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Abstract

This thesis considers matrix methods in multi-state life insurance, with an empha-
sis on techniques related to inhomogeneous phase-type distributions (IPH) and
product integrals. We start out with developing an expectation-maximization (EM)
algorithm for statistical estimation of general IPHs. Then we introduce a new
class of multi-state models, the so-called aggregate Markov model, which allows
for non-Markovian modeling with most of the analytical tractability of Markov
chains preserved. Using techniques related to IPHs, we derive distributional proper-
ties, computational schemes for life insurance valuations with duration-dependent
payments, and statistical estimation procedures based on the EM algorithm for
general IPHs. Special attention is given to a case with a reset property, where
the aggregate Markov model is semi-Markovian. We then move on and consider
Markov chain interest rate models and show that bond prices are survival functions
of IPHs. This allows for calibration via EM algorithms for phase-type distributions.
Then we consider a multivariate payment process and derive higher order moments
of its present value. Finally, we consider computation of market values of bonus
payments in multi-state with-profit life insurance, where numerical procedures based
on simulation of financial scenarios and classic analytical methods for insurance
risk are developed.






Preface

This thesis has been prepared in fulfillment of the requirements for the PhD degree
at the Department of Mathematical Sciences, Faculty of Science, University of
Copenhagen. The work has been carried out under the supervision of Professor
Mogens Bladt (University of Copenhagen), while Professor Mogens Steffensen
(University of Copenhagen) has acted as co-supervisor.

The main part of the thesis consists of an introduction followed by six chapters
that are based on manuscripts written throughout the study period. Although the
topics between the manuscripts are related, they appear as independent scientific
contributions and should therefore also be read with this in mind. In particular, the
notation slightly varies between chapters, and overviews of existing literature and
concepts are sometimes repeated. The introduction serves the purpose of providing
the relations between the chapters and their main contributions, thereby giving the
reader an overall story behind the studies undertaken in the thesis.

This is it. After almost all of my adulthood so far has been spent at the H.C.
@rsted Institute on or around the Department of Mathematical Sciences at the
University of Copenhagen, it now comes to an end with this thesis. I have grown
as a person through these years, and the last years spent on matrix methods in life
insurance could not have been a better way to end this immense journey of learning.

It is my hope that the reader will enjoy this culmination at least as much as I have.
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Summary

This thesis is mainly about matrix methods in multi-state life insurance. We start out
with giving an introductory background and overview of the main contributions in
Chapter 1, which then is followed by Chapters 2-7 where we present the manuscripts
forming the main part of the thesis. A principal focus of the thesis, which constitutes
the Chapters 2-5, is the application of inhomogeneous phase-type distributions in

multi-state life insurance.

We begin the journey in Chapter 2 with the manuscript Ahmad, Bladt, and
Bladt (2022) where we develop EM algorithms for statistical fitting of general IPHs.
The EM algorithm is obtained using techniques known from statistical inference of
time-inhomogeneous Markov jump processes based on their multivariate counting
processes. We implement the algorithm and apply it to data in the case of piecewise
constant transition rates, allowing for simplified estimation procedures based on
Poisson regressions on a set of occurrences and exposures.

In Chapters 3-4, we then introduce a class of multi-state life insurance models we
refer to as aggregate Markov models. They are constructed by adding unobservable
sub-states, so-called microstates, to each biometric or behavioral state, thereby
referring to the latter as macrostates. The idea is to obtain conditional sojourn
time distributions that are IPH of general dimension; the classic Markov chain
models have one-dimensional IPHs as conditional sojourn time distributions. In
Chapter 3, which is based on the manuscript Ahmad, Bladt, and Furrer (2022), we
derive distributional properties as well as computational schemes for life insurance
valuations of duration-dependent payments. The results reveal that aggregate
Markov models can be highly non-Markovian. Throughout, we give special attention
to a case, which we refer to as the reset property, where the aggregate Markov
process is a time-inhomogeneous semi-Markov process.

Then, in Chapter 4, which is based on the manuscript Ahmad and Bladt (2022a),
we consider statistical estimation in the aggregate Markov model based on data of
trajectories of the macrostate process. Using similar techniques as in Chapter 2,
combined with the many distributional results derived in Chapter 3, we develop
EM algorithms for the estimation of transition rates on the micro level. Also here,
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viii SUMMARY

we give special attention to the reset property case, especially since it allows us
to use the EM algorithms of Chapter 2 as input. We implement the latter in the
case of piecewise constant transition rates and apply it to data simulated from
a time-inhomogeneous semi-Markovian disability model. The resulting estimated
transition rates are also used in a numerical example in Chapter 3 to carry out life
insurance valuations of a disability coverage with a waiting period.

In Chapter 5, which is based on the manuscript Ahmad and Bladt (2022b), we
consider stochastic interest rates following a time-inhomogeneous Markov jump
process, the so-called Markov chain market. By deriving suitable product integral
representations of the bond prices, we show that these are survival functions of
IPHs. This allows us to fit (calibrate) the transition rates of the underlying Markov
chain from observed bond prices using EM algorithms for phase-type distributions.
We provide some numerical examples to illustrate this. Furthermore, we show how
the model naturally integrates into existing matrix frameworks in multi-state life
insurance, by providing product integral representations of reserves and higher
order moments with stochastic interest rates on this form.

In Chapter 6, which is based on the paper Ahmad (2022), we consider a multi-
variate payment process with components defined in terms of the same underlying
time-inhomogeneous Markov jump process. We derive differential equations and
product integral representations of higher order moments of the multivariate present
value. This allows us to analyze joint effects between different product types in a
general multi-state Markovian framework. Special attention is given to pairwise
covariances and correlations between two product types, where results related to
Hattendorff type of results for the variance are derived.

The thesis then ends with Chapter 7, which is based on the paper Ahmad,
Buchardt, and Furrer (2022). Here, the problem of computing the market value of
bonus payments in multi-state with-profit life insurance is attended. We consider
the bonus scheme known as additional benefits, where dividends are used to buy
extra benefits to the insured. By assuming that dividends are affine in the number of
additional benefits held, we derive differential equations that allows for computation
of market values of bonus payments using a combination of simulating financial
scenarios and classic analytical methods for insurance risk. We give special attention
to the case where the number of additional benefits only depends on financial risk,
which allows for simplified numerical procedures.



Resumé

Denne athandling handler hovedsageligt om matrix metoder i flertilstandslivs-
forsikring. Vi starter ud med at give relevant baggrundsstof og en oversigt over
hovedbidragene i Kapitel 1, som efterfolges af Kapitel 2—7, hvor vi praesenterer
de manuskripter, der udger kernen af afhandlingen. Et hovedfokus i afhandlingen,
som udger Kapitel 2-5, er anvendelsen af inhomogene fasetypefordelinger (IPH) i
flertilstandslivsforsikring.

Vi begynder rejsen i Kapitel 2 med manuskriptet Ahmad, Bladt og Bladt (2022),
hvor vi udvikler EM algoritmer til statistisk estimation af generelle IPH’er. EM
algoritmerne opnas ved hjelp af teknikker kendt fra statistisk inferens for tidsinho-
mogene Markov springprocesser baseret pa deres flerdimensionelle taelleprocesser.
Vi implementerer algoritmen og anvender den pa data i tilfzeldet med stykkevis
konstante intensiteter, hvilket giver mulighed for simplere estimations metoder
baseret pa Poisson regressioner pa et saet af antal heendelser og eksponeringer.

I Kapitel 3-4 introducerer vi derefter en klasse af flertilstandsmodeller vi omtaler
som aggregerede Markov modeller. De er konstrueret ved at tilfgje underliggende uob-
serverbare tilstande, sakaldte mikrotilstande, til hver biometrisk eller adfserdsmaessig
tilstand, hvorved disse derfor omtales som makrotilstande. Ideen er at opna betinge-
de fordelinger for opholdstider der er IPH af generel dimension; de klassiske Markov
modeller har en-dimensionelle IPH’er som betingede fordelinger for opholdstider. I
Kapitel 3, som er baseret pa manuskriptet Ahmad, Bladt og Furrer (2022), udleder
vi fordelingsmaessige egenskaber samt beregningsmetoder for veerdiansaettelse af
livsforsikringsforpligtelser med varighedsafthaengige betalinger. Resultaterne afslgrer,
at aggregerede Markov modeller kan veere saerdeles ikke-Markovianske. Vi laegger
saerligt veegt pa et specialtilfeelde, som vi omtaler som nulstillings egenskaben, hvor
den aggregerede Markov proces er en tidsinhomogen semi-Markov proces.

Derefter, i Kapitel 4, som er baseret pa manuskriptet Ahmad og Bladt (2022a),
behandler vi statistisk estimation i den aggregerede Markov model baseret pa
data af stier for makro tilstandsprocessen. Ved at bruge lignende teknikker som
i Kapitel 2, kombineret med de mange fordelingsresultater udledt i Kapitel 3,
udvikler vi EM algoritmer til estimation af intensiteter pa mikroniveau. Ogsa her
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leegger vi seerligt veegt pa tilfaeldet med nulstillings egenskaben, iser da det giver os
mulighed for at bruge EM algoritmerne fra Kapitel 2 som input. Vi implementerer
sidstnzevnte i tilfaeldet med stykkevis konstante intensiteter og anvender den pa data
simuleret fra en tidsinhomogen semi-Markoviansk invalidemodel. De estimerede
intensiteter vi opnar her bruges ogsa i et numerisk eksempel i Kapitel 3 til at udfegre
veerdiansaettelse af en invalidedeekning med karenstid.

I Kapitel 5, som er baseret pa manuskriptet Ahmad og Bladt (2022b), betrag-
ter vi stokastiske renter modelleret som tidsinhomogene Markov springprocesser,
det sakaldte Markov-ksede marked. Ved at udlede passende produkt integral re-
praesentationer for obligationspriser, viser vi, at disse er overlevelsesfunktioner for
IPH’er. Dette giver os mulighed for at estimere (kalibrere) intensiteterne for den
underliggende Markov ksede fra observerede obligationspriser ved hjelp af EM
algoritmer for fasetypefordelinger. Vi illustrerer dette gennem en rackke numeriske
eksempler. Ydermere viser vi hvordan modellen naturligt integreres i eksisteren-
de matrix-baserede modeller i flertilstandslivsforsikring, hvor vi udleder produkt
integral repraesentationer for reserver og hgjere ordens momenter med stokastiske
renter pa denne form.

I Kapitel 6, som er baseret pa artiklen Ahmad (2022), betragter vi en flerdimensio-
nel betalingsproces med komponenter defineret i termer af den samme underliggende
tidsinhomogene Markov springproces. Vi udleder differentialligninger og produkt
integral repraesentationer for hgjere ordens momenter af den flerdimensionelle nu-
tidsveerdi. Dette giver os mulighed for at analysere afhaengigheder mellem forskellige
produkttyper i en generel flertilstands Markoviansk ramme. Der leegges seerlig veegt
pa kovariansen og korrelationen mellem to produkttyper, hvor resultater relateret
til Hattendorft’s resultater for variansen udledes.

Afhandlingen afsluttes derefter med Kapitel 7, som er baseret pa artiklen Ahmad,
Buchardt og Furrer (2022). Her behandles problemet med at beregne markedsveer-
dien af bonusbetalinger, bonuspotentialet, for gennemsnitsrente i flertilstandslivs-
forsikring. Vi betragter bonusordningen ydelsesopskrivning, hvor dividender bruges
til at kgbe ekstra ydelser til den forsikrede. Ved at antage, at dividenderne er affine
i antallet af ydelser tilkgbt, udleder vi differentialligninger der giver mulighed for
beregning af markedsveerdien af bonusbetalinger ved hjeelp af en kombination af
simulering af finansielle scenarier og klassiske analytiske metoder for forsikringsrisiko.
Vi laegger seerligt vaegt pa det tilfzelde, hvor antallet af tilkpbte ydelser kun afhaenger
af finansiel risiko, hvilket giver mulighed for forenklede numeriske procedurer.
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Chapter 1

Introduction

This thesis is mainly about matrix methods in multi-state life insurance, with an
emphasis on techniques related to inhomogeneous phase-type distributions and
product integrals. This introduction sets the scene for the studies undertaken. We
start out with giving some background on existing models and methods in the
literature on multi-state life insurance that are relevant for the present thesis. Based
on this, we end the chapter by motivating the studies carried out in the subsequent
chapters along with an overview of the main contributions.

1.1 Background

We now provide some background on multi-state modeling in life insurance. In
Subsection 1.1.1, we present the classic Markov chain models, where special attention
is paid to recent developments on matrix representations within this framework.
Subsection 1.1.2 then considers semi-Markov models including a discussion on its
added complexities relative to the Markov models. Finally, in Subsection 1.1.3, we
consider the notion of inhomogeneous phase-type distributions and discuss modeling

potentials in relation to the previous subsections when having these as building
blocks.

1.1.1 Markov chain models

Markov chain models dates back to at least Hoem (1969a) and Norberg (1991), and
are the most classic and popular approaches to multi-state life insurance modeling.
It provides a unifying framework to model insurance contracts related to different
kinds of life and health events in a tractable and computationally simple way.
The model therefore naturally plays a predominant role throughout the thesis as
a baseline model we extend in various directions. We give an overview of the
framework in this subsection.



2 CHAPTER 1. INTRODUCTION

The states of the insured is governed by a time-inhomogeneous Markov jump
process Z = {Z(t)}1>0 taking values on a finite state space J = {1,...,J},
J € N, indicating biometric or behavioral states of the insured. It is assumed to
admit suitably regular transition rates t — p;;(t), i,5 € J, j # i, with p.(t) =
> i€ Jij (t), implying that the transition probabilities

pij(t,s) =P(Z(s) = j| Z(t) = i)
satisfy Kolmogorov’s forward and backward differential equations:
0
ng (t,s) Z pik(t; ) s (s) — pij (L, 8)ps.(s), pij(tt) = 1=y,
kik#j

0
HiPia(t:8) = > wik(®pri (t8) + pa(Opi(t,s), pij(s,s) = L=y
k:k#i

(1.1.1)

The life insurance contract is then modeled by a payment process B = {B(t) };+>0
giving accumulated benefits less premiums. It is assumed to consist of payment
rates during sojourn states and payments upon transition between states, thus
taking the form

dB(t) = Z <]-(Z(t)=j)b dt+ Z b]k dNJk ))

jeJ heg (1.1.2)

B(0) € R,

where b;(t) and b;,(t) are suitably regular deterministic payment functions, and
N is the multivariate counting process associated to Z, with components N;; =

{Nt(®)}e>0, 4.k € T, k # j, given by
Ni(t) = #{s € (0,t] : Z(s—) = j,Z(s) = k}.

For simplicity, we may assume a maximal contract time 7" > 0 such that b;(t) =
b;r(t) = 0 for all t > T’; this could e.g. be a maximal living age of the insured.

For valuation of the life insurance liabilities, the prospective reserve is the key.
It is given as the expected present value of future payments given the available
information. Assuming a deterministic and suitably regular interest rate r(t), it
then reads

t

V(t) =K [/T e~ S r(v)dv dB(S)

F (t)] ;

where F = {F(t)}+>0 denotes the natural filtration generated by Z, representing
the available information.

The Markov assumption on Z together with the assumption that the payments
at some time only depends on Z through its value at that time, that is, that the
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payment functions b; and bj;, are deterministic, gives the state-wise counterparts
V(t) = Vz)(t), where

T
Vi(t) = EU e i dp(s)
t

Z(t)i], ieJd,

are state-wise prospective reserves. They satisfy the celebrated Thiele’s differential

equations
Vi) = rOViD) — ilt) — 3 s (B (1) + V3(0) — Vi),
]]‘i{ (1.1.3)
Vi(T) = 0.

Computation of the state-wise prospective reserves can then be carried out by
solving the backward system of differential equations (1.1.3), which then provides
the reserves at all time points between an initial time and the maximal contract
time.

Several extensions of the classic multi-state version of Thiele’s differential equation
(1.1.3) has been considered in the literature. Within Markov chain models, this, e.g.,
includes higher order moments of present values in Norberg (1995b) and inclusion
of stochastic interest following a Markov jump process in Norberg (1995a, 2003),
but also Hattendorff type of differential equations for the variance of present values
have been considered in Ramlau-Hansen (1988).

In recent years, there has been an increased interest towards representing the
prospective reserve in terms of so-called expected accumulated cash flows. Following
Buchardt, Furrer, and Steffensen (2019, Definition 2.2), they are given by, for a
valuation time ¢ > 0,

A(t,s) =E[B(s) — B(t)| F(t)], s>t (1.1.4)

which then gives the following integral expression for the prospective reserve:

T
V(t) = / e Jir@dv g ¢ ds).

t

In the Markov chain model, it was already carried out by Buchardt and Mgller (2015).
Here, the expected accumulated cash flow takes the form A(t,s) = Az (¢, s), with
the state-wise counterparts satisfying

T .
Vit) = / e~ S A 4,4 ds),
t

(1.1.5)
At d9) = 3 (e, 5) (bj<s> 'y bjk<s>ujk<s>)ds.

ieJ keg
I k#j
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Computation of the prospective reserve via the expected accumulated cash flow
thus requires a computation of the transition probabilities p;;(¢, -) via Kolmogorov’s
forward differential equations. This gives the reserve at a single time ¢, as opposed
to Thiele’s differential equation (1.1.3) which gives the reserve at all time points.
However, if one is interested in computing the reserve for different interest rate
levels to asses sensitivities, e.g. in the context of hedging interest rate risk when it
is stochastic, the cash flow method (1.1.5) provides an efficient alternative.

Matrix representations and product integrals

In the context of survival and event history analysis, and thus also Markov processes,
there has been occasional use of so-called product integrals as a tool to describe
solutions to differential equations of Kolmogorov type, see, e.g., Johansen (1986)
and Gill and Johansen (1990) for a survey. It was recently put into the multi-state
Markovian life insurance context by Bladt, Asmussen, and Steffensen (2020), where
they derive product integral representations of reserves using the close relations
between Thiele’s and Kolmogorov’s differential equations. This allows for a more
compact and direct treatment of Markov chain models, especially in relation to
numerical implementation.

We outline the concept in the following. Consider the transition intensities
;5 (t) of the Markov jump process Z on matrix form as M (t) = {pi;(t)}ijer,
where p;(t) = —pi(t), and likewise for the corresponding transition probabilities
P(t,s) = {pij(t,s)}ijcs. Then Kolmogorov’s forward and backward differential
equations can be written compactly on the form

88 P(t,s) = P(t,s)M(s), P(t,t)=1,
° (1.1.6)
gtP(t,s) — _M®)P(ts), P(s,s) =1

The solution to such a system of differential equations is referred to as the product
integral of M from t to s, and we write

S

P(t,s) = J{(I + M(x) d). (1.1.7)

t

Here, the concept is not restricted to intensity matrices but instead holds for all
matrix functions satisfying (1.1.6) (whenever a solution exist). Treating the solution
as an object of its own allows us to draw upon its many properties for further
derivations and manipulations.

It is then shown in Bladt, Asmussen, and Steffensen (2020) that the Thiele type of
differential equations closely resembles (1.1.6)—(1.1.7). The key is the introduction
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of so-called partial state-wise prospective reserves

T
‘/Zj(t) =E 1(Z(T):j)[ e~ S r(v)do dB(S)

Z(t) = z} 7
(1.1.8)

V(t) = {Vij(O)}ijea

which generalizes the transition probabilities in the sense that if we take the 0’th
moment of the present value, we arrive at the transition probabilities; the reserves
are first order moments. Then, by introducing the reward matrix function R(¢),

given by
R(t) = M(t)  B(t) + A(b(t)),
B(t) = {bi;(t)}ijea
b(t) = (bi(t),...,bs(t)),

where o denotes the Schur product, that is (A e B);; = A;;B;;, and A(b) is
a diagonal matrix with the vector b as diagonal, the following product integral
representation is achieved

d M(z) —r(z)I R(x) (e S p Ty V()
I[<I+< 0 M) )= 0 P(t,T))

This follows from extending results in Van Loan (1978) from matrix exponentials
to product integrals, see also Bladt, Asmussen, and Steffensen (2020, Lemma 2).

The block structure of the matrix put up on the left hand side gives a compact
and unifying treatment of transition probabilities and reserves in a single notion.
Further results for higher order moments are derived in similar fashion; one simply
adds a suitable block row for each moment. We refer to Bladt, Asmussen, and
Steffensen (2020, Theorem 5) for the details.

Although matrix representations of the expected accumulated cash flow (1.1.4)
is not directly mentioned in Bladt, Asmussen, and Steffensen (2020), they are
readily obtained via the reward matrix function R(t) as follows. Defining the vector
containing the state-wise counterparts,

A(t,s) = (AL(t,s),..., As(t,s)),
we get by (1.1.5),
A(t, ds) = P(t,s)R(s)1;ds.

In the following subsections, we consider a number of alternatives to the classic
Markov chain models that allows for added flexibility, and discuss their relations to
the properties of Markov models considered in this subsection.



6 CHAPTER 1. INTRODUCTION

1.1.2 Semi-Markov models

The Markov chain model enjoys a number of technical and computational advantages,
which play a fundamental role in its popularity. However, it suffers from not being
able to capture duration effects, which evidently appear in the context of multi-state
life insurance. This has motivated the need for more sophisticated models, and the
time-inhomogeneous semi-Markov model has seen considerable attention over the
years, see, e.g., Hoem (1972), Helwich (2008), Christiansen (2012), and Buchardst,
Mpgller, and Schmidt (2015).

In the semi-Markov model one instead assumes that (Z,U) is Markovian, where
U is the process giving the duration since the last jump in Z:

U(t) =sup{s € [0,t] : Z(u) = Z(t) for all u € [t — s,t] }. (1.1.9)

The model is then described by transition rates p;;(t,u) depending on both the
absolute time ¢ and the duration u since the last jump. In addition to this, the
payments also depend on the duration process U, such that it takes the form

48() = X (100000 (U0 dt + 3 bytU(6-)) AN ).
jer e (1.1.10)

k#j

B(0) € R,

where b;(t,u) and bji(t,u) are suitably regular deterministic payment functions
depending on both time and duration.

The expected accumulated cash flow now takes the form A(t, s) = Az),u @ (t, 5),
and similarly for the prospective reserve, V(t) = Vz ), u)(t), with

T
Viu(t) = / e IIT@® A (1 ),
t

u+s—t
Aiu(t, ds) = Z/ pij(t,u, s, dz) <bj(s,z) + Z bjk(s,z)ujk(s,z)> ds,
0

ISV keg
J k#j

where the transition probabilities p are given by
pij(t,u,s,2) =P(Z(s) =4,U(s) < z| Z(t) =1,U(t) = u).

