X; = 1(;>7). Argue that X does

not have continuous sample paths, but for any ¢ > 0, it holds that whenever (¢,) tends to ¢,
P

th — X fOI‘p > 1.

Exercise 1.4. Let f: R, — R be some mapping. A point ¢ is said to be a local maximum
for f if there exists € > 0 such that f(t) = sup{f(s) | s € Ry, |t —s| < e}. Let X be
a continuous process, let ¢ > 0 and define F' = (¢ is a local maximum for X). Show that
FeF.

Exercise 1.5. Let (T,,) be a decreasing sequence of stopping times with limit 7. Show that
T is a stopping time and that Fp = N5 Fr, .

Exercise 1.6. Assume that M is a continuous martingale with respect to the filtration (F;).
Consider a filtration (G;) such that G; C F; and such that M is also adapted to (G;). Show

that M is a continuous martingale with respect to (G;).

Exercise 1.7. Let Z be a uniformly integrable continuous supermartingale. Show that Z is

continuous in Ly, in the sense that the mapping ¢t — Z; from Ry to £; is continuous.

Exercise 1.8. Let M € cM? and let M, be the limit of M, almost surely and in £'. With
¢ > 0 denoting a bound for M, show that E|M; — M| < 4csupper_ infger, P(GAF),
where the symmetric difference GAF is defined by putting GAF = (G N F°) U (F N G°).

Exercise 1.9. Let M € cM,. Show that M € eM™ if and only if (M7)rec is uniformly
integrable, where C = {T'|T is a bounded stopping time}.

Exercise 1.10. Let M € cM,; and let S < T be two stopping times. Show that if the
equality [M]s = [M]r holds almost surely, then M7 = M almost surely.
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Exercise 1.11. Assume that X is a continuous adapted process with initial value zero and
that S and T are stopping times. Show that if X7 and X are in cM¥, then X" and

XSVT are in e M as well.

Exercise 1.12. Let W be a one-dimensional F; Brownian motion. Put M; = W2 —t. Show

that M is not uniformly integrable.

Exercise 1.13. Let W be a one-dimensional F; Brownian motion. Let ¢ > 0 and define
1} = kt27" for k < 2". Show that Zill(Wtk — Wyn_)? converges in £* to t. Conclude that

n P n P
S Win (Win = Win ) — $W2 = Stand Y5, Wip (Wyp — Wi ) — AW + Lt asn

k—1

tends to infinity.

Exercise 1.14. Let W be a one-dimensional F; Brownian motion. Let a,b > 0 and define
T =inf{t > 0| Wy = —a or W; = b}. Show that T is a stopping time. Find the distribution
of Wr. Show that if a # b, it holds that W7 and —W7 have different distributions, while

they have the same quadratic variation processes.

Exercise 1.15. Let W be a one-dimensional F; Brownian motion and let o € R. Show that
the process M defined by M = exp(aW; — %oﬂt) is a martingale. Let a € R and define
T = inf{t > 0| W, = a}. Show that for any 5 > 0, Eexp(—8T) = exp(—|a|v/20).

Exercise 1.16. Let W be a one-dimensional F; Brownian motion. Show by direct calculation
that the processes W2 — 3tW; and W — 6tW72 + 3t% are in cM.

Exercise 1.17. Let W be a one-dimensional F; Brownian motion and define T' by putting
T =inf{t > 0| W; > a + bt}. Show that T is a stopping time and that for a > 0 and b > 0,
it holds that P(T < oo) = exp(—2ab).

Exercise 1.18. Let W be a one-dimensional F; Brownian motion. Let ¢ > 0 and define
T =inf{t > 0| W2 > a(1 —t)}. Show that T is a stopping time. Find ET and ET?.

Exercise 1.19. Let W be a one-dimensional /; Brownian motion, and let p > % Show that

P
nl—p SUPp<s<n [Ws| — 0.
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Chapter 2

Stochastic integration

In this chapter, we define the stochastic integral and prove its basic properties. We define the
stochastic integral with respect to continuous semimartingales, which are sums of continuous

local martingales and continuous processes with paths of finite variation.

Section 2.1 concerns itself with the introduction of continuous semimartingales and their ba-
sic properties. In Section 2.2, we perform the construction of the stochastic integral. This
is done by a separate construction for continuous local martingales and continuous finite
variation processes. For the integral with respect to continuous finite variation processes, the
construction is pathwise and the main difficulty is ensuring the proper measurability prop-
erties of the resulting process. For the integral with respect to continuous local martingales,
the integral cannot be defined pathwise as in ordinary measure theory, since in general, con-
tinuous local martingales do not have paths of finite variation. The construction is instead
made in a rather abstract fashion. In Section 2.3, however, we show that the integral may
also be obtained as a limit in probability, demonstrating that the integral is the limit of a
sequence of Riemann sums in a particular sense. In this section, we also develop a few of
the general properties of the stochastic integral, ending with the proof of It6’s formula, the

stochastic version of the fundamental theorem of analysis.

In Section 2.4, we discuss extensions of the theory and literature for further reading.
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2.1 Continuous semimartingales

In this section, we introduce continuous semimartingales and consider their basic properties.

Definition 2.1.1. A stochastic process X is said to be a continuous semimartingale if it
can be decomposed as X = Xo+ M + A, where Xq is an Fo measurable variable, M € cM,
and A € cV, that is, M is a continuous local martingale with initial value zero, and A is
continuous and adapted with finite variation and initial value zero. The space of continuous

semimartingales is denoted by cS.

Note that contrarily to most of our previous definitions, we allow semimartingales to have a
nonzero initial value. In general, most issues regarding local martingales with nonzero initial
value can easily be reduced to the case with initial zero value by simple subtraction. In
contrast, there are many semimartingales whose properties are quite essentially related to
their initial values, for example exponential martingales, or stationary solutions to stochastic
differential equations. We could have chosen to include the constant as a nonzero initial value
for the martingale or the finite variation parts, but this would introduce cumbersome issues
regarding compatibility with previous results.

The following result shows that the decomposition in the definition of a continuous semi-

martingale is unique up to indistinguishability.

Lemma 2.1.2. Let X €cS. If X = Zy+ M+ A and X = Yo+ N+ B are two decompositions
of X, where Zy and Yy are Fy measurable, M and N are in cMy; and A and B are in
cV, it holds that Xy and Yy are equal, M and N are indistinguishable and A and B are
indistinguishable.

Proof. We have Zy = Xy = Yp, proving the first part of the uniqueness. We then find that
M+ A= N+B,sothat M — N = B— A. Therefore, M — N and B — A are both continuous
local martingales with initial value zero and with paths of finite variation. Lemma 1.4.5 then
shows that M and N are indistinguishable and that A and B are indistinguishable. O

In the sequel, for any X € ¢S, we will refer to the decomposition X = Xg + M + A where
Xo is Fg measurable, M € cMy and A € ¢V, as the decomposition of X. By Lemma 2.1.2,

the variable Xy and the processes M and A in the decomposition are almosts surely unique.

Lemma 2.1.3. Let T be a stopping time. If A is in cA, cA?, cV, or ¢V, then the same
holds for AT.
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Proof. If A € cA, then A remains continuous, adapted and increasing, so A7 € cA as well.
If A € ¢V, AT remains continuous, adapted and with paths of finite variation, so AT € cV.
If A€ cAl, we have EAL, = FAr < EAL, so that AT is continuous, adapted, increasing
and integrable, thus A7 € cA’. If A € ¢V, we have Vyr = (V4)T by Lemma 1.2.11, so
that we obtain E(Vyr)e = E(Va)L = E(Va)r < E(Va)so. Thus, (V4r)s is integrable and
AT € cVi. O

Lemma 2.1.4. Let X be a continuous semimartingale and let T be a stopping time. Then

X7 is a continuous semimartingale as well.

Proof. This follows immediately from Lemma 2.1.3 and Lemma 1.4.3. U

Lemma 2.1.5. Let X be a continuous semimartingale and let F' € Fy. Then 1pX s a

continuous semimartingale as well.

Proof. Let X = Xg+ M + A be the decomposition of X. We claim that 17X is a continuous
semimartingale with decomposition X = 1p X+ 1gM + 1pA. We have that 1pX is Fy
measurable. By Lemma 1.4.3, 1z M is in cMy. 1pA is continuous with paths of finite
variation, and as it is also adapted, we obtain 1A € cV. Thus, 1pX € cS. O

Lemma 2.1.6. Let X be a continuous semimartingale. There exists a localising sequence
(T,) such that X™n = Xo + MTn + ATn where M™» € eM® and AT is an element of cV
with Vr, bounded.

Proof. Let X = Xog+ M + A be the decomposition of X into its initial, continuous martingale
and continuous finite variation parts. By Lemma 1.4.4, we know that there is a localising
sequence (S,,) such that M*>» is in cMP. Also, putting U,, = inf{t > 0| (Va); > n}, we know
by by Lemma 1.1.11 that (U,) is a localising sequence, and Vg" is bounded. By Lemma
1.4.2, we may put T,, = S, A U,, and obtain that (T},) is a localising sequence. Furthermore,
as MTn = (M®")Un we find that M is in cMP. Also, AT is in ¢V by Lemma 2.1.3, and
as Var, = Vi = (V") we have that V=, is bounded. As X = Xy 4+ MTn + AT~ the
result follows. O

Next, we introduce the quadratic variation and quadratic covariation processes for semi-

martingales.
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Definition 2.1.7. Let X € ¢S with decomposition X = Xo+ M+ A. We define the quadratic
variation process of X as [X] = [M]. If Y is another semimartingale with decomposition
Y =Yy + N+ B, we define the quadratic covariation process of X andY as [X,Y] = [M, N].

Note that from the uniqueness of the decomposition of continuous semimartingales given in
Lemma 2.1.2, Definition 2.1.7 is well-formed. The following lemma is the semimartingale
analogoue of Lemma 1.4.9.

Lemma 2.1.8. Let X andY be continuous semimartingales, and let T be any stopping time.

The quadratic covariation satisfies the following properties.

1. [X, X] =[X].

2. [-,¢] is symmetric and linear in both of its arguments.

3. For any a € R, [aX] = o?[X].

4. [X+Y]=[X]+2[X,Y]+[Y]

5 XY =[XT)Y]=[X,YT] = [XT,YT].

6. If F e Fo, 1p[X,)Y]|=[1pX,Y] = [X,1pY] = [1pX,1rY].

7. With A,B € cV, [X + A,Y + B] = [X,Y].

Proof. These results follow immediately from Lemma 1.4.9, with the exception of the last
property, which follows as X and X + A have the same continuous martingale part, and so
does Y and Y + B. O

2.2 Construction of the stochastic integral

In this section, we define the stochastic integral and consider its basic properties. In general,
we will define the stochastic integral with respect to all processes X € ¢S. For any X € ¢S,
there exists an almost surely unique decomposition X = Xy + M + A, where M € cM,
and A € cV. Given a stochastic process H satisfying suitable measurability and integrability
conditions, we will define the integrals fg H,dM, and fg H, dA, separately.
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We first consider the finite variation case. With A € ¢V, we may use the results from
Appendix A.1, in particular the correspondence between functions of finite variation and
pairs of positive singular measures, to define the integral with respect to A. However, in order
to obtain a useful integral, we need to ensure that the integral satisfies certain measurability
properties. With A € ¢V and, say, H a bounded measurable process, we may always define
a process H - A by putting (H - A);(w) = fot H(w)dA(w)s, where the integral is defined as in
Appendix A.1. While H - A thus defined will always have continuous paths of finite variation
and initial value zero, we have no guarantee that it will be adapted, and adaptedness will be

necessary for the integral to be useful in practice.

Thus, the difficulty in defining the stochastic integral with respect to processes A € ¢V is to
identify what requirements on H are necessary to ensure that the resulting integral becomes
adapted. Theorem 2.2.1 shows how to solve this problem. Recall from Appendix A.1 that for
a mapping f of finite variation on Ry and a measurable function h : Ry — R, we say that
h is integrable with respect to f if [ [h(s)||dfs| is finite for all ¢ > 0, where [7 [A(s)|| df,|
denotes the integral of |h| over [0,¢] with respect to the total variation measure of f.

Theorem 2.2.1. Let A € ¢V and assume that H is progressive and that almost surely, H is
integrable with respect to A. There is a process H - A € ¢V, unique up to indistinguishability,
such that almost surely, (H - A) is the Lebesgue integral of H with respect to A over [0,t] for
allt > 0. If H is nonnegative and A € cA, then H - A € cA.

Proof. First note that as the requirements on H - A define the process pathwisely almost
surely, H - A is unique up to indistinguishability. As for existence, we prove the result in
three steps, first considering bounded A in cA, then general A in cA and finally the case

where we merely assume A € c).

Step 1. The case A € cA, A bounded. First assume that A € cA4 and that A is bounded.
Let F be the null set such that when w € F, H(w) is not integrable with respect to A(w).
By our assumptions on the filtration, F' € F; for all ¢ > 0, in particular we obtain that
{(s,w) € [0,t] x Q| 1p(w) =1} = [0,t] X F € By ® Fy, and so the process (t,w) — 1p(w)
is progressive. Therefore, the process (¢,w) — 1pc(w) is progressive as well. Thus, defining
K = Hlpe., K is progressive, and K(w) is integrable with respect to A(w) for all w. We may
then define a process Y by putting Y;(w) = fot K;(w)dA(w)s. We claim that Y satisfies the
properties required of the process H - A in the statement of the lemma. It is immediate that
Y; almost surely is the Lebesgue integral of H with respect to A over [0,¢] for all ¢ > 0. It
remains to prove Y € cV. AsY is a pathwise Lebesgue integral with respect to a nonnegative

measure, Y has finite variation. We would like to prove that Y is continuous. As Y is zero
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on F', it suffices to show that Y is continuous on F°. Let w € F° and let t > 0. For h > 0,
we obtain by Lemma A.1.7 that
[Yin(w) = Yi(w)| =

t+h t+h
/t Ho(w) dA(w),| < / ()] dA@), .

Since A(w) accords zero measure to one-point sets, we may then apply the dominated con-

vergence theorem with dominating function s — [H(w)|1[14)(s) for some € > 0 to obtain

t+h
fim Vian(e) = Vi) < Jim [ |H@) @) = [ |H@1]dA).] = o
h—0 h—0 J4

showing that Y (w) is right-continuous at t. Analogously, we find that Y (w) is left-continuous
at ¢t for any ¢t > 0, and so Y(w) is continuous. This proves that Y has continuous paths.
Furthermore, by construction, Y has initial value zero. Therefore, it only remains to prove
that Y is adapted, meaning that Y; is F; measurable for all ¢ > 0.

This is the case for t equal to zero, therefore, assume that ¢ > 0. Let uf4 (w) be the restriction
to B; of the nonnegative measure induced by A(w) according to Theorem A.1.5. We will
show that (p%(w))weq is an (2, F;) Markov kernel on ([0,t],B;) in the sense that for any
B € B;, w — ply(w)(B) is F; measurable. The family of B € B; for which this holds is a
Dynkin class, and by Lemma A.1.19, it will therefore suffice to show the claim for intervals
n [0,¢]. Let 0 < a <b <t Then p4(w)la,b] = Ap(w) — Ag(w), and by the adaptedness of
A, this is F; measurable. Therefore, (u%(w))weq is an (2, Fr) Markov kernel on ([0,t], B:).
Now, as K is progressive, the restriction of K to [0,¢] x Q is B; ® F; measurable. Theorem
A.1.13 then yields that the integral fot Ky (w)dA(w)s is F; measurable, proving that Y; is
adapted. Finally, we conclude that Y € cV.

Step 2. The case A € cA. We now consider the case where A € cA. By Lemma 1.1.11,
there exists a localising sequence (T},) such that A" is in c.A and is bounded, and so, by what
was already shown, there exists a process H - AT» in ¢V such that almost surely, (H - AT),
is the integral of H with respect to A™» over [0,¢] for all + > 0. Let F be the null set such
that on F¢, T, converges to infinity, H is integrable with respect to A and (H - AT»); is
the integral of H with respect to AT» over [0,¢] for all t+ > 0 and all n. As before, we put
K = Hlpe and conclude that K is progressive, and defining Y; = f(f K,dA,, we find that
Y; is almost surely the Lebesgue integral of H with respect to A over [0,¢] for all ¢ > 0.
Furthermore, whenever w € F'°, we have
AT,

t t
Y, = / H,dA, = lim H,dA, = lim [ H,dAT» = lim (H - A™),,
0

where the second equality follows from the dominated convergence theorem, as H is assumed

to be integrable with respect to A on F¢. In particular, Y; is the almost sure limit of a
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sequence of F; measurable variables. Therefore, Y; is itself F; measurable. As Y is also
continuous, of finite variation and has initial value zero, we conclude that Y € ¢V and so Y

satisfies the requirements of the process H - A in the theorem.

Step 3. The case A € c)V. Finally, assume that A € cV. Using Theorem A.1.5, we
know that by putting A = 2((Va)e + A¢) and Ay = 3((Va)e — A¢), H is almost surely
integrable with respect to AT and A~. Also by Theorem A.1.5, A* and A~ are increasing
with paths in ¢cFVy. By Lemma A.1.9, we find that V4 is adapted and so AT and A~ are
both adapted. Thus, AT and A~ are in cA. Therefore, by what was already shown, there
are processes H - AT and H - A~ in ¢V such that almost surely, these processes at time ¢ are
the Lebesgue integrals of H with respect to AT and A~ over [0, ¢] for all £ > 0. The process
H-A=H-A"— H- A" then satisfies the requirements of the theorem. O

Theorem 2.2.1 shows that given a progressively measurable process H and A € ¢V such that
H is almost surely integrable with respect to A, we may define the integral pathwisely in
such a manner as to obtain a process H - A € ¢V, where it holds for almost all w that for any
t>0,(H -A)(w) = fg H,(w)dA(w)s. The stochastic integral of H with respect to A thus

becomes another stochastic process.

Next, we consider defining the stochastic integral with respect to a continuous local martin-
gale. The following lemma motivates our definition. To formulate the lemma, and for our
later convenience, we first introduce the notion of stochastic intervals. Let S and T be two
stopping times. We then define the subset ]S, T] of R4 x 2 by putting

18, 7] = {(t,w) € Ry x Q| S(w) < t < T(w)}.

We define [S,T], ]S, T[ and [S,T] in analogous manner as subsets of Ry x Q. Note in
particular that even if T is infinite, the sets [.S,T] and [S,T] do not contain infinity. Also
note that by the properties of ordinary Lebesgue integration, if H = £ljg 7q for § bounded
and Fg measurable and S < T two stopping times, we have H - A = ¢(AT — A%). The
following lemma shows that if we consider an analogous construction with A exchanged by

an element of c My, we obtain another element of cM,.

Lemma 2.2.2. Let M € cMy, let S < T be stopping times, let & be bounded and Fg
measurable, and let H = &1y 7). Then H is progressive. Defining L = E(MT —M?9), it holds
that L € cMy, and for all N € cMy, [L,N]) = H - [M, N].

Proof. We first show that H is progressive. Note that for any A € B with 0 ¢ A, it holds
that (Hr € A)=(£ € A)N(S<t)N(t <T). By Lemma 1.1.13, (¢ € A)N (S < t) € F;, and
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as T is a stopping time, (¢t <T) = (T < t)¢ € F; by Lemma 1.1.7. Thus, H is adapted. As

it has left-continuous paths, Lemma 1.1.4 shows that it is progressive.

Next, we show that L € cMy. As Ly = £l(g<y) (M — M), Lemma 1.1.13 shows that L is
adapted. To prove the local martingale property, first consider the case where M € cM?2.
Fix any stopping time U, we then find ELy = E&(ME — M§) = E€E(MY — MY|Fs) =0
by Theorem 1.2.7, so Lemma 1.2.9 shows that L € cM™. In the case where M € cM,,
there is a localising sequence (7},) such that M™» € cM?2. Since we have the identity
LT = ¢(MT)T — (MT)%), we conclude that LT € cM? and so L € cM,.

Next, we consider the quadratic covariation. Fix N € c¢M,. Note that as H is bounded
and progressive, H - [M, N] is a well-defined process in ¢V by Theorem 2.2.1. In order for
H - [M, N] to be the quadratic covariation [L, N], we need to show that LN — H - [M, N]
is in cM,. Consider the case where M, N € cM?. We will use Lemma 1.2.9 to prove that
LN—H-[M,N] € cM*". Fix any stopping time U, we first prove that Ly Ny — (H-[M, N])y is
well-defined and integrable. Note that by what we already proved, L € cM™. As M € cM?,
we in fact have L € cM?, and so, by the Cauchy-Schwartz inequality,

E|LyNy| < (EL})%(EN): < (EL2)3(EN:2)%,

which is finite by Theorem 1.3.1. Thus, Ly Ny is integrable. As M and N are in cM?, Lemma
1.4.10 shows that [M, N] is in ¢V, and so in particular as H is bounded, [~ [H,||d[M, N],|is
integrable. Therefore, the integral of H with respect to [M, N] over R is almost surely well-
defined, and fOU |H,||d[M, N]s| is integrable. Lemma A.1.7 then shows that (H - [M, N]))u
is integrable. Thus, Ly Ny — (H - [M, N])y is well-defined and integrable. Now, by Lemma
1.1.13, {1(s<v) is Fsay measurable, and so

ELyNy — (H - [M,N])u
= E&ME — M{)Ny — EE([M, N1 — [M,N]7)
= Efls<u)(M{ — M§)Ny — E€1l(s<u)([M,N]{; — [M, N]g))
= Bfl(s<u)(M{ Ny — [M, N]fy) — B€l(s<vy(My Ny — [M, N]7)
= B&ls<i)BE(ME Ny — [MT, Ny |Fspv) — BEL(s<pyE(M{ Ny — [M®, N]y|Fsav)
= Efls<u)(MEIyNsav — [MT,Nlsav) — B€l(s<vyE(MS§ny Nsav — [M®, Nsav),

which is zero. Therefore, by Lemma 1.2.9, LN — H - [M, N] is a uniformly integrable martin-
gale. For the case of M, N € cM,, we know from Lemma 1.4.4 that there exists a localising
sequence (T},) such that MT» NT» € cM2. We have

(LN = H - [M.N)™ = (M) = (M) )NT> = - (M7 NT),



2.2 Construction of the stochastic integral 47

where the latter is a uniformly integrable martingale by what we already have shown, so
LN — H - [M,N] is in cM,. This proves the lemma. O

Lemma 2.2.2 shows that by defining the integral of a simple process of the form {1y 7 with
respect to M € cM, in a manner corresponding to ordinary integrals, namely by putting
L = ¢(MT — M®) and interpreting L; as the integral of 1y, over [0,t] with respect to
M, we obtain an element of c M, characterised by a simple quadratic covariation structure
in relation to other elements of cM,. We take this characterisation as our defining feature
of the stochastic integral with respect to integrators in cM,. We will later show that this
yields an integral which in certain cases may also be interpreted as a particular limit of
ordinary Riemann sums. The next theorem shows that under certain circumstances, it is
possible to construct an element of c M, with the desired covariation structure. This yields

the construction of the stochastic integral with respect to a continuous local martingale.

Theorem 2.2.3. Let M € cM, and let H be progressive. There is L € cMy, unique up to
evanescence, such that for all N € cMy, H is almost surely integrable with respect to [M, N|
and [L,N] = H - [M, N], if and only if H? is almost surely integrable with respect to [M].
In the affirmative case, we define L as the stochastic integral of H with respect to M, and
denote it by H - M.

Proof. First assume that H? is almost surely integrable with respect to [M]. We need to
prove that H is integrable with respect to [M, N] for all N € cM,, and we need to prove
that there exists a process L € cMy, unique up to evanescence, such that [L, N| = H-[M, N]
for all N € cMy.

Fix N € cM;. By the Kunita-Watanabe inequality of Theorem 1.4.12, it holds that

/Ot |H||d[M, N],| < (/OtHfd[M]s)é (/Ot d[N]sf _ (/OtHfd[M]sf )}

almost surely for all ¢ > 0. As the latter is finite almost surely, we find that H is almost
surely integrable with respect to [M, N]. Next, we consider uniqueness of L. Assume that we
have two processes L, L' € cM, such that for all N € cMy, it holds that [L, N] = H - [M, N]
and [L',N] = H - [M, N]. Then [L — L', N] = 0 up to indistinguishability for all N € cM,.
As L — L’ € eMy, we in particular obtain that [L — L'] is evanescent, so by Lemma 1.4.9,

L — L’ is evanescent and thus L and L’ are indistinguishable. This proves uniqueness.

It remains to prove that there exists L € cM, such that [L, N] = H-[M, N] for all N € cM,.
Assume first that F(H? - [M])s is finite. In this case, the Kunita-Watanabe inequality of
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Theorem 1.4.12 and the Cauchy-Schwartz inequality yields that for all N € cM?,

2

g [Cimiam i< e ([ Hgd[M]S)é (W)t < (B [ m2apn. ) (e}

which is finite. Therefore, we can define ¢ : cM? — R by putting o(N) = E [~ H, d[M, N],.
Then ¢ is linear, and by Lemma A.1.7, it holds that [p(N)| < (E [;° H2d[M],)Y/?||N|2,
where the seminorm denotes the previously defined seminorm on cM?2. Thus, ¢ is Lipschitz,
and therefore continuous. Theorem 1.3.5 then yields the existence of a process L € cM?,
unique up to indistinguishability, such that ¢(N) = EL, Ny for all N € cM?. By Lemma
1.4.10, it holds for N € eM? that [L,N] € ¢V® and LN — [L, N] € eM¥, so we obtain
E[L,N]oo = ELxNo = Efooo H,d[M,N],. Fixing N € cM? and letting T be some

stopping time, we have N7 € cM? as well, and so
0o 0o T
E[L,N]p = E[L,NT] = E/ Hyd[M, N, = E/ Hyd[M, NI = E/ H,d[M, N]s,
0 0 0

so E([L, N]r — fOT H,d[M, N]s) = 0 for any stopping time 7', therefore Lemma 1.2.9 shows
that [L,N] — H - [M,N] is in eM". As [L,N] — H - [M, N] has paths of finite variation,
Lemma 1.4.5 yields [L, N] = H - [M, N] up to indistinguishability. We have now shown that
there is L € cM? such that [L, N] = H - [M, N] for any N € cM?2. In order to extend this
to N € cMy, let N € eMy. Using Lemma 1.4.4, let (T},) be a localising sequence such that
NT» € ¢M?2. Then, [L,N]™ = [L,NT»] = H - [M,NT] = H - [M,N]|™ = (H - [M, N])™
up to indistinguishability by Lemma 1.4.9, and as a consequence, [L, N] = H - [M, N] up
to indistinguishability, since T;, tends to infinity almost surely. We have now shown that
when H is progressive such that (H? - [M])s is integrable, there exists L € cM, such that
[L,N] = H - [M,N] for any N € cM,, and so existence is proven in this case.

Next, consider the case where we merely assume that H? is almost surely integrable with
respect to [M]. As H?-[M] is in cA, there is then by Lemma 1.1.11 a localising sequence (7},)
such that H2-[MT»] = (H?-[M])T» € cA'. By our previous results, there is a unique element
L" € eM, such that for all N € eMy, [L", N] = H-[MT» N] = H-[M,N]T = (H.[M, N])T~.
Then (L"), N] = L+, N|T» = ((H - [M, N])™)Tos = (H - [M, N))™ = [L", N]. By
uniqueness, (L"T1)T» = L™ Therefore, the processes (L") may be pasted together to a
process L by defining L; = L? whenever ¢ < T),. In particular, LT» = (L")™" so L € cM,
and we have the relation [L, N|T» = [LT» N] = [L",N] = (H - [M, N])T», showing that
[L,N] = H - [M, N] up to indistinguishability, as desired. This proves the existence in the

case where H? is almost surely integrable with respect to [M].

