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Abstract
In this thesis we study set-theoretic definability of maximal objects originating
from various branches of mathematics, encompassing set theory, combinatorics,
group theory, measure theory and operator algebras.

In Part II, which is based on joint work with Asger Törnquist, we study definab-
ility of maximal almost disjoint families. With a simple tree derivative process, we
first give a new proof of the classical theorem, due to Mathias, stating that there
are no infinite analytic maximal almost disjoint families. With small adjustments,
the process can be carried out and terminates in LωCK

1
, which proves that for every

infinite Σ1
1 almost disjoint family A there is a ∆1

1 infinite subset x of ω such that
x ∩ z is finite for every z ∈ A. Our argument can be adapted to prove that if
ℵL[a]

1 < ℵ1, then there are no infinite Σ1
2[a] maximal almost disjoint families. A

small modification of the derivative process can also be used to prove that under
MA(κ) there are no infinite κ-Suslin maximal almost disjoint families.

Part III is a reproduction of a preprint on definability of maximal cofinitary
groups, authored jointly with David Schrittesser. We give a construction of a closed
(even Π0

1) set which freely generates an Fσ (even Σ0
2) maximal cofinitary group.

In this isomorphism class, this is the lowest possible complexity of a maximal
cofinitary group. Additionally, we discuss obstructions to potential constructions
of Gδ maximal cofinitary groups and introduce (maximal) finitely periodic groups.

In Part IV, which is also a reproduction of a preprint, we study maximal ortho-
gonal families. We begin by giving a new, short and elementary proof of a theorem
by Preiss and Rataj, stating that there are no analytic maximal orthogonal families
of Borel probability measures on a Polish space. In case when the underlying space
is compact and perfect, we establish that the set of witnesses to non-maximality
is comeagre. The idea of our argument is based on the original proof by Preiss
and Rataj, but with significant simplifications. Our proof generalises to show that
under MA + ¬CH there are no Σ1

2 maximal orthogonal families, that under PD
there are no projective maximal orthogonal families and that under AD there are
no maximal orthogonal families at all. Finally, we introduce a notion of strong
orthogonality for states on separable C*-algebras and generalise a theorem due to
Kechris and Sofronidis, stating that for every analytic orthogonal family of Borel
probability measures there is a product measure orthogonal to all measures in the
family, to states on a certain class of C*-algebras.
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Resumé
I denne afhandling undersøger vi mængdeteoretisk definérbarhed af maksimale ob-
jekter som stammer fra forskellige grene af matematikken, herunder mængdelære,
kombinatorik, gruppeteori, målteori og operator-algebra.

I Del II, som er baseret på arbejde sammen med Asger Törnquist, undersø-
ger vi definérbarhed af maksimale næsten disjunkte familier. Med en simpel træ-
afledningsproces giver vi et nyt bevis for den klassiske sætning af Mathias, som
siger, at der ikke findes uendelige analytiske maksimale næsten disjunkte familier.
Med små justeringer kan proceduren realiseres og afsluttes i LωCK

1
, hvilket beviser

at for hver uendelige Σ1
1 næsten disjunkt familie A findes der en ∆1

1-uendelig del-
mængde x af ω, således at x∩z er endelig for hver z ∈ A. Vores bevis kan tilpasses
til at vise, at hvis ℵL[a]

1 < ℵ1, så findes der ingen uendelige Σ1
2[a] maksimale næsten

disjunkte familier. En modifikation af afledningsprocessen kan bruges til at bevise,
at under antagelse af MA(κ) findes der ingen uendelige κ-Suslin maksimale næsten
disjunkte familier.

Del III er en reproduktion af et fortryk om definérbarhed af maksimale kofinitære
grupper, skrevet i fællesskab med David Schrittesser. Vi giver en konstruktion af en
lukket (endnu Π0

1) mængde, som frit genererer en Fσ (endnu Σ0
2) maksimal kofinitær

gruppe. Det er den optimale kompleksitet af en maksimal kofinitær gruppe i denne
isomorfiklasse. Ydermere diskuterer vi hindringer for potentielle konstruktioner af
Gδ maksimale kofinitære grupper og introducerer (maksimale) endeligt periodiske
grupper.

I Del IV, som er også en gengivelse af et fortryk, undersøger vi maksimale or-
togonale familier. Vi begynder med at give et nyt, kort og elementært bevis af en
sætning af Preiss og Rataj, som siger at der ikke findes analytiske maksimale or-
togonale familier af Borel-sandsynlighedsmål på et polsk rum. Under antagelse af
at det underliggende rum er kompakt og perfekt, viser vi at samlingen af vidner til
ikke-maksimalitet er komagre. Idéen i vores bevis er baseret på det originale bevis
af Preiss og Rataj, men med betydelige forenklinger. Vores bevis kan generaliseres
til at vise, at under antagelse af MA+¬CH findes der ingen Σ1

2 maksimale ortogona-
le familier, under antagelse af PD findes der ingen projektive maksimale ortogonale
familier, og at under antagelse af AD findes der slet ikke nogen maksimale ortog-
onale familier. Afslutningsvis introducerer vi stærk ortogonalitet for tilstande på
separable C*-algebraer og generaliserer en sætning af Kechris og Sofronidis, som
siger, at for enhver analytisk ortogonal familie af Borel-sandsynlighedsmål findes
der et produktmål, som er ortogonalt til alle mål i familien, til tilstande på en
bestemt klasse af C*-algebraer.
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Povzetek
V tej doktorski dizertaciji obravnavamo definabilnost maksimalnih objektov iz raz-
ličnih vej matematike, obsegajoč teorijo množic, kombinatoriko, teorijo grup, teo-
rijo mere in operatorske algebre.

V Delu II, ki je osnovan na skupnem delu z Asgerjem Törnquistom, obravna-
vamo definabilnost maksimalnih skoraj-disjunktnih družin. S preprostim odvo-
dnim postopkom na drevesu podamo nov dokaz za klasični Mathiasov izrek, ki
trdi, da ni nobenih neskončnih analitičnih maksimalnih skoraj-disjunktnih dru-
žin. Z majhnimi spremembami lahko postopek izvedemo v LωCK

1
, kar dokaže, da

za vsako neskončno Σ1
1 skoraj-disjunktno družino A obstaja ∆1

1 neskončna pod-
množica naravnih števil x, tako da je x ∩ z končen za vsak z ∈ A. Adaptacija
našega argumenta pokaže, da ob predpostavki ℵL[a]

1 < ℵ1 ni nobenih neskončnih
Σ1

2[a] maksimalnih skoraj-disjunktnih družin. Z majhno modifikacijo odvodnega
postopka lahko dokažemo tudi, da ob predpostavki MA(κ) ni nobenih neskončnih
κ-Suslinovih maksimalnih skoraj-disjunktnih družin.

Del III je reprodukcija prednatisa o definabilnosti maksimalnih kofinitarnih grup,
napisanega skupaj z Davidom Schrittesserjem. V njem podamo konstrukcijo Π0

1
množice, ki prosto generira Σ0

2 maksimalno kofinitarno grupo. To je najboljša mo-
žna kompleksnost maksimalne kofinitarne grupe v izomorfnostnem razredu prosto
generiranih grup. Prav tako obravnavamo rezultate, zaradi katerih je potencialna
konstrukcija Gδ maksimalnih kofinitarnih grup otežena in uvedemo (maksimalne)
končno-periodične grupe.

V Delu IV, ki je prav tako reprodukcija prednatisa, obravnavamo maksimalne
ortogonalne družine. Začnemo z novim kratkim elementarnim dokazom izreka
Preissa in Rataja, ki trdi, da ni nobene analitične maksimalne družine Borelovih
verjetnostnih mer na polskem prostoru. Ko je prostor kompakten in perfekten, do-
kažemo, da je množica prič k nemaksimalnosti enaka komplementu množice prve
kategorije. Naša ideja je osnovana na originalnem dokazu Preissa in Rataja, ven-
dar s precejšnjimi poenostavitvami. Posplošitev dokaza pokaže, da ob predpostavki
MA + ¬CH ni nobenih Σ1

2 maksimalnih ortogonalnih družin, ob predpostavki PD
nobenih projektivnih maksimalnih ortogonalnih družin in ob predpostavki AD prav
nobenih maksimalnih ortogonalnih družin. Za zaključek uvedemo pojem krepke or-
togonalnosti za stanja na separabilnih C*-algebrah in posplošimo izrek Kechrisa
in Sofronidisa, ki trdi, da za vsako analitično ortogonalno družino Borelovih ver-
jetnostnih mer obstaja produktna mera, ki je ortogonalna na vse mere iz družine,
na stanja na določenem razredu C*-algeber.
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Part I.

Introduction





Structure of the thesis
The thesis consists of Introduction, three independent parts, each written in the
form of a preprint and including its own respective introduction, acknowledgments
and bibliography, and Conclusion.

Part II, Maximal almost disjoint families: In order to match with the
formatting of the rest of this thesis, the content of this part, composed of work
by Severin Mejak and Asger Törnquist, has the format of a preprint with the title
An effective strengthening of Mathias’ theorem, even though it has not yet been
uploaded to any preprint server, as there is hope that the ongoing work by Severin
Mejak, David Schrittesser and Asger Törnquist will materialise in more general
results.

Part III, Maximal cofinitary groups: The content of this part is an ex-
act reproduction of a preprint [MS22] by Severin Mejak and David Schrittesser,
titled Definability of maximal cofinitary groups, uploaded to the preprint repository
arXiv.org in 2022 with

doi:10.48550/arXiv.2212.05318

and is accessible at

arXiv:2212.05318v1 [math.GR].

The preprint is intended to be submitted to a research journal in the near future.
Part IV, Maximal orthogonal families: The content of this part is an

exact reproduction of a preprint [Mej22] by Severin Mejak, titled Orthogonality of
measures and states, uploaded to the preprint repository arXiv.org in 2022 with

doi:10.48550/arXiv.2204.02767

and is accessible at

arXiv:2204.02767v5 [math.OA].

The preprint has been submitted to Fundamenta Mathematicae.
In the following Contextual background we re-organise, amplify and incorporate

portions of respective introductions to Parts II, III and IV, and supply them with
additional content in order to provide both a historical background and state-of-
the-art of the studied mathematical area, as well as an overview of the thesis.

Contextual background
(Descriptive) set theory
Set theory was born of Georg Cantor’s quest into the infinite and developed along-
side logical and mathematical formalisation, undertaken by Gottlob Frege, Ber-
trand Russell and others, into a mathematical discipline with a dual role: on one
hand the one of forming the foundations of all of mathematics (even though this
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has since been contested by other formal systems, set theory undoubtedly remains
the most widespread and accepted one), and on the other hand the one of be-
ing a branch of mathematics on its own. Modern set theory is divided into the
following complemental subfields: descriptive set theory, infinitary combinatorics,
forcing, large cardinals, inner model theory and set-theoretic topology. This thesis
concerns itself with the first.

Descriptive set theory has its origins in the early years of general topology and
measure theory. It has since developed into an area of set theory, where the ques-
tions about definability and regularity properties of subsets of Polish spaces (e.g.,
R, 2ω or ωω, where ω denotes the set of all natural numbers) are studied. Roughly
speaking, a subset of a Polish space is more definable (less complex) if there is a
simple formula describing when an element is a member of this subset. One then
assigns subsets of any fixed Polish space to classes according to their definability,
so that the classes form a hierarchy under inclusion (the more definable a class is,
the less subsets it contains). Some of these classes are well known to all mathem-
aticians, such us the class of all open subsets (very definable) and the class of all
Borel subsets (still quite definable), others, such us the class of analytic subsets (a
class strictly larger than the class of Borel sets), appear rarely outside the realm
of descriptive set theory and the branches of mathematics, where descriptive set
theory has applications, such as measure theory, dynamical systems or operator
algebras. Different definability classes satisfy different regularity properties, hence
the more definable a subset is (and consequently belongs to more classes), the nicer
properties hold for it.

Many natural objects considered across mathematics are subsets of some Polish
space and are moreover definable in the above sense. This means that many objects
considered in everyday mathematical practice satisfy certain regularity properties.
As an example, Georg Cantor’s famous Continuum hypothesis asks whether every
uncountable set of reals has cardinality c (called continuum; the cardinality of the
set of all real numbers). Paul Cohen, introducing the groundbreaking technique
of forcing, proved that this does not hold in all models of set theory. But if one
restricts the question to analytic subsets, the Continuum hypothesis does hold (in
every model of set theory). In particular, it holds for many objects of interest
across mathematics, since many of these are analytic.

Maximal discrete sets
Considering objects of a certain kind, for instance linearly independent sets of vec-
tors in a fixed vector space, non-principal algebraic ideals on a fixed commutative
ring, filters on a fixed set, etc., we say that a given object is maximal, if it is not
strictly contained (as a subset) in another such object. Since a maximal linearly
independent set of vectors in a fixed vector space is a Hamel basis, a maximal non-
principal algebraic ideal on a fixed commutative ring is a prime ideal and a maximal
filter is an ultrafilter, every mathematician would agree that maximal objects play
distinctly important roles, as they are employed in numerous constructions and
arguments.
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In this thesis we will focus on a specific kind of maximal objects, called maximal
discrete sets. Fix a Polish space X. A hypergraph on X is a subset H ⊆ [X]<ω\{∅},
where [X]<ω denotes the collection of finite subsets of X. To each hypergraph H on
X we associate the following notion: a subset Y ⊆ X isH-discrete, if [Y ]<ω∩H = ∅.
In the literature, H-discrete sets are usually called H-independent sets, but as we
will also consider a different notion of independent families, we rather use the name
discrete sets (introduced by Benjamin Miller in [Mil] and used in e.g. [ST18] and
[Sch20]). As already defined in the previous paragraph, a maximal H-discrete set is
an H-discrete set, which is maximal with respect to inclusion among all H-discrete
sets.

Invoking the axiom of choice in the form of Zorn’s lemma, we see that for every
Polish space X and any hypergraph H on X there are maximal H-discrete sets.
When X is uncountable, there are two types of natural questions one may ask
about maximal discrete sets. The first asks what the possible cardinalities of infinite
maximal discrete sets are (of course, assuming that the continuum hypothesis fails),
and the second what is the best possible complexity of infinite maximal discrete
sets. In this thesis we concern ourselves with the second kind of questions. A
survey on research concerning both sorts of inquiries is given in David Schrittesser’s
[Sch20].

It is to be expected that for a fixed hypergraph H, one can obtain better result
than for general hypergraphs. Nevertheless, there are some general results, which
we present before discussing certain important types of maximal discrete sets in
detail.

The following is a special case (our presentation of it follows the one given in
[Sch20]) of a result by Zoltán Vidnyánszky from [Vid14], generalising the technique
introduced and applied to certain examples of maximal discrete sets by Arnold
Miller in [Mil89]. The coding idea can be traced back even further to [EKM81] by
Paul Erdős, Kenneth Kunen and Daniel Mauldin.

Theorem (Vidnyánszky). Assume that V = L and that H is a Σ1
1[a] hypergraph

on a Polish space X. Furthermore, assume that for any z ∈ 2ω, any countable
C ⊆ X and any x ∈ X, for which C ∪ {x} is H-discrete, it holds that there are
y0, . . . , yn ∈ X so that:

• C ∪ {y0, . . . , yn} is H-discrete;

• C ∪ {x, y0, . . . , yn} is not H-discrete;

• for every i ∈ n+ 1 it holds that z ∈ ∆1
1(yi).

Then there is a Π1
1[a] maximal H-discrete set.

As we will soon see, for many of the hypergraphs H meeting the assumptions of
this theorem, Π1

1 is the best possible complexity of a maximal H-discrete set.
General results without the assumption V = L require some other additional

assumptions. David Schrittesser and Asger Törnquist proved in [ST18] that for any
Σ1

1[a] hypergraph H there is a ∆1
2[a] predicate which defines a maximal H-discrete

5



set in both L[a] and in Sacks and Miller extensions of L[a]. In [Sch16], David
Schrittesser proved that in the extension of L by an ω2-length countable support
iteration or a finite product of Sacks forcing, every analytic hypergraph H admits
a ∆1

2 maximal H-discrete set. In particular, this shows that the existence of ∆1
2

maximal discrete sets is consistent with the negation of the continuum hypothesis.
Jonathan Schilhan ([Sch22c]) generalised the statement to splitting forcing.

Regarding the consistency strength of the non-existence of maximal discrete
sets (of course without the axiom of choice), Haim Horowitz and Saharon She-
lah constructed in [HS19] a Borel graph H, for which the theory ZF + DC +
“there is no maximal H-discrete set” is equiconsistent with ZFC + “there exists an
inaccessible cardinal”. For other results on maximal discrete sets in the absence of
choice see [Sch22b].

We next first present a few types of maximal discrete sets and briefly recall
some results on their definability, after which we focus on the maximal discrete
sets examined in detail in this thesis: maximal almost disjoint families, maximal
cofinitary groups and maximal orthogonal families.

Hamel basis

One of the first considerations of definability of maximal objects was Wacław Si-
erpiński’s [Sie20] from 1920, where he proved that there can be no Borel Hamel
basis for R, when seen as a vector space over Q. Burton Jones later proved (see
[Jon42]) that no Hamel basis for R over Q can be analytic. On the other hand,
Arnold Miller’s seminal [Mil89] establishes that under the assumption V = L there
is a Π1

1 Hamel basis for R over Q.
To see that Hamel basis is a type of maximal discrete set, define

H :=
{
A ∈ [R]<ω

∣∣∣∣ (∃v0 ∈ A) (∃v1, . . . , vn ∈ A \ {v0})

(∃λ1, . . . , λn ∈ Q) v0 =
n∑

k=1
λkvk

}
⊆ [R]<ω \ {∅}

and observe that H-discrete sets are exactly Q-linearly independent subsets of R.

Ultrafilters

Wacław Sierpiński proved in [Sie38] that no non-principal ultrafilter on ω can
be Borel. By Kolmogorov’s zero-one law it is easy to see that there can be no
Haar measurable (identifying P(ω), the powerset of ω, with the locally compact
Polish group Zω

2 ) non-principal ultrafilter on ω (and taking category analogues to
measurability notions shows that there can be no non-principal ultrafilter with the
Baire property), so in particular there are no analytic nor coanalytic non-principal
ultrafilters on ω. On the other hand, if V = L the standard argument using the
L-ordering of the reals shows that there are ∆1

2 non-principal ultrafilters.
The H-discrete sets, when we define

H := {A ∈ [P(ω)]<ω \ {∅} | ∩A is finite},
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do not exactly correspond to non-principal filters, but it is not difficult to see that
maximal H-discrete sets are non-principal ultrafilters.

Related research considers definability (of basis) of P -points, Q-points and Ram-
sey ultrafilters, see e.g. [Sch22a].

Maximal independent sets

A family I ⊆ [ω]ω (we use [ω]ω to denote the set of all infinite subsets of ω and
equip it with the Polish topology inherited from 2ω) is independent, if for any
disjoint finite subsets I, J of I it holds that ∩I \ (∪J) is infinite. Defining

H := {A ∈ [[ω]ω]<ω \ {∅} | (∃I ⊆ A) (∃J ⊆ A \ I) |∩I \ (∪J)| < ∞},

we can see that independent families are exactly H-discrete sets.
It was proved by Arnold Miller in [Mil89] that there are no analytic maximal

independent families and that if V = L there is a Π1
1 maximal independent family.

More recently, Jörg Brendle, Vera Fischer and Yurii Khomskii (see [BFK18]) proved
that the existence of a Σ1

2 maximal independent family is equivalent to the existence
of a Π1

1 maximal independent family.

Maximal eventually different families

Two functions f, g ∈ ωω are eventually different, if there is some n ∈ ω, so that for
all m > n it holds that f(m) ̸= g(m). A subset of ωω is eventually different if its
elements are pairwise eventually different, and it is maximal eventually different,
if it is maximal with respect to inclusion among eventually different families. It is
easy to define a hypergraph H ⊆ [ωω]<ω for which eventually different families are
exactly H-discrete sets.

Quite opposite to the non-definability results of the so far mentioned maximal
discrete sets, there are very definable maximal eventually different families. In
2010s, Haim Horowitz and Saharon Shelah (see [HS16b]) constructed a ∆1

1-maximal
eventually different family. Soon afterwards, this was improved by David Sch-
rittesser ([Sch17]) to a construction of a Π0

1 maximal eventually different family.

Maximal almost disjoint families

Arguably the most studied maximal objects in set theory are maximal almost
disjoint families, to which we devote Part II of this thesis.

Two subsets x, y of ω are said to be almost disjoint if their intersection is finite.
A family A ⊆ [ω]ω is almost disjoint if for every x ̸= y from A it holds that they
are almost disjoint. A maximal almost disjoint family is any almost disjoint family
which is maximal with respect to inclusion among all almost disjoint families. As
with eventually different families, since almost disjoint families are defined in terms
of a property being true for each pair of distinct elements from the family, it is
immediate to define a hypergraph H for which almost disjoint families correspond
to H-discrete sets. We use the acronym mad in place of “maximal almost disjoint”.
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Any partition of ω into finitely many infinite sets clearly constitutes a mad
family. For this reason we focus only on infinite mad families. It is not difficult to
see that every infinite mad family is uncountable.

During the late 1960s Adrian Mathias (published in [Mat77]) proved that there
are no infinite analytic mad families, introducing what is now called Mathias for-
cing. Around 1988, Arnold Miller (see [Mil89]) showed that if V = L then there is
an infinite Π1

1 mad family. In 2010s, Asger Törnquist first proved (in [Tör09]) that
existence of infinite Π1

1 mad families is equivalent to existence of infinite Σ1
2 mad

families. Not long after (see [Tör18]), he came up with a tree derivative proof of
the fact that there are no infinite analytic mad families, and extended the idea to
prove that there are no infinite mad families in Solovay’s model. This was followed
by Itay Neeman’s and Zach Norwood’s [NN18], in which they showed that there
are no infinite mad families under AD+. Around the same time, Asger Törnquist
and David Schrittesser proved in [ST19] that assuming that all sets of reals are
Ramsey and that Ramsey uniformisation holds, there are no infinite mad families.
The line of research on consistency of non-existence of infinite mad families culmin-
ated with [HS19], where Haim Horowitz and Saharon Shelah established that the
theory ZF + DC + “there are no infinite mad families” is equiconsistent with ZFC.
Note also that David Schrittesser and Asger Törnquist proved in [ST20] that if x is
Laver-generic over L, then there is an infinite Π1

1 mad family in L[x]. Finally, Vera
Fischer, David Schrittesser and Thilo Weinert proved in [FSW21] that if bounded
proper forcing axiom holds and ω1 is not remarkable in L, then there is an infinite
Π1

2 mad family.
In Part II, we simplify the derivative process introduced in [Tör18] to get a new

proof of the classical Mathias theorem.

Theorem (Mathias). There are no infinite analytic mad families.

We observe that by making small adjustments to the argument, we are able to
run it in LωCK

1
. Moreover, we can prove that the process terminates in LωCK

1
. In

this way, we obtain the following.

Theorem. For every infinite Σ1
1 almost disjoint family A there is a ∆1

1 witness
to non-maximality, i.e., there is some x ∈ ∆1

1([ω]ω) so that x ∩ z is finite for all
z ∈ A.

Furthermore, with minor modifications, our method can be used to provide new
and simpler proofs of the following facts established in [Tör18].

Theorem (Törnquist). Let a ∈ ωω and suppose that ℵL[a]
1 < ℵ1. Then there are

no infinite Σ1
2[a] mad families.

Theorem (Törnquist). If MA(κ) holds for some κ < 2ℵ0 then there are no infinite
κ-Suslin mad families.

Iterating the Fubini product of the ideal Fin of finite subsets of ω, one obtains
ideals Finα for α ∈ ω1\{0}, defined on countable sets, which we respectively denote
by Mα. For x, y ⊆ Mα we say that they are Finα-almost disjoint, if x ∩ y ∈ Finα.
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In [BST22], Karen Bakke Haga, David Schrittesser and Asger Törnquist proved
that for every α ∈ ω1 \ {0}, there are no infinite analytic maximal Finα-almost
disjoint families.

There is every indication that our result on effective witnesses for the ideal Fin
should generalise to the ideals Finα for α ∈ ωCK

1 \{0}, however, despite considerable
progress, the proof has so far eluded us.

Maximal cofinitary groups

In [Cam96], Peter Cameron introduced the notion of a cofinitary subgroup of S∞
(the group of all permutations of ω) as follows. An element g ∈ S∞ \{idω} is called
cofinitary if it has only finitely many fixed points, i.e., there is some n ∈ ω so that
for every m > n it holds that g(m) ̸= m. Then a subgroup G ≤ S∞ is cofinitary if
every g ∈ G\{idω} is cofinitary. We write “cofinitary group” in place of the longer
“cofinitary subgroup of S∞”. Cofinitary groups were studied before [Cam96] under
different names; e.g., in [Ade88] they are called sharp groups. For early results
on embeddings of cofinitary groups see [Tru87] and [Ade88]. In [Cam96], Peter
Cameron discusses combinatorial properties of cofinitary groups and conjectures
that every closed cofinitary group is locally compact, which was refuted by Greg
Hjorth in [Hjo98] soon afterwards.

To see that cofinitary groups are discrete sets, define the hypergraph

H := {A ∈ [S∞]<ω | (∃g ∈ ⟨A⟩ \ {1ω}) g has infinitely many fixed points},

where ⟨A⟩ is the subgroup of S∞ generated by A.
A cofinitary group is maximal if it is maximal among all cofinitary groups, i.e., it

is not strictly contained in any cofinitary group. We use the acronym mcg to refer
to maximal cofinitary groups. Mcgs were first considered in [Tru87] and [Ade88].
The first result which made mcgs interesting to set-theorists was established by
Adeleke in [Ade88], asserting that mcgs are always uncountable.

The first breakthrough in the study of definability of mcgs was when Su Gao
and Yi Zhang (see [GZ08]) established that if V = L then there is a Π1

1 set which
generates an mcg. This was improved by Bart Kastermans in [Kas08] to the ex-
istence of a Π1

1 mcg under the assumption V = L. Kastermans also proved the
beautiful results that no mcg can be Kσ (see [Kas08]) and that no mcg can have
infinitely many orbits (see [Kas09]).

Kastermans’ result on definability inspired [FST17], in which Vera Fischer, David
Schrittesser and Asger Törnquist constructed a Cohen-indestructible Π1

1 mcg, as-
suming that V = L. The next milestone was achieved (to some surprise) soon
afterwards, when Haim Horowitz and Saharon Shelah established in [HS16a] that
it is provable in ZF (without the axiom of choice) that there is a Borel mcg. Using
ideas of [HS16a], David Schrittesser proved (without use of the axiom of choice) in
[Sch21] that there is actually an arithmetical mcg.

In Part III, we first use the idea of the construction from [Sch21] and enhance
it with ideas from [Sch17] to get a construction (again without using the axiom of
choice) proving the following.
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Theorem. There is a Π0
1 subset of ωω which freely generates a Σ0

2 mcg.

