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Abstract

This thesis presents mathematical models and methods for supporting the decision making
process in first-mile ride-sharing services and is structured into four chapters. The first chapter
is an introduction to the background of First-mile Ride-sharing Problems and the optimization
methodologies. It is followed by three self-contained chapters.

The second chapter Fleet Size Control in First-mile Ride-sharing Problem considers the
fleet size optimization in first-mile ride-sharing problem. The problem is formulated as a MIP
model and numerical experiments are presented on a small-scale system. Results show that, by
employing and controlling the drivers, the operator can achieve higher profits and service rates
compared to hiring independent drivers.

The third chapter Order Dispatching and Vacant Vehicles Rebalancing for the First-
mile Ride-sharing Problem formulates a mathematical programming model to optimize the
vehicle rebalancing and order matching process simultaneously. Particularly, we propose and
compare two methods to identify rebalancing centers based on historical data. Numerical ex-
periments are conducted in a rolling horizon framework on small-scale instances, and the result
demonstrate the consistent effectiveness of rebalancing.

The fourth chapter Adaptive Large Neighborhood Search for Order Dispatching and
Vacant Vehicle Rebalancing in First-Mile Ride-Sharing Services further discusses the
rebalancing in first-mile ride-sharing problems for large scale cases. To solve large scale in-
stances, we specifically design and implement an extension of the Adaptive Large Neighborhood
Search (ALNS) meta-heuristic. Tailor-made destroy and repair operators are designed and tested
through computational experiments. Results on a diverse set of instances show that our proposed
ALNS outperform commercial solvers for small-scale instances as well as large-scale instances,
as ALNS delivers high quality solutions in short timeframe in all scenarios. Furthermore, our
case study demonstrates the effectiveness of rebalancing in increasing service rates.



Resumé

Denne afhandling præsenterer matematiske modeller og metoder med form̊al at understøtte
beslutningsprocessen i first-mile ride-sharing services og er struktureret i fire kapitler. Det
første kapitel er en introduktion til baggrunden for First-mile Ride-sharing-problemer og opti-
meringsmetoderne. Den efterfølges af tre selvstændige kapitler.

Det andet kapitel Fleet Size Control in First-mile Ride-sharing Problem omhandler
fladestør-relsesoptimering i first-mile ride-sharing problems. Problemstillingen er formuleret
som en MIP-model og numeriske eksperimenter præsenteres via sm̊a-skala eksempler. Resultatet
viser, at ved at ansætte og styre chafførerne, kan operatøren opn̊a højere profitter og servicarater
end uafhængige chaffører.

Det tredje kapitel Order Dispatching and Vacant Vehicles Rebalancing for the First-
mile Ride-sharing Problem formulerer en matematisk programmeringsmodel til at samtidigt
optimere køretøjsombalanceringen og ordrematchningsprocessen. Specifikt foresl̊ar og sammen-
ligner vi to metoder til at lokalisere ombalanceringscentre baseret p̊a historisk data. Numeriske
eksperimenter bliver udført i en rullende horisontramme p̊a sm̊a testsæt, og resultatet viser den
konsistente effektivitet af rebalancering.

Det fjerde kapitel Adaptive Large Neighborhood Search for Order Dispatching and Va-
cant Vehicle Rebalancering in First-Mile Ride-Sharing Services diskuterer yderli-gere
rebalanceringen i first-mile ride-sharing-problemer i store testsæt. Til at løse eksperimenter i
stor skala har vi designet og implementeret en udvidelse af Adaptive Large Neighborhood Search
(ALNS) metaheuristikken. Specialdesignede ødelægge- og reparationsoperatører testes igen-
nem beregningseksperimenter. Resultaterne fra en række af forskellige testsæt viser, at vores
foresl̊aede ALNS overg̊ar kommercielle løsere i sm̊a testsæt s̊avel som store testsæt, da ALNS
leverer løsninger af høj kvalitet p̊a kort tid i alle scenarier. Ydermere, viser vores casestudie
effektiviteten af rebalancering i forøgelsen af servicerater.
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Chapter 1

Introduction

1.1 Background

The three chapters that follow, deal with the First-Mile Ride-Sharing Problem (FMRSP). The
FMRSP consists of matching vehicles to passengers that need to reach a common destination,
such as a transit station (hence the first mile of their journey). The decision process can be
illustrated as in Figure 1.1. On the left of this figure, the service provider received 9 customer
requests with the same destination (i.e. station). The number of vehicles which are available in
the system is 4. The grey lines are the potential routes can be generated for vehicles to traverse.
A possible solution is shown in the figure to the right. The four routes for vehicles are colored
in green, red, yellow and blue, and all customers are assigned to vehicles.

Figure 1.1: FMRSP Decision Process

First-mile ride-sharing has become a valuable concept in transportation systems as it addresses
several challenges in urban transportation. First, it provides public transportation accessibility
for people that live in suburban areas or at a considerable distance from the transportation hub.
Second, ride-sharing has the potential to reduce transportation costs, as the cost of one vehicle
can be distributed among multiple customers. Third, ride-sharing has the potential to alleviate
congestion and emissions by reducing the number of vehicles on the road.

The study of routing decisions in FMRSP can trace back to the classic Vehicle Routing Problem
(VRP) (Dantzig and Ramser, 1959), which considered the routing decision for efficiently dis-
patching a fleet of vehicles from the depot, while satisfying the goods demand of a set of customer
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locations. Variants of the VRP have been explored and several exact and heuristics algorithms
have been developed for studying these problems, see e.g., the surveys (Toth and Vigo, 2002;
Ritzinger et al., 2016; Braekers et al., 2016). The major difference between variants of the VRP
and the FMRSP is that the VRP only considers the trips starting from and returning to the
depot, while FMRSP designs the vehicle routes from different origins to the same destination.
Given the potential for demand imbalances during peak hours in the context of first-mile on-
demand transportation, in the FMRSP it is also important to reason in terms of rebalancing and
anticipating demand, compared to VRPs. Furthermore, in classical VRPs, vehicles are loaded
at the depot and the goods are delivered to customers, while in FMRSP vehicles collect new
customers during routes and all customer are delivered at the destination(station).

In recent years, due to the fast development of technology, ride-sharing service companies (Uber,
Lyft, Didi, etc.) based on smart phone and GPS have gained rapid growth. Thus the research
attention has also grown considerably. Masoud and Jayakrishnan (2017) built the ride-matching
problem as a binary programming problem and proposed a decomposition algorithm to solve the
problem. Alonso-mora et al. (2018) developed an efficient algorithm to dynamically solve large
scale ride-sharing problem instances in real-time. Stiglic et al. (2018) studied the benefits of
integrating ride-sharing and public transport. Their results showed this system can both benefit
the mobility sharing and the utilization of public transportation system.

As an extension of the ride-sharing problem, FMRSP, which specifically considers the ride-
sharing for the first-mile scenario, has also gained broad attention these years. Yu Shen (2018)
studied the integration of first-mile ride-sharing service and public transportation. Chen et al.
(2020) explored the first-mile ride-sharing service using autonomous vehicles and developed a
cluster-based algorithm for solving this problem. Furthermore, several studies (Bian and Liu,
2019b,a; Bian et al., 2020) included passenger preferences as part of FMRSP model.

1.2 First-mile Ride-sharing Model

A general mathematical model for the FMRSP derived from Chapter 3 can be presented as
follows. We consider the operation of a fleet of homogeneous vehicles K := {1, 2, ..., K}, each
vehicle k ∈ K has a fixed capacity Q and is located at its origin o(k). N := {1, 2, ..., N} contains
the customers’ requests received in the system, each customer i ∈ N can be picked up from
her/his origin o(i) and all customers have a common destination d (e.g., a station), which is
located at o(d). The revenue can be gained from each picked up customer is Pi. The operational
cost generated per unit time is C, and the travel time Tij between locations o(i) and o(j) is
known in advance, where i ∈ N ∪ K and j ∈ N ∪ d. The decisions of the operator can be
formulated as follows: xk

ij takes value 1 if vehicle k directly travels between location o(i) and
o(j), 0 otherwise, for all i ∈ N ∪ K, j ∈ N ∪ d, k ∈ K.

The problem can be formulated as follows with defined decision variables and parameters above.
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max
∑
k∈K

∑
i∈N

∑
j∈N ∪{d}

Pix
k
ij −

∑
i∈{k}∪N

∑
j∈N ∪{d}

∑
k∈K

CTijxk
ij (1.1a)

s.t.
∑

j∈N ∪{d}

∑
k∈K

xk
ij ≤ 1 ∀i ∈ N (1.1b)

∑
i∈N ∪{k}

xk
ij =

∑
i∈N ∪{d}

xk
ji ∀j ∈ N , k ∈ K (1.1c)

∑
j∈N ∪{d}

xk
kj =

∑
j∈N ∪{k}

xk
jd ∀k ∈ K (1.1d)

∑
i∈{k}∪N

∑
j∈N

xk
ij ≤ Q ∀k ∈ K (1.1e)

xk
ij ∈ {0, 1} ∀i ∈ {k} ∪ N , j ∈ N ∪ {d}, k ∈ K (1.1f)

The goal of the objective function 1.1a of the model is to maximize the profit for the first-
mile ride-sharing system. The first term is the accumulated revenue gained from the customers
assigned to vehicles, the second term is the summary of the operational cost generated for
vehicles to pickup the customers and deliver them to the destination d.

Constraints 1.1b ensure each customer would be assigned to at most one vehicle. Constraints
1.1c state that after the vehicle k visit a customer j ∈ N , it must move to another customer
i ∈ N or final destination d. Constraints 1.1d ensure that each vehicle k departing from the
original location has to terminate at the station d. Constraints 1.1e are the capacity constraints,
which declare that the total customer assigned to a vehicle would not exceed its capacity Q.

This formulation is the core of a FMRSP, and in general it includes various additional service-
specific constraints, including maximum waiting time, latest arrival time, and rebalancing. In
the following chapters of thesis, we consider a number of these extensions.

1.3 Contributions

In the following chapters we consider variants of the FMRSP for different problem settings.
Particularly, we include several problem-specific features including arrival deadlines, waiting
times, rebalancing, and fleet management, and we implement the rolling horizon framework
for FMRSP. Thus instead of only considering the customer requests received for current re-
optimization, the customer requests that were accepted from previous re-optimization phase but
have not been picked up would be considered as mandatory customers, which must be assigned
to vehicles in current re-optimization phase. Time constraints are also taken into account for
the chapters follows. Furthermore, we consider variants of the generalized FMRSP model for
different problem settings.

Chapter 2 includes decision variables that denote whether a vehicle is dispatched or not in
the current re-optimization phase. We assume that vehicles that were dispatched in previous
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optimization phases must be dispatched in subsequent optimization phases. This ensures that
drivers are hired for a certain minimum amount of time. Constraints related to the new decision
variable and input are added to the model accordingly. A number of numerical experiment are
proposed to compare a scenario where the fleet is controlled by the service provider to a scenario
where drivers are independent and hired as needed. The result under several revenue sharing
mechanisms show the superiority of the fleet control configuration in terms of profit.

Chapter 3 takes into account of the possibility of rebalancing. It aims at identifying locations
where to relocate empty vehicles in order to prepare for future demand. For evaluating the
efficienty of rebalancing and comparing different methods of identifying rebalancing centers, we
include rebalancing benefit in the objective function and add constraints to regulate movements
to rebalancing centers. These include constraints that only empty vehicles can be moved to
rebalancing centers and bounds on the number of vehicles that can be moved to rebalancing
centers.

Chapter 4 extends Chapter 3. For solving large scale FMRSP instances in a rolling horizon
framework, an extended Adaptive Large Neighborhood Search meta-heuristic is designed for
order dispatching and vacant vehicle rebalancing, five destroy operators and four repair opera-
tors are developed for generating problem specific neighborhoods. Numerical experiments are
implemented for evaluating the proposed ALNS meta-heuristic. The result demonstrates the
advantage of our proposed algorithm over the commecial solver (Gurobi) in both computation
time and solution quality. Furthermore, the ALNS was used in a rolling-horizon framework to
assess the benefits of rebalancing. The results show a significant service rate improvement in
the configuration with rebalancing compare to the configuration without rebalancing.

1.4 Methodology

1.4.1 Mixed Integer Programming

Mixed Integer Linear Programming (MILP) is used in this thesis to model the first-mile ride-
sharing problem.. A general MILP is of the form:

min c⊺x (1.2a)

s.t. Ax = b (1.2b)

xi ≥ 0, ∀i ∈ C (1.2c)

xi ∈ Z, ∀i ∈ I (1.2d)

Where xi, i ∈ C is a vector of |C| continuous variables, xi ∈ Z, i ∈ I is a vector of |I| integer
variables, c is a vector of |C|+|I| parameters, A is a matrix of appropriate dimension, and b is a
vector of parameters. In addition to continuous decision variables, which are normally considered
in Linear Programming (LP) models, MILP includes decision variables that are required to
take integer values. This enormously increases the modeling power while also increasing the
complexity, and in general there is no polynomial-time algorithm known for solving general MILP
problems. In other words, MILP is NP-Hard. Particularly, the MILP with 0-1 binary variables as
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integer variables are NP-Complete (Floudas, 1995). In practice, modern optimization techniques
and solvers are developed to efficiently solve MILP, though solving the large scale instances to
optimal can still be challenging.

In our work, we utilize the commercial solver Gurobi, which implements advanced Branch and
Cut methods, and develop tailor-made Adaptive Large Neighborhood Search meta-heuristic to
address a range of MILP instances with varying scales.

1.4.2 Rolling Horizon Simulation

Rolling Horizon Simulation (RHS) aims at supporting sequential decision-making for complex
problems over a planning horizon.

The general process of RHS can be described as follows: First, break down the planning horizon
into smaller intervals of time. Second, generate an initial solution with historical or simulated
information and optimization methods such as commercial solvers, heuristics, etc. The solution
is executed over the first time interval by simulating the real world system operations, to obtain
the outcome based on the decision plan from initial solution. Third, the updated outcome will
combine with the new input for the second time interval for re-optimization, thus the decision
plan can be adjusted and updated for this time interval. Fourth, the process repeats until the
last time interval of the planning horizon, during which the re-optimization process continuously
updates the decision plan based on the simulated outcome of each previous time interval.

Particularly, in our work, the planning horizon (e.g. 1 hour) can be divided into 12 time intervals,
where the range of each time interval is 5 minutes. The initial solution is generated with input
information (new customer requests, vehicle locations and status) and using either Gurobi solver
or Adaptive Large Neighborhood Search meta-heuristics. After the routing decision is made, the
vehicles are dispatched along the updated routes during this time interval (5 mins) simulating
the real world setting. At the beginning of second time interval, the status of the vehicles
(location, empty seats) are updated. Customers assigned to vehicles in the first time interval
but have not been picked up are put into ”previous customers” set, in which each customer must
be assigned to a vehicle and can not be rejected. With this updated vehicle status and previous
customer information, together with new customers requests collected for second time interval,
the re-optimization will start and the updated decision plan will be executed during the second
time interval. The process repeats until finishing total 12 time interval for the one hour planning
horizon.