We have now shown that when H? is almost surely integrable with respect to [M], then H
is almost surely integrable with respect to [M, N] for all N € cM,, and there is L € c My,
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unique up to evanescence, such that [L, N] = H - [M, N] for all N € cM,. We also need to
show the converse. Therefore, assume that for all N € cMy, H is almost surely integrable
with respect to [M, N] and there is a process L € c¢M, such that [L,N] = H - [M,N]. In
this case, we in particular obtain that [M,L] = [L,M] = H - [M, M| = H - [M]. Therefore,
our assumptions show that fot |H¢|d[M], and fot |Hs|d(H - [M])s are finite. However, by
the transformation theorem for integration with respect to measures with densities, we have
fot H,d(H - [M])s = fot H?d[M],, so H? is almost surely integrable with respect to [M], as
desired. O

Theorem 2.2.3 yields the existence of a process H - M for any M € c M, and any progressive
H such that H? is almost surely integrable with respect to [M]. We call this process H-M the
stochastic integral with respect to M. Combined with Theorem 2.2.1, we have now proved
the existence of integral processes with respect to both elements of ¢V and cM,. However,
the processes which may be integrated depend on the integrator. We would like to identify
a common set of integrands which may be integrated against any process in ¢V or cM;y.
This will yield a set of integrands which may be integrated against any element of c¢S. The

following lemma shows how to obtain this.

Lemma 2.2.4. Assume that H is progressive and that there is a localising sequence (T,)
such that HT"l(Tn>O) is bounded for all n. For any A € ¢V, H is almost surely integrable
with respect to A, and for any M € cMy, H? is almost surely integrable with respect to [M].

Proof. First consider some A € ¢V, we need to show that H is almost surely integrable with
respect to A. Fix t > 0, and let w be such that T;,(w) > ¢ from a point onwards, this is
almost surely the case as T, almost surely tends to infinity. Fix n so large that T;,(w) > t.
In particular, T}, (w) > 0, and we find that for s < ¢, Hy(w) = (H"1(1,0))s, s0 Hs(w) is
bounded on [0,¢], therefore integrable over [0,t] with respect to A(w). Thus, H is almost
surely integrable with respect to A, as desired. By the same reasoning, we find that H? is

almost surely integrable with respect to [M]. O

We let J denote the set of all H such that H is progressive and there is a localising sequence
(T,) with HTnl(Tn>O) bounded for all n. For H € J, we know by Theorem 2.2.1 that for
any A € cV, there exists a process H - A € ¢V which almost surely agrees with the pathwise
Lebesgue integral of H with respect to A, and by Theorem 2.2.3, we know that for any
M € c My, there exists a process L € c M, such that for any N € cMy, H is almost surely
integrable with respect to [M, N] and [L,N] = H - [M, N]. These properties will allow us
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to define the stochastic integral of any process H € J with respect to any X € ¢S. The

following lemma shows that the set J contains many useful processes.

Lemma 2.2.5. Let H be adapted and continuous. Then H € J.

Proof. Put T, = inf{t > 0 | |H¢| > n}. As H is adapted and has continuous paths, (7},)
is a localising sequence. Pathwisely, if T;, = 0, HTnl(Tn>O) is zero, and if T,, > 0, H™ is
bounded by n. Thus, HT'Ll(Tn>0) is bounded by n, we conclude H € 7J. O

We are now ready to introduce the stochastic integral with respect to continuous semimartin-

gales and prove its basic properties.

Theorem 2.2.6 (Existence of the stochastic integral, continuous semimartingales). Consider
X € cS and let H € 3. It holds that for any decomposition X = Xo + M + A of X, H?
is integrable with respect to [M] and H is integrable with respect to A. Furthermore, there
is a process H - X in ¢S, unique up to indistinguishability, such that for any decomposition
X=Xo+M+ A, H-X is indistinguishable from the process H-M + H - A. We call H - X
the stochastic integral of H with respect to X .

Proof. Fix any decomposition X = Xg+ M + A. From Lemma 2.2.4, H is almost surely inte-
grable with respect to A and H? is almost surely integrable with respect to [M]. Therefore,
by Theorem 2.2.1, H - A is well-defined as a pathwise Lebesgue integral, and by Theorem
2.2.3, H - M is well-defined as well. Put Y = H- M + H - A, we claim that Y satisfies the
criteria of the theorem. To see this, let X = Z; + N 4+ B be some other decomposition. We
need to prove that Y is indistinguishable from H - N + H - B. From what we just proved,
H - N and H - B are both well-defined. From Theorem 2.1.2, M and N are indistinguishable
and A and B are indistinguishable. In particular, [M, N'] and [N, N'] are indistinguishable
for all N’ € cMy, leading to that H - M and H - N are indistinguishable. And as A and B
are indistinguishable, H - A and H - B are indistinguishable. Therefore, Y is indistinguishable
from H - N + H - B. This proves existence. Uniqueness follows immediately. O

Lemma 2.2.7. Let X,Y € ¢S, let H K € J and let T be a stopping time. The following
properties for the stochastic integral hold up to indistinguishability.

1. T is a linear space, and H - X is a linear mapping in both H and X.

2. H- X is a continuous semimartingale with decomposition H-X = H - M + H - A.
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8. HlpqyisinJ and (H-X)" =Hlpr - X =H-XT.

4. It holds that HK € J and K - (H-X)=KH - X.

5. We have [H - X,Y]=H -[X,Y] and [H - X] = H? - [X].

6. If F € Fo, it holds that 1LpH € 3, 1pX € cS and (1pH) - X =1p(H-X)=H-(1pX).

7. If HT = KT then (H - X)T = (K - X).

Proof. Proof of (1). Let o, € R. As H,K € 7, there are localising sequences (7},) and
(S,) such that H'"1(1, -0y and K*"1(g, o) are bounded. Using Lemma 1.4.2, (S,, A T},) is

also a localising sequence, and we find that

(aH + BK)" " Lg arus0) = (aH" 4 BES )1 g S0)1(7, 50)
= a(H™1(7,50)"" 1(s,50) + BE " 1(5,50)) " 11,50,

and since HTnl(Tn>o) and KS"1(5n>0) are bounded, this shows that o« H + K is in J. It
remains to prove that H - X is linear in both the integrand H and the integrator X. We first
fix X with decomposition X = Xy+ M + A and consider the integral as a mapping in H. We
commence by showing that («H + 8K)-M = o(H - M) + 8(K - M). By the characterisation
in Theorem 2.2.3, we need to show that [a(H - M) + (K - M),N| = (aH + BK) - [M, N]
for any N € cMy. Let N € c M, be given, we then have, again using the characterisation in
Theorem 2.2.3,

[a(H-M)+ 5(K-M),N] = «fH -M,N]+5[K -M,N]
= «(H-[M,N])+B(K -[M,N])
= (aH + BK)-[M,N],

as desired. As we have (aH + 8K)- A = o(H - A) + B(H - A) when A € ¢V by the
ordinary properties of Lebesgue integrals, this proves that the stochastic integral is linear in
the integrand. Next, we prove that it is linear in the integrator. Fix H € J, we consider
X and Y in ¢S and wish to prove that H - (aX + YY) = o(H - X) + 8(H - Y). Assume
that we have decompositions X = Xo+ M + A and Y = Yy + N + B. We first prove that
H-(aM+ SN)=«a(H -M)+ B(H - N). Fixing any N’ € cMy, we have

[w(H - M)+ B(H-N),N'] = ofH-M,N']+B[H-N,N']
= oH-[M,N'])+ B(H - [N,N'])
= H-[aM + BN,N'],
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so that a(H-M)+[(H-N) is the stochastic integral of H with respect to aM+5N. Therefore,
as aX + BY has continuous martingale part M + SN and continuous finite variation part
aA+ BB, we obtain using what was just proven as well as the linearity properties of ordinary

Lebesgue integrals,

H-(aX+pY) = H-(aM+N)+H-(aA+ 5B)
= a(H-M)+B(H-N)+a(H-A)+B(H-B)
— ol X) 4 BH Y,

as desired.
Proof of (2). This follows immediately from the construction of the integral.

Proof of (3). Assume that H € J, we first show that H1j 7 is in J as well. Note that
as (t <T) = (T < t)° € Fy, the process t — 1p 77(t) is adapted and left-continuous, so by
1.1.4, this process is progressive, and therefore, H 1, 1y is progressive. Let (T},) be a localising
sequence such that H*" 17, ~¢) is bounded. Then (H1jo 7)) 11, >0y = H™ 1(7, 0)1[0,7] 18
bounded as well. We conclude that H1jg ) € J, as desired. In order to prove the identities
for the stochastic integral, let X € ¢S with decomposition X = Xy + M + A. We then have

TAt

t t
(H-A)T = H, dAs:/ (H1|[O,T]])sdAs:/ H,dAT,
0 0 0

so that (H-A)T = (Hlpo,rp) A= H-AT. Asregards the martingale part, let N € cMy, then
[(H-M)",N]=[H-M,N|"=(H-[M,N])". Therefore, [(H - M)",N] = Hl 1) - [M,N],
proving (H - M)T = Hlprp - M, and [(H - M)T N] = H - [MT,N], which shows that
(H-M)T = H-MT. Collecting our results for the continuous martingale and continuous

finite variation parts, the result follows.

Proof of (4). As H, K € J, we know that there exists a localising sequence (T3,) such that
HTnl(Tn>0) and KTnl(Tn>0) are bounded. As (HK)Tnl(Tn>O) = HTnl(Tn>O)KTn1(Tn>O)7
and HK is progressive, we conclude HK € J. As regards the integral identity, assume that
X has decomposition X = Xg + M + A. By the properties of ordinary Lebesgue integrals,
K- (H-A)=KH - A. As regards the martingale parts, let N € cM,, we then have

[K-(H-M),N] = K-[H M,N]
— K- (H-[M,N])
= KH-[M,N],

which shows that K - (H - M) satisfies the criterion for being the stochastic integral of K H
with respect to M, so K - (H - M) = KH - M. Collecting our results and using linearity of
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the integral in the integrator, we find

K- (H X) K-(H-M+H-A)
K-(H-M)+K-(H-A)
KH-M+KH-A

KH-X,

as desired.

Proof of (5). Let X = Xg+ M + Aand Y = Yy + N + B, as the martingale part of H - X
is H- M, we then find [H-X,Y]=[H-M,N]=H-[M,N]=H -[X,Y]. In particular, this
vields [H - X] = [H-X,H-X]=H-[X,H -X|=H-[H-X,X] = H?-[X].

Proof of (6). First note that 1z H € J as 15 is progressive, and by Lemma 2.1.5, 1z X € cS.
Let X = X9+ M + A. By the properties of ordinary Lebesgue integrals, we know that
(1pH)-A = 1p(H-A) = H - (1rA) up to indistinguishability. Therefore, it suffices to
prove (1pH) - M = 1p(H - M) = H- (1pM). By Lemma 1.4.3, all three processes are in
cM,. Therefore, it suffices to prove that their quadratic covariation with any N € c M, are
equal. Let N € cM,. By Theorem 2.2.3, [(1pH) - M,N] = 1pH - [M,N] = 1p(H - [M, N]),
while Lemma 1.4.9 shows that we have [1p(H - M),N| = 1p[H - M,N] = 1p(H - [M, N])
and [H-1pM,N]) = H - [1lpM,N] = H - 1p[M,N] = 1p(H - [M, N]). Thus, the quadratic
covariation with N is equal to 1p(H - [M, N]) for all three processes, and so Lemma 1.4.9
shows that (1pH) - M =1p(H -M)=H - (1pM), as desired.

Proof of (7). From what we already have shown, we find

(H-X)" = Hlpsr - X=H"1lp7m X
= K" X=Klpr X=(K- -X)T,

as desired. O

Lemma 2.2.8. Let X € c§, let S < T be stopping times and let £ be bounded and Fg
measurable. If H = §lygy, then H € J and H- X = E§XT-X5). IfH = §lpsy, then H €3
and H - X is evanescent. In particular, the integrals of Elys 1, 11,17, §1)s,71 and §ls 7|
are indistinguishable.

Proof. With H = &ljs.7), we find by Lemma 2.2.2 that H is progressive. As it is also
bounded, we obtain H € J, and Lemma 2.2.2 also yields H - M = ¢(MT — M*). Using the



54 Stochastic integration

properties of ordinary Lebesgue integrals, we furthermore have H - A = ¢(AT — AS), and
therefore H - X = ¢(XT — X). This proves the first claim.

Next, consider H = {1g). As H = {1[g,00[ —&1]5,00[, @and both of these processes are adapted
and either left-continuous or right-continuous, Lemma 1.1.4 shows that H is progressive. As
H is also bounded, H € 7. For any N € cMy, H-[M, N] is evanescent as [M, N| is continuous
and therefore accords zero measure to one-point sets. Therefore, H - M is evanescent. As A
is continuous, the measures induced by the paths of A also accord zero measure to one-point
sets, and so H - A is evanescent, leading us to conclude that H - X is evanescent. By the

linearity properties of the integral shown in Lemma 2.2.7, the final claims follow. 0

This concludes the construction of the stochatic integral and the proofs of its basic properties.

In the following section, we will consider some more advanced properties.

2.3 Ito’s formula

In this section, we prove some results for stochastic integrals which are of fundamental
importance: the dominated convergence theorem for stochastic integrals, the characterisation
of stochastic integrals and the quadratic covariation as particular limits, and It6’s formula,

which is the stochastic version of the fundamental theorem of analysis.

Theorem 2.3.1 (Dominated convergence theorem). Let X be a continuous semimartingale
and let t > 0 be some constant. Assume that (H™) is a sequence of progressive processes and
that H is another progressive process. If it almost surely holds that H™ converges pointwise
to H on [0,t] and |H™| and |H| are bounded by K € J on [0,t], then H™ and H are in J as
well, and

sup [(H™ - X)s — (H - X),5| = 0.
s<t

Proof. First note that H™ and H are in J as well, as the same localising sequence of stopping
times (7},) which ensures that K Tnl(Tn>0) is bounded also works for H" and H.

As regards the convergence result, we first prove the result in the case where K < c¢ for some
constant ¢ > 0, in which case H" and H are bounded by c as well. Let X = Xqg+ M + A be
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the decomposition of X. Using Lemma A.1.7, we then have

sup [(H" - X), — (H-X),| < sup|(H"- M), - (H - M),| +sup|(H" - A), — (H - A),|

s<t s<t s<t

IN

(H" — H)- M +sup/ |H" — H,|| dA,|

s<t

= ((H"=H) -M){ +((H" = H) - Va)s,

and so it will suffice to show that each of the two latter terms converge in probability to zero.
Considering the last of the two terms, we note that as it almost surely holds that HY tends
pointwise to Hg for s <t and is bounded by a constant, the dominated convergence theorem
applied pathwise yields that ((H™ — H) - V4); tends almost surely to zero, in particular the
convergence holds in probability. As for the martingale part, another application of the
dominated convergence theorem yields lim, [(H™ — H) - M]; = lim,, fOt(HZL — Hy)?2d[M]s =0
almost surely, so that in particular, we have convergence in probability. Lemma 1.4.11 then
allows us to conclude that ((H™ — H) - M); L5 0 as well, finally allowing us to obtain
sup,<; [(H™ - X)s — (H - X)s| 250, as desired.

Now consider the general case. Let (7)) be a sequence such that K Tnl(Tn>0) is bounded.
We may then use Lemma 2.2.7 to obtain

Lir,>t) Sglz (H™ - X)s — (H - X)4]
— sup (" X). = (- Xl < sup|(H" - X)T = (H - X)Lz, 0)
= SliItJ (H" (1, >0y 10,1 - X)s — (Hl(p, 00 10,77 - X)sl-
As H"1(1,>0)1[0,1,) and H1(1,~0yl[o,7,] are in J and are bounded by the same constant as
K™ 1(1,50), we find from our previous results that 1(7, ¢ sup,<; [(H" - X)s — (H - X)|
converges in probability to zero. As (Ty) tends almost surely to infinity, it holds that
lim P(T), < t) = 0 and so Lemma A.2.1 shows that sup <, [(H" - X)s — (H - X),| tends

to zero in probability, as was to be proven. O

Next, we prove limit characterisations of the stochastic integral and the quadratic covariation
which provide the integral interpretation of H-X and the quadratic covariation interpretation
of [X,Y]. We first introduce some notation. Fix ¢t > 0. We say that a finite increasing
sequence (to,...,tx) with 0 = tg < --- < tx = t is a partition of [0,¢]. We refer to

maxp<k |ty — tg—1| as the mesh of the partition.

Theorem 2.3.2. Let X € ¢S and let H be adapted and continuous. Let t > 0 and assume
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that (t)k<k,, n > 1, is a sequence of partitions of [0,t] with mesh tending to zero. Then

Ky,

P
E th,l(th —thil) — (H . X)t
k=1

Proof. First note that as H is adapted and continuous, H € J by Lemma 2.2.5, and so the

stochastic integral is well-defined.

We define the sequence of processes H™ = H;1; + Z,f:"l Hyp 1pe  an Since H is contin-
uous and the mesh of the partitions converges to zero, we find that H™ converges pointwise
to Hlppy. Also note that as H is continuous and adapted, H™ is also continuous and
adapted and so in J, and both H™ and H are bounded by H*. By Lemma 2.2.8, we obtain
ZkKZ”I Hyp (Xgp — Xyn ) = (H" - X);, and by the dominated convergence theorem 2.3.1,
this converges to (H 1o - X)¢ = (H - X); in probability, as was to be proven. O

Theorem 2.3.3 (Integration-by-parts formula). Let X and Y be continuous semimartin-

gales. Let t > 0 and assume that (t})k<k,, n > 1, is a sequence of partitions of [0,t] with

n’

mesh tending to zero. Then

K’VL
> (K = X )V =Yg ,) = [X. Y],
k=1

and the identity X;Y; = XoYo+ (Y - X)) + (X - V) + [ X, Y]; holds.

Proof. Our first step is to prove the two relations

Ky
P
3 g X P (X
k=1
Xf = Xg +2(X - X)¢ + [X]e,

afterwards we will extend the result to the general case by a polarization argument. We first
consider the case of M € cMy. Note that

K, K, K,
M= (M~ Mp ) =2 My (Mg — Mg )+ (Mg — My_)?,
k=1 k=1 k=1

o (Mg —Myy ) 25 (M-M), by Theorem
2.3.2, and therefore Z,Ifz"l (Myp — Myn_ )? L, M} —2(M - M);. We wish to argue that the
process M? —2(M - M) is almost surely increasing. To this end, let 0 < p < ¢ be two dyadic

. . . Kn
and since M is continuous and adapted, >, ", My
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rationals. There exists j > 1 and naturals n, < ng such that p = np2’j and ¢ = ny277.
Consider the particular partitions of [0,p] and [0,q] given by putting pf = k2~("+5) for
k < np2" and ¢ = k2-(+3) for k < ng2", respectively. Using Lemma A.2.2 and the

convergence result just proven, we then obtain

ny2" ng2"
Mp = 2(M - M), =1lim Y (Myp — My )* <lim Y (Myp — Mgy ,)* = M7 — 2(M - M),
k=1 k=1

almost surely, where the limits are in probability. As Dy is countable and dense in R4, we
conclude that M?2—2(M - M) is almost surely increasing. By picking a particular modification
of M - M, we may assume that M? —2(M - M) has sample paths which are all increasing. By
definition, M? — [M] is in cM,. As M - M is also in cM,, we find that M? —2(M - M) — [M]
is a process in cM, which has paths of finite variation. By Lemma 1.2.12, the process
is then evanescent, and we conclude that M? = 2(M - M) + [M] up to evanescence. As
a consequence, Zsz”l (Myp — My ) £ [M];. This shows the results in the case of a
continuous local martingale. Next, we consider the case X = Xo+ M + A, where M € cM,

and A € cV. We first note that

Kn Kn
D (M = My J(Ag — Ay )| < max [My — My [Y A — Ay |
k=1 == k=1

<

(Va): | Dnax |Myp — Myr |,

and as M has sample paths which are uniformly continuous on [0, ¢], the latter tends almost

surely to zero, allowing us to conclude Zsz"l(Mtz =M V(A —Agp_ ) 0. Analogously,

k—1

we may argue that ZkK:”l (Agp—Ap )? 2, 0. Combining our results and recalling [X] = [M],
we obtain ZkK:nl(XtZ — X )2 = Zfz"l(MtZ — My 4+ Ap — A )? £, [X]¢. In order to

k—1
obtain the integration-by-parts formula from this, we note that

K, K, Ky,
X = X3+ (XG - X% )=X+2) Xp (Xg —Xg )+ (Xp — Xy )%
k=1 k=1 1

<0

and we now know that the former term converges in probability to 2(X - X); and the latter
term converges in probability to [X];, so we conclude X? = X2+2(X-X);+[X];. We have now
proven both the convergence result for the quadratic variation as well as the integration-by-
parts formula. It remains to prove the same results for a pair of continuous semimartingales
X and Y. Consider first the convergence to the quadratic covariation. Define two processes
Z=X+Yand W =X —-Y. We then have Z + W = 2X and Z — W = 2Y, yielding

(Zip =2y ) = Wi =W )* = (2K —2Xip ) (2 — 2V )
= AXy - Xy )y —Yy ),
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and we know from our previous results that Zsznl(ZtZ — th_l)z converges in probability to
[Z]; and that Y7, (Win — Win_ )? converges in probability to [W];. By Lemma 1.4.9, we
have [Z]; — W]t = [X + Y]: — [X = Y] = 4[X, Y] almost surely, so collecting our results,
we finally conclude ZkK:"l (Xip = Xip ) Yip = Yir ) i [X,Y]:, as desired. Analogously,
we find

4X,Y, = Z? W}
= Z5-W§+2(Z-2),—2W-W)+[Z], — [W),
= 4XYVo+2(X+Y) (X +Y)) —2(X -Y)- (X -Y)) +4[X, Y],
= AXoYo +4(X Y) +4(Y - X) +4[X, Y],

yielding the integration-by-parts formula in the general case. This concludes the proof. [

Lemma 2.3.4. Let X and Y be continuous semimartingales and let H be adapted and
continuous. Lett > 0 and assume that ({7 )k<k,, n > 1, is a sequence of partitions of [0,1]

with mesh tending to zero. Then

KTI,

P
Do Hy (X = Xgp )Y =Yy ) — (H-[X,Y]),.
k=1

Proof. As in the proof of Theorem 2.3.3, by polarization, it will suffice to consider a single
P

semimartingale X and prove Efc{:“l Hyp  (Xip — Xyn )> — (H - [X]);. Also note that we
may assume without loss of generality that X has initial value zero. To prove the result
in this case, note that from Theorem 2.3.3, [X]; = X? — 2(X - X),, so that using Lemma
227, wefind H-[X]=H -X?-2H-(X-X)=H-X?-2HX - X, where X? € ¢S since

X2 =2(X - X)+[X]. On the other hand,

K, K, Kn
D My (X =Xy )P = Y Hy (XE = XE ) =2) Hy Xy, (Xg - Xy,),
k=1 k=1 k=1

so that two applications of Theorem 2.3.2 immediately yield the result. O

We are now ready to prove Itd’s formula. We denote by C?(RP) the set of mappings
f + RP — R such that all second-order partial derivatives of f exist and are continuous.
Furthermore, for any open set U in RP, we denote by C%(U) the set of mappings f: U — R
with the same property. We say that a process X with values in R? is a p-dimensional con-
tinuous semimartingale if each of its coordinate processes X, where X; = (X},..., X?), is

a continuous semimartingale.
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Theorem 2.3.5 (Itd’s formula). Let X be a p-dimensional continuous semimartingale and
let f:RP — R be C?. Then

0= 35 [ B rox 4SS [ L o,

up to indistinguishability.

Proof. Let tf = kt27". We may use the relation f(X;) — f(Xo) = Zill f(Xe) = f(Xep )
and Theorem A.1.17 to obtain f(X;) = f(Xo) + S;* +1}* + R} where

n a af 7 7
Sto= D > 5 (K )X =X )
i=1k=1 "
1L 9%
n = " iyt J o xJ
Tt - 2 ;;; axzax‘] (Xt 1)(th Xt?—l)(th XtZ—l)
p p 2/”/ .. . . . -
R = S SS (X X)) (X — X (XD, — X, ),
i=1 j=1 k=1

and rij (z,y) is the remainder from Theorem A.1.17. By Theorem 2.3.2, S}* converges in
probablhty to > . 1 Ot aa f (Xs)dX?, and by Lemma 2.3.4, T* converges in probability to

> Z . fo 8% 8% (X,)d[X?, X7]s. Therefore, it will suffice to show that the remalnder
term R! converges in probability to zero. Note that while we have no guarantee that r3 is
measurable, we know that R} is always measurable, since R} = f(X;) — f(Xo) — Sp — T,
and so the proposition that R} converges in probability to zero is well-defined. To prove this

proposition, first fix 4, j < p. Recalling [2zy| < 22 + y?, we find

Xt" )(XZZ - Xti;;_l)(thZ o thZ_l)|

2"’L
1 i i
<3 (m & (th_th:N) (ot -+ o0 -3 )
k=1
where the latter factor converges to [X?]; + [X’]; by Theorem 2.3.3. Now note that by
Theorem A.1.17, there is a mapping & : RP x RP — RP such that £(z,y) is always on the line
segment between x and y and 7y (Xr , Xin) = %(5()(%,1’)(%)) az ax (Xep ). In
particular, we have

0*f
8371‘85(}]‘ (th_l) ’

92
max |1 (Xiep_, Xin)| < max sup of

< th
k<2n k<2" 4e[0,1] axlaxj(

k—1

+t(Xep — Xap_ ) —
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and the latter is measurable, since by continuity, the supremum may be reduced to a countable
one. Combining our conclusions, we see that in order to show that R} £, 0, it suffices to
show that for any 7,5 < p, it holds that

0% f 0% f

P
Xin A+ H(Xyn — Xyn — —F— (X — 0.
lgé%}étz%pl] 81'1827]( t + ( i i 1)) 81'1(937]( tkfl)
To do so, fix i,j < p. Define T, = inf{t > 0||X}| > m} and T}, = min{T},,...,T2}. As

(T%,) tends to infinity as m tends to infinity, we conclude that (7,) tends to mﬁmty as well.
By Lemma A.2.1, since lim,,, P(T},, > t) = 1, it suffices to prove that

O*f
O0x;0x;

0 f
8$i8$j (th_l )

l(Tm >¢) Max sup

(g, + X — X)) -

Now, on (T}, > 0), each coordinate of the process X 7™ is bounded by m. Therefore, defining
Y™ = Xgﬂ’”l(Tm>o), Y™ is bounded by m, and the above is equal to

0% f
8.%'1‘8.’L‘j

*f
O0x;0x;

1(Tm>t) max sup

Ym i wo— Y —
s s (5 =Yg )

k—1 (Yt2’—1 )

)

so we need to show that this converges in probability to zero. Fix € > 0. As the map-
ping % is continuous by our assumptions, it is uniformly continous on the compact
set [—m,m]P. Pick § > 0 parrying e for this uniform continuity. For each w, Y™ (w) is
continuous, and therefore uniformly continous on [0,¢]. Pick n parrying § for this uniform
continuity. Now pick n so large that {27 < 7. Note that n depends on w. We then
find 1(7,,>¢) maxg<an SUP;cpo 1 |%3’;:]‘(ng_1 YR - Y ) - 8228ij (Y )| < e, proving
convergence almost surely, in particular convergence in probability. Combining our con-

clusions, we obtain R} L5 0. As limits in probability are almost surely determined, we
conclude f(X;) = f(Xo) +X_; Jo #L(Xo) dXE+ 330 30, [§ 5o (Xo) d[X7, XT], al-
most surely. As the processes on both sides of this equality are continuous and ¢t > 0 was
arbitrary, Lemma 1.1.5 shows that we have equality up to indistinguishability. This proves
the theorem. O

Note that in the case where X has paths of finite variation, it holds that the martingale part
of X has paths of ﬁnite variation as well, so [X] is evanescent and Theorem 2.3.5 reduces to
f(X:) = f(Xo)+ fo s) d X, which is the classical version of the fundamental theorem of
analysis. This hlghhghts the manner in which It6’s formula is an extension of the classical
theorem to the case where the integrands do not have paths of finite variation. Another
interpretation of It6’s formula is that the space of p-dimensional continuous semimartingales

is stable under C? transformations, and given a p-dimensional continuous semimartingale X
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and a mapping f € C?(R), Ité’s formula shows how to obtain the decomposition of f(X;)

into its continuous local martingale and continuous finite variation parts.
In practical applications, we will occasionally be considering cases where we wish to apply
1t6’s formula, but the function f is only defined on some open set. The following corollary

shows that Ito’s formula also holds in this case.

