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Abstract

Let R be an E∞-ring, and let I ⊂ π0R be a finitely generated ideal such that R
is complete along I. This thesis studies localizing invariants arising from pairs of the
form (R, I). Precisely, the pair (R, I) gives rise to a category NucR, the category of
nuclear R-modules: this category contains the usual category of R-modules, as well
as many I-complete R-modules with continuous maps between them. We then study
localizing invariants applied to such categories. In this context, a localizing invariant
T is said to be continuous if T (NucR) = lim←−n

T (R�In). Efimov proved that algebraic
K-theory is continuous. The main result of this thesis builds from the continuity of
K-theory to prove the same for topological cyclic and Hochschild homology.

Resumé

Lad R være en E∞ ring, og lad I ⊂ π0R være et endeligt frembragt ideal s̊adan
at R er komplet med hensyn til I. Denne PhD afhandling studerer lokaliserende in-
varianter som optræder fra par p̊a formen (R, I). Nærmere bestemt giver paret (I,R)
anledning til en kategori NucR, kategorien af nuklear R-moduler : denne kategori inde-
holder den sædvanlige kategori af R-moduler s̊avel som flere I-komplette R-moduler
med kontinuerte afbildinger mellem dem. Derefter studerer vi lokaliserende invari-
anter anvendt p̊a s̊adanne kategorier. I denne kontekst siges en lokaliserende invariant
at være kontinuert, hvis T (NucR) = lim←−n

T (R�ln). Efimov beviste at algebraisk
K-teori er kontinuert. Hovedresultatet i denne af handling bruger kontinuiteten af
K-teori til at bevise kontinuiteten af topologisk cyklisk kohomologi og Hochschild
homologi.
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Introduction

The algebraic K-theory1 of a given qcqs scheme X is given by the K-theory of the
∞-category Perf(X), the ∞-category of perfect complexes over X. This is a global
definition which when X is of the form Spec(A) recovers the usual K-theory of the
commutative ring A. Starting instead from the K-theory of commutative rings, the
K-theory of X can be obtained by gluing the K-theory of an affine cover: for example,
say X is separated and covered by two Zariski opens U = Spec(R1) and V = Spec(R2)
with intersection U ∩ V = Spec(R12), then we can define a spectrum

K(X) := K(R1)×K(R12) K(R2). (1)

This spectrum turns out to be independent of the presentation X = U∪V : more generally,
a result of Thomason[TT90, Theorem 10.3] says that the functor

U ⊂ X 7→ K(Perf(U))

is a sheaf of spectra on the Zariski site of a qcqs scheme X. Then, as the definition of
K-theory via Perf(X) agrees with the usual K-theory of commutative rings in the affine
case, Thomason’s result gives both that (1) is well defined and that the two approaches
to the K-theory of the scheme X in this paragraph, via Perf(X) and via gluing from
affines, agree. Moreover, Thomason’s result holds with K-theory replaced by an arbitrary
localizing invariant.

The previous has an analog in the world of rigid geometry. Let X now be a qcqs
rigid analytic variety over a non-archimedean field C. When X = Sp(R) is affinoid, its
K-theory can be defined, following [Mor16, 3.1], as the pushout of spectra

K(R0) K(R)

lim←−n
K(R0/π

n) Kcont(R)

where R0 ⊂ R is any subring of definition an π ∈ C is a topologically nilpotent unit.
This is well defined: it is independent of R0 and π. Morever, defining the K-theory of a
qcqs rigid analytic variety by gluing from affinoid pieces 2 gives a well defined spectrum
Kcont(X), this is [Mor16, Lemma 3.4], and it uses pro-cdh descent for schemes. The
definition of Kcont(X) is an analog of the second definition of the K-theory of a scheme
on the previous paragraph. There is also an analog of the first definition, a sort of global
definition: attached to any rigid analytic space X there is a category NucX , called the
nuclear category of X, of which it is possible to consider its K-theory3, K(NucX). There
is a comparison map

K(NucX)→ Kcont(X) (2)

1always non-connective in this introduction.
2that is, as in (1) but with the analytic topology playing the role of the Zariski topology
3the category NucX is a dualizable, presentable and stable ∞-category, and such categories are the

input for Efimov K-theory, as explained in [Hoy].
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between these two definitions of the K-theory of a rigid analytic space. By a result of
Andreychev [And23], the functor U ⊂ X 7→ K(NucU ) is a sheaf for the analytic topology
on X4. Then, as both sides in the comparison map in (2) are determined by their values
on affinoids. When X = Sp(R) is affinoid, we also write NucR for NucSp(R). The following
recent result of Efimov ensures that the comparison map in (2) is an equivalence.

Theorem (Efimov). Let R be an affinoid C-algebra. Then the comparison map

K(NucR)→ Kcont(R) (3)

is an equivalence of spectra.

This result also ensures that Kcont(R) is well defined and independent of the presen-
tation of Sp(R), because NucR turns out to be (Corollary 1.33.1), and this gives a proof
of the version of pro-cdh descent for K-theory from [Mor16, Lemma 3.4]. The comparison
map in (2) makes sense for an arbitrary localizing invariant, and Andreychev’s descent
result holds for any localizing invariant, where for a localizing invariant T we let T cont(R)
be the pushout

T (PerfR0) T (PerfR)

lim←−n
T (PerfR0/πn) T cont(R),

Here we use the previous theorem of Efimov to prove an analog for topological
Hochschild homology

Theorem 0.1. Let R be an affinoid C-algebra. Then the comparison map

THH(NucR)→ THHcont(R) (4)

is an equivalence.

The comparison maps in Efimov’s theorem and in Theorem 0.1 also exist at the level
of R0, and are more fundamental: the equivalency of the map

T (NucR0) −→ T cont(R0)(= lim←−
n

T (R0/π
n))

at the level of R0 implies the equivalency of the same map for R = R0[π
−1]; this is

because of the existence of a commutative diagram

ModR0 ModR

NucR0 NucR,

4The category NucX is a certain enlargement of the category PerfX , but, in contrast to the case of
schemes, Andreychev’s result doesn’t hold for NucX replaced by PerfX .
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which turns out to be a Verdier square5 (Lemma 1.33), so it is sent to a pushout by any
localizing invariant. Given this, the equivalency of all the previous comparison maps is
reduced to the following more general question.

Question 0.2. Given a connective E∞-ring R (playing the role of R0 above), a finitely
generated ideal I ⊂ π0(R) (playing the role of (π) ⊂ R0), and a localizing invariant T
(such as K-theory or topological Hochschild homology), when is the map

T (NucR∧
I
)→ lim←−

n∈N
T (R�In) (5)

an equivalence? Here the notation stands for the following: R∧
I denotes the derived

completion of R with respect to I taken in condensed spectra (Definition 1.21), for which
it makes sense to consider NucR∧

I
(Section 1.2.3), and each R�In is an E∞-ring in spectra

which stands for an appropriate derived quotient (Lemma 1.24).

Efimov’s theorem then admits the following formulation.

Theorem (Efimov). Let R be as in Question 0.2. Then for every localizing invariant T
there is a fiber sequence

T (NucR∧
I
)→ T (

∏
n

ProjfgR�In)→ T (
∏
n

ProjfgR�In) (6)

Where ProjfgR�In denotes the category of finitely generated projective modules over R�In,
and the second map is given by the identity minus the projection of the 1+n-th factor to
the n-th factor.

The category
∏

n Proj
fg
R�In on this theorem is regarded as an additive ∞-category,

and the non-conective K-theory in the theorem is taken in the setting of additive ∞-
categories6 From this, to deduce Question 0.2 for K-theory it remains to commute the
N-indexed products in the last theorem with K-theory. If all the ProjfgR�In are additive

1-categories (for example, if R is a Noetherian discrete ring or if I = (x) and R is discrete
with bounded x-torsion) then the K-theory commutes with the product of additive
1-categories by [KW20, Thm 1.2]. This commutation turns out to hold in general.

Theorem (Proposition 2.11). Let I be a small set and let (Ai)i∈I be a family of additive
∞-categories. Then the canonical map of non-connective K-theory spectra

K(
∏
i∈I
Ai) −→

∏
i∈I

K(Ai)

is an equivalence.

5that is, taking fibers in each row gives a localization sequence, and the fibers of both rows agree.
6By this we mean that if A is an additive ∞-category and T is a localizing invariant such as

non-connective K-theory, we let T (A) denote T applied to the stable envelope of A. See Section 2.
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Versions of this result have been studied before, see [Car95], [KW19], or the intro-
duction to Section 2 for an account. Crucially, the proof of the last theorem relies on the
commutation of K-theory with products of stable ∞-categories, proved by Kasprowski
and Winges in [KW19]. The main use of Proposition 2.11 in here is to prove the same
but for topological Hochschild homology.

Theorem (Proposition 2.15). Let I be a small set and let (Ai)i∈I be a family of additive
∞-categories. Then the canonical map

THH(
∏
i∈I
Ai) −→

∏
i∈I

THH(Ai)

is an equivalence.

We remark that even when the Ai’s are all 1-categories the proof of this result needs
the above K-theoretic analog for additive ∞-categories. The following is a consequence
of Proposition 2.15 and (6), and it can be seen as a more fundamental formulation of
Theorem 0.1 above.

Theorem (Corollary 3.26.3). The map

THH(NucR∧
I
)→ lim←−

n

THH(R�In)

from Question 0.2 is an equivalence of spectra.

This theorem implies a characterization of THH of NucR∧
I
independent of the rings

R�In.

Corollary 1 (Corollary 3.27.1). Notation as in Question 0.2. The inclusion ModR →
NucR∧

I
induces an equivalence

THH(R)∧I → THH(NucR∧
I
).

of R-modules in spectra.

The last theorem and its corollary are a refinement of the fact that there are canonical
maps

THH(R)→ THH(NucR)→ lim←−
n

THH(R�In)

both of which are equivalences modulo the ideal I. This fact doesn’t rely on any of the
previous results in this introduction: the composite map is shown to be an equivalence in
[CMM20, 5.2], where much more is proved about this composite and its variants for other
invariants. Here we show the first map to be an equivalence modulo I in Corollary 3.11.1,
the proof of this goes by unraveling the definition of the Hochschild homology of the
category NucR. More precisely, we show that it admits a description as a relative solid
tensor product (Proposition 3.11)

THH(NucR) = R̃⊗R⊗■R R

10



where R̃ is an R ⊗■ R-module with a map R̃ → R to the diagonal R ⊗■ R-module
R obtained from the monoidal structure in SolidR, and we show that this map is an
equivalence modulo (I, I)7. By the affirmative answer to Question 0.2 for THH, we know
that the map R̃→ R becomes an actual equivalence after base change along R⊗■R→ R,
but we do not know if it is an equivalence before base change. If yes, this would give
another affirmative answer to Question 0.2 for THH without using the previous results
on this introduction. Inspired by this, we prove that in any case an affirmative answer to
Question 0.2 for THH would in turn imply an affirmative answer to the same question
for K-theory8

Proposition (Proposition 3.13). Suppose that the canonical map

THH(NucR)→ lim←−
n∈N

THH(R�In)

is an equivalence. Then the analog maps for TC and K-theory are also equivalences.

This is derived from the following statement, whose proof does not use the previous
results on this introduction.

Proposition (Corollary 3.17.1). Let E be a truncating invariant commuting with infinite
products of additive ∞-categories. Then

E(NucR)→ lim←−
n∈N

E(R�In)

is an equivalence.

This result is proved as follows. We first prove that NucR embeds into a category
of ’lax-perfect complexes’, denoted Ind(laxPerf bR) and given by a subcategory of the
Ind-completion of the lax limit of n ∈ N 7→ PerfRn (Definition 1.37). We then analyze
the cofiber of this inclusion: there is a category Cof bR (Definition 1.71) and a map
laxPerf bR → Cof bR which, informally, remembers the successive cofibers of the objects in a
lax-limit. The Ind-extension of this map kills NucR (Proposition 1.72), so there is an
induced functor

Ind(laxPerf bR)/NucR → Ind(Cof bR)

which we show to be induced by a nilpotent extension of additive ∞-categories in the
sense of [ES21, Def 3.1.1] (Proposition 3.17). It is proved in [ES21, Thm 4.2.1] that
nilpotent extensions agree on truncating invariants, so

E(NucR)→ E(laxPerf bR)→ E(Cof bR)

is a fiber sequence of spectra. The categories inside the middle and right terms can
be shown to have the same additive motive as the product

∏
n Proj

fg
R�In from above

7this is the ideal generated by the two copies of I in R⊗■ R
8but, recall, the only current proof of an affirmative answer to Question 0.2 for THH uses Efimov’s

results, which also imply an affirmative answer for K-theory.
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(Section 3.2.1), with the map between them inducing the identity minus the projection. As

E in the last proposition commutes with the infinite product of the categories ProjfgR�In ,

the map E(NucR)→ lim←−n∈NE(R�In) is an equivalence.

Notation

1. An denotes the ∞-category of anima/spaces, and Sp denotes the ∞-category of
spectra.

2. We write hom(−,−) for hom spaces in ∞-categories. We write map(−,−) for
mapping spectra and we write Map(−,−) for internal mapping spectra in closed
symmetric monoidal stable ∞-categories.

3. We write Catst∞ for the ∞-category of small stable ∞-categories and exact functors
between them, and we write PrL for the ∞-category of presentable ∞-categories
and colimit preserving functors between them.

4. We write Cw ⊂ C for the full subcategory of a given ∞-category C spanned by the
compact objects.

5. We write Ind(C) for the Ind extension of an∞-category C. If C is small, then Ind(C)
denotes the full subcategory of Fun(Cop,An) spanned by the left-exact functors. We
make sense of this notation also when C is not necessarily small, but still accessible.
In this case, Ind(C) denotes the full subcategory of Fun(Cop,An) spanned by the
left-exact accessible functors (see [Lur09, Rmk 7.1.6.2]).

6. We writeMadd andMloc for the ∞-categories of additive and localizing motives,
respectively. Similarly, we write Uadd and Uloc for the universal additive and
localizing invariant, respectively. We refer to [BGT13] for a study of these categories
and functors.

7. I sometimes use ‘we’ without the grammatical number being clear. Apparently,
when singular this is called the royal we and it was used by kings and monarchs to
refer to themselves. We do not posses any of those titles nor aim for them; instead,
I see this usage as an emphasizer of the fact that math is a collaborative effort (but
all mistakes in here are mine).

1 Nuclear modules over adic rings

1.1 Abstract nuclear objects

This section is about introducing nuclear objects and proving basic properties about
them. Informally, an object X in a given symmetric monoidal category C is called nuclear
(Definition 1.2) if for every compact object P it holds that

P∨ ⊗X = Hom(P,X)

12



That is, an object is nuclear if compacts behave as dualizable when tested against it.
As nuclearity is a property defined by testing against compact objects, it will only give
information about the subcategory generated by them, so in this section we will restrict
to the case where C is compactly generated. Moreover, if the monoidal unit 1 ∈ C is
compact, then objects appropietely generated under colimits by it are nuclear, and we
will suppose this too. More precisely, if Nuc(C) ⊂ C denotes the full subcategory spanned
by those objects which are nuclear in the above sense, the unit being compact implies
the existence of a fully faithful functor

RModEndC(1) ↪→ Nuc(C)

sending EndC(1) to 1 and commuting with colimits, but we will see that this inclusion is
usually not an equivalence. For example, if every compact is dualizable then every object
of C is nuclear (and if a compact is not dualizable, it can’t be nuclear). In any case, the
properties of the subcategory of nuclear objects will vary with the input category. Here
we fix the following generality:

Situation 1.1. For the rest of this section (C,⊗C) will denote a compactly generated
closed symmetric monoidal stable ∞-category. Moreover, we suppose that − ⊗C −
commutes with colimits in each variable and that the unit 1 ∈ C is compact.

The section starts by giving a definition of the category Nuc(C) (Definition 1.2)
following [Scha], and recalling the properties proved in there. We then study a case where
the map Nuc(C)→ C has a nice right adjoint (Lemma 1.9), which will be the case in later
sections. The section then ends by discussing the case where C comes from an additive
∞-category A. This will be the case in all later sections. In this case, there exists a
subcategory BNuc0(C) ⊂ Nuc(C) (Definition 1.15) that under some conditions generates
the whole of Nuc(C) under colimits, and it is built from A under certain sequential
colimits, which makes it useful for calculations, see Lemma 1.16.

Definition 1.2. An object X ∈ C is called nuclear if the map

mapC(1C ,Map(P, 1C)⊗C X)→ mapC(P,X)

is an equivalence for every compact P . The full subcategory spanned by the nuclear
objects will be denoted Nuc(C) ⊂ C.

Definition 1.3. A map f : P → X in C is called trace-class if there exists a map

g : 1C → Map(P, 1C)⊗C X

such that f agrees with the composite

P
idP⊗g−−−−→ P ⊗C Map(P, 1C)⊗C X

evP⊗idX−−−−−−→ X.

Equivalently, a map f is trace-class if it is in the image of the canonical map

π0mapC(1C ,Map(P, 1C)⊗C X)→ π0mapC(P,X).

13



Definition 1.4. An object N ∈ C is called basic nuclear if it can be written as a
sequential colimit

N = colim(P0 → P1 → · · · )
where each Pi ∈ C and each map Pi → Pi+1 is trace-class.

Remark 1.5. Equivalently, an object is basic nuclear if it can be written as a sequential
colimit of trace-class maps between compact objects. In fact, any trace-class map X → Y
factors as X → P → Y , where X → P is trace class and P is compact. This is because
the unit is compact, so any witness 1→ X∨ ⊗ Y of the trace-class map X → Y factors
through some X∨ ⊗ P , where P is a compact mapping to Y .

Lemma 1.6. Basic nuclear objects are nuclear. The class of basic nuclear objects is
stable under all countable colimits, and the class of nuclear objects is stable under all
small colimits. Moreover, if the full subcategory spanned by the basic nuclear objects is
(essentially) small then:

1. An object of C is nuclear if and only if it can be written as a filtered colimit of basic
nuclear objects.

2. The ∞-category Nuc(C) (Definition 1.2) is equivalent to the ω1-Ind-completion of
the full subcategory spanned by the basic nuclear objects.

Proof. This is proved in [Scha, 13.13] in the condensed setting, but the proof is the same.
The smallness condition is needed when taking colimits over all basic nuclear mapping
to an object (see the proof in [Scha, 13.13]). Here we prove in detail that basic nuclear
objects are nuclear. Let N be a basic nuclear object, so N = colim(P0 → P1 → · · · ) is a
sequential colimit of compacts along trace-class maps fi : Pi → Pi+1. Let Q be a compact
object. We pick witnesses gi of each fi as in Definition 1.3, so that fi agrees with the
composite

Pi

idPi
⊗gi−−−−−→ Pi ⊗map(Pi, 1)⊗ Pi+1

evPi
⊗idPi+1−−−−−−−−→ Pi+1

Proving that N is nuclear amounts to show that the map

map(Q, 1)⊗N → map(Q,N) (7)

is an equivalence. Both sides of (7) commute with the colimit presenting N , and there
are level-wise maps in the other direction

map(Q,Pi)→ map(Q,Pi)⊗map(Pi, 1)⊗ Pi+1 → map(Q, 1)⊗ Pi+1 (8)

It will suffice to show that both compositions of these maps are given by going one step
in the colimit. The composition (8) with the map map(Q, 1)⊗ Pi+1 → map(Q,Pi+1) in
(7) is given by going right-right-down in the following diagram

map(Q,Pi) map(Q,Pi)⊗map(Pi, 1)⊗ Pi+1 map(Q, 1)⊗ Pi+1

map(Q,Pi ⊗map(Pi, 1)⊗ Pi+1) map(Q,Pi+1)

(9)
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and going diagonal-right gives the map map(Q, fi) in the colimit, so we want the last
diagram to commute. Adjoining the triangle in (9) gives a diagram

Q⊗map(Q,Pi) Q⊗map(Q,Pi)⊗map(Pi, 1)⊗ Pi+1

Pi ⊗map(Pi, 1)⊗ Pi+1

id⊗gi

evQ,Pi
⊗gi

evQ,Pi
⊗id

which clearly commutes, so the triangle in (9) commutes. Adjoining the square in (9)
gives

Q⊗map(Q,Pi)⊗map(Pi, 1) Q⊗map(Q, 1)

Pi ⊗map(Pi, 1) 1

evQ,Pi evQ

evPi

(up to tensoring all the diagram with Pi+1) and this last diagram clearly commutes, so
(9) commutes. The composition in the other direction is given by going right-right-down
in the following diagram

map(Q, 1)⊗ Pi map(Q,Pi) map(Q,Pi)⊗map(Pi, 1)⊗ Pi+1

map(Q, 1)⊗ Pi ⊗map(Pi, 1)⊗ Pi+1 map(Q, 1)⊗ Pi+1

can

id⊗gi

id⊗gi

can⊗id

and going down-right gives the map map(Q, 1)⊗ fi in the colimit, so we want the last
diagram to commute. It is clear that the triangle on the left commutes, so it remains to
show that the triangle on the right also commutes. For this we can suppose that Pi+1 = 1
and then adjoin Q as before. This concludes the proof that basic nuclear objects are
nuclear.

Remark 1.7. From now on we will assume that the hypothesis of Lemma 1.6 is always
satisfied. That is, we assume that basic nuclear objects always from an essentially small
subcategory of the given ambient category C. As hinted in Lemma 1.6, this has two
consequences. First, this implies that the category of nuclear objects is generated under
ω1-filtered by basic nuclear objects, so many things can be proved by reducing to the
case of basic nuclear objects. Second, this implies that Nuc(C) is presentable, which in
turn implies that the inclusion Nuc(C) ⊂ C always admits a right adjoint.

Corollary 1.7.1. Nuclear objects are closed under tensor product.

Proof. By the above, and under Remark 1.7, it suffices to show that basic nuclear objects
are closed under tensor products, for which it suffices to note that trace-class maps are
closed under tensor products.

The definition of nuclear can be packed into a functor:
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Definition 1.8. Let (−)tr : C → C denote the filtered-colimit preserving functor defined
by

Xtr(P ) := mapC(1C ,Map(P, 1C)⊗C X) ∈ Sp

for compact objects P ∈ C. This functor comes with a natural transformation (−)tr ⇒ idC ,
and an object X ∈ C is nuclear if and only if such natural transformation induces an
equivalence Xtr ∼−→ X.

Lemma 1.9. Suppose that the endofunctor (−)tr : C → C lands in nuclear objects. Then
the right adjoint to the inclusion of nuclear modules into C is given by the resulting
functor (−)tr : C → Nuc(C) from Definition 1.8.

Proof. We have to check that for every nuclear object N the map

mapC(N,Xtr)→ mapC(N,X)

is an equivalence. By writing N as a colimit of basic nuclears, we can reduce to the case
where N is basic nuclear. That is, N is a sequential colimit of compact objects along
trace-class maps. Let P → Q be a trace-class map between compact objects, then the
induced morphism Map(Q,−) → Map(P,−) of endofunctors of C factors through the
endofunctor P∨ ⊗ (−): this follows from the following diagram

Map(Q,−) Map(P ⊗ P∨ ⊗Q,−)

P∨ ⊗Q⊗Map(Q,−) P∨ ⊗ (−) Map(P,−)

which commutes because both compositions are adjoint to elements in π0mapEnd(C)(P ⊗
Map(Q,−), idC) coming from the same element in π0mapEnd(C)(P⊗P∨⊗Q⊗Map(Q,−), idC)
under the witness 1→ P∨ ⊗Q. We apply this to a presentation of the basic nuclear N
as a sequential colimit of compact objects along trace-class maps fi : Pi → Pi+1 to get
commutative diagrams

Map(Pi+1,−) Map(Pi,−)

P∨
i+1 ⊗ (−) P∨

i ⊗ (−)

(10)

where the diagonal arrow is the one we’ve just produced and the lower arrow is induced
by fi. The commutativity of the last diagram is the same calculation as the one done in
the proof of the fact that basic nuclear objects are nuclear. This gives backward maps in
the colimit, giving that map(N,Xtr) = map(N,X).

Lemma 1.10. Suppose that compact objects in C are stable under tensor products, that
formal duals of compact objects are nuclear, and that for any two compact objects P and
Q the canonical map

Map(P, 1)⊗Map(Q, 1)→ Map(P ⊗Q, 1)
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is an equivalence. Then, for every nuclear N and for every compact P , the natural map

Map(P,N)→ Map(P, 1)⊗N

is an equivalence of objects of C. That is, the condition for nuclearity also holds ”inter-
nally”.

