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Abstract
In this thesis we describe Hochschild homology over k of quotients of poly-

nomial algebras k[x1, . . . , xn]/f for certain polynomials f in n ≤ 2 variables,
as an object of the ∞-category of mixed complexes Mixed, where k is a
commutative ring in which 2 is invertible.

In 1992, the Buenos Aires Cyclic Homology Group [BACH] constructed,
for any n and any commutative ring k, a quasiisomorphism between the
standard Hochschild complex over k of k[x1, . . . , xn]/f and a quite small
chain complex, under the assumption that f is monic with respect to a chosen
monomial order. This result was improved upon by Larsen in 1995 [Lar95]
by taking the mixed structure into account as well, though only considering
polynomials f in n = 2 variables that are monic with respect to one of the
variables.

Assuming a conjectural description of Hochschild homology of polynomial
rings, we extend these previous results by constructing, for a large subset of
the polynomials f considered in [BACH], a strict mixed structure on the chain
complex described in [BACH] and showing that it represents the Hochschild
homology over k of k[x1, . . . , xn]/f as an object in the ∞-category of mixed
complexes. We also verify the conjecture in some cases, leading to uncondi-
tional results for n ≤ 2 variables, as long as 2 is invertible in k.

The results of this thesis do not rely on the two aforementioned prior
results, but instead use the modern approach to Hochschild homology based
on ∞-categorical methods. Along the way, to be able to state and prove
our result in this setting, we prove some results that may be of independent
interest.
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Resumé
I denne afhandling beskriver vi Hochschild homologi over k for kvotienter af

polynomiumsalgebraer k[x1, . . . , xn]/f for visse polynomier f i n ≤ 2 variable,
som et objekt i ∞-kategorien Mixed af såkaldte blandede komplekser, for k
en kommutativ ring, hvori 2 er invertibel.

I 1992 konstruerede Buenos Aires Cyclic Homology gruppen [BACH] en
kvasiisomorfi mellem standardhochschildkomplekset over k af k[x1, . . . , xn]/f
og et lille kædekompleks, under antagelsen, at f er monisk med hensyn til en
valgt monomisk ordning, men for alle n og alle kommutative ring k. Denne
resultat blev forbedret af Larsen i 1995 [Lar95], som også betragtede den
blandede struktur, dog kun for polynomier f i n = 2 variabler som er monisk
med hensyn til én af de to variable.

Under antagelsen af en formodete beskrivelse af Hochschild homologi af
polynomiumsalgebraer generaliserer vi disse tidligere resultater ved at kon-
struere, for en stor delmængde af de polynomier f studeret i [BACH], en
strengt blandet struktur på kædekomplekset beskrevet i [BACH] og at vise,
at det repræsenterer Hochschild homologi over k af k[x1, . . . , xn]/f som ob-
jekt i∞-kategorien af blandede komplekser. Vi også verificerer formodningen
i nogle tilfælde, og får dermed ubetingede resultater for n ≤ 2 variable, forud-
sat, at 2 er invertibel i k.

Resultaterne i denne afhandling afhænger ikke af de to førnævnte arbejder,
men bruger derimod den moderne tilgang til Hochschild homologi baseret
på ∞-kategoriske metoder. Undervejs til at kunne beskrive og bevise vores
resultat i denne ramme beviser vi nogle resultater som kan have selvstændig
interesse.
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Chapter 1

Introduction
In this thesis we evaluate Hochschild homology over a commutative ring

k of quotients of polynomial algebras k[x1, . . . , xn]/f for certain polynomials
f , as an object of the ∞-category of mixed complexes Mixed, assuming a
conjectural description of Hochschild homology of polynomial algebras. We do
this by giving an explicit, and quite small, strict mixed complex representing
HH(k[x1, . . . , xn]/(f)). We verify the conjecture in some cases, leading to
unconditional results in the case of n ≤ 2 variables as long as 2 is invertible
in k. This result improves upon prior work by Larsen [Lar95] where stronger
conditions on f are imposed1, and by the Buenos Aires Cyclic Homology
Group [BACH], where only the underlying chain complex was considered.
The results of this thesis do not rely on the two aforementioned prior results,
but use a different approach, employing the modern framework for Hochschild
homology in the setting of ∞-categories.

The motivation for calculating Hochschild homology as a mixed complex
stems from its usefulness to calculations of algebraic K-theory. The mod-
ern framework for topological cyclic homology by Nikolaus–Scholze [NikSch]
opened up the possibility of obtaining calculations of algebraic K-theory using
trace methods with only Hochschild homology as a mixed complex as input,
via a method developed by Speirs [Spe18; Spe20; Spe21] and Hesselholt–
Nikolaus [HN20]. In this modern setting, Hochschild homology is a functor
of ∞-categories

HHT : Alg(D(k))→ D(k)B T

assigning to each associative algebra in the derived category of k an object of
D(k) equipped with an action by the circle group T. The∞-category D(k)B T

is equivalent to the underlying∞-category Mixed of a model category Mixed
of strict mixed complexes2, and we denote the composition of HHT with this
equivalence by HHMixed. We now formulate the main result of this thesis,
and will explain the meaning of the conditions on f and the notation used in
the formula for d later in this introduction.

1But no assumption is made on invertibility of 2 in k.
2A strict mixed complex is a chain complex with an additional operator d increasing

degree by 1 and satisfying ∂d + d∂ = 0 and d2 = 0.
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Chapter 1 Introduction

Theorem A. Let k be a commutative ring in which 2 is invertible3, n ≤ 2 a
positive integer, and � a monomial order (for n variables). Let f be a monic
(with respect to �) polynomial in n variables, and assume that furthermore
the following property holds for any #–

i ∈ Zn≥0 such that the coefficient of
the monomial x

#–

i in f is non-zero: If 1 ≤ j ≤ n and deg�(f)j 6= 0, then
#–

i j ≤ deg�(f)j. In other words, we require that every monomial appearing in
f divides the leading monomial, after replacing by 1 those variables that do
not appear in the leading monomial of f .

Then there is an equivalence4

HHMixed(k[x1, . . . , xn]/f) ≃ γMixed(k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t))

in Mixed, where

k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

is a strict mixed complex with underlying Z-graded k-module5 as indicated,
with xi of degree 0, dxi of degree 1 and t of degree 2. The boundary operator ∂
is defined by extending the following formulas6 by k-linearity and the Leibniz
rule, where P ∈ k[x1, . . . , xn]/f , 1 ≤ i ≤ n, and m ≥ 0.

∂(P ) = 0, ∂(dxi) = 0, ∂
(
t[m]
)
= −p(d f)t[m−1]

The differential d is defined by extending by k-linearity the following formula
for a polynomial P ∈ k[x1, . . . , xn], #–ϵ ∈ {0, 1}n, and m ≥ 0.

d
(
p(P ) dx #–ϵ t[m]

)
:=
(
p
(
d
(
r0f (P )

))
+mp

(
q1f
(
d f · r0f (P )

)))
dx #–ϵ t[m] ♥

A proof of Theorem A can be found on Page 590. Most of the steps in the
proof of Theorem A do not require the assumption that n ≤ 2 and that 2 is
invertible in k. We however need Conjecture D to hold for f . Conjecture D
will be formulated and verified for n ≤ 2 as long as 2 is invertible in k in
Section 7.5.

Let us now give an overview over the remainder of this chapter. We begin
in Section 1.1 by describing our motivation for studying Hochschild homology
as a mixed complex, which arises from its relevance in the methods used in
calculations of algebraic K-theory groups in [Spe20], [Spe21], and [HN20].

In Section 1.2 we explain how HHMixed(k[x1, . . . , xn]/f), the main object
of study, as well as the ∞-category Mixed and 1-category Mixed are defined.

3The assumption that 2 is invertible in k is not needed when n ≤ 1.
4γMixed is a functor from the category of strict mixed complexes with cofibrant underlying

chain complex to Mixed and will be discussed in Section 1.2.2.
5We will use the commutative Z-graded k-algebra structure to write elements and describe

∂, but we warn that d does not satisfy the Leibniz rule, so this is not an algebra in
strict mixed complexes.

6We denote by p the quotient morphism p : k[x1, . . . , xn]→ k[x1, . . . , xn]/f .
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1.1 Motivation

We will then turn towards describing the proof of Theorem A, which splits
up naturally into two main steps. We describe the first main step in Sec-
tion 1.3, which involves writing the quotient k[x1, . . . , xn]/f as a relative
tensor product k[x1, . . . , xn]⊗k[t]k, and then using that HHMixed preserves rel-
ative tensor products. This yields a strict mixed complex Xf of medium size
representing HHMixed(k[x1, . . . , xn]/f). Finding a smaller sub-mixed-complex
such that the inclusion into Xf is a quasiisomorphism is the content of the
second main step in the proof of Theorem A and will be described in Sec-
tion 1.4. Along the way we will introduce the definitions of concepts and
notation used in the formulation of Theorem A.

In Section 1.5 we then give an overview over the content of the individual
chapters and appendices of this thesis, and in Section 1.6 we describe some
directions for future work and questions left open by this thesis.

1.1 Motivation

The project that eventually became this thesis started with the goal of
determining the structure of the algebraic K-theory groups

K∗(k[x1, . . . , xn]/(x1 · · ·xn), (x1, . . . , xn))

for k a perfect field of positive characteristic, with the polynomial x1 · · ·xn
geometrically corresponding to the union of the coordinate hyperplanes. A
method recently made possible by the Nikolaus–Scholze framework for topo-
logical cyclic homology [NikSch], and used by Speirs in the case of trun-
cated polynomial algebras [Spe20]7 and the union of coordinate axes [Spe21]8,
and by Hesselholt–Nikolaus for cuspidal curves [HN20], makes attacking such
questions significantly easier.

In all these cases, what is determined are algebraic K-theory groups

K∗(k[x1, . . . , xn]/(f1, . . . , fm), (x1, . . . , xn))

for k a perfect field of positive characteristic, n and m positive integers, and
f1, . . . , fm specific polynomials in n variables with coefficients in Z. This
is done by employing trace methods, and the input ultimately required for
this method circles around HHT(Z[x1, . . . , xn]/(f1, . . . , fm)), though there are
variations between [Spe21], [Spe20], and [HN20] in what precisely is used as
input. The following table is an overview.

7The relevant K-theory groups had first been evaluated by Hesselholt–Madsen [HM97],
but the calculation was significantly simplified by Speirs.

8Generalizing results by Hesselholt [Hes07] from the two-dimensional case.
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Chapter 1 Introduction

n (f1, . . . , fm) Input used
[Spe21] n ≥ 1 (xixj)i 6=j Bcyc(Π)9as an object of SB T

∗

[Spe20] 1 (xa1), for a ≥ 1 an
integer

Homotopy groups of
HHT(Z[x1]/(xa1)) together with
Connes’ operator

[HN20] 2 xa1−x
b
2 for a, b ≥ 2

relatively prime
HHT(Z[x1, x2]/(xa1 − x

b
2)) as an

object of D(Z)B T

In [Spe21], Speirs uses that HHT(Z[x1, . . . , xn]/(xixj)i 6=j) is the Z-lineariza-
tion of a space with T-action Bcyc(Π), and manages to even determine the
T-equivariant homotopy type of Bcyc(Π), rather than only its Z-linearization.
In general we would however expect that it will be easier to only determine
HHT(Z[x1, . . . , xn]/(f1, . . . , fm)) itself, which is all that is required.

In contrast, in [Spe20] Speirs manages to get by with even less information
than HHT(Z[x1]/(xa1)) as an object of D(Z)B T, only using its homology as
well as Connes’ operator (induced by the circle action), and extracting e. g.
the homotopy groups of the T-fixed points using the fixed points spectral se-
quence. In this particular case, this is made feasible due to HHT(Z[x1]/(xa1))
decomposing into pieces whose homology is concentrated in only two succes-
sive degrees, making the relevant spectral sequences easy enough to evaluate.
In more complicated cases we can however not expect to (in general) be able
to fully evaluate those spectral sequences without additional information.

Thus, in order to expand the results of [Spe20], [Spe21], and [HN20] to simi-
lar algebras, it seems reasonable to start by evaluating the relevant Hochschild
homology HHT(Z[x1, . . . , xn]/(f1, . . . , fm)) as an object of D(Z)B T.

1.2 Hochschild homology as a mixed complex
1.2.1 Hochschild homology as an object with circle

action
Having motivated our interested in HHT, we will now give an idea of how

it is defined. As HHT is a special case of the cyclic bar construction, we begin
in somewhat greater generality.

Let C be a presentable symmetric monoidal ∞-category. Then the cyclic
bar construction for C is a functor

Bcyc : Alg(C)→ CB T

that associates to every associative algebra R in C an object with T-action
Bcyc(R) in C. To construct the underlying object in C of Bcyc(R), one pro-

9Bcyc(Π) denotes the cyclic bar construction of the pointed monoid

Π = {0, 1, x1, x
2
1, . . . , x2, x

2
2, . . . , xn, x

2
n, . . . }.
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1.2 Hochschild homology as a mixed complex

ceeds in two steps. One first constructs out of R a simplicial object Bcyc
• (R)

in C such that Bcyc
n (R) is given by R⊗(n+1) and the structure morphisms

di : R
⊗n → R⊗(n−1) and si : R

⊗n → R⊗(n+1) can be described as follows.

1. If i ≤ n − 2, then di is id⊗i
R ⊗ µ ⊗ id⊗(n−2−i)

R , where µ : R ⊗ R → R is
the multiplication morphism.

2. dn−1 is the postcomposition of the symmetry isomorphism that brings
the last tensor factor to the front with µ⊗ id⊗(n−2)

R .

3. si is idi+1
R ⊗ ι⊗ id⊗(n−i−1)

R , where ι : 1C → R is the unit morphism.

Defining a simplicial object in C, i. e. a functor ∆
op → C, also requires data

for higher morphisms; for a full definition of the functor

Bcyc
• : Alg(C)→ Fun(∆op, C)

see Section 6.1.2. The underlying object of Bcyc(R) is then given by the
geometric realization10 of Bcyc

• (R). The circle action on Bcyc(R) is constructed
by first using cyclic permutations of the tensor factors to upgrade Bcyc

• (R)
to a cyclic object in C, i. e. lift the functor Bcyc

• to a functor to Fun(Λop, C),
where Λ is Connes’ cyclic category. The additional structure encoded by Λ

equips the geometric realization of a cyclic object with the action of the
circle group, so that composing Bcyc

• with the geometric realization functor
for cyclic objects yields a functor Bcyc : Alg(C) → CB T. For a more detailed
account of the construction of Bcyc we refer to Chapter 6.

In the special case C = Sp, the ∞-category of spectra, the functor Bcyc is
denoted by THH, and if C is D(k), the derived∞-category of a commutative
ring k, we denote the functor Bcyc by HHT(−/k) and call HHT(R/k) the
Hochschild homology of R over k. We will from now on fix a commutative
ring k and just write HHT(−) instead of HHT(−/k).

1.2.2 Mixed complexes
Our goal is to determine HHT(R) for specific k-algebras R. However it is

somewhat difficult to write down and manipulate objects of D(k)B T directly,
so we use strict mixed complexes instead. The situation can be summarized
by the following diagram.

Mixedcof

D(k)B T Mixed

γMixed

≃

(1.1)

10So the underlying object of Bcyc(R) is
∣∣Bcyc

• (R)
∣∣ := colim∆op Bcyc

• (R).
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Chapter 1 Introduction

The horizontal functor is an equivalence between D(k)B T and the∞-category
of mixed complexes, which the functor γMixed exhibits as the underlying ∞-
category of the 1-category with weak equivalences Mixedcof of strict mixed
complexes (with cofibrant underlying chain complexes)11.

We begin explaining diagram (1.1) with the 1-category Mixed. A strict
mixed complex consists of an underlying chain complex of k-modules X (with
boundary operator ∂ decreasing degree) together with an additional opera-
tor d, that we sometimes call the differential, increasing degree by 1, and
satisfying the following identities.

d ◦ d = 0 and d ◦ ∂ + ∂ ◦ d = 0

A morphism of strict mixed complexes is a morphism of underlying chain
complexes that commutes with the respective differentials d. The strict mixed
complexes and their morphisms define a 1-category Mixed.

There is also another description of Mixed: It is isomorphic to the category
of left modules in Ch(k) over the differential graded algebra D = k[d]/(d2),
where d is of chain degree 1. Under this isomorphism Mixed ∼= LModD(Ch(k)),
the action by the element d of D corresponds to the differential d. This
suggests the following definition of the ∞-category of mixed complexes.

Mixed := LModD(D(k))

The symmetric monoidal functor12 γ : Ch(k)cof → D(k) exhibiting D(k) as
the underlying ∞-category of Ch(k) then induces a functor

γMixed : Mixedcof →Mixed

where Mixedcof refers to the subcategory of Mixed spanned by those strict
mixed complexes whose underlying chain complex is cofibrant with respect
to the projective model structure13.

We can make Mixedcof into a category with weak equivalences, where a
morphism is a weak equivalence if and only if the underlying morphism of
chain complexes is a quasiisomorphism, and it turns out that γMixed then
exhibits Mixed as the ∞-category obtained from Mixedcof by inverting weak
equivalences. We will discuss both Mixed as well as Mixed in greater detail
in Chapter 4.

The equivalence D(k)B T ≃Mixed is the composition of two different equiv-
alences. There first is an equivalence D(k)B T ≃ LModk⊠T(D(k)), where k⊠T
is the k-linear circle. The remaining equivalence

LModk⊠T(D(k)) ≃ LModD(D(k)) = Mixed
11The reason why we do not just say that D(k)B T is exhibited as the underlying∞-category

of Mixedcof by the composition is that, while both D(k)B T and Mixed carry symmetric
monoidal structures, the equivalence is only shown to be E1-monoidal. We should thus
be careful to distinguish D(k)B T and Mixed whenever E2-monoidal structures may
become relevant.

12The superscript cof refers to the subcategory of cofibrant objects.
13See Fact 4.1.3.1 for a definition.
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1.3 The first step in the proof of the main result

is then induced by an equivalence k⊠T ≃ D in Alg(D(k)). We discuss these
equivalences in detail in Chapter 5.

1.3 The first step in the proof of the main
result

As mentioned before, we define HHMixed to be the composition of HHT with
a specific equivalence D(k)B T ≃Mixed sketched above. Theorem A then sets
the task before us to define a strict mixed complex that is mapped by γMixed
to an object in Mixed that is equivalent to HHMixed(k[x1, . . . , xn]/f).

The proof of Theorem A proceeds in two main steps. The idea of the first
main step is to use that HHMixed is compatible with relative tensor products
and that the quotient k[x1, . . . , xn]/f can be written as a relative tensor
product of polynomial algebras14.

Before going into more detail about why HHMixed is compatible with rel-
ative tensor products, let us first describe the monoidal structure on Mixed.
Given strict mixed complexes X and Y , we define the underlying chain
complex of X ⊗ Y to be the tensor product in Ch(k) of the underlying
chain complexes. The differential d is then defined using the Leibniz rule,
so d(x⊗ y) = d(x)⊗ y + (−1)degCh(x)x⊗ d(y). Taking the perspective that a
strict mixed complex is a left-D-module as described above, this symmetric
monoidal structure arises from a bialgebra structure on D, where the comul-
tiplication maps d to d⊗1+1⊗d. Chapter 3 constructs monoidal structures
on ∞-categories of left modules over bialgebras in a functorial way, so that
we can upgrade γMixed : Mixedcof →Mixed to a monoidal functor.

That HHT is a symmetric monoidal functor essentially follows from the
fact that ∆

op is sifted and the tensor product in D(k) preserves colimits
separately in each variable; we roughly obtain equivalences

∣∣R•+1
∣∣⊗
∣∣S•+1

∣∣ ≃
∣∣R•+1 ⊗ S•+1

∣∣ ≃
∣∣(R⊗ S)•+1

∣∣

that should make plausible that HHT is symmetric monoidal. HHT also pre-
serves sifted colimits, and hence preserves relative tensor products. For more
details see Chapter 6.

To then deduce that HHMixed also preserves relative tensor products it
remains to show that D(k)B T ≃ Mixed preserves relative tensor products.
As an equivalence, it is clear that this functor preserves sifted colimits, but
that it is E1-monoidal is not obvious, relying on a longer argument15 carried
out in Section 5.1, showing that D and k ⊠ T are equivalent not only as
associative algebras in D(k), but as E∞,E1-bialgebras16 .

14This idea was suggested by Thomas Nikolaus.
15The strategy for this argument was suggested by Achim Krause.
16I. e. as commutative and coassociative bialgebras.
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The quotient k[x1, . . . , xn]/f is isomorphic to the relative tensor product

k[x1, . . . , xn]⊗k[t] k

in Alg(LModk(Ab)), where t acts by multiplication with f on k[x1, . . . , xn]
and by multiplication with 0 on k. Under the assumptions made for f in
Theorem A, this ordinary relative tensor product calculates the derived one,
so that we obtain an equivalence

k[x1, . . . , xn]/f ≃ k[x1, . . . , xn]⊗k[t] k

in Alg(D(k)) as well, inducing an equivalence

HHMixed(k[x1, . . . , xn]/f) ≃ HHMixed(k[x1, . . . , xn])⊗HHMixed(k[t]) HHMixed(k)

in Mixed.
To proceed we require a description of HHMixed(k[x1, . . . , xn]) as well as

HHMixed(k) as modules over HHMixed(k[t]) in Mixed. The following conjec-
ture provides such a description in terms of the mixed complexes of de Rham
forms.

Conjecture D. Let n ≥ 0 be an integer and f an element of k[x1, . . . , xn].
Denote by F : k[t] → k[x1, . . . , xn] the morphism of commutative k-algebras
that maps t to f and by G : k[t]→ k the morphism of commutative k-algebras
that maps t to 0. Then there exists a commutative diagram

HHMixed(k) Alg(γMixed)
(
Ω•
k/k

)

HHMixed(k[t]) Alg(γMixed)
(
Ω•
k[t]/k

)

HHMixed(k[x1, . . . , xn]) Alg(γMixed)
(
Ω•
k[x1,...,xn]/k

)

≃

≃

HHMixed(F )

HHMixed(G)

Alg(γMixed)(Ω•
F/k)

Alg(γMixed)(Ω•
G/k)

≃

in Alg(Mixed) such that the horizontal morphisms are equivalences.
We will often refer to the existence of such a commutative diagram for a

specific f as “Conjecture D holds for f”. ♧

Conjecture D will be discussed in Section 7.5, where we will also show that
it holds if n ≤ 1 or n = 2 and 2 is invertible in k.
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1.3 The first step in the proof of the main result

Assuming that Conjecture D holds for f , we then obtain an equivalence17

HHMixed(k[x1, . . . , xn])⊗HHMixed(k[t]) HHMixed(k)

≃ γMixed(k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn))⊗γMixed(k[t]⊗Λ(d t)) γMixed(k)

where xi and t are in degree 0, dxi and d t are in degree 1, and t acts
by multiplication with f on k[x1, . . . , xn] ⊗ Λ(dx1, . . . , dxn) and trivially
on k. As alluded to by the naming, the differential of the respective mixed
complexes maps xi to dxi and t to d t, and is defined on the other elements by
k-linearity and the Leibniz rule, while all three underlying chain complexes
have zero boundary operator.

To obtain a strict mixed complex that represents HHMixed(k[x1, . . . , xn]/f)
we thus have to calculate the derived tensor product in Mixed over k[t]⊗Λ(d t)
of k[x1, . . . , xn]⊗Λ(dx1, . . . , dxn) with k. To do so, we need to replace k with
a sufficiently cofibrant replacement as a module over k[t] ⊗ Λ(d t) in Mixed.
Such a replacement is given by a strict complex A whose underlying graded
k-module is given by the tensor product18

k[t]⊗ Λ(d t)⊗ Λ(s)⊗ Γ(d s)

where t is of degree 0, d t and s are of degree 1, and d s is of degree 2. The
boundary operator ∂ and differential d are k-linear and satisfy the Leibniz
rule, and are thus determined by the following formulas.

∂(t) = 0, ∂(d t) = 0, ∂(s) = t, ∂
(

d s[m]
)
= − d td s[m−1]

d(t) = d t, d(d t) = 0, d(s) = d s[1], d
(

d s[m]
)
= 0

There is an obvious morphism of algebras in Mixed from k[t]⊗Λ(d t) to A that
maps t to t. In Section 8.2 it is shown that this makes A into a sufficiently
cofibrant replacement for k as a left-(k[t] ⊗ Λ(d t))-module to calculate the
derived relative tensor product discussed above as the ordinary relative tensor
product

(k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn))⊗k[t]⊗Λ(d t) (k[t]⊗ Λ(d t)⊗ Λ(s)⊗ Γ(d s))

∼= k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)⊗ Λ(s)⊗ Γ(d s) =: Xf

in Mixed. We thus obtain an equivalence

HHMixed(k[x1, . . . , xn]/f)

≃ γMixed(k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)⊗ Λ(s)⊗ Γ(d s))

in Mixed. The boundary operator ∂ and differential d satisfy the Leibniz rule
on Xf , and ∂(s) = f .
17The notation Λ is used for the exterior algebra, see Section 2.3 (29).
18The notation Γ is used for the divided power algebra, see Section 2.3 (30).
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1.4 The second step in the proof of the main
result

With the strict mixed complex Xf as above we already have a reasonably
small strict model for HHMixed(k[x1, . . . , xn]/f), but we still want to identify
a smaller, quasiisomorphic, sub-mixed-complex. In particular, Xf is given
by k[x1, . . . , xn] in degree 0, while the homology is k[x1, . . . , xn]/f in degree
0. We will thus try to find a small sub-mixed-complex quasiisomorphic to
Xf such that the k-module in degree 0 is isomorphic – as a k-module – to
k[x1, . . . , xn]/f .

Before we get started with this we first describe one of the assumptions we
need to make on f , which is that f needs to be monic with respect to a chosen
monomial order. A monomial order is a well-order � on the set of monomials
in x1, . . . , xn, or equivalently on Zn≥0, such that #–a �

#–

b implies #–a+ #–c �
#–

b + #–c

for #–a ,
#–

b , #–c ∈ Zn≥0. From now on we fix a monomial order �. We can then
define f to be monic (with respect to �) if the biggest (with respect to �)
monomial appearing19 in f has coefficient 1. The degree of f (with respect to
�), denoted by deg�(f), is the element of Zn≥0 that is maximal with respect
to � such that the coefficient of xdeg⪯(f) in f is non-zero.

If f is monic, then it is possible to divide polynomials in x1, . . . , xn by f

with remainder. Specifically, if P is an element of k[x1, . . . , xn], then there
is a unique decomposition of P as P = q1f (P )f + r0f (P ) such that r0f (P ) is
f -reduced, meaning that only monomials that are not divisible by the lead
monomial of f may appear in r0f (P ). For more details on these notions for
multivariable polynomials see Section 9.1.

One perspective on the just mentioned decomposition is that it means
that there is a unique f -reduced representative in k[x1, . . . , xn] for every el-
ement of k[x1, . . . , xn]/f . We can thus define a section ϱ (as morphisms of
k-modules) of the quotient morphism p : k[x1, . . . , xn] → k[x1, . . . , xn]/f by
defining ϱ(p(P )) to be r0f (P ). Along ϱ we can thus identify k[x1, . . . , xn]/f
as a k-module with the k-submodule of k[x1, . . . , xn] spanned by the reduced
polynomials, i. e. Im(ϱ).

We now start with the sub-graded-k-module Im(ϱ) of Xf , and discuss what
additional generators we need to add to our sub-graded-k-module to satisfy
the following three conditions.

(a) It needs to be closed under ∂, to define a subcomplex.

(b) It needs to be closed under d, to define a sub-mixed-complex.

(c) The inclusion into Xf must be a quasiisomorphism.
As we require closedness under d, we first enlarge to the sub-graded-k-

module
Im(ϱ)⊗ Λ(dx1, . . . , dxn)

19That is, having non-zero coefficient.
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1.4 The second step in the proof of the main result

of Xf . Now there are however elements that are multiples of d f and which
are cycles but not boundaries, while they are boundaries in Xf . In order
to achieve (c) we will thus need to add elements whose boundary are the
relevant multiples of d f . Our first attempt might be to consider the sub-
graded-k-module

Im(ϱ)⊗ Λ(dx1, . . . , dxn)⊗ k · {1, d s[1]}

as ∂(− d s[1]) = d f . As we have now created new multiples of both d f as well
as d s[1] that will be cycles but not boundaries as needed for (c), we actually
keep going and consider the sub-graded-k-module

Im(ϱ)⊗ Λ(dx1, . . . , dxn)⊗ Γ(d s)

of Xf .
Let us turn towards condition (a) and check whether this could be a sub-

complex of Xf . For this, let R be an element of Im(ϱ). Then we obtain

∂
(
R d s[1]

)
= −R d f = −q1f (R d f)f − r0f (R d f)

For this to lie in our provisional sub-graded-k-module we need to have that
q1f (R d f) = 0, but unfortunately this will in general not be the case. To
fix this, we should then modify R d s[1] by adding another generator whose
boundary will be q1f (R d f)f . Such an element is given by sq1f (R d f), which
leads us to the following definition. We define J0 as the set

J0 :=
{ (

#–

i , #–ϵ ,m
)
∈ Zn≥0 × {0, 1}

n × Z≥0

∣∣∣ x
#–

i is f -reduced
}

and for (
#–

i , #–ϵ ,m) an element of J0 we define

e #–

i , #–ϵ ,m := x
#–

i dx #–ϵ d s[m] + sq1f

(
d f · x

#–

i dx #–ϵ
)

d s[m−1]

as an element of Xf . We can then define Xe
f,0 to be the sub-graded-k-module

of Xf spanned by the elements of the form e #–

i , #–ϵ ,m for (
#–

i , #–ϵ ,m) in J0.
It turns out that Xe

f,0 indeed satisfies conditions (a) and (c), but not in
general (b). Thus the chain complex Xe

f,0 does represent the underlying object
in D(k) of HHMixed(k[x1, . . . , xn]/f) (this reproves the main result of [BACH]
as long as Conjecture D is satisfied for f), but we need to make further
assumptions to ensure that Xe

f,0 is a sub-mixed-complex of Xf .
In the formulation of Theorem A we use a sufficient condition for f that

is very easy to check and that ensures that Xe
f,0 is a sub-mixed-complex of

Xf . The strict mixed complex used in the statement is then obtained by
merely renaming the basis of Xe

f,0, where the element e #–

i , #–ϵ ,m of Xe
f,0 corre-

sponds to the element p(x
#–

i ) dx #–ϵ t[m] in the strict mixed complex described
in Theorem A.

11



Chapter 1 Introduction

1.5 Overview over the chapters of this thesis
This thesis tries to give a rigorous proof of Theorem A, so it was attempted

to include a proof for every needed statement for which no proof could be
found in the literature. By necessity this means that many statements and
proofs will already have been known to the experts, and some may even
have already appeared, spread throughout the literature. This holds par-
ticularly with regards to the material contained in the appendices, where
we collect various required statements on various aspects of working in an
∞-categorical setting. We hope that this will help fill some gaps in the litera-
ture. A reader primarily interested in applying the result and already familiar
with Hochschild homology and mixed complexes may thus wish to only read
Chapter 9 containing the statement of the result and the notation and notions
necessary to understand and apply it, as well as Chapter 10, which contains
an example worked out in detail.

The material is ordered linearly; proofs in the appendices only depend
on statements occurring earlier in the appendices, and proofs in the main
text only depend on statements occurring earlier in the main text or in the
appendices.

We now briefly summarize the content of the chapters of this thesis. Each
chapter, and most sections and subsections, also begin with an introduction,
so we refer there for more details.

In Chapter 2 we list and explain the notation and conventions that we
use, and discuss what we assume the reader is familiar with.

In Chapter 3 we construct monoidal structures on ∞-categories of left
modules over bialgebras. If C is a symmetric monoidal 1-category and A a
(associative, coassociative) bialgebra in C, then the category of left-A-modules
LModA(C) can be given a monoidal structure again, constructed from the
coalgebra structure of A20. The underlying object in C of the tensor product
of two left-A-modules X and Y is the tensor product in C of the underlying
objects, with action of A defined via the composition

A⊗X ⊗Y
∆⊗idX⊗idY−−−−−−−−→ A⊗A⊗X ⊗Y

idA⊗τ⊗idX−−−−−−−→ A⊗X ⊗A⊗Y → X ⊗Y

where ∆ is the comultiplication, τ is the symmetry isomorphism, and the last
morphism is the tensor product of the action morphisms of A on X and Y .

In Chapter 3 we construct such monoidal structures on LModA(C), where C
is now allowed to be an E2-monoidal ∞-category, and A an E1,E1-bialgebra
in C. Our construction will be functorial in both A as well as C and thus allow
us to compare Mixed, Mixed, and LModk⊠T(D(k)), which are all monoidal
∞-categories arising via this construction.

In Chapter 4 we define the 1-category Mixed and ∞-category Mixed. Be-
yond what was already mentioned in Section 1.2.2, we also discuss model
20This monoidal structure should not be confused with the monoidal structure one can

define using relative tensor products over A if A is commutative.
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structures on both Mixed and Alg(Mixed), show that Mixed and Alg(Mixed)
are the respective underlying ∞-categories, and put the classical notion of
strongly homotopy linear morphisms of strict mixed complexes into this con-
text. That every algebra in Mixed has a strict model will play a role in
Chapter 7, when we discuss HHMixed of polynomial algebras as an object of
Alg(Mixed).

In Chapter 5 we construct a monoidal equivalence between D(k)B T and
Mixed, as discussed in Section 1.2.2 above.

In Chapter 6 we define Hochschild homology, both in its modern incar-
nation as a symmetric monoidal functor of ∞-categories

HHT : Alg(D(k))→ D(k)B T

as well as the classical model for Hochschild homology given by the standard
Hochschild complex. In particular, we discuss how the standard Hochschild
complex represents HHMixed as a mixed complex (by [Hoy18]) as well as HH
of commutative rings as an object of CAlg(D(k)).

In Chapter 7 we show that the mixed complex of de Rham forms is
a model for HHMixed of polynomial algebras in at most 2 variables as an
object in Alg(Mixed). Important input for this will be the comparison results
discussed in Chapter 6 as well as the strictification result for algebras in
Mixed from Chapter 4. We also discuss compatibility with morphisms of
polynomial algebras, by formulating Conjecture C and Conjecture D, and
proving them in some cases.

In Chapter 8 we perform the first step of the proof of Theorem A that
we discussed in Section 1.3 above. The main result of Chapter 8 will be
applicable in more generality, providing a strict mixed complex represent-
ing HHMixed(R/(y1, . . . , yn)) for R a commutative algebra in Ch(k), and
y1, . . . , yn elements of R in degree 0, providing that the requirements of
Proposition 8.3.0.1 are met, and we in particular are given a strict model
of HHMixed(R) with sufficient structure.

Finally, we put everything together in Chapter 9. This chapter introduces
the necessary notions for multivariable polynomials and carries out the second
step of the proof of Theorem A that we discussed in Section 1.4 above.

For actual applications, we expect that the user of Theorem A will likely
need to further simplify the resulting strict mixed complex. In Chapter 10
we thus discuss the example f = x21 − x2x3 in detail21, identifying an even
smaller strict model for HHMixed(Z[x1, x2, x3]/f) than the one given by The-
orem A (conditional on Conjecture D holding for f). We take care to not only
prove the end result, but to describe the steps in the order and manner that
one would take them when trying to come up with such a simplification, and
21As this is an example in three variables, Theorem A only holds for f conditional on

Conjecture D. However, it is an interesting example with which we can demonstrate
the combinatorial notions used to formulate the result of Theorem A, and how the
result can be further manipulated.
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Chapter 1 Introduction

hope that this example will help the reader to similarly simplify the result of
Theorem A for other concrete polynomials.

The appendices contain various material relating to working with various
notions in an ∞-categorical setting that do not have a very strong thematic
relation to the main content of this thesis, apart from being needed in it.

Appendix A and Appendix D contain some statements on basic no-
tions of ∞-category theory, such as mapping spaces, undercategories, and
adjunctions. The reason this material is split up into two appendices is in
order to conserve linearity of the material in the appendices, as some mate-
rial from Appendix A is needed in the intermediate appendices, from where
Appendix D needs some results.

In Appendix B we discuss the notions of (fully) faithful functors of
∞-categories as well as monomorphisms in Cat∞.

Appendix C collects a number of statements involving (co)cartesian fi-
brations. In particular, we discuss for functors of∞-categories F : C → Cat∞
the property of the cocartesian fibration classified by F that corresponds to
C having all products and F preserving them.

In Appendix E we discuss various statements that relate to ∞-operads
and their ∞-categories of algebras, such as the induced ∞-operad structures
on ∞-categories of algebras, free algebras, and relative tensor products.

Appendix F discusses cartesian symmetric monoidal ∞-categories. If C
is a cartesian symmetric monoidal ∞-category and O an ∞-operad, then
the ∞-categories of O-algebras and O-monoids in C are equivalent. A large
part of Appendix F is concerned with iterating this, i. e. applying AlgO′ or
MonO′ to AlgO(C) or MonO(C) and comparing the resulting ∞-categories.
The reason is that we not only need to know that there exist some equiva-
lences between the various∞-categories, but require concrete descriptions of
specific equivalences.

1.6 Future directions
In this section we present some questions left open by this thesis and direc-

tions for future work. The most obvious open problem is the conjecture our
main result depends on.

(1) Conjecture D is proven in Chapter 7 only for n ≤ 2 variables, in the
case n = 2 requiring an assumption on k. Showing this conjecture for
polynomials in more variables would extend Theorem A.

The next possibility for future work we would like to mention is the appli-
cation to calculations of algebraic K-theory.

(2) Let k be a perfect field of positive characteristic, n a positive inte-
ger, and f a polynomial in n variables satisfying the conditions of
Theorem A. One can then try to determine the structure of the K-
theory groups K∗(k[x1, . . . , xn]/f, (x1, . . . , xn)) using the techniques of

14



1.6 Future directions

[Spe20], [Spe21], and [HN20], using the strict mixed complex represent-
ing HHMixed(k[x1, . . . , xn]/f) as the starting point.
The project that became this thesis was in fact started with the goal
of determining the structure of

K∗(k[x1, . . . , xn]/(x1 · · ·xn), (x1, . . . , xn))

i. e. of the K-theory groups of the union of hyperplanes. Another first
test case to apply this to might be the cone x21 = x2x3, i. e. trying to
determine the structure of K∗(k[x1, . . . , xn]/(x

2
1 − x2x3), (x1, x2, x3)).

To obtain new unconditional results both of these would require first
extending the validity of Theorem A by proving Conjecture D for the
three-variable case.

There are also a number of questions directly left open in this thesis.

(3) In [Spe20] and [HN20] it is important that THH and HHT have a com-
patible decomposition as a sum, which arises from a grading on the
polynomial ring with respect to which the polynomial divided out is
homogeneous.
Before tackling (2) it will therefore be important to upgrade Theorem A
to take into account such a grading.

(4) In Chapter 5 we show that there is an E1-monoidal equivalence between
D(k)B T and Mixed. Does there exist an E2-monoidal equivalence? One
can also add some additional conditions, such as asking for a commu-
tative triangle

D(k)B T Mixed

D(k)

≃

of E2-monoidal functors, with the horizontal one being an equivalence,
and where the two other functors are the forgetful ones.

(5) Theorem A is shown in Proposition 9.5.2.3, where, apart from Conjec-
ture D needing to hold for f , the condition is actually that f needs
to be monic and satisfy logdimf (d f) ≤ 1, rather then the condition
used in the the formulation of Theorem A above, which by Corol-
lary 9.4.2.6 implies logdimf (d f) ≤ 1. This leaves the question whether
Corollary 9.4.2.6 is sharp. To be more precise, suppose f 6= 1 is a poly-
nomial that is monic with respect to a monomial ordering � and such
that logdimf (d f) ≤ 1. Then does it hold for every #–

i ∈ Zn≥0 such that
the coefficient of the monomial x

#–

i in f is non-zero that if 1 ≤ j ≤ n

and deg�(f)j 6= 0, then #–

i j ≤ deg�(f)j?
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(6) A related question to (5) is what kind of values logdimf (d f) can take.
In particular, is there a monic polynomial f such that logdimf (d f) is
finite, but bigger than 1?

(7) Is there a class of monic polynomials f with logdimf (d f) > 1 and
for which Xe

f,0 is not a sub-mixed-complex of Xf , but there is some
other, intermediate sub-mixed-complex that is also equivalent to Xf?
For example it may be that there exists such a sub-mixed-complex for
some f in which the power of f is bounded22,23, unlike in X.

It is possible that logdimf (d f) has already been studied (if so, likely under
a different name), so perhaps there already exist answers to (5) and (6) in
the literature.
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Chapter 2

Notation and conventions

2.1 Prerequisites
We will work extensively in ∞-categorical settings, and thus reading this

thesis will likely require a solid foundation in the theory of ∞-categories and
higher algebra as developed in [HTT] and [HA]. We will however try to give
references for any major statements that we use, and we refrain from using
statements that are well-known to experts without giving a proof ourselves if
no citable reference could be found in the literature – many such statements
are thus collected in the appendices.

We assume that the reader is familiar with the basics of (homological)
algebra, as well as the theory of model categories, for which we use [Hov99]
and [HTT, A.2] as our main references. Wherever terminology differs between
[Hov99] and [HTT, A.2], we follow the terminology of [HTT, A.2].

In contrast, it is not strictly necessary to have prior exposure to Hochschild
homology or related concepts, as all the necessary definitions will be provided.

2.2 On how this thesis is structured
To make it easy to reference parts of this thesis we make liberal use of

section subdivisions and encapsulate a large part of the material in various
environments such as remarks, constructions, propositions, proofs, and simi-
lar.

To mark the end of such an environment we use several different symbols,
which appear on the end of the last line of the respective environment, i. e.
rightmost on the page. A square □ is used to denote the end of a proof, as
is usual. For statements that come with a proof we use a heart ♥, and for
statements that could come with a proof (facts, conjectures, etc.) but do not
we use a club ♧. Other environments, such as definitions, constructions, etc.
are ended with a diamond ♦. The author first saw the idea to use card suits
for environment end markers in Tashi Walde’s Master’s thesis.

The only types of mathematical statements with proof that we distinguish
in the text are corollaries (for statements whose proof is a direct specialization
of previous results) and propositions (for everything else). The only exception
is Theorem A, which is stated in the introduction.
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Chapter 2 Notation and conventions

2.3 Various notations and conventions

In this section we state various conventions and notation that will be used
throughout the thesis.

(1) We fix a commutative ring k for the entire thesis. If X and Y are
k-modules, then X⊗Y refers to the tensor product over k unless some-
thing else is explicitly stated.

(2) With regards to ∞-categories, we try to work as model independently
as possible, so by an ∞-category we mean an object in the (∞, 2)-
category of∞-categories Cat∞, not a representative in a specific model,
such as quasicategories1. In particular, if we e. g. talk about a pullback
of ∞-categories, then this refers to a pullback in the ∞-category of
∞-categories, not to a (categorical) pullback of quasicategories (simpli-
cial sets).

(3) We denote by Cat∞ the ∞-category of ∞-categories. If C and D are
∞-categories, then there exists an ∞-category of functors from C to D,
denoted by Fun(C,D). We will thus also consider Cat∞ as an (∞, 2)-
category, though we will not require a general theory of (∞, 2)-cate-
gories.

(4) We denote by Cat the (∞, 2)-category2 of 1-categories3, as a full sub-
category of Cat∞. We will thus not use any notation to indicate the
inclusion4 of Cat into Cat∞; if C is a 1-category, then C is in particular
an ∞-category.

(5) We use different fonts to visually distinguish between 1-categories, ∞-
categories, quasicategories, and other kinds of objects. Named 1-cat-
egories (like Ring rather than C) use the same font as unnamed 1-
categories, for named ∞-categories we use a different calligraphic font
than for unnamed ∞-categories.

We illustrate this with the following table.

1For the implications for (co)cartesian fibrations see the introduction to Appendix C.
2By [HTT, 2.3.4.8] Cat is actually a (2, 2)-category.
3For us, 1-categories are ∞-categories with discrete mapping spaces, compare [HTT,

2.3.4.1, 2.3.4.5, and 2.3.4.18].
4If we model ∞-categories by quasicategories, then this inclusion is given by the nerve

construction, see [HTT, 1.1.2.6].
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Type of object Font description Examples
1-category sans-serif C, D, E
Named 1-category sans-serif Cat, Ch(k), Mixed, sSet
∞-category calligraphic C, D, E
Named ∞-category calligraphic Cat∞, D(k), Mixed, S
Quasicategories5 typewriter C, f, p
Other serif and Greek C, Φ, α, a

(6) The following table collects notation for some named 1-categories.
Notation Description / ∞-category of Reference
Set sets
Fin finite sets
sSet simplicial sets [HTT, A.2.7]
Top nice6topological spaces [Hov99, 2.4.21]
Ab abelian groups
Ch(k) chain complexes of k-modules Definition 4.1.1.1
PoSet partially ordered sets Definition 6.1.1.2
ZPoSet partially ordered sets with Z-action Definition 6.1.1.2
Mixed strict mixed complexes Definition 4.2.1.2

(7) The following table collects notation for some named ∞-categories.
Notation Description / ∞-category of Reference
S spaces [HTT, 1.2.16]
Sp spectra [HA, 1.4.3]
D(k) derived category of k Prop. 4.3.2.1 (1)
Pr presentable ∞-categories, as a full

subcategory of Cat∞
[HTT, 5.5.0.1]

PrL presentable ∞-categories, mor-
phisms are functors preserving all
small colimits, as a subcategory of
Pr

[HTT, 5.5.3.1]

Mixed mixed complexes Notation 4.4.0.2

(8) We generally follow the notation used in [HA] for ∞-operads that we
use, though with a different font to be consistent with (4) and (5).

5Including morphisms.
6It is not really relevant for us if one takes k-spaces, compactly generated topological

spaces, or another variant. What is important for us is that geometric realization and
the singular simplicial set functor define a Quillen equivalence as follows.

sSet Top
|−|

Sing

⊣
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Chapter 2 Notation and conventions

Notation Notation
in [HA]

Name Reference

Comm
or Fin∗

Comm
or Fin∗

commutative ∞-operad [HA, 2.1.1.18]

Assoc Assoc associative ∞-operad [HA, 4.1.1.3]
Triv Triv trivial ∞-operad [HA, 2.1.1.20]
LM LM ∞-operad of left modules [HA, 4.2.1.7]
En En ∞-operad of little n-

cubes
[HA, 5.1.0.3
and 5.1.1.6]

By [HA, 5.1.0.7] there is an equivalence of ∞-operads E1 ≃ Assoc. We
will identify these two∞-operads along this equivalence and use E1 and
Assoc as interchangeable notation. The ∞-operad E∞ is by definition
equal to Comm.

(9) We sometimes use parenthesis to cover multiple cases at the same time
to avoid repetitious language. For example we might write

X is adjective1 (adjective2, adjective3) if it satisfies property1

(property2, property3).
which is to be interpreted as

X is adjective1 if it satisfies property1. Furthermore, X is
adjective2 if it satisfies property2. Finally, X is adjective3 if
it satisfies property3.

A variant version of this convention is
X is (adverb) adjective if it satisfies property1 (property2).

which is to be read as follows.
X is adjective if it satisfies property1. Furthermore, X is ad-
verb adjective if it satisfies property2.

(10) If C is an ∞-category, then we use the notation

MapC(−,−) : C
op × C → S

for the mapping space functor. Similarly, if C is a (Ab-enriched, or
LModk(Ab)-enriched) 1-category, then we denote by MorC (by HomC)
the morphism set functor (Hom functor) with codomain Set (Ab and
LModk(Ab), respectively). If C is an object of C, then we use use
AutC(C) as the notation for the automorphism space of C, i. e. the
subspace of MapC(C,C) spanned by equivalences C → C.

(11) We use − as notation for an unnamed argument in order to describe
functions (and functors etc.) without introducing unnecessary notation.
For example, instead of defining the function that maps a real number
to its square by

f : R→ R, f(x) = x2
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2.3 Various notations and conventions

and then using f in some place where a function R → R is expected,
we would just use the following notation.

−2

If there is more than one argument we may subscript −, such as in the
following example.

(−1 +−2)
2
: R× R→ R

Finally, we also use • in a similar manner for “inner” functions. For
example

•− : Z≥1 → MorSet(R,R)

would refer to the map that sends n to the map that sends x to xn.

(12) Let C be a model category with class of weak equivalences W . Then we
denote by HoW (C) the homotopy category of C in the model-category
sense. If C is an ∞-category, then we denote by Ho(C) the homotopy
category of C as defined in [HTT, 1.2.3]. For the relationship between
these two definitions, see Proposition A.1.0.1.

(13) Let C be a model category. Then we denote by Ccof (by Cfib) the full
subcategory of cofibrant (fibrant) objects of C. The model categories
we consider admit functorial (co)fibrant replacement functors, which
we will denote as follows.

−cof : C→ Ccof and −fib : C→ Cfib

(14) Let C be an ∞-category admitting products. If X and Y are objects
of C and X × Y a product object of X and Y , then we denote by
pr1 : X × Y → X and pr2 : X × Y → Y the morphisms that exhibit
X × Y as a product of X and Y .
If f1 : X → Y1 and f2 : X → Y2 are two morphisms in C, then we denote
by

f1 × f2 : X → Y1 × Y2

the induced morphism determined by equivalences pri ◦ (f1 × f2) ≃ fi.
If f1 : X1 → Y1 and f2 : X2 → Y2 are two morphisms in C, then we will
also denote by

f1 × f2 : X1 ×X2 → Y1 × Y2

the induced morphism between the products, which is determined by
equivalences pri ◦ (f1× f2) ≃ fi ◦pri. While this could in principle lead
to confusion, we will always make clear in the context which of the two
interpretations are intended.
Analogous notation is used for products over more factors, possibly
indexed by a set.
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Chapter 2 Notation and conventions

(15) We say that a functor of ∞-categories detects something7 if it both
preserves and reflects it.

(16) Let F : C → D be a functor of ∞-categories and E another ∞-category.
Then we sometimes denote by F∗ the induced functor

Fun(E , F ) : Fun(E , C)→ Fun(E ,D)

and by F ∗ the following induced functor.

Fun(F, E) : Fun(D, E)→ Fun(C, E)

We also use this notation in variant cases, such as induced functors
on subcategories of functor categories, or ∞-categories of functors over
another ∞-category.

(17) Let p : O⊗ → Fin∗ be an ∞-operad. We will often just say that O is
an ∞-operad, dropping the ⊗ superscript, or even that F : O → O′

is a morphism of ∞-operads when O′ is another ∞-operad8. If we are
referring to O⊗ as an ∞-category, for example talking about an object
of O⊗, then we will however never drop the superscript. To make this
convention consistent, the total ∞-category of a functor to Fin∗ that
we think of as an ∞-operad will always be denoted by a notation that
includes a superscript ⊗. We hope that this will not lead to confusion in
practice, but will instead make many terms more concise and readable.

(18) Consistent with (17), if O, O′, and O′′ are ∞-operads, then we use
the notation BiFunc(O,O′;O′′) for the ∞-category of bifunctors of
∞-operads that is denoted by BiFunc(O⊗,O′⊗;O′′⊗) in [HA] – see
[HA, 2.2.5.3].

(19) If O and C are ∞-operads, then we denote by AlgO(C) the ∞-category
of ∞-operad morphism from O to C 9. If O = Assoc we will also write
Alg(C) instead, and if O = Comm we will also write CAlg(C).
Similarly, if O = Assoc we will just say “monoidal” and if O = Comm
we will say “symmetric monoidal” instead of “O-monoidal”.

(20) For n ≥ 1 an integer and 1 ≤ i ≤ n we denote by ρi : 〈n〉 → 〈1〉 the
morphism of Fin∗ defined in [HA, 2.0.0.2], i. e. given by the following
formula.

ρi(j) :=

{
1 if i = j

∗ otherwise
7For example equivalences or colimits.
8Where we of course already use this convention, so implicitly we introduced a func-

tor O′⊗ → Fin∗ exhibiting O′⊗ as an ∞-operad, and F is actually to be a functor
O⊗ → O′⊗ over Fin∗.

9See [HA, 2.1.2.7] We will also use the related notation introduced in [HA, 2.1.3.1].
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2.3 Various notations and conventions

(21) Let O be an ∞-operad. Then we use ⊕ as notation for the operation
defined and discussed in [HA, 2.1.1.15 and 2.2.4.6]. In particular, if Xi

is an object in O for 1 ≤ i ≤ n, then X = X1 ⊕ · · · ⊕ Xn will be an
object in O⊗

〈n〉, coming with inert morphisms X → Xi in O⊗ lying over
ρi, or equivalently equivalences ρi!(X) ≃ Xi.
If we introduce an object X ∈ O⊗

〈n〉 as X ≃ X1⊕· · ·⊕Xn for Xi objects
of O, then we implicitly assume that X comes with inert morphisms
X → Xi lying over ρi.

(22) If p : C → D is a cocartesian fibration and f : X → Y a morphism
in D, then we usually denote the induced morphism on fibers10 (see
[HTT, 5.2.1]) by f! : CX → CY if the cocartesian fibration p is clear
from context, and otherwise as fp! .

(23) Let C be an ∞-category. A subcategory of C is an ∞-category C′ to-
gether with a monomorphism11 ι : C′ → C in Cat∞. Up to equivalence
a subcategory of C is given by specifying a replete subcategory of Ho C,
see Section B.6.

(24) Let C, D, and E be ∞-categories. Then we denote by

−̂ : Fun(C × D, E) ≃
−→ Fun(C,Fun(D, E))

and
q− : Fun(C,Fun(D, E)) ≃

−→ Fun(C × D, E)

the equivalences arising from the ×-Fun-adjunction12. We will use the
same notation for the equivalences

−̂ : Fun(D × C, E) ≃
−→ Fun(C,Fun(D, E))

and
q− : Fun(C,Fun(D, E)) ≃

−→ Fun(D × C, E)

and will make clear from context which of the two variants is meant.

(25) Let C be an ∞-category. We denote by CFib(C) the subcategory of
(Cat∞)/C spanned by the cartesian fibrations and morphisms of carte-
sian fibrations13. Similarly, we denote by coCFib(C) the subcategory
of (Cat∞)/C spanned by the cocartesian fibrations and morphisms of
cocartesian fibrations.

10The notation CX refers to the fiber of p over X, i. e. to the pullback object {X} ×D D
of p along the inclusion of {X}.

11See Appendix B for more on monomorphisms in Cat∞.
12So if F : C × D → E is a functor, then F̂ : C → Fun(D, E) is its adjoint.
13See Appendix C for more on (co)cartesian fibrations.
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Chapter 2 Notation and conventions

(26) Let C be an ∞-category. We denote by

Gr : Fun(C,Cat∞)→ coCFib(C)

the Grothendieck construction that maps a functor F : C → Cat∞ to
the cocartesian fibration classified by F .

(27) Let S be a set. Then an S-graded k-module is an S-tuple of k-modules,
or equivalently a functor S → LModk(Ab) from the discrete category
with set of objects S to the category of k-modules.
If (Xs)s∈S is an S-graded k-module, then we can form a k-module
X :=

⊕
s∈S Xs, but one should not confuse the k-module X with the

S-graded k-module (Xs)s∈S , for example in the context of (28) directly
below.

(28) The category of Z-graded k-modules carries a symmetric monoidal
structure defined just like for chain complexes, in which the symme-
try isomorphism contains signs – see Definition 4.1.2.1. Commutative
algebras in this symmetric monoidal category will then of course in-
volve signs in their commutativity relations, so if x and y are elements
of a commutative Z-graded k-algebra A of degrees n and m, then this
implies that x · y = (−1)nmy · x. In some places in the literature this
is referred to as “graded commutativity”. However, as the mentioned
symmetric monoidal structure on Z-graded k-modules is the only one
we define, there is no other, “non-graded commutativity” one could
consider, so we do not use this terminology.

(29) Let M be a Z-graded k-module that is concentrated in odd degrees.
Then the tensor algebra T (M) (or Tk(M) if we want to make k explicit)
of M is defined as

T (M) :=
⊕

i≥0

M⊗i

where the tensor product of Z-graded k-modules is as in (28). One can
define a multiplication on T (M) by k-linearly extending the formula

(m1 ⊗ · · · ⊗mi) · (m
′
1 ⊗ · · · ⊗m

′
j) := m1 ⊗ · · · ⊗mi ⊗m

′
1 ⊗ · · · ⊗m

′
j

for i, j ≥ 0 and m1, . . . ,mi,m
′
1, . . . ,m

′
j elements of M . This makes

T (M) into a Z-graded k-algebra, with unit given by the element 1 of
k =M⊗0.
We define the exterior Z-graded k-algebra generated by M , denoted by
Λ(M) or Λk(M), to be the quotient of T (M) by the two-sided ideal
generated by elements of the form m ·m for m ∈M14.

14This definition differs from the one given in [Lod98, A.1] if 2 is not invertible in k. In
those cases the usage of the definition of [Lod98, A.1] is however incorrect with regards
to the results we cite from [Lod98] relating to the mixed complex of de Rham forms –
the definition we give here is the correct one. In particular, the proof of [Lod98, 3.2.2]
implicitly assumes the definition we have given here.
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2.3 Various notations and conventions

The composition of the inclusion15 of M into T (M) with the quotient
morphism to Λ(M) is an injection, so that we can consider M as a
sub-Z-graded-k-module of Λ(M), and elements of M generate Λ(M)
multiplicatively. For m and m′ elements of M it holds in Λ(M) that

m ·m′ = (m+m′) · (m+m′)−m′ ·m−m ·m−m′ ·m′ = −m′ ·m

so that Λ(M) is in fact a commutative Z-graded k-algebra.
Finally, let us note that we will also use the notation Λ(x1, . . . , xn) as
a shorthand for Λ(k · {x1, . . . , xn}).

(30) For an even integer n we define a commutative Z-graded k-algebra Γ(x),
called the divided power Z-graded k-algebra generated by the variable
x in degree n as follows.
The underlying Z-graded k-module is given by

Γ(x) := k · {1, x[1], x[2], . . . }

with x[i] of degree i · n, where we let x[0] = 1. A multiplication on Γ(x)
is defined by k-linearly extending the formula

x[i] · x[j] :=

(
i+ j

i

)
x[i+j]

for i, j ≥ 0, which makes Γ(x) into a commutative Z-graded k-algebra
with multiplicative unit 1.
We furthermore define

Γ(x1, . . . , xn) := Γ(x1)⊗ · · · ⊗ Γ(xn)

for all xi of even degree.

(31) Elements for Zn≥0 are tuples of nonnegative integers (a1, . . . , an). We
will often write such a tuple as #–a , and use #–ei as notation for the
tuple (0, . . . , 0, 1, 0, . . . , 0), where the single 1 is in the i-th slot. For
#–ϵ ∈ {0, 1}n we furthermore make the following definition.

| #–ϵ | =
n∑

i=1

ϵi

We use analogous notation for tuples indexed by a set set other than
{1, . . . , n} for a natural number n.

15This refers to the inclusion of M as the summand M⊗1.
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Chapter 2 Notation and conventions

(32) For #–a ∈ Zn≥0 we will write x
#–a for the monomial xa11 · · ·xann in the

polynomial algebra k[x1, . . . , xn]. Vectors in Zn≥0 are added pointwise,
and we have e. g. x #–a+

#–

b = x
#–a · x

#–

b .
We use analogous notation for exterior and divided power algebras.
Concretely, we will for #–ϵ ∈ {0, 1}n use the notation dx #–ϵ to refer to

dx #–ϵ := dxϵ11 · · · dxϵnn

and not to d(x #–ϵ ). One can remember this as the convention that d
binds stronger than exponentiation with a vector.
Similarly, for #–

i ∈ Zn≥0 we define

x[
#–

i ] := x
[i1]
1 · · ·x[in]n

in the divided power algebra Γ(x1, . . . , xn).

(33) If f ∈ k[x1, . . . , xn] is a polynomial and #–

i ∈ Zn≥0 a vector, then we
let f #–

i ∈ k be the coefficient of the monomial x
#–

i in f , i. e. the unique
decomposition of f as a k-linear combination of monomials is as follows.

f =
∑

#–

i ∈Zn≥0

f #–

i x
#–

i

(34) If n ≥ 0 is an integer, then we denote by Σn the symmetric group on n

elements; it is the group of bijections of the set {1, . . . , n}, also called
permutations of {1, . . . , n}. It will sometimes be convenient to extend
an element σ of Σn to a bijection of {0, . . . , n} by setting σ(0) = 0,
which we will do implicitly. If n′ > n, then there exists an inclusion
of Σn into Σn′ given by extending an element σ of Σn by σ(i) = i for
n < i ≤ n′. We also usually not distinguish in notation between σ as
an element of Σn and its extension as an element of Σn′ .
Given a permutation σ on n elements and a subset S of {1, . . . , n}, we
say that σ preserves the ordering of S if for every pair of elements i < i′

in S it holds that σ(i) < σ(i′). We also use this terminology for other
injective maps between totally ordered sets. Let 1 ≤ i, j ≤ n. Then
there is a unique element of Σn that maps i to j and preserves the
ordering of {1, . . . , i − 1, i + 1, . . . , n}. We will call this element σi→j .
Note that if n′ > n, then the extension of σi→j to a permutation of n′

elements is again of the same form, which justifies that n is not part of
the notation.
We define σcyc,n to be the element σn→1 of Σn. If n is clear from context
we will also denote σcyc,n by σcyc. We denote by Cn the subgroup of
Σn generated by σcyc,n.
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2.4 Size issues

We also need a manner of restricting permutations. Let σ be an element
of Σn, and S a subset of {1, . . . , n}. Denote the set σ(S) by S′. Then
there are unique order-preserving bijections ϕ : {1, . . . , |S|} → S and
ψ : S′ → {1, . . . , |S|}. We define rS(σ) to be the element of Σ|S| that
is given by the composition ψ ◦ σ

∣∣S′

S
◦ ϕ. This defines a map of sets

rS : Σn → Σ|S|. Note that in the above situation we have that if σ′ is
another element of Σn, then rS(σ

′ ◦ σ) = rS′(σ′) ◦ rS(σ).
We can also add permutations as follows. Let n, n′ ≥ 0. Then there is
a group homomorphism −∐− : Σn × Σn′ → Σn+n′ given as follows. If
σ is an element of Σn and σ′ an element of Σn′ , then we define σ ∐ σ′

as follows.

(σ ∐ σ′)(i) :=

{
σ(i) if 1 ≤ i ≤ n
σ′(i− n) + n if n+ 1 ≤ i ≤ n+ n′

Note that r{1,...,n}◦(−∐−) and r{n+1,...,n+n′}◦(−∐−) are the projection
to the first and second factor, respectively.
Given a permutation σ on n elements and a subset S of {1, . . . , n}, we
say that σ cyclically preserves the ordering of S if rS(σ) is an element of
C|S|. This terminology can easily be extended to more general maps. Let
f : X → Y be an injective map between any finite totally ordered sets
X and Y , and S a subset of X. Then there exist unique order-preserving
bijections ϕ : {1, . . . , |X|} → X and ψ : Im(f) → {1, . . . , |X|}, making
σ := ψ ◦ f |Im(f) ◦ ϕ into an element of Σ|X|. We say that f (cyclically)
preserves the ordering of the subset S if σ (cyclically) preserves the
ordering of the subset ϕ−1(S).

(35) Formulations such as “C admits all colimits” mean that C admits all
small colimits. We never refer to non-small (co)limits with generic for-
mulations. See also Section 2.4 directly below.

2.4 Size issues
In Section 2.3 (4) we defined Cat as the 1-category16 of all 1-categories.

Taken directly as stated Cat would be an object of itself and we would run into
the usual set-theoretic paradoxes, so we need to be more careful in defining
Cat.

The usual way to deal with this issue is to postulate the existence of
Grothendieck universes U1 ∈ U2 ∈ U3 (and possibly more if required), which
are sets whose elements satisfy the usual axioms of set theory. Sets that are

16We defined Cat as a (2, 2)-category, but to make our exposition here easier we only
consider the underlying 1-category.
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Chapter 2 Notation and conventions

elements of Ui are called Ui-small. We can then perform all the usual oper-
ations of set theory with Ui-small sets, but now there exists e. g. a U2-small
set of U1-small sets (namely U1).

For i ≥ j we could (this is ad hoc notation) define an (i, j)-small 1-category
to be a 1-category C whose set of objects is Ui-small and for which MorC(X,Y )
is Uj-small for all objects X and Y of C. Let us use Cati,j as ad hoc notation
for the 1-category of (i, j)-small 1-categories. What we usually consider as 1-
categories are (2, 1)-small 1-categories, which then form the 1-category Cat2,1,
which will however not be (2, 1)-small itself, though it is (3, 2)-small. For
a more detailed discussion of Grothendieck universes and size issues in an
∞-categorical context, see [HTT, 1.2.15].

In this thesis we will very often use gadgets such as Cat or Cat∞. To be
completely rigorous we should thus always keep track of with respect to which
universe the various objects we consider are small. In most of the thesis this
would however cause significant notational bloat while being completely or-
thogonal to the rest of the content, so to make the exposition more accessible
we will instead stay silent on size issues, while of course still taking care not to
use inadmissible arguments. There will be one part of the thesis, Chapter 7,
where a size issue is somewhat relevant for the argument, and there we will
deal with this issue in an explicit manner.

In particular, we will not decorate Cat∞ to keep track of sizes, and might
e. g. define an ∞-category as a pullback in Cat∞ of a diagram that involves
the ∞-category Cat∞. While in this notation it would then seem as though
the two occurrences of Cat∞ refer to the same gadget, a diligent adding of
size decorations would distinguish them, and we will be careful not to make
any arguments in which is not possible to do so consistently.
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Chapter 3

Bialgebras and modules over
them

Let C be a symmetric monoidal category and A an associative algebra in
C. A left module in C over A consists of an object X in C together with a
morphism A⊗X → X satisfying some properties. If A is commutative, then
any left-A-module can naturally be made into a A,A-bimodule, so that we
can use the relative tensor product over A to define a monoidal structure on
the category of left-A-modules LModA(C).

Now let A be a associative, coassociative bialgebra. Then there is also a
way to define a tensor product on LModA(C), and in such a way that the
underlying object in C of the tensor product of two left-A-modules X and Y
is just given by the tensor product of the two underlying objects. To do this,
we need to define an action morphism A⊗ (X ⊗ Y )→ X ⊗ Y , which we do
as the composition

A⊗ (X ⊗ Y )
∆⊗idX⊗Y
−−−−−−→ (A⊗A)⊗ (X ⊗ Y ) ∼= (A⊗X)⊗ (A⊗ Y )→ X ⊗ Y

where ∆ is the comultiplication on A, the middle isomorphism uses associa-
tivity and symmetry of the tensor product to swap the two middle tensor
factors, and the last morphism is the tensor product of the action morphisms
for X and Y . One can then check, that this makes X⊗Y into a left-A-module.

It is not only possible to construct the monoidal category LModA(C) for
individual bialgebras A – this construction enjoys functoriality in both A and
C: If f : A → B is a morphism of bialgebras in C, then there is a monoidal
functor

LModB(C)→ LModA(C)

that preserves the underlying object but restricts the action along f . If A is
a bialgebra in C and F : C → D is a symmetric monoidal functor, then F

induces a monoidal functor

LModA(C)→ LModF (A)(D)

that sends a left-A-module with underlying object X to a left-F (A)-module
with underlying object F (X).
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Chapter 3 Bialgebras and modules over them

To encode this functoriality we can define a category BiAlgOp as follows.
Objects are pairs (C, A) with C a symmetric monoidal category and A an
associative and coassociative bialgebra in C. Morphisms from (C, A) to (D, B)
are pairs (F, f), where F : C → D is a symmetric monoidal functor, and
f : B → F (A) is a morphism of bialgebras in D. We can then upgrade the
construction of LModA(C) to a functor

LMod : BiAlgOp→ MonAssoc(Cat)

where MonAssoc(Cat) is the category of monoidal categories.
The goal of this section is to implement this idea for ∞-categories rather

than just ordinary categories. In this setting, we want to construct an ∞-
category BiAlgOp whose objects can be described as pairs (C, A), where C is
an E2-monoidal ∞-category and A an E1,E1-bialgebra in C. We then want
to upgrade LMod to a functor

BiAlgOp→ MonAssoc(Cat∞)

that can be interpreted as functorially upgrading left module categories over
E1 algebras to E1-monoidal ∞-categories in the way described above.

We now briefly describe our approach to constructing BiAlgOp. Instead of
trying to construct BiAlgOp directly, we will first construct an ∞-category
AlgOp that can be described as having as objects pairs (C, A) where C is a E1-
monoidal infinity category and A is an E1-algebra in C, and where a morphism
from (C, A) to (D, B) is given by a pair (F, f) with F : C → D an E1-monoidal
functor and f : B → F (A) a morphism in AlgE1

(D). The ∞-category AlgOp
will turn out to have products, with the product of (C, A) and (D, B) given by
(C ×D, (A,B)). We can thus consider monoids in AlgOp. A monoid in AlgOp
roughly consists of an object (C, A) in AlgOp together with a coherently
associative multiplication morphism (C, A) × (C, A) → (C, A). Such a mor-
phism corresponds to an E1-monoidal functor F : C ×C → C and a morphism
f : A → F (A,A) in AlgE1

(C). By the Eckmann-Hilton argument, F (A,A) is
equivalent to A⊗A, so that we can identify f with a morphism A→ A⊗A,
which we can interpret as being the comultiplication of a coalgebra struc-
ture on A. We will later show that MonE1

(AlgOp) indeed implements the
discussed idea of what BiAlgOp should be.

Finally, the functor LMod : AlgOp → Cat∞ sending a pair (C, A) to the
∞-category LModA(C) is product-preserving, so that we obtain an induced
functor BiAlgOp→ MonE1(Cat∞).

Our approach is heavily inspired by [HA, 4.8]. The goal in [HA, 4.8.3]
is to functorially encode the fact that the ∞-category of left-A-modules1

LModA(C) can be upgraded to an ∞-category that is right-tensored over C.
The functoriality encoded is however not the same as the one we discussed

1Lurie actually considers right modules, but to keep our exposition consistent we will
discuss Lurie’s results in the analogous form for left modules.
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3.1 Modules over algebras

above: Lurie’s construction maps a morphism A → B of algebras in C to
the functor LModA(C) → LModB(C) that sends a left-A-module X to the
left-B-module B ⊗A X. The functor Lurie constructs preserves products as
well [HA, 4.8.5.16] and so induces a functor on E1-monoids. However, due
to the covariant functoriality in algebras, this induced functor describes the
E1-monoidal structure induced on LModA(C) by an E2-algebra A using the
relative tensor product over A (see the discussion at the start of this section).
Because of this, we will mostly follow the ideas in [HA, 4.8.3 and 4.8.5],
making the changes that are needed to make the construction contravariant
in algebras.

During preparation of this text, the preprint [Rak20] appeared, in which
existence of constructions similar to the ones we discuss below is also claimed
in analogy to Lurie’s construction, though without proof, see [Rak20, 2.2 and
in particular 2.2.6].

We now give a brief overview of the sections below. In Section 3.1 we will
construct AlgOp as well as the functor LMod : AlgOp→ Cat∞. We will also
discuss how LMod interacts with presentability. For this we will construct a
variant AlgOpPr of AlgOp whose objects can be interpreted as pairs (C, A)
with C a presentable monoidal ∞-category and A an algebra in C, and show
that LMod lifts to a functor AlgOpPr → PrL.

In Section 3.2 we will show that LMod is product-preserving as a func-
tor from AlgOp to Cat∞ and hence induces a symmetric monoidal functor
with respect to the respective cartesian symmetric monoidal structures. We
will also construct an appropriate symmetric monoidal structure on AlgOpPr
and show that the functor LMod : AlgOpPr → PrL can be upgraded to a
symmetric monoidal functor as well.

Bialgebras will be defined in Section 3.3, and in Section 3.4 we will then
discuss how LMod induces functors AlgO(AlgOp)→ MonO(Cat∞) as well as
the variant functor AlgO(AlgOpPr)→ MonPr

O (Cat∞), where MonPr
O (Cat∞) is

the∞-category of presentable O-monoidal∞-categories. We will furthermore
make precise how we can interpret objects of AlgO(AlgOp) as pairs (C, A),
where C is an O⊗Assoc-monoidal∞-category, and A is an Assoc,O-bialgebra
in C.

3.1 Modules over algebras
In this section we will construct a functor LMod : AlgOp → Cat∞ imple-

menting the idea described in the introduction to Chapter 3. To do so we first
need to construct the ∞-category AlgOp, which is to have as objects pairs
(C, A) with C a monoidal ∞-category and A an associative algebra in C. We
can thus interpret AlgOp as a sort of ∞-category of algebras not only in a
single monoidal ∞-category, but a whole collection of them – in this case all
of them. The notion that encapsulates the idea of a collection of monoidal
∞-categories is that of a cocartesian family of monoidal ∞-categories, which
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Chapter 3 Bialgebras and modules over them

we will define in Section 3.1.1. The process of forming algebras in cocartesian
families of monoidal∞-categories is then defined and studied in Section 3.1.2,
and everything is put together to construct AlgOp and LMod in Section 3.1.3.

3.1.1 Cocartesian families of monoidal ∞-categories
In this section we discuss the notion cocartesian families of O-monoidal
∞-categories for ∞-operads O. We start in Section 3.1.1.1 with the defi-
nition. In Section 3.1.1.2 we discuss an important example: The universal
cocartesian family of O-monoidal ∞-categories, which can be though of as
the collection of all O-monoidal ∞-categories. In particular, this will be the
example that we will use to define AlgOp and LMod as discussed in the in-
troduction to Chapter 3. We end the section with Section 3.1.1.3, in which
we discuss the interaction between cocartesian families and products. This
will be relevant later, when we want to argue that the functor to be defined
LMod : AlgOp→ Cat∞ is compatible with products.

3.1.1.1 Definition

As we want to form ∞-categories like AlgOp in which objects are alge-
bras not just in a single monoidal ∞-category, but in a whole collection of
monoidal∞-categories, we first need a definition that encapsulates the idea of
combining a collection of monoidal ∞-categories into a single mathematical
object.

IfO is an∞-operad, then by [HA, 2.4.2.4] a cocartesian fibration overO⊗ is
an O-monoidal ∞-category if and only if the associated functor O⊗ → Cat∞
is an O-monoid. We can thus consider a functor

F : C → MonO(Cat∞)

for some ∞-category C as parametrizing a collection of O-monoidal ∞-cate-
gories by C. Composing with the inclusion of MonO(Cat∞) into the functor
category Fun(O⊗,Cat∞), we obtain a functor

F ′ : C → Fun
(
O⊗,Cat∞

)

of which we can take the adjoint |F ′ : O⊗ × C → Cat∞. By passing to the
cocartesian fibration classified by the functor |F ′ we then obtain a cocarte-
sian fibration p : D⊗ → O⊗ × C. This cocartesian fibration will have extra
properties that correspond to F ′ factoring over MonO(Cat∞). This leads us
to the following proposition and definition.

Proposition 3.1.1.1. Let C be an ∞-category, O an ∞-operad, and

p : D⊗ → O⊗ × C

a cocartesian fibration. Then the following are equivalent.

34



3.1 Modules over algebras

(1) The functor F : C → Fun(O⊗,Cat∞) that corresponds to p under the
equivalence

coCFib(O⊗ × C)
Gr
←−− Fun(O⊗ × C,Cat∞)

}(−)
←−− Fun(C,Fun(O⊗,Cat∞))

factors through MonO(Cat∞).

(2) For every object X of C the restriction pX : D⊗
X → O

⊗ is a cocartesian
fibration of ∞-operads2. ♥

Proof. Let G := Gr−1(p), let F be as in (1), and let X be an object of C. Natu-
rality of the Grothendieck construction3 (see [GHN17, A.32]) implies that the
cocartesian fibration pX is classified by the restriction ofG toO⊗ ≃ O⊗×{X}.
[HA, 2.4.2.4] implies that pX is a cocartesian fibration of ∞-operads if and
only if this restriction is an O-monoid. Using naturality of }(−) we can refor-
mulate this as follows: The cocartesian fibration pX is a cocartesian fibration
of ∞-operads if and only if F (X) is an O-monoid. As MonO(Cat∞) is de-
fined as the full subcategory of Fun(O⊗,Cat∞) of O-monoids, this finishes
the proof.

Definition 3.1.1.2 ([HA, Definition 4.8.3.1]). Let C be an ∞-category and
O an ∞-operad. A cocartesian C-family of O-monoidal ∞-categories is a
cocartesian fibration p : D⊗ → O⊗ × C satisfying the conditions in Proposi-
tion 3.1.1.1.

We let coCFamO(C) be the full subcategory of coCFib(O⊗ × C) spanned
by cocartesian C-families of O-monoidal ∞-categories. ♦

Remark 3.1.1.3 ([HA, 4.8.3.3]). Let C be an ∞-category and O an ∞-
operad. Let ι be the inclusion of MonO(Cat∞) into Fun(O⊗,Cat∞).

Then the equivalences Gr and }(−) as in Proposition 3.1.1.1 restrict as in
the following commutative diagram where the right vertical functor is the
inclusion, and such that all horizontal functors are equivalences.

Fun(C,Fun(O⊗,Cat∞)) Fun(O⊗ × C,Cat∞) coCFib(O⊗ × C)

Fun(C,MonO(Cat∞)) coCFamO(C)

}(−)

≃
Gr
≃

≃

ι∗

Note that Fun(C,MonO(Cat∞)) is contravariantly functorial in C and4 O,
so the construction of coCFamO(C) must be as well. Using naturality of }(−)

2See [HA, 2.1.2.13] for a definition
3Precomposing a functor into Cat∞ by some functor ι corresponds to taking the base

change along ι of the corresponding cocartesian fibration.
4If α : O′⊗ → O⊗ is a morphism of∞-operads, then it follows directly from the definition

that the functor α∗ : Fun(O⊗,Cat∞) → Fun(O′⊗,Cat∞) restricts to a functor on
monoids.
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and Gr (see [GHN17, A.32] and [Maz19]) we can describe this functoriality
explicitly as follows.