Corollary 2.3.6. Let U be an open set in RP, let X be a p-dimensional continuous semi-
martingale taking its values in U and let f : U — R be C?. Then

(X)) =

X4 = ZZ / o amj X,)d[X7, X7,

1131

up to indistinguishability.

Proof. Let || - || be some norm on R? and let d(z,y) = ||« — y||. Define the set Uy, by putting
Up ={z € R | d(z,U°) < =}. Put F,,, = U, then F,,, = {z € RP | d(z,U¢) > L}. Our
plan is to in some sense localise to F,, and prove the result there using Lemma A.1.18 and
Theorem 2.3.5. As & — d(z,U¢) is continuous, U, is open and F, is closed. Define T,, by
putting 7}, = inf{t > 0 | X; € U,}. Note that T,, = inf{t > 0| d(X;,U¢) < L}, so as
the process d(X;, U¢) is continuous and adapted, Lemma 1.1.9 shows that Ty, is a stopping
time. As (U,,) is decreasing, (7)) is increasing. We wish to argue that (7},,) tends to infinity
almost surely and that on (T}, > 0), X7m takes its values in F},.

To prove that (T;,,) tends to infinity almost surely, first note that by continuity, we always have

d(Xr,,,U¢) < L. Assume that there is w such that T}, (w) has a finite limit T'(w). We then
obtain (Xp(w),U¢) = lim,, d(Xr,, (w),U¢) = 0. As U° is closed, this implies X (w) € U¢, a
contradiction. Thus, we conclude that (7},) tends almost surely to infinity. To show that on
(T, > 0), XTm takes its values in F},, we merely note that on this set, X; ¢ U,, for t < T,
so Xy € F,, for t < T,,,, and by continuity of X and closedness of F,,,, X1, € F,, as well.

Thus, XTm takes its values in F,, on (T}, > 0).

Now let m be so large that F), is nonempty, this is possible as U = U2, F,, and U is
nonempty because X takes its values in U. Let y,, be some point in F},. Define the process
Y™ by putting (Y™)! = Lz, >0)(X* N +ym1(Tm—0) Y™ is then a p-dimensional continuous
semimartingale taking its values in F,,. Now, by Lemma A.1.18, there is a C? mapping

m - RP — R such that g, and f agree on F,,. By Theorem 2.3.5, It6’s formula holds using
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Y™ and ¢, and as g,, and f agree on F;,, we obtain

FO) = SO +Z/ 1140+ ZZ/ S (AL ()

1=1 j=1
up to indistinguishability. We wish to argue that as m tends to infinity, all terms in the

above converge to the corresponding terms with Y™™ exchanged by X. Consider the first-
order terms. For any ¢ < p, we may use Lemma 2.2.7 to obtain
Lo af Lof

o [ LA™, = L [ 5

(V") d(x")

=1 tl of XTmyq(x%)Tm
= L@y | lans0 g, i( s ™) d(XY)g

oy oy
= o [ GEET A

t
of /v, i
= 1 X:m™)1 dXx?
(Tm>t)/0 axl( s ) |[07Tm]l s

t af )
= 1(Tm>t)/ Oz ( )dX;7

and with an application of Lemma 1.4.9, the analogous statement is obtained for the second-
order terms. Also, 1(7, >¢)f(Yi™) = 11,56 f(Xt) and 17, >0 f(Y3") = L1, >0 f(Xo). All
in all, we conclude that Itd’s formula holds almost surely at time ¢ > 0 on (T}, > t), and
letting m tend to infinity, we obtain that the formula holds at any time ¢ > 0. By Lemma
1.1.5, the result holds up to indistinguishability and the proof is concluded. O

2.4 Conclusion

We have now come to the end of our treatment of stochastic integration for continuous
semimartingales. We end the chapter with some comments on the literature treating the

subject as well as some remarks on extensions of the theory.

The presentation of the theory in this monograph is for the most part inspired by the books
Karatzas & Shreve (1991), He et al. (1992), Rogers & Williams (2000a), Rogers & Williams
(2000b), Kallenberg (2002) and Protter (2005). The proof of the existence of the quadratic
variation process using Mazur’s lemma is inspired by Beiglbock et al. (2010).

The results on stochastic calculus with respect to continuous semimartingales given here is

a small part of the bulk. Immediate further results include local time processes, martingale
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inequalities such as the Burkholder-Davis-Gundy inequalities, Girsanov’s change of measure
results, et cetera. Such topics are covered for example in the books Karatzas & Shreve (1991)
and Rogers & Williams (2000b). A major application of stochastic calculus is to stochastic
differential equations, in particular analysis of the solutions of stochastic differential equations
of the form

dX; = a(Xy) dt + b(X;) dWy,

where W is an F; Brownian motion and a process X € ¢S is sought which solves the above
equation. Important results of the theory consider criteria for existence and uniqueness
and relations to martingale problems, as well as criteria for stationarity and ergodicity, and
problems of estimation. Main parts of the theory are given in Rogers & Williams (2000b)
and Karatzas & Shreve (1991).

Another extension of the theory is to integration with respect to semimartingales with jumps,
defined as processes X with decompositions X = X+ M + A, where M is a right-continous
local martingale with left limits, and A is a right-continuous process of finite variation with
left limits. The theory of martingales with jumps is more convoluted than the theory of
continuous martingales, and the extension of the main results of stochastic calculus from the
continuous case to the discontinuous case often involves substantial difficulties. The general
theory is treated in the books Dellacherie & Meyer (1978), He et al. (1992), Rogers &
Williams (2000b) and Protter (2005).
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2.5 Exercises

Exercise 2.1. Let W be a one-dimensional F; Brownian motion. Show that W € ¢S.

Exercise 2.2. Let X be continuous, adapted process. Define F.(X) as the set of w such
that X;(w) is convergent as t — oo to a finite limit. Show that F.(X) € F.

Exercise 2.3. Let M € cM,. Show that F.(M) = F.([M]) almost surely in the sense that
P(F.(M)AF,([M])) =0, where FAG = (F\G)U(G\F) for F,G € F.

Exercise 2.4. Let X € ¢S with X = M + A, where M € cM, and A € cA. Prove that
F.(X) = (sup; X < o0) almost surely in the sense that P(F.(X)A(sup, X; < 00)) = 0.

Exercise 2.5. Let X € ¢S with X = M + A, where M € cM; and A € cA. Show that
F.(X) = F.(M)N F.(A) almost surely in the sense that P(F.(X)A(F.(M)NF.(A))) =0.

Exercise 2.6. Let W be a one-dimensional F; Brownian motion and let H € J. Show that
H - W is in cM? if and only if E fooo H? ds is finite. Show that if it holds that for any ¢ > 0,
E [, H?ds is finite, then H - W is in cM and E(H - W)? = E [} H?ds.

Exercise 2.7. Let M € cM,. Show that the mapping uy from By ® F to [0, 00] defined
by putting, for any 4 € By @ F, pum(A) = [ [1a(t,w)d[M](w); dP(w), is a well-defined
nonnegative measure on B, ® F. Show that pys is always o-finite, and if M € cM?2, pyy is
bounded. Denote by £2(M) the £? space of (Ry x €, %P, ups). Show that for H € 3, H - M
is in cM? if and only if H € £2(ups), and in the affirmative, ||H - M|z = || H || ar, where || - || as
denotes the £? norm of the space £2(M).

Exercise 2.8. Let W be a one-dimensional F; Brownian motion and let H be bounded,
adapted and continuous. Show that for any fixed t > 0, (W4, —W;) ™ ? tt+h H, dW converges
in probability to H;, where we define ftt+h H, AWy = (H -W)pyp — (H - W)y

Exercise 2.9. Let X be a continuous process. Let ¢t > 0 and let t} = kt27™. Let p > 0 and
assume that Zizl | Xip —Xyn_ [P is convergent in probability. Show that Zi:l | Xy — Xigp |7

converges to zero in probability for ¢ > p.

-1

Exercise 2.10. Let 0 < H < 1 and X be a continuous adapted process such that X has

finite-dimensional distributions which are normally distributed with mean zero and such that
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for any s and ¢ with s,t > 0, EX, X, = 1(t?H + s*/ — |t — s|?). Such a process is called a
fractional Brownian motion with Hurst parameter H. Show that if H = 1 , then X has the

distribution of a Brownian motion. Show that if H # 3 L then X is not in cS

Exercise 2.11. Let W be a p-dimensional F; Brownian motion. Let f : R?P — R be C2.

Show that f(W;) is a contiuous local martingale if > ¥ L(x) =0 for all z € RP.

i=1 aac
Exercise 2.12. Let W be a one-dimensional F; Brownian motion. Let f : R? — R be C?.
Show that f(t, W;) is a continuous local martingale if 2L (t z)+ 3% gz’; (t,x) =0 for (t,z) € R%
Show that in the affirmative, it holds that f(t, W;) = f (0,0) + ft 9 (s, W) dW.

Exercise 2.13. Let M € cM, and define the process £(M) by £(M); = exp(M; — $[M]y).
Show that £(M) is a continuous local martingale with initial value one. Show that (M) is
the unique solution in Y in ¢S to the stochastic differential equation Y; =1 + fg Y, dM,.

Exercise 2.14. Let M, N € cM,. Show that £(M) and £(N) are indistinguishable if and
only if M and N are indistinguishable.

Exercise 2.15. Fix ¢ > 0 and define Z}* = Hi:l(Mtk — M, ), where t} = kt27". Show
that ZJ* converges in probability to E(M);.

Exercise 2.16. Let M € cM,. Show that £(M) is a nonnegative supermartingale. Show
that EE(M), < 1 for all ¢ > 0. Show that £(M) is almost surely convergent and that the
limit £(M ) satisfies that FE(M ) < 1.

Exercise 2.17. Show that £(M) is a uniformly integrable martingale if and only if it holds
that EE(M)w = 1, and show that £(M) is a martingale if and only if EE(M); = 1 for all
t>0.

Exercise 2.18. Let W be a one-dimensional F; Brownian motion and let f : R+ — R be
continuous. Show that f € J in the sense that the process (t,w) — f(t) isin J. Fix t > 0
and find the distribution of fo s) dWs.

Exercise 2.19. Let X YecS and f,g € C*(R). With f(X); = f(X;) and ¢g(Y), = g(Y3),
show that [f(X),g9(Y)]: = fo Y:)d[X,Y]s for all ¢ > 0 up to indistinguishability.
Use this to identlfy the quadratlc Varlatlon of WP when W is an F; Brownian motion and
p=>1.
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Exercise 2.20. Let W be a p-dimensional F; Brownian motion. Find the quadratic covari-

ation process of Wtthj for i,j < p.

Exercise 2.21. Let W be a one-dimensional F; Brownian motion. Define X as the pro-
cess given by X; = fg sgn(Wy) dW,. Show that X;W; and X,W}? are both integrable with
EX,W,; =0 and EX,W2 = 23t2(3y/7) L.

Exercise 2.22. Let X be in ¢S with initial value zero and let A € c¢V. Define M* by
putting M = exp(aX; — %zAt). Show that if M* € cM, for all @ € R, then X is in cM,
and [X] = A.

Exercise 2.23. Let W be a one-dimensional F; Brownian motion. Let f : R — R be C?
with f(0) = o and assume that f satisfies that |f”(z)| < C + exp(B|z|) for some C, 3 > 0.
Show that Ef(B;) = a+ % fot Ef"(B)ds. Use this to prove that for all p € N, EB?*~' =0
and EB7P = 7 [P_,(2i — 1).

Exercise 2.24. Assume that M € cM? and put tp = kt27". Show that the sequence
Zizl(Mtk — My, _,)? converges in £ to [M];.

Exercise 2.25. Let W be a one-dimensional F; Brownian motion. Define X as the process
given by X; = fg sin Wy + cos Wy dWs. Argue that the stochastic integral is well-defined.
Find the mean and variance of X; for ¢ > 0.

Exercise 2.26. Let X; = fot sin W, dW,, where W is a one-dimensional F; Brownian motion.
Compute the covariance between X, and X; for 0 < s <'t.

Exercise 2.27. With W a one-dimensional F; Brownian motion, show that exp(1¢)sin W,
and (W; + t) exp(—W, — 3t) are in eM,.

Exercise 2.28. Let W be a one-dimensional F; Brownian motion. Without using direct
moment calculations, show that the processes W;> — 3tW; and W} — 6tW2 + 3t? are in cM.



Appendix A

Appendices

In these appendices, we review the general analysis, measure theory and probability theory
which are used in the main text, but whose subject matter is either taken to be more or less

well-known or taken to be sufficiently different from our main interests to merit separation.

A.1 Analysis and measure theory

We begin by considering some results on signed measures and mappings of finite variation.
Let (E, &) be a measurable space. A signed measure on (E,€) is a mapping p : € — R such
that u(0) = 0 and such that whenever (A,,) is a sequence of disjoint sets in &, > "7 | |u(Ay)]
is convergent and (US>, A,) = > 07, u(Ay).

Theorem A.1.1. Let u be a signed measure on (E,E). There exists a bounded nonnegative
measure |p| on (E,&) such that |pu|(A) = sup Y.~ |u(A,)|, where the supremum is taken
over all mutually disjoint sequences (A,) in € with A = U2, A,. || is called the total
variation measure of p. In particular, |p(A)| < |ul(A) < |u|(E), so every signed measure is
bounded.

Proof. See Theorem 6.2 and Theorem 6.4 of Rudin (1987). O
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Theorem A.1.2 (Jordan-Hahn decomposition). Let p be a signed measure on (E,E). There
is a unique pair of positive bounded singular measures p* and p~ such that p = p™ — u~,
given by pt = S (|pu|+p) and = = $(|u|—w). This decomposition also satisfies || = p+p~.
We call this the Jordan-Hahn decomposition of .

Proof. By Section 6.6 of Rudin (1987) and Theorem 6.14 of Rudin (1987), the explicit
construction of ut and u~ satisfies the requirements of the theorem. For uniqueness, assume
that u = v+ — v~, where v and v~ is another pair of singular positive bounded measures.
Assume that vT is concentrated on F* and v~ is concentrated on F'~, while u* is concen-
trated on £ and p~ is concentrated on E~, where F'* and F~ are disjoint and E* and E~
are disjoint. Then, for any A € €, pT(A) = uT(ANET) = p(ANET) <vT(ANET) <vT(A)
and vT(A) =vH(ANFT) = pW(ANFY) < put(ANFT) < ut(A4), so v and u* are equal

and therefore v~ and p~ are equal as well. O

Lemma A.1.3. Let p be a signed measure on (E,E). Let D be an algebra generating E.
Then |u|(E) =sup > r_, |u(Ag)|, where the supremum is taken over finite disjoint partitions
(Ag) of E, and each element Ay, is in D.

Proof. We first show that |p|(E) = supd>.,_, |1#(Ax)|, where the sum is taken over finite
disjoint partitions (Ay) of E, and each element Ay is in €. To this end, let ¢ > 0. There is
a countable disjoint measurable partition (A4,) of E such that |u|(E) < e+ Y o |u(A4,)].
Since |p| is a bounded positive measure, the sum » | |u|(A,) is convergent, and therefore,

there is k such that [p(U5LAn)| = [3250, n(An)] < 35054 [(An)| < 3505, [ul(An) < e
As all the numbers in the chain of inequalities are nonnegative, we find in particular that

(U An)| = 2202 [1(An)]| < € and thus

(B <6+ZI/~L |—6+Zlu I+Zlu n)| < 26 + |n(Up2 An) |+Z\u

and since the family of sets Ai,..., Ap_1, U . Ay is a finite disjoint partition of £ with each
element in &, and £ > 0 was arbitrary, we conclude that |u|(E) = sup >, _, |#(Ax)|, where

the supremum is over finite disjoint measurable partitions of F.

Next, we show that it suffices to consider partitions with each element in D. Let ¢ > 0,
we need to locate a finite disjoint partition (A,) of F with elements from D such that
|u|(E) <e+ Zi:l 1(Ag). From what we have just shown, there is a finite disjoint partition
(Ay) of E with each A,, in £ such that |u|(E) < e+ Zszl |(Ap)|. For any n < k, we may
use Theorem 1.3.11 of Ash (2000) to obtain some B,, € D with |u|(4,AB,) < +c27%, where
the symmetric difference 4,,AB,, is defined by A,AB,, = (4, N BS) U (AS N By).
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Now let P, denote the set of all subsets of {1,...,k}, and define the set C, for any a € Py,
by putting C, = {x € E| Vn<k:zeB,ifncaandzec B ifn¢a}. C,is the
intersection of the B,’s with n € « and the BS’s with n ¢ «. In particular, the family
(Ca)aep, consists of mutually disjoint sets. As for each x € E and each n < k, we either
have © € B,, or € B, the family (Cy)aep, is a finite disjoint partition of E, and as D is
an algebra, Co € D for all v € Px. We claim that |u[(E) <3¢+ cp, [1(Ca)l.

To prove this, we first note that for any n < k, we have

u(An)l = [0(Bn)ll < [1(An) — p(Bn)|
(1(An OV Br) + p(An N By) = (p(An N Bp) + p(A5 0 By))
= |p(An 10 By) = p(A5 N By)| < [u(An 0 By)| + [p(A7 N By
< pl(An 0 BR) + [l (A7, N Br) = [ul(AnABy),

which is less than $£27%. Therefore, we obtain

k k
|ul(E <8+Z\u D <et+ D (B |+Z|\u W) = (Bl <26+ > |u(B
n=1 n=1

Note that B,, = Uaep, :ncaCa, with each pair of sets in the union being mutually disjoint. We
will argue that |u|(By) < |u|(Cyny) 4 €. To see this, consider some o € P, with more than
one element, assume for definiteness that n,m € a with n # m. As the A,’s are disjoint, we
then find

IN

|| (By N Br) = (B N Ap N By,) + |p|(Bn N AS N Byy)
|1l (An N By) + |l (B N A7) = || (An N A7, 0 Br) + |pl(Bn N A7)
< (A, 0 Byn) + 0l(Ba 1 AS) < [0(AmABy) + |1l (AW AB,),

1l(Ca)

IA

which is less than %52_’“. We now note, using Cy,y € By, that

u(Bn)l < [(Crap)l + [1(Br) — (Cpny)|
= [u(Cnp)| + [1(Bn \ Cpny)l
[1(Cpny)| + |1l(Bn \ Ciny)-

IN

HOWQVGT, |M‘(Bn \ C{n}) = |/J’|(B’ﬂ) - ‘IU’KC{H}) = ZaelP’kaQ,oz;é{n} ‘IU’KCQ) and as there

are less than 2¥~1 elements in the sum, with each element according to what was already

proven has a value of less than 2e27%, we find |u|(B,) < |u/(Cfny) + 16 We may now
k k

conclude [ul(E) < 22+ S5 _ [1(Ba)| < 3¢ + X5 [1(Cup)| < 3 + Loen, 1(Ca)l. As &

was arbitrary, we conclude that |u(F)| = sup 22:1 |1(Ay)|, where the supremum is taken

over finite disjoint partitions (A,) of E, and each element A, is in D. O
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We next introduce finite variation mappings and consider their connection to pairs of posi-
tive singular measures. These types of mappings will be important in our consideration of
continuous-time stochastic processes of finite variation, of which the quadratic covariation
will be a primary example. Consider a mapping f : Ry — R. We define the variation of f
on [0,¢] by V;(0) = 0 and Vy(t) = sup Y ,_, |f(tk) — f(tx—1)|, where the supremum is over
partitions 0 = ¢ty < --- < t,, = t. We say that f is of finite variation on [0,¢] if Vy(t) is
finite. We say that f is of finite variation if Vy(t) is finite for ¢ > 0. We say that f is of
bounded variation if sup, Vy(t) is finite. Finally, by ¢cFV, we denote the continuous map-
pings f : Ry — R of finite variation, and by cFVj, we denote the elements of cFV which
are zero at zero. In general, we will focus our attention on cFVg and not cFV, as pinning
our mapping to zero at zero makes for a better concordance with measure theory. Note that
any monotone function has finite variation, and for any increasing function f : R, — R with
initial value zero, Vy(t) = f(t).

Lemma A.1.4. Let f € cFVy. Then V; is continuous.

Proof. See Carothers (2000), Theorem 13.9. O

Theorem A.1.5. Let f € cFVy. There is a unique decomposition f = f+ — f~ such
that fT and f~ are increasing functions in cFVy with the property that there exists two
unique positive singular measures u;{ and o with zero point mass at zero such that for any
0<ac<hb, u}f(mb] = fH(b) = f*(a) and p (a,b] = f~(b) — f~(a). The decomposition is
given by f+ = 3(Vy+ f) and f~ = (Vs — f). In particular, the measures u}' and p; are
finite on bounded intervals, and (u}' + uy)(a,b] = Vi(b) — Vi(a).

Proof. We first show that the explicit construction of f* and f~ satisfies the properties
required. We note that f* and f~ are increasing and zero at zero, and so, as monotone
functions are of finite variation, we conclude that f* and f~ are in cFVj, continuity being
a consequence of Lemma A.1.4. By Theorem 1.4.4 of Ash (2000), there exists unique
nonnegative measures u}' and p1; with zero point mass at zero such that for any 0 < a <,
i (a,b) = f(b) = £+ (a) and i (a,b] = f~(b)— £~ (a). Then (uf +415)(a,b] = Vi (b) = Vi (a)
as well. It remains to prove that u? and py are singular, and to this end, it suffices to prove

that the measures are singular on [0, ¢] for any ¢ > 0.

To do so, fix t > 0. Put pu} = u}“ — py on By, then pf is a signed measure on By, and
for any 0 < a < b <t, p(a,b] = f(b) — f(a). We consider the total variation of u}. Fix
0 <a<b<tandlet D be the set of finite unions of intervals of the form (c,d] with
a <c<d<b, D is an algebra generating the Borel-c-algebra on (a,b]. Lemma A.1.3 shows
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that we have |uf%|(a,b] = sup Zszl |1 (Ay)], where (A,,) is a finite disjoint partition of (a, b]
with elements from D. In particular, we obtain |u%|(a,b] < Vi (b) — V}(a), and as we trivially
have Vi (b) — Vi (a) < |u}|(a, b], we have equality. Thus, |u}[(a,b] = Vi (b) = Vi (a). Let (u%)*
and (p%)~ be the Jordan-Hahn decomposition of Theorem A.1.2, we then obtain

(17) " (a, 8] = 5(|nfl(a, b + py(a, b)) = 5(Vy (D) = Vi(a) + f(b) — f(a)) = pf (a, b,

and so we find that (u})" and u}' agree on B;. Analogously, (u})” and p} agree on B, as
well. As the components of the Jordan-Hahn decomposition are singular, we conclude that

,u}r and py are singular on [0, t], and so u? and py are singular measures.

It remains to prove uniqueness. Assume that f = g+ — g~ is another decomposition with the
same properties. Let V}L and v; be the two corresponding singular nonnegative measures.
As earlier, we may then define v} = 1/]1F —v; on By Then v} and pf are equal, and so in
particular, we have the Jordan-Hahn decompositions pf = ,u;{ —py and pf = v = V;{ -V
on B;. By uniqueness of the decomposition, we conclude u? = Vf and By = vy, and so

fT=g" and f~ = ¢g~, proving uniqueness. O

Theorem A.1.5 shows that finite variation mappings correspond to pairs of positive singular
measures. As stated in the theorem, for any f € cFV, we denote by f* and f~ the positive
and negative parts of f, given by ft = 3(Vy + f) and f~ = 2(V; — f). Furthermore,
we denote by ,u}" and o the two corrresponding positive singular measures, and we put
e = /j,;cL + p; and call [pf| the total variation measure of f. By Theorem A.1.5, |uf]
is the measure induced by the increasing function Vy using Theorem 1.4.4 of Ash (2000).
As u}' and p; has finite mass on bounded intervals, so does |ter], in particular we have
leer]([0,t]) = V() according to Theorem A.1.5. Also note that if f is increasing, Vy = f and

So u~ is zero.

These results lead to a concept of integration with respect to a function of finite variation.
Let f € cFVy and let h : Ry — R be some measurable function. We say that h is integrable
with respect to f if fot |h(s)|d|py|s is finite for all ¢ > 0, and in the affirmative, we put
Joy h(s)df(s) = [y h(s)d(uf)s — [y h(s)d(uy)s and call f; h(s)df(s) the integral of A with
respect to f over [0,t]. Furthermore, we denote by fot h(s)| dfs| the integral fg h(s)d|wys|s-
Next, we consider some further properties of finite variation mappings and their integrals.

Lemma A.1.6. Let f € cFVy. Then |f(t)| < Vi(t) for all t > 0.
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Proof. As {0,t} is a partition of [0, ], it holds that

[F(O)] = 1£(8) = FO)] < sup Y| f(tx) — Flte—1)| = Vi (8),

k=1

as required. O

Lemma A.1.7. Let f € cFVg and let h be integrable with respect to f. It then holds that
t t
| Jo h(s) dfs| < [y [h(s)][ dfsl.

Proof. We find

t t t t t
[rean] = | [ueang - [ neag] <| [ e |+ | [ a6 )
0 0 0 0 0
t t t
< [+ [ melag = [ b,
and the latter is what we denote by fg [h(s)]] dfs]- O

Lemma A.1.8 (Integration by parts). Let f,g € cFV, then for any t > 0,

t
0

ﬂmw=mw@+4f@@ﬁ/g@ﬁy

Proof. See Section IV.18 of Rogers & Williams (2000b). O

Lemma A.1.9. Let f € cFV. Then V(t) =sup d p_; | f(tx)— f(tk—1)|, with the supremum
taken over partitions in Q4 U {t}.

Proof. 1t suffices to show that for any € > 0 and any partition (to, ..., %) of [0,t], there exists
another partition (o, . .., gn) such that | > _; | f(tx) — f(tk—1)| =D pey [f(ak) — flar—1)| <e.
To this end, choose ¢ parrying 5 for the continuity of f in to,...,¢,, and let, for k <n, g
be some rational with |g; — x| < §. By picking ¢x close enough to i, we may ensure that
(qo,---,qn) is in fact a partition of [0,#]. Then |(f(tx) — f(tk—1)) — (f(ar) — flar-1))| < £,
and since |- | is a contraction, this implies || f(tx) — f(tx—1)| = [f(qr) — f(ar-1)|| < £, finally

yielding
SOUFt) — Ft) = S (@) — fa)]
k=1 k=1
< SISt = ()| — |flar) — Flan)l] < <.
k=1

This proves the result. O
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This concludes our results on finite variation mappings and signed measures. Next, we

consider two results which will aid us in the proof of the Kunita-Watanabe inequality.

Lemma A.1.10. Let o,y > 0 and $ € R. It then holds that |3| < \/an/y if and only if
ANa 42X+~ >0 for all A € Q.