Proof. The statements amounts to show that for every compact Q the map

map(P ⊗Q,N)→ map(Q,Map(P, 1)⊗N)

is an equivalence of spectra. By nuclearity of N , the left hand side is given by the
undelying spectrum of Map(P ⊗Q, 1)⊗N . Similarly, Map(P, 1)⊗N is nuclear because of
the assumptions combined with Corollary 1.7.1, so the right hand side is the underlying
spectrum of Map(Q, 1)⊗Map(P, 1)⊗N . These two expressions agree by the assumptions.

Lemma 1.11. Let A ∈ CAlg(Nuc(C)) and suppose that the conclusion of Lemma 1.10
holds for N = A 9. Then there is an equivalence

ModA(Nuc(C))
∼−→ Nuc(ModA(C)).

Moreover, if the hypothesis of Lemma 1.9 hold for C then they also hold for ModA(C),
giving an explicit right adjoint

(−)trA : ModA(C)→ Nuc(ModA(C))

to the inclusion of nuclear modules into all modules.

Proof. By Lemma 1.17 below, the functor C → ModA(C) restricts to a functor between
the respective nuclear categories. This gives the map

ModA(Nuc(C))→ Nuc(ModA(C))

from the statement, which is fully faithful because it is compatible with the inclusions
of both source and target in ModA(C). It remains to show that this map is essentially
surjective. For this, it suffices to show for any M ∈ Nuc(ModA(C)) the underlying
object of C lies in Nuc(C), as then M can be resolved, as an A-module, by objects of the
form A⊗n ⊗M , which lie in ModA(Nuc(C)), proving that the map on the statement is
essentially surjective. So let M be as above and let P be a compact object in C. Then

mapC(P,M) = mapModA(C)(P ⊗A,M)

= MapModA(C)(P ⊗A,A)⊗A M(∗)
= MapC(P, 1)⊗A⊗A M(∗)
= MapC(P, 1)⊗M(∗)

9that is, suppose that A is ”internally nuclear”
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which is the nuclearity of M . This finishes the proof of the equivalence on the statement.
For the last claim, let (−)trA denote the endofunctor of ModA(C) given by

M trA(Q) := MapModA(C)(Q,A)⊗A M(∗)

where Q is a compact object of ModA(C). Then what it remains to prove is that M trA

is nuclear in ModA(C). From the first part of the proof, it suffices to show that the
underlying object of C is nuclear. And for this, note that the previous chain of equivalences
gives that M trA = M tr, from which the claim follows by the assumption that M tr is
nuclear.

Many of the examples for the category C arise from stabilizing categories generated
by compact projective objects. The next lines specialize to this case. More precisely, we
consider the following setting:

Situation 1.12. Let A be a symmetric monoidal additive ∞-category (thought of as
the compact projective objects). In the following lines we focus on nuclear modules over
the category

C := Ind(Stab(A))

where Stab(A) denotes the stable envelope of A (see the first lines of Section 2.1 for a
definition of the stable envelope).

In order to talk about nuclear modules over C, we need to make it fit in the setting
of Situation 1.1. That is, we need a closed symmetric monoidal structure on C where the
tensor product commutes with colimits in each variable and the unit is compact. This
will follow from the following rewriting of C:

Remark 1.13. The category Stab(A) is given by inverting Σ in the category PΣ,f (A)
(see Section 2.1). Let C≥0 := Ind(PΣ,f (A)), so that objects of A are compact projective
generators of C≥0. This notation makes sense: the category C carries a t-structure whose
connective part is C≥0. To see this, note that there is an equivalence

C := Ind(Stab(A)) ∼= Sp(PΣ(A))

as both categories satisfy the same universal property in the category of presentable stable
∞-categories, and the latter carries a bi-complete t-structure as in [Lurb, C.1.2.10(b)].

Remark 1.14. Using the characterization C = Sp(PΣ(A)) = PΣ(A)⊗ Sp from the last
lines, [Lura, 4.8.1.10] then gives a symmetric monoidal structure on PΣ(A)10, and this
symmetric monidal structure is unique such that the tensor product commutes with
colimits in each variable and such that the inclusion A → PΣ(A) is symmetric monoidal.
This implies that the unit is compact. This then gives a symmetric monoidal structure
on PΣ(A)⊗ Sp ≃ C.

10here we use Remark [Lur09, 5.5.8.10] to identify PΣ(A) = Psifted(A) as the category Pall
fin,disc(A)

obtained from A by freely adjoining all the small colimits restricted to preserving the finite discrete
colimits that exist in A
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We let Nuc(C) denote the category of nuclear modules in C with respect to the
monoidal structure of Remark 1.14.

Definition 1.15. Let BNuc0(C) denote the full subcategory of Nuc(C) spanned by
sequential colimits of elements in the essential image of A → C along trace-class maps.

Note that BNuc0(C) depends not only on C but also on the inclusion A → C. In
what follows, instead of assuming that the full subcategory spanned by basic nuclear
objects is small, as in Remark 1.7, we only suppose that BNuc0(C) is small. The idea is
that checking smallness of BNuc0(C) is easier than to check smallness of the subcategory
spanned by all basic nuclear objects (which is needed for Lemma 1.6), and under some
hypotheses, all satisfied in the examples on this thesis, smallness of BNuc0(C) implies
smallness of the full subcategory spanned by basic nuclear objects:

Lemma 1.16. Suppose that

1. The category BNuc0(C) from Definition 1.15 is small.

2. The functor (−)tr : C → C from Definition 1.8 preserves connective objects and lands
in nuclear modules.

Then the category of basic nuclear objects is small, and the smallest full subcategory of C
containing BNuc0(C) and closed under small colimits and desuspensions is Nuc(C).

Proof. Let B denote the smallest full subcategory of C containing BNuc0(C) and closed
under small colimits. We start by showing that B = Nuc(C) ∩ C≥0. As BNuc0(C) ⊂
Nuc(C) ∩ C≥0 and the latter is stable under small colimits, B ⊂ NucC ∩ C≥0. We now
show the reverse inclusion. Let N ∈ C be nuclear and connective. Let Bf denote the
smallest full subcategory of C containing BNuc0(C) and closed under finite colimits, and
let N ′ ∈ B denote the colimit of the filtered diagram of all objects in Bf mapping to N ,
this object exists because BNuc0(C) is small. Let C denote the cofiber of the canonical
map N ′ → N . As N ′ ∈ B, it suffices to show that C vanishes. By left completeness of
the t-structure on C (Remark 1.13), it is enough to show that C is n-connective for all
n. Let’s induct on n ≥ 0. If n = 0 then C is 0-connective (and nuclear) as a cofiber
of connective (and nuclear) objects. Let n = 1, P ∈ A and let P → C be a map. The
composition P → C → ΣN ′ vanishes by 1-connectivity of the target, hence P → C lifts
to a map P → N . We now claim that this lift factors as a composition

P → Q→ N

where Q ∈ A and both maps are trace-class. To see this, note that, as N is connective,
there is a fiber sequence B0 → N → ΣB1 where B0 ∈ Ind(A) and B1 ∈ C is connective.
The functor (−)tr preserves connective objects by the assumption that duals of objects of
A are connective, so the composite P → N = N tr → ΣBtr

1 vanishes (where the equality
N = N tr is the nuclearity of N), giving a lift P → Btr

0 . As B0 is a filtered colimit of
objects of A, there exists a Q ∈ A mapping to B0 and a lift of P → Btr

0 to Qtr. The
resulting composite P → Q→ N is the desired one, where the first map is trace-class
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by construction and the second one because N is nuclear, so every map to N from a
compact is trace-class. Iterating this argument, we see that the map P → N factors
through an element of BNuc0(C), so it lifts to N ′, and this shows that the map P → C
we started with is zero. This shows that C is 1-connective. Let n > 1 and suppose that C
is (n− 1)-connective. Let P ∈ A and Σn−1P → C map. As above, the map Σn−1P → C
factors as the composition of two trace-class maps Σn−1P → Σn−1Q → C. Iterating
this, the map Σn−1P → C factors through an element M ∈ Σn−1Nuc0(C) ⊂ ΣBf (as
n− 1 ≥ 1). Then the composition M → C → ΣN ′ is zero, hence M → C lifts to N and,
as it is in Bf , it lifts to N ′, and so does the map Σn−1P → C (as it factors through
M). Then Σn−1P → C must be zero too, hence the n-connectivity of C. This concludes
the proof of the equality B = Nuc(C) ∩ C≥0. Let N be a nuclear object, not necessarily
connective. As the t-structure on C is right complete (Remark 1.13), N can be written
as the colimit of its truncations N≥−n. As (−)tr commutes with colimits, we can write

N = N tr = colimn∈N(N≥−n)
tr

where each (N≥−n)
tr is nuclear an (−n)-connective by the second hypothesis on the

statement. So each N tr
≥−n is a desuspension of an object of B. As B is in the subcategory

generated by colimits under BNuc0(C), each N tr
≥−n is in the subcategory generated under

small colimits and desuspensions BNuc0(C), and so is N .

Categories of nuclear modules enjoy certain functoriality:

Lemma 1.17. Let C and D be two categories admitting nuclear modules in the sense
presented above. That is, they are compactly generated closed symmetric monoidal stable
∞-categories such that −⊗− commutes with colimits in each variable and such that the
monidal unit is compact. Let F : C → D be a colimit preserving, symmetric monoidal
functor. Then F restricts to nuclear modules.

Proof. As every nuclear object is a colimit of basic nuclear objects, it suffices to prove that
F preserves basic nuclear objects. For this, it suffices to show that F sends trace-class
maps to trace-class maps. Let f : P → Q be a trace-class map between compact objects
of C and let g : 1 → P∨ ⊗ Q be a witness of it. The map F (f) can be written as the
composite

F (P ⊗ P∨)⊗R F (Q)

F (P ) F (Q)

F (evP )⊗idid⊗F (g)

F (f)

so to exhibit it as trace-class it suffices to construct a map between F (evP ) and evF (P )

over F (1) ∼= 1. For this, it suffices to produce a map α : F (P∨) → (F (P ))∨ such that
idF (P ) ⊗ α commutes with the two projections F (evP ) and evF (P ) to F (1) ∼= 1. Taking
α to be the adjoint of F (evP ) works.
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1.2 Adic rings

Classically, an adic ring is a topological ring R that admits a two sided ideal I such that
every open contains a translation of a power of I. This ideal then determines the topology:
the pair consisting of the ring underlying R together with the ideal I is sufficient to
recover the topological ring. Here, instead of packing the data of an adic ring into a
topological ring, the data will be packed into a condensed ring. More precisely, given a
connective E∞-ring Rδ11 playing the role of the underlying ring of the topological ring
R in the previous paragraph, and a finitely generated ideal I ⊂ π0R

δ, we view Rδ as a
condensed spectrum via the map Sp→ Cond(Sp) from Remark 1.19 below, and we let

Rad := (Rδ)∧I

where the completion is now taken in the category of Rδ-modules in condensed spectra
rather than in topological Rδ-modules. In the generality presented here, an adic ring will
be a condensed ring arising as Rad (see 1.21). This section is organized as follows. 1.2.1
is about definitions and basic properties about condensed objects, completions and adic
rings. 1.2.2 is about solid modules over adic rings, and 1.2.3 is about nuclear modules
over adic rings, in the sense of Section 1.1.

1.2.1 Definitions

As an adic ring will be a special kind of condensed ring in spectra, let’s start by recalling
the notion of a condensed object in a category.

Definition 1.18. [Scha, Definition 11.7]. Let C be an ∞-category that admits finite
products and all small filtered colimits. For an uncontable strong limit cardinal κ, we let
Condκ(C) stand for the full subcategory of the category Fun(ExDiscopκ , C), the category
of contravariant functors from the category ExDiscκ of κ-small extremally disconnected
sets to C, spanned by those functors that preserve finite products12. Then

Cond(C) := colimκCondκ(C),

where the colimit runs over the uncountable strong limit cardinals, and the transition
maps are given by left Kan extensions.

When C = An (resp Sp), the category Cond(An) (resp. Cond(Sp)) will be referred
as the category of condensed anima (resp condensed spectra). See [Schb] and [Scha] for
more about the foundations of Condensed Mathematics.

Remark 1.19. The categories C and Cond(C) interact with each other via the inclusion
C ∼= Condω(C)→ Cond(C). The resulting functor will be denoted by

(−)δ : C → Cond(C).
11in this introduction the (−)δ stands to indicate that Rδ is just a spectrum.
12that is, those functors F such that F (X ⊔ Y ) = F (X)× F (Y )
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Alternatively, the inclusion of Condκ(An) in Fun(ExDiscopκ ,An) admits a left adjoint, the
sheafification functor. These adjoints are compatible as κ varies and give a sheafification
functor

colimκFun(ExDiscopκ ,An)→ Cond(An)

which we won’t name, as we will only use it in the next line. Then there exists a unique
colimit preserving functor

(−)δ : An→ Cond(An)

given by sending the point to the sheafification of the constant functor on the point.
Informally, for an anima X and a profinite set lim←−i∈I Si writen as a cofiltered limit of
finite sets Si, the previous functor is given by

Xδ : lim←−
i∈I

Si 7→ colimi∈IX
Si .

Tensoring, there exists an analogous map

(−)δ : C → Cond(C)

for any presentable ∞-category C.

Notation 1.20. Every connective condensed E∞-ring R ∈ CAlg(Cond(Sp≥0)) has an
underlying connective E∞-ring spectrum R(∗), given by evaluating at a point. We write
Rδ for the object R(∗)δ ∈ CAlg(Cond(Sp≥0)) given by the constant condensed object
obtained from the functor Sp→ Cond(Sp) from Remark 1.19.

Definition 1.21. A connective condensed E∞-ring R is said to be an adic ring if there is
a constructible closed subset Z ⊂ Spec(π0R(∗)) such that R identifies with the completion
of Rδ along Z.

Equivalently, R is an adic ring if for every finitely generated ideal I cutting out Z
the natural map Rδ → R in the R(∗)-linear ∞-category ModRδ(Cond(Sp)) extends to
an equivalence

(Rδ)∧I
∼−→ R.

Note that the completion in the previous definition is taken in the R(∗)-linear∞-category
of Rδ-modules in condensed spectra. The notion of completion along a finitely generated
ideal does indeed make sense for any R(∗)-linear ∞-category, more about this in the
following remark:

Remark 1.22. Let S be a connective E2-ring and let I ⊂ π0(S) be a finitely generated
ideal. This remark is here to recall the notions of I-nilpotent (or I-torsion), I-local and
I-complete modules in stable S-linear ∞-categories (such as the category of condensed
Sδ-modules, as in the last definition) as explained in [Lurb, II.7]. Let C be a stable
S-linear ∞-category. An object C ∈ C is called I-nilpotent if for every x ∈ I the object
S[x−1] ⊗S C vanishes. The full subcategory spanned by I-nilpotent objects will be
denoted by CNil(I). As the condition of being I-nilpotent is stable under colimits, the
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inclusion CNil(I) ⊂ C admits a right adjoint ΓI : CNil(I) → C. When I = (x) is principal
there exists a fiber sequence in C

Γ(x)C → C → S[x−1]⊗S C

essentially by the definition of I-nilpotent, from which it follows that Γ(x) preserves
colimits. Using that ΓJ+(x)

∼= Γ(x) ◦ ΓJ for any ideal J ([Lurb, 7.1.2.4]) we conclude that
the functor ΓI preserves colimits for I finitely generated and it is given by tensoring with
ΓI(S). We let LI be the functor sitting in the fiber sequence

ΓI → idC → LI .

The functor LI can be recovered from the iterative construction of ΓI . We call an
object D ∈ C I-local if for every I-nilpotent object C the mapping space MapC(C,D) is
contractible. Equivalently, D is I-local if the map D → LI(D) is an equivalence. Let
CLoc(I) denote the full subcategory of C spanned by the I-local objects. As LI preserves
colimits, the inclusion of I-local objects into C admits a right adjoint GI , giving a fiber
sequence

GI → idC → (−)∧I .

Finally, an object C ∈ C is called I-complete if for every I-local object D the mapping
space MapC(D,C) is contractible. Equivalently, C is I-complete if the map C → C∧

I is
an equivalence. Let CCpl(I) denote the full subcategory spanned by I-complete objects.
The functor (−)∧I is left adjoint to the inclusion of I-complete modules into C; as such, it
will be called the I-completion functor.

Remark 1.23. Let R be an adic ring as in Definition 1.21 and let Z ⊂ Spec(π0R(∗)) be
a closed defining its topology. An R-module will be called complete if it is I-complete in
the sense of Remark 1.22 for any finitely generated ideal I cutting out Z. The notion
of completeness depends only on the closed Z and not on the choice of I. As the usual
I-adic completion, the current notion of completion can be realized by a specific tower:

Lemma 1.24. Let R be an adic ring. Then there exists a tower

· · · → Rn+1 → Rn → · · · → R1

of connective E∞-ring spectra under R(∗) such that R
∼−→ lim←−n

Rδ
n in condensed Rδ-

modules. Moreover, the tower can be chosen such that each Rn is almost perfect as an
R(∗)-module and each Rn+1 → Rn is surjective on π0 with nilpotent kernel.

Proof. Let I = (x1, · · ·xk) be a presentation of the finitely generated ideal I. For each
xi, let R(xi)k denote the pushout of the diagram

R(∗) t7→0←−− R(∗){t}
t7→xn

i−−−→ R(∗)
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in the category CAlgR(∗), where R(∗){t} denotes the free commutative algebra over R(∗)
in one generator. Let Rn := R(x1)n ⊗R · · · ⊗R R(xk)n. Then [Lurb, 8.1.2.3] implies that
for every connective R(∗)-module M the natural map

M∧
I → lim←−

n

M ⊗R(∗) Rn

is an equivalence. It is now easy to check that the map R→ lim←−n
Rδ

n is an equivalence:
on S-valued points, where S is a extremally disconnected set, this map is the map

C(S,R(∗))∧I → lim←−
n

C(S,Rn) = lim←−
n

C(S,R(∗))⊗R(∗) Rn

which is an equivalence by the above applied to the R(∗)-module M = C(S,R(∗)).
Finally, the fact that this choice of tower satisfies the conditions of the statement is [Lurb,
8.1.2.2]

Corollary 1.24.1. Let R be an adic ring and let M ∈ ModR(Cond(Sp)). If M is
connective, then the canonical map β : M → lim←−n

(Rδ
n ⊗Rδ M) exhibits the target as the

I-completion of the source.

Proof. This can be checked after evaluating at an arbitrary extemally disconnected set
S. Then the statement reduced to the fact recalled in the previous proof that for every
connective R(∗)-module M the natural map

M∧
I → lim←−

n

M ⊗R(∗) Rn

is an equivalence.

1.2.2 Solid modules over adic rings

Let R be an adic ring. Let (R,S)■ denote the analytic structure on R induced from solid
spectra by the map S→ R in the sense of [Scha, 12.8]. We let S 7→ (R,S)■[S] denote the
measures with respect to this analytic structure and we let SolidR = D((R,S)■) denote
the category of modules for this analytic ring. As the adic ring R is a solid spectrum,
there is a symmetric monoidal equivalence

ModR(Solid)
∼−→ SolidR

so the compact objects in SolidR are generated by base changes of compact objects
in Solid. That is, the compact objects in SolidR are generated under finite colimits,
desuspensions and retracts by objects of the form

∏
J S⊗■ R, where J is a small set.

Remark 1.25. The left hand side of this equivalence could also be taken as a definition of
the category of solid modules over an adic ring R. Then an analytic ring structure on R is
determined by its category of complete modules as a full subcategory of ModR(Cond(Sp)):
that is, more generally, the structure of an analytic associative ring (A,M) as in [Scha,
12.1] is recovered by the left adjoint to the inclusion D(A,M) ⊂ D(A) .
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Lemma 1.26. Let A be a Noetherian E∞-ring such that π0A is a finitely generated
Z-algebra (see [Lura, 7.2.4.30]) and let I ⊂ π0A be an ideal. Let {An}n∈N be a tower of
E∞-rings realizing the I-completion of A as in Lemma 1.24. Let M,N ∈ ModA(Solid).

1. M is I-complete if and only if each πnM is I-complete.

2. If M is connective, then M is I-complete if and only if M ⊗A π0A is I-complete.

3. If M and N are connective and I-complete, then the solid A-module M ⊗■
A N is

I-complete.

4. If M and N are connective and M is I-complete, then the previous point gives a
canonical map

lim←−
n

(M ⊗■
A N)⊗■

A An →M ⊗■
A (lim←−

n

N ⊗■
A An)

which is an equivalence.

5. If M and N are connective, then the canonical map

lim←−
n

(M ⊗■
A N)⊗■

A An → lim←−
n

(M ⊗■
A An)⊗■

A (N ⊗■
A An)

is an equivalence.

Proof. Recall that for any connective M ∈ ModA(Solid) its I-completion is given by
the map M → lim←−n

M ⊗■
A An (Corollary 1.24.1). It is then clear that M is I-complete

if and only if for each extremally disconnected S the A-module M(S) is I-complete.
Then 1. follows from [Lurb, 7.3.4.1]. For 2., suppose M ⊗A π0A is I-complete. The
hypotheses imply that each πnA is almost perfect as a π0A-module ([Lura, 7.2.4.17]), so
each πnA can be written as a geometric realization of finite free π0A-modules ([Lura,
7.2.4.10]). Then, as tensoring with M (over A) commutes with this geometric realization
(because M and the terms in the geometric realization are connective) and a geometric
realization of connective objects is I-complete if each object is, we conclude that M⊗πnA
is I-complete. We can also conclude that M ⊗A A≤n is I-complete: the case n = 0
holds by assumption, and then from the previous line and an induction on the sequence
πn+1A[n+1]→ A≤n+1 → A≤n it follows that each M⊗AA≤n is I-complete. As the fibers
of M →M ⊗AA≤n are n+1-connective and I-completeness can be checked on homotopy
groups by 1., it follows that M is I complete. For 3., as a tensor product of connective
objects is connective, we can apply 2. and prove the statement after base-change to π0A.
This is the same as replacing A by π0A, replacing M by M ⊗A π0A and similarly for N .
As A is a finitely generated Z-algebra, there exists a polynomial algebra B in finitely
many generators and a surjection B ↠ A that exhibits A as an almost perfect B-module.
The tensor product M ⊗■

A N can be written as a geometric realization of the connective
modules M ⊗■

B ⊗An ⊗■
B N , so it suffices to show that each of them is complete with

respect to an ideal of B going to I under the surjection B ↠ A. As each An is almost
perfect as a B-module, each M ⊗■

B ⊗An is complete. This reduces the statement to the
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case where A is a polynomial algebra over Z in finitely many generators. Moreover, as a
module is I-complete if and only if it is (x)-complete for each x ∈ I, we can suppose that
the ideal I = (x) is principal. Moreover, as M is a geometric realization of connective
objects of the form (

⊕
i∈I

∏
Ji
A)∧x and similarly for N , we can suppose that both M and

N have this form. In this setting, a tower as in Lemma 1.24 realizing the completion is
given by An := A/xn, and as modules of the form

⊕
i∈I

∏
Ji
A have no torsion it follows

that M is concentrated in degree zero and given by

(
⊕
i∈I

∏
Ji

A)∧x = lim←−
n

⊕
i∈I

∏
Ji

A/xn = colimf : I→N
f→∞

∏
i∈I

xf(i)
∏
Ji

A

where the colimit runs over these functions for which for a given n there are finitely many
i ∈ S for which f(i) ≤ n. From this rewriting of M and N it is clear that their tensor
product is complete. 4. is then saying that there exists an equivalence(M ⊗■

A N)∧I
∼−→

M ⊗■
AN∧

I . The existence of the map follows from 3., and the fact that it is an equivalence
follows from checking modulo I. For 5., the right hand side can first be rewritten as

lim←−
n

lim←−
m

(M ⊗■
A An)⊗■

A (N ⊗■
A Am)

As M ⊗ An is I-complete (because In = 0 in An), the previous point applied to M =
M ⊗An gives that the term inside the lim←−n

in the last expression is (M ⊗■
A An)⊗■

A N∧
I .

Applying the second point again with M = N∧
I then gives that

M∧
I ⊗■

A N∧
I

∼−→ lim←−
n

(M ⊗■
A An)⊗■

A (N ⊗■
A An)

and this gives the third point by noting that (M ⊗■
A N)∧I

∼−→M∧
I ⊗■

A N∧
I .

Remark 1.27. Let (R0, I0) and (R1, I1) be two adic rings. Let (I0, I1) ⊂ π0(R0⊗■
S R1)(∗)

be the ideal generated by the images of I0 and I1. Then (R0 ⊗■
S R1)

∧
(I0,I1)

is an adic

ring in the sense of Definition 1.21. In fact, saying that (R0 ⊗■
S R1)

∧
(I0,I1)

is an adic ring

amounts to note that it is (I0, I1)-complete and it is discrete13 modulo (I0, I1): the latter
is because R0 is discrete modulo I0 and R1 is discrete modulo I1, and the solid tensor
product of discrete condensed spectra is discrete. Moreover, the underlying commutative
algebra in spectra of the adic ring (R0 ⊗■

S R1)
∧
(I0,I1)

is the (I0, I1)-completion in spectra

of the commutative algebra R0(∗)⊗S R1(∗). In a formula, the canonical map

(Rδ
0 ⊗S R

δ
1)

∧
(I0,I1)

∼−→ (R0 ⊗■
S R1)

∧
(I0,I1)

is an equivalence of condensed algebras, where both completions happen in Cond(Sp).