1.4.3 Adaptive Large Neighborhood Search

Our proposed meta-heuristic is extended from the ALNS introduced in Pisinger and Røpke
(2010), which can be presented as Algorithm 1.
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Algorithm 1 ALNS algorithm
Input: a feasible solution x
xb = x; ω+ = (1, ..., 1), ω− = (1, ..., 1)
while NoImprov ≤ maxNoImprov and i ≤ maxIter do

Select a destroy operator d ∈ Ω+ randomly using ω+

Select a repair operator r ∈ Ω− randomly using ω−

xt = r(d(x))
if accept(xt, x) then

x = xt

if c(xt) < c(xb) then
xb = xt

update ω+ and ω−

return xb

The neighborhood of ALNS is defined by destroy and repair operators, which are denote as d and
r, respectively. The sets of destroy and repair operators are denoted as Ω+ and Ω−, respectively,
while d ∈ Ω+ and r ∈ Ω−. In Chapter 4, five destroy operators are specifically designed for our
proposed problem: Nearby Location Removal (NLR), Same Arrival Time Removal (SATR), Free
Part of Routes (FPR), Remove Optional (RO) and Destroy Worst (DW). In the meantime, four
repair operators are proposed as well Random Insertion Customer First (RICF), Random Inser-
tion Rebalancing First (RIRF),Greedy Insertion (GI), Best Customer Insertion (BCI). Variables
ω+ ∈ R|Ω+| and ω− ∈ R|Ω−| store the weights of destroy and repair operators and all destroy
and repair operators initiate with same weights at the beginning of the algorithm, respectively.
A roulette wheel principle is used for the selection of destroy operator and repair operator, the
probability ϕ−

d of choosing destroy operator d at iteration i is computed using

ϕ−
d = ω−

d∑Ω−
j=1 ωj

(1.3)

and the algorithm also applies for choosing repair operator. The variable x is the current
solution, xb is the best solution obtained so far, and xt is the temporary solution that can be
discarded or accepted in later process depends on the solution quality. Destroy function d(x)
returns neighborhood of x which is partially destroyed, and r(d(x)) apply repair function on
partially destroyed x and returns a new temporary solution xt.

Algorithm 1 starts by initiating a feasible solution x and global best solution xb. After the
iteration starts, a new temporary solution xt after applying r(d(x)). Then xt would be evaluated
and a score Φ would be updated the corresponding destroy and repair operators depends on
quality of xt according to formula:

Φ =



α1 if xt is better than xb,

α2 if xt is better than x,

α3 if xt is not better than x but accepted,

α4 if xt is rejected.

(1.4)
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Where parameters α1, α2, α3, α4 normally set as α1 ≥ α2 ≥ α3 ≥ α4 as high score Φ indicates a
good method. The weights of operators ω+ and ω− are updated using

ω+ = λω+ + (1− λ)ω+, ω− = λω− + (1− λ)ω− (1.5)

at the end of the each segment l, which is set as l = 100 iterations in our work. Where λ ∈ [0, 1]
decides how sensitive the weights are to the scores gained in last segment for the destroy and
repair operators.

The process repeats until the stopping criteria are met, while the stopping criteria is defined
by maximum no improvement iteration number(maxNoImprov), maximum iteration number
(maxIter) and Simulated Annealing algorithm in Chapter 4.
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Chapter 2

Fleet Size Control in First-mile
Ride-sharing Problem

This chapter contains the paper Ye et al. (2022a).

Abstract

The first-mile problem, which refers to the design of transport services that connect
passengers to their nearby transit station, has attracted growing attention in recent
years. In this paper we consider first-mile ride-sharing services and study the problem
of optimally determining the fleet size and assigning vehicles to transport requests.
We formulate the problem as a mixed-integer program and present a number of nu-
merical experiments based on a small-scale system to analyse different configurations
of the service, namely with and without fleet control (FC). Result shows that a con-
figuration with FC is superior in terms of profits while service rates can be higher in
a configuration without FC, depending on the revenue-sharing mechanism.

Keywords: Fleet control, First-mile, Ride-sharing

2.1 Introduction

As the size of urban areas and population increases, and with them road congestion and air pol-
lution T. Eiichi (2014), ride-sharing services emerged as a more sustainable urban transportation
solution, linked to e.g., a reduction in the number of private cars on the road, emissions and
road congestion A. Abubakr O (2019). Particularly, first-mile ride-sharing services, that is trans-
portation services that connect passengers to their nearby transit station using shared vehicles,
have attracted growing attention. According to the NYC taxicab data Com (2021), there were
3122731 taxi trips to the Pennsylvania Station in New York City in 2017 that is, on average 8555
taxis traveled to this station every day. However, 70.1% of these trips had only one passenger
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on board Bian et al. (2020). This leaves a significant potential for the development of shared
trips to transit stations.

In this article, we study the problem of dimensioning a first-mile ride-sharing fleet and optimizing
the process of order dispatching, which means assigning transport requests to vehicles. The
problem of dimensioning shared fleets has recently been studied in a number of articles. In
P. M. Boesch and Axhausen (2016); K. Treleaven and Frazzoli (2013); K. Spieser (2014) the
focus is on so-called ride-hailing services, where each vehicle satisfies one request at a time
(i.e., rides are not shared). In this paper, we focus on ride-sharing services, where each vehicle
satisfies multiple requests simultaneously. In H. K. R. F. Pinto and Verbas (2019) the size of
a fleet of autonomous vehicles is determined. The autonomous vehicles are integrated into a
transit network, and run according to predefined patterns. On the contrary, in our case, vehicles
do not run according to predefined patters, but react to the arrival of requests. In A. Wallar
(2019) the focus is on ride-sharing services. The authors develop a method to determine how
many vehicles are needed and where they should be located in order to service all the requests.
The method is designed for offline use based on historical demand. In this article, we focus on
online optimization and do not require vehicles to be placed at pre-determined locations. Also
in K. Winter and Arem (2016) a ride-sharing service is considered. The authors use simulation
to estimate the minimal fleet size required for a system that connects a university campus to a
train station. This system requires predefined pickup and drop-off locations, while our system
does not have this requirement. Moreover, in M. M. Vazifeh and Ratti (2018) the authors
propose a vehicle-sharing network model to obtain the optimal and near optimal solution fleet
size for the urban-scale data. The method obtains a re-organization of the taxi dispatching,
without assuming ride-sharing. Instead we provide an explicit mathematical model for the
problem. Finally, unlike in B. A. Beirigo and Schulte (2022), where the authors consider elastic
vehicle supply, which considers hiring privately-owned freelance autonomous vehicles, we focus
on controlling the fleet size without hiring external fleets.

The main contribution of this work can be stated as follows:

• We propose a mixed-integer programming (MIP) problem for online optimization of order
dispatching and fleet size, which accounts for several constraints such as desired arrival
time and maximum waiting time. The model is flexible enough to accommodate different
ride-sharing business models.

• While existing studies focus mainly on metrics such as idle time, waiting time A. Wallar
(2019) and costs K. Winter and Arem (2016), we use the model to assess different configu-
rations of the service. Particularly, we consider a configuration where the service provider
owns the fleet and hires drivers as well as configurations where the service provider does
not own the fleet but acts as a platform that optimally connects passengers to vehicles.
In this case the service provider shares revenues and costs with the drivers and we assess
two different sharing schemes.

• We test our model on a number of artificial instances generated to mimic the different
configurations of a small-scale service. Our model for online optimization is used in a rolling
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horizon procedure with periodic re-optimizations based on the arrival of new requests and
updated system information (e.g., vehicles position).

The remainder of this article is organized as follows. In Section 2.2 we provide a formal definition
of the problem and introduce the corresponding mathematical model. In Section 2.3 we describe
our numerical experiments and present results. Finally, we draw conclusions in Section 2.4.

2.2 Problem Description and Mathematical Model

In this section, we provide a description of the problem followed by a mathematical model.

A set of vehicles K, with each vehicle k ∈ K initially available at the respective location o(k), is
employed to provide first-mile ride-sharing services to a set of customers from their respective
location to a designated station d located at o(d). The set of customers is partitioned into
a set of mandatory customers NP , representing the customers whose transportation request
has been accepted during a previous optimization phase but not yet fulfilled’ and a set of new
customers NC whose requests have arrived recently and may or not be accepted. We let o(i) be
the location of request i ∈ NP ∪ NC . The company is to decide i) which vehicles to dispatch,
if not already dispatched, ii) which new requests to accept and iii) how to assign ride-sharing
requests to vehicles.

Each vehicle v has Vk passengers on board at the beginning of the operational period. Vk is
an input parameter determined by the requests assigned to vehicle k in previous optimization
phases. Let Q be the total capacity of a vehicle (we assume a homogeneous fleet). Parameter
Uk is equal to 1 if vehicle k has been dispatched in any of the previous re-optimization phases,
0 otherwise. In the latter case Vk is zero. The company bears a fixed cost C̄ for each vehicle
dispatched and a cost C per unit of travel time. Picking up new customer i ∈ NC yields a
revenue Pi. Such customers may however be rejected. The revenue for customers in NP has
been collected during a previous optimization phase, when the request was accepted, and these
customers are now treated as mandatory.

The operating period starts at time T . The travel time between locations o(i) and o(j), with
i ∈ K ∪ NP ∪ NC , j ∈ NP ∪ NC ∪ {d}, is Tij . Each customer has a requested pickup time T P

i

and arrival time T A
i and we let T L := maxi∈NP ∪NC

{T A
i }. The difference between the requested

pickup time and the actual pickup time cannot be larger than ∆. Furthermore, each vehicle has
a latest arrival time Tk representing the earliest arrival time among the Vk passengers already
on board vehicle k at the beginning of the planning phase.

We introduce the following decision variables. Let xk
ij , for i ∈ {k} ∪ NP ∪ NC , j ∈ NP ∪ NC ∪

{d}, k ∈ K, be equal to 1 if vehicle k moves directly between o(i) and o(j), 0 otherwise. Let tA
k

be the actual arrival time of vehicle k to the station, for k ∈ K. Let tP
i be the actual pickup

time of customer i, for i ∈ NP ∪ NC . Finally, let Sk be equals to 1 if vehicle k is dispatched in
the current re-optimization phase, 0 otherwise.

The problem is hence
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max
∑
k∈K

∑
i∈NC

∑
j∈NC∪NP ∪{d}

Pix
k
ij −

∑
k∈K

C̄Sk (2.1a)

−
∑

i∈{k}∪NC∪NP

∑
j∈NC∪NP ∪{d}

∑
k∈K

CTijxk
ij

s.t.
∑

j∈NC∪NP ∪{d}

∑
k∈K

xk
ij ≤ 1 ∀i ∈ NC (2.1b)

∑
j∈NC∪NP ∪{d}

∑
k∈K

xk
ij = 1 ∀i ∈ NP (2.1c)

∑
i∈NC∪NP ∪{k}

xk
ij =

∑
i∈NC∪NP ∪{d}

xk
ji ∀j ∈ NC ∪NP , k ∈ K (2.1d)

∑
j∈NC∪NP ∪{d}

xk
kj =

∑
j∈NC∪NP ∪{k}

xk
jd ∀k ∈ K (2.1e)

∑
i∈NC∪NP ∪K

xk
id ≤ 1 ∀k ∈ K (2.1f)

tP
i + Tij ≤ tP

j + T L(1−
∑
k∈K

xk
ij) ∀i, j ∈ NC ∪NP (2.1g)

T + Tkj ≤ tP
j + T L(1− xk

kj) ∀j ∈ NC ∪NP , k ∈ K (2.1h)

tP
i − T P

i ≤ ∆ ∀i ∈ NC ∪NP (2.1i)

tA
k ≤ T A

i + T L(1−
∑

j∈NC∪NP ∪{k}
xk

ji) ∀i ∈ NC ∪NP , k ∈ K (2.1j)

tA
k ≤ Tk ∀k ∈ K (2.1k)

tP
j + Tjdxk

jd ≤ tA
k + T L(1− xk

jd) ∀j ∈ NC ∪NP , k ∈ K (2.1l)

Vk ≤ Q
∑

j∈NC∪NP ∪{d}
xk

kj ∀k ∈ K (2.1m)

∑
i∈{k}∪NC∪NP

∑
j∈NC∪NP

xk
ij + Vk ≤ Q ∀k ∈ K (2.1n)

Sk ≥
∑

j∈NC∪NP ∪{d}
xk

kj ∀k ∈ K (2.1o)

Sk ≥ Uk ∀k ∈ K (2.1p)

xk
ij ∈ {0, 1} ∀i ∈ {k} ∪ NC ∪NP , j ∈ NC ∪NP ∪ {d}, k ∈ K (2.1q)

tA
k ∈ R+ ∀k ∈ K (2.1r)

tP
i ∈ R+ ∀i ∈ NC ∪NP (2.1s)

Sk ∈ {0, 1} ∀k ∈ K (2.1t)

The objective function (2.1a) represents the total profit made of the revenue of picking up
customers minus dispatching and traveling costs.

Constraints (2.1b) and (2.1c) state that new customers may be picked up at most once, while
mandatory customers must be picked up exactly once, respectively. Mandatory customers are
those already accepted during a previous re-optimization phase. Constraints (2.1d) are flow
conservation constraints, that is whenever a vehicle visits a customer it must also move to
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another customer or to the station. Constraints (2.1e) state that, if a vehicle departs from its
original location o(k) it must terminate its journey at the station. Constraints (2.1f) ensure that
each vehicle travels to the station at most once.

Constraints (2.1g) state that if customers j is picked up by vehicle k immediately after picking up
customer i, then the actual picking up time of customer i plus the travel time between customer
i and j should be less or equal to customer j’s actual pick up time. Constraints (2.1g) may be
improved as described by M. Desrochers (1991), Y. Yuan and Semet (2020). Similarly, (2.1h)
define the pickup time when the vehicle comes directly from its original location. Constraints
(2.1i) ensure that the difference between actual pick up time and the requested pick up time
of each customer do not exceed the maximum waiting time ∆. Constraints (2.1j) ensure that
the arrival time of vehicle k at the station is earlier than the requested arrival time of any
of the customers on board. For instance, if customer i is picked up by vehicle k, the right-
hand-side will always be equal to T A

i , which means the actual arrival time of vehicle k needs
to be less than or equal to the requested arrival time of customer i. Constraints (2.1k) ensure
that the actual arrival time of vehicle k is earlier than the earliest requested arrival time Tk

of the passengers already on board at the beginning of the planning phase. Constraints (2.1l)
define the relationship between pickup and arrival time. For example, if j is the last customer
picked up by the vehicle k before arrive at the station, then xk

jd takes value 1, the left-hand-side
becomes tP

j +Tjd and the right-hand-side becomes tA
k , which means that the actual pick up time

of j plus the travel time between customer j and station should be equal to the actual arrival
time of vehicle k. If j is not the last customer picked up by the vehicle k before arrive at the
station, then the left-hand-side becomes tP

j and the-right-hand side becomes tA
k + T L, which

always holds. Altogether, constraints (2.1j) and (2.1k) define an upper bound on tA
k while (2.1l)

define a lower bound.

Constraints (2.1m) state that the vehicles that already have customers on board at the beginning
of the planning period must be dispatched, while (2.1n) ensure that the total capacity is not
violated. Constraints (2.1o) set Sk to 1 as soon as vehicle k is dispatched. Constraints (2.1p)
ensure that the vehicles already dispatched in previous re-optimization phases are still available
in the current re-optimization phase.

2.3 Numerical Experiment

In this section we report on the results of our numerical experiments. The scope of the ex-
periments is to assess, in terms of profits and service rates, two different configurations of the
service which we refer to as with fleet control (wFC) and without fleet control (woFC). The
former refers to a situation where the service provider owns the fleet and bears all costs and
profits. All vehicles are initially idle and the provider decides which of them to dispatch, paying
a fixed cost for each dispatched vehicle which covers e.g., the salary of the driver, wear and
maintenance. In the configuration woFC the service provider does not own the fleet and acts as
platform that connect passengers to vehicles. In this case vehicles are considered to be always
available so that the provider does not pay a fixed cost upon dispatching a vehicle. However, in
this case, revenues are shared between the driver and the service provider. Particularly, we test
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two different revenue-sharing schemes inspired by the business configuration adopted by Uber
Uber (2020). In the first scheme, which we refer to as woFC-40, the company keeps 40% of the
trip fare (thus the driver keeps the remaining 60%) but bears variable costs (e.g., fuel/charge).
In the second scheme, which we refer to as woFC-25, the company keeps only 25% Uber (2020)
of the trip fare but does not cover variable cost.