Proof. First note that by continuity, the requirement that A2a + 2A\3 +~ > 0 for all A € Q
is equivalent to the same requirement for all A € R.

Consider first the case o = 0. If || < \/a,/7, clearly § = 0, and the criterion is trivially
satisfied. Conversely, assume that the criterion holds, which in this case is equivalent to
2\B 4+~ >0 for all A € Q. Letting A tend to infinity or minus infinity depending on the sign
of /3, the requirement that 7 be nonnegative forces 8 = 0, so that § < \/a,/7. This proves
the result in the case o = 0. Next, consider the case o # 0, so that a > 0. The mapping

A2a 4 203 + v > 0 takes its minimum at — 8 and the minimum value is

a’

2 2
2 1
inf Ao+ 2)\8 +v = (_ﬁ> o +y==(ay - 5%,
AER « « !
which is nonnegative if and only if |3| < \/a,/7. This proves the result. O

Lemma A.1.11. Let f,g,h : Ry — R be in cFVy, with f and g increasing. If it holds
for all 0 < s < t that |h(t) — h(s)| < /f(t) — f(s)\/g(t) — g(s), then for any measurable
z,y : Ry — R, we have

/OOO ool = (/ooo #(t)’ df(t)>% (/ooo y(t)? dg(t>> g

Proof. Let u¢, p1g and pp be the measures corresponding to the finite variation mappings f,
g and h. Clearly, the measures pf, p1g and py, are all absolutely continuous with respect to
v = s+ pg + |pn]. Then, by the Radon-Nikodym Theorem, there exists densities ¢y, ¢q4

and ¢, of the three measures with respect to v, and it therefore suffices to prove

([ twolmian) < (["aoreman) ([ o).

To this end, we wish to argue that |¢p,(t)| < /7 (t)\/g(t) almost everywhere with respect
to v. By Lemma A.1.10, this is equivalent to proving that almost everywhere in ¢ with
respect to v, it holds that for all A € Q that A2 () + 2Apn(t) + pg(t) > 0. As a countable
intersection of null sets is again a null set, it suffices to prove that for any A € Q, it holds

2
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that A2 (t) + 2Apn(t) + @4 (t) > 0 almost everywhere with respect to v. However, for any
0 < s <t, we have

/ Ny (u) + 20pn(u) + g (u) dv(u) = Mg (s, 8] + 2 (s, 8] + pg(s, 1],

S

and as |un(s,t]] < /ps(s,t]\/pg(s,t] by assumption, the above is nonnegative by Lemma
A.1.10. By a monotone class argument, we obtain that [, A2 (t)+2X op(t)+¢4(t) dv(t) > 0
for any A € By, in particular A2 (t) 4+ 2App (t) + ¢4 (t) > 0 almost everywhere with respect

to v. Thus, we finally conclude |¢5(t)] < /s (t)y/¢4(t). The Cauchy-Schwartz inequality
then immediately yields

OO llen®lan0) < [ ferl/ea 0l ane)
J / 1
) </OOO e dy(t)) E < /000 y(t) 04 (1) dy(t)> ’
= ([ eraso) ([ werao)
as desired. D

Finally, we end the section with a few assorted results from measure theory and analysis.

Theorem A.1.12. Let P be a probability measure on (2, F) and let (v,) be a family of
uniformly bounded nonnegative measures on (E,E), in the sense that there is ¢ > 0 such that
vy(E) < c for all w € Q. Assume that w — v,(A) is F measurable for all A € €. There
exists a unique nonnegative measure A on F @ £, called the integration of (v,) with respect
to P, uniquely characterized by the requirement that for F € F and A € &, it holds that
MF xA) = [pv,(A)dP(w).

Proof. This follows from Theorem 2.6.2 of Ash (2000). O

Theorem A.1.13 (Tonelli and Fubini theorems for integration measures). Let P be a proba-
bility measure on (2, F) and let (v,) be a family of uniformly bounded nonnegative measures
on (E,E) such that w — v,(A) is F measurable for all A € £. Let X\ be the integration of
(vw) with respect to P. Let f : Q x E — R be F ® & measurable. Then, the following holds.

1. If f is nonnegative, w + [ f(w,z)dv,(z) is F measurable and we have the equality

[ flw,z)d\w,z) = [ [ f(w,z) dv,(z) dP(w).
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2. If [ is integrable with respect to A, [ f(w,z)dv,(z) exists and is finite P almost
surely, and as a function of w defines an F measurable function if it is taken to be

zero on the null set where [ f(w,z)dv,(x) does not exist. Furthermore, it holds that

J flw,z)d\w,z) = [ [ f(w,z) dvy,(z) dP(w).

Proof. See Theorem 2.6.4 of Ash (2000). O

Lemma A.1.14. Let X be some integrable variable. Let G be a sub-c-algebra of F. If
El1pX >0 for all F € G, then E(X|G) > 0 almost surely.

Proof. Pick n € N and define F = (E(X|G) < —1). As E(X|G) is § measurable, we have
F € G and therefore obtain E1pX = ElpE(X|G) < —1P(F). Therefore, P(F) = 0. By
the continuity properties of probability measures, we conclude P(E(X|G) < 0) = 1, so that

E(X|G) > 0 almost surely. O

Lemma A.1.15. Let X > 0. It holds that X has mean zero if and only if X is almost surely

ZETO0.

Proof. Clearly, X has mean zero if X is almost surely zero. Assume instead that X has
mean zero. For any n € N, we have EX > EX1x51) > £P(X > ). Thus, we conclude
P(X > 1) =0 for all n, and therefore P(X > 0) = 0, so that X is almost surely zero. O

Lemma A.1.16. Let f : Ry — R be some continuous mapping. Let U(f,a,b) denote the

number of upcrossings from a to b of f, meaning that
U(f,a,b) =sup{n| 30<s; <t1 <5, <tn:f(sk)<a,f(tr) >bk <n}.

The mapping f; has a limit in [—0co,00] as t tends to infinity if U(f,a,b) is finite for all
a,b e Q with a <b.

Proof. Assume that U(f,a,b) is finite for all a,b € Q with a < b. Assume, expecting a
contradiction, that f(t) does not converge to any limit in [—oco, 0] as ¢ tends to infinity.
Then liminf; f(¢) < limsup, f(¢), and in particular there exists a,b € Q with a < b such that
liminf; f(t) < a < b < limsup, f(t).

Now consider U(f, a, b), we wish to derive a contradiction with our assumption that U(f, a,b)
is finite. If U(f,a,b) is zero, either f(t) > a for all ¢ > 0, or f(f) < a for some ¢t and
f(t) < b from a point onwards. In this first case, liminf; f(¢) > a, and in the second case,
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limsup, f(t) < b, both leading to contradictions. Therefore, U(f, a,b) must be nonzero. As
we have assumed that U(f, a, b) is finite, we obtain that either f(¢) > a from a point onwards,
or f(t) <b from a point onwards. In the first case, liminf, f(¢) > a and in the second case,
limsup, f(t) < b. Again, we obtain a contradiction, and so conclude that f(t) must exist as

a limit in [—oo, 00]. O

For the next results, we use the notation that for any open set U in RP, C?(U) denotes the
set of mappings f : U — R such that all second-order partial derivatives of f exists and
are continuous. Furthermore, C*°(U) denotes the set of f : U — R such that all partial
derivatives of any order of f exists, and CS°(U) denotes the set of elements f in C*°(U)
which have compact support in the sense that {z € U|f(z) # 0} is contained in a compact
set.

Theorem A.1.17. Let f € C?(RP), and let x,y € RP. It then holds that

where Ro(w,y) = Y0, X0y vy (v, %) (yi — 24)(y; — ), and

1/ 02 0?
05) = 5 (G (€o) ~ 5o (@),

where &(x,y) is some element on the line segment between x and y.

Proof. Define g : R — R by ¢(t) = f(x + t(y — x)). Note that g(1) = f(y) and ¢g(0) = f(z).
We will prove the theorem by applying the one-dimensional Taylor formula, see Apostol
(1964) Theorem 7.6, to g. Clearly, g € C?(R), and we obtain g(l) 9(0) +¢'(0) + 39" (s),
where 0 < s < 1. Applymg the chain rule, we find ¢'(t) = >.0_, am Lz +t(y — x))(yi — x5)

and ¢"(t) = >0, ZJ 1 Bw aw (x +t(y — x))(y; — x;)(y; — x;). Substituting and writing
E=x+s(y— )7 we may conclude
= of I~ Of
) = £+ 3 g @ =)+ 5 33 7€)y )

In particular, we find Ro(z,y) = 327, >0, i (y, ) (yi — x3)(y; — x;), where r5 : R2 = R

ij RS *f
00 =5 (50O ~ o @ )

where £ of course depends on z and y, as it is on the line segment between the two. This

is defined by putting

proves the result. O
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Lemma A.1.18. Let U be an open set in RP and let f € C*(U). Lete > 0. With | - ||
denoting some norm on RP and d(z,y) = ||z — y||, put F = {x € RP | d(x,U®) > €}. There
exists g € C%(RP) such that f and g agree on F.

Proof. Let G = {x € RP | d(x,U¢) > §} and H = {x € RP | d(z,U¢) > $}. We first prove
that there exists a mapping x € C°°(RP) such that x is one on F and zero on H¢. From
Lemma 2.1 of Grubb (2008) and Section 0.B of Zimmer (1990), there exists some mapping
¢ € CF(RP) such that [, ¢ (x)dz = 1 and ¢ is zero outside of the open Euclidean ball B
centered at the origin with radius . Define x : R? — R by x(z) = [, 1a(y)¥(z —y) dy, this
is well-defined as ¥ has compact support, and compact sets have finite Lebesgue measure.
We claim that x satisfies the requirements. Applying the methods of the proof of Proposition
B.3 of Zimmer (1990), we find that x € C°°(RP). Note that by the translation invariance of

Lebesgue measure, we have

x(@) = / Lo(e — y)0ly) dy = /B la(z — y)o(y) dy.

Now, given some x € F, we find that for any y € B, d(z,U°) < d(x —y,U°) + ||y|| and so
dxz —y,U°) > d(x,U°) — |ly| > e — 5§ > 5. Thus, z —y € G and so x(z) = [z (y)dy = 1.
Conversely, if 2 € H¢, it holds that d(z —y,U¢) < d(z,U°) +|jy|| < §+ 5 =5, s0x -y ¢ G,
and x(z) = 0. Thus, x is in C*°(RP) and x(z) =1 when = € F and x(z) = 0 when = € H.
We now define g : R? — R by putting g(z) = f(z)x(x) when 2 € U and g(z) = 0 otherwise.
We claim that g satisfies the requirements of the lemma.

To see this, first note that when = € F, g(x) = f(z)x(z) = f(x), so g and f agree on F.
Therefore, we merely need to check that g is C2. To see this, note that on U, g is the product
of an C? mapping and an C° mapping, so g is C? on U. Conversely, as x is zero on H¢, we
find that g is in particular C? on H¢. As H C U, U¢ C H¢ and so R? = U U H¢. Therefore,
we conclude that g is in C%(RP), as desired. O

Lemma A.1.19 (Dynkin’s lemma). Let E be some set, and let E be a family of subsets of E
which is stable under intersections. Let D be another family of subsets of E such that E € D,
if A,B € D with A C B then B\ A € D and if (A,) is an increasing sequence in D, then
U An € D. Such a family is called a Dynkin class. If E C D, then o(E) C D.

Proof. See Theorem 2.1.3 of Karatzas & Shreve (1991). O
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A.2 Convergence results and uniform integrability

In this section, we recall some basic results on convergence of random variables. Let (2, F, P)
be a probability triple. Let X,, be a sequence of random variables and let X be another
random variable. By £P, p > 1, we denote the variables X where E|X|? is finite. If X, (w)
converges to X (w) for all w except on a null set, we say that X,, converges almost surely to
X and write X,, &% X. If it holds for all £ > 0 that lim,, P(|X,, — X| > ¢) = 0, we say that
X, converges in probability to X under P and write X, i> X. If lim, E|X,, — X|? =0,
we say that X,, converges to X in L£P and write X, £ Convergence in £P and almost
sure convergence both imply convergence in probability. Convergence in probability implies

convergence almost surely along a subsequence.

The following lemmas will be useful at various points in the main text.

Lemma A.2.1. Let X,, be a sequence of random variables, let X be another random variable

and let (F,) C F. Assume that X,1p, £, X1p, for all k > 1 and that limy, P(FY) = 0.
P

Then X,, — X as well.

Proof. For any € > 0, we find

P(Xp—X|>e) = P((|Xn—X|>e)NEF) + P(|X, — X| > )N FY)
< P(‘anpklepk‘>€)+P(F]§),

and may therefore conclude limsup, P(|X, — X| > ¢) < P(FY). Letting k tend to infinity,
we obtain X, i) X. O

Lemma A.2.2. Let (X,,) and (Y,,) be two sequences of variables convergent in probability

to X and Y, respectively. If X,, <Y, almost surely for all n, then X <Y almost surely.

Proof. Picking nested subsequences, we find that for some subsequence, X,,, tends almost
surely to X and Y,,, tends almost surely to Y. From the properties of ordinary convergence,
we obtain X <Y almost surely. O

Next, we consider the concept of uniform integrability, its basic properties and its relation to
convergence of random variables. Let (X;);es be a family of random variables. We say that
X, is uniformly integrable if it holds that
lim sup E|X7|1(‘X1‘>>\) = 0.
I

A—o0 i€
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Note that as sup,c; E|Xi|1(x,|>x) is decreasing in A, the limit always exists in [0, 00]. We
will review some basic results about uniform integrability. We refer the results mainly for

discrete sequences of variables, but many results extend to sequences indexed by R as well.

Lemma A.2.3. Let (X;)ics be some family of variables. (X;) is uniformly integrable if and
only if it holds that (X;) is bounded in L, and for every e > 0, it holds that there is § > 0
such that whenever F € F with P(F) < 0, we have E1p|X;| <¢e for alli e I.

Proof. First assume that (X;);er is uniformly integrable. Clearly, we then have

sup E|X;|
el

IA

sup E|X; |11 x,|>x) + sup B[ Xi[1(x,<x)
iel iel

N

A+ SH?E|Xi|1(\Xi|>A)7
(S

and as the latter term converges to zero, it is in particular finite from a point onwards, and
so sup,;¢; E|X;| is finite, proving that (X;) is bounded in £. Now fix £ > 0. For any A > 0,
we have E1F|Xi| = E1F|Xi|1(|Xi|>>\) + E1F|Xi|1(|X,‘,|§)\) § SUP;cr E|X¢‘l(|X1|>)\) + )\P(F).
Therefore, picking A so large that sup;c; F|X;|1(x,/>x) < § and putting § = o5, we obtain
Elp|X;| <efor all i € I, as desired.

In order to obtain the converse, assume that (X;);cs is bounded in £! and that for all
e > 0, there is § > 0 such that whenever F' € F with P(F) < ¢, we have Flp|X;| < ¢
for all i € I. We need to prove that (X;);es is uniformly integrable. Fix ¢ > 0, we wish
to prove that there is A > 0 such that sup,;c; E|X;|1(x,|>x) < €. To this end, let 6 > 0 be
such that whenever P(F) < §, we have Elp|X;| < € for all i € I. Note that by Markov’s
inequality, P(|X;| > A) < $E|X;| < §sup;c; E|X;|, which is finite as (X;);es is bounded
in £!. Therefore, there is A > 0 such that P(|X;| > A) < § for all i. For this A, we then
have E|X;[1(x,j>x) < € for all i € I, in particular sup;c; E|X;|1(|x,|>x) < € for this A and
all larger A as well, proving limy oo sup;e; £|X;|1(1x,)>») = 0 and thus proving uniform
integrability. O

Lemma A.2.4. The property of being uniformly integrable satisfies the following properties.

1. If (X})ier is a finite family of integrable variables, then (X;) is uniformly integrable.
2. If (Xi)ier and (Y;);es are uniformly integrable, then the union is uniformly integrable.
3. If (Xy)ier and (Y;)icr are uniformly integrable, so is (aX; + BY:)icr for o, B € R.

4. If (Xi)ier ts uniformly integrable and J C I, then (X;);cs is uniformly integrable.
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5. If (Xy)ier is bounded in LP for some p > 1, (X;)ier is uniformly integrable.

6. If (X;)ier is uniformly integrable and |Y;| < |X;|, then (Y;)ier is uniformly integrable.

Proof. Proof of (1). Assume that (X;);cs is a finite family of integrable variables. The
dominated convergence theorem then yields

hm supE|X |]-(|X ‘>)\) < hm ZE|X ‘1(|X [>A) = ZEAILH;O‘XA]'(‘Xib)‘)’

A—00 4
i€l IEI el

which is zero. Therefore, (X;)es is uniformly integrable.

Proof of (2). As the maximum function is continuous, we find
Jim maX{Sup EIXi|L(x: 10 SuI;EDG\l(mm)}

= max{ lim sup E|X;|1(x,>), lim SEIJ)E|SG|1(|3’1\>/\)}’
=0y

A—00 el

which is zero when the two families (X;);er and (Y;);ecs are uniformly integrable, and the

result follows.

Proof of (3). Assume that (X;);c; and (Y;);er are uniformly integrable. If a and S
are both zero, the result is trivial, so we assume that this is not the case. Let ¢ > 0.
Using Lemma A.2.3, pick § > 0 such that whenever P(F) < §, we have the inequalities
Elp|X;| <e(lal+|8])7! and E1p|Y;| <e(Ja| +|B])~* for any i € I. Then
ElplaX;+ 8Yi| < |a|E1p|Xi| + |B|E1R|Y]]
< lale(lal + 18D~ + 1Blelal + 18D 7" <,

so that by Lemma A.2.3, the result holds.

Proof of (4). As J C I, we have sup,c; F|X;|1(x;>x) < sup;e; E[Xi[l(x,>x), and the
result follows.

Proof of (5). Assume that (X;);cs is bounded in £? for some p > 1. We have

lim sup E|X;[1(x,1>x) < hm AL psupE|X| Lix,>n < supE|X [P hm AP

A—00 4T

which is zero, as p — 1 > 0, so (X;);es is uniformly integrable.

Proof of (6). In the case where (X;)c; is uniformly integrable and (Y;);cs is such that
[Yi| < | X5, we get E|Yi|1(y,>x) < E|Xi|1(x,|>x) for all 4, and it follows immediately that
(Y;)ier is uniformly integrable. O
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Lemma A.2.5. Let (X,) be a sequence of random variables indexed by N, and let X be
another variable. X,, converges in L' to X if and only if (X,,) is uniformly integrable and
converges in probability to X. If (X;) is a sequence of random variables indexed by Ry, Xy

converges to X in L' if (X;) is uniformly integrable and converges in probability to X .

Proof. Consider first the discrete-time case. Assume that X,, converges to X in £!, we need
to prove that (X,,) is uniformly integrable. We use the criterion from Lemma A.2.3. As
(X,,) is convergent in £, (X,,) is bounded in £!, and X,, converges to X in probability. Fix
€ > 0 and let m be such that whenever n > m, E|X,, — X| < £. As the finite-variable family
{X1,..., X, X} is uniformly integrable by Lemma A.2.4, using Lemma A.2.3 we may obtain
§ > 0 such that whenever P(F) < 4§, Elp|X| < 5 and Elp|X,| < § for n < m. We then
obtain that for all such F' € F,

sup F1p|X,| < sup Elp|X,|+ sup Elp|X,|
n n<m n>m
< S+ Elp|X|+ sup Elp|X, — X|
n>m
< %—&—supE\Xn—X\gs,

n>m

so (X,,) is uniformly integrable.

Consider the converse statement, where we assume that (X,,) is uniformly integrable and
converges to X in probability. As (X,) is uniformly integrable, (X,) is bounded in L.
Using that there is a subsequence (X,,, ) converging to X almost surely, we obtain by Fatou’s
lemma that E|X| = Elimy |X,,| < liminfy F|X,, | < sup, E|X,|, so X is integrable. By
Lemma A.2.4, (X, — X) is uniformly integrable. Let ¢ > 0. Using Lemma A.2.3, we pick
d > 0 such that whenever P(F) < §, we have Elp|X, — X| <e. As X, L5 X, there is
m such that whenever n > m, we have P(|X,, — X| < ¢) < 4. For such n, we then find
E|Xn — X| = El(\X,L—X\§E)|Xn - X| + E1(|X,,L—X|>€)‘Xn - X| < 28, proving that X tends
to X in L.

As for the case of a family (X;);>0 indexed by R, we see that the proof that X, is convergent
in £' to X if X, is convergent in probability to X and is uniformly integrable may be copied

more or less verbatim from the discrete-time case. O

Note that in Lemma A.2.5, one cannot obtain a double implication in the statements re-
garding sequences indexed by Ry. As a counterexample, simply put X; = Zzozl nli—1— 1.
Then X, converges to zero in L', but (Xt)¢>0 is not uniformly integrable as it is not even
bounded in £'.
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Lemma A.2.6. Let X be any integrable random variable on probability space (Q, F, P). Let
I be the set of all sub-o-algebras of F. Then, (E(X|G))ger is uniformly integrable.

Proof. Using Jensen’s inequality and the fact that (E(|X||G) > A) € G, we have
sup BIE(X|9)[1(5cxig)>») < sup EE(IX1G)15(x116)>3) = sup EIX[1(m(x)i6)>»)-
gel gel Gel

Fix € > 0, we show that for A large enough, the above is smaller than €. To this end, note
that for any sub-o-algebra G of F, we have P(E(|X||G) > ) < +EE(|X||G) = 1E|X]
by Markov’s inequality. Applying Lemma A.2.3 with the family {X}, we know that there
is § > 0 such that whenever P(F) < §, Elp|X| < e. Therefore, picking A so large that
%E|X| < §, we obtain P(E(|X||g) > )\) < § and so SUPger E|X|1(E(|X||g)>>\) < e. This
concludes the proof. O

Lemma A.2.7 (Mazur’s lemma). Let (X,) be sequence of variables bounded in L£2. There
exists a sequence (Y,) such that each Yy, is a convex combination of a finite set of elements
in {Xn, Xnt1,...} and (Y,,) is convergent in L2.

Proof. Let o, be the infimum of EZ2, where Z ranges through all finite convex combinations
of elements in {X,,, X, 11,...}, and define & = sup,, ap,. If Z = ZkK:"n A X, for some convex
we obtain VEZ2 < S5 M\ /EXZ < sup, /EXZ, in particular we

have a,, < sup,, EX?2 and so a < sup,, EX? as well, proving that « is finite. For each n,

weights A\, ..., Ag

n?

there is a variable Y;, which is a finite convex combination of elements in {X,, X,t1,...}
such that E(Y,)? < a, + % Let n be so large that oy, > o — %7 and let m > n, we then

obtain

E(Y, —Y,)?> = 2EY?+2EY? - E(Y, +Y,)?
2EY,? +2EY,? —4E(3(Y,, + Yin))?
2(an + 1)+ 2(am + L) — 4y,

= 22+ 1)+ 2(a — ).

IN

As (o) is convergent, it is Cauchy. Therefore, the above shows that (V) is Cauchy in £2,

therefore convergent, proving the lemma. O
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A.3 Discrete-time martingales

In this section, we review the basic results from discrete-time martingale theory. Assume
given a probability field (2, F, P). If (F,) is a sequence of o-algebras indexed by N which
are increasing in the sense that F,, C F, 11, we say that (F,) is a filtration. We then refer
to (Q,F,(Fn), P) as a filtered probability space. In the remainder of this section, we will

assume given a filtered probability space of this kind.

A discrete-time stochastic process is a sequence X = (X,,) of random variables defined on
(Q,F). If X,, is F,, measurable, we say that the process X is adapted. If X is adapted and
E(X,|Fr) = X} whenever n > k, we say that X is a martingale. If instead E(X,,|Fx) < Xp,
we say that X is a supermartingale and if E(X,,|Fx) > Xi, we say that X is a submartingale.
Any martingale is also a submartingale and a supermartingale. Furthermore, if X is a

supermartingale, then —X is a submartingale and vice versa.

A stopping time is a random variable T' :  — N U {oo} such that (T < n) € F, for any
n € N. We say that T is finite if 7' maps into N. We say that T is bounded if T maps into a
bounded subset of N. If X is a stochastic process and T is a stopping time, we denote by X
the process X = Xrn, and call X7 the process stopped at 7. Furthermore, we define the
stopping time o-algebra Fr by putting Fr = {A € FIAN (T <n) € F, for all n € Ng}. Fr
is a o-algebra, and if T is constant, the stopping time g-algebra is the same as the filtration
o-algebra.

Lemma A.3.1 (Doob’s upcrossing lemma). Let Z be a supermartingale which is bounded in
LY. Define U(Z,a,b) =sup{n | 31 <s1 <ty <8, <ty:Zs, <a,Zy >bk<n} for
any a,b € R with a < b. We refer to U(Z,a,b) as the number of upcrossings from a to b by

Z. Then

BU(Z,a,b) < 145900 Pl 2]
T b—a

Proof. See Corollary 11.48.4 of Rogers & Williams (2000a). O

Theorem A.3.2 (Doob’s supermartingale convergence theorem). Let Z be a supermartin-
gale. If Z is bounded in L', Z is almost surely convergent. If Z is uniformly integrable, Z
is also convergent in L', and the limit Z, satisfies that for all n, E(Zuo|Fn) < Z, almost

surely.

Proof. That Z converges almost surely follows from Theorem 11.49.1 of Rogers & Williams
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(2000a). The results for the case where Z is uniformly integrable follows from Theorem
I1.50.1 of Rogers & Williams (2000a). O

Theorem A.3.3 (Uniformly integrable martingale convergence theorem). Let M be a discrete-

time martingale. The following are equivalent:

1. M is uniformly integrable.
2. M is convergent almost surely and in L.

3. There is some integrable variable & such that M, = E(§|F,) forn > 1.

In the affirmative, with Mo, denoting the limit of M,, almost surely and in L', we have for all
n > 1 that M,, = E(M|Fy,) almost surely, and My, = E(§|Foo), where Foo = 0 (U F,).

Proof. From Theorem I1.50.1 in Rogers & Williams (2000a), it follows that if (1) holds, then
(2) and (3) holds as well. From Theorem II1.50.3 of Rogers & Williams (2000a), we find that
if (3) holds, then (1) and (2) holds. Finally, (2) implies (1) by Lemma A.2.5.

In the affirmative case, Theorem I1.50.3 of Rogers & Williams (2000a) shows that we have
My, = E(¢|Fx), and so in particular, M, = E(¢|F,) = E(B(¢|Fx)|Fn) = E(Myo|Fy)
almost surely. O

Lemma A.3.4 (Doob’s £? inequality). Let M be a martingale such that SUp,,>1 EM? is
finite. Then M is convergent almost surely and in L? to a square-integrable variable M,
and EM2 < AEMZ,, where MY, = sup,>q |My,| and M32 = (M%)

Proof. This is Theorem I1.52.6 of Rogers & Williams (2000a). O

Lemma A.3.5 (Optional sampling theorem). Let Z be a discrete-time supermartingale,
and let S < T be two stopping times. If Z is uniformly integrable, then Z is almost surely
convergent, Zs and Zr are integrable, and E(Zr|Fs) < Zs.

Proof. That Z is almost surely convergent follows from Theorem I1.49.1 of Rogers & Williams
(2000a). That Zg and Zp are integrable and that E(Zr|Fg) < Zg then follows from Theorem
I1.59.1 of Rogers & Williams (2000a). O
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Finally, we consider backwards martingales. Let (F,)n,>1 be a decreasing sequence of o-
algebras and let (Z,) be some process. If Z,, is F,, measurable and integrable, and it holds
that X,, = FE(X|F,) for n > k, we say that (Z,,) is a backwards martingale. If instead
Zn < E(Zy|Fn), we say that (Z,) is a backwards supermartingale, and if Z,, > E(Zg|F,),

we say that (Z,) is a backwards submartingale.