Lemma 1.28. Let (R0, I0) and (R1, I1) be two adic rings. Then the towers of E∞-rings
(R0,n)n and (R1,n)n realizing the completions of R0 and R1 in the sense of Lemma 1.24
can be chosen such that

(R0 ⊗■
S R1)

∧
(I0,I1)

∼−→ lim←−
n

(R0,n ⊗S R1,n)
δ

13that is, in the image of (−)δ : Sp→ Cond(Sp)
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as condensed spectra. That is, (R0,n ⊗S R1,n)n is a tower realizing the completion of the
adic ring (R0 ⊗■

S R1)
∧
(I0,I1)

from Remark 1.27.

Proof. Let (xi)i and (yj)j be finitely many generators for I0 and I1, respectively. Then
R0 is a module over S⟨⟨(xi)i⟩⟩, the completion in condensed spectra of the free E∞-ring
in the generators (xi)i. This is an adic ring in the sense of Definition 1.21. If (A0,n)n is a
tower realizing the completion of S⟨⟨(xi)i⟩⟩ (in the sense of Lemma 1.24), then

(R0,n)n := (R0(∗)⊗S⟨⟨xi,i⟩⟩(∗) A0,n)n

is a tower realizing the completion of R0. Similarly for R1. Now R0 ⊗■
S R1 is a module

over S⟨⟨xi, i⟩⟩ ⊗■
S S⟨⟨(yj)j⟩⟩ = S⟨⟨(xi, yj)i,j⟩⟩, and the (I0, I1)-completion of R0 ⊗■

S R1

agrees with its (xi, yj)i,j-completion as a S⟨⟨(xi, yj)i,j⟩⟩-module. A tower realizing the
completion of S⟨⟨(xi, yj)i,j⟩⟩ is given by (A0,n ⊗S A1,n) (see [Lurb, 8.1.2.2]), hence

(R0⊗■
S R1)

∧
(I0,I1)

∼−→ lim←−
n

(R0⊗■
S⟨⟨(xi)i⟩⟩A0,n)⊗■

S (R1⊗■
S⟨⟨(yj)j⟩⟩A1,n)

∼−→ lim←−
n

(R0,n⊗SR1,n)
δ

where the first equivalence is Corollary 1.24.1 and the second uses that

R0(∗)⊗S⟨⟨(xi)i⟩⟩(∗) A0,n
∼−→ R0 ⊗■

S⟨⟨(xi)i⟩⟩ A0,n,

and similarly for R1.

Lemma 1.29. Let R be an adic ring. Then compact objects in SolidR are complete.

Proof. As any compact is a finite colimit of shifts of objects of the form (R,S)■[S] for S an
extemally disconnected set, it suffices to prove that the measure (R,S)■[S] is complete. Let
S⟨⟨x1, · · · , xn⟩⟩ denote the completion of the free E∞-algebra S⟨x1, · · · , xn⟩ at the ideal
(x1, · · · , xn). Then (R,S)■[S] can be written as a geometric realization of tensor products
over S[x1, · · · , xn]■ of the modules R, S⟨⟨x1, · · · , xn⟩⟩ and S⟨⟨x1, · · · , xn⟩⟩ ⊗S■ S■[S],
where the xi’s go to generators of a finitely generated ideal I in R determining its
topology. Those three modules are complete, the last one by a direct computation, so
Lemma 1.26 implies that (R,S)■[S] is complete.

1.2.3 Nuclear modules over adic rings

The category SolidR associated to an adic ring R is cocomplete symmetric monoidal,
generated under filtered colimits by compact objects and with compact unit. It then fits
in the framework of Section 1.1, and it is possible to consider its subcategory Nuc(SolidR)
of nuclear modules, as defined in Definition 1.2. In order to make the notation lighter, we
will write NucR := Nuc(SolidR). The next result shows that the category SolidR admits
a relatively nice nuclearization functor.

Proposition 1.30. Let R be an adic ring. Then
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1. The full subcategory of NucR spaned by the basic nuclear objects is small. That is,
we are in the setting of Remark 1.7.

2. Lemma 1.9 holds. That is, the inclusion of NucR into SolidR fits in an adjunction

NucR SolidR
incl

(−)tr

where the right adjoint is given by the functor X 7→ Xtr from Definition 1.8.

Proof. To prove the first assertion we apply Lemma 1.16 with A being the full subcategory
spanned by the compact projective objects in SolidR,≥0. We first check that the two
hypotheses of Lemma 1.16 are satisfied. The first one says that The category BNuc0(C)
from Definition 1.15 is small. An object of BNuc0(C) is a filtered colimit of objects of A
along trace-class. An object of A is, up to retracts, given by R tensored with an infinite
product of copies of the sphere. Any trace-class map f :

∏
S S ⊗S■ R →

∏
T S ⊗S■ R,

where S and T are any two small sets, factors through
∏

N S⊗S■ R by Lemma 1.32 below,
so BNuc0(C) is equivalently given by certain subcategory of the full small subcategory of
SolidR spanned by sequential colimits by a single compact projective generator. This
shows the first hypothesis of Lemma 1.16. The second says that the functor (−)tr from
Definition 1.8 preserves connective objects and lands in NucR. The functor (−)tr preserves
connective objects because duals in SolidR of compact projective objects in SolidR,≥ are
connective. To see that the functor (−)tr lands in NucR, note that the subcategory of
nuclear modules is given by those modules M for which M tr ∼−→M , then, as the functor
(−)tr commutes with colimits and every object is a colimit of compact objects, it suffices
to see that (−)tr sends compact objects to nuclear objects. As compact objects are
complete by Lemma 1.29, it suffices to show that M tr is nuclear whenever M is complete.
Let M be complete and let S be an extremally disconected set. Then

M tr(S) = (MapSolid(S, R)⊗SolidR M)(∗) = (C(S,R(∗))δ ⊗Rδ M)∧I (∗)

where the first is by definition and the second follows from the solid tensor product
preserving complete objects, as in Lemma 1.26. Now both completion and tensoring with
a discrete object commute with evaluating at a point, so

M tr(S) = (C(S,R(∗))⊗R(∗) M(∗))∧I = (M(∗)δ)∧I (S).

This shows that M tr is itself complete and its S-valued points are given by the rightmost
term in the last equation, from which it follows that (M tr)tr = M tr, which amounts to
say that M tr is nuclear. This concludes the proof of the first point. For the second point,
as the first point holds, we are in the setting of Remark 1.7 and it makes sense to ask if
Lemma 1.9 holds, and it does as the hypothesis of Lemma 1.9 is that (−)tr sends compact
objects to nuclear objects, which was showed in the previous lines.

Remark 1.31. The proof of Proposition 1.30 gives that for a complete object M , M tr

is given by (M δ)∧I . By Lemma 1.29, this holds for any compact object in SolidR
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Lemma 1.32. Every trace-class map f :
∏

S S ⊗S■ R →
∏

T S ⊗S■ R, where S and T
are any two small sets, factors through

∏
N S⊗S■ R.

Proof. Each base change f ⊗R Rn is a map in

mapSolidR(
∏
S

S⊗S■ Rn, (
∏
T

S⊗S■ Rn)
tr) =

⊕
S

∏
T

S⊗S■ Rn(∗)

so it factors through a projection
∏

S S⊗S■ Rn →
∏

Sn
S⊗S■ Rn for some finite subset

Sn ⊂ S. Then, as compact objects in SolidR are complete by Lemma 1.29, Corollary 1.24.1
implies that f is recovered as the limit lim←−n

f⊗RRn. Then f factors through the projection∏
S

S⊗S■ Rn →
∏
∪nSn

S⊗S■ Rn

to the at most countable subset ∪Sn ⊂ S.

Lemma 1.33. Let R be a condensed adic ring. Then the following is a pullback square

ModR(∗) ModLR(∗)

NucR NucLR.

Where L denotes localization with respect to the topology of R, as defined in Remark 1.22
(for instance, if R is p-adic then L inverts p).

Proof. The algebra LR is nuclear as an R-module: this follows from the iterative con-
struction of the functor L after picking finitely many generators of an ideal I defining
the topology of R. Hence Lemma 1.11 gives that NucLR = ModLR(NucR). The fibers
of the horizontal arrows are then given by the categories of torsion modules in ModR(∗)
and NucR. To conclude the statement it suffices to show that the induced map between
these two categories of torsion modules is an equivalence. In other words, it suffices to
show that torsion nuclear R-modules are relatively discrete (i.e. in the essential image of
ModR(∗) → NucR). Let M be torsion and nuclear. Let M be written as a filtered colimit
of compact objects Pi’s. As M is nuclear, M = M tr and M is the filtered colimit of the
P tr
i ’s. By Remark 1.31, each P tr

i is complete and discrete modulo I. If B ∈ SolidR is an
object that is complete and discrete modulo I, then

ΓB = Γ((Bδ)∧I ) = Γ(Bδ) = (ΓB(∗))δ ⊗Rδ R

is relatively discrete, so, as M = ΓM (because it is torsion), M is the colimit of the ΓPi’s,
each of which is relatively discrete by the last equation. As relatively discrete modules
are stable under colimits, M is relatively discrete.
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Corollary 1.33.1. Let f : R→ R′ be an adic map of condensed adic rings14. Suppose
that the map LRR(∗) → LRR

′(∗) is an equivalence. Then the following is a pullback
square

ModR(∗) ModR′(∗)

NucR NucR′ .

Proof. As the map R → R′ is adic, there is an equivalence LRR
′(∗) = L′

RR
′(∗). Then,

using Lemma 1.33 above, both the outer square and the square on the right in the
following diagram are pullback squares

ModR(∗) ModR′(∗) ModLRR′(∗)

NucR NucR′ ModLRR′

so the square on the left is also a pullback.

The category SolidR is not presentable. It is compactly generated, but compact
objects do not form a small category. This can be solved by restricting the cardinality of
the compact objects. This throws away some information, but by Lemma 1.35 it doesn’t
change the category of nuclear modules. We remark that, in the context of Remark 1.7,
it would be circular to use Lemma 1.35 to show that colimits over “all basic nuclears
mapping to an object” exist, as the proof of Lemma 1.35 uses that the category of nuclear
objects is built from basic nuclear objects under small colimits.

Remark 1.34. Given a compact object x in a cocomplete stable ∞-category C, there is
a fully faithful functor RModEndC(x) → C [Lura, 7.1.2.1]. Moreover, if C has a symmetric
monoidal structure and x⊗ x is in the subcategory generated by x, then RModEndC(x)
inherits a symmetric monoidal structure such that the inclusion into C is symmetric
monoidal. We apply this to the element x =

∏
N S⊗S■ R ∈ SolidR. Precisely, we let

A := EndSolidR(
∏
N

S⊗S■ R)

so that there is a fully faithful, colimit preserving functor RModA → SolidR sending A
to the compact

∏
N S⊗S■ R.

Lemma 1.35. There is an induced functor

Nuc(RModA)
incl−−→ Nuc(SolidR)

which is an equivalence. Here the symmetric monoidal structure on RModA is the one
inherited from the one in SolidR as in Remark 1.34.

14that is, a map in CAlg(Solid) between two adic rings such that the image of an ideal of definition of
R under the map R(∗)→ R′(∗) is an ideal of definition for R′.
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Proof. The functor RModA → SolidR restricts to nuclear objects by Lemma 1.17.
By Lemma 1.16 it suffices to show that the functor incl sends BNuc0(RModA) to
BNuc0(SolidR) (see Lemma 1.16 for notation) in an essentially surjective way. For this,
it suffices to note that every trace-class map f :

∏
S S ⊗S■ R →

∏
T S ⊗S■ R, where S

and T are any two small sets, factors through
∏

N S⊗S■ R. This holds by Lemma 1.32
above.

1.3 Nuclear modules inside lax-perfect modules

1.3.1 Statements

Let R be an adic ring in the sense of Definition 1.21. Let SolidR denote the category of
solid R-modules as in Section 1.2.2 and let NucR := Nuc(SolidR) denote the category of
nuclear R-modules in the sense of Definition 1.2. This section is here to present another
characterization of the category NucR. Informally, this characterization is based on the
fact that nuclear modules are built out of colimits in SolidR from sequential colimits
of infinite products of the form

∏
NR along trace-class maps (Lemma 1.62), and that

trace-class maps between such objects factor through perfect modules modulo an ideal of
definition, so that, by varying the ideal of definition, each trace-class map gives rise to a
lax-perfect module. In more detail, the idea is the following: as said in the previous lines,
any object in NucR is built from small colimits and desuspensions of objects of the form

N = colim
(
N0 f0−→ N1 f1−→ · · ·

)
where each N i =

∏
NR and the maps fi : N

i → N i+1 are all trace-class. As explained
in Lemma 1.60 below, for each k ∈ N the map fi ⊗R Rk factors through a finite free
Rk-modules N i

k, and these modules can be chosen such that there are maps N i
k+1 → N i

k

compatible with the base changes of fi. These modules and maps assemble to produce
lax-perfect modules (Definition 1.37)

N i′ = {N i
k ∈ PerfRk

|N i
k+1 ⊗Rk+1

Rk → N i
k}k∈N.

Then the basic nuclear N can be sent to the colimit of the N i′ ’s in an appropriate
category, in a functorial way. That is, there is a small category laxPerf bR, which is a full
subcategory of the lax limit of the functor n ∈ Nop 7→ PerfRn , where objects such as
N i′ live, these objects will be referred to as lax-perfect complexes (Definition 1.37), and
under this the following result is proved in this section:

Proposition (Proposition 1.43). There is an adjunction of presentable stable∞-categories

NucR Ind(laxPerf bR)
L

R
(11)

where the left adjoint L sends N to the sequential colimit of the N i′ ’s. In this adjunction,
the left adjoint is fully faithful and the right adjoint preserves colimits.
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While this result says that NucR can be viewed as a full subcategory of Ind(laxPerf bR),
the next result says that NucR can be realized as a subcategory of Ind(laxPerf bR) by
intrinsic means. In order to make this more precise, recall that an object X ∈ SolidR
is nuclear if and only if the map Xtr → X is an equivalence (Definition 1.8). That is,
nuclearity in SolidR is characterized in terms of a trace functor. Similarly, there is a
colimit preserving endofunctor of the category Ind(laxPerf bR), denoted T and equipped
with a natural transformation T ⇒ Id (Definition 1.47), that can be seen as an analog of
the functor (−)tr. The endofunctor T is simple: given a lax-perfect complex P ∈ laxPerf bR,
we can consider the lax-perfect complex Pn which agrees with P in degrees ≥ n and in
degrees < n is base-changed from degree n. Then

T (P ) := lim←−
n∈Nop

Pn

where the limit is taken in the big category Ind(laxPerf bR). Under this, an object
Y ∈ Ind(laxPerf bR) is said to be nuclear if T (Y )

∼−→ Y (Definition 1.48). This naming is
motivated by the following result:

Proposition (Proposition 1.72). The essential image of the fully faithful functor L : NucR →
Ind(laxPerf bR) from the previous Theorem lands in the full subcategory spanned by those
objects which are nuclear in the sense of the previous line. That is, those objects Y for
which T (Y )

∼−→ Y .

It is now natural to ask if the functors L ◦R and T coincide, pretty much as for
SolidR where the trace functor (−)tr agrees with the colocalization defining NucR (see
Proposition 1.30). It turns out that the functors (−)tr and T are not completely analog:
as (−)tr is a colocalization functor, it is idempotent. In contrast, the functor T is not
idempotent (see Remark 1.57). In particular, the endofunctors L ◦R and T are different.

This section ends by showing that, even if not idempotent, the functor T has its
advantages over L ◦R. Crucially, the cofiber of T → Id is easier than the cofiber of
L ◦R→ Id. Precisely, there is a fiber sequence

T → Id→ G ◦ F

of endofunctors of Ind(laxPerf bR), where the third term comes from a certain adjunction

Ind(laxPerf bR) Ind(Cof bR)
F

G

where, informally, F sends a lax-perfect complex P = (Pi)i∈N to all its possible cofibers
Pi/Pj (see Definition 1.67). The category Cof bR is nice: for example, it is generated by
an additive ∞-catgory and its K theory is the product of the K theories of the rings Rn,
for n ∈ N. These are properties that we would like the actual cofiber of the inclusion
L : NucR ↪→ Ind(laxPerf bR) from (11) to have. Despite L◦R and T being different, we will
see in Proposition 3.17 that L ◦R lies somewhere between T and T ◦ T (see Lemma 3.22
for a precise statement), and that this can be pushed to show that the cofiber of the
inclusion L : NucR ↪→ Ind(laxPerf bR) is close to Ind(Cof bR) in the following sense:
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Proposition (Proposition 3.17). Let E be a truncating invariant. Then

E(cof(NucR ↪→ Ind(laxPerf bR)))→ E(Ind(Cof bR))

is an equivalence.

Remark 1.36. The definitions of nuclearity discussed in this overview, where nuclear
objects are defined as those objects which are fixed by a “trace functor” (T or (−)tr),
are a priori different from the definition of the nuclear objects in a closed symmetric
monoidal category from Definition 1.2. In the case of the closed symmetric monoidal
category SolidR these two definitions agree by Proposition 1.30. It turns out that the same
holds for Ind(laxPerf bR). That is, the category Ind(laxPerf bR) carries a closed symmetric
monoidal structure with compact unit, inherited from the categories PerfRn for varying
n ∈ N, and the subcategory

Nuc(Ind(laxPerf bR)) ⊂ Ind(laxPerf bR)

defined categorically as in Definition 1.2 coincides with the subcategory spanned by those
objects for which T (Y )

∼−→ Y . Moreover, by the results of the previous paragraphs this
subcategory contains NucR in such a way that modding out by the nuclear objects or
moding out by NucR gives cofiber categories which are nilpotent extensions of each other.
This remark won’t be proved nor needed in the rest of the paper.

1.3.2 Definitions and Proofs

Definition 1.37. Let laxPerf bR be defined as the following pullback in Cat∞

laxPerf bR limlax
n∈N(PerfRn)

Stab(
∏

n∈NVecRn)
∏

n∈N PerfRn

where VecRn ⊂ PerfRn is the full subcategory spanned by retracts of finite free Rn-modules.
Here the vertical map on the right is the canonical map, and the lower horizontal map is
the fully faithful canonical inclusion of the stable envelope of a product to the product of
the stable envelopes (Section 2.1).

In other words, laxPerf bR ⊂ limlax
n∈N(PerfRn) is the full subcategory spanned by those

objects {Pn ∈ Perf(Rn)}n∈N together with Rn+1-linear maps Pn+1 → Pn such that there
is an N ≥ 0 for which every ΣNPn is connective and there exists a k ≥ 0 for which the
Tor-amplitude of each Pn is ≤ k.

Definition 1.38. Let laxVecsR denote the full subcategory of laxPerf bR spanned by those
objects which are degree-wise connective, of Tor-amplitude ≤ 0, and whose transition
maps are surjective on π0.

In other words, laxVecsR is spanned by those objects {Pn ∈ Perf(Rn)}n∈N for which
each Pn is a retract of a finite free Rn-module in degree zero and the transition maps
Pn+1 → Pn are surjective on π0.
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Remark 1.39. The additive ∞-category laxVecsR will be considered as an exact ∞-
category by declaring a sequence to be exact if and only if it is split exact (not only
degree-wise!).

The previous remark is motivated by the following result.

Lemma 1.40. The inclusion laxVecsR ⊂ laxPerfbR is exact, where the source carries the
split exact structure from Remark 1.39. This inclusion induces an equivalence

Stab(laxVecsR)
∼−→ laxPerf bR

That is, the stable ∞-category laxPerf bR is a stable envelope of the exact ∞-category
laxVecsR

Proof. It suffices to prove the two conditions in Lemma 2.3. Let V = {Vn ∈ VecRn}n
and W = {Wi ∈ PerfRn}n be two lax-vector bundles in laxVecsR. The first condition in
Lemma 2.3 amounts to show that the mapping spectrum MaplaxPerfR(V,W ) is connective.
Writing a lax-inverse limit as an iterated lax-pullback, it is possible to see that this
mapping spectrum is given by the limit of the following diagram of spectra

MapR3
(V3,W3) MapR2

(V2,W2) MapR1
(V1,W1)

· · · · · · MapR3
(V3,W2) MapR2

(V2,W1)

The limit of this diagram can be calculated iteratively. Let P1 := MapR1
(V1,W1). For

each n ≥ 2, let
Pn := MapRn

(Vn,Wn)×MapRn
(Vn,Wn−1) Pn−1

The construction gives maps Pn → Pn−1, and the limit of the previous diagram is
equivalent to the inverse limit of the Pn’s along these maps. The maps Pn → Pn−1 are
pullbacks of the maps

MapRn
(Vn,Wn)→ MapRn

(Vn,Wn−1),

which are easily seen to be surjective on π0 (as indicated in the last diagram). From this
observation it follows that each Pn is connective and that each Pn → Pn−1 is surjective on
π0. This implies the connectivity of lim←−n

Pn ≃ MaplaxPerfR(V,W ). It remains to show the
second condition in Lemma 2.3. That is, that the smallest stable subcategory containing
laxVecsR is the whole. Let C denote the smallest stable subcategory of laxPerfbR containing
laxVecsR. Let k ∈ N and let Ck denote the full subcategory of laxPerfbR spanned by the
objects which are degree-wise connective and of Tor-amplitude ≤ k. That is, an object
{Pi}i∈N is in Ck if for each i ∈ N the Ri-module Pi is connective and has Tor-amplitude
≤ k. Definitions imply that every object of laxPerfbR is in some Ck up to a shift. As C
is stable under shifts, it suffices to show that Ck ⊂ C for each k ≥ 0. By an induction

34



using Lemma 1.41 below, it suffices to show that C0 ⊂ C. Let V ∈ C0 be represented by
{Vn}, where each Vn is a retract of a finite free Rn-module in degree zero. It is possible
to produce a W ∈ laxVecsR and a degree-wise split inclusion V →W : for each i ≥ j ≥ 1
pick Ri-vector bundles V

j
i such that:

1) V j
i lifts the Rj-vector bundle Vj ; 2) V j

j = Vj ; 3) V j
i+1 ⊗Ri+1 Ri

∼= V j
i ;

This collection of vector bundles can be summed up to get a lax-vector bundle W , which
on degree i is given by Wi =

⊕i
j=1 V

j
i and whose transition maps are determined by

condition 3) above. Then W has surjective transition maps and there is a split inclusion
V → W . Letting W denote the cokernel of V → W , which again lies in laxVecsR, the
sequence V →W →W is a cofiber sequence in laxPerfbR where the middle term and the
rightmost term are in C by definiton, so V ∈ C too, showing that C0 ⊂ C.

Lemma 1.41. Notations as in the proof of Lemma 1.40. Let k ≥ 1 and Y ∈ Ck. Then
there exists an X ∈ Ck−1, a Z ∈ C0, and a fiber sequence

X → Y → ΣkZ

in the stable ∞-category laxPerf bR.

Proof. Recall a version of this statement for an additive ∞-category A: the stable
envelope of A comes with subcategories

A[m,n] ⊂ Stab(A)

indexed by the poset of finite intervals of Z, ordered by inclusion (see Remark 2.1). These
subcategories are defined such that A[0,0] is the essential image of A, and then, recursively,
A[m,n+1] is the full subcategory spanned by those Y fitting in a fiber sequence

X → Y → Σn+1Z

in Stab(A) where X ∈ A[m,n] and Z ∈ A. The current proof will use this decomposition
for the case of A = VecRn , for which Stab(A) = PerfRn . Let Y = {Yn}n∈N be an object
in Ck as in the statement. For each n ≥ 0 let

Xn → Yn → ΣkZn

be a fiber sequence in PerfRn as above, so Xn ∈ VecRn,[0,k−1] and Zn ∈ VecRn . The next
step is to assemble the Xn’s into an object of Ck−1. This amounts to produce maps
Xn+1 ⊗Rn+1 Rn → Xn. This maps are given by the fact that the composite

Xn+1 ⊗Rn+1 Rn → Yn+1 ⊗Rn+1 Rn → Yn → ΣkZn

vanishes because it is a map from an object in VecRn,[0,k−1] to an object in VecRn,[k,k], and
a mapping spectrum between such objects is always 1-connective. Let X := {Xn} ∈ Ck−1

with the maps Xn+1 → Xn induced by the above. It is clear that this object comes with
a map X → Y , and the cofiber of this map, named ΣkZ, is degree-wise given by ΣkZn,
so Z ∈ C0.
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As mentioned at the beginning of the section, the goal is to embed NucR inside
Ind(laxPerf bR). Consider the following functor in the other direction.