Since the topological interior of any cofinitary group is clearly empty, Π0
1 is the

best possible complexity of a set generating an mcg.
By a result of Richard Dudley ([Dud61]), there is no Polish topology on a group

freely generated by continuum many generators. This clearly implies that Σ0
2 is

the best possible complexity of a freely generated mcg. Additional difficulties on
potential constructions of Gδ mcgs are imposed by [Slu12], in which Konstantin
Slutsky improved on Dudley’s result and proved that if G is a free product of
groups and carries a Polish topology, then G is countable. Since all presently
known constructions of definable mcgs produce groups which decompose into free
products, this means that current ideas are insufficient to produce a Gδ mcg.

We conclude Part III by introducing maximal finitely periodic groups. Say that
g ∈ S∞ \ {idω} is finitely periodic if ⟨g⟩ ⊆ S∞ has finitely many finite orbits. A
subgroup G ≤ S∞ is then called finitely periodic if every g ∈ G \ {idω} is finitely
periodic (it is again easy to see that finitely periodic groups are H-discrete sets for
an appropriate choice of H), and maximal finitely periodic if it is maximal among
finitely periodic groups. Clearly, any finite periodic group is also cofinitary. By
adapting a proof by Kastermans from [Kas09], we prove the following.

Theorem. There is no maximal finitely periodic group with infinitely many orbits.

Maximal orthogonal families

For a Polish space X, we denote the Polish space of all Borel probability measures
on X by P (X). For µ, ν ∈ P (X), we say that µ and ν are orthogonal (often also
called singular), which we denote by µ ⊥ ν, if there is a Borel subset B ⊆ X
such that µ(B) = 0 and ν(B) = 1. A family A ⊆ P (X) is orthogonal, if every
µ ̸= ν ∈ A are orthogonal. It is again effortless to define a hypergraph H for which
orthogonal families are precisely H-discrete sets.

In 1985 David Preiss and Jan Rataj proved the following theorem withX = [0, 1],
see [PR85].

Theorem. Suppose that X is an uncountable Polish space. Then there is no ana-
lytic maximal orthogonal family of Borel probability measures on X.

This answered an open question from [MPV82]. The idea of the proof from
[PR85] is to use a Baire category argument. However, once the authors prepared
the scene for the application of the Baire category theorem, they resorted to a
couple of technical lemmas, which relied on restricting Borel probability measures
on [0, 1] to finite unions of closed subintervals. For the proof of one of the lemmas
they also employed Banach–Mazur games. Consequently, the question whether
there is a shorter and simpler proof remained open.

In 1999, Alexander Kechris and Nikolaos Sofronidis (see Thoerem 3.1 in [KS01])
found an alternative short proof which uses the theory of turbulence (see Greg
Hjorth’s [Hjo00] for a great guide to turbulence). As part of their proof, they
defined an embedding of the Cantor space 2ω into the space of Borel probability
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measures (using the work of Shizuo Kakutani from [Kak48]), assigning to every
x ∈ 2ω a product measure µα(x). They proved that for every analytic orthogonal
family, there is some x ∈ 2ω so that µα(x) is a witness to non-maximality. Their
proof has as a consequence that the relation ∼ of measure equivalence between
Borel probability measures is not classifiable by countable structures.

Almost two decades later David Schrittesser and Asger Törnquist used the same
embedding of 2ω into the space of measures to prove (see Theorem 5.5 of [ST18])
that an argument using a weaker form of turbulence suffices. Since the theory
of turbulence requires some background knowledge, one might argue that even
thought the proofs from [KS01] and [ST18] are shorter, they are not necessarily
simpler.

In Part IV, we first go back to the original idea of Preiss and Rataj to use a
Baire category argument. We were able to use the Kuratowski–Ulam theorem and
some elementary convexity theory, to give a short and straightforward proof of the
above theorem. The argument works to show the following strengthening, where
for A ⊆ P (X), we let A⊥ := {ν ∈ P (X) | (∀µ ∈ A) ν ⊥ µ}.

Theorem. Suppose that X is a compact perfect Polish space. Then for every
analytic orthogonal family A ⊆ P (X), the set A⊥ is comeagre. In particular, when
A ⊆ P (2ω) is a Σ1

1 orthogonal family, there is a ∆1
1-witness to non-maximality.

Actually, under additional assumptions, our method yields the following.

Theorem. Suppose that X is an uncountable Polish space.

1. Assume MA and ¬CH. Then no Σ1
2 orthogonal family A ⊆ P (X) is maximal.

2. Assume PD. Then no projective orthogonal family A ⊆ P (X) is maximal.

3. Assume AD. Then no orthogonal family A ⊆ P (X) is maximal.

If moreover X is compact perfect, then in each of the above cases A⊥ is comeagre.

Concerning positive results on definability of maximal orthogonal families, Vera
Fischer and Asger Törnquist proved in [FT10] that under the assumption V = L
there is a Π1

1 maximal orthogonal family in P (2ω). On the other hand, David
Schrittesser and Asger Törnquist proved in [ST18] that if all Σ1

2[a] sets of reals are
completely Ramsey, then there are no Σ1

2[a] maximal orthogonal families (so as a
consequence there are no Σ1

2[a] maximal orthogonal families in L[a][x], where x is
Mathias-generic over L[a]).

It is well-known that via the Riesz–Markov–Kakutani representation theorem,
Borel probability measures on a compact Polish space X are precisely states on
the commutative C*-algebra C(X) of complex-valued continuous functions on X.
For any separable C*-algebra A it holds that S(A), the collection of all states on
A, carries a natural Polish topology. In [Dye52], Henry Dye introduced the notion
of absolute continuity for states on C*-algebras. Being a pre-order, it naturally
gives rise to a notion of orthogonality. However, it turns out that this notion is
ill-behaved even for states on the matrix algebra M2(C).
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There is another natural notion of orthogonality for states, which we call strong
orthogonality and denote by ⊥. This notion of orthogonality shares many nice prop-
erties with orthogonality of measures (among other things, ⊥-orthogonal families
are H-discrete sets for the appropriate choice of a hypergraph H), with which it
coincides when the C*-algebra is commutative. Hence it is natural to ask ourselves
whether analogues to above statements hold for non-commutative separable unital
C*-algebras and strong orthogonality as well.

Since the original proof by Preiss and Rataj relied on restrictions of measures
to compact subspaces, it is not clear how to generalise that proof. The idea from
our proof seems more promising, but there are still some steps for which we do not
know if they hold for strong orthogonality for states.

On the other hand, it turns out that the idea of Kechris and Sofronidis from
[KS01] can easily be extended to a class of separable unital C*-algebras, as the
following theorem from Part IV shows.

Theorem. Suppose A is a separable unital C*-algebra, which contains a copy of
C(2ω) as a subalgebra and for which there is a conditional expectation

E : A → C(2ω).

Then for every strongly orthogonal A ⊆ S(A) there is α ∈ (0, 1)ω so that µ̃α⊥ψ for
every ψ ∈ A, where µ̃α is the extension of the state, corresponding to the product
measure

∏

n∈ω

(α(n)δ0 + (1 − α(n))δ1),

from C(2ω) to A.

As in [KS01], along the way of proving this theorem we also get that for C*-
algebras A, satisfying the assumptions of the theorem, the equivalence relation ∼ on
S(A), arising from Dye’s notion of absolute continuity for states, is not classifiable
by countable structures.

Natural examples of C*-algebras, for which the assumptions of the above theorem
are satisfied, include the CAR algebra M2∞ and the Cuntz algebra O2. Moreover,
for any A satisfying these assumptions, also the reduced crossed product A⋊α,r Γ
(for any countable discrete group Γ and any homomorphism α : Γ → Aut(A))
and the tensor product A⊗B (for any separable unital C*-algebra B) satisfy the
assumptions.

In 1969 Donald Bures (see [Bur69]) proved an extension of Kakutani’s result
from [Kak48] to semi-finite von Neumann algebras. Instead of absolute continuity
and orthogonality between states, Bures considered when two product states give
rise to isomorphic tensor products of von Neumann algebras. This was extended
to all von Neumann algebras by David Promislow in [Pro71].

As a consequence of the main ingredient of the proof of the last theorem, we get
the following version of Kakutani’s theorem for states, involving absolute continuity
and strong orthogonality.
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Proposition. Suppose that (αn)n∈ω, (βn)n∈ω ∈ [1
4 ,

3
4 ]ω and let

ϕn := αn ev1,1 +(1 − αn) ev2,2 and ψn := βn ev1,1 +(1 − βn) ev2,2

be states on M2(C). Let also ϕ := ⊗∞
n=0ϕn and ψ := ⊗∞

n=0ψn be the product states
on M2∞. Then in S(M2∞), either ϕ ∼ ψ or ϕ⊥ψ according to whether

∑

n∈ω

(αn − βn)2

converges or diverges respectively.
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Part II.

Maximal almost disjoint
families





AN EFFECTIVE STRENGTHENING OF MATHIAS’ THEOREM

SEVERIN MEJAK AND ASGER TÖRNQUIST

Abstract. We present a tree derivative process which can be carried out (and termi-
nates) in LωCK

1
and use it to prove that for every infinite Σ1

1 almost disjoint family there
is a ∆1

1 witness to non-maximality. The argument also gives a new elementary proof of
the classical theorem due to Mathias that there are no infinite analytic maximal almost
disjoint families. The derivative idea is generalised to provide new straightforward de-
rivative proofs of the theorems due to the second author asserting that under ℵL[a]

1 < ℵ1
there are no infinite Σ1

2[a] maximal almost disjoint families, and that under MA(κ) there
are no infinite κ-Suslin maximal almost disjoint families.

Introduction

Two subsets x, y of ω = {0, 1, 2, . . .} are said to be almost disjoint if their intersection
is finite. A family A ⊆ [ω]ω (the collection of infinite subsets of ω) is almost disjoint if
for every x ̸= y from A it holds that they are almost disjoint. An almost disjoint family
A is maximal if there is no almost disjoint family B with A ⊊ B. We use the acronym
mad in place of “maximal almost disjoint”.

Any partition of ω into finitely many infinite sets clearly constitutes a mad family. For
this reason we focus only on infinite (maximal) almost disjoint families. Invoking the
axiom of choice in the form of Zorn’s lemma, one can for any almost disjoint family A
find a maximal almost disjoint family B with A ⊆ B.

It is not difficult to see (in fact, this follows from Lemma 1.1) that every infinite mad
family is uncountable. The almost disjointness number a denotes the least size of an
infinite mad family. It is known that b ≤ a ≤ c, where b denotes the bounding number
and c the continuum. Consistency of relations of a to other cardinal invariants is not
completely charted out, e.g., an open question, first posed by Roitman, asks whether
d = ω1 implies that a = ω1, where d denotes the dominating number.

In this note we focus on another kind of questions about mad families, asking how
definable such families can be. During the late 1960s Mathias (published in [Mat77])
proved that there are no analytic infinite mad families, introducing what is now called
Mathias forcing. Around 1988, Miller (in [Mil89]) showed that if V = L then there is
an infinite Π1

1 mad family. In 2010s, the second author first proved (in [Tö09]) that
existence of infinite Π1

1 mad families is equivalent to existence of infinite Σ1
2 mad families.

Not long after (see [Tö18]), he came up with a tree derivative proof of the fact that
there are no analytic infinite mad families, and extended the idea to prove that there
are no infinite mad families in Solovay’s model. This was followed by Neeman’s and
Norwood’s [NN18], in which they established that there are no infinite mad families
under AD+. Around the same time, Schrittesser and the second author proved in [ST19]
that assuming that all sets of reals are Ramsey and that Ramsey uniformisation holds,
there are no infinite mad families. The line of research on consistency of non-existence of
infinite mad families culminated with [HS19], where Horowitz and Shelah established that
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families.
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the theory ZF+DC+“there are no infinite mad families” is equiconsistent with ZFC. Note
also that Schrittesser and the second author proved in [ST20] that if x is Laver-generic
over L, then there is an infinite Π1

1 mad family in L[x]. Finally, Fischer, Schrittesser and
Weinert established in [FSW21] that if bounded proper forcing axiom holds and ω1 is not
remarkable in L, then there is an infinite Π1

2 mad family.
In this note we simplify the derivative process introduced in [Tö18] (in a similar fashion

as is done in [CM]) to get a new elementary proof of Mathias’ classical theorem.

Theorem 0.1 (Mathias). There are no infinite analytic mad families.

We observe that by making small adjustments to the argument, we are able to run it
in LωCK

1
. Moreover, we can prove that the process terminates in LωCK

1
. In this way, we

obtain the following.

Theorem 0.2. For every infinite Σ1
1 almost disjoint family A there is a ∆1

1 witness to
non-maximality, i.e., there is some x ∈ ∆1

1([ω]ω) so that x ∩ z is finite for all z ∈ A.

Furthermore, with minor modifications, our method can be used to provide new and
simpler proofs of the following facts established in [Tö18].

Theorem 0.3 (Törnquist). Let a ∈ ωω and suppose that ℵL[a]
1 < ℵ1. Then there are no

infinite Σ1
2[a] mad families.

Theorem 0.4 (Törnquist). If MA(κ) holds for some κ < 2ℵ0 then there are no infinite
κ-Suslin mad families.

Structure of the note. This note has been written specifically for the purpose of con-
stituting a part of the first author’s PhD dissertation. For this reason it contains more
background and details.

In Section 1, we introduce some notation and provide a simple proof of Theorem 0.1.
We continue with Section 2, where we recall the fundamentals of effective descriptive
set theory and prove Theorem 0.2. In Sections 3 and 4 we prove Theorems 0.3 and 0.4
respectively. We conclude the note with a discussion of open problems in Section 5.

Acknowledgments. S. M. gratefully acknowledges support from the following grant.
This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No 801199

1. There are no analytic mad families

First we introduce some notation. We identify P(ω), the powerset of ω, and the Cantor
space 2ω in the usual way (via characteristic functions). We use [ω]ω to denote the set
of all infinite subsets of ω, equipped with the Polish topology inherited from 2ω. Let Fin
denote the ideal of all finite subsets of ω, i.e.,

Fin = {a ∈ P(ω) | a is finite}.
For C ⊆ P(ω) we denote the ideal generated by C and Fin by IC. If A,B ∈ P(ω), we let
A ⊆∗ B mean that A \B ∈ Fin.

For any set X (e.g., ω, ω1 or κ), we use p to denote the projection from 2ω ×Xω onto
the first component 2ω. We use ⊑ to denote end-extension of finite sequences and lh
to denote their length. Following the notation from [Kec95], for a tree T on 2 × ω (so
T ⊆ (2× ω)<ω) we use

T[t] := {s ∈ T | t ⊑ s ∨ s ⊑ t}
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and
Tt := {s ∈ T | t ⊑ s}.

Suppose that for a tree T on 2×ω the set of projections of branches p[T ] is almost disjoint
and let B be a countable family of infinite subsets of ω. Then define

TB := {t ∈ T | (∃w ∈ [T[t]]) p(w) /∈ IB}.
Note that TB is a subtree of T . For t ∈ TB we write TB

[t] and TB
t in place of (TB)[t] and

(TB)t respectively. For t ∈ (2 × ω)<ω let t∗ be the first component of t, i.e., for every
n < lh(t), if t(n) = (tn0 , tn1 ) then t∗(n) = tn0 , so that t∗ ∈ 2lh(t).

The following simple but crucial lemma is a slight modification of Lemma 2.2 from
[Tö18] (and Proposition 1 from [CM]), and will form the core of our argument.

Lemma 1.1. Suppose that A ⊆ P(ω) and B ⊆ P(ω) with |B| ≤ ℵ0, so that:
(1) (∀z ∈ A) (∃m ∈ ω) (∃B0, . . . , Bm−1 ∈ B) z ⊆∗ ∪n<mBn;
(2) (∀m ∈ ω) (∀B0, . . . , Bm−1 ∈ B) |ω \ ∪n<mBn| =∞.

Then there is some x ∈ [ω]ω so that x ∩ z ∈ Fin for all z ∈ A.

For reader’s convenience, we briefly repeat the proof.

Proof. In case B is finite, let x := ω \ ∪B. Then x ∈ [ω]ω by (2), and (1) clearly implies
that for every z ∈ A the intersection x ∩ z is finite.

In case B is infinite, enumerate it as (Bn)n∈ω. Then inductively pick a sequence
(nk)k∈ω ∈ ωω so that for every k ∈ ω it holds that

• nk < nk+1 and
• nk ∈ ω \ (∪i≤kBi),

which is possible by assumption (2). Then set

x := {nk | k ∈ ω}
and use assumption (1) to conclude that (∀z ∈ A)x ∩ z ∈ Fin. □

We next state and prove the claim from Lemma 2.4 in [Tö18]. Recall that for s, t ∈
(2×ω)<ω we say that they are incomparable in the first component if s∗ ̸⊑ t∗ and t∗ ̸⊑ s∗.
Note that every a ∈ 2<ω corresponds to a unique element of Fin, namely to

{n ∈ ω |n ∈ dom(a) ∧ a(n) = 1}.
In this way we can use ∪, ∩, etc. on elements of 2<ω.

Lemma 1.2. Suppose S is a tree on 2×ω such that p[S] is almost disjoint. Suppose also
that s, t ∈ S are incomparable in the first component. Then there are s′ ∈ Ss and t′ ∈ St
so that for all s′′ ∈ Ss′ and all t′′ ∈ St′ it holds that s′′

∗ ∩ t′′∗ = s′
∗ ∩ t′∗.

Proof. Suppose for contradiction that s, t ∈ S are incomparable in the first component,
but for every s′ ∈ Ss and t′ ∈ St there are s′′ ∈ Ss′ and t′′ ∈ St′ for which s′′

∗ ∩ t′′∗ ⊋ s′
∗ ∩ t′∗.

Then we can inductively define sequences (sn)n∈ω and (tn)n∈ω so that:
• s0 = s and t0 = t,
• for every n ∈ ω it holds that sn ⊑ sn+1 and tn ⊑ tn+1, and
• for every n ∈ ω we have that sn∗ ∩ tn∗ ⊊ sn+1

∗ ∩ tn+1
∗ .

Letting x be the infinite branch through S which extends all sn and y be the infinite
branch through S which extends all tn, we have that p(x) ̸= p(y) and p(x) ∩ p(y) is
infinite. This is in contradiction with the assumption that p[S] is almost disjoint. □

21



MEJAK AND TÖRNQUIST

We introduce the following notation which will be crucial in the next section. For a
tree S on 2× ω and s ∈ S, set

xSs := ∪{t∗ | t ∈ S[s]} ∈ 2ω.
Then the property of s′, t′ in Lemma 1.2 can be written as

xSs′ ∩ xSt′ = s′
∗ ∩ t′∗.

Theorem 0.1 (Mathias). There are no infinite analytic mad families.
Proof. Let T be a tree on 2 × ω so that A := p[T ] is an infinite almost disjoint family.
We will inductively define a countable family B of infinite subsets of ω, which will satisfy
conditions of Lemma 1.1. Set B0 := ∅. Suppose we have defined Bα for α ≤ γ so that

(i) if α ≤ β ≤ γ then Bα ⊆ Bβ and both are countable;
(ii) for all α ≤ γ it holds that ω /∈ IA∪Bα .

We will now define Bγ+1. If there are s, t ∈ TBγ which are incomparable in the first
component and so that xTBγ

s ∩ xTBγ

t = s∗ ∩ t∗, then consider the following cases:
• if xTBγ

s /∈ IA∪Bγ , then put Bγ+1 := Bγ ∪ {xTBγ

t };
• else if xTBγ

t /∈ IA∪Bγ , then put Bγ+1 := Bγ ∪ {xTBγ

s };
• else put Bγ+1 := Bγ ∪ {xTBγ

s , xT
Bγ

t }.
It is clear that in all three cases Bγ+1 still satisfies that ω /∈ IA∪Bγ+1 , since the intersection
of the two potential new sets (xTBγ

s and xTBγ

t ) is finite and since the condition held for Bγ.
In case there are no such s, t ∈ TBγ we stop the process and set α∗ := γ and B∗ := Bγ.

Suppose we have defined Bα for all α < λ, where λ is countable limit, so that the above
conditions (i) and (ii) hold. Then let

Bλ := ∪α<λBα
and observe that conditions (i) and (ii) are preserved.

The process terminates with a countable α∗, since at each step we use some pair s, t
which has not yet been used up to that point and since there are only countably many
pairs (the tree T is countable), so the process cannot last for uncountably many steps.
Claim 1.3. Any two s, t ∈ TB∗ are comparable in the first component.
Proof. Suppose for contradiction that the process has stopped, but there are some s, t ∈
TB∗ which are incomparable in the first component. Applying Lemma 1.2 with TB∗ in
place of S, we get some s′ ∈ TB∗

s and t′ ∈ TB∗
t which satisfy that

xT
B∗

s′ ∩ xTB∗

t′ = s′
∗ ∩ t′∗.

This means that we can continue the process, which is a contradiction. ⊣
Consider two further cases:
• If xTB∗

∅ /∈ IA, then it must hold that p[TB∗ ] = ∅. In this case let B := B∗.
• If xTB∗

∅ ∈ IA, then let B := B∗ ∪ {xTB∗

∅ }.
Note that B satisfies that

(∀m ∈ ω) (∀B0, . . . , Bm−1 ∈ B)ω \ ∪n<mBn /∈ IA.

In particular, B satisfies condition (2) of Lemma 1.1.
Claim 1.4. For all z ∈ A there are n ∈ ω and B0, . . . , Bn−1 ∈ B so that z ⊆∗ ∪k<nBk.
Proof. In case z ∈ p[TB∗ ], it holds that z ∈ B. So suppose that z /∈ p[TB∗ ]. Then there
is some α < α∗ so that z ∈ p[TBα ] \ p[TBα+1 ]. But this means that there are n ∈ ω and
B0, . . . , Bn−1 ∈ Bα+1 so that z ⊆∗ ∪k<nBk. ⊣
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Since B is countable and conditions (1) and (2) of Lemma 1.1 are fulfilled, the proof is
completed by an application of Lemma 1.1. □

An observant reader might have noticed similarities between the above proof and the
proof of Theorem 3 given in [CM]. The main difference is the stopping criterion; in [CM]
the process stops when the analogue of p[TBγ ], called A γ, is countable. Moreover, the
property which is maintained for the analogue of Bγ, called C γ in [CM], is

(∀n ∈ ω) (∀B0, . . . , Bn−1 ∈ Bγ) (∃A ∈ A)A ̸⊆∗ ∪k<nBk.

This condition, although not pointed out explicitly, holds in our construction as well.
Hence the requirement we impose on Bγ is stronger than in [CM]. Furthermore, our
process runs until the branches through the remaining tree project to at most one element
of 2ω. Because of this one may say that our process is more informative. In the next
section, we will use this additional information and combine it with some tricks from
effective descriptive set theory in order to be able to carry out the procedure in a small
segment of set theory, resulting in an effective witness to non-maximality.

2. An effective strengthening of Mathias’ theorem

For X being one of ωω, 2ω or [ω]ω, we let
∆1

1(X) := {x ∈ X |x is a ∆1
1 real}.

In this section we prove the following effective strengthening of Mathias’ theorem.

Theorem 0.2. For every infinite Σ1
1 almost disjoint family A there is a ∆1

1 witness to
non-maximality, i.e., there is some x ∈ ∆1

1([ω]ω) so that x ∩ z is finite for all z ∈ A.

To prove this theorem we will work in LωCK
1

, which is a model of Kripke–Platek set
theory. The reader acquainted with the fundamentals of effective descriptive set theory
should not feel guilty for skipping the following subsection, in which we briefly recall some
basic facts.

2.1. Effective descriptive set theory. Recall that a formula is ∆0 if all of its quantifiers
are bounded, viz., all universal quantifiers are of the form (∀v ∈ w) and all existential
quantifiers are of the form (∃v ∈ w). The class of all formulas, built from atomic formulas
and their negations using ∧, ∨, (∃v ∈ w), (∀v ∈ w) and (∃v) is denoted by Σ.

For the purposes of this note, following the phrasing of [MWS85], Kripke–Platek set
theory (abbreviated to KP) is a fragment of ZF, consisting of the following axioms and
axioms schemes:

(I) Extensionality: (∀x, y) [x = y ←→ (∀z) (z ∈ x←→ z ∈ y)].
(II) Regularity/Foundation: if ϕ(x) is a (not necessarily ∆0) formula, in which all

occurrences of y are bounded, then the following is an axiom
((∃x)ϕ(x))→ (∃x) (ϕ(x) ∧ (∀y ∈ x)¬ϕ(y)).

(III) Pairing: (∀x, y) (∃z) (x ∈ z ∧ y ∈ z).
(IV) Union: (∀x) (∃u) (∀y ∈ x) (∀z ∈ y) z ∈ u.
(V) ∆0-Separation: for every ∆0 formula ψ(z) the following is an axiom

(∀x) (∃y) (∀z) (z ∈ y ←→ z ∈ x ∧ ψ(z)).
(VI) ∆0-Collection: for every ∆0 formula χ(y, z) the following is an axiom

(∀x) [((∀y ∈ x) (∃z)χ(y, z))→ (∃w) (∀y ∈ x) (∃z ∈ w)χ(y, z)].
(VII) Infinity: (∃x) [((∃e) (e ∈ x ∧ (∀y) y /∈ e)) ∧ (∀y) (y ∈ x→ y ∪ {y} ∈ x)].
An ω-model of KP is a model A of KP, for which ωA = ωV , i.e., the first infinite ordinal

in A is equal to the standard ω.
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Remarkably, one can deduce from the axioms of KP the following results, which make
KP stronger than it appears at first sight. Note that the results cited from [Bar17] are
established in KPU, the Kripke–Platek set theory with urelements, but the proofs can be
easily adapted to provide the analogues for KP.
Theorem 2.1 (Σ-Collection). For any Σ formula χ(y, z), the following is a theorem of
KP:

(∀x) [((∀y ∈ x) (∃z)χ(y, z))→ (∃w) (∀y ∈ x) (∃z ∈ w)χ(y, z)].
See [Bar17, Theorem 4.4] for a proof.

Theorem 2.2 (∆-Separation). For any Σ formulas ϕ(z) and ψ(z), the following is a
theorem of KP:

(∀x) [((∀z ∈ x) (ϕ(z)←→ ¬ψ(z)))→ (∃y) (∀z) (z ∈ y ←→ z ∈ x ∧ ϕ(z))].
The proof can be found in [Bar17] below Theorem 4.5. In the following theorem (see

Theorem 4.6 in [Bar17]), func(f) stands for “f is a function”.
Theorem 2.3 (Σ-Replacement). For every Σ formula χ(y, z), the following is a theorem
of KP:

(∀x)
[
((∀y ∈ x) (∃!z)χ(y, z))→ (∃f)

(
func(f) ∧ dom(f) = x ∧ (∀y ∈ x)χ(y, f(y))

)]
.

Suppose that ϕ(v0, . . . , vn−1, u) is a Σ formula and that
KP ⊢ (∀x0, . . . , xn−1) (∃!y)ϕ(x0, . . . , xn−1, y).

Then, using Theorem 2.3, we can define an n-ary function symbol F by specifying that
(∀x0, . . . , xn−1) (∀y)F (x0, . . . , xn−1) = y ←→ ϕ(x0, . . . , xn−1, y).