The transition probabilities can be calculated by solving the forward integro-
differential equations of Buchardt, Mgller, and Schmidt (2015, Theorem 3.1), which
corresponds to Kolmogorov’s forward differential equations for the semi-Markovian
case. Similarly, there exist partial differential equations for the prospective reserve
itself, cf., e.g., Helwich (2008, Theorem 4.11) or Christiansen (2012, (3.9)), which
suitably extends Thiele’s differential equation to the semi-Markovian case.

The inclusion of duration effects from the semi-Markov model adds a significant
layer to the computational complexity compared to the Markovian case of Subsection
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1.1.1. Indeed, it now requires computations on a two-dimensional grid of time and
duration, while a one-dimensional grid of time suffices for Markov chain models.
In particular, the aforementioned matrix representations and product integral
representations of Bladt, Asmussen, and Steffensen (2020) are, unfortunately,
not applicable for semi-Markov models, since these techniques relies on ordinary
differential equations.

In the following subsection, we consider a class of distributions that plays an
important role throughout the thesis, which in particular aims at carrying over
tools from Markovian modeling to semi-Markov models.

1.1.3 Inhomogeneous phase-type distributions

Phase-type distributions (PH), which are defined as absorption times of time-
homogeneous Markov jump processes, have a long history of extensive use in
applied probability. They are dense in the class of distributions on the positive reals,
in the sense of weak convergence as the number of phases tends to infinity, and
often lead to explicit solutions to complex problems due to their inherit tractability
from Markov chains. For a comprehensive survey on PH distributions, see Bladt
and Nielsen (2017).

In this subsection, we focus on the more recent developments made by Albrecher
and Bladt (2019), where they introduce the class of inhomogeneous phase-type
distributions (IPH). It is defined as follows. Consider a time-inhomogeneous
Markov jump process X = {X(¢)}:>0 taking values on the finite state space
J =A{1,...,J—1,J}, where the states {1,..., J—1} are transient and J is absorbing,.
Denote with (m,0) the initial distribution of X, and M (t) = {u;;(t)}i jes the
transition intensity matrix function of X. It is then on the form

M(t) = (T(()t) t(ot)>, (1.1.11)

where T'(t) is a sub-intensity matrix function consisting of transition rates between
the transient states and t(t) = —T'(¢)1; is a column vector of transition rates to the
absorbing state, the so-called exit rate vector function. The time until absorption,
given by

T=inf{t >0 : X(t)=J},

is then said to be an inhomogeneous phase-type distribution with representation
(r,T), and we write 7 ~ IPH(mr,T).
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The density f(z) and distribution function F(x) of 7 are then obtained via
product integrals of the sub-intensity matrix function T'(¢):

fl@)=m || (I +T(u)du)t(x),

Oﬁ&

(1.1.12)

F(x) = l—wﬁ(I—l—T(u)du)lJ.
0

An important feature of IPH distributions is that the overshoot of an IPH distribu-
tion is again IPH-distributed. This follows from (1.1.12), since then

I+ T@)de)
0 NI +T(@)de,,  (1.1.13)
WT((I—i-T(:E)d:L‘)lJ s
0

P(r>s+t|7>s)=

which shows that
T—s|7>s~IPH(a(s),T(s+*)),

where a(s) is given by
™ H(I + T'(z)dx)
afs) = —

o (I +T(2) do)1,
0

This property plays an important role throughout the thesis, as it implies a non
memory-less property of IPH distributions. In other words, it reveals that they
may be used to model duration effects even though they are defined in terms of
Markov processes.

1.2 Overview of the thesis and main contributions

We end the introduction by giving an overview of the remaining chapters, which
constitute the main part of the thesis and thus also contains the main contributions.
Each chapter is based on independent manuscripts and should therefore also be
read with this in mind. In particular, notation slightly varies between chapters,
and since most of the manuscripts are related, overviews of existing literature
and concepts are sometimes repeated between the chapters. While the following
subsections intend to highlight the main contents of each chapter, the focal point of
the exposition is to provide the necessary relations between the chapters, thereby
giving the reader an overall story of the thesis. These relations are related to the
background given in Section 1.1.
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1.2.1 Inhomogeneous phase-type distributions in multi-state life

insurance

Phase-type distributions (PH) have not seen substantial use in the context of
multi-state life insurance so far. This is perhaps due to the time-homogeneity
of the underlying Markov chain, which is not suitable in setups with strong age
dependencies. However, with the recent introduction of inhomogeneous phase-type
distributions (IPH) in Albrecher and Bladt (2019), as absorption times of time-
inhomogeneous Markov jump processes, it now makes it very natural to consider
applications within multi-state life insurance. This is a principal focus of the thesis
and the overall theme of Chapters 2-5.

Estimation of general IPHs

To start of using IPHs in multi-state life insurance, we first develop tools for
fitting them to data. This is the content of Chapter 2, where we present the
manuscript Ahmad, Bladt, and Bladt (2022). This will later on allow us to estimate
parameters in models where we use IPHs as building blocks. We tackle it as
an incomplete data problem where only absorption times of time-inhomogeneous
Markov jump processes are observed. An expectation-maximization (EM) algorithm
is then employed to estimate parameters of the underlying Markov chain.

Fitting IPHs to data has earlier on been carried out by Albrecher, Bladt, and
Yslas (2022), but only within a sub-class where the sub-intensity matrix function
T(t) in (1.1.11) is of the form T'(t) = A(t)T, for a scalar function A and sub-intensity
matrix T'. This implies commuting sub-intensity matrix functions across time, and
links to the conventional PH distributions (see Theorem 2.8 in Albrecher and Bladt,
2019) can then be used to develop EM algorithms where the classic EM algorithm
of Asmussen, Nerman, and Olsson (1996) can be used as input.

In the multi-state life insurance context, however, we do not wish to restrict
ourselves to this sub-class, as it limits the time-inhomogeneity needed to fully
capture age dependencies. We therefore extend Albrecher, Bladt, and Yslas (2022)
to general IPHs. Instead of taking PH distributions as starting point, which no
longer is possible, we take as starting point Andersen et al. (1993), where general
methods for statistical inference of time-inhomogeneous Markov jump processes
based on their multivariate counting processes are available.

While we develop an EM algorithm for the general case, we propose a reduction
to the case where the sub-intensity matrix function T'(¢) is piecewise constant on
the form

T(t)=T.= {'u?j}i,jej’ t€ (sk—1,88), k=1,...,K,



10 CHAPTER 1. INTRODUCTION

for a suitable grid s =0< s1 < -+ < sg_1 < 00 = Sk, and where we emphasize
that the sub-intensity matrices 17, ..., Tk in general do not commute.

Piecewise constant transition rates allows us to carry out simplified estimation
procedures based on aggregated occurrences and exposures in the different time
intervals, where Poisson regressions akin to those of Aalen, Borgan, and Gjessing
(2008, Section 5) become available. Furthermore, general considerations via product
integrals reduce to products of matrix exponentials, which computationally are
more viable. We implement the EM algorithm in the piecewise constant case and
show some numerical examples of mortality modeling of Danish lifetimes as well
as fitting to theoretical distributions, illustrating the strength of our approach in
these kinds of problems.

The example of mortality modeling, where we fit IPHs to lifetimes, can be seen
as a prelude to their application in multi-state models, which is the theme of the
following two chapters.

Aggregate Markov models

In Chapters 3-4, we introduce a class of multi-state models which we refer to as
aggregate Markov models. The idea behind this class of models is as follows. Going
back to the Markov chain models of Subsection 1.1.1, introduce the jump times
(Th)nen, of Z, where Tp = 0. It then holds

P(Tysy > t| To, Z(To), Ty, Z(T)), . .., Ty, Z(Ty) = j) = el 5@z >
which means that

Toi1 — T | (T, Z(Tz‘))?zo ~IPH(L, pz 1y z(1) (Tn ++))-

In other words, sojourn time distributions in the Markov chain model follow one-
dimensional TPH distributions independent of past sojourn times and transitions.
Aggregate Markov models then extend to sojourn times admitting conditional IPH
distributions of general dimension. This allows for added flexibility, such as duration
dependence, while still retaining the analytical tractability from Markov chains.

The desired structure is obtained by adding so-called microstates to each biometric
or behavioral state, which we then refer to as macrostates. This results in a two-
dimensional state space

E={j=(jj):j€J,je{l,2...d}}
where d; > 1, j € J, is the number of microstates assigned macrostate j.

The aggregate Markov model for the states of the insured Z is then given as
follows. Introduce a time-inhomogeneous Markov jump process X = {X (¢)};>0 =
{(X1(¢t), X2(t)) }+>0 taking values on E with transition intensity matrix function
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M (t). Then Z(t) = X;(t) keeps track of the macrostate, while X5 (¢) identifies the
current microstate contingent on the state of X(¢).

The transition intensity matrix function M (¢) can be written on the following

block form:
Mll(t) Mlg(t) Mlj(t)
M(t) = M2.1(t) M2.2(t) N M2.J w , (1.2.1)
Mji(t) Mya(t) --- Myy(t)

where Mj;(t) are sub-intensity matrix functions of dimension d; x d; providing
transition rates within macrostates, and M (t) are non-negative matrix functions
of dimension d; x dj, providing transition rates between macrostates. Computations
in aggregate Markov models are then, to a large extent, carried out using the block
matrix functions Mj;(t) as building blocks, so to speak. This is in contrast to
Markov chain models, where computations are based on transition rates, which can
be viewed as 1 x 1 block matrices in (1.2.1).

In Chapter 3, which is based on the manuscript Ahmad, Bladt, and Furrer
(2022), we derive distributional properties of the macrostate process Z as well as
computational schemes for life insurance valuation elements (prospective reserves
and expected accumulated cash flows) with duration-dependent payments on the
form (1.1.10). The distributional results reveal that aggregate Markov models can
be highly non-Markovian. Throughout, we pay special attention to a case, which
we refer to as the reset property, where the block matrix functions My, j # k, are
rank one matrices of the following form

M;i,(t) = Bji(t)mi(t), (1.2.2)

where B;1(t) is a d;-dimensional non-negative column vector function and 7 (t)
is a di-dimensional non-negative row vector function with 74 (t)14, = 1. Here we
show that Z admits a specific time-inhomogeneous semi-Markovian structure. Our
main example is the disability model depicted in Figure 1.1 below, where we obtain
duration effects regarding transitions out of the disabled state.

disabled

active (1,1) @2.1) ~ ~2dy)

dead (3,1)

Figure 1.1: Disability model with d2 unobservable disability microstates.
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In Chapter 4, which is based on the manuscript Ahmad and Bladt (2022a),
we then consider statistical estimation in the aggregate Markov model based on
independent observations of paths of the macrostate process. Like in Chapter 2, this
is tackled as an incomplete data problem with respect to the underlying macro-micro
state process X, and EM algorithms are developed to estimate transition rates
on the micro level. Here, the many distributional results derived in Chapter 3 are
drawn upon. While we develop an EM algorithm for the general aggregate Markov
model, we focus on the case where the reset property (1.2.2) is satisfied, since this
case allows us to, more or less, use EM algorithms developed in Chapter 2 as input.

We implement the EM algorithm in the case where the reset property is satisfied
along with piecewise constant transition rates, thereby being able to draw upon the
implemented algorithm in Chapter 2. We provide a numerical example where we fit
the model of Figure 1.1 to macro data simulated from a time-inhomogeneous semi-
Markovian disability model employed by a large Danish life insurance company; the
model is reported to and published by the Danish Financial Supervisory Authority.
The resulting estimates are also used in a numerical example in Chapter 3 to
calculate expected accumulated cash flows and prospective reserves for a disability
coverage with a waiting period. Thus, the numerical examples of the two chapters
intend to show how the aggregate Markov model with the reset property suitably
approximates semi-Markov models in multi-state life insurance, both regarding the
transition rates as well as corresponding valuation elements.

The Markov chain interest rate model

In Chapter 5, which is based on the manuscript Ahmad and Bladt (2022b), we
consider a somewhat different application of IPHs in multi-state life insurance.
Going back to the classic Markov chain models of Subsection 1.1.1, we consider
stochastic interest rates following the Markov chain itself, i.e.

r(u) = 7rz70u)(w), (1.2.3)

for suitably regular deterministic functions r;(u), ¢ € J. These type of models
are introduced in Norberg (1995a, 2003) as the Markov chain market. Though
well-studied there, a key result in our work is that if all r;(u) > 0, then the bond
price

B(t,T) =E|e™ Ji rzt(w)du

]-'(t)}, 0<t<T, (1.2.4)

is the survival function of an IPH distribution (for fixed ¢). We also provide a
similar (but scaled) relation in the presence of negative interest rates, with the only
requirement that they are bounded from below.

While the functional form of the bond price (1.2.4) was noted already in Norberg
(2003, (3.17)), its relation to phase—type theory was not mentioned, and its potential
was not further explored. By doing so, it enables us to use the extensive toolbox



1.2. OVERVIEW OF THE THESIS AND MAIN CONTRIBUTIONS 13

provided by this class of distributions. In particular, we are able to fit (calibrate) the
transition rates of {Z(u)},>0 from the observed bond prices by using a maximum
likelihood approach based on EM algorithms of Asmussen, Nerman, and Olsson
(1996), Albrecher, Bladt, and Yslas (2022), and Ahmad, Bladt, and Bladt (2022).
We provide a series of numerical examples to illustrate this.

In the context of multi-state life insurance, the main advantage of the model
(1.2.3) is that it can be wholly incorporated into Thiele and Hattendorff type of
differential equations for reserves and higher order moments; see Norberg (1995a,b,
2003). Following the partial state-wise reserves of (1.1.8), we introduce partial
state-wise bond prices, given by

T
dij(t,T) = E[l(Z(T):j)ef J () du

70=1, (1.2.5)

D(t,T) = {d;j(t,T)}ijes-

Providing suitable product integral representations of D(¢,T'), we then show how it
naturally integrates into the matrix framework of Bladt, Asmussen, and Steffensen
(2020). Essentially, one simply uses the vector r(t) = (r1(¢),...,7s(t))" of the
different interest rate levels, and computes

ﬁ (I . (M(x) - A(r(z)) R(x) ) dx) _ (D(t, T V() )
. 0 M (x) 0 P(t,T)
to obtain relevant prospective reserves. This is closely related to the product integral
representation in Subsection 1.1.1 for deterministic interest rates. Analogous results
are obtained for higher order moments; we show a numerical example where we

use these to approximate the density and distribution function of the present value
using Gram-Charlier expansions.

1.2.2 Multivariate higher order moments

In Chapter 6, which is based on the paper Ahmad (2022), we derive matrix
representations of higher order moments in a setup where we consider a multivariate
payment process. The components of the payment process are defined in terms
of the same underlying Markov process Z. This allows us to analyze joint effects
between different product types in a general multi-state Markovian framework,
and it extends the differential equations of Norberg (1995b) as well as the matrix
framework of Bladt, Asmussen, and Steffensen (2020) to multivariate payment
processes.

The main example we think of is the computation of covariances and correlations
between two product types, whereby the product moment between two present
values is needed. Here, the product integral representation of Subsection 1.1.1
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naturally extends, so that now it is the matrix

M (z) —2r(x)I Ry (2) R, (z) ctb ()
(1,1) . 0 M (z) —r(x)I 0 Ri(z)
Fy @) = 0 0 M(z)—r(x)I  Ra(x)
0 0 0 M (z)

that needs to be product integrated. Here, R;(z) and Ra(x) are reward matrix
functions for the two product types in question, and C™") (z) = M(z)  By(z) e
By (x), where By(z) and Bz(x) contains transition payments for the two product
types. The resulting product integral,

x o+ o« VD@
L (1,0
(1’1) N * * * V (t)
Z((”FU @de) =7 0 7 yong |
x o« x  P(t,T)

then gives the required product moment V(l’l)(t)7 as well as the reserve for the
individual product types, V(10 (t) and V(®1(¢). From this, further results for the
covariance are derived, which naturally relates to Hattendorff type of results for
the variance.

1.2.3 Computing the market value of bonus

In Chapter 7, which is based on the paper Ahmad, Buchardt, and Furrer (2022),
we consider the problem of computing market values of bonus payments in multi-
state with-profit life insurance. We consider the bonus scheme known as additional
benefits, where dividends are used to buy extra benefits to the insured. The payment
process in question takes the form

dB(t) = dB°(t) + Q(t) dBT (1),

where B° contains predetermined guaranteed payments and BT contains unit bonus
benefits, while Q = {Q(t) }:+>0 is the process giving the number of units of additional
benefits held. The focal point of the chapter is then to compute the market value
of bonus payments, given by

Vb(O) _ E[/OT effosr(v)duQ(s) dBT(S) ,

where also the short rate r = {r(t)};>0 is assumed to be stochastic of diffusion
type, and where we have an underlying financial market S = (Sp, S1) consisting of
a bank account Sy (driven by ), and a risky asset Sj.

In full generality, Q(t) will depend on the whole history on the financial market
(S) and the states of the insured (Z) up to time ; it is F°(¢) V FZ (t)-measurable.
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This implies that the classic analytical methods encountered in Subsection 1.1.1
are not applicable for the computation of V?(0). We therefore take on a simulation
approach, but where we only simulate financial risk and then use analytical methods
for the outstanding insurance risk. Everything else being equal, this approach
should be superior to a full blown Monte Carlo approach.

The key throughout the chapter is the so-called @Q-modified transition probabili-
ties, introduced as

p2;(0,) = E[1120= Q) | F*(1)]. (1.2.6)

From these, the market value of bonus can be calculated via simulations of financial
scenarios using the representation, with Z(0) = 2y € J,

T
/ e Jo r(v) dUAb(O, ds)},
0

Ods ZpZOJOS(bT —|—Zb S) k(s )d.

1=N4 ked
J k#j

VP(0)=E

Under suitable affinity assumptions on the dynamics of ), we derive ordinary
differential equations of Kolmogorov type for the Q-modified transition probabilities
pZQ0 j(O, t). The type of differential equations obtained, as well as the very definition
(1.2.6), bear a close resemblance to so-called retrospective reserves in single states
considered in Norberg (1991, Subsection 5.B).

We then use the differential equation to formulate a numerical procedure for
computation of V?(0). Throughout the chapter, we give special attention to a
case where @ actually becomes F°-adapted. Here, pZQOj (0,t) = Q(t)p2y;(0,t) and
numerical procedures thus significantly simplifies into a direct computation of Q.
In many cases, we think of this simplified procedure as an approximation to the
more general procedure. We show a numerical example exactly illustrating this
perspective, with the aim of comparing results between the two different procedures.

Although not mentioned in the chapter, the aforementioned relations between
p?oj and the retrospective reserves of Norberg (1991) further entails that it is
possible to derive product integral representations akin to those of Bladt, Asmussen,
and Steffensen (2020) for the @-modified transition probabilities. This is also seen
from the definition (1.2.6), which is closely related to the definition of the partial
state-wise reserves (1.1.8). By a close inspection of the differential equation as well
as the definitions, the representations should follow.






Chapter 2

Estimating absorption time distributions

of general Markov jump processes

This chapter is based on the manuscript Ahmad, Bladt, and Bladt (2022).

ABSTRACT

The estimation of absorption time distributions of Markov jump pro-
cesses is an important task in various branches of statistics and ap-
plied probability. While the time-homogeneous case is classic, the time-
inhomogeneous case has recently received increased attention due to
its added flexibility and advances in computational power. However,
commuting sub-intensity matrices are assumed, which in various cases
limits the parsimonious properties of the resulting representation. This
paper develops the theory required to solve the general case through
maximum likelihood estimation, and in particular, using the expectation-
maximization algorithm. A reduction to a piecewise constant intensity
matrix function is proposed in order to provide succinct representations,
where a parametric linear model binds the intensities together. Practical
aspects are discussed and illustrated through the estimation of notoriously
demanding theoretical distributions and real data, from the perspective
of matrix analytic methods.

Keywords: Time-inhomogeneous Markov jump process; Inhomogeneous phase-type

distribution; Parametric inference; EM algorithm; Poisson regression

2.1 Introduction

In this paper, we consider statistical estimation of distributions which are absorption
times of general Markov jump processes, also known as inhomogeneous phase-type

17
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distributions (IPH). The data are the absorption times generated by independent
samples of Markov jump processes until absorption, though the path is not observed.
Thus, the incompleteness of the data is attended by an expectation-maximization
(EM) algorithm, which allows for an effective maximum likelihood estimation. For
practical purposes, we consider and implement the important special case where
the underlying transition rates are piecewise constant.

Though time-inhomogeneous Markov jump processes have been classically used
in many contexts, IPHs were only formally introduced in Albrecher and Bladt (2019)
as the distribution of the absorption times in a time-inhomogeneous Markov jump
process taking values on a finite state space where one state is absorbing and the
remaining transient. They are a generalization of the classic phase-type distributions
(PH), where the underlying Markov jump process is time-homogeneous (see, e.g.,
Bladt and Nielsen (2017) for an overview of the latter). These distributions may
be used in situations where modeling tail behaviors different from the exponential,
like e.g. heavy tails, is a concern, cf. the examples in Albrecher and Bladt (2019),
where a subclass consisting of IPHs generated by intensity matrices which are
given in terms of a single matrix scaled by some real non—negative function is
considered. Within this subclass, the intensity matrices commute over time and
thereby provide a link to the corresponding time-homogeneous PH distributions in
terms of a parameter-dependent transformation. In this special case, the theory
significantly simplifies and allows for more direct analysis. This is, for example,
the case regarding statistical estimation, where Albrecher, Bladt, and Yslas (2022)
develops an EM algorithm based on the parameter-dependent transformation so
that the main engine basically uses the conventional EM algorithm known from PH
fitting in Asmussen, Nerman, and Olsson (1996).

Since IPHs are absorption times of time-inhomogeneous Markov jump processes,
they may naturally also be used for modeling processes that conceptually can be
represented as evolving through states, e.g. in multi-state Markovian life insurance
models (see, e.g., Hoem, 1969a; Norberg, 1991) where states (phases) relate to
the different conditions of a policyholder in a time-dependent manner. This time-
dependence would in general require non-commutative intensity matrices to provide
meaningful models. Somewhat related, Albrecher et al. (2022) considers mortality
modeling using IPHs, including age and time effects, though only the subclass of

commuting matrices is examined here.

For time-inhomogeneous Markov jump processes, parametric modeling and maxi-
mum likelihood estimation of its transition rates based on the associated multivariate
counting process is well-established in the literature; see, e.g., Andersen et al. (1993)
for an overview. By assuming piecewise constant transition rates on a time grid
(as an approximation), these methods are known to reduce to Poisson regressions
based on aggregated occurrences and exposures in the different time intervals, cf.,
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e.g., Aalen, Borgan, and Gjessing (2008, Section 5). This connection is particularly
important in situations with aggregated data pooled into periodic intervals, like
yearly observations. For example Poisson regression based on yearly observations is
used in the Danish FSA’s benchmark model for mortality risk, considered in Jarner
and Mpgller (2015, Appendix 1), which is implemented in Danish life insurance and
pension companies.