Notation 1.42. There is a canonical inverse limit functor

lim: laxPerf bR → SolidR

sending a lax perfect complex (Pn)n to lim←−n
Pn. Under this notation, let

R : Ind(laxPerf bR)
lim!−−→ SolidR

(−)tr−−−→ NucR (12)

where the functor lim! is the colimit preserving extension of the functor lim: laxPerf bR →
SolidR from the previous line (the notation is the one for left Kan extensions) and the
second functor is the right adjoint to the inclusion of NucR into SolidR (see Proposi-
tion 1.30).

Proposition 1.43. Let R be the functor defined in (12). Then there exists an adjunction

NucR Ind(laxPerf bR)
L

R

where L is left adjoint to R. Moreover, the functor L is fully faithful.

The construction of the left adjoint L and the proof of Proposition 1.43 require
some study of the category Ind(laxPerf bR). The construction goes by applying the adjoint
functor theorem to R. In order to do so, though, we have to understand the functor R.

By Lemma 1.40, in order to understand the functor R it is enough to understand
what it does to the subcategory laxVecsR defined in Definition 1.37. It is possible to go
one step further and consider the following objects inside laxVecsR.

Definition 1.44. An object V ∈ laxVecsR is called free if it can be represented as
V = {Vn|Vn+1 → Vn}n∈N such each Vn = Rrn

n is a finite free Rn-module of rank
rn ≤ rn+1 ∈ N and the maps

Vn+1 = R
rn+1

n+1 → Rrn
n = Vn

are given by base change and projection onto the first rn coordinates.

Lemma 1.45. Every object in laxVecsR is isomorphic to a retract of a free object.

Proof. Let V ∈ laxVecsR be represented by {Vn|Vn+1 → Vn}n∈N, where each Vn is a
retract of a finite free Rn-module and each map Vn+1 → Vn is surjective. Let k ∈ N and
consider the following condition for a V ∈ laxVecsR:

(•k) Vn = 0 if n < k and the map Vn+1 ⊗Rn+1 Rn
∼−→ Vn is an equivalence if n ≥ k.
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If V satisfies (•k) then the inverse limit lim←−n
Vn ∈ ModR is locally free of finite rank

and Rm ⊗R lim←−n
Vn = Vm for m ≥ k (SAG 8.3.5.4, 8.3.5.7). Picking a complement

W ⊕ lim←−n
Vn
∼= Rs, for some s ∈ N and W ∈ ModR, we see that setting Wn := Rn ⊗R W

if n ≥ k and Wn = 0 for n < k gives a lax vector bundle W = {Wn}n∈N such that V ⊕W
is free in the sense of Definition 1.44. For the general case it suffices to realize a V as
in the statement as a countable product V =

∏
k∈N V k such that V k ∈ laxVecsR satisfies

(•k). This is ensured by the following, which follows from idempotent lifting:

(∗) Let R → S be a surjective ring map with nilpotent kernel (such as Rn+1 → Rn).
Let P be an R-module, let Q0, · · · , Qk be projective S-modules and let P →
Q0 ⊕ · · · ⊕ Qk be a surjective R-linear map. Then there exists a decomposition
P ∼= P0⊕· · ·⊕Pk⊕Pk+1 as a direct sum of R-modules and equivalences Pi⊗RS

∼−→
Qi for 0 ≤ i ≤ k. Moreover, if gi : Pi → Qi denotes the adjoint to the previous
equivalence and gk+1 := 0, the induced map

P ∼= P0 ⊕ . . . Pk ⊕ Pk+1
⊕igi−→ Q0 ⊕ · · · ⊕Qk

agrees with the original map.

Corollary 1.45.1. The inverse limit functor

lim: laxPerf bR → SolidR

from Notation 1.42 sends objects in laxVecsR to retracts of products of copies of R.

Proof. The functor on the statement on a free object in the sense of Definition 1.44 is easy:
it is isomorphic to an (at most countable) product

∏
J R ∈ SolidRSolidR. Lemma 1.45

then gives that the functor on the statement sends every V ∈ laxVecsR to a retract of a
product of copies of R.

Definition 1.46. Let n ∈ N and let laxPerfR,≥n ⊂ laxPerfR denote the full subcategory
spanned by those objects {Pk ∈ Perf(Rk)}k∈N for which Pk = 0 for k < n. The forgetful
functor laxPerfR → laxPerfR,≥n is left adjoint to the inclusion. The forgetful functor has
a further left adjoint, which will be denoted by

(−)n : laxPerf bR,≥n → laxPerf bR

and it is given by sending an object on the source to the lax perfect complex that agrees
with it in degrees ≥ n and that in degrees < n is base changed from its value in degree n.
Let P ∈ laxPerf bR. The counits Pn → P for this adjunctions for varying n ∈ N assemble
to give a natural map

εP : lim←−
n∈N

Pn → P

in Ind(laxPerf bR). Note that the inverse limit is taken in the latter Ind-category, where it
exists.
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Definition 1.47. Let

T : Ind(laxPerf bR)→ Ind(laxPerf bR)

denote the colimit preserving endofunctor whose restriction to compact objects is given by
P 7→ lim←−n∈N Pn. By the previous lines, the functor T comes with a natural transformation
T → id.

Definition 1.48. An object X ∈ Ind(laxPerfR) is nuclear if the map T (X)→ X is an
equivalence. A map f : P → Q between compact objects in Ind(laxPerfR) is trace-class
if there exists a map g : P → lim←−n

Qn such that f agrees with

P
g−→ lim←−

n

Qn εP−→ Q.

An object N ∈ Ind(laxPerfR) is basic nuclear if it can be written as a sequential colimit

N = colim(N0 → N1 → · · · )

of compacts Ni ∈ laxPerfR along trace-class maps.

Remark 1.49. It is not immediate that a basic nuclear object in the sense of Defini-
tion 1.48 is nuclear in the sense of Definition 1.48. This will be proved in Proposition 1.72.

Notation 1.50. Let SolidlaxR be the lax limit of the functor

n ∈ N 7→ ModRn(SolidR)

The category SolidlaxR depends not only on the adic ring R but also on the chosen
tower (Rn)n from Lemma 1.24. Moreover, as we are taking the analytic structure in R to
be the one for which R+ = S, it holds that SolidR = ModR(Solid), and the last functor
is also just given by n ∈ N 7→ ModRn(Solid). Note that there is a pair of functors

SolidR SolidlaxR

h∗

h∗

where h∗ is induced by base change and h∗ is the functor taking the inverse limit of the
underlying objects of SolidR. As suggested by the notation, this pair forms an adjunction:

Lemma 1.51. The functor h∗ is left adjoint to h∗.

Proof. Let X ∈ SolidR and let Y ∈ SolidlaxR be represented by {Yn ∈ SolidRn |Yn+1 → Yn}.
Then

mapSolidR(X,h∗Y ) = lim←−
n

mapSolidRn
(X ⊗R Rn, Yn)

and mapSolidlaxR
(h∗X,Y ) is given by the limit of the diagram

mapR2
(X ⊗R R2, Y2) mapR1

(X ⊗R R1, Y1)

· · · mapR1
(X ⊗R R1, Y1)

⊗R2
R1
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where all maps going down-left are equivalences. It is then easy to see that both
expressions agree.

Remark 1.52. There is also a canonical fully faithful map i : laxPerf bR → SolidlaxR induced
by the inclusions PerfRk

⊂ ModRk
(Solid) and functoriality of lax-limits. Under this,

there is an equivalence of functors

lim!(−) = h∗ ◦ i(−) : laxPerf bR → NucR

where the first functor is th eone from Notation 1.42. In the following we usually omit
the functor i. That is, for an object P ∈ laxPerf bR we write h∗P for lim!P and vice versa.

Lemma 1.53. Let P ∈ laxPerf bR and X ∈ SolidR. Let η and ϵ be the unit and counit of
the adjunction h∗ ⊢ h∗. Then

1. If X is connective then ηX is an equivalence if and only if X is complete.

2. If X is connective and ηX is an equivalence then ηXtr is an equivalence.

3. ηh∗P and h∗(ϵP ) are inverse equivalences.

4. ϵh∗h∗P is an equivalence.

Proof. 1. is just saying that when X is connective the map ηX : X → lim←−k
X ⊗R Rk is

a completion for X (Corollary 1.24.1). For 2., as ηX is an equivalence, X is complete.
Then Proposition 1.30 gives that Xtr is given by (Xδ)∧I , so it is both complete and
connective and the claim follows from 1. To check 3. it suffices to consider the case
where P ∈ laxVecsR. Then, by Lemma 1.45, it suffices to consider the case when P is free.
Then h∗P =

∏
J R (where J is an at most countable set) is complete and connective, so

3. follows from 1. and the triangular relations for an adjunction. Point 4. reduces to the
case where P is free. Then h∗P is a product of copies of R and the claim is clear.

Lemma 1.54. Let P,Q ∈ laxPerf bR and let X,Y ∈ SolidR. Then:

1. There is a natural equivalence

mapInd(laxPerf bR)(P, T (Q)) = mapSolidlaxR
(P, h∗(h∗Q)tr) = mapSolidlaxR

(P, h∗(h∗Q))

compatible with the maps to mapSolidlaxR
(P,Q).

2. Suppose that ηY : Y → h∗h
∗Y is an equivalence. Then

mapSolidR(X,Y )→ mapSolidlaxR
(h∗X,h∗Y )

is an equivalence.
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Proof. For 1. it suffices to consider the case where Q (and P if you want) is free.
Unraveling the definition of T from Definition 1.47, the mapping spectrum on the left of
1. can be rewritten as

mapInd(laxPerf bR)(P, T (Q)) = mapInd(laxPerf bR)(P, lim←−
n

Qn) = lim←−
n

maplaxPerf bR
(P,Qn)

so it can be computed as the inverse limit over n ∈ N of the limits of the diagrams

mapR2
(P2, Q

n
2 ) mapR1

(P1, Q
n
1 )

· · · mapR1
(P1 ⊗R2 R1, Q

n
1 )

⊗R2
R1 (13)

where P is represented by {Pi|Pi+1 → Pi}, and the limit of the last diagram calculates
maplaxPerf bR

(P,Qn). Exchanging the order in which the limits are taken, we calculate

lim←−
n

mapRk
(Pk, Q

n
k) = mapSolidRk

(Pk, lim←−
n

(Qn ⊗Rn Rk)) = mapSolidRk
(Pk, h∗Q⊗R Rk)

where the first equivalence holds by the definition of Qn
k := Qn ⊗Rn Rk, and the second

equivalence is Lemma 1.56. Now the last term can be rewritten as

mapSolidRk
(Pk, h∗Q⊗RRk) = mapSolidRk

(Pk, (h∗Q⊗RRk)
tr) = mapSolidRk

(Pk, (h∗Q)tr⊗RRk)

(14)
where the first equivalence is because Pk is nuclear (even perfect) in SolidRk

, and the
second one is because the object h∗Q ∈ SolidR is complete, so (h∗Q)tr is given by (h∗Q

δ)∧I ,
and a similar description holds over Rk, from which it is evident that

(h∗Q⊗R Rk)
tr = (h∗Q)tr ⊗R Rk

(here the first (−)tr is in SolidR and the second one is in SolidRk
). It follows that

mapInd(laxPerf bR)(P, T (Q)) is also given by the limit of the diagram (13) but where

mapRk
(Pk, Q

n
k) is replaced by any of the expressions in (14), and replacing the first

and the third precisely gives the other two mapping spectra in the statement. This
concludes the proof of 1. The second point on the statement follows from the fact that
the pair h∗ ⊢ h∗ from Notation 1.50 is an adjunction:

mapSolidR(X,Y ) = mapSolidR(X,h∗h
∗Y ) = mapSolidlaxR

(h∗X,h∗Y ).

Remark 1.55. From the previous proof it follows that the presentation of T as the inverse
limit from Definition 1.47 is just one way of presenting the functor T as an inverse limit.
For example, given a lax-perfect complex P = (Pn) and letting P

′k = (Pn+k ⊗Rn+k
Rn)n,

then
T (P ) ≃ lim←−

k

P
′k.
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Lemma 1.56. Let P = {Pj}j∈N ∈ laxPerf bR. Then the canonical map

αP : (lim←−
j

Pj)⊗R Rk −→ lim←−
j>k

(Pj ⊗Rj Rk)

is an equivalence, where all limits are computed in SolidR

Proof. Let C ⊂ laxPerf bR denote the full subcategory spanned by those P ∈ laxPerf bR such
that the map αP of the statement is an equivalence. If W ∈ laxPerf bR is a free lax-vector
bundle with surjective transition maps, the map αW of the statement is given by

αW : (lim←−
j

Wj)⊗R Rk ≃ (
∏
N

R)⊗R Rk
≃−→

∏
N

Rk ≃ lim←−
j

(Wj ⊗Rj Rk)

where the second map is an equivalence as Rk is almost perfect as an R(∗)-module. Hence
W ∈ C and as C is stable under retracts, desuspensions and cofibers. This implies that
laxPerf bR ⊂ C.

Remark 1.57. We can now show that the functor T is not idempotent, and that in
particular it is not given by L ◦R. Let R = Zp and let V be a free lax-vector bundle
(Definition 1.44) such that limV =

∏
N Zp. We show that there is a free vector bundle W

and a map W → T (V ) that does not lift to T (T (V )) along the canonical map

T (T (V ))
canT (V )−−−−−→ T (V )

Let W := ((Z/pn)n)n∈N. By Lemma 1.54, giving a map α : W → T (V ) in Ind(laxPerf bZp
)

is the same as giving a map W → h∗(
∏

N Zp)
tr in the category SolidlaxZp

. For this, it
suffices to give a trace-class endomorphism of

∏
N Zp that modulo pn depends only on

the first n variables. Thus, let α be the map induced by the trace-class endomorphism

α′ :
∏
N

Zp
(1,p,p2,p3,··· )−−−−−−−−→

∏
N

Zp

Suppose that α lifts. By Lemma 3.21, T (V ) is in the subcategory generated under
small colimits by lax-vector bundles with surjective transition maps (that is, it is in the
connective part), so there is a free lax-vector bundle V ′ with a map to T (V ) such that
the lift of α factors through T (V ′). This implies that α factors as

W → T (V ′)→ V ′ → T (V )

Then, by the same considerations as above, the map α′ can be written as a composite of
two trace-class maps ∏

N
Zp

β−→
∏
N

Zp
γ−→

∏
N

Zp

where the trace-class map β is also such that modulo pn factors over the first n coordinates.
We will see that this is not possible. Let en reprensent the n-th basis vector of

∏
N Zp.
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So α(en) = pnen. As β/pn only depends on the first n coordinates, let β(en) = pnbn.
Then γ(bn) = en, so γ hits every basis vector on the target. As γ is trace-class, γ/pn

factors over a finite Z/pn-module and still hits every basis vector on the target, and this
is not possible.

Definition 1.58. For a non decreasing function j : N → N, let Vj denote the free lax

vector bundle15 which on degree n is given by R
j(n)
n .

Remark 1.59. As in Remark 1.55, the functor T on a free lax vector bundle Vj

determined by a function j : N→ N can similarly be described as

T (V ) = lim←−
f≥j

Vf .

The following lemma is a formal way of saying that trace-class maps factor over a
vector bundle modulo an ideal of definition and that this factorizations are such that these
vector bundles assemble into a lax-vector bundle as the power of the ideal of defintion
varies. Morever, the lemma says that giving a trace-class map is the same as giving the
lax-vector bundle:

Lemma 1.60. Let M ∈ SolidR be an I-complete object. Let V 0 :=
∏

N S ⊗■R. Then
the maps

colim
j : N→N

j(n+1)≥j(n)

mapSolidlaxR
(Vj , h

∗M tr)
∼−→ mapSolidlaxR

(h∗V 0, h∗M tr) = mapSolidR(V
0,M tr)

are equivalences, where the first map is induced by the canonical maps h∗V0 → Vj and
the second one is the equivalence from Lemma 1.54. Here the colimit runs over the non
decreasing functions from N to N.

Proof. As M is complete, M tr is given by the completion of M δ := M(∗) in SolidR (see
the proof of Proposition 1.30 for a proof). Then

mapSolidR(
∏
N

S⊗■ R,M tr) = lim←−
n

⊕
N

M δ ⊗R(∗) Rn

The right hand side of the last equation fits in the following commutative diagram

lim←−n∈N

⊕
N M

δ ⊗R(∗) Rn

∏
n∈N

⊕
N M

δ ⊗R(∗) Rn

∏
n∈N

⊕
N M

δ ⊗R(∗) Rn

colim
j : N→N

j(n+1)≥j(n)

mapSolidlax
R

(Vj , h
∗M tr) colim

j : N→N
j(n+1)≥j(n)

∏
n∈N(M

δ ⊗R(∗) Rn)
j(n) colim

j : N→N
j(n+1)≥j(n)

∏
n∈N(M

δ ⊗R(∗) Rn)
j(n+1)

15see Definition 1.44 for the definition of free lax vector bundle.
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where the rightmost and middle vertical arrows are equivalences, the horizontal maps on
the right are given by inclusion minus base change, and the rows are fiber sequences: to
see that the lower one is a fiber sequence, note that the maps in the lower row respect
the colimit, so it suffices to show that for each n ∈ N the sequence

mapSolidlaxR
(Vj , h

∗M tr)→
∏
n∈N

(M δ)j(n) →
∏
n∈N

(M δ)j(n+1)

is a fiber sequence of spectra, which follows from the definition of SolidlaxR as the lax limit
of the functor n 7→ ModRn(SolidR). It follows that the vertical arrow on the left of the
last diagram exists and is an equivalence, and this is the statement.

Let f : P → Q be a trace-class map between compact objects in Ind(laxPerf bR). It
seems natural to expect for the map lim!(f) : lim!P → lim!Q to be a trace-class map in
SolidR. In the following Lemma, which is not used in the rest of this section, we prove
that this is almost the case: the map lim!(f) lifts to (lim!Q)tr, but the object lim!P is
not necessarily compact (recall that compact objects are base changed from Solid, so
infinite products of R are not always compact). Nevertheless, this is good enough:

Lemma 1.61. Let f : P → Q be a trace-class map between compact objects in Ind(laxPerf bR).
Then lim!(f) lifts to (lim!Q)tr. In particular, the functor lim! : Ind(laxPerf

b
R)→ SolidR

sends basic nuclear objects on the source (in the sense of 1.48) to nuclear objects in
SolidR.

Proof. By definition, a map f : P → Q as in the statement is trace-class if it can be
written as a composite

P → T (Q)
can−→ Q

It is then enough to show that this factorization ensures the existence of a dotted arrow
making the following square commute:

mapInd(laxPerf bR)(P, T (Q)) mapSolidR(h∗P, (h∗Q)tr)

maplaxPerf bR
(P,Q) mapSolidR(h∗P, h∗Q)

can0 can1

lim!

(15)

where can0 : T (Q)→ Q and can1 : (h∗Q)tr → h∗Q are the canonical maps, and we identify
lim! and h∗ for objects in laxPerf bR as in 1.52. We can use Lemma 1.54 to rewrite the
square (15) as

mapSolidlaxR
(P, h∗(h∗Q)tr) mapSolidlaxR

(h∗h∗P, h
∗(h∗Q)tr)

mapSolidlaxR
(P,Q) mapSolidlaxR

(h∗h∗P, h
∗h∗Q)

ϵQ◦h∗(can1)◦ h∗(can1)◦

h∗h∗

(16)
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where, precisely, we used point 1. from 1.54 to rewrite the top left corner and we used point
2. from 1.54 to rewrite both terms on the right, which applies because of parts 2. and 3.
of 1.53. Let the dotted arrow be the one induced by precomposing with ϵP : h∗h∗P → P .
Let’s see that this choice makes the square commute. Let f ∈ mapSolidlaxR

(P, h∗(h∗Q)tr).

Going right-down in (16) then sends f to the composite given by going down-right-right
in the following commutative diagram

h∗h∗P h∗h∗h
∗(h∗Q)tr h∗h∗h

∗h∗Q

P h∗(h∗Q)tr h∗h∗Q

h∗h∗f

ϵP ϵh∗(h∗Q)tr

h∗h∗h∗(can1)

ϵh∗h∗Q

f h∗(can1)

where both squares commute by functoriality of ϵ. Then, by commutativity of (1.3.2),
going right-down in (16) sends f to ϵh∗h∗Q ◦ h∗h∗(h∗can1 ◦ f). Now ϵh∗h∗Q = h∗h∗ϵQ
because the triangular relations give that they are both left inverses of the equivalence
h∗ηh∗Q (where the fact that the latter is an equivalence is 1.53 3.). Then, rewriting, going
right-down in (16) sends f to

ϵh∗h∗Q ◦ h∗h∗(h∗can1 ◦ f) = h∗h∗ϵQ ◦ h∗h∗(h∗can1 ◦ f) = h∗h∗(ϵQ ◦ can1 ◦ f)

which is the same as where f goes if going down-right in (16), so the diagram commutes.

Lemma 1.62. Let N ∈ BNuc0(SolidR) (see Definition 1.15 for notation). Then there
exists a basic nuclear N ′ ∈ Ind(laxPerf bR) and an equivalence N

∼−→ R(N ′). Moreover,
the resulting morphism

homInd(laxPerf bR)(N
′,−) R−→ homNucR(N,R(−)),

induced by the functor R and the equivalence of the first part, is an equivalence of functors
from Ind(laxPerf bR) to An.

Proof. By definition, N can be written as a sequential colimit

N = colim(P0
f0−→ P1

f1−→ · · · )

where Pi =
∏

N S ⊗■R and each fi : Pi → Pi+1 is trace-class. Let gi : Pi → P tr
i+1 be

witnesses for the fi’s, so that each fi factors as a composite

Pi
gi−→ P tr

i+1
hi+1−−−→ Pi+1

Then Lemma 1.60 gives that each h∗gi factors as a composite

h∗Pi → h∗h∗V
i → V i → h∗P tr

i+1
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where V i ∈ laxVecsR. In particular there are commutative triangles

· · · V i V i+1 · · ·

· · · h∗Pi h∗Pi+1 h∗Pi+1 · · ·h∗(fi) h∗(fi+1)

in SolidlaxR . Let N ′ denote the sequential colimit of the V i’s in Ind(laxPerf bR) taken along
the maps V i → V i+1 induced by the last diagram. Then

lim!N
′ = colimih∗V

i = colimih∗h
∗Pi = N

where the first equivalence is Remark 1.52, the second one is given by the triangles above,
and the last one is because each ηPi : Pi → h∗h

∗Pi is an equivalence by Lemma 1.53.
This gives that N = lim!N

′ = R(N ′), where the last equivalence holds because N is
nuclear. To conclude the statement it remains to show that N ′ is basic nuclear in the
sense of Definition 1.48. That is, that each V i → V i+1 factors through the canonical map
T (V i+1) → V i+1 as a map in Ind(laxPerf bR). To prove this, note that each V i → V i+1

factors as
V i → h∗Pi+1 → h∗h∗V

i+1 → V i

and the composite V i → h∗h∗V
i+1 of the first two maps lifts to h∗(h∗V

i+1)tr because V i

is level-wise perfect (see Lemma 1.54). So the maps V i → V i+1 factor as

V i → h∗(h∗V
i+1)tr → V i+1

in SolidlaxR , which by Lemma 1.54 is equivalent to factoring over T (V i+1) in Ind(laxPerf bR).
This concludes the proof of the first part of the statement. It remains to prove the second
equivalence on the statement. That is, it remains to prove that the composite

homInd(laxPerf bR)(N
′,−) lim!−−→ homNucR(N, lim!(−)) = homNucR(N,R(−)) (17)

is an equivalence, where the last rewriting is by nuclearity of N in SolidR. So it suffices
to show that the first map in the last equation is an equivalence of functors from
Ind(laxPerf bR) to An. For this, let

map′
SolidlaxR

(h∗Pi,−) : Ind(laxPerf bR)→ Sp

be the Ind-extension of the functor sending a W ∈ laxPerf bR to mapSolidlaxR
(h∗Pi,W ). The

maps V i → h∗Pi+1 → V i+1 in SolidlaxR give a sequence of colimit preserving functors
from Ind(laxPerf bR) to spectra

mapInd(laxPerf bR)(V
i+1,−)→ map′

SolidlaxR
(h∗Pi+1,−)→ mapInd(laxPerf bR)(V

i,−),
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which is such that the composite is induced by the map V i → V i+1 in laxPerf bR. Then
we can rewrite the left hand side of (17) as

mapInd(laxPerf bR)(N
′,−) = lim←−

i

mapInd(laxPerf bR)(V
i,−)

= lim←−
i

map′
SolidlaxR

(h∗Pi,−)

= lim←−
i

mapSolidR(Pi, lim!−)

= mapNucR(N, lim!(−))

(18)

as functors from Ind(laxPerf bR) to spectra. The first equivalence is by writing N ′ as the
colimit of the V i’s. The second is by the previous lines. The third is because the two sides
agree levelwise: they are both colimit preserving, by compactness of Pi in SolidR, and
they agree on compacts, for which there is the adjunction h∗ ⊢ h∗ = lim! (Remark 1.52).
Finally, the last equivalence is by writing N as the colimit of the Pi´s.