Since ϕ is a Σ formula, we say that F is a Σ function symbol.
Theorem 2.4 (Σ Recursion). Suppose we are given an (n+ 2)-ary Σ function symbol G.
Then we can introduce a new Σ function symbol F for which the following is a theorem
of KP:

(∀x0, . . . , xn−1) (∀y)

F (x0, . . . , xn−1, y) = G
(
x0, . . . , xn−1, y, {⟨z, F (x0, . . . , xn−1, z)⟩ | z ∈ TC(y)}

)
.

See [Bar17, Theorem 6.4] for the proof of this theorem and [Bar17, Theorem 6.1] for
more on TC (transitive closure) in the context of KP. With Theorem 2.4, we are able to
carry out definable recursive processes inside models of KP.
Theorem 2.5. Suppose that A is an ω-model of KP and that T ∈ A is a well-founded (in
V ) tree. Then the height of T is an ordinal in A.

This is Theorem 5.5 in [MWS85]. It asserts that any ω-model A of KP is strong enough
to see that a tree it contains is well-founded, given that tree is well-founded from the
perspective of V . Moreover, A correctly calculates the height of that tree. Of course, the
statement also holds for ranks of well-founded strict partial orders on countable sets.

Recall that ωCK
1 denotes the Church–Kleene ordinal, the smallest non-recursive ordinal

(an ordinal α is recursive, if there is some recursive well-founded tree with height α).
Theorem 2.6. LωCK

1
is an ω-model of KP.

The proof can be found in Chapter 5 of [MWS85]. The theorem asserts that we can
use the axioms and theorems of KP when we are reasoning inside the model LωCK

1
. The

following is a restatement of Corollary 5.19 from [MWS85] and justifies our wish to work
in LωCK

1
, as the reals one obtains in LωCK

1
are particularly nice.
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Proposition 2.7. ωω ∩ LωCK
1

= ∆1
1(ωω).

Of course it also holds that 2ω ∩LωCK
1

= ∆1
1(2ω) and [ω]ω ∩LωCK

1
= ∆1

1([ω]ω). Below we
state a well-known result (see the proof of Theorem 6.3 in [MWS85] for a proof), which
is very useful in effective descriptive set theory.

Theorem 2.8 (Effective perfect set theorem). Every Σ1
1 subset of ωω not contained in

∆1
1(ωω) has a perfect subset.

We conclude the subsection on fundamentals of effective descriptive set theory with
another convenient statement, the proof of which can be found below the statement of
Corollary 4.19 in [MWS85].

Theorem 2.9 (Spector–Gandy theorem). When calculating complexity of a given for-
mula, the existential quantifier (∃x ∈ ∆1

1([ω]ω)) can be considered to be (∀x ∈ ωω).

Note that the statement is significant, as ∆1
1([ω]ω) is a Π1

1 subset of [ω]ω.

2.2. Proof of Theorem 0.2. We next adapt some definitions so that we avoid use of
infinite branches, which will enable us to describe the procedure in LωCK

1
. Let T be a tree

on 2× ω so that p[T ] is almost disjoint, let B be a countable family of infinite subsets of
ω and let s ∈ T . Recall, that we defined

xTs := ∪{t∗ | t ∈ T[s]}
and define the subtrees

TB,e := {s ∈ T |xTs /∈ IB}.
Note that for T ∈ LωCK

1
and s ∈ T it holds that xTs ∈ LωCK

1
∩ 2ω. Hence we added e

in the superscript of TB, previously defined in Section 1, to point out that we are not
using infinite branches through T and have thus made things more effective. As before,
if s ∈ TB,e we write TB,e

[s] in place of (TB,e)[s] and TB,e
s in place of (TB,e)s. Before finally

commencing with the proof, note that Lemma 1.2 is a theorem of KP, and that the
diagonalisation argument of the proof of Lemma 1.1 can be performed in LωCK

1
(given

that B ∈ LωCK
1

) by reasoning in KP.

Proof of Theorem 0.2. Suppose for contradiction that there is an infinite Σ1
1 almost dis-

joint family A so that for every x ∈ ∆1
1([ω]ω) there is some z ∈ A with x ∩ z infinite.

Then it holds that for any x ∈ ∆1
1([ω]ω), the assertion “x ∈ A” is ∆1

1, as
x /∈ A ⇐⇒ (∃z ∈ A) |x ∩ z| =∞∧ x ̸= z.

Furthermore, we can show that for x ∈ ∆1
1([ω]ω), the assertion “x ∈ IA” is ∆1

1, as the
following claim establishes.

Claim 2.10. There is a Π1
1 predicate φ such that if x ∈ ∆1

1([ω]ω) then
x ∈ IA ⇐⇒ φ(x).

In particular, for x ∈ ∆1
1([ω]ω), it is ∆1

1 to say “x ∈ IA”.

Proof. Let x ∈ ∆1
1([ω]ω) and assume that x ∈ IA. Then

{z ∈ A | x ∩ z is infinite}
is a finite Σ1

1 set, so by the Effective perfect set theorem 2.8 it consists of finitely many
∆1

1 reals. It follows that for x ∈ ∆1
1([ω]ω),

x ∈ IA ⇐⇒
(
∃z⃗ ∈ (∆1

1([ω]ω))<ω
) (
∀i < lh(z⃗ )

)
z⃗i ∈ A ∧ x ⊆∗ ⋃

i<lh(z⃗ )
z⃗i,
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and the right hand side is a Π1
1 predicate by the Spector–Gandy theorem 2.9 and the

observation that “z⃗i ∈ A” is ∆1
1 since z⃗i ∈ ∆1

1([ω]ω). ⊣
For a countable set B ∈ LωCK

1
with B ⊆ ∆1

1(2ω) and any x ∈ ∆1
1([ω]ω) it holds that the

assertion “x ∈ IA∪B” is ∆1
1, as

x ∈ IA∪B ⇐⇒ (∃n ∈ ω) (∃B0, . . . , Bn−1 ∈ B)x \ ∪k<nBk ∈ IA

and since x \ ∪k<nBk ∈ ∆1
1(2ω). This means that for B as above we can make inquiries

whether x ∈ ∆1
1([ω]ω) is in IA∪B as part of a recursive process in LωCK

1
(see Theorem 2.4

above). With this we are fairly close to using the argument from the proof of Theorem
0.1.

Since in LωCK
1

we have to work without the luxury of inquiring whether there are infinite
branches which avoid Bα, we will have to pass to subtrees of T . Hence we will recursively
(in LωCK

1
) define not only countable sets Bα, but also subtrees Tα. In order to make it

clear that the process stops from the perspective of LωCK
1

, we will at certain steps α in
the process (the first α at which this happens is α = 0) compile a list of pairs s, t ∈ Tα
which are:

• incomparable in the first component, and
• satisfy that xTα

s ∩ xTα
t = s∗ ∩ t∗.

We will then at each successive step γ use the pair which has not been already used,
still lies in the subtree Tγ and appears the first among such in the list. After some steps
(possibly finitely many, and maximally ω-many), we will run out of such pairs. Then we
compile a new list (note that there might be some new pair, since the tree got smaller).
When we run out of pairs and are unable to compile a new list because there are no more
pairs satisfying the condition, we stop the process. We keep track of the ordinals at which
we compile a new list of pairs and call the ordinal at which we compiled a new list for the
α-th time βα. These ordinals will be important later, when we will prove that the process
terminates (from the perspective of LωCK

1
) and that moreover we can estimate in advance

when the process will stop.
We now describe the recursive process. Let T0 := T , B0 := ∅, β0 = 0 and compile the

first list of pairs as described above. Suppose we have defined trees Tα and countable
collections (of subsets of ω) Bα so that the process has not yet terminated and:

(i) if α ≤ α′ ≤ γ then Tα′ ⊆ Tα ⊆ T and Bα ⊆ Bα′ are countable;
(ii) for all α ≤ γ it holds that ω /∈ IA∪Bα ;
(iii) for all α < γ we have Tα+1 = (Tα)Bα,e;
(iv) for limit λ ≤ γ we have Tλ = ∩α<λTα and Bλ = ∪α<λBα.
Set Tγ+1 := (Tγ)Bγ and let s, t ∈ Tγ+1 be the pair as described above (or we compile a

new list if we have run out of pairs in the previously compiled list; or else if there are no
more pairs the process terminates at this stage). Now consider the following cases:

• if xTγ+1
s /∈ IA∪Bγ , then put Bγ+1 := Bγ ∪ {xTγ+1

t };
• else if xTγ+1

t /∈ IA∪Bγ , then put Bγ+1 := Bγ ∪ {xTγ+1
s };

• else put Bγ+1 := Bγ ∪ {xTγ+1
s , x

Tγ+1
t }.

Same as in the non-effective case, we see that in all three cases it holds that ω /∈ IA∪Bγ+1 .
Suppose we have defined Bα for all α < λ, where λ is countable limit, so that the

above conditions (i) to (iv) hold. Then let Tλ := ∩α<λTα and Bλ := ∪α<λBα. Clearly the
conditions are preserved.

We now prove that the process stops. To this end, define the relation ≺ on T × T by
(s, t) ≺ (s′, t′) :⇐⇒ s′ ⊑ s ∧ t′ ⊑ t ∧ s′

∗ ∩ t′∗ ⊊ s∗ ∩ t∗.
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Since p[T ] is almost disjoint in V , it follows that ≺ is well founded in V . By Theorem
2.5 (and the comments below it), LωCK

1
also believes that ≺ is well-founded and correctly

calculates its rank. Let
Γ := rk(≺) < ωCK

1 .

To prove that the process stops we first prove the following claim.

Claim 2.11. Suppose that (s, t) was listed at step βγ. Then

rk
(
≺↾{(s′, t′) | (s′, t′) ≺ (s, t)}

)
≥ γ.

Proof. By induction on γ. The statement is clear for γ = 0. Suppose that the claim
holds for all α < γ and that γ > 0. Since (s, t) was listed at step βγ, it could not have
been listed at steps βα for any α < γ. Fix α < γ. Then there must be some s′ ∈ (Tβα)s
and t′ ∈ (Tβα)t so that s∗ ∩ t∗ ⊊ s′

∗ ∩ t′∗. Applying Lemma 1.2 on Tβα , s′ and t′, we get
some s′′ ∈ (Tβα)s′ and some t′′ ∈ (Tβα)t′ so that (s′′, t′′) is listed at step βα and so that
(s′′, t′′) ≺ (s, t). Let (s(α), t(α)) be the least such (s′′, t′′) according to some in advanced
fixed well-order of T × T .

By the inductive hypothesis it holds for every α < γ that

rk
(
≺↾{(s′, t′) | (s′, t′) ≺ (s(α), t(α))}

)
≥ α.

Thus clearly

rk
(
≺↾{(s′, t′) | (s′, t′) ≺ (s, t)}

)
≥ rk

(
≺↾{(s′, t′) | (s′, t′) ≺ (s(α), t(α))}

)
+ 1 ≥ α + 1.

Since this holds for every α < γ, the proof of the claim is complete. ⊣
Now we are ready to show that the process terminates in LωCK

1
. Suppose for contradic-

tion, that it does not. Then βΓ+1 is defined and is less than ωCK
1 . Let (s, t) be some pair

listed at step βΓ+1. Then by Claim 2.11

rk
(
≺↾{(s′, t′) | (s′, t′) ≺ (s, t)}

)
≥ Γ + 1,

which is in contradiction with rk(≺) = Γ. Moreover, this tells us that the process stops
before ω · (Γ + 1) < ωCK

1 . So we can estimate in advance how long it will take for the
process to terminate! If the process terminates at step γ, let α∗ := γ, T ∗ := Tγ and
B∗ := Bγ. Note that γ is by design a successor ordinal.

Claim 2.12. Every two s, t ∈ T ∗ are comparable in the first component.

Proof. Suppose for contradiction that there are s, t ∈ T ∗ with s∗, t∗ not comparable. Then
apply Lemma 1.2 on T ∗, s and t to conclude that the process should have continued, which
is a contradiction. ⊣

Finally, as in the non-effective case, consider the two possibilities:
• If xT ∗

∅ /∈ IA, then it must be the case that p[T ∗] = ∅ holds in V , so let B := B∗.
• If xT ∗

∅ ∈ IA, then let B := B∗ ∪ {xT ∗
∅ }.

Note that B still satisfies that ω /∈ IA∪B. As in the classical case, this implies that B
satisfies condition (2) of Lemma 1.1. The following claim is true in V .

Claim 2.13. For all z ∈ A there are n ∈ ω and B0, . . . , Bn−1 ∈ B so that z ⊆∗ ∪k<nBk.

Proof. In case z ∈ p[T ∗], we have that z ∈ B, so suppose that z /∈ p[T ∗]. Then there
is some α < α∗ so that z ∈ p[Tα] \ p[Tα+1]. But this means that there are n ∈ ω and
B0, . . . , Bn−1 ∈ Bα for which z ⊆∗ ∪k<nBk. ⊣
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Since B is countable in LωCK
1

, we can apply the proof of Lemma 1.1 in LωCK
1

to obtain
x ∈ [ω]ω∩LωCK

1
so that (since Claim 2.13 is true in V ) it holds in V that for every z ∈ A the

intersection x ∩ z is finite. By Theorem 2.7 we have that x ∈ ∆1
1([ω]ω). This contradicts

the assumption that there is no such witness and with this the proof is complete. □

3. ℵL[a]
1 < ℵ1 implies that there are no infinite Σ1

2[a] mad families

In this section we give a new proof of the following theorem.

Theorem 0.3. Let a ∈ ωω and suppose that ℵL[a]
1 < ℵ1. Then there are no infinite Σ1

2[a]
mad families.

This was first proved by the second author in [Tö18] (see Theorem 3.6) with use of
forcing. Our goal in this section is to prove it using the derivative method from the proof
of Theorem 0.1. Note that we can go back to using TB (which makes reference to infinite
branches), thanks to Σ1

2 absoluteness. Additionally, note that for A ⊆ [ω]ω which is Σ1
2[a],

memberships of A, IA and IA∪B (for B ∈ L[a]) are absolute for L[a] by Σ1
2 absoluteness.

Proof. We suppress the parameter a and prove that if ℵL1 < ℵ1 then there are no infinite
Σ1

2 mad families. The proof can then be easily adapted to include the parameter.
Suppose that A is an infinite Σ1

2 almost disjoint family. Then there is a tree T on 2×ω1
which lies in L so that p[T ] = A holds in V (see e.g. Theorem 13.14 in [Kan09]).

We will work in L and inductively define a family B ⊆ [ω]ω ∩ L, which will satisfy
conditions of Lemma 1.1. Set B0 := ∅. Suppose we have defined Bα for α ≤ γ so that

(i) if α ≤ β ≤ γ then Bα ⊆ Bβ and |Bα|L ≤ |Bβ|L ≤ ℵL1 ;
(ii) for all α ≤ γ it holds that ω /∈ IA∪Bα .

We now define Bγ+1. If there are s, t ∈ TBγ so that s, t are incomparable in the first
component and so that xTBγ

s ∩ xTBγ

t = s∗ ∩ t∗, then consider the following cases:
• if xTBγ

s /∈ IA∪Bγ , then put Bγ+1 := Bγ ∪ {xTBγ

t };
• else if xTBγ

t /∈ IA∪Bγ , then put Bγ+1 := Bγ ∪ {xTBγ

s };
• else put Bγ+1 := Bγ ∪ {xTBγ

s , xT
Bγ

t }.
It is clear that in all three cases Bγ+1 still satisfies that ω /∈ IA∪Bγ+1 , since the intersection
of the two potential new sets (xTBγ

s and xTBγ

t ) is finite and since the condition held at step
γ. If there are no such s, t stop the process and set α∗ := γ and B∗ := Bγ.

Suppose we have defined Bα for all α < λ, where |λ|L ≤ ℵL1 and λ is limit, so that the
above conditions (i) and (ii) hold. Then by letting

Bλ := ∪α<λBα
the conditions are clearly preserved.

To see that the process stops from the perspective of L, observe that at each step γ
we add at least one new member of [ω]ω ∩ L to Bγ. Thus the process terminates from
the perspective of L. Furthermore, it holds that |α∗|L ≤ ℵL1 and |B∗|L ≤ ℵL1 . So by
assumption, in V the ordinal α∗ and the set B∗ are countable.

Claim 3.1. Any two s, t ∈ TB∗ are comparable in the first component.

Proof. Suppose for contradiction that the process stopped, but that there are some s, t ∈
TB∗ which are incomparable in the first component. Applying Lemma 1.2, we get some
s′ ∈ TB∗

s and t′ ∈ TB∗
t for which it holds that xTB∗

s′ ∩ xTB∗

t′ = s′
∗ ∩ t′∗. This is clearly a

contradiction. ⊣
Finally, consider two further cases:

28



AN EFFECTIVE STRENGTHENING OF MATHIAS’ THEOREM

• If xTB∗

∅ /∈ IA, then p[TB∗ ] = ∅ must hold in V . In this case let B := B∗.
• If xTB∗

∅ ∈ IA, then let B := B∗ ∪ {xTB∗

∅ }.
Note that it holds for B that ω /∈ IA∪B, so that B satisfies condition (2) of Lemma 1.1.
The following claim is true both in L (with A ∩ L in place of A) and V .
Claim 3.2. For every z ∈ A there are n ∈ ω and B0, . . . , Bn−1 ∈ B so that z ⊆∗ ∪k<nBk.
Proof. In case z ∈ p[TB∗ ], we have that z ∈ B. So suppose that z /∈ p[TB∗ ]. Then there
is some α < α∗ so that z ∈ p[TBα ] \ p[TBα+1 ]. But this means that there are n ∈ ω and
B0, . . . , Bn−1 ∈ Bα+1 for which z ⊆∗ ∪k<nBk. ⊣

We conclude the proof by applying Lemma 1.1 in V , where B is countable by assump-
tion. □
Remark 3.3. Note that since in L there are infinite Σ1

2 mad families (even Π1
1 ones,

see [Mil89] or [Tö09]), we cannot in general expect that |α∗|L < ℵL1 . Nevertheless, the
argument shows that L falls just a little bit short of proving non-maximality (namely
seeing that B is countable).

4. MA(κ) implies that there are no infinite κ-Suslin mad families

Recall that a set A ⊆ 2ω is κ-Suslin if there is a tree T on 2 × κ for which A = p[T ].
The aim of this section is to provide a new proof of the following statement.
Theorem 0.4. If MA(κ) holds for some κ < 2ℵ0 then there are no infinite κ-Suslin mad
families.

The above theorem was proved by the second author in [Tö18] (see Theorem 2.5) by
generalising the method from the proof of Theorem 2.1 (which is our Theorem 0.1) and
using Lemma 2.6, restated below in a slightly modified version.
Lemma 4.1. Suppose that MA(κ) holds for some κ < 2ℵ0 and suppose that A ⊆ P(ω)
and B ⊆ [ω]ω with |B| ≤ κ, so that:

(1) for all z ∈ A there are n ∈ ω and B0, . . . , Bn−1 ∈ B so that z ⊆∗ ∪k<nBk;
(2) for all n ∈ ω and B0, . . . , Bn−1 ∈ B it holds that ω \ ∪k<nBk is infinite.

Then there is some x ∈ [ω]ω such that for all z ∈ A the intersection x ∩ z is finite.
For completeness and reader’s convenience we repeat the short proof from [Tö18].

Proof. If |B| ≤ ℵ0, then the proof is completed by an application of Lemma 1.1. So
suppose that |B| > ℵ0. We let P be the forcing poset, whose set of conditions is

2<ω × [B]<ω

(where [B]<ω denotes the collection of all finite subsets of B) and where for two conditions
(s,F) and (s′,F ′) we set that

(s,F) ≤P (s′,F ′) :⇐⇒ s′ ⊑ s ∧ F ′ ⊆ F ∧ s \ s′ ⊆ ω \ ∪F ′.

Clearly, P has the ccc property, so invoking MA(κ) we get a filter G meeting all dense sets
DF ′ :=

{
(s,F)

∣∣∣F ′ ⊆ F
}
,

where F ′ ranges over [B]<ω, and all dense sets
Dn :=

{
(s,F)

∣∣∣n ≤ |{m ∈ dom(s) | s(m) = 1}|
}
,

where n ranges over ω. Then set
x := ∪{s ∈ 2<ω | (∃F) (s,F) ∈ G}

and notice that x ∈ [ω]ω and that for every z ∈ A the intersection x ∩ z is finite. □
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We now generalise the proof of Theorem 0.1 with the aim of using Lemma 4.1 instead
of Lemma 1.1.
Sketch of proof of Theorem 0.4. Suppose that A is an infinite κ-Suslin almost disjoint
family. Let T be a tree on 2× κ for which A = p[T ]. Now we use the argument from the
proof of Theorem 0.1 (and perform it in V ), with the following changes:

• The sets Bα are no longer required to be countable but rather satisfying |Bα| ≤ κ.
• The process terminates with |α∗| ≤ κ, since |T | ≤ κ, and since at each step we

remove at least one node from T .
• The set B will thus satisfy |B| ≤ κ. To conclude the proof use Lemma 4.1 in place

of Lemma 1.1.
We leave the details to the reader. □

Note that since every Σ1
2 set is ℵ1-Suslin (see e.g. [Mos09] or [Kan09]), the following is

an immediate corollary of Theorem 0.4 (this is Corollary 2.8 in [Tö18]).
Corollary 4.2. Under the assumption MA(ℵ1) there are no infinite Σ1

2 mad families.

5. Open questions and further work

Suppose that I and J are two ideals on sets X and Y respectively. Then the Fubini
product of I with J is an ideal on X × Y , denoted by I ⊗ J and defined as

I ⊗ J :=
{
A ⊆ X × Y

∣∣∣ {x ∈ X |A(x) /∈ J } ∈ I
}
,

where for A ⊆ X × Y we let
A(x) := {y ∈ Y | (x, y) ∈ A}.

We inductively define Mα for 0 < α < ω1 as follows. Set M1 := ω, and given Mα define
Mα+1 := ω ×Mα.

For λ < ω1 limit, fix a cofinal sequence (αλn)n∈ω in λ (to be used again later) and set
Mλ :=

⋃

n∈ω
{n} ×Mαλ

n .

Next, we for every 0 < α < ω1 inductively define the ideal Finα on Mα. Set Fin1 := Fin,
and given Finα define

Finα+1 := Fin⊗Finα,
which is an ideal on Mα+1. For limit λ < ω1 set

Finλ :=
{
A ∈Mλ

∣∣∣ {n ∈ ω |A(n) /∈ Finαλ
n} ∈ Fin

}
.

The ideals Finα are called iterated Fubini products of the ideal Fin.
Two subsets A,B ⊆ Mα are said to be Finα-almost disjoint if A ∩ B ∈ Finα. In

[BHST22], Bakke Haga, Schrittesser and the second author proved that for every α ∈ ω1 \
{0} there are no infinite analytic maximal Finα-almost disjoint families. David Schrittesser
and the authors of this note believe that the following has a positive answer for every
α ∈ ωCK

1 \ {0} and made some progress towards proving it.
Question 5.1. Let α ∈ ωCK

1 \ {0}. Is it the case that for every infinite Σ1
1 Finα-almost

disjoint family there is a ∆1
1 witness to non-maximality?

It is unknown whether AD (the axiom of determinacy; see [Kan09] or [Kec95] for great
overviews) and AD+ (see [Woo10]) are equivalent (they are known to be equivalent under
V = L(R)). Furthermore, it is also unknown whether AD implies that all sets of reals are
Ramsey. Hence, in spite of the results from [NN18], [BHST22] and [ST19], the following
question, originally posed by the second author, remains open.
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Question 5.2. Does AD (if needed, together with DC) imply that there are no infinite
mad families?

The authors consider Theorem 0.2 a significant indication that the above question has
an affirmative answer.

The G0 dichotomy from the seminal [KST99] by Kechris, Solecki and Todorčević has
since been used in providing new proofs of many result in descriptive set theory (see e.g.
[Mil12]).

Question 5.3. Can the G0 dichotomy be used to provide a simple proof of Theorem 0.1,
i.e., that there are no infinite analytic mad families?
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Part III.

Maximal cofinitary groups





DEFINABILITY OF MAXIMAL COFINITARY GROUPS

SEVERIN MEJAK AND DAVID SCHRITTESSER

Abstract. We present a proof of a result, previously announced by the second author,
that there is a closed (even Π0

1) set generating an Fσ (even Σ0
2) maximal cofinitary group

(short, mcg) which is isomorphic to a free group. In this isomorphism class, this is the
lowest possible definitional complexity of an mcg.

Introduction

In [Cam96], Cameron introduced the notion of a cofinitary subgroup of S∞ as follows.
An element g ∈ S∞ \{idω} is called cofinitary if it has only finitely many fixed points, i.e.,
there is some n ∈ ω so that for every m > n it holds that g(m) ̸= m. Then a subgroup
G ≤ S∞ is cofinitary if every g ∈ G \ {idω} is cofinitary. We write “cofinitary group” in
place of the longer “cofinitary subgroup of S∞”. Cofinitary groups were studied before
[Cam96] under different names; e.g., in [Ade88] they are called sharp. See [Cam96] for
combinatorial properties of cofinitary groups and [Tru87] and [Ade88] for results on their
embeddings.

A cofinitary group is maximal (we write mcg for short) if it is not strictly contained
in any cofinitary group. Mcgs were first considered in [Tru87] and [Ade88]. The first
result which made mcgs interesting to set-theorists was established by Adeleke in [Ade88]
and asserted that mcgs are always uncountable. Current research on mcgs is divided
between answering two questions about mcgs. The first question asks what are the possible
cardinalities of mcgs, and in particular, what is the least possible size of an mcg. See e.g.
[BSZ00] and [HSZ01] for early results which answer parts of this question. The second
question asks what is the least achievable complexity of an mcg. This paper concerns
itself with the latter.

The first breakthrough in the study of definability of mcgs was when Gao and Zhang
(see [GZ08]) established that if V = L there is a Π1

1 set which generates an mcg. This was
improved by Kastermans in [Kas08] to the existence of a Π1

1 mcg under the assumption
V = L. Kastermans also proved the beautiful results that no mcg can be Kσ (see [Kas08])
and that no mcg can have infinitely many orbits (see [Kas09]).

Kastermans’ result on definability inspired [FST17], in which Fischer, Törnquist and
the second author constructed a Cohen-indestructible Π1

1 mcg. The next milestone was
achieved (to some surprise) soon afterwards, when Horowitz and Shelah established in
[HS16] that it is provable in ZF (without the axiom of choice) that there is a Borel mcg.
Using ideas of [HS16], the second author proved (again without use of the axiom of choice)
in [Sch21] that there is actually an arithmetical mcg, and announced that the construction
from [Sch21] can be improved to produce an Fσ (actually even Σ0

2) mcg.
In this paper we use the idea of the construction from [Sch21] and enhance it with

ideas from [Sch17] to get a construction (not employing the axiom of choice) proving the
following.

Theorem 0.1. There is a Π0
1 subset of ωω which freely generates a Σ0

2 mcg.

2020 Mathematics Subject Classification. 03E05, 03E15, 20B07.
Key words and phrases. cofinitary groups, definability, maximality, orbits.
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Since the topological interior of any cofinitary group is clearly empty, Π0
1 is the best

possible complexity of a set generating an mcg.
By a result of Dudley ([Dud61]), there is no Polish topology on a group freely generated

by continuum many generators. This clearly implies that Σ0
2 is the best possible complex-

ity of a freely generated mcg. Additional difficulties on potential constructions of Gδ mcgs
are imposed by [Slu12], in which Slutsky improved on Dudley’s result and proved that if
G is a free product of groups and carries a Polish topology, then G is countable. Since all
presently known constructions of definable mcgs produce groups which decompose into
free products, this means that current ideas are insufficient to produce a Gδ mcg.