Note that for both ordinary supermartingales and backwards supermartingales, the definition
is essentially the same. Z is a supermartingale when, for n > k, E(Z,|F;) < Zj, while Z is
a backwards supermartingale when, for n > k, Z,, < E(Zy|F,). Furthermore, clearly, if Z is
a backwards supermartingale, then —Z is a backwards submartingale and vice versa.

Theorem A.3.6 (Backwards supermartingale convergence theorem). Let (F,) be a decreas-
ing sequence of o-algebras, and let (Z,) be a backwards supermartingale. If sup,,>, EZ, is
finite, then Z is uniformly integrable and convergent almost surely and in L'. Furthermore,
the limit satisfies Zoo > FE(Zp|Foo), where Foo is the o-algebra NS Fr,.

Proof. See Theorem I1.51.1 of Rogers & Williams (2000a). O

A.4 Brownian motion and the usual conditions

Let (Q, F, P, F;) be a filtered probability space. Recall that the usual conditions for a filtered
probability space are the conditions that the filtration is right-continuous in the sense that
Fi = Ng>tFs, and that for ¢ > 0, F; contains all null sets in F. Our development of
the stochastic integral is made under the assumption that the usual conditions hold. This
assumption is made for convenience. However, making this assumption, we need to make sure
that these assumptions hold in the situations where we would like to apply the stochastic
integral, in particular in the case of Brownian motion. This is the subject matter of this
section. We are going to show that any filtered probability space (2, F, (F%), P) has a minimal
extension satisfying the usual conditions, and we are going to show that any probability field
endowed with a Brownian motion satisfying certain regularity properties with respect to
the filtration can be extended to a probability field satisfying the usual conditions with a
Brownian motion satisfying the same regularity properties in relation to the filtration.

Our first aim is to understand how to augment a filtered probability space so that it fulfills
the usual conditions. In the following, N denotes the null sets of F. Before we can construct

the desired augmentation of a filtered probability space, we need a few lemmas.
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Lemma A.4.1. Letting G = o(F,N), it holds that G = {FUN | F € F,N € N}, and
P can be uniquely extended from F to a probability measure P’ on G by defining P’ as
P'(FUN) = P(F). The space (,G, P’) is called the completion of (2, F, P).

Proof. We first prove the equality for G. Define H = {FUN | F € F,N € N'}. It is clear
that H C G. We need to prove the opposite inclusion. To do so, we prove directly that # is
a o-algebra containing F and N, as the inclusion follows from this. It is clear that 2 € H.
If H € H with H = FUN, we obtain, with B € F such that P(B) =0 and N C B,

H¢ = (FUN) = (B°N(FUN))U(BN(FUN)°)
= (BUFUN)°U(BN(FUN)®) =(BUF)°U(BN(FUN)°),

so since (BUF)¢ € F and BN(FUN)¢ € N, wefind H® € H. If (H,,) C H with H,, = F,,UN,,,
we find U2, H,, = (US4, F,) U (US4 N,), showing US| H,, € H. We have now proven that
H is a o-algebra. Since it contains F and A, we conclude G C H. It remains to show that
P can be uniquely extended from F to G. We begin by proving that the proposed extension
is well-defined. Let G € G with two decompositions G = F; U N1 and G = F5, U Ny. We then
have G¢ = F§ N N§. Thus, if w € F§ and w € G, then w € Na, showing Fy C G° U Ny and
therefore F1 NF§ C F1 N(G°U Ny) = F1 N Ny C Ny, and analogously F> N FY C N;. We can
therefore conclude P(Fy N Fs) = P(F> N FY) =0 and as a consequence,

P(F))=P(F1NFy) + P(FiNFy)=P(FyNFy) + P(Fy, N FY) = P(Fy).

This means that putting P'(G) = P(F) for G = F U N is a definition independent of the
representation of G, therefore well-defined. It remains to prove that P’ is in fact a probability
measure. As P’ is nonnegative and P'(Q2) = P(Q2) = 1, it suffices to show P’ is o-additive. To
this end, let (H,,) be a sequence of disjoint sets in G, and assume that H,, = F,, UN,,. Then
F, C H, for all n, so the sequence (F},) consists of disjoint sets as well. Therefore, we obtain
P'(UX H,) = P(US2 F,) =Y " P(F,) =Y.,°, P'(H,), as desired. This completes the

n=1

proof. 0

In the following, we let (£2,G, P) be the completion of (2, F, P). Note in particular that we

use the same symbol for the measure on F and its extension to the completion G.

Lemma A.4.2. Let H be a sub-o-algebra of G. Then
o(H,N)={G € G| GAH € N for some H € H},

where A is the symmetric difference, GAH = (G\ H)U (H \ G).
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Proof. Define K = {G € G | GAH € N for some H € H}. We begin by arguing that the
inclusion K C o(H,N) holds. Let G € K and let H € H be such that GAH € N. We then
find G=(HNG)U(G\H)=(HNHNG))U(G\H)=(HN(H\G)°)U(G\ H). Since
P(GAH) =0, H\ G and G\ H are both null sets, and we conclude that G € o(H,N'). Thus
K C o(H,N). To show the other inclusion, we will show that K is a og-algebra containing
H and N. If G € H, we have GAG = ) € N and therefore G € K. If N € N, we have
NAQ) =N € N, so N € K. We have now shown H,N C K.

It remains to show that K is a o-algebra. Clearly, 2 € . Assume G € K and H € H with
GAH € N. We then obtain that GCAH® = (G°\ H)U(H°\G®) = (H\G)U(G\ H) e N,
so G° € K as well. Now assume that (G,,) C K, and let H,, € H be such that G,AH, € N.
Then

(UleGn)A(UZ‘LlHn) = (UZ‘LlGn \ Uzolen) U (Uzolen \ Uff’zlGn)
C (UntiGn \ Hp) U(UpZ 1 Hy \ Gr)

= Ul G,AH,,

so U2, G,, € K. We can now conclude that K is a o-algebra. Since it contains H and N,

o(H,N) C K. O

Theorem A.4.3. With Fiy = NgstFs, we have Ngs10(Fs, N) = o(Fe, N), and the filtra-
tion Gy = o(Fey, N) is the smallest filtration such that F; C G; and such that (Q,G, (G:), P)
satisfies the usual conditions, where G = 0(Ui>0G:). We call (Gy) the usual augmenta-
tion of (Ft). We call (,G,P,G;) the usual augmentation of the filtered probability space
(0, F, P, F,).

Proof. We need to prove three things. First, we need to prove the equality stated in the
lemma. Second, we need to prove that (Q,F,(G;), P) satisfies the usual conditions. And
third, we need to prove that G; is the smallest filtration containing F; with this property.

We first prove Ngsi0(Fs, N) = o(Fis, N). Since Fiy C F for any s > ¢, it is clear that
o(Fie,N) C Ngsyo(Fs,N). Now consider F € Ngsyo(Fs, N). By Lemma A.4.2, for any
s > t there is F, € F; such that FAF, € N. Put G,, = UanFtJr%. Much like in the proof
of Lemma A.4.2, we obtain FAG,, C Uz‘;nFAFH% e N. Put G =N, G,,. Since G, is
decreasing and G,, € ]-"t+%, G € Fiy. We find

FAG = (F\MpLiGn)U(MplGu \ F) = (U2 F'\ Gn) U (M2 (G \ 1))
- (U?f’:lF \ Gn) U ( 7010:1(Gn \ F)) = U?:lFAGn eN,
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showing F' € o(F+,N) and thereby the inclusion Ngs¢0(Fs, N) C o(Fpy, N).

Next, we argue that (Q, F, (G;), P) satisfies the usual conditions. We find that G, contains
all null sets for all ¢ > 0. To prove right-continuity of the filtration, we merely note

ms>tgs = Ns>t Nu>s U(]:qu) = r-]u>t0(‘7:uv-/\[) = Gr.

Finally, we prove that G; is the smallest filtration satisfying the usual conditions such that
Fi: € Gi. To do so, assume that H; is another filtration satisfying the usual conditions with
Fi € H;. We need to prove Gy C H;. To do so, merely note that since H; satisfies the usual
conditions, Fry C Hyy = Hy, and N C Hy. Thus, Gy = o(Fiy, N) C Hy. O

Theorem A.4.3 shows that for any filtered probability space, there exists a minimal aug-
mentation satisfying the usual conditions, and the theorem also shows how to construct this
augmentation. Next, we consider a p-dimensional Brownian motion W on our basic, still
uncompleted, probability space (€, F, P, F;), understood as a continuous process W with
initial value zero such that the increments are independent and normally distributed, with
W, — W, having the normal distribution with mean zero and variance (¢ — s)I,, where I,
denotes the identity matrix of order p. We will define a criterion to ensure that the Brownian
motion interacts properly with the filtration, and we will show that when augmenting the
filtration induced by the Brownian motion, we still obtain a proper interaction between the

Brownian motion and the filtration.

Definition A.4.4. A p-dimensional F; Brownian motion is a continuous process W adapted
to Fi such that for any t, the distribution of s — Wy, — Wy is a p-dimensional Brownian

motion independent of F;.

The independence in Definition A.4.4 means the following. Fix ¢ > 0 and let X be the process
defined by X; = Wiy —W;. X is then a random variable with values in C' (R4, RP), the space
of continuous functions from R, to RP, endowed with the o-algebra C(R,RP) induced by
the coordinate mappings. The independence of X and F; means that for any A € C(R;,RP)
and any B € F;, P(X € A)n B) = P(X € A)P(B).

In what follows, we will assume that the filtration F; is the one induced by the Brownian
motion W. W is then trivially an F; Brownian motion. Letting (2,G, P,G;) be the usual
augmentation of (2, F, P, ;) as given in Theorem A.4.3, we want to show that W is a G;

Brownian motion.
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Lemma A.4.5. W is also a Brownian motion with respect to the filtration Fy, .

Proof. 1t is clear by the continuity of W that W is adapted to Fiy. We need to show that
for any t > 0, s — Wi.s — W, is independent of F;1. Let t > 0 be given and define
Xs = Wips — Wy, We need to show that for A € C(Ry,RP) and B € Fpy, it holds that
P((X € A)nB) = P(X € A)P(B). To do so, it suffices by Lemma A.1.19 to prove that for
any 0 <t; <-...<t,, we have that

P((th S Al,...,Xt" S An)ﬁB) = P(th S Al,...,th S An)P(B),

where Aq,..., A, are open sets in RP. To this end, let 0 < ¢t; < --- < ¢, and be given let
Aj,..., A, be open sets in RP, and let B € F;;. Using continuity of W and the fact that
Ay, ..., A, are open,

P((Xy, € Ay,..., Xy, € Ag)NB) = Elg [[14,(Xe,) = Elp [ ] 1a, Wiss, — W2)
k=1 k=1

n
= Flp H Jim 1, (Wepgp1 = Wip1)
k=1

= lim Elp [] La,(Wepppr —Wiy1).

n—00
k=1

Next, note that for any € > 0 and s > 0, Wyys4e — Wige is independent of Fiy.. Therefore,
Witste — Wige is in particular independent of F;y, and we obtain

lim ElBkl:[l La,(Wypgpz = Wiys) = lim P(B)EkI:[llAk(WtHH% —Wii1)
= PB)E[] 14, (Wigr, — Wi)
k=1

= P(th (S Al,...,Xt” (S An)P(B)
This proves the claim. O

Theorem A.4.6. W is a G; Brownian motion.

Proof. 1t is clear that W is adapted to G;. We therefore merely need to show that for ¢ > 0,
s — Wiyrs — Wy is independent of G;. Let ¢t > 0 and define X by putting Xs = Wiyps — W
With N the null sets of F, we have by Theorem A.4.3 that G, = o(F,N). Thus, since
both F;; and the complements of A/ contain ), the sets of the form C N D, where C € F;,
and D¢ € N, form a generating system for G;, stable under intersections. It will suffice to
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show P((X € A)Nn(CND)) =PX € A)P(CN D) for any A € C(Ry,R"). Lemma A.4.5
yields P((X € A)n(CND))=P(X € ANC)=P(X € A)P(C) = P(X € A)P(CN D),
and the desired conclusion follows. O
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A.5 Exercises

Exercise A.1. Let (X,,) be a sequence of integrable variables. Define the integrability index
cof (X,) by putting ¢ = infe>o SUppe 7. p(p)<c SUP,>1 E1r|Xy[. Show that (X,) is uniformly
integrable if and only if (X,,) is bounded in £ and ¢ = 0. Show that if X, L4 X, where X
is integrable, we have lim sup,, E|X, — X| < c.

Exercise A.2. Let (Q,F,P) be a probability space endowed with a sequence (X,,)n>1 of
independent and identically distributed variable with mean £. Use the backwards Martingale
Convergence Theorem and Kolmogorov’s zero-one law to show that %Zzzl X} converges

almost surely and in £! to &.

Exercise A.3. Let (X;);cr be a uniformly integrable family, and let A denote the closure
of this family in £!, that is, the set of all integrable variables X which are limits in £! of
sequences (X;, ) in (X;);cr. Then A is uniformly integrable as well.

Exercise A.4. Let (X,,) be a uniformly integrable sequence of variables. Prove that exists
a sequence (Y,,) such that each Y, is a convex combination of a finite set of elements in
{X0, Xnt1,...} and (Y,,) is convergent in L.

Exercise A.5. Let (Q,F,(F,),P) be a filtered probability space, and let (M,),>o0 be
a martingale, zero at zero, with sup,,»o EM} finite. Define [M], = >, _ (M} — My_1)?
for n > 1 and [M]y = 0. Also define (M),, = >;_, E((My — Mg_1)?|Fx—1) for n > 1 and
(M)o = 0. Show that [M] and (M) are increasing and adapted, and show that both M?—[M]
and M? — (M) are uniformly integrable martingales, zero at zero.

Exercise A.6. Let (Q,F,P) be a probability space endowed with a sequence (X,,)n>1 of
independent and identically distributed variable such that for some p with 0 < p < 1, it holds
that P(X,, =1) =pand P(X,, =—-1)=1—p. Put Z, =>;_  Xgforn > 1. Let a € N
and define T, =inf{n > 1| Z, =a}and T, =inf{n > 1| Z, = —a}. Put c = 1%’”. Show
that when p = %, PT,>T,.) = %, and when p # %, P(T, > T, ) =-1=%

1—c2a -

Exercise A.7. Let (Q, F,P) be a probability space endowed with a sequence (X;);>o of
integrable variables, and let X be some other variable. Assume that the mapping ¢ — X;
from R, to £! is continuous. Show that (X;);>0 converges in £! to X if and only if (X;);>0

is uniformly integrable and converges in probability to X.
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Exercise A.8. Let (X,,) be a bounded sequence of variables. Show that if X,, converges in

probability, it converges in LP for any p > 1.

Exercise A.9. Let (X,,) be a uniformly integrable sequence of variables. Show that

limsup,, £X,, < Elimsup,, X,.
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Hints and solutions for exercises

B.1 Hints and solutions for Chapter 1

Hints for exercise 1.1. For the inclusion Fgyr C o(Fg, Fr), use that for any F, it holds that
F=(FnNnlS<T)UFEN(T<<S)). o

Hints for exercise 1.2. Use Lemma 1.1.10 to conclude that 7' is a stopping time. To show
that X7 = a whenever T' < oo, Show that whenever T is finite, there is a sequence (uy,)
depending on w such that T < u, < T + % and such that X, = a. Use this to obtain the
desired result. )

Hints for exercise 1.5. Use Lemma 1.1.7, to show Fr C Ny, Fr,. In order to obtain the
other inclusion, let ' € N3, Fr, . Show that FN(T < t) = NS, U M3 FN (T < t+1).

Use this and the right-continuity of the filtration to prove that FFN(T < t) € F;, and conclude
Nee_Fr, € Fr from this. o

Hints for exercise 1.7. First show that for any ¢t > 0, Z; converges to Z; whenever (t,)
is a sequence in R, which either increases or decreases to t. Use this to obtain that Z is

continuous in £! at t using a proof by contradiction. o

Hints for exercise 1.9. In order to obtain that M € cM™ when (Mr)prec is uniformly
integrable, use the continuity of M, Lemma 1.2.9 and Lemma A.2.5. o
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Hints for exercise 1.12. To show that M is not uniformly integrable, assume that M is in fact
uniformly integrable. Prove that %Mt then converges to zero in £ and obtain a contradiction

from this. °

Hints for exercise 1.13. In order to obtain the final two convergences in probability, apply
. on 2n
the relation Wt2 =2 Zk:l th_l (Wtz — Wtz’_1) + Zkzl(Wt; - Wt?_l)Z. o

Hints for exercise 1.14. In order to obtain that T is a stopping time, write T" as the minimum
of two variables which are stopping times according to Lemma 1.1.10. In order to find that
the distribution of Wy, use the law of the iterated logarithm to show that P(T < o0) =1
and conclude that the distribution of Wy is concentrated on {a,b}. Then use the optional
sampling theorem on the uniformly integrable martingale W7 to obtain the distribution of
WT. 9

Hints for exercise 1.15. In order to prove that M® is a martingale, recall that for any
0 <s<t, W, — Wy is independent of F, and has a normal distribution with mean zero and
variance t — s. In order to obtain the result on the Laplace transform of the stopping time
T, first reduce to the case of a > 0. Note that by the properties of Brownian Motion, T is
almost surely finite. Show that (M<)T is uniformly integrable and use the optional sampling

theorem in order to obtain the result. o

Hints for exercise 1.16. For the first process, use W2 = (W, — W,)3 +3W2W, —3W, W2+ W3
and calculate conditional expectations using the properties of the F; Brownian motion. Apply

a similar method to obtain the martingale property of the second process. o

Hints for exercise 1.17. To show the equality for P(T' < oo), consider the martingale M
defined in Exercise 1.15 by M = exp(aW; — 3a?t) for a € R. Show that the equality
El(7<0oyM? = exp(2ab) P(T < o00) holds. Recalling that lim;,oc % = 0, use the optional
sampling theorem and the dominated convergence theorem to show that EI(T<OO)M%Z’ =1
Use this to obtain the result. o

Hints for ezercise 1.18. First show that we always have 0 < T' < 1 and W2 = a(1—T). From
Theorem 1.2.1 and Exercise 1.16, it is known that the processes W2 —t and Wt — 6tW? + 3t2

are in cM. Use these facts to obtain expressions for ET and ET?. o

Solution to exercise 1.1. By Lemma 1.1.7, Fs C Fgyr and Fr C Fgyr, showing that
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o(Fs,Fr) C Fsyr. We need to prove the other implication. Let F' € Fgyr. We find

FA(S<T)N(T<t) = FNS<T)N(SVT<1)
= (FN(SVT<)N(S<T)N(SVT <1)).

Here, FN(SVT <t)e Fras I € Fgyp, and (S < T)N(SVT <t) € F as we have
(S <T)e Fspar € Fsyr by Lemma 1.1.13. We conclude F N (S < T) € Fr. Analogously,
FN(T <S) € Fs. From this, we obtain F € o(Fg, Fr), as desired. O

Solution to exercise 1.2. As one-point sets are closed, we know from Lemma 1.1.10 that T
is a stopping time. When T' < oo, it holds that {¢t > 0|X; = a} is nonempty, and for any n,
T+ % is not a lower bound for the set {t > 0 | X; = a}. Therefore, there is u,, < T + % such
that w € {t > 0 | X; = a}. Furthermore, as T is a lower bound for {t > 0| X; = a}, u,, > T.
Thus, by continuity, X = lim,, X,,, = a. O

Solution to exercise 1.3. For any w such that T(w) > 0, X (w) has a discontinuity at T'(w),
so X is almost surely not continuous. Now let ¢ > 0 and consider a sequence (t,) tending to
t. Let A, be the interval with endpoints t,, and t. As t,, tends to t, the Lebesgue measure of
A, tends to zero. For any € > 0 with € < 1, we then find

lim P(|X;, — Xi| > ¢€) = lim P(T is between t,, and t) = lim/ 14, exp(—t)dt,
n n n 0

and the latter is zero by the dominated convergence theorem. Thus, X;, converges in prob-
ability to X;. O

Solution to exercise 1.4. Fix t > 0 and let Zf = sup{X; | s € Ry, |t — s| < e}. Note that as
X is continuous, we also have ZF = sup{X;|s € Q4,|t — s| < ¢}, and therefore Z is Fy4.
measurable. Also note that we always have X; < Z7. Therefore, X; = Z; if and only if
X, < X, for all s > 0 with |t —s| < e. In particular, if 0 < &’ < &, X; = Z¢ implies X, = Z¢ .
Therefore, fixing 6 > 0, we obtain

F =Ucso(Xy = Zf) = Uce, 0<e<s (X = ZF) € Figs.

Consequently, F' € Ny~ Fs = Fi, as desired. O

Solution to exercise 1.5. First note that by Lemma 1.1.8, T is a stopping time. In particular,
Fr is well-defined. Using Lemma 1.1.7, the relation T' < 1), yields 77 C Fr,, so that
Fr €Ny Fr,. Conversely, let F' € NS, Fr,, we want to show F' € Fr, and to this end, we
have to show F'N (T <t) € F; for any t > 0. Fixing t > 0, the convergence of T, to T yields
FN(T<t)y=n2, U N2, FN (T <t+2). Now, as F € N32, Fr,, we have F € Fr,
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for all n. Therefore, FN (T}, <t+ 1) e F 1, andso USS_ M FN (T, <t+1)eF, 1.
As this sequence of sets is decreasing in n, we find that N, U N, F (T <t+ %n)
is in N2, F; 1. By right-continuity of the filtration, N;2, ;1 = F4, and so we finally
conclude F'N (T < t) € F, proving F € Fr. We have now shown NS, Fr, C Fr, and so
Fr =Ny, Fr,. This concludes the proof. O

Solution to exercise 1.6. Let 0 < s < t. As G; C F,s and M, is G; measurable, we find
E(M;|Gs) = E(E(M|Fs)|Gs) = E(Ms|Gs) = M. This proves the result. O

Solution to exercise 1.7. First assume that (¢,) is an increasing sequence in R with finite
limit ¢ > 0. By Lemma 1.2.2 and Lemma A.2.4, (Z; ) is then a uniformly integrable discrete-
time supermartingale. Therefore, by Theorem A.3.2, Z; is convergent almost surely and in
L'. As Z is continuous, Z;, is convergent almost surely to Z;. Therefore, we conclude that

Zy, converges almost surely to Z;.

Next, assume that (¢,) is a decreasing sequence in Ry with finite limit ¢ > 0. For n > k, we
then have t, > t,, and so Z;, > E(Z,, |F:, ) by the supermartingale property. Therefore, (Z;,)
is a backwards submartingale. By Lemma A.2.4, it is uniformly integrable, and therefore, by
Theorem A.3.6, it is convergent almost surely and in £'. By continuity of Z, we find that
Z;, converges almost surely to Z;, and therefore, we may conclude that Z; converges to Z;
in £1.

We are now ready to prove continuity in £! of ¢+ — Z;. Fix t > 0. Assume that Z is not
continuous in £ at t. Then, there exists € > 0 such that for any 6 > 0, there is s > 0 with
|s — t| < 6 such that FE|Z; — Zs| > e. Therefore, we obtain a sequence (s,) such that s,
converges to t and E|Zs, — Z;| > . As any sequence in R has a monotone subsequence, we
obtain a sequence (t,) such that ¢, either converges downwards or upwards to ¢, and such
that F|Z;, — Zi| > . This is in contradiction with our earlier conclusions, and we conclude

that Z must be continuous in £ at ¢. This proves the result. g

Solution to exercise 1.8. Define a(t) = suppcz_ infger, P(GAF). We will prove the result
by a kind of division into positive and negative parts. First, let F = (My; — M, > 0), we
then have F' € Fo.. Fix € > 0 and let G be an element of F; such that P(GAF) < a(t) + ¢.
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Using that F° = (M; — M < 0), we obtain
E1F|Mt*Moo| = ElFﬁG(Mt*Moo)+E1FﬂGC|Mt*Moo‘
= Elg(M; — M) — Elgnpe(M; — Moo) + Elpnge | My — Mo
== ElG’(Mt _Moo>+E1GﬂFC|Mt _Moo|+E1FﬂGC|Mt —Mool
< Elg(My — M) 4+ 2¢P(GAF) < Elg(My — Myo) + 2¢(a(t) + €).

Now, by Theorem 1.2.5, we have M; = E(M.|F:) almost surely. As G € F, we therefore find
Elg(M;—My) = ElgM;—ElgMy = 0. Allin all, we obtain E1p|M;— M| < 2¢(a(t)+e).
As € > 0 was arbitrary, this allows us to conclude that El1p|M; — M| < 2ca(t). Making
the same calculations with the set (M; — Mo, < 0) and adding up the results, we find
E|\M; — Moo| < 4ea(t), as desired. O

Solution to exercise 1.9. If M € cM™, we have by Theorem 1.2.7 that My = E(My|Fr) for
all T € C. Therefore, Lemma A.2.6 shows that (Mr)7ec is uniformly integrable. Conversely,
assume that (Mr)rec is uniformly integrable, we will use Lemma 1.2.9 to show that M € cM.
Let S be any bounded stopping time, and let (T},) be a localising sequence with the property
that M™ € cM™. As S is bounded, Mz, ,s converges almost surely to Mg. As it holds
that (M, rs) € (Mr7)Tec, (Mr, As) is uniformly integrable, and so Lemma A.2.5 shows that
M, a5 converges in L' to Mg. In particular, EMg = lim,, EMr, ,s = lim, EMST" = 0 by
Theorem 1.2.7. Lemma 1.2.9 then shows that M € cM. As (Mi)i>0 € (Mr)rec, M is

uniformly integrable, and so M € cM™ as well. O

Solution to exercise 1.10. By Lemma 1.4.9, we have
(M7 — M%) = [MT] = 2[M", M®] + [M®] = [M]" —2[M]* + [M®] = [M]" — [M]*.
Therefore, if [M]gs = [M]r almost surely, we obtain that [M” — M%], is almost surely zero.