Proof of Proposition 1.43. The adjoint L of the statement exists if the colimit-preserving
functor R preserves small limits. Since R is exact, it suffices to show that it preserves
small products. Let’s first show that R preserves small products of elements in laxPerf bR.
Let J be a set and let {Pj}j∈J be a collection of objects in Ind(laxPerf bR) indexed by the
set J . By Lemma 1.16, it suffices to fix an N ∈ BNuc0(SolidR) and to compare mapping
spectra against it. As N ∈ BNuc0(SolidR), Lemma 1.62 gives an N ′ ∈ Ind(laxPerf bR)
which is basic nuclear in the sense of Definition 1.48 and is such that there is an equivalence
N = R(N ′). Then there is the following chain of equivalences

mapNucR(R(N ′),R(
∏
J

Pj)) = mapInd(laxPerf bR)(N
′,
∏
J

Pj)

=
∏
J

mapInd(laxPerf bR)(N
′, Pj)

=
∏
J

mapNucR(R(N ′),R(Pj))

= mapNucR(R(N ′),
∏
J

R(Pj))

where the first and third equivalences are given by the second part of Lemma 1.62.
Replacing R(N ′) with N gives that R commutes with products of elements in laxPerf bR.
The existence of the left adjoint L now follows from Lemma 1.63 below. It remains to
prove that L is fully faithful. Let N ad N ′ as above. The second part of Lemma 1.62 gives
that the counit ϵN ′ : LR(N ′)

≃−→ N ′ is an equivalence, hence the unit is an equivalence at
R(N ′) = N . This shows that the unit is an equivalence at every element of BNuc0(SolidR).
As everything commutes with colimits Definition 1.15 shows that the unit is an equivalence,
hence the fully faithfulness of L.
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Lemma 1.63. Let F : C → D be a colimit preserving functor between stable, presentable
and dualizable categories. If C is compactly generated, then suppose that F preserves
small products of compact objects. If C is ω1-compactly generated, then suppose that F
preserves products of ω1-compact objects. Then F preserves small limits. In particular,
F has a left adjoint.

Proof. This follows from the description of products∏
j∈J

colimi∈IjXj,i = colim(gj)j∈
∏

j∈J Ij

∏
j∈J

Xj,gj

valid in any dualizable category E because dualizability implies that the colimit functor
Ind(E)→ E preserves limits, which implies the above formula.

Remark 1.64. Let M be a basic nuclear object of Ind(laxPerf bR). We do not know if
the unit LR(M)→M is an equivalence. This holds when infinite products of copies of
R are compact in SolidR.

Remark 1.65. The functor L assembles the association from the introduction into
a functor. That is, applying the corollary in the setting of Lemma 1.62 for M = N ′

(notation as in Lemma 1.62) gives that there exists an equivalence L(N) = N ′, which is
precisely what the functor L was supposed to do.

Recall that the right adjoint to the inclusion NucR ⊂ SolidR is given by the functor
(−)tr. The analog in this setting would be an equivalence LR ∼= T . We have seen that
this is not true (Remark 1.57). Nevertheless, these functors compare well. The rest of
this section aims to approximate the cofiber of L using the functor T .

Remark 1.66. As the functor R preserves colimits, the functor L in the adjunction

NucR Ind(laxPerf bR)
L

R

of Proposition 1.43 can be viewed as a morphism in Prdual∞ , and the fact that L is
fully faithful ensures that it admits a cofiber in Prdual∞ , which is necessarily compactly
generated.

Definition 1.67. Let C̃of
b

R denote the full subcategory of Fun(Nop, laxPerf bR) spanned
by those functors h : Nop → laxPerfR such that:

1. For every j ≤ i, the perfect Ri-module h(j)i is zero.

2. For each 0 < i < j, the sequence

h(j)i ⊗Ri Ri−1 → h(j)i−1 → h(j − 1)i−1

is a cofiber sequence in PerfRi .

3. There is an uniform bound on the Tor-amplitudes of the h(j)i, i, j ∈ N.
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Note that the ∞-category C̃of
b

R is stable. Given this definition, there is a functor

F : laxPerf bR → C̃of
b

R (19)

that sends a lax-perfect complex P to the functor hP (j)i := cof(Pj ⊗Rj Ri → Pi). This
description on objects clearly assembles into a functor.

The functor F takes the generating subcategory laxVecsR ⊂ laxPerf bR to a certain

subcategory of C̃of
b

R, which can be described:

Definition 1.68. Let Cof 0R ⊂ Cof bR denote the full subcategory of Cof bR spanned by
those functors h : Nop → laxPerf bR such that:

1. For each j ∈ Nop and i ∈ N, h(j)i is an Ri-vector bundle placed in degree zero.

2. For each 0 < i < j, the cofiber sequence of Ri−1-vector bundles

h(j)i ⊗Ri Ri−1 → h(j)i−1 → h(j − 1)i−1

is split.

It follows from the definitions that the functor F : laxPerf bR → C̃of
b

R takes laxVecsR

to ΣCof 0R ⊂ C̃of
b

R, giving an additive functor

Σ−1F|laxVecsR : laxVecsR −→ Cof 0R (20)

between these two additive ∞-categories. Conversely, Lemma 1.70 below says that this
restriction is enough to recover the full functor F . The proof of Lemma 1.70 requires the
following small remark about the structure of the category Cof 0R.

Remark 1.69. Let t ∈ N and let it : Nop
≤t → Nop denote the inclusion of the natural

numbers ≤ t. Then any h ∈ Cof 0R restricts to an i∗th ∈ Fun(Nop
≤t, laxPerf

b
R), which satisfies

the truncated version of Definition 1.68. Using this notation, the canonical map

h
∼−→ lim←−

t

it∗i
∗
th (21)

is an equivalence in Cof 0R, where in this claim it is implicit that each it∗i
∗
th lies in Cof 0R

and that the limit exists in this category. There is a relative version of this for the
inclusions of the form it+1

t : Nop
≤t → Nop

≤t+1, and for h as above there is a splitting

i∗t+1h
∼= ht+1 ⊕ it+1

t∗ i∗th

where ht+1 is the functor in Fun(Nop
≤t+1, laxVecR) given by ht+1(j) = 0 for j ≤ t and

ht+1(t+1)n it is zero for n > t, it is h(t+1)t at level t, and is the base changes of h(t+1)t
at levels below t. An induction then gives an equivalence of functors it∗i

∗
th =

∏
j≤t ij∗h

j .
Combining this with (21) gives an equivalence

h
≃−→

∏
t∈N

it∗h
t
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in Ind(Cof bR). These lines also give an equivalence of lax vector bundles

h(t) =
∏
j≤t

hj(j).

When reading the next statement, recall that laxPerf bR is the stable envelope of
laxVecsR.

Lemma 1.70. The inclusion of Cof 0R into C̃of
b

R extends to a fully faithful functor

Stab(Cof 0R)→ C̃of
b

R,

where exact sequences in the additive ∞-category Cof 0R are the ones that split. Under
this, the (shifted) functor Σ−1F from (19) is the functor induced on stable envelopes by
the functor between additive ∞-categories

α : laxVecsR −→ Cof 0R

sending a V on the source to α(V )(j)i := ker(Vj ⊗Rj Ri → Vi).

Proof. For the assertion about the stable envelope it suffices to check the first condition
on Lemma 2.3. This condition says that given g, h ∈ Cof 0R the mapping spectrum
mapCof bR

(g, h) is connective. To show this it suffices to show, as in the proof of Lemma 1.40,
that for each j ∈ N≥1 the map

maplaxPerf bR
(g(j), f(j)) −→ maplaxPerf bR

(g(j), f(j − 1)) (22)

is a map between connective spectra and has connective fiber. The last line of Remark 1.69
implies that f(j − 1) is a retract of f(j), so it will suffice to show that the source of (22)
is connective. Again by the last line of Remark 1.69, it suffices to show that for each
t, k ≤ j the mapping spectrum maplaxPerf bR

(gt(t), fk(k)) is connective. As gt(t) is zero
above degree t and base changed from degree t in degrees below t, there is an equivalence

maplaxPerf bR
(gt(t), fk(k)) = mapPerfRt

(gt(t)t, f
k(k)t)

and the latter is connective because it is a mapping spectra between Rt-vector bundles
in degree zero. The second claim in the statement follows from the first.

Because of the previous lemma, the category Stab(Cof 0R) is enough, so from now on

we drop the bigger category C̃of
b

R,. Precisely, we make the following definition.

Definition 1.71. Let Cof bR := Stab(Cof 0R). Under this, the functor

Ind(F ) : Ind(laxPerf bR)→ Ind(C̃of
b

R)

from (19) lands in Ind(Cof bR), and we let

F : Ind(laxPerf bR)→ Ind(Cof bR)

denote the induced functor.
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Consider the adjunction

Ind(laxPerf bR) Ind(Cof bR)
F

G

where G is a right adjoint to F. This adjunction is introduced in order to prove the
following:

Proposition 1.72. The essential image of the fully faithful functor

L : NucR → Ind(laxPerf bR)

constructed in Proposition 1.43 land in the full subcategory of Ind(laxPerf bR) spanned by
the objects which are nuclear in the sense of Definition 1.48.

Remark 1.73. When infinite products of copies of R are compact in SolidR, we are able
to prove that the essential image of NucR exhausts the full subcategory of Ind(laxPerf bR)
spanned by the objects which are nuclear in the sense of Definition 1.48. This is because
Remark 1.64 holds. Moreover, in this case the sequence

NucR Ind(laxPerf bR) Ind(Cof bR)
L

R

F

G
(23)

is a fiber sequence in PrLst.

The proof of Proposition 1.72 needs an explicit calculation of what the functor G
does. This is covered by Lemma 1.74 and Remark 1.76. Precisely, they show that G
it is the exact and colimit preserving extension of the functor that takes an h ∈ Cof bR
and sends it to the inverse limit of its colimns lim←−j∈Nop h(j) in Ind(laxPerf bR). Note that,

unraveling the definitions, this fact gives a fiber sequence of endofunctors

T → Id→ GF

of the ∞-category Ind(laxPerf bR).

Lemma 1.74. Notation as in Remark 1.69. Let h ∈ Cof 0R. Then for every j ∈ N there
is a natural equivalence

G(ij∗h
j) = hj(j)

Proof. Let h be as in the statement, j ∈ N and let V = {Vi}i∈N ∈ laxVecsR be a lax
vector bundle with surjective transition maps. There are equivalences

mapInd(laxPerf bR)(V,G(ij∗h
j)) = mapInd(laxPerf bR)(i

∗
jF(V ), hj)

= mapInd(laxPerf bR)(F(V )(j), hj(j))

where the first equivalence is by applying adjunctions and the second one is because hj(t)
is zero for t < j. After this rewriting, to prove the statement it suffices to show that the
canonical map V → F (V )(j) induces an equivalence after applying map(−, hj(j)). This
follows from Lemma 1.75 below.
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Lemma 1.75. Let W = {Wi}i∈N be an object of laxPerf bR such that Wi ≃ 0 for i ≥ j
(for example, W = hj(j) from the previous proof). Then there is a natural equivalence of
spectra

maplaxPerf bR
(F (V )(j),W )

≃−→ maplaxPerf bR
(V,W )

Proof. Let V j be the lax vector bundle

V j := · · · → Vj+1 → Vj → Vj ⊗Rj Rj−1 → · · · → Vj ⊗Rj R1

and consider the cofiber sequence

V j → V → F (V )(j)

The statement is then equivalent to the vanishing of the spectrum maplaxPerf bR
(V j ,W ).

As in Lemma 1.40, this mapping spectrum is given by the limit of the following diagram16

0 mapRj−1
(Vj ⊗Rj Rj−1,Wj−1) · · · mapR1

(Vj ⊗Rj R1,W
(1))

mapRj
(Vj ,Wj−1) · · · mapR2

(Vj ⊗Rj R2,W
(1))

≃ ≃ ≃

which is seen to be zero since the diagonal arrows in the direction indicated in the diagram
are equivalences.

Remark 1.76. It is now possible to show that the exact and colimit-preserving functor

G : Ind(Cof bR)→ Ind(laxPerf bR)

sends an h ∈ Cof 0R to lim←−j∈Nop h(j). This amounts to note that there are equivalences

map(−, lim←−
j

h(j)) = lim←−
j

map(F(−), ij∗i∗jh)

= map(F(−), lim←−
j

ij∗i
∗
jh)

= map(F(−), h)

where the first equivalence follows from Lemma Lemma 1.74 and the last one from
Remark 1.69. This characterization of the functor G implies that

T −→ id −→ GF (24)

is a fiber sequence of colimit-preserving endofunctors of Ind(laxPerf bR).

16a priori only the mapping spaces are given by such diagram, but passing from the mapping space
to the mapping spectrum commutes with limits, since the mapping spectrum is the unique such that
composed with Ω∞ gives the mapping space.
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Proof of Proposition 1.72. The explicit description of the functor G in Remark 1.76 gives
that the composition R ◦ G is zero. By passing to left adjoints, F ◦ L is also zero.
If X ∈ Ind(laxPerf bR) is such that F(X) ≃ 0, then (24) gives that T (X) → X is an
equivalence: that is, X is nuclear. As F ◦ L = 0, every object in the essential image of
L : NucR → Ind(laxPerf bR) is nuclear.

2 Localizing invariants and infinite products

This section is about localizing invariants applied to infinite products of additive ∞-
categories. Precisely, we show that K-theory and topological Hochschild homology com-
mute with small products of additive ∞-categories (Proposition 2.10, Proposition 2.15).
Versions of this question have already been studied and answered. Carlsson showed
that K-theory commutes with products of exact 1-categories with a cylinder functor,
see [Car95]. And Kasprowski and Winges showed in [KW20], following a characteriza-
tion of Grayson ([Gra12]) that K-theory commutes with infinite products of additive
1-categories. In the direction of considering∞-categories, Kasprowski and Winges proved
that non-connective K-theory commutes with infinite products of stable ∞-categories,
see [KW19]. The results on this section rely on the fact, that K-theory commutes with
products of stable ∞-categories. The idea is to reduce questions about infinite products
of additive ∞-categories to questions about infinite products of stable ∞-categories, to
then apply their result.

This section is organized as follows. 2.1 is about stable envelopes of additive categories.
The stable envelope of an additive category is a canonical way of passing from an additive
category to a stable category. Precisely, the stable envelope is the left adjoint of the
forgetful functor from stable categories to additive categories. As we want to reduce
questions about additive categories to questions about stable categories, the study of the
stable envelope functor will be crucial. The language of 2.1 is then used in 2.2 to prove
the following version of commutation of K-theory with infinite products

Proposition (Proposition 2.10). Let {Ai}i∈I be a collection of additive ∞-categories
indexed by a set I. Then the canonical map

K≥0(
∏
i

Ai)→
∏
i

K≥0(Ai)

is an equivalence.

As mentioned, variants of this result already exist when the Ai’s are (pre)stable, and the
previous proposition builds from them. Section 2.4 then builds from the previous result
to show analogous results for topological Hochschild homology and topological cyclic
homology. Precisely, the main result in Section 2.4 is the following.

Proposition (Proposition 2.15). Let {Ai}i∈I be a collection of additive ∞-categories
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indexed by a set I. Then the canonical map

THH(Stab(
∏
i∈I
Ai))→

∏
i∈I

THH(Stab(Ai))

is an equivalence. Here Stab(−) stands for the stable envelope functor, from additive to
stable categories, mentioned on the first lines of this introduction.

2.1 Stable envelopes of additive ∞-categories

Let Ex∞ denote the∞-category of small exact∞-categories and exact functors as defined
in [Bar13, Definition 1.3], and let Catst∞ ⊂ Ex∞ denote the full subcategory spanned by
those ∞-categories which are stable. This inclusion admits a left adjoint

Stab(−) : Ex∞ → Catst∞,

see [Kle20], which will be referred to as the stable envelope functor. For an exact ∞-
category E , the unit of the previous adjunction E → Stab(E) is a nice map to a stable
∞-category: it is fully faithful, it preserves and reflects exact sequences, and it is closed
under extensions.

When E is an additive ∞-category endowed with the split exact structure, the stable
envelope Stab(E) is given by the Spanier–Whitehead construction

SW(PΣ,f (E)) := colim
(
PΣ,f (E)

Σ→ PΣ,f (E)
Σ→ · · ·

)
,

where the colimit is taken in Cat∞ and PΣ,f (E) is the smallest full subcategory of
Fun×(Eop,An), the category of finite-product-preserving functors from Eop to An, con-
taining E and closed under finite colimits. In general, the stable envelope of E is given by
looking at the exact sequences x→ y → z in E and inverting y/x→ z inside SW(PΣ,f (E)).
Alternatively, inverting the morphisms y/x→ z in PΣ,f (E) gives a prestable ∞-category,
which will be denoted Stab(E)≥0. As suggested by the notation, stabilizing Stab(E)≥0

also gives a stable envelope for E . More precisely, the canonical map

SW(Stab(E)≥0)→ Stab(E) (25)

is an equivalence for every exact ∞-category E , see [Kle20, 3.7].

Remark 2.1. Let A be an additive ∞-category. The category PΣ,f (A) defined in the
previous paragraph comes with a filtration by exact ∞-categories

A[0,0] ⊂ A[0,1] ⊂ · · · ⊂ A[0,n] ⊂ · · · ⊂ PΣ,f

defined recursively as follows. The subcategory A[0,0] is given by the essential image of
the Yoneda embedding A → PΣ,f (A). Then, inductively, for each n ≥ 0 the ∞-category
A[0,n] ⊂ PΣ,f (A) is given by the full subcategory spanned by those objects X ∈ PΣ,f (A)
that fit in a cofiber sequence

Xn−1 → X → ΣnY
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where Xn−1 ∈ A[0,n−1] and Y ∈ A[0,0]. The category A[0,n] is then regarded as an exact
∞-category by declaring a sequence exact if it is taken to an exact sequence via the
canonical inclusion A[0,n] ⊂ Stab(A). More generally, for any finite interval [a, b] ⊂ Z we
consider A[a,b] := ΣaA[0,b−a] ⊂ Stab(A). These subcategories are such that AI ⊂ AJ if
I ⊂ J , and

colimI⊂ZAI = Stab(A),

where the colimit runs over the finite intervals, ordered by inclusion. Note that the
suspension functor Σ: Stab(A)→ Stab(A) induces exact functors A[a,b] → A[a,b+1], which
we will also denote by Σ. More generally:

Lemma 2.2. Let F : K → Stab(A) be a map from a finite simplicial set of dimension
d ∈ N. Let n,m ∈ N be natural numbers such that F (k) ∈ A[n,m] for every k ∈ K. Then
lim←−F ∈ A[n−d,m].

Lemma 2.3. Let D be a stable ∞-category and let A ⊂ D be a full additive subcategory.
Suppose that

1. For every x, y ∈ A the mapping spectrum MapD(x, y) is connective.

2. The smallest stable subcategory of D containing A is D itself.

Then the inclusion A ⊂ D exhibits D as the stable envelope of the split-exact ∞-category
A.

Proof. The first condition on the statement ensures that the inclusion A ⊂ D is an exact
functor of exact ∞-categories. The universal property of the stable envelope then gives
an exact functor α : Stab(A)→ D between stable ∞-categories. The rest of this proof
shows that this functor is fully faithful and essentially surjective. Let X ∈ A and let SX

denote the collection of objects of Stab(A) for which the transformation

β−,X : MapStab(A)(−, X)→ MapD(α(−), α(X))

evaluates to an equivalence. As A maps fully faithfully to both Stab(A) and D, βC,X

induces an equivalence on connective covers for every C ∈ A. Now the first condition on
the statement (and a similar condition for the stable envelope of an additive ∞-category)
imply that βC,X is an equivalence of spectra for every C ∈ A. Then C ⊂ SX , SX is
stable and the inclusion SX ⊂ Stab(A) is exact, which forces SX = Stab(A). A similar
argument letting X vary gives that α : Stab(A)→ D is fully faithful on mapping spectra.
Fully faithfulness of α on mapping spectra implies that its essential image is stable. As
the essential image of α contains A, the second condition ensures that α is essentially
surjective, hence an equivalence.

Having discussed some basic properties of stable envelopes of additive ∞-categories,
we now turn to their K-theory. We let

K≥0 : Ex∞ → Sp≥0
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denote the (connective) K-theory functor for exact ∞-categories given by the ∞-
categoricalQ-construction, see [Bar13]. This is a generalization of Quillen’s Q-construction
to the setting of exact ∞-categories. We let K denote non-connective K-theory of stable
∞-categories. Viewing a stable ∞-category C as an exact category, there is an induced
map K≥0(C) → K(C) which exhibits the source as the connective cover of the target.
The starting point is the following form of Quillen’s resolution theorem.

Lemma 2.4. [Qui73, Theorem 3]. Let A be an additive ∞-category and let I ⊂ J be
two finite non-empty subintervals of Z. Then the inclusion AI ⊂ AJ from Remark 2.1
induces an equivalence

K≥0(AI)
∼−→ K≥0(AJ).

Theorem 2.5. Let A be an additive ∞-category. Then the induced map

K≥0(A)
∼−→ K≥0(Stab(A))

is an equivalence.

Proof. This follows from the previous theorem combined with the rewriting

colimI⊂ZAI = Stab(A)

where I runs over finite non-empty intervals, and from the fact that the functor K≥0

commutes with filtered colimits of exact ∞-categories.

2.2 Localizing invariants of products of additive ∞-categories

Let I be a small set and let {Ai}i∈I be a collection of small additive∞-categories indexed
by I. Below we show that the map

K≥0(
∏
i∈I
Ai) −→

∏
i∈I

K≥0(Ai)

is an equivalence of connective spectra, see Proposition 2.11 and Corollary 2.11.1. As
mentioned, versions of this question have already been studied and answered. In [KW19]
it was proved that non-connective K-theory commutes with infinite products of stable
∞-categories:

Theorem 2.6. [KW19, Theorem 1.3] The universal additive invariant Uadd : Catst∞ →
Madd commutes with small products. Moreover, for a family of stable ∞-categories
{Ci}i∈I indexed by a small set I the canonical map of non-connective K-theory spectra

K(
∏
i∈I
Ci)→

∏
i∈I

K(Ci)

is an equivalence.
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This was then used in [BKW19, 2.39] to prove that non-connective K-theory com-
mutes with infinite products of prestable ∞-categories, where the argument goes by
reducing to the case of stable ∞-categories. Here we deduce the case of additive ∞-
categories from the case of prestable ∞-categories. Concretely, we will need the following
version of [BKW19, 2.39]:

Proposition 2.7. Let A be an additive ∞-category. Let A[0,∞) be obtained from A as
in Remark 2.1 and let K denote non-connective K-theory. Then the map

K(Stab(
∏
i∈I
A[0,∞)))→

∏
i∈I

K(Stab(A[0,∞)))

is an equivalence17. Moreover, the map of universal additive invariants

Uadd(Stab(
∏
i∈I
A[0,∞)))→

∏
i∈I
Uadd(Stab(A[0,∞)))

is also an equivalence.

Remark 2.8. Note that the two equivalences in Proposition 2.7 do not follow from
each other, this is because non-connective K-theory is not corepresented as an additive
invariant. For example, for the first to follow from the second it would suffice to know
that the canonical functor Madd → Mloc from additive motives to localizing motives
commutes with products. This is true, but out of the scope of this thesis.