Finally, we introduce finitely periodic groups (a relative to cofinitary groups) and prove
an analogue to a well known theorem for mcgs.

Structure of the paper. We begin by briefly recalling the notation we will be using.
In Section 2 we prove Theorem 0.1. We proceed with Section 3, where we discuss known
obstructions to constructing Gδ mcgs. We conclude the paper with Section 4, where we
introduce finitely periodic groups and discuss open problems related to mcgs and maximal
finitely periodic groups.
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1. Notation

We use ω to denote the set of all natural numbers. We think of natural numbers as
ordinals, so for n ∈ ω, n = {0, 1, . . . , n− 1}. No other properties of ordinals will be used
and no knowledge of ordinals is required. For a set A, we let |A| denote its cardinality.

For a finite sequence s, we denote its length by lh(s). We also use s(−1) to denote the
last entry of s, i.e., s(−1) := s(lh(s) − 1). For a set A, we denote the set of all finite
sequences in A by A<ω, the set of all finite or infinite sequences in A by A≤ω and the set
of all infinite sequences in A by Aω. We denote the subsets of these sets consisting only
of injective sequences, viz., sequences where no two entries are the same, by (A)<ω, (A)≤ω

and (A)ω respectively. For α in ω + 1 = ω ∪ {ω} we let [A]α denote the collection of all
subsets of A of size α, [A]<α denote the collection of all subsets of A of size less than α and
[A]≤α denote the collection of all subsets of A of size at most α. For sequences s, t ∈ A<ω

(or in (A)<ω) we denote t strictly end-extending s by s ⊏ t, and non-strictly by s ⊑ t.
Generally, we use (̄·) to denote finitary versions of infinite objects, e.g., if f ∈ (ω)ω, then
f̄ ∈ (ω)<ω represents some initial segment of f .
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If s ∈ 2≤ω, we use ŝ to denote the strictly increasing function enumerating s−1[{1}], the
set which s maps to 1. Sometimes, we write finite sequences s ∈ 2<ω in “binary format”,
e.g., (0, 1, 0, 0, 1) is written as 010012. This is convenient when there are many consecutive
zeros in a sequence, e.g., for n,m ∈ ω,

(0, . . . , 0︸ ︷︷ ︸
n

, 1, 0, . . . , 0︸ ︷︷ ︸
m

, 1)

is then written simply as 0n10m12.
As usually, the expression (∀∞n ∈ ω)ϕ(n) means that ϕ(n) holds for all but finitely

many n, and the expression (∃∞n ∈ ω)ϕ(n) means that ϕ(n) holds for infinitely many n.
For a group G and A ⊆ G, we denote the subgroup of G, generated by A, with ⟨A⟩.

To avoid confusion, we use the round brackets for tuples (and sequences), e.g., instead of
the standard ⟨a, b⟩, we write (a, b).

We use S∞ to denote the Polish group of all permutations of ω and let idω denote
the unit of this group. For g0, . . . , gl ∈ S∞ and m ∈ ω, we define the path of m under
gl ◦ · · · ◦ g0 to be the sequence (m(i))i∈l+1, inductively defined by setting m(0) := m and
for i ≤ l by m(i+ 1) := gi(m(i)). We will sometimes omit ◦ and write just gl · · · g0.

We denote the free group generated by a set A with F(A). For x0, . . . , xk ∈ A and
i0, . . . , ik ∈ {−1, 1}, we occasionally use the vector notation x⃗ for the reduced word
xikk · · ·xi00 ∈ F(A) in order to emphasise that x⃗ is not necessarily a generator but a proper
word (in case k > 0).

Otherwise, we use the standard notation of [Kec12] and introduce any non-standard
notation on the way.

We use ⊣, instead of the otherwise used □, to denote that the proof of a nested claim
or a subclaim has been completed.

2. Constructing a Σ0
2 mcg

In this section we present a construction of a Σ0
2 mcg. Our construction and presen-

tation is based on [Sch21], from which we also borrow some notation. Note that many
of these notions have a slightly different definition in order to accommodate new coding
components and in this way make the construction more definable. The construction
of the definable mcg and the proofs of maximality and cofinitariness closely follow the
respective proofs in [Sch21]. The main improvement over the construction from [Sch21] is
that we augment it by ideas from [Sch17]. This will be apparent in the definition of our
group and when proving that the constructed group is definable.

It is not necessary for the reader to be familiar with either [Sch21] or [Sch17]. However,
[Sch21] does occasionally contain more details, which the reader might find helpful in
understanding this proof and [Sch17] contains the original idea of how maximal objects
can be very definable in a simpler setting of maximal eventually different families, possibly
making it easier for the reader to understand the present construction.

2.1. Cofinitary action, freely generated by continuum many generators. We
start by defining an injective map

e : 2ω × 2ω × 2ω → S∞,

such that range(e) ⊆ S∞ freely generates a cofinitary group. We follow the idea of the
construction from [Sch21], additionally making sure that the intervals are wider, allowing
us to code the second and third component of the domain as well.

Recall that we denote the free group, generated by 2α × 2α × 2α, by F(2α × 2α × 2α) for
any α ∈ ω + 1 (= ω ∪ {ω}). For a word

w = (xk, d0
k, d

1
k)ik · · · (x0, d

0
0, d

1
0)i0 ∈ F(2α × 2α × 2α)
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we sometimes write w = (w0, w1, w2), where we implicitly define
w0 := xikk · · ·xi00 ∈ F(2α) and wj+1 := (djk)ik · · · (dj0)i0 ∈ F(2α)

for j ∈ 2. For a word w, we denote its length by lh(w). If m ≤ α we let rαm be the group
homomorphism

rαm : F(2α × 2α × 2α) → F(2m × 2m × 2m),
which is defined on a generator (x, d0, d1) ∈ F(2α × 2α × 2α) as

rαm(x, d0, d1) = (x ↾ m, d0 ↾ m, d1 ↾ m).
We will define a sequence of finite groups

(Gn)n∈ω

and group homomorphisms
en : F(2n × 2n × 2n) → Gn,

along with transitive faithful actions
σn : Gn ↷ In,

where each In = [mn,mn+1) is a non-empty interval in ω, with m0 = 0 and so that the
intervals constitute a partition of ω. We also define for each n ∈ ω the set

Wn := {w ∈ F(2n × 2n × 2n) | lh(w) ≤ n}.
The requirements that we wish to satisfy are the following. We will inductively construct
(Gn)n∈ω, (en)n∈ω and (σn : Gn ↷ In)n∈ω so that in addition to the above, for every n ∈ ω
it holds that

(1) ∑
m<n |Im| < |In|;

(2) en ↾ Wn is injective;
(3) |I0| ≥ 7.

Since 20 = {∅} and W0 = {∅}, it is easy to define G0, e0, I0 and σ0 : G0 ↷ I0 so that (3)
is satisfied.

Suppose that we have already defined Gn, en, In and σn : Gn ↷ In. Let (wi)i∈l be some
enumeration of Wn+1 for which w0 = ∅, the empty word. We let e0

n+1 be a function from
2n+1 × 2n+1 × 2n+1 to the set of partial injections from l = {0, . . . , l − 1} to itself, as
follows. For (x, d0, d1) ∈ 2n+1 × 2n+1 × 2n+1 and i, j ∈ l we set

e0
n+1(x, d0, d1)(i) = j if and only if wj = (x, d0, d1)wi.

Let e1
n+1(x, d0, d1) be some extension of e0

n+1(x, d0, d1) to a permutation of l and let
G0
n+1 := ⟨e1

n+1(x, d0, d1) | (x, d0, d1) ∈ 2n+1 × 2n+1 × 2n+1⟩ ≤ Sl,

where Sl denotes the permutation group of l. By the universal property of the free group,
e1
n+1 extends uniquely to a group homomorphism from F(2n+1 × 2n+1 × 2n+1) onto G0

n+1,
which we denote in the same way. Since e1

n+1(wi)(0) = i for every i ∈ l, e1
n+1 is injective

on Wn+1.
For some sufficiently large k ∈ ω let

Gn+1 := G0
n+1 × Sk.

By “sufficiently large” we mean large enough so that when In+1 is defined to be of the
same size as Gn+1, condition (1) holds. Moreover, let

en+1 : F(2n+1 × 2n+1 × 2n+1) → Gn+1

be defined on a generator (x, d0, d1) ∈ 2n+1 × 2n+1 × 2n+1 by
en+1(x, d0, d1) := (e1

n+1(x, d0, d1), 1Sk
).
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Let In+1 be the interval immediately to the right of the previously defined In, which has
the same size as Gn+1. Fix some bijection Φn+1 : Gn+1 → In+1 and define the action

σn+1 : Gn+1 ↷ In+1

by
σn+1(g)(k) = Φn+1(g · (Φn+1)−1(k)).

Clearly, all desired conditions have been met and with this the inductive construction is
completed.

With the sequences (Gn)n∈ω, (en)n∈ω and (σn : Gn ↷ In)n∈ω at our disposal define
e : F(2ω × 2ω × 2ω) → S∞

by defining it on a generator (x, d0, d1) ∈ 2ω × 2ω × 2ω as
e(x, d0, d1) ↾ In := σn(en(rωn(x, d0, d1))).

The following proposition is an elaboration of Propositions 1.3 and 1.4 from [Sch21].

Proposition 2.1. The map e is a continuous injective homomorphism, whose range is a
cofinitary group. Moreover, e is ∆0

1 (in terms of that for w ∈ F(2ω × 2ω × 2ω) and n ∈ ω,
we can calculate e(w)(n) in finite time by analysing rωm(w) for some m ∈ ω, which can
in turn be calculated in finite time from n; all this using w as an oracle), its range is Π0

1
and the sequences (Gn)n∈ω and (σn)n∈ω are ∆0

1.

Proof. Clear by construction. □

2.2. The definition of B0. In this subsection we define the assignment B0, which will
form the core of our construction.

We first introduce the map χ : (ω)≤ω → 2≤ω defined on h ∈ (ω)≤ω by
χ(h) := (0, . . . , 0︸ ︷︷ ︸

h(0)

, 1, 0, . . . , 0︸ ︷︷ ︸
h(1)

, 1, 0, . . . , 0︸ ︷︷ ︸
h(2)

, 1, . . .) ∈ 2≤ω.

Of course, lh(χ(h)) is infinite if and only if lh(h) is infinite.
We define the map χ† : 2≤ω → (ω)≤ω on x ∈ 2≤ω by

χ†(x) :=





h if x ∈ range(χ) and χ(h) = x;
s if x /∈ range(χ) and n is maximal such that

x ↾ n ∈ range(χ) and χ(s) = x ↾ n.
Of course, χ† is a left inverse of χ. There are two ways for x ∈ 2ω not to be in range(χ).
The first one is that x is of the form

(. . . , 1, 0, 0, . . . , 0︸ ︷︷ ︸
n

, 1, . . . , 1, 0, 0, . . . , 0︸ ︷︷ ︸
n

, 1, . . .),

in which case it clearly cannot be the image of any g ∈ (ω)≤ω, since it violates injectivity.
The second option is that x only has finitely many 1s (but does not fall under the first
option). Then if n > 0, n − 1 is the last index of a 1 in x; and n = 0 if and only if x is
constant with value 0, in which case χ†(x) is the empty function.

Next, define for every g ∈ (ω)≤ω a function ϑg ∈ (ω)≤ω with the following properties:
(i) if g ∈ (ω)ω, then as k increases, the maps ϑg↾k ∈ (ω)<ω approach ϑg ∈ (ω)ω;
(ii) if g ̸= g′, then range(ϑg) and range(ϑg′) are almost disjoint (this will be used in

Claim 2.3);
(iii) for any n ∈ range(ϑg), if n ∈ Im and g(n) ∈ Im′ then m ≤ m′ (this will be

important in Subclaim 2.12 and in Proposition 2.17).
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(iv) each set range(ϑg) is g-spaced, i.e., for any distinct n, n′ ∈ range(ϑg), it holds that
n′ is not in the same interval as any of n, g−1(n) or g(n). This will be used in
Fact 2.7.

These properties are not difficult to arrange, but since our aim is to do this in such a
way that in the end the definition of the set of generators is simple, we shall go into the
details.

Let
# : (ω)<ω → ω

be some fixed ∆0
1 bijection, which we use to introduce an auxiliary function F , defined

for g ∈ (ω)<ω and k ∈ ω by
F (g, k) := 2#(g) · 3k.

The only property we require of F is that it is ∆0
1 and injective. We also define an

auxiliary family of functions which satisfy all of the properties (i) to (iv) above, except
possibly (iii): given g ∈ (ω)≤ω, define ξg ∈ (ω)≤ω inductively as follows. Suppose that we
have defined ξg on all k < n and that for every k < n we have

IF (g↾(k+1),ξg(k)) ⊆ dom(g) ∪ range(g).
(If the above requirement is not fulfilled for some k < n, then dom(ξg) = n, and our
inductive definition terminates.) Then we set ξg(n) to be the smallest such that

min IF (g↾(n+1),ξg(n))

is strictly larger than any member of
⋃ {

{l, g(l), g−1(l)}
∣∣∣ (∃k < n) l ∈ IF (g↾(k+1),ξg(k))

}
.

With ξg at our disposal, we finally define the function ϑg ∈ (ω)≤ω, defined on those n ∈ ω,
for which

dom(g) ≥ max
{
n+ 1,min IF (g↾(n+1),ξg(n))+1

}

by
ϑg(n) := min

(
Im \ ∪{g−1[Ik] | k < m}

)
,

where m = F (g ↾ (n+ 1), ξg(n)). It is clear that properties (i) to (iv) are fulfilled.
Now we define for every g ∈ (ω)≤ω and c0, c1 ∈ 2≤ω with lh(g) ≤ lh(c0) = lh(c1) the

sets
D(g) := dom(g) ∩ range(ϑg)

and
B0(g, c0, c1) := dom(g) ∩

{
ϑg

(
ĉ0(n)

) ∣∣∣∣n ∈ ω ∧ c1(n) = 1 ∧ ĉ0(n) ∈ dom(ϑg)
}∖

{
m ∈ ω

∣∣∣∣ g(m) = e(g, c0, c1)(m)
}
.

Recall that ĉ0 is the function enumerating range(c0). Basically, what we are doing is
that we are using c1 to pick certain elements from range(c0), and then using these picked
elements as inputs of ϑg. This way we have passed to a subset B0(g, c0, c1) of D(g) in
such a way that case (2) of Claim 2.3 (establishing a strong form of almost disjointness)
holds.

Above we have defined the notion of when a set is g-spaced. The notion is based on
the notion of (f, g)-spacedness, taken from Subsection 1.2 of [Sch21]. Note that since
e(·, ·, ·) respects the interval partition, our notion of g-spaced agrees with the notion of
(e(χ(g), c0, c1), g)-spaced from [Sch21] for any c0 and c1. Instead of saying that for each
g ∈ (ω)≤ω and any c0, c1 ∈ 2≤ω (with lh(g) ≤ lh(c0) = lh(c1)) the set B0(g, c0, c1) is
g-spaced, we rather simply say that B0 is spaced.
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Finally, observe that D(g) and B0(g, c0, c1) are ∆0
1(g) and ∆0

1(g, c0, c1) respectively (in
terms of that their membership is decidable using their respective oracles).

2.3. Relations coding extensions. We continue with a discussion of binary relations
which will, by abstracting certain technical aspects, simplify some of the technical steps
in the proof of the main theorem. The definitions of the relations <f

0 and <f
1 are inspired

by [Sch21].
Following [Sch17], for c ∈ 2≤ω we say that it is good, if for every two successive n0 < n1

from c−1[{1}] we have that
n1 ≡

∑

i≤n0

c(i) · 2i (mod 2n0+1),

and in case
|{n ∈ ω | c(n) is defined and equals 1}| < ω

the sequence c is finite.
Let C denote the set of all finite good sequences c, with either c(−1) = 1 or c = ∅. For

c, c′ ∈ C, define the relation c ◁ c′ by
c ◁ c′ :⇐⇒ for some n ∈ ω, c′ = c⌢0n12.

Good sequences will be crucial for our construction (see the beginning of Subsection 2.5)
and for the nice properties used e.g. in Claim 2.3.

Define now a uniformly computable family
{<f

0 | f ∈ (ω)≤ω}
of strict partial orders as follows: given m,m′ ∈ In define

δn(m,m′) =





the unique element (w0, w1, w2) ∈ Wn such that
en(w0, w1, w2)(m) = m′, if such exists; or
↑ (remains undefined) otherwise.

For f ∈ (ω)≤ω and m ∈ ω, we let
δ(f,m) := δn(m, f(m))

for the unique n such that m ∈ In, when m ∈ dom(f) and δn(m, f(m)) is defined;
otherwise we let δ(f,m) remain undefined. Finally, set

m <f
0 m

′

precisely when m < m′, m′ ∈ dom(f), δ(f,m) and δ(f,m′) are defined and
δ(f,m) = rm

′
m (δ(f,m′)).

Of course, by “uniformly computable” we mean that there is some a ∈ ω such that the
family is precisely the set {

{a}f | f ∈ (ω)≤ω
}
,

which is clearly the case.
Next, we introduce another uniformly computable family of strict partial orders

{<f
1 | f ∈ (ω)≤ω}

as follows. For m,m′ ∈ ω set m <f
1 m

′ if and only if it holds that m < m′, f(m) < f(m′)
are both defined and there is some g ∈ (ω)<ω so that {f(m), f(m′)} ⊆ D(g). It is not hard
to see that <f

1 is a strict partial order (to prove transitivity use the nice properties of ϑg).
Note also that the family is uniformly computable, as the existence of the appropriate
g ∈ (ω)<ω can be determined in finitely many steps.
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We now present an amplification of Claim 2.7 from [Sch17], which will be essential for
the proof of maximality of our constructed group (see Proposition 2.9).

Lemma 2.2. For any g ∈ (ω)ω one of the following holds:
(1) There is some I ∈ [D(g)]∞, which is linearly ordered by <g

0.
(2) There are good sequences d0, d1 ∈ 2ω, such that no two elements of B0(g, d0, d1)

are <g
0-comparable and either:

(a) B0(g, d0, d1) is linearly ordered by <g
1; or

(b) no two elements of B0(g, d0, d1) are <g
1-comparable.

Proof. Fix any g ∈ (ω)ω. Assume first that
(∗) (∃c0 ∈ C) (∀c1 ∈ C) c0 ◁ c1 → (∃c2 ∈ C) c1 ◁ c2 ∧ ϑg(lh(c1) − 1) <g

0 ϑg(lh(c2) − 1)
holds. Then fix c0 witnessing the first existential quantifier, let c1 ∈ C be such that c0 ◁ c1
and set n0 := ϑg(lh(c1) − 1). Using the second existential quantifier, we get some c2 with
c1◁c2 and n0 <

g
0 ϑg(lh(c2)−1). Put n1 := ϑg(lh(c2)−1) and let d2 ∈ C be unique such that

lh(d2) = lh(c2) and c0 ◁d2. Applying (∗) with d2 instantiating the universal quantifier, we
get c3 ∈ C with d2 ◁ c3 and n1 <

g
0 ϑg(lh(c3) − 1), so we set n2 := ϑg(lh(c3) − 1). Clearly,

we can proceed inductively to obtain an infinite sequence (ni)i∈ω contained in D(g) and
such that for every i ∈ ω it holds that ni <g

0 ni+1. Then set
I := {ni | i ∈ ω},

to obtain (1).
Suppose now that (∗) does not hold. Then its negation

(¬∗) (∀c0 ∈ C) (∃c1 ∈ C) c0 ◁ c1 ∧ (∀c2 ∈ C) c1 ◁ c2 → ¬
(
ϑg(lh(c1) − 1) <g

0 ϑg(lh(c2) − 1)
)

must be true. Now, first instantiate the leftmost universal quantifier of (¬∗) with c0 := ∅,
to get d0 ∈ C with ∅◁d0. Next, instantiate the same quantifier with c0 := d0, to get d1 ∈ C
with d0 ◁ d1. Inductively, we get a sequence (di)i∈ω, such that for every i ∈ ω it holds that
di ◁ di+1. With this, we define an infinite good sequence d0 ∈ 2ω by

d0 := ∪{di | i ∈ ω}.
Now we basically repeat the argument of case (1) to get the second infinite good se-

quence d1. Assume first that
(∗∗) (∃c0 ∈ C) (∀c1 ∈ C) c0◁c1 → (∃c2 ∈ C) c1◁c2∧ϑg(d̂0(lh(c1)−1)) <g

1 ϑg(d̂0(lh(c2)−1))
holds. Then as in the case when (∗) is true, we can get a good sequence d1 ∈ 2ω such
that the set

I := {ϑg(d̂0(n)) |n ∈ ω ∧ d1(n) = 1}
is linearly ordered by <g

1. By definition it holds that B0(g, d0, d1) ⊆ I, so B0(g, d0, d1) is
linearly ordered by <g

1 as well. Due to the property in the right part of (¬∗), we have made
sure that no two elements of B0(g, d0, d1) are <g

0-comparable. We have thus obtained case
(a) of (2).

If on the other hand the negation of (∗∗),
(∀c0 ∈ C) (∃c1 ∈ C) c0 ◁ c1∧(∀c2 ∈ C) c1 ◁ c2 →(¬∗∗)

¬
(
ϑg(d̂0(lh(c1) − 1)) <g

1 ϑg(d̂0(lh(c2) − 1))
)

holds, we repeat the procedure by which we have constructed d0 to get an infinite good
d1. By definition of B0(g, d0, d1) and the right parts of (¬∗) and (¬∗∗), we have made
sure that no two elements of B0(g, d0, d1) are comparable with respect to either one of <g

0
or <g

1, obtaining case (b) of (2). □
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2.4. Further restriction of B0. The definitions of D and B0 make sure that the sets
D(·) and B0(·, ·, ·) are mutually sparse, as the following claim shows (this is a stronger
analogue to Claim 2.4 from [Sch17] and Lemma 1.9 from [Sch21]).

Claim 2.3. Suppose that g, h ∈ (ω)ω and c0, c1, d0, d1 ∈ 2ω are all good.
(1) If g ̸= h, then the set

{n ∈ ω |D(g) ∩ In ̸= ∅ ∧D(h) ∩ In ̸= ∅}
is finite.

(2) If (g, c0, c1) ̸= (h, d0, d1), then the set
{n ∈ ω |B0(g, c0, c1) ∩ In ̸= ∅ ∧B0(h, d0, d1) ∩ In ̸= ∅}

is finite.
Proof. For (1), let m ∈ ω be such that g ↾ m ̸= h ↾ m. Then for all k0, k1 > m it
holds that ϑg(k0) and ϑh(k1) are not in the same interval In, and thus the proof of (1) is
complete.

Suppose for (2) that g = h and that cj ̸= dj for some j ∈ 2. Let m ∈ ω be such that
cj ↾ m ̸= dj ↾ m. By definition of goodness, there is at most one k ≥ m, for which it holds
that both cj(k) = 1 and dj(k) = 1. Then a quick look at the definition of B0 (left to the
reader) completes the proof of (2). □

Unfortunately, the sets B0(·, ·, ·) are still not sparse enough for the construction to
succeed, so we now restrict them further.

We will define a function
B : {(g, c0, c1) ∈ (ω)≤ω × 2≤ω × 2≤ω | lh(g) ≤ lh(c0) = lh(c1)} → [ω]≤ω,

such that for every (g, c0, c1) ∈ dom(B) it holds that B(g, c0, c1) ⊆ B0(g, c0, c1). Moreover,
we will require that the following property, called superspacedness (since it is reminiscent
of the notion of being spaced, borrowed from [Sch21] and reintroduced above), holds for
B (note that since B is pointwise contained in B0, it is automatically spaced).

Definition 2.4 (Superspacedness). A function
B : {(g, c0, c1) ∈ (ω)≤ω × 2≤ω × 2≤ω | lh(g) ≤ lh(c0) = lh(c1)} → [ω]≤ω

is superspaced if for every g ∈ (ω)ω, for which the set

I := {n ∈ D(g) | g(n) = e(x⃗, d⃗0, d⃗1)(n)}
is infinite for some (x⃗, d⃗0, d⃗1) ∈ F(2ω×2ω×2ω), with x⃗ = xikk · · ·xi00 and d⃗j = (djk)ik · · · (dj0)i0
for j ∈ 2, defining

J := {j ∈ k + 1 |xj ∈ range(χ) ∧ χ†(xj) ̸= g ∧ d0
j , d

1
j are good},

it holds that there are infinitely many m ∈ I, so that
(∀j ∈ J)χ†(xj)[B(χ†(xj), d0

j , d
1
j)] ∩ In(m) = ∅,

where n(m) is the unique such that m ∈ In(m).

The notion of superspacedness is similar to the notion of being cooperative from [Sch21].
The purpose of the definition is the following: we will be catching elements f ∈ (ω)ω on
D(f) by words in range(e), so we have to ensure that with the definition of ė (using the
definition of e in certain cases; see Subsection 2.5) we still catch the elements (now with
words in range(ė)). This is formalised in Proposition 2.9.

We continue by defining B. We first define a set
T ⊆ (ω)<ω × {−1, 1}<ω × (2<ω)<ω × (2<ω)<ω × (2<ω)<ω,
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equipped with a tree like order <, and a function

ψ : T → 2<ω.

They will store information which we will then use to define B from B0. The process of
defining ψ will be algorithmic in nature and is similar to the algorithm called “semaphore”
in [Sch21], where it is also explained in detail (which the reader might find helpful). Let

T :=
{

(s, i⃗, x⃗, d⃗0, d⃗1) ∈ (ω)<ω×{−1, 1}<ω × (2<ω)<ω × (2<ω)<ω × (2<ω)<ω
∣∣∣∣

lh(⃗i ) = lh(x⃗) = lh(d⃗0) = lh(d⃗1) ∧
(∃k ∈ ω) lh(s) =

∑

m≤k
|Im| ∧

(∀j ∈ lh(x⃗)) lh(x⃗(j)) = lh(d⃗0(j)) = lh(d⃗1(j)) = k
}
.

Here, the first component s is an approximation to an element of (ω)ω, and the last four
components, i⃗, x⃗, d⃗0, d⃗1 determine the word

w(⃗i, x⃗, d⃗0, d⃗1) ∈ F(2lh(x⃗(0)) × 2lh(d⃗0(0)) × 2lh(d⃗1(0))),

defined by

w(⃗i, x⃗, d⃗0, d⃗1) :=
(
x⃗(−1), d⃗0(−1), d⃗1(−1)

)⃗i(−1) · · ·
(
x⃗(0), d⃗0(0), d⃗1(0)

)⃗i(0)
.

For (s, i⃗, x⃗, d⃗0, d⃗1) ∈ T let k(s) be the unique k for which lh(s) = ∑
m≤k |Im|.