The different configurations are tested by using an appropriate setting of the parameters in
model (2.1). All problems are solved using the Python libraries of GUROBI 9.5.0 a server
equipped with Intel Core i5 CPUs and 16GB of RAM.

2.3.1 Instance Generation

We test our model on a number of artificial randomly generated instances that mimic the different
configurations of the service. The instances are generated as follows.

The business area is represented by a 4×3 rectangular area with the station located at the center
of the area (2, 1.5). We randomly generate travel requests with their respective pickup location,
pickup time, drop-off time, and fare. Requests pickup locations are randomly generated in the
4 × 3 area. For each request, the requested pickup time T P

i is randomly generated uniformly
between 0 and 5 minutes, the requested arrival time T A

i is the sum of the requested pickup
time, the travel time between the pickup location i and the station d, and a random generated
buffer time between 5 and 10 minutes. Since the focal rectangular area is continuous, travel
times Tij are calculated using Euclidean distances and assuming an average speed of 36 km/h
following Han (2019). The unit cost C of the transportation is set to 11.25$/h nyc (2008) and
trip revenues Pi are computed using an hourly rate set to 56.16$/h with a base fare of $2.5
following nyc (2020b).

In the configuration wFC the fixed cost C̄ is set to $2.8 and represents mainly the salary
of the driver. This cost is obtained using Lyft salary – $33.75/h, see nyc (2020a) – as our
reference and considering that our method re-optimizes every 5 minutes. Thus, the fixed cost
C̄ for each re-optimization is $33.75/60*5 = $2.8. In Section 2.3.2 we assess the impact of this
parameter. In the configurations woFC-40 and woFC-25, the trip fare is reduced to 0.4Pi and
0.25Pi, respectively to mimic the corresponding revenue-sharing scheme. In the configuration
woFC-40 the company covers variable costs using the unit transportation cost C cost described
above, while in the configuration woFC-25 the company does not cover transportation cost, so
C = 0. In both cases the dispatching cost is C̄ = 0.

We generate instances with different number of customers and vehicles. Particularly, we create
instance classes named V |K|C|NC | with vehicles in |K| ∈ {8, 10, 12, 20}, and customers, |NC | ∈
{6, 8, 12}. As an example, V 8C6 indicates a class of instance with 8 vehicles available for dispatch
and 6 new customers in each re-optimization phase. Such instances are perhaps representative
of a potential service in a small peripheral station or in a small urban context. Finally, for each
instance class we randomly generate 3 instances.

Finally, we consider a one-hour planning horizon with online re-optimization every 5 minutes,
leading to a total of 12 re-optimizations for each instance. It should be noted that at each re-
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optimization we update the status of the system (i.e, vehicles positions and customers on board)
and randomly select the corresponding number of new customers, while considering previously
accepted customers as mandatory.

Figure 2.1 illustrates how information is updated between re-optimizations on an instance with
three vehicles and four new customers for each re-optimization phase. Figure 2.1(a) illustrates
the initial position of vehicles (yellow squares), customers (blue circles) and customers that have
been assigned to vehicles in the previous re-optimization phases but have not yet been picked
up (red circles) – the station is identified by the black triangle. Figure 2.1(b) shows the routes
computed for the vehicles in the corresponding re-optimization phase. It can be noticed that
four customers (three new and one mandatory) have been assigned to three vehicles in Route1,
Route2, Route3 (their request has been accepted) while one customer has not (the request has
not been accepted). Figure 2.1(c) shows the location and remaining portion of the route of the
vehicles before the next re-optimization phase, as well as the location of four new customers
(green circles) arrived in the system in the mean time and whose request will be handled in the
next re-optimization phase. The four customers assigned to vehicles in the previous optimization
phase are now on board the vehicles, while the customer whose request was rejected has left
the system. Thus the three vehicles currently have customers on board and are on their way to
the station. Nevertheless, their routes may change in the next re-optimization phase in order to
pickup new customers.

2.3.2 Results

We report now on the performance of the different configurations of the service.

Figure 2.2 reports the dispatch rate, that is the percentage of vehicles dispatched. It can be
noticed that in the case wFC, as intuition suggests, the dispatch rate generally increases with
the number of customers and decreases with the size of the fleet. When the fleet counts 20
vehicles, there is no case in which the entire fleet is dispatched, indicating that the fleet is larger
than needed. On the contrary, in the configurations woFC all vehicles are dispatched, meaning
that they are not only available, but actually move from their original location to perform some
transportation task. It appears, therefore, that configurations woFC may lead to using more
vehicles than are actually necessary.

Figure 2.3 reports the service rate obtained with the different configurations, that is the number
of requests satisfied over the total number of requests received in the one-hour planning horizon.
It can be noticed that configuration woFC-25 competes and outperforms the configuration wFC.
In the configuration woFC-25 the company is insensitive to transportation costs and does not
bear fixed costs, therefore also solutions require a long travel time or would perhaps require an
additional vehicle, thus potentially inefficient in a model for woFC-25 to become profitable. Such
solutions become even more unappealing in the configuration woFC-40 where transportation
costs are still born by the company in exchange for a higher revenue share.

Finally, Figure 2.4 illustrates that the configuration wFC leads to the highest profits for the
company, despite a slightly lower service rate compared to the configuration woFC-25 (see Fig-
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(a) Distribution

(b) Optimized Routes

(c) Movement

Figure 2.1: Illustration of the solving process
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Figure 2.2: Dispatch rate for the configuration wFC and woFC. For each instance type the
results are the average over three different instances.

ure 2.3). Both configurations woFC lead to worse profits regardless of the revenue-sharing
mechanism.

We report now on the impact of the fixed dispatch cost C̄ in the configuration wFC. This in turn
sheds light on the effect of using different types of vehicles, maintenance contracts, or salaries.
Particularly, we assess dispatch rate, service rate and profit with different values of the fixed
dispatch cost C̄ ∈ {1.4, 2.1, 2.8, 3.5}. Results are reported in Figures 2.5 to 2.7.

Figure 2.5 shows the intuitive pattern that, as the dispatch cost increases, the dispatch rate
decreases. We also observe that the dispatch rate increases with the number of customers.
Similarly, in Figure 2.6 it can be observed that the service rate increases as the fixed dispatch
cost decreases. Nevertheless, the service rate remains rather high for all values of the fixed
cost, illustrating that the model is able to find cost-efficient solutions also with fewer vehicles
dispatched. Finally, in Figure 2.7 we also observe a similar trend, where profits are negatively
affected by fixed costs. The effect appears more severe as the number of customers grows.

2.3.3 Solution time

Finally, we investigate the solution time. In our numerical experiments we solve each instance in
a rolling horizon process. The average solution time and optimality gaps for different instances
are reported in Table 2.1. Average values are computed over three randomly generated instances
obtained with same combination of |NC | and |K|, 12 re-optimization phases for each instances,
and three configurations, namely wFC, woFC-40 and woFC-25. Table 2.1 illustrates that all
instances can be solved to provable optimality within 0.5 seconds. There is thus room for
scaling up the problems to larger instances which represent more closely a real-life scenario. To
this end, Table 2.2 provides some insights on how the model handles bigger instances. It can be
noted that, with a fleet of 20 vehicles, the quality of the solutions decreases with the number of
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Figure 2.3: Service Rate for the configuration wFC and woFC. For each instance type the results
are the average over three different instances.

Figure 2.4: Profit for the configuration wFC and woFC. For each instance type the results are
the average over three different instances.
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Figure 2.5: Dispatch rate with different fixed dispatch costs C̄. For each instance type the
results are the average over three different instances.

Table 2.1: Optimality gap and solution time

Instance Solution time [s] Optimality Gap
V8C6 0.03 0%
V8C8 0.04 0%
V8C12 0.11 0%
V10C6 0.03 0%
V10C8 0.05 0%
V10C12 0.14 0%
V12C6 0.04 0%
V12C8 0.06 0%
V12C12 0.18 0%
V20C6 0.06 0%
V20C8 0.08 0%
V20C12 0.41 0%

customers.

2.4 Conclusion

In this paper we proposed a MIP model for optimal order dispatching and fleet size control in
a first-mile ride-sharing service. The model was used in a set of numerical experiments, where
we compared different configurations of the service (i.e., business models), with and without
fleet control and with different revenue-sharing schemes. Results shows that the configuration
with fleet control (i.e., where the company owns the fleet) has a relatively high service rate and
outperforms the configurations without fleet control in terms of profits. Results also show that
fixed dispatch costs have a critical impact on both service rate and profits. We can observe
that, as the fixed cost increases, the number of vehicles dispatched decreases and profits shrink.
Nevertheless, service rates remain rather high, showing that the model is able to find cost
efficient solutions with fewer vehicles. Finally, the tests illustrate that the model is flexible
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Figure 2.6: Service rate with different fixed dispatch costs C̄. For each instance type the results
are the average over three different instances.

Figure 2.7: Profit with different fixed dispatch costs C̄. For each instance type the results are
the average over three different instances.

Table 2.2: Optimality gap and solution time on larger instances. For each instance size, maxi-
mum and average are taken over three randomly generated instances.

Instance Avg. sol. time Avg. Gap Max sol. time Max Gap
V20C20 15.59 0% 300 14%
V20C25 39.54 2% 300 26%
V20C30 96.44 4% 300 41%
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enough to adapt to different configurations of the service and thus may serve real-life analysis of
ride-sharing services. As an example, the model could help assess revenue-sharing mechanisms
other than the one studied in this article.
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Chapter 3

Order Dispatching and Vacant
Vehicles Rebalancing for the
First-mile Ride-sharing Problem

This chapter contains the paper Ye et al. (2022b).

Abstract

Given a set of transport requests to a transit station and a set of homogeneous vehicle,
both geographically dispersed in a business area, the First-Mile Ride-Sharing Problem
(FMRSP) consists of finding least cost vehicle routes to transport passengers to the
station by shared rides. In this paper we formulate the problem as a mathematical op-
timization problem and study the effectiveness of preventive movements of idle vehicles
(i.e., rebalancing) in order to anticipate future demand. That is, we identify promising
rebalanacing locations based on historical data and give the model incentives to assign
vehicles to such location. We then assess the effectiveness of such movements by sim-
ulating online usage of the mathematical model. The results show that rebalancing
is consistently preferable both in terms of profits and service rate. Particularly, in
operating contexts where the station is not centrally located, rebalancing movements
increase both profits and service rates by around 30% on average.

Keywords: First-mile, Ride-sharing, Order dispatching, Rebalancing, Rolling Horizon

3.1 Introduction

Ride-sharing services, which are linked to a reduction of the number of private cars on the road,
emissions and congestion (A. Abubakr O, 2019), have emerged as a potential solution to the
increase in road congestion and air pollution generated by growing urban areas and population
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(a) All Trips (b) Shared Trips

Figure 3.1: Taxi trips to Penn Station. Data from Commission and Limousine (2020).

(T. Eiichi, 2014). Such services have yet significant potential for development. As an example,
according to the NYC taxicab data (Commission and Limousine, 2020), during January 2020
there were 363,874 taxi trips to the Pennsylvania Station, a fairly busy transit station in New
York City see Figure 3.1a, that is, on average 12,129 taxis trips daily to the station. Of these,
only 6% were shared by multiple passengers, see Figure 3.1b, which leaves significant margins
for more efficient connections to the station.

An effective implementation of ride-sharing services requires adequate responses to potentially
frequent changes in demand patterns during the day that may determine geographical mis-
matches between demand as supply. Figure 3.2 illustrates the location of the requests of trans-
portation to Pennsylvania Station during January 2014, showing that the majority of the requests
arrive from the North-East area, whereas much fewer requests arrive from the remaining zones
of the city. This suggests implementing mechanisms that prepare the geographical distribution
of the fleet in such a way to anticipate demand and perhaps reduce waiting and response times
as well as service rate.

The existing literature study various aspects of ride-sharing services, including pricing mecha-
nisms (Bian and Liu, 2019a,b; Bian et al., 2020; Chen and Wang, 2018), integration with public
transport (Yu Shen, 2018), order dispatching and vehicle routes (Wang, 2019; Chen et al.,
2020). Conversely, strategies for anticipating demand through, e.g. preventive or rebalancing
movements (Wen et al., 2018), remain, to a large extent, an open research question. Particularly,
efficient ways to simultaneously determine both dispatching and rebalancing movements have,
to the best of our knowledge, been neglected.

We contribute to filling this gap by providing a mathematical programming model for joint
order dispatch and rebalancing decisions in a first-mile ride-sharing service which transports
passengers from their initial location to a common destination (e.g., a transit station). We will
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Figure 3.2: Distribution of trips to Penn Station

refer to this decision problem as the First-Mile Ride-Sharing Problem (FMRSP). In addition,
we propose two strategies for identifying promising locations where to rebalance empty vehicles.
The model and rebalancing strategies are tested in a simulation framework which replicates
on-line usage.

The rest of this paper is structured as follows. In Section 3.2 we review the related literature and
underline the contribution of this article. In Section 3.3 we formally introduce the problem and
the corresponding mathematical programming model. In Section 3.4 we describe two methods
for deciding where to relocate vehicles in anticipation of future demand. In Section 3.5 we
describe the simulation framework and the numerical experiments we performed with the model
and illustrate the results. Finally, we draw conclusions in Section 3.6.

3.2 Literature review

The routing decisions considered in the FMRSP share similarities with those involved in well
studied routing problems. Among these we find the Vehicle Routing Problem (VRP). Starting
from the seminal paper of (Dantzig and Ramser, 1959), several exact and heuristics algorithms
were proposed to solve VRPs (Bräysy and Gendreau, 2005; Bertsimas et al., 2019) and several
flavors of the problem have been studied, see e.g., the surveys (Kumar and Panneerselvam, 2012;
Pillac et al., 2013; Lin et al., 2014; Ritzinger et al., 2016; Braekers et al., 2016). One of the
major differences between the FMRSP and the different variants of the VRP is that the VRP
consists of designing tours returning to the depot, while the FMRSP designs open paths from the
vehicle origins to a common destination. The FMRSP focuses on picking up and transporting
customers from multiple locations to the destination (station) while the VRP delivers service
or goods to customers. Furthermore, in the VRP the vehicles typically operate from a common
depot, though some variants considering multiple depots do exist.
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Particularly, the FMRSP shares features with the Dial-a-ride Problem (DARP) and the Pick-up-
and-delivery Problem (PDP) (Cordeau and Laporte, 2003; Ropke and Cordeau, 2009; Berbeglia
et al., 2010), which are generalizations of the VRP. A comprehensive review of DARP and
PDP can be found in Ho et al. (2018). The goal of the DARP is to minimize the cost/time to
transport a set of passenger by means of a fixed fleet of vehicles. Requests have different pickup
and delivery locations, and the vehicles can pick up more than one passengers at a time. Also
for the DARP different variants can be found, such as where the objective is to minimize the
detour for the customers on board the vehicles Pfeiffer and Schulz (2022). The DARP can be
considered as a variant of the PDP. The PDP typically deals with the transportation of goods
while the DARP deals with passenger transportation (Parragh et al., 2008). Thus, the difference
between DARP and PDP is usually expressed in terms of additional constraints or objectives
that explicitly take user (in)convenience into account (e.g., time window and vehicle capacity
constraints). The FMRSP can be seen as a special case of DARP where passengers travel to
a common depot (station) and with additional service-specific constraints. Particularly, in the
FMRSP we address in this paper, we focus on on-line dispatch and rebalancing decisions. That
is, we consider the allocation of customers requests to vehicles as they arrive, and while vehicles
are busy with other transportation requests. This entails dealing two types of customers. First,
we find customers whose request has been accepted in previous decision epochs and have not yet
picked up. These customers requests must be satisfied. Second, we find new customers whose
request may or may not be accepted, similarly to a price-collecting TSP (Balas, 1989). Finally,
empty vehicles may be moved to rebalancing centers in order to prepare for future demand.