Let G : C′ → C be a functor of ∞-categories, α : O′⊗ → O⊗ a morphism
of ∞-operads, and F : C → MonO(Cat∞) a functor corresponding under the
above equivalence to a cocartesian C-family of O-monoidal ∞-categories p.
Then the composite functor

C′
G
−→ C

F
−→ MonO(Cat∞)

α∗

−−→ MonO′(Cat∞)

corresponds under the above functor to the pullback p′ of p along α×G, as
in the following diagram.

D′⊗ D⊗

O′⊗ × C′ O⊗ × C

p′ p

α×G

(3.1)

In particular, the pullback of a cocartesian family of monoidal ∞-categories
along a functor of the form α ×G is again a cocartesian family of monoidal
∞-categories. ♦

3.1.1.2 The universal family

In this section we discuss the universal cocartesian family of O-monoidal
∞-categories, from which we can obtain every other cocartesian family of O-
monoidal ∞-categories by pulling back. This will also be the main example
that we will apply later constructions to.

Definition 3.1.1.4 ([HA, 4.8.3.3]). Let O be an ∞-operad.
We define

pO : M̃onO(Cat∞)
⊗ → O⊗ ×MonO(Cat∞)

to be the cocartesian MonO(Cat∞)-family of O-monoidal ∞-categories that
under the equivalence in Remark 3.1.1.3 corresponds to the identity functor
idMonO(Cat∞). ♦

Remark 3.1.1.5 ([HA, 4.8.3.3]). Let O be an ∞-operad, let C be an ∞-
category, and let p : D⊗ → O⊗×C be a cocartesian C-family ofO-monoidal∞-
categories. Let F : C → MonO(Cat∞) be the functor corresponding to p under
the equivalence in Remark 3.1.1.3. Then F factors as F ≃ idMonO(Cat∞) ◦ F ,
so by Remark 3.1.1.3 we can conclude that there is a pullback diagram as
follows.

D⊗ M̃onO(Cat∞)
⊗

O⊗ × C O⊗ ×MonO(Cat∞)

p pO

idO⊗×F

♦
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3.1 Modules over algebras

3.1.1.3 Compatibility of fibers with products

The property described in the following proposition and definition regard-
ing a cocartesian family of monoidal ∞-categories’ interaction with products
will be needed later.

Proposition 3.1.1.6. Let C be an ∞-category, O an ∞-operad,

p : D⊗ → O⊗ × C

a cocartesian C-family of O-monoidal ∞-categories, and

F : C → MonO(Cat∞)

the functor corresponding to p as in Proposition 3.1.1.1. Assume that C admits
all products. Then the following are equivalent.

(1) F preserves products.

(2) For every object O in O⊗ the cocartesian fibration

pO : D⊗
O
:= D⊗ ×O⊗×C ({O} × C)

pr2−−→ {O} × C
≃
−→ C

has fibers compatible with products in the sense of Definition C.2.0.1.

(3) For every object O in O the cocartesian fibration

pO : D⊗
O
:= D⊗ ×O⊗×C ({O} × C)

pr2−−→ {O} × C
≃
−→ C

has fibers compatible with products in the sense of Definition C.2.0.1.
♥

Proof. Proof that (1) implies (2): Let ι denote the inclusion of the full sub-
category MonO(Cat∞) into Fun(O⊗,Cat∞), which preserves products by
Proposition F.2.0.1. Let O be an object in O⊗. As limits in in functor cat-
egories are computed pointwise by [HTT, 5.1.2.3], the evaluation functor
evO : Fun(O⊗,Cat∞)→ Cat∞ preserves products as well, and thus the com-
posite evO ◦ ι◦F preserves products. By using naturality of the Grothendieck
construction and }(−) we can conclude that the cocartesian fibration pO is
classified by evO ◦ ι◦F , and hence pO having fibers compatible with products
follows from Remark C.2.0.2.

Proof that (2) implies (3): Clear.
Proof that (3) implies (1): Using notation from above, that pO has fibers

compatible with products for every object O in O implies by Remark C.2.0.2
that evO ◦ι◦F preserves products for every O in O. Combining that products
in functor categories are detected pointwise and that the composition

MonO(Cat∞)
ι
−→ Fun(O⊗,Cat∞)→ Fun(O,Cat∞)

detects products as well by Proposition F.2.0.1 we can conclude that F pre-
serves products.
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Definition 3.1.1.7. Let C be an ∞-category, O an ∞-operad, and

p : D⊗ → O⊗ × C

a cocartesian C-family of O-monoidal ∞-categories.
We say that p has the product-fiber-property if C admits all products and

satisfies the equivalent conditions in Proposition 3.1.1.6. ♦

The product-fiber-property is preserved by taking the pullback as in Re-
mark 3.1.1.3 of a cocartesian family of monoidal∞-categories, as long as the
functor G preserves products, as we record in the following proposition.

Proposition 3.1.1.8. In the situation of diagram (3.1) of Remark 3.1.1.3,
if p has the product-fiber-property, C′ admits all products, and G preserves
products, then p′ has the product-fiber property as well. ♥

Proof. Follows immediately from the definition in terms of condition (2) in
Proposition 3.1.1.6 using that (induced maps on) fibers of p′ can be identified
with (induced maps on) fibers of p by Proposition C.1.1.1.

Finally, we end this section by noting that the universal cocartesian family
of O-monoidal ∞-categories satisfies the product-fiber-property.

Proposition 3.1.1.9. Let O be an∞-operad. Then pO has the product-fiber-
property. ♥

Proof. Follows immediately from the description Proposition 3.1.1.6 (1), as
the functor corresponding to pO is by definition the identity functor, which
preserves products.

3.1.2 Algebras in cocartesian families
Given a cocartesian C-family of O-monoidal∞-categories p : D⊗ → O⊗×C,

Lurie defines5 in [HA, Notation 4.8.3.11] an ∞-category AlgO′/O(D) whose
objects can be described as being pairs (X,A) where X is an object of C
(and hence determines a O-monoidal ∞-category D⊗

X) and A is an object of
AlgO′/O(D

⊗
X). We will discuss a definition of AlgO′/O(D) in Section 3.1.2.1.

Lurie’s definition is not quite written down like the definition we present how-
ever, so we next show in Section 3.1.2.2 that the two definitions agree. We will
then spend some time discussing various functorialities exhibited by this con-
struction. Fixing O′ → O, we can vary the cocartesian family of O-monoidal
∞-categories D by taking pullbacks along functors C′ → C. In fact, we showed
in Remark 3.1.1.5 that every family of O-monoidal ∞-categories can be ob-
tained like this from the universal family of O-monoidal ∞-categories pO.
The main message of Section 3.1.2.3 is that we also do not obtain anything

5While the definition is only written down for O′⊗ = O⊗ = Assoc⊗ and
O′⊗ = O⊗ = LM⊗, we present a straightforward generalization.
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new when taking algebras: AlgO′/O(D) can be obtained as a pullback of
AlgO′/O(M̃onO(Cat∞)). More useful is functoriality when varying O′, which
we discuss in Section 3.1.2.4, and functoriality that is encoded by the family
itself, which will be discussed in Section 3.1.2.5, and in which we we will show
that there is a cocartesian fibration AlgO′/O(D) → C. We end this section
with Section 3.1.2.6, in which we discuss the interaction of this cocartesian
fibration with products in C.

3.1.2.1 Definition

Definition 3.1.2.1. Let C be an ∞-category, α : O′⊗ → O⊗ a morphism
of ∞-operads, and p : D⊗ → O⊗ × C a cocartesian C-family of O-monoidal
∞-categories. Then we define ÃlgO′/O(D) together with prC and prFun as the
following pullback of ∞-categories.

ÃlgO′/O(D) Fun(O′⊗,D⊗)

C Fun(O′⊗,O⊗ × C)

prFun

prC p∗

̂(α×idC)

♦

Proposition 3.1.2.2. Let C be an ∞-category, α : O′⊗ → O⊗ a morphism
of ∞-operads, and p : D⊗ → O⊗ × C a cocartesian C-family of O-monoidal
∞-categories.

Let A be an object of ÃlgO′/O(D). Then the following are equivalent.

(1) The functor prFun(A) : O
′⊗ → D⊗ sends inert morphisms to p-cocarte-

sian ones.

(2) The functor A′ : O′⊗ → D⊗
prC(A) over O⊗ which corresponds to A under

the equivalence

ÃlgO′/O(D)prC(A)

≃ Fun
(
O′⊗,D⊗

)
×Fun(O′⊗,O⊗×C) C ×C {prC(A)}

≃ Fun
(
O′⊗,D⊗

)
×Fun(O′⊗,O⊗×C) {prC(A)}

≃ Fun
(
O′⊗,D⊗

)
×Fun(O′⊗,O⊗×C)

Fun
(
O′⊗,O⊗ × {prC(A)}

)
×Fun(O′⊗,O⊗) {α}

≃ Fun
(
O′⊗,D⊗ ×O⊗×C

(
O⊗ × {prC(A)}

))
×Fun(O′⊗,O⊗) {α}

≃ FunO⊗

(
O′⊗,D⊗

prC(A)

)

lies in the full subcategory AlgO′/O(DprC(A)) of O′-algebras in the O-
monoidal ∞-category D⊗

prC(A). ♥
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Proof. Let A′ be as in (2). The following commutative diagram summarizes
the situation, where pO : O⊗ → Fin∗ is the canonical morphism of∞-operads,
ι is inclusion of O⊗ ≃ O⊗ × {prC(A)}, and the square in the middle right is
a pullback square.

O′⊗ D⊗
prC(A) D⊗

O⊗ O⊗ × C

Fin∗

A′

α

prFun(A)

pprC(A)
p

ι

pO

By definition [HA, 2.1.2.7] A′ lies in AlgO′/O(DprC(A)) if and only if A′ carries
inert morphisms to pO ◦ pprC(A)-cocartesian ones. As α is a morphism of
∞-operads, it sends inert morphisms to pO-cocartesian ones, so it follows from
[HTT, 2.4.1.3 (3)] that A′ lies in AlgO′/O(DprC(A)) if and only if it carries
inert morphisms to pprC(A)-cocartesian ones, which by Proposition C.1.1.1
is the case if and only if prFun(A) carries inert morphisms to p-cocartesian
ones.

Definition 3.1.2.3. Let C be an ∞-category, α : O′⊗ → O⊗ a morphism
of ∞-operads, and p : D⊗ → O⊗ × C a cocartesian C-family of O-monoidal
∞-categories.

Then we define AlgO′/O(D) to be the full subcategory of ÃlgO′/O(D)
spanned by those objects satisfying the equivalent conditions in Proposi-
tion 3.1.2.2. ♦

Remark 3.1.2.4. In the situation of Definition 3.1.2.3 it follows immediately
from Proposition 3.1.2.2 (2) that for any object C of C the fiber AlgO′/O(D)C
is naturally equivalent to AlgO′/O(DC). ♦

3.1.2.2 Comparison with Lurie’s definition

Lurie’s definition is not phrased quite like Definition 3.1.2.3, so we show
below in Proposition 3.1.2.7 that Lurie’s definition is equivalent to the one
we used.

Definition 3.1.2.5 ([HA, 4.8.3.11]). Let C be a quasicategory represent-
ing an ∞-category C, let O be a quasicategorical ∞-operad representing an
∞-operad O, let p : D⊗ → O⊗×C be an inner fibration representing a cocarte-
sian C-family of O-monoidal ∞-categories, and let a : O′⊗ → O⊗ be a mor-
phism of quasicategorical ∞-operads representing a morphism of ∞-operads
α : O′⊗ → O⊗.
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We define an unnamed property for functors of quasicategories q : A → C,
which is to hold if there is a natural bijection

MorsSet/C(−, q) ∼= MorsSet/O⊗×C
(a×−, p)

of functors sSet/C → Set. ♦

Remark 3.1.2.6. In the situation of Definition 3.1.2.5, the Yoneda lemma
implies that if a q with the property exists, then it is unique up to canonical
isomorphism as an object of sSet/C. ♦

Proposition 3.1.2.7. Let C be a quasicategory representing an ∞-category
C, let O be a quasicategorical ∞-operad representing an ∞-operad O, let
p : D⊗ → O⊗ × C be an inner fibration of quasicategories representing a co-
cartesian C-family of O-monoidal∞-categories, and let a : O′⊗ → O⊗ be a mor-
phism of quasicategorical ∞-operads representing a morphism of ∞-operads
α : O′⊗ → O⊗.

Define E and q via the following categorical pullback square in sSet.

E Fun
(
O′⊗, D⊗

)

C Fun
(
O′⊗, O⊗ × C

)
q p∗

̂(a×idC)

Then the following hold.
(1) The map q satisfies the property defined in Definition 3.1.2.5.

(2) In particular, if a = idAssoc and a = idLM, then q can be identified with
the functors of quasicategories Ãlg(D)→ C and L̃Mod(D)→ C as defined
in [HA, 4.8.3.11], respectively.

(3) The pullback is a homotopy pullback with respect to the Joyal model
structure.

(4) The pullback square represents the pullback square of ∞-categories in
Definition 3.1.2.1 that defines ÃlgO′/O(D).

(5) If a = idAssoc, then Alg(D) → C as defined in [HA, 4.8.3.11] repre-
sents Alg/Assoc(D) as defined in Definition 3.1.2.3. If a = idLM, then
LMod(D) → C as defined in [HA, 4.8.3.11] represents Alg/LM(D) as
defined in Definition 3.1.2.3. ♥

Proof. Proof of (1): Let s : K → C be a map of simplicial sets. Then there is
a sequence of bijections natural in s (as an object of sSet/C) as follows.

MorsSet/C(s, q)
∼= MorsSet(K, E)×MorsSet(K,C) {s}
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∼= MorsSet
(
K,Fun

(
O′⊗, D⊗

))

×MorsSet(K,Fun(O′⊗,O⊗×C)) MorsSet(K, C)×MorsSet(K,C) {s}
∼= MorsSet

(
K,Fun

(
O′⊗, D⊗

))
×MorsSet(K,Fun(O′⊗,O⊗×C))

{
̂(a× s)

}

∼= MorsSet
(
O′⊗ × K, D⊗

)
×MorsSet(O′⊗×K,O⊗×C) {(a× s)}

∼= MorsSet/O⊗×C
(a× s, p)

Proof of (2): Follows directly from the definition.
Proof of (3): By assumption, p is a cocartesian fibration in the sense of

[HTT, 2.4.2.1], so that by [HTT, 3.1.2.1] the functor of quasicategories p∗ is
again a cocartesian fibration in the sense of [HTT, 2.4.2.1]. That the pullback
square is a homotopy pullback square in the Joyal model structure follows
now by applying [HTT, 3.3.1.4] (to the opposite diagram).

Proof of (4): Follows directly from (3).
Proof of (5): Immediate by unwrapping the definitions of the respective

full subcategories.

3.1.2.3 Functoriality when varying families

We next consider functoriality of ∞-categories of algebras of cocartesian
families of monoidal ∞-categories when we vary the cocartesian family. We
first discuss functoriality in the ∞-operad factor, for which the following
proposition can be considered a generalization of Proposition E.2.0.2.

Remark 3.1.2.8. Let C be an ∞-category, let α : O′⊗ → O⊗ as well as
β : O′′⊗ → O′⊗ be morphisms of ∞-operads, and p : D⊗ → O⊗ × C a co-
cartesian C-family of O-monoidal ∞-categories. Assume that the following
diagram is a pullback diagram in Cat∞.

D′⊗ D⊗

O′⊗ × C O⊗ × C

G⊗

p′ p

α×idC

(3.2)

By Remark 3.1.1.3 is p′ is a cocartesian C-family of O′-monoidal∞-categories.
Consider the following commutative diagram, where the square on the left

is the pullback square of Definition 3.1.2.1 and the square on the right is
induced by the pullback square (3.2) by applying Fun(O′′⊗,−) and hence
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also a pullback square.

ÃlgO′′/O′(D′) Fun(O′′⊗,D′⊗) Fun(O′′⊗,D⊗)

C Fun(O′′⊗,O′⊗ × C) Fun(O′′⊗,O⊗ × C)

prFun

prC

G⊗
∗

p′∗ p∗

̂(β×idC)

(̂−)((α◦β)×idC)

(α×idC)∗

By the pasting lemma for pullbacks [HTT, 4.4.2.1], the outer square is a
pullback as well, so that we obtain a canonical identification as follows.

ÃlgO′′/O′(D′) ≃ ÃlgO′′/O(D)

Furthermore, with the description of p′-cocartesian morphisms from Propo-
sition C.1.1.1 it follows directly from Definition 3.1.2.3 in the form of Propo-
sition 3.1.2.2 (1) that this equivalence restricts to an equivalence of ∞-cate-
gories of algebras as follows.

AlgO′′/O′(D′) ≃ AlgO′′/O(D) ♦

We now turn to functoriality in the ∞-category that parametrizes our
cocartesian family of monoidal ∞-categories.
Construction 3.1.2.9. Let F : C′ → C be a functor of ∞-categories, let
α : O′⊗ → O⊗ be a morphism of ∞-operads, and let p : D⊗ → O⊗ × C be a
cocartesian C-family of O-monoidal ∞-categories. Assume that the following
diagram is a pullback diagram in Cat∞.

D′⊗ D⊗

O⊗ × C′ O⊗ × C

G⊗

p′ p

idO⊗×F

(∗)

Remark 3.1.1.3 implies that p′ is a cocartesian C′-family of O-monoidal ∞-
categories.

Then there is a commutative cube as follows

ÃlgO′/O(D
′) Fun(O′⊗,D′⊗)

ÃlgO′/O(D) Fun(O′⊗,D⊗)

C′ Fun(O′⊗,O⊗ × C′)

C Fun(O′⊗,O⊗ × C)

F∗

prFun

prC′ G⊗
∗

p′∗prFun

prC
F

̂(α×idC′ )

(idO⊗×F)
∗

̂(α×idC)

p∗
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where the front and back squares are the respective defining pullback squares
for ÃlgO′/O(D) and ÃlgO′/O(D

′), and the dashed functor F∗ is the induced
one.

The square on the right is obtained by applying Fun(O′⊗,−) to the pull-
back square (∗) and is thus a pullback square as well. As the front square is
also a pullback square, it follows that their composition, which we can iden-
tify with the composition of the left and back square, is a pullback square as
well. As the back square is also a pullback square, if finally follows using the
pasting law for pullbacks [HTT, 4.4.2.1] that the square

ÃlgO′/O(D
′) ÃlgO′/O(D)

C′ C

F∗

prC′ prC

F

(3.3)

is a pullback square. ♦

Proposition 3.1.2.10. Let us assume we are in the situation of Construc-
tion 3.1.2.9. Then the pullback square (3.3) restricts to a pullback square in
Cat∞ as follows.

AlgO′/O(D
′) AlgO′/O(D)

C′ C

F∗

prC′ prC

F

♥

Proof. It suffices to show that the dashed functor in the following commuta-
tive diagram (where the vertical functors are the canonical inclusions) exists
and that the square is a pullback square in Cat∞.

AlgO′/O(D
′) AlgO′/O(D)

ÃlgO′/O(D
′) ÃlgO′/O(D)

F∗

F∗

Let A be an object in ÃlgO′/O(D
′). Then by Definition 3.1.2.3 and Proposi-

tion 3.1.2.2 (1), A is in AlgO′/O(D
′) if and only if prFun(A) : O

′⊗ → D′⊗ sends
inert morphisms to p′-cocartesian morphisms, which by Proposition C.1.1.1
is the case if and only if G⊗ ◦ prFun(A) ≃ prFun(F∗(A)) sends inert mor-
phisms to p-cocartesian morphisms. Thus A is in AlgO′/O(D

′) if and only if
F∗(A) is in AlgO′/O(D). This shows that in the following commutative dia-
gram of∞-categories, where the small square is defined as a pullback square,
the dashed functor making the outer square commute exists, and that the
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induced dotted functor is essentially surjective (this uses the description of
E given in Proposition B.5.2.1).

AlgO′/O(D
′)

E AlgO′/O(D)

ÃlgO′/O(D
′) ÃlgO′/O(D)

F∗

q

F∗

By Proposition B.5.2.1 the functor q is fully faithful, so the dotted functor
is fully faithful as well and hence an equivalence. It follows that the outer
square is a pullback square because the inner square is.

Remark 3.1.2.11. Let C be an∞-category, let α : O′⊗ → O⊗ be a morphism
of ∞-operads, let p : D⊗ → O⊗ × C be a cocartesian C-family of O-monoidal
∞-categories, and let F : C → MonO(Cat∞) be the functor corresponding
to p under the equivalence in Remark 3.1.1.3. By Remark 3.1.1.5 there is a
pullback diagram as follows.

D⊗ M̃onO(Cat∞)
⊗

O⊗ × C O⊗ ×MonO(Cat∞)

p pO

idO⊗×F

Applying Proposition 3.1.2.10 we obtain a pullback diagram of algebra ∞-
categories.

AlgO′/O(D) AlgO′/O

(
M̃onO(Cat∞)

)

C MonO(Cat∞)

F∗

prC prMonO(Cat∞)

F

♦

3.1.2.4 Functoriality when varying the operad

In this section we discuss functoriality of AlgO′/O(D) when varying O′.

Construction 3.1.2.12. Let C be an ∞-category, lat α : O′⊗ → O⊗ as well
as β : O′′⊗ → O′⊗ be morphisms of ∞-operads, and let p : D⊗ → O⊗ × C be
a cocartesian C-family of O-monoidal ∞-categories.

45



Chapter 3 Bialgebras and modules over them

Then the commutative diagram

C Fun(O′⊗,O⊗ × C) Fun(O′⊗,D⊗)

C Fun(O′′⊗,O⊗ × C) Fun(O′′⊗,D⊗)

idC

̂(α×idC)

β∗

p∗

β∗

(̂−)((α◦β)×idC)
p∗

induces a functor on pullbacks as follows.

β∗ : ÃlgO′/O(D)→ ÃlgO′′/O(D) ♦

Remark 3.1.2.13. In the situation of Construction 3.1.2.12, if we are given
another morphism of ∞-operads γ : O′′′⊗ → O′′⊗, then it is clear from the
definition that the composition γ∗ ◦ β∗ is equivalent to (β ◦ γ)∗. ♦

Proposition 3.1.2.14. In the situation of Construction 3.1.2.12, the functor

β∗ : ÃlgO′/O(D)→ ÃlgO′′/O(D)

restricts to a functor on algebras as follows.

β∗ : AlgO′/O(D)→ AlgO′′/O(D) ♥

Proof. What we have to show is by Definition 3.1.2.3 in the form of Proposi-
tion 3.1.2.2 (1) that the functor

β∗ : Fun
(
O′⊗,D⊗

)
→ Fun

(
O′′⊗,D⊗

)

sends functors that send inert morphisms to p-cocartesian morphisms to func-
tors with the same property. But this follows immediately from the fact that,
as it is a morphism of ∞-operads, β preserves inert morphisms.

Remark 3.1.2.15. Assume we are in the situation of Construction 3.1.2.12,
and let C be an object of C. The functor β∗ : AlgO′/O(D)→ AlgO′′/O(D) is
a functor over C and thus induces a functor as follows.

β∗
C : AlgO′/O(D)C → AlgO′′/O(D)C

It follows directly from the definition together with Remark 3.1.2.4 that this
functor can be identified with the following functor induced by β.

AlgO′/O(DC)→ AlgO′′/O(DC) ♦

Remark 3.1.2.16. Assume we are in the situation of Construction 3.1.2.9
and we are given another morphism of ∞-operads β : O′′⊗ → O′⊗. Then it
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follows from the respective constructions that β∗ and F∗ commute in the
sense that there is a commutative diagram as follows.

AlgO′/O(D
′) AlgO′/O(D)

AlgO′′/O(D
′) AlgO′′/O(D)

F∗

β∗ β∗

F∗

♦

3.1.2.5 Functoriality encoded by families

Let C be an ∞-category, let α : O′⊗ → O⊗ be a morphism of ∞-operads,
and let p : D⊗ → O⊗ × C be a cocartesian C-family of O-monoidal ∞-cate-
gories. In Section 3.1.2.1 we constructed a functor of ∞-categories

prC : AlgO′/O(D)→ C

and identified the fiber of prC over an object C in C with AlgO′/O(DC), see
Remark 3.1.2.4.

As was explained at the start of Section 3.1.1, we can interpret p as a
collection of O-monoidal ∞-categories that is indexed by C. We will show
below that prC is again a cocartesian fibration, and thus classified by a functor
C → Cat∞, which we can then interpret as encoding the functoriality of the
construction AlgO′/O(−) that produces the∞-category of O′-algebras out of
an O-monoidal ∞-category.

Proposition 3.1.2.17 ([HA, 4.8.3.13]). Let C be an ∞-category and let
α : O′⊗ → O⊗ be a morphism of ∞-operads. Let p : D⊗ → O⊗ × C be a
cocartesian C-family of O-monoidal ∞-categories. Then the following hold.

(1) prC : ÃlgO′/O(D) → C is a cocartesian fibration and a morphism f is
prC-cocartesian if and only if prFun(f)(X) is p-cocartesian for every
object X of O′⊗ (see Definition 3.1.2.1 for this notation).

(2) prC : AlgO′/O(D) → C is a cocartesian fibration and a morphism f in
AlgO′/O(D) is prC-cocartesian if and only if prFun(f)(X) is p-cocarte-
sian for every object X of O′⊗.

(3) A morphism f in AlgO′/O(D) is prC-cocartesian if and only if the
morphism prFun(f)(X) is p-cocartesian for every object X of O′. ♥

Proof. Proof of (1): This is a combination of [HTT, 3.1.2.1] (preservation
of cocartesian fibrations under application of Fun(O′⊗,−)) with Proposi-
tion C.1.1.1 (preservation of cocartesian fibrations under pullbacks).

Proof of (2): It suffices to verify the assumption needed to apply the dual of
Proposition C.1.2.1 to the restriction of prC : ÃlgO′/O(D)→ C to AlgO′/O(D).
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So let A be an object in AlgO′/O(D) and f : A → B a prC-cocartesian mor-
phism in ÃlgO′/O(D). We have to show that B also lies in AlgO′/O(D). By
definition this means that we need to show that prFun(B) : O′⊗ → D⊗ sends
inert morphisms to p-cocartesian morphisms. So let φ : X → Y be an inert
morphism in O′⊗. We obtain a commutative diagram in D⊗ as follows.

prFun(A)(X) prFun(B)(X)

prFun(A)(Y ) prFun(B)(Y )

prFun(f)(X)

prFun(A)(φ) prFun(B)(φ)

prFun(f)(Y )

(∗)

As f is prC-cocartesian, the top and bottom horizontal morphisms are p-
cocartesian by (1). As A lies in AlgO′/O(D), the left vertical morphism is
p-cocartesian as well. That the right vertical morphism is also p-cocartesian
now follows from [HTT, 2.4.1.7].

Proof of (3): Let f : A→ B be a morphism in AlgO′/O(D) and assume that
for every object Y in O′ the morphism prFun(f)(Y ) in D⊗ is p-cocartesian.
Let X ≃ X1 ⊕ · · · ⊕ Xn be an object in O′⊗

〈n〉, and denote by γi : X → Xi

the inert morphism in O′⊗ lying over ρi. We have to show that then also
prFun(f)(X) is p-cocartesian.

Let 1 ≤ i ≤ n. Consider the following diagram in D⊗

D Di

prFun(A)(X) prFun(B)(X) prFun(B)(Xi)

prFun(A)(Xi)

Ψ

Θ Θi

prFun(f)(X)

prFun(A)(γi)

Φ

prFun(B)(γi)

prFun(f)(Xi)

lying over the following commutative diagram in O⊗ × C

(α(X), prC(B)) (α(Xi), prC(B))

(α(X), prC(A)) (α(X), prC(B)) (α(Xi), prC(B))

(α(Xi), prC(A))

id

(α(γi),id)

id

(id,prC(f))

(id,prC(f))

(α(γi),id)

(α(γi),id)

(id,prC(f))
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and such that the morphisms Φ and Ψ in D⊗ are p-cocartesian lifts of
(idα(X), prC(f)) and (α(γi), idprC(B)), respectively, and such that the dashed
morphisms are the canonical fillers. As γi is inert and A in AlgO′/O(D) the
morphism prFun(A)(γi) is p-cocartesian, and the morphism prFun(f)(Xi) is
p-cocartesian by assumption, as Xi is an object of O′. Considering the outer
diagram it thus follows from [HTT, 2.4.1.7] that Θi is p-cocartesian, and thus
by [HTT, 2.4.1.5] an equivalence.

We now want to conclude that also Θ must be an equivalence. For this,
note that as pprC(B) is a cocartesian fibration of ∞-operads, the following
functor induced by the inert morphisms α(γi) on fibers

(
D⊗

prC(B)

)
α(X)

∏
1≤i≤n(α(γi))!

−−−−−−−−−−→
∏

1≤i≤n

(
D⊗

prC(B)

)
α(Xi)

is an equivalence of∞-categories. By Proposition C.1.1.1 we can identify this
functor with the following functor.

D⊗
(α(X),prC(B))

∏
1≤i≤n(α(γi),id)!

−−−−−−−−−−−−→
∏

1≤i≤n

D⊗
(α(Xi),prC(B))

The morphism Θ lies in D⊗
(α(X),prC(B)), and by definition Θi ≃ (α(γi), id)!(Θ).

As we previously concluded that Θi is an equivalence for every 1 ≤ i ≤ n

we can thus conclude that Θ is an equivalence, and hence p-cocartesian by
[HTT, 2.4.1.5]. As Φ is p-cocartesian by definition we can then use [HTT,
2.4.1.7] to deduce that prFun(f)(X) is also p-cocartesian.

Remark 3.1.2.18. Let C be an ∞-category, α : O′⊗ → O⊗ a morphism
of ∞-operads, and p : D⊗ → O⊗ × C a cocartesian C-family of O-monoidal
∞-categories. A morphism g : C → C ′ in C induces on fibers of p an O-
monoidal functor6 G : D⊗

C → D
⊗
C′ . Combining the identifications

AlgO′/O(D
⊗
X) ≃ AlgO′/O(D

⊗)X

from Remark 3.1.2.4 (for X = C as well as X = C ′) with Proposition 3.1.2.17,
in particular description Proposition 3.1.2.17 (2), we can conclude that we
can identify the functor induced by g on fibers of prC : AlgO′/O(D)→ C with
the functor AlgO′/O(G). ♦

Definition 3.1.2.19. Let α : O′⊗ → O⊗ be a morphism of∞-operads. Then
we define

AlgO′/O : MonO(Cat∞)→ Cat∞
the be the functor that the cocartesian fibration

prMonO(Cat∞) : AlgO′/O

(
M̃onO(Cat∞)

)
→ MonO(Cat∞)

is classified by. ♦
6This is clear from Proposition 3.1.1.1.
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Remark 3.1.2.20. Let α : O′⊗ → O⊗ be a morphism of ∞-operads. The
functor AlgO′/O sends by Remark 3.1.2.4 an O-monoidal ∞-category C to
the ∞-category AlgO′/O(C), so that we can interpret AlgO′/O as encoding
the full functoriality of the construction of ∞-categories of O′-algebras in
O-monoidal ∞-categories.

Now let C be an ∞-category, p : D⊗ → O⊗ × C a cocartesian C-family of
O-monoidal∞-categories, and F : C → MonO(Cat∞) the functor correspond-
ing to p under the equivalence in Remark 3.1.1.3. Then it follows from Re-
mark 3.1.2.11 and naturality of the Grothendieck construction (see [GHN17,
A.32] and [Maz19]) that the cocartesian fibration

prC : AlgO′/O(D)→ C

is classified by the following composition.

C
F
−→ MonO(Cat∞)

AlgO′/O
−−−−−→ Cat∞ ♦

Proposition 3.1.2.21. Let C be an ∞-category, α : O′⊗ → O⊗ as well as
β : O′′⊗ → O′⊗ morphisms of∞-operads, and p : D⊗ → O⊗×C a cocartesian
C-family of O-monoidal ∞-categories.

Then the functor

β∗ : AlgO′/O(D)→ AlgO′′/O(D)

constructed in Construction 3.1.2.12 and Proposition 3.1.2.14, which by con-
struction is a functor over C, is a functor of cocartesian fibrations, i. e. sends
prC-cocartesian morphisms to prC-cocartesian morphisms. ♥

Proof. By definition of β∗ there is a commutative diagram as follows.

Fun(O′⊗,D⊗) Fun(O′′⊗,D⊗)

AlgO′/O(D) AlgO′′/O(D)

C

β∗

β∗

prFun

prC

prFun

prC

As the top horizontal functor clearly preserves pointwise p-cocartesian mor-
phisms, criterion Proposition 3.1.2.17 (2) implies that the middle horizontal
functor preserves prC-cocartesian morphisms.

3.1.2.6 Algebras in cocartesian families and products

Let C and C′ be two O-monoidal ∞-categories. Then there is an induced
O-monoidal structure on C × C′, and it is reasonable to expect that there
should be an equivalence as follows.

AlgO′/O(C × C
′) ≃ AlgO′/O(C)×AlgO′/O(C

′)
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The next proposition shows that this is indeed the case.

Proposition 3.1.2.22. Let C be an ∞-category, let α : O′⊗ → O⊗ be a
morphism of ∞-operads, and let p : D⊗ → O⊗ × C be a cocartesian C-family
of O-monoidal ∞-categories that has the product-fiber property from Defini-
tion 3.1.1.7. Then the cocartesian fibrations

prC : ÃlgO′/O(D)→ C

and
prC : AlgO′/O(D)→ C

have fibers compatible with products in the sense of Definition C.2.0.1. ♥

Proof. Let I be a set, let Xi be an object in C for every element i of I, and
let X :=

∏
i∈I Xi. We have to prove that the two functors induced on fibers

ÃlgO′/O(D)X

∏
i∈I pri!

−−−−−−→
∏

i∈I

ÃlgO′/O(D)Xi (∗)

and
AlgO′/O(D)X

∏
i∈I pri!

−−−−−−→
∏

i∈I

AlgO′/O(D)Xi (∗∗)

are equivalences.
We start by considering the following commutative triangle induced by the

projections pri : X → Xi.

D⊗
X O⊗ ×∏

i∈I O
⊗

∏
i∈I D

⊗
Xi

O⊗

∏
i∈I(pri!)

pX pr1
(∗ ∗ ∗)

Both pX and pr1 in this diagram are cocartesian fibrations, and the horizon-
tal functor sends pX -cocartesian morphisms to pr1-cocartesian morphisms.
The statement for pX and pr1 follows from p being a cocartesian fibration
and applying Proposition C.1.1.1, and in the case of the functor on the right
also using that products of cocartesian fibrations are again cocartesian fi-
brations by [HTT, 3.1.2.1]. This also gives a description of the respective
cocartesian morphisms, and with that the statement about the horizontal
functor boils down to a statement about p-cocartesian morphisms that holds
by [HTT, 2.4.1.7]. By assumption p has the product-fiber property, which pre-
cisely means that the horizontal functor in the above diagram is a fiberwise
(over O⊗) equivalence. It now follows from [HTT, 2.4.4.4] that the horizontal
functor is itself an equivalence.
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We now consider the first of the two functors, (∗). Unpacking the definition
(Definition 3.1.2.1) of ÃlgO′/O(D) as a pullback and using Proposition C.1.1.1
we can identify the functor (∗) with

Fun
(
O′⊗,D⊗

)
idO⊗×constX

∏
i∈I(id×pri)!

−−−−−−−−−→
∏

Fun
(
O′⊗,D⊗

)
idO⊗×constXi

where the fibers are taken over Fun(O′⊗,O⊗ × C), and id × pri is the nat-
ural transformation of functors O′⊗ → O⊗ × C from idO⊗ × constX to
idO⊗ × constXi that is given by the identity in the O⊗ factor and pri in
the C factor.

Using that Fun(O′⊗,−) commutes with pullbacks together with [HTT,
3.1.2.1] we can further identify functor (∗) with the functor

FunO⊗

(
O′⊗,D⊗

X

) ∏i∈I(pri!)∗−−−−−−−−→
∏

FunO⊗

(
O′⊗,D⊗

Xi

)

and in another step, using composability of pullback diagrams, that the func-
tor Fun(O′⊗,−) commutes with products, Proposition C.1.1.1 and [HTT,
3.1.2.1] some more, we can further identify this with the following functor.

FunO⊗

(
O′⊗,D⊗

X

) (
∏
i∈I(pri!))∗−−−−−−−−−→

∏
FunO⊗

(
O′⊗,O⊗ ×∏

i∈I O
⊗

∏

i∈I

D⊗
Xi

)

This exactly FunO⊗(O′⊗,−) applied to the horizontal functor in (∗ ∗ ∗), so
this is an equivalence.

Using Proposition 3.1.2.2 one can see that under these equivalences the
functor (∗∗) (which is a restriction of (∗) on domain and codomain to full
subcategories) corresponds to the application of AlgO′/O(−) to the horizontal
functor in (∗ ∗ ∗), so this functor is also an equivalence.

Corollary 3.1.2.23. Let α : O′⊗ → O⊗ be a morphism of ∞-operads. Then
the cocartesian fibration

prMonO(Cat∞) : AlgO′/O

(
M̃onO(Cat∞)

)
→ MonO(Cat∞)

has fibers compatible with products in the sense of Definition C.2.0.1. ♥

Proof. Combine Proposition 3.1.2.22 and Proposition 3.1.1.9.

3.1.3 Functorial construction of ∞-categories of left
modules

In Definition 3.1.2.19 we constructed a functor

AlgAssoc/Assoc : MonAssoc(Cat∞)→ Cat∞
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that sends an (Assoc-)monoidal7 ∞-category C to Alg(C) := Alg/Assoc(C), the
∞-category of Assoc-algebras in C, and can thus be interpreted as encoding
the functoriality of the construction C 7→ Alg(C), see Remark 3.1.2.20.

In this section we will similarly construct a functor LMod that can be
interpreted as encoding the functoriality of the construction that maps a pair
(C, A) with C a monoidal∞-category and A an associative algebra in C, to the
∞-category LModA(C) of left A modules8. For functoriality in C, a monoidal
functor F : C → D should induce a functor LModA(C)→ LModFA(D) when
A is an associative algebra in C. For functoriality in A, we should be able
to form the base change along a morphisms of algebras f : A → B in C, i. e.
restricting the action, providing us with a functor LModB(C)→ LModA(C).

We already have constructed an∞-category whose objects can be described
as pairs (C, A) with C a monoidal ∞-category and A an associative algebra
in C, namely

Alg := AlgAssoc/Assoc

(
M̃onAssoc(Cat∞)

)

see Remark 3.1.2.20. By taking algebras in M̃onAssoc(Cat∞) with respect to
two other ∞-operads, we will obtain a commutative diagram as follows.

AlgLMod AlgObj Alg

MonAssoc(Cat∞)

(3.4)

Objects in AlgLMod can be described as tuples (C, A,M), with C a monoidal
∞-category, A an associative algebra in C, and M a left module in C over
A. Objects in AlgObj can be described as tuples (C, A,X), with C and A

as before, but X just an object of C. The functors in diagram (3.4) are the
obvious forgetful functors.

However, Alg is not quite the ∞-category needed to encode the functo-
riality of LMod that we alluded to at the start of this sub-subsection: A
morphism from (C, A) → (D, B) consists of a monoidal functor F : C → D
and a morphism F (A)→ B of algebras in D. So for our sought-after functo-
riality of LMod we would like the algebra-part of those morphisms to go in
the opposite direction. Luckily, the horizontal functors in diagram (3.4) are
morphisms of cocartesian fibrations over MonAssoc(Cat∞), so we can apply
the fiberwise −op-construction to fix this. We obtain a commuting triangle

AlgOpLModOp AlgOpObjOp

AlgOp

(3.5)

7We follow e. g. [HA, 4.1.1.10] and call Assoc-monoidal ∞-categories just monoidal
∞-categories.

8See [HA, 4.2] for this “pointwise” construction of ∞-categories of left modules.
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that turns out to be a morphism of cocartesian fibrations over AlgOp. Now
AlgOp is the category we are looking for, but the fiber of the cocartesian
fibration

AlgOpLModOp→ AlgOp

over (C, A) is LModA(C)op. By passing to the opposite category fiberwise, and
converting the morphism of cocartesian fibrations to a natural transformation
of functors to Cat∞, we obtain a natural transformation that evaluated at
(C, A) is given by the forgetful functor LModA(C)→ C.

Let us now give a brief overview of the subsections below. We will start
in Section 3.1.3.1 with reviewing the relevant ∞-operads as well as some
morphisms between them that we will need. In Section 3.1.3.2 we will then
carry out the construction of LMod as a functor from AlgOp to Cat∞ as
outlined above. If C is a presentable monoidal∞-category and A is an algebra
in C, then LModA(C) is also presentable by [HA, 4.2.3.7 (1)]. In Section 3.1.3.3
we will define a variant AlgOpPr of AlgOp whose objects can be thought of
as as pairs (C, A) where C is a presentable monoidal ∞-category and A is an
algebra in C, and show that LMod lifts to a functor from AlgOpPr to PrL.

3.1.3.1 Review of the relevant operads

Diagram (3.4) is constructed by taking algebras in M̃onAssoc(Cat∞) with
respect to different ∞-operads, so we begin by discussing the relevant ∞-
operads in this section.

Lurie defines in [HA, 4.2.1]9 an∞-operad LM, which encodes the structure
of a left module over an associative algebra: If C is a symmetric monoidal
∞-category, then we can interpret an LM-algebra in C as a pair (A,M), where
A is an associative algebra in C and M is a left module over A. Indeed, if C
is a 1-category, then this description holds literally, with the usual classical
notions of associative algebras and left modules over them, see [HA, 4.2.1.4].
The underlying ∞-category of LM is a discrete 1-category with two objects,
which we denote by a and m as in [HA, 4.2.1.1]. In the interpretation of an
LM-algebra in C as a pair (A,M) as before, the underlying object of A is given
by evaluation at a and the underlying object of M is given by evaluation at
m.

We next fix notation for some morphisms of ∞-operads defined in [HA,
4.2.1] that we will need.

Definition 3.1.3.1. We let

ιAssoc : Assoc⊗ → LM⊗

9Note that our conventions are such that what we denote by LM⊗ is what Lurie writes
as LM⊗ or LM⊗ (as we do not notationally distinguish between 1-categories as objects
of Cat and Cat∞). We also use LM to both denote to LM⊗

⟨1⟩
as well as a shorthand to

talk about the ∞-operad LM⊗ → Fin∗, which should not be confused with with the
different type of object that Lurie denotes by LM (see [HA, 4.2.1.1]).
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be the morphism of ∞-operads defined in [HA, 4.2.1.10] and

νAssoc : LM⊗ → Assoc⊗

the morphism of ∞-operads defined in [HA, 4.2.1.9]. ♦

Continuing with our discussion from before, these to morphisms of ∞-
operads can be interpreted as follows: ιAssoc induces a functor

AlgLM(C)→ AlgAssoc(C)

that can be interpreted as mapping (A,M) to A (see [HA, 4.2.1.3]), and νAssoc
induces a functor

AlgAssoc(C)→ AlgLM(C)

that can be interpreted as mapping A to (A,A), with the second A in the
pair being A considered as a left module over itself (see [HA, 4.2.1.5]).

We will also need to make use of the trivial ∞-operad Triv defined in [HA,
2.1.1.20], over which algebras are nothing more than objects of the underlying
∞-category. Specifically, the underlying ∞-category of Triv is discrete with
a unique object, and for any ∞-operad O⊗, the functor AlgTriv(O) → O
induced by evaluation at this object is an equivalence, see [HA, 2.1.3.5].

We can now define an additional morphism of ∞-categories that we will
need.

Definition 3.1.3.2. We let

ιTriv : Triv⊗ → LM⊗

be the morphism of ∞-operads that under the equivalence

AlgTriv(LM)
≃
−→ LM⊗

〈1〉 = {a,m}

corresponds to the element m. ♦

The previous discussion implies that we can interpret the functor induced
by ιTriv

AlgLM(C)→ AlgTriv(C)

as mapping (A,M) to the underlying object of M .

3.1.3.2 Construction of LMod

We write O⊗
⊞ O′⊗ for the coproduct of ∞-operads as discussed in [HA,

2.2.3]. We are now ready to construct diagram (3.4): The sequence of mor-
phisms of ∞-operads

Assoc⊗ Assoc⊗ ⊞ Triv⊗ LM⊗ Assoc⊗ι1

idAssoc⊗

ιAssoc⊞ιTriv νAssoc (3.6)
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induces as in Construction 3.1.2.12 and Proposition 3.1.2.14 on algebras in the
universal family of Assoc-monoidal∞-categories pAssoc (see Definition 3.1.1.4)
a commutative diagram as follows, where we shorten M̃onAssoc(Cat∞) to M̃on.

AlgLM/Assoc

(
M̃on

)
AlgAssoc⊞Triv/Assoc

(
M̃on

)
AlgAssoc/Assoc

(
M̃on

)

MonAssoc(Cat∞)

The functors to MonAssoc(Cat∞) are the respective functors that are all called
prMonAssoc(Cat∞) in Definition 3.1.2.1, and which are cocartesian fibrations by
Proposition 3.1.2.17. The above diagram precisely implements the description
of diagram (3.4) given in the introduction to Section 3.1.3, as we will see below
in Remark 3.1.3.4. This justifies making the following definition.
Definition 3.1.3.3. We define

Alg :=AlgAssoc/Assoc

(
M̃onAssoc(Cat∞)

)

AlgObj :=AlgAssoc⊞Triv/Assoc

(
M̃onAssoc(Cat∞)

)

AlgLMod :=AlgLM/Assoc

(
M̃onAssoc(Cat∞)

)

and denote the respective functors10 prMonAssoc(Cat∞) to MonAssoc(Cat∞) by
qAlg, qAlgObj, and qAlgLMod, respectively. Furthermore, we denote the func-
tors induced by the morphisms of ∞-operads in (3.6)

AlgLMod→ AlgObj and AlgObj→ Alg

by ULMod
Obj and UObj, respectively. ♦

Remark 3.1.3.4. We can summarize our previous discussions as follows.
Let G : C → C′ be a monoidal functor of monoidal ∞-categories that we

also consider as a morphism of MonAssoc(Cat∞). By definition, we can identify
the monoidal functor induced by G on fibers of the universal family of Assoc-
monoidal ∞-categories pAssoc (see Definition 3.1.1.4) with G⊗ : C⊗ → C′⊗

itself.
As ULMod

Obj and UObj are morphisms of cocartesian fibrations over the ∞-
category MonAssoc(Cat∞) by Proposition 3.1.2.21, we obtain an induced com-
mutative diagram as follows.

AlgLModC AlgObjC AlgC

AlgLModC′ AlgObjC′ AlgC′

G!

(ULMod
Obj )

C

G!

(UObj)
C

G!

(ULMod
Obj )

C′ (UObj)
C′

10See Definition 3.1.2.1.
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3.1 Modules over algebras

Using Remark 3.1.2.4, Remark 3.1.2.15, and Remark 3.1.2.18 we can iden-
tify this diagram with the following commutative diagram induced by G and
the morphisms of ∞-operads in (3.6).

AlgLM/Assoc(C) AlgAssoc⊞Triv/Assoc(C) AlgAssoc/Assoc(C)

AlgLM/Assoc(C
′) AlgAssoc⊞Triv/Assoc(C

′) AlgAssoc/Assoc(C
′)

AlgLM/Assoc(G) AlgAssoc⊞Triv/Assoc(G) AlgAssoc/Assoc(G)

The ∞-category of algebras over a coproduct of ∞-operads can be identi-
fied with the product of the ∞-categories of algebras by [HA, 2.2.3.6]11, and
the ∞-category of algebras over Triv is by [HA, 2.1.3.6] equivalent to the un-
derlying ∞-category. Considering also the definition of LMod [HA, 4.2.1.16]
we can thus identify the above diagram with the following diagram

LMod(C) Alg(C)× C Alg(C)

LMod(C′) Alg(C′)× C′ Alg(C′)

LMod(G) Alg(G)×G

pr1

Alg(G)

pr1

where the left horizontal functors are on the first factor the forgetful functors
ι∗Assoc from left modules to algebras from [HA, 4.2.1.13] that send a pair
(A,M) with A an associative algebra and M a left module over it to A, and
on the second factor the forgetful functors evm that send a pair (A,M) to M
considered as just an object of C or C′. ♦

Next we fix the variance of morphisms in the fibers.
Definition 3.1.3.5. By applying the functor

coCFib(MonAssoc(Cat∞))

→Fun(MonAssoc(Cat∞),Cat∞)

(−op)∗−−−−→Fun(MonAssoc(Cat∞),Cat∞)

→ coCFib(MonAssoc(Cat∞))

to the morphisms ULMod
Obj and UObj of cocartesian fibrations over the∞-cate-

gory MonAssoc(Cat∞) we obtain morphisms of cocartesian fibrations V LModOp
ObjOp

and V ObjOp as depicted in the following diagram.

AlgOpLModOp AlgOpObjOp AlgOp

MonAssoc(Cat∞)

V
LModOp
ObjOp

qAlgOpLModOp

V ObjOp

qAlgOpObjOp
qAlgOp

11To apply this in our situation, combine this with Proposition E.2.0.3 and the fact that
pullbacks commute with products.
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We define AlgOpLModOp, AlgOpObjOp, AlgOp, qAlgOpLModOp, qAlgOpObjOp,
and qAlgOp as indicated in the diagram. We furthermore define V LModOp to
be the composition V ObjOp ◦ V LModOp

ObjOp . ♦

Proposition 3.1.3.6. V LModOp and V ObjOp from Definition 3.1.3.5 are
cocartesian fibrations and V

LModOp
ObjOp is a morphism of cocartesian fibrations

over AlgOp.
Furthermore, a morphism in AlgOpLModOp is V LModOp-cocartesian pre-

cisely if it is the composition of a qAlgOpLModOp-cocartesian morphism with a
(V LModOp)C-cocartesian morphism for C a monoidal ∞-category. The analo-
gous statement holds for V ObjOp-cocartesian morphisms. ♥

Proof. By [GHN15, 9.6]12,13, to show that V LModOp and V ObjOp are cocarte-
sian fibrations, it suffices to show the following.

(1) qAlgOpLModOp, qAlgOpObjOp and qAlgOp are cocartesian fibrations.

(2) The functor V LModOp maps qAlgOpLModOp-cocartesian morphisms to
morphisms that are qAlgOp-cocartesian, and V ObjOp maps qAlgOpObjOp-
cocartesian morphisms to morphisms that are qAlgOp-cocartesian.

(3) Let C be an object of MonAssoc(Cat∞). Then the functor
(
V LModOp)

C
: AlgOpLModOpC → AlgOpC

induced by V LModOp on fibers over C is a cocartesian fibration.

(3’) Let C be an object of MonAssoc(Cat∞). Then the functor
(
V ObjOp)

C
: AlgOpObjOpC → AlgOpC

induced by V ObjOp on fibers over C is a cocartesian fibration.

(4) Let
M N

M ′ N ′

α

β γ

δ

(3.7)

be a commuting diagram in AlgOpLModOp lying over the following
diagram in MonAssoc(Cat∞).

C D

C D

ϕ

id id

ϕ

12The referenced proposition can be summarized as saying that a morphism of cocartesian
fibrations over some ∞-category C is itself a cocartesian fibration if the restriction to
fibers over any object of C is a cocartesian fibration, and the functor on fibers induced
by a morphism in C preserves those cocartesian morphisms of the fibers.

13[GHN17] is the published version of [GHN15], but does not contain [GHN15, 9.6].
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Assume that α and δ are qAlgOpLModOp-cocartesian and that the mor-
phism β is (ULModOp)C-cocartesian. Then γ is (ULModOp)D-cocarte-
sian.

(4’) Let
M N

M ′ N ′

α

β γ

δ

be a commuting diagram in AlgOpObjOp lying over the following dia-
gram in MonAssoc(Cat∞).

C D

C D

ϕ

id id

ϕ

Assume that α and δ are qAlgOpObjOp-cocartesian and that the mor-
phism β is (UObjOp)C-cocartesian. Then γ is (UObjOp)D-cocartesian.

From the proof of [GHN15, 9.6] it also follows that the V ObjOp-cocartesian
morphisms will be precisely the compositions of qAlgOpObjOp-cocartesian mor-
phisms with (V ObjOp)C-cocartesian morphisms for C an object of the ∞-cat-
egory MonAssoc(Cat∞). A similar statement holds for V LModOp. From this it
follows that to show that V LModOp

ObjOp is a morphism of cocartesian fibrations
from V LModOp to V ObjOp it will suffice to show the following.

(5) V
LModOp
ObjOp sends qAlgOpLModOp-cocartesian morphisms to qAlgOpObjOp-

cocartesian morphisms.

(6) Let C be an object of MonAssoc(Cat∞). Then the functor (V LModOp
ObjOp )C

maps morphisms that are (V LModOp)C-cocartesian to morphisms that
are (V ObjOp)C-cocartesian.

Proof of (1), (2) and (5): Hold by definition.
Proof of (3): Let C be an object of MonAssoc(Cat∞). By Remark 3.1.3.4

we can identify the functor (V LModOp)C with the opposite of the following
forgetful functor.

ι∗Assoc : LMod(C)→ Alg(C)

This forgetful functor is a cartesian fibration by [HA, 4.2.3.2], and thus
(V LModOp)C is a cocartesian fibration. Furthermore, [HA, 4.2.3.2] also im-
plies that a morphism in LMod(C) is (V LModOp)C-cocartesian if and only if
evm of that morphism is an equivalence.
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Proof of (3’): Just as above we can identify the functor (V ObjOp)C using
Remark 3.1.3.4 with the opposite of the left vertical functor in the following
pullback diagram.

Alg(C)× C C

Alg(C) ∗

pr2

pr1 (3.8)

It follows by Proposition C.1.1.1 and [HTT, 2.4.1.5] that (V ObjOp)C is a
cocartesian fibration and that a morphism in Alg(C) × C is (V ObjOp)C-co-
cartesian if and only if pr2 of that morphism is an equivalence.

Proof of (6): Follows immediately from the description of the respective co-
cartesian morphisms given above together with the description of the functor
(V LModOp

ObjOp )C in Remark 3.1.3.4.
Proof of (4) and (4’): The two proofs are analogous, so we only prove (4).
We use the same notation as in the statement of (4), and by the description

of (V LModOp)D-cocartesian morphisms in the proof of (3) we have to show
that evm(γ) is an equivalence. Applying evm to diagram (3.7) we obtain

evm(M) evm(N)

evm(M
′) evm(N

′)

evm(α)

evm(β) evm(γ)

evm(δ)

(3.9)

where by Proposition 3.1.2.17 the top and bottom horizontal morphisms are
pAssoc-cocartesian. Furthermore, the vertical morphism evm(β) is an equiva-
lence, so by [HTT, 2.4.1.5 and 2.4.1.7] we can conclude that evm(γ) is also
an equivalence.

Remark 3.1.3.7. Let C be a monoidal ∞-category, and let us consider it as
an object in MonAssoc(Cat∞). Then using Remark 3.1.3.4 we can identify the
diagram

AlgOpLModOpC AlgOpObjOpC

AlgOpC

(V LModOp
ObjOp )

C

(V LModOp)
C

(V ObjOp)
C

with the following diagram.

LMod(C)op Alg(C)op × Cop

Alg(C)op

(ι∗Assoc)
op×(evm)op

(ι∗Assoc)
op pr1
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Let A be an associative algebra in C. Then it follows that we can identify the
functor (V LModOp

ObjOp )A = ((V LModOp
ObjOp )C)A, with the following functor.

(evm)
op

: LModA(C)op → Cop

Let us now turn to morphisms in AlgOp and induced functors on fibers.
As the functor qAlgOp : AlgOp → MonAssoc(Cat∞) is a cocartesian fibration,
every morphism in AlgOp is the composite of a qAlgOp-cocartesian morphism
and a morphism in a fiber. Let G : C → C′ be a monoidal functor of monoidal
∞-categories, considered as a morphism in MonAssoc(Cat∞). Then by Re-
mark 3.1.3.4 the induced functor on fibers

G! : AlgOpC → AlgOpC′

can be identified with the functor

Alg(G)op : Alg(C)op → Alg(C′)op

which sends an object A of Alg(C) to an associative algebra Alg(G)(A) in C′,
that has underlying object G(A), and so we will sometimes also write G(A)
for Alg(G)(A). Hence a morphism in AlgOp from an object A in AlgOpC to an
object A′ in AlgOpC′ consists of the composition of a qAlgOp-cocartesian mor-
phism A→ G(A) lying over a monoidal functor G : C → C′ and a morphism
of associative algebras A′ → G(A).

Let us first consider a qAlgOp-cocartesian morphism G̃ : A → G(A) in
AlgOp lying over a monoidal functor G : C → C′. By the description of cocarte-
sian morphisms with respect to V LModOp and V ObjOp in Proposition 3.1.3.6,
we know that the the functors induced by this morphism on fibers of the
cocartesian fibrations V LModOp and V ObjOp are the restrictions of of the
functors induced by G on fibers of the cocartesian fibrations qAlgOpLModOp
and qAlgOpObjOp. Thus using Remark 3.1.3.4 again we can identify the in-
duced commutative diagram

AlgOpLModOpA AlgOpObjOpA

AlgOpLModOpG(A) AlgOpObjOpG(A)

(V LModOp
ObjOp )

A

G̃! G̃!

(V LModOp
ObjOp )

G(A)

with the following commutative diagram.

LModA(C)op Cop

LModG(A)(C
′)

op C′op

(evm)op

LMod(G)op Gop

(evm)op

61



Chapter 3 Bialgebras and modules over them

Let us now consider a morphism f : A′ → A of associative algebras in
some monoidal ∞-category C, considered as a morphism f̃ : A → A′ in
AlgOpC ≃ Alg(C)op. Again using the description of cocartesian morphisms
from Proposition 3.1.3.6 together with Remark 3.1.3.4 and [HA, 4.2.3.2] we
can identify the commutative diagram

AlgOpLModOpA AlgOpObjOpA

AlgOpLModOpA′ AlgOpObjOpA′

(V LModOp
ObjOp )

A

f̃! f̃!

(V LModOp
ObjOp )

A′

with the following commutative diagram.

LModA(C)op Cop

LModA′(C)op Cop

(evm)op

LModf (idC)
op id

(evm)op

♦

Definition 3.1.3.8. By Proposition 3.1.3.6 we have a morphism of cocarte-
sian fibrations over AlgOp as depicted in the following diagram.

AlgOpLModOp AlgOpObjOp

AlgOp

V
LModOp
ObjOp

V LModOp V ObjOp

Under the equivalence

coCFib(AlgOp) Fun(AlgOp,Cat∞) Fun(AlgOp,Cat∞)Gr−1

≃

(−op)∗

the cocartesian fibrations V LModOp and V ObjOp correspond to functors

AlgOp→ Cat∞

that we will denote by LMod and pr, respectively. The morphism of cocarte-
sian fibrations V LModOp

ObjOp corresponds to a natural transformation from LMod
to pr that we will denote by evm. ♦

Remark 3.1.3.9. Let C be a monoidal ∞-category and A an associative
algebra in C. Then Remark 3.1.3.7 shows that the natural transformation
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evm as defined in Definition 3.1.3.8 evaluated at A (considered as an object
of AlgOpC) can be identified with the usual forgetful functor14

evm : LModA(C)→ C

justifying the notation we chose for the two functors and the natural trans-
formation. Furthermore, Remark 3.1.3.7 shows that LMod, pr, and evm are
similarly compatible with usual notations on morphisms. ♦

3.1.3.3 LMod and colimits

In this section we put together some results from [HA] that imply that
the functor LMod interacts well with the property of admitting and being
compatible with colimits.

Definition 3.1.3.10 ([HA, 4.8.1.1 and 4.8.3.5] and [HTT, 5.5.3.1]). Let I

be a collection of small ∞-categories and O⊗ an ∞-operad.
We define an∞-category Cat∞(I) together with a monomorphism to Cat∞

as the monomorphism that under the construction of Remark B.6.0.1 corre-
sponds to the replete subcategory of HoCat∞ whose objects are∞-categories
that admit I-indexed colimits15 and whose morphisms are represented by
those functors that preserve I-indexed colimits.

We similarly define an∞-category MonI
O(Cat∞) together with a monomor-

phism to MonO(Cat∞) as the monomorphism corresponding to the replete
subcategory of Ho MonO(Cat∞) whose objects are the O-monoidal ∞-cat-
egories that are compatible with I-indexed colimits in the sense of [HA,
3.1.1.19 and 3.1.1.18], and whose morphisms are represented by O-monoidal
functors C⊗ → D⊗ such that for every object X of O the underlying functor
of ∞-categories CX → DX preserves I-indexed colimits.

Now let J be the collection of all small ∞-categories. We denote by PrL

the full subcategory of Cat∞(J) spanned by the presentable ∞-categories16.
We furthermore define MonPr

O (Cat∞) to be the full subcategory of the
∞-category MonJ

O(Cat∞) spanned by O-monoidal ∞-categories which are
presentable in the sense of [HA, 3.4.4.1]. ♦

Definition 3.1.3.11. Let I be a collection of small ∞-categories. We define
AlgOpI and qAlgOpI

via the following pullback diagram of ∞-categories

AlgOpI AlgOp

MonI
Assoc(Cat∞) MonAssoc(Cat∞)

qAlgOpI qAlgOp

14Here LModA(C) refers to what is defined in [HA, 4.2.1.13].
15This means that they must admit I-indexed colimits for every I in I.
16See [HTT, 5.5]
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where the lower horizontal functor is the inclusion from Definition 3.1.3.10.
We similarly define AlgOpPr and qAlgOp

Pr via the following pullback diagram

AlgOpPr AlgOp

MonPr
Assoc(Cat∞) MonAssoc(Cat∞)

qAlgOpPr qAlgOp

where the lower horizontal functor is the inclusion from Definition 3.1.3.10.
♦

Proposition 3.1.3.12 ([HA, 4.2.3.5 and 4.2.3.7]). Assume that I is a col-
lection of small ∞-categories. Then the restriction of the natural transfor-
mation evm to AlgOpI factors through Cat∞(I). Analogously, the restriction
to AlgOpPr factors through PrL. The situation is depicted in the following
diagram.

AlgOpPr PrL

AlgOpI Cat∞(I)

AlgOp Cat∞

LMod

pr

LMod

pr

LMod

pr

evm

evm

evm

(3.10)

As suggested by the diagram, will denote the induced functors and natural
transformations by the same name again. ♥

Proof. Let E : [1] × AlgOp → Cat∞ be the functor encoding the natural
transformation evm. By definition the right vertical functors in diagram (3.10)
are monomorphisms, so by Proposition B.4.3.1 the composition

[1]×AlgOpI [1]×AlgOp Cat∞E

can be lifted to Cat∞(I) if and only if Im(E ◦ (id[1]×(AlgOpI → AlgOp))) is
contained in Im(Cat∞(I)→ Cat∞), and similarly for the lift to PrL.

In light of Remark 3.1.3.7 and Remark 3.1.3.9, this boils down to the fol-
lowing statements for any∞-category I, monoidal∞-category C, associative
algebra A in C, monoidal functor G : C → D, and morphism of associative
algebras g : B → G(A).
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(1) If the monoidal ∞-category C is compatible with I-indexed colimits in
the sense of [HA, 3.1.1.18], then LModA(C) admits I-indexed colimits.

(2) If C is a presentable monoidal ∞-category in the sense of [HA, 3.4.4.1],
then LModA(C) is presentable.

(3) If the monoidal ∞-category C is compatible with I-indexed colimits,
then the forgetful functor

evm : LModA(C)→ C

preserves I-indexed colimits.

(4) If C admits and G preserves I-indexed colimits, then the functor in-
duced by G and g

LModg(G) : LModA(C)→ LModB(D)

also preserves I-indexed colimits.

Proof of (1): This is [HA, 4.2.3.5 (1)].
Proof of (2): This is [HA, 4.2.3.7 (1)].
Proof of (3): This is [HA, 4.2.3.5 (2)].
Proof of (4): This is a slight generalization of [HA, 4.2.3.7 (2)]. From the

natural transformation evm we obtain a commuting diagram

LModA(C) LModB(D)

C D

LModg(G)

evm evm

G

where by assumption the lower horizontal functor preserves I-indexed colim-
its. It then follows immediately from [HA, 4.2.3.5 (2)] that the top horizontal
functor also does so.

3.2 LMod and monoidality
In this section we will start in Section 3.2.1 by showing that the functor

LMod : AlgOp → Cat∞ preserves products and can thus be upgraded to a
symmetric monoidal functor with respect to the respective cartesian sym-
metric monoidal structures. Furthermore, this induces a symmetric monoidal
structure on the restriction LMod : AlgOpPr → PrL (see Proposition 3.1.3.12).
This will be shown in Section 3.2.3, after we discuss the relevant symmetric
monoidal ∞-categories in Section 3.2.2.
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3.2.1 LMod and products
In this short section we show that LMod : AlgOp → Cat∞ preserves prod-

ucts and can thus be upgraded to a symmetric monoidal functor with respect
to the respective cartesian symmetric monoidal structures.
Proposition 3.2.1.1. The cocartesian fibrations

qAlgOpLModOp : AlgOpLModOp→MonAssoc(Cat∞)

qAlgOpObjOp : AlgOpObjOp→MonAssoc(Cat∞)

qAlgOp : AlgOp→MonAssoc(Cat∞)

have fibers compatible with products in the sense of Definition C.2.0.1. ♥

Proof. Proposition F.2.0.1 implies that the ∞-category MonAssoc(Cat∞) ad-
mits products. Combining Remark C.2.0.2 with the fact that the functor
(−)op : Cat∞ → Cat∞ is an equivalence and thus preserves products we are
reduced to showing that qAlgLMod, qAlgObj, and qAlg have fibers compatible
with products. But this follows from combining Proposition 3.1.2.22 with
Proposition 3.1.1.9.

Proposition 3.2.1.2. The cocartesian fibrations17 V LModOp and V ObjOp

from Definition 3.1.3.5 have fibers compatible with products in the sense of
Definition C.2.0.1. ♥

Proof. These cocartesian fibrations are by definition also morphisms of co-
cartesian fibrations over MonAssoc(Cat∞). As those cocartesian fibrations have
fibers compatible with products by Proposition 3.2.1.1, the statement follows
from Proposition C.2.0.4.

Proposition 3.2.1.3. The ∞-category AlgOp admits all products and the
functors

LMod, pr : AlgOp→ Cat∞
preserve products. ♥

Proof. Follows directly from Proposition 3.2.1.2, Remark C.2.0.2, and the
fact that (−)op is an equivalence and thus preserves products.

Remark 3.2.1.4. Let C and C′ be monoidal ∞-categories and A and A′

associative algebras in C and C′, respectively. Then Proposition C.2.0.3 and
Proposition 3.2.1.1 imply that the pair (A,A′) considered as an object in

(Alg(C)×Alg(C′))op
≃ Alg(C × C′)op

≃ AlgOpC×C′

is a product in AlgOp of A and A′.
That LMod preserves products by Proposition 3.2.1.3 means in particular

that there is an equivalence as follows.

LMod(A,A′)(C × C
′) ≃ LModA(C)× LModA′(C′) ♦

17That they are cocartesian fibrations was shown in Proposition 3.1.3.6.
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3.2.2 AlgOpPr as a symmetric monoidal ∞-category
To be able to make sense of the claim that LMod : AlgOpPr → PrL should

be upgradable to a symmetric monoidal functor, we first need to define sym-
metric monoidal structures on PrL and in particular on AlgOpPr. This is
what we will discuss in this section.

We will start in Section 3.2.2.1 by recalling the symmetric monoidal struc-
ture on PrL, before discussing the symmetric monoidal structure on the ∞-
category MonPr

Assoc(Cat∞) in Section 3.2.2.2. While we will be able to define
MonPr

Assoc(Cat∞)⊗ directly, showing that this is indeed a symmetric monoidal
structure on MonPr

Assoc(Cat∞) will require a fair amount of work comparing it
to Alg(PrL)⊗, the induced symmetric monoidal structure on algebras in PrL.
The reason why we bother to do this rather than just using Alg(PrL)⊗ is
that MonPr

Assoc(Cat∞) is a better fit when discussing the symmetric monoidal
structure on AlgOpPr, which we do in Section 3.2.2.3.

3.2.2.1 The symmetric monoidal structure on PrL

In this section we recall the symmetric monoidal structures on PrL and
Cat∞(I) for I a collection of small∞-categories, closely following [HA, 4.8.1].

Definition 3.2.2.1 ([HA, 4.8.1.2, 4.8.1.4 and 4.8.1.15]). Let I be a collection
of small ∞-categories. We define a monomorphism

Cat∞(I)⊗ → Cat×∞
corresponding as in Remark B.6.0.1 to a replete subcategory H of Ho(Cat×∞)
that we describe next.

An object C1⊕· · ·⊕Cn of (Cat∞)
×
〈n〉 with C1, . . . , Cn∞-categories is to be an

object of H if and only if each Ci admits all I-indexed colimits. A morphism
C1 ⊕ · · · ⊕ Cn → C

′
1 ⊕ · · · ⊕ C

′
m lying over φ : 〈n〉 → 〈m〉 is to be in H if and

only if for each 1 ≤ j ≤ m the associated functor
∏

φ(i)=j

Ci → C
′
j

preserves I-indexed colimits separately in each variable.
Now let J be the collection of all small∞-categories. We define PrL⊗ to be

the full subcategory of Cat∞(J)⊗ spanned by those objects C ≃ C1⊕ · · · ⊕ Cn
where each Ci is presentable. ♦

Remark 3.2.2.2. It is clear from the definitions that the functors

(Cat∞(I))⊗〈1〉 → (Cat∞)×〈1〉 and (PrL)⊗〈1〉 → (Cat∞)(J)×〈1〉

which are induced by the functors defined in Definition 3.2.2.1 can be identi-
fied with the functors

Cat∞(I)→ Cat∞ and PrL → Cat∞(J)
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from Definition 3.1.3.10. ♦

Proposition 3.2.2.3 ([HA, 4.8.1.4 and 4.8.1.15]). Let J be the collection of
all small ∞-categories, let I be a subcollection of J and I′ a subcollection of
I. Then the following statements hold.

(0) The monomorphism Cat∞(I)
⊗ → Cat×∞ from Definition 3.2.2.1 factors

through the monomorphism Cat∞(I′)
⊗ → Cat×∞ from Definition 3.2.2.1.

The lift obtained in this manner is also a monomorphism.

(1) The compositions
Cat∞(I)

⊗ → Cat×∞ → Fin∗

and
PrL⊗

→ Cat×∞ → Fin∗

where the first functor is the monomorphism from Definition 3.2.2.1
and the second functor is the canonical morphism of ∞-operads, are
cocartesian fibrations of ∞-operads.

(2) The functors

PrL⊗
→ Cat∞(I)

⊗ → Cat∞(I′)
⊗
→ Cat×∞

from Definition 3.2.2.1 and (0) are lax symmetric monoidal with respect
to the symmetric monoidal structures from (1).

(3) A morphism in Cat∞(I)⊗ or PrL⊗ is inert if an only if its image in
Cat×∞ is inert.

(4) The functor
PrL⊗

→ Cat∞(J)
⊗

is symmetric monoidal with respect to the symmetric monoidal structure
from (1).

(5) A morphism in PrL⊗ is cocartesian with respect to the canonical mor-
phism of ∞-operads PrL⊗

→ Fin∗ if and only if its image in Cat∞(J)
⊗

is cocartesian with respect to the canonical morphism of ∞-operads
Cat∞(J)

⊗ → Fin∗. ♥

Proof. Proof of (0): Immediate from the definition together with Proposi-
tion B.4.3.1 and Proposition B.1.2.1.

Proof of (1) and (2) for the compositions to Cat×∞: This is [HA, 4.8.1.4 and
4.8.1.15].

Proof of (4): This is [HA, 4.8.1.15].
Proof of(3) and (5): The functors Cat∞(I)⊗ → Cat×∞ and PrL⊗

→ Cat×∞
were already shown to be morphisms of ∞-operads, and PrL⊗

→ Cat∞(J)⊗
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was already shown to be symmetric monoidal. As these functors are also
monomorphisms18 and hence conservative by Proposition B.4.1.2, we can
apply Proposition E.1.2.1 to deduce the claims.

Proof of the rest of (2): Follows directly from (3).

3.2.2.2 The symmetric monoidal structure on MonPr
O (Cat∞)

In this section we construct the symmetric monoidal structure on the
∞-category MonPr

Assoc(Cat∞). While defining MonPr
Assoc(Cat∞)⊗ is relatively

straightforward, showing that this defines a symmetric monoidal structure
(which is Proposition 3.2.2.10) will require a bit more work, requiring a com-
parison result between MonPr

Assoc(Cat∞)⊗ and Alg(PrL)⊗ that will be shown
in Proposition 3.2.2.8.

Definition 3.2.2.4 ([HA, 4.8.5.14]). Let I be a collection of small ∞-cate-
gories and O an ∞-operad. We define a monomorphism19

MonI
O(Cat∞)⊗ → MonO(Cat∞)×

corresponding as in Remark B.6.0.1 to a replete subcategory H of the 1-
category of Ho(MonO(Cat∞)×) that we describe next.

An object C1 ⊕ · · · ⊕ Cn of Ho(MonO(Cat∞)×) is to be in H if and only
if for each 1 ≤ i ≤ n the O-monoidal ∞-category Ci is compatible with
I-indexed colimits in the sense of [HA, 3.1.1.19 and 3.1.1.18]. A morphism
in Ho(MonO(Cat∞)×) between two objects of H is to be in H if and only
if Ho((ev〈1〉)

×) maps that morphism to a morphism in the replete image
Im(Ho(Cat∞(I)⊗)→ Ho(Cat×∞))20.

Now let J be the collection of all small ∞-categories. We then define
MonPr

O (Cat∞)⊗ to be the full subcategory of MonJ

O(Cat∞)⊗ spanned by those
objects C1⊕· · ·⊕Cn for which for each 1 ≤ i ≤ n the O-monoidal∞-category
Ci is presentable O-monoidal in the sense of [HA, 3.4.4.1]. ♦

Remark 3.2.2.5. It is clear from the definitions that the functors

MonI
O(Cat∞)⊗〈1〉 → MonO(Cat∞)×〈1〉

and
MonPr

O (Cat∞)⊗〈1〉 → MonJ

O(Cat∞)×〈1〉

which are induced by the functors defined in Definition 3.2.2.4 can be identi-
fied with the functors

MonI
O(Cat∞)→ MonO(Cat∞)

18That PrL⊗
→ Cat∞(J)⊗ is a monomorphism follows from Proposition B.4.4.1 and that

PrL⊗
→ Cat×∞ is a monomorphism then follows from Proposition B.1.2.1.

19For products in MonO(Cat∞) see Proposition F.2.0.1.
20This condition boils down to associated underlying functors of the form

∏
φ(i)=j Ci → C

′
j

preserving I-indexed colimits separately in each variable.
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and
MonPr

O (Cat∞)→ MonJ

O(Cat∞)

from Definition 3.1.3.10. ♦

Remark 3.2.2.6. It follows directly from the definitions in Definition 3.2.2.4
together with Proposition B.4.3.1 that for I a collection of small∞-categories
and I′ a subcollection of I the monomorphism

MonI
O(Cat∞)⊗ → MonO(Cat∞)×

factors through the monomorphism

MonI
′

O (Cat∞)⊗ → MonO(Cat∞)×

and the lift is by Proposition B.1.2.1 again a monomorphism. ♦

For easier reference we introduce some notation that we are going to use
in some statements and proof below.

Notation 3.2.2.7. The following notation will be used only when specifically
invoked, but not elsewhere. In the notation below, I will be a collection of
small ∞-categories, I′ a subcollection of I, and O an ∞-operad.

• Some of the below notations will use a superscript or subscript I. In the
case I = ∅ we will allow ourselves to drop this superscript or subscript.

• We denote by
pO : O⊗ → Fin∗

the canonical morphism of ∞-operads.

• We let α be the bifunctor defined as the following composition.

Fin∗ ×O
⊗ idFin∗×pO−−−−−−→ Fin∗ × Fin∗

−∧−
−−−→ Fin∗

• We denote by

pI : Cat∞(I)
⊗ → Fin∗

pPr : PrL⊗
→ Fin∗

pAlg,I : AlgO(Cat∞(I))
⊗ → Fin∗

pAlg,Pr : AlgO
(
PrL

)⊗
→ Fin∗

the canonical morphism of∞-operads, where for pAlg,I and pAlg,Pr this
is with respect to the induced symmetric monoidal structures as in
Proposition E.4.2.3 with respect to the bifunctor α.
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• We will denote the lax symmetric monoidal functors from Proposi-
tion 3.2.2.3 (2) as indicated below.

PrL⊗ (ΦPr
I )

⊗

−−−−−→ Cat∞(I)
⊗ (ΦI

I′)
⊗

−−−−−→ Cat∞(I′)
⊗

(
ΦI′

)⊗

−−−−−→ Cat×∞

We set (ΦPr)⊗ := (ΦI)⊗ ◦ (ΦPr
I )⊗.

• We will denote the monomorphisms from Definition 3.2.2.4 and Re-
mark 3.2.2.6 as indicated below.

MonPr
O (Cat∞)

⊗ (ΨPr
I )

⊗

−−−−−→ MonI
O(Cat∞)

⊗ (ΨI

I′)
⊗

−−−−−→ MonI
′

O (Cat∞)
⊗

(
ΨI′

)⊗

−−−−−→ MonO(Cat∞)
×

We set (ΨPr)⊗ := (ΨI)⊗ ◦ (ΨPr
I )⊗.

• We denote by
pMon : MonO(Cat∞)

× → Fin∗

the canonical morphism of ∞-operads, and define pMon,I and pMon,Pr
as the following compositions.

pMon,I := pMon ◦ (Ψ
I)⊗

pMon,Pr := pMon ◦ (Ψ
Pr)⊗

• The cartesian symmetric monoidal structure Cat×∞ comes with a carte-
sian structure

π : Cat×∞ → Cat∞

that we will denote by π, see [HA, 2.4.1.5]. Similarly, we denote the
cartesian structure

πMon : MonO(Cat∞)
× → MonO(Cat∞)

of MonO(Cat∞)
× by πMon. ♦

Proposition 3.2.2.8 ([HA, 4.8.5.16 (1)]). In this proposition we will make
use of Notation 3.2.2.7.