In this paper we extend the statistical fitting of IPHs from Albrecher, Bladt, and
Yslas (2022) to the general class of IPHs, using these well-established techniques
for parametric inference of time-inhomogeneous Markov jump processes as starting
point; they constitute our (unobserved) complete data framework that generates
the observations of IPHs and for which an EM algorithm is developed. This is in
contrast to the approach in Albrecher, Bladt, and Yslas (2022), where the underlying
homogeneous PH observations are seen as the building blocks. The general setting
is, consequently, not reducible to the homogeneous case, and a non-trivial extension
of the algorithm is required. In particular, the E-step is abstractly stated in terms of
solutions of some differential equations, referred to as product integrals (see Gill and
Johansen, 1990; Johansen, 1986), and the M-step involves numerical optimization.

Similarly to the completely observed data case, we identify the simplifications
that arise in our EM algorithm from assuming piecewise constant transition rates
on a time grid, whereby the E-step can be stated in terms of products of matrix
exponentials to calculate a set of expected occurrences and exposures, and the
M-step can be stated as performing maximum likelihood estimation in Poisson
regressions akin to those of Aalen, Borgan, and Gjessing (2008, Section 5). This fully
explicit algorithm allows for computational simplifications similar to those obtained
in the complete data case and incurs increased computational performance while
retaining flexibility. We also implement this algorithm and show some numerical
examples of mortality modeling of Danish lifetimes as well as examples of fitting to
theoretical distributions, confirming that the class of models does not suffer from
some of the drawbacks that usual matrix analytic methods have. Another reason
for allowing for different intensity matrices in different regions of the support is
more pragmatic since it allows for fitting data that traditionally requires higher
order IPHs. This could, e.g., be multi-modal data or skewed data. In such cases,
we may obtain adequate fits in a discretized model of a much lower dimension.

One additional extension of our model appears during the M-step since the classic
EM algorithm of Asmussen, Nerman, and Olsson (1996) has an explicit solution
(number of jumps divided by total time spent in states; the so-called occurrence/ex-
posure rates), while in our case we require parametrization of the transition rates to
perform the required Poisson regressions. The canonical parametrization consisting
of an intercept agrees with the simpler explicit solution. Fortunately, the added
computational burden is low since standard software deals with generalized linear
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models in a stable and effective manner.

The remainder of the paper is structured as follows. In Section 2.2, we recall the
inhomogeneous phase-type distribution (IPH). Then, in Section 2.3, we start out
with an exposition of parametric inference of time-inhomogeneous Markov jump
process, which will constitute the complete data case. Subsequently, we tackle
the incomplete data problem and develop EM algorithms for general IPHs and
those with piecewise constant transition rates. In Section 2.4, we consider an
approach to a strong approximation of IPHs with piecewise constant transition
using PH distributions, which may be useful for when a homogeneous representation
is required. Section 2.5 is then devoted to numerical examples of our results. Finally,
in Section 2.6, we present some possible extensions of our model, including a case
where a pre-specified tail behavior is required.

2.2 Inhomogeneous phase-type distributions

Let X = {X(t)}+>0 be a time-inhomogeneous Markov jump process taking values
on the finite state space E = {1,...,p,p + 1}, p € N, where the states {1,...,p}
are transient and state p + 1 is absorbing. Denote by a = (m,0) = (1, ..., 7, 0)
the initial distribution of X, and A(t) = {u;;(t)}ijer the intensity matrix of X.
The intensity matrix A(¢) is then on the form

where T'(¢) is the sub-intensity matrix function describing transitions between the
transient states, and t(t) = —T'(t)e consists of the transition rates to the absorbing
state. Let 7 denote the time until absorption of X, i.e.

T=inf{t >0 : X(t)=p+1}.

Following Albrecher and Bladt (2019), we then say that 7 is inhomogeneous phase-
type distributed (IPH) with representation (7, T'(+)), and we write 7 ~ IPH(7, T'(+)).

The transition probability matrix P(s,t) = {p;;(s,t)}: jer of X, with elements
pij(s,t) =P(X(t) = j | X(s) = i),

is given in terms of the product integral of the transition intensity matrix (see Gill
and Johansen, 1990; Johansen, 1986):

Ps,t) = J{(I + Au) du) = <P(;a t) e- P1<s7t>e> |



2.2. INHOMOGENEOUS PHASE-TYPE DISTRIBUTIONS 21

where P(s,t) = {pij(s,1)}ijequ,... py is the transition (sub-)probability matrix
between the transient states,

P(s,t) = J{(I +T(u) du), (2.2.1)

and e = (1,1,...,1).

Together with the initial distribution 7, this gives the density and survival
function of 7 (see Theorem 2.2 in Albrecher and Bladt, 2019) as

fr(x) = wP(0,z)t(x), (2.2.2)

F.(x) =7P(0,x)e. (2.2.3)

In this paper, we consider the statistical fitting of IPHs based on independent
observations. Although in Albrecher, Bladt, and Yslas (2022) an expectation-
maximization (EM) algorithm was devised for the case where T'(t) = A(¢)T (for
parametric A(t) intensity functions), which implies that T'(¢) commute for different
t, no statistical model where T'(-) are non-commutative has been considered in the
literature. This is a drawback of significant concern for certain applications, which
we seek to remedy in this paper as our main contribution; we provide a general EM
algorithm and implement it in the case of a piecewise constant intensity matrix
function.

2.2.1 IPHs with piecewise constant intensity matrices

We now consider a discretization of the time axis, where in each sub-interval, a
different constant intensity matrix is defined. The purpose of this specification is two-
fold. First, we seek to provide a statistical methodology for the non-commutative
case, which will ease the fitting of heterogeneous data with lower matrix dimensions
than previously considered. Second, and perhaps less obvious, is the generalization
of discretized non-matrix versions of our model, which require a large number of
intervals to provide a satisfactory approximation to the behavior of real data. In
this context, the introduction of matrix parameters will allow for more flexible
interpolation within sub-intervals, reducing the mesh size of the discretization.

Construct a grid so =0 < 51 < ++- < sg_1 < 00 = Sk, so that 7 ~ IPH(w, T'(-)),
where

T(s)=Tp = {ui;} s€(sh_1,8%], k=1,..., K, (2.2.4)

i,j=1,...,p"’

and introducing k(z) as the unique k € {1,..., K} satisfying that « € (sx_1, si],
then the product integral formula (2.2.1) for the (sub-)probability matrix between
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the transient states reduces to a product of matrix exponentials:
k(t)—1
P(s, t) _ eTk(s)(Sk(s)*S) H eTz(8478271) eTk(z)(t*Sku)q)’
{=k(s)+1

with the convention that the empty product equals the identity matrix. The density
(2.2.2) and survival function (2.2.3) then in particular reduces to:

k(z)—1
FT(x):ﬂ. H eTe(se—s0-1) eTk(z)(m_sk(m)—l)e’
/=1

k(z)—1
frlz)=m H eTe(se—s0-1) eTk(m)(Qf—Sk(w)—l)tk(w).
(=1

These expressions may be regarded as discrete approximations to their corresponding
product integral expressions of the general case but have the advantage of being
computationally much lighter to evaluate. Indeed, algorithms for computing the
exponential of a matrix are varied and efficient, while product integration must be
computed by numerically solving differential equations of increased complexity.

The density of 7 may be discontinuous at the interval endpoints, which define
the constant matrices. Indeed, consider e.g. f-(s1—) and f-(s;+). Since the matrix
exponential is continuous, we have that

f-,—(Sl—) = hﬁlﬂeTI(sl_E)to — ﬂ_eTUsltO

while
fr(s14+) = 1i£(r)17reT031eT16t1 = weTosig,
€

Hence f.(s1—) and f;(s14) may differ if ¢, # ¢;, and similarly for all the other
grid points. On the other hand, if all ¢; =t then the density for 7 is continuous.
Similarly, a sufficient condition for differentiability at all points is that —T2e does
not depend on k.

2.3 Estimation

This section introduces the main contribution of the paper, namely the maximum-
likelihood estimation of general IPHs through the expectation-maximization (EM)
algorithm, with a special emphasis on the case of piecewise constant transition
rates.

We proceed sequentially: first, the completely observed case is reviewed; second,
the incomplete data setting is built using the estimators from the previous case;
finally, a simplified algorithm with piecewise constant transition rates is presented.
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2.3.1 The complete data case

We now review some methods known from the inference of time-inhomogeneous
Markov jump processes on finite state spaces based on complete observations of its
trajectories. We refer to Andersen et al. (1993) for a detailed exposition on this.

Suppose that we observe N € N i.i.d. realizations of the time-inhomogeneous
Markov jump process X on some time interval [0,7], where T" > 0 is a given
and fixed time horizon; represent the data by X = (XM ..., X)), Denote by
N = (N W, ... NV )) the corresponding data of the multivariate counting process,
where N")| n =1,..., N, have components

NGO = # {5 € 0.0 X (s=) =i, X (5) =5}

Parametrizing the transition rates with a parameter vector 8 € ®, where © is some
finite-dimensional, parameter space with non-empty interior, such that,

T(s) = T(s;0),

we have that the likelihood function for the joint parameter (m,8) is given by

£X(m,0) m ] %
i,jEE
J#i
p
£y (m) =T~ (2.3.1)
=1

- ﬁexp(/(O,T] log (i (5:0)) AN (s) — /OT 1 o (5:0)4 )

where, for i € F and n € {1,...,N},
I(s) = Lxm(e—iy and  Bi=>_ I1(0). (2.3.2)

Here, Il-(n) (s) indicates if the n’th observation has a sojourn in state i at time s,
and B; denotes the total number of observations with initial state i; only the latter
can be aggregated over observations due to the initial distribution not having a
time-dependency.

The corresponding log-likelihood LX (m,0) = log £LX (m, @) then takes form

LX(m,0) + > ¥ (2.3.3)

i,jEE
JF#L

= Z B;log(m;), (2.3.4)
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Z ( / gy OB 0)) N (s) - /0 ' 17 ()55 (5: 0) ds>, (2.3.5)

from which we obtain the MLE of (wr, 8):
(#t,0) = arg max LX (m, 9).
(m,0)
The product structure of the likelihood (2.3.1) (equivalently the additive structure
7> 4,7 € E, j # i, enables
us to estimate these separately. Regarding w, we may note (or confirm by direct

of the log-likelihood) in w and @ via £ respectively £X

calculation) that the likelihood /33( is proportional to the likelihood obtained from
viewing (B, ..., B,) as an observation from the Multinomial(N, r)-distribution,
where N is considered fixed. This gives a closed-form expression for the MLE:

For 6, a closed form expression for the MLE is not available in general, and numerical
methods for the optimization

B—argmax E L
i, jEE
G

are required.

2.3.2 The complete data case with piecewise constant transition
rates

We now assume that the transition rates j;;(-; @) are piecewise constant on the
form (2.2.4). The likelihood (2.3.1) then simplifies to

H7T H H ,ul )0 (k) eXp(—Ei(kJ)ufj(O)), (2.3.6)
k=1 i.J€EE

J#i

where O;;(k) is the total number of occurrences of transitions from state i to j in
the time interval (sk_1, sg], and F;(k) is the total time spent in state ¢ in the time
interval (sg_1, Si], the so-called local exposure:

N

O (k) =" / ANV (8),

n=1" (8k—1,5k]

Z/ 1

Remark 2.3.1. The likelihood (2.3.6) can be seen to reduce to the likelihood consid-
ered in Asmussen, Nerman, and Olsson (1996) by having K =1 (corresponding to

(2.3.7)

homogeneity) and no parametrization of the transition rates. A
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Thus, in the case of piecewise constant transition rates, the occurrences and
exposures in the different time intervals, along with the number of initiations in
the different states,

are sufficient statistics. In fact, the resulting likelihood (2.3.6) is proportional to
the likelihood obtained from independent observations

(Bi,....B,),
(2.3.8)
(Olj(k)’ k:177K7 Za]€E7.77éZ)7
where
(Bi,...,Bp,) is Multinomial(N, 7) — distributed,
(2.3.9)

O;;(k) is POiSSOH(Ei(k)ufj(H)) — distributed,
with N and E;(k) considered fixed. Consequently, the MLE of 7 is (still) given by

Ty = Nu
while the MLE of 6 is obtained from Poisson regressions of the occurrences against
the different times on the grid, which can be carried out using standard software
packages. For example, if ,ufj (0) is an exponential function in @, a Poisson regression
with log-link function and log-exposure as offsets can be carried out, corresponding

to the fitting of the models:
log(uj(s; 0)) = log(E;) + 6 + 6% - 1@ (s), (2.3.10)

for some suitable known function f(?), with a common choice being the identity.
The predictions at s and at unit exposure are then the estimates of the transition
rates, 1if;(6).

In the case where the parameters in 8 act as the (unknown) piecewise constant
transition rates themselves, i.e. @ = (0f;)r=1,....k, i jc B, j#i S0 that

the MLE of @ simplifies to so-called occurrence—exposure rates:
. Qulk)
Y EBik)

This is a special case where transition rates are estimated directly in a “non-

parametric” way and can be retrieved by considering the s; as a categorical (instead
of numeric) variable in (2.3.10). The assumption of piecewise constant transition
rates is often seen as an approximation to the general continuous versions obtained
when the number of grid points tends to infinity. However, the resulting estimated
models may be favorable even for coarser grid mesh sizes.
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2.3.3 EM algorithm for IPHs

Suppose that we observe N i.i.d. realizations of IPHs with representation (m, T'(+; 0))
and represent the data by the vector 7 = (7'(1), e ,’T(N)). The data 7 is then
considered as incomplete data of the whole Markov jump process X on [0, T], where
T = maxp=1,.. N 7(")and we employ an EM algorithm to estimate the parameter
(m,8) based on the complete data likelihood considered in the previous subsections.

Let E(x ) denote the expectation under which the Markov jump process X
has sub-intensity matrices T'(-;0) and initial distribution 7. The EM algorithm
for estimation of (m, ) then consists of initializing with some value (7(9),0()) ¢
[0,1]P*! x ©, and then iteratively compute the conditional expected log-likelihood
given the incomplete data 7 under the current parameter values (7r(m), B(m)), known
as the E-step,

(m,0) — L™ (1,0) = E(rom gomy [LX (7,0) |T],  m € Ny, (2.3.11)

and then update the parameters to (w(™+1 @(m+1)) by maximizing L™, known
as the M-step. For notational convenience, we write, under some parameter (7, 8),

P(s,t;0) = f( (I +T(u; 0)du) (2.3.12)

for the transition (sub-)probability matrix in the transient states, and

f(z;7,0) =7 P(0,2;0)t(z; 0),
(2.3.13)
t(z;0) = —T(z;0)e,

for the corresponding density. To derive the conditional expected log-likelihood
(2.3.11), we essentially need the distribution of the Markov jump process conditional
on its absorption time. This is obtained in the following lemma.

Lemma 2.3.2. Let X = {X(s)}s>0 be a time-inhomogeneous Markov jump process
taking values on E with sub-intensity matriz function T(-;0) and initial distribution
w. Let 7 ~ IPH(m,T(-;0)) be its corresponding absorption time. The conditional
process
Y(s) £X(s)|r, selom),

is then a time-inhomogeneous Markov jump process taking values on {1,...,p} with
initial distribution
mieiP(0,7;0)t(7; 6)

7 P(0,7;0)t(r;0) ’

%7; (T7 , 0) =
transition probabilities

Dij(t,s|m;0) =
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and transition intensities

/
[ (t|730) = i (t; 0) %

Proof. Let j € {1,...,p} and ¢,s > 0 such that 0 < ¢ < s < 7 be given. Then it
follows from the law of iterated expectations and the Markov property of X that,
for y > s, we get the conditional survival probability

o) [1x(=i) 1> | 77 (O] = Emo) [1x(9)=)Emo) [ 1) | F ()] | FF(#)]
— Egr0) | Lx(9)5)€h (o) P(s,5:0)e | F¥(1)]
= ey P(t,5;0)e;e;P(s,y; 0)e,
from which obtain the transition probabilities for Y:
o) [Liv(o)=i) | F* (0] = Emo) [Lx(=p [ F () Vo(7)]

— 2 (el Plt 53 0)ese Pls, e)e)\
f(T§ elx(t)a 0)

e'X(t)P(t S'O)Gje’»ls(s T;0)t(T; 0)
eX(t) P(t,7;0)t(T;0)

y="

= Px(p);(t: s[7:0),

which by conditioning on Y'(t) =i, i € {1,...,p}, (which implies X (¢) = 7) yields
the desired result. For the corresponding transition intensities, we get by definition
of these,

ﬁij(t,t + h"/", 0)

fij (t|T56) = lhlﬁ)l -

! e P(t,t+ h;0)e; , -

— - 1 7 ) ) ) /~Pt h. 7 0)t(T: 0
e, P(t,7;0)t(r:0) hlo 3 e P(t + h,7;0)¢(r; 6)

1 _
e ij(t; 0)e P(t,7;0)t(;0),
egP(t,T;O)t(T;O)’uJ(’ )e; P(t,7;0)t(7: 6)

where we use the continuity of the transition (sub-)probability matrix (that is,
continuity of product integrals) in the last equality. Finally, the initial distribution
follows from similar techniques on

E(r0) [Loxo=0 Lo = oy [ Lix =€ 0 P(0,)e| = mel P(0, y)e
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which gives

9 I
—@(Wieip(07y)e) _ ! T;0)t(T;0
7i(rim, 0) = E[lx()=n|o(7)] = Cr }((507,0) )(7(,0))’

the desired initial distribution. O

Remark 2.3.3. In Hoem (1969b) and Norberg (1991), similar conditional distri-
butions as those of Lemma 2.3.2 are derived. While they consider conditional
distributions given future states, we consider conditional distributions given the
time of absorption, which is a slight extension in which we include (particularly
simple) future jump times in the conditioning. A

For n € {1,...,N}, s € (0,7™] and i,j € E j # i, define the conditional
expected statistics under the parameters (1r(m ) m € Np,

Bgm) = ]E(,,(m)ﬂ(m)) [Bi| ],

[(n m)( ) ]E(,,r(m) o0m) |:Ii(”)(5)

T} ) (2.3.14)
Ni(jn,m)(s) = E(,’r(m,)70(m,)) |:Nl(]n)(8) ‘ T} .
We then obtain the conditional expected log-likelihood in the following result.

Theorem 2.3.4. The conditional expected log-likelihood given the data T under the
parameters (w(™), 0™, m € Ny, is given by

L(x,0) = L (m) + > LV (6)

i,jEE
i
— p —
L§™ () = Y~ B{™ log(y),
i=1
N () e
ng")(e) = Z (/ log(i5(s;0)) dNi(f’m)(s) —/ Ii(n’m)(s),uij(s;G) d$>7
n=1 0 0
with all the non-zero conditional expected statistics given by, fori,j € {1,...,p},

j#i, and s € (0,7™], n € {1,...,N},

- N ng)egp(o, 7.(n); g(m))t(T("); g(m))

n=1

71'(7”)13(07 s; 0(7”)) e;e, f—’(s, 7). 0(7”))15(7'("); O(m))

F(n,m) _

7
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a(MP(0,s;0™) e;p5(s; 0(m))e3 P(s,7M;0m))(r(m); 9(m))

d]\_fi(f’m) (s) = ds,

and, for j =p+1,

(m)P(O, s; G(m)) e;t; (s; O(m))

(n,m)
AN; Y (s) = £ (s m) gim))

i,p+1

dez (),
where € () s the Dirac measure in (),

Proof. It follows from the complete data log-likelihood (2.3.3)—(2.3.5), that the
conditional expected log-likelihood (2.3.11) is given by

L™ (7,0) = Z L(m)
i,jEE

e

where, for i,j € E, j # 1,

P
L™ () = Erom), gemy [ Lo(m) | 7] = Z M log(m;),
=1
L(8) = E(nim, gom) [ Li(0) | 7] (2.3.15)

£

- Z </0 )] log(1(5:0)) AN, (s )_/0 1™ () iz (5; 0) d5>,

where we have used Fubini’s theorem in the last equality. To compute the conditional
expectations appearing in (2.3.15), we get, by independence of the elements in 7
and Lemma 2.3.2, that for ¢ € {1,...,p},

N
B™ = ZE(ﬂ(m,a(mm[ﬂ(X(o)(s } ZW (rM;m(m o0y,

n=1

7(n,m)

which by insertion provides the desired expression. For I, , we get

I—Z(n,m) (8) = E(ﬂ.(rn)’ g(m)) |:]1(X(”)(s):i) ‘ T(n):|

p
= Z Fo(r™ ™ 0™ 5,.(0, 5|7 ™) 9™

=

P Wém)egp((), 83 0(’”))61-6213(8, (), @Mt (r(); g(m))

~

=1

7™ P(0,5;0™))ee; P(s, 7("; 0™))t(r("); 0(m))
M P(0, 7(0; 00m) )¢ (7(n); 9(m)
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For ]Vi(f’m), je{l,...,p}, j #1, we proceed similarly, using the intensity process

of {X™(8)}ycrim|7(™ from Lemma 2.3.2, to get

T(n)]

S
= E(xem, g0m) [/0 1o (uy=iy i (ul 775 00™)) du

Ni(]ﬂam(s) = E(ﬂ(yn)79(7n>) [/( | sz‘(jn) (u)
0,s

TW]

s P
= / (7w, 00 )pei (0, ;00 iy (ul 75 6™) du
0 =1

du,

B /s (™) P (0, u; 00™)e; i (u; G(m))egp(u, () @)t (r(n); g(m))

for which we take the dynamics in s to arrive at the desired result. Finally, for

j =p+ 1, we may note that Ni(z)ﬂ can be written as

N (8) = ez romy Lixon (0 )iy
and so, using the same techniques as for the above quantities,
NG )

= ]E(.’r('m.)70(1n))|:]].(527-(7L))]1(X(n)(7-(n)_):7;) | T(n):|

p
=Wy S F (w0 90 (0, 700 ), 9

=1
, iﬂ_ém)ezp(()? (). 0(””))61-6;}_)(7'(”)7 (). g(m))t(f(n); B(m))
= (SZ,’_m))é:l ﬂ(m)P(O, 7_(n); g(m))t(T(n); H(m))

= L(s>r(m) x(m) P(0, 7(); 90m) )t (r(n); 9(m))

where we use the continuity of product integrals in the second equality. Taking the
dynamics in s now yields the desired result. O

The result shows that developing an EM algorithm for general IPH distributions
significantly increases the computational complexity compared with the homo-
geneous case Asmussen, Nerman, and Olsson (1996) as well as the commuting
inhomogeneous cases Albrecher, Bladt, and Yslas (2022). Indeed, since we no
longer have a set of sufficient statistics for the different states and transitions, we
must in the E-step compute the conditional expected log-likelihood Eg;n) directly.
Evaluating this in a parameter 8 € ® involves a collection of product integral
calculations, as opposed to matrix exponential calculations known from the two
existing algorithms. Also, the subsequent M-step is no longer explicit with simple
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expressions, which is inherited from the fact that the complete data MLE is not
explicit in general, and numerical optimization methods are therefore required to
carry out the M-step.