Due to the fast development of GPS and widespread use of smartphones, ride-sharing services
enabled by smartphones applications have attracted broad attentions. Commercial companies
such as Uber and Didi have implemented versions of the service (Xu et al., 2018; Lin et al., 2018)
and the attention of the research community has grown providing both optimization methods
(Stiglic et al., 2015; Masoud et al., 2017; Masoud and Jayakrishnan, 2017; Alonso-mora et al.,
2018; Stiglic et al., 2018; Huang et al., 2014; Wang et al., 2018; Mourad et al., 2019) and
reinforcement learning methods (Xu et al., 2018; Lin et al., 2018; Li et al., 2019; Tang et al.,
2019; Qin et al., 2019).

The FMRSP is, however, a relatively new problem and the corresponding literature is somewhat
sparser. Yu Shen (2018) study the integration of a first-mile autonomous vehicle (AV) ride-
sharing service into public transportation. The idea is to preserve high demand bus routes while
using shared AVs as an alternative for low demand routes. They assess the performance of this
system using simulation. Particularly, they test different fleet sizes, ride-sharing preferences
and dispatching algorithms. The results show that the integrated system has the potential
of enhancing service quality and utilizing bus services more efficiently. The article does not
provide the mathematical model that drives the underlying planning decisions. Wen et al.
(2018) propose a reinforcement learning method to adaptively move idle vehicles in a shared
mobility-on-demand systems. They test their solution method on a first-mile service in the city
of London. Results show that the proposed method outperforms the local anticipatory method
by reducing the fleet size by 14%, and the computational speed is 2.5 times faster for close

24



to optimal solution. Chen et al. (2020) provide a mixed-integer linear programming (MILP)
model to make AV dispatch and ride-sharing scheme decisions with the objective of minimizing
operational costs. The authors devise a cluster-based solution method to deal with large-scale
instances. Numerical experiments show that the proposed method can efficiently reduce the
fleet size, travel miles and fulfill the requirement of online computation.

Rebalancing has become an important aspect of shared-mobility services and has been widely
studied in recent years. Several recent papers show the benefit of rebalancing in the context
of carsharing (Illgen and Höck, 2019) and ride-sharing (Wallar et al., 2018; Wen et al., 2018;
Ma et al., 2019; Alonso-mora et al., 2018) problems. Particularly for ride-sharing, Wallar et al.
(2018) propose algorithms for partitioning the operating area into zones, estimating the real-time
demand and rebalancing idle vehicles. Wen et al. (2018) use reinforcement learning for predicting
demand and rebalancing vehicles. Alonso-mora et al. (2018) design a matching algorithm for on-
demand ride-sharing and incorporates rebalancing for remained idle vehicles after matching. Ma
et al. (2019) propose a queueing-theoretic vehicle dispatch and idle vehicle relocation algorithm.
Except for Alonso-mora et al. (2018), the above mentioned studies partition the operating area
into zones and identify zones where to rebalance. In this paper, we propose a a clustering-
based method which identifies relocation points by clustering demand. Furthermore, our work
aims at assigning vehicles to customers and rebalancing vacant vehicles to rebalancing centers
simutaneously, while the available literature considers assigning customers and rebalancing in
a sequential order. To the best of our knowledge, this work is the first paper considering
rebalancing and order dispatching simutaneously in first-mile ride-sharing services.

Our work is an extension of the methods provided in Chen et al. (2020) and Alonso-mora
et al. (2018). The main differences between our work and Chen et al. (2020) is that our work
combines rebalancing and order dispatching decisions, while Chen et al. (2020) focus only on
order dispatching. In addition, Chen et al. (2020) solve the dispatching problem by working on
groups of requests while we optimize considering individual requests. Finally, Chen et al. (2020)
consider reservations made 15-60 min before departure, while we focus on online decisions which
take into account new requests on a shorter notice and capture the real-time location and status
of the vehicles. Alonso-mora et al. (2018) propose an efficient algorithm to generate optimal
routes and match large groups of riders to vehicles in real-time and rebalance the idle vehicles
to areas of high demand, and the algorithm is validated on the data provided by Commission
and Limousine (2020). In this work we focus on modeling the first-mile ride-sharing problem
mathematically. Furthermore, we address order dispatching and vehicle rebalancing decisions
simultaneously, such that we move vehicles to high demand areas beforehand and avoid myopic
decisions.

Summarizing, the contribution of this work can be stated as follows:

1. We provide a mathematical model for order dispatching and vehicle rebalancing in a first-
mile ride-sharing service. The problem is formulated as a MILP.

2. We consider a rolling horizon optimization. This entails that a subset of the customers
(those whose request has been accepted in previous decision problems) must be serviced,
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while the remaining customers (those newly arrived) may be picked-up if feasible and
profitable.

3. We propose a clustering method to identify the number and locations of rebalancing cen-
ters.

4. We test our model on randomly generated instances to assess the solutions delivered by
the model and, particularly, the advantage provided by rebalancing activities.

3.3 The First-mile Ride-sharing Problem

In this section, we formally introduce the First-Mile Ride-Sharing Problem. We start, in Sec-
tion 3.3.1, by providing a general introduction to the problem. Following, in Section 3.3.2, we
introduce a mathematical model for the FMRSP, and in Section 3.3.3 we provide a simple ex-
ample to illustrate possible solutions to the problem. An overview of notations can be found in
Section 3.6.

3.3.1 Problem Statement

We consider the operator of a fleet of vehicles K := {1, . . . , K} concerned with dispatch and
relocation decisions in order to ensure a first-mile ride-sharing service. The fleet is homogeneous
with capacity Q. We assume the operator makes dispatch and relocations decisions periodically,
e.g., every 5 or 10 minutes, as a result of the arrival of new transportation requests. We refer to
these decision times as “(re)-optimization phases”. At each re-optimization phase, the available
customers can be partitioned in two sets, namely NP := {1, . . . , NP } which contains the cus-
tomers whose transportation request had already been accepted during a previous optimization
phase, and NC := {1, . . . , NC} which contains newly arrived customer requests which have not
been considered in previous optimization phases. We assume that the customers in NC may
be either accepted (and thus assigned to a vehicles) or rejected, while the customers in NP

must be picked up (thus we assume acceptance decisions are binding). For convenience we set
NU := NC ∪NP .

All customers travel to a common destination d located in position o(d) (e.g., a transit station)
and for each customer i, the operator knows the requested pick-up time T P

i , the requested
arrival time T A

i and the origin o(i). We let ∆ be the maximum waiting time (i.e., difference
between actual pick-up time and requested pick-up time). Similarly, at the beginning of the re-
optimization phase, denoted T , each vehicle k is located at o(k) as a result of previous deployment
or relocation decisions. The vehicle is either idle in its location, or traveling between customers
or to the station. In addition, vehicles might initially have customers on board. We denote Vk

the number of customers on board of vehicle k at the beginning of the re-optimization phase
and Tk the earliest arrival time of the passengers already on board vehicle k. The operator
needs to ensure that vehicles with customers on board terminate their journey to the station.
Conversely, vehicles with no customers on board may be sent to a rebalancing point or stay at
their origin location o(k). A set R := {1, . . . , R} of potential rebalancing points in the operating
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area is available. For each rebalancing point r we let Br denote an upper bound on the number
of vehicles that can be dispatched to the rebalancing point.

The operator bears transportation costs generated by vehicle movements. Particularly, we as-
sume travel times are known, with Tij being the travel time between locations o(i) and o(j)
with i ∈ K ∪ NU , j ∈ NU ∪ R ∪ {d} and cost C is born for each unit of travel time. The
operator collects a revenue Pi when picking up customer i, for i ∈ NC . Note that the revenue
is collected only when picking up new customers as we assume the revenue for the customers
in NP has been collected during previous optimization phases. Furthermore, Er denotes the
expected revenue collected for each vehicle relocated to rebalancing center i ∈ R. Expected
future revenues from rebalancing activities are discounted using a parameter β that denotes the
weight of the rebalancing reward.

The decisions made by the operator can be formalized as follows. We let xk
ij take value 1 if vehicle

k moves directly between o(i) and o(j), 0 otherwise, for all i ∈ {k}∪NU , j ∈ NU∪R∪{d}, k ∈ K.
Furthermore, we let tA

k denote the actual arrival time of vehicle k to the station, for k ∈ K and
tP
i denote the actual pick-up time of customer i, for i ∈ NU .

Thus, we use a 3-index formulation of size O(|NC ||K||R|). The FMRSP is NP-hard, as it contains
the prize-collecting TSP (Balas (1989)) as a special case.

3.3.2 Mathematical Model

Having defined all decision variables and parameters, we may formulate the problem as follows.

max
∑
k∈K

∑
i∈NC

∑
j∈NU ∪{d}

Pix
k
ij −

∑
i∈{k}∪NU

∑
j∈NU ∪R∪{d}

∑
k∈K

CTijxk
ij + β

∑
i∈R

∑
k∈K

xk
kiEi (3.1a)
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s.t.
∑

j∈NU ∪{d}

∑
k∈K

xk
ij ≤ 1 ∀i ∈ NC (3.1b)

∑
j∈NU ∪{d}

∑
k∈K

xk
ij = 1 ∀i ∈ NP (3.1c)

∑
i∈NU ∪K

xk
id ≤ 1 ∀k ∈ K (3.1d)

∑
i∈NU ∪{k}

xk
ij =

∑
i∈NU ∪{d}

xk
ji ∀j ∈ NU , k ∈ K (3.1e)

∑
j∈R∪NU ∪{d}

xk
kj =

∑
j∈NU ∪{k}

∑
i∈R∪{d}

xk
ji ∀k ∈ K (3.1f)

∑
i∈{k}∪NU

∑
j∈NU

xk
ij + Vk ≤ Q ∀k ∈ K (3.1g)

∑
k∈K

xk
kj ≤ Bj ∀j ∈ R (3.1h)

Vk ≤ Q(1−
∑
j∈R

xk
kj) ∀k ∈ K (3.1i)

Vk ≤ Q
∑

j∈NU ∪{d}
xk

kj ∀k ∈ K (3.1j)

tP
i + Tij ≤ tP

j + T L(1−
∑
k∈K

xk
ij) ∀i, j ∈ NU (3.1k)

T + Tkj ≤ tP
j + T L(1− xk

kj) ∀j ∈ NU , k ∈ K (3.1l)

tP
i − T P

i ≤ ∆ ∀i, j ∈ NU (3.1m)

tA
k ≤ T A

i + T L(1−
∑

j∈NU ∪{k}
xk

ji) ∀i ∈ NU , k ∈ K (3.1n)

tA
k ≤ Tk ∀k ∈ K (3.1o)

tP
j + Tjdxk

jd ≤ tA
k + T L(1− xk

jd) ∀j ∈ NU , k ∈ K (3.1p)

xk
ij ∈ {0, 1} ∀i ∈ {k} ∪ NU , j ∈ NU ∪R ∪ {d}, k ∈ K (3.1q)

tA
k ∈ R+ ∀k ∈ K (3.1r)

tP
i ∈ R+ ∀i ∈ NU (3.1s)

Objective function (3.1a) represents the profit for the operator. The first term represents the
revenue generated by picking up customers, the second term the total cost born of the vehi-
cles movements and, finally, the third term is the discounted expected profit obtained in the
rebalancing centers.

Constraints (3.1b) and (3.1c) state that new customers may be picked up at most once and
customers already accepted must be picked up exactly once, respectively. Observe, in (3.1b)
and (3.1c), that after visiting a customer i ∈ NC or i ∈ NP , the vehicle can only move to
another customer i ∈ NP ∪ NC or to the station d. Constraints (3.1d) ensure that vehicles
travel to the station at most once. Constraints (3.1e) state that whenever a vehicle arrives at
a customer location, it must then move to another customer or to the station. Notice that a
vehicle can arrive at a customer location j either from another customer or from the vehicle’s
original location o(k). Constraints (3.1f) state that, if a vehicle departs from its original location
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o(k) it must terminate its journey either at the station or at a rebalancing point.

Constraints (3.1g) ensure that the capacity of the vehicles is not exceeded, while constraints
(3.1h) ensure that the total number of vehicles dispatched to a rebalancing center will not
exceed the upper bound on the vehicles dispatchable at the rebalancing center.

Constraint (3.1i) state that only empty vehicles may be dispatched to rebalancing centers. For
instance, if vehicle k is dispached to one of the rebalancing center, the right-hand-side becomes
0, and the constraints can only be satisfied when Vk is equal to 0. If vehicle k is not dispatched
to any rebalancing center, the right-hand-side reduces to the capacity of the vehicle, and the
constraint holds with any value of Vk. Notice that the movements between customer points
NU and rebalancing points are automatically forbidden by the absence of the corresponding xk

ij

variables. Constraints (3.1j) state that the vehicles that already have customers on board at
the beginning of the period must be dispatched (i.e., cannot stay idle). If Vk is strictly positive,
the constraint forces the right-hand-side to be strictly positive as well, and thus to dispatch the
vehicle.

Constraints (3.1k) state that if customer j is picked up by vehicle k immediately after picking up
customer i, then the actual picking up time of customer i plus the travel time between customer
i and j must be less or equal to customer j’s actual pick up time. Here T L: = maxi{T A

i } for
i ∈ NU is an upper bound on the requested arrival time. Similarly, constraints (3.1l) denote the
pick-up time for the first customers in the route. Constraints (3.1m) ensure that the difference
between the actual pick up time and the requested pick up time of the customer does not exceed
the maximum waiting time ∆. Constraints (3.1n) ensure that the actual arrival time of vehicle
k must be earlier than the requested arrival time of any of the customers on board of it. For
instance, if customer i is picked up by vehicle k, the right-hand-side becomes T A

i enforcing that
the actual arrival time of vehicle k is before T A

i . Constraints (3.1o) ensure that the actual arrival
time of vehicle k is earlier than the earliest requested arrival time Tk of the passengers on board
at the beginning of the re-optimization phase. Constraints (3.1p) state the relationship between
pick-up time and arrival time. For example, if j is the last customer picked up by vehicle k

before the station xk
jd takes value 1, the left-hand-side becomes tP

j +Tjd, and the right-hand-side
becomes tA

k , enforcing that the actual pick-up time of customer j plus the travel time between
customer j and station be less than or equal to the actual arrival time of vehicle k. If j is not
the last customer picked up by the vehicle k before arrive at the station, then the left-hand-side
becomes tP

j , the right-hand-side becomes tA
k + T L, which always holds.

Finally, constraints (3.1q)-(3.1s) define the domain of the decision variables.

3.3.3 Illustrative Example

In what follows we provide two examples to illustrate how the model in Section 3.3.2 works. The
online FMRSP model re-optimizes the vehicles dispatch and rebalancing decisions at fixed time
intervals. Assume that the current re-optimization phase start at T = T1, and a snapshot of
the system, which includes vehicles and customers positions, is shown in Figures 3.3a and 3.4a.
The blue circles denote customers while the yellow squares denote vehicles. Assume all vehicles
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have a capacity Q = 2, and that are all empty except for D3 that has currently one customer on
board (VD3 = 1). The triangle denotes the station. Particularly, Figure 3.3 describes a scenario
without rebalancing, while Figure 3.4 describes a scenario where rebalancing is permitted.