Let I be a collection of small ∞-categories, I′ a subcollection of I, and O
an ∞-operad. Then there is a commutative diagram as follows such that the

71



Chapter 3 Bialgebras and modules over them

horizontal functors are equivalences

AlgO
(
PrL

)⊗
MonPr

O (Cat∞)
⊗

AlgO(Cat∞(I))
⊗ MonI

O(Cat∞)
⊗

AlgO(Cat∞(I′))
⊗ MonI

′

O (Cat∞)
⊗

AlgO(Cat∞)
⊗ MonO(Cat∞)

×

AlgO(ΦPr
I )

⊗

Θ⊗
Pr
≃

(ΨPr
I )

⊗

AlgO(ΦI

I′)
⊗

Θ⊗
I

≃

(ΨI

I′)
⊗

AlgO

(
ΦI′

)⊗

Θ⊗

I′

≃

(
ΨI′

)⊗

Θ⊗

≃

(3.11)

The functor Θ⊗ can be chosen in such a way that for every object X in O
there is a commutative diagram as follows.

AlgO(Cat∞)
⊗ MonO(Cat∞)

×

Cat×∞

Fin∗

evX◦pr1◦ιAlg

pAlg

Θ⊗

≃

(evX)×

pMonp

(3.12)

where the functors to Cat×∞ are the symmetric monoidal forgetful functors21.
Furthermore, Θ⊗ can be chosen such that the underlying equivalence

Θ: AlgO(Cat∞)→ MonO(Cat∞)

is the equivalence from [HA, 2.4.2.5], i. e. there is a commutative diagram

AlgO(Cat∞) MonO(Cat∞)

FunFin∗

(
O⊗,Cat×∞

)

Fun
(
O⊗,Cat×∞

)
Fun(O⊗,Cat∞)

Θ

π∗

(3.13)

21See Proposition E.4.2.3 (5) for the forgetful functor AlgO(Cat∞)⊗ → Cat×∞ that
is given by evaluation at X and Proposition F.2.0.1 for the forgetful functor
evX : MonO(Cat∞) → Cat∞ preserving products and hence inducing a functor
(evX)× : MonO(Cat∞)× → Cat×∞.

72



3.2 LMod and monoidality

where the vertical functors are the canonical projections or inclusions. ♥

Proof. We start by constructing Θ⊗ together with diagram (3.12).
By Proposition F.3.0.2 there is a functor πAlg making the following diagram

commute

AlgO(Cat∞)
⊗ MonO(Cat∞)

Fun
(
O⊗,Cat×∞

)
×Fun(O⊗,Fin∗) Fin∗

Fun
(
O⊗,Cat×∞

)
Fun(O⊗,Cat∞)

πAlg

ιAlg

pr1

π∗

(3.14)

where ιAlg is as in Proposition E.4.2.3 and the unlabeled vertical functor on
the right is the inclusion. Furthermore, Proposition F.3.0.2 also shows that
πAlg is a cartesian structure. Applying [HA, 2.4.1.7] we obtain a symmetric
monoidal functor Θ⊗ making the following diagram commute.

MonO(Cat∞)

AlgO(Cat∞)
⊗ MonO(Cat∞)

×

Fin∗

πAlg

Θ⊗

pAlg

πMon

pMon

(3.15)

Of diagram (3.12) that we want to construct we have thus constructed Θ⊗

as a functor over Fin∗. The two forgetful functors to Cat×∞ are already given
as functors over Fin∗, so it remains to construct a filler for the small triangle
at the top, considered as a diagram over Fin∗.

So let X be an object of O. As both the forgetful functor

AlgO(Cat∞)
⊗ evX◦pr1◦ιAlg
−−−−−−−−→ Cat×∞

as well as the composition

AlgO(Cat∞)
⊗ Θ⊗

−−→ MonO(Cat∞)
× (evX)×

−−−−−→ Cat×∞

are symmetric monoidal, giving a homotopy between them as symmetric
monoidal functors (and hence functors over Fin∗) is by [HA, 2.4.1.7] equivalent
to giving a homotopy of weak cartesian structures between

AlgO(Cat∞)
⊗ evX◦pr1◦ιAlg
−−−−−−−−→ Cat×∞

π
−→ Cat∞
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and the following composition.

AlgO(Cat∞)
⊗ Θ⊗

−−→ MonO(Cat∞)
× (evX)×

−−−−−→ Cat×∞
π
−→ Cat∞

Such a homotopy is encoded in the outer commutative diagram depicted
below

MonO(Cat∞)
×

Cat×∞

AlgO(Cat∞)
⊗ MonO(Cat∞) Cat∞

Fun
(
O⊗,Cat×∞

)
Fun(O⊗,Cat∞) Cat∞

Cat×∞

(evX)×

πMon π
Θ⊗

πAlg

pr1◦ιAlg

evX

π∗

evX

evX

π

where the upper left commutative triangle is the one from (3.15), the upper
right commutative square arises from the functoriality of the construction
(−)×, the middle left commutative square is the one from (3.14), the middle
lower commutative square is one by definition, and the bottom commutative
square arises from naturality of evX .

We have now constructed Θ⊗ as a functor over Fin∗ as well as diagram
(3.12) for every object X of O. Let us now consider diagram (3.13) concerning
the underlying functor Θ. The composition of the inclusion of

MonO(Cat∞) ≃ MonO(Cat∞)
×
〈1〉

into MonO(Cat∞)
× with πMon is by definition homotopic to the identity, so

we obtain from the commutative diagram (3.15) a homotopy between Θ and
the the composition

AlgO(Cat∞)→ AlgO(Cat∞)
⊗ πAlg
−−−→ MonO(Cat∞)

The desired commutative diagram (3.13) can now be obtained by combining
this with commutative diagram (3.14).

From this description of Θ it now follows from [HA, 2.4.2.5] that Θ is an
equivalence. Using that Θ⊗ is symmetric monoidal we can thus conclude from
[HA, 2.1.3.8] that Θ⊗ is an equivalence as well.

To construct diagram (3.11), we will show the following claims for each
collection of small ∞-categories I.

(A) (ΨI)⊗ is a monomorphism.

(B) Alg(ΦI)⊗ is a monomorphism.
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(C) Im(Ho(Θ⊗ ◦AlgO(ΦI)⊗)) is equal to Im(Ho((ΨI)⊗)).

Let us assume claims (A), (B), and (C) for the moment and deduce the
statements we have to prove.

Existence of an equivalences Θ⊗
I

together with commutative squares of the
form

AlgO(Cat∞(I))
⊗ MonI

O(Cat∞)
⊗

AlgO(Cat∞)
⊗ MonO(Cat∞)

×

AlgO(ΦI)
⊗

Θ⊗
I

≃

(ΨI)
⊗

Θ⊗

≃

then follows from Proposition B.4.3.1, see also Remark B.6.0.1. That there
is a compatibility square between Θ⊗

I′ and Θ⊗
I

follows immediately from the
uniqueness part of Proposition B.4.3.1 using that (ΨI

′

)⊗ is a monomorphism.
Finally, we need to construct the dashed equivalence fitting into the square

depicted at the top of the commutative diagram below, where J is the collec-
tion of all small ∞-categories, and X is an object of O.

AlgO
(
PrL

)⊗
MonPr

O (Cat∞)
⊗

AlgO(Cat∞(J))
⊗ MonJ

O(Cat∞)
⊗

Cat×∞

AlgO(ΦPr
J )

⊗

Θ⊗
Pr
≃

(ΨPr
J )

⊗

Θ⊗
J

≃

evX◦pr1◦ιAlg◦AlgO(ΦJ)
⊗

(evX)×◦(ΨJ)
⊗

(3.16)

The functor (ΦPr
J )⊗ is by definition the inclusion of the fully faithful subcate-

gory of Cat∞(J)⊗ spanned by objects C1⊕· · ·⊕Cn such that the ∞-category
ΦJ(Ci) is presentable for each 1 ≤ i ≤ n, see Definition 3.2.2.1. It follows
from the definition of the induced functor AlgO(ΦPr

J )⊗ in Remark E.4.2.2
together with Proposition B.3.0.1, Proposition B.5.1.1, Remark B.5.1.2, and
Proposition B.5.3.1, that AlgO(ΦPr

J )⊗ is again a fully faithful functor with
essential image spanned by objects C1 ⊕ · · · ⊕ Cn such that the underlying
∞-category (evX ◦AlgO(ΦJ))(Ci) of Ci is presentable for each 1 ≤ i ≤ n and
object X of O22.

22We are using here that only functors preserving inert morphisms are in the essential
image of pr1 ◦ιAlg – this implies that we only need to check the presentability condition
for objects X of O rather than all of O⊗.
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The functor (ΨPr
J )⊗ is by definition (see Definition 3.2.2.4) the inclusion

of the fully faithful subcategory described in the same way23, so as Θ⊗
J

is
compatible with the forgetful functors to Cat×∞ we can use Proposition B.4.3.1
to complete diagram (3.16).

We now turn towards proving (A), (B), and (C). We will simplify notation
and write Φ := ΦI and Ψ := ΨI.

Proof of (A): That Ψ⊗ is a monomorphism holds by definition, see Defini-
tion 3.2.2.4.

Proof of (B): By Remark E.4.2.2, there is a commutative diagram as follows

AlgO(Cat∞(I))
⊗ Fun

(
O⊗,Cat∞(I)

⊗
)
×Fun(O⊗,Fin∗) Fin∗

AlgO(Cat∞)
⊗ Fun

(
O⊗,Cat×∞

)
×Fun(O⊗,Fin∗) Fin∗

AlgO(Φ)⊗

ι′Alg

(Φ⊗)
∗
×idid

ιAlg

where ιAlg and ι′Alg are as in Proposition E.4.2.3. Φ⊗ is by definition (see
Definition 3.2.2.1) a monomorphism, so (Φ⊗)∗ is a monomorphism by Propo-
sition B.5.1.1 and then it follows that (Φ⊗)∗ ×id id is a monomorphism by
Proposition B.5.3.1. As ιAlg and ι′Alg are fully faithful by definition and hence
monomorphisms by Proposition B.4.4.1, it follows from Proposition B.1.2.1
that Alg(Φ)⊗ is a monomorphism.

Proof of (C): To describe Im(Ho(Θ⊗ ◦AlgO(Φ)⊗)) we will go through the
same steps of (B) and identify the replete image of the respective functor at
each step. We start with Φ⊗, for which Im(Ho(Φ⊗)) is described in Defini-
tion 3.2.2.1.

Combining this with Proposition B.5.1.1 we can describe Im(Ho((Φ⊗)∗))
as follows.

(ObjI) A functor A : O⊗ → Cat×∞, considered as an object of the 1-category
Ho(Fun(O⊗,Cat×∞)), lies in Im(Ho((Φ⊗)∗)) if and only if the following
hold.

(ObjI.1) For each object X of O⊗, if A(X) ≃ C1 ⊕ · · · ⊕ Ck then for
each 1 ≤ i ≤ k the ∞-category Ci admits all I-indexed colimits.

(ObjI.2) If β is a morphism in O⊗, and

A(β) : C1 ⊕ · · · ⊕ Ck → C
′
1 ⊕ · · · ⊕ C

′
l

lies over a morphism φ : 〈k〉 → 〈l〉 of Fin∗, then for each 1 ≤ j ≤ l
the associated functor

∏

φ(i)=j

Ci → C
′
j

23So spanned by objects C1 ⊕ · · · ⊕ Cn such that the underlying ∞-category of Ci is pre-
sentable for each 1 ≤ i ≤ n.
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preserves I-indexed colimits separately in each variable.

(MorI) A natural transformation f : A → B of functors O⊗ → Cat×∞,
considered as a morphism of Ho(Fun(O⊗,Cat×∞)), is in Im(Ho((Φ⊗)∗))
if and only if the following hold.

(MorI.1) A and B are in Im(Ho((Φ⊗)∗)).
(MorI.2) For every object X of O⊗ the morphism

fX : C1 ⊕ · · · ⊕ Ck ≃ A(X)→ B(X) ≃ C′1 ⊕ · · · ⊕ C
′
l

lying over a morphism φ : 〈k〉 → 〈l〉 is such that for every 1 ≤ j ≤ l
the associated functor

∏

φ(i)=j

Ci → C
′
j

preserves I-indexed colimits separately in each variable.

Describing Im(Ho((Φ⊗)∗ ×id id)) needs little extra work, it follows from
Proposition B.5.3.1 that an object or morphism of

Fun
(
O,Cat×∞

)
×Fun(O,Fin∗) Fin∗

is in Im(Ho((Φ⊗)∗ ×id id)) if and only if its projection to the first factor is
and object or morphism of Im(Ho((Φ⊗)∗)).

The functor ι′Alg is defined as the inclusion of the full subcategory of ob-
jects whose projection to the first factor is a functor O⊗ → Cat∞(I)⊗ that
preserves inert morphisms, and ιAlg is defined analogously. As by Proposi-
tion 3.2.2.3 (3) a morphism in Cat∞(I)⊗ is inert if and only if Φ⊗ maps
that morphism to an inert morphism in Cat×∞, we can conclude that an ob-
ject or morphism of Ho(AlgO(Cat∞)⊗) is in Im(Ho(AlgO(Φ)⊗)) if and only
if Ho(ιAlg) maps it into Im(Ho((Φ⊗)∗ ×id id)). This leads to the following
description of Im(Ho(AlgO(Φ)⊗)).

We will notationally identify 〈n〉 ∧ 〈m〉 with (〈n〉◦ × 〈m〉)∗ and thus write
non-basepoint elements of 〈n〉 ∧ 〈m〉 as pairs (i, j) with 1 ≤ i ≤ n and
1 ≤ j ≤ m.

(ObjII) An object A of AlgO(Cat∞)⊗〈n〉, considered as an object of the 1-
category Ho(AlgO(Cat∞)⊗), is in Im(Ho(AlgO(Φ)⊗)) if and only if the
following hold.

(ObjII.1) For each k ≥ 0 and object X in O⊗
〈k〉, if

(pr1 ◦ ιAlg)(A)(X) ≃ C(1,1) ⊕ · · · ⊕ C(n,k)

then for each 1 ≤ i1 ≤ n and 1 ≤ i2 ≤ k the ∞-category C(i1,i2)
admits all I-indexed colimits.
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(ObjII.2) If φ : 〈k〉 → 〈l〉 is a morphism in Fin∗ and f : X → Y a
morphism in O⊗ lying over φ, and

(pr1 ◦ ιAlg)(A)(f) : C(1,1) ⊕ · · · ⊕ C(n,k) → C
′
(1,1) ⊕ · · · ⊕ C

′
(n,l)

then for each 1 ≤ j1 ≤ n and 1 ≤ j2 ≤ l the associated functor
∏

φ(i)=j2

C(j1,i) → C
′
(j1,j2)

preserves I-indexed colimits separately in each variable.

(MorII) A morphism f : A → B of AlgO(Cat∞)⊗, lying over a morphism
φ : 〈n〉 → 〈m〉 in Fin∗ and considered as a morphism of the 1-category
Ho(AlgO(Cat∞)⊗), is in Im(Ho(AlgO(Φ)⊗)) if and only if the following
hold.

(MorII.1) A and B are in Im(Ho(AlgO(Φ)⊗)).
(MorII.2) For every k ≥ 0 and object X in O⊗

〈k〉 the morphism

(pr1 ◦ ιAlg)(f)X : C(1,1) ⊕ · · · ⊕ C(n,k) → C
′
(1,1) ⊕ · · · ⊕ C

′
(m,k)

is such that for every 1 ≤ j1 ≤ m and 1 ≤ j2 ≤ k the associated
functor ∏

φ(i)=j1

C(i,j2) → C
′
(j1,j2)

preserves I-indexed colimits separately in each variable.
We will now replace these conditions with equivalent descriptions that are

more amenable to describing what happens under the equivalence Θ⊗.
Let A ≃ A1 ⊕ · · · ⊕ An be an object of AlgO(Cat∞)⊗〈n〉, let k ≥ 0, let

X ≃ X1 ⊕ · · · ⊕Xk be an object of O⊗
〈k〉, and let

(pr1 ◦ ιAlg)(A)(X) ≃ C(1,1) ⊕ · · · ⊕ C(n,k)

be the usual decomposition. Let 1 ≤ i ≤ n and let gi : A → Ai be an in-
ert morphism lying over ρi. It follows from Proposition E.4.2.3 (2) that the
morphism (pr1 ◦ ιAlg)(gi)(X) can be identified with the inert morphism

C(1,1) ⊕ · · · ⊕ C(n,k) → C(i,1) ⊕ · · · ⊕ C(i,k)

in Cat×∞ over ρi ∧ id〈k〉. Furthermore, as Ai lies in

AlgO(Cat∞)⊗〈1〉 ≃ AlgO(Cat∞)

(see Proposition E.4.2.3 (0)) and thus preserves inert morphisms, we also
obtain an equivalence as follows.

(pr1 ◦ ιAlg)(Ai)(X) ≃
⊕

1≤j≤k

(pr1 ◦ ιAlg)(Ai)(Xj)

It follows that condition (ObjII.1) is equivalent to the following condition.
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(ObjIII.1) For each 1 ≤ i ≤ n and object X of O, the underlying ∞-
category24 evX(Ai) in Cat∞ is an∞-category that admits all I-indexed
colimits.

Similarly one obtains that if f : X → Y is a morphism in O⊗ lying over
φ : 〈k〉 → 〈l〉 then

(pr1 ◦ ιAlg)(A)(f) : C(1,1) ⊕ · · · ⊕ C(n,k) → C
′
(1,1) ⊕ · · · ⊕ C

′
(n,l)

can be identified with a sum A1(f)⊕· · ·⊕An(f) in Cat×∞, and for 1 ≤ j1 ≤ n
and 1 ≤ j2 ≤ l the functor

∏

φ(i)=j2

C(j1,i) → C
′
(j1,j2)

associated to (pr1 ◦ ιAlg)(A)(f) can be identified with the analogous functor
associated to

(pr1 ◦ ιAlg)(Aj1)(f) : C(j1,1) ⊕ · · · ⊕ C(j1,k) → C
′
(j1,1)

⊕ · · · ⊕ C′(j1,l)

at index (j1, j2). It follows that condition (ObjII.2) is equivalent to the fol-
lowing condition.

(ObjIII.2) For each 1 ≤ i ≤ n, the O-monoidal ∞-category Ai (which we
consider as an object of AlgO(Cat∞)⊗〈1〉 ≃ AlgO(Cat∞) ≃ MonO(Cat∞))
is such that for every morphism f : X1 ⊕ · · · ⊕Xk → Y in O lying over
φ : 〈k〉 → 〈1〉 the associated functor

∏

1≤j≤k

evXj Ai → evY Ai

is compatible with I-indexed colimits separately in each variable.

Reformulations (ObjIII.1) and (ObjIII.2) allow us to rephrase (ObjI) as
follows, by using the definitions of Θ (given by postcomposing with π) and
the monomorphism MonI

O(Cat∞) → MonO(Cat∞) from Definition 3.1.3.10,
which we can identify with Ψ by Remark 3.2.2.5.

(ObjIII) Let A ≃ A1⊕· · ·⊕An be an object of AlgO(Cat∞)⊗〈n〉, and consider
A as an object of Ho(AlgO(Cat∞)⊗). Then A is in Im(Ho(AlgO(Φ)⊗))
if and only if for each 1 ≤ i ≤ n, the equivalence

Θ: AlgO(Cat∞)→ MonO(Cat∞)

maps Ai to an object in Im(Ho(Ψ)).
24Here we consider Ai as an object of AlgO(Cat∞)⊗

⟨1⟩
≃ AlgO(Cat∞)
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Using that Θ⊗ maps A1 ⊕ · · · ⊕ An to Θ(A1) ⊕ · · · ⊕ Θ(An) by virtue of
being lax monoidal, as well as the definition of Ψ⊗ in Definition 3.2.2.4, we
finally obtain the following reformulation.

(ObjIV) Let A be an object Ho(AlgO(Cat∞)⊗). Then A lies in the subcat-
egory Im(Ho(AlgO(Φ)⊗)) if and only if Ho(Θ⊗)(A) is in Im(Ho(Ψ⊗)).

This shows (C) for objects. Let us now turn towards reformulating (MorII).
Let f : A → B be a morphism in AlgO(Cat∞)⊗, lying over a morphism
φ : 〈n〉 → 〈m〉 in Fin∗, and let X ≃ X1 ⊕ · · · ⊕ Xk be an object of O⊗

〈k〉.
As (pr1 ◦ ιAlg)(A) and (pr1 ◦ ιAlg)(B) preserve inert morphisms, we can for
1 ≤ j2 ≤ k identify the commutative diagram

(pr1 ◦ ιAlg)(A)(X) (pr1 ◦ ιAlg)(B)(X)

(pr1 ◦ ιAlg)(A)(Xj2) (pr1 ◦ ιAlg)(B)(Xj2)

(pr1◦ιAlg)(f)X

(pr1◦ιAlg)(A)(ρj2 ) (pr1◦ιAlg)(B)(ρj2 )

(pr1◦ιAlg)(f)Xj2

lying over
〈n〉 ∧ 〈k〉 〈m〉 ∧ 〈k〉

〈n〉 ∧ 〈1〉 〈m〉 ∧ 〈1〉

φ∧id

id ∧ρj2 id ∧ρj2

φ∧id

with a diagram as indicated below

C(1,1) ⊕ · · · ⊕ C(n,k) C′(1,1) ⊕ · · · ⊕ C
′
(m,k)

C(1,j2) ⊕ · · · ⊕ C(n,j2) C′(1,j2) ⊕ · · · ⊕ C
′
(m,j2)

and the functor ∏

φ(i)=j1

C(i,j2) → C
′
(j1,j2)

associated to the top horizontal morphism at index (j1, j2) with 1 ≤ j1 ≤ m
can be identified with the functor associated to the bottom horizontal mor-
phism at the same index. This implies that (MorII.2) is equivalent to the
following condition.

(MorIII.2) For every object X of O, if f is such that

(evX ◦ pr1 ◦ ιAlg)(f) : C(1,1) ⊕ · · · ⊕ C(n,1) → C
′
(1,1) ⊕ · · · ⊕ C

′
(m,1)
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then for every 1 ≤ j ≤ m the associated functor
∏

φ(i)=j

C(i,1) → C
′
(j,1)

preserves I-indexed colimits separately in each variable.
For X an object of O, the composition evX ◦ pr1 ◦ ιAlg is by commutativity
of diagram (3.12) homotopic to the composition (evX)× ◦ Θ⊗. Combining
this with the definition of Ψ (see Definition 3.2.2.4) and the reformulation of
(MorII.1) made possible by (ObjIV) we finally obtain the following.

(MorIV) Let f : A → B be a morphism in Ho(AlgO(Cat∞)⊗). Then f

is a morphism in Im(Ho(AlgO(Φ)⊗)) if and only if Ho(Θ⊗)(f) is in
Im(Ho(Ψ⊗)).

This shows (C) and thereby ends the proof.

Remark 3.2.2.9. In this remark we will make use of Notation 3.2.2.7.
Let I be a collection of small ∞-categories, O an ∞-operad, and X and

object of the underlying category O. Diagram (3.11) constructed in Equa-
tion (3.11) can be extended to a commutative diagram as follows

AlgO
(
PrL

)⊗
MonPr

O (Cat∞)
⊗

PrL⊗

AlgO(Cat∞(I))
⊗ MonI

O(Cat∞)
⊗

Cat∞(I)
⊗

AlgO(Cat∞)
⊗ MonO(Cat∞)

×

Cat×∞

Θ⊗
Pr
≃

Alg(ΦPr
I )

⊗

E

(ΨPr
I )

⊗

Θ⊗
I

≃

Alg(ΦI)
⊗

E

(ΨI)
⊗

ΨPr
I

Θ⊗

≃

E (ev⟨1⟩)
×

ΨI

where we write E as an abbreviation for evX ◦pr1 ◦ιAlg.
We will refer to the functors

MonI
O(Cat∞)

⊗ → Cat∞(I)
⊗

and
MonPr

O (Cat∞)
⊗ → PrL⊗

as the forgetful functors and denote them by (evX)⊗. ♦

81



Chapter 3 Bialgebras and modules over them

Proposition 3.2.2.10 ([HA, 4.8.5.16 (1)]). In this proposition we make use
of Notation 3.2.2.7.

Let I be a collection of small ∞-categories, let I′ be a subcollection of I,
and let J be the collection of all small ∞-categories. Let O⊗ be an ∞-operad.
Then the following statements hold.

(1) The functors pMon,I and pMon,Pr are cocartesian fibrations of ∞-oper-
ads and thus exhibit MonI

O(Cat∞)
⊗ and MonPr

O (Cat∞)
⊗ as symmetric

monoidal ∞-categories.

(2) The functors

MonPr
O (Cat∞)

⊗ (ΨPr
I )

⊗

−−−−−→ MonI
O(Cat∞)

⊗ (ΨI

I′)
⊗

−−−−−→ MonI
′

O (Cat∞)
⊗

(
ΨI′

)⊗

−−−−−→ MonO(Cat∞)
×

are lax symmetric monoidal with respect to the symmetric monoidal
structures from (1).

(3) A morphism in MonI
O(Cat∞)

⊗ or MonPr
O (Cat∞)

⊗ is inert if and only
if its image under

(
ΨI
)⊗ or

(
ΨPr)⊗ in MonO(Cat∞)

× is inert.

(4) The functor
(
ΨPr

J

)⊗
: MonPr

O (Cat∞)
⊗ → MonJ

O(Cat∞)
×

is symmetric monoidal with respect to the symmetric monoidal structure
from (1).

(5) A morphism f in MonPr
O (Cat∞)

⊗ is pMon,Pr-cocartesian if and only if(
ΨPr

J

)⊗
(f) is pMon,J-cocartesian.

(6) Let X be an object in O. The forgetful functors

(evX)
⊗
: MonI

O(Cat∞)
⊗ → Cat∞(I)

⊗

and
(evX)

⊗
: MonPr

O (Cat∞)
⊗ → PrL⊗

from Remark 3.2.2.9 are symmetric monoidal. ♥

Proof. All of the statements will be shown by translating them to state-
ments regarding AlgO(Cat∞(I))

⊗ and AlgO
(
PrL

)⊗
using Proposition 3.2.2.8.

The individual statements then all follow by combining parts of Proposi-
tion E.4.2.3 with parts of Proposition 3.2.2.3, as indicated in the table below.
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Claim Combine Proposition E.4.2.3 with Proposition 3.2.2.3
(1) (3) (1)
(2) (7) (2)
(3) (2) and (9) (3)
(4) (8) (4)
(5) (4) and (9) (5)
(6) (5)

3.2.2.3 The symmetric monoidal structure on AlgOpPr

By Proposition 3.2.1.1 and Proposition C.2.0.3 the cocartesian fibration

qAlgOp : AlgOp→ MonAssoc(Cat∞)

preserves products (see also Remark 3.2.1.4). By [HA, 2.4.1.8] we thus obtain
an induced symmetric monoidal functor

q×
AlgOp : AlgOp× → MonAssoc(Cat∞)

×

between the respective cartesian symmetric monoidal structures.
In this section we upgrade qAlgOpI

and qAlgOp
Pr to symmetric monoidal

functors in a compatible way.

Definition 3.2.2.11 ([HA, 4.8.5.14]). Let I be a collection of small ∞-cat-
egories. We define functors

q⊗
AlgOpI

: AlgOp⊗
I
→ MonI

Assoc(Cat∞)
⊗

and
q⊗
AlgOp

Pr
: AlgOp⊗

Pr → MonPr
Assoc(Cat∞)

⊗

as pullbacks, as indicated in the following pullback diagrams

AlgOp⊗
I

AlgOp×

MonI
Assoc(Cat∞)

⊗ MonAssoc(Cat∞)
×

(Ψ̃I)⊗

q⊗
AlgOpI

q×
AlgOp

(ΨI)⊗

AlgOp⊗
Pr AlgOp×

MonPr
Assoc(Cat∞)

⊗ MonAssoc(Cat∞)
×

(Ψ̃Pr)⊗

q⊗
AlgOpPr

q×
AlgOp

(ΨPr)⊗

where the lower horizontal functors are the ones defined in Notation 3.2.2.7.
♦
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Remark 3.2.2.12. Passing to fibers over 〈1〉 we obtain a pullback diagram

(AlgOpI)
⊗
〈1〉 AlgOp×

〈1〉

MonI
Assoc(Cat∞)

⊗
〈1〉 MonAssoc(Cat∞)

×
〈1〉

(qAlgOpI
)
⊗

⟨1⟩
(qAlgOp)

×

⟨1⟩

that can be identified using Remark 3.2.2.5 with the pullback diagram

AlgOpI AlgOp

MonI
Assoc(Cat∞) MonAssoc(Cat∞)

qAlgOpI qAlgOp

from Definition 3.1.3.11. A similar statement holds for (qAlgOp
Pr)

⊗
〈1〉. ♦

Proposition 3.2.2.13 ([HA, 4.8.5.16 (1)]). In this proposition we use nota-
tion from Notation 3.2.2.7.

Let I be a collection of small ∞-categories, I′ a subcollection of I, and J

the collection of all small ∞-categories.

(0) The functors (Ψ̃I)⊗ and (Ψ̃Pr)⊗ from Definition 3.2.2.11 are monomor-
phisms in Cat∞, and (Ψ̃I)⊗ factors as a composition of a monomor-
phisms (Ψ̃I

I′)⊗ with (Ψ̃I
′

)⊗. Similarly, (Ψ̃Pr)⊗ factors as a composition
of a monomorphism (Ψ̃Pr

I )⊗ with (Ψ̃I)⊗.

(1) The functors q⊗
AlgOpI

and q⊗
AlgOp

Pr
as defined in Definition 3.2.2.11 are

cocartesian fibrations of ∞-operads.

(2) The compositions pMon,I◦q
⊗
AlgOpI

and pMon,Pr◦q
⊗
AlgOp

Pr
exhibit AlgOp⊗

I

and AlgOp⊗
Pr as symmetric monoidal ∞-categories.

(3) The morphisms of ∞-operads q⊗
AlgOpI

and q⊗
AlgOp

Pr
are symmetric

monoidal.

(4) Let f be a morphism in AlgOp⊗
I

. Then f is pMon,I ◦q
⊗
AlgOpI

-cocartesian
if and only if q⊗

AlgOpI
(f) is pMon,I-cocartesian and (Ψ̃I)⊗(f) is q×

AlgOp-
cocartesian. An analogous statement holds for morphisms in AlgOp⊗

Pr.

(5) The functors (Ψ̃I
I′)⊗ and (Ψ̃Pr

I )⊗ of Definition 3.2.2.11 are lax symmet-
ric monoidal.

(6) Let f be a morphism in AlgOp⊗
I

. Then f is inert if and only if (Ψ̃I)⊗(f)
is inert. An analogous statement holds for morphisms in AlgOp⊗

Pr.
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(7) The functor
(Ψ̃Pr

J )⊗ : AlgOp⊗
Pr → AlgOp⊗

J

of (0) is symmetric monoidal.

(8) Let f be a morphism in AlgOp⊗
Pr. Then f is pMon,Pr ◦ q

⊗
AlgOp

Pr
-cocarte-

sian if and only if (Ψ̃Pr
J )⊗(f) is pMon,J ◦ q

⊗
AlgOpJ

-cocartesian. ♥

Proof. Proof of (0): That the functors factor as indicated follows from com-
posability of pullback diagrams [HTT, 4.4.2.1] together with Remark 3.2.2.6.
By Proposition B.5.2.1, pullbacks of monomorphisms are again monomor-
phisms, so that the functors in question are monomorphisms follows from
Definition 3.2.2.4 and Remark 3.2.2.6.

Proof of (1): The functor q⊗
AlgOpI

is a pullback of q×
AlgOp, which is a cocarte-

sian fibration of∞-operads by Proposition 3.2.1.1 and Proposition C.2.0.6. As
cocartesian fibrations of ∞-operads are stable under taking pullbacks along
morphisms of ∞-operads25 and MonI

Assoc(Cat∞)
⊗ → MonAssoc(Cat∞)

× is a
morphism of ∞-operads by Proposition 3.2.2.10 (2), we can conclude that
q⊗
AlgOpI

is also a cocartesian fibration of ∞-operads, and thus in particular a
morphism of ∞-operads by [HA, 2.1.2.14].

Proof of (2): As the ∞-operad MonI
Assoc(Cat∞)

⊗ is in fact a symmetric
monoidal∞-category26 by Proposition 3.2.2.10 (1), it follows27 with (1) that
AlgOp⊗

I
is a symmetric monoidal ∞-category as well.

Proof of (3): Follows immediately from Proposition C.1.3.1.
Proof of (4): We do the case of AlgOp⊗

I
, as the proof for AlgOp⊗

Pr is com-
pletely analogous. Let f be a morphism in AlgOp⊗

I
. Because q⊗

AlgOpI
maps

pMon,I ◦ q
⊗
AlgOpI

-cocartesian morphisms to pMon,I-cocartesian morphisms by
(3), it follows from [HTT, 2.4.1.3 (3)] that f is pMon,I ◦ q

⊗
AlgOpI

-cocartesian
if and only if q⊗

AlgOpI
(f) is pMon,I-cocartesian and f is q⊗

AlgOpI
-cocartesian.

The claim now follows from Proposition C.1.1.1.
Proof of (6): We again only discuss the case of AlgOp⊗

I
, as the proof for

AlgOp⊗
Pr is completely analogous. In light of (4) it suffices to show that if f is

a morphism of AlgOp⊗
I

lying over an inert morphism in Fin∗, then (Ψ̃I)⊗(f)

is pMon ◦ q
×
AlgOp-cocartesian if and only if (Ψ̃I)⊗(f) and q⊗

AlgOpI
(f) are inert.

Combining that q×
AlgOp is a morphism of ∞-operads with [HTT, 2.4.1.3

(3)] we obtain that (Ψ̃I)⊗(f) being pMon ◦ q
×
AlgOp-cocartesian is equivalent to

25This is a special case of the functoriality of cocartesian families of monoidal∞-categories
discussed in Remark 3.1.1.3 – in this case we consider [0]-families, which are just co-
cartesian fibrations of ∞-operads.

26I. e. the canonical morphism of ∞-operads MonI
Assoc(Cat∞)⊗ → Fin∗ is a cocartesian

fibration.
27Cocartesian fibrations are closed under composition by [HTT, 2.4.2.3 (3)].
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(Ψ̃I)⊗(f) as well as

(
q×
AlgOp ◦

(
Ψ̃I
)⊗)

(f) ≃
((

ΨI
)⊗
◦ q⊗

AlgOpI

)
(f)

being inert. The claim now follows by applying Proposition 3.2.2.10 (3).

Proof of (5): Immediate consequence of (6).

Proof of (8): Analogous to the proof of (6), using that q×
AlgOp is even

symmetric monoidal and Proposition 3.2.2.10 (5).

Proof of (7): Immediate consequence of (8).

3.2.3 LMod as a symmetric monoidal functor

In Section 3.1 we constructed a natural transformation evm : LMod → pr
of functors AlgOp → Cat∞, see Definition 3.1.3.8. It was shown in Proposi-
tion 3.2.1.3 that AlgOp admits products and that LMod and pr preserve prod-
ucts. This makes evm into a morphism in Fun×(AlgOp,Cat∞), the full subcat-
egory of Fun(AlgOp,Cat∞) spanned by the product-preserving functors. [HA,
2.4.1.8] then implies that evm can be upgraded to a natural transformation
evm

× : LMod× → pr× of symmetric monoidal functors AlgOp× → Cat×∞.

We also investigated the behavior of evm with respect to algebras in pre-
sentable symmetric monoidal ∞-categories, showing in Proposition 3.1.3.12
that evm lifts to a natural transformation of functors AlgOpPr → PrL.

Finally, in Section 3.2.2 we constructed symmetric monoidal structures on
AlgOpPr and PrL and upgraded the inclusion functors to AlgOp and Cat∞
to lax symmetric monoidal functors (see Proposition 3.2.2.3 and Proposi-
tion 3.2.2.13).

The situation is depicted in the non-dashed part of the following diagram.
Squares that contain parallel arrows on opposing sides are to be interpreted as
encoding two commutative diagrams, one considering only the arrows at the
top, and one only considering the arrows at the bottom, as well as a compati-
ble homotopy between the two natural transformations from the source corner
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to the target corner that one obtains by pre-composing and post-composing.

AlgOp⊗
Pr PrL⊗

AlgOp× Cat×∞

AlgOpPr PrL

AlgOp Cat∞evm

evm

ev×
m

evm

(3.17)

The vertical functors are all inclusions of the fiber over 〈1〉, the bottom square
was constructed in Proposition 3.1.3.12, and the front square can be obtained
from [HA, 2.4.1.8]. To be more precise about how the above cube is to be
interpreted with regards to parallel arrows, we could also depict the cube
(3.17) in the form shown below (as just a standard commuting cube in Cat∞),
using that natural transformations are equivalently encoded as functors out
of a product with [1].

[1]×AlgOp⊗
Pr PrL⊗

[1]×AlgOp× Cat×∞

[1]×AlgOpPr PrL

[1]×AlgOp Cat∞

ev⊗
m

ev×
m

evm

evm

(3.18)
The goal of this section is to complete the cube as indicated by the dashed

arrows, and in such a way that evm : LMod → pr in its incarnation as a
natural transformation of functors AlgOpPr → PrL is upgraded to a natural
transformation of symmetric monoidal functors.

Proposition 3.2.3.1 ([HA, 4.8.5.16 (3) and (4)]). Let I be a collection of
small ∞-categories that includes ∆

op. Then the restriction to AlgOp⊗
I

of the
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natural transformation ev×
m of symmetric monoidal functors AlgOp× → Cat×∞

factors through Cat∞(I)⊗. Analogously, the restriction to AlgOp⊗
Pr factors

through PrL⊗. The situation is depicted in the following commutative diagram.

AlgOp⊗
Pr PrL⊗

AlgOp⊗
I

Cat∞(I)
⊗

AlgOp× Cat×∞

(Ψ̃Pr
I )

⊗

LMod⊗

pr⊗
(ΦPr

I )
⊗

LMod⊗

pr⊗

(Ψ̃I)
⊗ (ΦI)

⊗

LMod×

pr×

ev×
m

ev⊗
m

ev⊗
m

(3.19)

Furthermore, the two natural transformations ev⊗
m that we obtain in this

manner are natural transformations of symmetric monoidal functors, and
the underlying diagram of underlying ∞-categories of diagram (3.19) can be
identified with diagram (3.10) from Proposition 3.1.3.12. ♥

Proof. In this proof we will use Notation 3.2.2.7 as well as the notation from
Definition 3.2.2.11 and Proposition 3.2.2.13.

Reformulation of the lifting problem: We first note that by combining Propo-
sition 3.2.2.3 (0) with Definition 3.2.2.1 and with Proposition B.4.4.1 and
Proposition B.1.2.1 the right vertical functors

(
ΦPr

I

)⊗ and
(
ΦI
)⊗ in diagram

(3.19) are monomorphisms. In this situation Proposition B.4.3.1 implies that
the dashed lifts in the following diagram are essentially unique if they exist.

[1]×AlgOp⊗
Pr PrL⊗

[1]×AlgOp⊗
I

Cat∞(I)
⊗

[1]×AlgOp× Cat×∞

ev⊗
m

id×(Ψ̃Pr
I )

⊗ (ΦPr
I )

⊗

ev⊗
m

id ×(Ψ̃I)
⊗ (ΦI)

⊗

ev×
m

(∗)

Furthermore, Proposition B.4.3.1 also implies that these lifts exists if and only
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if the following two inclusions of replete subcategories of Ho(Cat×∞) hold.

Im
(

Ho
(

ev×
m ◦

(
id×

(
Ψ̃I
)⊗)))

⊆ Im
(

Ho
((

ΦI
)⊗))

Im
(

Ho
(

ev×
m ◦
(

id×(Ψ̃I)⊗
)
◦
(

id×(Ψ̃Pr
I )⊗

))
⊆ Im

(
Ho
(
(ΦI)⊗ ◦ (ΦPr

I )⊗
))) (A)

Verification of the inclusion of replete images for fibers over Fin∗: We
start by checking those inclusions for objects and morphisms lying in a fiber
over 〈n〉 for some n ≥ 0. Because (Ψ̃Pr

I )⊗, (Ψ̃I)⊗, (ΦPr
I )⊗, and (ΦI)⊗ are all

morphisms of∞-operads (see Proposition 3.2.2.3 (2) and Proposition 3.2.2.13
(5)), we can identify the diagram induced by (∗) on fibers over 〈n〉 with the
following diagram.

[1]×AlgOp×n
Pr PrL×n

[1]×AlgOp×n
I

Cat∞(I)
×n

[1]×AlgOp×n Cat×n∞

id×(Ψ̃Pr
I )

⊗ (ΦPr
I )

⊗

id ×(Ψ̃I)
⊗ (ΦI)

⊗

ev×n
m

(∗∗)

By Remark 3.2.2.12 and Remark 3.2.2.2 this diagram can be identified with
the n-fold product of the lifting problem solved in Proposition 3.1.3.12, so
we deduce that the inclusions (A) hold for objects as well as for morphisms
lying over an identity morphism in Fin∗.

Reduction of the presentable case to the other cases: Suppose for the mo-
ment that we have shown the first inclusion of (A) for all families of small
∞-categories. Given that we already know the second inclusion on objects,
the second inclusion will follow if (ΦPr

J )⊗ and (Ψ̃Pr
J )⊗ are fully faithful for

J the family of all small ∞-categories. That
(
ΦPr

J

)⊗ is fully faithful is the

case by Definition 3.2.2.1, and
(
Ψ̃Pr

J

)⊗
is fully faithful combining Proposi-

tion B.5.2.1 with Definition 3.2.2.11 and Definition 3.2.2.4.
Verification of the inclusion of replete images for morphisms: Let

Γ: A1 ⊕ · · · ⊕An → B1 ⊕ · · · ⊕Bm

be a morphism in AlgOp× lying over a morphism

G : C1 ⊕ · · · ⊕ Cn → D1 ⊕ · · · ⊕ Dm

in MonAssoc(Cat∞)× lying over a morphism

γ : 〈n〉 → 〈m〉
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in Fin∗. Note that by Remark 3.1.3.7 we can interpret Ai as an object of
Alg(Ci) and similarly for Bj . Assume that Γ lies in the replete image of
(Ψ̃I)⊗. By applying Proposition B.5.2.1, the definition of (Ψ̃I)⊗ in Defini-
tion 3.2.2.11, as well as Definition 3.2.2.4 we can unpack this to see that
this implies in particular that the underlying ∞-categories of C1, . . . , Cn and
D1, . . . ,Dm admit I-indexed colimits, that the tensor product functors on
C1, . . . , Cn,D1, . . . ,Dm are compatible with I-indexed colimits, and that for
every 1 ≤ j ≤ m the functor

∏

φ(i)=j

Ci → Dj

associated to G preserves I-indexed colimits in each variable separately. Ap-
plying ev×

m to Γ we obtain a commutative diagram as follows in Cat×∞ (see
Remark 3.1.3.9).

LModA1(C1)⊕ · · · ⊕ LModAn(Cn) LModB1(D1)⊕ · · · ⊕ LModBm(Dm)

C1 ⊕ · · · ⊕ Cn C′1 ⊕ · · · ⊕ Dm

LMod×(Γ)

ev×
m(A1⊕···⊕An) ev×

m(B1⊕···⊕Bm)

pr×(Γ)

What we have to show is that this diagram is in the replete image of (ΦI)⊗.
What we have already shown when considering objects and morphisms in
fibers over Fin∗ already implies that the four objects as well as the vertical
morphisms are in the replete image of (ΦI)⊗, so it only remains to show this
for the horizontal morphisms. By definition (see Definition 3.2.2.1) this means
that we have to show that for every 1 ≤ j ≤ m the two horizontal functors in
the following commutative diagram associated to the diagram above preserve
I-indexed colimits separately in each variable (see Remark 3.1.3.9 for the
identifications made here – in particular the functors called evm are the actual
evaluation functors).

∏
φ(i)=j LModAi(Ci) LModBj (Dj)

∏
φ(i)=j Ci Dj

∏
ϕ(i)=j evm evm

The bottom horizontal functor is the same one as the functor associated to G
that we already mentioned preserving I-indexed colimits separately in each
variable. We also already know that the left vertical functor is a product of
functors that preserve I-indexed colimit, so it follows that the compositions
from the top left to the bottom right preserve I-indexed colimits separately
in each variable. As the tensor product in the monoidal ∞-category Dj is
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3.2 LMod and monoidality

compatible with I-indexed colimits, we can now apply [HA, 4.2.3.5] to deduce
that the top horizontal functor also preserves I-indexed colimits separately
in each variable.

On showing that the induced functors are symmetric monoidal: We have
now constructed a commutative diagram (3.19). We next need to prove that
the induced functors LMod⊗ and pr⊗ are symmetric monoidal28, i. e. that
they preserve morphisms that are cocartesian with respect to the canonical
morphism of ∞-operads to Fin∗ (see [HA, 2.1.3.7]).

Proof that the induced functors are lax monoidal: As all solid arrows in
diagram (3.19) are lax monoidal (so preserve inert morphisms)29, and the
right vertical morphisms of that diagram reflect inert morphisms by Propo-
sition 3.2.2.3 (3), we can already conclude that the functors called LMod⊗

and pr⊗ preserve inert morphisms, i. e. are lax monoidal.
Reduction of what needs to be checked for symmetric monoidality: Let J

be the collection of all small ∞-categories. Note that in the commutative
diagram

AlgOp⊗
Pr PrL⊗

AlgOp⊗
J

Cat∞(J)
⊗

(Ψ̃Pr
J )

⊗

LMod⊗

pr⊗
(ΦPr

J )
⊗

LMod⊗

pr⊗

ev⊗
m

ev⊗
m

(3.20)

the left vertical functor is symmetric monoidal by Proposition 3.2.2.13 (7) and
the right vertical functor reflects cocartesian morphisms with respect to the
canonical morphisms of ∞-operads to Fin∗ by Proposition 3.2.2.3 (5). If we
show that the two bottom horizontal morphisms of∞-operads are symmetric
monoidal it will thus follow that the same is true for the two top horizontal
ones.

Taking into account Proposition E.1.1.1 it thus remains to show that the
functors

LMod⊗, pr⊗ : AlgOp⊗
I
→ Cat∞(I)

⊗

map pMon,I ◦ q
⊗
AlgOpI

-cocartesian lifts of µ and ϵ (see Proposition E.1.1.1 for
the definitions) to pI-cocartesian morphisms.
28The ∞-category of symmetric monoidal functors from one symmetric monoidal
∞-category to another one is a full subcategory of the ∞-category of functors over
Fin∗ (see [HA, 2.1.3.7]), so there is no extra condition that we need to check for evm.

29See Proposition 3.2.2.13 (5) for the left vertical functors and Proposition 3.2.2.3 (2) for
the right vertical functors. The bottom horizontal functor is symmetric monoidal by
construction.
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Cocartesian lifts of ϵ: Denote by ∅ the unique object in (AlgOpI)
⊗
〈0〉, and

let
Ẽ′ : ∅ → A

be a pMon,I ◦ q
⊗
AlgOpI

-cocartesian lift of ϵ lying over a pMon,I-cocartesian
morphism30

E′ : ∅ → C

in MonI
Assoc(Cat∞)⊗.

That E′ is pMon,I-cocartesian implies that the functor

E : 1Cat∞(I) → C

associated to E′ is an equivalence, so that we can identify C with the unit31

1Cat∞(I) in MonI
Assoc(Cat∞).

By Proposition 3.2.2.13 (4) the morphism (ΨI)⊗(Ẽ′) is q×
AlgOp-cocartesian.

The commutative diagram

AlgOp× AlgOp

MonAssoc(Cat∞)
× MonAssoc(Cat∞)

πAlgOp

q×
AlgOp qAlgOp

πMon

where the horizontal functors are the cartesian structures is a pullback di-
agram by Proposition 3.2.1.1 and Proposition F.1.0.2. Applying Proposi-
tion C.1.1.1 we conclude that the functor

1AlgOp → A

associated to (ΨI)⊗(Ẽ′) (where 1AlgOp is the final object in AlgOp, so the unit
object in the cartesian symmetric monoidal structure) is a qAlgOp-cocartesian
lift of the monoidal functor32

e : [0]→ C

associated to (ΦI)⊗(E′). The final object 1AlgOp in AlgOp can then using
Remark 3.1.3.7, Proposition 3.2.1.1, and Proposition C.2.0.3 be identified
with the final object in

AlgOp[0] ≃ Alg([0])op

30q⊗
AlgOpI

is symmetric monoidal by Proposition 3.2.2.13 (3).
31By Proposition 3.2.2.10 (6) the forgetful functor

(ev⟨1⟩)
⊗ : MonI

Assoc(Cat∞)⊗ → Cat∞(I)⊗

is symmetric monoidal, so the underlying ∞-category of the monoidal unit
1MonI

Assoc(Cat∞) of MonI
Assoc(Cat∞) is given by the monoidal unit of Cat∞(I).

32The final object of MonAssoc(Cat∞) (which is also the monoidal unit with respect to
the cartesian symmetric monoidal structure) is by Proposition 3.2.2.10 (6) given by
the essentially unique monoidal structure on the ∞-category that is final in Cat∞, the
discrete category [0] that has a single object and only the identity morphism.
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which is the unit object 1[0] in [0]33. That the morphism 1[0] → A is qAlgOp-
cocartesian then implies using Remark 3.1.3.7 that A can be identified as an
object of

AlgOpC ≃ Alg(C)op

with e(1[0]) ≃ 1C .
Getting back to showing that LMod⊗ and pr⊗ map Ẽ′ to a pI-cocartesian

morphism, we obtain the following commutative diagram in Cat∞(I) by ap-
plying ev⊗

m to Ẽ′.

∅ LModA(C)

∅ C

LMod⊗(Ẽ′)

evm evm

pr⊗(Ẽ′)

It suffices to show that the associated horizontal functors as depicted in the
diagram below are equivalences.

1Cat∞(I) LModA(C)

1Cat∞(I) C

id evm

E

That E is an equivalence was already noted, and the right vertical functor
evm is an equivalence by [HA, 4.2.4.9], as A is the unit object in C.

Cocartesian lifts of µ: Let C and D be two objects in MonI
Assoc(Cat∞), let

A be an algebra in C, and let B be an algebra in D. We can use an analysis
completely analogous to the ϵ-case to describe a pMon,I ◦ q

⊗
AlgOpI

-cocartesian
lift M̃ ′ : A ⊕ B → A ⊗I B. Let us just note that from the lax symmetric
monoidal functor MonI

Assoc(Cat∞) → MonAssoc(Cat∞) we obtain a monoidal
functor C ×D → C ⊗I D, and the induced functor on algebras sends the pair
(A,B) to an object A⊗I B of Alg(C ⊗I D), and it is this algebra considered
as an object in AlgOp that is the target of M̃ ′.

ev⊗
m applied to M̃ ′ yields a commutative diagram (after passing to the

associated functors, as before)

LModA(C)× LModB(D) LMod(A,B)(C × D)

LModA(C)⊗I LModB(D) LModA⊗IB(C ⊗I D)

C ⊗I D C ⊗I D

≃

−⊗I− LMod(−⊗I−)

evm⊗Ievm evm

id

33In this case this is completely clear because there is only an essentially unique algebra
in [0], but we could also invoke [HA, 3.2.1.8].
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and we have to show that the bottom and middle horizontal functors are
equivalences. This can be done by applying [HA, 4.7.3.16], and the verification
of the necessary hypotheses is carried out in [HA, Proof of 4.8.5.16 (4)]. While
our settings are slightly different, for example our functor was constructed
on an ∞-category where morphisms of algebras have the opposite variance
compared to Lurie’s ∞-category, these differences are not relevant in the
proof, the most that would need to be changed for our setting is replacing
RMod by LMod.

Note that this is the step that requires the assumption that ∆
op is con-

tained in I.
Compatibility of the constructed diagram with diagram (3.10) from Proposi-

tion 3.1.3.12: Finally, it only remains to show that the underlying diagram of
(3.19) on underlying∞-categories can be identified with diagram (3.10) from
Proposition 3.1.3.12. But this follows from ΦI and ΦPr

I being monomorphisms
together with the uniqueness part of Proposition B.4.3.1.

3.3 Bialgebras
Let C be a symmetric monoidal category. An (associative) algebra A in

C consists of a multiplication A ⊗ A → A and a unit 1C → A such that
diagrams encoding associativity and unitality commute. The notion of (coas-
sociative) coalgebras A in C is dual to this; instead of a multiplication we
require a comultiplication A → A ⊗ A, and instead of a unit we require a
counit A→ 1C, satisfying diagrams encoding coassociativity and counitality.
Instead of defining coalgebras from scratch like this we can also define them
in terms of algebras: A coalgebra in C is the same thing as an algebra in Cop.

We are often not only interested in individual algebras A in C, but the
category of all (associative) algebras in C, which we denote by AlgAssoc(C).
The data of a morphism of algebras A→ B just consists of a morphism in C
from the underlying object of A to the underlying object of B, but we require
that this morphism is compatible with the respective multiplication and unit
morphisms. If we want morphisms of coalgebras to similarly be given by mor-
phisms of underlying objects that are compatible with comultiplication and
counit, then we need to fix having passed to the opposite category by doing
it a second time, leading to the definition of the category of (coassociative)
coalgebras as

coAlgAssoc(C) := AlgAssoc(Cop)
op

This is the perspective that is most suitable to extend the definition to the
∞-categorical setting.

Definition 3.3.0.1. Let α : O′⊗ → O⊗ be a morphisms of ∞-operads and
pC : C

⊗ → O⊗ an O-monoidal ∞-category. Then we set

coAlgO′/O(C) := AlgO′/O(C
op)

op
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where Cop carries the O-monoidal structure described in [HA, 2.4.2.7]34. ♦
Notation 3.3.0.2. We will use similar notational shortcuts for coAlg as for
Alg. In particular, in the situation of Definition 3.3.0.1:

• If α is the identity, then we will shorten coAlgO/O(C) to coAlg /O(C).

• If O⊗ = Fin∗, then we write coAlgO′(C) instead of coAlgO′/Comm(C).

• We write coAlg(C) for coAlg/Assoc(C) or coAlgAssoc(C).

• We write coCAlg(C) for coAlgComm(C). ♦

The category AlgAssoc(C) inherits a symmetric monoidal structure from C,
so that we can form the category

BiAlgAssoc,Assoc(C) := coAlgAssoc(AlgAssoc(C))
of bialgebras in C. Unpacking the definition, a bialgebra in C consists of
an object A in C together with a multiplication, unit, comultiplication, and
counit, satisfying associativity, coassociativity, unitality, and counitality, and
such that comultiplication and counit are morphisms of algebras. In this
classical setting it is very easy to see that comultiplication and counit are
morphisms of algebras if and only if multiplication and unit are morphisms
of coalgebras, so that there is a canonical isomorphism

coAlgAssoc(AlgAssoc(C)) ∼= AlgAssoc(coAlgAssoc(C))
or ordinary categories, and we could have taken either side as a definition for
the category of bialgebras BiAlgAssoc,Assoc(C).

Unfortunately, the situation is not quite as easy in the setting of ∞-cate-
gories. For the case of commutative and cocommutative bialgebras in a sym-
metric monoidal∞-category it is shown in [Lur18, 3.3.4] that the two possible
definitions coincide. The case of either commutative or cocommutative bial-
gebras is handled in [Rak20, 2.1.2]. In all these cases, the crucial input to
the proof is the fact that tensor products of commutative algebras happen to
be coproducts in the ∞-category of commutative algebras [HA, 3.2.4.7], so
the proof strategies do not generalize easily to bialgebras which are neither
commutative nor cocommutative. Luckily we will not need to use that the
two possible definitions are equivalent in this text. Instead, for us bialgebra
will always mean coalgebra in algebras.
Definition 3.3.0.3. Let α : O⊗ ×O′⊗ → O′′⊗ be a bifunctor of ∞-operads,
and C an O′′-monoidal ∞-category. Then we define

BiAlgO′,O(C) := coAlg/O
(

AlgO′/O′′(C)
)

where AlgO′/O′′(C) carries the O-monoidal structure of Proposition E.4.2.3,
and call BiAlgO′,O(C) the ∞-category of O′,O-bialgebras in C. ♦
34So if the cocartesian fibration pC is classified by a functor F : O⊗ → Cat∞, then the

cocartesian fibration (Cop)⊗ → O⊗ is classified by the composite (−)op ◦ F .
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Warning 3.3.0.4. In the notation BiAlgO′,O(C), the ∞-operad stated first,
O′, is employed in the algebra direction, and AlgO′ is also what is applied
first (i. e. innermost) to C in our definition. ♦

Remark 3.3.0.5. Let pO : O⊗ → Fin∗ and pO′ : O′⊗ → Fin∗ be ∞-operads
and C a symmetric monoidal ∞-category.

There is a canonical bifunctor of ∞-operads

α : O⊗ ×O′⊗ (−∧−)◦(pO×pO′ )
−−−−−−−−−−−→ Fin∗

with respect to which we can form the ∞-category of O′,O-bialgebras as in
Definition 3.3.0.3.

Note that if we let β be the canonical bifunctor of ∞-operads

β : Fin∗ ×O
′⊗ (−∧−)◦(id×pO′ )
−−−−−−−−−−−→ Fin∗

then α is the composition α = β◦(pO×id). Let AlgO′(C)′⊗ be the O-monoidal
category from Proposition E.4.2.3 with respect to α and let AlgO′(C)⊗ be the
symmetric monoidal ∞-category from Proposition E.4.2.3 with respect to β.
It then follows from Remark E.4.2.4 that there is a pullback diagram

AlgO′(C)′⊗ AlgO′(C)⊗

O⊗ Fin∗

pr2◦ιAlg pr2◦ιAlg

pO

in Cat∞, and all morphisms in the square are morphisms of∞-operads, while
the vertical morphisms are even cocartesian fibrations of∞-operads by Propo-
sition E.4.2.3 (3).

Passing to fiberwise opposites, applying Remark E.2.0.4, and passing to
opposites again we then obtain an induced equivalence

BiAlgO′,O(C) = coAlg/O(AlgO′(C)′)
≃
−→ coAlgO(AlgO′(C)) ♦

3.3.1 Bialgebras in (co)cartesian symmetric monoidal
∞-categories

Let C be a cocartesian symmetric monoidal ∞-category35. Then if O is
a reduced36 ∞-operad, then [HA, 2.4.3.9] shows that the forgetful functor
AlgO(C) → C is an equivalence. In other words, every object of C carries
an essentially unique O-algebra structure. This implies analogous results for
bialgebras of cocartesian or cartesian symmetric monoidal ∞-categories, as
the next two propositions show.
35See [HA, 2.4.0.1] for a definition and [HA, 2.4.3] for further discussion.
36See [HA, 2.3.4.1].
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The first of the two, Proposition 3.3.1.1 can be summarized as saying that
every coalgebra in a cocartesian symmetric monoidal ∞-category can be up-
graded to a bialgebra in an essentially unique way. The second, Proposi-
tion 3.3.1.2, instead says that any algebra in a cartesian symmetric monoidal
∞-category can be upgraded to a bialgebra in an essentially unique way.

Proposition 3.3.1.1. Let C be a cocartesian symmetric monoidal ∞-cate-
gory, let O be an ∞-operad, let O′ be a reduced ∞-operad, and let o be the
essentially unique underlying object of O′.

Then the following composite functor is an equivalence

BiAlgO′,O(C) ≃ coAlgO(AlgO′(C))
coAlgO(evo)
−−−−−−−−→ coAlgO(C)

where the first functor is the equivalence discussed in Remark 3.3.0.5 and the
second functor is induced on coalgebras by the symmetric monoidal functor
evo from Proposition E.4.2.3 (5). ♥

Proof. As the functor
ev⊗

o : AlgO′(C)⊗ → C⊗

is symmetric monoidal, with the underlying functor being an equivalence by
[HA, 2.4.3.9] (as C is cocartesian symmetric monoidal), it follows from [HA,
2.1.3.8] that ev⊗

o is an equivalence of symmetric monoidal ∞-categories. It
follows that the induced functor on O-coalgebras is an equivalence.

Proposition 3.3.1.2. Let C be a cartesian symmetric monoidal ∞-category,
let O be a reduced ∞-operad with essentially unique underlying object o, and
let O′ be an ∞-operad.

Then the forgetful functor

BiAlgO′,O(C) ≃ AlgO(AlgO′(C)op)
op evop

o−−−→ (AlgO′(C)op)
op ≃ AlgO′(C)

is an equivalence, where the first equivalence is the one from Remark 3.3.0.5.
♥

Proof. By Proposition F.3.0.2, the symmetric monoidal structure on AlgO′(C)
is cartesian, so the symmetric monoidal structure on AlgO′(C)op is cocarte-
sian, so that the statement follows from [HA, 2.4.3.9].

3.4 Modules over bialgebras
In Section 3.2 we upgraded LMod to a symmetric monoidal functor from

AlgOpPr to PrL. In this section we will try to better understand the func-
tor induced on ∞-categories of O-algebras AlgO(AlgOpPr) → AlgO(PrL)
when O is an ∞-operad. By Proposition 3.2.2.8 there is an equivalence
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AlgO(PrL) ≃ MonPr
O (PrL), so that this functor can be interpreted as pro-

ducing presentable monoidal∞-categories out of O-algebras in AlgOpPr in a
functorial way.

In Section 3.4.1 we will give a description of the domain of this functor.
The result can be roughly summarized as follows: An O-algebra in AlgOpPr
is given by a pair (O⊗, A) where C is an O⊗Assoc-monoidal∞-category and
A is an Assoc,O-bialgebra in C.

In Section 3.4.2 we will then discuss LMod as a functor

AlgO(AlgOpPr)→ MonPr
O (Cat∞)

and describe the O-monoidal structure on an Assoc,O-bialgebra in more con-
crete terms. We will thus see that this construction really implements the
idea described in the introduction to Chapter 3.

3.4.1 Algebras in AlgOp
The goal of this section is to give a description of AlgO(AlgOpPr). It will

turn out that the presentability condition plays little role in the discussion,
so to illustrate the results we will start by unpacking a bit what objects in
MonFin∗(AlgOp) are. Specifically, let us try to understand the multiplication
functor induced by the active morphism µ : 〈2〉 → 〈1〉.

So let C be a monoidal ∞-category and let A be an Assoc-algebra in C. By
Remark 3.1.3.7 this specifies an object of AlgOp lying over C that we denote
by (C, A).

Suppose (C, A) is the underlying object of a commutative monoid in AlgOp.
We want to describe the multiplication

(C, A)× (C, A)→ (C, A)

where the product is taken in AlgOp. Propositions 3.2.1.1 and C.2.0.3 imply
that the product is given by (C × C, (A,A)). So the multiplication map is
given by a morphism

(C × C, (A,A))→ (C, A)

in AlgOp. We can factor this morphism as indicated in the commutative
triangle below

(C, F ((A,A)))

(C × C, (A,A))

(C, A)

(idC,f)

F̃

where F̃ is a qAlgOp-cocartesian morphism lifting a monoidal functor

F⊗ : (C × C)⊗ → C⊗
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and f is a morphism of algebras A → F ((A,A)) (see also Remark 3.1.3.7).
The monoidal functor F⊗ grants us a second tensor product functor on C,
which by the Eckmann-Hilton argument can be identified with the original
one. Thus f can be identified with a morphism of algebras ∆: A → A ⊗ A,
and this provides the comultiplication of a bialgebra structure on A.

To approach such a description more rigorously, we use that the cocartesian
fibration of ∞-operads q⊗

AlgOp
Pr
: AlgOp⊗

Pr → MonPr
Assoc(Cat∞)⊗ (see Proposi-

tion 3.2.2.13 (1)) induces a cocartesian fibration

AlgO(AlgOpPr)→ AlgO
(

MonPr
Assoc(Cat∞)

)

for every ∞-operad O, see Definition 3.4.1.2 and Proposition 3.4.1.3 below.
We start this section by discussing in Construction 3.4.1.1 how we can iden-

tify the codomain of this cocartesian fibration AlgO(MonPr
Assoc(Cat∞)) with

MonPr
O⊗Assoc(Cat∞), the ∞-category of presentable O ⊗ Assoc-monoidal ∞-

categories.
Most of the remainder of this section will then be occupied by determining

the fiber of AlgO(qAlgOp
Pr) over a presentableO⊗Assoc-monoidal∞-category

C, and in Proposition 3.4.1.15 we will show that the fiber over C can be
identified with BiAlgAssoc,O(C)

op.

Construction 3.4.1.1. Let O, O′, as well as O′′ be ∞-operads, and let
α : O⊗ ×O′⊗ → O′′⊗ be a bifunctor of ∞-operads exhibiting O′′ as a tensor
product of O and O′, and let I be a collection of small ∞-categories. Then
there is a commutative diagram as follows, explained below. To save space
we abbreviate expressions such as MonO′(Cat∞) by MonO′ , i. e. we omit the
Cat∞ in parentheses.

MonO(MonO′)

AlgO
(

MonPr
O′

)
AlgO

(
MonI

O′

)
AlgO(MonO′)

AlgO
(

AlgO′

(
PrL

))
AlgO(AlgO′(Cat∞(I))) AlgO(AlgO′)

AlgO′′

(
PrL

)
AlgO′′(Cat∞(I)) AlgO′′

MonPr
O′′ MonI

O′′ MonO′′

≃

≃ ≃ ≃

≃ ≃ ≃

≃ ≃ ≃

The equivalence at the top right is the one from [HA, 2.4.2.5], i. e. is the one
induced by πMon∗. The top two squares are induced on O-algebras by the com-
mutative diagram constructed in Proposition 3.2.2.8, which is a commutative
diagram of∞-operads by Proposition 3.2.2.10. The middle two squares are ob-
tained from naturality of the equivalences constructed in Proposition E.5.0.2
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and Proposition E.5.0.1 as discussed in Remark F.3.0.4, applied to the mor-
phisms of ∞-operads

PrL⊗
→ Cat∞(I)

⊗ → Cat×∞

from Proposition 3.2.2.3 (2). Finally, the commutative diagram constructed
in Proposition 3.2.2.8 induces a commutative diagram on underlying ∞-cat-
egories that yields the bottom two commutative squares. ♦

Definition 3.4.1.2. Let O be an ∞-operad and I a collection of small
∞-categories. We define the following ∞-categories and morphisms of ∞-
categories by applying AlgO to the morphisms of ∞-operads (see Proposi-
tion 3.2.2.13 (1)) q⊗

AlgOpI
and q⊗

AlgOp
Pr

. The equivalences used are the ones
from Construction 3.4.1.1.

BiAlgOpI
O := AlgO(AlgOpI)

BiAlgOpPr
O := AlgO(AlgOpPr)

BiAlgOpI
O AlgO

(
MonI

Assoc(Cat∞)
)

MonI
O⊗Assoc(Cat∞)

AlgO(qAlgOpI
)

q
BiAlgOpI

O

≃

BiAlgOpPr
O AlgO

(
MonPr

Assoc(Cat∞)
)

MonPr
O⊗Assoc(Cat∞)

AlgO(qAlgOpPr)

q
BiAlgOpPr

O

≃

We will also write qBiAlgOpO
for q

BiAlgOp∅
O

and BiAlgOpO for BiAlgOp∅
O. ♦

Proposition 3.4.1.3. In the situation of Definition 3.4.1.2, the functors
qBiAlgOpI

O
and qBiAlgOpPr

O
are cocartesian fibrations. ♥

Proof. Combine Proposition 3.2.2.13 (1) with Proposition E.3.2.1.

We start the process of identifying the fibers of qBiAlgOpI
O

and qBiAlgOpPr
O

by reducing the problem to qBiAlgOpO
.

Proposition 3.4.1.4. We use Notation 3.2.2.7 in this proposition. Let I be
a collection of small ∞-categories and let O be an ∞-operad. Then there is
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a pullback diagram in Cat∞ as follows.

BiAlgOpI
O BiAlgOpO

MonI
O⊗Assoc(Cat∞) MonO⊗Assoc(Cat∞)

AlgO(Ψ̃I)

q
BiAlgOpI

O
qBiAlgOpO

(ΨI)

In particular, if C is an object in MonI
O⊗Assoc(Cat∞), then we can iden-

tify the fiber (BiAlgOpI
O)C with (BiAlgOpO)(ΨI)⊗(C), and if F : C → D is a

morphism in the ∞-category MonI
O⊗Assoc(Cat∞) we can identify the induced

functor on fibers of qBiAlgOpI
O

with the functor induced by
(
ΨI
)⊗

(F ) on fibers
of qBiAlgOpO

.
Analogous statements hold for qBiAlgOpPr

O
. ♥

Proof. We only prove the case of qBiAlgOpI
O

, the case of qBiAlgOpPr
O

is com-
pletely analogous.

By Definition 3.2.2.11 we have a pullback diagram

AlgOp⊗
I

AlgOp×

MonI
Assoc(Cat∞)

⊗ MonAssoc(Cat∞)
×

(Ψ̃I)⊗

q⊗
AlgOpI

q×
AlgOp

(ΨI)⊗

where q×
AlgOp is a cocartesian fibration of∞-operads (see Proposition 3.2.2.13

(1)) and (ΨI)⊗ is a morphism of ∞-operads (see Proposition 3.2.2.10 (2)).
Combining Proposition E.1.3.1 and Proposition E.3.1.1 we conclude that the
the top square in the following commutative diagram is a pullback square37

AlgO(AlgOpI) AlgO(AlgOp)

AlgO
(

MonI
Assoc(Cat∞)

)
AlgO(MonAssoc(Cat∞))

MonI
O⊗Assoc(Cat∞) MonO⊗Assoc(Cat∞)

AlgO(Ψ̃I)

AlgO(qAlgOpI
) AlgO(qAlgOp)

AlgO(ΨI)

≃ ≃

ΨI

37The two ΨI in the diagram are different functors, the same notation only arises here
because the operad does not occur in the notation.
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where the lower commuting square is the one from Construction 3.4.1.1. This
proves the claim, as the the left and right vertical compositions are by defi-
nition qBiAlgOpI

O
and qBiAlgOpO

.

Before starting to analyze the fibers of qBiAlgOpO
, it will be helpful to

describe the equivalences from Construction 3.4.1.1 more concretely as done
in the following proposition.
Proposition 3.4.1.5. Let O, O′, as well as O′′ be ∞-operads, and let
α : O⊗ ×O′⊗ → O′′⊗ be a bifunctor of ∞-operads exhibiting O′′ as a tensor
product of O and O′.

Then there is a commutative diagram as follows

MonO(MonO′(Cat∞)) Fun(O⊗,Fun(O′⊗,Cat∞))

AlgO(MonO′(Cat∞))

AlgO(AlgO′(Cat∞)) Fun
(
O⊗,Fun

(
O′⊗,Cat×∞

))

BiFunc(O,O′;Cat∞) Fun
(
O⊗ ×O′⊗,Cat×∞

)

AlgO′′(Cat∞) Fun
(
O′′⊗,Cat×∞

)

MonO′′(Cat∞) Fun(O′′⊗,Cat∞)

≃

≃

≃

(π∗)∗

≃

(̂−)

≃

α∗

π∗

(̂−◦α)

where vertical functors on the left are the ones from Construction 3.4.1.1
(where we split up the equivalence in the middle in its two steps from Propo-
sition E.5.0.2 and Proposition E.5.0.1) and the horizontal functors are the
the compositions of the canonical inclusions and projections. ♥

Proof. The top square is obtained from the construction of the equivalence
Θ⊗ by combining the commutative diagrams (3.15) and (3.14) occurring in
the proof of Proposition 3.2.2.8. The two middle squares are from Proposi-
tion F.3.0.3. The bottom square is diagram (3.13) from Proposition 3.2.2.8.
Finally, the commutative rectangle on the right is obtained from naturality
of (̂−).

The cocartesian fibration qBiAlgOpO
is constructed in multiple steps from

the universal cocartesian family of Assoc-monoidal∞-categories, but ends up
with MonO⊗Assoc(Cat∞) as a codomain. The next proposition relates the uni-
versal cocartesian family of Assoc-monoidal ∞-categories with the universal
cocartesian family of Assoc⊗O-monoidal ∞-categories.
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Proposition 3.4.1.6. Let O, O′, as well as O′′ be ∞-operads and let
α : O⊗ × O′⊗ → O′′⊗ be a bifunctor of ∞-operads exhibiting O′′ as the
tensor product of O and O′. Then there is a commutative diagram as follows
such that both squares are pullback diagrams, and where other parts of the
diagram will be explained further below.

M̃onO′′(Cat∞)
⊗ M̃onα(Cat∞)

⊗ M̃onO(Cat∞)
⊗

O′′⊗ ×MonO′′(Cat∞) O⊗ ×O′⊗ ×MonO′′(Cat∞) O⊗ ×MonO(Cat∞)

pO
′′

pα pO

(3.21)
The left and right vertical functors are the universal cocartesian families
of monoidal ∞-categories defined in Definition 3.1.1.4, whereas the middle
vertical functor is a functor we newly define here as the pullback of either
the left or right square. The bottom left horizontal functor is α× id, and the
bottom right vertical functor is the the product of idO⊗ with the following
composition

O′⊗ ×MonO′′(Cat∞)→ O′⊗ ×MonO′(MonO(Cat∞)) (3.22)
→ O′⊗ × Fun

(
O′⊗,MonO(Cat∞)

) ev
−→ MonO(Cat∞)

where the first functor uses the equivalence from Proposition 3.4.1.5 inter-
preting O′′ as the tensor product O′ ⊗O via α ◦ τ , where τ is the symmetry
equivalence O⊗ ×O′⊗ ≃ O′⊗ ×O⊗, and the second functor is the product of
the identity and the canonical inclusion. ♥

Proof. Both pO
′′ and pO are by definition cocartesian fibrations, with pO

classified by38 the composition

O⊗ ×MonO(Cat∞)→ O⊗ × Fun
(
O⊗,Cat∞

) ev
−→ Cat∞

where the first functor is the product of the identity functor and the canon-
ical inclusion, and similarly for pO′′ . So by naturality of the Grothendieck
construction39 it suffices to show that the composition of the left bottom hor-
izontal functor in diagram (3.21) with the functor the left vertical cocartesian
fibration is classified by is homotopic to the composition of the right bottom
horizontal functor with the functor the right vertical cocartesian fibration
is classified by. For this consider the following three commutative diagrams,
where we will denote the various canonical inclusions by ι and abbreviate

38See Definition 3.1.1.4.
39See [GHN17, A.32] and [Maz19].
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MonO(Cat∞) by MonO and analogously for O′ and O′′.

O
⊗
×O

′⊗
× MonO′′ O

⊗
×O

′⊗
× Fun

(
O

′′⊗,Cat∞
)

O
⊗
×O

′⊗
× MonO′(MonO) O

⊗
×O

′⊗
× Fun

(
O

⊗
×O

′⊗,Cat∞
)

O
⊗
×O

′⊗
× Fun

(
O

′⊗,MonO

)
O

⊗
×O

′⊗
× Fun

(
O

′⊗,Fun
(
O

⊗,Cat∞
))

O
⊗
× MonO O

⊗
× Fun

(
O

⊗,Cat∞
)

Cat∞

id×id×ι

id×id×α∗

id×id×ι id×id×−̂◦τ

id×ev

id×id×ι∗

id×ev

id×ι

ev

(∗)
In the above diagram, the top square arises from Proposition 3.4.1.5 and
the bottom square uses naturality of evaluation. The next two commutative
diagrams only use various naturalities and functorialities.

O⊗ ×O′⊗ × Fun(O⊗ ×O′⊗,Cat∞)

O⊗ ×O′⊗ × Fun(O′⊗,Fun(O⊗,Cat∞))

O⊗ × Fun(O⊗,Cat∞) Cat∞

id×id×−̂◦τ

ev

id×ev

ev

(∗∗)

O⊗ ×O′⊗ ×MonO′′(Cat∞) O⊗ ×O′⊗ × Fun(O′′⊗,Cat∞)

O′′⊗ ×MonO′′(Cat∞) O⊗ ×O′⊗ × Fun(O⊗ ×O′⊗,Cat∞)

O′′⊗ × Fun(O′′⊗,Cat∞) Cat∞

α×id

id×id×ι

id×id×α∗

α×id

id×ι ev

ev

(∗ ∗ ∗)
The composite of the lower left (right) horizontal functor in diagram (3.21)

with the functor the left (right) vertical cocartesian fibration is classified by
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is precisely the composite via the bottom left corner from the top left to the
bottom right corner in diagram (∗ ∗ ∗) (in diagram (∗)). Diagrams (∗), (∗∗),
and (∗ ∗ ∗) show that these two composites are homotopic, which proves the
claim.

We next go through the steps used to construct qBiAlgOp from pAssoc and
show how we can identify qBiAlgOp with a functor obtained from pα as in
Proposition 3.4.1.6. We will use the right pullback square in (3.21) to compare
constructions obtained from pα with the intermediate steps on the way to
qBiAlgOp, while using the left pullback square to be able to describe those
constructions in a way helpful to ultimately describe fibers of qBiAlgOp as
∞-categories of bialgebras.

Definition 3.4.1.7. Let O′ as well as O′′ be two ∞-operads and let further-
more α : Assoc⊗×O′⊗ → O′′⊗ be a bifunctor of ∞-operads that exhibits O′′

as the tensor product of Assoc and O.
Using that the right square in (3.21) is a pullback diagram we can interpret

pα from Proposition 3.4.1.6 as a cocartesian O′⊗ ×MonO′′(Cat∞)-family of
Assoc-monoidal ∞-categories. Passing to Assoc-algebras we obtain by Propo-
sition 3.1.2.10 a pullback, where we will denote the ∞-category on the top
left and functor on the left as indicated, and the functor on the right is the
one from Definition 3.1.3.3.