As one may note from Subsection 2.2.1 and 2.3.2, the above mentioned computa-
tional complexities can be remedied by assuming piecewise constant transition rates
on the form (2.2.4). We shall therefore assume this in the following to obtain our
main algorithm and corresponding numerical examples; for completeness, we still
provide the general EM algorithm in Appendix 2.A, since different simplifications
may be drawn from the general case in the future.

Counsider the complete data likelihood (2.3.6) in the case of piecewise constant
transition rates, and recall the sufficient statistics (2.3.7) for the different states
and transitions. Since the corresponding log-likelihood is linear in these sufficient
statistics,

log £X (m ZB log(m;) + Z > (045(k) log(uf;(0)) — Ei(k)uf;(8)),

k=1 i.JEE
i

the E-step for the transitions simplifies so that it now suffices to compute the
following conditional expected sufficient statistics, for k=1,..., K,

Bi(m) = E(,r(m)’g(m))[Bi | TL
Ei(nL)(k) _ E(ﬂ.(m)ﬂ(m))[Ei(k) | 7-]7 (2316)
OZ(;”)(]@) = ]E(,,<m>,9<m>)[0ij(k) | 7],

and then the M-step for updating 0 simplifies to the Poisson regression mentioned
in Subsection 2.3.2, but where the occurrences and exposures are replaced by their
conditional expectations computed in the E-step.

Based on Theorem 2.3.4 for the general cases, we immediately obtain these
conditional expectations in Corollary 2.3.5 below. For notational convenience, we
let k(™ = E(7(™) denote the place on the grid that the n’th observation lies in,
and, for ki, ke € {1,..., K}, ko > ki1, we define

Ak, k230 H eTH(O)semsemn), (2.3.17)
=k

Then the (sub-)probability matrix in the transient states (2.3.12) under some
parameter (m, ) as well as the corresponding density (2.3.13) can be written as

P(s,t:0) = D O(50=9) A(k(s) + 1, k(t) — 1;0) eTer @) (t=skr—1)
(2.3.18)
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Corollary 2.3.5. Suppose that the sub-intensity matriz function T is piecewise
constant of the form (2.2.4). Then the conditional expected sufficient statistics

(2.3.16) are given by, fori,j € {1,...,p}, j #1,

_ m(™Mel P(0, 7 00m))t, (., (00™)
B = EZ: F (@) mlm) gim)

spAT™ B )
/ mP(0,u; a(m))eie;P(% 7, e(m))tkm) (e(m))du

E k—l/\"'(")

WE

p(m) 1y
E7 (k) = F (o mim)_gim)

n=1

sk/\‘r(")
/ 7 P(0,u; 0 el (0)e!, P(u, 7; 00t (00™)) du

k—1AT(™)

N
O(m) Z

n=1

f(T(n) sr(m), a(m)) ’

o . ﬂP(o,ﬂn)-a(m))e ety (™)
*Z (1M €(sk—1,5k])

(m)
O, 0w glm)) )

7p+1

with P and f given as in (2.3.18).

Proof. By inserting the expressions for O;;(k) and E;(k) from (2.3.7) into (2.3.16)
and using Theorem (2.3.4), we obtain the results for O, m)( k) and E"™ (k). For

Bi(m), it follows from a direct application of Theorem (2.3.4). O

By writing out the exact expressions for P and f given as in (2.3.18), we end up
with Algorithm 2.1, which by Corollary 2.3.5 produces the required MLE estimation
for IPHs with piecewise constant transition rates.

Remark 2.3.6. To compute the matrix C,g"’m), for fixed n € {1,...,N}, k €
{1,..., K}, and m € Ny, this involves integrals of matrix exponentials, which may
be computationally heavy. However, we can observe that by defining the block
matrix
m n,m n (m) n

G T (00™) b (KM Ak + 1)as™ (k™ Ak —1)

k =

0 T, (6™)

we obtain from Van Loan (1978) that

(T (6) (r =2, cmm

O eTk' (9(171)) (T\<:) ‘(A" 1)

(nym) (_(n) __(n)
eka " (T\: *T|11—1

)

which reduces to a single matrix exponential calculation. Similar type of simplifica-
tions were noted in Albrecher, Bladt, and Yslas (2022, Remark 2). A



2.3. ESTIMATION 33

Algorithm 2.1 EM algorithm for IPHs with piecewise constant transition rates

Input: Data points T = (19, ..., 7)) and initial parameters (w9, ().
0) Set m :=0.
1) E-step: Compute statistics for states i,j € {1,...,p}, j # ¢, and grid points
k=1,...,K,

N m)y(n,m
B =3 m™b"™ (1)
g . W(m)b(n,m)(l)’

N 1 ~(n,m)
=(m) _ eiCk €;

n=

(m) - (myy_€5CL e
O™ (k) = k (gm J "k :
i (k) n;:“m( )ﬂ-(m)b(n,m)(l)
(n,m) (m)
~(m) a; (6 )
Oz p+1 Z:ﬂ.(k(n) =k) ﬂ_(m)b(n m)( ) ’

where

a™™ = o™ (™ — 1)eTk(">(e(m))(T(n)_stfl),
al™ (6) == "™ A(1,£,0),
(m) (n) _
AL K™ — 1,00 T (® )(- Swm)tk(n)(ow) (< k™

tk(n)(e(m)) 2> k™
s
= [ e wan

(n)
k=1

o™ (u) = O )00 (g 1)al™ (ky, — 1) ()
ki = k™ A K,

(n)

Tk =Sk AT,

2) M-step: Update the parameters:

FmAD B
7 N i

6"+ . MLE of the regressions
O (k) ~ Pois(uf,(0)ES™ (k)), k=1,...,K.

3) Set m:=m+ 1 and GOTO 1), until a stopping rule is satisfied.
Output: Fitted parameters (i, 0).




34 CHAPTER 2. AHMAD, BLADT, & BLADT (2022)

2.4 An approximate homogeneous representation

In full generality, a phase-type approximation for any distribution is possible through
the construction of Johnson and Taaffe (1988), where Erlang weights are constructed
according to the increments of the target cumulative distribution function. However,
when the target distribution arises as an absorption time of an inhomogeneous
Markov jump process, recent developments in Bladt and Peralta (2022) provide
an alternative pathwise approximation yielding strong approximants which are
directly parametrized by the intensity matrix A. Since phase-type distributions
enjoy explicit formulas which their inhomogeneous counterparts may lack, such an
approximation is practically relevant, and thus we outline it below. Section 2.5

presents some numerical examples of such an approximation.

Combining Theorem 4.2 and Proposition 4.3 in Bladt and Peralta (2022) yields,
after some calculations, the following result:

Theorem 2.4.1 (Phase-type approximation). Let 7 ~ IPH(a,T(s)) where T'(s)
is given as in (2.2.4). Define a'™ = (a,0,...,0), and the mp x mp sub-intensity

matric
_nI an") 0 0
0 —nl ann) 0
Tmm) _ 0 0 -nl .. 0 , (2.4.1)
0 0 0 ... —nlI

where, for{ =1,...,m—1, and wi(¢,n) = E(sk;¥,n)— E(sk—1;¢,n) (here, E(-;a,b)
is the Erlang cdf with a stages and rate b),

K
V=" wk(n) T+ 1 (2.4.2)
k=1
Then there exist (™) ~ PH(a\"™) , T("™)) such that
lim lim P(|j7r — 7™ > ¢) = 0.
n—o0 Mm—o0

Moreover, the density of the resulting approrimation reduces to

m—1 —1

frem (t) = 2 {ann) e Qﬁ (I- QEH))e} = 1)!71[ exp(—nt) (2.4.3)
m—1

+ |:Ct' gn) te Q£:116:| mnm exp(fnt). (244)

Remark 2.4.2. The above approximation is very computationally efficient. Indeed,
the Qén) only vary across ¢ and n through the scalar Erlang weights wy (4, n). In
particular, fast calculation of the Erlang density weights is possible.
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One implicit assumption which is relevant when applying the approximation is
that n must be large enough to make T(™™) a proper sub-intensity matrix, which
depends on the maximal absolute value of the diagonal elements of the T} matrices.
Additionally, the choice of m should be such that m > n - max;—1, n{r'}. A

2.5 Numerical examples

This section presents some numerical illustrations of our above model on theoretical
distributions as well as real data. In both cases, we require a straightforward
extension of Algorithm 2.1 to when each data point has a weight associated with it.
Practically speaking, this is straightforwardly dealt with by providing a weight in
each contribution for the conditional expectations of the E-step and replacing N
with the sum of weights in the E-step. This extension allows for the estimation of
histograms, known distributions (considering a discrete version of the theoretical
density), or more efficient calculations for when we have repeated values. We
provide examples of the two latter uses. In all cases, we consider piecewise IPH
distributions with continuous densities.

2.5.1 Fitting to a given distribution

It is well known that phase-type distributions struggle to fit peaked distributions
where the peak does not happen close to the origin; that is, a large number of phases
are required for adequate estimation. Thus, we first consider the estimation of
the M(2, 1/2) theoretical distribution (left truncated at 0, as to have only positive
values) by:

1. A piecewise IPH with large K and small p.
2. A PH approximation to the piecewise IPH fit, as per Theorem 2.4.1.

3. A small and large homogeneous PH, for comparison.

By “small” and “large,” we have used subjective judgment, but we are somewhat
limited by computational power for any dimensions far exceeding the ones presented
here.

The idea is thus to use the density height as weights for a given grid (here, we take
the mesh size to be A; = 0.05), which is used as the observations in Algorithm 2.4.1.
Applying this procedure can be appreciated in the left panel of Figure 2.1. We see
that a very small phase-type dimension (p = 2) is required to provide a good fit if
we allow for piecewise constant rates at a small grid, in this case considering 41 sub-
intervals on the interval [0, 4]. Since all matrices in each sub-intervals are intrinsically
linked through Equation (2.3.10), the number of parameters is kept low. We also
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see how an effective phase-type approximation is possible using the construction
of Theorem 2.4.1, providing a visually indistinguishable representation from the

piecewise counterpart and which enjoys a pathwise convergence interpretation.

Theoretical distribution: N(2,1/2)

Theoretical distribution: N(2,1/2)
31 S, 3 ,/;wéa
;/\Qz —o— Theoretical O —o— Theoretical
; % |— Piecewise IPH, p=2 3 ] — PH,p=2
j ] Uniformization PH g ° -- PHp=30
Q 1] 3
4 \ o \
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a
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Figure 2.1: Piecewise IPH (left) and PH (right) estimated densities to the theoretical
N (2, 1/2) distribution.

Note that the maximal absolute value of all diagonal matrices in each sub-interval
for the piecewise IPH fit is 1056.8, which from the expression (2.4.1) implies that n
should be at least above the latter value to obtain a proper phase-type sub-intensity
matrix. We have thus chosen n = 1500, and then m = n-4.01, so the approximation
is expected to be faithful up to the value 4.01. Thus the resulting phase-type
approximation has state space dimension p x m = 12,030, though the distribution
is easy to manipulate, since formula (2.4.3) involves matrix calculus in terms of the
original state space dimension p. In contrast, the right panel of Figure 2.1 shows
that a 30-dimensional phase-type distribution cannot provide a similar quality of fit
(let alone the 2-dimensional case). The EM algorithm which is required in this case
(implemented as in Asmussen, Nerman, and Olsson (1996)) is comparatively slow

for growing dimensions (and prohibitively slow for around p = 50, 150, depending
on the language of implementation).

We now consider a more challenging setting with the aim of further showcasing
the capabilities of our algorithm. Thus, we focus our attention on the mixture of
N (2, 1/2) and N (4, 1/2) distributions, with a mixture weight of 0.55 (left truncated
at 0, as to have only positive values), and we estimate two models:

1. A piecewise IPH with small K and medium p.

2. A homogeneous PH, for comparison.
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For this multimodal density, we chose the breakpoints around valleys and summits
of the theoretical density. An interesting comment is that choosing the breakpoints
directly in the low point of a valley or exactly at the summit does not seems to be
as effective. Given the chosen sub-intervals, we will use p = 10 since it seems to
be the first dimension to capture both modes correctly. A PH approximation to
the piecewise IPH fit, as per Theorem 2.4.1, is not possible in this setting since the
estimated sub-intensity matrices for all sub-intervals have an overall largest absolute
value in the diagonal equal to about 7.5 - 10'!, which implies that m is in the order
of magnitude of 102, which is too large to make the computation of (2.4.3) feasible.
As a general warning, we have found that for the most challenging density shapes,
Theorem 2.4.1 will hold only theoretically, since practically it requires too many
phases. This also confirms that sensible phase-type distributions do not suffice
(including using the EM algorithm) in these cases.

The result of the estimation for this second case is provided in Figure 2.2, which
shows the full strength of using piecewise IPH for heterogeneous data. We would
like to comment that the dimension p and the number of subintervals K work
together to provide an adequate fit and that a large K with small p does not work
in this setting as it did for the previous unimodal distribution since the linear
specification of f(?) in Equation (2.3.10) is no longer sufficient here. An alternative
would be to consider spline specifications or higher polynomial terms. Here, we
chose to increase the degrees of freedom by directly increasing p (in this case, to
10).

Mixture distribution: N(2,1/2), N(4,1/2)

o —6— Theoretical
34 o o —— Piecewise IPH, p = 10
4 \ -- PH,p=30

0.3
L

Density

0.2

0.1

0.0

Figure 2.2: Piecewise IPH and PH estimated densities to the theoretical mixture of
N(2,1/2) and N (4, 1/2) distributions, with mizing weight 0.55.
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Another feature that arises for estimated piecewise IPH distributions is the
possible kink of the density at the endpoints of each sub-interval. These are not
discontinuities and usually happen when the decreasing nature of a curve is not
exponential, which is the case for gaussian decay. When examining the cumulative
distribution function, the joining of the density of sub-intervals is differentiable;
thus, the effect is not observable at that scale. These kinks also appear in the
application to mortality modeling in the next section.

2.5.2 Mortality Modeling

The Human Mortality Database (https://www.mortality.org/) provides, among
other things, mortality rates in a yearly resolution for several countries. We presently
analyze the case of Danish males and females, from 2000 up to 2020. As before, we
use as log-likelihood weights the implied density from the mortality rates (which is
calculated as death to exposure ratio) and use the midpoints between ages as the
observed ages (corresponding to the data 7). We divided for numerical purposes all
data by 100 when estimating it. However, in the empirical versus fitted plotting, we
have used the original scale (in any case, piecewise IPH are closed under scaling).

We have chosen the sub-intervals to provide more divisions for rapidly changing
regions in the lifetime density, resulting in K = 9. We see from Figure 2.3 that,
despite some possible kinks at the endpoints of intervals, the fit is remarkably
well behaved, especially given the specific features that make modeling the entire
lifetime distribution challenging: the sharp decrease after birth and the disruptions
happening at around age 20 for both males and females. The increased mortality at
the right endpoint also poses a challenge. The Gompertz-like behavior from around
30 to 100 is not in line with exponential decay; thus, regular sub-interval splits were
required in this period. Finally, the resulting piecewise constant transition rates (in
the log scale) are provided in Figure 2.4 for females and in Figure 2.5 for males,
which are of interest for some disciplines that require mortality rate estimates, such

as life insurance and pension applications.


https://www.mortality.org/
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Danish female lifetime distribution 2000-2020 Danish female mortality rate 2000-2020
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Figure 2.3: Fitted versus empirical mortality curves using piecewise IPH distributions
for Danish male and female populations from 2000 to 2020.
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2.6 Extensions

In this section, we discuss some possible extensions of theoretical and practical
relevance that may be incorporated into our work but which is outside the scope of
the present paper.

2.6.1 EM for IPHs with a pre-specified tail behavior

The focal point of the paper is to handle general IPHs with non-commutative
sub-intensity matrix functions using piecewise constant transition rates as an
approximation when the grid becomes finer. For a finite number of grid points, this
construction implicitly implies an exponential tail behavior on the IPH distribution
from the last grid point, which may not be suitable for applications on heavy-tailed
data, e.g., non-life insurance data. However, it is straightforward to adapt our
framework to an intrinsic possibility of obtaining a non-exponential tail behavior,
using methods from Albrecher and Bladt (2019). The procedure goes as follows.
Define a function A\ by

1 if uw<sg
AMu) = -
) { h(u) if u> sk,

for some non—negative function h, and a function g given in terms of its inverse
by g7 (z) = fox AMu)du. Then 7 = g(7), where 7 ~ IPH (7, T(-)) with T piecewise
constant on the form (2.2.4), has a distribution with survival function

k(y)—1
T H eTe(se=se—1) | oTr(y=sx-1)e  if y<SK_1
=1

Fxy) = B (2.6.1)

K—1
™ (H eT"(S‘ZS“—l)> T Y > SK_1.
=1

Hence, an extension of Algorithm 2.1 is possible for the model (2.6.1) with a pre-
specified tail behavior according to the function h. Indeed, it suffices to apply the
transformation g~!(x) of the data at the beginning of each step to reduce to the
piecewise constant case, apply one EM step of Algorithm 2.1, and then optimize
the parameter of the h function.

2.6.2 Censoring and truncation

In survival and event history analysis, one must take into account censoring and
truncation mechanisms in the statistical estimation, see, e.g., Andersen et al. (1988)
for a survey. This naturally also applies to the estimation of IPHs and PHs, as
these are absorption times of Markov jump processes.
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Incorporation of censoring mechanisms has long been established for estimation of
PHs, cf. Olsson (1996), while the case of commuting matrices for IPHs is considered
in Albrecher, Bladt, and Yslas (2022). As we have adapted Asmussen, Nerman,
and Olsson (1996) to the inhomogeneous case by taking methods from Andersen
et al. (1993) as onset, we believe that it is straightforward to incorporate the
censoring mechanisms of Olsson (1996) to our model by adapting said paper to the
inhomogeneous case taking methods from Andersen et al. (1988) as the onset.

To the best of our knowledge, the incorporation of truncation mechanisms has
not yet been established for the estimation PHs or IPHs. We do not believe that
this extension is straightforward in either framework, as one would need to consider
conditional distributions of PHs and IPHs in developing the EM algorithm. These
conditional distributions do not simplify to path-independent distributions as seen
for fully observed Markov processes.

2.6.3 Covariate information

It is straightforward to include time-independent covariate information in our sta-
tistical model. Indeed, in the Poisson regressions in the EM algorithms presented
for the piecewise-constant transition rate case, one may incorporate any (possibly
transformed) covariate vector linearly, though each individual would have their own
intensity matrices (which the other parts of the algorithm need to keep track of).
The mortality modeling of Danish lifetimes in Subsection 2.5.2 is an example where
sex could be used as a covariate.
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2.A The general EM algorithm

Algorithm 2.2 EM algorithm for general IPHs

Input: Data points 7 = (71, ..., 7(N)) and initial parameters (w(?), (%)),
0) Set m :=0.
1) E-step: For i € {1,...,p}, compute the conditional statistics for the initial
state,
o _ S P 0750 (s 0
T F(r;m), g0 ’

and, for j € E, j # i, and 8 € O (on a suitable grid), compute the conditional
expected log-likelihood for the transitions:

N ()
I @ = (| tostis(s:0)aNy 7 e) - [T s 0)0s ).
n=1 0,7(n 0

where, for j # p+ 1,

™ p P(0,s; o ))e e; P (s, T 9(m)) (T(”);0<m))
F(rmmim_gim)

)

LM (s) =

7P (0, 5;,0)e;ipi;(s;00™)ej P (s, 7™; 0™t (r™); 00™)
COR N )

AN (s) = ds,

and, for j =p+1,

(m>P(0, S5 9<m)) e;t; (S; 9(’"))

(n,m)
AN ) = T o o)

d{-:,r(n) (S)

2) M-step: Update the parameters:
alm+h) im)
K2 N 9
0™V = arg max L(m) (Z]
gmax )-

i,jEE
JFi

3) Set m :=m + 1 and GOTO 1) until a stopping rule is satisfied.
Output: Fitted parameters (i, 9).




Chapter 3

Aggregate Markov models in life

insurance: properties and valuation

This chapter is based on the manuscript Ahmad, Bladt, and Furrer (2022).

ABSTRACT

In multi-state life insurance, an adequate balance between analytic
tractability, computational efficiency, and statistical flexibility is of great
importance. This might explain the popularity of Markov chain model-
ing, where matrix analytic methods allow for a comprehensive treatment.
Unfortunately, Markov chain modeling is unable to capture duration
effects, so this paper presents aggregate Markov models as an alternative.
Aggregate Markov models retain most of the analytical tractability of
Markov chains, yet are non-Markovian and thus more flexible. Based
on an explicit characterization of the fundamental martingales, matrix
representations of the expected accumulated cash flows and correspond-
ing prospective reserves are derived for duration-dependent payments
with and without incidental policyholder behavior. Throughout, special
attention is given to a semi-Markovian case. Finally, the methods and

results are illustrated in a numerical example.

Keywords: Multi-state modeling; semi-Markovianity; product integrals; expected
cash flows; phase-type distributions

3.1 Introduction

In this paper, we propose a new class of multi-state models, the so-called aggregate
Markov models, and study the valuation of life insurance liabilities for this class of
models. The results established range from a characterization of the fundamental
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martingales to genuine computational schemes for the quantities of interest, including
prospective reserves. In contrast, the companion paper Ahmad and Bladt (2022a)
deals with the statistical aspects.

The classic approach to multi-state modeling consists of Markov chain modeling,
where the process governing the state of the insured Z is taken to be a time-
inhomogeneous Markov chain and the payments between the insured and the
insurer are required to consist of deterministic sojourn and transition payments.
This approach dates back to at least Hoem (1969a), but has recently been given new
life via matrix analytic methods, see Bladt, Asmussen, and Steffensen (2020) and
Ahmad (2022). Although Markov chain modeling is attractive due to its inherent
simplicity, it suffers from a number of defects, not at least its inability to properly
capture duration effects. In recent years, semi-Markov modeling has therefore
gained considerable attention. In semi-Markov modeling, see Hoem (1972), Helwich
(2008), Christiansen (2012), and Buchardt, Mgller, and Schmidt (2015), only the
joint process (Z,U), where U denotes the time spent in the current state, is assumed
to be Markovian, and the sojourn and transition payments are allowed to depend
on U. Unfortunately, semi-Markov modeling entails less analytical tractability and
increased computational load.