The solution for the case without rebalancing, is illustrated in Figure 3.3b where the orange
circles denote rebalancing centers and their size reflects the expected demand at their location.
The solution for the scenario with rebalancing is provided in Figure 3.4b. Consider the solution
to the first scenario. We observe that the model provides three routes and that the rebalancing
centers are not visited. The route for vehicle D1 (Route 1) starts from the current location of
the vehicle, o(D1), and visits customer 1 (thus xD1

D1,1 = 1) and customer 2 (xD1
1,2 = 1), in this

order, before arriving at the station (xD1
2,d = 1). In this solution, vehicles D4, D5 and D6 stay

idle at their current position and wait for the next re-optimization phase.

Figure 3.3c depicts a new snapshot of the system at the new re-optimization phase (say T = T2),
and the corresponding solution. Customers 1 through 5 from the previous optimization phase
are not in the system anymore because they have been by the time picked up. Similarly, vehicles
D1, D2 and D3 are not in the system because they are currently on the way to the station and
have no extra capacity (D1 and D2 have filled their two seats and D3 has the remaining seat
available). New customers N1-N4 appear in the system. The solution suggests picking up only
customer N1. The remaining customers are, in fact, too distant from the available vehicles.

The solution for the scenario with rebalancing (Figure 3.4b) differs only in the fact that vehicles
D4, D5, and D6 are dispatched to rebalancing centers. Therefore, at the next re-optimization
phase (Figure 3.4c), D4 and D6 are much closer to the new requests N2, N3, and N4, and can
pick them up ensuring their requested arrival time is satisfied.

(a) The system at T = T1 (b) Solution for T = T1 (c) Solution for T = T2

Figure 3.3: Example problem in a scenario where rebalancing in not permitted

(a) The system at T = T1 (b) Solution for T = T1 (c) Solution for T = T2

Figure 3.4: Example problem in a scenario where rebalancing is permitted

The example in Figure 3.5a illustrates how capacity constraints work. The original number of
customers on board are shown in green boxes next to the vehicle. Assume the capacity of each
vehicle is Q = 4. We observe that routes 1 and 3 are feasible with respect to the capacity
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constraints as in both cases the number of customers on board does not exceed Q. Route 2, on
the other hand, will be infeasible, since there are already 3 customers on board vehicle D2 at
the beginning of the optimization phase, and the route assigns two additional customers to the
vehicle, thus violating the capacity constraints.

Figure 3.5b illustrates how requested arrival time constraints are enforced. Assume the re-
optimization phase starts at time T = 0. The requested arrival time of the vehicles and customers
are shown in purple boxes while travel times are shown on top of the arcs. For route 1, the total
travel time is 5 + 5 + 4 = 14, which violates the requested arrival time of the passengers already
on board of D1, which is 12. Thus the route is infeasible, even if the arrival times of the two
customers in route 1 are respected. Routes 2 and 3 are instead feasible as the arrival times of
both customers and vehicles are respected.

(a) Capacity constraints (b) Arrival time Constraints

Figure 3.5: Illustration of capacity and arrival time constraints

3.4 Finding Rebalancing Centers

In this section, we introduce a clustering-based methods for identifying rebalancing centers. We
refer to the method as the K-means Clustering (KC) method. The method identifies both the
location and demand of the rebalancing centers, and this in turn allows us to determine the
upper bound on the number of vehicles dispatchable to the different rebalancing centers.

Given a number k of rebalancing centers to find, the KC method finds rebalancing centers
by partitioning all requests received in the current re-optimization phase into k = |R| clusters.
Clusters are created in such a way as to minimize the total distance between the points allocated
to the cluster and the centroid of the cluster. The centroids of the clusters will then be used as
rebalancing centers. The expected demand (number of requests) of the rebalancing centers will
be set equal to the number of requests in the corresponding cluster. We let Dr be the demand
of rebalancing point r ∈ R.

The KC method is compared to a random selection method (hereafter named RS method) which
consists of randomly selecting |R| points in the operating area as rebalancing centers. To each
rebalancing center is assigned a demand equal to the number of customer requests of current
re-optimization phase within a certain distance (e.g., 1 Km) of the rebalancing center.
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For both the KC and RS methods, the upper bound Br of the number vehicles that can be
dispatched to each rebalancing center r is defined as Br = Dr/Q̄, where Q̄ denotes the average
number of customer on board a vehicle during one trip.

3.5 Numerical Experiments

In this section, we report the results of our numerical experiments. The scope of the experiments
is to assess, in terms of profits and service rates, two different configurations of the service which
we refer to as without rebalancing (woR) and with rebalancing (wR). The configuration woR refers
to the situation where the service provider dispatches the vehicles only based on customer
requests of the current re-optimization phase. For the model without rebalancing, we simplify
our model in Section 3.3 by having an empty set of rebalancing centers. In the configuration
wR, the service provider makes the dispatching decision based both on current customer requests
and on predicted demand using rebalancing centers. In this case, we test the model with two
different method for finding rebalancing centers. In the first case, which we refer to as wRKC, the
company use KC to obtain the location and demand of the rebalancing centers. In the second
case, which we refer to as wRRS, the company uses the RS method to find the locations and
demands of the rebalancing centers.

The different configurations are tested on a set of random instances introduced in Section 3.5.2.
All problems are solved with the Python libraries of GUROBI 9.5.0 and a server equipped with
Intel Core i5 and 16GB of RAM.

3.5.1 Simulation Framework

We test our model in a simulation framework, with a planning horizon of one hour. We assume
online re-optimization happens every 5 minutes. This means that every simulation requires
the solution of 12 optimization problems (Model 3.1). At each re-optimization we update the
status of the system, and randomly generate (as explained in the next section) a number of new
customers. Particularly,

• At the initial optimization phase, say T = 0, we assume that the NP is empty. This
means that there is no customer whose request had already been accepted in a previous
optimization phase. We generate a number of new customers NC , rebalancing centers R,
and initial vehicle positions (as explained in the next section) and solve the resulting model
(3.1).

• We then step five minutes forward in time, say optimization phase T = 1, and assume the
solution to the model for T = 0, has been implemented. This entails the vehicle followed
the routes determined by the previous optimization model for five minutes, moving either to
customers locations or to rebalancing centers. This provides their updated location for the
new re-optimization phase. We then partition the customers of the previous optimization
phase into three groups:

1. The first group contains those customers that had been assigned to a vehicle but have
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not yet been picked up in the five minutes interval between the two re-optimizations
(i.e., the route of the vehicle assigned to the customer did not stop by the customer
within the five-minute interval between re-optimizations). These customers form
the set of mandatory customers NP in the new re-optimization phase and must be
picked up by some vehicle (possibly different from the one assigned in the previous
re-optimization phase).

2. The second group contains those customers that had been assigned to a vehicle in
the previous re-optimization phase and the route of the assigned vehicle stopped by
the customer within the five-minute interval between re-optimizations. In the new
re-optimization phase these customers represents occupied seats (Vk) in the vehicles
to which they were assigned. Therefore, these customers represent fulfilled requests
and do not appear in NP in the new re-optimization phase.

3. The third group contains those customers that had not been assigned to a vehicle
in the previous re-optimization phase. These represent customers whose request has
been rejected and will not show up in the new re-optimization phase.

Observe, that in the new re-optimization phase, vehicles may find themselves into one of
the following situations. (A) The vehicle is empty at a given position and was on the
way to pick-up customers or to a rebalancing centers. (B) The vehicle has passengers
on board at a given position and was on the way to pick-up additional customers or to
the station. In case (A), in the new re-optimization phase the vehicles may be assigned
to new customers or to a rebalancing center, independently of the decision made in the
previous re-optimization phase. That is, it is possible that the vehicle is assigned to a
set of customers different from the ones previously assigned to the vehicle. In case (B)
the vehicle cannot be sent to a rebalancing center but may be assigned to new customers
or sent directly to the station. Following, we generate new customers NC for the new
re-optimization phase and resolve a problem (3.1).

The procedure continues stepping five minutes forward in time until the end of the one-hour
planning horizon. Thus, we are able to collect statistics on the performance of the service.
Particularly, the profit is computed as follows. At the end of each re-optimization phase, we
collect the fee for all the customers that have been accepted (i.e., a vehicle has been assigned to
them) and picked up (i.e., the vehicle has arrived at their location during the five-minute interval
between re-optimizations) and subtract the cost of the movements the vehicles have done during
the five-minute interval between re-optimizations. The final total profit is then the sum of the
individual profits made during the one-hour planning horizon. The procedure is explained by
the following example.

• Assume that at T = 0, NP is empty and Vk = 0 for all vehicles k ∈ {D1, D2, D3}. That is,
there is no customer whose request had already been accepted in a previous optimization
phase. We generate a number (say four) of new customers NC := {C0

1 , C0
2 , C0

3 , C0
4}, re-

balancing centers R := R0
1, and initial vehicle positions o(D1), o(D2), o(D3) and solve the

resulting model (3.1). Assume that the solution determines the following routes for the
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three vehicles: Route10 := {D1, C0
1 , C0

3 , d}, Route20 =: {D2.C0
2 , d}, Route30 := {D3, R0

1}
and that customer C0

4 is rejected.

• The solution computed at T = 0 is implemented and the vehicle follow the respective
routes for five minutes. This provides updated system information for optimization phase
T = 1. That is, we updated the location of the vehicles {o(D1), o(D2), o(D3)} . We observe
that,

1. For Route10, the vehicle D1 already picked up customer C0
1 , and is still on the way

to pickup C0
3 , so we can delete C0

1 from the system, update VD1 = 1 and move C0
3 to

mandatory customer set NP := {C0
3}.

2. For Route20, vehicle D2 already picked up customer C0
2 and is still on the way to

station, so we can delete C0
2 from the system and update VD2 = 1.

3. For Route30, vehicle D3 arrived at the rebalancing center R0
1, thus VD3 = 0.

In the new optimization phase T = 1, since the vehicles D1, D2 already have customers on
board, they cannot be sent to a rebalancing center but may be assigned to new customers
or sent directly to the station. However, vehicle D3 may be assigned to new customers
or to a rebalancing center as it is still empty. Following, we generate new customers
NC := C1

1 , C1
2 , C1

3 , C1
4 for the new re-optimization phase T = 1 and resolve the problem

(3.1).

3.5.2 Instance Generation

We generate a number of artificial and randomly generated instances that mimic real-life operat-
ing scenarios for the service. Particularly, we assume a fleet of homogeneous vehicles of capacity
Q = 4. The position of the vehicles for the first re-optimization phase is generated randomly
in the business area (defined below) and initially vehicles are assumed to have no passenger on
board. For the re-optimization phases other than the first, the position of the vehicles, and the
number of passengers on board is computed as the result of previous optimization phases.

We consider two different geographies of the business area. In the first geography, depicted in
Figure 3.6, the station is located at the center of the business area, and the business area itself is
represented by a circle of radius R = 4Km. In the second geography, see Figure 3.7, the station
is located in a corner and the business area is a quarter of a circle of radius of R = 8Km. The
second geography is meant to represent urban contexts where the demand is concentrated only
on one side of the station due to, e.g., physical barriers such as rivers or harbors.

For each geography, and for each re-optimization phase, customer request are generated in the
following two different scenarios. In the first scenario, referred to as the balanced scenario, pickup
locations are randomly scattered in the whole business area, see Figure 3.6a and Figure 3.7a.
In the second scenario, referred to as the imbalanced scenario, one third of the requests arrives,
randomly, from inside the inner circle of radius RI = 0.6R (where R is the radius of the outer
circle), while the remaining requests arrive, randomly, from outer portion of the circle, see
Figure 3.6b and Figure 3.7b. We obtain, in total, four configurations namely
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1. station in the center and balanced demand (BCt),

2. station in the center and imbalanced demand (iBCt),

3. station in the corner and balanced demand (BCn),

4. station in the corner and imbalanced demand (iBCn).

For each request, the requested pickup time (T P
i ) is randomly generated uniformly between

0 and 3 minutes after the beginning of the planning horizon, and the requested arrival time
(T A

i ) is set as the sum of requested pickup time, T P
i , travel time between customer i and the

station d, and a buffer time randomly generated between 5 and 8 minutes. Travel time Tij are
calculated using Euclidean distances and assuming an average speed of 36 Km/h (Commission
and Limousine, 2020). The unit transportation cost C is set to $11.25/h (English, 2008) and trip
revenues Pi are computed using a fare of $2.59 per Km traveled plus $0.74 per minute traveled,
with a minimum fare of $8 following the setting in INSHUR.

(a) Balanced distribution of customers (b) Imbalanced distribution of customers

Figure 3.6: Balanced and imbalanced distribution of customers, station located in the center

We set the value of β to 0.1 in the objective function, unless otherwise specified. Observe that β

determines the impact of rebalancing movements. High values will increase the potential benefit
of rebalancing and might lead to rejecting current customers while low values might lead the
model to provide myopic solutions. The impact of different values of β will be assessed through
sensitivity analysis in Section 3.5.4. The net profit of rebalancing center Ei is calculated as
P̄i − CTid, where P̄i is the revenue of dispatching a vehicle to rebalancing center i ∈ R, and is
calculated as P̄i = Q P A

i , where P A
i the average revenue for the requests in the cluster where i

is the centroid and Q is the capacity of the vehicles. C is the unit transportation cost, set as
above, and Tid is the distance between rebalancing point i and the station. To obtain the upper
bound on the number of vehicles disptachable to a rebalancing center (Br, see Section 3.4) we
set the average number of customers on board during one trip of a vehicle Q̄ equal to half of the
capacity Q = 4.
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(a) Balance Corner (b) Imbalance Corner

Figure 3.7: Balanced and imbalanced distribution of customers, station located in a corner

For each configuration, we generate different instances varying in the number of vehicles and
customers that appear at each new re-optimization phase. Particularly, we create instance
classes named C|NC |V |K| with number of customers |NC | ∈ {6, 7, 8}, and number of vehicles,
|K| ∈ {10, 12, 14}. As an example, C8V 10 indicates a class of instances with 8 new customers
in each re-optimization phase and 10 vehicles available for dispatching for the whole planning
period. For each instance class we randomly generate 3 different instances. Observe, however,
that for each instance we solve 12 different optimization problems in our simulation framework.

We set the number of rebalancing centers |R| to 3 in all instances. This number is found
using the Elbow Method (EM) and the Silhouette Analysis Method (SAM) (Mahendru, 2019).
Particularly, we use the instances with |NC | = 8 as a reference case to find a suitable value for
k = |R|. First we randomly generate 8 customers in the operating area, then we use the EM
approach to show the performance of the KC method for different values of k. For each k we
consider the Within-Cluster-Sum of Squared Errors (WSS). We then plot the WSS versus k,
and choose the value of k for which the WSS flattens. This point is referred to as an “Elbow”,
see Figure 3.8a.

(a) Elbow Method (b) Silhouette Analysis
Figure 3.8: Identifying a suitable number of clusters
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Nevertheless, in some cases, the EM does not give precise answers. In such cases, we will use the
SAM to make a decision. The silhouette score is a measure of how similar a customer request is
to its own rebalancing cluster compared to other rebalancing clusters. To be more precise, the
silhouette score of one customer request i can be calculate as below:

s(i) = b(i)− a(i)
max{a(i), b(i)} (3.2)

where b(i) is the average of the minimum euclidean distance between customer i and the cus-
tomers in clusters other than the one customer i belongs to. Parameter a(i) is the average
euclidean distance from customer i to other customer requests inside customer i’s own rebal-
ancing cluster. For each k, we sum s(i) for all customer requests, and we plot it against k, see
a qualitative description in Figure 3.14. We then choose the value of k for which the sum is the
highest (the higher s(i) the higher is the difference between a point i and the clusters other than
the one it belongs to). In our case, the best value of k was found to be k = 3 and therefore we
use this value in the computational study.