As [MT — M*®] is increasing, this implies that [M7 — M*®] is evanescent, and so by Lemma
1.4.9, MT = M*® almost surely. O

Solution to evercise 1.11. Since X°"T = (X¥)T we find by Lemma 1.2.8 that X7 is in
cM¥ . As Xgnr+ Xrpr = X(S/\T)/\t +X(SVT)/\ta we find X5VT = X5 + X7 —XS/\T, so XVT

is in cM™ as well, since it is a linear combination of elements in cM™. O

Solution to exercise 1.12. Recall from Theorem 1.2.1 that M is a martingale. In order to
show that M is not uniformly integrable, assume that M is in fact uniformly integrable, we
seek a contradiction. We know by Theorem 1.2.5 that there is M, such that M; converges

almost surely and in £! to M.,. However, we then obtain

lim E|1M;| = lim 1E|M;| < lim 1E|M, — M|+ 1E|My| =0,
t— o0 t t—oo t t—yoo t t
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SO %Mt converges in £! to zero. In particular %Mt converges in distribution to the Dirac
measure at zero, which is in contradiction to the fact that as %Mt = (%Wtﬁ -1, %Mt has
the law of a standard normal distribution transformed by the transformation z + 22 — 1 for
any t > 0. Therefore, M, cannot be convergent in £!, and then, again by Theorem 1.2.5, M
cannot be uniformly integrable. 0

Solution to exercise 1.18. Put U, = Zill(th — Wt271)2, we need to show that U, Lot
By the properties of the Brownian motion W, the variables Wi» —W;»_ are independent and
normally distributed with mean zero and variance t27". Defining the variables Z}' by putting
VA (\/%(th —Win))?, we find that Z}!, k = 1,...,2" are independent and distributed
as an 2 distribution with one degree of freedom, and we have U, = t27" Eizl Zp. As
EZ =1 and VZ} = 2, we then obtain EU,, =t and VU,, = (t27")? Zii1 2=2t2"". In
particular, Chebychev’s inequality yields for any € > 0 that

lim P(|U, —t| >¢) < % lim E(U, —t)*=2% lim VU, = $2¢* lim 27" =0,

n—oo n—oo n—oo n—oo
which proves that U, N t, as desired. The two convergences in probability then follow from

the equalities

on on
WE =2y Wy (W =Wy )+ (W =Wy )P
k=1 k=1
272, 271,
= 2> W (W =Wy ) =Y (W =Wy )%,
k=1 k=1
by rearrangement and letting n tend to infinity. O

Solution to exercise 1.14. As T = min{inf{t > 0 | Wy = —a},inf{t > 0 | W; = b}}, T is a
stopping time by Lemma 1.1.7 and Lemma 1.1.10. As for the distribution of Wy, first note
that by the law of the iterated logarithm, limsup,_, . |W;|(2tloglogt)~'/? = 1 almost surely,
so that |W;| almost surely is larger than any fixed number at some timepoint. Therefore,
P(T < 00) = 1. Next, note that since W has initial value zero and both a and b are nonzero,
it follows that if T is finite and T' = inf{t > 0 | Wy = —a}, we have Wy = —a, and if T is
finite and T' = inf{t > 0 | W; = b}, we have Wy = b. Therefore, Wy is almost surely either
—a or b. Furthermore, note that whenever 0 < t < T, W; > —a and W, < b. Therefore, W7
is a bounded martingale, in particular uniformly integrable, and so EWp = 0 by Theorem
1.2.7. This leads us to conclude

0

EWT = bP(WT = b) — CLP(WT = —a)
bP(Wp =b) —a(l — P(Wp =b)) = (a + b)P(Wy = b) — a,
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so that P(Wr = b) = 2% and P(Wp = a) = 225,

Consider now the case where a # b, we have to show that [-W7] and [W7T] are the same,
while —W7T and W7 have different distributions. From what we already have shown, Wy
is concentrated on {—a, b} while —Wr is concentrated on {a,—b}, and in both cases, both
points have nonzero probability. As these two sets are not the same when a # b, —Wr and
Wr do not have the same distribution. As these two variables are the limits of —W,; and
W[ as t tends to infinity, it follows that —W7T and W7 cannot have the same distribution.
However, by Lemma 1.4.9, we have [-W71] = [-WT, -WT] = [WT W] = [WT], so the
quadratic variation processes are equal. O

Solution to exercise 1.15. Fix o and let 0 < s < t. We then find

B(M{|F,) = MJE(exp(a(W, — W) — 3a2(t — 5))|F;)
= ME(exp(a(W; — W) — 30°(t — 5))) = M,
using that Wy — Wy is independent of F, and normally distributed, and for any variable X

which is standard normally distributed, E exp(tX) = exp(%t2) for any t € R. Thus, M? is a

martingale.

Next, we consider the result on the stopping time 7. By symmetry, it suffices to consider
the case where a > 0. By the law of the iterated logarithm, 7" is almost surely finite.
Therefore, W7 is bounded from above by a and Wy = a. Fixing some o > 0, we then
find (M) = exp(aW[ — 202(T A t)) < exp(aa). Therefore, by Lemma A.2.4 (M*)T is
uniformly integrable. Now, the almost sure limit of (M*)” is exp(aa — $T). By Theorem
1.2.7, we therefore find 1 = E(M®)1, = Eexp(aa — 30*T) = exp(aa)E exp(—1a®T). This

shows Eexp(f%oﬂT) = exp(—aa). Thus, if we now fix 8 > 0, we find
Eexp(—pT) = Eexp(—%(\/26)2T) = exp(—+/20a),
as desired. O

Solution to exercise 1.16. Fix 0 < s <t. As (W — Wy)3 = W2 — 3SW2W, + 3W, W2 — W3,

we obtain

E(W = 3tWy|Fs) = E((W, — W,)3|Fs) + EGWEW, — 3W, W2 + W2|F,) — 3tW,
= BE(W, —W,)3 + 3W,E(W2|F,) — SW2E(W}|Fs) + W2 — 3tW,
= 3W,E(W? —t|F,) — 2W3 = 3W, (W2 — 5) — 2W3 = W2 — sW,.

As regards the second process, we have (W, —W)* = W2 AW W, +6W2W2 —4W W3+ W2,
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and so
EWHNF,) = E((Wy— W) F,) + E@WEW, — 6W2W?2 + 4W, W32 — WHF,)
= 3(t—s)2 AW, E(WE|F,) — 6W2E(W2|F,) + AW3E(W,|F,) — W2
= 3(t —s)? + AW, E(W2 — 3tW,|F,) + 12tW?2 — 6W2E(W2|F,) + 3W2

( )

(t—s)?

(t — 8)* + AW, (W3 — 3sW,) + 12tW2 — 6W2E(W?2|F,) + 3W2

= 3(t—s)?+12(t — s)W2 — 6W2ZE(W? — t|F,) — 6tW2 + TW

= 3(t—s)2+12(t —s)W2 - 6WZ(W2 —5) — 6tW2 + TW2
(t—s)*+

= 3(t—s)2+6(t—s)W24+W2
Therefore, we find

E(W} —6tW72 +3t2|F,) = 3(t—s)?+6(t—s)W2+ W2~ 6tE(W2|F,) + 3t°
= 3(t—s)2+6(t—s)W2+ W2 —6tE(W? —t|F,) — 3t>
= 3(t—s)2+6(t—s)W2+Wi—6t(W2—5s)— 3t

= W*—6sW2+3(t—s)*+ 6st — 312

= W2 —6sW2+3s%,

as desired. O

Solution to exercise 1.17. We have T = inf{t > 0 | Wy — a — bt > 0}, where the process
Wi — a — bt is continuous and adapted. Therefore, Lemma 1.1.10 shows that T is a stopping
time. Now consider a > 0 and b > 0. Note that W; — a — bt has initial value —a # 0, so we
always have T' > 0. In particular, again using continuity, we have W = a + bT whenever
T is finite. Now, by Exercise 1.15, we know that for any a € R, the process M¢ defined by
My = exp(aW, — $a?t) is a martingale. We then find

ElrcoyMf = Elrco)exp(aWr — 50°T)

= Elrcoo) exp(afa+bT) — 1a°T)

exp(aa)El(p< o) exp(T(ab — $a?)).

Now note that the equation ab = %az has the unique nonzero solution o = 2b. Therefore,
we obtain 1<) M2’ = exp(2ab)P(T < 00). In order to show the desired equality, it
therefore suffices to prove El(T<Oo)M%b = 1. To this end, note that by the law of the
iterated logarithm, using that b # 0, lim;_, . 26W; — %(Zb)gt = limy_, o t(2b% —2b%) = —o0,
so that lim; o, M2* = 0. Therefore, 1(T<OO)M%” = M%b and it suffices to prove EM%b =1.
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To this end, note that

2b
MT/\t

exp (2me = %(217)2(7’ A t))

IN

exp <2b(a +0(T At)) — %(2b)2(T A t)) = exp(2ba).

Therefore, (M?*)T is bounded by the constant exp(2ba), in particular it is uniformly inte-
grable. Thus, Theorem 1.2.7 shows that EM?* = E(M?*)1 = 1. From this, we finally
conclude P(T < c0) = exp(—2ab). O

Solution to exercise 1.18. Since W2 —a(1—t) is a continuous adapted process, Lemma 1.1.10
shows that T is a stopping time. Now let a > 0. As W2 — a(1 — t) has initial value —a # 0,
we always have T' > 0. Furthermore, as a(1 —t) < 0 when ¢ > 1, we must have T' < 1,s0 T
is a bounded stopping time. In particular, T has moments of all orders, and by continuity,
W2 =a(1-T).

In order to find the mean of T, recall from Theorem 1.2.1 that W2 — t is a martingale. As
T is a bounded stopping time, we find 0= E(W2 —T)=E(a(1-T)—-T) =a— (1 +a)ET
by Theorem 1.2.7, so ET = 1_%& Next, we consider the second moment. Recall by Exercise
1.16 that W} — 6tW2 + 3t? is in cM. Again using Theorem 1.2.7, we obtain
0 = E(Wi—6TW243T%)

= E(a*(1-T)?—6Ta(l —T)+37?)

E(a*(1 — 2T +T?) + 6a(T* — T) + 3T?)
= (a®*+6a+3)ET? — (2a* + 6a)ET + a.

Recalling that ET = we find

_a_
14+a’

2a% + 6 1 2 3 4+ 5a?
(2a2+6a)ET—a2:a( a”+6a) (1+a)a _ot a’

14+a 14+a 14+a
from which we conclude
BT a® + 5a? _ a® 4 5a?
(1+a)(a®+6a+3) a®>+7a%>+9a+3’
concluding the solution to the exercise. O

Solution to exercise 1.19. By Theorem 1.4.8, we know that W € ecM, with [W]; = ¢. In
particular, we find that when p > %, we have, with W™ denoting the process stopped at the
deterministic timepoint n,

lim [0 PW")o = lim [n PW" 0 PW"]o = lim n ?[W"], = lim n'~? =0,
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since 1 — 2p < 0. In particular, [n PW"| 0. Therefore, Lemma 1.4.11 shows that
(n=PW™)%, L5 0, which is equivalent to stating that -5 supg< <, [Wi| 0. O

B.2 Hints and solutions for Chapter 2

Hints for evercise 2.3. Define T,, = inf{t > 0| [M]; > n}. Show that M is almost surely
convergent for all n. Use that F.([M]) C U (T, = co) C UX (M = M) to argue that
P(F.([M])\ F.(M)) = 0. Apply a similar argument to obtain P(F.(M) \ F.([M]))=0. o

Hints for exercise 2.4. Since convergent sequences are bounded, it is immediate that the
inclusion F.(X) C (sup, X; < oo) holds. Therefore, in order to obtain the ersult, it suffices
to argue that P(F.(X) \ (sup, X; < 00)) = 0. To this end, define T;, = inf{t > 0|X; > n}
and put Z" =n — X™. Show that Z" is a supermartingale which is bounded in £! and so
almost surely convergent. Note that (sup, X; < co) C Us2 (X = n — Z™). Combine these
results in order to obtain the desired result. o

Hints for exercise 2.5. The inclusion F.(M) N F.(A) C F.(X) is immediate, so it suffices
to consider the other inclusion. To this end, apply Exercise 2.4 to prove the relationships
P(F.(M)A(sup; M; < 00)) = 0 and P(F.(X)A(sup, X; < 00)) = 0. Use this and M < X to
obtain the desired result. o

Hints for exercise 2.6. In order to show that H - W is in cM if Ef(;s H2ds is finite for all
t > 0, show that the stopped process (H - W)t is in cM?2. o

Hints for exercise 2.7. The issue regarding the measure pys being well-defined is that the
family of measures induced by [M](w) for w € Q is not uniformly bounded, and so Theorem
A.1.12 and Theorem A.1.13 cannot be directly applied. Let v,, be the nonnegative measure
induced by [M](w) by Theorem A.1.5. The proposed definition of p5; is then,for A € B, ® F,
to put pa(A4) = [ [1a(t,w)dv,(t) dP(w). In order to show that this is well-defined, it is
necessary to argue that ¢t — 14(¢,w) is By measurable for all w € Q whenever A € By ® F,
such that the inner integral is well-defined, and that [14(¢,w)d[M](w); is F measurable
whenever A € B ® F, such that the outer integral is well-defined. That the inner integral
is well-defined follows from general properties of measurable mappings. In order to show
that the outer integral is well-defined, let (7},) be a localising sequence such that [M]T» < n.
Denote by 1 the nonnegative measure induced by [M]» (w) by Theorem A.1.5. Use Theorem
A.1.12 to show that there exists a unique nonnegative measure A" on B, ® F such that for
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any B € By and F € F, \"(B x F) = [, v3(B)dP(w) and apply Theorem A.1.13 to show
that whenever A € By @ F, w — [14(¢,w)dy2(t) is F measurable. Use this fact to show
that for any A € By @ F, w — 14(¢,w) dv,(t) is F measurable.

As regards the remaining claims of the exercise, use the monotone convergence theorem to
show that pps is a measure. Apply Lemma 1.4.10 and Lemma 2.2.7 to show the statements

regarding the stochastic integral. o

Hints for exercise 2.8. First show that it suffices to prove the convergence to zero in prob-
ability of the variables that (W, — W;)~! tt+h(H3 — H) 1 0o dWs, where the indicator
1[t,00[ is included to ensure that the integrand is progressively measurable. To show this, fix

6 > 0 and show that

LW, n—wi|>0)
With — W

using Chebychev’s inequality and the results from Lemma 2.6. Then apply Lemma A.2.1 to

t+h i
/ (Hs — Hy) 1 00y dWs — 0,
t

obtain the result. o

Hints for exercise 2.10. To prove that X has the same distribution as a Brownian motion
for H = %, let W be a Brownian motion and show that X and W have the same finite-

dimensional distributions.

To show that X is not in ¢S when H # %, first fix t > 0, put ¢} = tk27" and consider
Zin:l | Xin —Xyn [P for p > 0. Use the fact that normal distributions are determined by their
mean and covariance structure to argue that the distribution of Zzll | Xin — Xy [P is the
same as the distribution of 2 "PH Ziil | X —X,—1/P. Show that the process (X —Xg_1)r>1
is stationary. Now recall that the ergodic theorem for discrete-time stationary processes
states that for a stationary process (Y,)n>1 and a mapping f : R — R such that f(Y7) is
integrable, it holds that % Y p—q f(Yi) converges almost surely and in L'. Use this to argue
that 5 Zi:l | X\, — Xj—1/P converges almost surely and in £! to a variable Z, which is not

almost surely zero.

Finally, use this to prove that X is not in ¢S when H # % To do so, first consider the
case H < % In this case, assume that X € ¢S and seek a contradiction. Use the result of
Exercise 2.9 to show that Ziil | Xip — Xt};,l‘% converges to zero in probability. Obtain a
contradiction with the results obtained above. In the case where H > %, use that % < 2 and
Exercise 2.9 to show that Zill | Xin — Xign |2 converges in probability to zero, and use this
to argue that [X] is evanescent. Conclude that X has paths of finite variation, and use this

to obtain a contradiction with our earlier results. o
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Hints for exercise 2.12. Apply Itd’s formula to the two-dimensional continuous semimartin-
gale (t, W,). o

Hints for exercise 2.13. Use [t6’s formula on the two-dimensional continuous semimartingale
(M, [M]) to prove that £(M) is a continuous local martingale with initial value one and that
E(M) solves the stochastic differential equation. For uniqueness of the solution, assume given
another solution Y € ¢S to the stochastic differential equation. Define Z; = £(M); 'Y; and
apply the local version of 1t6’s formula, Corollary 2.3.6, to (£(M),Y") in order to show that
Z is indistinguishable from 1. o

Hints for exercise 2.15. Use a Taylor expansion of x — log(1 + x) as in Theorem A.1.17
to rewrite Z* into a form resembling £(M). Apply Theorem 2.3.3 and the same method of
proof as in the proof of Theorem 2.3.5 to obtain control of the remainder term and prove the

desired convergence in probability. o

Hints for exercise 2.16. Use Exercise 2.13 to conclude that £(M) is nonnegative and that
E(M) is a continuous local martingale. Apply Fatou’s lemma to obtain the supermartingale
property. o

Hints for exercise 2.17. In order to obtain the criterion for £(M) to be a uniformly integrable
martingale, note that by Exercise 2.16, £(M) is a nonnegative supermartingale. By applying
the optional sampling theorem 1.2.7 to £(M), conclude by Lemma 1.2.9 that if EE(M ) = 1,
then £(M) is a uniformly integrable martingale. To obtain the converse, use that uniformly

integrable martingales are £! convergent by Theorem 1.2.5.

In order to obtain the criterion for £(M) to be a martingale, show that £(M) is a martingale
if and only if £(M)? is a uniformly integrable martingale for all ¢ > 0, and prove the result

using the criterion for £(M) to be a uniformly integrable martingale. o

Hints for exercise 2.18. Use Theorem 2.3.2 to show that fot f(s)dWy is the limit in prob-
ability of a sequence of variables whose distribution may be calculated explicitly. Use that
convergence in probability implies weak convergence to obtain the desired result. o
Hints for exercise 2.20. In the case where i = j, use Itd’s formula with the function f(z) = 22,
and in the case i # j, use It0’s formula with the function f(z,y) = zy. Afterwards, apply

Lemma 2.1.8 and Lemma 2.2.7 to obtain the result. o

Hints for exercise 2.21. To prove integrability, first use Exercise 2.6 to show that X has
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the property that the stopped process X¢ for any ¢ > 0 is in cM?. Apply this together
with the Cauchy-Schwartz inequality to prove that both X;W; and X;W}? are integrable.
In order to obtain the mean of X;W;, use Exercise 2.6 and Lemma 1.4.10 to show that
XW; — [X,W]; is a martingale, and apply the properties of the stochastic integral and its
quadratic covariation. In order to obtain the mean of X;W?, apply It6’s formula to decompose
W2 into its continuous local martingale part and continuous finite variation part and proceed

as in the previous case, recalling that for a variable Z which is normally distributed with
variance o, we have E|Z| = \/o+/2/. o

Hints for exercise 2.22. Let X = N + B be the decomposition of X into its continuous
local martingale part and its continuous finite variation part. Apply Itd’s formula to M
with the mapping f : R? — R defined by f(z,y) = exp(x — %y) Use Lemma 1.4.5 to show
that the process af; M2 dBg + 0‘72 fot M>d[X]s — 0‘72 fot M2 dA; is evanescent. Use this to
show that M =1+ fot M dN,. Use this and Corollary 2.3.6 to obtain that [X] and A are
indistinguishable and that X € c M. o

Hints for exercise 2.23. Use It6’s formula to conclude

fv) =+ [ pawgaw g [ o).

Use the growth conditions on f and Exercise 2.6 to argue that the integral with respect to W
isin cM and so Ef(W;) = a+ 3E fg f"(Ws)ds. Again applying the growth conditions on
f, show that interchange of expectation and integration is allowed, and obtain the formula
for Ef(W}) from this. o

Hints for exercise 2.24. First note that in order to prove the result, it suffices to prove that
the sequence Zill(Mtk — My, ,)? is bounded in £2. To do so, write
on 2 2n
E (Z(Mtk - Mtk_1)2> =EY (My =M, )" +EY (M, — M, _,)* (M, — My,_,)>.
k=1 k=1 k#i
Let C > 0 be a constant such that |M;| < C for all t > 0. By repeated use of the martingale
property, prove that the first term is less than 4C2 and that the second term is less than

2C?, thus proving boundedness in £2. )

Hints for exercise 2.26. First argue that when stopped at a deterministic timepoint, X is in
cM?2. Use the properties of stochastic integrals from Lemma 2.2.7 as well as Lemma 1.4.10

to argue that for 0 < s < t, Cov(X;, X¢) = fos Esin® W,, du. Calculate E sin® W, by applying

the identity sin®z = % - %cos 2z and calculating E cos 2W,, using the Taylor series for the

cosine function. o
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Hints for exercise 2.27. Apply Exercise 2.12. o

Solution to exercise 2.1. By Theorem 1.2.1, W is a martingale. As W is continuous and has

initial value zero, we obtain W € ¢cM, C ¢S8, as desired. O

Solution to exercise 2.2. As X has continuous paths, we have

F.(X) = {weQ] Xi(w) is convergent as t — oo}

{w € Q| X,(w) is convergent as ¢ — 00,q € Q4 }

{w e | X,(w) is Cauchy as ¢ — 00,q € Q1 }

N1 Ugeny m1077’>q,w‘€@+(|X10 - XT‘ < %)’

and this set is in F. This proves the desired result. O

Solution to exercise 2.3. Define T,, = inf{t > 0 | [M]; > n}. We then have [M]'" < n,
and so Lemma 1.4.10 shows that M7» € cM?2. Therefore, M ™ is almost surely convergent.
Furthermore, F,([M]) C U2 (T, = 00) C U, (MT» = M). Let F be the almost sure set

where M ™ is convergent for all n. We then obtain

P(Fe([M])\ Fe(M))

P(F N F,([M])NF.(M)®)
< P(FNFE.(M)*NUS (M™ = M)) =0,

since the final set is empty. We conclude P(F.([M])\ F.(M)) = 0. Conversely, define the
sequence of stopping times S,, = inf{t > 0 | |M;| > n}, so that M*°» € cM’. By Lemma
1.4.10, [M] is almost surely convergent, so (M) C U, (S, = oo) C U, ([M]% = [M]).
Letting I be the almost sure set where [M]°" is convergent for all n, we obtain

P(Fe(M)\ F([M])) P(FNF(M) N Fe([M]))

< P(FNE(M)" NUL, (M5 = [M])) = 0.

We have now shown P(F.(M)AF.([M])) = 0. O

Solution to exercise 2.4. As convergent sequences are bounded, we clearly have the inclusion
F.(X) C (sup, X; < 00), such that P((sup, X; < 00) \ F.(X)) = 0. We need to prove that
P(F.(X)\ (sup; X; < o0)) = 0.

Define T,, = inf{t > 0 | X; > n} and put Z" = n — XT»  we then have Z" > 0. Let (S,)
be a localising sequence such that M°» € cM? and A% is bounded. We may then obtain
(Z™M)5n =n — (M + A)TeA = — Mo — ATuASn where MTn"9n € ¢ M® and AT»/\Sn
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is bounded. Therefore, (Z")" is bounded, in particular (Z")7" is integrable for all t > 0.
Since ATnASn ig increasing, we have for 0 < s < ¢ that

B(Z")7"|F) = Bln= M = AF"S )
n— MSTn/\Sn _ E(Az“n/\snu:s)
n— MTASn _ B(AT-AS|F,)

= n- MsTn/\Sn _ AST"AS" _ (Z")SS".

IN

Thus, (Z™)° is a nonnegative supermartingale. For 0 < s < ¢, we then obtain using Fatou’s
lemma that
E(ZF,) = E(liminf(Z™)7"|F,) < liminf E((Z™)5"|F,) < liminf(Z"™)5" = 27,
n—oQ n—roo n—roo
so Z™ is also a nonnegative supermartingale. As ZJ = n, we have E|Z]'| = EZ] < n, so
Z™ is bounded in £', and thus almost surely convergent by Theorem 1.2.4. Now note that
(sup; X < 00) CUX (T, = 0) CUX (X =n—Z™). As the set such that Z™ is almost

surely convergent for all n is an almost sure set, we conclude

P((supX: < 0) \ Fu(X)) = P(FZ4F(2") N (sup X, < 00) N F(X)°)
< PN F(ZM)NE(X)°NU (X =n—-2"))=0.

Combining our results, we have now shown P(F.(X)A(sup, X; < 00)) = 0. O

Solution to exercise 2.5. Clearly, F.(M) N F.(A) C F.(X), we need to prove the converse
inclusion. Note that both X and M is in ¢S and satisfy the criterion from Exercise 2.4.
Therefore, P(F.(M)A(sup, My < o0)) = 0 and P(F.(X)A(sup, X; < o0)) = 0. This in
particular implies that F.(X) C (sup, X; < co)UN and (sup, M; < 00) C F.(M)UN, where
N is some null set. Also, as A > 0, we have M = X — A < X, so whenever sup, X; is finite,
so is sup, M. Thus, F.(X) C (sup, X: < o0) UN C (sup, M} < c0)UN C F.(M)UN.

Whenever X and M are both convergent with finite limits, so is A. Therefore, we finally
conclude F,(X) C (FL(X)NF.(M))UN C (F.(M)NF.(A)) UN. As N is a null set, this

implies P(F.(X) \ (F.(M) N F.(A))) = 0. We conclude P(F.(X)A(F.(M)NF.(A4)))=0. O

Solution to exercise 2.6. As [W]; =t by Theorem 1.4.8, we obtain [H - W], = [~ HZds.
Therefore, Lemma 1.4.10 shows that H - W € ¢M? if and only if E [~ H2ds is finite.
As regards the second claim, assume that for any t > 0, E fg H?ds is finite. We have
(H W) =[H -W], = fg H?2ds, so our assumptions yields that (H - W) is in cM? for
all t > 0, and Lemma 1.4.10 shows that ((H - W)%)? — [(H - W)!] is in cM™.
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In order to obtain that H - W is a martingale, let 7" be a bounded stopping time, assume
that T < c¢. We then have (H - W)y = (H - W)%, so as (H - W)¢ is in eM?, (H - W)r is
integrable and has mean zero. Therefore, 1.2.9 shows that H - W is in cM. Furthermore, we
have E(H - W)} = E(H-W)"2, = E[(H - W)]s = E [, H2ds. O

Solution to exercise 2.7. Let v,, be the nonnegative measure induced by [M](w) by Theorem
A.1.5. The proposed definition of pps is then ppr(A) = [ [1a(t,w)dy,(t) dP(w) for sets
A € By ® F. In order to show that this is well-defined, we need to argue that ¢ — 14(¢,w)
is B; measurable for all w € Q whenever A € By ® F and that [ 14(t,w)d[M](w); is F
measurable whenever A € By ® F. The first claim follows since the mapping (t,w) — 14(t,w)
is B4 ® F-B measurable and therefore, for any w € Q, t — 14(¢,w) is B4-B measurable.

In order to prove the remaining claims, let (7},) be a localising sequence such that [M]™ < n.
By v, we denote the nonnegative measure induced by [M]?"(w) by Theorem A.1.5. We
wish to argue that the family (v),cq satisfies the requirements in Theorem A.1.12. As v/ is
bounded by n, the family (v),eq is uniformly bounded. Let D be the family of sets B € B4
such that w — v (B) is F measurable. We will show that D is a Dynkin class containing a
generating family for B, which is stable under intersections, Lemma A.1.19 will then yield
that D is equal to B;.

For any fixed 0 < s < t, we find that 1v((s,t]) = [M]™ (w); — [M]™ (w)s. As [M][™ is F
measurable for all ¢ > 0, we find that w — 7 ((s,t]) is F measurable. Thus, D contains
a generating family for B, which is stable under intersections. In order to show that D
is a Dynkin class, first note that v*(R;) = [M]%r, so the mapping w — v?(R") is also
F measurable. If A, B € D with A C B, we find that v2(B \ A) = v2(B) — v(B), so
B\ A eD. And if (B,) is an increasing sequence in D, upper continuity of measures shows
that v (U2, By,) = limy, v} (Byg). Thus, U2, By € D. We have now shown that D is a Dynkin
class. Therefore, Lemma A.1.19 shows that w — v2(B) is F measurable for all B € B;. The
requirements given in Theorem A.1.12 are therefore satisfied, and we conclude that there
exists a unique nonnegative measure A" on By ® F such that for any B € By and F' € F,
A"(Bx F) = [ v(B)dP(w).

Now, by Theorem A.1.13, whenever A € By ® F, it holds that w — [14(¢,w)dy(t) is F
measurable. We will use this to argue that w — [ 14(¢,w)dw,(t) is F measurable as well.
To obtain this, fix A € By ® F and define A4,, by putting A, = AN {(t,w) | t < Ty (w)}.
As T, (w) converges to infinity for all w, we find that (A,) is increasing with A = U2, A4,,.
Furthermore, for each fixed w, it holds that the measures v, and v agree on [0,T),(w)].
Therefore, we obtain [ 14(¢,w)dv,(t) = lim,, [ 14, (t,w) dv,(t) = lim, [ 14, (t,w)dv2(t) by



B.2 Hints and solutions for Chapter 2 109

the monotone convergence theorem. As the mappings in the latter pointwise limit are F
measurable, we conclude that the mapping w — [ 14(f,w)dy,(t) is F measurable. We have
now shown that the proposed definition of py; is well-defined, and so up; is a well-defined

mapping from B} ® F to [0, oc].