In an aggregate Markov model, each observable state is assumed to consist of
multiple unobservable sub-states, and only the full model consisting of all sub-states
is assumed to be Markovian. Different to the classic Markov chains, which require
the Markov property already for the observable states, aggregate Markov models are
non-Markovian and thus flexible, yet they retain most of the analytical tractability
of Markov chains. In particular, matrix analytic methods related to inhomogeneous
phase-type distributions, confer with Albrecher and Bladt (2019), are applicable
and lead to a unifying and transparent treatment.

Phase-type distributions have a long history of extensive use in applied probability.
They have been employed in areas such as queueing theory Asmussen (2003), Neuts
(1981, 1989), and Latouche and Ramaswami (1999), actuarial science Asmussen and
Albrecher (2010) and Bladt and Nielsen (2017), and telecommunications Asmussen
(2003) and Latouche and Ramaswami (1999), where the phase-type assumption
leads to exact and in many cases explicit formulas for properties such as waiting
time distributions, queue length, ruin probabilities, and buffer overflows.

Both homogeneous as well as inhomogeneous phase-type distributions are dense
in the class of distributions on the positive reals, confer with Bladt and Nielsen
(2017), and therefore able to approximate any non-negative distribution arbitrarily
close — in the sense of weak convergence as the number of phases increases to infinity.
Hence the class of phase-type distributions has been considered as striking a balance
between tractability and generality. Inhomogeneous phase-type distributions may
be used instead of homogeneous ones, and this might be particularly relevant if the
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tail behavior is known to be different from exponential, see Albrecher and Bladt
(2019).

In the area of queuing theory, so-called quasi-birth-and-death (QBD) processes
have been extensively studied, confer with Latouche and Ramaswami (1999), as
a model for the number of customers in a queue. They constitute the time-
homogeneous analogue to the aggregate Markov models considered here.

The first main contribution of the paper is an explicit characterization of the
martingales for the associated counting processes N, which reveals that aggregate
Markov models may be highly non-Markovian. For many practical purposes, less
might suffice. To this end, we provide a sort of reset property under which the
aggregate Markov model is actually semi-Markovian. The second main contribution
of the paper are matrix representations for the expected accumulated cash flows, and
hereby the prospective reserves, for duration-dependent payments with and without
incidental policyholder behavior. Special attention is given to the case where the
payments are duration independent; here our results indicate that aggregate Markov
modeling may hold a competitive advantage over semi-Markov modeling.

The remainder of the paper is structured as follows. Section 3.2 provides some
background, with Subsection 3.2.1 devoted to the basics of inhomogeneous phase-
type distributions and Subsection 3.2.2 to the basics of multi-state modeling in
life insurance. These subsections might be passed over by readers who are familiar
with the subject matter. In Section 3.3, we introduce the aggregate Markov models
and state the aforementioned reset property. The main contributions take place in
Section 3.4 and Section 3.5. The former is devoted to the distributional properties
of Z, including the characterization of the fundamental martingales, while the
latter deals with the valuation of life insurance liabilities and contains, in particular,
matrix representations of the expected accumulated cash flows. To showcase the
practical potential of aggregate Markov modeling, Section 3.6 concludes with a
numerical example. Proofs may be found in Appendix 3.A.

3.2 Preliminaries

Before introducing the setting of the paper, we provide some background. Subsec-
tion 3.2.1 contains a short review on inhomogeneous phase-type distributions, which
play a critical role later. This review is followed by Subsection 3.2.2, which collects
some insights on multi-state modeling in life insurance, in particular in relation to
Markov chain and semi-Markov modeling, hereby motivating our aggregate setup.
The actual presentation of our setup is postponed to Section 3.3.

In what follows and throughout the paper, we denote the product integral of a
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square matrix function A(x) as
F(t,s) = J{(I+ A(z) dw),
t

where I is the identity matrix. Under suitable regularity conditions, it may equiva-
lently be cast as the solution to Kolmogorov’s forward and backward differential

equations:
0
5 F(t.s) = F(t,)As), F(t,t) =1,
%F(t, s) = —A()F(t,s), F(s,s)=1.

For a survey on product integration, we refer to Gill and Johansen (1990) and,
concerning applications to life insurance, also Milbrodt and Stracke (1997) and
Bladt, Asmussen, and Steffensen (2020).

3.2.1 Inhomogeneous phase-type distributions

In this subsection, we review the notion of inhomogeneous phase-type (IPH) distri-
butions introduced in Albrecher and Bladt (2019). Consider a smooth and suitably
regular time-inhomogeneous Markov jump process X = {X(¢)};>0 on the finite
state space J = {1,...,J — 1,J}, where the states {1,...,J — 1} are transient
while J is absorbing. The transition intensity matrix function M (t) = {p:;(¢)}i jes
of X is then on the form

where T'(t) is a sub-intensity matrix function consisting of transition rates between
the transient states and t(¢t) = —T'(t)1; is a column vector of transition rates to
the absorbing state, the so-called exit rate vector function. Further, assume that
P(X(0) = J) = 0 and denote by = (my,...,ms_1) the remaining vector of initial
probabilities m; = P(X(0) = j). The time until absorption, given by

r=inf{t>0: X(t) = J},

is then said to be an inhomogeneous phase-type distribution with representation
(w,T), and we write 7 ~ IPH(7,T).
The transition probability matrix function P(t,s) = {pi;(t,s)}i jes with ele-

ments

pij(t;s) = P(X(s) = j | X(t) =)
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is given as the product integral of the transition intensity matrix function:

S

P(t,s) = J{(I + M()d).

t

49

The probability density function f(z) and distribution function F'(x) of 7 may then

be obtained through product integrals of the sub-intensity matrix function T'(t):

F@) == T +T(w) dujt(a),

==

F(z)=1 —WT[(I + T'(u) du)l .
0

From these, one finds the following conditional distribution:

ﬂ'ﬁ(I—&—T(x) dz)
P(r>s+t|7>s)= 0

; NI+ T (@) da)1,,
‘II'N(I—FT(z) dz)l; *
0

which entails that
T—8|T>8~IPH(a(s), T(s+-)),

where a(s) is given by
T T((I + T (z)dx)
als) = —

o U+ T(2) do)1,
0

(3.2.1)

In other words, for IPH distributions, the overshoot is again IPH-distributed.

Example 3.2.1. In the case of a single phase, that is J = 2, we have

T((I +T(z)dw) =€~ J¢ (@) de

t
giving the density and distribution functions
fla) = e Jom2dv 0 (),
F(z)=1—¢ Jo ma)dv,
while the conditional distribution (3.2.1) takes the form

e~ f(; p12(v) dv

P(r>s+t|7>s) = ey RN

e~ S paz(v)do _ e~ JE 12 (v) dv
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3.2.2 Multi-state modeling

Insurance contracts may be modeled as a stream of payments B = {B(t)}¢>0,
benefits less premiums, between the insured and the insurer. In life insurance,
including health and disability insurance and pensions, the payments depend on
the state of the insured, leading to so-called multi-state modeling. In general, the
state of the insured Z = {Z(¢)}+>0 is a non-explosive jump process on a typically
finite state space J = {1,2,...,J}, J € N, while the payments are typically finite
variation processes adapted to the information generated by Z.

Markov chain models

The most classic approach to multi-state modeling is (smooth) Markov chain models,
where Z is taken to be a time-inhomogeneous Markov jump process (Markov chain)
with suitably regular transition rates v;(t), so that

P(Z(t+h) = k| Z(t) = )

vik(t) = lim

Jk( ) ) h

Using the standard convention v;;(t) = — Y res v;i(t), the square matrix function
=

with indices v;(t) is then the transition intensity matrix function of Z. In addition
to the Markov assumption, the payments are assumed to take the form

dB(t) = Z (I(Z(t)—j)b dt + Z bjk dN]k )) B(O) S R,

i€eJ keg
J k#j

for suitably regular deterministic sojourn payment rates b;(¢) and transition pay-
ments bjx(t) depending only on time. Here N is the multivariate counting process
associated to Z with components N;, = {N;x(t)}+>0 given by

Nji(t) = #{s € (0,t] : Z(s—) = j, Z(s) = k}.

Markov chain modeling dates back to at least Hoem (1969a) and was popularized
in Norberg (1991).

Regarding the valuation of life insurance liabilities, calculating the so-called
expected accumulated cash flow A(t,s) is key. For Markov chain models, the
expected accumulated cash flow A(t, s) is given by A(t,s) = > _ic 7 Lzt)=i Ai(t, 5),
where

Ayt s) = E[B(s) - B(t) | Z(t) = ]

_j;/t jlz(t) = ( %; vir(u >du

The transition probabilities, considered as a square matrix function, are given as
the product integral of the transition rates, also considered as a square matrix
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function. In other words, the transition probabilities may be found simply by
solving Kolmogorov’s forward differential equations.

It is, of course, possible, and of interest, to relax both the Markov assumption
as well as the structure of the payments. In doing so, it is critical to strike
an adequate balance between analytic tractability, computational efficiency, and
statistical flexibility.

Semi-Markov models

A more modern approach is semi-Markov modeling, see for instance Helwich (2008),
Christiansen (2012), and Buchardt, Mgller, and Schmidt (2015). There are two
major differences between (smooth) semi-Markov modeling and (smooth) Markov
chain modeling. First, the jump process Z describing the state of the insured is
no longer required to be Markovian; rather, (Z,U) is assumed Markovian, where
U = {U(t)}+>0 is the duration since the last transition given by

U(t) =sup{s € [0,t] : Z(u) = Z(t) for all u € [t — s,1]}. (3.2.2)

Therefore, the model can no longer be described by transition rates that solely
depend on time. Instead, the transition rates are now functions of both time and
duration, written v (¢, u).

Second, the payments take the more general form

dB(t) =Y (1(Z(t)_j)bj(t,U(t))dt + ) bt U(t—))dek(t)>,
jer Kes (3.2.3)

k#j

B(0) € R,

for suitably regular deterministic sojourn payment rates b;(¢,u) and transition
payments b;(t,u) depending on time and duration.

For semi-Markov models, the expected accumulated cash flow A(t, s) depends
on both the current state and current duration. To clarify, it may actually be
decomposed according to A(t,s) = ;¢ 7 Lzw)=iyAiu)(t, s), where

Aultys) = E[B(s) — B()| Z(t) = i, U(t) =]

-y /t /Ou+vt <bj(v,z) +3 l/jk(v,z)bjk(v,z)) pij(t,u, v, dz)dv,

j€eJ keg
J k#j

pij(t,u,s,2) =P(Z(s) =4,U(s) < 2| Z(t) =i, U(t) = u).

The transition probabilities may be calculated by solving a system of integro-
differential equations, confer with Buchardt, Mgller, and Schmidt (2015, Section 3).
Numerical methods for integro-differential equations can, generally speaking, be
rather intricate. The implementation of semi-Markov models is, therefore, non-
trivial and may carry some operational risk.
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Aggregate Markov models

In this paper, we introduce a class of aggregate models that, similar to semi-Markov
models, allow for added flexibility, such as duration dependence, but avoid some of
the aforementioned numerical challenges posed by semi-Markov modeling.

Denote by (Ty)nen, the jump times of Z, where we employ the convention Ty = 0.
Returning to the case where Z is Markovian with transition rates v;;(t), recall that

P(Tpi1 > t| To, Z(To), Ty, Z(T1), . .., T, Z(Tp) = j) = el i@ 4>
We conclude that

TnJrl - Tn

(TZ’, Z(TZ)):;O ~ ]:PH(].7 VZ(T,,,)Z(TH)(TH + '))

In other words, the sojourn times follow one-dimensional IPH distributions that are
mostly independent of the past history of the jump process. This paper considers
instead jump processes with sojourn times admitting conditional IPH distributions
of general dimension. Hereby we shall be able to capture, for instance, duration
dependence while avoiding the need for intricate numerical methods.

3.3 Setup

In this section, we present the general setup of the paper. Subsection 3.3.1 introduces
the probabilistic model for the state of the insured, while Subsection 3.3.2 introduces
the payments between the insured and the insurer.

3.3.1 Probabilistic model

Similar to Subsection 3.2.2, let Z be a jump process governing the state of the
insured, thus taking values in the finite set of (macrostates) J = {1,2,...,J}, J € N.
This set consists of biometric or behavioral states that are actually observed, for
example active, disabled, free-policy, and dead. To allow for added flexibility, to
each macrostate we may introduce additional sub-states (microstates) that are not
observable.

To be specific, to each macrostate j, a number d; > 1 of microstates are assigned.
The resulting state space is therefore

E={i=(.j):j€J,je{l,2,..d;}},

and the total number of microstates is d = jeg d;. Elements of E are generally
denoted by bold letters such as 7 € E. Now introduce a time-inhomogeneous
Markov jump process X = {X(t)}i>0 = {(X1(¢), X2(t))}+>0 on the state space
E with transition intensity matrix function M (t). Then X;(t) keeps track of the
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macrostate, that is Z(t) = X;(t), while X5(¢) identifies the current microstate
contingent on the state of X (¢).

The transition intensity matrix function M (¢) can be written on the following

block form:
Mll(t) Mlg(t) e Mlj(t)
M(t) = Mzzl(t) M2:2<t) . . M2:J(t> : (3.3.1)
MJ]_(t) MJQ(t) ij(t)

where Mj;(t) are sub-intensity matrix functions of dimension d; x d; providing
transition rates between the microstates of macrostate j, and M (t) are non-
negative matrix functions of dimension d; x dj providing transition rates from

microstates within macrostate j to microstates within macrostate k.

We denote an element of M (t) by puj#(t), 3,k € E. The off-diagonal elements are
non-negative, providing the jump rates between different states, while the diagonal
equals the negative of the row sums of the off-diagonal elements. Consequently,
rows all sum to zero, so M (t) is a proper transition intensity matrix function.

For simplicity, we assume that Z(0) = X;(0) = 1. For a full model identifica-
tion, it then suffices to specify the initial distribution 71(0) of X2(0) among the
microstates 1,2,...,d;. In other words, denoting the initial distribution of X by ,
we have that

m = (m1(0),0).
The column vector function
m;(t) = —Mj;(t)la, = Y Mi(t)ly, (3.3.2)
keJ
k#j

contains the exit rate function out of macrostate j. This function is non-negative
due to M;;(t) being a sub-intensity matrix function. The last equality follows from
the row sums of M (t) being zero.

In this paper, we give special attention to the case where My, j,k € J, j # k,

is a matrix of rank one on the form
M;i(t) = B (t)mi(t), (3.3.3)

where B, (t) is a d;-dimensional non-negative column vector function and m(¢)
is a dj-dimensional non-negative row vector function with m(t)14, = 1. Here
Bx(t) provides the vector of jump rates from the microstates of macrostate j to the
macrostate k, and g (t) denotes the initial distribution of X5(¢) on {1,2,...,dx}
just after a transition of X (¢) to k. In this case,

m;(t) = Bjr(t). (3.3.4)

keg
k#j
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Another way of writing (3.3.3) is

G ) = BT ey (5), K #J.

We say that k has the reset property from state j. If all states k have the reset
property from all states j # k, we simply say the reset property is satisfied.

Remark 3.3.1. Focusing only on the transition from macrostate j to macrostate k,
we look at the following elements of M (¢):

M) - Bultm(t)

M (1)

Here B;1(t) is a column vector of exit rates from states (4,7) in {(,1), ..., (4, dj) }-
Therefore it seems natural to pair j and j, which explains the seemingly awkward
indexation of elements of B (t). Since a new microstate is picked independently of
(4,7) from {(k,1),..., (k,dg)}, records of where the process transitioned from are
lost upon transition, which explains the term reset property. A

Let FZ = {FZ(t)}+>0 denote the natural filtration generated by the macrostate
process Z. Since only Z is observed, the filtration FZ represents the available
information. We may, as previously, associate to Z a multivariate counting process
N with components Njx = {N;x(t)},, given by

Nyi(t) = #{s € (0,4] : Z(s—) = j, Z(s) = k}

as well as a marked point process (T, Y,,)52, with T}, the n’th jump time of Z and
Y., = Z(T,); we use the convention T, = 0. Disregarding null-sets, the jump process
Z, the multivariate counting process N, and the marked point process (Ty,,Y,)5%

generate the same information.

Although the microstate process X is Markovian, this is generally not the case
for the macrostate process Z. In this paper, we derive distributional properties of
Z by deriving distributional properties of the multivariate counting process N and
the marked point process (T, Y,)2,. We are especially interested in the special

case where the reset property (3.3.3) holds across all states. Here it turns out that
(Z,U) becomes Markovian, where U is the duration process defined in (3.2.2).

3.3.2 Payments

Having specified the probabilistic model, we now turn our attention to the insurance
contract itself. Again, we denote by B = {B(t)}+>0 the payments, benefits less
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premiums, between the insured and the insurer. We suppose that B takes the form
prescribed in (3.2.3). Furthermore, throughout the paper, we assume a maximal
contract time 77 > 0 such that all sojourn payment rates and transition payments

are zero after time 7.

In the later stages of the paper, we add another layer of complications by turning
to so-called scaled payments that appear in connection with policyholder behavior
such as free-policy conversion and stochastic retirement. To be precise, here we
furthermore consider payments B” = {B”(t)};>¢ given by

dB?(t) = p(7, Z(r=), Z(7)) "=V dB(t), B(0) = B(0),

where 7 is the exercise time of some policyholder option (modeled incidentally) and
0 < p(t,7,k) <1 is a suitable regular deterministic scaling factor.

The remainder of the paper now focuses on deriving distributional properties of
the macrostate process Z, establishing computational schemes for relevant expected
accumulated cash flows and prospective reserves, and finally relating these findings
to existing models and methods in the life insurance literature.

3.4 Properties of 7

In this section, we derive some distributional properties of Z. In Subsection 3.4.1,
we consider the general setup and derive the conditional finite-dimensional distri-
butions of the marked point process (T}, Yy )nen, associated to Z as well as the
predictable compensators of the multivariate counting processes N associated to Z.
In Subsection 3.4.2, we impose the reset property, which we show, by applying the
results of Subsection 3.4.1, leads to (Z,U) being Markovian.

3.4.1 General results

Since Z is generally not Markovian, we introduce
Sp = (To, Yo, T1,Y1,..., T, Ya)
to keep track of the history of Z. Write
Sn=1(0,1,t1, Y1, stn,Un), i €T, 0<t <ta<...<t, <00,
for a generic realization of S,, whenever T;, < co. Let
FrHD(t)s,) = P(Typy > t|Sn = sn)
denote the conditional survival function of 7,41 given S, and let

G(n+1)(k | sn;tn+1) = IE‘D(an+1 =k I Sn = SnyTnJrl = tn+1)
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denote the conditional probability mass function of Y, 1 given (Sy,Ty+1). These
quantities determine the distribution of Z. The following result provides a charac-

terization of them within our setup.

Proposition 3.4.1. The conditional finite-dimensional distributions of the marked
point process (T, Y,)S2, are given by

t

_ sy

F( +1)(t|5n) = WN I+ M,y,y,(z)dz)lq, , t>tn,
n tn

tnt1

a(sn) T I+ My, (@) dz) My, i (tns1)la,

G (k|sp, tpy1) = tt - .k #yn,
a(sn) T (I + My, (x) dz) my, (ts1)
t’!L
where the d,, -dimensional row vector a(sy,) is given by
n—1 tet1
= 71'1 H 7( I + Myzye )dx) Myzye+1 (tlJrl)'
Proof. Please refer to Appendix 3.A. O
Remark 3.4.2. The first statement of Proposition 3.4.1 corresponds to
a(Sy,)
Toy1—T0| Sy ~IPH| ——77—, M T,+) |- A
i | (a(sn)ldyn vy, (T )>

The compensators of the multivariate counting process associated to Z, which
also determine the distribution of Z, are key quantities in the context of estimation
and valuation. In our setup, they take the following form.

Theorem 3.4.3. The counting process Njx has (FZ,P)-compensator given by
dAjk(t) = )\jk(t) dt with

t
a(Sp-1,Tn: ) JUT + Mjj(x)da)
Tn,
Z 1(Tann+1 1(Y =) t Mjk(t)]‘dk '
(S, Ty ) JU (T + M;(2)da) 1
Tn

Proof. Please refer to Appendix 3.A. O
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3.4.2 Reset property and semi-Markovianity

Suppose now that the reset property holds, that is Mj(t) satisfies (3.3.3) for all
j # k. We now make the following observations. From (3.3.3), we see that for

k # j7
£) JUI + My () d) Bju(s)

is a 1 x 1-dimensional matrix, implying it cancels if appearing in both the numerator
and denominator of a fraction. In particular,

a(sn) _ Ty, (tn)
a(sn)ldyn Ty, (t")]‘dyn

=y, (tn). (3.4.1)
Combined with the results of Subsection 3.4.1, this yields the following corollaries.

Corollary 3.4.4. Assume that (3.3.3) holds. Then the conditional finite-dimen-
sional distributions of the marked point process (T, Y,)2, are given by

t

FOD (t]s,) = my, (t) T (T + My, (2)d2) 1a,,, ¢ > tn,
tn
tn+1
Ty, (tn) T( (I + Mynyn( ) dx) ﬂynyn+1 (tns1)
GV (ks tng) = — ok yn,
wy, (tn) JU T + My, (2) do) my, (1)
tn
where my,, (to41) is obtained from (3.3.4).
Remark 3.4.5. The first statement of Corollary 3.4.4 corresponds to
Toi1 — Ty | Sn ~ TPH(my, (Th), My, v, (T ++)). A

Corollary 3.4.6. Assume that (3.3.3) holds. Then the counting process N, has
(FZ,P)-compensator given by dA;x(t) = \jx(t) dt with

i
(T) TUI + M () da)
T,
Ak(t) = 1(Tn,Tn+1}(t)1(Yn:g) : Bij(t).
netio N I+ Mj;(z)dz)la,
T’VL
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The results show that the general path dependence of Z through «(S,) is
significantly reduced whenever (3.3.3) is imposed. We may actually write

m(t —U(t—)) (I + Mj;(x)dx)
Ajk(t) = Liz—)=j) tftU(H Bijk(t),
m(t-U@=) J[ I+ M) de),
t—U(t—)

which shows that the macrostate process Z is a time-inhomogeneous semi-Markov
process with transition rates v (¢, u), j # k, which are functions of both time and
duration, given by

it —u) T (I + Mjj;(x) do)

Bijk(t)-

Z/jk(t,u) = tt u
m;(t —u) T (T + Mj;(z) da)lg,

Conversely, the class of aggregate Markov models is quite flexible. In light also
of the many prized denseness results for phase type distributions, we therefore
conjecture that the class of aggregate Markov models with the reset property is
dense in the class of all (smooth) semi-Markovian models. That is, any (smooth)
semi-Markovian model can be approximated arbitrarily well by an aggregate Markov
model with the reset property simply by letting the number of microstates increase
to infinity. The clarification of this conjecture is outside the scope of this paper,
but it nevertheless constitutes an interesting research direction.