3.5.3 Managerial Insights

In this subsection, we assess the solutions provided by the model in terms of service rates
and profits. The service rate is computed as the ratio between the total number of customers
transported during the whole planning period over the total number of requests received in the
same period. The profit consists of the cumulative profit over the entire simulated period (thus
one hours with re-optimization every five minutes). Particularly, we compare three different
strategies, namely no rebalancing (woR), rebalancing to random rebalancing centers (wRRS), and
rebalancing to rebalancing centers found with the KC method(wRKC), see Section 3.4. These
three strategies are assessed on different configurations of the service, namely BCt, iBCt, BCn,
iBCn, see Section 3.5.2.

Figures 3.9 to 3.12 report the profit and service rate for the different strategies and configura-
tions of the service. We notice, in Figure 3.9a and Figure 3.10a that the settings wRKC, wRRS and
woR provide a 90% or higher service rate in the configurations BCt and iBCt, respectively. The
profits are likewise relatively similar as shown in Figure 3.9b and Figure 3.10b. However, we
observe that both service rate and profits in the wRKC case are systematically higher than in
the case woR, illustrating that rebalancing activities pay off. The figures also illustrate that re-
balancing with the clustering method (wRKC) is consistently preferable to rebalancing to random
locations (wRRS) and that rebalancing to random locations is not necessarily better than having
no rebalancing activities (woR). In general, when the station is in the center of the business
area, we do not observe significant changes between the case with balanced demand (BCt) and
imbalanced demand (iBCt).

Figures 3.11 and 3.12 report the results for the configuration with the station in a corner with
balanced (BCn) and unbalanced (iBCn) demand, respectively. In these cases, we observe a
much more marked difference in performance between the setting with and without rebalancing.
Particularly, we notice that the setting wRKC improves both profits and service rates by approx-
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(a) Service Rate (b) Profit

Figure 3.9: Service rate and profit for the BCt configuration

(a) Service Rate (b) Profit

Figure 3.10: Service rate and profit for the iBCt configuration

imately 30%, compared with woR in the case BCn. In the configuration iBCn the improvement is
even more marked with approximately 50% higher in service rates and 60% higher profits. Ran-
dom rebalancing (wRRS) is still slighly preferable to no rebalancing (woR) but lags significantly
behind compared to the strategy of using clustering-based rebalancing centers (wRKC).

It can be further observed in Figure 3.11 that, as the number of customers increases, the gap
between wRKC and woR increases even with the same fleet size. In Figure 3.12 we observe that,
in the wRKC case, both profits and service rates improve as the number of vehicles increases,
keeping fixed the number of customers. Compared to Figure 3.11 we notice that for the woR

case, the highest service rate for the C8V* instances is lower than 60%, while the lowest service
rate the same instances in the BCn scenario is above 60%.

In conclusion, wRKC outperform both woR and wRRS in all scenarios. When the station is in the
center (BCt and iBCt), the model reaches a service rate higher than 90% regardless of whether
and how rebalancing is done. Nevertheless, profits and service rates are consistently higher
when rebalancing centers are chosen with the clustering method (wRKC). When the station is in
a corner(BCn and iBCn), rebalancing to centers chosen with the clustering method (wRKC) yields
a much more marked improvement both in profits and service rate, especially with the demand
is not evenly spread in the service area(iBCn). Furthermore, as we observe in this case, keeping
fixed number of customers, the profit increases with the size of the fleet. As more vehicles
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provide better opportunities for rebalancing and anticipating future requests. This also shows
that rebalancing to appropriately chosen locations (e.g., wRKC) can improve the utilization of
empty vehicles.

(a) Service Rate (b) Profit

Figure 3.11: Service rate and profit for BCn instances

3.5.4 Sensitivity Analysis

We now analyze how the efficiency of rebalancing is affected by the β parameter, see (3.1). With
the other parameters unchanged, for each instance we generate nine variants with different values
of β, namely 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. We conduct experiments on all instances
assuming an imbalanced configurations (iBCn and iBCt) to assess the impact on profits of the
different rebalancing strategies under different weights β.

Figure 3.13 illustrates the results for the iBCn configuration. We observe that the performance
of woR, wRRSand wRKC are stable under different setting of β. Similarly, Figure 3.14 reports
the results under the iBCt configuration. Here we observe that when the ratio of customers
to vehicles is relatively high, i.e. C6V10, C7V10, C8V10 and C8V12, the performance of the
wRKC is sensitive to β. Particularly, for instances C8V10 and C8V12, when β increases, the
performance of wRKC can drop below that of wRRS or even below woR while the woR and wRRS

(a) Service Rate (b) Profit

Figure 3.12: Service rate and profit for iBCn instances
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are relatively stable to the change of β. When the customers to vehicles ratio is relatively low,
the results appear insesitive to β.

Figure 3.15 reports the proportion of vehicles going to rebalancing centers under the configura-
tion iBCt for instances C8V10 and C8V14. The proportion is computed by the ratio between
the average number of vehicles going to rebalancing centers of 3 randomly generated instances in
the 12 re-optimization phases and the total number of vehicles. When β increases, the propor-
tion of dispatched vehicles increases significantly for instance C8V10. The proportion of vehicles
going to rebalancing centers is relatively stable for C8V14, which is consistent with the results
in Figure 3.14.
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Figure 3.13: Sensitivity analysis for the iBCn configuration
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Figure 3.14: Sensitivity analysis for the iBCt configuration
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Figure 3.15: Proportion of vehicles dispatched to rebalancing centers

3.5.5 Complexity of the models

For the numerical experiments presented above, we choose to use relatively small instances in
order to obtain results that are not affected by optimality gaps. All the instances presented
could be solved, in all re-optimization phases, to provable optimality within less than a second
in average (45 seconds in the worst case).

Nevertheless, in practical situations one may encounter instances significantly larger than the
ones we used. In this section, we assess how solution times and optimality gaps scale with the
size of the instance. Particularly, we create instance classes named C|NC |V |K| for |NC | ∈ {60},
and |K| ∈ {40, 50, 60}. As an example, C60V40 indicates a class of instances with 60 new
customers in each re-optimization phase and 40 vehicles available for dispatch for the whole
planning period. Figure 3.16 reports the progression of upper and lower bounds for instances
C60V40, C60V50 and C60V60. The optimality gaps of the three instances are 21.1%, 71.7%
and 26.0%, respectively, after 120 seconds (an amount of time which is sufficiently large if
the operator re-optimizes, e.g., every 5 minutes). We observe significant optimality gaps and,
particularly, that the primal bound improves slowly while the dual bound remains steady.

(a) C60V40 (b) C60V50 (c) C60V60

Figure 3.16: Progression of upper and lower bounds for the instances C60V*

Figure 3.17 provides the same information for three smaller instances, namely C25V15, C25V20
and C25V25. In this case, the instances are small enough to observe an improvement of the
upper bound. Nevertheless, while a good primal solution is found rather quickly, the upper bound
improves slowly. This suggests new lines of research that provide both tighter formulations and
method, perhaps heuristic, to quickly find primal solutions in large scale instances.
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(a) C25V15 (b) C25V20 (c) C25V25

Figure 3.17: Progression of upper and lower bounds for the instances C25V*

3.6 Conclusion

In this paper we developed a MILP model for online order dispatching and vehicle rebalancing
in a first-mile ride-sharing service.

The model was used in a rolling-horizon simulation framework based on constructed instances,
to assess whether rebalancing is advantageous and whether a rebalancing strategy based on a
clustering method is preferable to a random rebalancing strategy. The results show that rebal-
ancing using a clustering-based strategy consistently outperforms strategies based on rebalancing
to random locations or without rebalancing. Particularly, rebalancing strategies perform dra-
matically better in a context where the station is not centrally located (e.g., the business area
is entirely on one side).

Our tests also show that finding high quality solutions and bounds to the problem presented
becomes problematic as the size of the problem increases, suggesting future research on both
efficient solution methods and tighter formulations.
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Appendix
Notations

Sets:

NP := {1, . . . , NP } is the set of customers that have been assigned to vehicles but haven’t been
picked up yet in previous re-optimization phase, in which customers can be reassigned but can’t
be rejected in current re-optimization phase.

NC := {1, . . . , NC} is the set of new customers for current re-optimization phase, in which
customers can be accepted or rejected

NU := NC ∪NP is the combined set of assigned and new customers.

R := {1, . . . , R} is the set of rebalancing centers

K := {1, . . . , K} is the set of vehicles

Parameters:

d: Denotes the destination/station node

o(k): Denotes the original location of vehicle k, for k ∈ K

o(i): Denotes the location of request i ∈ NU

Pi: Denotes the profit of picking up customer i, for i ∈ NU

C: Denotes the unit travel time cost of the vehicle.

β: Denotes the weight parameter of rebalancing reward

Vk: Denotes the number of customers on board of vehicle k at the beginning of the operational
period, for k ∈ K

Q: Denotes the capacity of the vehicle

T : Denotes the start time of the operational period

Tij : Denotes the travel time between locations o(i) and o(j), for i ∈ K ∪NU , j ∈ NU ∪R∪ {d}

T A
i : Denotes the requested arrival time of customer i, for i ∈ NU

T L: = maxi{T A
i } for i ∈ NU , is the upper bound of the requested arrival time of all the

customers

Tk: Denotes the requested arrival time of vehicle k, for k ∈ K

T P
i : Denotes the requested pick up time of the customer i, for i ∈ NP ∪NC

Bi: Denotes an upper bound on the number of vehicles that can move to rebalancing center
i ∈ R
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Ei: Denotes the net profit for a vehicle to go to the rebalancing center i, for i ∈ R

∆: Denotes the maximum waiting time. Waiting time here is represented by the difference
between actual pick up time and requested pick up time of the customer

Q̄: Denotes the average number of customer on board during one trip of a vehicle

Decision variables:

xk
ij : Equal to 1 if vehicle k moves directly between o(i) and o(j), 0 otherwise, for i ∈ {k}∪NU , j ∈
NU ∪R ∪ {d}, k ∈ K.

tA
k : Denotes the actual arrival time of vehicle k to the station, for k ∈ K

tP
i : Denotes the actual pick up time of customer i, for i ∈ NU
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Chapter 4

Adaptive Large Neighborhood
Search for Order Dispatching and
Vacant Vehicle Rebalancing in
First-Mile Ride-Sharing Services

This chapter contains the paper Ye et al. (2023).

Abstract

This article addresses the first-mile ride-sharing problem, which entails efficiently trans-
porting passengers from a set of origins to a shared destination. Typical destinations
are stations, central business districts, or hospitals. Successful optimization of this
problem has the potential to alleviate congestion, reduce pollution, and enhance the
overall efficiency of transportation systems. However, the inherent complexity of simul-
taneous order dispatching and vacant vehicle rebalancing often leads to time-consuming
computations. In this study, we present an extension of the Adaptive Large Neigh-
borhood Search (ALNS) meta-heuristic, specifically designed to tackle this problem.
Through computational experiments on a diverse set of instances, we demonstrate that
the proposed ALNS approach delivers high quality solutions within a short timeframe,
outperforming off-the-shelf MILP solvers. Furthermore, we conduct a comprehensive
case study using simulation, where we show that significant service rate improvements
can be achieved by means of rebalancing activities.

Keywords: Adaptive Large Neighborhood Search, Ride-sharing, First-mile, Rebalancing, Meta-
heuristic
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4.1 Introduction

Ride-sharing services have emerged as a potential solution to the increase in road congestion and
air pollution generated by growing urban areas and population (T. Eiichi, 2014). Ride-sharing
services are transportation solutions that arrange on-demand transport of passengers via shared
trips. Of particular interest in this study are first-mile ride-sharing (FMRS) services that connect
passengers to a common destination such as a station. Hence the prefix first-mile stresses the first
portion of a trip. The full potential of ride-sharing services remains predominantly unexplored.
As an example, according to the NYC taxicab data (Commission and Limousine, 2020), during
January 2020 only 6% of the taxi trips to the Pennsylvania Station, a fairly busy transit station
in New York City were shared by multiple passengers. Significant margins for further market
penetration exist.

A successful implementation of FMRS services necessitates the ability to effectively respond to
transportation demand. This entails primarily matching transportation requests to vehicles and
deciding vehicle routes to the common destination. Such routes need to be feasible with operating
specifications such as vehicle capacities and passengers latest arrival times. The ultimate goal is
to maximize some measure of performance such as profit. This task is complicated by fluctuating
demand. Potential geo-temporal mismatches between supply and demand must be prevented.
This is typically done via rebalancing activities, i.e., vehicle movements that aim to anticipate
demand changes. Throughout this document we refer to this decision problem as the fist-mile
ride-sharing problem (FMRSP).

The routing decisions considered in the FMRSP share similarities with classical routing prob-
lems, such as the Vehicle Routing Problem (VRP) (Dantzig and Ramser, 1959) and its variants
(Bräysy and Gendreau, 2005; Bertsimas et al., 2019; Kumar and Panneerselvam, 2012; Pillac
et al., 2013; Lin et al., 2014; Ritzinger et al., 2016; Braekers et al., 2016). A prominent dis-
tinction between the FMRSP and VRP variants lies in the nature of tour design. The VRP
entails the creation of tours that culminate in returning to the depot, whereas the FMRSP
focuses on constructing open paths from vehicle origins to a shared destination. Moreover, the
VRP conventionally assumes vehicles operating from a single depot, although certain variants
do consider multiple depots.

Particularly, the FMRSP exhibits notable similarities with the Dial-a-ride Problem (DARP)
and the Pick-up-and-delivery Problem (PDP), see Cordeau and Laporte (2003); Ropke and
Cordeau (2009); Berbeglia et al. (2010); Ho et al. (2018). The primary objective of DARP is
to minimize the cost or time required to transport a set of passengers utilizing a fixed fleet
of vehicles. Requests have different pickup and delivery locations, and DARP allows for the
possibility of multiple customers being served by a single vehicle. Various DARP variants exist,
including scenarios where the aim is to minimize the detour experienced by customers onboard
the vehicles (Pfeiffer and Schulz, 2022). The DARP can be considered as a variant of the PDP,
where the former primarily focuses on passenger transportation while the latter typically deals
with goods transportation (Parragh et al., 2008). Consequently, distinction between DARP and
PDP is often to be found in additional constraints or objectives that explicitly account for user
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(in)convenience, such as time window restrictions and vehicle capacity limitations. The FMRSP
can be regarded as a specific instance of the Dial-a-Ride Problem (DARP), wherein passengers
are transported to a shared depot or station, while also accommodating service-specific con-
straints. Particularly, in the FMRSP we address in this paper, we focus on both routing and
rebalancing decisions. This entails effectively managing the transportation of customers who
have been promised transportations in earlier decision epochs (thus necessitating their trans-
portation), as well as attending to new customers who may be collected in a price-collecting
fashion (Balas, 1989).

On-demand ride-sharing problems have attracted considerable attention in light of the rapid
advancements in GPS technology and the widespread adoption of smartphones. Notably, com-
mercial enterprises such as Uber and Didi have successfully implemented versions of this service,
see, e.g., Xu et al. (2018); Lin et al. (2018). Considerable attention from the research community
has been captured as well. Scholars have responded to this trend by devising optimization tech-
niques (Stiglic et al., 2015; Masoud et al., 2017; Masoud and Jayakrishnan, 2017; Alonso-mora
et al., 2018; Stiglic et al., 2018; Huang et al., 2014; Wang et al., 2018; Mourad et al., 2019) as
well as reinforcement learning methodologies (Xu et al., 2018; Lin et al., 2018; Li et al., 2019;
Tang et al., 2019; Qin et al., 2019) to address the associated challenges. While the ride-sharing
problem broadly seeks to optimize the sharing of rides among multiple passengers, the FMRSP
concentrates on the initial leg of passengers’ transportation journeys.