A⊗ = Alg/Assoc

(
M̃onα(Cat∞)

⊗
)

Alg

O′⊗ ×MonO′′(Cat∞) MonAssoc(Cat∞)

qA
qAlg

♦

Remark 3.4.1.8. Let C be an ∞-category, let O be an ∞-operad, and let
p : D⊗ → O⊗ × C be a cocartesian C-family of O-monoidal ∞-categories.

Note that the projection pr2 : O⊗ × C → C is a cocartesian fibration40,
and pr2-cocartesian morphisms are those that are (equivalent to) an identity
morphism in the first factor.

By [HTT, 2.4.2.3 (3)] and Proposition C.1.3.1 we obtain a morphism of
cocartesian fibrations over C as follows.

D⊗ O⊗ × C

C

p

pr2◦p pr2

40This is for example easy to see by using that it is the pullback of the functor O⊗ → ∗
along C → ∗.

105



Chapter 3 Bialgebras and modules over them

If f : X → Y is a morphism in C, then we obtain an induced commutative
square on fibers as follows.

D⊗
X D⊗

Y

O⊗ O⊗

f!

pX pY

id

By the description of pr2-cocartesian morphisms given above the induced
functor on fibers of pr2 is the identity, and by assumption on p the two
vertical functors are cocartesian fibrations of ∞-operads. We thus obtain a
commuting triangle

D⊗
X D⊗

Y

O⊗

pX

pr2◦p pY

that by Proposition 3.1.1.1 is an O-monoidal functor. It is this O-monoidal
functor that we will refer to as the induced O-monoidal functor on fibers over
f . ♦

Proposition 3.4.1.9. Assume we are in the situation of Definition 3.4.1.7,
and let C be an O′′-monoidal ∞-category. Then the fiber of qA over C (con-
sidered as an object of MonO′′(Cat∞)) can be identified with the O′-monoidal
∞-category of Assoc-algebras41 AlgAssoc/O′′(C)⊗ from Proposition E.4.2.3.

Furthermore, if F : C → D is a O′′-monoidal functor, then the induced O′-
monoidal functor on fibers of qA fits into a commutative diagram as follows

A
⊗
C A

⊗
D

AlgAssoc/O′′(C)⊗ AlgAssoc/O′′(D)⊗

F!

≃ ≃

AlgAssoc/O′′ (F )⊗

where AlgAssoc/O′′(F )⊗ is the induced functor from Proposition E.4.2.3 and
the vertical equivalences are the ones from the first claim of this proposition.

♥

Proof. Consider the following commutative diagram, where the top pullback
square is the one from Definition 3.1.2.1, and the bottom square is the induced
pullback square by applying Fun(Assoc⊗,−) to the left pullback square in di-
agram (3.21) of Proposition 3.4.1.6. We abbreviate MonO′′(Cat∞) by MonO′′

41With respect to the bifunctor of ∞-operads α ◦ τ .
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to save space.

A
⊗

Ã
⊗ := Ãlg/Assoc

(
M̃onα(Cat∞)

)
O

′⊗
× MonO′′

Fun
(

Assoc⊗, M̃onα(Cat∞)⊗
)

Fun
(
Assoc⊗,Assoc⊗ ×O

′⊗
× MonO′′

)

Fun
(

Assoc⊗, M̃onO′′(Cat∞)⊗
)

Fun
(
Assoc⊗,O′′⊗

× MonO′′

)

qA

prFun

pr

îdAssoc⊗×O′⊗×Mon

pα∗

(α×id)∗

pO
′′

∗

(∗)

A⊗ is by definition42 the full subcategory of Ã⊗ spanned by those objects
that are mapped by prFun to functors Assoc⊗ → M̃onα(Cat∞)

⊗ that send
inert morphisms to pα-cocartesian ones. By the description of pα-cocartesian
morphisms afforded by the left pullback square in diagram (3.21) of Proposi-
tion 3.4.1.6 in combination with Proposition C.1.1.1 we can thus identify A⊗

with the full subcategory of Ã⊗ spanned by those objects that map to functors
Assoc⊗ → M̃onO′′(Cat∞)

⊗ which send inert morphisms to pO
′′ -cocartesian

ones. Similarly, we obtain from Proposition 3.1.2.17 that a morphism in A⊗

is qA-cocartesian if and only if it maps to a natural transformation of functors
Assoc⊗ → M̃onO′′(Cat∞)

⊗ that is pointwise pO′′ -cocartesian.
Now let C be an O′′-monoidal ∞-category. Then there is a commutative

cube as follows43.

ÃlgAssoc/O′′(C)
⊗ O′⊗ × {C}

Ã⊗ O′⊗ ×MonO′′

Fun
(
Assoc⊗, C⊗

)
Fun

(
Assoc⊗,O′′⊗ × {C}

)

Fun
(

Assoc⊗, M̃onO′′

)
Fun

(
Assoc⊗,O′′⊗ ×MonO′′

)

42See Definition 3.1.2.3.
43We abbreviate M̃onO′′ (Cat∞) and MonO′′ (Cat∞) as M̃onO′′ and MonO′′ .

107



Chapter 3 Bialgebras and modules over them

The front square is the composite pullback diagram from (∗). The bottom
square is the pullback square obtained by applying Fun(Assoc⊗,−) to the
pullback diagram of the identification of C⊗ as the fiber of pO′′ over C, see Re-
mark 3.4.1.8. The back one is the pullback diagram from Proposition E.4.2.3.
That there is a commutative square as indicated on the right, where the
top functor is the product of the identity with the inclusion of {C}, can be
checked by unpacking the definitions and using naturality. We obtain the in-
duced top and left square and filler for the cube (using that the front square
is a pullback square), and it follows from [HTT, 4.4.2.1] that the top square
is also a pullback diagram.

The description of A⊗ as a full subcategory of Ã⊗ we gave above together
with the definition of AlgAssoc/O′′(C)

⊗ as a full subcategory of ÃlgAssoc/O′′(C)
⊗

in Remark E.4.2.1 and an argument very similar to the one in the proof
of Proposition 3.1.2.2 show that the dashed functor in the above diagram
induces an equivalence

AlgAssoc/O′′(C)
⊗ → A⊗

on full subcategories.
The description of the functor induced on fibers by a morphism F : C → D

of O′′-monoidal ∞-categories follows from the description given above for
qA-cocartesian morphisms together with the fact that the O′′-monoidal func-
tor induced by F (considered as a morphism in MonO′′(Cat∞)) on fibers of
pO

′′ can by construction (see Definition 3.1.1.4) be identified with F .

Proposition 3.4.1.10. Assume we are in the situation of Definition 3.4.1.7.
Then qA is a cocartesian MonO′′(Cat∞)-family of O′-monoidal ∞-categories.

♥

Proof. Follows from the definition44 together with Proposition 3.4.1.9 and
Proposition E.4.2.3 (3).

Definition 3.4.1.11. Assume we are in the situation of Definition 3.4.1.7.
We let

qA′ : A′⊗ → O′⊗ ×MonO′′(Cat∞)

be the cocartesian fibration obtained by applying the functor

coCFib
(
O′⊗ ×MonO′′(Cat∞)

)

→Fun
(
O′⊗ ×MonO′′(Cat∞),Cat∞

)

(−op)∗−−−−→Fun
(
O′⊗ ×MonO′′(Cat∞),Cat∞

)

→ coCFib
(
O′⊗ ×MonO′′(Cat∞)

)

to qA : A⊗ → O′⊗ ×MonO′′(Cat∞). ♦

44Definition 3.1.1.2 with variant Proposition 3.1.1.1 (2).
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Proposition 3.4.1.12. Assume we are in the situation of Definition 3.4.1.7.
Then there is a pullback diagram as follows

A′⊗ AlgOp

O′⊗ ×MonO′′(Cat∞) MonAssoc(Cat∞)

q
A′ qAlgOp

where the bottom functor is the composition (3.22). ♥

Proof. Follows immediately from Definition 3.4.1.11 and Definition 3.1.3.5
together with Proposition 3.4.1.6 and naturality of the Grothendieck con-
struction.

Proposition 3.4.1.13. Assume we are in the situation of Definition 3.4.1.7.
Then the following hold.

(1) qA′ from Definition 3.4.1.11 is again a cocartesian MonO′′(Cat∞)-
family of O′-monoidal ∞-categories.

(2) Let C be a O′′-monoidal ∞-category. Then the fiber of qA′ over C is,
as an O′-monoidal ∞-category, equivalent to (AlgAssoc/O′′(C)op)⊗, the
opposite O′-monoidal ∞-category of AlgAssoc/O′′(C)⊗.

(3) Let F : C → D be a O′′-monoidal functor. Then there is a commutative
square

A
′⊗
C A

′⊗
D

(AlgAssoc/O′′(C)op)⊗ (AlgAssoc/O′′(D)op)⊗

F!

≃ ≃

(AlgAssoc/O′′ (F )op)⊗

where the top functor is the one induced on fibers of qA′ , and the vertical
functors are the equivalences from (2). ♥

Proof. Follows directly from qA being a cocartesian family of O′-monoidal
∞-categories by Proposition 3.4.1.10 and the description of its fibers in Propo-
sition 3.4.1.9.

Proposition 3.4.1.14. Let O′ as well as O′′ be ∞-operads and let further-
more α : Assoc⊗ ×O′⊗ → O′′⊗ be a bifunctor of ∞-operads that exhibits O′′

as the tensor product of Assoc and O.
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Then there is a commutative triangle as follows such that the horizontal
functor is an equivalence

Alg/O′(A′) BiAlgOpO′

MonO′′(Cat∞)

prMonO′′ (Cat∞)

≃

qBiAlgOpO′

where the functor on the left is as in Definition 3.1.2.3 and Definition 3.1.2.1,
applied to the cocartesian family of O′-monoidal ∞-categories qA′ from Def-
inition 3.4.1.11 and Proposition 3.4.1.13. ♥

Proof. By naturality of the construction −× and [HA, 2.4.2.5] there is a
commutative diagram as follows

AlgO′(AlgOp) MonO′(AlgOp)

AlgO′(MonAssoc(Cat∞)) MonO′(MonAssoc(Cat∞))

≃

AlgO′(qAlgOp) MonO′(qAlgOp)

≃

such that the two horizontal functors are equivalences. It follows from Defi-
nition 3.4.1.2 and Construction 3.4.1.1 that there is a commutative square

BiAlgOpO′ MonO′(AlgOp)

MonO′′(Cat∞) MonO′(MonAssoc(Cat∞))

qBiAlgOpO′

≃

MonO′(qAlgOp)

≃

such that the bottom horizontal functor is the equivalence from Construc-
tion 3.4.1.1.

Thus it suffices to show that there is a commutative square as follows

Alg/O′(A′) MonO′(AlgOp)

MonO′′(Cat∞) MonO′(MonAssoc(Cat∞))

prMonO′′ (Cat∞)

≃

MonO′(qAlgOp)

≃

such that the bottom horizontal functor is the equivalence from Construc-
tion 3.4.1.1.

Now we consider the following diagram45 that will be explained in detail
45We abbreviate MonO′′ (Cat∞) and MonAssoc(Cat∞) as MonO′′ and MonAssoc.
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below.

Alg/O′(A′) MonO′(AlgOp)

Ãlg/O′(A′) P

Fun
(
O

′⊗,A′⊗
)

Fun
(
O

′⊗,AlgOp
)

MonO′′ MonO′(MonAssoc)

Fun
(
O

′⊗,O′⊗
× MonO′′

)
Fun

(
O

′⊗,MonAssoc
)

φ

ϑ

ψ

prFun

ι

The front square is Fun(O′⊗,−) applied to the pullback square from Propo-
sition 3.4.1.12. In particular, the front square is again a pullback square. The
bottom square arises from naturality of −̂ and the fact that êv = id. The
bottom back horizontal equivalence is the one from Construction 3.4.1.1 and
Proposition 3.4.1.5. The left square is the pullback square defining Ãlg/O′(A′),
see Definition 3.1.2.1. We define the right square to be a pullback square.

As the left and right squares in the cube are pullback diagrams, we obtain
an induced functor ϑ together with fillers for the top and back square and
the cube.

The right big square arises from applying the natural transformation

MonO′(−)→ Fun(O′⊗,−)

to qAlgOp. We obtain the induced functor φ and the two commutative trian-
gles on the right. By definition, ι and the bottom functor from the back to
the front on the right side are fully faithful. As the small square is a pull-
back square and taking pullbacks preserves fully faithful functors by Propo-
sition B.5.2.1, ψ is fully faithful as well. By considering the top triangle on
the right side we then deduce that φ is also fully faithful46.

What we have to show is that there is a dashed top back horizontal functor
making the back big rectangle commute and which is an equivalence. As
the front, left, and right squares are pullback squares it follows from [HTT,
4.4.2.1] that the back lower square is a pullback square as well. As the lower
back horizontal functor is an equivalence, it follows that ϑ is an equivalence
46It follows immediately from Definition B.2.0.1 that functors being fully faithful satisfies

the two-out-of-three-property.
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too. It thus suffices to show that an object A of Ãlg/O′(A′) is in the essential
image of the functor from Alg/O′(A′) if and only if ϑ(A) is in the essential
image of φ (see Proposition B.4.3.1).

We first consider the essential image of φ, which consists of precisely those
objects that are mapped by ψ to an object that is in the essential image of ι
i. e. is an O′-monoid. By definition [HA, 2.4.2.1], a functor F : O′⊗ → AlgOp
is an O′-monoid if and only if for every n ≥ 0, objects Xi in O′ for every
1 ≤ i ≤ n, and inert morphisms ri : X1 ⊕ · · · ⊕ Xn → Xi lying over ρi, the
morphisms F (ri) exhibit F (X1 ⊕ · · · ⊕Xn) as the product of (F (Xi))1≤i≤n.
By the description of products in AlgOp from Proposition 3.2.1.1 and Propo-
sition C.2.0.3 this is equivalent to the morphisms qAlgOp(F (ri)) exhibiting
qAlgOp(F (X1⊕ · · · ⊕Xn)) as the product of (qAlgOp(F (Xi)))1≤i≤n and F (ri)
being qAlgOp-cocartesian for every 1 ≤ i ≤ n. Thus F is in the essential
image of ι if and only if qAlgOp ◦ F is an O′-monoid and F maps inert mor-
phisms to qAlgOp-cocartesian morphisms. By Proposition B.5.2.1, a functor
F : O′⊗ → AlgOp lies in the essential image of ψ if and only if qAlgOp ◦ F is
an O′-monoid. It follows that an object A of P is in the essential image of φ
if and only if ψ(A) maps inert morphisms to qAlgOp-cocartesian morphisms.

By definition47, an object A of Ãlg/O′(A′) is in the essential image of the
inclusion from Alg/O′(A′) if and only if prFun(A) maps inert morphisms to
qA′ -cocartesian morphisms. By Proposition 3.4.1.12 and Proposition C.1.1.1
this is the case if and only if ψ(ϑ(A)) maps inert morphisms to qAlgOp-co-
cartesian morphisms. Thus an object A of Ãlg/O′(A′) is in the essential image
of the functor from Alg/O′(A′) if and only if ϑ(A) is in the essential image
of φ, which finishes the proof.

With Proposition 3.4.1.14 we can now finally discuss the fibers of qBiAlgOpO
.

Proposition 3.4.1.15. Let I be a collection of small ∞-categories, let O be
an ∞-operad. Then the following hold.

(1) Let C be an Assoc ⊗ O-monoidal ∞-category that is compatible with
I-indexed colimits, and that we also consider as an object of the ∞-
category MonI

O⊗Assoc(Cat∞). Then the fiber of qBiAlgOpI
O

over C can be
identified with BiAlgAssoc,O(C)

op.

(2) Let F : C → D be a morphism in MonI
O⊗Assoc(Cat∞). Then there is a

commutative diagram

(BiAlgOpI
O)C (BiAlgOpI

O)D

BiAlgAssoc,O(C)
op BiAlgAssoc,O(D)

op

F!

≃ ≃

BiAlgAssoc,O(F)op

47Definition 3.1.2.3
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where the top horizontal functor is the one induced by F on fibers of
qBiAlgOpI

O
and the vertical equivalences are those from (1).

Analogous statements holds for qBiAlgOpPr
O

. ♥

Proof. By Proposition 3.4.1.4 and Proposition 3.4.1.14 we can consider fibers
of

prMonAssoc⊗O(Cat∞) : Alg/O(A)→ MonO⊗Assoc(Cat∞)

instead. For this we can combine Proposition 3.4.1.13 with Remark 3.1.2.18
and then need only compare with the definition of BiAlg in Definition 3.3.0.3.

3.4.2 LMod as a functor from BiAlgOp
In this short section we discuss LMod as a functor from BiAlgOpPr

O to
MonPr

O (Cat∞).

Definition 3.4.2.1. Let I be a collection of small∞-categories that includes
∆

op and O an ∞-operad.
Applying AlgO(−) to the natural transformation of symmetric monoidal

functors denoted by ev⊗
m : LMod⊗ → pr⊗ of Proposition 3.2.3.1 and postcom-

posing with the underlying equivalences of Proposition 3.2.2.848 we obtain
natural transformations that we will again denote by evm : LMod → pr, as
depicted in the commutative diagram below

MonPr
O⊗Assoc(Cat∞) BiAlgOpPr

O MonPr
O (Cat∞)

MonI
O⊗Assoc(Cat∞) BiAlgOpI

O MonI
O(Cat∞)

MonO⊗Assoc(Cat∞) BiAlgOpO MonO(Cat∞)

ΨPr
I

q
BiAlgOpPr

O

AlgO(Ψ̃Pr
I )

LMod

pr
ΨPr

I

ΨI

q
BiAlgOpI

O

LMod

pr
AlgO(Ψ̃I) ΨI

qBiAlgOpO

LMod

pr

evm

evm

evm

where the functors Ψ and Ψ̃ are as in Notation 3.2.2.7 and Definition 3.2.2.11,
and the left part of the diagram is induced by the pullback squares of Def-
48So AlgO(PrL) ≃ MonPr

O (Cat∞) etc.
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inition 3.2.2.11, which are commutative squares of ∞-operads by Proposi-
tion 3.2.2.13. ♦

Remark 3.4.2.2. By Proposition E.4.2.3 (8) the functor induced on O-
algebras by a symmetric monoidal functor can again be upgraded to a sym-
metric monoidal functor with respect to the induced symmetric monoidal
structures. It follows that the natural transformations evm defined in Defi-
nition 3.4.2.1 acquire the structure of natural transformations of symmetric
monoidal functors between symmetric monoidal ∞-categories. ♦

Remark 3.4.2.3. Let O be an ∞-operad. Using [HA, 2.4.2.5] and the defi-
nition of the equivalence

Θ: AlgO(Cat∞)→ MonO(Cat∞)

as in diagram (3.13) of Proposition 3.2.2.8, we can identify the functor

LMod : BiAlgOpO → MonO(Cat∞)

with the functor induced by the product-preserving functor

LMod : AlgOp→ Cat∞

on O-monoids.
Let C be a symmetric monoidal ∞-category, A an associative algebra in C,

and consider (C, A) as an object of AlgOp. In the introduction to Section 3.4.1
we discussed how the multiplication morphism induced by the active mor-
phism µ : 〈2〉 → 〈1〉 looks like for a commutative monoid structure on (C, A).
Concretely, the multiplication morphism factors as a composition

(C × C, (A,A))
−̃⊗−
−−−→ (C, A⊗A)

(id,∆)
−−−−→ (C, A)

where −̃ ⊗ − is a qAlgOp-cocartesian lift of the tensor product functor

−⊗− : C × C → C

and (id,∆) is a morphism in the fiber of AlgOp over C – so in Alg(C)op – given
by a morphism of algebras ∆: A→ A⊗A, encoding the comultiplication.

Let us now discuss the induced multiplication on LModA(C), using Re-
mark 3.1.3.7. The multiplication functor can be identified with the composi-
tion

LModA(C)× LModA(C)
≃
−→ LMod(A,A)(C × C)

LMod(A,A)(−⊗−)
−−−−−−−−−−−→ LModA⊗A(C)

LMod∆(C)
−−−−−−−→ LModA(C)

where the first functor arises from compatibility of LMod with products, the
second is induced by −̃ ⊗ −, and the last functor is given by restriction of
the action along ∆.
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Let now X and Y be two objects in LModA(C). Then LMod(A,A)(−⊗−)
sends (X,Y ) to the left A ⊗ A-module in C whose underlying object in C is
X ⊗ Y and where the action by A⊗A is the tensor-factor-wise one, i. e.

(A⊗A)⊗ (X ⊗ Y ) ≃ (A⊗X)⊗ (A⊗ Y )→ X ⊗ Y (3.23)

where the first morphism uses the symmetric monoidal structure on C and
the second is the tensorwise action of A on X and Y , respectively. Finally,
LMod∆(C) restricts this action along ∆.

The unit morphism, as well as the case of ∞-operads other than the com-
mutative one can be unpacked analogously, and hence the functor

LMod : BiAlgOpO → MonO(Cat∞)

really implements the construction sketched at the very beginning of Chap-
ter 3. ♦

We end this section by considering the case of 1-categories, for which the
constructions discussed so far reduce to the classical ones.

Remark 3.4.2.4. Let C be a 1-category. The data of a symmetric monoidal
structure on C in the classical sense is equivalent to the the data of a sym-
metric monoidal structure on C considered as an ∞-category, so there is no
ambiguity when talking about symmetric monoidal structures on C49.

So assume now that C is a symmetric monoidal 1-category. By [HA, 4.1.1.2
and 2.1.3.3] the ∞-categories Alg(C) and CAlg(C) of associative and com-
mutative algebras in C are 1-categories and can be identified with the usual
classical 1-categories of associative and commutative algebras in C. Let O be
either the ∞-operad Assoc or Comm. Then we can also conclude that the
∞-category BiAlgAssoc,O(C) can be identified with the classical 1-category of
Assoc,O-bialgebras in C.

Similarly, if A is an associative algebra in C, then by [HA, 4.2.1.3] the
∞-category LModA(C) is a 1-category that can be identified with the usual
classical 1-category of left modules over A. The discussion in Remark 3.4.2.3
furthermore implies that if A is an Assoc,Comm-bialgebra in C, then we
can also identify the symmetric monoidal structure on LModA(C) with the
classical one that was sketched in the introduction to Chapter 3. ♦

49The discussion in [HA, after 2.0.0.6 and condition (M2)] can be summarized as follows:
The data of a symmetric monoidal structure on C in the classical sense (up to symmetric
monoidal equivalence) is equivalent to the data of a cocartesian fibration of ∞-operads
p : C⊗ → Fin∗ (up to symmetric monoidal equivalence) such that C⊗ is a 1-category.

But if p : C⊗ → Fin∗ is any cocartesian fibration of ∞-operads with C⊗
⟨1⟩
≃ C, then

C⊗ is automatically a 1-category. Indeed, using that Fin∗ is a 1-category it suffices to
show that for every pair of objects X and Y of C⊗ and morphism f : p(X) → p(Y )
in Fin∗ the fiber of the map MapC⊗ (X,Y ) → MapFin∗ (p(X), p(Y )) over f is discrete.
But by [HTT, 2.4.4.2], this fiber is equivalent to MapC⊗

p(Y )

(f!X,Y ), which is discrete

as C⊗
p(Y )

≃ C×n is a 1-category (here n is such that p(Y ) ∼= ⟨n⟩).
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Mixed complexes
Let A be an associative k-algebra. As will be discussed in Chapter 6, the

Hochschild homology functor HHT produces out of A an object of D(k) with
action by the circle group T, so an object of D(k)B T. It will be useful to
have a strict model for HHT(A), by which we mean an object representing
HHT(A) in a model category whose underlying ∞-category comes with an
equivalence to D(k)BT. This can indeed by done; there is a result of Hoyois
[Hoy18], which we will discuss in more detail in Section 6.3.4.1, that provides
us with a commutative diagram as follows.

Alg(LModk(Ab)) Mixed

Alg(D(k)) D(k)BT Mixed

Standard Hochschild complex

HHT
≃

The standard Hochschild complex functor appearing in this diagram has as
codomain the model category Mixed of strict mixed complexes, which are chain
complexes of k-modules together with some extra structure that encodes the
circle action. The ∞-category Mixed of mixed complexes is (equivalent to)
the underlying ∞-category of Mixed, and also equivalent to D(k)B T, as we
will see in Chapter 5.

In order to be able to make sense of this, this chapter will introduce and
discuss Mixed and Mixed. We begin in Section 4.1 with reviewing chain com-
plexes, primarily to fix notation. In Section 4.2 we will then discuss Mixed,
including the closed symmetric monoidal structure that can be defined on it as
well as the model structure. We then turn to the corresponding∞-categories.
We will collect the properties we need from D(k) in Section 4.3. Finally,
we discuss the underlying ∞-categories of the model categories Mixed and
Alg(Mixed) in Section 4.4.

4.1 Chain complexes
In this section we briefly review the 1-category of chain complexes of mod-

ules over the commutative ring k, to fix notation and sign conventions. We
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refer to books like [Wei94] for a thorough introduction to homological alge-
bra. The book [Lod98], which we will use as our main reference for classical
Hochschild homology, also reviews chain complexes in more detail than we
do.

4.1.1 Ch(k) as a 1-category
To fix notation we briefly review the 1-category of chain complexes of k-

modules.

Definition 4.1.1.1. We denote by Ch(k) the 1-category of chain complexes
of k-modules. We use homological grading, so an object X of Ch(k) con-
sists of k-modules Xn for every integer n together with boundary operators
∂Xn : Xn → Xn−1 (we will often omit the sub- and superscript when they are
clear from context) satisfying ∂ ◦ ∂ = 0.

If x is an element of Xn for some integer n, then we define degCh(x) := n

and call n the (chain) degree of x.
If n is an integer, then we denote by Ch(k)≥n = Ch(k)n≤ the full sub-

category of Ch(k) that is spanned by those objects X for which Xm
∼= 0 if

m < n. The full subcategories Ch(k)≤n and Ch(k)n1≤,≤n2
are defined analo-

gously. ♦

Definition 4.1.1.2. Let X be an object of Ch(k) and n an integer. Then we
denote by X[n] the n-fold shift of X, which is also an object of Ch(k) that is
defined as follows.

(X[n])m := Xm−n ∂X[n]
m := (−1)n · ∂Xm−n

We can extend the construction X 7→ X[n] to an endofunctor of Ch(k) by
setting (f [n])m := fm−n for morphisms f .

Note that some authors denote what we callX[n] byX[−n], see for example
[Wei94, Translation 1.2.8]. The convention we use is chosen to be consistent
with [HA, 1.1.2.7]. ♦

Definition 4.1.1.3. If X is a k-module, then we will often consider X as a
chain complex of k-modules concentrated in degree 0 without comment. This
is the chain complex X ′ defined as follows.

X ′
n :=

{
X if n = 0

0 otherwise

If we want to make clear we are considering X as a chain complex rather
than a module we will use X[0]. ♦

4.1.2 Ch(k) as a closed symmetric monoidal 1-category
In this short section we recall the closed symmetric monoidal structure on

Ch(k), in particular to fix signs.
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Definition 4.1.2.1. We equip Ch(k) with the usual symmetric monoidal
structure, described as follows. For X and Y two objects of Ch(k) and f

and g two morphisms in Ch(k) their tensor product is given by the following
formulas1.

(X ⊗ Y )n :=
⊕

i+j=n

Xi ⊗ Yj

∂X⊗Y
n (x⊗ y) := ∂X(x)⊗ y + (−1)degCh(x)x⊗ ∂Y (y)

(f ⊗ g)(x⊗ y) := f(x)⊗ g(y)

The monoidal unit is k[0], and the symmetry isomorphism is given by the iso-
morphism τX,Y : X⊗Y → Y ⊗X that sends x⊗y to (−1)degCh(x) degCh(y)y⊗x.

Ch(k) can be upgraded to a closed symmetric monoidal category, with
internal homomorphism objects given by the following formulas.

HOMCh(k)(X,Y )n =
∏

i∈Z

HOMLModk(Ab)(Xi, Yi+n)

(
∂HOMCh(k)(X,Y )(f)

)
= ∂Y ◦ f − (−1)degCh(f)f ◦ ∂X ♦

Remark 4.1.2.2. The tensor product is compatible with the shift functors
defined in Definition 4.1.1.2; For every integer n there are isomorphisms nat-
ural in X and Y as follows

(X[n])⊗ Y
∼=
−→ (X ⊗ Y )[n]

∼=
←− X ⊗ (Y [n]) (4.1)

where the first isomorphisms maps x⊗y to x⊗y, but the second isomorphism
introduces a sign by mapping x⊗y to (−1)n degCh(x)x⊗y. That one of the two
isomorphisms must introduce signs is related to the following compatibility:
The first isomorphism in (4.1) is equal to the composition

(X[n])⊗ Y ∼= Y ⊗ (X[n]) ∼= (Y ⊗X)[n] ∼= (X ⊗ Y )[n]

where the first and third isomorphism is (induced by) the symmetry isomor-
phism τ and the middle isomorphism is the second one from (4.1).

The sign is easier to remember if one thinks of Y [n] as (−)[n] applied to
Y . Then the shift construction is commuted past X, and hence introduces a
sign if the degree of the element of x as well as n are both odd. ♦

4.1.3 Ch(k) as a model category
We recall the main properties of the projective model structure on Ch(k)

for later use.
1When we write Xi⊗Yj this refers to the tensor product in LModk(Ab), i. e. the relative

tensor product over k.
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Chapter 4 Mixed complexes

Fact 4.1.3.1. Ch(k) can be given the projective model structure where the
weak equivalences are the quasiisomorphisms and the fibrations are the level-
wise surjective morphism, see [HA, 7.1.2.8] and [Hov99, 2.3.11]. This model
structure is left proper and combinatorial [HA, 7.1.2.8]. Furthermore, with
respect to the closed symmetric monoidal structure discussed in Section 4.1.2,
this model structure is a symmetric monoidal model structure [HA, 7.1.2.11]
with cofibrant unit2 and satisfies the monoid axiom [HA, 7.1.4.3]. ♧

When we refer to the model structure on Ch(k), we will always mean the
projective model structure from Fact 4.1.3.1 – while there are other model
structures on Ch(k), the projective one is the only one we will use in this
text.

4.1.4 Homotopies in Ch(k)
In this section we record that the notion of homotopy between morphisms

from a cofibrant to a fibrant chain complex coincides with the usual notion
of chain homotopy.

Proposition 4.1.4.1 ([Hov99, Between 2.3.11 and 2.3.12]). Let Y be a
chain complex. Then the operator of degree −1 on the graded k-module
P := Y × Y × Y [−1] defined as

∂((x, y, z)) := (∂x, ∂y,−∂(z) + x− y)

upgrades P into a chain complex. Furthermore the assignments x 7→ (x, x, 0)
and (x, y, z) 7→ (x, y) define morphisms of chain complexes

Y P Y × Yi p

which exhibit P as a path object for Y . ♥

Proof. The calculation

∂(∂((x, y, z))) = ∂((∂x, ∂y,−∂(z) + x− y))

= (∂(∂x), ∂(∂y),−∂(−∂(z) + x− y) + ∂x− ∂y)

= (0, 0, 0)

shows that P is a chain complex, and similarly simple calculations show that
i and p are morphisms of chain complexes.

It is clear that p is levelwise surjective, so p is a fibration. It thus remains
to show that i is a quasiisomorphism. For this consider r : P → Y defined
by (x, y, z) 7→ x. This is also a chain map, and r ◦ i = idY . It thus suffices

2The definition of a (symmetric) monoidal model category in [HA, 4.1.7] differs slightly
from the definition in [Hov99, 4.2.6]: Lurie requires that the unit object is cofibrant,
while Hovey replaces this condition with a weaker condition. See Section 4.2.2.2 for a
more detailed discussion.
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4.1 Chain complexes

to show that i ◦ r is chain homotopic to the identity. For this consider the
chain homotopy h from P to P that is defined by (x, y, z) 7→ (0, z, 0). Then
we obtain

∂(h((x, y, z))) + h(∂((x, y, z)))

= ∂((0, z, 0)) + h((∂x, ∂y,−∂(z) + x− y))

= (0, ∂z,−z) + (0,−∂(z) + x− y, 0)

= (0, x− y,−z)

= (x, x, 0)− (x, y, z)

= (i ◦ r − idP )((x, y, z))

and thus h is a chain homotopy from i ◦ r to idP .

Proposition 4.1.4.2 ([Hov99, Between 2.3.11 and 2.3.12]). Let X be a cofi-
brant chain complex, Y a fibrant chain complex, and f and g two morphisms
X → Y in Ch(k). Then f and g are homotopic (in the sense of model cat-
egories) if and only if there exists a chain homotopy from f to g, i. e. there
exists a morphism h of graded k-modules that increases degree by 1 from X

to Y satisfying the following relation.

∂ ◦ h+ h ◦ ∂ = f − g ♥

Proof. By [Hov99, 1.2.6], as X is cofibrant and Y is fibrant, left and right
homotopy define the same equivalence relations on morphisms from X to Y .
Furthermore, to check for right homotopies, we can use any path object for
Y . Thus f and g are homotopic if and only if there exists a morphism of
chain complexes H : X → P such that p ◦H = f × g, where P and p are as
in Proposition 4.1.4.1. As a graded k-module, P is given by Y × Y × Y [−1],
so we can write H as H = h0×h1×h, where h0, h1, and h are morphisms of
graded k-modules from X to Y , where h increases degree by 1. The condition
p ◦H amounts to h0 = f and h1 = g. The remaining data of h is then only
constrained by the requirement that H be a morphism of chain complexes.
This amounts to the equation

∂ ◦H = H ◦ ∂

needing to hold. The left hand side is given by

∂ ◦H = ∂ ◦ (f × g × h) = ((∂ ◦ f)× (∂ ◦ g)× (−∂ ◦ h+ f − g))

and the right hand side is given by

H ◦ ∂ = (f × g × h) ◦ ∂ = ((f ◦ ∂)× (g ◦ ∂)× (h ◦ ∂))

so, as equality in the first two factors follows automatically from f and g

being morphisms of chain complexes, this boils down to

−∂ ◦ h+ f − g = h ◦ ∂

which is equivalent to the equation from the statement.
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4.1.5 Extension of scalars

While we will usually keep the commutative ring k fixed, it will sometimes
be useful to consider functoriality in k. For this we record the following state-
ment.

Fact 4.1.5.1 ([Hov99, Page 48 and before 4.2.17 on page 114]). Let φ : k → k′

be a morphism of commutative rings.
Then extension and restriction of scalars along φ induces a Quillen ad-

junction as follows.

Ch(k) Ch(k′)
k′⊗k−

φ∗

⊣

Furthermore, k′⊗k− preserves fibrations and can be upgraded to a symmetric
monoidal functor, making the adjunction into a symmetric monoidal Quillen
adjunction in the sense of [Hov99, 4.2.16]. The right adjoint φ∗ then obtains
the structure of a lax symmetric monoidal functor, but is in general not
symmetric monoidal. ♧

4.2 Strict mixed complexes
In this section we discuss strict mixed complexes. Strict mixed complexes

where introduced by Kassel in [Kas87], where they are called mixed complexes.
We will use the additional adjective strict to distinguish between the model
category of strict mixed complexes Mixed and its underlying ∞-category of
mixed complexes Mixed. A strict mixed complex roughly consists of a chain
complex X together with a homomorphism dn : Xn → Xn+1 increasing de-
gree by 1 for every integer n, and satisfying d ◦ d = 0 and ∂d + d∂ = 0,
see Remark 4.2.1.4. The main examples of strict mixed complexes arise in
the setting of Hochschild homology: The standard Hochschild complex of an
associative ring carries the natural structure of a mixed complex, as will be
discussed in Section 6.3.1. This was already alluded to in the introduction
of Chapter 4, and in that context the operator d is the extra structure that
encodes the circle action.

In Section 4.2.1, we will start by discussing Mixed as a closed symmetric
monoidal 1-category. We will then discuss model structures on Mixed as well
as Alg(Mixed) in Section 4.2.2 and discuss their properties and how they
relate to each other, for example along the various forgetful functors. Fi-
nally, in Section 4.2.3, we will discuss the notion of strongly homotopy linear
morphisms of strict mixed complexes, which are a form of weak morphisms
between strict mixed complexes that only commute with d up to coherent
homotopy.
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4.2 Strict mixed complexes

4.2.1 Mixed as a closed symmetric monoidal 1-category
In this section we define the 1-category of strict mixed complexes Mixed

and discuss its closed symmetric monoidal structure as well as algebra objects
in Mixed. As Mixed will be defined as the category of left modules over a co-
commutative bialgebra D in Ch(k), we start in Section 4.2.1.1 by defining the
D, which then allows us to define Mixed as a symmetric monoidal category in
Section 4.2.1.2 by using the results from Section 3.4. We will unpack the sym-
metric monoidal structure in Section 4.2.1.4 and discuss algebras in Mixed in
Section 4.2.1.5. The symmetric monoidal structure will then be upgraded to
a closed symmetric monoidal structure in Section 4.2.1.6. Finally, when dis-
cussing examples in Chapter 10 it will be helpful to depict mixed complexes
diagrammatically, so we introduce the conventions we will use for this in Sec-
tion 4.2.1.3. Examples of such diagrams will also appear as Example 4.2.1.11
in Section 4.2.1.4.

4.2.1.1 The bialgebra D

Construction 4.2.1.1. Define D to be the chain complex of k-modules
k · {1} ⊕ k · {d} with 1 of degree 0 and d of degree 1. In other words, D is
the chain complex with zero differentials and a copy of k generated by 1 in
degree 0, and a copy of k generated by an element we call d in degree 1.

Then D can be given a unique structure of a commutative algebra in Ch(k)
such that the element 1 in degree 0 is the unit3.

Furthermore, there is a unique way to extend this structure to a commuta-
tive and cocommutative bialgebra in Ch(k). Indeed, if ϵ : D→ k is the counit
of such a bialgebra structure, then ϵ(1) = 1 is determined by the requirement
that ϵ is a morphism of algebras, and ϵ(d) = 0 is clear for degree reasons.
If ∆: D→ D⊗ D is the comultiplication of such a bialgebra structure, then
again as ∆ is an algebra morphism we must have ∆(1) = 1⊗1. We can write
∆(d) as a · (1 ⊗ d) + b · (d ⊗ 1) for some elements a and b of k. But from
counitality we can conclude that a and b must both be 1. Hence we must
have ∆(d) = d ⊗ 1 + 1 ⊗ d. That ϵ and ∆ defined like this really define a
commutative and cocommutative bialgebra can easily be checked.

While we will usually just write D, we will also denote this commutative
and cocommutative bialgebra by Dk if we want to make the base ring explicit.
It follows immediately from the construction that if φ : k → k′ is a morphism
of commutative rings, then the symmetric monoidal functor4

k′ ⊗k − : Ch(k)→ Ch(k′)

maps Dk to Dk′ , as a commutative and cocommutative bialgebra. ♦

31 being the unit already pins down products x · y if one of x and y is in degree 0, and if
x and y are both in degree 1 then the product is 0 for degree reasons.

4See Fact 4.1.5.1.
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Chapter 4 Mixed complexes

4.2.1.2 Definition of Mixed

We can now define the symmetric monoidal category of strict mixed com-
plexes.

Definition 4.2.1.2. We denote by Mixed the symmetric monoidal category

Mixed := LModD(Ch(k))

where the symmetric monoidal structure we consider here is the one from
Definition 3.4.2.1, see also Remark 3.4.2.4. We will call Mixed the category
of strict mixed complexes.

We will sometimes have reason to use strict mixed complexes whose under-
lying chain complex is cofibrant with respect to the projective model structure
(see Fact 4.1.3.1). We will thus use the notation

Mixedcof := LModD
(
Ch(k)cof)

for the full symmetric monoidal subcategory of Mixed spanned by those strict
mixed complexes whose underlying chain complex is cofibrant.

If we want to make the base ring explicit we will also use the notation
Mixedk and Mixedk,cof. ♦

Remark 4.2.1.3. Let φ : k → k′ be a morphism of commutative rings. The
symmetric monoidal functor

k′ ⊗k − : Ch(k)→ Ch(k′) (4.2)

from Fact 4.1.5.1 induces by Definition 3.4.2.1 and Remark 3.4.2.4 a symmet-
ric monoidal functor as indicated at the top of the following commutative
diagram.

Mixedk Mixedk′

Ch(k) Ch(k′)

k′⊗k−

evm evm

k′⊗k−

(4.3)

As (4.2) preserves cofibrant objects by Fact 4.1.5.1, the top horizontal functor
restricts to a symmetric monoidal functor from Mixedk,cof to Mixedk′,cof.

Furthermore, as the forgetful functors evm detect colimits by [HA, 4.2.3.5
(2)] and the bottom horizontal functor k′ ⊗k − in (4.3) preserves colimits by
Fact 4.1.5.1, the top horizontal functor in (4.3) preserves colimits as well. ♦

Remark 4.2.1.4. Let us unpack what an object of Mixed is. A D-module
consists of an underlying chain complex X together with a morphism

µ : D⊗X → X
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4.2 Strict mixed complexes

of chain complexes, the action of D on X, satisfying associativity and unital-
ity.

Unpacking the definition of the tensor product in Ch(k) and the definition
of D we see that the data of µ corresponds to the data of morphisms of
abelian groups

µ(1⊗−)n : Xn → Xn and µ(d⊗−)n : Xn → Xn+1

for every integer n. Those morphisms have to satisfy a condition correspond-
ing to µ being a morphism of chain complexes.

Let us first note that unitality of the action is equivalent to µ(1⊗−)n being
the identity for every n, so this piece of data is redundant. If x is an element
of Xn for some n, let us write d(x) for µ(d ⊗ x). Then µ being a morphism
of chain complexes is equivalent to ∂d + d∂ = 0. Finally, associativity of the
action is equivalent to d ◦ d = 0.

A morphism of D-modules f : X → Y can similarly be unpacked to be a
morphism of underlying chain complexes (which we also denote by f) such
that f ◦ dX = dY ◦ f .

The upshot of the above discussion is that the category of strict mixed
complexes is isomorphic to the category of chain complexes with an extra
operator d that increases degree by 1, and that satisfies the two equations
∂d+d∂ = 0 and d2 = 0. In the rest of the text we will often switch back and
forth between these two perspectives. ♦

As an example, we define a very basic family of strict mixed complexes.

Definition 4.2.1.5. Let n be an integer. Then we denote by Dn the strict
mixed complex with underlying chain complex Z ·{1}⊕Z ·{δ}[1] (so the same
underlying chain complex as D itself), and with d defined by d(1) = n · δ. ♦

Remark 4.2.1.6. As a D-module, D is isomorphic to D1. Also note that Dn

is isomorphic to D−n. ♦

4.2.1.3 Diagrams depicting strict mixed complexes

Convention 4.2.1.7. It will sometimes be helpful to diagrammatically de-
pict strict mixed complexes for which the underlying graded abelian group is
free on some basis (bi)i∈I for a set I. In that case we will use the following
conventions.

• Basis elements are represented by vertices of the diagram.

• A non-squiggly black arrow from bi to bj is used to represent the bj-
coefficient of ∂(bi). More concretely, if we write ∂(bi) as a linear com-
bination

∑
l∈I al · bl of basis elements, with al elements of k, then the

label of such a non-squiggly black arrow will be aj . If aj = 0, then we
will omit the arrow.
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Chapter 4 Mixed complexes

• d is represented completely analogously with red squiggly arrows.

• If an arrow has no label without further comment, then the the missing
label is to be interpreted as 1.

• Sometimes we will drop the signs of the labels, or the labels altogether.
In these cases we will point this out in the text. ♦

Example 4.2.1.8. The strict mixed complex Dn⊕Dm[1] for n andm integers
can be depicted as follows, where we use 1′ and δ′ for the basis elements of
Dm.

δ′

δ 1′

1

−m

n

The sign arises from the isomorphism D ⊗ (Dm[1]) ∼= (D ⊗ Dm)[1], see Re-
mark 4.1.2.2. ♦

Example 4.2.1.9. Let n be an integer. The following is an example of an
acyclic strict mixed complex.

δ′

1′ δ

1

−n

n

♦

4.2.1.4 The symmetric monoidal structure on Mixed

Remark 4.2.1.10. Let us unpack the symmetric monoidal structure on
Mixed. By Definition 3.4.2.1 the forgetful functor Mixed→ Ch(k) is symmetric
monoidal, so if X and Y are two strict mixed complexes, then the underly-
ing chain complex of X ⊗ Y must be the tensor product of underlying chain
complexes, and it remains to figure out how d acts. Using Remark 3.4.2.4,
this action arises from the composition

D⊗X ⊗ Y ∆⊗idX ⊗ idY−−−−−−−−→ D⊗D⊗X ⊗ Y idD ⊗τD,X⊗idY
−−−−−−−−−−→ D⊗X ⊗D⊗ Y

µX⊗µY

−−−−−→ X ⊗ Y
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where ∆ is the comultiplication of D as defined in Construction 4.2.1.1, τ is
the symmetry isomorphism reviewed in Definition 4.1.2.1, and µX and µY

are the action morphisms on X and Y , respectively.
By unpacking the definitions we obtain the following.

dX⊗Y (x⊗ y)

=
(
µX ⊗ µY

)
◦ (idD ⊗ τD,X ⊗ idY ) ◦ (∆⊗ idX ⊗ idY )(d⊗ x⊗ y)

=
(
µX ⊗ µY

)
◦ (idD ⊗ τD,X ⊗ idY ) ◦ (d⊗ 1⊗ x⊗ y + 1⊗ d⊗ x⊗ y)

=
(
µX ⊗ µY

)
◦
(

d⊗ x⊗ 1⊗ y + (−1)degCh(x)1⊗ x⊗ d⊗ y
)

= dX(x)⊗ y + (−1)degCh(x)x⊗ dY (y)

The monoidal unit of Mixed is the unique strict mixed complex with un-
derlying chain complex k[0]. ♦

Example 4.2.1.11. As an example we discuss the tensor product Dn ⊗Dm

for n and m positive integers.
The strict mixed complex Dn ⊗Dm can be depicted as follows.

δ ⊗ δ

δ ⊗ 1 1⊗ δ

1⊗ 1

−m n

n m

Let i, j be integers such that gcd(n,m) = in+jm. Then another basis for the
free abelian group generated by δ ⊗ 1 and 1⊗ δ is given by the two elements

n

gcd(n,m)
· δ ⊗ 1 +

m

gcd(n,m)
· 1⊗ δ and j · δ ⊗ 1− i · 1⊗ δ.

Thus we can also depict Dn ⊗Dm as follows.

δ ⊗ δ

n
gcd(n,m) · δ ⊗ 1 + m

gcd(n,m) · 1⊗ δ j · δ ⊗ 1− i · 1⊗ δ

1⊗ 1

− gcd(n,m)

gcd(n,m)

Thus Dn ⊗Dm is isomorphic in Mixed to Dgcd(n,m) ⊕Dgcd(n,m)[1]. ♦
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4.2.1.5 Algebras in Mixed

As we will later also consider algebras in Mixed, we unpack the definition
in the following remark.

Remark 4.2.1.12. As the forgetful functor from Mixed to Ch(k) is symmetric
monoidal, every algebra in strict mixed complexes has an underlying differ-
ential graded algebra (i. e. an algebra in Ch(k)). An algebra in Mixed then
consists of a differential graded algebra together with a strict mixed complex
structure on the underlying chain complex A, such that the unit morphism
k → A and the multiplication morphism A⊗A→ A are morphisms of strict
mixed complexes.

Making use of Remark 4.2.1.10 we can rephrase this as the requirement
that d(1) = 0 and that the Leibniz rule

d(x · y) = d(x) · y + (−1)degCh(x)x · d(y)

is satisfied for every element x and y of A.
Note that the Leibniz rule for x = y = 1 implies d(1) = 2 d(1) and hence

d(1) = 0, so if the Leibniz rule holds, then this condition is redundant.
Commutative algebras in Mixed have the analogous description, they con-

sist of a commutative differential graded algebra together with a strict mixed
complex structure on the underlying chain complex satisfying the Leibniz
rule. ♦

4.2.1.6 The closed symmetric monoidal structure on Mixed

Construction 4.2.1.13. Let X and Y be two strict mixed complexes. We
can define an operator d increasing degree by one on HOMCh(k)(X,Y ) by
letting d act on f by the following formula.

d(f) = dY ◦ f − (−1)degCh(f)f ◦ dX

By unwrapping the definitions it is straightforward to check that this defini-
tion satisfies d ◦ d = 0 and d ◦ ∂ + ∂ ◦ d = 0 and thus defines a strict mixed
complex, which we will denote by HOMMixed(X,Y ). ♦

Proposition 4.2.1.14. Let

φ : MorCh(k)(−1 ⊗−2,−3)
∼=
−→ MorCh(k)

(
−1,HOMCh(k)(−2,−3)

)

f 7→ (x 7→ (y 7→ f(x⊗ y)))

be the natural isomorphism that is part of the closed symmetric monoidal
structure on Ch(k). Then φ restricts to a natural isomorphism as follows.

MorMixed(−1 ⊗−2,−3)
∼=
−→ MorMixed(−1,HOMMixed(−2,−3))

In particular, this makes Mixed into a closed symmetric monoidal category.
♥
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Proof. Let X, Y , and Z be strict mixed complexes and f : X ⊗ Y → Z a
morphism of chain complexes. The statement then follows from the following
chain of equivalences.

f is a morphism of strict mixed complexes
⇐⇒ ∀x ∈ X : ∀y ∈ Y :

dZ(f(x⊗ y)) = f
(

dX(x)⊗ y
)
+ (−1)degCh(x)f(x⊗ dY (y))

⇐⇒ ∀x ∈ X : ∀y ∈ Y :

dZ(φ(f)(x)(y)) = φ(f)
(

dX(x)
)
(y) + (−1)degCh(x)φ(f)(x)

(
dY (y)

)

⇐⇒ ∀x ∈ X : ∀y ∈ Y :

dZ(φ(f)(x)(y))− (−1)degCh(x)φ(f)(x)
(

dY (y)
)
= φ(f)

(
dX(x)

)
(y)

⇐⇒ ∀x ∈ X : d(φ(f)(x)) = φ(f)
(

dX(x)
)

⇐⇒ φ(f) is a morphism of strict mixed complexes

4.2.2 Mixed and Alg(Mixed) as model categories

In this section we construct model structures on Mixed and Alg(Mixed)
and discuss various properties that they have. We will start in Section 4.2.2.1
by reviewing a general result by Schwede and Shipley concerning when one
can lift a model structure from a closed symmetric monoidal category with
compatible model structure to a model structure on categories of algebras or
modules over an algebra. We then apply this in Section 4.2.2.2 to Ch(k) in
order to obtain a model structure on Mixed = LModD(Ch(k)). We will also
show that this model structure is again suitably compatible with the closed
symmetric monoidal structure on Mixed, so that we can further lift the model
structure from Mixed to Alg(Mixed), which we do in Section 4.2.2.3. As dis-
cussed in Section 4.2.1.5, an algebra in Mixed consists of a chain complex
that has both an algebra structure as well as a strict mixed complex struc-
ture, satisfying that the Leibniz rule. We thus obtain two forgetful functors
on Alg(Mixed): One forgetting the strict mixed complex structure and map-
ping to Alg(Ch(k)), and one forgetting the algebra structure and mapping
to Mixed. Together with the forgetful functors from Alg(Ch(k)) and Mixed
to Ch(k) they fit into a commutative diagram, and the main result of Sec-
tion 4.2.2.3 is Proposition 4.2.2.12, in which various properties of those for-
getful functors are shown. Finally, it will in practice be helpful to have a
concrete description of homotopies in the model categories Mixed as well as
Alg(Ch(k)) and Alg(Mixed), so we discuss them in Sections 4.2.2.4, 4.2.2.5
and 4.2.2.6.
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4.2.2.1 Model categories of algebras and modules

In order to construct model structures on Mixed = LModD(Ch(k)) and
Alg(Mixed) we will make use of a general theorem by Schwede and Shipley
that allows one to lift model structures to categories of modules and algebras.
We recall their result as Theorem 4.2.2.1 below.

Theorem 4.2.2.1 ([SS00, Theorem 4.1]). Let C be a combinatorial model
category with a closed symmetric monoidal structure such that the tensor
product functor is a Quillen bifunctor (i. e. the pushout product axiom is
satisfied) and satisfying the monoid axiom (see [SS00, 3.3]).

Then there is a combinatorial model structure on Alg(C) such that the
following statements hold.

(1) The adjunction
FreeAlg : C ⇄ Alg(C) :eva

where FreeAlg is the free algebra functor and eva is the forgetful functor,
is a Quillen adjunction.

(2) Alg(C) is cofibrantly generated with the set of generating (acyclic) cofi-
brations given by application of FreeAlg to the set of generating (acyclic)
cofibrations of C.

(3) eva preserves and reflects weak equivalences and fibrations.

(4) If the unit of C is cofibrant, then eva preserves cofibrant objects and
cofibrations between cofibrant objects.

Let A be an algebra in C. Then there is a combinatorial model structure on
LModA(C) such that the following statements hold.

(5) The adjunction

FreeLModA : C ⇄ LModA(C) :evm

where FreeLModA is the functor sending an object X to the free A-module
A⊗X and evm is the forgetful functor, is a Quillen adjunction.

(6) LModA(C) is cofibrantly generated with set of generating (acyclic) cofi-
brations given by application of FreeLModA to the set of generating
(acyclic) cofibrations of C.

(7) evm preserves and reflects weak equivalences and fibrations.

(8) If the underlying object of A is cofibrant in C, then evm preserves cofi-
brations. ♥
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Proof.
Construction of the model structures: By definition (see [HTT, A.2.6.1]),

a combinatorial model category has presentable underlying category, so in
particular every object is small (see [HTT, A.1.1.2]). Furthermore, combina-
torial model categories are by definition also cofibrantly generated, so all the
conditions to applying [SS00, 4.1] are satisfied. We thus obtain the existence
of cofibrantly generated model structures on Alg(C) and LModA(C). Let us
now turn to the various properties of these model structures that we claimed.

Proof of claims (1), (2), (3), (5), (6), and (7): See the proof of [SS00, 4.1]
as well as [SS00, 2.3 and the description right before 2.3].

Proof of (4): Part of the statement of [SS00, 4.1 (3)].
Proof that the model structures are combinatorial: It remains to show that

Alg(C) and LModA(C) are presentable. We refer to [HTT, A.1.1.2] for a
definition of presentable categories. That the two categories are cocomplete is
already part of them being model categories, and as the forgetful functors to
C are faithful it is also clear that the morphisms sets are small. It thus suffices
to show that the two categories are accessible5; condition [HTT, A.1.1.2 (2)]
then follows directly from definition and [HTT, A.1.1.2 (3)] follows from
[AR94, 2.2 (3) and 1.16]. See also [HTT, 5.5.1.1 and 5.5.0.1].

But both Alg(C) and LModA(C) are categories of algebras over an accessi-
ble monad on C6, so they are again accessible by [AR94, 2.78].

Proof of claim (8): evm preserves colimits7, so to show that evm preserves
cofibrations it suffices to show that evm preserves generating cofibrations. So
let i : X → Y be a cofibration in C. We claim that evm(FreeLModA(i)) = idA⊗i
is again a cofibration. But this follows from −⊗− being a Quillen bifunctor8.

4.2.2.2 The model structure on Mixed

The general result Theorem 4.2.2.1 allows us to define a combinatorial
model structure on Mixed that is lifted from the projective model structure on
Ch(k) – all prerequisites to apply Theorem 4.2.2.1 are covered by Fact 4.1.3.1.

Definition 4.2.2.2. We equip Mixed = LModD(Ch(k)) with the combinato-
rial model structure from Theorem 4.2.2.1 that is lifted from the projective
model structure on Ch(k). ♦

5See [AR94, 2.2 (1)] for a definition. An object is called κ-presentable (presentable) in
[AR94, 1.13] precisely if it is called κ-compact (small) in [HTT, A.1.1.1]. Thus (keeping
in mind we already know that the categories in question are cocomplete), [AR94, 2.2
(1)] asks for existence of a regular cardinal κ and a small set of κ-compact objects such
that every object can be obtained as a κ-filtered colimit of objects from that set.

6The proof of [SS00, 4.1] uses this fact, so see there for more details.
7Because we assume that the symmetric monoidal structure on C is closed, the tensor

product preserves colimits separately in each variable, so we can apply [HA, 4.2.3.5].
8See [Hov99, 4.2.1] for a definition. We apply the property to the cofibrations 0→ A and

i, and use that the morphism (0→ A) □ i can be identified with idA ⊗ i.
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Proposition 4.2.2.3. Let φ : k → k′ be a morphism of commutative rings.
Then the extension of scalars functor

k′ ⊗k − : Mixedk → Mixedk′

from Remark 4.2.1.3 preserves cofibrations as well as weak equivalences be-
tween objects with cofibrant underlying chain complex. ♥

Proof. We first show that the functor preserves cofibrations. As it preserves
colimits by Remark 4.2.1.3, it suffices to show that the functor preserves
generating cofibrations. But this follows immediately from compatibility with
the free module functors by Proposition E.7.4.1 in combination with

k′ ⊗k − : Ch(k)→ Ch(k′) (∗)

preserving cofibrations by Fact 4.1.5.1.
That the functor preserves weak equivalences between objects with cofi-

brant underlying chain complex follows directly from the forgetful functors
evm detecting weak equivalences, the diagram (4.3) in Remark 4.2.1.3 com-
muting, and (∗) preserving weak equivalences between cofibrant objects by
Fact 4.1.5.1.

Proposition 4.2.2.4. The underlying chain complex of D is cofibrant. ♥

Proof. Follows from [Hov99, 2.3.6].

So we have now obtained a model structure on Mixed. We have also al-
ready previously discussed a closed symmetric monoidal structure on Mixed,
see Proposition 4.2.1.14. We would like to show that these to structures are in
fact compatible and make Mixed into a symmetric monoidal model structure.
However, there are slightly different definitions of what properties a monoidal
model structure needs to satisfy, and not all are true in this case. What all def-
initions require is that the tensor product is a Quillen bifunctor. As explained
in [SS00, 3.2] and [Hov99, below 4.2.6], this does not quite suffice to obtain
an induced monoidal structure on the homotopy category, a condition on the
unit object is also necessary. This is because the derived tensor product is
formed by tensoring cofibrant replacements of the two objects one wants to
tensor. If the unit object is not cofibrant, there is no guarantee that the de-
rived tensor product with the unit object is weakly equivalent to the original
object. One condition to guarantee that this is nevertheless the case is given
in [Hov99, 4.2.6] as part of Hovey’s definition of monoidal model structures.
This condition is always satisfied when the unit is in fact cofibrant, and Lurie
requires this more restrictive condition for monoidal model categories [HA,
Start of 4.1.7].

The unit object in Mixed is Z (see Remark 4.2.1.10), which is unfortunately
not cofibrant (see Proposition 4.2.2.5 directly below), so we can not directly
apply some of the result concerning monoidal model categories proven in [HA],
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like the result on rectification of algebras [HA, 4.1.8.4]. However, Hovey’s
condition is satisfied, and we will be able to work around the obstacles to
deducing the analogous result to [HA, 4.1.8] in Proposition 4.4.2.3 in Sec-
tion 4.4.2.

Proposition 4.2.2.5. The unit object Z of Mixed (see Remark 4.2.1.10) is
not cofibrant with respect to the model structure from Definition 4.2.2.2. ♥

Proof. Consider the counit ϵ : D→ Z. This is a morphism of mixed complexes,
and also a fibration in Mixed as it is levelwise surjective and evm detects
fibrations by Theorem 4.2.2.1 (7). If Z were cofibrant in Mixed, then there
would have to exist a section of ϵ as strict mixed complexes. However, the
unique section in Ch(k) is not a morphism of strict mixed complexes, as
d(1) = d 6= 0 in D.

Proposition 4.2.2.6. The model structure on Mixed from Definition 4.2.2.2
is a symmetric monoidal model structure (in the sense of [Hov99, 4.2.6]) with
respect to the closed symmetric monoidal structure from Definition 4.2.1.2 and
Proposition 4.2.1.14. ♥

Proof. Proof that −⊗− is a Quillen bifunctor: Let f : W → X be a cofibration
and p : Y → Z a fibration in Mixed. By [Hov99, 4.2.2] if suffices to show that
the induced morphism

HOMMixed(X,Y )→ HOMMixed(X,Z)×HOMMixed(W,Z) HOMMixed(W,Y )

is a fibration in Mixed, and acyclic if f or p is acyclic. But this follows im-
mediately from Ch(k) having the corresponding property by Fact 4.1.3.1 and
[Hov99, 4.2.2], in combination with evm preserving and detecting fibrations
and weak equivalences by Theorem 4.2.2.1 (7), preserving cofibrations by The-
orem 4.2.2.1 (8) and Proposition 4.2.2.4, and mapping HOMMixed to HOMCh(k)
by Construction 4.2.1.13.

Proof of [Hov99, 4.2.6 (2)]: We have to show that if 0→ Zcof f
−→ Z is a fac-

torization in Mixed of 0→ Z into a cofibration followed by an acyclic fibration,
then tensoring f with the identity of any cofibrant object on either side yields
a weak equivalence. By Proposition 4.2.2.4 and Theorem 4.2.2.1 (7) and (8),
the forgetful functor evm : Mixed→ Ch(k) preserves weak equivalences as well
as cofibrations, and also detects weak equivalences. Furthermore, evm is also
symmetric monoidal.

Hence it suffices to show that for a cofibrant chain complex X it holds that

evm(Z
cof)⊗X

evm(f)⊗idX
−−−−−−−−→ evm(Z)⊗X

is a weak equivalence in Ch(k). But note that while Z is not cofibrant an an
object in Mixed, it is cofibrant as a chain complex. Hence

evm(Z
cof)

evm(f)
−−−−→ evm(Z) = Z
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is a weak equivalence between cofibrant objects. As Ch(k) is a symmetric
monoidal model category, − ⊗ X preserves acyclic cofibrations, and hence
sends weak equivalences between cofibrant objects to weak equivalences (see
[Hov99, 1.1.12]), so the claim follows.

We next show that Mixed satisfies the monoid axiom. Definitions of the
monoid axiom can be found in [SS00, 3.3] and [HA, 4.1.8.1], however these
two definitions are stated in a slightly different way, so we briefly discuss
them first in the next remark.

Remark 4.2.2.7. Let C be a combinatorial model category that is equipped
with a symmetric monoidal structure.

Let U be the subclass of morphisms of C that are of the form idX ⊗i, with
X an object in C and i an acyclic cofibration. Let U be the weakly saturated
class of morphisms generated by U9. Let Ũ be the subclass of morphisms of C
that can be obtained as a transfinite composition of pushouts of morphisms
in U . Finally, let Ũ ′ be the subclass of morphisms of C that are retracts of
morphisms in Ũ .

Then [SS00, 3.3] asks that all morphisms in Ũ are weak equivalences, and
[HA, 4.1.8.1] asks that all morphisms in U are weak equivalences.

From the definitions it is clear that Ũ ′ is contained in U . On the other
hand, [HTT, A.1.2.8] implies that U is contained in Ũ ′. As weak equivalences
are closed under retracts, Ũ is contained in the class of weak equivalences
if and only if Ũ ′ = U is, so definitions [SS00, 3.3] and [HA, 4.1.8.1] are
equivalent. ♦

Proposition 4.2.2.8. The symmetric monoidal model category10 Mixed sat-
isfies the monoid axiom. ♥

Proof. In this proof we use the following notation. If S is a class of morphisms
in some monoidal category C, then we denote by C ⊗ S the class of all mor-
phisms of the form idX ⊗s where X is an object of C and s is an element of
S. We denote by S the weakly saturated class of morphisms generated by S
in the sense of [HTT, A.1.2.2].

Denote by W the class of weak equivalences of Ch(k), and by I a set
of generating acyclic cofibrations of Ch(k). We also define FreeMixed to be
FreeLModD , the left adjoint to the forgetful functor evm : Mixed→ Ch(k).

What we have to show is that the class of morphisms

Mixed⊗ {acyclic cofibrations in Mixed}

9See [HTT, A.1.2.2] for a definition. This is smallest subclass of morphisms of C containing
U that is closed under taking pushouts along morphisms of C, transfinite compositions,
and retracts.

10In the sense of [Hov99, 4.2.6].
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is contained in the class of weak equivalences of Mixed, which by Theo-
rem 4.2.2.1 (8) is equivalent to showing the following.

evm

(
Mixed⊗ {acyclic cofibrations in Mixed}

)
⊆W

This will follow from the following easy claims.

(1) Mixed⊗ {acyclic cofibrations in Mixed} = Mixed⊗ FreeMixed(I)

(2) evm

(
Mixed⊗ FreeMixed(I)

)
⊆ evm

(
Mixed⊗ FreeMixed(I)

)

(3) evm

(
Mixed⊗ FreeMixed(I)

)
⊆ Ch(k)⊗ {acyclic cofibrations in Ch(k)}

(4) Ch(k)⊗ {acyclic cofibrations in Ch(k)} ⊆W

Proof of claim (1): The class of acyclic cofibrations in Mixed is by Theo-
rem 4.2.2.1 (6) equal to FreeMixed(I). As the tensor product functor on Mixed
preserves colimits in each variable the claim follows.

Proof of claim (2): Follows from evm preserving colimits.
Proof of claim (3): Let i be a generating acyclic cofibration of Ch(k) and

X a strict mixed complex. Then we have

evm

(
idX ⊗FreeMixed(i)

)
∼= idX⊗D ⊗ i

where we use that evm is symmetric monoidal, so the claim follows.
Proof of claim (4): Follows from Ch(k) satisfying the monoid axiom, see

Fact 4.1.3.1.

4.2.2.3 The model structure on Alg(Mixed)

We can now put together the various results regarding the model structure
on Mixed and apply Theorem 4.2.2.1 in order to obtain a combinatorial model
structure on Alg(Mixed).

Proposition 4.2.2.9. There are combinatorial model structures on the 1-
categories Alg(Mixed) and Alg(Ch(k)) with the properties listed in Theo-
rem 4.2.2.1. ♥

Proof. By Definition 4.2.2.2 the model structure on Mixed is combinatorial,
by Proposition 4.2.1.14 there is a closed symmetric monoidal structure on
Mixed, by Proposition 4.2.2.6 the model structure satisfies the pushout prod-
uct axiom, and by Proposition 4.2.2.8 the monoid axiom is satisfied. Ch(k)
has all these properties as well by Fact 4.1.3.1. We can thus apply Theo-
rem 4.2.2.1.

We end this section by discussing the various forgetful functors, and show
some properties that they have that will be useful later.
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Notation 4.2.2.10. There is a commutative diagram of forgetful functors
as follows.

Alg(Mixed)

Mixed Alg(Ch(k))

Ch(k)

evMixed
a Alg(evm)

evm eva

(4.4)

To be able to distinguish the two forgetful functors from categories of algebras
to their underlying categories, we give the forgetful functor from Alg(Mixed)
to Mixed an extra superscript Mixed.

The functors evMixed
a , evm, and eva all have left adjoints according to The-

orem 4.2.2.1. We denote

• the left adjoint to evMixed
a by FreeAlg(Mixed)

Mixed .

• the left adjoint to evm by FreeMixed.

• the left adjoint to eva by FreeAlg. ♦

Proposition 4.2.2.11. The commutative square

Alg(Mixed) Mixed

Alg(Ch(k)) Ch(k)

evMixed
a

Alg(evm) evm

eva

from Notation 4.2.2.10 is left adjointable11, i. e. the push-pull transformation

FreeAlg ◦ evm → Alg(evm) ◦ FreeAlg(Mixed)
Mixed

is a natural isomorphism. ♥

Proof. As the symmetric monoidal structures on Mixed and Ch(k) are compat-
ible with colimits12, and evm is symmetric monoidal and preserves colimits13,
this is a special case of Proposition E.7.2.2 (2).

We can now collect some properties of the various forgetful functors.
11See [HTT, 7.3.1.1] for a definition.
12As both symmetric monoidal categories are closed symmetric monoidal, see Defini-

tion 4.1.2.1 and Proposition 4.2.1.14.
13See for example [HA, 4.2.3.5].
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Proposition 4.2.2.12. The following table summarizes what kind of mor-
phisms or constructions the various forgetful functors from Notation 4.2.2.10
preserve (marked with a P) or detect (marked with a D).

Functor isomorphisms

weak equivalences

fibrations
cofibrations

cofib’14

lim sifted
colim

colim

evMixed
a D D D D D

Alg(evm) D D D P P D D D
evm D D D P P D D D
eva D D D P D D

All properties that make use of a model structure are to be understood
with respect to the model structures from Fact 4.1.3.1, Definition 4.2.2.2, and
Proposition 4.2.2.9. ♥

Proof. Weak equivalences and fibrations: That evMixed
a , evm, and eva detect

weak equivalences and fibrations is Theorem 4.2.2.1 (3) and (7). From com-
mutativity of the diagram (4.4) we obtain the same for Alg(evm).

Limits and sifted colimits: That limits and colimits in module categories15

are calculated on underlying objects is a standard categorical fact, see for
example [HA, 4.2.3.3 and 4.2.3.5]. Similarly, it is standard that limits and
sifted colimits16 of algebras are calculated on underlying objects, see for exam-
ple [HA, 3.2.2.5] and [HA, 3.2.3.1]. Again, as the three other functors detect
limits and sifted colimits, this also follows for Alg(evm).

Isomorphisms: That evMixed
a , evm, and eva are conservative, i. e. detect iso-

morphisms, is standard, and then it again follows that Alg(evm) is conser-
vative as well. However, we could also deduce this from all four functors de-
tecting sifted colimits, as detecting isomorphisms is equivalent to detecting
[0]-colimits.

Colimits: That evm detects colimits was already mentioned above. As evm

is also symmetric monoidal, it then follows from Proposition E.7.3.1 that
Alg(evm) preserves colimits as well. As Alg(evm) is conservative, this implies
that Alg(evm) even detects colimits.

Cofibrations and cofibrations between cofibrant objects: It follows from The-
orem 4.2.2.1 (8) in combination with D being cofibrant in Ch(k) by Propo-
sition 4.2.2.4 that evm preserves cofibrations. Furthermore it follows from
Theorem 4.2.2.1 (4) in combination with the monoidal unit of Ch(k) being
cofibrant by Fact 4.1.3.1 that eva preserves cofibrant objects and cofibrations
between cofibrant objects.

14Cofibrant objects and cofibrations between cofibrant objects.
15This is true for categories of modules in a monoidal category whose tensor product

functor preserves colimits in each variable separately, which is the case for Ch(k), as it
is a closed symmetric monoidal category.

16This again requires the assumption that the tensor product preserves sifted colimits in
each variable separately, which is the case for both Ch(k) and Mixed.
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It remains to show that Alg(evm) preserves cofibrations. As we already
showed that Alg(evm) preserves colimits, it suffices for this to show that
Alg(evm) maps generating cofibrations to cofibrations. Generating cofibra-
tions of Alg(Mixed) are by Theorem 4.2.2.1 (2) and (6) morphisms of the
form FreeAlg(Mixed)

Mixed (FreeMixed(i)) with i a (generating) cofibration in Ch(k).
By Proposition 4.2.2.11 there is a natural isomorphism as follows.

Alg(evm) ◦ FreeAlg(Mixed)
Mixed ◦ FreeMixed ∼= FreeAlg ◦ evm ◦ FreeMixed

As FreeAlg and FreeMixed preserve cofibrations as left Quillen functors17 and
evm was already shown to preserve cofibrations, the claim follows.

Proposition 4.2.2.13. Let φ : k → k′ be a morphism of commutative rings.
Then the extension of scalars functor

k′ ⊗k − : Alg(Mixedk)→ Alg(Mixedk′)

that is induced on algebras by the symmetric monoidal functor

k′ ⊗k − : Mixedk → Mixedk′

from Remark 4.2.1.3 preserves colimits and cofibrations. ♥

Proof. The extension of scalars functor

k′ ⊗k − : Mixedk → Mixedk′

is by Remark 4.2.1.3 symmetric monoidal and preserves colimits. As the
tensor product functors of Mixedk and Mixedk′ also preserve colimits in each
variable separately by Proposition 4.2.2.6 we can apply Proposition E.7.3.1
to conclude that the induced functor

k′ ⊗k − : Alg(Mixedk)→ Alg(Mixedk′)

preserves colimits.
To show that this functor also preserves cofibrations it now suffices to show

that it maps generating cofibrations to cofibrations. So let i : X → Y be a
cofibration in Mixedk. We have to show that

k′ ⊗k FreeAlg(Mixedk)
Mixedk (i)

is a cofibration in Alg(Mixedk′). But by Proposition E.7.2.2 we can identify
this morphism with

FreeAlg(Mixedk′ )
Mixedk′ (k′ ⊗k i)

which is a cofibration as FreeAlg(Mixedk′ )
Mixedk′ is a left Quillen functor by Theo-

rem 4.2.2.1 (5) and
k′ ⊗k − : Mixedk → Mixedk′

preserves cofibrations by Proposition 4.2.2.3.
17See Theorem 4.2.2.1 (1) and (5).
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4.2.2.4 Homotopies in Mixed

In this section we describe homotopies in Mixed, continuing from and pro-
ceeding analogously to Section 4.1.4.

Proposition 4.2.2.14. Let Y be a strict mixed complex. Then defining an
operator d that increases degree by one on P from Proposition 4.1.4.1 as

d((x, y, z)) := (dx, d y,− d z)

upgrades P to a strict mixed complex. Furthermore, the morphisms i and p

that were defined in Proposition 4.1.4.1 are compatible with this strict mixed
structure, exhibiting P as a path object for Y in Mixed. ♥

Proof. It is clear that d as defined in the statement is k-linear and increases
degree by 1. Let (x, y, z) be an element in P . Then the short calculation

d(d((x, y, z))) = d((dx, d y,− d z)) = (d(dx), d(d y), d(d z)) = (0, 0, 0)

shows that d squares to zero, and the following calculation shows that it also
holds that d◦∂+∂ ◦d = 0, so that P indeed becomes a strict mixed complex.

(d ◦ ∂ + ∂ ◦ d)((x, y, z))
= d((∂x, ∂y,−∂(z) + x− y)) + ∂((dx, d y,− d z))
= (d(∂(x)), d(∂(y)),− d(−∂(z) + x− y))

+ (∂(d(x)), ∂(d(y)),−∂(− d(z)) + dx− d y)
=
(

d(∂(x)) + ∂(d(x)), d(∂(y)) + ∂(d(y)),
d(∂(z))− d(x) + d(y) + ∂(d(z)) + d(x)− d(y)

)

= (0, 0, 0)

It is clear that i and p are compatible with d, making them into morphisms
in Mixed. As the forgetful functor evm : Mixed → Ch(k) detects weak equiv-
alences and fibrations by Proposition 4.2.2.12, it now follows from Proposi-
tion 4.1.4.1 that i and p exhibit P as a path object for Y .

Proposition 4.2.2.15. Let X be a cofibrant and Y a fibrant object in Mixed,
with respect to the model structure of Definition 4.2.2.2, and f and g two
morphisms X → Y in Mixed. Then f and g are homotopic if and only if there
exists a chain homotopy of strict mixed complexes h from f to g, by which
we mean a chain homotopy h from f to g in the sense of Proposition 4.1.4.2
satisfying additionally18

h(d(x)) = − d(h(x)) (4.5)

for all elements x of X. ♥
18To remember the sign, note that both d and h have odd degree, so commuting them

should be expected to introduce a sign.
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Proof. Note that by [Hov99, 1.2.6], as X is cofibrant and Y is fibrant, the
left and right homotopy relations coincide, and the right homotopy relation
can be tested using any path object for Y . For this we use the path object P
from Proposition 4.2.2.14.

Arguing analogously to the proof of Proposition 4.1.4.2, we see that f and
g are homotopic as morphisms of strict mixed complexes if and only if there
exists a morphism of strict mixed complexes H = f×g×h : X → P . That H
is a morphism of chain complexes amounts, just like in Proposition 4.1.4.2,
to

∂ ◦ h+ h ◦ ∂ = f − g

but this time H needs to additionally commute with d, so for x an element
of X the following equality must hold.

(f(d(x)), g(d(x)), h(d(x))) = d((f(x), g(x), h(x))) (∗)

The right hand side is given by

d((f(x), g(x), h(x))) = (d(f(x)), d(g(x)),− d(h(x)))

so as f and g are morphisms of strict mixed complexes we can conclude that
equality (∗) is equivalent to the following equation.

h(d(x)) = − d(h(x))

4.2.2.5 Homotopies in Alg(Ch(k))

In this section we describe homotopies in Alg(Ch(k)). The statements of
the first two propositions, concerning an appropriate path object and a con-
crete description of the resulting homotopies, are completely analogous to
the propositions in Sections 4.1.4 and 4.2.2.4. However, this section has an
additional helpful result that reduces the amount of data that needs to be
specified and the amount of properties that need to be checked to construct
homotopies out of differential graded algebras whose underlying Z-graded
k-algebra is free.

Proposition 4.2.2.16. Let Y be a differential graded k-algebra. Then defin-
ing a multiplication on the chain complex P that was defined in Proposi-
tion 4.1.4.1 as

(x, y, z) · (x′, y′, z′) :=
(
xx′, yy′, zy′ + (−1)degCh(x)xz′

)

upgrades P to a differential graded k-algebra with unit (1, 1, 0). Furthermore,
the morphisms i and p that were defined in Proposition 4.1.4.1 are compatible
with this multiplicative structure, exhibiting P as a path object for Y in
Alg(Ch(k)). ♥
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Proof. It is clear that (1, 1, 0) is a unit for the multiplication that was defined
in the statement, and that multiplication is k-linear in both factors. For
associativity we carry out the following calculations.

((x, y, z) · (x′, y′, z′)) · (x′′, y′′, z′′)

=
(
xx′, yy′, zy′ + (−1)degCh(x)xz′

)
· (x′′, y′′, z′′)

=
(
xx′x′′, yy′y′′, zy′y′′ + (−1)degCh(x)xz′y′′ + (−1)degCh(x)+degCh(x

′)xx′z′′
)

(x, y, z) · ((x′, y′, z′) · (x′′, y′′, z′′))

= (x, y, z) ·
(
x′x′′, y′y′′, z′y′′ + (−1)degCh(x

′)x′z′′
)

=
(
xx′x′′, yy′y′′, zy′y′′ + (−1)degCh(x)xz′y′′ + (−1)degCh(x)+degCh(x

′)xx′z′′
)

The next calculations show that the Leibniz rule is also satisfied, making P
into a differential graded algebra.