3.5 Valuation

In this section, we consider the valuation of the life insurance liabilities corresponding
to the payment process B. In Subsection 3.5.1, we provide expressions for the
expected accumulated cash flows and, hereby, the prospective reserves. In particular,
we provide matrix representations that are useful in implementing the models.
The expected accumulated cash flows are composed of conditional occupation
probabilities, for which we derive formulas in Subsection 3.5.2. Special emphasis is
given to the semi-Markovian case of Subsection 3.4.2. Finally, in Subsection 3.5.3
and Subsection 3.5.4, we investigate the impact of duration-independent payments
and the inclusion of policyholder options, respectively.

Throughout the section, the time value of money is described by a deterministic
and suitably regular interest rate r(t). As long as financial and insurance risks are
assumed independent, the extension to stochastic interest rates is straightforward.
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3.5.1 General results

The expected accumulated cash flow A(t, s) valued at time ¢ is given by,
A(t,s) =E[B(s) — B(t) | FZ(t)], s>t,

confer with Definition 2.2 in Buchardt, Furrer, and Steffensen (2019), so that the
prospective reserve reads

n
V(t) — E|:/ e~ JEr(v)do dB(S)

t

fZ(t)} :/ne—ff““)d“A(t,ds). (3.5.1)

t

If the payments are on the form (3.2.3), then

U(t)+s—t
A(t,ds) = Z /0 p;(t,s,dz) <bj(s,z) + Z bjk.(s,z),uik(s))ds,

icE REE
4 k#3

where the conditional occupation probabilities are given by
pj(t,s,z) =P(X(s)=3,U(s) <z ’ fZ(t)). (3.5.2)

If the reset property (3.3.3) is also satisfied, then Z is a time-inhomogeneous
semi-Markovian process and thus A(t,s) = >, 7 L(z)=iAi,u) (¢, ), where

A;iu(t,s) =E[B(s) — B(t) | Z(t) = i,U(t) = u].

Furthermore, it holds that

u+t+s—t
Ain(t,ds) = Z /0 pii(t,u,s,dz) (bj(s,z) + Z bjk(s7z)6ik(s))ds,

[€E keg
2 k#j

where the transition probabilities are given by
pij(tiu,s,2) =P(X(s) = 3,U(s) < 2| Z(t) =i,U(t) = u). (3.5.3)

For implementation purposes, it may be beneficial to use matrix representations
of the expected accumulated cash flow A(t,s) following along the lines of Bladt,
Asmussen, and Steffensen (2020), since it allows for more compact and direct
computations.

In the general case where the aforementioned reset property is not satisfied, the
process Z is non-Markovian, so it is not sensible to form a transition probability
matrix function in the usual way. Instead, we form a d-dimensional vector function
according to

p(t,s,dz) = {p;(t, S’dz>}iEE' (3.5.4)
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In regards to payments and transition rates, however, the fact that X is assumed
to be Markovian allows us to follow more closely the approach of Bladt, Asmussen,
and Steffensen (2020). In the present setup, we have a set of sojourn payment
rates and transition payments that are all identical across microstates (of the same
macrostate). Hence, the d-dimensional vector of sojourn payment rates on the
micro level is given by

b(t,u) = (by(t,u), ..., by(t,u)), (3.5.5)

where b;(t,u) = b;(t,u)1l4,. The matrices of transition payments must, in a similar
fashion, be identical across microstates (of the same macrostate), so that the
transition payment matrix function on the micro level is given by

Bn(t,u) Blg(t,u) e Bu(t,u)
B(ty u) _ B21§t7 u) BQQ (t, ’LL) .. BQJ.(t, U) ’ (356)
le(ﬁ,u> BJQ(t,U) BJJ(t,u)

where B;;(t,u), i,j € J, j # i, is a d; x dj-dimensional matrix with b;;(¢,u) in all
entries, and By;(t,u) = 0 is a d; x d;-dimensional matrix of zeroes. Based hereon,
we define the reward matrix function as

R(t,u) = A(b(t,u)) + M(t) ¢ B(t,u), (3.5.7)

where o denotes the Schur product, that is (A e B);; = A;;B;;, and A(b) is
a diagonal matrix with the vector b as diagonal. This is similar to equations
(3.8)—(3.11) in Bladt, Asmussen, and Steffensen (2020).

The expected accumulated cash flow A(t,s) may then be seen to have the
following matrix representation:

U(t)+s—t
A(t, ds) = / p(t, s, d2)R(s, 2)1,ds, (3.5.8)
0

where the original sums over the state space E are reduced to matrix multiplications.

In the case of the reset property (3.3.3), the semi-Markovianity of Z implies that
it suffices to consider the transition probabilities of (3.5.3). Thus, it is sensible to
form a J x d-dimensional matrix function according to

p(t7 u, s, dZ) = {pll (ta u, s, dZ)}iEj,iEE-
Similarly, we may form the J-dimensional vector

Ay(t,s) = (A1t 8), ..., Asu(t, s))
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of state-wise expected accumulated cash flows, which then can be calculated as
follows:

u+s—t
A (1 ds) = / p(t,u, 5, d2)R(s, 2)1ds, (3.5.9)
0

where the reward matrices R(t, u) of (3.5.7) are modified according to (3.3.3)—(3.3.4).
We can also cast (3.5.9) as A,(t,ds) = a,(t, s) ds, where then

u+s—t
a,(t,s) = / p(t,u,s,dz)R(s, z)1;
0

is a vector of state-wise expected cash flows.

3.5.2 Conditional occupation and transition probabilities

We now provide calculation schemes for the conditional occupation and transition
probabilities. Rather than working directly with these quantities, it turns out to be
fruitful to focus instead on

pit,s,2) =P(X(s)=3,U(s) >z | ]-'Z(t)),
Dij(t,u,s,2) = IP’(X(S) =3,U(s) >z | Z(t) =1i,U(t) = u),

which suffices since

ﬁl(ta S, dz) = *pi(t, S, dz),
Dij (t,u,s,dz) = —Pij (t,u,s,dz).

In the following, we require the d x d;-dimensional matrices
d;
J— e
E; Ze i€
j=1

where e;is a d;-dimensional column with a one in entry 5 and otherwise zeroes,
and e; is a d-dimensional column vector with a one in entry dy + - - - + dj_q +} and
otherwise zeroes. Here and in the following, primes denotes matrix transposition.
The entries of E; are zero, except in the j’th block row, where they consist of
the d;-dimensional identity matrix. Roughly speaking, they allow us to extend a
distribution on microstates in a single macrostate to the whole state space E (and

vice versa).

Theorem 3.5.1. It holds that

ﬁl(t,S,Z) = Z 1[Tn,Tn+1)(t)ﬁi(t7S7Z;Sn)>
n€Ny



62 CHAPTER 3. AHMAD, BLADT, & FURRER (2022)

where the auziliary quantities p;(t, s, z; s,) are zero for t, > s —z and

Pi(t, s, 2;8n)

t
() JU + My, (2)d2)E), s

- tt” N (I + M(z)dr)E; N (I + M;;(z)dr)e;

t

n

fort, <s—z.
Note that

a(sn) T + My, (2)dz) e
: (3.5.10)

1(tn<sfz§t)5i (t7 8, %5 371) - 1(yn:j) t g
a(sy) (I + My, (2)dz) 14,
t

n

Proof. Please refer to Appendix 3.A. O

If the reset property (3.3.3) is satisfied, in which case Z is a time-inhomogeneous
semi-Markovian process, we can use (3.4.1) to immediately obtain the following

corollary.

Corollary 3.5.2. Assume (3.3.3) holds. Then p;;(t,u,s,z) is zero fort —u > s—z
and

1I'Z-(t — U) T( (I + Mn( )dl’)E: (s—z)Vt s

%)
= o T+ M(@)de)E; T[T+ Mj;(x)dz) e;
it —u) JL(I + Mii(x)do)ly, (AW

fort—u<s—z.

We note that z — p;;(t, u, s, z) is continuous on [0, u+s—t) and actually constant
on [s—t,u+s—t). If i # j, then the continuity extends to [0, u + s — ¢], while

Apii(t,u, s,u+s—t) = —lgirolﬁﬁ(t,u,s,s —t—h).

The fact that z — p;;(t,u, s, z) is constant on [s — t,u + s — t) may be utilized to
reduce the computational load when calculating the expected accumulated cash
flows.
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Algorithm 3.1 Computation of expected cash flows in an aggregate Markov model
with the reset property.

Input: Current time ¢ € [0,7), current duration u € [0,¢], and a grid T : t =
to <t1 <---<t, =non the interval [t,7].

1) Calculate initial conditional distributions at time ¢:

y(t,u) = (yi(t,u), ..., vs(tu) .

2) Compute transition probabilities for the Markovian state process X,

te

P(t,t) = T+ M(2)dz),  Le{l,...,n},

t
by solving Kolmogorov’s forward differential equation on 7.
3) For e {1,...,n}:
i) Compute state-wise stay probabilities until time ¢,:

te
Pyj(tet) = [T+ Mjj(a)da),  to €T, £ <L je],

tyr

P(ty,t)) = A((Pui(te,te), ..., Prs(te,te)),

by solving Kolmogorov’s backward differential equation on 7 starting
at ty.

ii) Calculate the vector of state-wise expected cash flows for time ¢;:

ayu(t,te) =~(t, u)( Z P(t,0)M(v)P(v,t0)R(te, t; — v)17 dv

t

- P(ta tf)R(tea U+ tf - t)1d>7

using numerical integration methods on the grid T for the integral, and
where

M;(v) = M(v)E; — E;Mj;(v),  j€J,
M(v) = (Ml(v), . .,MJ(U)).

Output: For each £ € {1,...,n}, a vector of state-wise expected cash flows a.(t,te).
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We conclude this subsection by presenting the above algorithm for the computa-
tion of expected cash flows in models with the reset property. The computational
scheme is similar to the algorithm for general semi-Markov models based on Kol-
mogorov’s forward integro-differential equation proposed in Buchardt, Mgller, and
Schmidt (2015, Section 3). Both algorithms employ a two-dimensional time and
duration grid, and one would therefore expect the computational loads to be

comparable.

3.5.3 Duration-independent payments

We now consider the simplifications arising from duration-independent payments,

that is, when
bi(t,u) =0b;(t) and bjx(t,u) = bjr(t), (3.5.11)
or, equivalently,
b(t,u) =b(t) and B(t,u) = B(t).

In this case,

where
p(t,s,0) = {ﬁi(t,s,O)}ieE,
R(t) = A(b(t)) + M(t) e B(t).

According to Theorem 3.5.1,

ﬁi(t,S,O) = Z 1[Tan+1)(t)ﬁi(t73’0; Sn)’
n€Ny

t
a(sn) JT (I + Mynyn (I)dx) E;In

S

T + M(z)dw)e;.

5J(ta Sa 07 Sn) =

o~
et

a(sn) (I + Mynyn (:,C)dCU) ldyn

-~

n

If the reset property (3.3.3) is satisfied, then we are rather interested in A, (¢, s),
which subject to (3.5.11) reads

A, (t,ds) = p(t,u,s,0)R(s)1;ds,
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where
p(t,u,s,0) = {ﬁii(t’“’s’o)}iej,ieE'
Furthermore,
t
it —u) ﬂ I+ M;i(2)dz) B}
ﬁu(hu,&o):: - T + M(z)dw)e;
t

t
t—uﬂ[—i—Mu dz) 1,

This should lead to a significant reduction in computational load since the above
simplification allows one to adapt Algorithm 3.1 to employ only a one-dimensional
time grid. For general semi-Markov models, where the computation of transition
probabilities relies on Kolmogorov’s forward integro-differential equation, such a
simplification is not possible. It should be noted, however, that the computation of
the term

S

HU+M@M)

t

might still be rather burdensome if d is large. To conclude, if the number of
microstates per macrostates is not too large, aggregate Markov models might hold a
competitive advantage over general semi-Markov models if the payments of interest
are duration-independent.

The above discussion relates to duration-independent payments. However, it
is also applicable to certain crude duration-dependent payments. This is partly
illustrated by the numerical example in Section 3.6, where we consider a contract
stipulating a waiting period.

3.5.4 Policyholder behavior

We now extend the results of Subsections 3.5.1-3.5.2 to include incidental pol-
icyholder behavior such as free-policy conversion and expedited or postponed
retirement. The inclusion of policyholder options is quite popular in the life insur-
ance literature, confer with Henriksen et al. (2014), Buchardt and Mgller (2015),
Buchardt, Mgller, and Schmidt (2015), and Gad and Nielsen (2016), especially
for Markov chains. General insights based on change of measure techniques were
recently provided in Furrer (2022). In the following, we adapt the general methods
and results of Furrer (2022) to our setting.

Suppose that the macrostates J can be decomposed as

T =TT U{V},
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with 1 € Jy and where the transition intensity matrix function M (¢) of the
microstate process X is composed of block matrix functions satisfying

M, (t) =0, je i, ke,
My (t) =0, jeJg.

In that case, the macrostate process Z almost surely never hits V, and, upon
entering the states [Ji, the process never returns to Jy. Recall that Z(0) =1, so
the process starts in Jy. We may thus interpret J, as the states of the insured
prior to exercising their policyholder option and [J; as the states of the insured
after exercising the option. (The role of the ‘dummy’ state V will be clear later.)
The first hitting time of 77, given by

T=inf{t>0:2Z(t) e N},

then constitutes the exercise time of the option. Since Z almost surely never hits V,
we may as well take by (s,u) =0, bjv(s,u) =0, and byi(s,u) = 0. At exercise, the
original contractual payments are scaled with the factor p(r, Z(7—), Z(7)), where
0 < p(t,7,k) <1 is some suitably regular deterministic function. The payment
process of interest B? = {B”(t)};>0 thus takes the form

dB?(t) = p(7, Z(r=), Z(7))'C=" dB(t), B(0) = B(0).

The scaling factor is typically selected as to maintain actuarial equivalence with
respect to a safe-side valuation basis, the so-called technical basis; we just consider
it given. The corresponding expected accumulated cash flow AP(t, s) valued at time
t is

A9(1,5) = E[BY(5) — B (1) | F7(1)] = E[ | ol ze),2)) = ap(w)

fz(t)} :
The following result is a consequence of Furrer (2022, Theorem 3.6 and Proposi-
tion 3.10).
Proposition 3.5.3. It holds that

A7(t,s) = E[B(s) - B() | FZ(0)p(r, Z2(r-), Z(r)) ' "=",

where B denotes expectation with respect to another probability measure P. Further-
more, the (FZ,IP)-compensators of the counting processes are given by

dKJk(t):p(t?]7k)dA]k(t)> jEJO;kEJh

dAjo(t) = > (1= p(t, 5. k) dAs(t), j e o,
keJ1

dAyi(t) =0, keJ k+V,

o~

dA () = dAjx(1), otherwise.
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Recall that the compensators determine the distribution of Z. Thus from
the expressions for the compensators obtained in Theorem 3.4.3 and the above
proposition, we find that Z under P follows an aggregate Markov model with
transition intensity matrix function M (t) composed of block matrix functions

M (t) = p(t, j, k) My (t), jeJoke T,

Mjv(t) =" (1 - p(t.j. k) Mjr(t)1a, . jed,
ke

My (t) =0, keJ,k#V,

Mj (t) = Mjk(t)7 otherwise.

Furthermore, if the reset property (3.3.3) is satisfied under P, this is also the case
under P. All in all, according to Proposition 3.5.3 the expected accumulated cash
flow

~

A(t,s) =E[B(s) — B(t) | FZ(t))],

and thus also the expected accumulated cash flow AP(t,s), can be calculated using

o~

the formulas of Subsections 3.5.1-3.5.2, but with M (¢) replaced by M ().

3.6 Numerical example

We conclude the paper by presenting a numerical example that serves to illustrate
the methods presented in Section 3.5. The probabilistic models, described by
transition rates on the micro level, are taken from the numerical example in Ahmad
and Bladt (2022a), where aggregate Markov models corresponding to Figure 3.1
with the reset property are fitted to simulated data on a macro level for different
numbers of disability microstates, ds. The simulations are based on a (smooth)
semi-Markovian disability model employed by a large Danish life insurance company
that has been reported to and published by the Danish Financial Supervisory
Authority. The only duration effects present in this model concern the rates from
the disability state, which also explains why we do not add extra microstates to
the active macrostate. The rates from the disability state are, at least after some
months, decreasing as functions of duration. We refer to the numerical example
in Ahmad and Bladt (2022a) for further details.

In the following, the analysis of Ahmad and Bladt (2022a) is extended with
calculations and comparisons of state-wise expected cash flows and prospective
reserves. We focus on a coverage which admits duration-dependent payments,
namely a disability coverage with a waiting period. To be specific, we consider a
male of age ¢t = 40 years with a disability annuity of rate 1 per year, starting 3
months after the onset of disability, but only until retirement at age 65. The only
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disabled

active (1,1) o (2,d2)

dead (3,1)

Figure 3.1: Disability model with d2 unobservable disability microstates.

non-zero payments function is thus b (s, z), which reads

ba(s,2) = L(s<65) 1 (z>1/4)
and we may therefore set n = 65.

We emphasize that this particular simple type of duration dependence allows
for simplifications in the computation schemes similar to those from the duration-
independent case of Subsection 3.5.3. Indeed, the vector of state-wise expected cash
flows now reads

au(40a 8) = 1(u+s—40>1/4)1_)(407 S, U, 1/4)E21d27

where the elements of p(40, s, u, 1/4) can be calculated using Corollary 3.5.2, confer
also with Algorithm 3.1. Since we only need the transition probabilities at a
single (and rather small) end duration z = 1/4, the computational complexity is
comparable with that of the duration-independent case, where only z = 0 is needed.

The corresponding vector of state-wise prospective reserves is obtained by dis-
counting and accumulating the vector of state-wise expected cash flows:

65
V,,(40) = / e~ Ji ) dvg (40 5) ds.
40

For the interest rate, we use the forward rate curve published on the 3rd of November,
2022, by the Danish Financial Supervisory Authority. We are implicitly assuming
that the financial market is independent of the state process of the insured.

We calculate the vectors of state-wise expected cash flows and corresponding
prospective reserves across initial states and durations and for the various fits. We
also calculate these quantities for the underlying true semi-Markov model, where
we need to use Kolmogorov’s forward integro-differential equation of Buchardt,
Mpgller, and Schmidt (2015, Section 3), since this model is not an aggregate Markov
model. Figure 3.2 shows the resulting expected cash flows in the disability state for
initial durations v = 0 and v = 1, while Figure 3.3 shows the prospective disability
reserves as functions of the duration since the onset of disability.
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Expected cash flows (i = 2, u =0) Expected cash flows (i=2,u=1)

N N
a7 dz < dz

1.0

0.8

0.6
|

0.4

0.2
0.2

0.0
0.0

40 45 50 55 60 65 40 45 50 55 60 65

S S

Figure 3.2: Expected cash flow s — a2,.,(40, s) in the disability state with initial durations
u =20 (left) and uw = 1 (right) for different numbers of disability microstates, dz2, along
with the true expected accumulated cash flows. The case d2 = 1 corresponds to a Markov
chain.

Prospective disability reserves

12 13 14
1 1 |

11
1

0.0 05 1.0 15 2.0
Initial duration (u)
Figure 3.3: Prospective disability reserve as a function of duration since onset of disability,

u — V2,,(40), for different numbers of disability microstates, dz, along with true prospective
reserve. The case da = 1 corresponds to a Markov chain.

Since it is unable to capture the duration effects that are present, the Markov
chain corresponding to do = 1 performs, as anticipated, very badly. Maybe
more surprisingly, the addition of just a single additional disability microstate
corresponding to do = 2 leads to significant improvements; this model may already
be competitive, depending also on the trade-off between accuracy and computational
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load. Furthermore, and consistent with our expectations, the accuracy appears to
further improve as the number of disability microstates, ds, increases. Actually,
any differences between the true and the aggregate model with do = 10 might just
be an expression of statistical noise.

3.A Proofs

This appendix contains the proofs of the results from Sections 3.4-3.5. In the
following, we denote by e; the d;-dimensional vector with a one in entry j and
otherwise zeroes. To prove Proposition 3.4.1 and Theorem 3.4.3, we need the next

lemma.

Lemma 3.A.1. Fort >t, and k # y, it holds that

a(sn,t, k)

7
IP)(t<Tn+1<t‘|'hAX( n-‘rl ﬁ’|Sn:57z): a(s )]-d h+ (h), h — 0,

where the d,,, -dimensional row vector a(s,) is given by

n—1 tey

=m1(0 H T( (I + My,y,(x) dz) My, (ter1)-
Proof. We give a proof by induction. First, we verify the identity for n = 0. Note
that &(0,1)1,, = 1 and that

:ZIP(t<T1 <t+h X(Ty) =%k, X(t) = (1,9))

_Z<[ )+ P(Ty <t+h, X(t+h) k|t<T1,X(t)=(1,?70))}
P(t < Ty, X (t) = (Lﬂo)))

B+ B> i gor Bm(0) T + Mi(2) do) e,
0

7o
t

h) + by (0) TU + M (z) dz) My (Heg
0
=o(h) + ha(s))e;.