The FMRSP represents a comparatively nascent problem and, as a consequence, the corre-
sponding literature is relatively sparse. Yu Shen (2018) investigate the integration of a first-mile
autonomous vehicle (AV) ride-sharing service into public transportation, aiming to preserve
high-demand bus routes while offering shared AVs as an alternative for low-demand routes. The
authors evaluate the system’s performance through simulation experiments, examining various
fleet sizes, ride-sharing preferences, and dispatching algorithms. The findings demonstrate the
potential of the integrated system to enhance service quality and improve the efficient utilization
of bus services. However, it should be noted that the article does not present the mathematical
model that underlies the planning decisions. Bian and Liu (2019a) designed a mechanism for
FMRSP and introduces a novel Solution Pooling Approach (SPA) for effectively addressing the
challenges posed by large-scale FMRSP. In contrast to SPA, our approach encompasses not only
the order dispatching process but also incorporates the rebalancing process, thereby maximizing
the utilization efficiency of vehicles. Furthermore, our algorithm exhibits exceptional efficiency,
enabling the efficient computation of larger instances within significantly reduced time frames.

This study represents an extension of our prior research (Ye et al., 2022b), where we presented
a mathematical formulation for simultaneous decision-making concerning order dispatching and
vacant vehicle rebalancing. In this study, we present a novel solution algorithm for the problem
which is based on and extends the Adaptive Large Neighborhood Search (ALNS) introduced
by Pisinger and Røpke (2010). To the best of our knowledge, this is the first paper using
ALNS for the first-mile ride-sharing problem that considers order dispatching and vacant vehicle
rebalancing optimization simultaneously. After comparing the algorithm with a state-of-the-art
MILP solver, we present a comprehensive case study where we employ our algorithm to simulate
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dispatch and rebalancing decisions in an 8-hour commuting scenario within a 10× 10 km2 area.

The remainder of this paper is organized as follows. Section 4.2 describes the problem in detail
and formulates it as a MILP problem. Section 4.3 presents the ALNS algorithm. Section 4.4
reports on the experiments that illustrate the performance of the algorithm. Section 4.5 describes
a simulation framework which assesses the utilization of the algorithm in a realistic scenario.
Finally, Section 4.6 draws final conclusions.

4.2 Problem Description and Mathematical Model

We start by formally introducing the problem in Section 4.2.1 and subsequently, in Section 4.2.2
we express it as a MILP problem extended from Ye et al. (2022b).

4.2.1 Problem Description

We consider the operator of a fleet of vehicles K := {1, . . . , K} concerned with dispatch and
relocation decisions in order to ensure a first-mile ride-sharing service. The fleet is homogeneous
with capacity Q. We assume the operator makes dispatch and relocations decisions periodically,
e.g., every 5 or 10 minutes, as a result of the arrival of new transportation requests. We refer to
these decision times as “(re)-optimization phases” and we focus on the decision problem arising
at the individual re-optimization phase.

At each re-optimization phase, the available customers can be partitioned into sets NP and NC .
The set NP := {1, . . . , NP } contains the customers whose transportation request had already
been accepted during a previous re-optimization phase, but not yet fulfilled. Thus, we assume
acceptance of a transport request is binding. The set NC := {1, . . . , NC} contains newly arrived
customers whose request may or may not be accepted. For convenience we set N := NC ∪NP .

All customers travel to a common destination d located at position o(d) (e.g., a transit station)
and for each customer i ∈ N , the operator knows the requested arrival time T A

i and the origin
o(i). At the beginning of the re-optimization phase, denoted time T , each vehicle k is located
at o(k) as a result of ongoing activities or relocation decisions. The vehicle is either idle in its
location, or traveling between customers or to the station. In addition, vehicles might initially
have customers on board. We denote Vk the number of customers on board of vehicle k at
the beginning of the re-optimization phase and Tk the earliest arrival time of all the passengers
already on board vehicle k.

The operator bears a cost C for each unit of time a vehicle is in movement. We let Tij be the
travel time between locations o(i) and o(j) with i ∈ K ∪ N , j ∈ N ∪ R ∪ {d}. The operator
collects a revenue Pi when picking up customer i, for i ∈ NC . We assume the revenue for the
customers in NP has already been collected.

Finally, a set R := {1, . . . , R} contains potential rebalancing points in the operating area.
Vehicles with no customers on board may be sent to a rebalancing point or stay at their origin
location o(k). For each rebalancing point r we let Er denote the expected revenue collected for
each vehicle relocated to rebalancing center i ∈ R and Dj an upper bound on the number of
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vehicles that can be relocated to the rebalancing center. Expected revenues from rebalancing
activities are discounted at a rate β.

The decisions made by the operator can be formalized as follows. We let xk
ij take value 1 if vehicle

k moves directly between o(i) and o(j), 0 otherwise, for all i ∈ {k}∪N , j ∈ N ∪R∪{d}, k ∈ K.
Furthermore, we let tA

k denote the actual arrival time of vehicle k to the station, for k ∈ K and
tP
i denote the actual pick-up time of customer i, for i ∈ N .

4.2.2 Mathematical Model

Using the notation above we formulate the FMRSP as follows:

max
∑
k∈K

∑
i∈NC

∑
j∈N ∪{d}
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The objective function (4.1a) represents the profit for the operator. The first term represents
the revenue generated by picking up customers. The second term sums the cost born due to
vehicle movements. The third term is the discounted expected profit generated by rebalancing
movements.

Constraints (4.1b) and (4.1c) state that new customers may be picked up at most once and
customers already accepted must be picked up exactly once, respectively. Observe, in (4.1b)
and (4.1c), that after visiting a customer i ∈ NC or i ∈ NP , the vehicle can only move to
another customer i ∈ NP ∪NC or to the station d, but not to a rebalancing center. Constraints
(4.1d) ensure that vehicles travel to the station at most once. Constraints (4.1e) state that
whenever a vehicle arrives at a customer location, it must then move to another customer or
to the station. Notice that a vehicle can visit a customer either immediately after another
customer or immediately after the vehicle’s origin o(k). Constraints (4.1f) state that, if a vehicle
departs from its original location o(k) it must terminate its journey either at the station or at
a rebalancing point. Constraints (4.1g) ensure that the capacity of the vehicles is not exceeded,
while constraints (4.1h) ensure that the total number of vehicles dispatched to a rebalancing
center will not exceed the upper bound on the vehicles dispatchable at the rebalancing center.

Constraint (4.1i) state that only empty vehicles may be dispatched to rebalancing centers. For
instance, if vehicle k is dispached to one of the rebalancing center, the right-hand-side becomes
0, and the constraints can only be satisfied when Vk is equal to 0. If vehicle k is not dispatched
to any rebalancing center, the right-hand-side reduces to the capacity of the vehicle, and the
constraint holds with any value of Vk. Notice that the movements between customer points
N and rebalancing points are automatically forbidden by the absence of the corresponding xk

ij

variables. Constraints (4.1j) state that the vehicles that already have customers on board at
the beginning of the period must be dispatched (i.e., cannot stay idle). If Vk is strictly positive,
the constraint forces the right-hand-side to be strictly positive as well, and thus to dispatch the
vehicle.

Constraints (4.1k) state that if customer j is picked up by vehicle k immediately after picking up
customer i, then the actual pick up time of customer i plus the travel time between customer i

and j must be less or equal to customer j’s actual pick up time. Here T L: = maxi{T A
i } for i ∈ N

is an upper bound on the requested arrival time. Similarly, constraints (4.1l) denote the pick-up
time for the first customers in the route. Constraints (4.1k)-(4.1l) prevent subtours. Constraints
(4.1m) ensure that the actual arrival time of vehicle k is earlier than the requested arrival time
of any of the customers on board of it. For instance, if customer i is picked up by vehicle k,
the right-hand-side becomes T A

i enforcing that the actual arrival time of vehicle k is before T A
i .

Constraints (4.1n) ensure that the actual arrival time of vehicle k is earlier than the earliest
requested arrival time Tk of the passengers on board at the beginning of the re-optimization
phase. Constraints (4.1o) state the relationship between pick-up time and arrival time. For
example, if j is the last customer picked up by vehicle k before the station xk

jd takes value 1, the
left-hand-side becomes tP

j + Tjd, and the right-hand-side becomes tA
k , enforcing that the actual

pick-up time of customer j plus the travel time between customer j and station be less than
or equal to the actual arrival time of vehicle k. If j is not the last customer picked up by the
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vehicle k before arrive at the station, then the left-hand-side becomes tP
j , the right-hand-side

becomes tA
k + T L, which always holds.

Finally, constraints (4.1p)-(4.1r) define the domain of the decision variables.

The size of the formulation is thus O(|NC ||K||R|). Observe that the FMRSP is NP-hard, as it
contains the prize-collecting TSP (Balas, 1989) as a special case.

4.3 Adaptive Large Neighborhood Search

In this section, an Adaptive Large Neighborhood Search (ALNS) is devised to find solutions
to the FMRSP. The procedure of the proposed algorithm is depicted in Algorithm 2. The
individual elements of the algorithm will be explained in details in the remainder of this section.
Throughout the algorithm the value of a solution generated in the ALNS algorithm is calculated
using objective value (4.1a).

The algorithm receives as input integers maxIter and maxNoImprov. They indicate the maximum
number of iterations in total and without improvements, the algorithm is allowed to run. Further,
it receives sets OD and OR of destroy and repair operators, and constants r ∈ [0, 1], α1, . . . , α4

used to adjust their chances of being applied.

It starts by initializing counters and parameters. The weights wk of the operators are initially
homogeneous. Parameters πk and θk keep track of the score accumulated by the operators and
the number of times they are called. Finally, an initial feasible solution xi is generated and is
set as the current solution xc and current best solution xb.

While the algorithm is allowed to run, a new solution x′ is derived from xc through the appli-
cation of destroy and repair operators. These operators, respectively, remove and insert either
customers or rebalancing centers from/into the existing vehicle routes. The operators to apply
are selected using a roulette-wheel with probabilities proportional to the weights of the operators.
Once an operator k is selected, its frequency is updated.

If the objective value of the new solution is better than that of the current solution, the new
solution replaces the current solution. Operators k′ and k′′ are thus rewarded with a score
increase by α2. In this case the algorithm also checks whether the best solution can be updated.
In this case k′ and k′′ are rewarded with a score increase by α1 > α2.

If no improvement is obtained, the counter NoImprov is incremented. In this case, the new
solution is accepted based on a simulated annealing acceptance criterion. Operators k′ and k′′

are rewarded with a score increase by α3 if the solution is accepted, otherwise by α4 < α3.

Finally, we partition the iterations into contiguous segments of 100 consecutive iterations. At
the beginning of each segment, the scores are reset to zero. At the end of each segment, the
weights wk are updated according to the scores πk and frequency θk during the last 100 iterations
using the equation

wk := wk(1− r) + r
πk

θk
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where r ∈ [0, 1] controls the extent to which the performance of a segment influences the weight.
Specifically, values close to zero imply that weights are only marginally affected by scores.
Conversely, with values close to one the weights are highly affected by performance.
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Algorithm 2 ALNS algorithm
Input:
maxIter, maxNoImprov ▷ Maximum # iterations, total and with no improvements
OD, OR ▷ Destroy and repair operators
r, α1, . . . , α4 ▷ Constants used in the adjustment of the weights
Initialize:
i← 0 ▷ Iteration counter
NoImprov← 0 ▷ Counter of the iterations without improvement
wk ← 1/|OD| for all k ∈ OD ▷ Initial weight of the destroy operators
wk ← 1/|OR| for all k ∈ OR ▷ Initial weight of the repair operators
πk ← 0 for all k ∈ OD ∪ OR ▷ Initial score of the operators
θk ← 0 for all k ∈ OD ∪ OR ▷ Counters of the operators
xi ← generateInitialSolution() ▷ Initial solution
xc, xb ← xi ▷ Current and current best solution
while NoImprov ≤ maxNoImprov and i ≤ maxIter do

i← i + 1
x′ ← xc

Select a destroy operator k′ randomly with probabilities pk′ = wk′∑k

i=1 wi

and apply it to x′

θk′ ← θk′ + 1
Select a repair operator k′′ randomly with probabilities pk′′ = wk′′∑k

i=1 wi

and apply it to x′

θk′′ ← θk′′ + 1
Compute the objective value f(x′) of x′

if f(x′) > f(xc) then
NoImprov← 0
if f(xc) > f(xb) then

xb ← xc

πk′ ← πk′ + α1 ▷ k′ and k′′ are rewarded for a new best solution
πk′′ ← πk′′ + α1

else
xc ← x′

πk′ ← πk′ + α2 ▷ k′ and k′′ are rewarded for an improving solution
πk′′ ← πk′′ + α2

end
else

NoImprov← NoImprov + 1
if x’ is accepted by simulated annealing criteria then

xc ← x′

πk′ ← πk′ + α3 ▷ k′ and k′′ are rewarded for an accepted non-improving solution
πk′′ ← πk′′ + α3

else
πk′ ← πk′ + α4 ▷ k′ and k′′ are rewarded for a non-improving solution
πk′′ ← πk′′ + α4

end
end
if i modulo 100 = 0 then

for k ∈ OD ∪ OR do
if θk > 0 then

wk ← wk(1− r) + r πk

θl
k

▷ Updates the weight
πk, θk ← 0 ▷ Resets scores and counters

end
end

end
end
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4.3.1 Initial Solution

The construction of the initial solution follows a three-step procedure. The procedure ensures
the construction of a feasible solution.

In the first step, mandatory customers are assigned to routes. The assignment is performed
as described in Algorithm 3. For each previous (mandatory) customer, the set of vehicles with
remaining capacity is ordered randomly. Vehicles are then scanned in the order of the list.
Given a vehicle, the procedure looks for the cheapest feasible insertion of the customer (recall
that mandatory customers do not contribute to revenue). A feasible insertion is one that satisfies
the latest arrival times of all passengers and of the vehicle.

In the second step, new customers are randomly inserted into the routes. The insertion procedure
(Algorithm 4) is very similar to that of previous customers, with the only exception that it looks
for the first feasible insertion of the customer rather than the best feasible insertion.

In the third and last step, empty vehicles are randomly dispatched to rebalancing centers,
ensuring that the capacity of the rebalancing centers is respected.

Algorithm 3 Allocation of previous customer
Input:
NP ,K
for c ∈ NP do

Let KO be a randomly ordered list of the vehicles with residual capacity
for v ∈ KO do

for i = 1, . . . , Qv do
Let T be the tour obtained by inserting customer c into position i of the existing
tour of vehicle v if T is feasible with respect to arrival times then

Let Cv
i be the cost of T

else
Cv

i =∞
end

end
if mini=1,...,Qv{Cv

i } <∞ then
Assign customer c to position i = arg mini=1,...,Qv{Cv

i } of the tour of vehicle v
Move on to next customer

end
end

end
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Algorithm 4 Allocation of new customers
Input:
NC , K
for c ∈ NC do

Let KO be a randomly ordered list of the vehicles with residual capacity
for v ∈ KO do

for i = 1, .., Qv do
Let T be the tour obtained by inserting customer c into position i of the existing
tour of vehicle v if T is feasible with respect to arrival times then

Assign customer c to position i = arg mini=1,...,Qv{Cv
i } of the tour of vehicle v

Move on to next customer
end

end
end

end

Figure 4.1 illustrates the construction heuristic in a small fictitious example. We have NP :=
{P1}, NC := {C1, C2, C3}, R := {R1}, K : {D1, D2, D3}. The station is indicated by S. The
procedure starts by assigning customer P1 to D2. Following customers C1 and C2, are assigned
to D1. Instead, customer C3 is not assigned to any vehicle as it is not possible to find a feasible
insertion (e.g., the latest arrival time is too tight). Finally, the construction heuristic assigns
empty vehicles to rebalancing centers. As a result, vehicle D3 is dispatched to rebalancing center
R1.

Figure 4.1: Example construction of a feasible solution.