Proof. The statement is the claim that the following composite is an equivalence

K(Stab(
∏
i∈I
A[0,∞)))→ K(

∏
i∈I

Stab(A[0,∞)))
∼−→

∏
i∈I

K(Stab(A[0,∞)))

where the second map is the equivalence given by Theorem 2.6. It is then enough to
show that the first map is an equivalence. Rewriting Stab(A[0,∞)) as colimk∈NA[−k,∞),
it is enough to prove that the following composite∏

i∈I
A[0,∞) −→

∏
i∈I

colimk∈NA[−k,∞)
∼−→ colimf∈NI

∏
i∈I
A[−f(i),∞), (26)

in which the second map is again an equivalence, induces an equivalence upon applying
the functor F := K(Stab(−)). Note that the left hand side of (26) is the value of the
diagram of the colimit on the right hand side of (26) for f = 0. It will then suffice to
show that F sends all the transition maps in the colimit of the right hand side of (26) to
equivalences. As the poset NI is filtered and F commutes with filtered colimits of exact
∞-categories, it will suffice to show that for an f ∈ NI taking values in even numbers
the map F (0 ≤ f)) is an equivalence (as even functions are cofinal). This last claim is a

17the arguments on the next lines work for a general prestable ∞-category C in the place of A[0,∞),
but we stick to A[0,∞) as this is what shows up when analyzing the additive case.
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particular case of Lemma 2.9 below with g : i 7→ g(i) =∞. Moreover, by how the lemma
is phrased the same arguments show that

Uadd(Stab(
∏
i∈I
A[0,∞)))→ Uadd(

∏
i∈I

Stab(A[0,∞))) (27)

is an equivalence. This combined with Theorem 2.6 give the last claim on the statement.

Lemma 2.9. Let I be a set and let (Ai)i∈I be additive ∞-categories. Let f : I → 2N be a
function taking values on even numbers and let g : I → N ∪ {∞} be such that f(i) < g(i)
for each i ∈ I. Then the map

Stab
(∏
i∈I
Ai

) Stab((Σf(i))i)−−−−−−−−→ Stab
(∏
i∈I
Ai,[−f(i),g(i))

)
agrees with the canonical inclusion in degree zero after applying Uadd. The same holds
for the map Stab((Σ−f(i))i).

Proof. This is [BKW19, 2.39], but in this generality. We repeat the argument here for
completeness. Consider the following two sequences of exact functors from the additive
∞-category Ai to the exact ∞-category Ai,[−f(i),g(i))⊕

0≤k<f(i)

Σk id⊕0⊕id···⊕0−−−−−−−−→
⊕

0≤k<f(i)

Σk −→
⊕

0<k≤f(i)

Σk

Σ0 ⊕
⊕

0 <k<f(i)

Σk 0⊕id⊕···⊕0−−−−−−−→ Σf(i) ⊕
⊕

0<k<f(i)

Σk −→
⊕

0<k≤f(i)

Σk

which are well defined and point-wise exact, hence exact after applying Stab(
∏

i∈I(−))
everywhere. Noting that, as the sequences only differ on the middle term, additivity gives

Stab(
∏
i∈I

Σ0) ∼= Stab(
∏
i∈I

Σf(i)).

What is proved here is the next two results. The first result, Proposition 2.10, relies
only on Lemma 2.9, and it doesn’t need any commutation of K-theory with infinite
products, but it also doesn’t imply it. The second result, Proposition 2.11, shows
commutation of K-theory with infinite products of additive ∞-categories, and it relies
on Proposition 2.7.

Proposition 2.10. Let I be a small set and let (Ai)i∈I be a family of additive ∞-
categories. Then the canonical map

Uloc(Stab(
∏
i∈I
Ai)) −→ Uloc(

∏
i∈I

Stab(Ai))

is an equivalence.
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Proof. Recall that Stab(A) = colimn∈NA[−n,n]. This lets us write the infinite product
appearing on the right hand side of the statement as∏

i∈I
Stab(Ai) ∼= colimf∈NI

∏
i∈I
Ai,[−f(i),f(i)]

where the colimit runs over the poset of functions f : I → N, the order relation is given
by f ≤ g iff f(i) ≤ g(i) for all i ∈ I, and the maps in the colimit are the canonical
inclusions. Applying Stab(−) on both sides of the last equation gives∏

i∈I
Stab(Ai) ∼= colimf∈NIStab

(∏
i∈I
Ai,[−f(i),f(i)]

)
(28)

and under this equivalences the map on the statement is induced by the structure map
of the colimit for the function 0 ∈ NI . As the poset NI filtered, it suffices to prove that
for any f ∈ NI the map induced by 0 ≤ f is an equivalence after applying Uloc. Consider
the exact functors Σf(i) : Ai −→ Ai,[−f(i),f(i)] given by including each Ai in degree f(i).
These assemble into a functor

Stab
(∏
i∈I
Ai

) Stab((Σf(i))i)−−−−−−−−→ Stab
(∏
i∈I
Ai,[−f(i),f(i)]

)
which by Lemma 2.918 coincides with the map induced by 0 ≤ f after applying the
functor Uloc (this is immediate if f is bounded, by additivity). Then, after re-indexing, it
suffices to show that the functor

Stab
(∏
i∈I
Ai

) Stab((Σf(i))i)−−−−−−−−→ Stab
(∏
i∈I
Ai,[0,f(i)]

)
(29)

is sent to an equivalence by Uloc. As this functor is fully faithful, it suffices to show that
its cofiber is sent to zero by Uloc. Consider the two cofiber sequences in Catst∞

Stab
(∏
i∈I
Ai

) Stab((Σf(i))i)−−−−−−−−→ Stab
(∏
i∈I
Ai,[0,f(i)]

)
−→ C (30)

Stab
(∏
i∈I
Ai,[f(i),∞)

) can−−→ Stab
(∏
i∈I
Ai,[0,∞)

)
−→ D

where the functor on the upper left is Stab((Σf(i))i) from (29), and the one on the lower
left is the canonical inclusion. As by definition these sequences become Verdier sequences
after idempotent completion, the functor on the upper left is sent to an equivalence by
Uloc if and only if C is sent to zero. The rest of the proof shows that this is the case by
showing that C is equivalent to D and that Uloc(D) ∼= 0. The fact that Uloc(D) ∼= 0 can be
proved in two ways: one is to apply the second eqation in Proposition 2.7 to the source
and target of the map can of which D is the cofiber, this gives the claim immediately,

18the lemma works for even f , here we can suppose that f is even by cofinality.
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but it used the fact that Uadd commutes with infinite products. The other way to see
that Uloc(D) ∼= 0 is by applying Lemma 2.9 to both maps from Stab(

∏
iAi) to the source

and target of can to conclude that both maps become equivalences after applying Uadd,
so Uadd(can) is an equivalence too. This doesn’t use the fact that Uadd commutes with
infinite products. Either way, this shows that Uloc(D) = 0. Note that there is a induced
exact functor F : C → D. As it remains to show that Uloc(C) is zero, it is enough to
show that the functor F : C → D is an equivalence after idempotent completion. We
start by showing essential surjectivity. Any object of D is represented by an object
x ∈ Stab

(∏
i∈I Ai,[0,∞)

)
. Writing Stab

(∏
i∈I Ai,[0,∞)

)
= colimk∈N

∏
i∈I Ai,[−k,∞), there

exists a k ∈ N such that x ∈
∏

i∈I Ai,[−k,∞). Let x = (xi)i∈I , where each xi ∈ Ai,[−k,∞),
and let

xi,≤f(i) → xi → xi,>f(i)

be exact sequences in Stab(Ai) where xi,≤f(i) ∈ Ai,[−k,f(i)] and xi,>f(i) ∈ Ai,(f(i),∞), as
in the previous proof. Then x = (xi,≤f(i))i∈I in D and it is easy to see that (xi,≤f(i))i∈I
is in the essential image of C, showing that F is essentially surjective. It remains to
show that F is fully faithful. Let x, y ∈ C be represented by objects (xi)i, (yi)i ∈
Stab

(∏
i∈I Ai,[0,f(i)]

)
= colimk∈N

∏
i∈I Ai,[−k,f(i)+k], then mapping spectra in C can be

described as

MapC(x, y) = colim
(zi)∈

(
(xi)/colimk

∏
i Ai,[f(i)−k,f(i)+k]

)op ∏
i∈I

MapStab(Ai)(fib(xi → zi), yi).

(31)
Similarly, mapping spectra in D can be described as

MapD(F (x), F (y)) = colim
(zi)∈

(
(xi)/colimk

∏
i Ai,[f(i)−k,∞)

)op ∏
i∈I

MapStab(Ai)(fib(xi → zi), yi).

(32)
and we want these mapping spectra to be isomorphic. To show this, it suffices to consider
the case where x is represented by an object of

∏
i∈I Ai,[0,f(i)], as the general case follows

by shifting x. We apply Joyal’s version of Quillen’s Theorem A [Lur09, 4.1.3.1]: let
(zi) ∈

(
(xi)/colimk

∏
iAi,[f(i)−k,∞)

)op
and let

B :=
(
(xi)/colimk

∏
i

Ai,[f(i)−k,f(i)+k]

)
\(zi).

We want B to be weakly contractible. Let

zi,≤f(i) → zi → zi,>f(i)

be exact sequences in Stab(Ai) for each i ∈ I, where zi,≤f(i) ∈ Ai,[f(i)−k′,f(i)] and
zi,>f(i) ∈ Ai,(f(i),∞), as before. As xi ∈ E[0,f(i)], the map (xi)i∈I → (zi)i∈I factors through
(zi,≤f(i))i∈I . As (zi,≤f(i))i∈I ∈

∏
iAi,[f(i)−k′,f(i)+k′], this shows that B is non empty. Let

g : K → B be a map from a finite simplicial set, we want to show that g has a cocone
point. The map g determines a map

g̃ :
(
K▷

)◁ →∏
i∈I

Stab(Ai)
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that sends the left cone point to (xi)→ (zi) and then the right cone point to (zi), and sends

K to colimk
∏

iAi,[f(i)−k,f(i)+k]. The composition K
g→ B →

(
(xi)/

∏
i∈I Stab(Ai)

)
\(zi)

has a limit whose underlying object (wi) ∈
∏

i∈I Stab(Ai) is given by the limit of the
functor g̃|K▷ . As K is a finite simplicial set, there exists a k ∈ N such that g̃|K▷ lands in∏

iAi,[f(i)−k,∞) (the ∞ is because of the cone point (zi)) and now Lemma 2.2 gives that
(wi) ∈

∏
iAi,[f(i)−k′,∞) for some k′ ∈ N. Note that (wi) comes with a map (xi)→ (wi).

Same as when arguing that B is non empty, the map (xi)→ (wi) map factors through
an element (wi,≤f(i)) which lies in

∏
iAi,[f(i)−k′,f(i)+k′], and this gives a left cone for the

original map g. This shows that B is cofiltered, hence weakly contractible.

Proposition 2.11. Let I be a small set and let (Ai)i∈I be a family of additive ∞-
categories. Then the canonical map of non-connective K-theory spectra

K(Stab(
∏
i∈I
Ai)) −→

∏
i∈I

K(Stab(Ai))

is an equivalence.

Proof. This is not a corollary of Proposition 2.10, because even if non-connective K-theory
becomes representable inMloc the previous result doesn’t show that Uloc(Stab(

∏
i∈I Ai))

is an infinite product inMloc (it actually is an infinite product, but this won’t be showed
here). The proof of the current statement goes instead by repeating the previous proof.
Using the same notations as in the previous proof, it suffices to show that K(C) = 0.
Using that C ∼= D, it suffices to show that K(D) = 0. Equivalently, it suffices to show
that K(can) is an equivalence, which follows from Proposition 2.7.

Corollary 2.11.1. Let I be a small set and let {Ai}i∈I be a collection of small additive
∞-categories indexed by the set I. Then the map

K≥0(
∏
i∈I
Ai) −→

∏
i∈I

K≥0(Ai)

is an equivalence of spectra.

Proof. Follows from Proposition 2.11 and from Theorem 2.5.

2.3 Additive invariants of split lax-limits

This section is about two Eilenberg swindle lemmas for additive invariants of certain lax
inverse limits of small exact ∞-categories. These are Lemma 2.12 and Lemma 2.13. The
latter implies the former, but the former has a slightly simpler proof. I learnt the trick in
Lemma 2.12 in a talk by Efimov, and the trick in Lemma 2.13 is just an elaboration. This
section ends with two corollaries of Lemma 2.13, which calculate the additive motives of
the categories laxPerf bR and Cof b0 from Definition 1.37 and Definition 1.67, respectively.
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Lemma 2.12. Let {Ei}i∈N be a collection of small exact ∞-categories together with exact
functors Ei+1 → Ei. Then the canonical projection induces an equivalence

Uadd(Stab(laxlimi∈NEi))
≃−→ Uadd(Stab(

∏
i∈N
Ei)).

Proof. Let G :
∏

i Ei → laxlimiEi be the functor that sends an object (xi ∈ Ei)i to itself
with vanishing transition maps in the lax-limit. Consider the functor F : laxlimiEi →

∏
i Ei

in the other direction given by sending an object of the lax limit to its underlying object in
the product. Then the composite F ◦G is the identity. We now show that Uadd(Stab(G◦F ))
is the identity. Let

⊕̃ : laxlimiEi → laxlimiEi
denote the functor given by sending

(· · ·xn+1 → xn → · · · → x0) 7→ (· · · (xn+1)
n+2 → (xn)

n+1 → · · · → x0),

where the map (xn+1)
n+2 → (xn)

n+1 is given by the original structure map in the first
n+ 1 entries and by the zero map in the last entry. Let η : ⊕̃ → ⊕̃ denote the natural
transformation given on the n-th entry by the map denoted ηn : (xn)

n+1 → (xn)
n+1 that

sends the first n copies to the last n copies, and the last copy to zero. Then it is easy to
check that η indeed defines a natural transformation, and that there is an exact sequence
of functors

Stab(⊕̃) Stab(η)−→ Stab(⊕̃) −→ Id⊕ Σ ◦ Stab(GF )

from which id = Stab(GF ) in π0End(Uadd(Stab(laxlimi∈NEi))).

Lemma 2.13. Let {Ei}i∈N be a collection of small exact ∞-categories together with
exact functors fi : Ei → Ei−1 admitting fully faithful and exact right (or left) adjoints
ri : Ei−1 → Ei. Let Ai = ker(fi) with its induced exact structure. Suppose that the units
idEi → ri ◦ fi are point-wise egressive (that is, epimorphisms for the exact structure).
Then there exists a canonical exact functor of exact ∞-categories∏

i∈N
Ai → lim←−

i∈N
Ei

where the exact structures are the canonical ones, which induces an equivalence after
applying Uadd(Stab(−)). If each Ai is additive then there is an equivalence∏

i∈N
K(Stab(Ai))

∼−→ K(Stab(lim←−
i∈N
Ei))

where K denotes non-connective K-theory.

Proof. We start by constructing the map on the statement. Let j < i. The adjoints
ri, ri+1, · · · , rj compose to an exact functor rj,i : Ej → Ei which is fully faithful and right
adjoint to a similar composition of the fi’s. These functors assemble into fully faithful
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functors rj,∞ : Ej → lim←−i∈N Ei. This lets us think in terms of full exact subcategories

Aj ⊂ Ej
rj,k
↪→ Ek

rk,∞
↪→ lim←−i∈N Ei whenever j ≤ k. Assembling the functors Aj → Ej

rj,i−→ Ei
for each j ≤ i gives a functor

∏
j≤iAj → Ei which is natural in i ∈ N. Taking the limit

over i ∈ N gives an exact functor

G :
∏
i∈N
Ai → lim←−

i∈N
Ei.

as the one appearing in the statement. To give a functor in the other direction it suffices
to give for each j ∈ N an exact functor from lim←−i∈N Ei to Stab(lim←−i

Ei) that lands in Ai,

viewed as a full subcategory. Let x = (fi+1(xi+1) ∼= xi)i ∈ lim←−i∈N Ei be an object, where
xi ∈ Ei, and consider the functor given on objects by

x 7→ fib
(
rj,∞(xj)→ rj−1,∞(xj−1)

) ∼= fib
(
rj,∞(xj)→ rj,∞rj−1,jfj(xj)

)
∈ Stab(lim←−

i

Ei)

where the fiber is taken stably. This description on objects clearly promotes to a functor,
and the hypotheses imply that this functor lands in Aj . As j ∈ N varies these functors
assemble into an exact functor F : lim←−i

Ei →
∏

j Aj which is a left inverse to G. Define
x>j := fib(x → rj,∞(xj)) (and let x>−1 := x) and note that there are canonical maps
x>j → x>j−1 induced by the maps rj,∞(xj)→ rj−1,∞(xj−1), and that

fib
(
rj,∞(xj)→ rj−1,∞(xj−1)

) ∼= cofib
(
x>j → x>j−1

)
in Stab(lim←−i

Ei). Now note that the product
∏

j≥i x>j exists in lim←−i
Ei and there are two

exact sequences∏
j≥0

x>j →
∏
j≥−1

x>j → GF (x) and
∏
j≥0

x>j →
∏
j≥−1

x>j → x

in lim←−i
Ei. Here the first map is induced by the maps x>j → x>j−1 and the third one

by the canonical inclusion. Additivity now gives that Id and GF are equivalent after
applying Uadd(Stab(−)). The last assertion on the statement now follows from the first
part and Proposition 2.11.

Remark 2.14. Let laxPerfR denote the lax limit of the functor n ∈ Nop 7→ PerfRn . The
previous Lemma 2.13 combined with Proposition 2.10 give that the canonical map

Uloc(laxPerfR)→ Uloc(
∏
n∈N

PerfRn)

is an equivalence. This turns out to hold even after restricting to bounded perfect
complexes, see Lemma 3.15 below.
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2.4 Cyclic and Hochschild homology of products

As said in the introduction, this section is here to prove the following result.

Proposition 2.15. Let {Ai}i∈I be a family of small additive ∞-categories. Then the
canonical map

THH(Stab(
∏
I

Ai)) −→
∏
I

THH(Stab(Ai))

is an isomorphism of spectra.

The proof of Proposition 2.15 requires some notation:

Notation 2.16. Let C be a small stable ∞-category, let A ⊂ C be a full subcategory
and let F : C → C be an exact endofunctor. Let (C,A)F denote the category of pairs
(X, η) where X ∈ A and η : X → F (X) is a morphism in C. More formally, the category
(C,A)F sits in the pullback

(C,A)F Fun(∆1, C)

A C × C.

(s,t)

(incl,F )

where incl : A → C denotes the canonical inclusion. When A = C, we write CF := (C, C)F .

The additive ∞-category (C,A)F will be considered as an exact ∞-category by
calling a sequence exact if it is carried to a fiber sequence under the canonical functor
(C,A)F → CF , where the latter category is stable.

Lemma 2.17. Let A be a small additive ∞-category and let n ≥ 1. Then

1. Every exact sequence in (Stab(A),A)Σn
splits.

2. The canonical inclusion (Stab(A),A)Σn → Stab(A)Σn
exhibits Stab(A)Σn

as the
stable envelope of the additive ∞-category (Stab(A),A)Σn

.

Proof. By the definition of the exact structure of (Stab(A),A)Σn
, the first point amounts

to show that the mapping spectrum between two objects X ′, Y ′ ∈ (Stab(A),A)Σn

(calculated in the stable ∞-category Stab(A)Σn
) is connective. Let X and Y denote the

underlying objects of A for X ′ and Y ′, so that X ′ is given by X
0−→ ΣnX (here the map

has to be the zero map as n ≥ 1). The same holds for Y ′ and Y . Then the mapping
spectrum mapStab(A)Σn (X ′, Y ′) fits in the pullback

mapStab(A)Σn (X ′, Y ′) mapFun(∆1,Stab(A))(X
′, Y ′)

mapStab(A)(X,Y ) mapStab(A)(X,Y )×mapStab(A)(Σ
nX,ΣnY )
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As the spectrum in the lower left is connective, it will suffice to show that the fiber of
the left vertical arrow is connective. As the diagram is a pullback, it suffices to show
that the fiber of the right vertical arrow is connective. Writing the upper right corner as

mapFun(∆1,Stab(A))(X
′, Y ′) = mapStab(A)(X,Y )×mapStab(A)(X,ΣnY )mapStab(A)(Σ

nX,ΣnY )

we see that the fibers of the vertical arrows on the previous diagram are given by the
spectrum Σ−1mapStab(A)(X,ΣnY ), which is connective because n ≥ 1. This shows the
first point on the statement. For the second point, it suffices to show that both conditions
in Lemma 2.3 are satisfied. The first condition is precisely the statement on the previous
lines about connectivity of mapping spectra. The second condition says that the smallest
stable subcategory of Stab(A)Σn

containing (Stab(A),A)Σn
is the whole of Stab(A)Σn

.
Let (Z → ΣnZ) ∈ Stab(A)Σn

. Up to a shift, the object Z is in some A[0,m] ⊂ Stab(A)
(see Remark 2.1). If m = 0 then the claim is clear. In general, by induction, Z fits in a
fiber sequence

Z0
f−→ Z

g−→ Z1

where Z0 ∈ A[0,m−1] and Z1 ∈ A[m,m]. The composite Z0
f−→ Z → ΣnZ

g−→ ΣnZ1 vanishes
because the mapping spectrum mapStab(A)(Z0, Z1) is connective and n ≥ 0. This gives an
induced morphism Z0 → ΣnZ0 in Stab(A) together with a morphism from (Z0 → ΣnZ0)
to (Z → ΣnZ) in Stab(A)Σn

. This induces a map (Z1 → ΣnZ1) fitting in a fiber sequence

(Z0 → ΣnZ0)→ (Z → ΣnZ)→ (Z1 → ΣnZ1)

of objects of Stab(A)Σn
. The object (Z1 → ΣnZ1) is a shift of an object of (Stab(A),A)Σn

,
so it lies in the smallest stable subcategory generated by (Stab(A),A)Σn

, and (Z0 → ΣnZ0)
lies in the smallest stable subcategory generated by (Stab(A),A)Σn

by induction on
m ≥ 0. Then the same must hold for (Z → ΣnZ), which was arbitrary.

Corollary 2.17.1. Let A be a small additive ∞-category and let n ≥ 1. Then the
canonical functor (Stab(A),A)Σn → Stab(A)Σn

induces an equivalence

K≥0((Stab(A),A)Σ
n
)

≃−→ K≥0(Stab(A)Σ
n
).

Proof. This follows from putting together Theorem 2.5 and Lemma 2.17

Remark 2.18. Suppose that A is the category of finitely generated projective modules
over some E1-ring B. Then Stab(A) = PerfB, and the proof of Lemma 2.17 shows

that (PerfB)
Σn

is generated by the single compact generator B
0−→ ΣnB (as n ≥ 1).

This implies, using [Lura, 7.1.2.1], that (PerfB)
Σn

can be identified with the category

of perfect complexes over the endomorphism ring of the compact generator B
0−→ ΣnB.

This endomorphism can be computed as in the proof of Lemma 2.17: it is given by the
split square-zero extension of B by Σn−1B. In a formula, there is an equivalence

(PerfB)
Σn ∼= PerfB⊕Σn−1B.
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Under Notation 2.16, for the next result we letKred(CF ) := fib(K≥0(CF )→ K≥0(C0)),
where the map is induced by the natural transformation of functors F → 0.

Theorem 2.19. Let A be a small additive ∞-category. There is a functorial equivalence
of spectra

colimn∈NΩ
nKred(Stab(A)Σ

n
)

∼−→ THH(Stab(A))

where the notation is as in 2.16. Moreover, the n-th transition map in the previous
colimit is (n+ 1)-connective.

Proof. If A is of the form Proj(B) for a connective E1-ring B, then Perf(B)Σ
n

=
PerfB⊕Σn−1B by Remark 2.18. Then the equivalence on the statement is [DM94] and
the connectivity bound on the statement is [Ram, 3.2]. The general case reduces to
this one. Precisely, let A be presented as a filtered colimit of additive ∞-categories of
the form Proj(B) for B a connective E1-ring. Applying the colimit preserving functor
Stab(−) to this gives a presentation of Stab(A) as a filtered colimit of categories of the
form ModB, for B a connective E1-ring. The construction of Notation 2.16 sending a
stable ∞-category C to CΣn

commutes with filtered colmits, and so does THH, hence
the statement reduces to the case A = Proj(B).

Proof of Proposition 2.15. Using Theorem 2.19, it is enough to show that the canonical
map

K≥0(Stab(
∏
i∈I
Ai)

Σn
) −→

∏
i∈I

K≥0(Stab(Ai)
Σn

) (33)

is an equivalence, as then it is possible to pass to the colimit over n and pull out
the product on the right hand side out of the colimit by the connectivity bound from
Theorem 2.19. The rest of the proof shows that (33) is an equivalence. Lemma 2.17
together with Theorem 2.5 give an equivalence

K≥0((Stab(
∏
i∈I
Ai),

∏
i∈I
Ai)

Σn
)

∼−→ K≥0((Stab(
∏
i∈I
Ai))

Σn
) (34)

and the category on the source of this last equation can be rewritten as

(Stab(
∏
i∈I
Ai),

∏
i∈I
Ai)

Σn
=

∏
i∈I

(Stab(Ai),Ai)
Σn

. (35)

Note that this rewriting is compatible with exact structures: by Lemma 2.17 exact
structures on both sides are split when n ≥ 1. These facts then fit in a commutative
diagram:
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K≥0((Stab(
∏

i∈I Ai),
∏

i∈I Ai)
Σn

) K≥0((Stab(
∏

i∈I Ai))
Σn

)

K≥0(
∏

i∈I(Stab(Ai),Ai)
Σn

) K≥0(
∏

i∈I(Stab(Ai))
Σn

)

∏
i∈I K≥0((Stab(Ai),Ai)

Σn
)

∏
i∈I K≥0((Stab(Ai))

Σn
)

≃

≃

≃ ≃

≃

where the arrows indicated as equivalences are indeed equivalences: the upper horizontal
map is an equivalence by (34) prod, the vertical arrow in the upper left corner is
an equivalence by (35), the vertical arrow in the lower left is an equivalence because
K-theory of additive ∞-categories commutes with products of additive ∞-categories
(Corollary 2.11.1), the lower horizontal arrow is an equivalence by the same reason that
the upper horizontal is. Finally, the vertical arrow in the lower right is an equivalence
because K-theory commutes with products of stable ∞-categories (Theorem 2.6). This
shows that the composite of the two vertical arrows on the right is an equivalence, which
is what was left to show.