Clearly, T is recursive. We next define a recursive tree-like ordering < on T as follows:

(s0, i⃗0, x⃗0, d⃗0
0, d⃗

1
0) < (s1, i⃗1, x⃗1, d⃗0

1, d⃗
1
1) :⇐⇒

s0 ⊏ s1 ∧ i⃗0 = i⃗1 ∧ r
k(s1)
k(s0)

(
w(⃗i1, x⃗1, d⃗0

1, d⃗
1
1)

)
= w(⃗i0, x⃗0, d⃗0

0, d⃗
1
0).

Finally, we inductively define ψ. The idea is that for every (f, p0, p1) ∈ dom(B0), we
will look at the value of ψ on the relevant elements of T and based on the value of ψ on
those elements we will decide whether to remove elements from B0(f, p0, p1) when defining
B(f, p0, p1) (see Equation 1 below), so that the desired superspacedness condition holds
(we will verify this in Claim 2.6).

Let t = (s, i⃗, x⃗, d⃗0, d⃗1) ∈ T and suppose we have defined ψ on all <-predecessors of t
in T . Set n := lh(⃗i ) and for j ∈ n define gj := χ†(x⃗(j)). We will define ψ(t), which will
be an element of 2n. Let t∗ = (s∗, i⃗∗, x⃗∗, d⃗0

∗, d⃗
1
∗) ∈ T be the strict predecessor of t (note

that when there is a strict predecessor it is unique; in case when t does not have a strict
predecessor, set

t∗ := (∅, i⃗, (∅, . . . , ∅︸ ︷︷ ︸
lh(⃗i )

), (∅, . . . , ∅︸ ︷︷ ︸
lh(⃗i )

), (∅, . . . , ∅︸ ︷︷ ︸
lh(⃗i )

))

and use 0 for any occurrence of ψ(t∗)(j) below). For j ∈ n set g∗
j := χ†(x⃗∗(j)). We now

consider two cases.
• If there is some j ∈ n for which

ψ(t∗)(j) = 0
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and

(∃m ≤ k) (∃l ∈ Im) l ∈ D(s) ∧
δ(s, l) = rkm

(
w(⃗i, x⃗, d⃗0, d⃗1)

)
∧

gj[B0(gj, d⃗0(j), d⃗1(j))] ∩ Im ̸= ∅ ∧
g∗
j [B0(g∗

j , d⃗
0
∗(j), d⃗1

∗(j))] ∩ Im = ∅,
then for all such j put

ψ(t)(j) = 1
and for all other j′ ∈ n keep

ψ(t)(j′) = ψ(t∗)(j′).

• If there is no such j, put
ψ(t)(j) = 0

for all j ∈ n.
It is not hard to see that ψ is recursive.

Finally, we use T and ψ to define B. Take any (f, p0, p1) ∈ dom(B0) and suppose that
m ∈ B0(f, p0, p1). Then let

m /∈ B(f, p0, p1) :⇐⇒ (∃(s, i⃗, x⃗, d⃗0, d⃗1) ∈ T ) (∃j ∈ lh(⃗i ))(1)

χ†(x⃗(j)) ⊑ f ∧ d⃗0(j) = p0 ↾ k(s) ∧ d⃗1(j) = p1 ↾ k(s) ∧
m ∈ dom(χ†(x⃗(j))) ∧ (∃l ∈ In(f(m))) l ∈ D(s) ∧
δ(s, l) = r

k(s)
n(f(m))

(
w(⃗i, x⃗, d⃗0, d⃗1)

)
∧

ψ(s, i⃗, x⃗, d⃗0, d⃗1)(j) = 0 ∧
(∀(s∗, i⃗∗, x⃗∗, d⃗0

∗, d⃗
1
∗) < (s, i⃗, x⃗, d⃗0, d⃗1))

m /∈ dom(χ†(x⃗∗(j))) ∨ k(s∗) < n(f(m)),

where n(f(m)) is the unique n such that f(m) ∈ In. Note that even though (1) makes ref-
erence to an existential quantifier over T , the existence of the (s, i⃗, x⃗, d⃗0, d⃗1) ∈ T satisfying
the required properties can be determined in finitely many steps. This is because D(·) are
mutually almost disjoint, and so the requirements on the right side of (1) leave us only
with finitely many potential candidates (s, i⃗, x⃗, d⃗0, d⃗1) ∈ T which we need to consider. We
leave the details to the reader.

Hence, since B0, T and ψ are all ∆0
1, B is ∆0

1 as well. Moreover, it holds by design that
B(f, p0, p1) ⊆ B0(f, p0, p1) for every (f, p0, p1) ∈ dom(B0).

The following claim identifies sufficient conditions for B(f, p0, p1) to be infinite. This
will be used later in Proposition 2.9, where we prove that the constructed group is maxi-
mal.

Claim 2.5. Suppose that f ∈ (ω)ω and p0, p1 ∈ 2ω are good so that B0(f, p0, p1) is infinite,
no two elements of B0(f, p0, p1) are comparable with respect to <f

0 and so that one of the
following holds:

(a) B0(f, p0, p1) is linearly ordered by <f
1 ; or

(b) no two elements of B0(f, p0, p1) are <f
1-comparable.

Then B(f, p0, p1) is infinite.
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Proof. In case (b) holds, it is easy to verify that B(f, p0, p1) = B0(f, p0, p1). So assume
that (a) holds. The definition of ψ makes sure that for everym ∈ B0(f, p0, p1)\B(f, p0, p1),
there is some m′ > m with m′ ∈ B(f, p0, p1). In particular, B(f, p0, p1) is infinite. The
details are left to the reader. □

Finally, we prove that B is superspaced.

Claim 2.6. Suppose that for g ∈ (ω)ω, x⃗ = xikk · · ·xi00 ∈ F(2ω) and d⃗j = (djk)ik · · · (dj0)i0 ∈
F(2ω) for j ∈ 2 it holds that the set

I := {n ∈ D(g) | g(n) = e(x⃗, d⃗0, d⃗1)(n)}
is infinite. Then, setting

J := {j ∈ k + 1 |xj ∈ range(χ) ∧ χ†(xj) ̸= g ∧ d0
j , d

1
j are good},

there are infinitely many m ∈ I for which

(∀j ∈ J)χ†(xj)[B(χ†(xj), d0
j , d

1
j)] ∩ In(m) = ∅.

Proof. Set gj := χ†(xj) for every j ∈ k + 1. Then let

J0 := {j ∈ J | (∃∞m ∈ I) gj[B(gj, d0
j , d

1
j)] ∩ In(m) ̸= ∅}.

Let m0 ∈ ω be such that for every m ∈ I \m0 it holds that

(∀j ∈ J \ J0) gj[B(gj, d0
j , d

1
j)] ∩ In(m) = ∅.

Let i⃗ := (i0, . . . , ik) and for n ∈ ω use x⃗ ↾ n to denote (x0 ↾ n, . . . , xk ↾ n), d⃗0 ↾ n to
denote (d0

0 ↾ n, . . . , d0
k ↾ n) and d⃗1 ↾ n to denote (d1

0 ↾ n, . . . , d1
k ↾ n). For l ∈ ω, we also let

N(l) := min In(l)+1 (recall that n(l) is the unique n such that l ∈ In). By case analysis of
the definition of ψ on

(
g ↾ N(l), i⃗, x⃗ ↾ n(l), d⃗0 ↾ n(l), d⃗1 ↾ n(l)

)
,

one can see from the definition of B that there are infinitely many m ∈ I \ m0, so that
for every j ∈ J0 it holds that

gj[B(gj, d0
j , d

1
j)] ∩ In(m) = ∅.

With this the proof is complete. □

2.5. The construction. We finally begin the construction. Define ė : 2ω×2ω×2ω → S∞
on (x, c0, c1) ∈ 2ω × 2ω × 2ω as follows. With g := χ†(x) ∈ (ω)≤ω let

ė(x, c0, c1)(n) :=





g(n) if n ∈ B(g, c0, c1), c0 ↾ (n + 1), c1 ↾ (n + 1) are
good and ¬(∃n0, n1 ∈ B0(g, c0, c1) ∩ n)n0 <

g
0 n1;

e(x, c0, c1)(m) if m := g−1(n) is defined and every condition from
case 1 is satisfied when we replace n with m;

e(x, c0, c1)2(n) if m := (g−1 ◦ e(x, c0, c1))(n) is defined and every
condition from case 1 is satisfied when we replace
n with m;

e(x, c0, c1)(n) otherwise.

Fact 2.7. The map ė is well-defined and ė(x, c0, c1) is a permutation for every (x, c0, c1) ∈
2ω × 2ω × 2ω.
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Proof. Note that the cases in the above definition are mutually exclusive, thanks to the
definition of D(g) (we are still using g := χ†(x)), which makes sure that D(g) and hence
also B(g, c0, c1) are spaced. When one of the first three cases takes place, the other two
of the first three cases make sure that ė(x, c0, c1) is a permutation. When this happens,
we say that we are performing a surgery operation (since we are surgically joining two
orbits; see Figure 1). The details are left to the reader. □

Note that in case x /∈ range(χ) it holds that g = χ†(x) ∈ (ω)<ω. In this case, we
only perform finitely many surgeries and afterwards only use e. The definition of ė is
elucidated in Figure 1 below (adapted after Figure 1 from [Sch21, p. 8]), where the orbit
structure is shown before (in black) and after (in wine red) the surgery operation.

. . . (e(x, c0, c1) ◦ g)(n) g(n) (e(x, c0, c1)−1 ◦ g)(n) . . .

. . . e(x, c0, c1)(n) n e(x, c0, c1)−1(n) . . .

e(x,c0,c1) e(x,c0,c1) e(x,c0,c1)

ė(x,c0,c1)

e(x,c0,c1)

e(x,c0,c1) e(x,c0,c1)

g

e(x,c0,c1) e(x,c0,c1)

Figure 1. The definition of ė(x, c0, c1), where g = χ†(x), n ∈ B(g, c0, c1),
¬(∃n0, n1 ∈ B0(g, c0, c1) ∩ n)n0 <

g
0 n1 and c0 ↾ n, c1 ↾ n are both good.

The following is a reformulation of Theorem 0.1.

Theorem 2.8. The set range(ė) is a Π0
1 subset of ωω and freely generates a Σ0

2 mcg.

Set G := ⟨range(ė)⟩ ≤ S∞. As in [Sch21], we split the long proof into propositions with
shorter proofs. We first prove that G satisfies a strong form of maximality. The idea is
based on the proof of Proposition 1.13 from [Sch21].

Proposition 2.9. For every g ∈ (ω)ω there is some h ∈ G such that
{n ∈ ω | g(n) = h(n)}

is infinite.

Proof. If g has infinitely many fixed points, then clearly idω ∈ G agrees with g on infinitely
many places. So let m ∈ ω be such that for every n ≥ m it holds that g(n) ̸= n. Applying
Lemma 2.2 to g, we consider the following two cases:
(1) We have some I ∈ [D(g)]∞ which is linearly ordered by <g

0. By definition of <g
0, there

is some (x⃗, d⃗0, d⃗1) ∈ F(2ω × 2ω × 2ω), with

x⃗ = xikk . . . x
i0
0 and d⃗j = (djk)ik . . . (d

j
0)i0

for j ∈ 2, so that
e(x⃗, d⃗0, d⃗1) ↾ I = g ↾ I.

For every j ∈ k + 1 set also gj := χ†(xj) ∈ (ω)≤ω. If there is some j ∈ k + 1, for which
gj = g, d0

j , d
1
j are good, no two elements of B0(g, d0

j , d
1
j) are <g

0-comparable and B(g, d0
j , d

1
j)

is infinite, it follows that
ė(g, d0

j , d
1
j) ↾ B(g, d0

j , d
1
j) = g ↾ B(g, d0

j , d
1
j),

so we are done. Otherwise define the set I ′ ⊇ I by

I ′ := {n ∈ D(g) | g(n) = e(x⃗, d⃗0, d⃗1)(n)}
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and the sets
J0 := {j ∈ k + 1 | gj = g ∧ d0

j , d
1
j are good ∧ (∃n0, n1 ∈ B0(g, d0

j , d
1
j))n0 <

g
0 n1}

J1 := {j ∈ k + 1 |xj ∈ range(χ) ∧ (d0
j is not good ∨ d1

j is not good)}
J2 := {j ∈ k + 1 |xj /∈ range(χ) ∨B(gj, d0

j , d
1
j) is finite}

J3 := {j ∈ k + 1 |xj ∈ range(χ) ∧ gj ̸= g ∧ d0
j , d

1
j are good}.

Let m0 ∈ ω be such that for every j ∈ J0 it holds that there are some n0, n1 ∈
B0(g, d0

j , d
1
j) ∩ m0 for which n0 <

g
0 n1. Next, let m1 ∈ ω be such that for every j ∈ J1, it

holds that either d0
j ↾ m1 is not good or d1

j ↾ m1 is not good. Finally, let m2 ∈ ω be such
that for every j ∈ J2 it holds that either lh(gj) < m2 or B(g, d0

j , d
1
j) ⊆ m2. Then define

m3 ∈ ω to be the smallest element of {min In |n ∈ ω} such that for every element q of
⋃ {

{l, gj(l), g−1
j (l)}

∣∣∣ l ≤ max{m0,m1,m2} ∧ j ∈ J0 ∪ J1 ∪ J2
}

it holds that q < m3. Note that some of the gj(l) and g−1
j (l) above might be undefined,

in which case we ignore them.
By the superspacedness property of B it holds that there is some infinite I ′′ ⊆ I ′ \m3

so that for every m ∈ I ′′ it holds that
(∀j ∈ J3) gj[B(gj, d0

j , d
1
j)] ∩ In(m) = ∅,

where n(m) is the unique such that m ∈ In(m).
If j ∈ J0 ∪ J1 ∪ J2, then

ė(xj, d0
j , d

1
j) ↾ (ω \m3) = e(xj, d0

j , d
1
j) ↾ (ω \m3).

Finally, if j ∈ J3, the definition of ė ensures that for every m ∈ I ′′ and every m′ ∈ In(m)
it holds that

ė(xj, d0
j , d

1
j)(m′) = e(xj, d0

j , d
1
j)(m′).

Thus we have shown that
ė(x⃗, d⃗0, d⃗1) ↾ I ′′ = e(x⃗, d⃗0, d⃗1) ↾ I ′′ = g ↾ I ′′.

(2) There are good d0, d1 ∈ 2ω such that no two elements ofB0(g, d0, d1) are<g
0-comparable

and
(a) B0(g, d0, d1) is linearly ordered by <g

1; or
(b) no two elements of B0(g, d0, d1) are comparable with respect to <g

1.
If B0(g, d0, d1) is infinite, then so is B(g, d0, d1) by Claim 2.5, so we get by definition that

ė(χ(g), d0, d1) ↾ B(g, d0, d1) = g ↾ B(g, d0, d1).
If on the other hand B0(g, d0, d1) is finite, the definition of B0(g, d0, d1) implies that

(∃∞m ∈ ω) e(χ(g), d0, d1)(m) = g(m).
For every such m it holds by the definition of ė that

ė(χ(g), d0, d1)(m) = e(χ(g), d0, d1)(m).
Since in both cases (1) and (2) we got an element of G, agreeing with g on an infinite

set, the proof is complete. □

Next we move to the proof of cofinitariness, which is a bit more involved. The proof
described below closely follows the proof of Proposition 1.14 from [Sch21].

Proposition 2.10. G is cofinitary.
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Proof. Let
c = (cl)il ◦ · · · ◦ (c0)i0 ,

for {cj}j∈l+1 ⊆ range(ė) and {ij}j∈l+1 ⊆ {−1, 1}, be some reduced word in range(ė),
which has infinitely many fixed points. For j ∈ l + 1 let xj ∈ 2ω and d0

j , d
1
j ∈ 2ω be such

that ė(xj, d0
j , d

1
j) = cj, and put gj := χ†(xj) ∈ (ω)≤ω. Note that

w := (xl, d0
l , d

1
l )il · · · (x0, d

0
0, d

1
0)i0

is a reduced word in F(2ω × 2ω × 2ω).
Let F ⊆ fix(c) be a tail segment, for which it holds that for every m ∈ F and every m′

in the path of m under c, m′ lies in the same interval Ik with at most one B(gj, d0
j , d

1
j),

for which d0
j ↾ (min Ik+1), d1

j ↾ (min Ik+1) are good. This is possible by Claim 2.3.
For every m ∈ F there is some l(m) ∈ ω, so that

c(m) = (aml(m) ◦ · · · ◦ am0 )(m),
where for k ∈ l(m) + 1, each amk is either (gmk )imk or e(xmk , (dmk )0, (dmk )1)imk , where imk ∈
{−1, 1} and gmk = gj or (xmk , (dmk )0, (dmk )1) = (xj, d0

j , d
1
j) for some j ∈ l + 1. This holds by

unfolding the definition of ė (and is left to the reader). Write also
wm := aml(m) · · · am0 .

Note that l(m) ≤ 2l + 2 by definition of ė. We can write F as a finite union of sets, on
each of which w(·) is constant. Let F ∗ be one of these sets, which is infinite. We replace
every superscript m with ∗, so that we have l∗ = l(m), w∗ = wm and a∗

k = amk , where a∗
k

is now either (g∗
k)i

∗
k or e(x∗

k, (d∗
k)0, (d∗

k)1)i∗k , for all k ∈ l∗ + 1.
Claim 2.11. The word w∗ reduces to the empty word in F({(a∗

k)i
∗
k | k ∈ l∗ + 1}).

We consider elements (a∗
k)i

∗
k , which are either g∗

k or e(x∗
k, (d∗

k)0, (d∗
k)1), as abstract gen-

erators in the above statement (we used (a∗
k)i

∗
k and not a∗

k, so that the abstract generators
g∗
k or e(x∗

k, (d∗
k)0, (d∗

k)1) are without powers).
Proof of Claim. Suppose for contradiction that when seen as an abstract element of
F({(a∗

k)i
∗
k | k ∈ l∗ + 1}), the word w∗ reduces to v ̸= ∅. Then there is some r ∈ ω

and a sequence k(0), k(1), . . . , k(r), for which
v = a∗

k(r) · · · a∗
k(0).

Define for m ∈ F ∗ the sequence (m(u))ru=0 inductively by m(0) := m, and for u < r by
m(u+ 1) := a∗

k(u)(m(u)).
We can assume without loss of generality that for any proper subword

a∗
k(r1) · · · a∗

k(r0)

of v, where 0 ≤ r0 < r1 ≤ r, it holds that m(r0) ̸= m(r1). Indeed, if this is not already
the case, we use the Pigeonhole principle to find an infinite subset F ′ of F ∗ and a subword

v′ := a∗
k(r1) · · · a∗

k(r0)

of w, so that for every m ∈ F ′ it holds that m(r0) = m(r1) and so that for any proper
subword

v′′ := a∗
k(r3) · · · a∗

k(r2)

of v′, with r0 ≤ r2 < r3 ≤ r1 it holds that m(r2) ̸= m(r3).
Define

n(m) := min{n ∈ ω | (∃u ∈ r + 1)m(u) ∈ In},
i.e., n(m) is the least index of an interval which we pass through with (m(u))ru=0. Note
that this is slightly different from how we previously defined n(m).
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Subclaim 2.12. For all u ∈ r + 1 it holds that m(u) ∈ In(m).
Proof of Subclaim. Suppose not. Then at least one of the following happens:

(1) there is 0 < u0 < r so that m(u0 − 1) /∈ In(m) and m(u0) ∈ In(m); and u0 < u1 < r
so that m(u1) ∈ In(m) and m(u1 + 1) /∈ In(m); or

(2) there is 0 < u0 < r so that m(u0 − 1) ∈ In(m) and m(u0) /∈ In(m); and u0 < u1 < r
so that m(u1) /∈ In(m) and m(u1 + 1) ∈ In(m).

We can assume without loss of generality that case (1) happens. Note that it must
hold that a∗

k(u0−1) is equal to (g∗
j )−1 for some j ∈ l+ 1 and a∗

k(u1) is equal to g∗
j . This is by

property (iii) of ϑg, the definition of ė, the fact that e stays inside the intervals and the
definition of F . But since B(g∗

j , (d∗
j)0, (d∗

j)1) intersects In(m) in exactly one point, it must
be that m(u0 − 1) = m(u1 + 1). This contradicts our assumption on v. ⊣
Subclaim 2.13. For at most one u ∈ r + 1 is it the case that a∗

k(u) equals g∗
j or (g∗

j )−1

for some j ∈ l + 1.
Proof of Subclaim. This holds by the definition of F (which used Claim 2.3), by the fact
that B(g∗

j , (d∗
j)0, (d∗

j)1) intersects each In in at most one point, the definition of ė and by
the assumption that v has no subwords with infinitely many fixed points on the paths
starting with elements of F ∗. We leave it to the reader to provide the details. ⊣
Subclaim 2.14. It cannot be the case that any a∗

k(u) equals g∗
j or (g∗

j )−1 for any j ∈ l+ 1.
Proof of Subclaim. By the previous subclaim we know that there is at most one a∗

k(u)
which equals g∗

j or (g∗
j )−1. For contradiction suppose that v is of the form (the argument

with (g∗
j )−1 is analogous):

e
(
x∗
k(r), (d∗

k(r))0, (d∗
k(r))1

)i∗
k(r) · · ·

· · · e
(
x∗
k(r̄+1), (d∗

k(r̄+1))0, (d∗
k(r̄+1))1

)i∗
k(r̄+1) g∗

j e
(
x∗
k(r̄−1), (d∗

k(r̄−1))0, (d∗
k(r̄−1))1

)i∗
k(r̄−1) · · ·

· · · e
(
x∗
k(0), (d∗

k(0))0, (d∗
k(0))1

)i∗
k(0)

for some r̄ ∈ r + 1. But then it holds for infinitely many n ∈ ω that

(2) g∗
j (n) =

(
e
(
x∗
k(r̄+1), (d∗

k(r̄+1))0, (d∗
k(r̄+1))1

)−i∗
k(r̄+1) · · ·

· · · e
(
x∗
k(r), (d∗

k(r))0, (d∗
k(r))1

)−i∗
k(r) e

(
x∗
k(0), (d∗

k(0))0, (d∗
k(0))1

)−i∗
k(0) · · ·

· · · e
(
x∗
k(r̄−1), (d∗

k(r̄−1))0, (d∗
k(r̄−1))1

)−i∗
k(r̄−1)

)
(n).

Let I be the infinite set of all such n ∈ ω. Since also
g∗
j ↾ I = ė(χ(g∗

j ), (d∗
j)0, (d∗

j)1) ↾ I,
(this is the only way in which a∗

k(u) was able to be g∗
j ), the definition of ė (see the first case)

implies that elements of I are pairwise <g∗
j

0 -incomparable. On the other hand, equation
(2) implies that I forms a <g∗

j

0 -increasing chain. This is a contradiction. ⊣
Subclaim 2.15. It is the case that v = ∅.
Proof of Subclaim. By the previous subclaim it holds that

v = e
(
x∗
k(r), (d∗

k(r))0, (d∗
k(r))1

)i∗
k(r) · · · e

(
x∗
k(0), (d∗

k(0))0, (d∗
k(0))1

)i∗
k(0) .

But since v has infinitely many fixed points and the range of e generates a cofinitary
subgroup it must hold that v = ∅. ⊣
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This is a contradiction with our assumption that v ̸= ∅, and with this the proof of
Claim 2.11 is complete. ⊣
Claim 2.16. It must be the case that w∗ is the empty word.

Proof of Claim. Suppose for contradiction that w∗ is not the empty word. By considering
all possible cases we will conclude that this is a contradiction. Suppose first that w∗

contains a subword of the form
(g∗
k)−1 g∗

k

for some k ∈ l∗ + 1. By definition of ė, this subword can only arise from a subword of w
(recall that w is reduced), in two ways. The first option is that (g∗

k)−1 g∗
k arose from

(x∗
k, (d∗

k)0, (d∗
k)1) (x∗

k, (d∗
k)0, (d∗

k)1),
and where the corresponding right ė(x∗

k, (d∗
k)0, (d∗

k)1) was substituted by g∗
k and the left

ė(x∗
k, (d∗

k)0, (d∗
k)1) by e(x∗

k, (d∗
k)0, (d∗

k)1) (g∗
k)−1, so that we actually have the following sub-

word of w∗

e(x∗
k, (d∗

k)0, (d∗
k)1) (g∗

k)−1 g∗
k.

But as we have observed that w∗ reduces to ∅, the occurrence of e(x∗
k, (d∗

k)0, (d∗
k)1) must

cancel out, so actually, there must be a subword of w∗ of the form
e(x∗

k, (d∗
k)0, (d∗

k)1)−1 e(x∗
k, (d∗

k)0, (d∗
k)1) (g∗

k)−1 g∗
k

or of the form
e(x∗

k, (d∗
k)0, (d∗

k)1) (g∗
k)−1 g∗

k e(x∗
k, (d∗

k)0, (d∗
k)1)−1.

In both cases the occurrence of e(x∗
k, (d∗

k)0, (d∗
k)1)−1 arose by substitution of

(x∗
k, (d∗

k)0, (d∗
k)1)−1.

This is a contradiction, as this means that w contains a subword of the form
(x∗

k, (d∗
k)0, (d∗

k)1)−1 (x∗
k, (d∗

k)0, (d∗
k)1) (x∗

k, (d∗
k)0, (d∗

k)1)
or of the form

(x∗
k, (d∗

k)0, (d∗
k)1) (x∗

k, (d∗
k)0, (d∗

k)1) (x∗
k, (d∗

k)0, (d∗
k)1)−1,

implying that w is not reduced. The second option is that (g∗
k)−1 g∗

k arose from
(x∗

k, (d∗
k)0, (d∗

k)1)−1 (x∗
k, (d∗

k)0, (d∗
k)1)−1,

and where the corresponding left ė(x∗
k, (d∗

k)0, (d∗
k)1)−1 was substituted by (g∗

k)−1 and the
right ė(x∗

k, (d∗
k)0, (d∗

k)1)−1 by g∗
k e(x∗

k, (d∗
k)0, (d∗

k)1)−1, so that we actually have the following
subword of w∗

(g∗
k)−1 g∗

k e(x∗
k, (d∗

k)0, (d∗
k)1)−1.

A contradiction is then established in a similar manner as in the first case.
Next, suppose that w∗ contains a subword of the form

e(x∗
k, (d∗

k)0, (d∗
k)1)−1 e(x∗

k, (d∗
k)0, (d∗

k)1).
The only way this subword can appear in w∗ is (by applying the definition of ė) that
(x∗

k, (d∗
k)0, (d∗

k)1)−1 (x∗
k, (d∗

k)0, (d∗
k)1) was a subword of w. This is clearly a contradiction.