∂((x, y, z) · (x′, y′, z′))

= ∂
((
xx′, yy′, zy′ + (−1)degCh(x)xz′

))

=
(
∂(xx′), ∂(yy′),−∂

(
zy′ + (−1)degCh(x)xz′

)
+ xx′ − yy′

)

=
(
∂(x)x′ + (−1)degCh(x)x∂(x′), ∂(y)y′ + (−1)degCh(x)y∂(y′),

− ∂(z)y′ − (−1)degCh(x)+1z∂(y′)

−(−1)degCh(x)∂(x)z′ − x∂(z′) + xx′ − yy′
)

∂((x, y, z)) · (x′, y′, z′) + (−1)degCh(x)(x, y, z) · ∂((x′, y′, z′))

= (∂(x), ∂(y),−∂(z) + x− y) · (x′, y′, z′)

+ (−1)degCh(x)(x, y, z) · (∂(x′), ∂(y′),−∂(z′) + x′ − y′)

=
(
∂(x)x′, ∂(y)y′,−∂(z)y′ + xy′ − yy′ − (−1)degCh(x)∂(x)z′

)

+ (−1)degCh(x) (x∂(x′), y∂(y′),

z∂(y′)− (−1)degCh(x)x∂(z′) + (−1)degCh(x)xx′ − (−1)degCh(x)xy′
)

=
(
∂(x)x′ + (−1)degCh(x)x∂(x′), ∂(y)y′ + (−1)degCh(x)y∂(y′),

− ∂(z)y′ + xy′ − yy′ − (−1)degCh(x)∂(x)z′

+(−1)degCh(x)z∂(y′)− x∂(z′) + xx′ − xy′
)
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=
(
∂(x)x′ + (−1)degCh(x)x∂(x′), ∂(y)y′ + (−1)degCh(x)y∂(y′),

− ∂(z)y′ + (−1)degCh(x)z∂(y′)

−(−1)degCh(x)∂(x)z′ − x∂(z′) + xx′ − yy′
)

It is immediate from the formula for multiplication on P that the the
morphisms of chain complexes i : Y → P and p : P → Y × Y from Propo-
sition 4.1.4.1 become morphisms of differential graded algebras. As weak
equivalences and fibrations in Alg(Ch(k)) are detected by the forgetful func-
tor to Ch(k) by Proposition 4.2.2.12, it now follows from Proposition 4.1.4.1
that i and p exhibit P as a path object for Y . We remark that a more concep-
tual approach to constructing this path object is described in [SS00, Section
Chain complexes on pages 503 and 504], though there are some differences in
signs.

Proposition 4.2.2.17. Let X be a cofibrant and Y a fibrant object in
Alg(Ch(k)), with respect to the model structure of Proposition 4.2.2.9, and f
and g two morphisms X → Y in Alg(Ch(k)). Then f and g are homotopic if
and only if there exists a chain homotopy of differential graded k-algebras h
from f to g, by which we mean a chain homotopy h from f to g in the sense
of Proposition 4.1.4.2 satisfying additionally

h(x · x′) = h(x)g(x′) + (−1)degCh(x)f(x)h(x′) (4.6)

for all elements x and x′ of X. ♥

Proof. Note that by [Hov99, 1.2.6], as X is cofibrant and Y is fibrant, the
left and right homotopy relations coincide, and the right homotopy relation
can be tested using any path object for Y . For this we use the path object P
from Proposition 4.2.2.16.

Arguing completely analogously to the proof of Proposition 4.1.4.2, we
see that f and g are homotopic as morphisms of differential graded alge-
bras if and only if there exists a morphism of differential graded algebras
H = f × g× h : X → P . That H is a morphism of chain complexes amounts,
just like in Proposition 4.1.4.2, to

∂ ◦ h+ h ◦ ∂ = f − g

but this time H needs to additionally preserve the unit, which is equivalent to
h(1) = 0, and the multiplication, so for x and x′ elements of X the following
equality must hold.

(f(x · x′), g(x · x′), h(x · x′)) = (f(x), g(x), h(x)) · (f(x′), g(x′), h(x′)) (∗)

The right hand side is given by

(f(x), g(x), h(x)) · (f(x′), g(x′), h(x′))

=
(
f(x) · f(x′), g(x) · g(x′), h(x)g(x′) + (−1)degCh(x)f(x)h(x′)

)
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so as f and g are multiplicative we conclude that equality (∗) is equivalent
to the following equation.

h(x · x′) = h(x)g(x′) + (−1)degCh(x)f(x)h(x′)

Finally, applying this equation for x = x′ = 1 we obtain that h(1) = 2h(1)
and hence h(1) = 0.

The following proposition will sometimes be helpful in defining homotopies
of differential graded k-algebras.

Proposition 4.2.2.18. Let X and Y be objects in Alg(Ch(k)), and assume
that the underlying Z-graded k-algebra of X is free on a Z-graded subset Z
of X.

Let f and g be morphisms of differential graded algebras from X to Y and
h a map from Z to Y that increases degree by 1. Then there is a unique
extension of h to a morphism of Z-graded k-modules of degree 1 from X to
Y such that

h(x · x′) = h(x)g(x′) + (−1)degCh(x)f(x)h(x′) (4.7)

holds for all elements x and x′ of X. That unique extension is given by
defining h on the basis given by words in Z by

h(z1 · · · zl) :=
∑

1≤i≤l

(−1)
∑

1≤j≤i−1 degCh(zj) · f(z1 · · · zi−1) · h(zi) · g(zi+1 · · · zl)

(4.8)
for l ≥ 0 and z1, . . . , zl ∈ Z, and then extending k-linearly.

Furthermore, such an extension h satisfies

∂ ◦ h+ h ◦ ∂ = f − g (4.9)

if and only if this holds on elements of Z. ♥

Proof. We first show uniqueness of the extension. As h must be k-linear, it
suffices to show that the h is already uniquely given on words in Z. This we
do by induction on the word length. By the Leibniz rule (4.7), h must map 1
to 0 (use x = x′ = 1), so h is uniquely determined on words in Z of length 0.
It is also uniquely determined on elements of Z themselves, as we prescribe
the value on those elements. The induction step then follows directly from
(4.7).

Now define h as in (4.8). It is clear from the definition that this definition
extends the prescribed valued on Z. To verify that (4.7) holds we first note
that both sides of the equation are k-linear in both x and x′, so that it suffices
to check this on a k-basis of X. So let w = z1 · · · zl and w′ = z′1 · · · z

′
l′ be words
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in Z. Then the following calculation shows that (4.7) is satisfied.

h(w · w′)

=
∑

1≤i≤l

(−1)
∑

1≤j≤i−1 degCh(zj) · f(z1 · · · zi−1) · h(zi) · g(zi+1 · · · zl · w
′)

+
∑

1≤i≤l′

(
(−1)degCh(w) · (−1)

∑
1≤j≤i−1 degCh(z′j)

· f
(
w · z′1 · · · z

′
i−1

)
· h(z′i) · g

(
z′i+1 · · · z

′
l′

))

=


 ∑

1≤i≤l

(−1)
∑

1≤j≤i−1 degCh(zj) · f(z1 · · · zi−1) · h(zi) · g(zi+1 · · · zl)


 · g(w′)

+ (−1)degCh(w) · f(w)·

 ∑

1≤i≤l′

(−1)
∑

1≤j≤i−1 degCh(z′j) · f
(
z′1 · · · z

′
i−1

)
· h(z′i) · g

(
z′i+1 · · · z

′
l′

)



= h(w) · g(w′) + (−1)degCh(w) · f(w) · h(w′)

It remains to show the assertion concerning (4.9). That if equality holds in
general, then it also holds on Z is clear. So assume that (4.9) holds on Z. As
both sides of the equation are k-linear it again suffices to show (4.9) on the
k-basis given by words in Z. We show this by induction on the word length.
For the element 1 (i. e. the unique word of length 0) we obtain h(1) = 0 and
∂(1) = 0 from the respective Leibniz rules, and the right hand side of (4.9)
is zero as well as f(1) = 1 = g(1). On words of length 1, i. e. elements of Z,
the equation (4.9) holds by assumption. So now let w be an element of X
on which (4.9) holds, and z an element of Z. Then the following calculation
shows that (4.9) also holds for w · z, thereby finishing the proof.

∂(h(w · z)) + h(∂(w · z))

We first apply the Leibniz rule twice, for both h and ∂.
= ∂

(
h(w) · g(z) + (−1)degCh(w) · f(w) · h(z)

)

+ h
(
∂(w) · z + (−1)degCh(w) · w · ∂(z)

)

= ∂(h(w)) · g(z) + (−1)degCh(w)+1h(w) · ∂(g(z))

+ (−1)degCh(w) · ∂(f(w)) · h(z)

+ (−1)degCh(w) · (−1)degCh(w) · f(w) · ∂(h(z))

+ h(∂(w)) · g(z) + (−1)degCh(w)−1 · f(∂(w)) · h(z)

+ (−1)degCh(w) · h(w) · g(∂(z))

+ (−1)degCh(w) · (−1)degCh(w) · f(w) · h(∂(z))
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Next we reorder the summands.
= ∂(h(w)) · g(z) + h(∂(w)) · g(z)

+ (−1)degCh(w)+1h(w) · ∂(g(z)) + (−1)degCh(w) · h(w) · g(∂(z))

+ (−1)degCh(w) · ∂(f(w)) · h(z) + (−1)degCh(w)−1 · f(∂(w)) · h(z)

+ (−1)degCh(w) · (−1)degCh(w) · f(w) · ∂(h(z))

+ (−1)degCh(w) · (−1)degCh(w) · f(w) · h∂((z))

= (∂(h(w)) + h(∂(w))) · g(z)

+ (−1)degCh(w)h(w) · (−∂(g(z)) + g(∂(z)))

+ (−1)degCh(w) · (∂(f(w))− f(∂(w)))

+ f(w) · (∂(h(z)) + h∂((z)))

Now we can apply the induction hypothesis, and that f and g are morphisms
of chain complexes.

= (f(w)− g(w)) · g(z) + f(w) · (f(z)− g(z))

= f(w) · g(z)− g(w) · g(z) + f(w) · f(z)− f(w) · g(z)

= f(w · z)− g(w · z)

4.2.2.6 Homotopies in Alg(Mixed)

Now we turn to homotopies of algebras in strict mixed complexes. This
results in this section are analogous to those in the preceding Section 4.2.2.5,
and obtained by combining those results with those from Section 4.2.2.4.

Proposition 4.2.2.19. Let Y be an object in Alg(Mixed). Then the strict
mixed structure defined in Proposition 4.2.2.14 on the chain complex P from
Proposition 4.1.4.1 satisfies the Leibniz rule with respect to the multiplica-
tion from Proposition 4.2.2.16, upgrading P to an object in Alg(Mixed).
Furthermore, the morphisms i and p exhibit P as a path object for Y in
Alg(Mixed). ♥

Proof. Let (x, y, z) and (x′, y′, z′) be two elements of P . Then the following
calculation shows that d satisfies the Leibniz rule.

d((x, y, z) · (x′, y′, z′))

= d
((
x · x′, y · y′, z · y′ + (−1)degCh(x) · x · z′

))

=
(

d(x · x′), d(y · y′),− d
(
z · y′ + (−1)degCh(x) · x · z′

))

=
(

d(x) · x′ + (−1)degCh(x) · x · d(x′), d(y) · y′ + (−1)degCh(y) · y · d(y′),

− d(z) · y′ − (−1)degCh(z) · z · d(y′)

− (−1)degCh(x) · d(x) · z′ − (−1)degCh(x) · (−1)degCh(x) · x · d(z′)
)
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=
(

d(x) · x′, d(y) · y′,− d(z) · y′ − (−1)degCh(x) · d(x) · z′
)

+
(
(−1)degCh(x) · x · d(x′), (−1)degCh(y) · y · d(y′),

− (−1)degCh(z) · z · d(y′)− (−1)degCh(x) · (−1)degCh(x) · x · d(z′)
)

=
(

d(x) · x′, d(y) · y′, (− d(z)) · y′ + (−1)degCh(d x) · d(x) · z′
)

+
(
(−1)degCh(x) · x · d(x′), (−1)degCh(x) · y · d(y′),

+ (−1)degCh(x) · z · d(y′) + (−1)degCh(x) · (−1)degCh(x) · x · (− d(z′))
)

= (d(x), d(y),− d(z)) · (x′, y′, z′)
+ (−1)degCh(x) · (x, y, z) · (d(x′), d(y′),− d(z′))

= d((x, y, z)) · (x′, y′, z′) + (−1)degCh(x) · (x, y, z) · d((x′, y′, z′))

This upgrades P to an object in Alg(Mixed). As i and p are compatible with
both the strict mixed structure by Proposition 4.2.2.14 and the multiplicative
structure by Proposition 4.2.2.16 we can conclude that i and p also lift to
morphisms in Alg(Mixed). As weak equivalences and fibrations in Alg(Mixed)
are detected by the forgetful functor to Ch(k) by Proposition 4.2.2.12, it now
follows from Proposition 4.1.4.1 that i and p exhibit P as a path object for
Y .

Proposition 4.2.2.20. Let X be a cofibrant and Y a fibrant object in
Alg(Mixed), with respect to the model structure of Proposition 4.2.2.9, and f
and g two morphisms X → Y in Alg(Mixed). Then f and g are homotopic
if and only if there exists a chain homotopy of algebras of strict mixed com-
plexes h from f to g, by which we mean a chain homotopy h from f to g in
the sense of Proposition 4.1.4.2 that is simultaneously a chain homotopy of
differential graded algebras from f to g in the sense of Proposition 4.2.2.17
and a chain homotopy of strict mixed complexes from f to g in the sense of
Proposition 4.2.2.15. ♥

Proof. Note that by [Hov99, 1.2.6], as X is cofibrant and Y is fibrant, the
left and right homotopy relations coincide, and the right homotopy relation
can be tested using any path object for Y . For this we use the path object P
from Proposition 4.2.2.19.

Arguing completely analogously to the proof of Proposition 4.1.4.2, we
see that f and g are homotopic as morphisms of algebras in strict mixed
complexes if and only if there exists a morphism of algebras in strict mixed
complexes H = f × g × h : X → P . While an object in Alg(Mixed) is more
than a chain complex that is equipped with both a strict mixed and an
algebra structure, as d needs to additionally satisfy the Leibniz rule, mor-
phisms of algebras in strict mixed complexes are just morphisms of chain
complexes that are compatible with both multiplication and the strict mixed
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structure. Thus the claim now follows directly by combining the proofs of
Propositions 4.2.2.15 and 4.2.2.17.

The following proposition is an analogue of Proposition 4.2.2.18 and will
sometimes be helpful when trying to define a chain homotopy of algebras in
strict mixed complexes.

Proposition 4.2.2.21. Let X and Y be objects in Alg(Mixed), and let Z
be a Z-graded subset of X. Assume that Z is disjoint from dZ and that the
underlying Z-graded k-algebra of X is free on Z ∪ dZ.

Let f and g be morphisms of algebras of strict mixed complexes from X

to Y , and h a map from Z to Y that increases degree by 1. Then there is a
unique extension of h to a morphism of Z-graded k-modules of degree 1 from
X to Y such that

h(x · x′) = h(x)g(x′) + (−1)degCh(x)f(x)h(x′) (4.10)

and
h(d(x)) = − d(h(x)) (4.11)

holds for all elements x and x′ of X. That unique extension is given by first
extending h to Z ∪ dZ via

h(d z) := − d(h(z)) (4.12)

for z an element of Z, and then defining h on the basis given by words in Z

and dZ by

h(z1 · · · zl) :=
∑

1≤i≤l

(−1)
∑

1≤j≤i−1 degCh(zj) · f(z1 · · · zi−1) · h(zi) · g(zi+1 · · · zl)

(4.13)
for l ≥ 0 and z1, . . . , zl ∈ Z ∪ dZ, and then extending k-linearly.

Furthermore, such an extension h satisfies

∂ ◦ h+ h ◦ ∂ = f − g (4.14)

if and only if this holds on elements of Z. ♥

Proof. We first show uniqueness of the extension. By (4.11) the extension
to Z ∪ dZ as in (4.12) is uniquely determined, and then uniqueness of the
extension from Z ∪ dZ to X follows from Proposition 4.2.2.18.

Now define h as in (4.12) and (4.13). Then h is extended from Z ∪ dZ
as in Proposition 4.2.2.18, so Proposition 4.2.2.18 show that (4.10) holds. To
show that (4.11) holds, we start by noting that (4.11) holds on elements of
Z ∪ dZ. For elements of Z this is by construction, and for dZ this is shown
by the following small calculation, where z ∈ Z.

h(d(d z)) = h(0) = 0 = d(d(h(z))) = − d(h(d(z)))

147



Chapter 4 Mixed complexes

As both sides of (4.11) are k-linear, it suffices to show (4.11) on the k-basis
given by words in Z ∪ dZ. By what we just argued (4.11) holds on words of
length 1, and as d(1) = 0 and h(1) = 0 by the respective Leibniz rules we also
have that (4.11) holds for words of length 0. We now show that (4.11) holds
for words of length greater than 1 by induction. So let z and z′ be elements
of Z such that (4.11) holds on them. Then we have to show that (4.11) also
holds for z · z′, which we do with the following calculation, using the Leibniz
rule for d as well as the Leibniz rule for h (i. e. (4.10)), which we already
showed.

h(d(z · z′))

= h
(

d(z) · z′ + (−1)degCh(z)z · d(z′)
)

= h(d(z)) · g(z′) + (−1)degCh(d(z)) · f(d(z)) · h(z′)
+ (−1)degCh(z) · h(z) · g(d(z′)) + (−1)degCh(z) · (−1)degCh(z) · f(z) · h(d(z′))

= − d(h(z)) · g(z′)− (−1)degCh(z) d(f(z)) · h(z′)
− (−1)degCh(h(z))h(z) · d(g(z′))− (−1)degCh(z) · (−1)degCh(z)f(z) · d(h(z′))

= − d(h(z)) · g(z′)− (−1)degCh(h(z))h(z) · d(g(z′))
− (−1)degCh(z) d(f(z)) · h(z′)− (−1)degCh(z) · (−1)degCh(z)f(z) · d(h(z′))

= − d(h(z) · g(z′))− (−1)degCh(z) · d(f(z) · h(z′))

= − d
(
h(z) · g(z′) + (−1)degCh(z)f(z) · h(z′)

)

= − d(h(z · z′))

It remains to show the assertion concerning (4.14). So assume that (4.14)
holds on elements of Z. Then we first show that (4.14) also holds on elements
of dZ. Indeed, the following calculation verifies (4.14) for d z if z is an ele-
ment of Z, where we use the compatibility of all the involved morphisms and
operators with d.

∂(h(d z)) + h(∂(d z)) = −∂(d(h(z)))− h(d(∂(z))) = d(∂(h(z))) + d(h(∂(z)))
= d((∂ ◦ h+ h ◦ ∂)(z)) = d(f(z)− g(z))
= f(d(z))− g(d(z))

Now that we know that (4.14) is satisfied on all of Z ∪ dZ it immediately
follows from Proposition 4.2.2.18 that (4.14) already holds on all of Z.

4.2.3 Strongly homotopy linear morphisms of strict
mixed complexes

Let X and Y be strict mixed complexes and f : X → Y a morphism of the
underlying chain complexes. We might then want to lift f to a morphism of
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strict mixed complexes, which is possible if and only if f commutes with the
differential d, or equivalently if f ◦d−d◦f is zero. In practice it may however
happen that f only commutes with d up to homotopy rather than strictly.
In this case f ◦ d− d ◦ f is nullhomotopic, but not zero, and we could record
this by letting f (1) be a nullhomotopy19 of f ◦ d − d ◦ f . We can now ask
whether this additional data f (1) commutes with d. Again, this may only be
the case up to a homotopy f (2). If we keep going in this manner we arrive at
the notion of a strongly homotopy linear morphism of strict mixed complexes.
We will give a full definition in Section 4.2.3.1.

To relate the notion of strongly homotopy linear morphisms with the ho-
motopy theory of strict mixed complexes as developed in Section 4.2.2, we
are then going to show in Section 4.2.3.2 that a strongly homotopy linear
morphism f : X → Y corresponds to a (strict) morphism f strict : X → Y shl

of strict mixed complexes, where Y shl is a thickened version of Y coming
with a quasiisomorphism of strict mixed complexes Y → Y shl. We can thus
interpret the strongly homotopy linear morphism f as encoding a zigzag as
depicted below.

X Y shl Y

f

fstrict ≃

4.2.3.1 Definition of strongly homotopy linear morphisms

Below we record the definition of strongly homotopy linear morphisms that
was sketched in the introduction to Section 4.2.3.

Definition 4.2.3.1 ([Kas87, 2.2] and [Lod98, 2.5.14]). Let X and Y be strict
mixed complexes. A strongly homotopy linear morphism from X to Y consists
of morphisms of graded k-modules f (i) : X → Y of degree 2i for all i ≥ 0,
satisfying

∂ ◦ f (i) − f (i) ◦ ∂ = f (i−1) ◦ d− d ◦ f (i−1) (4.15)

where we set f (−1) = 0. Note that the condition for i = 0 implies that
∂ ◦ f (0) = f (0) ◦ ∂, so that f (0) is a morphism of chain complexes. ♦

Remark 4.2.3.2. We can compose strongly homotopy linear morphisms
with (strict) morphisms of strict mixed complexes. To be more concrete, let
X and Y be strict mixed complexes, g(•) : X → Y a strongly homotopy
linear morphism, and f : X ′ → X and h : Y → Y ′ morphisms of strict mixed
complexes. Then we make the following definition.

(hgf)
(i) := h ◦ g(i) ◦ f for i ≥ 0

19As f◦d−d◦f is a morphism of odd degree, this would take the form ∂f (1)−f (1)∂ = fd−df ,
compare with Definition 4.1.2.1.

149



Chapter 4 Mixed complexes

This defines a strongly homotopy linear morphism hgf from X ′ to Y ′, whose
underlying morphism of chain complexes is the composition of underlying
morphisms of chain complexes. That hgf really is a strongly homotopy linear
morphism can be easily checked using that f and h commute with both ∂

and d, as seen below.

∂(hgf)
(i) − (hgf)

(i)
∂ = ∂hg(i)f − hg(i)f∂

= h
(
∂g(i) − g(i)∂

)
f

= h
(
g(i−1)d− dg(i−1)

)
f

= hg(i−1)fd− dhg(i−1)f

= (hgf)
(i−1)d− d(hgf)(i−1) ♦

4.2.3.2 Strongly homotopy linear morphisms as zigzags

We begin this section with the construction of the strict mixed complex
Y shl that was mentioned in the introduction to Section 4.2.3, before explain-
ing how to reinterpret a strongly homotopy linear morphism f : X → Y as a
morphism of strict mixed complexes f strict : X → Y shl.

Definition 4.2.3.3. Let Y be a strict mixed complex. Then define Y shl to
be the Z-graded k-module

Y shl
n :=

∏

m≥0

Y [−m]

so that Y shl
n =

∏
m≥n Ym for any integer n. We furthermore define operators

∂ and d of degrees −1 and 1 on Y shl as follows, where (yn, yn+1, . . .) is an
element of Y shl

n and e. g. ∂(yn, yn+1, . . .)m refers to the Ym-component of
Y shl
n−1.

∂(yn, yn+1, . . .)n−1+i :=





∂(yn) if i = 0

−∂(yn+i) if i > 0 is odd
∂(yn+i)− yn−1+i if i > 0 is even

d(yn, yn+1, . . .)n+1+i :=

{
− d(yn+i) if i ≥ 0 is odd
d(yn+i) + yn+1+i if i ≥ 0 is even

The special case for i = 0 in the formula for ∂ can be avoided by declaring
yn−1 to be 0.

Finally, we let ιshl
Y : Y → Y shl be the morphism of Z-graded k-modules that

is given by ιshl
Y (y) := (y, 0, 0, . . .) for every element y of Y . ♦
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Remark 4.2.3.4. The following diagram20 depicts how one can think of
Y shl. The picture only shows part of Y shl, which continues towards the right,
top, and bottom, but not towards the left.

Yn+1 Yn+2 Yn+3 Yn+4 Yn+5

Yn Yn+1 Yn+2 Yn+3 Yn+4

Yn−1 Yn Yn+1 Yn+2 Yn+3

∂ −∂
− id ∂ −∂

− id ∂

∂

d id
− d

−∂
− id

d

∂

id
− d

−∂
− id

d

∂d id
− d d id

− d d

♦

Proposition 4.2.3.5. Let Y be a strict mixed complex and Y shl as in Defi-
nition 4.2.3.3. Then ∂ and d as defined in Definition 4.2.3.3 define a strict
mixed complex structure on Y shl which makes ιshl

Y : Y → Y shl into a quasiiso-
morphism of strict mixed complexes. ♥

Proof. We begin by showing that ∂ and d upgrade Y shl to a strict mixed
complex. It is easiest to convince oneself of this by considering the diagram
in Remark 4.2.3.4, but we also provide a proof by unpacking the formulas.
So let (yn, yn+1, . . .) be an element of Y shl

n . Then we obtain the following
calculations, first for odd i and then for even i21, showing that ∂ squares to
zero.

∂(∂((yn, yn+1, . . .)))n−2+i (assuming i is odd)
= −∂

(
∂((yn, yn+1, . . .))n−1+i

)

= −∂(−∂(yn+i))

= ∂(∂(yn+i))

= 0

∂(∂((yn, yn+1, . . .)))n−2+i (assuming i is even)
= ∂

(
∂((yn, yn+1, . . .))n−1+i

)
− ∂((yn, yn+1, . . .))n−2+i

= ∂(∂(yn+i)− yn−1+i) + ∂(yn−1+i)

= 0− ∂(yn−1+i) + ∂(yn−1+i)

= 0

20This diagram uses some of the pictorial elements from Convention 4.2.1.7, but is only
meant to help with intuition rather than as a precise depiction of an isomorphism
class of strict mixed complexes. For example Y shl is the product of the rows, whereas
interpreting the picture while following Convention 4.2.1.7 too closely would suggest
taking the sum.

21In the case of i = 0 we set yn−1 = 0 so that we can use the same formulas as for even
i > 0.
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The proof that d squares to 0 is completely analogous. Similarly, the following
calculation shows ∂d + d∂ = 0.

((∂d + d∂)((yn, yn+1, . . .)))n+i (assuming i is odd)
= −∂

(
d((yn, yn+1, . . .))n+1+i

)
− d
(
∂((yn, yn+1, . . .))n−1+i

)

= ∂(d(yn+i)) + d(∂(yn+i))
= (∂d + d∂)(yn+i)
= 0

((∂d + d∂)((yn, yn+1, . . .)))n+i (assuming i is even)
= ∂

(
d((yn, yn+1, . . .))n+1+i

)
− d((yn, yn+1, . . .))n+i

+ d
(
∂((yn, yn+1, . . .))n−1+i

)
+ ∂((yn, yn+1, . . .))n+i

= ∂(d(yn+i) + yn+1+i) + d(yn−1+i)

+ d(∂(yn+i)− yn−1+i)− ∂(yn+1+i)

= (∂d + d∂)(yn+i) + ∂(yn+1+i) + d(yn−1+i)

− d(yn−1+i)− ∂(yn+1+i)

= 0

It remains to show that ιshl
Y : Y → Y shl is a morphism of strict mixed

complexes as well as a quasiisomorphism. That ιshl
Y is compatible with the

boundary operator and differential is clear from the formulas. It thus remains
to show that it is a quasiisomorphism. For this, let Y shl,i for i ≥ 1 be the
sub-Z-graded k-module of Y shl given by the factor Y [−(2i− 1)]× Y [−2i]. If
we let Y shl,0 be the first factor of Y shl, i. e. Y shl,0 = Y , then we obtain a
product decomposition

Y shl ∼=
∏

i≥0

Y shl,i

as Z-graded k-modules. It is immediate from the formulas for the boundary
operator that each Y shl,i is closed under ∂, making this also product decom-
position considered as chain complexes. As ιshl

Y is the inclusion of the first
factor it thus remains to show that for each i ≥ 1 the chain complex Y shl,i is
acyclic. To do so, we define a contracting homotopy as follows.

h : Y shl,i
n = Yn+2i−1 ⊕ Yn+2i → Y

shl,i
n+1 = Yn+2i ⊕ Yn+2i+1

(yn+2i−1, yn+2i) 7→ (−yn+2i, 0)

The following calculations shows that h is a contracting homotopy of Y shl,i,
where (yn+2i−1, yn+2i) is an element of Y shl,i

n .

(∂h+ h∂)((yn+2i−1, yn+2i))

= ∂((−yn+2i, 0)) + h((−∂(yn+2i−1), ∂(yn+2i)− yn+2i−1))

= (−∂(−yn+2i), 0− (−yn+2i)) + (−∂(yn+2i) + yn+2i−1, 0)
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4.2 Strict mixed complexes

= (∂(yn+2i)− ∂(yn+2i) + yn+2i−1, yn+2i)

= (yn+2i−1, yn+2i)

The following diagram depicts the situation for i = 1 diagrammatically as in
Remark 4.2.3.4, with the contracting homotopy h indicated with the dashed
blue arrow.

Yn+2 Yn+3

Yn+1 Yn+2

Yn Yn+1

−∂
− id

∂

−∂
− id

∂

− id

− id

The proof of Proposition 4.2.3.5 shows that ιshl
Y has a retraction given by

the projection to the first factor, but only as chain complexes. While the
projection to the first factor is not compatible with the differential, it can
however be upgraded to a strongly homotopy linear morphism, as we will
explain next.

Proposition 4.2.3.6. Let Y be a strict mixed complex. Define (pshl
Y )(i) for

each i ≥ 0 to be the morphisms of Z-graded k-modules from Y shl to Y of
degree 2i that is the projection to the 2i-th factor, i. e. is defined as follows.

(pshl
Y )(i)n : Y shl

n → Yn, (yn, yn+1, yn+2, . . .) 7→ yn+2i

Then this makes pshl
Y into a strongly homotopy linear morphism from Y shl

to Y . Furthermore, the underlying morphism of chain complexes of pshl
Y is a

quasiisomorphism. ♥

Proof. That (pshl
Y )(0) is a morphism of chain complexes is clear. As (pshl

Y )(0)

is a left inverse of ιshl
Y , it also follows immediately from ιshl

Y being a quasi-
isomorphism by Proposition 4.2.3.5 that (pshl

Y )(0) is a quasiisomorphism as
well.

It remains to show that the compatibility relations required of (pshl
Y )(i) for

i ≥ 0 in order to make pshl
Y into a strongly homotopy linear morphism are

satisfied. So let i ≥ 1 be an integer and (yn, yn+1, . . .) an element of Y shl
n .

Then the following calculations show the claim.
(
∂ ◦ (pshl

Y )(i) − (pshl
Y )(i) ◦ ∂

)
((yn, yn+1, yn+2, . . .))

= ∂(yn+2i)− ∂((yn, yn+1, yn+2, . . .))n−1+2i

= ∂(yn+2i)− (∂(yn+2i)− yn−1+2i)
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= yn−1+2i

(
(pshl
Y )(i−1) ◦ d− d ◦ (pshl

Y )(i−1)
)
((yn, yn+1, yn+2, . . .))

= d((yn, yn+1, yn+2, . . .))n+1+2i−2 − d(yn+2i−2)

= (d(yn+2i−2) + yn+1+2i−2)− d(yn+2i−2)

= yn+1+2i−2 = yn−1+2i

The relevance of Y shl and pshl
Y stems from the fact that pshl

Y is the univer-
sal strongly homotopy linear morphism to Y ; we show next that any other
strongly homotopy morphism with codomain Y factors uniquely as the com-
position of a (strict) morphism of strict mixed complexes to Y shl with pshl

Y .

Proposition 4.2.3.7. Let X and Y be strict mixed complexes and f : Y → Y

a strongly homotopy linear morphism. Then there is a unique morphism of
strict mixed complexes g : X → Y shl such that f = pshl

Y ◦ g
22. ♥

Proof. We first show existence. Define a morphism of Z-graded k-modules g
as

g : X → Y shl =
∏

m≥0

Y [−m]

g(x)n+2i = f (i)(x)

g(x)n+2i+1 =
(
f (i)d− df (i)

)
(x) =

(
∂f (i+1) − f (i+1)∂

)
(x)

for i ≥ 0 and x elements of Xn, and where g(x)n+m refers to the component
in Yn+m. As

(
pshl
Y

)(i) is projection to the 2i-th factor, it is clear that f is the
composition pshl

Y ◦ g, so it only remains to show that g is a morphism of strict
mixed complexes. This is proven by the following calculations, where i ≥ 0
and x is an element of Xn.

(∂g − g∂)(x)n−1+2i

= ∂(g(x))n−1+2i − f
(i)(∂(x))

= ∂(g(x)n+2i)− g(x)n−1+2i − f
(i)(∂(x))

= ∂
(
f (i)(x)

)
−
(
∂f (i) − f (i)∂

)
(x)− f (i)(∂(x))

= 0

This shows what is needed for g to be a morphism of chain complexes for
only the even components, now we check the odd components.

(∂g − g∂)(x)n+2i

22See Remark 4.2.3.2 for the composition of a strongly homotopy linear morphism with a
morphism of strict mixed complexes.
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= −∂(g(x)n+2i+1)−
(
∂f (i+1) − f (i+1)∂

)
(∂(x))

= −∂
((
∂f (i+1) − f (i+1)∂

)
(x)
)
−
(
∂f (i+1) − f (i+1)∂

)
(∂(x))

=
(
−∂∂f (i+1) + ∂f (i+1)∂ − ∂f (i+1)∂ + f (i+1)∂∂

)
(x)

= 0

Next we verify that g commutes with d, beginning with the even components.
(dg − gd)(x)n+1+2i

= d(g(x)n+2i) + g(x)n+1+2i − f
(i)(d(x))

= d
(
f (i)(x)

)
+
(
f (i)d− df (i)

)
(x)− f (i)(d(x))

= 0

Finally, we check compatibility with d on odd components.
(dg − gd)(x)n+2+2i

= − d(g(x)n+1+2i)−
(
f (i)d− df (i)

)
(d(x))

= − d
((
f (i)d− df (i)

)
(x)
)
−
(
f (i)d− df (i)

)
(d(x))

=
(
−df (i)d + ddf (i) − f (i)dd + df (i)d

)
(x)

= 0

This shows existence. It remains to show that such a lift g is already
uniquely determined by f . So let g : X → Y shl be any morphism of strict
mixed complexes such that f = pshl

Y ◦ g. We can immediately read off that
the even components must be given by

g(x)n+2i = f (i)(x) for n ∈ Z, i ≥ 0 and x ∈ Xn.

So now let x be an element of Xn and i ≥ 0. Then the following calculation,
using that g is a morphism of chain complexes, shows that g(x)n+2i+1 is also
already determined by f .

g(x)n+2i+1

= ∂
(
g(x)n+2i+2

)
−
(
∂
(
g(x)n+2i+2

)
− g(x)n+2i+1

)

= ∂
(
g(x)n+2i+2

)
− ∂(g(x))n+2i+1

= ∂
(
g(x)n+2i+2

)
− g(∂(x))n−1+2i+2

= ∂
(
f (i+1)(x)

)
− f (i+1)(∂(x))

Definition 4.2.3.8. Let X and Y be strict mixed complexes and f : X → Y

a strongly homotopy linear morphism. Then we denote by f strict the unique
morphism of strict mixed complexes X → Y shl lifting f as in Proposi-
tion 4.2.3.7. The assignment f 7→ f strict defines a bijection from the set
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Chapter 4 Mixed complexes

of strongly homotopy linear morphisms X → Y to the set of morphisms of
strict mixed complexes X → Y shl. ♦

4.3 The derived category of k

The derived category of k is an ∞-category D(k) that can be constructed
by inverting the quasiisomorphisms in the category Ch(k) of chain complexes
of (ordinary) k-modules. In this section we discuss D(k) and record the main
properties that we will need later – most of them are proven in various places
in [HA].

We begin in Section 4.3.1 by proving some useful statements concerning
semiadditive∞-categories, which we will need in Section 4.3.2, where we will
collect the main properties of D(k). We finish this section with Section 4.3.4,
where we state some properties of the truncation functors on D(k) that we
will need in Chapter 5.

4.3.1 Semiadditive ∞-categories
In this section we prove some small helpful results regarding semiadditive
∞-categories that we will need in Section 4.3.2.

Proposition 4.3.1.1. Let C⊗ be a symmetric monoidal ∞-category such
that the underlying ∞-category C is semiadditive ∞-category23. Then C⊗ is
cartesian if and only if it is cocartesian. ♥

Proof. The property of symmetric monoidal structures being (co)cartesian is
defined in [HA, 2.4.0.1]. The symmetric monoidal structure C⊗ is cartesian if
the unit object 1C is final and if for every pair of objects X and Y of C the
morphisms

X ≃ X ⊗ 1C ← X ⊗ Y → 1C ⊗ Y ≃ Y

induced by the essentially unique morphisms X → 1C and Y → 1C exhibit
X ⊗ Y as a product of X and Y .

Analogously, for C⊗ being cocartesian the unit object must be initial, and
the analogously defined morphisms

X ≃ X ⊗ 1C → X ⊗ Y ← 1C ⊗ Y ≃ Y

must exhibit X ⊗ Y as a coproduct of X and Y .
23By this we mean that C admits finite products and finite coproducts and has the following

two properties. Firstly, the (essentially unique) morphism from an initial object to a
final object must be an equivalence (i. e. C has zero objects). Secondly, for any two
objects X and Y of C the morphism

X ⨿ Y

[
id 0
0 id

]

−−−−−−→ X × Y

must be an equivalence (i. e. C has biproducts).
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As C is assumed to be semiadditive, every initial object is automatically
final as well, and every final object is automatically initial, which shows equiv-
alence of the first part of the respective definitions. For the second part, let
X and Y be two objects of C. Note that the compositions

X ⊗ 1C → X ⊗ Y → X ⊗ 1C

and
1C ⊗ Y → X ⊗ Y → 1C ⊗ Y

are, by functoriality of the tensor product, homotopic to the identity. Func-
toriality also implies that the following square commutes

X ⊗ 1C X ⊗ Y

1C ⊗ 1C 1C ⊗ Y

which shows that the composition

X ⊗ 1C → X ⊗ Y → 1C ⊗ Y

and analogously
1C ⊗ Y → X ⊗ Y → X ⊗ 1C

are zero morphisms. We can conclude that the following triangle commutes.

X ∐ Y X × Y

X ⊗ Y

[
id 0
0 id

]

The second condition for C⊗ being (co)cartesian is that the morphism on the
right (left) is an equivalence for every X and Y . As the horizontal morphism
is an equivalence by virtue of C being semiadditive, it follows that those two
conditions are equivalent.

Proposition 4.3.1.2. Let C be a semiadditive ∞-category, let D be an
∞-category admitting finite products, and let F1 and F2 be two functors

F1, F2 : C → CMon(D)

such that F1 preserves products.
Denote the forgetful functor CMon(D)→ D by V and assume that V ◦ F1

is naturally equivalent to V ◦ F2. Then there is also a natural equivalence
between F1 and F2. ♥
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Proof. As D has finite products we can upgrade D to a symmetric monoidal
∞-category with respect to the cartesian symmetric monoidal structure D×

(see [HA, 2.4.1.5]). Applying [HA, 2.4.1.5 (5) and 2.4.2.5] we obtain an equiv-
alence of ∞-categories

CMon(D) ≃ CAlg(D)
which is compatible with the respective forgetful functors to D. Denote the
composite of Fi with this equivalence by F ′

i . It suffices to show that F ′
1 is

naturally equivalent to F ′
2.

Note that as V detects products by Proposition F.2.0.1 the equivalence
V ◦ F1 ≃ V ◦ F2 and F1 preserving products implies that F2 preserves prod-
ucts as well. Hence both F ′

1 and F ′
2 preserve products too, so they induce

symmetric monoidal functors as follows (see [HA, 2.4.1.8]).

F ′
i
×
: C× → CAlg(D)×

We obtain the following commutative diagram for i = 1 and i = 2

CAlg(C) CAlg(CAlg(D))

C CAlg(D)

UC

CAlg(F ′
i )

UCAlg(D)

F ′
i

where the vertical functors are the forgetful functors forgetting the “outer”
algebra structure. By Proposition 4.3.1.1, the cartesian symmetric monoidal
structure C× is also cocartesian, so it follows from [HA, 2.4.3.9] that UC is an
equivalence. It thus suffices to show that UCAlg(D) ◦ CAlg(F ′

1) is homotopic
to UCAlg(D) ◦ CAlg(F ′

2).
The symmetric monoidal structure on CAlg(D) used in forming the∞-cat-

egory CAlg(CAlg(D)) in the above diagram is the cartesian one CAlg(D)×.
There is also a symmetric monoidal structure induced by D× on CAlg(D),
which we denote by CAlg(D)⊗, see Propositions E.4.2.3 and E.6.0.1. By
Proposition F.3.0.2 in combination with [HA, 2.4.1.7] and [HA, 2.4.2.5], there
is a symmetric monoidal equivalence CAlg(D)⊗ ≃ CAlg(D)× whose under-
lying functor of ∞-categories is the identity. We can thus replace CAlg(D)×
implicitly used in CAlg(CAlg(D)) with CAlg(D)⊗.

By Proposition E.6.0.1 there is then a natural equivalence between UCAlg(D)

and CAlg(UD), where UD : CAlg(D)→ D is the forgetful functor. We obtain
UCAlg(D) ◦ CAlg(F ′

i ) ≃ CAlg(UD) ◦ CAlg(F ′
i )

≃ CAlg(UD ◦ F
′
i )

≃ CAlg(V ◦ Fi)
so as V ◦ F1 ≃ V ◦ F2 by assumption we conclude

UCAlg(D) ◦ CAlg(F ′
2) ≃ UCAlg(D) ◦ CAlg(F ′

2)

which is what we needed to show.
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4.3 The derived category of k

4.3.2 Properties of D(k)

Proposition 4.3.2.1. The following hold.

(1) D(k) is24 the presentable symmetric monoidal ∞-category underlying
the combinatorial and symmetric monoidal model category Ch(k) car-
rying the projective model structure from Fact 4.1.3.1.

We will denote the symmetric monoidal functor Ch(k)cof → D(k) by γ. We
will also sometimes denote the composition of γ with the cofibrant replacement
functor Ch(k)→ Ch(k)cof by γ again25.

(2) D(k) is stable.

(3) γ : Ch(k)cof → D(k) preserves coproducts.

(4) There are natural equivalences for every integer n as follows26.

γ(−)[n] ≃ γ(−[n])

From now on we will write k for γ(k).

(5) There is a natural isomorphism of functors Ch(k)cof → Ab as follows.

HomHo(D(k))(k[n], γ(−)) ∼= Hn(−)

(6) Let Ch(k)′≥0 and Ch(k)′≤0 be the full subcategories of Ch(k) spanned
by the chain complexes whose homology is concentrated in non-negative
and non-positive, respectively, degree. Let D(k)≥0 be the essential image
of the restriction of γ to (Ch(k))′≥0, and analogously for D(k)≤0. Then
the pair (D(k)≥0,D(k)≤0) determines a t-structure on D(k).
Furthermore, D(k)≥0 is also the essential image of Ch(k)≥0 from Defi-
nition 4.1.1.1 and D(k)≤0 is the essential image of Ch(k)≤0.

(7) There is a symmetric monoidal equivalence preserving the respective
t-structures between D(k) and the ∞-category of k-modules in spectra
LModk(Sp) (where the tensor product is the tensor product over k, see
[HA, 4.5], and the t-structure is defined in [HA, 7.1.1.10 and 7.1.1.13]).

(8) The t-structure on D(k) is compatible with the symmetric monoidal
structure in the sense of [HA, 2.2.1.3].

24We will take this as the definition for D(k), but will also also point out in the proof
below why other possible definitions used in [HA] are equivalent.

25Note that the restriction of this functor to Ch(k)cof is homotopic to the original functor
γ.

26See Definition 4.1.1.2 for a definition of the shift in Ch(k) and [HA, 1.1.2.7] for a definition
of the shift in the stable ∞-category D(k).
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(9) There is a commutative diagram

LModk(Ab) Ch(k)

D(k)♥ D(k)

(−)[0]

γ

of ∞-categories, where D(k)♥ = D(k)≥0 ∩D(k)≤0 is the heart of D(k),
see [HA, 1.2.1.11], and the lower horizontal functor the inclusion.
Furthermore, the dashed functor is an equivalence. We can thus identify
the heart of D(k) with LModk(Ab). ♥

Proof. Proof of Claim (1): The projective model structure on chain complexes
with the required properties was discussed in Fact 4.1.3.1. For the construc-
tion of D(k) as the symmetric monoidal ∞-category underlying Ch(k) see
[HA, 7.1.2.12]. The proof that D(k) is presentable symmetric monoidal can
be found in the proof of [HA, 7.1.2.13].

Finally, let us note that different ways of constructing D(k) are used in
[HA]. They are however all equivalent by [HA, 7.1.2.9] and [HA, 1.3.5.15]27,
so there is no problem in using results concerning D(k) from different places
in [HA].

Proof of Claim (2): This is [HA, 1.3.5.9].
Proof of Claim (3): By (1) and [HA, 1.3.4.25 and 1.3.4.24] this follows from

the fact that coproducts of cofibrant chain complexes are already homotopy
coproducts28.

Proof of Claim (4): We start by proving that γ(k[n]) ∼= γ(k)[n]. First note
that as k is projective as a k-module, the chain complexes k[n] are cofibrant in
the projective model structure by [Hov99, 2.3.6]. Now consider the following
pushout diagram of cofibrant objects in Ch(k)

k[n] Dn+1(k)

0 k[n+ 1]

where Dn+1(k) is the chain complex with Dn+1(k)m = k if m = n or
m = n + 1 and Dn+1(k)m = 0 otherwise, and with differential from degree
n+1 to degree n the identity, and where the morphisms k[n]→ Dn+1(k) and
Dn+1(k)→ k[n+1] are the obvious inclusion and projection. The morphism
27The construction of D(A) considered in [HA, 1.3.5] applies to the case A = LModk(Ab)

(the category of ordinary k-modules), as LModk(Ab) is a Grothendieck abelian category
in the sense of [HA, 1.3.5.1].

28Unpacking the projective model structure (see [HTT, A.2.8.2]) on Fun(J,Ch(k)) for a
discrete category J one can easily see that such a functor is cofibrant if and only if it is
pointwise cofibrant.
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k[n] → Dn+1(k) is a cofibration29, so it follows from [HTT, A.2.4.4, variant
(i)] that this diagram is a homotopy pushout diagram in Ch(k). Applying
[HA, 1.3.4.24] and using that Dn+1(k) is acyclic we can conclude that for
every integer n there is a pushout diagram in D(k) of the following form.

γ(k[n]) 0

0 γ(k[n+ 1])

Using that γ(k)[0] = γ(k) = γ(k[0]) it now follows that γ(k[n]) ∼= γ(k)[n] by
inducting up and down30 from 0.

The general statement now follows by combining that by Remark 4.1.2.2
there is a natural isomorphism

−[n] ∼= (k ⊗−)[n] ∼= k[n]⊗−

of endofunctors of Ch(k)cof and that as the tensor product functor of D(k) pre-
serves colimits in each variable separately, there is also such a natural equiv-
alence of endofunctors of D(k), with the fact that γ is symmetric monoidal.

Proof of Claim (5): We start by showing that the compositions of the
two functors with the forgetful functor Ab → Set are naturally equivalent.
Applying Proposition A.1.0.1 to Ch(k), we obtain a natural isomorphism as
follows.

MorHo D(k)(γ(−), γ(−)) ∼= MorHo Ch(k)(−,−)

A standard calculation using left homotopies (see [Hov99, 1.2.4 in combina-
tion with 1.2.6 and 1.2.10]) shows that31

MorHo Ch(k)(k[n],−) ∼= Hn(−) (4.16)

so that we have obtained a natural equivalence between the respective com-
positions with the forgetful functor Ab → Set. This forgetful functor fac-
tors as the composition of the forgetful functors Ab → CMon(Set) and
CMon(Set)→ Set. As Ab→ CMon(Set) is the inclusion of a full subcategory,
it suffices to show that the two functors in question are naturally equivalent
as functors to CMon(Set).

For this we apply Proposition 4.3.1.2. The category Ch(k)cof is semiaddi-
tive (coproducts of cofibrant objects are again cofibrant by [Hov99, 1.1.11])
and Set admits finite products, so it remains to show that Hn(−) as a functor
29It is even one of the generating cofibrations discussed in [Hov99, 2.3.3 and 2.3.11].
30The downwards induction uses that D(k) is stable.
31The main point is that a cylinder object for k[n] is given by k[n]⨿ k[n]

i0⨿i1−−−−→ C
s
−→ k[n]

where on underlying graded abelian groups i0⨿i1 is the inclusion into k[n]⊕k[n]⊕k[n+1],
and where ∂Cn+1 sends 1 to (1, 0) − (0, 1). One also needs to use that every object of
Ch(k) is fibrant, and then the rest is unpacking the definition.
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Ch(k)cof → CMon(Set) preserve products. The forgetful functor from com-
mutative monoids to sets detects products (see Proposition F.2.0.1), so it
suffices to show that Hn(−) preserves products as a functor into Set. But
this is clear, as direct sums in Ch(k) are formed levelwise, and direct sums
are both limits as well as colimits, so are compatible with forming kernels
and cokernels.

Proof of Claim (6): The first part is [HA, 1.3.5.16 and 1.3.5.21]. The second
part follows immediately from the observation that every chain complex with
homology concentrated in nonnegative or nonpositive degrees is quasiisomor-
phic to a chain complex itself concentrated in those degrees, by truncating.

Proof of Claim (7): By [HA, 7.1.2.13] there is an equivalence

θ : D(k)→ LModk(Sp)

of symmetric monoidal∞-categories. It remains to show that θ is compatible
with the respective t-structures.

As a monoidal equivalence, θ preserves monoidal units, so θ(k) ≃ k, which
implies that there is a sequence of natural isomorphism for n ≥ 2 of functors
D(k)→ Set as follows.

Hn(−)

Using Claim (5).
∼= MorHo D(k)(k[n],−)

Applying Ho θ.
∼= MorHo LModk(Sp)(k[n], θ(−))

Using that the functor Free : Sp→ LModk(Sp) is left adjoint to the forgetful
functor. See [HA, 4.2.4.8] and [HTT, 5.2.2.9].

∼= MorHo Sp(S[n], θ(−)) ∼= π0
(
MapSp(S[n], θ(−))

)

Using that n ≥ 0.
∼= πn

(
MapSp(S, θ(−))

)

Using the adjunction Σ∞ ⊣ Ω∞
∗ .

∼= πn
(
MapS∗

(
S0,Ω∞

∗ θ(−)
))
∼= πn(Ω

∞
∗ θ(−))

Using [HA, 1.4.3.8].
∼= πn(θ(−))

By using that H∗ and π∗ are both compatible with shifts32, we can conclude33

that Hn(−) ∼= πn(θ(−)) for every integer n, which implies that θ is compatible
32For π∗ this is by definition, see [HA, 1.2.1.11], for H∗ this follows from Claim (5) and

(4)
33A priori this is only a natural bijection – which is also all we need, as an abelian group

is isomorphic to 0 if and only if its underlying set consists of a single element – but one
can also apply Proposition 4.3.1.2 to deduce that this bijection in fact preserves the
group structure.
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with the respective t-structures on D(k) and LModk(Sp) as follows directly
from their respective definitions.

Proof of Claim (8): The t-structure on LModk(Sp) is compatible with the
symmetric monoidal structure by [HA, 7.1.3.10], so this also holds for D(k)
by Claim (7).

Proof of Claim (9): Every chain complex concentrated in degree 0 has
obviously vanishing homology outside of degree 0, so γ◦(−)[0] factors through
the full subcategory D(k)♥ of D(k).

The induced functor is essentially surjective by the second part of (6).
If two morphisms f and g in LModk(Ab) map to homotopic morphisms,
then they induce the same morphisms on HomHo(D(k))(k[0],−), so by (5)
H0(f [0]) = H0(g[0]), and hence f = g. Thus Ho(LModk(Ab)) → Ho(D(k)♥)
is faithful. Finally, let X and Y be k-modules and f : γ(X[0]) → γ(Y [0]) a
morphism in Ho(D(k)). There is a zigzag of quasiisomorphisms

X[0] ∼= (τ≤0 ◦ τ≥0)(X
cof)← τ≥0(X[0]cof)→ X[0]cof

in Ch(k). As Y [0] is fibrant we can by Proposition A.1.0.1 and [Hov99, 1.2.10
(iii)] find a morphism f : Xcof → Y [0] representing f , i. e. the dashed compos-
ite

γ(X[0]) γ
(
(τ≤0 ◦ τ≥0)

(
Xcof)) γ

(
τ≥0

(
X[0]cof)) γ

(
X[0]cof)

γ(Y [0])

≃ ≃ ≃

γ(f)

where the top line is obtained by applying γ to the above zigzag, is homotopic
to a representative of f . But it is easy to see that f can be strictly lifted to
a morphism from X[0], as Y [0] is concentrated in degree 0. This shows that
the functor Ho(LModk(Ab))→ Ho(D(k)♥) is full.

As the∞-category D(k)♥ is a 1-category by [HA, 1.2.1.12], this shows that
the functor LModk(Ab)→ D(k)♥ is an equivalence.

Remark 4.3.2.2. Let φ : k → k′ be a morphism of commutative rings. Then
the symmetric monoidal functor

k′ ⊗k − : Ch(k)cof → Ch(k′)cof

from Fact 4.1.5.1 preserves weak equivalences and so induces by [HA, 4.1.7.4]
a commutative diagram of symmetric monoidal functors as follows.

Ch(k)cof Ch(k′)cof

D(k) D(k′)

k′⊗k−

γ γ

k′⊗k−
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Furthermore, it follows from Fact 4.1.5.1 using [HA, 1.3.4.27] that the functor

k′ ⊗k − : D(k)→ D(k′) (4.17)

is left adjoint to the functor

φ∗ : D(k′)→ D(k)

that is induced by the composition

Ch(k′)cof φ∗

−−→ Ch(k) (−)cof

−−−−→ Ch(k)cof

where the second functor is the cofibrant replacement functor. In particular,
functor (4.17) preserves small colimits.

As k′ ⊗k − is a symmetric monoidal functor, we can use [HA, 7.3.2.7] to
upgrade the adjunction k′ ⊗k − ⊣ φ

∗ to an adjunction34

D(k)⊗ D(k′)⊗

Fin∗

(k′⊗k−)
⊗

(φ∗)⊗

⊣

relative to Fin∗ in the sense of [HA, 7.3.2.3], and such that (φ∗)
⊗ is lax

symmetric monoidal. ♦

4.3.3 Homology
Homology is a very important invariant of chain complexes, and for D(k)

as well. In this section we will discuss how the different definitions are com-
patible, as well as some properties that we will need.

Definition 4.3.3.1 ([HA, 1.2.1.11]). Let n be an integer. We define a functor

Hn : D(k)→ LModk(Ab)

to be the composition

D(k)
(−)[−n]
−−−−−→ D(k)

τ≥0◦τ≤0
−−−−−→ D(k)♥ ≃ LModk(Ab)

where the equivalence is the one from Proposition 4.3.2.1 (9). ♦

34The functors to Fin∗ are to be the canonical cocartesian fibrations of ∞-operads.
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Proposition 4.3.3.2. Let n be an integer. Then there is a commutative
diagram

Ch(k)

LModk(Ab)

D(k)

γ

Hn

Hn

in Cat∞. ♥

Proof. We need to show that Hn ◦ γ and Hn are naturally isomorphic.
Denote by φ the equivalence LModk(Ab)→ D(k)♥ from Proposition 4.3.2.1

(9) and assume we have already shown the claim for n = 0. Then we can
deduce the claim for general n using Proposition 4.3.2.1 (4), as we obtain
equivalences of functors Ch(k)→ LModk(Ab) as follows.

Hn ◦ γ

= φ−1 ◦ τ≥0 ◦ τ≤0 ◦ (−)[−n] ◦ γ

∼= φ−1 ◦ τ≥0 ◦ τ≤0 ◦ γ ◦ (−)[−n]
∼= H0 ◦ γ ◦ (−)[−n]
∼= H0 ◦ (−)[−n]
∼= Hn

We now turn to the case n = 0. Consider the natural transformations of
endofunctors of Ch(k)

idCh(k) → τ≤0 ← τ≥0 ◦ τ≤0 (4.18)

where τ≤0 and τ≥0 refer to the truncation functors for chain complexes. The
endofunctor τ≥0 ◦ τ≤0 factors over the inclusion of chain complexes that are
concentrated in degree 0, so it suffices to show the following.

(1) The precompositions of H0 : Ch(k)→ LModk(Ab) with the two natural
transformations in (4.18) are natural isomorphisms.

(2) The precompositions of H0 ◦ γ : Ch(k) → LModk(Ab) with the two
natural transformations in (4.18) are natural isomorphisms.

(3) The precompositions of H0 and H0 ◦ γ with the inclusion of chain com-
plexes concentrated in degree 0 are naturally isomorphic.

Proof of (1): Clear.
Proof of (2): We only consider the first natural transformation, the other

case is similar. We need to show that the natural transformation

τ≥0 ◦ τ≤0 ◦ γ ◦ idCh(k) → τ≥0 ◦ τ≤0 ◦ γ ◦ τ≤0
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is a natural equivalence. Let X be a chain complex, and let f be the natural
morphism X → τ≤0X. Then f is an isomorphism in homology in non-positive
degrees, while τ≤0X has homology concentrated in non-positive degrees, so
the homotopy fiber hofib(f) has homology concentrated in positive degrees.
We obtain a pullback diagram

γ(hofib(f)) γ(X)

0 γ(τ≤0X)

in D(k), with γ(hofib(f)) lying in D(k)≥1. Applying τ≤0 : D(k) → D(k) we
obtain a pullback diagram

0 τ≤0(γ(X))

0 τ≤0(γ(τ≤0X))

in D(k), which, as D(k) is stable, is also a pushout diagram, from which it
follows that

τ≤0(γ(X))→ τ≤0(γ(τ≤0X))

is an equivalence. The claim follows.
Proof of (3): What we need to show is that H0 ◦ (−)[0] and H0 ◦ γ ◦ (−)[0]

are naturally isomorphic as functors from LModk(Ab) to LModk(Ab).
H0 ◦ (−)[0] is naturally isomorphic to the identity functor right from the

definition. For H0 ◦ γ ◦ (−)[0] we can apply Proposition 4.3.2.1 (9) to obtain
equivalences as follows.

H0 ◦ γ ◦ (−)[0]

≃
(
φ−1 ◦ τ≥0 ◦ τ≤0

)
◦
((
D(k)♥ → D(k)

)
◦ φ
)

≃ φ−1 ◦ idD(k)♡ ◦ φ

≃ φ−1 ◦ φ

≃ idLModk(Ab)

Proposition 4.3.3.3. Let n be an integer. Then there is a commutative
diagram

LModk(Ab)

D(k)

Ab

evm

Hn

HomHo(D(k))(k[n],−)

in Cat∞. ♥
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Proof. By [HA, 1.3.4.1] it suffices to show that there is a homotopy

evm ◦Hn ◦ γ ≃ HomHo(D(k))(k[n], γ(−))

of functors D(k) → Ab. The former functor is by Proposition 4.3.3.2 homo-
topic to the composition

Ch(k) Hn−−→ LModk(Ab) evm−−→ Ab (∗)

and the latter functor is by Proposition 4.3.2.1 (5) homotopic to the functor

Ch(k) Hn−−→ Ab

which is by definition the same as the composition (∗).

Notation 4.3.3.4. Let n be an integer. In light of Proposition 4.3.3.3 we
will also denote the functor

HomHo(D(k))(k[n],−) : D(k)→ Ab

by Hn. However, if it is not clear from context that we mean this functor,
then usage of the notation Hn should be understood to refer to the functor
with image in LModk(Ab). ♦

Proposition 4.3.3.5. Let n be an integer. The functor

Hn : D(k)→ LModk(Ab)

preserves products and coproducts. ♥

Proof. As the forgetful functor evm : LModk(Ab) → Ab detects limits and
colimits, it suffices to show that the functor

Hn : D(k)→ Ab

preserves products and coproducts.
We start by showing that it preserves products. As the forgetful functor

Ab→ Set preserves products, it suffices to show that the functor D(k)→ Set

MorHo(D(k))(k[n],−) ∼= π0

(
MapD(k)(k[n],−)

)
: D(k)→ Set

preserves products, but this is clear as both MapD(k)(k[n],−) and π0 preserve
products.

For coproducts we use the commutative diagram constructed in Proposi-
tion 4.3.2.1 (5) that is depicted below.

Ch(k)cof

Ab

D(k)

Hn

γ

Hn
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As every object of D(k) is represented by a cofibrant chain complex (by
definition) and γ preserves coproducts35 it suffices to show that the functor
Hn on chain complexes preserves coproducts, which is a classical exercise in
homological algebra36.

Remark 4.3.3.6. The functor

HomHo(D(k))(k,−) : Ho(D(k))→ Ab

is by [Nee01, 1.1.10] homological in the sense of [Nee01, 1.1.7]. As the forget-
ful functor from LModk(Ab) to Ab detects exact sequences, it follows from
Proposition 4.3.3.3 that the functor

H0 : Ho(D(k))→ LModk(Ab)

is an homological functor as well.
Any cofiber sequence

X
f
−→ Y

g
−→ Z

h
−→ X[1]

in D(k) thus induces a long exact sequence

· · ·
H0(−h[−1])
−−−−−−−→ H0(X)

H0(f)
−−−−→ H0(Y )

H0(g)
−−−→ H0(Z)

H0(h)
−−−−→ H0(X[1])

H0(−f [1])
−−−−−−→ · · ·

in LModk(Ab) that we can identify with a long exact sequence

· · · → H1(Z)→ H0(X)
H0(f)
−−−−→ H0(Y )

H0(g)
−−−→ H0(Z)

H0(h)
−−−−→ H−1(X)→ · · · ♦

Proposition 4.3.3.7. Let X be an object of D(k) so that Hn(X) is a free
k-module with basis37 {bi : k[n]→ X}i∈In for every integer n.

Then the morphism

∐

n∈Z,i∈In

k[n]

∐
n∈Z,i∈In

bi
−−−−−−−−→ X

is an equivalence in D(k). ♥

35Coproducts of cofibrant objects are homotopy coproducts, then use [HA, 1.3.4.25 and
1.3.4.24].

36See for example [Rot08, Exercise 6.9]. One way to show this is as follows. One first
considers finite coproducts, which are biproducts, so one can for example use additivity.
Arbitrary coproducts can be written as filtered colimits of their finite subcoproducts
(this is true also for ∞-categories by [HTT, Special case of the proof of 4.2.3.11] but
can of course also be shown in a more elementary way for our application), so it then
suffices to show that filtered colimits in LModk(Ab) are exact, which is done in [Wei94,
Theorem 2.6.15].

37Such a morphism bi represents an element in Hn(X) via Proposition 4.3.3.3.
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Proof. Represent X by a chain complex. Unpacking and using the natural
equivalence from Proposition 4.3.2.1 (5) and Proposition 4.3.3.2 we obtain
that the morphism in question is represented by a quasiisomorphism of chain
complexes and is thus an equivalence.

Proposition 4.3.3.8. Let n be an integer, I a small ∞-category, and
F : I → D(k) a functor.

Assume that F (I) lies in D(k)≥n for every object I of I. Then the canonical
morphism

colim
I

Hn(F (•))→ Hn

(
colim

I
F

)

is an isomorphism.
Analogously, if F (I) lies in D(k)≤n for every object I of I, then the canon-

ical morphism
Hn

(
lim
I
F
)
→ lim

I
Hn(F (•))

is an isomorphism. ♥

Proof. It suffices to consider the case n = 0. By [HA, 1.2.1.6], the colimit of F
is again in D(k)≥0 in the first case and in D(k)≤0 in the second case, and thus
forms the colimit in that full subcategory by [HTT, 1.2.13.7]. The statement
now follows from the fact that τ≤0 : D(k)≥0 → D(k)♥ is left adjoint and
thus preserves colimits and τ≥0 : D(k)≤0 → D(k)♥ is a right adjoint and
thus preserves limits.

4.3.4 Properties of the truncation functors
Let n be an integer. The categories D(k)≥n and D(k)≤n defined as in [HA,

1.2.1.4] with respect to the t-structure discussed in Proposition 4.3.2.1 are
the full subcategories of objects X with Hm(X) ∼= 0 for m < n and m > n,
respectively. By [HA, 1.2.1.6 and 1.2.1.7] we obtain adjunctions

D(k) D(k)≤n
τ≤n

ι≤n

⊣

and
D(k)≥n D(k)

ι≥n

τ≥n

⊣

with ι≤n and ι≥n the inclusions of the respective full subcategories.
We will sometimes omit ι≤n and ι≥n from the notation and consider τ≤n

and τ≥n as endofunctors of D(k).
As the t-structure on D(k) is compatible with the symmetric monoidal

structure, we get more, as the following proposition records.

Proposition 4.3.4.1. The following list of statements hold.
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(1) D(k)≥0 inherits a symmetric monoidal structure from D(k).

(2) The adjunction ι≥0 ⊣ τ≥0 can be upgraded to an adjunction ι⊗≥0 ⊣ τ
⊗
≥0

of lax monoidal functors relative to Fin∗ (in the sense of [HA, 7.3.2.3]).

(3) The lax monoidal functor ι⊗≥0 is symmetric monoidal.

(4) For n ≥ 0, the full subcategory (D(k)≥0)≤n inherits a symmetric
monoidal structure from D(k)≥0.

(5) The adjunction τ≤n ⊣ ι≥0,≤n, where ι≥0,≤n : (D(k)≥0)≤n → D(k)≥0

is the inclusion, can be upgraded to an adjunction τ⊗≤n ⊣ ι
⊗
≥0,≤n of lax

monoidal functors relative to N(Fin∗).

(6) The lax monoidal functor τ⊗≤n : D(k)⊗≥0 → (D(k)≥0)
⊗
≤n is symmetric

monoidal.

Let O⊗ be an ∞-operad. Then the following statements hold as well.

(7) The adjunction ι⊗≥0 ⊣ τ
⊗
≥0 induces an adjunction

AlgO(D(k)≥0) AlgO(D(k))
AlgO(ι≥0)

AlgO(τ≥0)

⊣

and AlgO(ι≥0) is fully faithful with essential image spanned by those
O-algebras A in D(k) such that for every object X of O, the underlying
object evX(A) of A lies in D(k)≥0.

(8) The adjunction τ⊗≤n ⊣ ι
⊗
≥0,≤n induces an adjunction

AlgO(D(k)≥0) AlgO
(
(D(k)≥0)≤n

)AlgO(τ≤n)

AlgO(ι≥0,≤n)

⊣

and AlgO(ι≥0,≤n) is fully faithful with essential image spanned by those
O-algebras A in D(k)≥0 such that for every object X of O, the under-
lying object evX(A) of A lies in (D(k)≥0)≤n. ♥

Proof. By Proposition 4.3.2.1, the t-structure on D(k) is compatible with
with the symmetric monoidal structure in the sense of [HA, 2.2.1.3], so the
statements (1), (2), and (3) follow from [HA, 2.2.1.1], and the statements (4),
(5), and (6) follow from [HA, 2.2.1.10 and 2.2.1.9].

That we obtain induced adjunctions on algebras as in (7) and (8) now fol-
lows from Proposition E.3.3.1, see also [HA, 2.2.1.5]. Finally, that the functors
induced on algebra categories by the inclusions are again fully faithful as well
as the descriptions of the essential images follow from Proposition E.3.5.1.

We also record the following for later use.
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Proposition 4.3.4.2 ([HA, 1.2.1.6]). Let n be an integer.
Then D(k)≤n is closed under small limits and coproducts. In particular,

D(k)≤n admits all small limits and finite biproducts and ι≤n preserves them.
Analogously, D(k)≥n is closed under small colimits and finite products. In

particular, D(k)≤n admits all small colimits and finite biproducts and ι≥n
preserves them. ♥

Proof. The closure properties for limits and colimits are [HA, 1.2.1.6] and
closure under finite biproducts follows from the definition using that Hm(−)
commutes with finite biproducts.

The rest of the claims now follow from the closure claims by [HTT, 1.2.13.7]

4.4 The ∞-category of mixed complexes

In Notation 4.2.2.10 we constructed a commutative diagram of forgetful
functors as follows.

Alg(Mixed)

Mixed Alg(Ch(k))

Ch(k)

evMixed
a Alg(evm)

evm eva

(4.19)

All four functors preserve weak equivalences by Proposition 4.2.2.12 so we
obtain a commutative diagram on underlying ∞-categories. For this, let us
use the following notation.

Notation 4.4.0.1. Denote by WCh, WAlg, WMixed and WAlg(Mixed) the classes
of weak equivalences in Ch(k), Alg(Ch(k)), Mixed, and Alg(Mixed), respec-
tively, where we use the weak equivalences from the model structures defined
in Fact 4.1.3.1, Definition 4.2.2.2, and Proposition 4.2.2.9.

In contexts in which we only consider a full subcategory of those model
categories, we will use the same notation for the class of weak equivalences
between objects in that subcategory. ♦

Diagram (4.19) now induces a commutative diagram of ∞-categories as
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follows.

Alg(Mixed)[W−1
Alg(Mixed)]

Mixed[W−1
Mixed] Alg(Ch(k))[W−1

Alg]

Ch(k)[W−1
Ch ]

evMixed
a

′ Alg(evm)′

ev′
m ev′

a

(4.20)
Ch(k)[W−1

Ch ] can be identified with the derived category, D(k)38. The canon-
ical symmetric monoidal functor γ : Ch(k)cof → D(k) induces a functor on
commutative and cocommutative bialgebras, so we can apply it to the cofi-
brant commutative and cocommutative bialgebra D (see Construction 4.2.1.1
and Proposition 4.2.2.4) to obtain a commutative and cocommutative bialge-
bra γ(D) in D(k).

Notation 4.4.0.2. We will denote the object γ(D) of BiAlgComm,Comm(D(k))
by D (or Dk if we want to make k explicit).

By the results of Section 3.4 we obtain an induced symmetric monoidal
structure on LModD(D(k)). We will denote this symmetric monoidal∞-cate-
gory by Mixed, or, if we want to make the base ring k explicit, by Mixedk. ♦

We can construct from the symmetric monoidal ∞-category D(k) and co-
commutative bialgebra D in D(k) the following commutative diagram that is
analogous to (4.19).

Alg(Mixed)

Mixed Alg(D(k))

D(k)

eva Alg(evm)

evm eva

(4.21)

The goal of this section is to show that diagram (4.21) can be identified
with diagram (4.20).

For algebras, there is a relevant result: For a monoidal model category A
with certain properties, [HA, 4.1.8.4] shows that there is an equivalence

Alg(A)cof[W ′−1]
≃
−→ Alg

(
Acof[W−1]

)

38By Proposition 4.3.2.1 (1) D(k) ≃ Ch(k)cof[W−1], but the inclusion of Ch(k)cof into
Ch(k) and the cofibrant replacement functor induce mutually inverse equivalences after
inverting weak equivalences, see [HA, 1.3.4.16] and Proposition A.3.2.1.
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where W and W ′ are the respective classes of weak equivalences. The reason
only the full subcategory of cofibrant objects is considered is that we want
the tensor product to be automatically derived. The pushout product axiom
ensures that the tensor product of two cofibrant objects is again cofibrant,
so the tensor product restricts to the full subcategory of cofibrant objects. A
monoidal category also needs a unit object, so in order to ensure that the
subcategory is again a monoidal category, Lurie requires that the unit object
in A is cofibrant. Unfortunately, this does not hold for the monoidal model
category Mixed = LModD(Ch(k)) that we considered above39, so we can not
directly apply Lurie’s result. However, we proved that Mixed satisfies the
monoid axiom (Proposition 4.2.2.8), which ensures that even though the unit
object is not cofibrant, tensoring with it nevertheless results in the correct
derived tensor product. Another (related) viewpoint would be to note that
the tensor product in Mixed = LModD(Ch(k)) is calculated on the underlying
chain complexes, and in Ch(k) the unit object is cofibrant. This will open the
possibility of nevertheless proving a result similar to [HA, 4.1.8.4] for our
situation.

We will start in Section 4.4.1 by constructing a comparison natural trans-
formation from diagram (4.20) to diagram (4.21), and then show that the
comparison functors are equivalences in Section 4.4.2. Finally, in the very
short Section 4.4.3 we show that Mixed is a stable ∞-category, and in the
also short section Section 4.4.4 we discuss how strongly homotopy linear mor-
phisms of strict mixed complexes induce morphisms in Mixed.

4.4.1 Construction of comparison functors

In this section we will construct a comparison natural transformation from
diagram (4.20) to diagram (4.21).

Construction 4.4.1.1. By Fact 4.1.3.1, the subcategory Ch(k)cof inherits
a symmetric monoidal structure from Ch(k). As the underlying chain com-
plex of D is cofibrant by Proposition 4.2.2.4, we can view D as an object of
BiAlgAssoc,Comm(Ch(k)cof). By Proposition 3.4.1.15 we can thus consider the
pair (Ch(k)cof,D) as an object of BiAlgOpComm.

The symmetric monoidal functor γ : Ch(k)cof → D(k) is a morphism in
the ∞-category MonComm(Cat∞). Denote by γ a qBiAlgOpComm -cocartesian lift
of γ with source (Ch(k)cof,D). By Proposition 3.4.1.15 we can identify the
codomain of the morphism γ with the bialgebra BiAlgAssoc,Comm(γ)(D), which
we also denote by D.

Applying the natural transformation evm : LMod → pr of functors from
BiAlgOpComm to MonComm(Cat∞) from Definition 3.4.2.1 we obtain a com-

39See the discussion in Section 4.2.2.2.
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mutative diagram of symmetric monoidal ∞-categories as follows.

LModD
(
Ch(k)cof)⊗ LModD(D(k))

⊗

(
Ch(k)cof)⊗ D(k)⊗

ev⊗
m

LModD(γ)⊗

ev⊗
m

γ⊗

Applying the natural transformation

eva : Alg(−)→ −×Fin∗ {〈1〉}

we obtain the following commutative cube.

Alg
(
LModD

(
Ch(k)cof)) Alg(LModD(D(k)))

LModD
(
Ch(k)cof) LModD(D(k))

Alg
(
Ch(k)cof) Alg(D(k))

Ch(k)cof D(k)

where the horizontal functors are all induced by γ, and the left and right
squares are made up of the various forgetful functors. ♦

Notation 4.4.1.2. We will also denote by γMixed the functor

Mixedcof = LModD
(
Ch(k)cof) LModD(γ)

−−−−−−→ LModD(D(k)) = Mixed

induced by γ. ♦

Remark 4.4.1.3. Let φ : k → k′ be a morphism of commutative rings.
Then the symmetric monoidal and weak-equivalence preserving functor

k′ ⊗k − : Ch(k)cof → Ch(k′)cof

from Fact 4.1.5.1 maps by Construction 4.2.1.1 Dk to Dk′ and thus induces
a transformation from the cube constructed in Construction 4.4.1.1 with re-
spect to k to the same cube with respect to k′ (i. e. a four-dimensional hyper-
cube). In particular, there is an induced commutative diagram of symmetric
monoidal functors as follows.

Mixedk,cof Mixedk′,cof

Mixedk Mixedk′

k′⊗k−

γMixed γMixed

k′⊗k−

See also Remark 4.2.1.3, Proposition 4.2.2.3, and Remark 4.3.2.2. ♦
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Proposition 4.4.1.4. The functors

γ : Ch(k)cof → D(k)

γMixed : Mixedcof →Mixed
Alg(γ) : Alg

(
Ch(k)cof)→ Alg(D(k))

Alg(γMixed) : Alg(Mixedcof)→ Alg(Mixed)

all map the respective weak equivalences to equivalences.
In particular, the commutative cube constructed in Construction 4.4.1.1

induces a commutative cube as follows.

Alg(Mixedcof)[W
−1
Alg(Mixed)] Alg(Mixed)

Mixedcof[W
−1
Mixed] Mixed

Alg
(
Ch(k)cof)[W−1

Alg] Alg(D(k))

Ch(k)cof[W−1
Ch ] D(k)

where the horizontal functors are all induced by γ and the functors on the left
and right sides are (induced by) the various forgetful functors. ♥

Proof. The following discussion refers to the cube constructed in Construc-
tion 4.4.1.1. Note that by Proposition 4.2.2.12 all the functors on the left
side preserve weak equivalences, so that we obtain a commutative square as
claimed after inverting the respective classes of weak equivalences. It remains
to show that the horizontal functors map weak equivalences to equivalences.

The two functors eva on the right detect equivalences by [HA, 3.2.2.6],
and by [HA, 4.2.3.3] the left vertical functor evm on the right side also de-
tects equivalences. It follows that equivalences on the right side are detected
in D(k), so it suffices to show that the compositions from the four cate-
gories on the left side to D(k) map weak equivalences to equivalences. But
as all functors (or compositions) to Ch(k)cof preserve weak equivalences as
already mentioned, it actually suffices to show that γ : Ch(k)cof → D(k) maps
weak equivalences to equivalences. But this is true by definition, see Propo-
sition 4.3.2.1 (1).

The commutative cube from Proposition 4.4.1.4 is pretty close to being a
comparison natural transformation from diagram (4.20) to diagram (4.21).
However, the left side is not quite given as (4.20) as we are only considering
cofibrant underlying chain complexes. The next proposition shows that this
does not make a difference.