The next couple of results are condensed versions of the previous lines. Informally,
any localizing invariant has a condensed enhancement given by just applying Cond(−)
everywhere. Formally:

Definition 2.20. Let

THH cd : Cond(Mloc)
Cond(THH)−−−−−−−−→ Cond(Cyc(Sp)) ∼= Cyc(Cond(Sp))

be a condensed enhancement of THH, whereMloc denotes the category of localizing
motives as defined in [BGT13].

For T = TC, TC− or TP , there is a functor

T cd : Cyc(Cond(Sp))→ Cond(Sp)

given by the equivalence Cond(Cyc(Sp)) ∼= Cyc(Cond(Sp)) and the functor Cond(T ).

Definition 2.21. For C a condensed stable ∞-category, let

T cd(C) := T cd(THH cd(C)) ∈ Cond(Sp),

where the condensed category C is confused with its condensed motive.

Corollary 2.21.1. Let I be a set and let {Ai}i∈I be a collection of condensed additive
small ∞-categories. Then the canonical map

THH cd(Stab(
∏
i∈I
Ai)) −→

∏
i∈I

THH cd(Stab(Ai))

is an equivalence of condensed spectra. Moreover, if I = N and there are exact functors
Ai+1 → Ai, then the equivalence holds with

∏
i∈I Ai replaced by laxlimi∈NAi.
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Proof. The first equivalence follows from taking S-valued points, for S an extremally
disconnected set, and from everything commuting with finite products. The last claim
follows from Lemma 2.12.

Proposition 2.22. Let I be a set and let {Ai}i∈I be a collection of condensed additive
small ∞-categories. Let T : CycSp→ Sp denote one of TC, TC−, (−)hS1 or TP . Then
the canonical map

T cd(Stab(
∏
i∈I
Ai))

∼−→
∏
i∈I

T cd(Stab(Ai)).

is an equivalence. Moreover, if I = N and there are exact functors Ai+1 → Ai, then the
equivalence holds with

∏
i∈I Ai replaced by laxlimi∈NAi.

Proof. For T = TC or T = TC− the statement follows from observing that Corol-
lary 2.21.1 is an equivalence of cyclotomic condensed spectra, and then applying T on
both sides. For T = (−)hS1 the statement follows as in the previous case by noting
that (−)hS1 still commutes with products of (condensed) connective spectra. The case
T = TP now follows from the fiber sequence Σ(−)hS1 → TC− → TP . The last part
follows from Lemma 2.12.

3 K-theory and Hochschild homology of nuclear modules

Let R be an adic ring and let · · ·Rn+1 → Rn → · · · → R1 be a tower of E∞-rings under R
realizing its completion, as in Lemma 1.24. We say that a localizing invariant T satisfies
continuity for R if the canonical map

T (NucR)→ lim←−
n

T (ModRn)

is an equivalence. This section is about continuity of localizing invariants in the sense of
the previous lines. In this direction, Efimov proved the following:

Theorem 3.1 (Efimov). The canonical map of localizing motives

Uloc(ÑucR)
∼−→ lim←−

n

Uloc(ModRn)

is an equivalence, where ÑucR is a certain enlargement of the usual category of nuclear
modules over R (see Theorem 3.24).

We will show that ÑucR and NucR have the same localizing motive (Corollary 3.24.1),
which gives Efimov’s continuity of K-theory. Efimov’s results and the techniques of the
previous section can be combined to prove the following result.

Theorem (Corollary 3.26.3, Corollary 3.27.1). The map

THH(NucR)→ lim←−
n

THH(Rn)
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is an equivalence. Moreover, the natural inclusion ModR(∗) → NucR induces an equiva-
lence

THH(R(∗))∧I → THH(NucR)

of R(∗)-modules.

As a partial converse, we show that the continuity of THH (which uses the continuity
of K-theory) implies the continuity of TC, which in turn implies the continuity of K-
theory. More generally, we show the following, independent of Efimov’s results:

Proposition (Proposition 3.14). Let T1 → T2 be a map of localizing invariants. Suppose
that T2/T1 is nilinvariant and that T1 and T2 commute with products of additive categories.
Then T1 satisfies continuity if and only if T2 does.

Corollary 2 (Proposition 3.13). Suppose that THH satisfies continuity for R. Then
the same holds for K-theory.

This section is organized as follows. 3.1 is about trying to compute THH(NucR)
directly, without using the two theorems from this introduction. We do not prove
continuity of THH in 3.1, but we show that it is given by a certain relative tensor
product, similar to the case of the topological Hoschschild homology of an ordinary ring,
but here the tensor product is solid. Precisely, we show that

THH(NucR) = (R̃⊗R⊗■R R)(∗)

where R̃ ∈ ModR⊗■R(Solid) is a certain object which agrees with the module R ∈
ModR⊗■R(Solid) (with the diagonal action) modulo an ideal of definition (Corollary 3.11.1).

We believe that R̃ is just R. 3.2 is about deducing continuity of K-theory from continuity
of THH. In 3.3 we explain results of Efimov concerning the continuity of K-theory
and how they imply the continuty of Hochschild homology. 3.3 then ends by showing
that THH of nuclear modules over an adic ring R agrees with the I-completion of the
topological Hochschild homology of the underlying E∞-ring R(∗) (Corollary 3.27.1). The
section ends with Section 3.4, which is a sort of example of the results of this section. It
is showed that the previous permit a rephrasing of some results of [BMS18] in terms of
nuclear modules. This rephrasing makes it possible to pass to the generic fiber at the
level of categories without forgetting the topology: for example, given a perfectoid ring
R with its p-adic topology, there is an isomorphism of graded rings

TP∗(NucR[1/p]) ∼= B+
dR(R)[σ±1]

where σ lives in degree two, see Lemma 3.31.

3.1 Remarks about the Hochschild homology of nuclear modules

This subsection is about giving an expression for the topological Hochschild homology of
nuclear modules. We show that

THH(NucR) = M ⊗R⊗■R R (∗)
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whereM ∈ ModR⊗■R(Solid) is the module obtained by starting withR ∈ ModR⊗■R(Solid)
and considering the source of the counit at R of the adjunction whose left adjoint is the
map

ModR⊠R(Solid⊗ Solid)→ ModR⊗■R(Solid)

induced by the solid tensor product (Proposition 3.11). We show that M agrees with R
modulo an ideal of definition of R, which implies that the canonical map of R(∗)-modules

THH(R(∗))→ THH(NucR)

is an equivalence modulo the ideal I, see Corollary 3.11.1.

Notation 3.2. In this subsection R stands for an adic ring in the sense of Definition 1.21,
and NucR stands for Nuc(SolidR), where the Nuc(−) construction is the one from
Definition 1.2. Recall that an adic ring is always solid as a condensed spectrum.

Remark 3.3. For the duration of this subsection the category Solid will be treated as
presentable compactly generated by restricting the cardinality of the profinite sets giving
rise to compact objects. This does not change the category NucR, see Lemma 1.35.

Remark 3.4. The category NucR is rigid in the sense of [GR17, 1.9], and this implies
that the spectrum THH(NucR) is given by the image of R under the composite

R ∈ NucR
mr−−→ NucR ⊗NucR

m−→ NucR
(−)(∗)−−−−→ Sp

where the second functor is the multiplication map for NucR, the first is its right adjoint,
and the third functor is evaluation of a condensed object at a point. The tensor product
of NucR with itself can be understood as follows:

Lemma 3.5. The square

NucR ⊗NucR NucR ⊗ SolidR

SolidR ⊗NucR SolidR ⊗ SolidR

is a pullback square, and all functors are fully faithful. In particular, an object of
SolidR ⊗ SolidR lies in the subcategory NucR ⊗NucR if it lies both in NucR ⊗ SolidR and
in SolidR ⊗NucR.

Proof. Follows from the next lemma.

Lemma 3.6. Let L : C → D be a fully faithful colimit preserving functor between dualizable
stable ∞-categories. Suppose that the right adjoint of L preserves colimits. Then the
diagram

C ⊗ C D ⊗ C

C ⊗ D D ⊗D

L⊗id

id⊗L id⊗L

L⊗id
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is a pullback square of presentable ∞-categories, and all the functors on the diagram are
fully faithful.

Proof. The left vertical arrow can be rewritten as

LFun(D∨, C) ↪→ LFun(D∨, C)

showing that it is fully faithful. The same argument shows that the lower horizontal
arrow is fully faithful (after twisting the factors). Similarly, the lower horizontal arrow
can be written as

LFun(C∨,D) ↪→ LFun(D∨,D)

and the pullback of the diagram on the statement is given by the full subcategory of
LFun(C∨,D) spanned by those functors F : C∨ → D such that the composite F◦L∨ : D∨ →
D lands in C. Let R : D → C be the right adjoint of L. If F ◦ L∨ lands in C, then
F ◦ L∨ ◦R∨ ∼= F lands in C too, so the pullback is given by LFun(C∨, C).

Using the previous lemma it is now possible to show that THH(NucR) can be
computed in SolidR:

Lemma 3.7. Let M : SolidR ⊗ SolidR → SolidR denote the multiplication map for the
symmetric monoidal category SolidR, and let Mr denote its right adjoint. Let m denote
the analogous map for NucR, as in Remark 3.4. Then

m ◦mr(R) ∼= M ◦Mr(R)

Proof. Consider the following diagram

NucR ⊗NucR SolidR ⊗ SolidR

NucR SolidR

m

i0

M

i1

and let i0,r denote the right adjoint of the functor i0 on the upper row. Then it follows
formally from the fact that the vertical maps are fully faithful that

i1 ◦m ◦mr
∼= M ◦ i0 ◦ i0,r ◦Mr ◦ i1,

and the statement reduces to show that the objectMr(R) = Mr◦i1(R) lies in NucR⊗NucR.
Let F := Mr(R) ∈ SolidR ⊗ SolidR. By Lemma 3.5 it suffices to show that F lies in
SolidR ⊗NucR. Let E := SolidωR denote the full subcategory spanned by compact objects
inside SolidR. There is an equivalence

SolidR ⊗ SolidR = Funlex(Eop, SolidR) = Fun′(Eop × Eop, Sp)
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where the right hand side denotes those functors that preserve finite limits separately
in each variable. Under this equivalence, a functor G on the right hand side lies in
SolidR ⊗NucR on the left hand side if for every profinite set S it holds that

G(S,−)tr = G(S,−)

as objects of SolidR, where S ∈ E really refers to the compact object R⊗■ S[S] ∈ E . This
proof cares about the case G = F . Let S = lim←−i∈I Si and T = lim←−i∈I Ti be two profinite

sets, presented over the same cofiltered diagram (this is always possible). Unraveling the
definitions, the functor F is given by

F (S, T ) = HomSolidR⊗■R
(R⊗■ S[S]⊗■ R⊗■ S[T ], R) = (colimi∈I

⊕
Si×Ti

R(∗))∧I

where the R(∗)⊗R(∗)-module structure in the last term is diagonal, so the I-completion
is also a completion with respect to the ideal (I, I) of R(∗) ⊗ R(∗). In particular, the
object F (S,−) ∈ SolidR is I-complete. Similarly,

F (S,−)tr(T ) = ((colimi∈I
⊕
Ti

R(∗))∧I ⊗SolidR F (S,−))(∗)

which as F (S,−) is I-complete can be rewritten using Remark 1.31 as

F (S,−)tr(T ) = (colimi∈I
⊕
Ti

R(∗)⊗SolidR F (S, ∗))∧I

which is the same as F (S, T ). This shows that F is in SolidR ⊗NucR.

Remark 3.8. Recall that SolidR is just notation for ModR(Solid). Similarly, let
SolidR⊗■R denote ModR⊗■R(Solid). For the next lemma, note that the multiplication
functor M of the previous lemma factors as a composite

M : SolidR ⊗ SolidR
M ′
−−→ SolidR⊗■R → SolidR

where the first map is induced by the two algebra maps of the form R→ R⊗■ R, and
the second map is induced by the map R⊗■ R→ R of algebras in solid spectra.

Lemma 3.9. Let F ∈ SolidR ⊗ SolidR denote the image of the diagonal module R ∈
SolidR⊗■R along the right adjoint of the canonical functor

M ′ : SolidR ⊗ SolidR → SolidR⊗■R

of the previous remark. Then the counit map M ′(F ) → R is an equivalence modulo
(I, I) ⊂ R⊗■ R19.

19that is, the ideal generated by the two copies of I
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Proof. Using that SolidR = ModR(Solid), the source of the functor M ′ can be rewritten
as

SolidR ⊗ SolidR ∼= ModR⊠R(Solid⊗ Solid)

from which it is clear that the functor M ′ on the statement is the functor induced by the
multiplication map m′ : Solid⊗ Solid→ Solid for the symmetric monoidal structure on
Solid after passing to R⊠R-modules on the source and m′(R⊠R) = R⊗■ R-modules
on the target. Consider the diagram

ModR⊠R(Solid⊗ Solid) Solid⊗ Solid

ModR⊗■R(Solid) Solid

M ′

i0

m′

i1

which commutes by the first assertion in Lemma 3.10 below. Let M ′
r and m′

r denote the
right adjoints of M ′ and m′, then

i1 ◦M ′ ◦M ′
r
∼= m′ ◦ i0 ◦M ′

r
∼= m′ ◦mr ◦ i1

where the first equivalence is the comutativity of the previous diagram and the second
equivalence is the second assertion in Lemma 3.10 below. As the module R is discrete
modulo (I, I), it suffices to check that the counit M ′ ◦ Mr → id is an equivalence
on discrete modules. As this can be checked after applying i1, the previous chain of
equivalences says that it is enough to check that the counit m′ ◦ m′

r(N) → N is an
equivalence for every discrete module N (that is, for every spectrum). As both m′ and mr

commute with colimits (the latter because the tensor product of Solid preserves compact
objects), it suffices to check the claim for N = S. This follows from

m′ ◦m′
r(S)

∼−→ THH(NucS)
∼←− THH(S) ∼= S

where the first equivalence is Lemma 3.7 and the second one is because Sp
∼−→ NucS.

Lemma 3.10. Let F : C → D be a lax symmetric monoidal functor between symmet-
ric monoidal presentable ∞-categories. Let A ∈ CAlg(C) and let FA : ModA(C) →
ModF (A)(D) denote the functor induced by F . Then the following diagram commutes

ModA(C) C

ModF (A)(D) D

FA

res0

F

res1

Moreover, if F is symmetric monoidal and G and GA denote the right adjoints of F and
FA, then the following natural transformation is an equivalence

res0 ◦GA
∼−→ G ◦ res1.
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Proposition 3.11. There is a canonical map of R(∗)-modules

THH(NucR)→ (R⊗■
R⊗■R R)(∗)

which is an equivalence modulo I.

Proof. Using notations from Lemma 3.9, the map on the statement is given by the map

THH(NucR) = (M ′(F )⊗R⊗■R R)(∗)→ (R⊗R⊗■R R)(∗)

induced by the counit M ′(F )→ R of Lemma 3.9. This map is an equivalence modulo I
by the same lemma, and this concludes the proof of the statement.

From this, the I-adic continuity of THH follows:

Corollary 3.11.1. The inclusion ModR(∗) → NucR induces an equivalence

THH(R(∗))∧I → THH(NucR)
∧
I

of R(∗)-modules.

Proof. This follows from Proposition 3.11 by noting that THH(R(∗)) and R⊗■
R⊗■R

R
agree modulo the ideal I.

Remark 3.12. Assuming continuity of K-theory, Corollary 3.11.1 can be improved by
noting that THH(NucR) is already I-complete. See Corollary 3.27.1.

3.2 Continuity of Hochschild homology implies continuity of K-theory

In this section we prove that continuity of topological Hochschild homology implies
continuity of K-theory.

Proposition 3.13. Let R be an adic ring in the sense of Definition 1.21, and let (Rn)n∈N
be a tower of E∞-rings realizing its completion, as in Lemma 1.24. Suppose that the
canonical map

THH(NucR)→ lim←−
n∈N

THH(ModRn)

is an equivalence. Then the analog maps for TC and K-theory are also equivalences.

The proof does not require more notation than the one that has already been
introduced, so it is given now, but it relies on a couple of results proved in Section 3.2.1
and Proposition 3.17 below.

Proof. The proof goes by using the sequence

NucR
L−→ Ind(laxPerf bR)

F−→ Ind(Cof bR) (36)
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produced in Proposition 1.72 (which is however not a localization sequence, by Re-
mark 1.57) and the criteria from Corollary 3.16.1, which says that a localizing invariant
which commutes with products of additive ∞-categories satisfies continuity if and only if
it sends (36) to a fiber sequence of spectra. As non-connective K-theory commutes with
products of additive ∞-categories by Proposition 2.11, to deduce continuity for K-theory
it suffices to show that both TC and the fiber of K → TC send (36) to a fiber sequence
of spectra. For the fiber of K → TC this follows from Proposition 3.17 below, which says
that, more generally, any truncating invariant sends (36) to a fiber sequence of spectra.
For TC, it commutes with infinite products of additive categories by Proposition 2.22, so
it suffices to show that TC satisfies continuity, which follows from the assumption that
THH does: for example, by using Corollary 3.16.1 for THH in the forward direction
to deduce that TC sends the sequence in there to a fiber sequence, and then use it for
TC in the backward direction, which is possible by Proposition 2.22, to deduce that TC
satisfies continuity. This concludes the proof.

The method of the previous proof actually proves:

Proposition 3.14. Let T1 → T2 be a map of localizing invariants. Suppose that T2/T1

is nilinvariant and that T1 and T2 commute with products of additive categories. Then T1

satisfies continuity if and only if T2 does.

The rest of this section is dedicated to proving the statements used in the proof of
Proposition 3.13.

3.2.1 Motives of lax-perfect complexes

Lemma 3.15. There is a canonical equivalence

Uadd(laxPerf bR)→ Uadd(Stab(
∏
n∈N

VecRn))

Moreover, the canonical map

Uloc(laxPerf bR)→ Uloc(
∏
n∈N

PerfRn)

is also an equivalence.

Proof. Let laxVecR denote the lax limit of the functor

n ∈ Nop 7→ VecRn

in Cat∞. We consider this lax limit as an exact category by declaring a sequence to be
exact if it is exact at each level. Exact sequences in laxVecR are level-wise split, but not
necessarily split. There are exact and fully faithful inclusions

laxVecsR → laxVecR → laxPerf bR
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coming from the fact that they are all subcategories of the lax limit of n 7→ PerfRn . These
inclusion are all exact, and as such they extend to fully faithful functors

Stab(laxVecsR)→ Stab(laxVecR)→ laxPerf bR

which are equivalences because the composite is an equivalence (Lemma 1.40). Let Ei
denote the lax limit of the functor

n ∈ Nop
≤i 7→ VecRn

equipped with the canonical exact structure. Here N≤i denotes the finite poset of natural
numbers less than or equal to i. Then laxVecR = lim←−i

Ei as exact ∞-categories. The
collection of exact∞-categories (Ei)i together with the canonical exact functors Ei → Ei−1

satisfy the hypotheses of Lemma 2.13, which then gives an equivalence

Uadd(Stab(
∏
n∈N

VecRn))→ Uadd(Stab(lim←−
i∈N
Ei))

which amounts to the first equivalence on the statement. Passing to Uloc and using
Proposition 2.10 from the previous section to commute the product with Stab(−) gives
the second equivalence.

Lemma 3.16. There is a canonical equivalence

Uadd(Cof bR)→ Uadd(Stab(
∏
n∈N

VecRn))

Moreover, the diagonal map

Uloc(Cof bR)→ Uloc(
∏
n∈N

PerfRn)

sending h to (h(n))n is also an equivalence.

Proof. For each i ∈ N let Ei := Cof0R ∩ Fun(Nop
≤i, laxPerf

b
R) inside Fun(Nop, laxPerf bR).

That is, Ei is the category obtained as in Definition 1.68 but where N is replaced by
N≤i. Then Cof0R = lim←−i∈N Ei. Viewing each Ei with its canonical exact structure from

its inclusion into the stable category Fun(Nop, laxPerf bR), the last equivalence becomes
an equivalence of exact categories. In fact, both sides carry the split exact structure
(Lemma 1.70). The exact categories Ei satisfy the hypotheses of Lemma 2.13 (the left
and right adjoints are given by Kan extensions along N≤i → N), which then gives an
equivalence

Uadd(Stab(
∏
n∈N

VecRn))→ Uadd(Stab(lim←−
i∈N
Ei))

which amounts to the first equivalence on the statement. Passing to Uloc and using
Proposition 2.10 from the previous section to commute the product with Stab(−) gives
the second equivalence.
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Corollary 3.16.1. Let T be a localizing invariant commuting with products of additive
∞-categories or of small stable ∞-categories. Then T satisfies continuity in the sense of
Section 3 if and only if T sends the sequence

NucR
L−→ Ind(laxPerf bR)

F−→ Ind(Cof bR)

to a fiber sequence of spectra.

Proof. Using Lemma 3.15 and Lemma 3.16 above, the sequence in the statement goes to

Uloc(NucR)→ Uloc(
∏
n∈N

PerfRn)→ Uloc(
∏
n∈N

PerfRn)

after applying Uloc, where the second arrow is the identity minus the projection map.
Moreover, the categories on the middle and on the right of the last equation are also
equal to Uloc(Stab(

∏
NVecRn)), again by Lemma 3.15 and Lemma 3.16 above. Then the

statement follows from the hypotheses.

3.2.2 Truncating invariants via lax-perfect modules

This section is here to prove the following result.

Proposition 3.17. Let E be a truncating invariant20. Then the sequence

E(NucR)→ E(laxPerf bR)→ E(Cof bR)

is a fiber sequence of spectra.

Corollary 3.17.1. Let E be a truncating invariant. Suppose that E commutes with
infinite products of additive categories. Then the canonical map

E(NucR)→ lim←−
n

E(Rn)

is an equivalence.

Proof. By Corollary 3.16.1 and Proposition 3.17 above.

Proposition 3.17 is based on the fact that nilpotent extensions of additive∞-categories
induce equivalences on truncating invariants. The notion of a nilpotent extension of
additive ∞-categories is a generalization of the notion of a map of connective rings which
is surjective on π0 and has nilpotent kernel, see [ES21, 3.1.1]. Precisely, an additive
functor F : A → B is said to be a nilpotent extension of additive ∞ categories if the
following two conditions hold:

20A localizing invariant E is called truncating if for every connctive E1-ring A the canonical map
A→ π0(A) induces an equivalence

E(A)
∼−→ E(π0(A))
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1. f is essentially surjective.

2. For all objects V,W ∈ A the map

mapA(V,W )→ mapB(f(V ), f(W ))

is surjective on π0.

3. There exists an n ≥ 1 such that, for every collection of n composable morphisms
f1, · · · fn in A, if each fi vanishes in B then the composite f1 ◦ · · · ◦ fn vanishes in
A.

Then the following theorem holds, where for an additive ∞-category A we let

ModA := Ind(Stab(A)).

Theorem 3.18. [ES21, 4.2.1] Let A → B be a nilpotent extension of additive ∞-
categories and let E be a truncating invariant taking values in a stable ∞-category. Then
the induced map

E(ModA)→ E(ModB)

is an equivalence.

Remark 3.19. Let A be an additive ∞-category. A colimit preserving colocalization
D ⊂ ModA

21 gives rise (and is determined by) an endofunctor LD : ModA → ModA. In
the following we care about colocalizations for which the associated endofuctor sends
connective objects to (−1)-connective objects (or just connective), where an object of
ModA is connective if it lies in the subcategory generated under small colimits by objects
in the essential image of A in ModA under the canonical functor, and an object is
(−1)-connective if it is a negative shift of a connective object. In this case, the cofiber
of the inclusion D ⊂ ModA is generated by an additive ∞-category. Precisely, letting B
denote the essential image of A under the projection p : ModA → ModA/D, regarded as
an additive ∞-category, there is an equivalence

ModB
∼−→ ModA/D (37)

In fact, the assumption on LD implies that mapping spectra between objects of B are
connective, and this implies that the functor in (37) is fully faithful, see Lemma 2.3. As
it is also essentially surjective, it is an equivalence. Conversely, if ModB

∼−→ ModA/D,
then the mapping spectra between objects in p(A) = B ⊂ ModA/D are connective and
the fiber sequence of spectra

mapModA(V,LD(W ))→ mapModA(V,W )→ mapModA/D(p(V ), p(W ))

where V,W ∈ A, implies that LD sends connective objects to −1-connective objects.