That pps is a measure follows as we clearly have pps (@) = 0 and for any sequence of disjoint

sets (A,) in By ® F, two applications of the monotone convergence theorem yield

(U, A,) = / / Lo a, (t,0) d[M] (@), dP(w) = / / S 1, (1 w) d[M] (@), dP(w)

n=1

S [ [ 1atw) db)dP@) = Y- ().

We conclude that gy is a measure. Furthermore, as puy({(t,w) € Ry x Q| Ty (w) < t}) <,
we find that s is o-finite. In the case where M € eM?, we find pp (Ry x Q) = E[M]o,
which is finite, so uys is a finite measure in this case.

Finally, we consider the claims regarding the stochastic integral. Let H € J, we need to show
that H-M € cM? if and only if H € £2(M). By construction, we know that we always have
H-M € cM,. By Lemma 1.4.10, H - M is in cM? if and only if [H - M|, is integrable. From
Lemma 2.2.7, we know that H? is integrable with respect to [M] and [H-M], = [; H2 d[M],
for all t > 0. In particular, E[H - M| = E [[° H2d[M], = [ [ H?(w)d[M](w)s dP(w),
which is equal to ||H||ps. Therefore, H - M is in ¢ M? if and only if ||H| 5 is finite, which is
the case if and only if H € £2(M). Finally, in the affirmative case, Lemma 1.4.10 shows that
|H-M||3=E(H-M)>% = E[H M = ||H||3; by what we already have shown, proving the

final claim of the exercise. [l
Solution to exercise 2.8. Note that the conclusion is well-defined, as Wy, — W, is almost

surely never zero. To show the result, first note that Lemma 2.2.7 yields, up to indistin-

guishability,
t+h t+h t+h t+h
/ H,dW, = / Hsl[[t,oo[[ dW, = / Htlﬂt,oo[dWQ + / (Hs - Ht)l[[t,oo[[dvvs
t t t t
t+h
= HWen =Wt [ (H, ~ H)le 4.
t
where the indicators [t, o[ are included as a formality to ensure that the integrals are well-

defined. Therefore, it suffices to show that (W, ; —W;) ™! :+h(HS —H) 1,00 AW converges
in probability to zero as h tends to zero. To this end, let ¢ be a bound for H and note that
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by Exercise 2.6, we have

1 [tk 2 1 t+h
E \/E/ (Hs — Hi)lpoop dWs | = EE/ (Hy — Hy)?ds.
t t

As H is bounded and continuous, the dominated convergence theorem shows that the above

tends to zero as h tends to zero. Thus, ﬁ f:+h(H5 — Ht)l[[tyoo[[dWs tends to zero in £2.

Now fix 6, M > 0. With Y}, = ﬁ ft+h(Hs — Hy)1[t,00] AW, we have

t
>5>

N
<M|+p(]—Y"
) (‘WM—Wt

t+h
P (‘(Wt% — W) ™! / (Hs — Hi) 1 00 AW
t

Pl _ Vho
Wiyn — Wi Wipn — W

>M>
) Vh
Py — Pl|l—m— M |.
<| h|>M)+ <|Wt+h—Wt ~ )

Here, P(vVh(Wiyn,—W;)~! > M) does not depend on h, as (Wy5, —W3)(v/h)~! is a standard
normal distribution. For definiteness, we define (M) = P(vVh(Wigpp — Wy)~* > M). The
above then allows us to conclude

IA

> 5,

IN

t+h
lim sup P ( (Wign — Wt)_l/ (Hs — H)1 00p AW | > 5) < (M),
h— o0 t
and letting M tend to infinity, we obtain the desired result. O

Solution to exercise 2.9. For q > p, we have

on on
> X = Xy |7 < (;’iﬂ%’é Xy — th1|q_p) > Xy = X I
k=1 = k=1
As X has continuous paths, the paths of X are uniformly continuous on [0,¢]. In particular,

maxy<on \th — X 1|q_p converges almost surely to zero. Therefore, this variable also

n

k—
. .o 2m . .o

converges to zero in probability, and so >, _; \th =X | |7 converges in probability to zero,

as was to be proven. O

Solution to exercise 2.10. First, consider the case where H = % In this case, X is a process
whose finite-dimensional distributions are normally distributed with mean zero and with the
property that for any s,t > 0, EX, X, = %(tJrsf |t —s]). For a Brownian motion W, we have
that when 0 < s <t, EW,W; = EW,(W; — W)+ EW2 = EW,E(W; —W,)+ EW2 = 5. In
this case, [t — s| =t — s, and so EW,W; = £(t + s — |t — s|). In the case where 0 < ¢ < s,
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EWW,=t=21(t+s+(t—s)) =21(t+s—|t—s|) as well. Thus, X and W are processes
whose finite-dimensional distributions are normally distributed and have the same mean
and covariance structure. Therefore, their distributions are the same, and so X has the

distribution of a Brownian motion.

In order to show that X is not in ¢S when H # %, we first fix ¢ > 0 and consider the sum
Zill | Xin — Xip [P for p > 0. Understanding the convergence of such sums will allow us
to prove our desired result. We know that the collection of variables th — Xt’,’;,l follows
a multivariate normal distribution with F (th — th;l) = 0 and, using the property that
EX,X; = $(t* 4+ $2H — |t — s|?H), we obtain

EXiy = Xep )Xy = Xap ) = EXypXyp — EXip Xon | — EXyp Xon + EXyp | Xpn |
= 272k — i+ 127 4 |k — 1 — " — 2k —i*M).

Here, the parameter n only enters the expression through the constant multiplicative factor
272nH  Therefore, as normal distributions are determined by their covariance structure, it
follows that the distribution of the variables (Xi» — Xyn ) for k < 2" is the same as the
distribution of the variables 27"# (X} — X3_1) for k < 2". In particular, it follows that the
distributions of Zill | Xin — Xgp [P and 277PH 2211 | X5 — Xp—1|P are the same. We wish
to apply the ergodic theorem for stationary processes to the sequence (X — Xg—1)k>1. To
this end, we first check that this sequence is in fact stationary. To do so, we need to check
for any m > 1 that the variables X — Xi_1 for £k < n have the same distribution as the
variables X, 1 — X;pak—1 for & < n. As both families of variables are normally distributed
with mean zero, it suffices to check that the covariance structure is the same. However, by
what we already have shown,

E(Xk - kal)(Xt;L - Xifl)
= (k=i +1PT + |k —1—i*" — 20k —i*7)
= E(Xm+k - Xm+k_1)(Xt:’L+’i — Xm—‘ri—l)-

This allows us to conclude that the sequence (Xy —Xg_1)r>1 is stationary. As E| X, —Xp_1|P
is finite, the ergodic theorem shows that 1 "7 | [X; — Xj_1|P converges almost surely and
in £! to some variable Z,, where Z,, is integrable and EZ, = E|X; — X,|P = E|X;|P > 0.
This property ensures that Z, is not almost surely zero. Next, we observe that we have
2 npH 2211 | Xk — Xpoa|P = 2n(=PH) (L Ekll | Xt — Xk—1|P), where we have just checked
that the latter factor always converges almost surely and in £ to Z,. Having this result at
hand, we are ready to prove that X is not in ¢S when H # %
1

First consider the case where H < 5. In this case, % > 2. If X € ¢S5, we have that

Ziil | Xir — Xt271|2 converges in probability to [X];. Therefore, by Exercise, 2.9, we find
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that Zin:l | Xin — th,lﬁ converges to zero in probability. As Zi;l | Xip — thil\% has
the same distribution as 5 Zill | X} — Xp_1|7, we conclude that this sequence converges
to zero in probability. However, this is in contradiction with what we have already shown,
namely that this sequence converges in probability to a variable Z E which is not almost

surely zero. We conclude that in the case H < %, X cannot be in cS.

Next, consider the case H > % Again, we assume that X € ¢S and hope for a contradiction.
In this case, 1 — 2H < 0, so 2"(1=2H) converges to zero and so, by our previous results,
2n(1=2H) (L Ziﬂzl | X} — X1_1]?) converges to zero in probability. Therefore, we find that
Ziil | Xin — Xt271|2 converges to zero in probability as well, since this sequence has the
same distribution as the previously considered sequence. By Theorem 2.3.3, this implies
[X]¢ = 0 almost surely. As ¢ > 0 was arbitrary, we conclude that [X] is evanescent. With
X = M + A being the decomposition of X into its continuous local martingale part and its
continuous finite variation part, we have [X] = [M], so [M] is evanescent and so by Lemma
1.4.9, M is evanescent. Therefore, X almost surely has paths of finite variation. In particular,
Ziil | Xip — Xip_ | is almost surely convergent, in particular convergent in probability. As
H < 1, we have % > 1, so by Exercise 2.9, Zi:l |XtZ — th71|% converges in probability
to zero. Therefore, 5+ Zill | X}, — Xp_1|# converges to zero in probability as well. As in
the previous case, this is in contradiction with the fact that that this sequence converges in
probability to a variable Z 1 which is not almost surely zero. We conclude that in the case
H< %, X cannot be in ¢S either. O

Solution to exercise 2.11. By It6’s formula of Theorem 2.3.5 and Theorem 1.4.8, we have

FW) - 1(0) = Z / STEEE S / o (W) AW W,

lel

Z 0 636 (%cJ W) ds,

and by our assumptions on f, this is equal to le Ot %(Ws) dW, since the second term
vanishes. Here, >0, J%(Wg) dW! is in eM,. Therefore, f(W;) — f(0) is in cM, and so

f(Wy) is a continuous local martingale. O

Il
M~
S—
g 8:
%i

Solution to exercise 2.12. Define the two-dimensional process X by putting X; = (¢, W).
With A; = ¢, we have [A, W], = 0, so It&’s formula of Theorem 2.3.5 shows

2
f&,Wy) — £(0,0) = /Og{(sW ds+/ fsW)dW +2/0 gé(s Ws)ds
Lor 19%f

2 02

AR

(s, W5) d+/8 (s, W) dW,,
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which is equal to fg g—i(s, W) dWy by our assumptions on f, and this is in eM,. Therefore,
f(t, W) is a continuous local martingale, and f(¢, W;) = f(0,0) + fot gi (s, Ws) dWs. O

Solution to exercise 2.13. Define X; = (My,[M];) and put f(z,y) = exp(z — 3y). Then f
is C2 with 5.4 (2,y) = 5 (z,y) = f(2,y) and 5L (z,9) = L f(z,y), and E(M), = f(X,), 50

1to’s formula yields

1

t 1 t
3 | ean.ann.+ 3 [ e, an,

(M), = 1+/t€(M)des2
0

t
1+/5(M
0

This proves that £(M) as defined satisfies the stochastic differential equation given, in par-

ticular £(M) is a continuous local martingale with initial value one as the stochastic integral
of a process with respect to an element of c M, is in cM,. It remains to show that £(M) is
the unique solution to the stochastic differential equation. Assume therefore given a process
Y € ¢S satisfying Y; = 1+ fot YsdM, up to indistinguishability. In particular, Y € cM,.
Define Z; = £(M);'Y;, we wish to show that Z is indistinguishable from one. Define
f(z,y) = £. The function f is C? on the open set (0, 00) x R, and the two-dimensional semi-
martingale (£(M),Y") takes its values in this set. Therefore, we may apply the local version of
Itd’s formula, Corollary 2.3.6, to (£(M),Y) and f. First note that as E(M) =1+ E(M) - M,
we find [E(M)] = [E(M) - M] = E(M)? - [M] and also

EM),Y]|=[EM) - MY -M]|=E(M)-[M,Y -M]=EM)Y - [M].
All in all, this yields

Zy = [f(E(M)e, V)
= /5 s+/0tg(1M)sdys
* 5/0 5(21\};8)3 d[“j(M)]s—;/Otg(le[S(M),Y]s—;/Otg(lwd[xe(m]s
- [ [ g [ 2 - [ 2

which is one. Thus, we conclude that almost surely, Z; = 1 for all ¢t > 0, and so £(M) and Y

are indistinguishable. This proves that up to indistinguishability, £(M) is the only solution
in'Y € cS§ satisfying ¥; = 1+ [ Y, d[M],. 0

Solution to exercise 2.14. Clearly, E(M) and E(N) are indistinguishable if M and N are
indistinguishable. Conversely, assume that £(M) and £(N) are indistinguishable. In partic-
ular, M — £[M] and N — 1[N] are indistinguishable. This yields M — N = ([M] — [N]) up
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to indistinguishability, so M — N is almost surely equal to an element of cM, with paths of
finite variation. Therefore, Lemma 1.4.5 shows that M and N are indistinguishable. g
Solution to ewercise 2.15. Defining f(z) = log(1 + z), we find that f'(x) = ? and that
f(x) = (1+z) By Theorem A.1.17 we then obtain log(1+z) = x4+ 2% + s(z), where the
remainder term satisfies s(z) = (f”(&) — f”(0))z? = (1 + f"(&))z? for some £ between zero
and z, depending on x. We may use this to obtain

on
7' = exp <Z log(Myp — My 1)>
k=1

1
exp <Z My = My, + 5 (Myy = My ) + (M — Mt';sl))

2" 2"
1
= exp <Mt + 5 Z(Mtg — Mt271)2 + Z S(Mtg — Mtg 1)) .
k=1

k=1

By Theorem 2.3.3, %Ziil(MtZ — M;»_|)? converges in probability to 1[M];. In order to
show the result, it therefore suffices to show that Eizl s(Mp — Mgy ) converges to zero

in probability. To this end, note that for some £ on the line segment between zero and
Mtg — MtZ_l’ we have

2m 2™

o0 =) = 32 (1 ) O~ M)

k=1 k=1
on .
< 1 - (M — My )?
k_1< (1 + | Mgy — My, [)? ) o
-
< max(l— (14 |My — My D7) (Myy — My )?
= k=1

Therefore, it suffices to prove that the latter converges to zero in probability. To this end,
let ¢ > 0 and fix w. As M has continuous paths, M has uniformly continuous paths on
[0,], and therefore, for some n large enough, [Mn — M;n | < ¢ for all k < 2", showing that
maxy<gn (1 — (14 [Myp — My [)7%) <1— (1 —¢)?. Thus, the maximum tends pointwise
to zero, in particular it converges to zero in probability. As Zil1(Mt2 - Mt;}_l)z tends to
[M]; by Theorem 2.3.3, we conclude that Zi; s(Myp — Myn ) converges in probability to

zero, and the result follows. O

Solution to ewercise 2.16. From the expression £(M), = exp(M; — £[M];), we see that &(M)
is nonnegative. From Exercise 2.13, we know that £(M) is a continuous local martingale.
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Tn

Letting (73,) be a localising sequence such that £(M)* is a martingale, we may apply Fatou’s

lemma to obtain
E(E(M)|F,) = E(liminf (M) |F,) < liminf E(E(M)|F,)
= liminf (M) = £(M),.

Therefore, £(M) is a supermartingale. In particular, since £(M) has initial value 1, we
conclude EE(M); < 1. Therefore, £(M) is bounded in £!, so from Theorem 1.2.4, we find
that £(M) is almost surely convergent. By Fatou’s lemma, EE(M) o < liminf; EE(M): = 1,
as desired. O

Solution to exercise 2.17. We first prove the criterion for £(M) to be a uniformly integrable
martingale. Assume that EE(M)s = 1, we will show that £(M) is uniformly integrable.
By Exercise 2.16, £(M) is a nonnegative supermartingale. Therefore, Theorem 1.2.7 shows
that for any stopping time T that 1 = EE(M)e < EE(M)r < 1. Thus, EE(M)r =1
for all stopping times T, and so, Lemma 1.2.9 shows that £(M) is a uniformly integrable
martingale. Conversely, assume that £(M) is a uniformly integrable martingale. Theorem
1.2.5 then shows that £(M); converges to £(M ) in L1, and so EE(M) o, = limy EE(M); = 1.
This proves the criterion for £(M) to be a uniformly integrable martingale.

Next, we consider the martingale result. From Lemma 1.2.9, we find that £(M) is a mar-
tingale if and only if £(M)? is a uniformly integrable martingale for all ¢ > 0. From
E(M), = exp(M; — £[M];), we note that E(M)" = E(M?"). Therefore, £(M) is a martin-
gale if and only if £(M?) is a uniformly integrable martingale for all ¢ > 0. This is the case
if and only if EE(M")o =1 for all t > 0. As E(M?)o = E(M)y, the result follows. O

Solution to exercise 2.18. As f is adapted and continuous, f € J by Lemma 2.2.5. Put
tp = kt27". By Theorem 2.3.2, we find that Zill fg_ 1) (Win — Win ) converges in
probability to fg f(s)dW,. However, the finite sequence of variables Win — Wyr ~ for
k=1,...,2" are independent and normally distributed with mean zero and variance t27™.
Therefore, we find that Zil1 ftr_1)(Wip — Win ) is normally distributed with mean zero
and variance 27" Zi:l F(t7_1)?. As f is continuous, this converges to fot f(s)?ds. There-
fore, Ziil ftg_1)(Wip — Wyn ) converges weakly to a normal distribution with mean
zero and variance fg f(s)?ds. As this sequence of variables also converges in probability
to fot f(s)dWs, and convergence in probability implies weak convergence, we conclude by

uniqueness of limits that fg f(s) dWj follows a normal distribution with mean zero and vari-
t 2
ance [, f(s)*ds. O

Solution to exercise 2.19. By Itd’s formula of Theorem 2.3.5, as well as Lemma 2.1.8 and
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Lemma 2.2.7, we have
[f(X), 9] = [f'(X)-X+3f"(X) [X].g'(V)- Y + 59" (Y) - [V
— X)XV t—/ F(X)g (V,) d[X, Y]s,

up to indistinguishability. This shows in particular that with W an F; Brownian motion,
(W), = [y (pWr=1)2d[W], = p? fy WP~V ds. O

Solution to exercise 2.20. In the case where ¢ = j, we may apply It6’s formula with the
function f : R — R defined by f(x) = 22 and obtain (W*)? =2 fo WidW! +t. Lemma 2.1.8
then shows that [(W?)?], = 4[W* W], = élf()t(WSi)2 ds. Next, consider the case where i # j.
Applying Ito’s formula with the function f : R? — R defined by f(z,y) = zy, we have

t t
Wiw} :/ W;’deJr/ Wiawe.
0 0
Using Lemma 2.1.8 and Lemma 2.2.7, we then obtain
(WiWi], = [W' Wi, +2W"- W7, W7 .- W, + W7 Wi,
t t t
[oviras e [wiwiatwil s+ [ovnzas
0 0 0

/ (Wi ds + / Wiy as

O

Solution to exercise 2.21. Define H; = sgn(W;), we then have X = H-W. Fix t > 0. By
Exercise 2.6, H - W stopped at any deterministic timepoint is in cM?2. As X, thus is square
integrable and W has moments of all orders, the Cauchy-Schwartz inequality shows that both
XW; and X;W? are integrable.

As for the values of the integral, first note that as H - W and W are both in cMy, it holds
that (H - W)W — [H - W, W] is in cM, as well. This same property holds for W as well.
Therefore, using Lemma 1.4.10, (H - W)W — [H - W, W] is in ¢ M, and so we obtain

t t
EXW,=EH W)W, =E[H -W,W]|; = E/ H,d[W,W]s = E/ Hgds.
0 0
Now, as H is bounded by the constant one, we may interchange integration and expectation

in the above. And as Wy for any ¢ > 0 has a distribution which is symmetric around zero,
we find Ef(;5 H,ds = fot EH,ds = 0, proving that EX;W; = 0.
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As regards the other expectation, we have by Itd’s formula that W2 = 2f0t WedW, + ¢t
up to indistinguishability. Again by Exercise 2.6, we find that W - W € c¢M and that this
process is in cM? when stopped at any deterministic timepoint. Therefore, by Lemma 1.4.10,
(H-W)(W-W)—[H-W,W-W]is in cM, and so, using Lemma 2.2.7 and that H,W; = |W|,

t
EX,W2 =2E(H -W),(W-W), + tEX, = 2E[H -W,W - W], = 2/ E|W,|ds.
0

Now, W follows a normal distribution with mean zero and variance s, so E|Wy| = \/s+/2/7.
Therefore, we obtain 2f0tE\Ws| ds =24/2/m fot V5ds = 24/2/m2t3 = 23(3/7)"'t3, which

proves the result. O

Solution to exercise 2.22. Let X = N + B be the decomposition of X into its continuous
local martingale and continuous finite variation parts. We first define f : R?2 — R by
putting f(z,y) = exp(x — %y), f is then C? and satisfies %f(m,y) = % = f(z,y) and
g—if(x,y) = —% (x,9). Then M = f(aX;,a?A;), so Applying 1t6’s formula, we obtain

Mta = f(OZXt,Olet)

t a2 t Ol2 t
= 1+a/ Mdes——/ MgdAer—/ M2 d[X],
0 2 0 2 0

t t 2 t 2 t
- 1+a/ MedN, + a/ MS"dBS—i—a—/ MS"‘d[X]S—a—/ MedA, ).
0 0 2 0 2 0

As M® and N both are in cMy, we may apply Lemma 1.4.5 to show that the process
a [T M2 B+ [ M&d[X],— % [T M2 dA, is evanescent, so that M = 1+a [} M2 dN,
and [M“]; = o? fg(Mg)Q d[N]s. Applying the local version of Ito’s formula, Corollary 2.3.6,
with the mapping = +— log z defined on (0, c0), we then obtain

o2 b o L[t o o

s
This shows aB = %Z(A— [N]) = %Z(A —[X]). In particular, for any a # 0, B = § (A - [X]).
This implies that [X] and A are indistinguishable and that B is evanescent, so X € cM,. O

Solution to exercise 2.23. By Itd’s formula, f(W;) = o + f(f fr(Wy)dWs + %fé f" (W) ds.
We will prove the formula for E f(W;) by arguing that the integral with respect to Brownian
motion is in cM and that interchange of integration and expectation is allowed in the final

term. To prove the first claim, first note that

[/ ()]

IA

/ ") dy] </ "y

ja )
C + exp(By) dy = C|z| + 3
0

IN

(exp(Bfz]) = 1),
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so we also have |f'(z)] < C* + exp(8*|z|) for some C*,3* > 0. Now, using that for any
variable X which is standard normally distributed, Eexp(tX) = exp(3t?) for t € R, we
obtain by Tonelli’s theorem that

" 2 = S t ex 2ds
B[ rwypas - /OEf( s < [ RO+ explaW D)

IN

t t
/ 4C? + 4E exp(28|W]) ds g/ 4(1 + C?) + 4E exp(28W;) ds
0 0

¢
= 4(1+C’2)t+/ 4exp(2s4?) ds
0

which is finite, and so Exercise 2.6 shows that fot "(Ws) dWsy is in cM. From this we conclude
Ef(W)) =a+iE fo f"(Wy)ds. By calculations analogous to those above, we also conclude
that Efo |f”(Wy)|ds is finite, and so we finally obtain Ef(W;) = a + fo Ef"(Ws)ds, as

desired.

As for the formula for EW/ | we note that for p > 2, the mappings x +— P clearly satisfy the
criteria for exponential growth considered above. We therefore obtain for any p € N with
p > 2 that EW} = 1p(p fo EWP~2ds. We prove the formulas for EW? by recursion.
As EW; =0 for all t > 0, it follows from the formula above that EVpri1 =0forallpeN
and t > 0. As for the moments of even order, we know that EW? = 1 for all ¢t > 0. Assume
inductively that EW.* = t* [[’_,(2i — 1) for all t > 0. The formula above then shows

1 LT
EWt2(p+1) - 5(2p+2)(2p+1)/ sPH(2i—1)ds

= (f[ 221)1(2p+2)(2p+1) iltlﬂrl

p+1

= Pt (ﬁ(2i - 1)) (2p+1) =t J] (2

as desired. O

Solution to exercise 2.24. By Theorem 2.3.3, we know that Zill(Mtk — My, ,)? converges
to [M]; in probability. Therefore, by Lemma A.2.5, we have convergence in £! if and only
if the sequence of variables is uniformly integrable. To show uniform integrability, it suffices
by Lemma A.2.4 to show boundedness in £2. To prove this, we first note the relationship
B(S i, (Myy, = My, )2 = E Y5y (Myy, = My, )4 E S (My, — My, )2 (My, = M, )2,
With C > 0 being a constant such that |M;| < C for all ¢ > 0, we may use the martingale
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property to obtain

2m 2m
EZ(Mtk - Mtk—1)4 < AC? Z E(Mtk - Mtk—1)2
k=1 k=1
2’!1
= 4C? Z EM; + EM;_ —2EM;, M, _,
k=1
o

= 4C?Y EM} — EM}  <4C.
k=1

Furthermore, we have by symmetry that

on_1 on
EZ(Mtk - Mtk—1)2(Mti - Mti—l)Q =2E Z Z (Mtk - Mtk—1)2<Mti - Mti—1)27
k#i k=1 i=k+1

and this is equal to 2F Zi:}l(Mtk — My, ,)? Zikﬂ E((M;, — My, ,)?*|F,), since M is
adapted. Here, we may apply the martingale property to obtain

27L 2’71
Z E((Mtz - Mti—1)2‘ftk) = Z E(Mt% - 2Mtthi—1 + Mt21171|ftk)
i=k+1 i=k+1
on
= Y EM; -M;_|F,)=EM} - M;|F,) < C?,
i=k+1

which finally yields

2" —1

EZ(Mtk - Mtk—l)Q(Mti - Mti—l)Q 2C2E Z (Mtk, - Mtk—l)2
k#i k=1

2" —1

= 2072 Z E(M? —2My My, , + M)
k=1
2" —1

= 2C° ) EM} - EM;  <2C".
k=1

IN

Thus, we conclude E(Zi:l(Mtk — My, ,)?)? <6C*, and so the sequence is bounded in £2.

. . . on
From our previous deliberations, we may now conclude that > ;_, (M, — M, ,)? converges

in El to [M]t [l

Solution to exercise 2.25. As sin W 4 cos Wy is continuous and adapted, it is in J by Lemma
2.2.5, so the stochastic integral is well-defined. As |sinz+cosz| < 2, fg (sin W + cos W)? ds
is finite, so by Exercise 2.6, we find that X is in cM. Therefore, EX; = 0. Furtheremore,
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Exercise 2.6 also shows that EX? = Efot(sin W + cos Wy)2ds. For any t > 0, the Fubini
Theorem yields

t t
E/ (sin Wy + cos VVS)2 ds = E/ sin? Wy + cos® W + 2sin Wy cos Wy ds
0 0

t
= t+/ FE sin Wy cos Wy ds.
0
Noting that sin(—z) cos(—z) = — sin x cos z, the function x — sin x cos z is odd, and therefore
E sin W, cos W, = 0. Thus, we conclude that EX; = 0 and EX}? = t. O

Solution to exercise 2.26. As sin Wy is continuous and adapted, Lemma 2.2.5 shows that
the stochastic integral is well-defined. As |sin Wy| < 1, we find that fot sin? W ds is finite.
Therefore, Exercise 2.6 shows that X € cM and that the stopped process X' is in cM? for
all t > 0. In particular, the covariance between X, and X; exists. As X € cM, we have
Cov(Xs, X¢) = EX:X;:. Now note that by Lemma 2.2.7, [H - W, K - W]; = fot H,K,ds for
any HLK € 3. If H-W and K - W are in cM? when stopped at ¢ > 0, we may then use
Lemma 1.4.10 to obtain E(H - W)(K - W), = E[H -W,K - W], = Ef(;5 H;Ksds. Applying
this reasoning to the case at hand, we find for 0 < s < t that

t 5
E </ sin W, qu) </ sin W, qu)
0 0
t ¢
FE </ sin W, qu) </ 1jo,sp sin Wy, dI/Vu)
0 0

t s
E / sin W, 1o ¢ sin Wy, du = / E'sin® W, du.
0 0

EX X,

By the double-angle formula, cos 2z = cos® x —sin?z = 1 — 2sin® z, so sin® z = % — % cos 2.