By a similar argument, one can easily prove that w∗ cannot have subwords of the form
g∗
k (g∗

k)−1 or e(x∗
k, (d∗

k)0, (d∗
k)1) e(x∗

k, (d∗
k)0, (d∗

k)1)−1, hence the proof is complete. ⊣
Claim 2.16 implies that w = ∅ and so c = idω. Since c was an arbitrary element of G

with infinitely many fixed points, the proof of Proposition 2.10 is complete. □
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Before we prove the next proposition, we introduce the following useful notion. For
f̄ ∈ (ω)<ω, we say that f̄ is of interval length k, if lh(f̄) = ∑

m≤k |Im|. For f̄ of interval
length k, we say that (x̄, d̄0, d̄1) ∈ 2k × 2k × 2k is recovered from f̄ , if for every m ≤ k it
holds that

|{n ∈ Im | e(x̄, d̄0, d̄1)(n) ̸= f̄(n)}| ≤ 3.
Next, for x̄ ∈ 2<ω and ḡ ∈ (ω)≤lh(x̄), we say that ḡ is x̄-compatible, if χ†(x̄) ⊑ ḡ and

(I) if x̄ is of the form
(. . . , 1, 0, 0, . . . , 0︸ ︷︷ ︸

n

, 1, . . . , 1, 0, 0, . . . , 0︸ ︷︷ ︸
n

, 1, . . .)

for some n ∈ ω (and is thus not in range(χ) as it violates injectivity), then

ḡ = χ†(x̄);
(II) if there is some n ∈ ω such that

x̄ = χ(χ†(x̄))⌢(0, . . . , 0︸ ︷︷ ︸
n

),

i.e., x̄ is not in range(χ) because of the second reason described below the definition
of χ†, namely that it does not end with a 1, then in case lh(ḡ) > lh(χ†(x̄)), it must
hold that

ḡ(lh(χ†(x̄))) ≥ n;
(III) otherwise (when x̄ ∈ range(χ)) we impose no further requirements.
Finally, for f̄ of interval length k and (x̄, d̄0, d̄1) recovered from f̄ we define when

ḡ ∈ (ω)≤lh(x̄) is (f̄ , x̄, d̄0, d̄1)-matching. For n < k define temporarily

φ(n) :⇐⇒ no two n0, n1 ∈ B0(ḡ ↾ (n+ 1), d̄0 ↾ (n+ 1), d̄1 ↾ (n+ 1)) ∩ n

are comparable w.r.t. <ḡ
0, d̄

0 ↾ (n+ 1), d̄1 ↾ (n+ 1) are good and
n ∈ B(ḡ ↾ (n+ 1), d̄0 ↾ (n+ 1), d̄1 ↾ (n+ 1)).

Then ḡ ∈ (ω)≤lh(x̄) is (f̄ , x̄, d̄0, d̄1)-matching, if ḡ is x̄-compatible and for every n < k it
holds that

(i) if φ(n), then n ∈ dom(ḡ) and f̄(n) = ḡ(n);
(ii) if k := ḡ−1(n) is defined, k ∈ dom(f̄) and φ(k), then f̄(n) = e(x̄, d̄0, d̄1)(k);
(iii) if k := (ḡ−1 ◦ e(x̄, d̄0, d̄1))(n) is defined, k ∈ dom(f̄) and φ(k), then

f̄(n) = e(x̄, d̄0, d̄1)2(n);
(iv) if none of the “if” parts of the “if . . . then” statements from (i), (ii) and (iii) are

true, then f̄(n) = e(x̄, d̄0, d̄1)(n).
Of course, the idea behind the definition of (f̄ , x̄, d̄0, d̄1)-matching is that it captures the
requirements imposed by the definition of ė. This will be made more precise in Proposition
2.17.

With this we are ready to establish that the set of generators of the constructed group
is definable.

Proposition 2.17. range(ė) is a Π0
1 subset of ωω.

Proof. We will define a ∆0
1 set U ⊆ (ω)<ω, so that

(3) range(ė) =
{
f ∈ ωω

∣∣∣∣ (∀k ∈ ω) f ↾
( ∑

m≤k
|Im|

)
∈ U

}
.
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Then clearly range(ė) will be Π0
1. For f̄ ∈ (ω)<ω of interval length k, we let

f̄ ∈ U :⇐⇒ (∃(x̄, d̄0, d̄1) ∈ 2k × 2k × 2k)
(x̄, d̄0, d̄1) is recovered from f̄ ∧
(∃ḡ ∈ (ω)≤lh(x̄)) ḡ is (f̄ , x̄, d̄0, d̄1)-matching.

Note that even though we are using two existential quantifiers in the above definition, U
is ∆0

1, as we can verify whether there are witnesses to the existential quantifiers in finitely
many steps. We leave the details to the reader.

We now verify that (3) holds. For k ∈ ω, let l(k) := ∑
m≤k |Im|. Suppose first that

f ∈ range(ė). Then there are (x, d0, d1) ∈ 2ω × 2ω × 2ω for which f = ė(x, d0, d1). Clearly,
for each k it holds that (x ↾ k, d0 ↾ k, d1 ↾ k) is recovered from f ↾ l(k). Let also g := χ†(x).
We consider the following two cases:

(1) If g ∈ (ω)ω, then clearly each g ↾ k is (f ↾ l(k), x ↾ k, d0 ↾ k, d1 ↾ k)-matching. In
particular, for every k ∈ ω it holds that f ↾ l(k) ∈ U .

(2) If g ∈ (ω)<ω, then for every k with k ≤ lh(g) let gk := g ↾ k and for every k with
k > lh(g) define gk := g. Then each gk is clearly (x ↾ k)-compatible and (f ↾ l(k), x ↾
k, d0 ↾ k, d1 ↾ k)-matching. We have thus established that for every k ∈ ω, f ↾ l(k) ∈ U .

Conversely, assume that for f ∈ ωω it holds that (∀k ∈ ω) f ↾ l(k) ∈ U . For each
k ∈ ω, let (x̄k, d̄0

k, d̄
1
k) be recovered from f ↾ l(k) and let ḡk be (f ↾ l(k), x̄k, d̄0

k, d̄
1
k)-

matching. Clearly, for every k < k′ it must hold that x̄k ⊏ x̄k′ and d̄jk ⊏ d̄jk′ for j ∈ 2. Let
x ∈ 2ω be unique such that x ↾ k = x̄k and let dj be unique such that dj ↾ k = d̄jk. On
the other hand, it is not necessarily the case that the (ḡk)k line up. Nevertheless, setting
g := χ†(x), it holds that whenever ḡk(m) is used in cases (i) to (iv) in the definition of
matching, we have that m ∈ dom(g) and ḡk(m) = g(m). To see this, note that if ḡk(m)
is used in cases (i) to (iv) in the definition of matching, then for every k′ > k it must
hold that ḡk′(m) = ḡk(m), so if ḡk(m) ̸= g(m), there would be some k′ > k for which ḡk′

is not (f ↾ l(k′), x̄k′ , d̄0
k′ , d̄1

k′)-matching. Hence we may assume that ḡk = g ↾ k for every
k ∈ ω. The reader can routinely verify that indeed, the conditions imposed on x, d0, d1

and g guarantee that ė(x, d0, d1) = f . Note that when g ∈ (ω)<ω, the conditions (i) to
(iv) from the definition of matching make sure that f(n) = e(x, d0, d1)(n) for all n ≥ m
for an appropriate m (in the same way as in the definition of ė). □
Proposition 2.18. The group G is Σ0

2 and is freely generated by range(ė).
Proof. The proof of Proposition 2.10 shows that G = ⟨range(ė)⟩ is freely generated.

For h ∈ S∞, h is in G precisely when there is a word w(x0, . . . , xk), and some g0, . . . , gk ∈
range(ė) so that

h = w(g0, . . . , gk).
The idea is to use one existential quantifier to guess the word w(x0, . . . , xk) (note that
there are countably many words) and then use δ and the argument from the previous
proposition to recover each gi for i ∈ k+1 in a Π0

1 way so that h = w(g0, . . . , gk). Together,
the complexity of membership of G is Σ0

2. We leave the details to the reader. □
This was the last ingredient needed to complete the proof of Theorem 2.8.

3. Limitations to the construction of a Gδ mcg

Since S∞ is Gδ in ωω, the notions of being Gδ in S∞ and in ωω are the same. Moreover,
by [Kec12, Exercise 9.6], for G ≤ S∞ being closed in S∞ is equivalent to being Gδ. From
now on, we will use the expression “Gδ mcg” for G ≤ S∞, which are Gδ (in either of the
spaces) and “closed mcg” for G ≤ S∞, which is closed as a subset of ωω.
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Since the construction of the previous section produces a freely generated mcg, the
following result of Dudley (see [Dud61] for the original paper and Rosendal’s [Ros09] for
an updated overview) implies that among freely generated mcgs our construction achieves
the best possible complexity.

Theorem 3.1 (Dudley). There is no Polish topology on the free group with continuum
many generators.

Actually, the work of Slutsky (see Theorem 1.6 of [Slu12]) gives an even stronger state-
ment.

Theorem 3.2 (Slutsky). The only Polish group topology on any free product G∗H is the
discrete topology (in which case, of course, G ∗H must be countable).

This means that if there is a Gδ mcg G, all its elements are “non-free” from the rest
of the group, i.e., for any g ∈ G, there is no H ≤ G for which G = ⟨g⟩ ∗ H. Hence
any construction of a Gδ mcg would have to ensure that there are non-trivial relations
between its elements. Achieving this while also making sure that the group is cofinitary
seems fairly difficult, but perhaps not impossible. Note that on the other hand it is
possible to adapt the techniques in this paper to produce mcgs which are isomorphic to

∗
x∈ωω

Z/2Z,

that is, the free product of continuum many copies of the two-element group, Z/2Z.
Nevertheless, all currently known constructions of definable mcgs produce groups which
decompose into free products.

The authors thank Asger Törnquist for directing our attention to Dudley’s result,
through which we discovered Slutsky’s work. Previously, we developed a method of de-
finable gluing of orbits. The idea was the following. It is not hard to prove that there can
be no Gδ cofinitary group G which has exactly one k-orbit for all k ≥ 1 (here we count as
k-orbits of G the orbits under the diagonal action of G on (ω)k). We developed a method
of gluing k-orbits (for all k ≥ 1) while preserving a certain notion of definability and while
also preserving cofinitariness. Then we proved that for an mcg, which has a nice catching
function (this is a natural condition based on the known constructions of mcgs, and which
implies that the group is Gδ) and which has a small degree of freeness, we can define from
it a Gδ mcg with just one k-orbit for all k ≥ 1, resulting in a contradiction. We do not
describe this idea in further detail, as Theorem 3.2 implies a stronger statement.

4. Open problems

The most important open question is the longstanding:

Question 4.1. Is there a Gδ mcg?

If one is convinced that the answer to Question 4.1 is negative, then a great step forward
is to first show that the answer to the next open question is negative.

Question 4.2. Is there a closed (in the Baire space) mcg?

Note that in [Kas09], Kastermans proved that every mcg has only finitely many orbits.
For k ≥ 1 and G ≤ S∞, the k-orbits of G are the orbits of the diagonal action of G on
(ω)k. The usual orbits are hence 1-orbits. It is unknown whether the following is possible
(this was already asked in [Kas09]).

Question 4.3. Can there be an mcg with infinitely many k-orbits for some k > 1?
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Call x ∈ (ω ∪ {ω})ω increasing if for every n ∈ ω it holds that x(n+ 1) ≥ x(n). For an
mcg G, define xG ∈ ωω by setting xG(0) := 0 and for n ≥ 1 that

xG(n) := number of n-orbits of G.

Question 4.4. Which increasing x ∈ (ω ∪ {ω})ω arise as xG for some mcg G?

4.1. Maximal finitely periodic groups. Say that g ∈ S∞ \ {idω} is finitely periodic
if ⟨g⟩ ⊆ S∞ has finitely many finite orbits. A subgroup G ≤ S∞ is then called finitely
periodic, if every g ∈ G \ {idω} is finitely periodic. Clearly, every finite periodic group is
also cofinitary. We use the abbreviation mpg to refer to maximal finitely periodic groups.
Of course, the first question asked by any descriptive-set-theorist is the following.

Question 4.5. Is there a Borel mpg?

Note that our construction of a Σ0
2 mcg cannot be immediately adapted to this setting,

as the construction relies on the sequence of finite intervals (In)n∈ω. In particular, for any
x ∈ 2ω \ range(χ) and any d0, d1 ∈ 2ω, we have that ė(x, d0, d1) is not finitely periodic.
Nevertheless, the authors believe that the answer to the question is positive.

We next present a slight variant of a notion appearing in Kastermans’ [Kas08] and
[Kas09]. For G ≤ S∞ and A ⊆ G with idω ∈ A (for convenience), we write WA(x) for the
set of all finite words in the variable x and elements of A. Formally,

WA(x) =
{
gkx

ikgk−1x
ik−1 · · ·xi0g0

∣∣∣ g0, . . . , gk ∈ A, i0, . . . , ik ∈ Z \ {0}
}
.

For h ∈ S∞ and w(x) ∈ WA(x), we let w(h) be the permutation obtained by substituting
all occurrences of x by h.

Theorem 4.6. There is no mpg with infinitely many orbits.

Proof. The proof is based on the proof of Kastermans’ Theorem 13 from [Kas09]. Due to
the similarity, we omit some details.

Let (Oi)i∈ω be some fixed enumeration of all orbits of a finitely periodic group G. We
define h ∈ S∞ inductively through increasingly larger finite approximations. Let h0 := ∅
and suppose we have defined a finite partial injective function hk for some k ∈ ω. Then
let

n := min
(
(ω \ dom(hk)) ∪ (ω \ range(hk))

)
,

j be the least such that Oj ∩ (dom(hk) ∪ range(hk) ∪ {n}) = ∅ and m := minOj. If
n /∈ dom(hk), set hk+1 := hk∪{(n,m)}, otherwise set hk+1 := hk∪{(m,n)}. By definition,

h := ∪{hk | k ∈ ω} ∈ S∞

and since the orbit structure of ⟨G ∪ {h}⟩ is different from the orbit structure of G, it
follows that h /∈ G.

Take any reduced w(x) ∈ WG \ {∅}; we will show that w(h) is finitely periodic. Note
that when we reduce w(x)2, strictly less than half of each instance of w(x) gets annihilated
(as otherwise w(x) = ∅). We consider the following cases:

(1) w(x) is of odd length 2l + 1, where g ∈ G is at the (l + 1)-th place and when
reducing w(x)2, we annihilate l characters from each instance of the word, so that
now there is g2 at the (l + 1)-th place in the reduced w(x)2;

(2) same as case (1), but with xi (where i ∈ Z \ {0}) in place of g;
(3) when we reduce w(x)2, the resulting word is strictly longer than w(x).

In order so that we do not have to separately consider all three different cases, we observe
that the following captures all of them: there is a finite set A ⊆ G and g ∈ G so that for
every k ∈ ω, the reduced form of w(x)k is equal to some word wk(x) ∈ WA∪{gk}.
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Suppose that n ∈ ω is in a finite orbit of ⟨w(h)⟩. Then there is some kn, so that n is
a fixed point of wkn(h). Using the argument of Theorem 13 from [Kas09], there is some
gn ∈ A ∪ {g}, so that if gn ∈ A then it has a fixed point mn, and if gn = g then mn

is a fixed point of gkn . Similarly as in [Kas09], we observe that for n0, n1 which belong
to different finite orbits of ⟨w(h)⟩, either gn0 ̸= gn1 , or gn0 = gn1 and mn0 ̸= mn1 (to be
precise, like in [Kas09], we need to consider each gni

together with its position in wkni
(x)).

By the Pigeonhole principle, if there are infinitely many finite orbits of ⟨w(h)⟩, there must
either be some f ∈ A which has infinitely many fixed points or g has infinitely many finite
orbits. This contradicts the assumption on G. Since w(x) was arbitrary, we have proved
that G ∪ {h} generates a finitely periodic group. In particular, G is not maximal. □

Recall, that a set A ⊆ ωω is eventually bounded if there is some x ∈ ωω, so that for
every y ∈ A there is some n ∈ ω such that for every m > n it holds that y(m) < x(m).
Kastermans proved in [Kas08] (see Theorem 10) that no mcg can be eventually bounded.

Question 4.7. Can an mpg be eventually bounded?

At first sight it seems likely that an adaptation of the proof of Theorem 10 from [Kas08],
similar to the way we adapted Kastermans’ argument in the proof of Theorem 4.6, would
be successful in proving that no mpg can be eventually bounded. However, it turns out
that the straightforward modification does not work this time. The authors nevertheless
believe the answer should be negative.

If G is an mcg, which is finitely periodic, it is clearly an mpg. The authors believe how-
ever that it is possible to find an example, affirmatively answering the following question.

Question 4.8. Is there an mpg, which is not an mcg?
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Maximal orthogonal families





ORTHOGONALITY OF MEASURES AND STATES

SEVERIN MEJAK

Abstract. We give a short proof of the theorem due to Preiss and Rataj stating that
there are no analytic maximal orthogonal families (mofs) of Borel probability measures
on a Polish space. When the underlying space is compact and perfect, we show that the
set of witnesses to non-maximality is comeagre. Our argument is based on the original
proof by Preiss and Rataj, but with significant simplifications. The proof generalises
to show that under MA + ¬CH there are no Σ1

2 mofs, that under PD there are no
projective mofs and that under AD there are no mofs at all. We also generalise a result
due to Kechris and Sofronidis, stating that for every analytic orthogonal family of Borel
probability measures there is a product measure orthogonal to all measures in the family,
to states on a certain class of C*-algebras.

Introduction

In this paper we consider orthogonality, first for Borel probability measures on Polish
spaces and then for states on separable C*-algebras. In 1985 Preiss and Rataj proved the
following theorem with X = [0, 1], see [PR85].
Theorem 0.1. Suppose that X is an uncountable Polish space. Then there is no analytic
maximal orthogonal family of Borel probability measures on X.

This answered an open question from [MPVW82]. The idea of the proof from [PR85] is
to use a Baire category argument. However, once the authors prepared the scene for the
application of the Baire category theorem, they resorted to a couple of technical lemmas,
which relied on restricting Borel probability measures on [0, 1] to finite unions of closed
subintervals. For the proof of one of the lemmas they also employed Banach–Mazur
games. Consequently, the question whether there is a shorter and simpler proof remained
open.

In 1999, Kechris and Sofronidis (see Thoerem 3.1 in [KS01]) found an alternative short
proof which uses the theory of turbulence (see [Hjo00] for a great introduction to turbu-
lence). As part of their proof, they defined an embedding of the Cantor space 2N into the
space of Borel probability measures (using the work of Kakutani from [Kak48]), assigning
to every x ∈ 2N a product measure µα(x). They proved that for every analytic orthogonal
family, there is some x ∈ 2N so that µα(x) is a witness to non-maximality. Their proof has
as a consequence that the relation ∼ of measure equivalence between Borel probability
measures is not classifiable by countable structures.

Almost two decades later Schrittesser and Törnquist used the same embedding of 2N

into the space of measures to prove (see Theorem 5.5 of [ST18]) that an argument using a
weaker form of turbulence suffices to prove Theorem 0.1. Since the theory of turbulence
requires some background knowledge, one might argue that even thought the proofs from
[KS01] and [ST18] are shorter, they are not necessarily simpler.

In this article, we first go back to the original idea of Preiss and Rataj to use a Baire
category argument to prove Theorem 0.1. We were able to use the Kuratowski–Ulam

2020 Mathematics Subject Classification. 03E15, 03E75, 28A05, 28A33, 46L30, 52A05, 54H05.
Key words and phrases. analytic sets, Baire category, Borel probability measures, C*-algebras, de-

scriptive set theory, maximality, orthogonality, states, turbulence.
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theorem and some elementary convexity theory, to give a short and straightforward proof
of Theorem 0.1. The argument works to show the following strengthening, where for
A ⊆ P (X) (here P (X) denotes the space of Borel probability measures on X), we let
A⊥ := {ν ∈ P (X) : (∀µ ∈ A) ν ⊥ µ}.

Theorem 0.2. Suppose that X is a compact perfect Polish space. Then for every analytic
orthogonal family A ⊆ P (X), the set A⊥ is comeagre. In particular, when A ⊆ P (2N) is
a Σ1

1 orthogonal family, there is a ∆1
1-witness to non-maximality.

Actually, under additional assumptions, our method yields the following.

Theorem 0.3. Suppose that X is an uncountable Polish space.
(1) Assume MA and ¬CH. Then no Σ1

2 orthogonal family A ⊆ P (X) is maximal.
(2) Assume PD. Then no projective orthogonal family A ⊆ P (X) is maximal.
(3) Assume AD. Then no orthogonal family A ⊆ P (X) is maximal.

If moreover X is compact perfect, then in each of the above cases A⊥ is comeagre.

It is well-known that via the Riesz–Markov–Kakutani representation theorem, Borel
probability measures on a compact Polish space X are precisely states on the commutative
C*-algebra of complex-valued continuous functions on X. In [Dye52], Dye introduced the
notion of absolute continuity for states on C*-algebras. Being a pre-order, it naturally
gives rise to a notion of orthogonality. However, it turns out that this notion is ill-behaved
even for states on the matrix algebra M2(C).

There is another natural notion of orthogonality for states, which we call strong or-
thogonality and denote by ⊥. This notion of orthogonality shares many nice properties
with orthogonality of measures, with which it coincides when the C*-algebra is commuta-
tive. Hence it is natural to ask ourselves whether Theorem 0.1 holds for non-commutative
separable unital C*-algebras and strong orthogonality as well.

Since the original proof by Preiss and Rataj relied on restrictions of measures to compact
subspaces, it is not clear how to generalise that proof. The idea from the proof of Theorem
0.1 seems more promising, but there are still some steps for which we do not know if they
hold for strong orthogonality for states.

On the other hand, it turns out that the idea of Kechris and Sofronidis from [KS01]
can easily be extended to a class of separable unital C*-algebras.

Theorem 0.4. Suppose A is a separable unital C*-algebra, which contains a copy of
C(2N) as a subalgebra and for which there is a conditional expectation E : A → C(2N).
Then for every strongly orthogonal A ⊆ S(A) there is α ∈ (0, 1)N so that µ̃α⊥ψ for every
ψ ∈ A, where µ̃α is the extension of the state, corresponding to the product measure

∏

n∈N
(α(n)δ0 + (1 − α(n))δ1),

from C(2N) to A.

As in [KS01], along the way of proving this theorem we also get that for C*-algebras
A, satisfying the assumptions of the theorem, the relation ∼ on S(A) is not classifiable
by countable structures.

Natural examples of C*-algebras, for which the assumptions of Theorem 0.4 are sat-
isfied, include the CAR algebra M2∞ and the Cuntz algebra O2. Moreover, for any A
satisfying assumptions of Theorem 0.4 also the reduced crossed product A⋊α,r Γ (for any
countable discrete group Γ and any homomorphism α : Γ → Aut(A)) and the tensor prod-
uct A ⊗ B (for any separable unital C*-algebra B) satisfy the assumptions of Theorem
0.4.
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In 1969 Bures (see [Bur69]) proved an extension of Kakutani’s result from [Kak48]
to semi-finite von Neumann algebras. Instead of absolute continuity and orthogonality
between states, Bures considered when two product states give rise to isomorphic tensor
products of von Neumann algebras. This was extended to all von Neumann algebras by
Promislow in [Pro71].

As a consequence of the main ingredient of the proof of Theorem 0.4, we get the fol-
lowing version of Kakutani’s theorem for states, involving absolute continuity and strong
orthogonality.

Proposition 0.5. Suppose that (αn)n∈N, (βn)n∈N ∈ [1
4 ,

3
4 ]N and let

ϕn := αn ev1,1 +(1 − αn) ev2,2 and ψn := βn ev1,1 +(1 − βn) ev2,2

be states on M2(C). Let also ϕ := ⊗∞
n=0ϕn and ψ := ⊗∞

n=0ψn be the product states on
M2∞. Then in S(M2∞), either ϕ ∼ ψ or ϕ⊥ψ according to whether

∑

n∈N
(αn − βn)2

converges or diverges respectively.

Structure of the paper. The paper aims to target interested readers from descriptive
set theory, measure theory and C*-algebras. Due to different backgrounds, we try to give
as much details as possible and add references to literature containing more information
about the discussed topics. Readers not familiar with set-theoretic notions such us MA
or Σ1

2, can skip the parts where we consider them, with no effect to understanding the
rest of the paper.

In section 1, we give proofs of Theorems 0.1, 0.2 and 0.3. This is followed by section
2, where we first present absolute continuity and two notions of orthogonality for states.
Subsection 2.2 recalls the idea and some notions from [KS01] and proves Theorem 0.4
and Proposition 0.5. We conclude the paper by discussing related topics and listing some
open problems in section 3.
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1. Borel probability measures

In this section we give a very short proof of the classical result due to Preiss and
Rataj by simplifying some steps of their proof from [PR85]. The setup of using a Baire
category argument is the same, what is new is that we replace the technical part of the
proof from [PR85], which uses extensions of measures defined on subspaces with a more
straightforward argument. We start by recalling some basic properties of Borel probability
measures.

Let X be a Polish space. We denote by C(X) the set of continuous complex-valued
functions on X. With P (X), we denote the collection of Borel probability measures
on X, endowed with the topology generated by maps µ 7→ ∫

fdµ for f ranging over
Cb(X,R) := {f : X → R | f continuous and bounded}. Recall that when X is Polish,
then so is P (X), and that if moreover X is compact, so is P (X). See section 17.E of
[Kec95] for more about P (X).

For two Borel measures µ, ν on X, we denote µ being absolutely continuous with respect
to ν (i.e., for every Borel subset B ⊆ X, if ν(B) = 0, then µ(B) = 0) by µ ≪ ν. We
say that µ, ν ∈ P (X) are measure equivalent, denoted by µ ∼ ν, if µ ≪ ν ∧ ν ≪ µ and
that µ, ν ∈ P (X) are orthogonal (another term often used is singular), denoted by µ ⊥ ν,
if there is no ρ ∈ P (X) with ρ ≪ µ and ρ ≪ ν. Observe that µ ⊥ ν is equivalent to
existence of a Borel B ⊆ X with µ(B) = 1 and ν(B) = 0. Recall (see e.g. [KS01]) that
≪ satisfies the ccc-below property, i.e., for every µ ∈ P (X) there is no uncountable family
{νi : i ∈ I} ⊆ P (X) with the property that for i ̸= j ∈ I it holds that νi ⊥ νj and νi ≪ µ.

For a signed Borel measure σ on X,

||σ|| := sup{|σ(B)| : B ⊆ X Borel}
defines a norm on the space of signed Borel measures. Then the map P (X)×P (X) → R≥0,
defined by (µ, µ) 7→ ||µ − ν|| is lower semicontinuous, when P (X) is equipped with the
Polish topology defined above. Consequently, for ε ∈ (0, 1) the set

{(µ, ν) ∈ P (X) × P (X) : ||µ− ν|| < ε}
is Fσ (i.e., it is a countable union of closed sets). It is also immediate to see that for
µ, ν ∈ P (X) we have

µ ⊥ ν if and only if ||µ− ν|| = 1,
so that the relation µ ⊥ ν is Gδ (i.e., a countable intersection of open sets). We continue
with a lemma from convexity theory.

Lemma 1.1. Suppose that V is an open convex subset of a locally convex topological
vector space E. Then the map V × V × [0, 1] → V , defined by (x, y, t) 7→ tx+ (1 − t)y is
continuous and open.

Proof. Continuity holds because E is a topological vector space. To check that the map
is open, take U0, U1 ⊆ V convex open, O ⊆ [0, 1] convex open and x, y, t in U0, U1, O
respectively. Then let

U2 := ((1 − t)(y − x) + U0) ∩ (t(x− y) + U1),

which is convex open and contains tx+ (1 − t)y. Clearly U2 is contained in the image of
U0 × U1 ×O, hence this completes the proof that the map is open. □

We are now ready to prove Theorem 0.1, which we restate for reader’s convenience.