21that is, a colimit preserving fully faithful functor between presentable ∞-categories with a colimit
preserving right adjoint.
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The following corollary of Theorem 3.18 is the form in which this theorem will be
used in here:

Corollary 3.19.1. Let f : A → B be an additive functor between additive ∞-categories,
and let

F : ModA → ModB

denote the colimit preserving functor induced at the level of presentable ∞-categories. Let
D ⊂ fib(F ) be a colimit preserving colocalization. Suppose that the following conditions
hold:

1. The endofunctor associated to the induced colocalization D ⊂ ModA sends connective
objects to (−1)-connective objects.

2. f is essentially surjective.

3. For all objects V,W ∈ A the map

mapA(V,W )→ mapB(f(V ), f(W ))

is surjective on π0.

4. Let G denote the right adjoint to F , and let T := fib(id→ GF). Suppose that for
every V,W ∈ A and every morphism V

α−→ T (W ) in Ind(Stab(A)) there exists an
X ∈ fib(F ) and a commutative diagram

T (V ) X

V T (W )

can

α

Then the induced map ModA/D → ModB comes from a nilpotent extension of additive
∞-categories. In particular, for every truncating invariant E the sequence

E(D)→ E(ModA)→ E(ModB)

is a fiber sequence.

Proof. Let C denote the cofiber of the inclusion D ⊂ ModA. As in Remark 3.19, the first
condition on the statement implies that C ≃ ModB′ , where B′ is the additive ∞-category
generated by the image of A in C. The induced map C → ModB is induced by a functor
B′ → B, which by the hypotheses on the statement is a nilpotent extension of additive
∞-categories. Then the fiber sequence

D → ModA → C

plus the fact that C and ModB agree on truncating invariants (by Theorem 3.18) give
that any truncating invariant sends

D → ModA → ModB

to a fiber sequence.
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Proof of Proposition 3.17. The proof goes by applying Corollary 3.19.1 to the case A =
laxVecsR (Definition 1.38) and B = Cof0R (Definition 1.68), and to the functor f : A → B
given by the functor Σ−1F|laxVecsR from (20) that remembers the successive kernels of a
lax-vector bundle with surjective transition maps. Then functor

F : ModA → ModB

from 3.19.1 is precisely the functor

F : Ind(laxPerf bR)→ Ind(Cof bR)

from Proposition 1.72. And we take D to be NucR, which is killed by F . So it suffices to
check that the rest of the hypotheses of Corollary 3.19.1 are satisfied. The first condition
says that the endofunctor classifying the colocalization NucR ⊂ Ind(laxPerf bR) sends
connective objects to (−1)-connective, which by Remark 3.19 is the same as saying that
the cofiber is generated by an additive ∞-category. This is Lemma 3.20 below. This
shows the first condition. The third condition says that for every V,W ∈ laxVecsR the
map

mapInd(laxPerf bR)(V,W )→ mapInd(laxPerf bR)(F(V ),F(W )) = mapInd(laxPerf bR)(V,G ◦ F(W ))

is surjective on π0. As Proposition 1.72 gives a fiber sequence of functors T → Id→ G◦F,
it suffices to show that mapInd(laxPerf bR)(V, T (W )) is connective. This is Lemma 3.21 below.
This shows the third condition. Finally, the fourth condition is Lemma 3.22.

Lemma 3.20. The ∞-category

C := Ind(laxPerf bR)/NucR

is generated by an additive ∞-category. Precisely, there exists an additive ∞-category
C0 ⊂ Cw such that C = ModC0.

Proof. The category C is compactly generated, and the projection p : Ind(laxPerf bR)→ C
sends compact objects to compact objects. Let C0 ⊂ Cw denote the essential image
of laxVecsR under the projection p. We will now prove that the inclusion C0 ⊂ Cw
extends uniquely to equivalence Stab(C0)

∼−→ Cw, where the exact structure on C0 is
given by the split exact sequences. This can be proved by showing the two conditions in
Lemma 2.3. The first condition says that for every V,W ∈ laxVecsR the mapping spectra
mapC(p(V ), p(W )) is connective. This spectrum fits in a fiber sequence

mapInd(laxPerf bR)(V,LR(W ))→ mapInd(laxPerf bR)(V,W )→ mapC(V,W )

from which it suffices to show that the leftmost and the middle term are connective, as
the cofiber of two connective objects is connetive. The middle term is connective by
Lemma 1.40. For the leftmost term, note that object R(W ) is connective and nuclear, so
Lemma 1.16 gives that it is a small colimit of objects in BNuc0(SolidR). As the functor
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L sends BNuc0(SolidR) to connective objects (even to Ind(laxVecsR)), the object LR(W )
is a small colimit of objects in laxVecsR in degree zero. Then, as V is compact projective,
map(V,LR(W )) is a colimit of connective objects, hence the connectivity. The second
condition amounts to show that the fully faithful inclusion Stab(C0) ↪→ Cw is essentially
surjective. This follows because this inclusion factors the projection

pw : laxPerf bR = Stab(laxVecsR)→ Stab(C0) ↪→ Cw

and pw is essentially surjective.

Lemma 3.21. Let V,W ∈ laxVecsR. Then the spectrum mapInd(laxPerf bR)(V, T (W )) is
connective.

Proof. As in (13), it is possible to compute map(V, T (W )) as the limit of

mapSolidR2
(V2,W ⊗R R2) mapSolidR1

(V1,W ⊗R R1)

· · · mapSolidR2
(V2,W ⊗R R1)

where W := lim←−W is isomorphic to a retract of
∏

NR in SolidR. The limit of this
diagram is connective because every term is and the diagonal maps from left to right are
surjective.

Lemma 3.22. Let V,W ∈ laxVecsR and let f : V → T (W ) be a map. Then there exists
a map g : T (V )→ LR(W ) making the following diagram commute

T (V ) LR(W )

V T (W )

can

g

can

f

where the vertical arrow on the left is the canonical one from Definition 1.47, and the one
on the right is the one induced from Proposition 1.72 and the fact that F ◦ L vanishes.

Proof. By Lemma 1.45, V can be written as a retract of a free object Ṽ in the sense of
Definition 1.44, and similarly W can be written as a retract of a free object W̃ . The map
V → T (W ) then induces a map

Ṽ → V → T (W )→ T (W̃ )

Supposing for a moment that the statement holds for free objects, we get a map T (Ṽ )→
LR(W̃ ) which in turn induces a map T (V )→ LR(W ) which proves the statement for
the original map V → T (W ). This is a diagram chase that uses the additivity of the
functors T and LR. So we can suppose that both V and W are free in the sense of
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Definition 1.44. So h∗V and h∗W are both isomorphic to
∏

NR (see Notation 1.50).
Let V 0 :=

∏
N S⊗■R be a compact projective generator and let’s fix a map V 0 → h∗V

isomorphic to the canonical map
∏

N S ⊗■R →
∏

NR . Let f ′ denote the image of f
under the composite

mapInd(laxPerf bR)(V, T (W ))→ mapSolidR(h∗V, (h∗W )tr)→ mapSolidR(V
0, (h∗W )tr)

where the first map is the one produced in (15) and the second one is the one induced by
the map V 0 → h∗V . Then there is a factorization of f ′ as a composite:

V 0 → B → (h∗W )tr

where B is a basic nuclear that can be written as a sequential colimit along trace-class
maps

B = colimN (P0 → P1 → · · · )
where each Pi is a countable product of copies of R (see Lemma 1.62). Let the V =

(R
r(n)
n )n∈N be a representative for V . Then V is determined by the function r : N→ N,

and we write V = Vr. More generally, for any non-decreasing function s : N→ N we let Vs

denote the free object in laxVecsR given by (R
s(n)
n )n∈N. As V

0 is compact, we can suppose
that the map V 0 → B factors through a trace-class map α : V 0 → P0. Then Lemma 1.60
gives that there exists a non-decreasing function s : N → N such that α ⊗R Rn factors

through the projection V 0 ⊗R Rn → R
s(n)
n onto the first s(n) coordinates. We then know

from Remark 1.65 that L(B) admits a map from Vs. Up to increasing s, we can suppose
that s(n) ≥ r(n) for each n ∈ N, so that there is a canonical map Vs → Vr = V . This
gives a diagram

Vs L(B) LR(W )

V T (W )

in Ind(laxPerf bR). Commutativity of this diagram amounts to check that two maps
Vs → T (W ) are homotopic. These maps live in the mapping spectra

mapInd(laxPerf bR)(Vs, T (W )) = mapSolidlaxR
(Vs, h

∗(h∗W )tr)

where the equivalence is Lemma 1.54. So it suffices to see that they are homotopic as
maps from Vs to h∗(h∗W )tr. The following equivalence given by Lemma 1.60 below

colim
j : N→N

j(n+1)≥j(n)

mapSolidlaxR
(Vj , h

∗(h∗W )tr) = mapSolidR(V
0, (h∗W )tr)

says that, after possibly increasing s, the equality of the two maps can be tested in π0
of the mapping spectra mapSolidR(V

0, (h∗W )tr), where it holds by construction. This
shows that the last diagram commutes after possibly increasing s. Now it is easy to see
that T (V ) → V factors through Vs (for example, by Remark 1.59), and this gives the
statement.
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3.3 Continuity of K-theory and continuity of Hochschild homology

Let R be an adic ring (Definition 1.21) and let (Rn)n∈N be a tower realizing its completion,
as in Lemma 1.24. Knowing that topological cyclic homology invariants commute with
certain products (Corollary 2.21.1), the missing step to conclude continuity for those
invariants (in the sense of Section 3) is a statement relating NucR to such infinite products.
This statement is the following theorem by Efimov:

Theorem 3.23 (Efimov). There exists a fiber sequence

Uloc(NucR) −→ Uloc(Stab(
∏
n∈N

VecRn))
id−pr−−−→ Uloc(Stab(

∏
n∈N

VecRn))

where VecRn denotes the additive ∞-category of Rn-vector bundles, and Stab(−) is the
stable envelope functor from Section 2.1. Here the second arrow is the one induced by the
identity minus the product of the projections VecRn+1 → VecRn for varying n ∈ N.

As mentioned in the introduction, there is also an unbounded version of this statement.
To state it, let ÑucR denote the inverse limit of the tower

· · · → ModRn+1 → ModRn → · · ·

taken in the category of presentable dualizable ∞-categories. This limit indeed exists.
As NucR is dualizable, the universal property of limits gives a map NucR → ÑucR. This
map is fully faithful, and the latter can be thought of as an unbounded version of the
former. This adjective is further motivated by the following analog to Theorem 3.23
above:

Theorem 3.24 (Efimov). There exists a fiber sequence

Uloc(ÑucR) −→ Uloc(
∏
n∈N

PerfRn)
id−pr−−−→ Uloc(

∏
n∈N

PerfRn).

Combining the previous two theorems with the facts about infinite products of
additive ∞-categories proved in the previous sections gives that this two versions of
nuclear modules, although different, have the same localizing invariant.

Corollary 3.24.1. The inclusion induces an equivalence

Uloc(NucR)→ Uloc(ÑucR)

of localizing invariants.

Proof. This follows from Proposition 2.10 and the previous two theorems.

The next results in this section are phrased for condensed localizing invariants, and
the next remark and definition are here to make sense of this. This makes no real difference
escept for the last couple of results in this section (Lemma 3.27 and Corollary 3.27.1), so
feel free to evaluate everything at a point and stick to the non-condensed statements.
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Remark 3.25. For any profinite set S, the condensed ring C(S,R) of continuous functions
from S to R is again an adic ring. In fact, the ring C(S,R) is just the I-completion of
the spectrum of maps from S to R(∗)δ. Using this observation, the category NucR lifts
to a condensed category

S ∈ ExDisc 7→ NucC(S,R) ∈ Prdualst .

Definition 3.26. For a localizing invariant E :Mloc → Sp, let

Ecd := Cond(E) : Cond(Mloc)→ Cond(Sp)

so that, for example, Ecd(NucR)(S) = E(NucC(S,R)).

Corollary 3.26.1. Let E be a localizing invariant that commutes with countable products
of stable ∞-categories. Then the maps

Ecd(NucR)→ Ecd(ÑucR)→ lim←−
n∈N

Ecd(ModRn)

are equivalences of condensed spectra.

Proof. For an extemally disconnected set S the condensed algebra C(S,R) is again an
adic ring, so it suffices to prove the statement for an arbitrary adic ring R after evaluating
at a point. Then the first equivalence follows from Corollary 3.24.1 and the second from
Theorem 3.24 and the hypothesis on E.

Corollary 3.26.2. The maps

Kcd(NucR)→ Kcd(ÑucR)→ lim←−
n∈N

Kcd(ModRn)

are equivalences of condensed spectra.

Proof. This follows from the previous corollary and Theorem 2.6.

This corollary does not apply to THH or TC. In fact, as far as we know from
Corollary 2.21.1, THH and TC only commute with infinite products of additive ∞-
categories. Using Theorem 3.23 instead, it is easy to see that these infinite products are
enough.

Corollary 3.26.3. Let THHcd and TCcd denote the condensed invariants defined in
Definition 2.20. Then the canonical maps

THHcd(ÑucR)← THHcd(NucR)→ lim←−
n∈N

THHcd(ModRn)

and
TCcd(ÑucR)← TCcd(NucR)→ lim←−

n∈N
TCcd(ModRn)

are all equivalences of condensed spectra.
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Knowing the previous corollary, it is now possible to give a description of the
topological Hochschild homology of NucR that does not depend on the chosen tower
(Rn)n∈N from Lemma 1.24:

Lemma 3.27. There is an equivalence of condensed spectra

THHcd(NucR)
∼−→ colimm∈∆op(R⊗■m)∧(I,··· ,I)

where the (−)∧(I,··· ,I) denotes completion of the condensed commutative algebra R⊗■m with

respect to the ideal generated by the m images of I inside π0(R
⊗■m).

Proof. The previous corollary says that THHcd(NucR) is equivalent to the inverse limit
of the THHcd(ModRn)’s. This inverse limit commutes with the geometric realizations
presenting the THH of the Rn’s, so

THHcd(NucR)
∼−→ colimm∈∆op(lim←−

n

R⊗m
n )

and the inner term in the latter is equivalent to (R⊗■m)∧(I,··· ,I) by Lemma 1.28 (and

independent of the Rn’s).

As R is a commutative algebra, THH(R(∗)) is free over S1 in commutative R(∗)-
algebras, and this gives R(∗)-module structures to both THH(R(∗)) and THH(NucR).
The previous lemma is close to saying that the topological Hochschild homology of NucR
is the I-adic completion of the topological Hochschild homology of the E∞-ring R(∗)
under this module structures. This is indeed the case, as the next result shows.

Corollary 3.27.1. The inclusion ModR(∗) → NucR induces an equivalence

THH(R(∗))∧I → THH(NucR)

of R(∗)-modules.

Proof. By Corollary 3.11.1 it suffices to show that the R(∗)-module THH(NucR) is
I-complete. By the proof of Lemma 3.27, THH(NucR) is a geometric realization of R(∗)-
modules of the form (R(∗)⊗m)∧(I,··· ,I), where the R(∗)-module structure is given by the

action on the leftmost term of the tensor product. As each (R(∗)⊗m)∧(I,··· ,I) is connective

and I-complete (for the leftmost copy of I), THH(NucR) is also I-complete.

3.4 An example: nuclear modules over perfectoid rings

Definition 3.28. A p-adic ring is an adic ring (Definition 1.21) with the p-adic topology.
That is, a p-adic ring is a solid connective commutative algebra which agrees with the
p-completion of its evaluation at a point.
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Lemma 3.29. Let R be a p-adic ring. Then the inclusion ModR(∗) → NucR induces an
equivalence

(THH(R(∗))δ)∧p = THHcd(ModR(∗))
∧
p

∼−→ THHcd(NucR)

of condensed spectra, where the p-adic completion is taken in condensed spectra. That is,
the topological Hochschild homology of NucR is given by the p-completion of the topological
Hochschild homology of the underlying E∞-ring R(∗). The same holds for TC, TC− and
TP .

Proof. This follows from Corollary 3.27.1, but here we give an easier proof in the case
where the ideal of definition is (p). The first equivalence holds because THH(R(∗))δ =
THHcd(ModR(∗)) as condensed spectra. For the second, Corollary 3.26.3 gives that

THHcd(NucR)
∼−→ lim←−

n∈N
THHcd(ModRn)

and the latter can be rewritten as lim←−n
colimm∈∆opR⊗m

n = colimm∈∆op lim←−n
R⊗m

n , where
limit and colimit commute because of a connectivity argument. By Lemma 1.28 the last
expression is equivalent to colimm∈∆op(R⊗m)∧p , where again it is possible to comute the
colimit with the p-completion by a connectivity argument.

Lemma 3.30. Let R be a p-adic ring. Then the canonical map

THH(NucR)[p
−1]→ THH(NucR[p−1])

is an equivalence.

Proof. It is clear that forgetting about nuclear modules the map

THH(R(∗))[p−1]→ THH(R(∗)[p−1])

is an equivalence. Consider the following diagram

Mod
Nil(p)
R(∗) ModR(∗) ModR(∗)[p−1]

Nuc
Nil(p)
R NucR NucR[p−1]

where the rows are localization sequences and the leftmost vertical arrow is an equivalence
by Lemma 1.33. Then

THH(Nuc
Nil(p)
R ) = THH(Mod

Nil(p)
R(∗) )

= Γ(p)THH(R)

= Γ(p)(THH(R)∧p )

= Γ(p)(THH(NucR))
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where the second equality holds by the first sentence of the proof, the third one because
the difference is both (p)-local and (p)-nilpotent, so it is zero, and the last equality is
Lemma 3.29. Now the fact that the lower row in the last diagram is sent to a fiber
sequence by THH together with the fiber sequence of functors Γ(p) → id → (−)[p−1]
imply the statement.

Considering perfectoid rings as (condensed) adic rings with the p-adic topology,
Lemma 3.29 applied to a perfectoid ring R gives an equivalence THH(R,Zp)

∼→
THH(NucR), where the former is another way of writing the p-completion of THH(R).
It is then possible to rewrite the calculations of [BMS18, 6.1, 6.2, 6.3] in terms of nuclear
categories by simply replacing THH(R,Zp) by THH(NucR) everywhere. For example,
[BMS18, 6.1] says that the canonical map

SymR(THH2(NucR))→ THH∗(NucR)

is an isomorphism of graded rings22, and that THH2(NucR) is a free R-module of rank
1. Similarly, [BMS18, 6.2, 6.3] says that there exist isomorphisms of graded rings

TC−
∗ (NucR) ≃ Ainf(R)[u, v]/(uv − ξ) and TP∗(NucR) ≃ Ainf(R)[σ±1]

where |u| = |σ| = 2, |v| = −2, and ξ has degree zero and is a generator of the kernel of
the canonical map Ainf(R) → R. Moreover, the previous isomorphisms can be chosen
such that the graded ring homomorphisms

TC−
∗ (NucR) TP∗(NucR)

φ

can

are φ-linear and Ainf(R)-linear, respectively, and φ(u) = σ, can(u) = ξ · σ and can(v) =
σ−1.

One advantage of working with nuclear modules is that it is possible to use Lemma 3.30
to pass to the generic fiber at the level of categories:

Lemma 3.31. Let R be a perfectoid ring. There exists an isomorphism of graded rings

TP∗(NucR[1/p]) ≃ B+
dR(R)[σ±1]

where σ has degree 2 and the ring B+
dR is given by the (ξ)-adic completion of the ring

Ainf(R)[1/p], where ξ is the kernel of the canonical map Ainf(R)→ R.

Proof. Recall that the spectral sequences calculating periodic homology

E2
i,j = Ĥ−i(BS1, THHj(NucR)) ⇒ TPi+j(NucR)

Ẽ2
i,j = Ĥ−i(BS1, THHj(NucR[1/p]))⇒ TPi+j(NucR[1/p])

22here the spectrum THH(NucR) carries a symmetric monoidal structure coming from the symmetric
monoidal structure of NucR and the lax-monoidaity of the functor THH.
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collapse by Bökstedt periodicity (using Lemma 3.30 for the second). The descend-
ing filtration given by the spectral sequence E on TP0(NucR) ∼= Ainf(R) is given by
FilnE(Ainf(R)) = (ξ)n ⊂ Ainf(R), and the element ξn ∈ (ξ)n is sent to a generator of
grn(Ainf(R)). The base change map NucR → NucR[1/p] induces both a ring homomor-
phism on periodic homology

f : Ainf(R)[1/p] ∼= TP0(NucR)[1/p] −→ TP0(NucR[1/p])

and compatible R[1/p]-linear equivalences

E2
i,j [1/p]

∼−→ Ẽ2
i,j (38)

at the level of spectral sequences (they are equivalences by Lemma 3.30). As f respects
filtrations, there is an inclusion (f(ξ))n ⊂ Filn

Ẽ
TP0(NucR[1/p]), and we claim that this

inclusion is an equivalence. To show this, let x ∈ Filn
Ẽ
TP0(NucR[1/p]) and let xn denote

its reduction to the n-th graded piece. As f induces equivalences on graded pieces ((38)),
there exists a y ∈ Ainf(R)[1/p] such that f(ξny) reduces to xn in the n-th graded piece.
Then x − f(ξ)nf(y) ∈ Filn+1TP0(NucR[1/p]). As TP0(NucR[1/p]) is is separated and

complete with respect to the filtration given by Ẽ, an induction gives that x ∈ (f(ξ))n.
This shows that the filtrations agree. Now, as f is a mod-ξ isomorphism by (38) (here
we use that ξ is a non-zero divisor in Ainf(R)[1/p]) and TP0(NucR[1/p]) is f(ξ)-complete,

the latter must agree with the ξ-completion of Ainf(R)[1/p], which is B+
dR(R).

Let
HH(−/R) : CAlg(Cond(Sp))R/ −→ Cond(Sp) (39)

denote the Hochschild homology functor from commutative condensed R-algebras to
condensed spectra, and let

HC−
■ (−/R) := HH■(−/R)hS

1

HP■(−/R) := HH■(−/R)tS
1
.

be two solid versions of cyclic and periodoc homology arising from it. These are functors
taking values in solid spectra and receiving a map from the solidifications of HC− and
HP , respectively. In [BMS18, 6.3] it is explained in which sense the topological theory is
a deformation of the algebraic theory. Here is a version of this, which is an analog of
[BMS18, Theorem 6.7], over the generic fiber.

Proposition 3.32. Let R be a perfectoid ring and let A be a p-complete R-algebra. Then
there is a S1-equivariant cofiber sequence

THH(NucA[1/p])[2]
u−→ THH(NucA[1/p]) −→ HH■(A[1/p]/R[1/p]) (40)

of condensed THH(NucA[1/p])-modules, where A is viewed as an adic condensed R-algebra
with its p-adic topology. Moreover, there is a natural equivalence of condensed spectra

HH■(A/R)
∼−→ THH(NucA)⊗THH(NucR) R (41)
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which also holds when A and R are replaced by A[1/p] and R[1/p]. In particular, the
right hand side of (41) is solid. After applying fixed points or Tate constructions to (40),
there are induced cofiber sequences

TC−(NucA[1/p])[2]
u−→ TC−(NucA[1/p]) −→ HC−

■ (A[1/p]/R[1/p])

TP (NucA[1/p])[2]
ξ·σ−→ TP (NucA[1/p]) −→ HP■(A[1/p]/R[1/p])

of condensed spectra.

Proof. By [BMS18, Theorem 6.7] there is a fiber sequence

THH(NucA)[2]
u−→ THH(NucA) −→ HH(A/R)∧p

of condensed THH(NucA)-modules. Analogously, [BMS18, Theorem 6.7] for A = R
gives a fiber sequence

THH(NucR)[2]
u−→ THH(NucR) −→ R

of condensed THH(NucR)-modules. Comparing these two fiber sequences after base
changing the latter to to THH(NucA)-modules gives isomorphisms THH(NucA)⊗THH(NucR)

R ∼= HH(A/R)∧p
∼= HH■(A/R) of condensed spectra, where the last isomorphism fol-

lows from the solid tensor product preserving complete objects. Inverting p on top of
everything and using Lemma 3.30 gives (40).
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