Construction 4.4.1.5. We obtain a commutative cube completely anal-
ogous to the one constructed in Construction 4.4.1.1 from the symmetric
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monoidal inclusion functor Ch(k)cof → Ch(k). Using Proposition 4.2.2.12 we
obtain the following induced commutative cube

Alg(Mixedcof)[W
−1
Alg(Mixed)] Alg(Mixed)[W−1

Alg(Mixed)]

Mixedcof[W
−1
Mixed] Mixed[W−1

Mixed]

Alg
(
Ch(k)cof)[W−1

Alg] Alg(Ch(k))[W−1
Alg]

Ch(k)cof[W−1
Ch ] Ch(k)[W−1

Ch ]

where the horizontal functors are induced by the inclusion Ch(k)cof → Ch(k)
and the functors on the left and right are the various forgetful functors. ♦

Construction 4.4.1.6. By Proposition 4.2.2.12 the cofibrant objects in

Alg(Mixed), Mixed, Alg(Ch(k)), and Ch(k)

all have cofibrant underlying chain complex40. We thus obtain a commutative
cube as follows

Alg(Mixed)cof
[W−1

Alg(Mixed)] Alg(Mixedcof)[W
−1
Alg(Mixed)]

Mixedcof[W−1
Mixed] Mixedcof[W

−1
Mixed]

Alg(Ch(k))cof
[W−1

Alg] Alg
(
Ch(k)cof)[W−1

Alg]

Ch(k)cof[W−1
Ch ] Ch(k)cof[W−1

Ch ]

where the horizontal functors are induced by the inclusions and the functors
on the left and right are the various forgetful functors. ♦

Proposition 4.4.1.7. The horizontal functors in the commutative cubes of
Construction 4.4.1.5 and Construction 4.4.1.6 are equivalences. ♥

Proof. The proof is very similar for the eight functors, so we only discuss the
functor

Mixedcof[W
−1
Mixed]→ Mixed[W−1

Mixed]

as the example case.
40While evMixed

a was not shown in Proposition 4.2.2.12 to preserve cofibrant objects, this
is not a problem, as both Alg(evm) and eva preserve cofibrant objects by Proposi-
tion 4.2.2.12, so their composition does so too.
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4.4 The ∞-category of mixed complexes

As already mentioned in Construction 4.4.1.6, by Proposition 4.2.2.12 the
forgetful functor evm from Mixed to Ch(k) preserves cofibrant objects, so the
cofibrant replacement functor of Mixed lands in Mixedcof. Let

ι : Mixedcof → Mixed

be the inclusion functor and

−cof : Mixed→ Mixedcof

the cofibrant replacement functor. The compositions ι ◦ −cof and −cof ◦ ι
come with natural transformations to the identity functors that are point-
wise weak equivalences. As both ι and −cof preserve weak equivalences, we
obtain induced functors after inverting weak equivalences, and by Propo-
sition A.3.2.1 the natural transformations just mentioned become natural
equivalences. Thus the functor induced by ι,

Mixedcof[W
−1
Mixed]→ Mixed[W−1

Mixed]

is an equivalence.

Definition 4.4.1.8. By composing the cube from Proposition 4.4.1.4 with
the inverse of the cube from Construction 4.4.1.5 (where the horizontal func-
tors are equivalences by Proposition 4.4.1.7), we obtain the following com-
mutative cube.

Alg(Mixed)[W−1
Alg(Mixed)] Alg(Mixed)

Mixed[W−1
Mixed] Mixed

Alg(Ch(k))[W−1
Alg] Alg(D(k))

Ch(k)[W−1
Ch ] D(k)

The horizontal functors are induced by the composition of the respective
cofibrant replacement functors and γ, and the other functors are (induced
by) the various forgetful functors. ♦

4.4.2 The comparison functors are equivalences
In this section we show that the horizontal functors in the cube of Defini-

tion 4.4.1.8 are all equivalences.

Proposition 4.4.2.1 ([HA, 4.1.8.4]). The functor

Alg(Ch(k))[W−1
Alg]→ Alg(D(k))

from Definition 4.4.1.8 is an equivalence. ♥
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Proof. By Proposition 4.4.1.7 it suffices to show that the related functor

Alg(Ch(k))cof
[W−1

Alg]→ Alg(D(k))

induced by γ is an equivalence.
By Fact 4.1.3.1 Ch(k) is a combinatorial symmetric monoidal model cat-

egory with cofibrant unit object, satisfies the monoid axiom, is left proper,
and the class of cofibrations is generated by cofibrations between cofibrant
objects41. The statement thus follows from [HA, 4.1.8.4, variant (B)].

Proposition 4.4.2.2 ([HA, 4.3.3.17]). The functor

Mixed[W−1
Mixed]→Mixed

from Definition 4.4.1.8 is an equivalence. ♥

Proof. The proof is very similar to the proof of Proposition 4.4.2.1. Again it
suffices by Proposition 4.4.1.7 to show that the functor

LModD(Ch(k))cof
[W−1

Mixed]→ LModD(D(k))

is an equivalence.
By Fact 4.1.3.1 Ch(k) is a combinatorial monoidal model category with

cofibrant unit object, and by Proposition 4.2.2.4 D is cofibrant. The statement
thus follows from [HA, 4.3.3.17].

We now come to the last functor from Definition 4.4.1.8 that we still need
to prove is an equivalence. As mentioned in the introduction to Section 4.4,
we will not be able to merely cite an appropriate result from [HA], as the
unit of Mixed is not cofibrant. We explain in more detail in Remark 4.4.2.4
below how the condition of the unit being cofibrant is used in the proof of
[HA, 4.1.8.4].

Proposition 4.4.2.3. The functor

Alg(Mixed)[W−1
Alg(Mixed)]→ Alg(Mixed)

from Definition 4.4.1.8 is an equivalence. ♥

Proof. This proof will follow the proof of [HA, 4.1.8.4] closely. As in Proposi-
tion 4.4.2.1 and Proposition 4.4.2.2 it suffices by Proposition 4.4.1.7 to show
that the functor

Alg(LModD(Ch(k)))cof
[W−1

Alg(Mixed)]→ Alg(LModD(D(k)))

which we will call γAlg(Mixed) in this proof, is an equivalence.
41For this last bit see the description of the generating cofibrations in [Hov99, 2.3.11 and

2.3.3] in combination with the description of cofibrant objects in [Hov99, 2.3.6].
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By Proposition 4.4.1.4 and Construction 4.4.1.6 there is a commutative
square

Alg(LModD(Ch(k)))cof
[W−1

Alg(Mixed)] Alg(LModD(D(k)))

LModD(Ch(k))[W−1
Mixed] LModD(D(k))

evMixed
a

′

γAlg(Mixed)

eva

γMixed

where the horizontal functors are induced by γ, and evMixed
a

′ is induced by
evMixed

a . Proposition 4.4.2.2 shows that γMixed is an equivalence.
Like the proof of [HA, 4.1.8.4], we will apply [HA, 4.7.3.16] to show that

γAlg(Mixed) is an equivalence. For this it suffices to verify the following.

(1) eva has a left adjoint, which we will call FreeAlg(Mixed)
Mixed .

(2) Alg(LModD(D(k))) admits geometric realizations of simplicial objects.

(3) eva preserves geometric realizations of simplicial objects.

(4) eva is conservative.

(1’) evMixed
a

′ has a left adjoint, which we will call FreeAlg(Mixed)
Mixed

′
.

(2’) The ∞-category Alg(LModD(Ch(k)))cof
[W−1

Alg(Mixed)] admits geometric
realizations of simplicial objects.

(3’) evMixed
a

′ preserves geometric realizations of simplicial objects.

(4’) evMixed
a

′ is conservative.

(5) The push-pull natural transformation42

FreeAlg(Mixed)
Mixed ◦ γMixed → γAlg(Mixed) ◦ FreeAlg(Mixed)

Mixed
′

is a natural equivalence.

Proof of claim (2) and (3): By Proposition 4.3.2.1 (1) D(k) is presentable
symmetric monoidal ∞-category, so by the discussions leading to Defini-
tion 3.4.2.1, LModD(D(k)) is also a presentable symmetric monoidal ∞-cat-
egory. The claims now follow from [HA, 3.2.3.1] and Proposition E.2.0.2.

Proof of claim (1): Follows from Proposition E.7.2.1, again using that
LModD(D(k)) is presentable symmetric monoidal.

Proof of claim (4): This is [HA, 3.2.2.6].
Proof of claim (2’): By Proposition 4.2.2.9 the model category structure

on Alg(LModD(Ch(k))) is combinatorial, so it follows from [HA, 1.3.4.22]
42See [HTT, Beginning of 7.3.1].
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that Alg(LModD(Ch(k)))cof[W−1
Alg(Mixed)] is presentable and hence in particular

admits geometric realizations of simplicial objects.
Proof of claim (3’): This is the part of the proof where we need to do

something differently than the proof of [HA, 4.1.8.4], as this is the point
where the unit being cofibrant is used – see Remark 4.4.2.4 below for more
details.

Consider the commutative diagram

Alg(LModD(Ch(k)))cof
[W−1

Alg(Mixed)]

LModD(Ch(k))[W−1
Mixed] Alg(Ch(k))[W−1

Alg]

Ch(k)[W−1
Ch ]

evMixed
a

′ Alg(evm)′

ev′
m ev′

a

that already appeared above as diagram (4.20)43. As the diagram commutes,
it suffices to show the following three claims.

(a) The functor ev′
m in the above diagram detects geometric realizations of

simplicial objects44.

(b) The functor Alg(evm)
′ in the above diagram preserves geometric real-

izations of simplicial objects.

(c) The functor ev′
a in the above diagram preserves geometric realizations

of simplicial objects.

Proof of claim (a): By Definition 4.4.1.8, Proposition 4.4.2.2, and Proposi-
tion 4.3.2.1 (1), we can identify the functor ev′

m in question with the functor

evm : LModD(D(k))→ D(k)

which, as D(k) is presentable symmetric monoidal by Proposition 4.3.2.1 (1),
detects small colimits by [HA, 4.2.3.5 (2)].

Proof of claim (b): By [HA, 1.3.4.24 and 1.3.4.25], it suffices to show that
the functor

Alg(evm) : Alg(LModD(Ch(k)))→ Alg(Ch(k))
43With the tiny difference that we added a −cof at the top, but by Proposition 4.4.1.7 this

doesn’t matter anyway.
44In other words it detects ∆

op-indexed colimits.
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4.4 The ∞-category of mixed complexes

preserves homotopy colimits. Homotopy colimits can be calculated by taking
the colimit of a cofibrant replacement of the diagram with respect to the pro-
jective model structure on diagram categories, see [HTT, A.2.8]. As Alg(evm)
preserves ordinary colimits and weak equivalences by Proposition 4.2.2.12 it
hence suffices to show that

Alg(evm)∗ : Fun(∆op,Alg(LModD(Ch(k))))→ Fun(∆op,Alg(Ch(k)))

preserves generating cofibrations. But this follows from their description
[HTT, A.2.8.5] and the fact that Alg(V ) preserves colimits and cofibrations
by Proposition 4.2.2.12.

Proof of claim (c): By Definition 4.4.1.8, Proposition 4.4.2.1, and Proposi-
tion 4.3.2.1 (1), we can identify the functor ev′

a in question with the functor

eva : Alg(D(k))→ D(k)

which, as D(k) is presentable symmetric monoidal by Proposition 4.3.2.1 (1),
preserves sifted colimits by [HA, 3.2.3.1].

Proof of claim (4’): It suffices to show that the induced functor on ho-
motopy categories is conservative, i. e. reflects isomorphisms. By Proposi-
tion A.1.0.1 we can identify that functor with the functor induced by

evMixed
a : Alg(LModD(Ch(k)))→ LModD(Ch(k))

on homotopy categories of the model categories, i. e.

HoWAlg(Mixed)(Alg(LModD(Ch(k))))→ HoWMixed(LModD(Ch(k)))

which is conservative by the classical constructions for homotopy categories45,
as evMixed

a detects weak equivalences by Proposition 4.2.2.12.
Proof of claims (1’) and (5): We consider the symmetric monoidal functor

LModD(γ)
⊗ : LModD

(
Ch(k)cof)⊗ → LModD(D(k))

⊗

from Construction 4.4.1.1. We want to show that the underlying functor pre-
serves coproducts and that both LModD

(
Ch(k)cof) and LModD(D(k)) admit

coproducts and have tensor product functors that preserve coproducts in each
variable separately.

That LModD(D(k)) is a presentable symmetric monoidal ∞-category was
already mentioned above.

As the forgetful functor evm : LModD(Ch(k)) → Ch(k) preserves colimits
by Proposition 4.2.2.12, it follows that the subcategory LModD

(
Ch(k)cof) is

closed under coproducts46 and hence admits coproducts, which are calcu-
lated in LModD(Ch(k)) (see [HTT, 1.2.13.7]). As evm detects colimits and
45See [Hov99, 1.2].
46Cofibrant objects in a model category are closed under coproducts, which can be checked

using the lifting property that defines cofibrations, see [Hov99, 1.1.10].
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is symmetric monoidal, and the tensor product in Ch(k) is compatible with
colimits47 we can conclude that the tensor product of LModD

(
Ch(k)cof) pre-

serves coproducts in each variable separately.
Finally, we show that the functor LModD(γ) preserves coproducts. To see

this, note that as argued in the proof of claim (a), the functor

evm : LModD(D(k))→ D(k)

detects small colimits, and as by the discussion above the forgetful functor

LModD
(
Ch(k)cof)→ Ch(k)cof

preserves coproducts, it suffices to show that the functor

γ : Ch(k)cof → D(k)

preserves coproducts, which is true by Proposition 4.3.2.1 (3).
We have now verified that LModD(γ)

⊗ satisfies the assumptions of variant
(2) of Proposition E.7.2.2. We thus obtain a left adjoint

FreeAlg(Mixed)
Mixed : LModD

(
Ch(k)cof)→ Alg

(
LModD

(
Ch(k)cof))

to the forgetful functor evMixed
a , which can be identified with a restriction of

the functor of the same name defined in Notation 4.2.2.10. More crucially,
Proposition E.7.2.2 shows that the push-pull transformation

FreeAlg(Mixed)
Mixed ◦ LModD(γ)→ Alg(LModD(γ)) ◦ FreeAlg(Mixed)

Mixed

is an equivalence.
The functor

evMixed
a : Alg

(
LModD

(
Ch(k)cof))→ LModD

(
Ch(k)cof)

preserves weak equivalences by Proposition 4.2.2.12. We next show that the
functor

FreeAlg(Mixed)
Mixed : LModD

(
Ch(k)cof)→ Alg

(
LModD

(
Ch(k)cof))

also preserves weak equivalences. As the functor

Alg(evm) : Alg
(
LModD

(
Ch(k)cof))→ Alg

(
Ch(k)cof)

detects weak equivalences by Proposition 4.2.2.12, it suffices to check that
the composition preserves weak equivalences. This composition is by Propo-
sition 4.2.2.11 naturally isomorphic to the composition of

evm : LModD
(
Ch(k)cof)→ Ch(k)cof

47As the symmetric monoidal structure is closed by Definition 4.1.2.1.

182



4.4 The ∞-category of mixed complexes

with FreeAlg. But by Proposition 4.2.2.12, evm preserves weak equivalences,
and FreeAlg preserves weak equivalences between cofibrant objects as a left
Quillen functor.

As evMixed
a and FreeAlg(Mixed)

Mixed preserve weak equivalences, they induce func-
tors on the ∞-categories obtained by inverting weak equivalences. Addition-
ally, unit and counit of the adjunction induce unit and counit of an adjunction
as follows48

LModD
(
Ch(k)cof)[W−1

Mixed] Alg
(
LModD

(
Ch(k)cof))[W−1

Alg(Mixed)]
FreeAlg(Mixed)

Mixed
′

evMixed
a

′

where we think of adjunctions in terms of units and counits as in Proposi-
tion D.2.1.1.

In the non-dashed commutative square

Alg
(

LModD(Ch(k))cof
)
[W−1

Alg(Mixed)] Alg(LModD(D(k)))

LModD
(
Ch(k)cof)[W−1

Mixed] LModD(D(k))

evMixed
a

′

γAlg(Mixed)

eva

γMixed

FreeAlg(Mixed)
Mixed

′ FreeAlg(Mixed)
Mixed

(∗)

from Proposition 4.4.1.4, there is thus an induced left adjoint of evMixed
a

′ as
indicated. Furthermore, as unit and counit of the adjunction on the left are
induced by the unit and counit of the adjunction FreeAlg(Mixed)

Mixed ⊣ evMixed
a , we

can identify the push-pull transformation associated to the square with the
natural transformation induced by the push-pull transformation

FreeAlg(Mixed)
Mixed ◦ LModD(γ)→ Alg(LModD(γ)) ◦ FreeAlg(Mixed)

Mixed

by passing from LModD
(
Ch(k)cof) to LModD

(
Ch(k)cof)[W−1

Mixed]. As the latter
is a natural equivalence, it follow that the push-pull transformation associated
to diagram (∗) is also a natural equivalence.

Finally, the functor

evMixed
a

′
: Alg

(
LModD(Ch(k))cof

)
[W−1

Alg(Mixed)]→ LModD
(
Ch(k)cof)[W−1

Mixed]

discussed so far is by Proposition 4.4.1.7 equivalent to the functor

evMixed
a

′
: Alg(LModD(Ch(k)))cof

[W−1
Alg(Mixed)]→ LModD(Ch(k))[W−1

Mixed]

so this proves claims (1’) and (5).
48See the universal property of inverting morphisms in ∞-categories in [HA, 1.3.4.1].
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Remark 4.4.2.4. While the statement [HA, 4.1.8.4] is formulated in such a
way as to require the unit object to be cofibrant, thereby preventing us from
using the result directly to show Proposition 4.4.2.3, let us remark on where
this is used in the proof.

The main step in proving [HA, 4.1.8.4] is the lemma [HA, 4.1.8.13], which
shows that if C is a monoidal model category satisfying certain assumptions
and J is a small sifted category, then the forgetful functor eva : Alg(C) → C
preserves J-indexed homotopy colimits.

The proof proceeds by showing that every projectively cofibrant object A
of the functor category Fun(J,Alg(C)) is a retract of a certain transfinite
composition with favorable properties49. What needs to be shown is that
(eva)∗(A) is good, an ad hoc property used in the proof, which is shown by
transfinite induction.

The induction start needs that (eva)∗(const1C) is good. The argument in
[HA, (3) on page 500] shows that every constant functor whose value is a
cofibrant object in C is good, so if one assumes that the unit 1C is cofibrant
in C, then this proves the induction start. Combining [HA, (3) on page 500]
with the definition of good objects [HA, Middle of page 499] one sees that a
constant functor J → C is actually good if and only if the constant value is
cofibrant in C.

So if C = Mixed, where the unit is not cofibrant by Proposition 4.2.2.5,
then the induction start fails, so eva preserving homotopy colimits needs to
be proven in a different way than [HA, 4.1.8.13]. ♦

4.4.3 Mixed is stable
In this section we show that Mixed is a stable ∞-category.

Proposition 4.4.3.1. The ∞-category Mixed is stable50. ♥

Proof. The statement follows by combining that D(k) is stable by Proposi-
tion 4.3.2.1 (2) with Mixed admitting all small limits and colimits by [HA,
4.2.3.3 (1) and 4.2.3.5 (1)] and evm : Mixed→ D(k) detecting small colimits
and limits as well as equivalences by [HA, 4.2.3.3 (2) and 4.2.3.5 (2)].

4.4.4 Strongly homotopy linear morphisms
In Section 4.2.3 we introduced the notion of strongly homotopy linear mor-

phisms between strict mixed complexes. In this short section we discuss how
they induce morphisms in the ∞-category of mixed complexes.

Construction 4.4.4.1. Let X and Y be strict mixed complexes with cofi-
brant underlying chain complexes, and f : X → Y a strongly homotopy lin-
ear morphism. Recall from Proposition 4.2.3.7 and Definition 4.2.3.8 that f
49See [HA, End of page 500 and start of page 501].
50See [HA, 1.1.1.9] for a definition.
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4.4 The ∞-category of mixed complexes

lifts to a morphism f strict : X → Y shl of strict mixed complexes, and from
Proposition 4.2.3.5 that Y shl comes with a quasiisomorphism of strict mixed
complexes ιshl

Y : Y → Y shl.
We can’t directly apply γMixed to f strict, as Y shl might not have cofibrant

underlying chain complex51. However we obtain a commutative diagram

Xcof (
Y shl)cof

Y cof

X Y shl Y

(fstrict)
cof

(ιshl
Y )

cof

fstrict ιshl
Y

(∗)

in Mixed, where the vertical morphisms are the cofibrant replacements in
Mixed, and by Proposition 4.2.2.12 all strict mixed complexes except possibly
Y shl in this diagram have cofibrant underlying chain complex. We can thus
apply γstrict to the part of the diagram not involving Y shl.

γMixed
(
Xcof) γMixed

((
Y shl)cof

)
γMixed

(
Y cof)

γMixed(X) γMixed(Y )

≃

γMixed
(
(fstrict)

cof)

≃

γMixed
(
(ιshl
Y )

cof)

≃

γMixed(f)

(4.22)
As the vertical morphisms in diagram (∗) as well as

(
ιshl
Y

)cof are quasiisomor-
phisms, the corresponding morphisms in diagram (4.22) are equivalences. We
can thus form the composition from X to Y , yielding a morphism in Mixed
that we will denote by γMixed(f) and call the morphism in Mixed induced by
f . ♦

Remark 4.4.4.2. Let X and Y be strict mixed complexes with cofibrant
underlying chain complex, and let f : X → Y be a strongly homotopy linear
quasiisomorphism52. Then the induced morphism

γMixed(f) : γMixed(X)→ γMixed(Y )

is an equivalence. Indeed, considering diagram (4.22) in Construction 4.4.4.1,
it is enough to show that f strict is a quasiisomorphism. As the underlying
morphism of chain complexes of f is by definition the composition of f strict

with the underlying morphism of chain complexes of pshl
Y , which is a quasiiso-

morphism by Proposition 4.2.3.6, this follows from the underlying morphism
of chain complexes of f being a quasiisomorphism. ♦

51This problem is related to the fact that Y shl involves an infinite product (rather than
an infinite coproduct, which would not be a problem).

52By this we mean a strongly homotopy linear morphism whose underlying morphism of
chain complexes is a quasiisomorphism.
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Mixed complexes and circle
actions

In Section 6.2.1 we will see that Hochschild homology carries a natural
action by the circle group T, i. e. Hochschild homology forms a functor

HHT : Alg(D(k))→ D(k)
B T

= Fun(BT, k)

where BT can be thought of as the ∞-groupoid with one object ∗ and
AutB T(∗) ≃ T, where T can be defined as { z ∈ C | |z| = 1 }. We will define
T properly in Section 5.2.1 and BT in Section 5.3.

For calculations it will be helpful to have model categories available that
represent the involved ∞-categories. We have seen in Section 4.3.2 that D(k)
is the underlying∞-category of Ch(k) with the projective model structure. By
[HA, 4.1.8.4], the model structure on Alg(Ch(k)) discussed in Theorem 4.2.2.1
has Alg(D(k)) as underlying ∞-category. This takes care of the domain of
HHT. How about the codomain?

If BT were a 1-category, then we could apply [HA, 1.3.4.25], which would
then imply that Fun(BT,D(k)) is the underlying ∞-category of the injec-
tive or projective model structure on Fun(BT,Ch(k)). This is however not
the case – BT is a 2-category, but not a 1-category. We must thus proceed
differently.

In Section 5.2 we will define a cocommutative bialgebra k⊠T in D(k), and
in Section 5.3 we will show that there is a symmetric monoidal equivalence

D(k)B T ≃ LModk⊠T(D(k))

where the ∞-category D(k)B T carries the pointwise symmetric monoidal
structure and LModk⊠T(D(k)) the one from Definition 3.4.2.1.

By [HA, 4.3.3.17] the model category LModA(Ch(k)), with model structure
as in Theorem 4.2.2.1, has LModk⊠T(D(k)) as its underlying∞-category if A
is a differential graded algebra with cofibrant underlying complex and such
that γ(A) ≃ k ⊠ T as associative algebras.

We will show in Section 5.1 that the differential graded algebra D defined
in Construction 4.2.1.1 represents k ⊠ T as an associative algebra. In fact,
we show more – D even represents k ⊠ T as an associative and coassocia-
tive bialgebra. There is thus a monoidal (though not symmetric monoidal!)
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equivalence as follows.

D(k)B T ≃ LModk⊠T(D(k)) ≃ LModD(D(k)) = Mixed

Let us end by briefly going over the contents of the individual sections. We
will start in Section 5.1 by showing a formality statement for commutative
and coassociative bialgebras in D(k) with homology isomorphic to the homol-
ogy of D and k ⊠ T. We will actually define T and k ⊠ T in Section 5.2, and
then use the result of Section 5.1 to conclude in Section 5.2.4 that D ≃ k⊠T
as bialgebras. We show that there are symmetric monoidal equivalences of the
form Fun(BG, C) ≃ LMod1C⊠G(C) for presentable ∞-categories C and grou-
plike associative monoids G in S in Section 5.3. Finally, we put everything
together to obtain the monoidal equivalence D(k)B T ≃Mixed in Section 5.4.

5.1 Formality of certain E∞,E1-bialgebras
In this section we show that any two commutative and coassociative bial-

gebras in D(k) with homology concentrated in degrees 0 and 1, where it is k,
are equivalent as commutative and coassociative bialgebras.

Let us summarize the strategy used to prove this, which was suggested by
Achim Krause. Let R be a commutative and coassociative bialgebra with ho-
mology as described. Then it suffices to construct another such commutative
and coassociative bialgebra independently of R and construct an equivalence
between that commutative bialgebra and R.

How could we go about to construct a morphism of commutative bial-
gebras? Or more generally, of algebras or coalgebras over some ∞-operad?
There is one class of algebras where is easy to define morphisms out of, the
free algebras, using that the free algebra functor is left adjoint to the forgetful
functor. Analogously, it is easy to define morphisms of coalgebras into cofree
algebras. While these concepts are in principle dual to each other, (by passing
to opposite ∞-categories), it is in practice easier to work with free algebras
than with cofree coalgebras. This is because the theory of free algebras works
particularly well when the tensor products are compatible with colimits, see
[HA, 3.1.3.5], which is usually the case in the kind of examples that we are
interested in. Analogously, we would want the tensor products to be compat-
ible with limits in order to obtain a good theory of cofree coalgebras, but this
is usually not the case in examples of interest.

The discussion so far points us towards trying to find some kind of free
resolution of the commutative and coassociative bialgebra R. Unfortunately,
free commutative algebras are not quite as easy to describe as free associative
algebras1, as imposing commutativity requires taking certain (homotopy) or-
bits of actions by the symmetric groups Σn. Commutative algebras being

1[HA, 3.1.3.13] offers a description of free commutative and free associative algebras. We
discuss the special case of associative algebras in Proposition E.7.2.1, and will unpack
the statement for commutative algebras in the proof of Proposition 5.1.5.3.
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5.1 Formality of certain E∞,E1-bialgebras

more difficult to deal with in some respects is also reflected in the following
fact. Let C be a reasonably nice symmetric monoidal model category that one
finds in nature. Then it is often the case that Alg(C) inherits a nice model
structure from C such that its underlying ∞-category is the ∞-category of
algebras in the underlying∞-category of C. However it is unreasonable to ex-
pect the analogous statement to hold for commutative algebras, which has to
do with Σn orbits of the action of Σn on X⊗n not necessarily being homotopy
orbits2.

So we would prefer to work with free associative algebras. To do so, we
dualize the problem: R is dualizable in the symmetric monoidal ∞-category
D(k), and the functor mapping a dualizable object to its dual,

(−)∨ : (D(k)fd)
op → D(k)fd

is symmetric monoidal equivalence and thus induces an equivalence

BiAlgComm,Assoc(D(k)fd) = coAlg(CAlg(D(k)fd)) ≃ Alg(coCAlg(D(k)fd))
op

so that it actually suffices to show that R∨ is formal.
To do so we will define a diagram

B2 k B4 k

A1 A2 A3 A4 . . .

B3 k

(5.1)

2The relevant compatibility result for associative algebras is [HA, 4.1.8.4], and for com-
mutative algebras [HA, 4.5.4.7]. The assumptions necessary for the result on associative
algebras are mild enough to usually hold in examples one is interested in. The assump-
tions made for commutative algebras however include that every cofibration must be
a power cofibration (see [HA, 4.5.4.2]). This is a strong condition that one can not
expect to hold in general for otherwise nice examples found in nature. For example
Ch(k) with the projective model structure (see Fact 4.1.3.1) does not in general have
this property. The chain complex k[0] is cofibrant, so we would need k[0] to be power
cofibrant. Let n > 1 and let X be the chain complex concentrated in degrees 0 and 1
with X0 = X1 = k⊕n, with ∂X1 = id, and with Σn acting by permutation, and let Y

be the chain complex concentrated in degrees 0 and 1 with Y0 = Y1 = k, with ∂Y1 = id,
and with Σn acting trivially. There is an Σn-equivariant chain morphism f : X → Y

that maps a tuple (a1, . . . , an) to
∑

1≤i≤n ai. This morphism is an acyclic fibration
in the projective model structure on Ch(k)B Σn . Let ϕ : k[0] ∼= k[0]⊗n → Y be the
inclusion (i. e. the identity in level 0). If k[0] were power cofibrant, then it would need
to be possible to lift ϕ in a Σn-equivariant manner to a chain morphism ϕ : k[0] → X.
Suppose ϕ is such a lift. Let ϕ(1) = (a1, . . . , an). That ϕ is Σn equivariant implies that
a := a1 = · · · = an. We must then have

1 = ϕ(1) = f(ϕ)(1) = f((a, . . . , a)) = n · a

in k, so n must be invertible in k. But there are many interesting commutative rings
that do not contain Q.
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in Alg(coCAlg(D(k))) such that each square is a pushout square and the
colimit of A1 → A2 → . . . has homology isomorphic to H∗(R

∨). Furthermore,
every Bn as well as A1 will be free as an associative algebra on the underlying
pointed object in coCAlg(D(k)).

It will then be possible to define a morphism A1 → R∨ that is surjective
on homology, so that it suffices to show that this morphism can be lifted
inductively to each An. As k is a zero object in Alg(coCAlg(D(k))) (this
will be shown in Remark 5.1.2.9), this amounts to showing that the com-
posites Bn → An−1 → R∨ are nullhomotopic in Alg(coCAlg(D(k))). Using
freeness, dualizing again, and calculations that exploit the homology of R∨,
it will actually be possible to show that in fact any morphism Bn → R∨ in
Alg(coCAlg(D(k))) is nullhomotopic.

We now briefly summarize the content of the individual subsections. We
start in Section 5.1.1 by discussing dualizable objects in symmetric monoidal
∞-categories and the symmetric monoidal duality functor. In Section 5.1.2
we will then construct diagram (5.1). In order to show that any two morphism
Bn → R∨ are homotopic as discussed above, we will need a formality state-
ment for certain associative algebras, which we show in Section 5.1.3, and of
commutative algebras like R as commutative algebras in D(k), which we will
show in Section 5.1.5. As the case of commutative algebras involves arguing
about orbits of actions of Σn, there is also a short Section 5.1.4 discussing
the relationship of orbits of group actions in D(k) with group homology. The
result regarding mapping spaces that we discussed above will then be shown
in Section 5.1.6, and everything will be put together in Section 5.1.7 to show
formality of R as a commutative and coassociative bialgebra in D(k).

The subsections do not all depend on all the previous ones. The following
diagram shows the dependencies.

Section 5.1.1 Section 5.1.2 Section 5.1.4 Section 5.1.3

Section 5.1.5

Section 5.1.6

Section 5.1.7

5.1.1 Duality
In this section we discuss the notion of dualizable objects in symmetric

monoidal ∞-categories, and we mostly follow [HA, 4.6.1], [HA, 5.2.1 and
5.2.2], and [Lur18, 3.2]. We start by recalling the definition of dualizable
objects.

190



5.1 Formality of certain E∞,E1-bialgebras

Definition 5.1.1.1 ([HA, 4.6.1.7, see also 4.6.1.12]). Let C be a symmetric
monoidal ∞-category and let C be an object of C. The object C is called
dualizable if there exists an object B of C and morphisms c : 1C → C⊗B and
e : B ⊗ C → 1 such that the composites

C ≃ 1C ⊗ C
c⊗idC−−−−→ C ⊗B ⊗ C

idC ⊗e
−−−−→ C ⊗ 1C ≃ C

and
B ≃ B ⊗ 1C

idB ⊗c
−−−−→ B ⊗ C ⊗B

e⊗idB−−−−→ 1C ⊗B ≃ B

are homotopic to the identity.
In this case, we call B the dual of C, and write B = C∨; by [HA, 4.6.1.6

and 4.6.1.10] C∨ as well as c and e are essentially uniquely determined by C.
We will also call C together with B, c, e, and homotopies as above a duality
datum.

We let Cfd be the full subcategory of C spanned by the dualizable objects.
♦

Remark 5.1.1.2. It follows easily from the definition that if C and C ′ are
dualizable objects in a symmetric monoidal ∞-category C, with c and e as
in Definition 5.1.1.1 exhibiting C∨ as the dual of C and similarly c′ and e′

exhibiting C ′∨ as a dual of C ′, then the compositions

1C ≃ 1C ⊗ 1C
c⊗c′
−−−→ C ⊗C∨ ⊗C ′ ⊗C ′∨ idC ⊗τ⊗idC′∨

−−−−−−−−−→ (C ⊗ C ′)⊗ (C∨ ⊗ C ′∨)

and

(C∨ ⊗ C ′∨)⊗ (C ⊗ C ′)
idC∨ ⊗τ⊗idC′
−−−−−−−−−→ C∨ ⊗C ⊗C ′∨ ⊗C ′ e⊗e′

−−−→ 1C ⊗ 1C ≃ 1C

exhibit C∨⊗C ′∨ as a dual of C⊗C ′, where τ is the symmetry equivalence and
1C ≃ 1C ⊗ 1C is the unitality equivalence. In particular the tensor product
of two dualizable objects is again dualizable. Furthermore, 1C is dualizable
with dual 1C , so it follows from [HA, 2.2.1.2] that Cfd inherits a symmetric
monoidal structure from C such that the inclusion can be upgraded to a
symmetric monoidal functor. ♦

It is easy to see from the definition that if C is dualizable with dual C∨,
then C∨ is again dualizable with dual C∨∨ ≃ C. It is also clear from the
definition that a symmetric monoidal functor F : C → D maps Cfd to Dfd
and so restricts to a symmetric monoidal functor F : Cfd → Dfd. In fact, the
following is true.

Fact 5.1.1.3 ([Lur18, 3.2.4]). Let C be a symmetric monoidal ∞-category.
Then the assignment C 7→ C∨ sending an object of C to a dual can be upgraded
to an equivalence of symmetric monoidal ∞-categories

(−)∨ : (Cfd)
op → Cfd
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with inverse ((−)∨)op.
Furthermore, this equivalence is compatible with symmetric monoidal func-

tors in the following sense. Let F : C → D be a symmetric monoidal functor.
Then there is a commutative diagram of symmetric monoidal functors as
follows.

(Cfd)
op Cfd

(Dfd)
op Dfd

(−)∨

F op F

(−)∨

♧

Remark 5.1.1.4. While the part of the statement of Fact 5.1.1.3 about
compatibility with symmetric monoidal functors is not stated explicitly in
[Lur18, 3.2.4]3, this becomes clear by going though every step of the proof.
In this remark we provide some pointers to the relevant parts of the proof of
[Lur18, 3.2.4] as well as the relevant material in [HA, 5.2.1 and 5.2.2] that is
relevant for checking this.

First, as F maps dualizable objects to dualizable objects, it suffices to
consider the case in which every object in C and D is dualizable.

Then the construction of the pairing of ∞-categories

λ = pr1 : (C × C)×C C/1C
→ C × C

as well as its upgrade to a pairing of symmetric monoidal ∞-categories, is
compatible with F . Furthermore, the description of left and right universal
objects in (C × C)×C C/1C

from the proof of [Lur18, 3.2.4] together with the
fact that F preserves duality data implies that the morphism of pairings of
∞-categories induced by F is left and right representable (see [HA, 5.2.1.16]).
The symmetric monoidal functor (−)∨ for C is constructed in [HA, 5.2.2.25]
as a lax symmetric monoidal functor – it is the left duality functor D

⊗
λ that

uses that λ is left representable. It is shown in [Lur18, 3.2.4] that this functor
is actually symmetric monoidal, but as symmetric monoidal functors form a
full subcategory of lax symmetric monoidal functors [HA, 2.1.3.7] it suffices to
consider these functors as lax symmetric monoidal functors when discussing
compatibility with F .

So one only needs to check that the construction of the lax symmetric
monoidal left duality functors of left representable pairings of symmetric
monoidal ∞-categories are compatible with left representable morphisms of
left representable pairings of symmetric monoidal∞-categories. The lax sym-
metric monoidal functor D

⊗
λ for C is constructed as the composition of the

inverse of a symmetric monoidal equivalence φC : (C
0
λ)

op → Cop with the lax
monoidal inclusion ιC : (C

0
λ)

op → (Cλ)
op and a symmetric monoidal functor

3Functoriality is however used and alluded to with [Lur18, 3.2.6].
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ψC : (Cλ)
op → C, so it suffices to check that each of those is suitably compat-

ible with F .
The inclusion ιC is defined in [HA, 5.2.1.28], and can be upgraded to a

lax symmetric monoidal functor by the discussion in [HA, 5.2.2.25] together
with [HA, 2.2.1.9]. That it is compatible with F follows from the definition
together with ι⊗D being fully faithful and [HA, 5.2.1.17].

The symmetric monoidal equivalence φC is the composition of ιC with the
functor constructed in [HA, 5.2.1.29]. It is clear from definition that this
latter functor is compatible with F .

Finally, ψC arises from the counit of an adjunction as discussed in [HA,
5.2.2.24] and is thus compatible with F . ♦

Remark 5.1.1.5. Let us give some hints regarding the opposite of the du-
alization functor being its inverse. Let us – as in Remark 5.1.1.4 – reduce
to the case where every object of C is dualizable. The duality functor dis-
cussed so far, in particular in Remark 5.1.1.4 starts with the pairing of
∞-categories λ = pr1 : M = (C × C) ×C C/1C

→ C × C that is both left
and right representable. This pairing can be upgraded to a pairing of sym-
metric monoidal ∞-categories λ⊗, and then left representability of λ is used
to construct a lax symmetric monoidal morphism of pairings of symmetric
monoidal ∞-categories

TwArr(C)⊗ M⊗

C⊗ ×Fin∗ (Cop)
⊗ C⊗ ×Fin∗ C

⊗

λ⊗

idC⊗×D
⊗
λ

where the bottom functor is on the second factor precisely the lax symmetric
monoidal left duality functor that we are interested in and called (−)∨. See
[HA, 5.2.2.25] and also Remark 5.1.1.4.

Now the important point is that the underlying morphism of pairings of
∞-categories is right representable. If we assume this for the moment, then we
can use functoriality of right duality functors (which can be shown completely
analogously to the case of left duality functors sketched in Remark 5.1.1.4)
to obtain a commutative diagram

C⊗ C⊗

(Cop)
⊗ C⊗

id

(Dop
λ )

⊗
id

D
′⊗
λ

where the top horizontal functor is the right duality functor of TwArr(C)⊗,
which can be identified with the identity. This shows that the opposite of
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the right duality functor of λ (which is symmetric monoidal by analogous
considerations as the left duality functor) is an inverse to the left duality
functor, as symmetric monoidal functors.

Next, there is a commutative diagram as follows.
(
(C × C)×C C/1C

)⊗ (
(C × C)×C C/1C

)⊗

C⊗ ×Fin∗ C
⊗

C⊗ ×Fin∗ C
⊗ C⊗ ×Fin∗ C

⊗

τ ′

pr⊗1

pr⊗1

τ⊗

id

where τ ′ maps a tuple (C,D,C ⊗ D → 1) to (D,C,D ⊗ C ≃ C ⊗ D → 1),
where we use the symmetry equivalence of C, and τ swaps the two factors. As
pr⊗1 was a pairing of symmetric monoidal∞-categories with left representable
underlying pairing, one can see that the composition on the right is a pair-
ing of symmetric monoidal ∞-categories with right representable underlying
pairing, and the right duality functor can be identified with the left duality
functor of pr⊗1 . Furthermore, it follows from the description of left and right
universal objects in [Lur18, 3.2.4] that the morphism of pairings encoded in
the diagram is right representable. By functoriality of right duality functors
we thus obtain a commutative diagram of symmetric monoidal functors

(Cop)
⊗ C⊗

(Cop)
⊗ C⊗

D
′⊗
λ

id id

D
⊗
λ

that shows that D
⊗
λ ≃ D

′⊗
λ as lax symmetric monoidal (and hence also as

symmetric monoidal) functors. As we previously obtained an equivalence
(D′op

λ )⊗ ≃ (D−1
λ )⊗, this shows that (Dop

λ )⊗ ≃ (D−1
λ )⊗.

Finally, let us say a few words on why, given a perfect4 pairing of ∞-
categories5 λ :M→ C ×D, the morphism of pairings

TwArr(C) M

C × (Cop) C × D

λ

idC×Dλ

constructed in [HA, 5.2.2.24 and 5.2.2.25] is right representable, which means
that the top horizontal functor needs to preserve right universal objects, see

4See [HA, 5.2.1.20 and 5.2.1.22].
5Of which the λ we discussed so far is an example by the proof of [Lur18, 3.2.4].
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[HA, 5.2.1.13 and 5.2.1.8]. To start, we first see that by unwrapping the
definition6 we have to show that the composition of two morphisms of pairings
of ∞-categories as depicted in the follow diagram preserves right universal
objects.

TwArr0λ(C) TwArrλ(C) M

C × C0λ
op

C × Cop
λ C × D

λ

Unpacking the definition using [HA, 5.2.1.24] and in particular [HA, 5.2.1.28]
we see that we can describe objects of Cop

λ as tuples (Cr, D, ϕ), with Cr an
object of Cop, D an object of D, and ϕ a morphism D → Dλ(Cr) in D. The
fiber in TwArrλ(C) of a pair (Cl, (Cr, D, ϕ)) in C × Cop

λ can be identified
with MapC(Cl, Cr). An object in TwArrλ(C) that is given by a morphism
f : Cl → Cr as just described is then mapped to the object in M described
as follows. As λ is left representable, there is a left universal object Mr over
Cr in M, lying over (Cr,Dλ(Cr)). A λ-cartesian lift of the morphism (f, ϕ)
is then a morphism Ml →Mr inM where Ml lies over (Cl, D). f is mapped
to this object Ml.

By definition (see [HA, 5.2.1.28]) C0λ
op is the full subcategory of Cop

λ spanned
by those tuples where ϕ is an equivalence, and the left square in the above
commutative diagram is a pullback. One can then see that an object in
TwArr0λ(C) is right universal precisely if the associated morphism f : Cl → Cr
as before is an equivalence. This then implies that (f, ϕ) will be an equiva-
lence, so the λ-cartesian lift Ml → Mr is also an equivalence, and hence Ml

is left universal, as Mr is so by assumption. But as λ is perfect, this means
that Ml is also right universal, see [HA, 5.2.1.22]. ♦

We make a bit more explicit how (−)∨ applies to morphisms in the following
remark.
Remark 5.1.1.6. Let f : C → D be a morphism of dualizable objects in a
symmetric monoidal ∞-category C. Then the functor (−)∨ from Fact 5.1.1.3
sends f to a morphism f∨ : D∨ → C∨. Unpacking the definitions7, one can
see that this morphism fits into a commutative diagram as follows

D∨ C∨

D∨ ⊗ 1C 1C ⊗ C
∨

D∨ ⊗ C ⊗ C∨ D∨ ⊗D ⊗ C∨

f∨

≃ ≃

id⊗c

id⊗f⊗id

e⊗id

6See [HA, 5.2.2.24 and 5.2.2.25] and also Remark 5.1.1.4.
7See in particular [Lur18, 3.2.4] and [HA, 5.2.1.9].
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where the top two vertical equivalences are the unitality equivalences of C,
the morphism c takes part in a duality datum for C, and e takes part in a
duality datum for D. ♦

Applying Fact 5.1.1.3 to the symmetric monoidal functor

γ : Ch(k)cof → D(k)

(see Proposition 4.3.2.1) we obtain the following.

Corollary 5.1.1.7. There is a commutative diagram of symmetric monoidal
functors as follows

(
Ch(k)cof

fd
)op Ch(k)cof

fd

(
D(k)fd

)op
D(k)fd

(−)∨

γop γ

(−)∨

and both horizontal functors are equivalences. ♥

Example 5.1.1.8. Consider the commutative and cocommutative bialge-
bra D in Ch(k) from Construction 4.2.1.1. Its underlying chain complex is
k · {1} ⊕ k · {d} with 1 in degree 0 and d in degree 1. This chain complex is
dualizable with dual8 k · {1} ⊕ k · {d∨} with 1 in degree 0 and d∨ in degree
−1.

By Fact 5.1.1.3 the commutative and cocommutative bialgebra structure
on D induces again a commutative and cocommutative bialgebra structure on
D∨, with unit the basis element we called 1 in degree 0 (see Remark 5.1.1.6).
The rest of the bialgebra structure is then already uniquely determined just
as in Construction 4.2.1.1, with in particular ∆(d∨) = 1⊗ d∨ + d∨ ⊗ 1. ♦

As (−)∨ is a symmetric monoidal equivalence, it induces an equivalence
that converts algebras into coalgebras and vice versa, as we note next.

Remark 5.1.1.9. Let C be a symmetric monoidal ∞-category and O and
O′ two ∞-operads. Note that the symmetric monoidal duality functor

(−)∨ : (Cfd)
op → Cfd

from Fact 5.1.1.3 induces a symmetric monoidal equivalence

BiAlgO,O′(Cfd) ≃AlgO′

(
AlgO(Cfd)

op)op

(−)∨

−−−→AlgO′

(
AlgO

(
Cop

fd
)op)op

≃ AlgO′(coAlgO(Cfd))
op ♦

8A duality datum is given by defining e by e(1 ⊗ 1) = 1 = e(d∨ ⊗ d) and c by
c(1) = d⊗ d∨ + 1⊗ 1.
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5.1.2 Construction of a resolution
The goal of this section is to construct diagram (5.1) that was discussed in

the introduction to Section 5.1, and we refer to there for motivation. We will
construct such a diagram in Alg(coCAlg(Ch(k))) first and then show that
its image in Alg(coCAlg(D(k))) has the required properties. While we are
still discussing algebras and coalgebras in the symmetric monoidal 1-category
Ch(k), one should keep in mind that, as explained in Section 3.3, there is a
canonical isomorphism

Alg(coCAlg(Ch(k))) ∼= coCAlg(Alg(Ch(k))) = BiAlgAssoc,Comm(Ch(k))

so we will be justified in identifying these categories and talking about objects
as cocommutative bialgebras.

Let us now briefly go over the content of the subsections. In order to make
it easier to talk about certain differential graded algebras that have free un-
derlying Z-graded k-algebras, we start in Section 5.1.2.1 by introducing some
convenient notation. We will then begin the actual construction of diagram
(5.1) in Section 5.1.2.2 by constructing a sequence of cocommutative bialge-
bras

A0 → A1 → A2 → . . .

in Ch(k). Section 5.1.2.3 will then be devoted to calculating the homology of
colimnAn. In Section 5.1.2.4 we will construct pushout diagrams

Bn Bn

An−1 An

of cocommutative bialgebras in Ch(k). The cocommutative bialgebra Bn itself
is not isomorphic to k, but maps to a cocommutative bialgebra in D(k) that
is equivalent to k, as we will see in Section 5.1.2.5. We then combine the
previous results in Section 5.1.2.6 to describe the induced diagram (5.1) in
Alg(coCAlg(D(k))) and show that it has the required properties. Finally,
in Section 5.1.2.7 we describe A1 and Bn as free associative algebras on
underlying pointed cocommutative coalgebras.

5.1.2.1 Notation for freely generated differential graded algebras

In this short section we introduce some notation for differential graded
algebras whose underlying Z-graded k-algebra is free associative.
Notation 5.1.2.1. Let X be a set and let9 degCh(x) be an integer for every
element x of X. Then we can form a Z-graded k-module with basis X as

9Ultimately we want to define differential graded algebras generated by X, and in this
differential graded algebra the chain degree of an element x of X will of course be exactly
what we (prematurely, to avoid introducing more temporary notation) call degCh(x)
here, making this notation in the end compatible with the notation in Definition 4.1.1.1.
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follows.
k ·X :=

⊕

x∈X

k[degCh(x)]

We will denote the free associative Z-graded k-algebra generated by k ·X by

FreeAssoc(X)

and if X = { x1, x2, . . . } then we will often write

FreeAssoc(x1, x2, . . .) = FreeAssoc(X)

instead. A basis of FreeAssoc(X) is given by elements of the form xi1 · · ·xin
for n ≥ 010 with xij elements of X for 1 ≤ j ≤ n.

We can make FreeAssoc(X) into an associative differential graded algebra
by furnishing it with the zero boundary operator. But we will sometimes want
to define associative differential graded algebras that have a free underlying
Z-graded k-algebra, but do have nontrivial boundaries. So assume that for
every element x of X we are given an element f(x) of FreeAssoc(X)degCh(x)−1.
Then we use the notation

FreeAssoc(X | ∂(x) = f(x))

for the differential graded k-algebra whose underlying Z-graded k-algebra is
given by FreeAssoc(X) and with boundary operator (uniquely) extended by
k-linearity and the Leibniz rule from the prescription ∂(x) = f(x) for every
element x of X. This does not in general actually define a differential graded
algebra, as in general there is no reason for the boundary operator to square
to 0, so if we use this notation we will need to check that ∂(∂(x)) = 0 for
every element x of X.

Sometimes we will omit ∂(x) in this notation for some elements x of X, in
which case this is to be interpreted as ∂(x) = 0. ♦

5.1.2.2 Construction of A as a directed colimit

In this section we construct a sequence of cocommutative bialgebras

A0 → A1 → A2 → . . .

in Ch(k) and describe its colimit.

Construction 5.1.2.2. We will construct a cocommutative bialgebra in
chain complexes An for every integer n ≥ 0. Using Notation 5.1.2.1, we
define the underlying differential graded k-algebra of An as

An := FreeAssoc


y1, . . . , yn

∣∣∣∣∣∣
∂(yk) =

∑

i+j=k

yiyj




10If n = 0 we interpret the product as 1.
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where degCh(k)(yi) = −1 and where the sum should of course be interpreted
to only be taken over those i and j for which yi and yj are defined11. For
this to actually define a differential graded algebra structure the definition
of ∂ needs to satisfy ∂(∂(yl)) = 0 for any 1 ≤ l ≤ n, which is the case as the
following basic calculation shows.

∂(∂(yl)) = ∂


∑

i+j=l

yiyj




=
∑

i+j=l

∂(yi)yj −
∑

i+j=l

yi∂(yj)

=
∑

i+j+k=l

yiyjyk −
∑

i+j+k=l

yiyjyk = 0

We next define a cocommutative coalgebra structure on An. As the un-
derlying graded k-algebra of An is free, we can define the counit ϵ : An → k

as well as the comultiplication ∆: An → An ⊗ An to be the morphisms of
graded k-algebras determined by

ϵ(yk) = 0

∆(yk) = 1⊗ yk + yk ⊗ 1

for 1 ≤ k ≤ n. By definition comultiplication and counit are morphisms of
algebras, so if this defines a cocommutative coalgebra structure in Ch(k), then
this will make An into a cocommutative bialgebra in Ch(k) as claimed.

As counit and unit of the presumptive coalgebra structure are morphisms
of algebras, it suffices to check compatibility of ϵ and ∆ with ∂, coassociativity,
counitality, and cocommutativity on multiplicative generators. For example
for the comultiplication being a morphism of chain complexes we can calculate

∆(∂(yk)) = ∆


 ∑

i+j=k

yiyj




=
∑

i+j=k

(1⊗ yi + yi ⊗ 1) · (1⊗ yj + yj ⊗ 1)

=
∑

i+j=k

1⊗ yiyj − yj ⊗ yi + yi ⊗ yj + yiyj ⊗ 1

=
∑

i+j=k

1⊗ yiyj + yiyj ⊗ 1

= ∂(1⊗ yk + yk ⊗ 1)

= ∂(∆(yk))

11So in particular, ∂(y1) = 0 and ∂(y2) = y21 .
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and as another example the following calculation verifies coassociativity.

(id⊗∆)(∆(yk)) = 1⊗ 1⊗ yk + 1⊗ yk ⊗ 1 + yk ⊗ 1⊗ 1 = (∆⊗ id)(∆(yk))

Compatibility of ϵ with ∂, counitality, and cocommutativity are similarly
immediate.

We can completely analogously define a cocommutative bialgebra A in
Ch(k) as

A := FreeAssoc


y1, y2, . . .

∣∣∣∣∣∣
∂(yk) =

∑

i+j=k

yiyj




with counitality and comultiplication defined exactly as for An. ♦

Remark 5.1.2.3. There is a commutative diagram of cocommutative bial-
gebras in Ch(k) as follows

A0 A1 A2 · · ·

A

where all morphisms are the obvious inclusions. This diagram exhibits A as
the colimit of the directed system of inclusions in the top row, as can be
seen using that directed colimits of cocommutative bialgebras in Ch(k) are
calculated on underlying chain complexes by [HA, 3.2.2.5] and [HA, 3.2.3.1]
in combination with [HTT, 5.5.8.3]. ♦

5.1.2.3 Homology of A

As described in the introduction to Section 5.1 we will later construct
a morphism from the object in Alg(coCAlg(D(k))) represented by A to R∨,
the dual of a commutative bialgebra in D(k) with prescribed homology. From
the construction it will be clear that the induced morphism on homology is
surjective, and we will want to conclude that the morphism is an equivalence,
or equivalently that the induced morphism on homology is an isomorphism.
In order to do this we should calculate the homology of A, which we do in
this section.

Proposition 5.1.2.4. The chain complex A that we constructed in Construc-
tion 5.1.2.2 has homology

Hn(A) ∼=

{
k if n = 0 or n = −1

0 otherwise

and the unit 1 of A and y1 are representatives of elements forming a basis of
H0(A) and H1(A). ♥
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Proof. A is freely generated as a Z-graded k-module by words in the multi-
plicative generators yi, i. e. by elements of the form

yi1 · · · yin

with n ≥ 0 (for n = 0 we interpret the product as 1) and ij elements of Z≥1.
For m ≥ 0, let A(m) be the sub Z-graded k-module generated by elements
of this form with

∑n
j=1 ij = m. It follows directly from the definitions that

A(m) is in fact a subcomplex of A, and that furthermore

A ∼=
⊕

m≥0

A(m)

in Ch(k).
Note that A(0) and A(1) are both concentrated in a single degree and of

rank 1, with A(0) having a basis formed by 1 in degree 0 and A(1) having a
basis formed by y1 in degree −1. To finish the proof it thus suffices to show
that A(m) is acyclic for m > 1.

For this, we fix m > 1 and define a chain homotopy h on A(m) by extending
k-linearly from the following definition on the basis.

h(yi1 · · · yin) =

{
yi2+1yi3 · · · yin if n > 1 and i1 = 1

0 otherwise

We can now check that h is indeed a contracting homotopy by checking
on basis elements. For this we distinguish three cases. First, the only basis
element for which n ≤ 1 is ym, and for it we have the following calculation.

(∂h+ h∂)(ym) = ∂(0) + h


 ∑

i+j=m

yiyj


 = ym

Next, for those basis elements for which n > 1 and i1 = 1, we obtain the
following.

(∂h+ h∂)(y1yi2 · · · yin)

= ∂(yi2+1 · · · yin) + h

(
−y1

( ∑

k+l=i2

ykylyi3 · · · yin

)
+ y1yi2∂(yi3 · · · yin)

)

=

( ∑

k+l=i2+1

ykylyi3 · · · yin

)
− yi2+1∂(yi3 · · · yin)

−

( ∑

k+l=i2

yk+1ylyi3 · · · yin

)
+ yi2+1∂(yi3 · · · yin)
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= y1yi2 · · · yin +

( ∑

k+l=i2

yk+1ylyi3 · · · yin

)
− yi2+1∂(yi3 · · · yin)

−

( ∑

k+l=i2

yk+1ylyi3 · · · yin

)
+ yi2+1∂(yi3 · · · yin)

= y1yi2 · · · yin

Finally, for the other basis elements, i. e. those with n > 1 and i1 6= 1, we
have the following calculation.

(∂h+ h∂)(yi1yi2 · · · yin)

= h

(( ∑

k+l=i1

ykylyi2 · · · yin

)
− yi1∂(yi2 · · · yin)

)

= yi1−1+1yi2 · · · yin +
∑

k+l=i1,k>1

0 + 0

= yi1yi2 · · · yin

5.1.2.4 Construction of An+1 from An

In order to be able to lift a morphism from An−1 to a morphism from
An, we will describe An as a pushout of An−1 in this section. We start by
constructing the relevant commutative square, and show that this square is
a pushout square at the end of this section.

Construction 5.1.2.5. Let n ≥ 1. Using Notation 5.1.2.1 we define a mor-
phism of differential graded algebras as

Bn = FreeAssoc
(
y
n

)
→ FreeAssoc

(
y
n
, yn

∣∣∣ ∂(yn) = y
n

)
= Bn

with degCh(yn) = −1 and degCh(yn) = −2.
We can upgrade this morphism of differential graded k-algebras to a mor-

phism of cocommutative bialgebras in Ch(k), by defining counit ϵ and comul-
tiplication ∆ as follows on the multiplicative basis.

ϵ(yn) = 0

ϵ
(
y
n

)
= 0

∆(yn) = 1⊗ yn + yn ⊗ 1

∆
(
y
n

)
= 1⊗ y

n
+ y

n
⊗ 1

Checking that ϵ and ∆ are compatible with ∂ as well as coassociativity, couni-
tality, and cocommutativity are similar to Construction 5.1.2.2.
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We can define a morphism of differential graded algebras

Bn → An

by sending yn to yn and y
n

to ∂(yn). It is easy to check that this is also
compatible with the coalgebra structure, making this a morphism of cocom-
mutative coalgebras.

Finally, the restriction to Bn factors through An−1, so that we obtain a
commutative diagram

Bn Bn

An−1 An

(5.2)

in Alg(coCAlg(Ch(k))). ♦

In order to show that (5.2) is a pushout square, we will need to two pre-
liminary results that allow us to detect colimits in Alg(coCAlg(Ch(k))) on
underlying algebras in Ch(k).

Proposition 5.1.2.6. Let C be a symmetric monoidal ∞-category and let O
be a reduced12 ∞-operad with o the essentially unique object in the underlying
∞-category O. Assume that C is cocomplete and the tensor product preserves
colimits separately in each variable.

Then coAlgO(C) is cocomplete and the induced symmetric monoidal struc-
ture on coAlgO(C) is also compatible with colimits. ♥

Proof. coAlgO(C) is cocomplete by [HA, 3.2.2.5]. Furthermore, the forgetful
functor

evo : coAlgO(C)→ C

is symmetric monoidal by Proposition E.4.2.3, conservative by [HA, 3.2.2.6]
and preserves colimits by [HA, 3.2.2.5]. It thus follows that the symmetric
monoidal structure on coAlgO′(C) is also compatible with colimits.

Proposition 5.1.2.7. Let C be a symmetric monoidal ∞-category and let O
and O′ be ∞-operads. Assume that O′ is reduced and let o be the essentially
unique object in O′.

Then the forgetful functor

AlgO(evo) : AlgO(coAlgO′(C))→ AlgO(C) (5.3)

is conservative, i. e. reflects equivalences.
Assume additionally that C is cocomplete and the tensor product preserves

colimits separately in each variable. Then AlgO(evo) preserves colimits. In
particular, also being conservative, AlgO(evo) detects colimits. ♥

12See [HA, 2.3.4.1] for a definition.
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Proof. The symmetric monoidal forgetful functor13

evo : coAlgO′(C)→ C

is by [HA, 3.2.2.6] conservative and preserves colimits by [HA, 3.2.2.5]. It thus
follows from Proposition E.3.4.1 and Proposition E.7.3.114 that the forgetful
functor (5.3) is also conservative and colimit-preserving, and hence detects
colimits.

Proposition 5.1.2.8. The commutative square (5.2) constructed in Con-
struction 5.1.2.5 is a pushout diagram in Alg(coCAlg(Ch(k))) ♥

Proof. It follows from Proposition 5.1.2.715 that the forgetful functor from
cocommutative bialgebras to underlying algebras

Alg
(
ev〈1〉

)
: Alg(coCAlg(Ch(k)))→ Alg(Ch(k))

detects colimits. It thus suffices to show that the underlying square of differ-
ential graded k-algebras is a pushout square.

The functor from chain complexes of k-modules to Z-graded k-modules
is conservative, symmetric monoidal, and preserves colimits. It thus follows
from Proposition E.3.4.1 and Proposition E.7.3.1 just as in the proof of Propo-
sition 5.1.2.7 that the forgetful functor from differential graded k-algebras to
Z-graded k-algebras detects colimits, so it actually suffices to show that the
underlying commutative square of Z-graded k-algebras is a pushout square.

There is a pushout diagram of Z-graded k-modules

0 k · { yn }

k ·
{
y
n

}
k ·
{
y
n
, yn

}

where all morphisms are the obvious inclusions, which induces the pushout
diagram of Z-graded k-algebras at the top of the following commutative dia-
gram

k FreeAssoc(yn)

FreeAssoc
(
y
n

)
FreeAssoc

(
y
n
, yn

)

FreeAssoc(y1, . . . , yn−1) FreeAssoc(y1, . . . , yn)

13See Proposition E.4.2.3.
14coAlgO′ (C) is cocomplete and its symmetric monoidal structure is compatible with col-

imits by Proposition 5.1.2.6.
15The tensor product of Ch(k) preserves colimits in each variable separately as the sym-

metric monoidal structure is closed by Definition 4.1.2.1.
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where all morphisms are the obvious inclusions. We have to show that the
bottom square is a pushout square. As the top square is a pushout square, it
suffices to show that the big outer square is a pushout.

But the big outer square is FreeAssoc applied to the following pushout dia-
gram of Z-graded k-modules

0 k · { yn }

k · { y1, . . . , yn−1 } k · { y1, . . . , yn }

and is thus a pushout diagram.

5.1.2.5 Identification of Bn up to quasiisomorphism

In this section we show that the cocommutative bialgebras Bn defined in
Construction 5.1.2.5 are quasiisomorphic to k. We start by remarking that k
is a zero object in Alg(coCAlg(Ch(k))).

Remark 5.1.2.9. Let C be a cocomplete and complete symmetric monoidal
∞-category such that the tensor product is compatible with colimits in each
variable. By [HA, 3.2.2.4 and 3.2.3.1], coCAlg(C) is complete and cocomplete,
and the induced symmetric monoidal structure is again compatible with col-
imits by Proposition 5.1.2.6. Another application of [HA, 3.2.2.4 and 3.2.3.1]
yields that Alg(coCAlg(C)) is complete and cocomplete.

By [HA, 3.2.1.8], an initial object is given by the monoidal unit. We want
to show that this object is also final and thus a zero object in Alg(coCAlg(C)).
As the forgetful functor

eva : Alg(coCAlg(C))→ coCAlg(C)

detects limits by [HA, 3.2.2.4] and is also symmetric monoidal by Proposi-
tion E.4.2.3, it suffices to show that the monoidal unit is a final object in
coCAlg(C), which again follows from [HA, 3.2.1.8] (and passing to opposite
categories twice). ♦

Proposition 5.1.2.10. Let n ≥ 1. The unique morphism in the 1-category
Alg(coCAlg(Ch(k))) from the monoidal unit k (see Remark 5.1.2.9) to Bn is
a quasi-isomorphism. ♥

Proof. The forgetful functor Alg(ev〈1〉) is symmetric monoidal and detects
colimits by Proposition 5.1.2.7. By [HA, 3.2.1.8] it thus suffices to show that
the unique morphism in Alg(Ch(k)) from the monoidal unit k to FreeAlg(B′

n)
is a quasiisomorphism, where B′

n is the chain complex which as a Z-graded
k-module is k ·

{
y
n
, yn

}
, with degCh(yn) = −1 and degCh(yn) = −2, and

with boundary operator defined by ∂(yn) = y
n
.
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But the left adjoint FreeAlg to the forgetful functor eva preserves initial
objects, so this morphism is FreeAlg applied to the unique morphism of chain
complexes 0→ B′

n.
By Proposition E.7.2.1 we can thus identify k → FreeAlg(B′

n) with the
following inclusion of the summand indexed by 0

k = B′⊗0
n →

⊕

i≥0

B′⊗i
n

As the tensor product of a contractible chain complex with another chain
complex is again contractible it hence suffices to show that B′

n is contractible,
which is clear.

5.1.2.6 The resolution in D(k)

In this section we describe the image of the constructions discussed in
Section 5.1.2.2 and Section 5.1.2.4 under the symmetric monoidal functor
γ : Ch(k)cof → D(k). The important point is that the pushout diagram (5.2)
is in fact a homotopy pushout and thus mapped under γ to a pushout in
Alg(coCAlg(D(k))), and likewise for the colimit of A0 → A1 → A2 → . . . .

Proposition 5.1.2.11. The underlying differential graded k-algebras of An
and A from Construction 5.1.2.2 and of Bn and Bn from Construction 5.1.2.5
are cofibrant. Furthermore the pushout square (see Construction 5.1.2.5 and
Proposition 5.1.2.8)

Bn Bn

An−1 An

is a homotopy pushout in Alg(Ch(k)) and the colimit of the directed system
(see Remark 5.1.2.3)

A0 → A1 → A2 → . . .

is a homotopy colimit in Alg(Ch(k)). ♥

Proof. For the cofibrancy statements it suffices to show that A0 and Bn (for
n ≥ 1) are cofibrant and that the morphisms Bn → Bn are generating cofibra-
tions. The former is the case as A0

∼= FreeAlg(0) and Bn ∼= FreeAlg(k · { y
n
}),

and the chain complexes 0 and k · {y
n
} are cofibrant. The latter is the case

as the morphism in question is isomorphic to FreeAlg applied to a generating
cofibration in Ch(k), see [Hov99, 2.3.3], Fact 4.1.3.1, and Theorem 4.2.2.1 (2).

That the pushout square is a homotopy pushout now follows from [HTT,
A.2.4.4], and that the directed colimit is a homotopy colimit follows from
[HTT, A.2.9.24 (i)]16.
16The reference shows that the diagram is cofibrant in the projective model structure on

Fun(Z≥0,Ch(k)) if and only if A0 is cofibrant and An → An+1 is a cofibration for every
n ≥ 0.
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Notation 5.1.2.12. Recall from Proposition 4.3.2.1 that we denote the sym-
metric monoidal functor from Ch(k)cof to D(k) by γ.

Let O and O′ be ∞-operads. Then we denote the induced functor on O-
algebras of O′-coalgebras as follows.

γO
′

O : AlgO
(
coAlgO′

(
Ch(k)cof))→ AlgO(coAlgO′(D(k))) ♦

Remark 5.1.2.13. As all involved objects have cofibrant underlying chain
complexes by Propositions 5.1.2.11 and 4.2.2.12, the commutative squares
and directed system constructed in Construction 5.1.2.5 and Remark 5.1.2.3
are mapped by γComm

Assoc to commutative diagrams in Alg(coCAlg(D(k))). ♦

Corollary 5.1.2.14. For n ≥ 1, the commutative square

γComm
Assoc (Bn) γComm

Assoc (Bn)

γComm
Assoc (An−1) γComm

Assoc (An)

in Alg(coCAlg(D(k)))) is a pushout diagram and the morphisms

γComm
Assoc (An)→ γComm

Assoc (A)

exhibit γComm
Assoc (A) as a colimit of

γComm
Assoc (A0)→ γComm

Assoc (A1)→ γComm
Assoc (A2)→ . . .

in Alg(coCAlg(D(k))). ♥

Proof. As D(k) is presentable symmetric monoidal by Proposition 4.3.2.1,
it suffices by Proposition 5.1.2.7 to show that the underlying diagrams in
Alg(D(k)) are colimit diagrams.

By Proposition 5.1.2.11 the diagrams of differential graded algebras are
pointwise cofibrant (not just with cofibrant underlying chain complexes) as
well as homotopy colimit diagrams, so the claim follows from combining this
with Proposition 4.4.2.1 and [HA, 1.3.4.24].

5.1.2.7 Free generation of certain associative algebras

In order to be able work with morphisms out of γE∞

E0
(Bn), we will show

in this section that γE∞

E0
(Bn) is the free associative algebra on an object in

AlgE0
(coCAlg(D(k))).

We start by constructing the morphism that exhibits γE∞

E0
(Bn) as a free

associative algebra.

Construction 5.1.2.15. Let n ≥ 1. We define B′
n to be the sub Z-graded

k-module of Bn (see Construction 5.1.2.5) generated by 1 and y
n
. Note that
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B′
n is closed under ∂ as well as ∆, and the unique morphism k → Bn in

Alg(coCAlg(Ch(k))) (see Remark 5.1.2.9) factors over B′
n.

We can thus consider B′
n as an object of coCAlg(Ch(k))k/. The underlying

chain complexes of B′
n and Bn are cofibrant by [Hov99, 2.3.6], so we can

consider the inclusion of B′
n into Bn as a morphism in coCAlg(Ch(k)cof)k/.

By [HA, 2.1.3.10] there is an equivalence of ∞-categories

AlgE0

(
coCAlg

(
Ch(k)cof)) ≃

−→ coCAlg
(
Ch(k)cof)

k/

under which we can consider the inclusion

B′
n → Bn (5.4)

as a morphism in AlgE0
(coAlgE∞

(Ch(k)cof)).
Completely analogously we define A′

1 to be the sub Z-graded k-module of
A1 (see Construction 5.1.2.2) spanned by 1 and y1 and consider the inclusion
A′

1 → A1 as a morphism in AlgE0
(coAlgE∞

(Ch(k)cof)). ♦

Remark 5.1.2.16. By [HA, 2.1.3.9] there is a unique morphism of ∞-oper-
ads

E⊗
0 → Assoc⊗

which can be interpreted as follows. Let C be a symmetric monoidal ∞-cate-
gory. Then the induced forgetful functor

AlgAssoc(C)→ AlgE0
(C) ≃ C1C/

(where the equivalence is the one from [HA, 2.1.3.10]) sends an associative
algebra A to the unit morphism 1C → A. ♦

Notation 5.1.2.17. By [HA, 3.1.3.5]17, the forgetful functor

AlgAssoc(coCAlg(D(k)))→ AlgE0
(coCAlg(D(k)))

from Remark 5.1.2.16 has a left adjoint that we will denote as follows.

FreeAlg(coCAlg)
Alg

E0
(coCAlg) : AlgE0

(coCAlg(D(k)))→ AlgAssoc(coCAlg(D(k)))

We use the analogous notation FreeAlg
Alg

E0

for the left adjoint of the forgetful
functor AlgAssoc(D(k))→ AlgE0

(D(k)). ♦

Proposition 5.1.2.18. In this proposition we use Notation 5.1.2.12.
Let n ≥ 1. The morphism

γE∞

E0

(
B′
n

)
→ γE∞

E0
(Bn)

17Using Proposition 5.1.2.6 and Proposition 4.3.2.1 (1).
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induced by the inclusion (5.4) in AlgE0
(coCAlg(D(k))) induces a morphism

FreeAlg(coCAlg)
Alg

E0
(coCAlg)

(
γE∞

E0

(
B′
n

))
→ γE∞

Assoc(Bn) (5.5)

in Alg
(
coAlgE∞

(D(k))
)
. This morphism is an equivalence.

The analogously defined morphism

FreeAlg(coCAlg)
Alg

E0
(coCAlg)

(
γE∞

E0
(A′

1)
)
→ γE∞

Assoc(A1)

is also an equivalence. ♥

Proof. We only discuss the case of Bn, as the case of A1 is completely anal-
ogous.

By Proposition 5.1.2.7 the functor

Alg
(
ev〈1〉

)
: Alg(coCAlg(D(k)))→ Alg(D(k))

is conservative, and hence it suffices to show that the underlying morphism
in Alg(D(k)) of (5.5) is an equivalence.

The functor ev〈1〉 : coCAlg(D(k))→ D(k) is symmetric monoidal and pre-
serves colimits18, so we can apply Proposition E.7.2.2 to conclude that the
underlying morphism in Alg(D(k)) of morphism (5.5) is the morphism19

FreeAlg
Alg

E0

(
γE0

(B′
n)
)
→ γAssoc(Bn)

adjoint to the morphism γE0
(B′

n)→ γE0
(Bn).

Now consider the subcomplex B′′
n of B′

n generated as a free Z-graded k-
module by y

n
. This complex is cofibrant and the morphism B′′

n → B′
n in

Ch(k)cof exhibits B′
n as the free E0-algebra generated by B′′

n, see Proposi-
tion E.7.2.1.

The symmetric monoidal functor γ : Ch(k)→ D(k) preserves coproducts by
Proposition 4.3.2.1 (3) so by Proposition E.7.2.2 variant (3) we can identify
γE0

(B′
n) with FreeAlg

E0

(
γ(B′′

n)
)
, and the equivalence

FreeAlg
E0

(
γ(B′′

n)
) ≃
−→ γE0

(B′
n)

is adjoint to the inclusion γ(B′′
n) → γ(B′

n). Using composability of adjoints
[HTT, 5.2.2.6] we can identify FreeAlg

Alg
E0

◦ FreeAlg
E0 with FreeAlg, and under

this identification the morphism

FreeAlg(γ(B′′
n)
)
≃ FreeAlg

Alg
E0

(
γE0

(B′
n)
)
→ γAssoc(Bn) (5.6)

18See the proof of Proposition 5.1.2.6.
19We are also using that the various functors induced by γ are compatible with the forgetful

functors here, to e. g. identify the underlying associative algebra of γ
E∞
Assoc(Bn) with

γAssoc(Bn).
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which we need to show is an equivalence, is adjoint to the following inclusion.

γ(B′′
n)→ γ(Bn)

We finish by invoking Proposition E.7.2.2 again, this time variant (2) (us-
ing that γ preserves coproducts by Proposition 4.3.2.1 (3)), and noting that
B′′
n → Bn indeed exhibits Bn as the free differential graded algebra generated

by B′′
n by definition.

5.1.3 Formality of certain associative algebras
Let C be a monoidal ∞-category and C an associative algebra in C. By

[HA, 3.2.1.8] (see also [HA, 3.2.1.4]) C is an initial object in Alg/Assoc(C) if
and only if the unit morphism 1C → C is an equivalence. In this section
we show that this is the case if and only if there exists any equivalence
1C ≃ C in C. In particular, this implies that any two associative algebras in
C whose underlying objects in C are equivalent to 1C are already equivalent
as associative algebras.

Notation 5.1.3.1. Let C be a monoidal ∞-category and 1 a unit of C. We
will use the following notation in this section.

As part of the monoidal structure on C, there are equivalences, natural in
X,

λ1,X : 1⊗X
≃
−→ X

and
ρX,1 : X ⊗ 1

≃
−→ X

for 1 any unit object in C and X any object in C, called the left unitor and
right unitor, respectively.

The reason why we let 1 be part of the notation is that we will consider
morphisms between two unit objects that might not (a priori) be equivalences,
so it will be important to distinguish them. ♦

Proposition 5.1.3.2. Let C be a monoidal ∞-category, let 1 be a unit object
in C, and f and g two endomorphisms of 1. Then f ◦g and g◦f are homotopic.

♥

Proof. Two morphisms in an ∞-category are homotopic if and only if their
images in the homotopy category are equal. It thus suffices to show that the
monoid structure induced by composition on

π0(MapC(1,1)) = MorHo(C)(1,1)

is commutative.
Note that the monoidal structure on the ∞-category C induces the struc-

ture of an ordinary monoidal category on the homotopy category Ho(C), see
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5.1 Formality of certain E∞,E1-bialgebras

[HA, 4.1.1.12]. We can define a binary operation ⋆ on MorHo(C)(1,1) by let-
ting f ⋆ g for f and g in MorHo(C)(1,1) be given by conjugating f ⊗ g with
the left unitor λ1,1 as depicted below.

1 1⊗ 1

1 1⊗ 1

f⋆g f⊗g

λ1,1

∼=

λ1,1

∼=

Naturality of λ1,− immediately implies that id1 is a left unit for the binary
operation ⋆. We could similarly define ⋆′ using the right unitor ρ1,1, for which
id1 would be a right unit. As the composition

1
λ−1
1,1
−−−→ 1⊗ 1

ρ1,1
−−−→ 1

is the identity20, so ⋆ = ⋆′, and hence we can conclude that id1 is a two-sided
unit for the binary operation ⋆ on MorHo(C)(1,1).

As (f ⊗ g) ◦ (h ⊗ i) = (f ◦ h) ⊗ (g ◦ i) in MorHo(C)(1,1) by functorial-
ity of the tensor product for f , g, h, and i endomorphisms of 1, we have
(f ⋆ g) ◦ (h ⋆ i) = (f ◦ h) ⋆ (g ◦ i) and can thus apply the Eckmann-Hilton ar-
gument to conclude that composition is commutative in MorHo(C)(1,1).

Proposition 5.1.3.3. Let C be a monoidal ∞-category and R an Assoc-
algebra in C such that the underlying object in C is a monoidal unit. Let 1 be
another, fixed, unit object. Then the unit morphism ι : 1C → R, that is part
of the data of R as an Assoc-algebra, is an equivalence. ♥

Proof. As part of the data of R as an Assoc-algebra there is also a multiplica-
tion morphism µ : R⊗R→ R, as well as a commutative diagram exhibiting
(part of) unitality for R, depicted in the top half of the following diagram.

R 1⊗R R⊗R R

R R

idR

idR

≃

λ1,R

≃ λ1,R

ι⊗idR µ

≃λR,R

φ

ψ

The morphisms φ and ψ are defined as the induced morphisms that make
the diagrams commute.
20In [Mac98, VII.1] this is required as an axiom for the definition of monoidal categories,

but Kelly showed in [Kel64, Theorems 6 and 7] that this in fact follows from the now
usual list of axioms.
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There is also a commutative diagram by naturality of ρ−,R as follows.