Theorem 0.1. Suppose that X is an uncountable Polish space. Then there is no analytic
maximal orthogonal family of Borel probability measures on X.
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Proof. Suppose for contradiction that A is an analytic maximal pairwise orthogonal family
of Borel probability measures on X. Observe that we can without loss of generality assume
that X is perfect and compact. Indeed, for a general uncountable Polish space X, there
is a compact perfect subspace Y of X (see Theorems 6.4 and 6.2 of [Kec95]). Then

A′ :=
{

1
µ(Y )µ ↾ Y : µ ∈ A ∧ µ(Y ) > 0

}

is clearly a maximal analytic family of pairwise orthogonal Borel probability measures on
the uncountable perfect compact Polish space Y .

The first steps follow the proof of Theorem 0.1 from [PR85]. We include these steps
with a little more detail for reader’s convenience. For every k ∈ N denote by Ek the space
of k-element subsets of A, equipped with the usual topology in which it is clearly analytic.
Fix some ε ∈ (0, 1) and define

Hk,ε := {ν ∈ P (X) : (∃F ∈ Ek) (∀µ ∈ F ) ||ν − µ|| < ε},
which is evidently analytic, and for a fixed τ ∈ (0, ε) define also

U τ
k,ε := Hk,ε−τ \Hk+1,ε,

which thus has the property of Baire. Since A is maximal orthogonal, we have that for
every ν ∈ P (X) there is some µ ∈ A with ||ν − µ|| < 1. Moreover, since A consists of
pairwise orthogonal measures, it holds that for any 0 ≤ σ < 1 and any ν ∈ P (X) the set

{µ ∈ A : ||ν − µ|| < σ}
is finite. Indeed, if it were infinite find n ≥ 1, such that 1 − σ > 1/n. Then there are
some µ0, . . . , µn ∈ A with ||ν − µj|| < σ < 1 − 1/n for all 0 ≤ j ≤ n. Therefore there
are pairwise disjoint Borel subsets D0, . . . , Dn of X such that for all 0 ≤ i, j ≤ n, i ̸= j it
holds that µi(Di) = 1 and µi(Dj) = 0. Thus we have for all 0 ≤ i ≤ n that ν(Di) > 1/n.
But then

ν(X) ≥ ν

(
n⋃

i=0
Di

)
> (n+ 1) 1

n
> 1,

which is of course a contradiction.
It is clear then that every ν ∈ P (X) is in some U1/m

k,1/n for some k ≥ 1, n > 1 and m > n.
Hence we have that

P (X) =
⋃

k≥1

⋃

n>1

⋃

m>n

U
1/m
k,1/n,

and since P (X) is a Baire space, it must hold that for some k, ε := 1/n and τ := 1/m it
holds that U τ

k,ε is comeagre in a non-empty convex open set V ⊆ P (X) (we can assume
convexity of V , since P (X) is locally convex). From now on, our proof diverges from the
path taken in [PR85].

Claim 1.2. There is ν ∈ U τ
k,ε ∩ V and C ⊆ U τ

k,ε ∩ V , which is comeagre in V , so that for
every µ ∈ C the set

Mµ := {t ∈ [0, 1] : tν + (1 − t)µ ∈ U τ
k,ε}

is comeagre in [0, 1].

Proof of Claim. The map V × V × [0, 1] → V , defined by (ν, µ, t) 7→ tν + (1 − t)µ is
continuous and open by Lemma 1.1, so the preimage of U τ

k,ε ∩ V under this map is also a
comeagre subset of V ×V × [0, 1]. Now the Kuratowski-Ulam theorem (see iii of Theorem
8.41 from [Kec95]) implies the desired result. ⊣
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Let ν and C be as in the claim above. Next, we introduce the following notation: for
ρ ∈ U τ

k,ε write
Nρ := {µ ∈ A : ||ρ− µ|| < ε− τ},

and by definition of U τ
k,ε observe that Nρ = {µ ∈ A : ||ρ − µ|| < ε} and has precisely k

elements.

Claim 1.3. For every ρ ∈ C we have that Nν = Nρ.

Proof of Claim. Fix any ρ ∈ C and put
T := {t ∈ Mρ : Ntν+(1−t)ρ = Nν}.

and s := supT . We will show that s = 1 and that s ∈ T .
First, suppose for contradiction that s < 1. Find t ∈ T , such that s − t < τ/5. Since

Mρ ⊆ [0, 1] is comeagre, find u ∈ M with u ≥ s and u− s < τ/5. Then
||(uν + (1 − u)ρ) − (tν + (1 − t)ρ)|| = ||(u− t)ν + (t− u)ρ||

≤ |u− t| ||ν|| + |u− t| ||ρ|| = 2(u− t) < 4τ
5 .

This implies that Nuν+(1−u)ρ = Ntν+(1−t)ρ = Nν , and thus u ∈ T , which is a contradiction.
So we have that s = 1. Find t ∈ T with |1 − t| < τ/3, and observe by the same

reasoning as before that since 1 ∈ Mρ, we have that Nρ = Ntν+(1−t)ρ = Nν , completing
the proof. ⊣

Let now µ0, . . . , µk−1 ∈ A be such that Nν = {µ0, . . . , µk−1}. But since it holds that for
any µ ∈ P (X) the set µ⊥ := {ρ ∈ P (X) : µ ⊥ ρ} is comeagre (see Proposition 4.1 from
[KS01] and note that this is where we need that X is perfect compact), also the set

B :=
k−1⋂

j=0
µ⊥
j

is comeagre and in particular comeagre in V . So both B and C are comeagre in the open
set V , which is of course a contradiction. □

For a (pairwise orthogonal) family A ⊆ P (X), observe that the set of witnesses to
non-maximality

A⊥ := {ν ∈ P (X) : (∀µ ∈ A) ν ⊥ µ}
is co-analytic (in particular, it has the Baire property) and by Theorem 0.1 it is non-empty.
When X is a perfect compact Polish space, we have the following strengthening.

Theorem 0.2. Suppose that X is a compact perfect Polish space. Then for every analytic
orthogonal family A ⊆ P (X), the set A⊥ is comeagre. In particular, when A ⊆ P (2N) is
a Σ1

1 orthogonal family, there is a ∆1
1-witness to non-maximality.

Proof. Suppose for contradiction that A⊥ is not comeagre. Then there is a non-empty
convex open set O ⊆ P (X), in which A⊥ is meagre. Let Z be a dense (in O) Gδ subset of
O\A⊥; in particular, Z is a Polish subspace of P (X). Note that A is maximal orthogonal
in Z, i.e., for every ν ∈ Z there is some µ ∈ A with ||ν − µ|| < 1. Now we follow the
proof of Theorem 0.1, but this time we use the Baire category theorem in Z.

We use the above defined Ek and redefine Hk,ε and U τ
k,ε as follows. Fix some ε ∈ (0, 1)

and set
Hk,ε := {ν ∈ Z : (∃F ∈ Ek) (∀µ ∈ F ) ||ν − µ|| < ε},
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which is clearly analytic, and for a fixed τ ∈ (0, ε) define also

U τ
k,ε := Hk,ε−τ \Hk+1,ε,

which thus has the property of Baire. It is clear then that every ν ∈ Z is in some U1/m
k,1/n

for some k ≥ 1, n > 1 and m > 1. Hence we have that

Z =
⋃

k≥1

⋃

n>1

⋃

m>n

U
1/m
k,1/n,

and so it must hold that for some k, ε := 1/n and τ := 1/m the set U τ
k,ε is comeagre in

a non-empty convex open set V ⊆ O. The proofs of Claims 1.2 and 1.3 work without
changes to show the following two claims respectively.

Claim 1.4. There is ν ∈ U τ
k,ε ∩ V and C ⊆ U τ

k,ε ∩ V , which is comeagre in V , so that for
every µ ∈ C the set

Mµ := {t ∈ [0, 1] : tν + (1 − t)µ ∈ U τ
k,ε}

is comeagre in [0, 1].

Claim 1.5. For every ρ ∈ C we have that Nν = Nρ.

Finally, let µ0, . . . , µk−1 ∈ A be such that Nν = {µ0, . . . , µk−1}. Again, the set

B :=
k−1⋂

j=0
µ⊥
j

is comeagre and in particular comeagre in V . So both B and C are comeagre in the open
set V , which is again a contradiction.

For the “in particular” part of the theorem, note first that P (2N) is a recursively pre-
sentable Polish space (see [Mos09] for the definition of the notion and [FT10] for why
P (2N) is recursively presentable), so it makes sense to talk about lightface pointclasses in
P (2N). To get a ∆1

1-witness to non-maximality of a Σ1
1 orthogonal family A ⊆ P (2N), use

Corollary 4.1.2 of [Kec73] on A⊥, which, as we have just proved, is a comeagre Π1
1 set. □

In [MS70], Martin and Solovay show that if Martin’s axiom (MA) holds and Continuum
hypothesis (CH) fails, then all Σ1

2 sets of reals have the Baire property. Recall also that
the Axiom of projective determinacy (PD) implies that all projective sets of reals have the
Baire property and that the Axiom of determinacy (AD) implies that all sets of reals have
the Baire property (see e.g. Theorem 33.3 in [Jec03]). It is clear that we can substitute
sets of reals with subsets of P (X) for a Polish space X.

Theorem 0.3. Suppose that X is an uncountable Polish space.
(1) Assume MA and ¬CH. Then no Σ1

2 orthogonal family A ⊆ P (X) is maximal.
(2) Assume PD. Then no projective orthogonal family A ⊆ P (X) is maximal.
(3) Assume AD. Then no orthogonal family A ⊆ P (X) is maximal.

If moreover X is compact perfect, then in each of the above cases A⊥ is comeagre.

Proof. Repeat the proof of Theorem 0.1 (or 0.2 in case X is compact perfect), using the
respective assumed axiom to get that the sets U τ

k,ε have the Baire property. The rest of
the proof is the same. □

Remark 1.6. Let a ∈ NN and note that ωL[a]
1 < ω1 implies that for every Σ1

2[a] orthogonal
family A ⊆ P (2N), the set A⊥ is comeagre. The reason is again that ωL[a]

1 < ω1 implies
that every Σ1

2[a] subset of P (2N) has the Baire property (see Corollary 14.3 from [Kan09]).
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2. States on separable C*-algebras

2.1. Absolute continuity and orthogonality for states. All C*-algebras considered
will be unital and separable. For a C*-algebra A, we denote by S(A) the collection of
states on A (i.e., positive linear functionals, which map the unit of A to 1) and by PS(A)
the collection of pure states on A (i.e., the states that are the extreme points of the
compact convex set S(A)). With proj(A) we denote the set of projections in A. See e.g.
[Bla06] and [BO08] for other standard notions from C*-algebras theory.

It is well-known that every commutative C*-algebra A is *-isomorphic (via the Gelfand
transform) to C(MA), where MA is the maximal ideal space of A (which can in turn be
described as the space of characters on A (i.e., non-zero algebra homomorphisms from
A to C)). Furthermore, MA is compact Polish, being contained in B1(A∗). So when
considering commutative separable C*-algebras we can restrict our attention to C(X) for
X compact Polish.

By Riesz–Markov–Kakutani representation theorem we know that S(C(X)) is actually
the same as P (X), and indeed, this is how P (X) got its topology. Note here that a state
ϕ ∈ S(C(X)) is determined by its values on real-valued functions (real-valued functions
are the self-adjoint elements in C(X)).

So it is natural to try to generalise notions from measure theory to states on C*-
algebras. In [Dye52], Dye defined the notion of absolute continuity for states on σ-finite
von Neumann algebras and proved a version of Radon-Nikodym theorem. There is an
abundance of alternative formulations of absolute continuity for states on C*-algebras,
some of them equivalent to the one given here, some weaker and some stronger. Standard
results from measure theory like Lebesgue decomposition theorem generalise to states
(this is the content of [Dye52]). See also e.g. [Hen72], [Hia84] or [Ino83] for some different
formulations of absolute continuity for states and various results on generalisations.

For any pre-order (i.e., a reflexive and transitive relation) ≼ on a set X one says that
x, y ∈ X are orthogonal, in symbols x ⊥ y, if there is no z ∈ X with z ≼ x, y. Note
that orthogonality of measures from the previous section is just orthogonality associated
with the pre-order ≪. Accordingly, we define orthogonality for states, associated to Dye’s
notion of absolute continuity.

It is natural to ask whether Theorem 0.1 can be generalised to non-commutative unital
C*-algebras A. As we will see, the orthogonality relation associated with Dye’s notion
of absolute continuity in general does not satisfy the nice properties of orthogonality for
measures; in Example 2.6 we will show that ≪ on S(M2(C)) does not satisfy the ccc-
below property and moreover we will construct an analytic mof A ⊆ S(M2(C)). On the
other hand, we are still able to use the idea of [KS01] to prove that ∼ for states is not
classifiable by countable structures (this is Proposition 2.16).

There is however an alternative notion of orthogonality (which does not come from a
pre-order) and for which it turns out that the argument of [KS01], using product measures,
can be generalised to a class of C*-algebras; this is our Theorem 0.4. Furthermore, we are
also able to generalise the result of Kakutani from product measures to product states;
this is Proposition 0.5.

For reader’s convenience we start by presenting in detail the definition of absolute con-
tinuity for states and the stronger notion of orthogonality. Since we are using descriptive
set theoretic methods, we always require A to be separable.

So let A be a separable unital C*-algebra. By the Banach-Alaoglu theorem (A∗)1, the
closed unit ball in the dual space of A, is compact Polish in the weak*-topology. Moreover,
S(A) ⊆ (A∗)1 is compact convex, so convex compact Polish on its own.
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Now let H be the Hilbert space from the universal representation of A in B(H). Recall
that we identify A′′ ⊆ B(H), the double commutant of A, which is a von Neumann
algebra, with the double dual A∗∗, and call it the enveloping von Neumann algebra (see
[BO08]). Denote M := A∗∗, and recall that we can identify S(A) with (M∗)+

1 , where we
identify ϕ ∈ S(A) with its normal extension ϕ∗∗ ∈ S(M), and where M∗ is the predual
of M. By definition, ϕ being normal means that ϕ is ultraweakly continuous on M. We
will employ Theorem 7.1.12 of [KR86], saying that a state ϕ is normal precisely when it is
completely additive, i.e., for every orthogonal family of projections {pi}i∈I of M it holds
that ϕ(∑i∈I pi) = ∑

i∈I ϕ(pi). See e.g. [BO08] or [KR86] for more details.
Recall that projections in a von Neumann algebra form a complete complemented lattice

with 0 and 1. We use ∨ and ∧ to denote suprema and infima respectfully. So for ϕ ∈ S(A)
it holds that ∨

{p ∈ proj(M) : ϕ(p) = 0}
is a projection in M. Moreover, observe that it also holds that

ϕ
(∨

{p ∈ proj(M) : ϕ(p) = 0}
)

= 0.

This is because ∨{p ∈ proj(M) : ϕ(p) = 0} = ∑
i∈I pi for any maximal orthogonal family

of projections {pi}i∈I ⊆ M, satisfying that ϕ(pi) = 0 for every i ∈ I. For ϕ ∈ S(A), we
define its support (sometimes called carrier) by

suppϕ := 1 −
∨

{p ∈ proj(M) : ϕ(p) = 0},
which is again a projection in M. Notice that by definition ϕ(suppϕ) = 1 (we think of
suppϕ as the largest projection where ϕ is everywhere non-zero). Then for ϕ, ψ ∈ S(A)
put

ψ ≪ ϕ if and only if suppψ ≤ suppϕ,
and say that ψ is absolutely continuous with respect to ϕ. Observe that

ψ ≪ ϕ if and only if (∀p ∈ proj(M))ϕ(p) = 0 → ψ(p) = 0.
Set also ϕ ∼ ψ if and only if ϕ ≪ ψ and ψ ≪ ϕ. We continue with the following useful
description of absolute continuity for states.

Claim 2.1. For states ϕ, ψ it holds that ψ ≪ ϕ if and only if for every positive a ∈ M
we have that ϕ(a) = 0 implies that ψ(a) = 0.

Proof. The direction from right to left is immediate. For the other direction note that for
every positive element a ∈ M there is a sequence (∑kn

i=0 λ
n
i p

n
i )n∈N, where λni ∈ (0,∞) and

pni ∈ proj(M) for every n ∈ N and 0 ≤ i ≤ kn, so that ∑kn
i=0 λ

n
i p

n
i ≤ a for every n ∈ N and

so that ||a−∑kn
i=0 λ

n
i p

n
i || → 0, as n → ∞. Indeed, for a positive (in particular normal), let

N be the Abelian von Neumann subalgebra generated by a. Since the statement clearly
holds in N (and the norm on N is the restriction of the one on M), the same sequence
also converges to a from below in M.

Now, if ϕ(a) = 0, then ϕ(pni ) = 0 for every n ∈ N and every 0 ≤ i ≤ kn. So by
assumption also ψ(pni ) = 0 for all n ∈ N and all 0 ≤ i ≤ kn. Hence ψ(a) = 0, which
completes the proof. □

We proceed with the following result, which tells us that in order to check whether one
state is absolutely continuous with respect to the other we do not need to go to the large
enveloping von Neumann algebra.

Claim 2.2. Let ϕ, ψ ∈ S(A) for a separable unital C*-algebra A. Suppose that π : A →
B(K) is a faithful representation of A on a Hilbert space K, so that ϕ and ψ have unique
normal extensions to N := A′′ ⊆ B(K), which we also denote by ϕ and ψ respectively.
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Then ψ ≪ ϕ if and only if for every p ∈ proj(N ) we have that ϕ(p) = 0 implies that
ψ(p) = 0.

Proof. By the universal property of the enveloping von Neumann algebra M, there is
a normal *-epimorphism (i.e., a *-homomorphism which is onto) α : M → N , which
is equal to identity on A. Then since every element of M is a limit of an ultraweakly
converging net {xξ} from A, and since ϕ and ψ are normal on both M and N , it holds
for every x ∈ M that

ϕ(x) = ϕ(α(x)) and ψ(x) = ψ(α(x)).
Suppose first that ψ ≪ ϕ and that ϕ(p) = 0 for p ∈ proj(N ). Then since α is onto there
is some positive b ∈ M so that α(b) = p. Hence ϕ(b) = 0 and by Claim 2.1 also ψ(b) = 0,
which in turn implies that ψ(p) = ψ(α(b)) = ψ(b) = 0.

Conversely, suppose that for every p ∈ proj(N ) it holds that ϕ(p) implies that ψ(p) = 0.
Let q ∈ proj(M) be such that ϕ(q) = 0. Then α(q) is a projection in N , so ψ(α(q)) = 0
and hence also ψ(q) = ψ(α(q)) = 0. □
Remark 2.3. Observe that for any projection p ∈ N , there is some projection q ∈ M
for which α(q) = p. To see this, take any positive a ∈ M for which α(a) = p. Then the
sequence (bn)n, defined by

bn := ||a|| 1
n

(
a

||a||

) 1
n

,

converges (strongly and ultraweakly) to some projection q ∈ M (see the proof of Theorem
17.5 from [Zhu93]), and also satisfies that α(bn) = p for every n ∈ N. Hence also α(q) = p.
So we could have proven the claim without using Claim 2.1.

As a consequence of this fact, we actually have that α(suppψ) = suppψ, since clearly

α
(∨

{p ∈ proj(M) : ψ(p) = 0}
)

≤
∨

{p ∈ proj(N ) : ψ(p) = 0},
but also if q ∈ proj(M) is such that α(q) = ∨{p ∈ proj(M) : ψ(p) = 0}, then ψ(q) = 0.

Remark 2.4. Note that Claim 2.2 holds more generally (with essentially the same proof)
for non-degenerate (i.e., unital) representations π : A → B(K), which are not necessarily
faithful, and for ϕ, ψ ∈ S(A), for which there are x, y ∈ K, so that for every a ∈ A it
holds that ϕ(a) = ⟨π(a)x, x⟩K and ψ(a) = ⟨π(a)y, y⟩K .

Using (the proof of) Claim 2.1, we can replace the requirement in the statement of
Claim 2.2 that p ∈ proj(N ) with p ∈ N being positive.

The reason why we are allowed to call ≪ absolute continuity for states is that for
commutative C*-algebras it coincides with the classical notion defined for measures.

Proposition 2.5. If A is commutative, ≪ defined for states coincides with ≪ defined for
measures.

Proof. Suppose that A = C(X) for a compact Polish space X. Let µ, ν ∈ P (X) and let
ϕµ, ϕν be the corresponding states on A (via the Riesz–Markov–Kakutani representation)
and also on M = A∗∗ (via the unique normal extension). Let N := L∞(X, 1

2(µ+ ν)) and
observe that both ϕµ and ψν admit unique normal extensions to N , again denoted with
ϕµ and ψν respectively. Actually, it holds that the extensions to N are

ϕµ =
∫

dµ and ϕν =
∫

dν.

Recalling that projections in N are of the form χB for B ⊆ X Borel, an application of
Claim 2.2 completes the proof. □
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We now move to different notions of orthogonality. As already alluded to above, we
say that ϕ, ψ ∈ S(A) are orthogonal, which we denote with ϕ ⊥ ψ, if there is no ρ ∈ S(A)
for which ρ ≪ ϕ and ρ ≪ ψ. In particular, if suppϕ ∧ suppψ = 0, then ϕ ⊥ ψ. Hence,
it is very easy for two states to be orthogonal. Consequently, ⊥ for states fails to satisfy
the nice properties of ⊥ for measures.

Example 2.6. Let A := M2(C). Note that since A is finite dimensional the norm topology
coincides with the ultraweak operator topology (and also with the weak/strong/ultrastrong
operator topologies). Hence all states on A are normal, so using Claim 2.2, we can cal-
culate ≪ (and ⊥) by considering supports in the von Neumann algebra A. A rank 1
projection p ∈ proj(A) (i.e., when p is seen as a projection onto a subspace Ep of C2, the
dimension of Ep is 1), gives rise to a state ϕp ∈ S(A), defined for a ∈ M2(C) by

ϕp(a) := tr(p a p),
where tr is the usual non-normalised trace on M2(C). Note that suppϕp = p and since
for two distinct rank 1 projections p, q it holds that p∧ q = 0, we get that ϕp ⊥ ϕq. Hence

A := {ϕp : p ∈ proj(A) has rank 1} ⊆ S(A)
is an orthogonal family. Take now any ψ ∈ S(A). If suppψ = C2, then we get that
ϕ ≪ ψ for all ϕ ∈ A. Since there clearly are such ψ (e.g., take ψ = 1

2(ev1,1 + ev2,2)), the
ccc-below property fails for ≪. Suppose now that suppψ is of rank 1. Then ψ ∼ ϕsuppψ.
Thus A is maximal. Moreover, A is clearly analytic, so we have an analytic mof in S(A).

Next we introduce another notion of orthogonality. Let A be a separable unital C*-
algebra. For ϕ, ψ ∈ S(A), we say that they are strongly orthogonal, denoted by ϕ⊥ψ if
suppϕ suppψ = 0. Clearly, ϕ⊥ψ implies ϕ ⊥ ψ. Moreover, for ϕ ∼ ψ and any χ ∈ S(A)
it holds that ϕ⊥χ if and only if ψ⊥χ. We proceed with a useful characterisation of strong
orthogonality.

Fact 2.7. For ϕ, ψ ∈ S(A) the following are equivalent
(1) ϕ⊥ψ;
(2) ϕ(suppψ) = 0;
(3) (∃p ∈ proj(A∗∗))ϕ(p) = 0 ∧ ψ(p) = 1.

Proof. (1) ⇔ (2) follows from the definition of support and the fact that for projections
p, q it holds that p q = 0 if and only if p ≤ 1 − q.

(2) ⇔ (3) is clear. □
With this characterisation, Claim 2.2 and Remark 2.3, we obtain the following, which

enables us to decide ⊥ in smaller representations.

Claim 2.8. Let ϕ, ψ ∈ S(A) for a separable unital C*-algebra A. Suppose that π : A →
B(K) is a faithful representation of A on a Hilbert space K, so that ϕ and ψ have unique
normal extensions to N := A′′ ⊆ B(K), which we also denote by ϕ and ψ respectively.
Then ϕ⊥ψ if and only if ϕ(suppψ) = 0 holds in N .

Proof. Let α : M → N be as in the proof of Claim 2.2. By Fact 2.7, ϕ⊥ψ if and
only if ϕ(suppψ) = 0 holds in M. But by the proof of Claim 2.2 and by Remark 2.3,
ϕ(suppψ) = 0 is true in M precisely when it is true in N . □
Remark 2.9. As with Claim 2.2, we actually have that Claim 2.8 holds more generally
for non-degenerate representations π : A → B(K), which are not necessarily faithful, and
for ϕ, ψ ∈ S(A), for which there are x, y ∈ K, so that for every a ∈ A it holds that
ϕ(a) = ⟨π(a)x, x⟩K and ψ(a) = ⟨π(a)y, y⟩K .
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Notice also that (3) of Fact 2.7 implies that ⊥ is analytic. Next we note that the notion
of strong orthogonality extends orthogonality for measures.

Claim 2.10. Suppose that A is a commutative separable unital C*-algebra and take any
ϕ, ψ ∈ S(A). Then ϕ⊥ψ if and only if ϕ ⊥ ψ.

Proof. The forward direction is obvious. So assume that ϕ ⊥ ψ and denote p := suppϕ
and q := suppψ. Suppose for contradiction that ϕ(q) > 0. Then define χ by setting

χ(a) := 1
ϕ(q)ϕ(p q a)

for a ∈ A. Clearly, χ ∈ S(A) and χ ≪ ϕ, ψ which is a contradiction. □

As opposed to ⊥ for states, ⊥ shares some nice properties with orthogonality for mea-
sures. There is a version of the ccc-below property which is true for ⊥. A set A ⊆ S(A)
is a ⊥-antichain if for every ψ ̸= χ ∈ A it holds that ψ⊥χ.

Claim 2.11. For any ϕ ∈ S(A) and any ⊥-antichain A ⊆ S(A) there are only countably
many ψ ∈ A, for which ¬ϕ⊥ψ.

Proof. Suppose for contradiction that there is an uncountable set {ψi : i ∈ I} of pairwise
strongly orthogonal states, such that for all i ∈ I it holds that ¬ϕ⊥ψi. Then ϕ(suppψi) >
0 for all i ∈ I. But since suppψi are pairwise orthogonal and since ϕ is completely additive
on A∗∗, we have that

ϕ

(∑

i∈I
suppψi

)
=
∑

i∈I
ϕ(suppψi).