Collecting results confirms the identity for n = 0. Now suppose the identity holds
for n € Nyg. We want to establish the identity also for n 4+ 1. By assumption,

]P)(tn+1 < Tn+1 S tn+1 +Ea X(Tn+1) = (yn+17gn+1) | Sn = sn)
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a(snatn+1ayn+1)eﬂ +17 7
= " h h).
a(o)le, + o(h)

In particular,

P(tvl+1 <Tny1 <tpp1+h, Yo = ynga | Sy = Sn)

_ ot Vi)l g
a(sn)ldy"

(3.A.1)

Furthermore,

P(t < Ti2, X(t) = Yng1 | Tons1 = tnr1, X (tns1) = Wns1, Gnt1))
t

= e%n+1 H (I + Myn+1yn+1 (55) dm) €nt1r

tn+1

so that

P(t < Tn+23 X(t) = yn+1atn+1 < Tn+1 < tpyr +Ea Yn+1 = Yn+1 ’ Sn = Sn)
t

a(STH tn+17 yn+1) 7 T
= a(sn)ldyn N (I + Myn+1yn+1 (:ZJ) dx) egrL+lh =+ O(h)

tn41

Using this result, we find that

P(t < Tpiz <t +h, X (Tni2) = Rytugt < Tnit < tpi1 +h,
Yn+1 = yn+1’Sn = Sn)
== [o(h) A P(Topo < t+h, X(E+h) =R |t < Tpio, X(1) = yn+1)}

Ynt1

P(t < Tn+2; X(t) - yn+1;tn+1 < Tn+1 S tn+1 + FL; Yn+1 = Yn+1 | Sn - Sn))

= Z <[o(h) t Hyngak (t)h}

Ynt1

a(sna tnt1,Yn ) d 7 7
[ a(sn—s)-idyn +1 T( (I + My, y,. (7) dx) €j,..h+ o(h)} > ,

tnt1

Combining this result with (3.A.1) allows us to conclude that
P(t < Tpqo <t+h,X(Toy2) =R | Syt = Snt1)

S, tn, sYn ¢
h Zgn+1 %lldznm (I + Myn+1yn+1 (:23) dl‘) €hnt1 Mynii® (t)

_ fnt1
- O(h’) + a(S"’t"+1’y"+1)1dyn+1
a(S")ldyn
a(sns1) T
o n+1 -
= ol + b=t T+ My () d2) My, n(teg

Ynt1 tp4q
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a(spt1,t, k)e%h

=o(h)+
( ) a(sn+1)1dyn+1

This establishes the identity for n + 1 and thus completes the proof. O

Proof of Proposition 3.4.1. From Lemma 3.A.1 we immediately get that P(T},41 <
t,Y,11 = k| Sn = sp) is absolutely continuous with respect to the Lebesgue measure
with density

a(sn, t, k)ldk
a(s”)ldyn

t
a(sn)
" a(s)la,, Z( (I + M, (z)dz) My, (D14,

f(n+1)(t, k|3n) —

for t > t,, and k # y,,. In particular, 1 — F(*t1(t|s,,) is absolutely continuous with
respect to the Lebesgue measure with density

t
O (tsn) = ) e 1d ]‘( (I +M,,,,(x)dz) M, r(t)l4,
k;én t ; (3.A.2)
o(sn)
a(sn)la,, ZL(( + My, () dz) my, (2)

for ¢ > t,; confer also with (3.3.2). Based on for instance the forward equations for
product integrals, see Gill and Johansen (1990, Proposition 5 and 6), we may then
argue that

F(n+1)(t‘8n) _

t
o(sn
ormd | CARCRALEL I

n

which proves the first assertion of the proposition. For the second part, we let
k # yp, and find that

SO (i1, klsn)
f(n+1)(tn+1|sn)

tn
a(s,) ]‘( YT+ M,,,, (z)de) M, ;(th1)1a,

G(Sn)ldy" tn

S tnt1
a(?f)ld),yn’ T( (I + My, .y, (z) dz) my, (tni1)

tn

tn41
a(s,) J{," (I + M,,,, (@) dz) My, (tas)La,

n

alsn) TUH (1 My, () d) my, (1)

n

G (ks tpe1) =

)

as desired. O
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Proof of Theorem 3.4.3. In the previous proof, we already noted that the distribu-
tion function 1 — F("*1(¢|s,,) is absolutely continuous with respect to the Lebesgue

measure with density

o(sy) T+ M,y () de)m,, (1)

D (t]s,) = —22
P 0ion) = o6 5 N

for t > t,,; see in particular (3.A.2). Then dA;x(t) = \jx(t) dt with

fn+1)(t|sn 1 717])

= > w1 (O vi=)
nt1] n= (n+1)
neNg Fn (t|Sn 1 na])

G(n+1) (klsn—laTn,ja t)v

confer with Jacobsen (2006, Proposition 4.4.1(b)(ii)). The result now follows from
inserting the expressions for F(**t1) and G(**1) obtained in Proposition 3.4.1 along
with the above expression for f(™+1), O

Proof of Theorem 8.5.1. Due to the decomposition

Pi(t:5,2) = L, 1) (OP(X(s) = 3,U(s) > 2| Tpar > t,85),

neNg

it suffices to show that
IP(X(S) = ia U(S) >z | Tn+1 >1t,5, = Sn) = ﬁj(t S, 23 Sn)7

whenever they are well-defined. The case t,, > s — z is trivial, so suppose in the
following that ¢,, < s — z. We find that

P(X(s) = 3,U(s) > 2| Tnt1 > 1,50 = sn)

B ZP(X(S) =3,U(s) > 2, Th41 > t, X(t) = Yn | Sn = sn)
o P(Tn+1 >t‘Sn:8n)

g"l
_Z< n+1>tX() Yn | Sy = sn)

n+1>t‘S —Sn)

B(X(s) = 4.U(s) > 2| Toss > £, X (1) = Y, S = ))

According to the first statement of Proposition 3.4.1,

t

_alsn) T+ M, (x)do) 1,

]P(Tn+1 >t | S, = Sn) = (S )ld
n vn t,

Yn

Also, using similar techniques as in the proof of Proposition 3.4.1 and referring to
Lemma 3.A.1, one may show that

a(s,)

P(Thi1 >, X(t) = yn | Sn = sn) = a(s,)lg

T( (I + M"/nUn( ) dx) eﬂn .

in
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If s — 2z <t, then

P(X(s) = 7,U(s) > 2| Tns1 > t, X(t) = Yn, Sn = 5n)
= 1(jmy ) P(X(8) = 3, Tps1 > 8| Tog1 > £, X (1) = Yn, Sn = 5n)

] Yn) yn T( I + Mynyn ) d.’L‘) e;a
t

so that

P(X(s) = 2,U(s) > 2| Tn1 > 1,50 = sn)

S

a(sy) (T + M, (z)dz) e;

tn
= 1(]:yn) ¢ )

C!(Sn) ]I(I + Mynyn (:c)dx) ]‘d?m

tn

which exactly equals p; (¢, s, z; s,,), confer with (3.5.10). If instead s — z > ¢, then
the Markov property of X yields

]P)(X(S) = i? U(S) > Z|Tn+1 > th(t) = ynv‘sn - sn)

—ZP Uls) > 2, X (s = 2) = (3.) | X(t) = yn)

= ZP U(s) > 2| X(s — 2) = (L I)P(X (s — 2) = (.1)| X (£) = )
_Ye ]I (4 My (o)) esel,, T (T + M(x)da)e;

=e, SJ:(Z(I + M (z)dz) E; f( (I + Mj;(z)dz)e;.

Collecting results completes the proof. O



Chapter 4

Aggregate Markov models in life insurance:

estimation via the EM algorithm

This chapter is based on the manuscript Ahmad and Bladt (2022a).

ABSTRACT

In this paper, we consider statistical estimation of time-inhomogeneous
aggregate Markov models. Unaggregated models, which corresponds to
Markov chains, are commonly used in multi-state life insurance to model
the biometric states of an insured. By aggregating microstates to each
biometric state, we are able to model dependencies between transitions
of the biometric states as well as the distribution of occupancy in these.
This allows for non-Markovian modeling in general. Since only paths of
the macrostates are observed, we develop an expectation-maximization
(EM) algorithm to obtain maximum likelihood estimates of transition
intensities on the micro level. Special attention is given to a semi-
Markovian case, known as the reset property, which leads to simplified
estimation procedures where EM algorithms for inhomogeneous phase-
type distributions can be used as building blocks. We provide a numerical
example of the latter in combination with piecewise constant transition
rates in a three-state disability model with data simulated from a time-
inhomogeneous semi-Markov model. Comparisons of our fits with more
classic GLM-based fits as well as true and empirical distributions are
provided to relate our model to existing models and their tools.

Keywords: Phase-type distributions; Parametric inference; EM algorithm; multi-

state life insurance; semi-Markovianity
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4.1 Introduction

In this paper, we consider statistical estimation of the finite state space, time-
inhomogeneous aggregate Markov process introduced in the companion paper
Ahmad, Bladt, and Furrer (2022). The term aggregate refers to certain states
of the process being pooled into so-called macrostates. The interpretation of
macrostates could for example be biometric or behavioral states in a life insurance
context, like active, disabled, or free-policy. The pooled states are referred to as
microstates and are introduced to improve the sojourn time distributions of the
macrostates and introduce dependencies between transitions. This allows for non-
Markovian modeling in general. Since only paths of the macrostates are observed,
this corresponds to an incomplete data problem with respect to the underlying
microstates, and we employ an expectation-maximization (EM) algorithm to obtain

maximum likelihood estimates of transition intensities on the micro level.

The aggregate Markov model of Ahmad, Bladt, and Furrer (2022) may be consid-
ered as the underlying process of a time-inhomogeneous BMAP (Batch Markovian
Arrival Processes, Latouche and Ramaswami, 1999), and contains as special cases
time-homogeneous phase-type renewal processes (see Neuts, 1978), Markov mod-
ulated Poisson processes (see Rydén, 1994) and of course (time-homogeneous)
BMAPs. In the aggregate Markov model, the sojourn time distributions are IPH
and dependent, as shown in Ahmad, Bladt, and Furrer (2022, Proposition 4.1).
Methods for fitting independent IPH distributions via the EM algorithm have
been considered in Albrecher, Bladt, and Yslas (2022) for commuting sub-intensity
matrix functions and in Ahmad, Bladt, and Bladt (2022) for general IPHs. Methods
for the estimation of homogeneous BMAPs can be found in Breuer (2002, 2003).

In the multi-state life insurance context, however, we both need the time-
inhomogeneity and dependency between transitions to properly capture age depen-
dencies and duration effects. The nature of such models implies that sub-intensity
matrices at different times may not commute, which is a crucial assumption in
the independent IPH fitting of Albrecher, Bladt, and Yslas (2022). We, therefore,
extend the general approach of Ahmad, Bladt, and Bladt (2022) to include the de-
pendencies. This will provide the main contribution of the paper. Special attention
is paid to the semi-Markovian case considered in Ahmad, Bladt, and Furrer (2022,
Subsection 4.2), known as the reset property, where sojourn time distributions are
IPH and independent. Here, we show how algorithms of Ahmad, Bladt, and Bladt
(2022) partly can be used as inputs to our algorithms.

An important ingredient in our methods is the approximation of the models by
piecewise constant transition rates. In general, transition probabilities of the Markov
processes involved are solutions to ordinary differential equations of Kolmogorov
type, the solution of which is denoted the product integral (see Gill and Johansen,
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1990; Johansen, 1986). Assuming piecewise constant rates, the solutions can be
expressed explicitly in terms of products of matrix exponentials. Furthermore,
maximum likelihood estimation greatly simplifies and can be expressed in terms
of multinomial and Poisson regressions based on a set of sufficient statistics in the
different time intervals.

While we develop an EM algorithm for the general model, we only implement
and apply it to data in the case where the reset property is satisfied along with
piecewise constant transition rates; this relates to the approach in Ahmad, Bladt,
and Bladt (2022). Here, we present a numerical example where macro data is
simulated from a time-inhomogeneous semi-Markovian disability model commonly
used in the context of disability insurance (see, e.g., Hoem, 1972; Helwich, 2008;
Christiansen, 2012; Buchardt, Mgller, and Schmidt, 2015). We compare our model
fits with more classic GLM-based fits as well as true and empirical distributions
to illustrate how the aggregate Markov model with the reset property is able to
capture duration effects in these kinds of models.

The remainder of the paper is structured as follows. In Section 4.2 we set up the
model and notation. Section 4.3 considers the estimation of completely observed
aggregate Markov processes. Special attention is given to the piecewise constant
case and the reset property, where links to Multinomial and Poisson regressions
are provided. Then, in Section 4.4, an EM algorithm for fitting aggregate Markov
models from observing only the macro process is developed. Special attention is
devoted to the piecewise constant case and the reset property. The proof of the EM
algorithm is deferred to Appendix 4.A. Finally, Section 4.5 contains a numerical
example in a disability model.

4.2 The aggregate Markov model

We now present the aggregate Markov model introduced in the companion paper
Ahmad, Bladt, and Furrer (2022), and some probabilistic properties of the model
that are relevant to the present paper. Consider a jump process Z taking values on
the finite set J = {1,2,...,J}, J € N. We think of these as biometric or behavioral
states governing the states of the insured in a life insurance context, for example,
active, disabled, free-policy, or dead, and we thus refer to them as macrostates. To
each macrostate ¢ € J, a number d; > 1 of microstates are assigned. The resulting
state space is therefore

E={i=(ii):ie€J,i€{1,2,...d;}},

and the total number of microstates is d = Y, 7 di. Elements of E are in general
denoted by bold letters such as 1 € E.
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Now introduce a time-inhomogeneous Markov jump process

X ={X ()} >0 = {(X1(t), X2(t)) }i0

on the state space E with transition intensity matrix function M (t). Then X (¢)
keeps track of the macrostate, that is Z(t) = X;(t), while Xo(¢) identifies the
current microstate contingent on the state of X (t).

The transition intensity matrix function M (t) can be written on the following
block form:

My (t) Mia(t) -+ Miys(t)
M(t) = M2:1(t) M2:2(t) M2:J(t) 7 (4.2.1)
Mji(t) Myo(t) --- Myy(t)

where M;;(t) are sub-intensity matrices of dimension d; X d; providing transition
rates between the microstates of macrostate ¢ at time ¢, and M;;(t) are non-negative
matrices of dimension d; X d; providing transition rates from microstates within
macrostate ¢ to microstates within macrostate j at time t. We denote an element
of M(t) by pij(t), ©,3 € E. We assume that Z(0) = X;(0) = 1, so that the initial
distribution of X is given by

™ = (m1(0),0),

where 7r1(0) is the initial distribution of X5(0) among the microstates 1,2,...,d;.
The transition (sub-)probability matrix functions within macrostates are given as
the product integral (see Johansen, 1986; Gill and Johansen, 1990)
t
Py(s,t) = J{(I + My(x)dz), i€J. (4.2.2)
s
The vector egpi(s, t) then contains the distribution of X (¢) within macrostate ¢ on
the event of staying in macrostate ¢ in the whole time interval [s,¢], and given that
X (s) = 1; here and in the following, e; denotes the d;-dimensional column vector
with one in entry ¢ and zeros otherwise, and primes denote matrix transposition.
The matrix M,;(t)d¢, j # 4, then contains the (infinitesimal) transition probabilities
between microstates belonging to macrostates ¢ and j, respectively. All in all,
for some generic path of Z, represented via its associated marked point process
(T3, Yi)ien, as Sp = (T3, Yi)i<n, the d, -dimensional row vector (see Lemma A.1 in
Ahmad, Bladt, and Furrer, 2022)

n—1

a(én) = 7l'1(0) H Pye (tfa tf+1)My@yg+1 (t€+1) (423)
£=0

provides the (defective) distribution in macrostate y, at time ¢,. In particular,
according to Ahmad, Bladt, and Furrer (2022, Remark 4.2), the sojourn times
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are inhomogeneous phase-type distributed (IPH, Albrecher and Bladt, 2019) and
dependent on past jump times and transitions:

a(Sn)
Tog1 —Tn | Sn ~ IPH(M)L&%

The corresponding exit rate function out of macrostate i is then given as the column

, My, y, (T, + -)). (4.2.4)

vector function

mi(t) = —M;;(t)lq, = Y M;;(t)1q,. (4.2.5)

Throughout the paper, we pay special attention to the case where the reset property

introduced in Ahmad, Bladt, and Furrer (2022, (3.3)) is satisfied. Here M;;(t),
j # i, is a matrix of rank one on the form

M, () = By (D, (1), (4.2.6)

where B;;(t) is a d;-dimensional non-negative column vector function and m;(t) is a
dj-dimensional non-negative row vector function with m;(#)14, = 1. In this case,

mi(t) = Z Bii(t), (4.2.7)

and, according to Ahmad, Bladt, and Furrer (2022, Remark 4.5), the conditional

sojourn time distributions (4.2.4) become independent of past jump times and

transitions:
Tn+1 — Tn | Sn ~ IPH(TI'YH (Tn)7 My"yn (Tn + ')) . (428)

These simplifications imply a specific time-inhomogeneous semi-Markovian structure
to the macrostate process Z, cf. Ahmad, Bladt, and Furrer (2022, Subsection 4.2),
which explains the focus on these type of models in our numerical example in
Section 4.5.

In this paper, we develop methods for statistical fitting of the aggregate Markov
model, namely estimation of the micro intensities u;; based on independent observa-
tions of the trajectories of the macrostate process Z. Since this leads to incomplete
data with respect to the underlying macro-micro state process X, we employ an
expectation-maximization (EM) algorithm to obtain maximum likelihood estima-
tions of the micro intensities. We develop a general EM algorithm and implement it
in the case where the reset property (4.2.6) is satisfied along with piecewise constant
transition rates.

4.2.1 Piecewise constant transition rates

Following Ahmad, Bladt, and Bladt (2022, Section 2.1), suppose that the transition
rates are piecewise constant on a grid s) =0< s1 < -+ < sg_1 <00 = 8sx of K
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time points, K € N, with values
M(s) = M* = {“fi}i,ieE’ s € (sg—1,8k), ke{l,...,K}. (4.2.9)

Introducing k(x) as the unique k € {1,..., K} satisfying that « € (sp_1, si], we
now have that the transition (sub-)probability matrix functions within macrostates
(4.2.2) simplify to a product of matrix exponentials on the form
k(t)—1
Pi(s,t) = MU sk —9) H eMii(se=se-1) | M (t*Sk(t)—l)’ (4.2.10)
£=k(s)+1

with the convention that empty product integrals equals the identity matrix. The
defective distribution (4.2.3) at time ¢,, then also simplify, to

YeYet1 ?

n—1
a(sn) = m1(0) H Py, (te, o) MG (4.2.11)
=0

with the matrices Py, (t;,t¢+1) being on the form (4.2.10). We give special attention
to this case being satisfied along with the reset property when we develop our
algorithms in this paper, as they will provide simplifications similar to those in
Ahmad, Bladt, and Bladt (2022).

Here it may be noted that if the resulting exit rates (4.2.5) are different between
two sub-intervals, the density of the conditional sojourn time distributions (4.2.4)
become discontinuous at the corresponding grid point between the two sub-intervals.
This follows by similar arguments as those made in Ahmad, Bladt, and Bladt (2022,
Subsection 2.1).

4.3 The case of complete micro data

We now consider the complete data case where trajectories of the underlying macro-
micro state process X is fully observed, which corresponds to methods known from
inference of time-inhomogeneous Markov jump processes on finite state spaces; we
refer to Andersen et al. (1993) for a detailed exposition on this. The approach
and notation of this section largely follow that of Ahmad, Bladt, and Bladt (2022,
Section 3.1-3.2).

4.3.1 General case

Suppose that we observe N € N i.i.d. realizations of the Markov jump process X of
macro-micro states on some time interval [0, T], where T' > 0 is a given and fixed
time horizon; represent the (fictive) data by X = (X, ..., X(N)). Denote with
N = (N(l)7 ceey N(N)) the corresponding data of the multivariate counting process
associated to X, that is, N, n =1,..., N, have components

N (@) = # {s €(0,]: XM (s—) =1, XM (s) = .i} :

13
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Parametrizing the transition rates on the micro level with a parameter vector
0 € O, where O is some finite-dimensional, suitably regular parameter space with
non-empty interior, such that

M(s) = M(s;0),
we have that the likelihood function for the joint parameter (w1, 8) is given by

£ (71'1, EO 7'l'1 H £
111:112

£ (my) H 1,0 (0)Ban @) (4.3.1)
T
c25(0) = e ( /( Tog(it(6:0) AN (5) — [ (omagto 0)is).
0,7 0
where, for 1,7 € E, 3 #1, and s € [0,T],

Lixm—iy and  Nyj(s) = N(s), (4.3.2)
1 n=1

M=

Li(s) =

3
I

with B(l,r) (0) = I(l,r) (O)

Then I;(s) gives the number of observations in state ¢ at time s, while Nj;(s)
gives the total number of jumps observed from state © to 3 on [0, s]. In particular,
B(1,(0) then becomes the total number of initiations in microstate r of macrostate
1 observed. When we later consider the case where the reset property is satisfied
along with piecewise constant transition rates, we encounter more kinds of initiations
in macrostates that adds to this notion.

The corresponding log-likelihood LX (1, 8) = log LX (7, 8) is given by

LX(m,0) = L (m) + Y L¥( (4.3.3)

1,j€EE
iFi

LX (m1) ZB 1r) ) log(m (1, r)(o))v

L%(0) = / log (114 (5 6)) AN (5) — / Lo 0)ds (134)
“ (0,77 0

and the MLE of (w1, 0) is then found by maximizing the log-likelihood:
(#1,0) = argmax LX (71, 0).
(m1,0)

The product structure of the likelihood (4.3.1) in 71 and 0 gives that we can estimate

these separately via their respective likelihoods £ and £X., 1,3 € E, 7 # . For

17’
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1, one realizes that the likelihood L'g( is proportional to the likelihood obtained from
viewing (B(1,1)(0), ..., B(1,4,)(0)) as an observation from the Multinomial(N,(0))
distribution, where N is considered fixed. Hence, the MLE of 7 is explicitly given
by

~ o B(l,r) (0)
1. (0) = (4.3.5)

The MLE of 8 is then given by

6 = arg max Z Lé(@),
0 i1,J€EE
i#i
which, in general, requires numerical methods for optimization. Similar discussions
are seen in, e.g., Ahmad, Bladt, and Bladt (2022, Section 3.1).

4.3.2 Reset property

We now assume the reset property (4.2.6) is satisfied. The setup remains that of
Subsection 4.3.1, except that we now, due to the nature of the exit rates 8;; and
initial distributions 7r; playing distinct roles, extend the parameter space to ® x H,
such that, for (6,n) € ® x H,

M;;(s;0,m) = Bij(s;0)m;(s;m), j #i. (4.3.6)

This parameterization allows for separate estimations of exit rates and initial
distributions within the reset property. Note that we implicitly also set m1(0) =
71(0;m), so that we allow for the possibility of 71(0) to be regressed against the
other initial distributions at the different time points.

Having this setup, we see by splitting the likelihood contributions for the different
transitions, Effi, between those within macrostates and those between macrostates
that the likelihood (4.3.1) now simplifies to, using that m;(s;n)14, =1 for all j,

d;
cXom) = [ ¥ [ %50 [T &),
i€E i=1 A
1#1 IF

with £§i ;) as in (4.3.1), and
£X() = exp ( [ s <m<s;n>>dzvi<s>), (13.7)
[0,T7]

£X(0) = exp (/(m log (B4 (s;0))dN;;(s) —/OT I;(s)Bij(s;0) ds), (4.3.8)
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where we define IV;; and IV; as the aggregated processes

lee; Nji(s) for s >0,

Nij(s) =Y Nij(s) and  Ni(s) = 4 B;(0) fors=0,i=1, (4.3.9)
0 Otherwise.

Note that we rather untraditionally, but for notational convenience, couple the
number of initiations at time 0 with the counting process counting the number of
jumps into a macrostate in our definition of IV;. This is related to the aforementioned
possibility of regressing the initial distribution 7, (0;n) at time 0 with the other
initial distributions m;(-;n), where this definition allows us to unify computations.