1 R

1⊗R R⊗R

ι

≃ρ1,R

ι⊗idR

≃ ρR,R

Thus ι is an equivalence if and only if ι ⊗ idR is, which is an equivalence
if and only if φ is. But for φ we already have a left inverse ψ, i. e. ψ ◦ φ is
homotopic to idR. It follows from Proposition 5.1.3.2 that φ ◦ ψ is then also
homotopic to idR, so φ is an equivalence.

5.1.4 Group homology
Let G be a (discrete) group. The goal of this section is to discuss how

to calculate orbits of G-objects in D(k) and discuss the relation to classical
notions. The category of G-objects in D(k) is defined as

D(k)BG := Fun(BG,D(k))

where BG is the 1-groupoid with a single object ∗ and AutBG := G. If
F : BG → D(k) is a functor that we think of as an object in D(k) with G-
action, then we will often not distinguish notationally between F and F (∗).

Let X be a G-object in D(k). Then the G-orbits XG of X is the colimit of
X considered as a functor BG→ D(k).

We want to relate the construction of orbits ofG-objects in D(k) to classical
notions of homological algebra. To start we note that by [HA, 1.3.4.25] every
G-object in D(k) is represented by a G-object in Ch(k) that is cofibrant in the
projective model structure on Fun(BG,Ch(k)). Let X be a G-object in Ch(k)
with cofibrant underlying chain complex. We can then apply [HA, 1.3.4.24]
to conclude that γ(X)G ≃ hocolimBGX.

The category of G-objects in Ch(k) can be identified with Ch(kG), where
kG is the group ring of G over k, see [Wei94, Section 6.1]. This isomorphism
of categories is compatible with the respective forgetful functors to Ch(k),
from which it immediately follows that the respective weak equivalences and
projective fibrations coincide21, so that this is even an equivalence of combi-
natorial model categories.

The colimit functor Fun(BG,Ch(k))→ Ch(k) is a left Quillen functor that
is left adjoint to the functor const, the homotopy colimit functor is its derived
21For the projective model structure on Fun(BG,Ch(k)), which we take with respect to

the projective model structure on Ch(k), see [HTT, A.2.8.2], and for the projective
model structure on Ch(kG) see Fact 4.1.3.1 – while we did not specifically mention it
there, the assumption that the ring over which we take chain complexes is commutative
is unnecessary for merely obtaining a combinatorial model category (commutativity is
needed if we want to talk about the symmetric monoidal structure).
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5.1 Formality of certain E∞,E1-bialgebras

functor. Under the equivalence Fun(BG,Ch(k)) ∼= Ch(kG), the functor const
corresponds to the restriction of scalars functor Ch(k) → Ch(kG) that is
induced by restriction along the ring homomorphism kG → k that maps
every element of G to 1. The left adjoint of this functor is given by extension
of scalars, so k⊗kG−, see also the discussion in [Wei94, Exercise 6.1.1 2 and
Lemma 6.1.1].

The upshot is the following: If X is is a G-object in Ch(k), then there is
an equivalence

γ(X)G ≃ γ
(
k ⊗L

kG X
′
)

where on the right we take the derived tensor product and X ′ is the object
in Ch(kG) associated to X.

The homology k-modules of this derived tensor product is by definition
given by Tor, and this particular case this is what is called the group homology
of G with coefficients in X (or X ′), and denoted by H∗(G;X), see [Wei94,
Definition 6.1.2 and Exercise 6.1.2]. We can summarize the discussion as
follows, using Proposition 4.3.3.2.

Proposition 5.1.4.1. Let G be a discrete group and X a G-object in Ch(k).
Then there are isomorphisms

Hi(γ(X)G) ∼= TorkGi (k,X ′) ∼= Hi(G;X)

for every integer i, where X ′ is the kG-chain complex associated to X under
the isomorphism discussed above. These isomorphisms are natural in X. ♥

We can conclude the following from this.

Proposition 5.1.4.2. Let G be a discrete group and X a G-object in D(k).
Assume that n is an integer such that the homology of X vanishes in de-
grees below n. Then the homology of XG also vanishes below degree n, and
Hn(XG) ∼= Hn(X)G. ♥

Proof. One way to prove this is to use represent X by a G-object in Ch(k)
concentrated in degrees n and above, and then the statement follows from
Proposition 5.1.4.1.

Another way would be to note that D(k)≥n is by [HA, 1.2.1.6] closed under
colimits, from which it follows that the homology vanishes below degree n,
and use Proposition 4.3.3.8 for homology in degree n.

5.1.5 Formality of certain commutative algebras
The goal of Section 5.1 is to show that any two commutative bialgebras

in D(k) whose homology is concentrated in degrees 0 and 1, where it is
isomorphic to k, are equivalent. As a stepping stone we show in this section
the analogous and significantly easier statement for commutative algebras, so
forgetting the coalgebra structure.
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We start in the following construction by constructing a comparison mor-
phism from a “standard” commutative algebra with the prescribed homol-
ogy (that the homology is the correct one will be shown below in Propo-
sition 5.1.5.3). We will later show that this morphism is an equivalence of
commutative algebras.
Construction 5.1.5.1. Let R be an object of CAlg(D(k)) and

ϑ : ev〈1〉(R)
≃
−→ k ⊕ k[n]

an equivalence for some n > 0. Note that this equivalence is not assumed
to have anything to do with the algebra structure on R, this is only an
assumption on the equivalence class of the underlying object in D(k) of R.

As the underlying object of R is in (D(k)≥0)≤n it follows from Proposi-
tion 4.3.4.1 (7) and (8) that we can consider R as an object of the∞-category
CAlg((D(k)≥0)≤n).

Denote the inclusions that are part of k ⊕ k[n] being a coproduct by
ι0 : k → k ⊕ k[n] and ιn : k[n] → k ⊕ k[n], and let g : k[n] → ev〈1〉(R) be
g := ϑ−1 ◦ ιn.

By [HA, 1.2.1.6], [HTT, 1.2.13.7], Proposition 4.3.2.1 (1), and [HA, 3.1.3.5],
the forgetful functor

ev〈1〉 : CAlg(D(k)≥0)→ D(k)≥0

admits a left adjoint FreeCAlg
D(k)≥0

. We thus obtain an induced map of commu-
tative algebras in D(k)≥0

f ′ : FreeCAlg
D(k)≥0

(k[n])→ R

that is adjoint to g.
Note that as the inclusion ι≥0 : D(k)≥0 → D(k) is symmetric monoidal

(Proposition 4.3.4.1 (3)) and also preserves colimits ([HA, 1.2.1.6] with [HTT,
1.2.13.7]), we can use Proposition E.7.2.2 to identify CAlg(ι≥0)(f

′) with the
morphism

f ′′ : FreeCAlg
D(k)(k[n])→ R

that is adjoint to g.
Finally, as R lies in CAlg((D(k)≥0)≤n), the morphism f ′ is by Proposi-

tion 4.3.4.1 (8) adjoint to a morphism

f : CAlg(τ≤n)
(

FreeCAlg
D(k)≥0

(k[n])
)
→ R

of commutative algebras in (D(k)≥0)≤n. ♦

The equivalence ϑ−1 : k⊕k[n]
≃
−→ ev〈1〉(R) in Construction 5.1.5.1 could be

anything on the summand k. However, we already have a candidate morphism
k → ev〈1〉(R) – the unit morphism of the commutative algebra structure of R.
In the next proposition we show that we can replace ϑ−1 on the first summand
by the unit morphism without losing the property of being an equivalence.
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Proposition 5.1.5.2. In the situation of Construction 5.1.5.1, the morphism

ι∐ g : k ⊕ k[n]→ ev〈1〉(R)

is an equivalence in D(k), where ι is the unit morphism of the algebra structure
on R. ♥

Proof. It suffices to show that the composition ϑ ◦ (ι ∐ g) is an equivalence.
Using the definition of g we can write this morphism as

k ⊕ k[n]


 ι

′ 0
ι′′ idk[n]




−−−−−−−−−→ k ⊕ k[n]

for some morphisms ι′ : k → k and ι′′ : k → k[n]. It thus suffices to show that
ι′ is an equivalence, as then

[
ι′−1 0
−ι′′ι′−1 idk[n]

]

will be an inverse.
While we do not need this, we note that ι′′ must actually be nullhomotopic,

as
π0

(
MapD(k)(k, k[n])

)
∼= H0(k[n]) ∼= 0

by Proposition 4.3.2.1 (5) and (4).
Applying the natural transformation idD(k) → ι≤0 ◦ τ≤0 (see Section 4.3.4)

we obtain a commuting diagram as follows22

k k ⊕ k[n] k

τ(k) τ(k ⊕ k[n]) τ(k)⊕ τ(k[n]) τ(k)

τ
(
ev〈1〉(R)

)

ϑ◦ι

ι′

pr0

τ(ϑ◦ι)

τ(ι)

τ(pr0)×τ(prn) pr0

τ(ϑ)

in D(k) where the morphisms pr0 and prn are the projections onto the first
and second factor, respectively.
22To save space we write τ instead of ι≤0τ≤0.

215



Chapter 5 Mixed complexes and circle actions

We have to show that ι′ is an equivalence. As k is in D(k)≤0, the leftmost
and rightmost vertical morphisms are equivalences. It thus suffices to show
that the composite from left to right in the middle row is an equivalence.

As a left adjoint τ≤0 preserves colimits and hence finite biproducts, and ι≤0

preserves finite biproducts as well by Proposition 4.3.4.2. Thus the morphism

ι≤0τ≤0(pr0)× ι≤0τ≤0(prn)

in the middle is an equivalence. The morphism pr0 on the right (in the middle
row) is an equivalence as τ≤0(k[n]) ≃ 023. As ϑ is an equivalence, ι≤0τ≤0(ϑ)
is also an equivalence.

It thus remains to show that ι≤0τ≤0(ι) is an equivalence. As we have al-
ready seen that domain and codomain of this morphism is equivalent to k

and hence in D(k)≥0, this morphism is equivalent to ι≥0τ≥0ι≤0τ≤0(ι), which
by [HA, 1.2.1.10] can be identified with ι≥0ι≥0,≤0τ≤0τ≥0(ι). As all four in-
volved functors are lax symmetric monoidal by Proposition 4.3.4.1, this is
the unit morphism of a commutative algebra in D(k) whose underlying ob-
ject is equivalent to k. We can thus apply Proposition 5.1.3.3 to conclude
that ι≤0τ≤0(ι) is an equivalence.

Before we can show that the morphism f from Construction 5.1.5.1 is an
equivalence, we need to determine the homology of FreeCAlg

D(k)(k[n]) in low
degrees. We do this in the following proposition, where we actually calculate
the homology in a wider range than would be necessary in this section – the
calculations in the extra degrees will be used in later sections.

Proposition 5.1.5.3. Let n ≥ 1 and let

φ : k[n]→ ev〈1〉

(
FreeCAlg

D(k)(k[n])
)

be the morphism in D(k) exhibiting FreeCAlg
D(k)(k[n]) as the free commutative

algebra generated by k[n] and let

i : k → ev〈1〉

(
FreeCAlg

D(k)(k[n])
)

be the unit morphism.

23This can be easily seen using the fiber sequence

ι≥1τ≥1(k[n])→ k[n]→ ι≤0τ≤0(k[n])

from [HA, 1.2.1.8] in which the first morphism is an equivalence as k[n] lies in D(k)≥1.
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Then the following holds for the homology of FreeCAlg
D(k)(k[n]).

Hi

(
FreeCAlg

D(k)(k[n])
)
∼=





0 if i < 0

k if i = 0

0 if 0 < i < n

k if i = n

0 if n < i < 2n

k if i = 2n and n is even
k/(2) if i = 2n and n is odd

Furthermore, a basis of the homology in degrees 0 and n is given by i and φ,
i. e. i ∐ φ : k ⊕ k[n] → FreeCAlg

D(k)(k[n]) induces an isomorphism on homology
in degrees smaller than 2n. ♥

Proof. Using [HA, 3.1.3.13] and unpacking the definition of the relevant
∞-groupoids P(m) for O⊗ = Comm⊗24 we obtain that there is an equiv-
alence25

ev〈1〉

(
FreeCAlg

D(k)(k[n])
)
≃
∐

m≥0

(
k[n]⊗m

)
Σm
≃ k ∐ k[n]∐

∐

m≥2

(
k[n]⊗m

)
Σm

in D(k) and under this equivalence the unit morphism and the morphism
φ exhibiting it as the free commutative algebra generated by k[n] are the
inclusions of the summands indexed by 0 and 1, respectively.

By Proposition 4.3.3.5 Hi preserves coproducts, so it suffices to show the
following.

(1) Hi((k[n]
⊗m)Σm)

∼= 0 for m ≥ 2 and i < nm.

(2) H2n((k[n]
⊗2)Σ2

) ∼= k if n is even and H2n((k[n]
⊗2)Σ2

) ∼= k/(2) if n is
odd.

Proof of Claim (1): Note that if m ≥ 2 then k[n]⊗m ≃ k[nm] has homology
concentrated in degree nm and is hence in D(k)≥nm. As D(k)≥nm is stable
under colimits in D(k) (see [HA, 1.2.1.6]) we can conclude that (k[n]⊗m)Σm
is also in D(k)≥nm and hence has vanishing homology in degrees smaller than
nm.

Proof of Claim (2): Going through [HA, 3.1.3.13] and [HA, 3.1.3.9] to iden-
tify the action of Σ2 on k[n]⊗k[n], we see that the nontrivial element acts via
the symmetry equivalence that is part of the structure of D(k) as a symmetric
monoidal ∞-category, and which is induced by the symmetry isomorphism
of the symmetric monoidal structure on Ch(k), see Proposition 4.3.2.1 (1)
24We get an equivalence of ∞-groupoids P(m) ≃ BΣm, where BΣm is the 1-groupoid

with a single object and the symmetric group on m elements as automorphism group.
25The subscript Σm denotes a (homotopy) orbit, i. e. a colimit of a functor from BΣm.
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and Definition 4.1.2.1. We can thus represent the Σ2-object k[n] ⊗ k[n] in
D(k) by the Σ2-object k[n]⊗k[n] in Ch(k) where the non-trivial element acts
via the symmetry isomorphism. There is an isomorphism k[n]⊗ k[n] ∼= k[2n]
mapping 1⊗1 to 1, and we obtain an induced Σ2-action on k[2n]. If n is odd,
then the non-trivial element of Σ2 acts as − id, which reflects the fact that if
x is an element in odd degree of a commutative differential graded algebra,
then we have x2 = −x2. If n is even, then the non-trivial element acts as id.

The claim now follows from Proposition 5.1.4.2.

Proposition 5.1.5.4. In the situation of Construction 5.1.5.1, the morphism
f is an equivalence.

In particular, if R′ is another commutative algebra in D(k) such that the
underlying objects ev〈1〉(R

′) and ev〈1〉(R) are equivalent, then R and R′ are
also equivalent as commutative algebras. ♥

Proof. The adjoint f of f ′ is by definition given by the composition

CAlg(τ≤n)
(

FreeCAlg
D(k)≥0

(k[n])
) CAlg(τ≤n)(f ′)
−−−−−−−−−−→ CAlg(τ≤n)(CAlg(ι≥0,≤n)(R))

−−−−−−−−−−→ R

where the second morphism the the counit of the following adjunction.

CAlg(τ≤n) ⊣ CAlg(ι≥0,≤n)

This counit is homotopic to the identity by construction26, so it suffices to
show that CAlg(τ≤n)(f ′) is an equivalence. As ι≥0,≤n and ι≥0 are fully faith-
ful and hence conservative, and ev〈1〉 is also conservative [HA, 3.2.2.6], it
suffices to show that

(
ι≥0 ◦ ι≥0,≤n ◦ ev〈1〉 ◦ CAlg(τ≤n)

)
(f ′)

≃
(
ι≥0 ◦ ι≥0,≤n ◦ τ≤n ◦ ev〈1〉

)
(f ′)

≃
(
ι≤n ◦ τ≤n ◦ ι≥0 ◦ ev〈1〉

)
(f ′)

≃
(
ι≤n ◦ τ≤n ◦ ev〈1〉 ◦ CAlg(ι≥0)

)
(f ′)

≃
(
ι≤n ◦ τ≤n ◦ ev〈1〉

)
(f ′′)

is an equivalence.
Recall from Construction 5.1.5.1 that

f ′′ : FreeCAlg
D(k)(k[n])→ R

26See [HA, 1.2.1.5] and [HTT, 5.2.7.6, 5.2.7.7, and 5.2.7.8].
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is the morphism in CAlg(D(k)) adjoint to g. There is thus a commutative
diagram

k[n]

ev〈1〉

(
FreeCAlg

D(k)(k[n])
)

ev〈1〉(R)

φ
g

ev⟨1⟩(f ′′)

where φ exhibits FreeCAlg
D(k)(k[n]) as the free commutative algebra generated

by k[n]. If we let i be the unit morphism of FreeCAlg
D(k)(k[n]) and ι the unit

morphism of R, then f ′′ ◦ i ≃ ι as f ′′ is a morphism of commutative algebras.
We can thus extend this commutative diagram to a commutative diagram as
follows.

k ⊕ k[n]

ev〈1〉

(
FreeCAlg

D(k)(k[n])
)

ev〈1〉(R)

i∐φ ι∐g

ev⟨1⟩(f ′′)

The morphism on the right is an equivalence by Proposition 5.1.5.2. We
have to show that τ≤n of the bottom morphism is an equivalence, so it suffices
to show that τ≤n of the left morphism is an equivalence. But this follows from
Proposition 5.1.5.3.

5.1.6 Identification of some mapping spaces
As explained in the introduction to Section 5.1, it will be important for us

to show that

π0

(
MapAlg(coCAlg(D(k)))

(
γComm

Assoc (Bn), R
∨
))

is trivial for certain commutative bialgebras R. We saw in Section 5.1.2.7
that γComm

Assoc (Bn) is free on the pointed cocommutative algebra γComm
E0

(B′
n), so

we are led to consider path components of mapping spaces in

AlgE0
(coCAlg(D(k))) ≃ coCAlg(D(k))k/

and after dualizing of mapping spaces in CAlg(D(k))/k.
This section concerns the steps needed to show that the sets of path

components of such mapping spaces that are of interest to us are indeed
trivial. In Section 5.1.6.1 we will show that the relevant mapping spaces in
CAlg(D(k))/k can be calculated as the mapping spaces between the underly-
ing objects in CAlg(D(k)). In Section 5.1.6.3 we will then show that π0 of the
relevant mapping spaces in CAlg(D(k)) are trivial. In order to do so, we will
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need to construct a commutative algebra with prescribed homology. We will
define such a commutative algebra as a pushout of free commutative algebras
and show that its homology has the required description in Section 5.1.6.2.

5.1.6.1 Identification of a mapping space in an overcategory

In this section we show that, under certain assumptions, mapping spaces in
the ∞-category CAlg(D(k))/k are equivalent to the mapping spaces between
the respective underlying objects in CAlg(D(k)).

Proposition 5.1.6.1. Let R → k and S → k be objects of CAlg(D(k))/k,
and assume that there is an equivalence τ≤0(ev〈1〉(R)) ≃ k in D(k).

Then the map induced by the canonical forgetful functor on mapping spaces

MapCAlg(D(k))/k
(R,S)→ MapCAlg(D(k))(R,S)

is an equivalence. ♥

Proof. By (the dual of) Proposition D.1.3.2 there is a pullback diagram

MapCAlg(D(k))/k
(R,S) {R→ k}

MapCAlg(D(k))(R,S) MapCAlg(D(k))(R, k)(S→k)∗

in S, where the left vertical map is the one induced by the forgetful functor.
It thus suffices to prove that MapCAlg(D(k))(R, k) is contractible.
k as well as the underlying object ev〈1〉(R) of R are in D(k)≥0

27, so using
that by Proposition 4.3.4.1 (7) CAlg(ι≥0) is fully faithful with essential image
spanned by those commutative algebras whose underlying object is in D(k)≥0,
it suffices to show that

MapCAlg(D(k)≥0)(R, k) ≃ MapCAlg(D(k))(R, k)

is contractible.
As k actually lies in (D(k)≥0)≤0 we can use the adjunction

CAlg(τ≤0) ⊣ CAlg(ι≥0,≤0)

27By [HA, 1.2.1.8] there is a cofiber sequence

ι≥0τ≥0R→ R→ ι≤−1τ≤−1R

and
τ≤−1R ≃ τ≤−1τ≤0R ≃ τ≤−1k ≃ 0

so ι≥0τ≥0R ≃ R is in D(k)≥0.
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with fully faithful right adjoint discussed in Proposition 4.3.4.1 (8) to obtain
equivalences

MapCAlg(D(k)≥0)(R, k)

≃ MapCAlg
(
(D(k)≥0)

≤0

)(CAlg(τ≤0)(R), k)

≃ MapCAlg(D(k))(CAlg(ι≤0)CAlg(τ≤0)(R), k)

By assumption the underlying object
(
ev〈1〉 ◦ CAlg(ι≤0) ◦ CAlg(τ≤0)

)
(R) ≃

(
ι≤0 ◦ τ≤0 ◦ ev〈1〉

)
(R)

of CAlg(ι≤0)CAlg(τ≤0)(R) is equivalent to k, so by Proposition 5.1.3.3 the
unit morphism k → CAlg(ι≤0)CAlg(τ≤0)(R) is an equivalence. [HA, 3.2.1.9]
then implies that CAlg(ι≤0)CAlg(τ≤0)(R) is an initial object of CAlg(D(k)),
so the mapping space

MapCAlg(D(k))(CAlg(ι≤0)CAlg(τ≤0)(R), k)

is contractible.

5.1.6.2 The homology of a pushout of commutative algebras

Let n > 0 be an integer, and let R be a commutative algebra in D(k) with
homology concentrated in degree 0 and n, where it is isomorphic to k. In
Section 5.1.6.3 we want to show that the mapping space in CAlg(D(k)) from
R to another commutative algebra S with certain restrictions on its homology
is contractible. To do so, we construct a commutative algebra for which it
is easier to calculate mapping spaces out of, and such that its homology is
isomorphic to that of R in degrees smaller than or equal to 2n. We can start
with the free commutative algebra generated by one generator in degree n.
We calculated the homology in the relevant degrees in Proposition 5.1.5.3,
and it is already nearly as we want, except that the homology might not
vanish in degree 2n, where it is generated by a single element. To divide out
that unwanted element we can form a pushout over the free commutative
algebra with a generator in degree 2n.

We will start by carrying out this construction in Construction 5.1.6.2, and
then spend the remainder of this section proving that the homology is as we
require in Proposition 5.1.6.3. One way to do this calculation would be to use
the Tor spectral sequence, see [HA, 7.2.1.19], but we have opted for a more
direct approach with a concrete resolution that suffices in order to calculate
the homology groups in the necessary degrees.

Construction 5.1.6.2. Let n > 0 be an integer. In Proposition 5.1.5.3 we
showed that

H2n

(
FreeCAlg

D(k)(k[n])
)
∼= k
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if n is even and
H2n

(
FreeCAlg

D(k)(k[n])
)
∼= k/(2)

if n is odd. In both cases, this k-module can be generated by a single element.
Let

f ′ : k[2n]→ ev〈1〉

(
FreeCAlg

D(k)(k[n])
)

be a morphism in D(k) representing a generator28 of H2n(FreeCAlg
D(k)(k[n])).

We obtain an induced morphism

f : FreeCAlg
D(k)(k[2n])→ FreeCAlg

D(k)(k[n])

in CAlg(D(k)) that is adjoint to f ′.
The zero morphism k[2n] → k similarly induces a morphism of commuta-

tive algebras p : FreeCAlg
D(k)(k[2n])→ k.

Define P to be the pushout in CAlg(D(k)) as in the following diagram.

FreeCAlg
D(k)(k[2n]) k

FreeCAlg
D(k)(k[n]) P

p

f i

j

We will use the notation P , f , p, i, and j elsewhere where we explicitly refer
to this construction. ♦

Proposition 5.1.6.3. Let n > 0 be an integer. For P as in Construc-
tion 5.1.6.2, the following holds for the homology of P .

Hi(P ) ∼=





0 if i < 0

k if i = 0

0 if 0 < i < n

k if i = n

0 if n < i ≤ 2n

Furthermore, the morphism j : FreeCAlg
D(k)(k[n])→ P from Construction 5.1.6.2

induces an isomorphism on Hi for i < 2n. ♥

Proof. To improve readability in the formulas we will use the following short-
hand notation in this proof. We write F2n for FreeCAlg

D(k)(k[2n]) and Fn for

28If 2 is invertible in k and n is odd, then we have k/(2) ∼= 0, which is of course still
generated by a single element 0, so we can carry out this construction also in this case,
even though the construction is not really necessary for applications. However, we would
like to avoid special handling of this one case.
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FreeCAlg
D(k)(k[n]). Furthermore, we will omit writing forgetful functors and will

instead always make explicit in which∞-category objects and morphisms are
considered. We will also use the notation from Construction 5.1.6.2.

The strategy of this calculation is as follows. By construction P is a pushout
of commutative algebras, so by Proposition E.8.0.5 can be calculated as a
relative tensor product. We thus resolve k as a left-F2n-module in a manner
that suffices to extract the homology groups we are interested in from the
long exact sequences in homology that we obtain.

Let g : k[2n] → F2n be the morphism in D(k) that exhibits F2n as the
free commutative algebra generated by k[2n]. We first consider the following
composition in LModF2n

(D(k))

F2n[2n] F2n ⊗ k[2n] F2n ⊗ F2n F2n k
≃

g′

idF2n
⊗g µ p

(∗)
where µ is the multiplication, g′ is defined as the composition indicated in
the diagram, and F2n acts on F2n⊗F2n and F2n⊗k[2n] via the the left tensor
factor, and on k via p29.

We claim that the composition pg′ from F2n[2n] to k in (∗) is nullhomotopic
as a morphism in LModF2n

(D(k)). In fact, every morphism of F2n-algebras
29Here are some more details on obtaining these morphisms as morphisms in

LModF2n
(D(k)).

There is a commutative diagram in CAlg(D(k))

F2n ⊗ F2n

F2n F2n k

µ

idF2n

idF2n
⊗1

p

where idF2n
⊗1 is the composition F2n ≃ F2n ⊗ k with the identity tensor the unit of

F2n – this is the inclusion of the first summand of the coproduct F2n⊗F2n ≃ F2n⨿F2n

in CAlg(D(k)).
We can now forget down to associative algebras and then use the section

Alg(D(k)) → LMod(D(k)) from [HA, 4.2.1.17] that carries an algebra to the under-
lying object as a module over the algebra itself. We can then restrict the actions to
obtain a commutative diagram of F2n-modules. This constructs the morphisms µ and
p in (∗). See also Construction E.8.0.4 for more details for this kind of construction.

The morphism
k[2n]

1⊗g
−−−→ F2n ⊗ F2n

in D(k) is adjoint to a morphism of left-F2n-modules F2n ⊗ k[2n] → F2n ⊗ F2n (here
F2n ⊗ k[2n] is the free left-F2n-module generated by k[2n], see [HA, 4.2.4]). The mor-
phism of D(k) underlying this morphism is then by definition given by the composition

F2n ⊗ k[2n]
idF2n

⊗1⊗g
−−−−−−−−→ F2n ⊗ F2n ⊗ F2n

µ⊗idF2n−−−−−−→ F2n ⊗ F2n

which is homotopic to idF2n
⊗ g.
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F2n[2n]→ k is nullhomotopic, as we have by [HA, 4.2.4.6] an equivalence

MapLModF2n
(D(k))(F2n[2n], k) ≃ MapD(k)(k[2n], k)

which is contractible as k[2n] is concentrated in degree 2n > 0 and k is
concentrated in degree 0.

The nullhomotopy of g′ induces a morphism in LModF2n(D(k)) from the
cofiber of g′ to k and a commutative triangle as in the following diagram

F2n[2n] F2n C

k

g′ φ

p
ψ (∗∗)

where the top row is a cofiber sequence.
Note that the forgetful functor evm : LModF2n

(D(k)) → D(k) preserves
colimits by [HA, 4.2.3.5]. Using the long exact homology sequence for the
cofiber sequence in D(k) underlying the one from (∗∗), together with the
calculation of the lower homology groups of F2n from Proposition 5.1.5.3, we
obtain that φ induces an isomorphism

k ∼= H0(F2n)
H0(φ)
−−−−→ H0(C)

and that for i < 4n with i 6= 0 the homology group Hi(C) is zero30. As
H0(p) is an isomorphism (p underlies a morphism of commutative algebras
and hence preserves the unit morphism) it follows that H0(ψ) must be an
isomorphism as well.

We now take the fiber of ψ to we obtain another cofiber sequence of left-
F2n-modules in D(k) as follows.

D
θ
−→ C

ψ
−→ k (∗ ∗ ∗)

Again using the long exact sequence in homology we can conclude that
Hi(D) ∼= 0 for i < 4n.

Let us now get back to what we actually need to do, calculate the homology
of P in low degrees. As D(k) is presentable symmetric monoidal by Propo-
sition 4.3.2.1 (1), we can apply Proposition E.8.0.5, which tells us that P is
30The only nonzero homology groups of F2n[2n] and F2n in degrees smaller than 4n are

H0(F2n) ∼= k, H2n(F2n[2n]), and H2n(F2n), so the only thing that needs to be done
is check that H2n(g′) is an isomorphism. By Proposition 5.1.5.3 the homology group

H2n(F2n[2n]) has a basis represented by the morphism k[2n]
1⊗idk[2n]
−−−−−−−→ F2n ⊗ k[2n].

Composing this morphism with g′ we obtain by definition the morphism

µ ◦
(
idF2n

⊗g
)
◦
(
1⊗ idk[2n]

)
≃ µ ◦ (1⊗ g) ≃ g

which also by Proposition 5.1.5.3 forms a basis of H2n(F2n).
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equivalent to the relative tensor product31 Fn ⊗F2n k, where we consider Fn
and k as right and left modules over F2n, which is considered as an associa-
tive algebra in CAlg(D(k)). The forgetful functor evm : CAlg(D(k))→ D(k)
is symmetric monoidal and preserves ∆

op-indexed colimits by [HA, 3.2.3.2].
We can thus apply Proposition E.8.0.1 to conclude that the underlying object
of Fn ⊗F2n k in D(k) is equivalent to the relative tensor product Fn ⊗F2n k,
where we consider F2n as just an associative algebra in D(k).

Tensoring cofiber sequence (∗ ∗ ∗) with the right-F2n-module Fn we obtain
by [HA, 4.4.2.15] a cofiber sequence in D(k) as follows.

Fn ⊗F2n
D

id⊗idθ−−−−→ Fn ⊗F2n
C

id⊗idψ−−−−−→ Fn ⊗F2n
k

As Hi(P ) ∼= Hi(Fn ⊗F2n k) for any integer i, we can use the long exact
homology sequence associated to the above cofiber sequence to evaluate the
homology groups of P . As remarked before, D lies in D(k)≥4n, and as Fn and
F2n are both in D(k)≥0 and taking colimits can only increase connectivity
[HA, 1.2.1.6], it follows that

Fn ⊗F2n D ≃
∣∣Fn ⊗ F⊗•

2n D
∣∣

is an object of D(k)≥4n as well32.
We can thus conclude that for i ≤ 2n the morphism idFn ⊗idF2n

ψ induces
an isomorphism as follows.

Hi(Fn ⊗F2n C)
∼=
−→ Hi(Fn ⊗F2n k)

∼= Hi(P )

To evaluate the homology groups of Fn ⊗F2n
C we can use the long exact

homology sequence associated to the cofiber sequence

Fn ⊗F2n F2n[2n]
idFn⊗idF2n

g′

−−−−−−−−−→ Fn ⊗F2n F2n

idFn⊗idF2n
φ

−−−−−−−−→ Fn ⊗F2n C

which we obtain by applying Fn⊗F2n
− to the cofiber sequence in the top row

of (∗∗). Using unitality of the relative tensor product [HA, 4.4.3.16] we can
identify this cofiber sequence with the top row in the following commutative
diagram33 in D(k)

Fn[2n] ≃ Fn ⊗ k[2n] Fn Fn ⊗F2n
C

P Fn ⊗F2n
k

µ′◦(idFn⊗(f◦g)) λ

j idFn⊗idF2n
ψ

≃

31See Construction E.8.0.4 for an explanation of the relevant module structures.
32See [HA, 4.4.2.8] for this description of the relative tensor product. That the bar construc-

tion really looks like this in the individual levels follows from unpacking the definition
[HA, 4.4.2.7].

33The identification of the top left morphism arises from unpacking the definitions. For j

fitting into the commutative diagram, note that the composition F2n
φ
−→ C

ψ
−→ k is by

definition homotopic to p, and then use the identification of the pushout diagram from
Construction 5.1.6.2 with the one from Proposition E.8.0.5.
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where f and j are as in Construction 5.1.6.2, µ′ is the multiplication mor-
phism for Fn, and λ is a newly introduced name. It thus suffices to show that
Hi(λ) is an isomorphism for i < 2n and that additionally H2n(Fn⊗F2n

C) ∼= 0.
In the range we are interested in Fn[2n] has only homology in degree 2n

(see Proposition 5.1.5.3), so that it immediately follows using the long exact
sequence in homology that Hi(λ) is an isomorphism for i < 2n, and the
statements for the homology of P in this range now follow from the calculation
of the homology in low degrees of Fn, see Proposition 5.1.5.3.

It remains to show that H2n(Fn ⊗F2n
C) ∼= 0. By the long exact sequence

in homology we have to show for this that µ′ ◦ (idFn ⊗ (f ◦ g)) induces a
surjection on H2n. Let ι : k → Fn be the unit morphism. Then by Proposi-
tion 5.1.5.3 there is an isomorphism H2n(Fn⊗ k[2n]) ∼= k, and this homology
group has a basis formed by by (ι ⊗ idk[2n]) ◦ η, where η : k[2n] ≃ k ⊗ k[2n]
is the unitality equivalence of D(k). Composing with µ′ ◦ (idFn ⊗ (f ◦ g)) we
obtain34

µ′ ◦ (idFn ⊗ (f ◦ g)) ◦
(
ι⊗ idk[2n]

)
◦ η

≃ µ′ ◦ (ι⊗ (f ◦ g)) ◦ η

≃ f ◦ g

≃ f ′

which by definition is a generator of H2n(Fn).

5.1.6.3 On a mapping space of commutative algebras

In this section we show that a mapping space relevant in Section 5.1.7 has
only a single path component.

Proposition 5.1.6.4. Let n > 0 be an integer. Let R and S be commutative
algebras in D(k), and assume that the homology of R is concentrated in degrees
0 and n, where it is isomorphic to k, that the homology of S is concentrated
in degrees i with 0 ≤ i ≤ 2n, and that Hn(S) ∼= 0.

Then
π0

(
MapCAlg(D(k))(R,S)

)
∼= ∗ (5.7)

So up to homotopy, there is a unique morphism of commutative algebras
R→ S. ♥

Proof. Consider the commutative algebra P that was constructed in Con-
struction 5.1.6.2. Proposition 5.1.6.3 implies that τ≤2n(P ) has the same ho-
mology as R. As the homology is free (as a Z-graded k-module) it follows
from Proposition 4.3.3.7 that τ≤2n(P ) and R are equivalent as objects of
D(k). It then follows from Proposition 5.1.5.4 that τ≤2n(P ) and R are even
equivalent as commutative algebras in D(k).
34The last step is by definition, see Construction 5.1.6.2.
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We thus obtain an equivalence as follows.

MapCAlg(D(k))(R,S) ≃ MapCAlg(D(k))(τ≤2n(P ), S)

τ≤2n(P ) and S both lie in (CAlg(D(k))≥0)≤2n by Proposition 4.3.4.1 (7) and
(8), and as the inclusion is fully faithful we obtain another equivalence as
follows.

≃ Map(CAlg(D(k))≥0)≤2n
(τ≤2n(P ), S)

We can now continue with the adjunction from Proposition 4.3.4.1 (8).

≃ MapCAlg(D(k))≥0
(P, S)

Finally, we use that CAlg(ι≥0) is fully faithful and obtain the following equiv-
alence.

≃ MapCAlg(D(k))(P, S)

As P was defined as a pushout in CAlg(D(k)), we obtain a pullback dia-
gram in S (using notation from Construction 5.1.6.2) as follows.

MapCAlg(D(k))(P, S) MapCAlg(D(k))

(
FreeCAlg

D(k)(k[n]), S
)

MapCAlg(D(k))(k, S) MapCAlg(D(k))

(
FreeCAlg

D(k)(k[2n]), S
)

j∗

i∗ f∗

p∗

k is initial as a commutative algebra by [HA, 3.2.1.9], so MapCAlg(D(k))(k, S)

is contractible. This implies that35

MapCAlg(P, S)
j∗

−→ MapCAlg

(
FreeCAlg

D(k)(k[n]), S
)

f∗

−→ MapCAlg

(
FreeCAlg

D(k)(k[2n]), S
)

is a homotopy fiber sequence of which we can take the long exact sequence of
homotopy groups. To show that π0

(
MapCAlg(D(k))(P, S)

)
∼= ∗ it then suffices

to show that both

π0

(
MapCAlg(D(k))

(
FreeCAlg

D(k)(k[n]), S
))

and
π1

(
MapCAlg(D(k))

(
FreeCAlg

D(k)(k[2n]), S
))

are trivial.
35We shorten CAlg(D(k)) as CAlg.
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We can use the adjunction FreeCAlg
D(k) ⊣ ev〈1〉 to rewrite these homotopy

groups as follows.

π0

(
MapCAlg(D(k))

(
FreeCAlg

D(k)(k[n]), S
))
∼= π0

(
k[n], ev〈1〉(S)

)
∼= Hn(S) ∼= 0

π1

(
MapCAlg(D(k))

(
FreeCAlg

D(k)(k[2n]), S
))
∼= π1

(
k[2n], ev〈1〉(S)

)

∼= π0
(
k[2n+ 1], ev〈1〉(S)

)

∼= H2n+1(S) ∼= 0

5.1.7 Formality of certain E∞,E1-bialgebras
In this section we finally put together the various results from sections

Sections 5.1.1, 5.1.2, 5.1.3, 5.1.4, 5.1.5 and 5.1.6 and show formality of com-
mutative bialgebras with homology concentrated in degrees 0 and 1, where
it is isomorphic to k.

Proposition 5.1.7.1. Let R be on object of BiAlgComm,Assoc(D(k)) such that

Hi(R) ∼=

{
k for i = 0 and i = 1

0 otherwise

Then the underlying object of R in D(k) is dualizable36.
Let furthermore37

f1 : γ
Comm
Assoc (A1)→ R∨

be some morphism in the ∞-category Alg(coCAlg(D(k))), where A1 is as in
Construction 5.1.2.238, and R∨ is the dual of R, see Remark 5.1.1.9. Then
f1 can be extended to a morphism

γComm
Assoc (A)→ R∨

where A is as in Construction 5.1.2.2. ♥

Proof. That the underlying object of R is dualizable follows immediately
from the assumptions on the homology together with the formality statement
Proposition 4.3.3.7, see also Example 5.1.1.8.

By Corollary 5.1.2.14 the morphisms γComm
Assoc (An) → γComm

Assoc (A) exhibit the
object γComm

Assoc (A) as a colimit of

γComm
Assoc (A1)→ γComm

Assoc (A2)→ γComm
Assoc (A3)→ . . .

in Alg(coCAlg(D(k))). It hence suffices to prove inductively that given an
integer n > 1 and a morphism fn−1 : γ

Comm
Assoc (An−1) → R∨ there exists an

36See Definition 5.1.1.1.
37Recall Notation 5.1.2.12.
38A1 is cofibrant as a chain complex by Proposition 5.1.2.11 Proposition 4.2.2.12.
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extension to a morphism fn : γ
Comm
Assoc (An) → R∨. Also by Corollary 5.1.2.14,

it suffices for this to construct a commutative square

γComm
Assoc (Bn) γComm

Assoc (Bn)

γComm
Assoc (An−1) R∨

fn−1

in Alg(coCAlg(D(k))), where the morphism on the left and top are the ones
constructed in Construction 5.1.2.5. Proposition 5.1.2.10 and Remark 5.1.2.9
imply that γComm

Assoc (Bn) is a zero object in Alg(coCAlg(D(k))), so there is an
essentially unique morphism γComm

Assoc (Bn)→ R∨ we can fill in on the right.
What remains is to construct a homotopy between the two possible com-

posites from γComm
Assoc (Bn) to R∨ in the diagram. For this it suffices to show

that any two morphisms from γComm
Assoc (Bn) to R∨ are homotopic, i. e. that

π0

(
MapAlg(coCAlg(D(k)))

(
γComm

Assoc (Bn), R
∨
))
∼= ∗

In Proposition 5.1.2.18 it was shown that

γComm
Assoc (Bn) ≃ FreeAlg(coCAlg)

Alg
E0

(coCAlg)
(
γComm
E0

(B′
n)
)

where γComm
E0

(B′
n) is an object in

AlgE0
(coCAlg(D(k)))

with underlying object equivalent to k⊕k[−2], see Construction 5.1.2.15. We
thus obtain an isomorphism as follows.

π0

(
MapAlg(coCAlg(D(k)))

(
γComm

Assoc (Bn), R
∨
))

∼= π0

(
MapAlg

E0
(coCAlg(D(k)))

(
γComm
E0

(B′
n), R

∨
))

By [HA, 2.1.3.10], the∞-category of E0-algebras in a monoidal∞-category C
can be identified with C1C/, so applying this and dualizing (see Fact 5.1.1.3),
we obtain the following isomorphisms.

π0

(
MapAlg

E0
(coCAlg(D(k)))

(
γComm
E0

(B′
n), R

∨
))

∼= π0

(
MapcoCAlg(D(k))k/

(
γComm(B′

n), R
∨
))

∼= π0

(
Map(CAlg(D(k)))/k

(
R, γComm(B′

n)
∨
))

By the assumptions on R, the truncation τ≤0(R) has homology groups
concentrated in degree 0 and H0(R) is free of rank 1. Using Proposition 4.3.3.7
we can thus apply Proposition 5.1.6.1 to obtain the following isomorphism.

π0

(
Map(CAlg(D(k)))/k

(
R, γComm(B′

n)
∨
))
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∼= π0

(
MapCAlg(D(k))

(
R, γComm(B′

n)
∨
))

As the dual of k[l] is k[−l], the underlying object in D(k) of γComm(B′
n)

∨

is equivalent to k ⊕ k[2]. Now we can apply Proposition 5.1.6.4 to conclude
that this set has exactly one element.

Proposition 5.1.7.2. Let R be on object of BiAlgComm,Assoc(D(k)) such that

Hi(R) ∼=

{
k for i = 0 and i = 1

0 otherwise

and let g : k[1] → R be a morphism in D(k) representing a basis of H1(R).
Let x be an element of k. Then there exists a morphism39

φ : R→ γ(A)∨

in BiAlgComm,Assoc(D(k)) that induces an isomorphism on H0 and is such that
H1(φ) maps the element represented by g to x · y∨1 (see Proposition 5.1.2.4).

♥

Proof. Consider the commutative algebra γ(A′
1)

∨. (see Construction 5.1.2.15
for a definition of A′

1). The underlying object of γ(A′
1) in D(k) is by definition

equivalent to k ⊕ k[−1], so

Hi(γ(A
′
1)

∨) ∼=

{
k for i = 0 and i = 1

0 otherwise

with the homology group in degree 1 generated by y∨1 .
Define a morphism φ′′

1 : FreeCAlg
D(k)≥0

(k[1]) → γ(A′
1)

∨ such that compos-
ing the morphism k[1] → FreeCAlg

D(k)(k[1]) exhibiting FreeCAlg
D(k)(k[1]) as the

free commutative algebra generated by k[1] with φ′′
1 represents the element

x · y∨1 in H1(γ(A
′
1)

∨). As a morphism of commutative algebras, the unit mor-
phisms must be preserved, so φ′′

1 induces an isomorphism on H0 by Proposi-
tion 5.1.3.3.

We obtain an induced morphism φ′
1 as in the following diagram

R CAlg(τ≤1)
(

FreeCAlg
D(k)≥0

(k[1])
)

γ(A′
1)

∨ CAlg(τ≤1)(γ(A
′
1)

∨)

φ′
1

≃

CAlg(τ≤1)(φ′′
1 )

≃

39For a definition of A, see Construction 5.1.2.2. For the duality functor see Fact 5.1.1.3.
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where the top horizontal equivalence is the one from Proposition 5.1.5.440

and the bottom horizontal equivalence is the one arising from γ(A′
1)

∨ already
being concentrated in degrees 0 and 1. φ′

1 then induces an isomorphism on
H0 and satisfies H1(φ

′
1)(g) = x · y∨1 .

Applying [HA, 2.1.3.10] and Proposition 5.1.6.1 we can upgrade φ′
1 to a

morphism in BiAlgComm,E0
(D(k)). Next, applying Proposition 5.1.2.18 and

dualizing, we can lift this morphism to a morphism

φ1 : R→ γ(A1)
∨

in BiAlgComm,Assoc(D(k)) such that the triangle

R γ(A1)
∨

γ(A′
1)

∨

φ1

φ′
1

of underlying morphisms of commutative algebras commutes, with the verti-
cal morphism being the dual of γ applied to the inclusion A′

1 → A1. Applying
Proposition 5.1.7.1 (and dualizing twice), we can further lift φ1 to a morphism
φ that fits into a commuting triangle in BiAlgComm,Assoc(D(k)) as follows.

R γ(A)∨

γ(A1)
∨

φ

φ1

By Proposition 5.1.2.4 (and dualizing) the homology of γ(A)∨ is k in degrees
0 and 1 and 0 in other degrees, and a basis is formed by 1∨ in degree 0 and
by y∨1 in degree 1. As the inclusion A′

1 → A sends 1 to 1 and y1 to y1, it
follows that the induced morphisms Hi(γ(A)

∨)→ Hi(γ(A
′
1)

∨) send 1∨ to 1∨

and y∨1 to y∨1 and are thus in particular isomorphisms. That φ satisfies the
required properties now follows from this together with the description of φ′

1

discussed above.

Proposition 5.1.7.3. Let R and S be objects in BiAlgComm,Assoc(D(k)) such
that

Hi(R) ∼=

{
k for i = 0 and i = 1

0 otherwise

40We choose this equivalence to be such that the morphism k[1]→ FreeCAlg
D(k)

(k[1]) exhibit-
ing FreeCAlg

D(k)
(k[1]) as the free commutative algebra generated by k[1] composed with

the equivalence is homotopic to g.
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and

Hi(S) ∼=

{
k for i = 0 and i = 1

0 otherwise

and let {gR} and {gS} be a basis of H1(R) and H1(S), respectively. Let x be
an element of k.

Then there exists a morphism

φ : R→ S

in BiAlgComm,Assoc(D(k)) such that H0(φ) is an isomorphism and such that
H1(φ)(gR) = x · gS.

In particular, φ is an equivalence if and only if x is a invertible in k. ♥

Proof. By Proposition 5.1.7.2 we can construct morphisms

R γ(A)∨ S
φR φS

in BiAlgComm,Assoc(D(k)) such that both φR and φS induce an isomorphism
on H0 and

H1(φR)(gR) = x · y∨1 and H1(φS)(gS) = y∨1

It follows from Proposition 5.1.2.4 and [HA, 3.2.2.6] that φS is an equivalence
and φR is an equivalence if and only if x is invertible. We now define φ as
the composition (φS)

−1 ◦ φR.

5.2 The k-linear circle as an E∞,E1-bialgebra
The goal of this section is to define the circle group T as well as its k-linear

version k⊠T as commutative and cocommutative bialgebras, for T in S, and
for k ⊠ T in D(k).
T will be defined in Section 5.2.1. We will then discuss the linearization

functor k⊠− : S→ D(k) in Section 5.2.2, and apply it to define k⊠T in the
very short Section 5.2.3.

5.2.1 The circle group
Let W be the class of weak equivalences in the model structure on sSet

discussed in [Hov99, Chapter 3] and [HTT, After A.2.7.3] – these are the mor-
phisms whose geometric realization is a homotopy equivalence of topological
spaces. The infinity category of spaces S can then be defined by inverting
those weak equivalences of simplicial sets, so as

S := sSet[W−1]
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5.2 The k-linear circle as an E∞,E1-bialgebra

see [HTT, 1.2.16.1] in combination with [HA, 1.3.4.20]. The canonical functor
sSet→ S preserves finite products, as finite products in sSet are automatically
homotopy products41. The functor Sing : Top→ sSet also preserves products
as a right adjoint, so that the composition Top→ S also preserves finite prod-
ucts. Giving both involved ∞-categories the cartesian symmetric monoidal
structure [HA, 2.4.1] upgrades this functor to a symmetric monoidal functor,
and so induces an (again symmetric monoidal) functor of ∞-categories of
commutative algebras CAlg(Top) → CAlg(S). This allows us to construct
commutative algebras in S by giving an explicit commutative topological
monoid, which we will use in the following construction.

Construction 5.2.1.1. We let the circle group T refer to the object in
CAlg(S) obtained by applying the above functor CAlg(Top) → CAlg(S) to
the (multiplicative) commutative submonoid { z ∈ C | |z| = 1 } of C.

Note that every commutative topological monoid can be upgraded to a
commutative and cocommutative topological bimonoid, with comultiplication
given by the diagonal map. This phenomenon is in fact more general, as
we saw in Proposition 3.3.1.2 that any commutative algebra in a cartesian
symmetric monoidal ∞-category can be upgraded in an essentially unique
way to a commutative and cocommutative bialgebra.

In particular, we can upgrade T in an essentially unique way to an E∞,E∞-
bialgebra in spaces. ♦

5.2.2 The linearization functor
In Section 5.2.1 we considered S as a symmetric monoidal ∞-category via

the cartesian symmetric monoidal structure. There is also a different way of
defining the symmetric monoidal structure on S, as we discuss in the following
remark.

Remark 5.2.2.1. The ∞-category S is the unit object in PrL by [HA,
4.8.1.20], and hence can be upgraded to a presentable symmetric monoidal
∞-category that is initial in CAlg(PrL) by [HA, 3.2.1.9] in combination with
[HA, 4.8.1.9 and 4.8.1.15].

To show that the so obtained symmetric monoidal structure is equivalent
to the cartesian symmetric monoidal structure, it suffices in light of [HA,
4.8.1.12] to show that the product functor S × S → S preserves colimits
separately in each variable, which is shown in [HTT, 6.1.3.14]. ♦

The characterization of S as an initial object in CAlg(PrL) allows the fol-
lowing definition.

41As the geometric realization functor |−| : sSet→ Top is the left adjoint of a Quillen equiv-
alence, this follows from every object in sSet being cofibrant, |−| preserving products
[Hov99, 3.1.8], and every object in Top being fibrant.
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Definition 5.2.2.2. Let C be a presentable symmetric monoidal∞-category.
Then we obtain an essentially unique colimit preserving symmetric monoidal
functor that we denote as follows.

1C ⊠− : S→ C

As D(k) is a presentable symmetric monoidal ∞-category by Proposi-
tion 4.3.2.1 (1), we hence obtain a colimit preserving symmetric monoidal
functor

k ⊠− : S→ D(k)

that we sometimes call the k-linearization functor. ♦

Remark 5.2.2.3. Let φ : k → k′ be a morphism of commutative rings. Then
universality of the functors defined in Definition 5.2.2.2 imply that we obtain
a commuting triangle

S

D(k) D(k′)

k⊠− k′⊠−

k′⊗k−

where k′⊗k− is the colimit-preserving symmetric monoidal functor discussed
in Remark 4.3.2.2. ♦

LetX be an object of S. In Section 4.3.3 we discussed the homology functors
Hn on D(k), which we could thus apply to k⊠X. In the rest of this section we
show that this is compatible with the classical notions of homology of spaces.
We begin by reviewing the definition of homology of simplicial sets.

Construction 5.2.2.4. We construct a functor

k · − : sSet→ Ch(k)

as follows. There is a functor, which we also call k ·−, from Set to LModk(Ab)
that maps a set X to the free k-module on the basis X. This functor induces
a functor as follows.

sSet ∼= Fun(∆op, Set) (k·−)∗−−−−→ Fun(∆op,LModk(Ab))

The functor k · − : sSet → Ch(k) is then to be the composition of this
functor with the functor

C : Fun(∆op,LModk(Ab))→ Ch(k)

that maps a functor F to the chain complex C(F ) for which C(F )n := F ([n])

and ∂
C(F )
n :=

∑n
i=0 F (δi). ♦
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Classically, one defines homology for simplicial sets X with coefficients in
the commutative ring k as Hn(X, k) := Hn(k ·X). For topological spaces one
then defines homology as the homology of their singular simplicial set.

What we would like to show is that there is a commutative diagram

sSet Ch(k)

LModk(Ab)

S D(k)

k·−

γ

Hn

k⊠−

Hn

where the left vertical functor is the canonical one. That there is a filler for
the right triangle was shown in Proposition 4.3.3.2. It thus remains to show
that there is a filler for the left square. The strategy will be to use that
colimit-preserving functors out of S are determined by their value on the
one-point-space ∗. So we will show that k · − induces a colimit-preserving
functor on underlying ∞-categories that maps ∗ to k. This functor will then
by definition fit into such a commutative square but also be homotopic to
k ⊠−.
Proposition 5.2.2.5. The functor

k · − : sSet→ Ch(k)

from Construction 5.2.2.4 preserves weak equivalences as well as cofibrations,
where sSet carries the model structure discussed in [Hov99, Chapter 3] and
[HTT, After A.2.7.3], and Ch(k) carries the projective model structure from
Fact 4.1.3.1. ♥

Proof. Weak equivalences in sSet are those maps whose geometric realiza-
tion is a homotopy equivalence of spaces, and that singular homology maps
homotopy equivalences to isomorphisms is classical42.

Now let f : X → Y be a cofibration in sSet, i. e. the map fn : Xn → Yn
is injective for every n ≥ 0. To show that k · f is a cofibration we have by
[Hov99, 2.3.9] to show that k · f is a levelwise split injection and that k · f
has cofibrant cokernel.

But the morphism (k · f)n is a morphism of free k-modules induced by an
injection among the basis sets, so is a split injection. The cokernel can then be
identified with a chain complex that is concentrated in nonnegative degrees
and that in level n ≥ 0 is given by the free k-module with basis Yn \ fn(Xn).
Thus the cokernel of k · f is cofibrant by [Hov99, 2.3.6].

Definition 5.2.2.6. By Proposition 5.2.2.5 the functor k · − from Construc-
tion 5.2.2.4 induces a functor

k · − : sSetcof → Ch(k)cof

42For a discussion in a textbook see for example [Bre93, 16.5]
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preserving weak equivalences and thus a functor on underlying∞-categories43

S ≃ sSet[W−1]→ Ch(k)cof[W ′−1] ≃ D(k)

that we also call k · −.
By construction this functor comes with a commutative square

sSet Ch(k)cof

S D(k)

k·−

γ

k·−

(5.8)

of ∞-categories, where the left vertical functor is the canonical one. ♦

Proposition 5.2.2.7. The functor

k · − : sSet→ Ch(k)

from Construction 5.2.2.4 preserves small colimits. ♥

Proof. Colimits in both sSet as well as Ch(k) are calculated levelwise. The
statement thus boils down to the functor k ·− : Set→ LModk(Ab) preserving
colimits. But this functor is left adjoint to the forgetful functor.

Proposition 5.2.2.8. The functor

k · − : S→ D(k)

from Definition 5.2.2.6 preserves small colimits. ♥

Proof. By Fact 4.1.3.1 and [HTT, After A.2.7.3] sSet and Ch(k) are combina-
torial model categories. Furthermore, by Proposition 5.2.2.7, [HTT, 5.5.2.9]44,
and Proposition 5.2.2.5, the functor

k · − : sSet→ Ch(k)

is a left Quillen functor between combinatorial model categories.
The claim thus follows from [HA, 1.3.4.26].

Proposition 5.2.2.9. The functors k · − from Definition 5.2.2.6 and k⊠−
from Definition 5.2.2.2 are homotopic as functors of infinity categories from
S to D(k). ♥

43W is to be the class of weak equivalences in sSet and W ′ the class of weak equivalences
in Ch(k).

44As both sSet and Ch(k) have combinatorial model structures they are presentable.
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Proof. k ⊠ − preserves small colimits by definition and k · − by Propo-
sition 5.2.2.8. Then [HTT, 5.1.5.6] implies that it suffices to check that
k ⊠ ∗ ≃ k · ∗, where ∗ is the one-point-space.

As k ⊠− is by definition symmetric monoidal, it maps the monoidal unit
∗ of S to the monoidal unit k of D(k).

As γ : Ch(k)cof → D(k) is also symmetric monoidal it thus suffices to show
that the chain complex45 k · ∗ is quasiisomorphic to k[0]. But it can easily be
seen from the definition that k · ∗ is the chain complex46

· · · ← 0← k
0
←− k

id
←− k

0
←− k

id
←− · · ·

and the obvious inclusion of k[0] is a quasiisomorphism.

We can now put everything together and summarize the previous results
as follows.

Proposition 5.2.2.10. There is a commutative diagram

sSet Ch(k)

LModk(Ab)

S D(k)

k·−

γ

Hn

k⊠−

Hn

where the left vertical functor is the canonical one. ♥

Proof. For the left commutative square combine Proposition 5.2.2.9 with the
commutative square (5.8) from Definition 5.2.2.6. The right commutative
triangle was constructed in Proposition 4.3.3.2.

5.2.3 Definition of the k-linear circle
We can now define the k-linear circle as a bialgebra in D(k).

Definition 5.2.3.1. The k-linear circle is the E∞,E∞-bialgebra k ⊠ T in
D(k). ♦

5.2.4 Formality of the k-linear circle as an
E∞,E1-bialgebra

In this section we apply the main result of Section 5.1, Proposition 5.1.7.3,
to the commutative bialgebra k⊠T that we defined in Section 5.2.3. We start
by recording the homology of k ⊠ T.
45Here ∗ is the simplicial set ∆

op → Set that is constant with value ∗. As pointed out
in the introduction to Section 5.2.1, the canonical functor sSet → S preserves finite
products, so this simplicial set ∗ maps to the space ∗ in S.

46The leftmost k is in level 0.
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Proposition 5.2.4.1. The following holds for the homology of k ⊠ T as
defined in Definition 5.2.3.1.

Hi(T⊠ k) ∼=

{
k for i = 0 and i = 1

0 otherwise

♥

Proof. By Proposition 5.2.2.10 and using the definition of T in Construc-
tion 5.2.1.1 there is an isomorphism

H∗(k ⊠ T) ∼= H∗({ z ∈ C | |z| = 1 } ; k) ∼= H∗

(
S1; k

)

where on the right we have the usual singular homology of the topological
1-sphere with coefficients in k.

We can now put all the work of Section 5.1 to use to obtain an equivalence
of commutative bialgebras between k ⊠ T and D.

Proposition 5.2.4.2. Let g be a basis element of H1(k ⊠ T). Then there
exists an equivalence47

φ : D→ k ⊠ T

in BiAlgComm,Assoc(D(k)) that sends the element d of H1(D) to the element g
in H1(k ⊠ T). ♥

Proof. Follows directly from Proposition 5.2.4.1 and Proposition 5.1.7.3.

From Proposition 5.2.4.2 we obtain an equivalence D ≃ k ⊠ T as commu-
tative bialgebras. This equivalence is however not canonically determined –
not even the induced isomorphism on homology is, it depends on the choice
of a element g of H1(k ⊠ T) that forms a basis. If g0 is one element that
forms a basis, then the set of all elements forming a basis is given by the
products x ·g0 where x is an invertible element of k. So which element should
we choose?

We can reduce the indeterminacy by varying the ground ring. It follows
from Construction 4.2.1.1, Remark 4.3.2.2, and Remark 5.2.2.3 that an equiv-
alence of commutative bialgebras DZ ≃ Z⊠T in D(Z) induces an equivalence
of commutative bialgebras as follows

Dk ≃ k ⊗Z DZ ≃ k ⊗Z Z⊠ T ≃ k ⊠ T

where the first equivalence is the one obtained from combining Construc-
tion 4.2.1.1 with Remark 4.3.2.2, the middle equivalence arises from apply-
ing k ⊗ Z− to the equivalence DZ ≃ Z ⊠ T, and the last equivalence is the
one from Remark 5.2.2.3. By choosing this equivalence for k, we have thus
47See Notation 4.4.0.2 and Construction 4.2.1.1 for a definition of D and Definition 5.2.3.1

for a definition of k ⊠ T.
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reduced the indeterminacy of the isomorphism on H1 to choosing one of the
two generators of H1(Z⊠ T) ∼= Z.

So which generator of H1(Z⊠T) should we choose? We will in Section 6.1.1
define a 1-category Λ and call functors from Λ

op into an ∞-category cyclic
objects in that ∞-category. We will consider two relevant constructions on
cyclic objects. We will define a functor

|−|Mixed : Fun
(
Λ

op,Ch(k)cof)→ Mixedcof = LModD(Chcof)

in Section 6.3.1.2 and a functor

|−| : Fun(Λop,D(k))→ D(k)B T

in Section 6.1.3. Note that there are automorphisms of D and T that intro-
duce a sign. For D we can describe this automorphism by d 7→ −d, and the
automorphism of T is given by z 7→ z−1. These reflect choices that are made
when defining the two functors we just mentioned – for example for |−|Mixed
there is no intrinsic reason to define d the way it is done rather than adding
an extra sign. But in any case, there are choices that have been made for
both |−|Mixed and |−|.

The result [Hoy18, 2.3] can now be phrased as follows: There is a generator
of H1(Z⊠ T) such that the following diagram commutes

Fun
(
Λ

op,Ch(k)cof) LModD(Chcof)

Fun(Λop,D(k)) D(k)B T LModk⊠T(D(k)) LModD(D(k))

|−|Mixed

γ∗ γMixed

|−| ≃ ≃

(5.9)
where the middle bottom horizontal equivalence is one we will construct in
Section 5.3, the right bottom horizontal equivalence is the one induced by
the equivalence D ≃ k ⊠ T arising as discussed above from the choice of
generator of H1(Z ⊠ T), and γMixed is the functor Mixedcof → Mixed from
Notation 4.4.1.2. We thus make the following convention.

Convention 5.2.4.3. From now on, when we refer to the equivalence of
commutative bialgebras in D(k)

D ≃
−→ k ⊠ T

then this is to be the equivalence that arises in the manner discussed above
from the generator of H1(Z ⊠ T) that is such that there is a commutative
diagram (5.9). ♦

Remark 5.2.4.4. The equivalence of bialgebras from Convention 5.2.4.3 in-
duces via the functor LMod from Definition 3.4.2.1 an equivalence of monoidal
∞-categories

LModk⊠T(D(k)) ≃ LModD(D(k))
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that is compatible with the forgetful functors to D(k).
Furthermore, if φ : k → k′ is a morphism of commutative rings, then there

is a commutative diagram48

LModk⊠T LModDk(D(k))

D(k)

D(k′)

LModk′⊠T LModDk′ (D(k))

≃

k′⊗k−

evm

k′⊗k−

evm

k′⊗k−

≃

evm evm

of monoidal functors, where the horizontal equivalences are the ones just
mentioned and the vertical functors are induced by the symmetric monoidal
functor

k′ ⊗k − : D(k)→ D(k′)

from Remark 4.3.2.2. ♦

5.3 Group actions and modules over group
rings

Let G be a grouplike49 associative monoid in S. One important class of
examples is supplied by pointed spaces X by taking the loop space ΩX,
which has a multiplication arising from composition of loops. The details of
this construction are discussed in [HA, Introduction to 5.2.6], where a functor

β1 : S∗ → Mongp
Assoc(S)

is constructed that implements this idea. It turns out that there are no other
examples, and that the restriction of β1 to the full subcategory S

≥1
∗ of S∗

spanned by the path connected spaces is an equivalence

β1 : S
≥1
∗

≃
−→ Mongp

Assoc(S)

48There is also supposed to be a filler for the outer diagram that is compatible with the
forgetful functors, i. e. this is a three-dimensional diagram that we are looking at from
the top.

49See [HA, 5.2.6.2] for a definition.
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as shown in [HA, 5.2.6.10]. The inverse functor of this equivalence will be
called B. If we interpret BG as an ∞-groupoid, then BG has (up to equiv-
alence) a unique object, and that object’s automorphism space is equivalent
to ΩBG ≃ G.

Now if C is an∞-category, then we can consider the∞-category of objects
with G-action in C, which is defined as50 follows.

CBG := Fun(BG, C)

If C carries a symmetric monoidal structure, then CBG can be given the
induced pointwise symmetric monoidal structure.

On the other hand, if C is presentable symmetric monoidal, then we can
form out of the Assoc-algebra51 G in S the Assoc-algebra 1C ⊠ G in C (see
Remark 5.2.2.1), and hence consider the ∞-category LMod1C⊠G(C) of left-
1C ⊠ G-modules in C. In fact, G can be upgraded essentially uniquely to
an object in BiAlgAssoc,Comm(S) by Proposition 3.3.1.2, with comultiplication
given by the diagonal map G

idG× idG−−−−−−→ G × G. We hence also obtain an
Assoc,Comm-bialgebra structure on 1C ⊠G, and thus an induced symmetric
monoidal structure on LMod1C⊠G(C) by Definition 3.4.2.1.

Let us remark that the diagonal map is also used behind the scenes when
defining the pointwise symmetric monoidal structure on CBG – the pointwise
tensor product of two functors F and G can be written as the composition

BG idBG×idBG−−−−−−−−→ BG× BG F×G
−−−→ C × C

−⊗−
−−−→ C

and the diagonal functor of BG can on automorphism spaces be identified
with the diagonal map of G.

We can now ask the question whether CBG and LMod1C⊠G(C) are equiv-
alent as symmetric monoidal ∞-categories, which Proposition 5.3.0.8, which
is the goal of this section, will answer affirmatively.

As technical input we need to start by discussing compatibility of the ten-
sor product of PrL (see [HA, 4.8.1.15]) with functor categories. We will need
two natural comparison functors, one for presentable symmetric monoidal
∞-categories, and one for presentable ∞-categories, but we will show in
Proposition 5.3.0.4 that these constructions are compatible with the forget-
ful functor CAlg(PrL)→ PrL. We will then show in Proposition 5.3.0.6 that
these comparison functors are equivalences.

Construction 5.3.0.1. Let C and D be presentable symmetric monoidal
∞-categories and I and J small∞-categories. By [HA, 4.8.1.9] we can inter-
pret C and D as objects in CAlg(PrL).

The symmetric monoidal structure on PrL induces a symmetric monoidal
structure on CAlg(PrL) such that the forgetful functor ev〈1〉 can be upgraded
50See for example [HA, 6.1.6.2] for this definition.
51By [HA, 2.4.2.5] the ∞-categories of Assoc-monoids in S and Assoc-algebras in S are

equivalent, as the symmetric monoidal structure on S is cartesian (see Remark 5.2.2.1).
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to a symmetric monoidal functor (see [HA, 3.2.4.4]). By [HA, 3.2.4.10] this
symmetric monoidal structure is cocartesian.

The functor categories Fun(I, C) and Fun(J ,D) and Fun(I × J , C ⊗ D)
can be given the induced pointwise symmetric monoidal structures (see [HA,
2.1.3.4]). By [HTT, 5.5.3.6] the underlying∞-categories are presentable again
and as both the tensor products as well as colimits are calculated pointwise
(see [HTT, 5.1.2.3]), the tensor products again preserve colimits pointwise in
each variable 52.

Let ιC : C → C⊗D and ιD : C → C⊗D be the two morphisms in CAlg(PrL)
exhibiting C⊗D as a coproduct of C and D. Using that Fun(I, C)⊗Fun(J ,D)
is a coproduct of Fun(I, C) and Fun(J ,D) in CAlg(PrL) we can then define
a morphism φ

I,J
C,D in CAlg(PrL) as follows.

φ
I,J
C,D : Fun(I, C)⊗ Fun(J ,D) (ιC◦−◦pr1)∐(ιD◦−◦pr2)−−−−−−−−−−−−−−−→ Fun(I × J , C ⊗ D) ♦

We next construct a functor of presentable∞-categories very analogous to
φ
I,J
C,D (and with the same name, which will be justified by Proposition 5.3.0.4),

where we however do not consider any symmetric monoidal structures.

Construction 5.3.0.2. Let C and D be presentable∞-categories and I and
J small ∞-categories.

Consider the following diagram, which will be explained below.

Fun(I, C)× Fun(J ,D) Fun(I × J , C × D)

Fun(I, C)⊗ Fun(J ,D) Fun(I × J , C ⊗ D)

ψ′

−×−

ψ∗

φ
I,J
C,D

(5.10)

First, as already mentioned in Construction 5.3.0.1 are by [HTT, 5.5.3.6] the
various functor categories appearing in the diagram diagram representable
again. ψ′ is to be the functor exhibiting Fun(I, C)⊗Fun(J ,D) as the tensor
product in PrL of Fun(I, C) and Fun(J ,D), and likewise ψ is to be the functor
52To be precise (considering the case of Fun(I, C)): The pointwise symmetric monoidal

structure comes with symmetric monoidal evaluation functors for every object I of I.
This means we have commutative diagrams as follows

Fun(I, C)× Fun(I, C) Fun(I, C)

C × C C

−⊗−

evI×evI evI
−⊗−

where the horizontal functors are the respective tensor product functors. The left ver-
tical functor preserves colimits in each component, and the bottom horizontal functor
preserves colimits separately in each variable by assumption. It follows that the compo-
sition from top left to the bottom right along the top right preserves colimits separately
in each variable, and as this is the case for every object I in I, it follows that this is
also the case for the top horizontal functor.
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exhibiting C ⊗D as the tensor product53. We claim that the composite from
the top left over the top right to the bottom right preserves colimits in each
variable separately. For this it suffices by [HTT, 5.1.2.3] to check that the
composition with ev(I,J) preserves colimits in each variable separately for
every object I of I and J of J . But as there is a commutative diagram

Fun(I, C)× Fun(J ,D) Fun(I × J , C × D) Fun(I × J , C ⊗ D)

C × D C × D C ⊗ D

−×−

evI×evJ

ψ∗

ev(I,J) ev(I,J)

id ψ

this follows from evI and evJ preserving colimits by [HTT, 5.1.2.3] and ψ by
definition preserving colimits separately in each variable.

It now follows from the universal property54 of the tensor product in PrL

that there is an essentially unique way to complete (5.10) to a commutative
diagram with a colimit preserving dashed functor φI,J

C,D . ♦

Remark 5.3.0.3. The functors φ from Construction 5.3.0.2 are compati-
ble with colimit preserving functors of presentable ∞-categories and func-
tors of the indexing ∞-categories as we will argue now. Let f : I ′ → I and
g : J ′ → J be functors of small∞-categories and F : C → C′ and G : D → D′

colimit preserving functors between presentable ∞-categories.
Then consider the following diagram

CI ×DJ (C × D)I×J

C′I
′

×D′J ′

(C′ ×D′)
I′×J ′

CI ⊗DJ (C ⊗ D)I×J

C′I
′

⊗D′J ′

(C′ ⊗D′)
I′×J ′

(F◦−◦f)×(G◦−◦g)

−×−

(F×G)◦−◦(f×g)

−×−

(F◦−◦f)⊗(G◦−◦g)

φ
I,J
C,D

(F⊗G)◦−◦(f⊗g)

φ
I,J

C′,D′

where the vertical functors are (induced) by the various canonical functors
exhibiting a presentable ∞-category as a tensor product in PrL. The top,
left, and right sides commute by the respective naturalities, and the front
and back commute by construction. The claim we want to show is that there
is an essentially unique filler for the bottom side and the cube. But this follows
53Again see [HA, 4.8.1.2, 4.8.1.3, 4.8.1.4, and 4.8.1.15].
54See [HA, 4.8.1.2, 4.8.1.3, 4.8.1.4, and 4.8.1.15].
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immediately from the universal property of the back left vertical functor using
the fact that all functors on the bottom preserve colimits.

The functors φ from Construction 5.3.0.1 satisfy an analogous naturality
property, which one can deduce directly from the definition using the univer-
sal property of coproducts. ♦

The next proposition justifies the overloading of notation in Construc-
tion 5.3.0.1 and Construction 5.3.0.2.

Proposition 5.3.0.4. Let C and D be presentable symmetric monoidal ∞-
categories and I and J small ∞-categories.

As the forgetful functor ev〈1〉 : CAlg(PrL) → PrL is symmetric monoidal,
we can identify the underlying presentable ∞-categories of the domain and
codomain of φI,J

C,D from Construction 5.3.0.1 with the domain and codomain
of φI,J

C,D from Construction 5.3.0.2.
Under this identification there is an essentially unique homotopy of mor-

phisms in PrL between the underlying functor of φI,J
C,D as defined in Construc-

tion 5.3.0.1 and φI,J
C,D as in Construction 5.3.0.2. ♥

Proof. Let φI,J
C,D be the underlying functor of the symmetric monoidal func-

tor defined in Construction 5.3.0.1. By the universal property of the tensor
product in PrL it suffices to show that φI,J

C,D fits into a commutative diagram
as depicted in (5.10).

For this we ponder the following commutative diagram in Cat∞55.

CI ×DJ CI ⊗DJ (C ⊗ D)I×J

(C ⊗ D)I×J × (C ⊗ D)I×J (C ⊗ D)I×J ⊗ (C ⊗ D)I×J

(C × D)I×J ((C ⊗ D)× (C ⊗ D))I×J

((C × ∗)× (∗ × D))I×J ((C × D)× (C × D))I×J (C × D)I×J

ψ′

− × −

(
ιC ◦ − ◦ pr1

)
×
(
ιD ◦ − ◦ pr2

)

ϕ
I,J
C,D

(
ιC ◦ − ◦ pr1

)
⊗
(
ιD ◦ − ◦ pr2

)

ψ′′

− × −

− ⊗ −

(
ιC × ιD

)
∗

≃

id

(− ⊗ −)∗

(id × 1 × 1 × id)∗ (− ⊗ −)∗

(ψ × ψ)∗

ψ∗

The composite outer diagram is the one that we are after. All the morphisms
ψ with some decoration are to be the canonical morphisms exhibiting some
presentable ∞-category as a tensor product in PrL (one could also say: these
are the functors arising from lax symmetric monoidality of the inclusion of
55To save space we write e. g. Fun(I, C) as CI .
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PrL into Cat∞), and 1: ∗ → C is to be the unit morphism of the commu-
tative algebra C in PrL, i. e. the functor with image 1C , and similarly for
1: ∗ → D. The morphisms ιC and ιD are to be as in Construction 5.3.0.1.
Finally, the functors − ⊗ − are the internal tensor product functors of the
various symmetric monoidal ∞-categories.

Let us now explain how the individual pieces of the above diagram arise.
The top right triangle uses that the tensor product functor is the coprod-
uct id∐ id in CAlg(PrL). The top left square arises from naturality of the
functors denoted by ψ with a decoration – the functor on the right is in
fact defined as the essentially unique colimit preserving functor fitting into a
square like this. In the middle square below the two already discussed ones we
can (again56) identify the composition of the top two functors with the tensor
product functor of (C ⊗ D)I×J , and then commutativity of the square arises
from the definition of the symmetric monoidal structure on (C ⊗ D)I×J as
the pointwise one. The square on the right arises from ψ : C × D → C ⊗ D
being a symmetric monoidal functor, which is the case because the functor
CAlg(PrL)→ CAlg(Cat∞) induced by the lax symmetric monoidal inclusion
of PrL into Cat∞ is again lax symmetric monoidal, see [HA, 4.8.1.4] and
Proposition E.4.2.3 (7). The upper square on the left comes from functorial-
ity of taking products of functors. The irregularly shaped square at the very
bottom arises from unitality of the tensor product functors on C and D and
the fact that the tensor product on C ×D is defined componentwise. Finally,
the bottom left square is constructed from the definitions of ιC and ιD. For
example for ιC , the unit morphism 1: ∗ → C induces a colimit preserving func-
tor 1: 1PrL ≃ S→ C and we then obtain the dashed functor in the following
diagram.

C C ⊗ D

C × ∗ C × D

C × S C ⊗ S

ιC

≃

id ×1

id×1

ψ

ψ′′′′

id×1

The dotted functor ιC is then defined as the composition along the outside of
the diagram, i. e. making the outer diagram commute, which obviously also
56One can think of it like this: The lax symmetric monoidal inclusion of PrL into Cat∞

induces a functor on commutative algebras, which is why a presentable symmetric
monoidal ∞-category E comes with a commutative triangle

E × E

E

E ⊗ E

−⊗−

−⊗−

where the left vertical functor is the canonical one exhibiting E ⊗E as a tensor product
in PrL and where both functors −⊗− can be thought of as “the tensor product functor”
– the one on the bottom encodes that colimits are preserved in each variable separately.
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implies that there also exists a filler for the top square.

Notation 5.3.0.5. Given ∞-categories C, C′ and D, with C and C′ admit-
ting all small colimits, we write Funcolim(C,D) for the full subcategory of
Fun(C,D) spanned by the colimit-preserving functors. We will also write
Funcolim × colim(C × C′,D) for the full subcategory of Fun(C × C′,D) of func-
tors preserving colimits in each variable separately. ♦

Proposition 5.3.0.6. In both the situation of Construction 5.3.0.1 as well
as the situation of Construction 5.3.0.2 is the functor φI,J

C,D an equivalence of
presentable (symmetric monoidal) ∞-categories. ♥

Proof. This proof will follow ideas of [HA, Proof of 4.8.1.15].
By [HA, 2.1.3.8] is a symmetric monoidal functor is equivalence of sym-

metric monoidal ∞-categories if and only if the underlying functor of ∞-cat-
egories is an equivalence. In light of Proposition 5.3.0.4 it thus suffices to
discuss the case of Construction 5.3.0.2.

By [HTT, 5.5.1.1, 5.4.2.7, 5.5.4.2, and 5.5.4.15] any presentable∞-category
is equivalent to a localization S−1 Fun(K, S) for some small ∞-category K
and small set of morphisms S in Fun(K, S). It will thus suffice to show the
following claims.

(1) φ
I,J
S,S is an equivalence for all small ∞-categories I and J .