But since I is uncountable, this is a contradiction, as the sum on the right diverges. □

In [Bur69], Bures defined ρ and d for normal states on von Neumann algebras, which
generalise the identically denoted notions defined for measures in [Kak48]; see Proposition
2.7 of [Bur69]. We reintroduce these notions for states on a separable C*-algebra A. Let
ϕ, ψ ∈ S(A) and put

Q(ϕ, ψ) := {(π, x, y) : π is a faithful representation of A on H,

x, y ∈ H respectively induce ϕ, ψ relative to π}.
Here, x induces ϕ relative to π, means that for every a ∈ A it holds that ϕ(a) =
⟨π(a)x, x⟩H . Then define

ρ(ϕ, ψ) := sup{|⟨x, y⟩| : (π, x, y) ∈ Q(ϕ, ψ)}
and

d(ϕ, ψ) = inf{||x− y|| : (π, x, y) ∈ Q(ϕ, ψ)}.
Observe that it holds that d(ϕ, ψ)2 = 2(1 − ρ(ϕ, ψ)). The same argument as the one in
the proof of Proposition 1.7 from [Bur69], shows that d, defined for A (not necessarily a
von Neumann algebra), is a metric. Let HS be some separable Hilbert space, for which
there is a faithful representation πS : A → B(HS). The proof of Proposition 1.6 from
[Bur69] shows that for ϕ, ψ ∈ S(A), we can calculate ρ(ϕ, ψ) and d(ϕ, ψ) by ranging over
the tuples (π, x, y) ∈ Q(ϕ, ψ), for which π is fixed to be

π : A → B(Hϕ ⊕Hψ ⊕HS ⊕Hϕ ⊕Hψ ⊕HS),

defined for a ∈ A by π(a) := πϕ(a) ⊕ πψ(a) ⊕ πS(a) ⊕ πϕ(a) ⊕ πψ(a) ⊕ πS(a), where πϕ :
A → B(Hϕ) and πψ : A → B(Hψ) are the GNS representations. Fixing some countable
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dense set D ⊆ A, observe that unfolding the definitions of the GNS representations and
direct sums of Hilbert spaces, yields that

ρ(ϕ, ψ) = sup{⟨x0, u0⟩ϕ + ⟨y0, v0⟩ψ + ⟨z0, w0⟩HS
+ ⟨x1, u1⟩ϕ + ⟨y1, v1⟩ψ + ⟨z1, w1⟩HS

:
x0, x1, u0, u1 ∈ Hϕ; y0, y1, v0, v1 ∈ Hψ; z0, z1, w0, w1 ∈ HS and
(∀d ∈ D)ϕ(d) = ⟨πϕ(d)x0, x0⟩ϕ + ⟨πψ(d)y0, y0⟩ψ + ⟨πS(d)z0, z0⟩HS

+ ⟨πϕ(d)x1, x1⟩ϕ + ⟨πψ(d)y1, y1⟩ψ + ⟨πS(d)z1, z1⟩HS
∧

ψ(d) = ⟨πϕ(d)u0, u0⟩ϕ + ⟨πψ(d)v0, v0⟩ψ + ⟨πS(d)w0, w0⟩HS

+ ⟨πϕ(d)u1, u1⟩ϕ + ⟨πψ(d)v1, v1⟩ψ + ⟨πS(d)w1, w1⟩HS
}.

In particular, for a fixed ε ≥ 0 the sets
{(ϕ, ψ) ∈ S(A)2 : ρ(ϕ, ψ) > ε}

and
{(ϕ, ψ) ∈ S(A)2 : d(ϕ, ψ) < ε}

are analytic.
The proof of Lemma 1.2 from Promislow’s [Pro71] proves that ϕ⊥ψ if and only if

d(ϕ, ψ) =
√

2. In particular, ¬ϕ⊥ψ is analytic, which since we have already observed that
ϕ⊥ψ is analytic, implies that ⊥ is Borel.
2.2. No analytic maximal strongly orthogonal families. In this subsection we prove
Theorem 0.4.

In [KS01], Kechris and Sofronidis used the theory of turbulence to prove the following
(which is Theorem 3.1 in [KS01]).
Theorem 2.12. For any analytic orthogonal A ⊆ P (2N), there exists α ∈ (0, 1)N such
that µα ⊥ µ for every µ ∈ A, where

µα :=
∏

n∈N
(α(n)δ0 + (1 − α(n))δ1).

The idea of their proof is to build on Kakutani’s [Kak48] and define a continuous map
f : 2N → P (2N), satisfying that for every x, y ∈ 2N it holds that xEIy implies that
f(x) ∼ f(y) and ¬xEIy implies that f(x) ⊥ f(y), where

xEIy if and only if
∑

n∈x∆y

1
n
< ∞.

(We use the notation EI because it is used in [KS01]; other more common notations
are either I2 or E2.) Recall that a Borel equivalence relation E on a Polish space Y
is generically S∞-ergodic if every E-class is meagre and for any standard Borel space
Z, equipped with a Borel action of S∞, and any Baire measurable f : Y → Z, with
the property that xEy implies that (∃g ∈ S∞) g · f(x) = f(y), there is an E-invariant
comeagre set C ⊆ Y , such that f maps C to a single class in Z.

If E is generically S∞-ergodic, then E is not classifiable by countable structures. Here
a relation E on a standard Borel space X is said to be classifiable by countable structures
if there is a countable language L and a Borel map f : X → XL (where XL is the space
of countable structures for L), so that for all x, y ∈ X it holds that xEy if and only if
f(x) ∼= f(y). See [Hjo00] for more about classification by countable structures, generic
ergodicity and turbulence.

The relation EI defined above is generically S∞-ergodic (see [Hjo00] and [KS01]) and
so with the above reduction of EI to ∼, Kechris and Sofronidis establish that ∼ is not
classifiable by countable structures. Then they prove the following lemma (see Lemma 3.3
in [KS01]), which gives Theorem 2.12 (since ≪ for measures has the ccc-below property).
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Lemma 2.13. Let ≼ be an analytic partial pre-ordering on a Polish space X which sat-
isfies the ccc-below property and assume that there exists a generically S∞-ergodic equiv-
alence relation E on a Polish space Y and a Borel measurable function f : Y → X with
the properties that zEy =⇒ f(z) ∼ f(y) and ¬zEy =⇒ f(z) ⊥ f(y), whenever z, y are
in Y . Then, given any orthogonal analytic subset A of X, there exists y ∈ Y such that
f(y) ⊥ x for every x ∈ A.

We will prove that the same idea can be generalised to a class of C*-algebras. Recall
that for a C*-algebra A and its subalgebra B, a linear map E : A → B is a conditional
expectation, when E is a contractive completely positive projection, such that for every
a ∈ A and b, b′ ∈ B it holds that E(bab′) = bE(a)b′. By Tomiyama’s theorem (see
Theorem 1.5.10 in [BO08]), a projection E : A → B is a conditional expectation precisely
when it is contractive. Notice that conditional expectations are closed under composition.

Suppose now that B ⊆ A are unital C*-algebras (with possibly different units) and that
E : A → B is a conditional expectation (note that E(1A) = 1BE(1A)1B = E(1B) = 1B).
For a state ϕ ∈ S(B), there is an extension ϕ̃ ∈ S(A), defined by ϕ̃(a) = ϕ(E(a)) for
a ∈ A. Clearly the map (̃·) : S(B) → S(A), defined by ϕ 7→ ϕ̃ is continuous. Note also
that E∗∗ : A∗∗ → B∗∗ is again a conditional expectation, extending E. We next list some
nice properties of (̃·).

Claim 2.14. For ϕ, ψ ∈ S(B) it holds that ψ ≪ ϕ if and only if ψ̃ ≪ ϕ̃.

Proof. Suppose that ψ ≪ ϕ and that ϕ̃(a) = 0 for a positive a ∈ A∗∗. This means that
ϕ(E∗∗(a)) = 0, and consequently ψ(E∗∗(a)) = 0. Hence by definition, ψ̃(a) = 0.

The other direction is obvious. □

Claim 2.15. For ϕ, ψ ∈ S(B) it holds that ϕ⊥ψ implies ϕ̃⊥ψ̃.

Proof. Suppose that ϕ⊥ψ. We will show that ϕ̃(supp ψ̃) = 0, which implies that ϕ̃⊥ψ̃ by
Fact 2.7. Note that

supp ψ̃ = 1A −
∨

{p ∈ proj(A∗∗) : ψ(E∗∗(p)) = 0}.
Since ∨

{q ∈ proj(B∗∗) : ψ(q) = 0} ≤
∨

{p ∈ proj(A∗∗) : ψ(E∗∗(p)) = 0},
and since E∗∗ is monotone, it holds that

E∗∗(supp ψ̃) ≤ 1B −
∨

{q ∈ proj(B∗∗) : ψ(q) = 0} = suppψ.

But then
ϕ̃(supp ψ̃) = ϕ(E∗∗(supp ψ̃)) ≤ ϕ(suppψ) = 0

and hence ϕ̃(supp ψ̃) = 0, which completes the proof. □

With this we are ready to prove Theorem 0.4.

Theorem 0.4. Suppose A is a separable unital C*-algebra, which contains a copy of
C(2N) as a subalgebra and for which there is a conditional expectation E : A → C(2N).
Then for every strongly orthogonal A ⊆ S(A) there is α ∈ (0, 1)N so that µ̃α⊥ψ for every
ψ ∈ A, where µ̃α is the extension of the state, corresponding to the product measure

∏

n∈N
(α(n)δ0 + (1 − α(n))δ1),

from C(2N) to A.
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Proof. As in [KS01], define α : 2N → [1
4 ,

3
4 ]N by

α(x)(n) :=




1
4

(
1 + 1√

n+1

)
if n ∈ x

1
4 if n ∈ N \ x

for all x ∈ 2N, where we identify 2N with P(N), the powerset of N. Now let f : 2N → S(A)
be defined by f(x) = µ̃α(x) for x ∈ 2N. Since the maps α, (̃·) and the map [1

4 ,
3
4 ]N → S(2N),

defined by h 7→ µh are all continuous, so is f .
In [KS01], it is established that for x, y ∈ 2N it holds that

∑

n∈N
(α(x)(n) − α(y)(n))2 =

∑

n∈x∆y

1
16(n+ 1) ,

so by Corollary 1 from [Kak48] and by Claims 2.14 and 2.15 we have for every x, y ∈ 2N

that
xEIy =⇒ f(x) ∼ f(y) and ¬xEIy =⇒ f(x)⊥f(y).

Lemma 2.13 still holds (with the same proof) with ccc-below replaced with the property
from Claim 2.11 and with ≼ being analytic replaced with ⊥ co-analytic (in our case it is
even Borel). Thus the proof is complete. □

The function f from the above proof is a continuous reduction of EI to ∼ for states,
and hence we have the following consequence.
Corollary 2.16. Suppose A is a separable unital C*-algebra, which contains a copy of
C(2N) as a subalgebra and for which there is a conditional expectation E : A → C(2N).
Then ∼ on S(A) is not classifiable by countable structures.

The following examples of nice C*-algebras satisfying assumptions of Theorem 0.4 (and
hence also of Corollary 2.16) were suggested to the author by Magdalena Musat and Mikael
Rørdam.

Fix any A satisfying assumptions of Theorem 0.4. Let B be any separable unital C*-
algebra and pick some ϕ ∈ S(A⊗B). Then there is a conditional expectation E : A⊗B →
A, induced by

E(a⊗ b) = ϕ(b) a.
Hence A⊗B also satisfies assumptions of Theorem 0.4.

Recalling Proposition 4.1.9 from [BO08], we get that for any countable discrete group
Γ and any homomorphism α : Γ → Aut(A), the reduced crossed product A ⋊α,r Γ also
satisfies the assumptions of Theorem 0.4. Note that if A is simple and the action is outer
(i.e., Γ acts by outer automorphisms), then by [Kis81] A⋊α,r Γ is simple.

Consider the following diagram

C M2(C) M4(C) M8(C) · · · M2∞

C C2 C4 C8 · · · C(2N),

ϕ0

E0

ϕ1

E1

ϕ2

E2

ϕ3

E3 E

ψ0 ψ1 ψ2 ψ3

where ϕn : M2n(C) → M2n+1(C) is defined as ϕn(X) := id2 ⊗X, ψn : C2n → C2n+1 as
ψn(a1, a2, . . . , a2n) := (a1, a1, a2, a2, . . . , a2n , a2n) and En : M2n(C) → C2n as E([ai,j]) =
(a1,1, a2,2, . . . , a2n,2n). On the right we have the inductive limits of the respective sequences:
the CAR algebra M2∞ and C(2N). Note that all En are conditional expectations and that
the diagram commutes, which gives a conditional expectation E : M2∞ → C(2N). Since
M2∞ is also separable, it satisfies the assumptions of Theorem 0.4.

Since one can view the Cuntz algebra O2 as a crossed product of M2∞ with integers
(see [Cun77], [AK02] and [ANS14]), O2 also satisfies the assumptions of Theorem 0.4.
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2.3. Kakutani’s theorem for states. In this subsection we use results from the previ-
ous subsection to prove Proposition 0.5.

Recall that we may view the CAR algebra M2∞ as ⊗∞
n=0M2(C). If (ϕn)n∈N is a sequence

of states on M2(C), then ⊗∞
n=0ϕn denotes the unique state (called product state) with the

property that for every sequence (an)n∈N, where for all but finitely many n it holds that
an = 1M2(C), we have that

( ∞⊗

n=0
ϕn

)( ∞⊗

n=0
an

)
=
∏

n∈N
ϕn(an).

Observe that ev1,1 and ev2,2 are states on M2(C). These will be our non-commutative
analogues of the Dirac measures δ0 and δ1 on 2 = {0, 1}, used in [Kak48] and [KS01].

In [Bur69], Bures extended Kakutani’s theorem to semi-finite von Neumann algebras.
This was improved by Promislow (see [Pro71]) to general von Neumann algebras. How-
ever, their statements do not mention absolute continuity nor (strong) orthogonality for
states, which on the other hand are central to Kakutani’s statement. Using Claims 2.14
and 2.15 and Corollary 1 of [Kak48], we provide an extension of Kakutani’s result about
absolute continuity and orthogonality to the special case for product states on the CAR
algebra.
Proposition 0.5. Suppose that (αn)n∈N, (βn)n∈N ∈ [1

4 ,
3
4 ]N and let

ϕn := αn ev1,1 +(1 − αn) ev2,2 and ψn := βn ev1,1 +(1 − βn) ev2,2

be states on M2(C). Let also ϕ := ⊗∞
n=0ϕn and ψ := ⊗∞

n=0ψn be the product states on
M2∞. Then in S(M2∞), either ϕ ∼ ψ or ϕ⊥ψ according to whether

∑

n∈N
(αn − βn)2

converges or diverges respectively.
Proof. Let

µ :=
∏

n∈N
αnδ0 + (1 − αn)δ1 and ν :=

∏

n∈N
βnδ0 + (1 − βn)δ1

be product measures and note that ϕ = µ̃ and ψ = ν̃ (using the conditional expectation
E defined in the end of the previous subsection).

Now by Corollary 1 of [Kak48], we get that either µ ∼ ν or µ ⊥ ν (which is the same
as µ⊥ν) according to whether ∑

n∈N
(αn − βn)2

converges or diverges respectively. But then by Claims 2.14 and 2.15, we get that ϕ ∼ ψ
if and only if µ ∼ ν and ϕ⊥ψ if and only if µ ⊥ ν, which completes the proof. □
Remark 2.17. The main ingredient of [Kak48] are properties of ρ and d, defined for
measures. Since for every a ∈ M2(C) it holds that

ϕn(a) = tr
((√

αn 0
0

√
1 − αn

)
a

(√
αn 0
0

√
1 − αn

))

and
ψn(a) = tr

((√
βn 0
0

√
1 − βn

)
a

(√
βn 0
0

√
1 − βn

))
,

Proposition 2.3 from [Bur69] implies that

ρ(ϕn, ψn) = tr
((√

αn 0
0

√
1 − αn

)(√
βn 0
0

√
1 − βn

))
=
√
αnβn +

√
(1 − αn)(1 − βn),
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which is equal to ρ(µn, νn) (see paragraph above Corollary 1 in [Kak48]). So we actually
have that either ϕ ∼ ψ or ϕ⊥ψ according to whether ∏n∈N ρ(ϕn, ψn) is positive or equal to
0. Thus in absence of Claims 2.14 and 2.15, one could prove Proposition 0.5 by combining
the proofs of [Kak48] and [Bur69] (and [Pro71]).

3. Conclusion and open problems

We conclude the paper with discussions about related topics and open questions.

3.1. Abstract theorem. The proof of Theorem 0.2 can be used to prove a more general
fact.

Theorem 3.1. Suppose that there is a semi-normed vector space (E, || · ||), which has a
convex subset X, contained in the closed unit ball of E, so that for any x, y ∈ X it holds
that ||x−y|| ≤ 1. Moreover, X carries a Polish topology τ , which has a basis consisting of
convex sets, so that for any ε ∈ (0,∞) the set {(x, y) ∈ X ×X : ||x− y|| < ε} is analytic
with respect to τ . A subset A ⊆ X is called an antichain if for any two y ̸= z ∈ A we
have that ||y − z|| = 1. Suppose finally that the following properties are satisfied:

(1) for every x ∈ X, the set {y ∈ X : ||x − y|| < 1} does not contain an uncountable
antichain;

(2) for every ε ∈ (0, 1), x ∈ X and any antichain A ⊆ X the set {y ∈ A : ||x−y|| < ε}
is finite;

(3) for every x ∈ X the set x⊥ := {y ∈ X : ||x− y|| = 1} is comeagre in (X, τ).
Then for any analytic antichain A, it holds that

A⊥ := {x ∈ X : (∀y ∈ A) ||x− y|| = 1}
is comeagre.

Sketch of proof. Suppose for contradiction that A is an analytic antichain, for which A⊥

is not comeagre. Then there is a non-empty convex open O ⊆ X in which A⊥ is meagre.
Let Z ⊆ O \ A⊥ be a dense (in O) Gδ set.

For k ∈ N set Ek to be the space of k-element subsets of A and for fixed ε ∈ (0, 1) and
τ ∈ (0, ε) define

Hk,ε := {x ∈ Z : (∃F ∈ Ek) (∀y ∈ F )||x− y|| < ε}
and

U τ
k,ε := Hk,ε−τ \Hk+1,ε,

which have the property of Baire. By the same reasoning as for measures, we get that

Z =
⋃

k≥1

⋃

n>1

⋃

m>n

U
1/m
k,1/n

and so for some k, ε := 1/n and τ := 1/m it holds that U τ
k,ε is comeagre in a nonempty

open convex set V ⊆ O. Then by an application of Kuratowski-Ulam theorem (see the
proof of Claim 1.2), there is x ∈ U τ

k,ε ∩ V and a comeagre C ⊆ U τ
k,ε ∩ V so that for every

y ∈ C the set
My := {t ∈ [0, 1] : tx+ (1 − t)y ∈ U τ

k,ε}
is comeagre in [0, 1]. Defining for y ∈ U τ

k,ε the set

Ny := {z ∈ A : ||y − z|| < ε− τ},
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we observe as in the proof of Claim 1.3 that for every z ∈ C it holds that Nx = Nz. Then
let y0, . . . , yk−1 ∈ A be such that Nx = {y0, . . . , yk−1}. Since for every y ∈ X it holds that
y⊥ is comeagre, we get a contradiction, since

B :=
k−1⋂

i=0
y⊥
i

and C are both comeagre in V . □
Remark 3.2. Note that if X × X → R≥0, defined by (x, y) 7→ ||x − y|| is lower-
semicontinuous with respect to τ (so that in particular ⊥ is Gδ) and if the space of
extreme points of X (which is Polish by Proposition 2.1 from [CT18]) is perfect and an
antichain, then item (3) follows by an argument similar to the proof of Proposition 4.1
from [KS01].
Remark 3.3. Assuming MA + ¬CH, PD or AD we can replace “analytic” from the state-
ment of Theorem 3.1 with “Σ1

2”, “projective” or “any” respectively.
For Theorem 3.1 to have any value, other examples than measures are needed.

Question 3.4. Are there other natural examples beside Borel probability measures which
satisfy assumptions of Theorem 3.1?

In the next subsection we discuss a possible candidate.
3.2. Comeagreness of witnesses to non-maximality for states. Let A be a sepa-
rable unital C*-algebra. As we have seen above, there is a metric d on S(A), defined by
Bures in [Bur69], which satisfies that for ϕ, ψ ∈ S(A) it holds that ϕ⊥ψ if and only if
d(ϕ, ψ) =

√
2.

This gives us hope that Theorem 3.1 might apply to 1√
2d. However, we do not know

whether items (2) and (3) of Theorem 3.1 are satisfied. Even if this approach fails, it
might still be the case that the following has a positive answer.
Question 3.5. Is it the case for a separable unital C*-algebra A (or for a class of C*-
algebras satisfying some additional properties), that for any analytic strongly orthogonal
family A ⊆ S(A), the set

A⊥ := {ψ ∈ S(A) : (∀ϕ ∈ A)ψ⊥ϕ}
is comeagre?
3.3. Measure on the space of measures. For this subsection we work on the Cantor
space 2N. Observe that P (2N) is homeomorphic to

p(2N) := {f ∈ [0, 1]2<N : f(∅) = 1 ∧ (∀s ∈ 2<N) f(s) = f(s⌢0) + f(s⌢1)}.
Actually, there is even an isometric bijection between the two spaces when one defines nat-
ural metrics on both spaces, which generate the respective Polish topologies, see [FT10].

Furthermore, there is a surjective continuous map Φ : [0, 1]2<N → p(2N), defined recur-
sively by

Φ(f)(∅) := 1
Φ(f)(s⌢0) := Φ(f)(s) · f(s)
Φ(f)(s⌢1) := Φ(f)(s) · (1 − f(s))

for f ∈ [0, 1]2<N and s ∈ 2<N. Let λ denote the Lebesgue measure on [0, 1]. Then ∏s∈2<N λ

is a Borel probability measure on [0, 1]2<N and Φ is injective on a set of measure 1. We
denote the pushforward of this measure to P (2N) (via the identifications above) with Λ.
Given Theorem 0.2, it is natural to ask the following question.
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Question 3.6. Suppose that A ⊆ P (2N) is an analytic orthogonal family. Does it hold
that Λ(A⊥) > 0?

One should not get one’s hopes too high and wonder whether it could be that Λ(A⊥) =
1, as this turns out to be false.

Claim 3.7. For any µ ∈ P (2N), Λ(µ⊥) < 1.

Sketch of proof. Fix any µ ∈ P (2N) and suppose for contradiction that Λ(µ⊥) = 1. Fix
also some arbitrary small ε ∈ (0, 1/2). For s ∈ 2<N, let Us := {x ∈ 2N : s ⊆ x}. By
repeated use of Fubini’s theorem and the fact that for B ⊆ [0, 1], λ(B) = 1 implies that
B is dense in [0, 1], we get that there is some ν ∈ µ⊥ so that for all s ∈ 2<N it holds that

ν(Us) ∈ ((1 − ε)µ(Us), (1 + ε)µ(Us)).
Since open sets are disjoint unions of basic open sets, the same holds for all open U ⊆ 2N.
But then ν and µ are not orthogonal, which is a contradiction. □

3.4. Definable maximal orthogonal families in forcing extensions. The original
motivation for trying to find a short and simple proof of Theorem 0.1 was that maybe a
new proof would help us answer the following open question (which is a reformulation of
Open problem 1) from [ST18]).

Question 3.8. Are there any Π1
1 maximal orthogonal families A ⊆ P (2N) in Laver ex-

tensions?

The hope was also that a new proof of Theorem 0.1, would shed some light onto
why some arboreal forcing notions (see [Löw98] for the definition and results on arboreal
forcing) admit Π1

1 mofs in their forcing extensions (Sacks and Miller forcing) and some do
not (Mathias forcing); see [ST18].

3.5. Nice and bad subsets. Let X be a Polish space and A a separable unital C*-
algebra. Call an analytic subset Y ⊆ P (X) (respectively Y ⊆ S(A)) nice, if for every
analytic pairwise orthogonal (respectively strongly orthogonal) family A ⊆ Y , there is
µ ∈ Y ∩ A⊥. Otherwise, call Y bad.

For example Theorems 0.1 and 0.4 imply that P (X) and S(A) (where A satisfies as-
sumptions of Theorem 0.4) are nice. Moreover, when X is compact perfect Theorem 0.2
implies that all non-meagre analytic Y ⊆ P (X) are nice and Theorems 2.12 and 0.4 imply
that the sets of product measures and product states are nice.

On the other hand ∂e P (X) is clearly bad, since ∂e P (X) is an orthogonal family (by
Proposition 4.1 of [KS01]).

Question 3.9. Are there other natural examples of nice/bad sets?
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In this final part we collect the main open questions that appeared across the
thesis and discuss prospects for future research on definability of maximal discrete
sets.

Maximal almost disjoint families
For α ∈ ω1 \ {0}, the ideals Finα (see Part II for a brief presentation) form a
sequence of increasingly more complex Borel ideals on countable sets. As already
remarked, it is our conjecture that an appropriate adaptation of the derivative
technique of Part II can be used to affirmatively answer the following.

Question. Let α ∈ ωCK
1 \ {0}. Is it the case that for every infinite Σ1

1 Finα-almost
disjoint family there is a ∆1

1 witness to non-maximality?

It is unknown whether AD and AD+ are equivalent (they are known to be equi-
valent under V = L(R)). Furthermore, it is also unknown whether AD implies that
all sets of reals are Ramsey. Hence, in spite of the exceptional results recalled in
Part I, the following question, originally posed by Asger Törnquist, remains open.

Question. Does AD (if needed, together with DC) imply that there are no infinite
mad families?

We believe that the results of Part II indicate that the answer to this question
should be positive.

The G0 dichotomy has since its introduction been used in providing alternative
proofs of many result in descriptive set theory (see Part II for references).

Question. Can the G0 dichotomy be used to provide a simple proof of the fact that
there are no infinite analytic mad families?

Maximal cofinitary groups
With the construction of a Σ0

2 mcg, the following longstanding open question has
gained even more weight, as the negative answer would imply that Σ0

2 is the best
possible complexity of an mcg.

Question. Is there a Gδ mcg?

In case the answer to the above question is negative, a significant step forward
is to first refute the following.

Question. Is there an mcg, which is closed as a subset of ωω?

Although not explicitly concerning itself with definability, the following open
question is crucial for a better understanding of mcgs.

Question. Can there be an mcg with infinitely many k-orbits for some k > 1?
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In Part III we introduced the notion of a maximal finitely periodic group (ab-
breviated as mpg), which is a close relative to maximal cofinitary groups. The
most important question, which we conjecture has an affirmative answer, is the
following.

Question. Is there a Borel mpg?

Since being eventually bounded is equivalent to being contained in a Kσ set, the
following is important for the study of definability of mpgs.

Question. Can an mpg be eventually bounded?

Our prediction is that there can be no eventually bounded mpg.

Maximal orthogonal families
In Part IV we present a very abstract Theorem 3.1, which generalises our argument
from the proof of Theorem 0.2.

Problem. Find other natural applications of Theorem 3.1.

We believe (but have not come up with a counterexample) that assumptions of
Theorem 3.1 do not hold for general separable unital C*-algebras. Nevertheless,
the following might still have an affirmative answer using a different method.

Question. Is it the case for a separable unital C*-algebra A (or for a class of
C*-algebras satisfying some additional properties), that for any analytic strongly
orthogonal family A ⊆ S(A), the set

A⊥ := {ψ ∈ S(A) | (∀ϕ ∈ A)ψ⊥ϕ}

is comeagre?

The question that originally inspired us to search for new methods for analysing
maximal orthogonal families still remains open.

Question. Suppose that x is Laver-generic over L[a]. Are there any Π1
1[a] maximal

orthogonal families A ⊆ P (2ω) in L[a][x]?
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