Therefore, we obtain Fsin? W, = % — fE cos 2W,,. Now recall that cosine is given by its

Taylor series cosx = Zfzo(fl)”x%(ﬂn).) , with the series converging absolutely for all

x € R. We have that |Z’;:0(—1)"x2"((2n)!)_1| < S,z ((2n)) ! < exp(|z|), so as
E exp(|W,|) is finite, we obtain by the dominated convergence theorem that

k
FEcos2W, = FE lim Z(

k— o0
n=0

—1)"(2W,)*"
(2n)!

k n
M S Bl S
n=0

k—o0
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With the notational convention that the product of zero factors equals one, we have

oo

T SMCLARI S S o GO Vi S o (Y

= ) e CLO P

n=0

S G 20 L RN G L
- U Fmm o = 5 ———u" = exp(—2u).
ngo (2n)! Hi:1(2@) 2 n;o nl2n
All in all, we conclude E'sin® W, = % - %exp(—?u), and we then finally obtain
I 1 11
COV(XS7Xt) = 5 ) 1-— eXp(—2u) du = B S — 5 — 5 exp(_2s)
1 1
= % e + 1 exp(—2s)

Solution to exercise 2.27. Since we have
0 1 02 1 1
<8t + 28962) exp(5t)sinz = B exp(4t)sinz — 5 exp(5t)sinz = 0,

it follows from Exercise 2.12 that the first process is in cMy. As for the second process, we
obtain by direct calculations that

0 0
a(x +t)exp(—z — 1t) = —szexp(—z—it)+ atexp(—x - 1t)
= —lzexp(—z — }t) +exp(—z — 5t) — Ltexp(—z — $1)
= exp(—z — it) — J(z +t)exp(—z — 1),
and
0 1 0? 1 1
@(x +t)exp(—x — 5t) = 2% exp(—x — 5t) | +texp(—x — 5t)
0
= 5 (exp(—z — 4t) — zexp(—z — 1)) + texp(—z — $t)
= —2exp(—z — 3t) + (t + z) exp(—z — 1t),
so we conclude that % + %%(m +t) exp(—z — $t) is identically zero as well, and so Exercise
2.12 shows that (B; + t) exp(—B; — 1t) is in cM, as well. O

Solution to exercise 2.28. Defining p(t,x) = x® — 3tz and q(t,x) = 2* — 6ta? + 3t2, we have

op  10* 1 _
5t Toar = etal6n) =0
1 2
@+,@ = —6x2+6t—|—%(12$2—12t)=0,
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so it follows directly from Exercise 2.12 that both processes are in cM,. In order to show

that the processes are in c M, we recall that Exercise 2.12 also yields

t
Ip
t,Wy) = — (s, W5)dW;
pewy = [ Few)
t aq
tL,Wy) = — (s, W) dWs.
q(7 t) 0 O (Sa )
Using Exercise 2.6, we then obtain the result. 0

B.3 Hints and solutions for Appendix A

Hints for exercise A.1. For the equivalence between uniform integrability and £! boundedness
and ¢ = 0, use Lemma A.2.3. For the asymptotic bound on F|X,, —X| when X, L X and X
is integrable, fix ¢ > 0 and write E|X,, —X| = El(|x, - x|<¢)|Xn = X[+ E1(|x, - x|>)| Xn—X]|.
Prove the result by considering n so large that P(|X,, — X| > ¢) <e. o

Hints for exercise A.2. Define M,, = %22:1 Xy and put F, = (M, My41,...). Show
that (M,,) is a backwards martingale. To do so, first note that we have the relationship
E(nMuy|Fos1) = (n+1)My41 —nE(Xp41|Fnt1), so that the backwards martingale property
may be obtained by calculating E(X,4+1]|Fn+1). To obtain an experession for the condi-
tional expectation, first show E(X,i1|Fnt1) = E(Xpt1|Mns1). Afterwards, prove that
E(Xp41|Mpt1) = E(Xg|M,41) almost surely for all ¥ < n + 1 and use this to identify
E(Xn+1|Mn+1)~

Having shown that (M,,) is a backwards martingale, the backwards Martingale Convergence
Theorem shows that M,, converges almost surely and in £' to some M,,. Use Kolmogorov’s

zero-one law to argue that M, is almost surely equal to &. o

Hints for exercise A.3. For any € > 0, use Lemma A.2.3 to obtain a § > 0 such that
whenever P(F') < ¢, Elp|X;| < e. Show that this J satisfies that for any X € A and
P(F) <§, Flp|X| < 2e. o

Hints for exercise A.4. Use uniform integrability to find an increasing sequence (M) of
positive numbers such that with X% = X,,1(x, |<x,), it holds that sup,, E|X, — X}| <27
Use Lemma A.2.7 to recursively define sequences (Y,¥),,>1 with Y,* being a finite convex
combination of elements in {X* X* 415-- -} such that Y converges to Y*. By recursively

using the convex weights from the k’th sequence to obtain the weights for the k£ + 1’th
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sequence, ensure that E|Y* — Y*+1| < 217k and show that this implies that (Y*) converges
to Y in £! for some integrable Y. Having now defined sequences (Y,*) such that Y,* is a
finite convex combination of elements from {X,,, X,,11,...} converging to Y* such that Y*
also converges to Y, use uniform integrability again to obtain a sequence of variables (Y,)
with Y;, being a finite convex combination of elements from {X,, X,,1+1,...} such that Y,

converges to Y. o

Hints for exercise A.5. Consider first the square bracket process [M]. To prove the martingale
property of M? — [M], apply the telescoping sum equality Mgﬂ = Zii M} — M} | and
calculate E(M2,, — [M],+1|F,) manually. In order to obtain uniform integrability, use
Lemma A.3.4 to obtain that A2 is uniformly integrable. Use the monotone convergence
theorem and Lemma A.2.4 to show that [M] is uniformly integrable as well, leading to
uniform integrability of M? — [M]. As regards the angle bracket process (M), show that

[M] — (M) is a martingale and use this to obtain the desired results. o

Hints for ezercise A.6. Consider first the case p = 1. Prove that P(T, = T_,) = 0 by
showing that P(T, = T-, = o0) is zero. This may be done by first applying the Borel-
Cantelli Lemma to show that |Z,,| > k infinitely often with probability one. Having obtained
this, we find P(T, > T—,) = 1 — P(T, < T—,). Use a symmetry argument to show that

P(T, <T-,) = P(T, > T-,), implying P(T, > T_,) = 3.

Regarding the case of p # %, define M,, = ¢?» and F, = o0(X1,...,X,). Show that M
is a martingale and use the strong law of large numbers to show that M is almost surely
convergent to zero. Use the optional sampling theorem on T, A T_, to obtain an equation
for P(T, > T_,) yielding the desired result. o

Hints for exercise A.7. In order to prove the implication that whenever X; converges in £!
to X, (X;) is uniformly integrable, apply Lemma A.2.3. To do so, pick € > 0. Take u > 0 so
large that E|X; — X| < §. Use uniform continuity of ¢ = X; on compact intervals to obtain
n > 0 such that whenever s, € [0,u] with |t — s| <7, then E|X; — X,| < §. Combine these
results and the fact that finite families of variables are uniformly integrable to obtain the

result. o
Hints for exercise A.8. Fix p > 1. With X being the limit of X,, in probability, show that X
can be taken to be bounded and use Lemma A.2.4 and Lemma A.2.5 to obtain convergence

in LP. o

Hints for exercise A.9. Apply Fatou’s lemma to the sequence (A — X, 1(x,<x))n>1, and
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rearrange to obtain a result close to the objective. Apply uniform integrability to finalize the

proof. o

Solution to exercise A.1. First assume that the integrability index is zero and that (X,,) is
bounded in £!'. Then, for any £ > 0, it holds that ¢ < ¢ and so there exists § such that
SUPp. p(F)<s SUPp>1 B1r|Xy| < 6. In particular, for any F' € F with P(F) < d, we have
Elp|X,| < e. By Lemma A.2.3, (X,,) is uniformly integrable. Conversely, assume that
(X,) is uniformly integrable. Using Lemma A.2.3, we know that for any ¢ > 0, we may
find § > 0 such that whenever P(F) < §, E1p|X,| < e for all n > 1, so that in particular
SUPp(Fy<s SUP,, E1p|X,| < e. Therefore, ¢ < ¢, and as € > 0 was arbitrary, ¢ = 0. Lemma
A.2.3 also shows that (X,,) is bounded in £!. This shows that (X,,) is uniformly integrable
if and only if ¢ = 0 and (X,,) is bounded in £*.

Now assume that X,, Ly X. Fixe> 0, we then obtain

limsup F|X, — X| = limsup Fl(x, —x|<e)|Xn — X| +limsup El(|x, - x|>e)| Xn — X]
< e+ limsupEl(‘Xn_X‘>e)|Xn — X|

< e+ limsup El(x, —x|>e)| X| + limsup E1(x, - x|>e)| Xn|-

Now, as X,, — X, it holds that P(]X,, — X| > ¢) tends to zero. And by Lemma A.2.4, as X
is integrable, the one-variable family {X} is uniformly integrable. Lemma A.2.3 then shows
that lim sup,, F1(|x, —x|>¢)|X| = 0. Asregards the final term in the above, we know that for n
large enough, P(|X,—X| > ¢€) < ¢, and so limsup,, El(|x, - x|>¢)|Xn| < supp(p)<. E1p|Xn|.
All in all, we obtain limsup,, E|X,, — X| < e + supp(p)<. E1r|X,| for all positive e. Taking
infimum over all such e, we obtain limsup,, F|X,, — X| < ¢, as was to be proven. O

Solution to exercise A.2. Define M,, = % 22:1 Xy and put F,, = 0(M,,, Myyv1,...). We claim
that (M,,) is a backwards martingale with respect to (F,). Clearly, M,, is F,, measurable,
and we have

E(nMn|]:n+1) E((?’l + 1)Mn+1 — an+1|.Fn+1)

(n+1)Mpp1 — nE(Xn+1][Fni1)

In order to calculate the conditional expectation, note that M, +; = RLHM” + %HX,LH.
Therefore, we obtain F,, = o(M,, Myt1,...) = o(My, Xnt1, Xnte,...) and in particualar
Fot1 = 0(Myt1, Xny2, Xnts,...). Therefore, the sets of type AN B where A € o(M,41)

and B € 0(Xp42, Xn+3,-..) form a generating class for F,, 11, stable under intersections, and



B.3 Hints and solutions for Appendix A 125

for such A and B,

ElanBE(Xnt1|Fnt1) = FElanpXni1 = ElplaXpi1 = P(B)E1aXp 4
- P(B)E].AE(Xn+1‘Mn+1) - E]-AOBE(Xn+1|Mn+1)'

As the set of F € F,11 such that E1pE(X,11|Fp+1) = FlpE(Xp41|Mp41) is a Dynkin
class, Lemma A.1.19 shows that for all F € F, 11, E1p E(X,11|Fnt1) = E1p E(Xpq1|Mpt1),
so that E(X,11|Fnt1) = E(Xnt+1|Mnt1). Now note that for 1 < k < n + 1, the vari-
ables (X, M,+1) have the same distribution. In particular, for any A € o(M,11), we find
El14E(X;|Myy1) = F14X, = E14X,41 = F14E(Xp41|Mp41), allowing us to conclude
E(Xpt1|Mpt1) = BE(Xg|My4q) for all E < n + 1, and therefore we obtain

n+1
E(Xn+1|Mn+1) = m ]; E(Xk|Mn+1) = E(Mn+1|Mn+1) = Mn+17
finally showing that E(nMy|Fn+1) = nMp41, so that E(M,|Fni1) = M, and so (M,) is
a backwards martingale. By the backwards Martingale Convergence Theorem A.3.6, M, is

convergent almost surely and in £! to some variable M.

It remains to prove that M, is almost surely equal to £&. To this end, first note that for
any m > 1, we have lim,, M,, = lim,, = > | X}, = lim,, + > h—ma1 Xk, 50 we conclude that
Moo € 0(Xm, Xins1, - . -) for all m. Thus, M, is measurable with respect to the tail-o-algebra
NS ,0(Xn, Xnt1,--.) of (X,,). By Kolmogorov’s zero-one law, every element of this o-algebra
all have probability zero or one, and therefore P(M, € A) is either zero or one for all A € B.
We claim that this implies that M, is almost surely constant. To see this, note that for any
t € R, P(My < t) is either zero or one. Letting o = sup{t > 0 | P(M < t) = 0}, we find
that P(Ms < o) =0 and P(My, < a+¢) =1 for all £ > 0. By the continuity properties of
probability measures, P(M,, < a) = 1, and we conclude that P(M. = a) = 1. Therefore,
M, is almost surely equal to .. Therefore, from the convergence of M,, to M, in L', we
obtain in particular that « = EM,, = lim,, EM,, = £, so M, is almost surely equal to &, as
desired. This proves that %Mn converges to ¢ almost surely and in £1. O

Solution to exercise A.3. We use Lemma A.2.3. Pick ¢ > 0 and let § > 0 be such that
whenever P(F') < §, then Elp|X;| < € for all i € I. Let F' € F with P(F) < § be
given, let X € A and let (X;,) be a sequence in (X;);c; converging in £! to X. Then
E||X|—X;,|| < E|X — X, | by the reverse triangle inequality, so | X;, | converges to |X| in
L'as well, and so 1p|X;,
may then pick m so that whenever n > m, Flp|X| < e+ Flp|X;, |, and for such n, we find
El1p|X| <e+ Elp|X;,| < 2e. Also, as X;, converges in L to X, E|X| < sup,c; E|X;|, so
A is bounded in £!. By Lemma A.2.3, A is uniformly integrable. U

| converges to 1| X| in £!. In particular, the means converge. We
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Solution to exercise A.J. From Lemma A.2.7, we know that the result holds in the case
where (X,,) bounded in £2. We will prove the extended result by a truncation argument. By
uniform integrability, limy o sup,, E[ X, —Xn1(|x,,|<n)| = imx 00 sup, E|X,[1(x, |>x) = 0.
Therefore, there exists an increasing sequence (\g) tending to infinity such that by defining
X} = X,1(x, <x), we have sup,, E|X,, — XF| <27%. Then (X}),>1 is a sequence bounded
in £2 for any k. We will recursively define sequences (Y,*) such that Y;* is a finite convex
combination of elements in {X,,, X,,11,...} and such that Y,* converges in £! to Y* where

(Y*) is a sequence itself convergent in £!. This will allow us to prove the desired result.

By Lemma A.2.7, there is a sequence (Y,!) such that Y,! is a finite convex combination of
elements in {X}, X!, ,...} and such that Y,! converges in £? to some variable Y'!, in par-
ticular we also have convergence in £'. Assume now that the k’th sequence (Y,F),>; with
corresponding £' limit Y* has been defined, we construct the k + 1’th sequence. Since Y*
is a finite convex combination of elements in {X¥, XF |, ...}, Y} = Efi’ﬁn()\ﬁ),Xf for some
convex weights. Define RET! = ZQEL()\’;)Z-X;“H, then (RET1) is a pointwisely bounded se-
quence, in particular it is bounded in £2. Therefore, again applying what was already proven,
there exists a sequence (Y,**1) of variables with Y,**! being a finite convex combination of el-
ements in {RET1 RFTL 1 converging to some limit Y*+1, Thus, for some convex weights,

n+1>
Vo] ME+L Kk . .
we have Y = SV k) REFE = ST (k) 012, ()X I and in particular, Y+

is a finite convex combination of elements in { X+ X*+1 1. Now, as we have

MEH MEF Myt
EWF = 3 )y = B Y (), (vh - vh)| < 3T (uh) EYE - vE
j=n j=n j=n

k+1
we find that the sequence ZJM:"n (k) ijk also converges to Y*. Thus, summing up our re-
ilte SSMA Tk K (yky. yk+1 i ol k1 Myt g K} \kY yk
sults, > () 2223 (A])i X converges in £ to Y and Y. (k) 22,25 (M) X
converges in £! to Y*. Therefore,

ME+ K
EIYE -y I = dmB| 3 (uh); Y OR(xF - X}
Jj=n 1=7j
METT Kj
< I N ky. k_ xk+1
S hTILIl Z (Nn)j Z()‘] )lE|Xz Xz |7
j=n =]

and as sup,, B|X* — X*¥+1| <sup,, B|X,, — X*| +sup,, E|X,, — XF*'| < 2=(¢+D we conclude
E|Y? — Yk+1| <217k In particular, (Y*) is a Cauchy sequence in £!, therefore convergent
in £! to some integrable variable Y. We have now proven the existence of sequences (Y,¥),,>1
such that V¥ € conv{XF Xk , ...} and such that Y,* converges in £! to Y*, where Y*
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converges in £! to Y. We will now use these results to obtain a sequence (Y,,) such that Y,, is
a finite convex combination of elements in {X,,, X, 11,...} and Y,, converges in L' to Y. To
K

this end, recall that for any m and k, we have Y, = >"."m (AF ), X for some convex weights

i=m

(A ),. Define Z% by putting Z¥ = 5257 (Ak ), X;, we then obtain

ElY —ZF| < ElY —Y¥+ElYF—YE|+E|YE - ZF|
K,
< EBlY =YH+EYF =Y+ Y (AL )EIX] - X

< ElY -YM4+EYF-YE|+ sup E|X;|1( x> k)-

By our previous results, the first term tends to zero as k tends to infinity, and by uniform
integrability, the last term tends to zero as k tends to infinity. Therefore, we may for each
n select k, so large that the first and last terms are less than % each. Then, we may fix
my, > n such that E|Y*» — YEn| is less than 1. We then obtain E|Y — ZF | < 3 where
Zkr is a convex combination of elements from {X,,, X;,41,...}. This concludes the proof. O

Solution to exercise A.5. We first consider the case of the square bracket process. By

inspection, [M] is increasing and adapted. Since M is zero at zero, we obtain for n > 1,

M2 =M, = > M=M= (My— M)
k=1 k=1
= > MJ—M; =Y M} —2MM_y+ M,
k=1 k=1
= 2 My (Mg — My_),
k=1

and in particular,

E(Mi-H — [M]p1|Fn) = Mﬁ = [M]n + 2E(My (M1 — My)|Fn) = Mﬁ — [M]a,
As we also have E(M? — [M]1]Fo) = 0, M? — [M] is a martingale with initial value zero. In
order to obtain uniform integrability, note that by Lemma A.3.4, M,, is convergent almost
surely and in £? to some variable M., and EM2 is finite. As M? < M2 for all n, Lemma
A.2.4 shows that (M?),>1 is uniformly integrable. Furthermore, as [M] is increasing, [M]
converges almost surely to a limit [M]s in [0,00]. By the monotone convergence theorem,
E[M)s = lim, E[M],, = lim,, EM?2 < EM2 which is finite. Thus, [M]. is integrable.
As [M],, < [M]s for all n, we find, again by Lemma A.2.4, that ([M],)n>1 is uniformly
integrable, and so M? — [M] is uniformly integrable.
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We next turn to the case of the angle bracket process. Clearly, (M) is increasing. Further-

more, using what we already have shown, we find that for any n,

E(M]ns1 — (M)n1|Fn) = E([M]nsalFn) — (M)nia

= B(Mp|Fa) = (M — [Mnga|Fa) — (M)
= B(My,|Fa) — (M — [M]n) = (M)nta
= B(Mj, — M3|F) + My = (M)na

= [M], — (M)y,

and as E([M]1 —(M)1|Fo) = 0, we find that [M]— (M) is a martingale with initial value zero.
Therefore, as M2 — [M] is a martingale with initial value zero, M2 — (M) is a martingale with
intial value zero as well. As regards uniform integrability, we find that as in the previous
case, it suffices to check that (M) is uniformly integrable. As (M) is increasing, it has an
almost sure limit (M), and the monotone convergence theorem along with the martingale
property of [M]— (M) shows that E{M)., = lim,, E{(M),, = lim, E[M],, = E[M]s, which is
finite. Thus, (M) is integrable, and by Lemma A.2.4, (M) is uniformly integrable, showing
that M? — (M) is uniformly integrable. O

Solution to exercise A.6. First consider the case p = % We first show P(T, = T_,) = 0.
Note P(T, =T-4) = P(T, =T_, = o) = P(V n:|Z,| < a). For any k, it holds that
P(Znitye — Zok = k) = P(Zy = k) = P(X; = 1,...,X; = 1) = 27" and the sequence of
variables (Z(n41)k — Znk)n>1 are independent. Therefore, as > P(Zngy1yk — Znk = k)
is divergent and the events (Z(,41)x — Znr = k) are independent, the Borel-Cantelli lemma
shows that Z, 1)y — Znx = k infinitely often with probability one. As this holds for all
k, we also have that for all k, |Z,| > k infinitely often with probability one, in particular
P(Vn:|Z, <a)=0andso P(T,=T_,) =0.

We may then define the auxiliary variables X/, = —X,,, Z, = >_/'_, X}, and the stopping
times T, = inf{n > 1|Z], = a}, T,— = inf{n > 1|Z] = —a}. As (Z,),>1 has the same
distribution as (—Z,,)n>1, we then find that (7),7” ,) has the same distribution as (7,,7_,).

However, we also have T, = T_, and T" , = Ty, so

P(T,>T..) = 1—P(T,<T.)=1-P(T,<T, )=1—P(T ,<T.)
= 1-P(T o<T)=1-P(T,>T.,),

so P(T, >T-,) = 3.

Next, we consider the case p # % Our plan is to identify a martingale related to the

sequence (Z,) and use the optional sampling theorem. Note that we always have ¢ > 0, so
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we may define a process (M,,) by putting M,, = c¢?». Putting F,, = o(X1,..., X,), we claim
that (M,,) is a martingale with respect to (F,). As F,, = 0(Z1,...,2Z,) as well, M,, is F,
measurable. As |Z,| < n, we find |M,| < ¢" and so M, is integrable. Furthermore, as X, 11
is independent of X1, ..., X, E(M,1|Fn) = M, E(cX"+|F,) = M,(cp+c (1 —p)) = M,
1z

proving that (M,,) is a martingale. Furthermore, by the strong law of large numbers, -

converges almost surely to 2p — 1, the common mean of the elements of the sequence (X,,).
Therefore, if p > %, Zn 22 00 and as ¢ < 1 in this case, M,, == 0. If p < %, Zpn 25 —o0,
and in this case ¢ > 1, so M,, == 0 as well. In both cases, M,, converges almost surely to its

limit M., which is zero.

We are now ready to prove the results on the stopping times. We first argue that we never
have T, = T_,. As noted before, if p > %, Zn 2% 00 and if p < %, Zn 23 —00, so we always
have that either T, or T_, is finite. Therefore, if T, = T_,, we have that both are finite and
so a = Zr, = Zr_, = —a, which is impossible. Therefore, P(T, =T_,) = 0.

Now put S = T, AT_,. We then have Mg = ¢®* when T, < T_, and Mg = ¢~® when
T_, < T,. In particular, |[Mg| < ¢*, so Mg is integrable and as P(T, = T_,) = 0, we find
EMg = ¢*P(T, < T_4) + ¢ *P(T-, < T,). As we also have |M,rs| < ¢, applying the
dominated convergence theorem and the optional sampling theorem allows us to conclude
that EMg = Elim, M, x5 = lim, EM,ns = 1. Using that P(T_, < T,) = 1 — P(T, < T_,),
we thus find

1 = PTo<T_o)+c*(1=P(Ty,<T-y))
= (" —cP(Ty <T_4)+c %
which shows . . .
1—c -1 1-
P(T, <T.,) = <" _c B c

v —cma (20— ] ]—¢2a’
as desired. For completeness, we check manually that the expression obtained is a number

1,e<landso0< ™ < c¢® <1, yielding
0<1l—c¢*<1land0<1—c* <1,sothat 0 < =%, <1_02a:1andwhenp<%,c>1

1—c2a 1—c2a
—C

so that 1 < ¢® < ¢, and then 1 — ¢?* < 1 — ¢® < 0, proving that 0 < 11702“ < 1 in this case
as well. 0

between zero and one. Note that when p >

Solution to exercise A.7. From Lemma A.2.5, we know that if (X;) is uniformly integrable
and converges in probability to X, then X; converges in £! to X. We need to prove the

other implication.

Therefore, assume that X; converges in £! to some integrable variable X. We apply Lemma
A.2.3. First fix u > 0 so large that, say, F|X — X¢| < 1 when ¢ > u. We then obtain that
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(X¢)t>w is bounded in £, as E|X;| < E|X|+1 for t > u. As X is continuous and [0, ]
is compact, we find that (X¢);<, is bounded in L' as well, since continuous functions are
bounded over compact sets. We may now conclude that (X;);>o is bounded, and so the first

criterion in Lemma A.2.3 is satisfied.

Next, pick € > 0. We will find a § > 0 satisfying the requirement given in Lemma A.2.3.
Fix u > 0 so large that E|X — X;| < 5 whenever ¢ > u. As the set [0,u] is compact, our
continuity assumption on ¢ — X; ensures that ¢ — X; is uniformly continuous on [0, u]. Pick
n > 0 such that whenever s and ¢ are in [0,u] with |s —¢| < 7, we have E|X; — X,| < 5.
Now let m be so large that nm > u. From Lemma A.2.4, we know that the finite family
{Xo, Xy, Xop, ..., Xy, X} is uniformly integrable. Using Lemma A.2.3, we may then pick
d > 0 such that whenever F' € F with P(F) <6, we have Elp|X| < § and Elp|Xy| < §

fori=0,...,m.

We claim that this § > 0 satisfies that whenever F' € F with P(F) < ¢, it holds for all t > 0
that F1p|X;| < e. To see this, consider some ¢t > 0. First assume that ¢ > . In this case,
we have Flp|X;| < E|X; — X|+ Elp|X| < e. If we instead have ¢ < u, there is ¢ € Ny with
i < m such that in <t < (i 4 1)n. We then obtain Flp|Xy| < E|Xy — Xipy| + Elp|Xsy| <e.

Lemma A.2.3 now shows that (X;);>¢ is uniformly integrable, as was to be proven. O

Solution to erercise A.8. Assume that X, converges in probability to some variable X. As
(X,,) is bounded, X is almost surely bounded. By changing X on a null set, we may assume
that X is in fact bounded. Fix p > 1. We then have that X,, — X converges in probability
to zero, so | X,, — X|P converges in probability to zero as well. As (X,,) is bounded and X
is bounded, |X,, — X|P is bounded as well, so | X,, — X|? is uniformly integrable by Lemma
A.2.4 and thus converges to zero in £' by Lemma A.2.5. This shows that X,, converges in
LP to X. O

Solution to exercise A.9. Since (X)) is uniformly integrable, it holds that

0< lim sup EX, 1(x,>x < lim sup E|X,|1(x,|>x =0
A—=00 p )

A—=00 n

Let € > 0 be given, we may then pick A so large that X, 1(x,>x) < € for all n. Now, the
sequence (A — X, 1(x,<x))n>1 is nonnegative, and Fatou’s lemma therefore yields

A— Elimsup X, 1(x,<x) = Fliminf(A - X, 1x,<x))

IN

liminf E(A — X, 1(x, <))
= A-limsup EX,1(x, <))
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The terms involving the limes superior may be infinite and are therefore a priori not amenable
to arbitrary arithmetic manipulation. However, by subtracting A and multiplying by minus
one, we may still conclude that limsup,, EX,1(x,<x) < Elimsup, X, 1(x,<x). As we have
ensured that EX,1(x, >z < ¢ for all n, this yields

limsup FX,, <&+ Elimsup X,1(x,<x) <€+ Flimsup X,

and as € > 0 was arbitrary, the result follows. O
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