4.3.2 Solution Acceptance

A simulated annealing criterion is employed to determine whether non-improving solutions are
accepted. The probability of accepting a non-improving solution is

p = e
f(xc)−f(x′)

Ti
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where xc is the current solution, x′ is the newly generated solution, and Ti is the temperature
at iteration i. The initial temperature is carefully selected such that a solution M% worse than
the initial solution has a 50% probability of being accepted. At each iteration, the temperature
is reduced according to T := T (1 − i/maxIter). During parameter configuration, we conduct
numerical experiments to identify the optimal value of M .

4.3.3 Removal Operators

Five removal operators are designed to destroy a complete solution into a partial solution. The
operators are described as follows:

• Nearby Location Removal (NLR). A random customer c is selected from the customers
assigned to a vehicle. All new (optional) customers c′ situated within 2Km from c are then
removed from the respective vehicles.

• Same Arrival Time Removal (SATR). A random customer c is selected from the
customers assigned to a vehicle. All new (optional) customers with the same requested
arrival time as c are removed from the respective routes.

• Free Part of Routes (FPR). One-fourth of the vehicles are randomly selected. All the
new (optional) customers and rebalancing centers are removed from their routes.

• Remove Optional (RO). All new (optional) customers are removed from their respective
routes.

• Destroy Worst (DW). Vehicles are ranked according to their objective value contribution.
All new (optional) customers and rebalancing centers assigned to the worst one-third
vehicles are then removed.

4.3.4 Insertion Operators

Four insertion operators are introduced to reconstruct partial solutions.

• Random Insertion Customer First (RICF). The new customers not assigned to a vehi-
cle are randomly inserted into partial routes with residual capacity and that not terminate
at rebalancing centers. The insertion is always checked for feasibility. Infeasible insertion
are discarded and a new random insertion is evaluated. Remaining empty vehicles are
randomly assigned to rebalancing centers.

• Random Insertion Rebalancing First (RIRF). Same procedure as the RICF operator,
with the exception that rebalancing centers are randomly assigned before customers.

• Greedy Insertion (GI). For each vehicle with residual capacity, it goes through all unas-
signed new customers until it finds new customers to insert in the route in a feasible
manner. Finally, any remaining empty vehicle is randomly assigned to a rebalancing cen-
ter with residual capacity.

• Best Customer Insertion (BCI). For each route, it checks the score of inserting each
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new customer that has not yet been assigned to a vehicle. The customer is inserted into
each position of the route and, if the insertion is feasible, the score is recorded. The
customer with the highest score is then inserted in the route at the best position.

4.4 Computational Experiments

In this section we report on a number of experiments that test the performance of the ALNS
method developed. Particularly, we compare the performance of the method against that of
the MILP solver Gurobi (version 9.5.0). The ALNS algorithm is implemented in Python. The
experiments are performed on a set of instances of various sizes. In addition, to assess the
practical relevance of the model and solution method developed, we simulate its usage on a
10× 10 km2 for a eight-hour operating period. All instances are accessible at https://github.

com/JWYOpt/InstancesALNS_FMRSP. All experiments are performed on compute nodes with 40
cores and 171GB memory.

4.4.1 Test instances

The experiments are conducted on four distinct instance classes, each encompassing three in-
dividual randomly generated instances. Particularly we construct instance classes denoted as
V |K|−C|NC |−P |NP |−R|R|, where K represents the number of vehicles, NC represents the
number of new customers, NP represents the number of previous customers, and R represents
the number of rebalancing centers. As an illustration, the instance class V50-C150-P45-R3 indi-
cates instances with 50 vehicles, 150 new customers, 45 previous customers, and 3 rebalancing
centers. For every instance class, we randomly generate three distinct instances.

Instances are generated assuming a 10× 10 Km2 area, see Figure 4.2. The station is located at
point (0, 0). The locations of the vehicles are randomly drawn in the entire area. The locations
of new customers are randomly drawn following the distribution illustrated in Figure 4.2. Par-
ticularly, 10% of the new customers are randomly drawn in the square delimited by the points
(0, 0), (5, 0), (0, 5) and (5, 5), additional 10% in the square delimited by the points (5, 0), (5, 5),
(10, 0) and (10, 5), additional 30% in the square delimited by the points (0, 5), (5, 5), (0, 10)
and (5, 10), and the remaining 50% in the remaining area. Previous customers are randomly
generated across the entire area.

We assume a fleet of homogeneous vehicles of capacity Q = 4 and that each vehicle is initially
empty Vk = 0, for all k ∈ K. The requested arrival time for new customers is randomly selected
from the set (30, 40, 50), while the requested arrival time for previous customers is randomly
chosen from the set (20, 30, 40). The distance between locations is calculated using the Euclidean
distance. The traveling speed is set to at 36 Km/h. The unit transportation cost C is set to
$11.25/h. Furthermore, trip revenue Pi of a new customer i is computed using a fare of $2.59
per Km (using the Euclidean distance between the customer and the station) plus $0.74 per
minute (again using the Euclidean distance) from the picking up point of customer i to the
station (destination), ensuring a minimum fare of $8. The discount factor for the rebalancing
benefit is set to β = 0.1.
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Figure 4.2: Distribution of New Customers

4.4.2 ALNS parameters

An implementation of the ALNS method requires setting a number of parameters. In this section
we describe how such parameters are chosen.

The scores used to reward the performance of the operators are set as (α1, α2, α3, α4) = (33, 9, 13, 0)
following Ropke et al. (2006). The initial temperature T0 is chosen in order to give 50% prob-
ability of accepting solutions that are M% worse than the initial solution. In order to tune
the value of T0 we tested the algorithm under different values of M . Particularly, we tested
M ∈ {20, 50, 80} on instance of classes V50-C150-P45-R3, V100-C300-P50-R3, V150-C450-P75-
R3, and V200-C600-P100-R3. For each class, three random instances were generated. The
individual instances are indicated by appending their number at the end of the class name. As
an example V50-C150-P45-R3-1 indicates instance number 1 of class V50-C150-P45-R3.

The results of the experiments are presented in Table 4.1. The results show that the average
objective value achieved with M = 50 is higher than with the other values of M . This is valid for
all partial averages, thus across all instance sizes tested. Hence, we adopt the value of M = 50
in the remainder of the experiments presented.

4.4.3 Performance of the algorithm

In this section, we report on the performance of the algorithm. Particularly, we test the algorithm
using six instance classes, each containing three random instances.

Figure 4.3 illustrates the progression of the best objective value and current objective value
during the ALNS solution process. This is done on three instances, each of a different class.
The horizontal axis reported the time. It can be noted that during the initial phases, the
algorithm tends to accept considerably worse solutions. However, the acceptance rate decreases
significantly as the temperature decreases and the quality of the solutions found increases. It
can be further be noticed that the ALNS is able to significantly improve the initial solution.
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Table 4.1: Parameter Tuning

Instance
Temperature Percentage

0.2 0.5 0.8

V50-C150-P45-R3-1 3611.78 3607.15 3604.88
V50-C150-P45-R3-2 3633.15 3634.14 3631.71
V50-C150-P45-R3-3 3670.70 3683.53 3671.77

Average 3638.54 3641.61 3636.12
V100-C300-P50-R3-1 7588.80 7623.01 7623.96
V100-C300-P50-R3-2 7487.07 7474.69 7470.90
V100-C300-P50-R3-3 7428.76 7411.41 7410.98

Average 7501.54 7503.04 7501.95
V150-C450-P75-R3-1 11282.46 11282.46 11282.46
V150-C450-P75-R3-2 11255.32 11275.27 11257.27
V150-C450-P75-R3-3 11132.66 11140.82 11127.39

Average 11223.48 11232.85 11222.37
V200-C600-P100-R3-1 15195.61 15200.96 15191.71
V200-C600-P100-R3-2 14987.19 14992.08 14983.87
V200-C600-P100-R3-3 14805.90 14828.38 14815.52

Average 14996.24 15007.14 14997.03
Total Average 9339.95 9346.16 9339.37

This often happens in significant jumps after the initial phases where many worse solutions were
evaluated. It appears that the initial exploration phase is followed by an exploitation phase in
more promising regions of the solution space.

Following, we compare the optimality gap and solution time of the ALNS to those obtained by
the solver Gurobi. The experiments are meant to replicate a realistic scenario where solutions
are required within rather short times. For this reason, both the ALNS and Gurobi are allowed
to run for at most 300 seconds. The optimality gap of the solutions delivered by ALNS is
calculated using the upper bound delivered by Gurobi (when available). Table 4.2 reports the
results for the six instance classes tested.

It can be noted that, for the smallest instances (namely V20-C40-P10-R3 and V30-C60-P15-R3),
both ALNS and Gurobi deliver rather small optimality gaps. The optimality gaps of the ALNS
solutions are slightly larger than those of the solutions delivered by Gurobi on the V20-C40-
P10-R3 instances and comparable on the V30-C60-P15-R3 instances. However, ALNS delivers
such solutions within a few seconds, while Gurobi uses the 300-second period entirely.

For larger instances, such as V40-C80-P30-R3 and V50-C100-P45-R3, the performance of Gurobi
falls dramatically. The solutions delivered by the solver within 300 seconds exhibit an extremely
large optimality gap. In some instances the solver is not able to deliver feasible solutions. In
contrast, the ALNS algorithm delivers feasible solutions with an average optimality gap of 10%
within a 20 seconds.
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Finally, for the largest instances Gurobi fails to deliver upper and lower bounds. Consequently,
the optimality gaps of the solutions delivered by ALNS could not be computed. Nonetheless,
ALNS reliably delivers feasible solutions for all instances, in many cases much earlier than the
allowed 300 seconds.

(a) V50-C100-P45-R3-3 (b) V100-C200-P50-R3-3 (c) 150-C300-P75-R3-3

Figure 4.3: ALNS Process

4.5 Case study

We present now a case study where we simulate the process of order dispatching and rebalancing
in a typical operational day. The purpose is to assess the solution obtained in two operating
scenarios, namely with rebalancing (WR) and without rebalancing (WOR). Intuitively, in the
WR scenario we allow empty vehicles to move to rebalancing centers, while in the WOR scenario
we focus solely on order dispatching.

The simulation framework replicates an 8-hour business day, e.g., 9:00-17:00. Re-optimizations
are performed at regular intervals of 5 minutes throughout the day. The ALNS algorithm is
used to solve re-optimization problems. At the beginning, no previous customer exist. The
first re-optimization phase concerns only new customers and, in the WR scenario, rebalancing
centers. However, as new customers are allocated to vehicles during the re-optimizations, they
might materialize as previous customers in later re-optimizations. Particularly, this happens
any time a new customer is allocated to a vehicle but not picked-up within the 5-minute interval
between re-optimizations. If they are picked-up within the 5-minute interval, but not delivered,
they appear in the occupied seats Vk.

The demand distribution, vehicle capacity, and number of rebalancing centers for each re-
optimization period are as described in Section 4.4.1. In the simulation, a fleet of 40 vehicles
is employed. We consider three distinct sizes for the number of new customers gathered during
each re-optimization period, namely 70, 80, and 90. The requested arrival time for the new cus-
tomers is randomly selected from the set {20, 30, 40}. Additionally, if these customers become
previous customers for subsequent re-optimizations, their requested arrival time is adjusted by
deducting the 5 minutes elapsed between re-optimization. In summary, we conduct experiments
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on three different instance sizes denoted as V 40 − C|N |, where |N | signifies the number of
new customers generated during each re-optimization period. In the WR scenario we use three
rebalancing centers. For each instance size, we generate three random instances.

Table 4.3 reports the total number of customers picked up and the service rate during the 8-hour
period. The service rate is calculated as the ratio between the number of customers picked up
and the total number of customers appeared in the simulation. It can be observe that, when 70
new customers are generated in each re-optimization, the service rate of WR is only marginally
better than that of WOR. This signals that, in this case, the fleet is large enough to serve the
majority of the customers, even without anticipating demand. Conversely, for larger instances,
performing rebalancing yields significant service rates improvements. On average, the service
service rate of the WR scenario is higher than that of the WOR scenario by approximately 10
percentage points.

4.6 Conclusion

The article introduced an ALNS to find high quality solution to the problem of dispatching
and rebalancing vehicles in first-mile ride-sharing services. Our computational experiments
demonstrate the superiority of the proposed algorithm to commercial solvers, particularly for
medium and large problem instances. The method consistently and quickly delivers good feasible
solutions within short computation times even for instances where the solver fails to find even
an upper bound. In addition, a simulation experiment reveals that the service rate obtained by
means of rebalancing activities is consistently higher than that obtained without rebalancing.
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Table 4.2: Comparison of ALNS and Gurobi. Optimality gaps are computed as
(bestUpperBound-objective)/(bestUpperBound+ϵ), where bestUpperBound is the best upper
bound delivered by Gurobi (when available) and ϵ is a small constant. A dash − indicates that
no feasible solution was found. NC (Non-computable) indicates that a feasible solution was
found, but the gap could not be calculated as Gurobi failed to provide an upper bound.

Instance Gap [%] ALNS Runtime [s] ALNS Gap [%] Gurobi Runtime [s] Gurobi

V20-C40-P10-R3-1 3.11% 3.88 0.93% 300.21
V20-C40-P10-R3-2 3.40% 3.30 1.00% 300.21
V20-C40-P10-R3-3 1.94% 6.09 1.06% 300.58

Average 2.81% 4.43 0.99% 300.33
V30-C60-P15-R3-1 7.44% 6.77 6.49% 304.60
V30-C60-P15-R3-2 8.08% 8.04 7.31% 304.55
V30-C60-P15-R3-3 6.83% 12.79 6.12% 307.79

Average 7.45% 9.20 6.64% 305.65
V40-C80-P30-R3-1 9.76% 8.47 147.34% 300.11
V40-C80-P30-R3-2 10.31% 7.02 352.47% 300.52
V40-C80-P30-R3-3 9.34% 11.30 3349.01% 304.16

Average 9.80% 8.93 1282.94% 301.60
V50-C100-P45-R3-1 9.89% 17.50 2189.29% 300.21
V50-C100-P45-R3-2 9.72% 22.73 - 300.03
V50-C100-P45-R3-3 10.60% 18.14 - 300.62

Average 10.07% 19.46 2189.29% 300.29
V100-C200-P50-R3-1 NC 92.12 - 361.65
V100-C200-P50-R3-2 NC 109.79 - 353.21
V100-C200-P50-R3-3 NC 86.72 - 363.87

Average NC 96.21 - 359.57
V150-C300-P75-R3-1 NC 251.04 - 300.96
V150-C300-P75-R3-2 NC 216.79 - 301.04
V150-C300-P75-R3-3 NC 221.92 - 300.99

Average NC 229.92 - 300.99
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Table 4.3: Results of the simulation of an 8-hour period with re-optimizations every 5 minutes.
The service rate is computed as the number of customers picked up over the total number of
customers appeared in the entire simulation.

WR WOR
TotalPicked Up Service Rate Picked Up Service Rate

V40-C70-1 5151 89.43% 5141 89.25% 5760
V40-C70-2 5328 92.50% 5154 89.48% 5760
V40-C70-3 5304 92.08% 5245 91.06% 5760

Average 5261 91.34% 5180 89.93% 5760
V40-C80-1 5759 74.99% 4396 57.24% 7680
V40-C80-2 5832 75.94% 4803 62.54% 7680
V40-C80-3 5887 76.65% 4192 54.58% 7680

Average 5826 75.86% 4463.667 58.12% 7680
V40-C90-1 5632 65.19% 5468 63.29% 8640
V40-C90-2 5875 68.00% 5140 59.49% 8640
V40-C90-3 5972 69.12% 4030 46.64% 8640

Average 5826.333 67.43% 4879.333 56.47% 8640
Total Average 5637.778 78.21% 4841 68.17% 7360
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