The corresponding log-likelihood (4.3.3) takes the form

d;
D%m=2@ﬁw&p%w+2%w) (43.10)

with Lﬁi‘;) as in (4.3.4), and

L (n) =/ log (i (s;m))dN;(s),

- T (4.3.11)

Lfi(@) :/ log (B4;(s;0))d N4 (s) —/ I;(s)Bij(s;0) ds.
(0,77] 0

The MLE of (8,7) is then found by maximizing the relevant log-likelihood contri-
butions:

d;
(ZL%,;)(B) +y L§(0)>7

i=1 iedg
i£i J#i

6= arg max Z
6

1€E

7= argmax 3 LX(n),
n i€E

which also here, in general, requires numerical methods for optimization.

4.3.3 Piecewise constant transition rates

Consider again the general case of Subsection 4.3.1, and assume now that the
transition intensity matrix function M (+;0) is piecewise constant on the form
(4.2.9). Then the likelihood contributions for the transitions between states, Lffi,
simplify to:

K

£50) = T (ut;(0)) 7™ exp(—u;(0)Ea(k)), (4.3.12)
k=1
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where O;; (k) is the total number of occurrences of transitions from state € to J in
the time interval (sg_1, sg], and E;(k) is the total time spent in state € in the time
interval (sg_1, sk|, the so-called exposure, given by

Oii(k) :/( | dNii(t) and E.L(k) = /SlC I-,;(t) dt. (4313)

Sk—1
The corresponding log-likelihood contributions take the form

K
X k k
Li;’(g) = (Oi.i(k) log(,uil-(ﬂ)) - Nii(a)Ei(k))~ (4.3.14)
k=1
Thus, in the case of piecewise constant transition rates, the occurrences and
exposures in the different time intervals, along with the number of initiations in
the different microstates of macrostate 1,

{(B(l,r)(o)a Oij(k), Ei )}ke{l K}, re{l,...,d1},1,3€E, j#i°

..........

are sufficient statistics. One even notes that the resulting likelihood, (4.3.1) com-
bined with (4.3.12), is proportional to the likelihood obtained from independent

observations
(Bu1)(0), -+ -, B1,a,)(0)),
(4.3.15)
(Otl(k)’ ke{l""7K}’ i,iEE, .17&1’)’
where
(B(l,l) 0),...,Ba,ay) (0)) is  Multinomial(N, 7r1(0)) — distributed,
(4.3.16)

Oi5(k) is POiSSOH(Ei(k)/L’Ei(B))—distributed,

with N and F;(k) considered fixed. Hence, the MLE of 71 (0) remains explicitly
given by (4.3.5), while the MLE of 6 can be obtained from Poisson regressions of
the occurrences against the times on the grid, which can be carried using standard
software packages. For example, if the intensities u’f 1(0) are exponential functions
of 8, a Poisson regression with log-link function and log-exposure as offset can be
carried out, corresponding to fitting the model

log(i(s;8)) Zﬁtlg (4.3.17)

for suitably regular known functions ¢{"), with a common choice being g(")(s) =s".

The predictions at s; then constitutes the MLEs of the intensities.

In the special case where each of the parameters in 8 are the transition rates in

the different time intervals, that is, @ = (Gf such that
1)i i€, j#i, k=1, K
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the MLE of @ simplify to so-called occurrence-exposure rates (cf. also Asmussen,
Nerman, and Olsson, 1996; Ahmad, Bladt, and Bladt, 2022):

ik, = Oi4(k)
Ei(k)

This can be seen as a direct “non-parametric” approach to estimate the micro
intensities in the different time intervals, which then is a special case of the general
parametric approach. The assumption of piecewise constant transition rates is
often seen as an approximation to continuous versions obtained when the number
of grid points tends to infinity. The observations of this subsection largely follow
the observations made in Aalen, Borgan, and Gjessing (2008, Section 5).

4.3.4 Reset property with piecewise constant transition rates

We now assume the reset property (4.2.6) in combination with piecewise constant
transition rates on the form (4.2.9), so that for j # 4, k € {1,...,K}, and s €

(Sk—h Sk},

Bij(s;0) = BL;(6),
m;(s;m) =7} (n),

0

with w1 (0;9) = 77 (n). The transition rates between macrostates are then on the

form

Mz@‘(aa’?) = ?j(é’)ﬂf(n)- (4.3.18)

In this case, the likelihood contributions for transitions between macrostates (4.3.7)-
(4.3.8) simplify to

K
LX) = [ =Em>®,
k=0
(4.3.19)
K
£35(0) = [ 85(0)7™ exp(~5;(0) Ei (k).
k=1
where, for k € {1,..., K}, B;(k) is the total number of initiations in microstate i

in the time interval (sx_1, s] resulting from jumps into macrostate i, and Oy (k)
is the total number of transitions in time interval (sx_1, sg] from macrostate i to j
happening from microstate i:

Bi(k‘) = Z Oii(k) and O,;j(k‘) = Z Oii (k) (4.3.20)
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The corresponding log-likelihood contributions simplify to

ZB ) log(nf(n)), (4.3.21)

K
L35(0) = ) (0i(k)log(Bg;(6)) — Bi;(0) Ei(k)). (4.3.22)
k=1
Consequently, in the case where the reset property is satisfied in combination with
piecewise constant transition rates, (4.2.9) and (4.3.18), the sufficient statistics
regarding the occurrences between macrostates reduce to those of (4.3.20). In fact,
by inserting the simplified likelihood contributions (4.3.19) into the general piecewise
constant case (4.3.12), which again are inserted into the general likelihood (4.3.1),
we realize that it now is proportional to the likelihood obtained from independent
observations

(B; (k), k=0,....K, i € E),

((o,;(m(k),oij(k)), k=1,....K, i€ E, ic{l,....d;}, i#3, jeJ, j#i),

(B (k),- .., Bgia,)(k)) is Multinomial(B;(k), (1)) — distributed,

Ouiip(k) is Poisson( B (k)yik .5 (9) ) — distributed,

1(i,2

O;j(k) is Poisson(E;(k)B%;(0)) — distributed,

1]

with B;(k) = Z?Zl B;(k), k € {1,..., K}, being the total number of jumps to
macrostate ¢ observed in (si_1, Sk); for k =0 and i = 1, we have B1(0) = N,
cf. also (4.3.16). Hence, the MLE of 6 is obtained from similar kinds of Poisson
regressions as those in Subsection 4.3.3, but the MLE of  can now be obtained
from multinomial regressions of the number of initiations against the times on the
grid, which also can be carried using standard software packages.

For example, if for a fixed macrostate i € J, the probabilities ﬂf (m) are expo-
nential functions of 9 (relative to the probability 776 di)(n) in the last microstate d;,
say), then a multinomial logistic regression can be carried out, corresponding to
fitting the model

exp(]l(#di) 1 1771 (T)( ))
L+ 30 e (S0 0T 90(s)

mi(s;m) = (4.3.23)

where the functions g(") are as in (4.3.17). The predictions at sj, then constitute the
MLEs of the initial distributions. Similar types of multinomial logistic regressions
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for initial distributions of (inhomogeneous) phase-type distributions are performed
in Bladt and Yslas (2022) and Albrecher, Bladt, and Miiller (2022), although in

the context of covariate information.

4.4 EM algorithm for the aggregate Markov model

In this section, we give the main contributions of the paper, namely maximum
likelihood estimation of micro intensities using the expectation-maximization (EM)
algorithm, where we give special attention to the case where the reset property is
satisfied along with piecewise constant transition rates. The results of this section
naturally extends those of Ahmad, Bladt, and Bladt (2022, Section 3.3).

4.4.1 General EM algorithm

The macro data we observe are NN i.i.d. realizations of the macrostate process Z on
the generic time interval [0, 7. It shall turn out to be useful to represent the data
via the associated marked point process (T}, Y;)ien, to keep track of jump times
and transitions. This is also the approach of, e.g., Asmussen, Nerman, and Olsson
(1996).

Denote with S™ = (7™, y™) = (Ti(n),Yi(n))iSM(n) the n’th observation,
n=1,...,N,of jump times and transitions of the macrostate process Z, where M (")
is the number of transitions observed, so that 7" = max,—1,. ~ TJ(\Z)"). Represent
all observed data by the vector

S = (5<1>,...,5<N>).

Let E(x, ) denote the expectation under which the Markov jump process X
of macro-micro states has transition intensity matrix function M (-;0) and initial
distribution (m1(0),0). The EM algorithm for estimation of the micro-level parameter
(w1, 0) then consists of initializing with some value (’Kgo), 0©)) €[0,1] x ©, and
then iteratively compute the conditional expected log-likelihood given macro data
under some current parameter (ﬂ‘gm), 0(’”)), the so-called E-step,

(r1,0) — L™ (7, ) =E [LX(m1,0)|S], m €Ny, (4.4.1)

(xi™,0m)

and then maximize this to update the parameter to ('Irgmﬂ)7 0(m+1)), the so-called
M-step. For notational convenience, we write, under some parameter (ﬂ(lm), G(m)),

¢
R(nz)(svt) — T( (IJr M;; (z;H(m))dx>, ieJ, (4.4.2)

for the transition (sub-)probability matrix functions within macrostates, and

n—1

o™ (5,) = 7™ (0) [T P (e, tesr) My, (tes150™), (4.4.3)
£=0
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for the corresponding defective distribution at time ¢,,. Also, we denote with 1/, the
row vector of ones with the same dimension as a(™ (S(™).

To obtain the conditional expected log-likelihood given macro data, we need
some conditional expected statistics. For r € {1,...,d;}, and 1,3 € E, 7 # <,
define

Bé{" 2) (0) =E(pom gomy Bar(0) |S], (4.4.4)
L™ (s) = B eim gomy) [ Ti(5) 8], (4.4.5)
N(m)( ) E( (m) G(M))[ |S] (446)

0

b

Introduce the d; x d; matrix function cl(-m) and the d; x d; matrix function al(-;n’
,j€J,j#14,and £ € {1,...,n}, given by

z u 5” Zﬂté ht[) ﬂ(ye 1*1)><

P (u, t)al™ (5,)0™ (30_1) P™ (1, u),

K2

(m (.. _
a;; (u7bn) - ]l(tefhte](u)]l(ye—l:i,ye:j)x

P (u,teg1)al™) (50)@™ (51 ) BI™ (01, ),

where the d,,_,-dimensional row vector

n—1
oy (o) = My, _y, (t:0) ( [P0 o) My, (i e<m>)> a,,
r=~{
takes care of sample path probabilities from the ¢’th jump and onwards. We then

have the following main result.

Theorem 4.4.1. The conditional expected log-likelihood given the macro data S8
under the parameter (W(m) 0(’”)) m € No, is given by

E(m)(ﬂ'l 0) Z L
i1,j€EE
iFt
L (x ZB(1 )1(0) log(m(1.1-(0)), (4.4.7)

T
L{P(0) = /( LB e 0))dN{; (u) - / L™ ()i (u; 0) du,
0,T 0
where, forr e {1,...,d1},
sy = 3 OO0
B a(m (81, ’
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while fori € E and i € {1,...,d;}, 1 #1,

N

My =Y

e%c(m)(u; S("))e;

4

N
7 (m) — = (u; OV
NGGia () = 2 aan (60 = g,

and for 3 € E, j #1,

_ N M eﬁa(m’é)(u; S(”))eﬁ
dN1§T) (u) = Z Mig (u; g(m)) J a(jm) (S(n))l dgTe(") (u),
n=1 /=1 n

where Ep(n) 1S the Dirac measure in Te(").
£
Proof. See Appendix 4.A O

The result shows that in order to develop an EM algorithm for the general
aggregate Markov model, one must significantly extend the EM algorithm for
general IPHs introduced in Ahmad, Bladt, and Bladt (2022, Appendix A) to
computationally more demanding algorithms, even though the conditional sojourn
time distributions (4.2.4) follow IPH distributions. This is due to the fact that the
general aggregate Markov model admits a path dependency, which is seen from the
initial distributions a of the IPH distributions of the conditional sojourn times. We,
therefore, require an extension of the already complex algorithm of Ahmad, Bladt,
and Bladt (2022, Appendix A) to an algorithm where we keep track of past and
future macro paths in the calculation of the conditional expected statistics.

It may be noted from Subsection 4.3.2, cf. also (4.2.7)-(4.2.8), that the above-
mentioned computational complexities can be remedied by assuming that the reset
property (4.2.6) is satisfied. We, therefore, assume that this is the case for the
remainder of the paper to obtain our main algorithms. The general EM algorithm,
which we do not implement here, is presented in Appendix 4.B for completeness, as
it may have its own merit in future work.

4.4.2 EM algorithm within the reset property

We now assume that the reset property on the form (4.3.6) is satisfied, such that
the complete data log-likelihood takes the form (4.3.10). Since we in this case
parametrize transition rates in (6,m) € © x H, the conditional expected log-
likelihood given the macro data &, under some current parameter (H(m),n(m)) is
defined as the map

(0,n) = L™ (0,7) = Egim 4o L*(0,m) | 8], m € No, (4.4.8)
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where [E(g ) denotes the expectation under which the Markov jump process X of
macro-micro states has transition intensity matrix function M (-;0,n) and initial
distribution (m1(0;9),0).

The nature of the reset property allows us to consider each observed macro sojourn
independently, and we shall therefore group data into the different macrostates so
that computations can be carried out locally within macrostates without the need
to take care of past and future macro paths. This is made precise as follows. For
i€ J, let

(n)

2

Y(n):z

-y Y

denote the number of sojourns in macrostate i observed, and furthermore let
T:= (7;(1), o ,7;(Mi)) be the set of macrostate i observations given by

TM

T, — { (T,}ﬂ, Y™ ), Y}'”) ’ n=1,.. N (=1, . M"sty® = z}

_ {(Rgn), i, Ti(n)’Zi(n)>}n€{1 . (4.4.9)

Then T; contains data points for macrostate i, consisting of time of entries Rgn)

(n)

into the macrostate, jump times 7, out of the state, and macrostates Zi(") jumped

(n)

to at time 7;. Similar type of data representations are made in Breuer (2002).

(m)

For a generic realization Ll; = (r;, 4,7, 2;) of 7;("), the matrix function ¢;"~ and
defective distribution @™ now satisfy, for u € (r;, 7],
™ (u; ;) = P (u,7)Bi, (1500 )13 (rism ™) P (r4, ),
(4.4.10)

K2

Concerning jumps between macrostates, introduce the aggregated conditional
expected statistics

Nij(s) = Egom nony[Nij(s)[S]  and  Ni(s) = Eggem yomy)[ Ni(s)|S],

where the aggregated statistics N;; and N; are given in (4.3.9). Furthermore, the
conditional expected statistics within macrostates, I_im) and ]\_fé?z);), are given as
in the general case in (4.4.5)-(4.4.6), but where the expectation is taken under

(0™ (™) ie. with the operator E(g(m) nm)). We now have the following result.

Corollary 4.4.2. Suppose that the reset property (4.2.6) holds. Then the conditional
expected log-likelihood (4.4.8) is given by

L (g,m) =" (LS") + ZLW L(0)+ Y LUV (e ) (4.4.11)
1#1

i€k jeg
J#i
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where EET(?;) is as in (4.4.7), while

L () = / log (3 (us ) )ANS™ (w),
- (4.4.12)
LM (9) = /(OT]1og<ﬁij<u;e>>dN£;?“>(u>— / 10 () B (1 0) s,

but where the conditional expected statistics are given by, for 1 € E and i €

{1,...,ds}, i #1,

My (uynp™)el P (u, Ti(n))ﬂ Z(n)( " 0(m)

AN™ (u) = — de pon (),
=2 ) (T,
1; (m) (. ),
7m) (u) = Z e%ci (u, T; >ei (4.4.13)
v —_ a(m) (z(n))ln ’
(m) . T(n) .
dN(m) Z/J/ u a(m)) (u7 4 ) 7 du,
1(4,2) (4,1) a(m) (7;(71 )1n
while for j € J, j #1,
_ (R P, R; 5 6(
dN_E;ﬂ) (U) — Z 1(z(”r):j)7r ( 7 n ) 1 ( (7«n) ) /8 J (U ) dET(n) (u)
n=1 alm (7)1, '
(4.4.14)
Proof. See Appendix 4.A. O

Remark 4.4.3. The conditional expected log-likelihood (4.4.11) can be seen to have
close relations to the conditional expected log-likelihood of Ahmad, Bladt, and
Bladt (2022, Theorem 3.4). Indeed, consider e.g.

/OT,; (u )ﬂuuedu—Z/(;

Looking at a single term on the right-hand side and applying the substitution

e (m) u7 T(n))
ol (7)1,

“pij(u; 0) du

v=u-— R,gn) to the integral, we see that it equals

O e’ (m)(v—i—RE");ﬁ(n))e; -
pij(v+ R"™;0)dv
0 a(m) (ﬁ(n))ln i3

(m)

where the shifted versions of ¢, equals



92 CHAPTER 4. AHMAD & BLADT (20224)

o
i <I+Mﬁ<x+Rzn>;e<m>>dx>ﬁ o0

v

n(m) f( (I + M;;(z + R, (), O(m))dw)
0

Performing similar type of manipulations for the other terms in (4.4.13)-(4.4.14), we
see that each term in the conditional expected log-likelihood (4.4.11), corresponding
to each macro sojourn n € {1,...,M;}, i € J, equals the conditional expected
log-likelihood of Ahmad, Bladt, and Bladt (2022, Theorem 3.4), if in the latter we
have

A single IPH observation 7" — R{"

Initial distribution mr; (R{";n(™)

Sub-intensity matrix function z — M;; (x + Rgn); H(m))

Exit rate vector function x +— 'Biz,(”) (ac + RE”); H(m))

on the state-space {1,...,d;} of transient states, and with parameter space ®. A

It follows from Corollary 4.4.2 and Remark 4.4.3 that the E-step of the EM
algorithm for the aggregate Markov model with the reset property can be formulated
in terms of, and executed by, the E-step of the EM algorithm in Ahmad, Bladt,
and Bladt (2022, Appendix A). The computational demand of performing the
estimation procedure, in this case, is therefore comparable to those for general
IPHs. As explained in Ahmad, Bladt, and Bladt (2022, Subsection 3.3), these
computational demands are generally much higher than those of, e.g., Albrecher,
Bladt, and Yslas (2022) and Asmussen, Nerman, and Olsson (1996), and assuming
piecewise constant transition rates may therefore be of significant advantage. We
shall follow this approach for the remainder of the paper to obtain our main
algorithm, using the setup made in Subsection 4.3.4. As for the general case,
we present the EM algorithm resulting from this section in Appendix 4.B for
completeness, as it may have its own merit in future work.

4.4.3 EM algorithm with piecewise constant transition rates
within the reset property

We now consider the simplifications arising from assuming that the transition
intensity matrix function M (+;@,n) is piecewise constant on the form (4.2.9) along
with the reset property (4.3.18) being satisfied. Since the resulting complete data
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log-likelihood, (4.3.10) with (4.3.14) and (4.3.21)-(4.3.22), is linear in the sufficient
statistics, we see that for the E-step, it now suffices to compute the conditional
expected sufficient statistics,

Bf’m)(k) E(g(m) 71("’))[ ( )|S]

Eim) (k) ]E(g(m) n(m))[ ( )|S]
(4.4.15)

OEZ?;) (k) = E(gom yom) [Oi(i,%) (k) ’5} :

O™ (k) = E gy, oy [ 01 (k) | 8],

and then the M-step regarding the update of 8 simplifies to a Poisson regression,
while the update of n simplifies to a multinomial regression, as described in Sub-
section 4.3.4, but where the sufficient statistics are replaced by their conditional
expectations computed in the E-step.

The transition (sub-)probability matrices within macrostates (4.4.2) and corre-
sponding defective distribution (4.4.3) under the parameter (8(™) (™)) are now
on the form (cf. (4.2.10)-(4.2.11)):

k(t)—1
= k(s) g(m) — L g(m) _ k() g(m)y(4_
P,i(m)(&t):eM“ (0 (sn(s)—s) H oM (0 (se=se-1) | (M (00)(1 sk(t))7

L=Ek(s)+1

() L)

a(m)(T(M)ln:ﬂ@ (" ))p(m>(R(n) (n))ﬂl

o (67), (4.4.16)

where we recall that k(z), for © > 0, equals the unique k € {1,..., K} satisfying
that & € (sk—1,sk]; for notational convenience, we put kl("_) = k;(RE")) and
kEnH = k(Ti(")). The conditional expected sufficient statistics (4.4.15) then follow
immediately from the more general results of Corollary 4.4.2.

Corollary 4.4.4. Suppose that the transition intensity matriz function M (-;6,n)
is piecewise constant on the form (4.2.9), and that the reset property (4.3.18) is
satisfied. Then the conditional expected sufficient statistics (4.4.15) are given by,

n+
kg ) ( )
iz{m

)

WI?E” (n(m))eP (R(") (n))ﬂ

T

M;
(k) = Z T
n=1

am ()1,

i e (m) (n)
w; T, )e; du
M / i 7
E(m)( _ 1|k 1
i n:1 a(m) (T(n))
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1|k
M / elel™ (u; T )e; du

(n)

(m) Tilk—1 E _(p(m)
Ot(z z)( n—l (™) (T(n)) Mi(i,i)(a ),
(n—) (n)
O(m) Z 1 71'51 (n(m))P(m)(R(") (n)) Bf; (o(m))
1] Z(") (k('L+) k) a(m) (7;(71 ) . )

with P and &™) as in (4.4.16), and where

Ti(‘z) = (sk % Rgn)> AT,

Proof. By inserting the expressions for the sufficient statistics in the complete data
case, (4.3.13) combined with (4.3.20), into (4.4.15), the result follows immediately
from (4.4.13)-(4.4.14) in Corollary 4.4.2. O

By employing the same techniques as in Remark 4.4.3 on the conditional expected
statistics of Corollary 4.4.4, we find that the E-step in this case can be written
in terms of the E-step of Ahmad, Bladt, and Bladt (2022, Algorithm 1), with
analogue modifications of shifting all inputs from time 0 to the time of entries into

the macrostate, REn)

, and so the computational demand should be comparable
to the estimation of IPHs with piecewise constant transition rates. In particular,
the sub-intensity matrix function is shifted, and so one must accordingly shift
the grid points on which it is piecewise constant. This is a conceptually different

modification than that of the more general case of Subsection 4.4.2.

The complete EM algorithm for the aggregate Markov model with piecewise con-
stant transition rates within the reset property is presented in Algorithm 4.1 below.
We implement this algorithm and show a numerical example of its applicability in
the following section.
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Algorithm 4.1 EM algorithm for the aggr