(2) Suppose φI,J
C,D is an equivalence for fixed presentable∞-categories C and

D, but arbitrary small∞-categories I and J . Then φI,J
Fun(I′,C),Fun(J ′,D)

is an equivalence for all small ∞-categories I ′, J ′, I, and J .

(3) Suppose φ
I,J
C,D is an equivalence for fixed presentable ∞-categories C

and D and all small ∞-categories I and J . Let S be a small set of
morphisms of C. Then φ

I,J
S−1C,D is also an equivalence.

(4) Suppose φ
I,J
C,D is an equivalence for fixed presentable ∞-categories C

and D and small ∞-categories I and J . Then φ
J ,I
D,C is an equivalence

as well.

Proof of claim (1): It suffices to show that the composition

θ : Fun(I, S)× Fun(J , S) −×−
−−−→ Fun(I × J , S× S)

ψ∗
−−→ Fun(I × J , S⊗ S)

exhibits Fun(I ×J , S⊗ S) as the tensor product of Fun(I, S) and Fun(J , S)
in PrL, i. e. we have to show that for any∞-category E admitting all colimits
the induced functor

Funcolim(Fun(I × J , S⊗ S), E)
θ∗

−→ Funcolim × colim(Fun(I, S)× Fun(J , S), E)

is an equivalence.
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Using that mapping spaces in products of∞-categories are the products of
the respective mapping spaces we obtain the following commutative diagram
of ∞-categories.

Iop × J op (I × J )op

P(Iop)× P(J op) P
(
(I × J )op)

Fun(I, S)× Fun(J , S) Fun(I × J , S)

Fun(I × J , S× S) Fun(I × J , S⊗ S)

≃

−×−
θ

ψ∗

(−×−)∗

where the two top vertical functors are (products of) Yoneda embeddings
[HTT, 5.1.3], the top horizontal one is the canonical equivalence witnessing
that −op preserves products, and −×− : S⊗S→ S is the tensor product of the
cartesian presentable symmetric monoidal structure on S, see Remark 5.2.2.1.

By applying Fun(−, E) and passing to appropriate full subcategories we
obtain a commutative diagram

Fun(Iop × J op, E) Fun
(
(I × J )op

, E
)

Funcolim × colim(P(Iop)× P(J op), E) Funcolim(
P
(
(I × I)op)

, E
)

Funcolim(Fun(I × J , S⊗ S), E)

≃

((−×−)∗)
∗

θ∗

The top horizontal functor is an equivalence as it is induced by one. The top
left and right vertical functors are equivalences by [HTT, 5.1.5.6]57. Finally,
the bottom right vertical functor is an equivalence because it is induced by the
equivalence S⊗S→ S (see [HA, 4.8.1.20]). It follow that θ∗ is an equivalence
as well.

Proof of claim (2): Let C and D be as in the claim and I, I ′, J , J ′ small
∞-categories. We have to show that φI,J

Fun(I′,C),Fun(J ′,D) is an equivalence.
For this, consider the following diagram where the unlabeled functors are
induced by the unit and counit of the product-Fun-adjunction and symmetry
57For the top left functor, note that by passing to ad-

joints Funcolim × colim(P(Iop)× P(J op), E) is equivalent to
Funcolim(

P(Iop),Funcolim(P(J op), E)
)
, and now one can apply [HTT, 5.1.5.6]

twice and then pass back to adjoints again.
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equivalences, and the functors ψ, ψ′, ψ′′, and ψ′′′ are the various functors
exhibiting a presentable ∞-category as a tensor product in PrL.

CI×I′

×DJ×J ′

CI×I′

⊗DJ×J ′

(
CI

′
)I
×
(
DJ ′

)J (
CI

′
)I
⊗
(
DJ ′

)J

(
CI

′

×DJ ′
)I×J (

CI
′

⊗DJ ′
)I×J

(
(C × D)I

′×J ′
)I×J (

(C ⊗ D)I
′×J ′

)I×J

(C × D)I×I′×J×J ′

(C ⊗ D)I×I′×J×J ′

ψ′′

≃

−×−

≃

φ
I×I′,J×J′

C,D

ψ′′′

−×− ϕ
I,J

CI′
,DJ′

ψ′
∗

(−×−)∗

(
φ

I′,J′

C,D

)
∗

(ψ∗)∗

≃ ≃

ψ∗

The two middle squares commute by definition of ϕI,J
CI′

,DJ′ and φI′,J ′

C,D , and the
top and left square arise from respective naturalities. As the left rectangle on
the left commutes we obtain from the universal property of ψ′′ that the colimit
preserving vertical composite on the right must be homotopic to φI×I′,J×J ′

C,D .
That ϕI,J

CI′
,DJ′ is an equivalence now follows from all other functors in the

commuting right long rectangle being equivalences.
Proof of claim (3): Let C, D, I, J , and S be as in the statement of the claim.

We will write S for the strongly saturated collection of morphisms of C gener-
ated by S, see [HTT, 5.5.4.5 and 5.5.4.7]. By [HTT, 5.5.4.15] S−1C ≃ (S)−1C

is again presentable, so φ
I,J
S−1C,D is defined. We have to show that it is an

equivalence.
Before we do so we need to discuss how localizations commute with tensor

products in PrL and with Fun(K,−) for small ∞-categories K.
For interaction with tensor products we note the following, which is taken

from the proof of [HA, 4.8.1.15]. Let E and F be any presentable∞-categories,
and T a strongly saturated class of small generation of morphisms of E . Let
W be the collection of morphisms of the form s⊗ idF in E ⊗ F for any s in
S and object F of F . Then W is of small generation, as shown in [HA, Proof
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of 4.8.1.15]. Now consider the following diagram

T−1E × F E × F E ⊗ F

T−1E ⊗ F W−1(E ⊗ F)

where the top left horizontal functor is induced by the inclusion T−1E → E ,
the top right horizontal functor and the left vertical functor are the canonical
functors exhibiting the respective targets as tensor products in PrL, and the
right vertical functor is the localization functor. W−1(E ⊗ F) is representable
by [HTT, 5.5.4.15], and the composite functor from the top left to the bottom
right preserves colimits in each variable separately58. We hence obtain the
induced dashed colimit preserving functor that is an equivalence by [HA,
Proof of 4.8.1.15].

We now turn to the interaction of localizations with taking functor cate-
gories. For this, let E be a presentable ∞-category, K a small ∞-category,
and T a strongly saturated class of morphisms of E of small generation. Let
L : E → T−1E be the localization functor. Then by Proposition D.2.2.1 and
Fun(K,−) preserving fully faithful functors by Proposition B.3.0.1 it follows
that the induced functor

L∗ : Fun(K, E)→ Fun
(
K, T−1E

)

is a localization functor again. Furthermore, Fun(K, T−1E) is presentable
again by [HTT, 5.5.3.6]. Let W be the class of morphisms in Fun(K, E) that
are pointwise in T . By combining [HTT, 5.5.4.15], [HTT, 5.5.4.2], and Propo-
sition A.3.2.1 we see that W consists precisely of those morphisms that are
mapped to equivalences by L∗. It then follows from [HTT, 5.5.4.2] that there
is a canonical equivalence

Fun
(
K, T−1E

)
≃W−1 Fun(K, E)

that is compatible with the localization functors.
We now return to showing that φI,J

S−1C,D is an equivalence. Let T be the
strongly generated class of morphisms in Fun(I, C)⊗ Fun(J ,D) that is gen-
erated by morphisms of the form η⊗ idG for any object G in Fun(J ,D) and
any morphism η in Fun(I, C) such that η(I) is in S for all objects I of I. Let
W be the strongly generated class of morphisms in Fun(I × J , C ⊗ D) that
is generated by those morphisms for which for every object I of I and J of
J the evaluation at (I, J) is equivalent to a morphism of the form s ⊗ idD
for s in S and D and object of D.
58One can see this using that by [HTT, 5.2.7.5] a diagram p : K▷ → T−1E is a colimit

if and only if the induced morphism from the colimit taken in E to the cone object,
colim p|K

→ p(∞), is a T -equivalence.
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Consider the following commutative diagram

T−1
(
CI ⊗DJ

)

CI ⊗DJ
(
S−1C

)I
⊗DJ

(C ⊗ D)I×J (
S−1C ⊗ D

)I×J

W−1
(
(C ⊗ D)I×J

)

≃

φ
I,J
C,D

L∗⊗id∗

φ
I,J

S−1C,D

(L⊗id)∗

≃

where L denotes the localization functor C → S−1C, the middle square arises
from naturality of the functors φ with respect to the colimit preserving func-
tor L (see Remark 5.3.0.3), and the top and bottom triangles use the com-
patibility of the tensor product and functor categories with localization as
discussed above, with the top and bottom functors being the respective lo-
calization functors.

By assumption φ
I,J
C,D is an equivalence, and it is clear from the definitions

that the strongly saturated classes of morphisms T and W correspond under
this equivalence, i. e. φI,J

C,D (T ) =W . It then follows from [HTT, 5.5.4.20] that
φ
I,J
S−1C,D is also an equivalence.
Proof of claim (4): One can show in a manner analogous to Remark 5.3.0.3

that there is a commutative diagram

CI ⊗DJ (C ⊗ D)I×J

DJ ⊗ CI (D ⊗ C)J×I

φ
I,J
C,D

τ ≃ τ ′
∗≃

φ
J ,I
D,C

where τ and τ ′ are the symmetry equivalences of the symmetric monoidal
structure on PrL. The claim immediately follows from this.

The proof of Proposition 5.3.0.8 below is also sketched in [Rak20, 2.2.9].
We need a small prerequisite before stating the result.
Proposition 5.3.0.7. Let C be a symmetric monoidal ∞-category, O an
∞-operad, and O′ a reduced ∞-operad59. Then the unit of the induced sym-
metric monoidal structure on BiAlgO,O′(C) is a final object. ♥
59See [HA, 2.3.4.1] for a definition.

250



5.3 Group actions and modules over group rings

Proof. By definition there is an equivalence as follows.

BiAlgO,O′(C) ≃ AlgO′(AlgO(C)op)
op

The unit is an initial object in AlgO′(AlgO(C)op) by [HA, 3.2.1.8] and hence
final in BiAlgO,O′(C).

Proposition 5.3.0.8 ([Rak20, 2.2.9]). Let C be a presentable symmetric
monoidal ∞-category and G an object in Mongp

Assoc(S). Consider G as a co-
commutative bialgebra in S, and give 1C ⊠ G the induced cocommutative
bialgebra structure, as discussed in the introduction to Section 5.3.

Then there is a commutative diagram of presentable symmetric monoidal
∞-categories and colimit preserving symmetric monoidal functors60 as follows

CBG LMod1C⊠G(C)

C

≃

ΨGC

ev∗ evm

(5.11)

where CBG carries the pointwise symmetric monoidal structure discussed
in the introduction to Section 5.3 and LMod1C⊠G(C) the one from Defini-
tion 3.4.2.1. As indicated in the diagram, ΨGC is an equivalence of presentable
symmetric monoidal ∞-categories.

Furthermore, these equivalences can be chosen in such a way as to be
compatible with morphisms f : G → H in Mongp

Assoc(S) and F : C → D in
CAlg(PrL), in the sense that for such f and F there is a commutative diagram
in CAlg(PrL) as follows.

CBH LMod1C⊠H(C)

DBG LMod1C⊠G(D)

C

D

ΨHC

F◦−◦B f

ev∗

LMod
1C⊠f (F )

evm

ΨGD

ev∗ evm

F

(5.12)
♥

60In other words, a commutative diagram in CAlg(PrL).

251



Chapter 5 Mixed complexes and circle actions

Remark 5.3.0.9. In the situation of Proposition 5.3.0.8, let f : G → ∗ be
the essentially unique morphism of grouplike associative monoids in S. The
induced morphism of cocommutative bialgebras in C given by

1C ⊠ f : 1C ⊠G→ 1C ⊠ ∗ ≃ 1C

is also the essentially unique one, see Proposition 5.3.0.7.
Then there is a commutative diagram by Proposition 5.3.0.8 as follows

C

CB ∗ LMod1C (C)

CBG LMod1C⊠G(C)

ev∗

Ψ∗
C

(B f)∗

evm

LMod
1C⊠f (C)

ΨGC

Note that the functors ev∗ and evm are equivalences61, and we can interpret
the composites from the top to the bottom left and bottom right as the
functors that map an object of C to that same object equipped with the
trivial action by G. ♦

Proof of Proposition 5.3.0.8. We start by noting that ignoring the horizon-
tal functors, the rest of diagrams (5.11) and (5.12) are indeed diagrams in
CAlg(PrL). The ∞-category CBG with the pointwise symmetric monoidal
structure is indeed presentable symmetric monoidal, as is explained in Con-
struction 5.3.0.1. That LMod1C⊠G(C) is presentable symmetric monoidal is
by construction, see Definition 3.4.2.1 and the propositions referenced there.
(F ◦ − ◦ B f) : Fun(BH, C) → Fun(BG,D) can be upgraded to a symmet-
ric monoidal functor and preserves colimits as both the symmetric monoidal
structure as well as colimits are pointwise. Similarly, the evaluation functor
ev∗ is symmetric monoidal and preserves colimits. LMod1C⊠f (F ) as well as
evm are symmetric monoidal and colimit preserving by construction, see Defi-
nition 3.4.2.1. Finally, the left and right squares in (5.12) arise from naturality
of the respective evaluation functors.

The commutative triangle we have to construct will be given as the com-
posite outer triangle in a commutative diagram in CAlg(PrL) as indicated
below; we will individually construct each part together with the relevant

61See [HA, 4.2.4.9] for evm being an equivalence.
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compatibility with respect to f : G→ H and F : C → D.

CBG C ⊗ SBG C ⊗ LModG(S) LMod1C⊠G(C)

C ⊗ S

C

ev∗

ΨGC

≃ ≃

idC⊗ev∗

≃

idC⊗evm

evm

≃ ρC

(5.13)
The tensor product is the tensor product induced on CAlg(PrL) by the tensor
product of presentable∞-categories62. The bottom vertical equivalence ρC is
the right unitor, using that S is the monoidal unit in PrL (see [HA, 4.8.1.20]).

Construction of the left square: The square arises as the composite outer
square in the following commutative diagram in CAlg(PrL).

CBG (C ⊗ S)
∗×BG C∗ ⊗ SBG C ⊗ SBG

C C ⊗ S C ⊗ S C ⊗ S

ev∗ ev(∗,∗)

ρC◦−◦(pr2)−1 φ
∗,BG
C,S

ev∗ ⊗ ev∗

ev∗ ⊗ id
SBG

idC⊗ev∗

ρC idC⊗S idC⊗S

Here, the left square is induced by the unitality equivalences

pr2 : ∗ ×BG→ BG

(in Cat∞) and
ρC : C ⊗ S→ C

(in CAlg(PrL)), which is clearly compatible with f and F . The equivalence
φ
∗,BG
C,S is the one from Construction 5.3.0.1, and the middle square as well as

the commutative cube for compatibility with f and F can be constructed
directly using the definition and the universal property of coproducts in
CAlg(PrL). Finally, the right square arises directly from functoriality of the
tensor product of CAlg(PrL), and ev∗ is clearly an equivalence.

Construction of the right square: This square arises as the composite outer
square obtained by combining the following two commutative diagrams in

62See [HA, 4.8.1.15]
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CAlg(PrL).

C ⊗ LModG(S) LMod1C (C)⊗ LModG(S) LMod1C⊗G(C ⊗ S)

C ⊗ S C ⊗ S C ⊗ S

idC⊗evm

evm⊗id

evm⊗evm

≃

evm

idC⊗S id

LMod1C⊗G(C ⊗ S) LMod1C⊠G(C)

C ⊗ S C

evm

LMod1C⊗G(ρC)

evm

ρC

The left square of the first diagram arises from functoriality of the tensor
product, and evm is an equivalence by [HA, 4.2.4.9 and 2.1.3.8]. Compati-
bility with f and F follows from evm being a natural transformation, see
Definition 3.4.2.1. The right square of the first diagram as well as its compat-
ibility with f and F is the one arising from evm : LMod→ pr being a natural
transformation of symmetric monoidal functors

LMod : BiAlgOpPr
Comm → CAlg(PrL)

by Remark 3.4.2.2. Finally, the second diagram as well as its compatibility
with f and F arises from the naturality of the right unitor ρ and evm. That
there is an equivalence ρC(1C⊗G) ≃ 1C ⊠G that is compatible with f and F
follows immediately from S being initial in CAlg(PrL) (see Remark 5.2.2.1), so
that there is a essentially unique natural equivalence between the composition
of the inclusion63 S→ C ⊗ S, which sends G to 1C ⊗G, with ρC , and 1C ⊠−.

Construction of the middle triangle: It suffices to construct a commutative
triangle

SBG LModG(S)

S

≃

ΨG
S

ev∗ evm

(5.14)

in CAlg(PrL) that is compatible with f , as the middle triangle in Equa-
tion (5.13) we need to construct can then be obtained by tensoring with
C.

As both ev∗ and evm are symmetric monoidal as well as limit preserving
and detecting64, it follows from the symmetric monoidal structure on S being
cartesian that the symmetric monoidal structures on SBG and LModG(S) are
cartesian as well65. By [HA, 2.4.1.8], any filler for the horizontal functor and
63This is also the functor we could call 1C⊗S ⊠−, see Definition 5.2.2.2.
64See [HTT, 5.1.2.3] for ev∗ and [HA, 4.2.3.3] for evm.
65See [HA, 2.4.0.1] for the definition.
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the triangle (5.14) in PrL such that the horizontal functor is an equivalence66,
can then be lifted in an essentially unique way to a filler for the triangle as
a diagram in CAlg(PrL). It thus suffices to construct a commuting triangle
(5.14) in PrL in which the horizontal functor is an equivalence.

In [BP21, 3.9] an equivalence SBG ≃ LModβ1 BG(S) is constructed as a
sequence of equivalences67. See the introduction of Section 5.3 for a discussion
of β1 – the underlying space of β1 BG is ΩBG. As B is defined as the inverse
functor to (the appropriately restricted) β1, there is a canonical equivalence
β1 BG ≃ G, so that we obtain an equivalence LModβ1 BG(S) ≃ LModG(S).

Let us now go through the individual steps to say something about com-
patibility with forgetful functors to S and compatibility with f .

For the first step, let j : BG→ Fun(BGop, S) be the Yoneda embedding68,
and consider the commutative diagram

Fun(BG, S) Funcolim(Fun(BGop, S), S)

S

ev∗

≃

j∗

evj(∗)

where j∗ is an equivalence by [HTT, 5.1.5.6]. Compatibility with f follows
from naturality of the Yoneda embedding.

Before we discuss the second step, we first need to note something regarding
right fibrations over∞-groupoids69. Let X be an object of S and consider it as
an∞-groupoid. The∞-category RFib(X) of right fibrations over X is the full
subcategory of CFib(X) spanned by those cartesian fibrations whose fibers
are ∞-groupoids. CFib(X) in turn is the subcategory of Cat∞/X spanned
by the cartesian fibrations and morphisms of cartesian fibrations. Note that
by [HTT, 2.4.2.4], if p : E → X is a right fibration, then every morphism
of E is p-cocartesian, so morphisms among cartesian fibrations over X (i. e.
morphisms in Cat∞/X) are automatically morphisms of cartesian fibrations.
RFib(X) is thus the full subcategory of Cat∞/X spanned by the right fibra-
tions. That X is an ∞-groupoid together with [HTT, 2.4.2.4 and 2.4.1.5]
implies that a functor of ∞-categories E → X is a right fibration if and only
if E is an ∞-groupoid.

The inclusion S → Cat∞ is also fully faithful, so induces by Proposi-
tion D.1.2.1 a fully faithful functor S/X → Cat∞/X with the same essential
image. We thus obtain a canonical equivalence RFib(X) ≃ S/X , see Proposi-
tion B.4.3.1.
66Note that ev∗ and evm are known to preserve products as already noted, so if the

horizontal functor is an equivalence and hence also preserves products, (5.14) will be a
commutative triangle of product preserving functors.

67[BP21, 3.9] contains an unnecessary use of BGop ≃ BG, which likely stems from a
misreading of the definition of P(BG) used in [HTT, 5.1.5.6], which is defined as
Fun(BGop, S) in [HTT, 5.1.0.1], not Fun(BG, S).

68See [HTT, Introduction of 5.1.3] for a definition and discussion of j – it can be described
as the functor MapS(•,−).

69See also [HTT, 5.1.1.1] for a related discussion.
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Chapter 5 Mixed complexes and circle actions

Now we can tackle the second step, for which we consider the following
composite equivalence

Fun(BGop, S)
Gr
−−→ RFib(BG) ≃ S/ BG

where the first equivalence is the Grothendieck construction. This equivalence
is natural in G70 and hence induces a commutative triangle

Funcolim(Fun(BGop, S), S) Funcolim(
S/ BG, S

)

S

evj(∗)

≃

evGr(j(∗))

that is compatible with f .
Gr(j(∗)) : X → BG is the right fibration classified by j(∗). By [HTT,

4.4.4.5] the ∞-groupoid X has a final object and is thus contractible, so that
we can identify Gr(j(∗)) with the inclusion of the basepoint of BG.

For the third step the equivalence

S/ BG
≃
−→ RModβ1 BG(S)

is used that is described in [HTT, 5.2.6.28 and 5.2.6.29], and which is com-
patible with f . By [HTT, 5.2.6.29] this equivalence fits into a commutative
diagram

S

S/∗

S/ BG RModβ1 BG(S)

Free

pr
≃

(∗→BG)∗

≃

where ∗ → BG refers to the inclusion of the basepoint. It follows that
∗ → BG is mapped to the free right-β1 BG-module generated by ∗, so
to β1 BG considered as a right module over itself, under the equivalence
S/ BG ≃ RModβ1 BG(S). By definition of B we also have a canonical equiva-
lence β1 BG ≃ G. We thus obtain a commuting triangle, compatible with f ,
as follows.

Funcolim(
S/ BG, S

)
Funcolim(RModG(S), S)

S

≃

ev(∗→BG) evG

For the fourth step, it is explained in [BP21, 3.9] that the forgetful functor

LinFuncolim
S (RModG(S), S)→ Funcolim(RModG(S), S)

70For naturality of the Grothendieck construction see [GHN17, A.32].
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5.4 The monoidal equivalence D(k)B T ≃Mixed

is an equivalence, so that we obtain a commutative triangle

Funcolim(RModG(S), S) LinFuncolim
S (RModG(S), S)

S

evG

≃

evG

that is compatible with f .
Finally, for the fifth step, [HA, 4.8.4.1] is used, where it is shown that there

is an equivalence as indicated by the top horizontal functor in the following
diagram.

LinFuncolim
S (RModG(S), S) LModG(S)

S

≃

evG evm

That there also is a commutative triangle as indicated follows from unpacking
the definition of the top horizontal equivalence, from which one also sees that
this commutative triangle is also compatible with f , see [HA, 4.8.4.1 and
4.6.2.9].

Combining everything yields a commutative triangle (5.14) in PrL in a
manner compatible with f .

5.4 The monoidal equivalence D(k)BT ≃Mixed

We can now combine the main result of Section 5.3 with the equivalence
between the bialgebras k ⊠ T and D in D(k) to obtain an equivalence as
follows.

D(k)B T ≃ LModk⊠T(D(k)) ≃ LModD(D(k))

This equivalence is only (Assoc-)monoidal, not E2-monoidal or even symmet-
ric monoidal, see Warning 5.4.0.2 below.

Construction 5.4.0.1. The ∞-category D(k) is a presentable symmetric
monoidal ∞-category by Proposition 4.3.2.1 (1), and as the circle group T is
path connected, it follows from [HA, 5.2.6.4] that T is grouplike as an associa-
tive monoid in S. Hence we can apply Proposition 5.3.0.8 and Remark 5.3.0.9
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to obtain a commutative diagram in Alg(PrL) as follows

D(k)∗ D(k) LMod1D(k)
(D(k))

D(k)B T LModk⊠T(D(k))

D(k)

(B T→∗)∗

(ev∗)
−1 (evm)−1

LMod
(k⊠T→1

D(k))
(D(k))

≃

ev∗ evm

(5.15)

where the middle horizontal morphism is an equivalence and the morphisms
of bialgebras BT → ∗ and D → 1D(k) are the essentially unique ones, see
Proposition 5.3.0.7.

Proposition 5.2.4.2 and Convention 5.2.4.3 provide us with an equivalence
of bialgebras in D(k)

φ : D→ k ⊠ T

and as k is a final object in BiAlgAssoc,Assoc(D(k)) by Proposition 5.3.0.7, we
can extend this to a commutative triangle of bialgebras in D(k) as follows.

D k ⊠ T

k

φ

Applying the functor LMod from Definition 3.4.2.1 we obtain a commutative
diagram in Alg(PrL)

LMod1D(k)
(D(k))

LModk⊠T(D(k)) LModD(D(k))

D(k)

LMod
(k⊠T→1

D(k))
(D(k)) LMod

(D→1
D(k))

(D(k))

LModϕ(D(k))

≃

evm evm

(5.16)

where the top triangle is the one induced by the previous diagram, and the
bottom one uses that evm is a natural transformation.
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Combining (5.15) and (5.16) we obtain a commutative diagram in Alg(PrL),
i. e. of presentable monoidal ∞-categories with monoidal colimit preserving
functors, as follows

D(k)∗ D(k) LMod1D(k)
(D(k))

D(k)B T LModD(D(k)) Mixed

D(k)

(B T→∗)∗

(ev∗)
−1 (evm)−1

LMod
(D→1

D(k))
(D(k))

≃

ev∗ evm

such that the middle horizontal functor is an equivalence. ♦

Warning 5.4.0.2. While both D(k)B T and Mixed = LModD(D(k)) carry a
symmetric monoidal structure, the equivalence between them is only Assoc-
monoidal.

For this reason one should be careful to distinguish between “objects of
D(k) with T-action” (or “T-objects in D(k)”) on the one hand and “mixed
complexes” on the other hand whenever the symmetric monoidal structures
might be relevant. ♦

Remark 5.4.0.3. Let φ : k → k′ be a morphism of commutative rings.
Combining the compatibility statement with colimit preserving symmetric
monoidal functors between presentable symmetric monoidal ∞-categories
that is part of Proposition 5.3.0.8 with Remark 5.2.4.4 we obtain a com-
mutative diagram of monoidal colimit preserving functors71

D(k)B T LModDk(D(k))

D(k)

D(k′)

D(k′)B T LModDk′ (D(k))

≃

(k′⊗k−)∗

ev∗

k′⊗k−

evm

k′⊗k−

≃

ev∗ evm

where the horizontal equivalences are the ones from Construction 5.4.0.1. ♦
71Like with the diagram in Remark 5.2.4.4, there is also supposed to be a filler for the

outer diagram that is compatible with the forgetful functors.
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Hochschild homology
In this chapter we introduce the main object of study of this text, Hoch-

schild homology. We will give both a modern account, in which the main
construction is a functor

HHT : Alg(D(k))→ D(k)B T

called Hochschild homology that will be defined and discussed in Section 6.2,
as well as a description of the classical constructions, where one considers a
functor

C : Alg
(
Ch(k)cof)→ Mixedcof

called standard Hochschild complex. The latter construction will be discussed
in Section 6.3, where we will also show that the two constructions are related –
the standard Hochschild complex can be considered as a model for Hochschild
homology. For both the definitions the first step is to apply the cyclic bar con-
struction, which takes an associative algebra in an some monoidal∞-category
C, and produces a cyclic object in C, i. e. a functor Λ

op → C, where Λ is
Connes’ cyclic category. For this reason, we start this chapter in Section 6.1
with a discussion of the cyclic bar construction as well as the geometric real-
ization of cyclic objects.

6.1 The cyclic bar construction and geometric
realization of cyclic objects

In this section we discuss the cyclic bar construction. Given a presentable
symmetric monoidal ∞-category C, this is a (symmetric monoidal) functor

Bcyc : Alg(C)→ CB T

that constructs an object in C with T-action out of every (associative) algebra
in C.

The construction proceeds in two main steps. Starting with an algebra R
in C, one first constructs a cyclic object in C, denoted by Bcyc

• (R), and also
called the cyclic bar construction1, which is a functor Λ

op → C, where Λ is
1In fact, we will almost exclusively refer to this construction as the cyclic bar construction

in the remainder of the text.
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Connes’ cyclic category. We will review Λ in Section 6.1.1, and define the
symmetric monoidal functor

Bcyc
• : Alg(C)→ Fun(Λop, C)

in Section 6.1.2.
Given a cyclic object X in C, one can then take the geometric realization
|X|, which yields an object in C with T-action, as will be discussed in Sec-
tion 6.1.3. The cyclic bar construction Bcyc of an associative algebra R can
then be defined as Bcyc(R) := |Bcyc

• (R)|.
As main references for the material below we use [NikSch], [Hoy18], and

[Lod98].

6.1.1 Connes’ cyclic category Λ

In this section we discuss Connes’ cyclic category Λ, which has the simplex
category ∆ as a subcategory and is mainly of interest because it encodes circle
actions. More concretely, if C is a presentable ∞-category and X : Λop → C
a diagram, then the geometric realization (i. e. colimit) of the restriction of
X to ∆

op naturally acquires the action of the circle group2 T, as we will see
as Fact 6.1.3.6 in Section 6.1.3.2.

We will start by reviewing the two different approaches towards defining the
simplex category ∆ (one via generators and relations, one more abstract) in
Section 6.1.1.1, before discussing analogous definitions of the cyclic category
Λ in Sections 6.1.1.2 and 6.1.1.3. We will show that the two definitions we give
for Λ are equivalent in Section 6.1.1.4. Finally, we will introduce the notion
of cyclic objects in Section 6.1.1.5 and describe the self-duality functor of Λ
in Section 6.1.1.6, which will be relevant for the definition of the cyclic bar
construction in Section 6.1.2.

6.1.1.1 The simplex category ∆

Recall that there are two approaches towards defining the simplex category
∆.

• ∆ can be defined as the category of totally ordered non-empty finite
sets together with (weakly) order-preserving maps.

• ∆ can be constructed as the category with objects [n] for n ≥ 0 and
morphisms generated by δi : [n − 1] → [n] (for n ≥ 1 and 0 ≤ i ≤ n)
and σi : [n+1]→ [n] (for n ≥ 0 and 0 ≤ i ≤ n) satisfying the simplicial
identities3.

2T was defined in Construction 5.2.1.1.
3They can be found for example in [Lod98, B.3] or [Mac98, Page 177]. See also Re-

mark 6.1.1.8 below.
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If we temporarily refer to the second definition as ∆
′, then we can relate

∆
′ and ∆ with a functor ∆

′ →∆ that can be described as follows.

• [n] is mapped to the totally ordered set {0 < 1 < · · · < n}.

• δi : [n− 1] → [n] is mapped to the injective order-preserving map that
does not have i in the image.

• σi : [n+ 1]→ [n] is mapped to the order-preserving map that is surjec-
tive and maps both i and i+ 1 to i.

This functor is an equivalence of categories, as shown in [Mac98, Proposition
2 on page 178]4. We will thus usually identify ∆ and ∆

′ and use whatever
description is most appropriate for the occasion.

Notation 6.1.1.1. Let C be an ∞-category. A functor

X : Λop → C

will be called a simplicial object in C. We will write Xn instead of X([n])
and accordingly often also use X• for X if we want to emphasize X being a
simplicial object. We will refer to the morphism induced by the opposite of
δi as di, and to the morphism induced by the opposite of σi as si. ♦

Completely analogously to the situation for the simplex category, there
are two approaches to Connes’ cyclic category Λ. We will discuss an abstract
definition first in Section 6.1.1.2 and then discuss a definition using generators
and relations in Section 6.1.1.3, before showing that they are equivalent in
Section 6.1.1.4.

6.1.1.2 Definition of Λ via posets

Definition 6.1.1.2 ([NikSch, page 380]). We denote by PoSet the category of
partially ordered sets with (weakly) order preserving maps. We furthermore
define

ZPoSet := Fun(BZ,PoSet)

to be the category of objects in PoSet with Z-action.
An example for an object in ZPoSet is (1/n) · Z for n ≥ 1; as a subset of

Q this set inherits a partial order, and an integer k acts by addition.
We now define Λ∞ to be the full subcategory of ZPoSet spanned by the

objects isomorphic to (1/n) · Z for n ≥ 1. The category Λ∞ is called the
paracyclic category. ♦

4What is referred to as ∆ in [Mac98] is not what we refer to as ∆, but also includes the
empty set. What we refer to as ∆ is denoted by ∆

+ in [Mac98] and discussed in [Mac98,
Bottom of page 178]. But while the statement of [Mac98, Proposition 2 on page 178]
does not directly deal with our ∆, it nevertheless directly implies the result, as there
are no maps from a non-empty set to an empty set.
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Recall the equivalence

S
≥1
∗ Mongp

Assoc(S)
β1

B

from [HA, 5.2.6, in particular 5.2.6.10] that was discussed in Section 5.3. The
functors β1 and B induce mutually inverse equivalences on the respective
∞-categories of commutative monoids, so as Z is commutative BZ acquires
an induced commutative monoid structure. BZ can in fact be identified, as
an object of CMon(S≥1

∗ ), with the circle group T (see Construction 5.2.1.1).
To see this it suffices to check that β1(T) ≃ Z as commutative monoids in S,
but as the underlying spaces are discrete this is just a classical exercise using
the Eckmann-Hilton argument5.

As T is path connected, it is grouplike as a monoid in S by [HA, 5.2.6.4], so
we can form BT and consider objects with T-action in some ∞-category D,
i. e. functors BT→ D – see the introduction to Section 5.3. The ∞-groupoid
BT ≃ B BZ can be interpreted as the ∞-groupoid with a unique object ∗,
unique morphism, and with Z being the space of 2-morphisms id∗ → id∗. A
T ≃ BZ-action on an∞-category C, i. e. a functor BT→ Cat∞ mapping ∗ to
C, then essentially consists of a natural equivalence idC → idC corresponding
to the generator 1 of Z.

If C = C is a 1-category, then this amounts to giving an automorphism
φX : X → X for every object X of C in such a way that these automorphisms
are compatible with every morphism of C, i. e. for every morphism f : X → Y

of C it must hold φY ◦f = f ◦φX . This data is in turn equivalent to a natural
action of Z on the morphism sets of C: We can let n act on MorC(X,Y ) by
φnY ◦ −. If instead we have a natural action of Z on the morphism sets given,
then we can recover the automorphisms φX as the result of letting 1 act on
the element idX in MorC(X,X).

We can now state the definition of the cyclic category Λ as it is given in
[NikSch, page 380].

Definition 6.1.1.3 ([NikSch, page 380]). There is an action of Z on the
morphisms spaces of Λ∞ such that the action of an integer k on a morphism
f yields the morphism f(−) + k = f(−+ k).

Dividing out this action, i. e. identifying a morphism f with f + k for any
integer k, we obtain a category that we denote by Λ and call Connes’ cyclic
category. ♦

Notation 6.1.1.4. We will use the notation [n]Λ for (1/(n + 1)) · Z when
considered as an object in Λ as described in Definition 6.1.1.2. Up to isomor-
phism, the objects of Λ are thus given by [n]Λ for n ≥ 0. ♦

5The underlying space of β1(T) is ΩT. This loop space has two monoid structures – an
associative via composition of loops, and a commutative one via pointwise multiplication
using the commutative monoid structure on T.
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Warning 6.1.1.5. Notation 6.1.1.4 deviates from the notation in [NikSch],
where [n]Λ is defined to be 1/n · Z.

The notation we use is chosen to be more consistent with the notation used
for objects of ∆ – it also matches the notation used in [Lod98], see [Lod98,
6.1.1]. ♦

The category Λ contains ∆ as a subcategory, as we note next.

Construction 6.1.1.6 ([NikSch, page 382]). Consider ∆ as the category of
totally ordered non-empty finite sets. We can then define a functor

∆→ ZPoSet

by mapping a totally ordered non-empty finite set S to Z×S, equipped with
the lexicographic order and action by Z via addition on the first component. If
S = {s0 < s1 < · · · < sn}, then there is an isomorphism Z×S ∼= (1/(n+1))·Z
in ZPoSet that maps (k, si) to k+(i/(n+1)), so the functor factors through
Λ∞.

Following [NikSch, page 382], we will denote the resulting functor ∆→ Λ∞

by jop
∞

6 and the composition

∆→ Λ∞ → Λ

by jop. It is not difficult to check that jop
∞ and jop are faithful and induce

bijections on isomorphism classes of objects. ♦

6.1.1.3 Definition of Λ via generators and relations

We now describe Λ with generators and relations.

Construction 6.1.1.7 ([Lod98, 6.1.1]). We define the 1-category Λ
′ to have

objects [n]Λ′ for integers n ≥ 0, and morphisms generated by

δi : [n− 1]Λ′ → [n]Λ′ for n ≥ 1 and 0 ≤ i ≤ n

σi : [n+ 1]Λ′ → [n]Λ′ for n ≥ 0 and 0 ≤ i ≤ n

τ : [n]Λ′ → [n]Λ′ for n ≥ 0

subject to the following relations7.
δj ◦ δi = δi ◦ δj−1 for i < j

σj ◦ σi = σi ◦ σj+1 for i ≤ j
σj ◦ δi = δi ◦ σj−1 for i < j

σj ◦ δi = id for i = j or i = j + 1

σj ◦ δi = δi−1 ◦ σj for i > j + 1

τ ◦ δi = δi−1 ◦ τ for i > 0

6The reason for the op is that the opposite of this functor is more important (or at least
more often used) and hence gets to have the name with least decorations.
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τ ◦ δ0 = δn where τ : [n]Λ′ → [n]Λ′

τ ◦ σi = σi−1 ◦ τ for i > 0

τ ◦ σ0 = σn ◦ τ
2 where σ0 : [n+ 1]Λ′ → [n]Λ′

τn+1 = id[n]
Λ′ where τ : [n]Λ′ → [n]Λ′ ♦

Remark 6.1.1.8. If we remove the morphisms τ as generators in Construc-
tion 6.1.1.7 (as well as the relations involving them), then we obtain precisely
the definition of ∆ via generators and relations. We thus obtain a functor
j′op : ∆→ Λ

′. ♦

6.1.1.4 Comparison of the two definitions of Λ

To show that Λ and Λ
′ are equivalent, we first construct a comparison

functor.

Proposition 6.1.1.9. There is a functor Φ: Λ′ → Λ defined as follows.

• [n]Λ′ is mapped to to [n]Λ.

• δi : [n− 1]Λ′ → [n]Λ′ is mapped to the unique morphism that sends 0 to
0 and has 0

n+1 , . . . , i−1
n+1 , i+1

n+1 , . . . , n
n+1 in its image.

• σi : [n + 1]Λ′ → [n]Λ′ is mapped to the unique morphism that sends 0
to 0, is surjective, and sends i

n+2 and i+1
n+2 to i

n+1 .

• τ : [n]Λ′ → [n]Λ′ is mapped to the unique morphism that is surjective
and sends 1

n+1 to 0
n+1 .

Furthermore, this functor fits into a commutative square

∆
′

Λ
′

∆ Λ

j′op

Φ∆ Φ

jop

that commutes up to natural isomorphism φ : jop ◦Φ∆ → Φ◦j′op where Φ∆ is
the equivalence from Section 6.1.1.1, and j′op and jop are as in Remark 6.1.1.8
and Construction 6.1.1.6. The components of the natural isomorphism φ are
to be the isomorphisms

φ[n] : j
op([n]) = Z× [n]

∼=
−→ (1/(n+ 1)) · Z = [n]Λ

that were discussed in Construction 6.1.1.6. ♥
7As we do not specify the n as part of the notation of the three types of morphisms,

notation like δi refers to more than a single morphism. The relations below are to be
satisfied for all choices where the morphisms can be composed as indicated and both
sides of the equation have same domain and codomain.
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Proof. Easy but a bit tedious exercise checking the relations.

For both Λ and Λ
′ one can show that morphisms decompose uniquely as

the composition of a power of τ with a morphism in the image of the inclusion
of ∆, as we will see next. This is what will imply that the functor Λ

′ → Λ

from Proposition 6.1.1.9 is an equivalence.

Proposition 6.1.1.10. Let f : [n]Λ′ → [m]Λ′ be a morphism in Λ
′. Then

there exists a unique morphism g : [n] → [m] in ∆ and integer k with
0 ≤ k ≤ n such that f = j′op(f) ◦ τk.

An analogous statement also holds for Λ. Let f : [n]Λ → [m]Λ be a mor-
phism in Λ. Then there is a unique morphism g : [n]→ [m] in ∆ and integer
k with 0 ≤ k ≤ n such that f = φ[m] ◦ j

op(f) ◦ φ−1
[n] ◦ Φ(τ)

k, where we use
notation from Proposition 6.1.1.9. ♥

Proof. The statement for Λ
′ is precisely [Lod98, 6.1.3].

For Λ note that there is a unique 0 ≤ k ≤ n and morphism f ′ : [n]Λ → [m]Λ
such that f = f ′◦Φ(τ)k and such that f ′ maps Z to Z. The claim now follows
from the observation that a morphism Z × [n] → Z × [m] in Λ∞ that maps
(0, 0) to (0, 0) must be of the form idZ×g for a unique morphism g : [n]→ [m]
in ∆.

Corollary 6.1.1.11. The functor Φ from Proposition 6.1.1.9 is an equiva-
lence. ♥

Proof. Φ is by definition essentially surjective. That Φ is also fully faithful
follows immediately from Proposition 6.1.1.10.

We will from now on not distinguish between Λ and Λ
′ and use the de-

scription best adapted for each individual situation.

6.1.1.5 Cyclic objects

Notation 6.1.1.12 ([Lod98, 6.1.2.1]). Let C be an ∞-category. We call a
functor

X : Λop → C

a cyclic object in C. We will use the same notational conventions as explained
in Notation 6.1.1.1 for simplicial objects, and will refer to the image of [n]Λ
under X as Xn (and sometimes write X• for X), to the morphism induced
by the opposite of δi as di, to the morphism induced by the opposite of σi as
si, and to the morphism induced by the opposite of τ as t. ♦

6.1.1.6 Self-duality of Λ

We record that Λ has a self-duality functor, which will be needed later.

Fact 6.1.1.13 ([Lod98, 6.1.11]). There is an equivalence −◦ : Λop → Λ that
maps
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• [n]Λ to [n]Λ,

• δ
op
i to σi,

• σ
op
i to δi+1,

• τop to τ−1,

where σn+1 : [n + 1]Λ → [n]Λ is what is called the extra degeneracy defined
as σn+1 = σ0 ◦ τ

−1. ♧

The above is also proven in [NikSch, page 381] using the definition of Λ

via posets8, and one can check that the two functors agree by unpacking the
definitions.

6.1.2 The cyclic bar construction as a cyclic object
In this section we discuss the cyclic bar construction of associative algebras.

Let C be a symmetric monoidal 1-category and A an associative algebra in
C. Then one can construct a simplicial object in C

. . . A⊗A⊗A A⊗A A

where the structure morphisms di : A⊗n → A⊗(n−1) and si : A
⊗n → A⊗(n+1)

can be described as follows9:

1. If i ≤ n − 2, then di is id⊗i
A ⊗ µ ⊗ id⊗(n−2−i)

A , where µ : A ⊗ A → A is
the multiplication morphism.

2. dn−1 is the postcomposition of the symmetry isomorphism that brings
the last tensor factor to the front with µ⊗ id⊗(n−2)

A .

3. si is idi+1
A ⊗ ι⊗ id⊗(n−i−1)

A , where ι : 1C → A is the unit morphism.

Making use of cyclic permutations of the tensor factors, we can even extend
the above simplicial object to a cyclic object

. . . A⊗A⊗A A⊗A A

where the structure morphism t : A⊗n → A⊗n is the symmetry isomorphism
moving the last tensor factor to the front.

8Whereas [Lod98, 6.1.11] uses the definition via generators and relations.
9We omit making explicit any associativity or unitality isomorphisms from the symmetric

monoidal structure on C.
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The goal of this section is to rigorously define a cyclic object implementing
this idea for associative algebras in any symmetric monoidal ∞-category C.
Furthermore, we will also show that the resulting functor

Bcyc
• : Alg(C)→ Fun(Λop, C)

can be upgraded to a symmetric monoidal functor, where Alg(C) carries
the induced symmetric monoidal structure from Proposition E.4.2.3 and
Fun(Λop, C) the pointwise symmetric monoidal structure from [HA, 2.1.3.4].

Bcyc
• will be defined as a composition

Alg(C)→ FunFin∗

(
Assoc⊗, C⊗

) A
−→ Fun

(
Assoc⊗act, C

⊗
act
)

(⊗)∗
−−−→ Fun

(
Assoc⊗act, C

)

(V ◦(−◦))∗

−−−−−−−→ Fun(Λop, C)

and we will define individual ingredients one by one10.
Let us now give a brief overview over the subsections below. We will

start in Section 6.1.2.1 by discussing the symmetric monoidal envelope of
an∞-operad, which will explain what symmetric monoidal structure we con-
sider on C⊗act. In Section 6.1.2.2 we will then construct the first row (i. e. the
first two functors) in the composition above that will define Bcyc

• , and show
that the composition of those two functor is lax symmetric monoidal. We will
then define the symmetric monoidal functor ⊗ : C⊗act → C in Section 6.1.2.3
and show that the composition of the lax symmetric monoidal functor

Alg(C)→ Fun
(
Assoc⊗act, C

⊗
act
)

from Section 6.1.2.2 with the symmetric monoidal functor (⊗)∗ is not just
lax symmetric monoidal, but symmetric monoidal. For the last step in the
definition of Bcyc

• , we have already defined the functor (−)◦, in Fact 6.1.1.13,
and will define the remaining functor V : Λ → Assoc⊗act in Section 6.1.2.4.
This will be the last ingredient that we need to define Bcyc

• , and we will put
everything together in Section 6.1.2.5. We will end this section by giving
a more direct description for CAlg(Bcyc

• ), the functor induced by Bcyc
• on

commutative algebras, in Section 6.1.2.6, and showing that Bcyc
• preserves

sifted colimits in Section 6.1.2.7.

6.1.2.1 The symmetric monoidal envelope

Let pO : O⊗ → Fin∗ be an ∞-operad. In [HA, 2.2.4] what is called the
symmetric monoidal envelope of O is discussed11, which is defined in [HA,
10We warn though that while Bcyc

• will be shown to be symmetric monoidal, we do not
claim that the individual functors in the above composition are symmetric monoidal
functors of symmetric monoidal ∞-categories.

11The definitions in [HA, 2.2.4] are more general, but we only need the symmetric monoidal
case.
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2.2.4.1] as
Env(O)⊗ := O⊗ ×Fin∗ Act(Fin∗) (6.1)

where the functor O⊗ → Fin∗ is given by pO, the ∞-category Act(Fin∗)
is defined as the full subcategory of Fun([1],Fin∗) spanned by the active
morphisms12, and the functor Act(Fin∗)→ Fin∗ is ev0.

Like [NikSch, page 366] and [HA, 2.2.4.3], we will use the notation O⊗
act

to refer to the subcategory of O⊗ spanned by all objects and the active
morphisms13, i. e. those morphisms mapped by pO to an active morphism in
Fin∗. Note that the inclusion

O⊗
act → O

⊗

can be identified with the functor

O⊗ ×Fin∗ (Fin∗)act O⊗ ×Fin∗ Fin∗ O⊗

pr1

pr1
≃

where the left functor is the one induced by the inclusion (Fin∗)act → Fin∗

– this follows from Proposition B.5.2.1 and Proposition B.4.3.1, see also Re-
mark B.6.0.1.

Let pEnv(O) : Env(O)⊗ → Fin∗ be defined as ev1 ◦ pr2. Unpacking the
definition of Env(O)⊗, we can then interpret an object lying over 〈n〉 as a
pair (O,α) with O an object of O⊗ and α an active morphism pO(O)→ 〈n〉
in Fin∗ – see [HA, 2.2.4.2]. In particular, as there is a unique active morphism
from any object of Fin∗ to 〈1〉, one can identify Env(O)⊗〈1〉 with O⊗

act – see
[HA, 2.2.4.3].

One important result about Env(O) that we will need is the following.

Fact 6.1.2.1 ([HA, 2.2.4.4 and 2.2.4.15]). Let pO : O⊗ → Fin∗ be an ∞-op-
erad. Then pEnv(O) : Env(O)⊗ → Fin∗ is a cocartesian fibration of∞-operads,
i. e. exhibits O⊗

act as a symmetric monoidal ∞-category.
Furthermore, a morphism in Env(O)⊗ is pEnv(O)-cocartesian if and only

if pr1 maps that morphism to an inert morphism in O⊗. ♧

Let us describe pEnv(O)-cocartesian lifts a bit more concretely. Let O be an
object of O⊗, α : 〈n〉 → 〈m〉 an active morphism in Fin∗, and consider (O,α)
as an object of Env(O)⊗〈m〉. Let β : 〈m〉 → 〈k〉 be a morphism of Fin∗. Then
we can factor β ◦ α as a composition of an inert morphism γ : 〈n〉 → 〈l〉 and
an active morphism δ : 〈l〉 → 〈k〉 in a unique way, see [HA, 2.1.2.2]. We can

12So those morphisms for which the preimage of ∗ has a single element, see [HA, 2.1.2.1].
13See [HA, 2.1.2.1 and 2.1.2.3] for a definition.
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then interpret the commutative diagram

〈n〉 〈l〉

〈m〉 〈k〉

α

γ

δ

β

(6.2)

as a morphism from α to δ in Act(Fin∗). Let γ : O → O′ be a pO-cocartesian
lift of γ. Then γ together with (6.2) determine a pEnv(O)-cocartesian mor-
phism

(O,α)→ (O′, δ)

in Env(O) lying over β. One implication of this discussion is that if O and O′

are two objects of O⊗
act, then their tensor product is given by O⊕O′, see also

[HA, 2.2.4.6]. The monoidal unit of O⊗
act is given by the essentially unique

object in O⊗
〈0〉.

The identity functor of O⊗ together with the functor O⊗ → Act(Fin∗)
that maps an object O to the active morphism idpO(O)

14 define a functor15

O⊗ → Env(O)⊗ over Fin∗. Using Fact 6.1.2.1 it follows immediately that this
functor is a morphism of ∞-operads. We are now ready to state the crucial
result concerning Env(O)⊗.

Fact 6.1.2.2 ([HA, 2.2.4.9]). Let O → Fin∗ be an∞-operad and D a symmet-
ric monoidal ∞-category. Then restriction along the functor O⊗ → Env(O)⊗
discussed above induces an equivalence

Fun⊗(Env(O),D) ≃
−→ AlgO(D)

between the ∞-category of symmetric monoidal functors Env(O) → D and
the ∞-category of morphisms of ∞-operads O → D. ♧

Remark 6.1.2.3. Let α : O′ → O be a morphism of ∞-operads and let
G : D → D′ be a symmetric monoidal functor between symmetric monoidal
∞-categories.

It follows from Fact 6.1.2.1 that the morphism of ∞-categories α induces
a symmetric monoidal functor

Env(α) : Env(O′)→ Env(O)

fitting into a commutative square of morphisms of∞-operads as in the left of
the following diagram, where the left horizontal functors are the morphisms
14More rigorously, we consider the functor (pO)∗ ◦ const : O⊗ → Fun([1],Fin∗) that is

adjoint to the composition

[1]×O⊗ pr2−−→ O⊗ pO−−→ Fin∗

and remark that it factors through Act(Fin∗).
15This functor is also discussed in [HA, Before 2.2.4.9].
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of ∞-operads discussed above.

O Env(O) D

O′ Env(O′) D′

F

F̃

Gα Env(α)

The symmetric monoidal functor F̃ in the above diagram is to be the one
corresponding to F via the equivalence from Fact 6.1.2.2, i. e. making the
triangle at the top commute.

It then follows from commutativity of the above diagram and Fact 6.1.2.2
that there is an equivalence

˜(G ◦ F ◦ α) ≃ G ◦ F̃ ◦ Env(α)

where ˜(G ◦ F ◦ α) is the symmetric monoidal functor Env(O′) → D′ corre-
sponding to G ◦ F ◦ α under the equivalence of Fact 6.1.2.2. ♦

6.1.2.2 From associative algebras to active diagrams

Let us denote by pAssoc : Assoc⊗ → Fin∗ the canonical morphism of ∞-
operads and let pC : C⊗ → Fin∗ be a symmetric monoidal ∞-category. Recall
from Proposition E.4.2.3 that Alg(C) inherits an induced symmetric monoidal
structure pAlg(C) : Alg(C)⊗ → Fin∗. This comes with a canonical inclusion

ιAlg : Alg(C)⊗ → Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗ (6.3)

where the functors with respect to which the pullback is taken are (pC)∗ and
the functor16 adjoint to Fin∗×Assoc⊗ idFin∗ ×pAssoc

−−−−−−−−→ Fin∗×Fin∗
−∧−
−−−→ Fin∗. The

functor pAlg(C) is then given by the composition pr2 ◦ ιAlg.
The functor ιAlg will be the first step in the definition of the symmetric

monoidal functor Bcyc
• .

We next recall that the pointwise symmetric monoidal structure on

Fun(Assoc⊗act, C
⊗
act)

is given by the cocartesian fibration of ∞-operads

Fun
(
Assoc⊗act, C

⊗
act
)⊗

= Fun
(
Assoc⊗act, (C

⊗
act)

⊗
)
×Fun(Assoc⊗act,Fin∗) Fin∗

pr2−−→ Fin∗ (6.4)
16See also Proposition E.6.0.1.
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that exhibits Fun(Assoc⊗act, C
⊗
act) as a symmetric monoidal∞-category, where

the pullback is formed with respect to the functors (pC⊗
act

)∗ and the functor
const17.

We are now ready to construct a functor

Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗ → Fun

(
Assoc⊗act, C

⊗
act
)⊗

over Fin∗ whose composition with ιAlg will be a lax symmetric monoidal
functor. To be able to understand what this functor does it will later turn
out to be helpful to additionally construct a certain natural transformation
µ : Aconst → pr1 ◦A⊗.

Construction 6.1.2.4. Let pC : C⊗ → Fin∗ be a symmetric monoidal ∞-
category, and let us use notation as above. We will construct a functor

A⊗ : Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗ → Fun

(
Assoc⊗act, C

⊗
act
)⊗

over Fin∗, as well as a functor

Aconst : Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗ → Fun

(
Assoc⊗act, (C

⊗
act)

⊗
)

together with a natural transformation18 µ : Aconst → pr1 ◦A⊗ such that the
natural transformation19 (pr1)∗ ◦ µ is a natural equivalence. The names µ,
Aconst and A⊗ will only be used where we directly refer to this construc-
tion. The letter A has been chosen as a reference to the word active, and A⊗

has the superscript ⊗ as its composition with ιAlg will be shown in Propo-
sition 6.1.2.5 below to be a morphism of ∞-operads, whereas Aconst is not
even a functor over Fin∗. The reason why Aconst has superscript const and the
natural transformation is called µ will become clear during the construction.
We will later also use the notation A⊗ for the functor obtained by composing
A⊗ as constructed here with ιAlg, see Proposition 6.1.2.5.

By the definition20 of Fun
(
Assoc⊗act, C

⊗
act
)⊗ and the universal property of

pullbacks, constructing A⊗, Aconst, and µ as stated above is equivalent to
17In other words the functor adjoint to pr1 : Fin∗ × Assoc⊗act → Fin∗.
18The functor pr1 appearing in pr1 ◦A⊗ is the following functor.

Fun
(

Assoc⊗act, C
⊗
act

)⊗
= Fun

(
Assoc⊗act, (C

⊗
act)

⊗
)
×Fun

(
Assoc⊗act,Fin∗

) Fin∗

pr1−−→ Fun
(

Assoc⊗act, (C
⊗
act)

⊗
)

See (6.4).
19The functor pr1 appearing in (pr1)∗ is the following functor.

(C⊗act)
⊗ = C⊗ ×Fin∗ Act(Fin∗)

pr1−−→ C⊗

See Section 6.1.2.1 and in particular (6.1).
20See the introduction of Section 6.1.2.2.
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constructing a diagram as follows

Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗ Fin∗

Fun
(
Assoc⊗act, (C

⊗
act)

⊗
)

Fun
(
Assoc⊗act,Fin∗

)
Aconst A′

µ

pr2

const

(
p
C
⊗
act

)

∗

where the ∞-category in the upper left is the pullback from (6.3), the two
functors on the right and bottom are as explained around (6.4), and the
square on the right21 is to be a commutative square, while µ is a natural
transformation from Aconst to A′ such that (pr1)∗ ◦µ is a natural equivalence.
Using the ×-Fun-adjunction and plugging in the definition of the symmetric
monoidal envelope Env(C)⊗ = (C⊗act)

⊗ from (6.1) this is in turn equivalent to
constructing a diagram

Assoc⊗act × Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗ Assoc⊗act × Fin∗

C⊗ ×Fin∗ Act(Fin∗) Fin∗

A′′ const A′′
µ′′

idAssoc⊗act
× pr2

pr2

p
C
⊗
act

(6.5)
where again the square is to come with a filler exhibiting it as a commutative
square, while µ′′ is merely a natural transformation such that pr1 ◦ µ′′ is a
natural equivalence.

As the composition from the top left along the top right to the bottom
right is the projection to the last factor and using the definition of pC⊗

act
as

ev1 ◦ pr2, we can finally unpack this to see that we need to construct the
following.

21So involving A′, but not Aconst.
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(1) A commutative diagram as follows.

Assoc⊗act × Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗

C⊗ Act(Fin∗)

Fin∗

A′′
l

A′′
r

pC ev0

(6.6)

This diagram will then encode the functor A′′ from (6.5).

(2) A natural transformation

µ′′
r : A

′′ const
r → A′′

r

such that ev0 ◦ µ
′′
r is an equivalence. Together with A′′

l and the filler of
the commutative diagram (6.6) this encodes a natural transformation
µ′′ : A′′ const → A′′ such that pr1 ◦ µ′′ can be identified with idA′′

l
.

(3) A natural equivalence ev1 ◦ A
′′
r ≃ pr3, which then encodes a filler for

the right square in (6.5).

Construction of A′′
l : We start by giving a definition of A′′

l . This is to be
the composition

Assoc⊗act × Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗

pr1×pr2−−−−−→ Assoc⊗act × Fun
(
Assoc⊗, C⊗

) ev
−→ C⊗

that maps a tuple (〈m〉, F, 〈n〉) to F (〈m〉), which will be an object in C⊗〈n〉∧〈m〉,
as we will see properly next. Indeed, the equivalences22

pC ◦A
′′
l = pC ◦ ev ◦ (pr1 × pr2)
≃ ev ◦ (pr1 × (pC)∗) ◦ (pr1 × pr2)
≃ ev ◦ (pr1×((pC)∗ ◦ pr2))

≃ ev ◦
(

pr1 ×
(

̂(idFin∗ ∧pAssoc) ◦ pr3
))

≃ pr3 ∧ (pAssoc ◦ pr1)
22From the first to the second line we use functoriality of evaluation, from the second to the

third functoriality of products of functors, from the third to the fourth the equivalence
that is part of the data of the pullback over Fun(Assoc⊗,Fin∗), and from the fourth to
the fifth the ×-Fun-adjunction and functoriality.
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allows us to identify the composition pC ◦ A
′′
l with the functor that can be

informally described as mapping a tuple (〈m〉, F, 〈n〉) to 〈n〉 ∧ 〈m〉.
Construction of µ′′

r : Let us now think about the functor A′′
r . The constraints

imposed by (1) and (3) imply that A′′
r needs to map a tuple (〈m〉, F, 〈n〉) to

an active morphism 〈n〉 ∧ 〈m〉 → 〈n〉. The idea is to use the active morphism

〈n〉 ∧ 〈m〉
id⟨n⟩∧µm
−−−−−−→ 〈n〉 ∧ 〈1〉 ∼= 〈n〉

where µm is the unique active morphism 〈m〉 → 〈1〉 and the isomorphism
〈n〉 ∧ 〈1〉 ∼= 〈n〉 is the unitality isomorphism, see [HA, 2.2.5.2].

For A′′ const
r we have the same constraint regarding the domain, but no

constraint on the codomain. We can thus let A′′ const
r map a tuple (〈m〉, F, 〈n〉)

to the active morphism

id〈n〉∧〈m〉 : 〈n〉 ∧ 〈m〉 → 〈n〉 ∧ 〈m〉

which also explains why we are using the superscript const in the notation.
The component of µ′′

r at (〈m〉, F, 〈n〉) is then to be given by the commuta-
tive diagram

〈n〉 ∧ 〈m〉 〈n〉 ∧ 〈m〉

〈n〉 ∧ 〈m〉 〈n〉 ∧ 〈1〉

id⟨n⟩∧⟨m⟩

id⟨n⟩∧⟨m⟩

id⟨n⟩∧µm

id⟨n⟩∧µm

considered as a morphism from id〈n〉∧〈m〉 to id〈n〉 ∧ µm in Act(Fin∗), whose
evaluation at 0 is id〈n〉∧〈m〉, and whose evaluation at 1 is id〈n〉 ∧ µm.

To actually construct such functors and such a natural transformation, we
first note that (Fin∗)act has a final object 〈1〉, so that there exists a section

s : (Fin∗)act →
(
(Fin∗)act

)
/〈1〉

of the projection, sending 〈m〉 to µm. We thus obtain a composition

(Fin∗)act
s
−→ ((Fin∗)act)/〈1〉

i
−→ Fun([1], (Fin∗)act)

where i is the inclusion. That s is a section means that we have an identifica-
tion ev0 ◦ i ◦ s ≃ id(Fin∗)act As ev0 is right adjoint23 to the functor const, we
thus obtain a natural transformation

µ̃ : const→ i ◦ s

of functors (Fin∗)act → Fun([1], (Fin∗)act).
23Note that as 0 is an initial object of [0], we can identify ev0 with lim.
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We can now define A′′
r as the composition

Assoc⊗act × Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗

pr3×pr1−−−−−→Fin∗ × Assoc⊗act
idFin∗×pAssoc
−−−−−−−→Fin∗ × (Fin∗)act
idFin∗×(i◦s)
−−−−−−−→Fin∗ × Fun([1], (Fin∗)act)

const×i′
−−−−−→Act(Fin∗)×Act(Fin∗)

−∧−
−−−→Act(Fin∗)

where i′ is the inclusion Fun([1], (Fin∗)act)→ Act(Fin∗).
We similarly make the following definitions.

A′′ const
r := (const ◦ pr3) ∧ (i′ ◦ const ◦ pAssoc ◦ pr1)

µ′′
r := (const ◦ pr3) ∧ (i′ ◦ µ̃ ◦ pAssoc ◦ pr1)

Construction of the commutative diagram (6.6) in (1): We already obtained
an identification

pC ◦A
′′
l ≃ pr3 ∧ (pAssoc ◦ pr1)

above. For ev0 ◦A
′′
r we obtain the following sequence of equivalences

ev0 ◦A
′′
r = ev0 ◦ ((const ◦ pr3) ∧ (i′ ◦ i ◦ s ◦ pAssoc ◦ pr1))
≃ (ev0 ◦ const ◦ pr3) ∧ (ev0 ◦ i

′ ◦ i ◦ s ◦ pAssoc ◦ pr1)
≃ pr3 ∧ (ev0 ◦ i ◦ s ◦ pAssoc ◦ pr1)
≃ pr3 ∧ (pAssoc ◦ pr1)

where from the first to second line we use compatibility of ev0 with the functor
−∧−, from the second to the third we use the identification ev0 ◦ const ≃ id
and compatibility of ev0 with the inclusion i′, and from the third to the fourth
we use the identification ev0 ◦ i ◦ s ≃ id(Fin∗)act .

On ev0 ◦ µ
′′
r being a natural equivalence, thereby completing (2): Using

identifications as just done for ev0 ◦ A
′′
r we see that it suffices to show that

ev0 ◦ µ̃ is a natural equivalence. But by definition we can identify ev0 ◦ µ̃ with
id(Fin∗)act .

Construction of a natural equivalence ev1 ◦A
′′
r ≃ pr3 as in (3): There is a

sequence of equivalences as follows

ev1 ◦A
′′
r ≃ pr3 ∧ (ev1 ◦ i ◦ s ◦ pAssoc ◦ pr1)
≃ pr3 ∧

(
const〈1〉 ◦ pAssoc ◦ pr1

)

≃ pr3 ∧
(
const〈1〉

)

≃ pr3
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where the first one is obtained just like for ev0 ◦A
′′
r , the equivalence from the

first to the second line uses the definition of i as the inclusion of (Assoc⊗act)/〈1〉,
the equivalence from the second to the third line uses the canonical equiva-
lences for precompositions of constant functors, and the last equivalence uses
the natural unitality equivalence [HA, 2.2.5.2]24 − ∧ 〈1〉 ∼= idFin∗ . ♦

Proposition 6.1.2.5. Let pC : C⊗ → Fin∗ be a symmetric monoidal ∞-cate-
gory. Then the composition of functors over Fin∗

Alg(C)⊗ ιAlg
−−→ Fun

(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗

A⊗

−−→ Fun
(
Assoc⊗act, C

⊗
act
)⊗

where ιAlg is as discussed in the introduction to Section 6.1.2.2 in (6.3) and
A⊗ is as in Construction 6.1.2.4, is a lax symmetric monoidal functor.

We will also denote this lax symmetric monoidal composition by A⊗. ♥

Proof. We have to show that the composition sends pr2 ◦ ιAlg-cocartesian
morphisms over an inert morphism in Fin∗ to pr2-cocartesian morphisms25.
So let φ : R → S be a pr2 ◦ ιAlg-cocartesian morphism in Alg(C)⊗ lying
over an inert morphism in Fin∗. We have to show that (A⊗ ◦ ιAlg)(φ) is
pr2-cocartesian. By the result [HTT, 2.4.1.3 (2)] regarding cocartesian mor-
phisms and pullbacks it suffices for this to show that (pr1 ◦ A⊗ ◦ ιAlg)(φ) is
(pC⊗

act
)∗-cocartesian. Applying the result [HTT, 3.1.2.1] on cocartesian fibra-

tions and functor categories and using that pC⊗
act

is a cocartesian fibration
by Fact 6.1.2.1, we are further reduced to showing that for every object X
of Assoc⊗act, the morphism (evX ◦ pr1 ◦ A⊗ ◦ ιAlg)(φ) is pC⊗

act
-cocartesian. Fi-

nally, using the description of pC⊗
act

-cocartesian morphisms from Fact 6.1.2.1,
we conclude that we need to show that for every object X of Assoc⊗act the
morphism (pr1 ◦ evX ◦ pr1 ◦A⊗ ◦ ιAlg)(φ) is an inert morphism in C⊗.

Using notation from Construction 6.1.2.4 we have by construction a se-
quence of equivalences26 as follows.

pr1 ◦ evX ◦ pr1 ◦A⊗ ◦ ιAlg

≃ pr1 ◦ evX ◦A′ ◦ ιAlg

≃ pr1 ◦A′′ ◦ (constX × ιAlg)

≃ A′′
l ◦ (constX × ιAlg)

≃ ev ◦ (pr1 × pr2) ◦ (constX × ιAlg)

≃ evX ◦ pr1 ◦ ιAlg

24Depending on the definition one takes, this might even by an equality, see [HA, 2.2.5.1].
25See the introduction to Section 6.1.2.2 for a discussion of the canonical morphisms of
∞-operads from the two symmetric monoidal∞-categories to Fin∗. Without looking at
the previous pages for reference it may be hard to follow what the various projections
etc. in this proof refer to.

26The pr1 in the last line corresponds to pr2 in the second to last line.
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The claim now follow directly from Proposition E.4.2.3 (2).

We will later need the following proposition, which will allow us to de-
duce statements for A⊗ from Aconst, for which we will also provide a simpler
description in Proposition 6.1.2.7 below.

Proposition 6.1.2.6. Let C be a symmetric monoidal ∞-category and X an
object of

Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗

i. e. of the domain of A⊗ and Aconst from Construction 6.1.2.4. Then the
morphism

µX : Aconst(X)→
(
pr1 ◦A⊗

)
(X)

in
Fun

(
Assoc⊗act, (C

⊗
act)

⊗
)

is (pC⊗
act

)∗-cocartesian. ♥

Proof. Let X be as in the statement. By [HTT, 3.1.2.1] and the description
of pC⊗

act
-cocartesian morphisms in Fact 6.1.2.1 it suffices to show that for

every object Y in Assoc⊗act the morphism (pr1 ◦evY )(µX) = (evY ◦ (pr1))(µX)
is inert. But by Construction 6.1.2.4 that morphism is an equivalence, and
hence in particular inert.

We end this section by giving another, simpler, description for the functor
Aconst from Construction 6.1.2.4.

Proposition 6.1.2.7. Let pC : C⊗ → Fin∗ be a symmetric monoidal ∞-cate-
gory. Then the functor

Aconst : Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗ → Fun

(
Assoc⊗act, (C

⊗
act)

⊗
)

constructed in Construction 6.1.2.4 is equivalent to the composition

Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗

pr1−−→Fun
(
Assoc⊗, C⊗

)

Fun(α,ιact)
−−−−−−−→Fun

(
Assoc⊗act,

(
C⊗act

)⊗)

where α : Assoc⊗act → Assoc⊗ is the inclusion, and ιact : C
⊗ → (C⊗act)

⊗ is the
functor described before Fact 6.1.2.2. ♥

Proof. In this proof we use notation from Construction 6.1.2.4, as well as the
discussions of the relevant definitions at the start of Section 6.1.2.2.

It suffices to check that the adjoint functors

Assoc⊗act × Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗ → C

⊗ ×Fin∗ Act(Fin∗)
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are homotopic. For Aconst this adjoint functor is by construction A′′ const.
For the composition given in the statement this adjoint is equivalent to the
following composition, which we will call Ã′′ const for now.

Assoc⊗act × Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗

(α◦pr1)×pr2−−−−−−−−→Assoc⊗ × Fun
(
Assoc⊗, C⊗

)

ev
−→C⊗

ιact−−→C⊗ ×Fin∗ Act(Fin∗)

To show that two such functor are equivalent we need to show that we can
identify the two corresponding commutative diagrams of the following form.

Assoc⊗act × Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗

C⊗ Act(Fin∗)

Fin∗

pC ev0

(6.7)

To simplify this problem we first notice that pr2◦ιact, and hence pr2◦Ã′′ const,
by definition factors though const : Fin∗ → Act(Fin∗). Similarly, we have
equivalences as follows.

pr2 ◦A′′ const = A′′ const
r

By definition we obtain the following.
= (const ◦ pr3) ∧ (i′ ◦ const ◦ pAssoc ◦ pr1)

Using functoriality of − ∧−.
≃ const ◦ (pr3 ∧ (pAssoc ◦ pr1))

This shows that also pr2 ◦A′′ const factors through const.
We claim that because of this it actually suffices to construct a homotopy

between pr1 ◦ Ã′′ const and pr1 ◦ A′′ const, as we can then obtain a homotopy
between pr2 ◦ Ã′′ const and pr2 ◦ A′′ const in such a manner that there is an
evident compatible homotopy between the fillers of the commutative squares
(6.7) as follows.

pr2 ◦ Ã′′ const

Using that const ◦ ev0 ◦ const ≃ const.
≃ const ◦ ev0 ◦ pr2 ◦ Ã′′ const
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Using the canonical homotopy from the diagram (6.7) associated to Ã′′ const.
≃ const ◦ pC ◦ pr1 ◦ Ã′′ const

Using the homotopy pr1 ◦ Ã′′ const ≃ pr1 ◦A′′ const that we assume given.
≃ const ◦ pC ◦ pr1 ◦A′′ const

Using the canonical homotopy from the diagram (6.7) associated to A′′ const.
≃ const ◦ ev0 ◦ pr2 ◦A′′ const

Using that const ◦ ev0 ◦ const ≃ const.
≃ pr2 ◦A′′ const

It thus suffices to show that pr1 ◦ Ã′′ const ≃ pr1 ◦ A′′ const. But it follows
immediately from unpacking the definitions that there is an equivalence as
follows.

pr1 ◦ Ã′′ const = idC⊗ ◦ ev ◦ ((α ◦ pr1)× pr2)
≃ ev ◦ ((α ◦ pr1)× pr2)
= pr1 ◦A′′ const

6.1.2.3 Tensoring active diagrams together

Let C be a symmetric monoidal∞-category. In Section 6.1.2.1 we discussed
the symmetric monoidal structure on the ∞-category C⊗act, where the tensor
product can be described as follows.


 ⊕

1≤i≤n

Xi


⊗


 ⊕

n+1≤i≤n+m

Xi


 ≃

⊕

1≤i≤n+m

Xi

In Definition 6.1.2.8 below we will define a symmetric monoidal functor
⊗ : C⊗act → C, which can be described as mapping

⊕
1≤i≤nXi to

⊗
1≤i≤nXi.

Given the informal description of the symmetric monoidal structure on C⊗act
it should be plausible that there is such a symmetric monoidal functor.

Definition 6.1.2.8. Let C be a symmetric monoidal ∞-category. We let

⊗ : C⊗act → C

be the symmetric monoidal functor that corresponds to the lax symmetric
monoidal functor idC : C → C (which is actually symmetric monoidal, but we
do not use that here) under the equivalence of Fact 6.1.2.2. ♦

Note that by definition, the underlying functor of ⊗ from Definition 6.1.2.8
maps objects X of C⊗〈1〉 to X, so by symmetric monoidality we obtain that⊕

1≤i≤nXi must be mapped to
⊗

1≤i≤nXi.
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Remark 6.1.2.9. Let F : C → D be a symmetric monoidal functor of sym-
metric monoidal ∞-categories. Combining Remark 6.1.2.3 with

F ∗(idD) = F∗(idC)

yields a commutative diagram of symmetric monoidal functors as follows

C⊗act D⊗
act

C D

F⊗
act

⊗ ⊗

F

where the two functors denoted by ⊗ are those from Definition 6.1.2.8. ♦

As ⊗ : C⊗act → C is a symmetric monoidal functor, it induces a symmetric
monoidal functor

Fun
(
Assoc⊗act, C

⊗
act
) (⊗)∗
−−−→ Fun

(
Assoc⊗act, C

)

on functor categories with the pointwise symmetric monoidal structure27.
Furthermore, the composition (⊗∗)

⊗ ◦ A⊗ of the lax symmetric monoidal
functor A⊗ from Proposition 6.1.2.5 with this symmetric monoidal functor is
not only lax symmetric monoidal, but actually symmetric monoidal, as we see
in Proposition 6.1.2.11 below. Before doing so we will use Proposition 6.1.2.6
and Proposition 6.1.2.7 to describe the compositions ev〈m〉 ◦ ⊗∗ ◦A.

Proposition 6.1.2.10. Let pC : C⊗ → Fin∗ be a symmetric monoidal ∞-
category.

Then the composition28

Alg(C)→ Fun
(
Assoc⊗, C⊗

) α∗

−−→ Fun
(
Assoc⊗act, C

⊗
) (pC)∗−−−→ Fun

(
Assoc⊗act,Fin∗

)

is the constant functor with image pAssoc ◦ α and the composition29

Alg(C) A
−→ Fun

(
Assoc⊗act, C

⊗
act
) ⊗∗−−→ Fun

(
Assoc⊗act, C

)

(C→C⊗)
∗−−−−−−→ Fun

(
Assoc⊗act, C

⊗
) (pC)∗−−−→ Fun

(
Assoc⊗act,Fin∗

)

is the constant functor with image const〈1〉.
27This follows directly from the definition [HA, 2.1.3.4] together with Proposition C.1.1.1

and [HTT, 3.1.2.1].
28The functor Alg(C) → Fun

(
Assoc⊗, C⊗

)
is to be the canonical one, i. e. inclusion into

FunFin∗
(
Assoc⊗, C⊗

)
followed by the projection, and α is the inclusion of Assoc⊗act into

Assoc⊗.
29A is the underlying functor of the lax symmetric monoidal functor from Proposi-

tion 6.1.2.5, and ⊗ is the functor defined in Definition 6.1.2.8.
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Let µFin∗ : pAssoc ◦ α → const〈1〉 be the unique natural transformation of
functors Assoc⊗act → Fin∗ that is pointwise an active morphism. Then there
is a homotopy between the composition

Alg(C)
α∗◦(Alg(C)→Fun(Assoc⊗,C⊗))
−−−−−−−−−−−−−−−−−−−−→ Fun

(
Assoc⊗act, C

⊗
)
pAssoc◦α

(µFin∗)
!−−−−−→ Fun

(
Assoc⊗act, C

⊗
)

const⟨1⟩

and the following functor.
(
C → C⊗

)
∗
◦ ⊗∗ ◦A : Alg(C)→ Fun

(
Assoc⊗act, C

⊗
)

const⟨1⟩

In particular, there is a commutative diagram of ∞-categories as follows
for every m ≥ 0

Alg(C) FunFin∗

(
Assoc⊗act, C

⊗
act
)

Fun
(
Assoc⊗act, C

)

FunFin∗

(
Assoc⊗, C⊗

)
C⊗〈m〉 C⊗〈1〉 ≃ C

A ⊗∗

ev⟨m⟩

ev⟨m⟩ (µm)!

(6.8)

where the left vertical functor is the canonical functor and and µm is the
unique active morphism 〈m〉 → 〈1〉 in Fin∗.

Now let R be an associative algebra in C. Then (⊗∗ ◦ A)(R)(〈m〉) can be
identified with R⊗m and if f : 〈m〉 → 〈m′〉 is an active morphism in Assoc⊗,
then we can identify (⊗∗◦A)(R)(f) with the morphism R⊗m → R⊗m′ induced
by f , so for example for f the unique active morphism 〈0〉 → 〈1〉 we can
identify (⊗∗ ◦A)(R)(f) with the unit morphism 1C → R. ♥

Proof. In this proof we use notation from Construction 6.1.2.4.
Recall the natural transformation30 µ : Aconst → pr1 ◦ A⊗ from Construc-

tion 6.1.2.4. We can define a natural transformation

µ :=
(
⊗⊗
)
∗
◦ µ ◦

(
Alg(C)→ Alg(C)⊗

)

of functors from Alg(C) to Fun
(
Assoc⊗act, C

⊗
)
.

We first claim that it suffices to show the following.

(1) (⊗⊗)∗ ◦A
const ◦

(
Alg(C)→ Alg(C)⊗

)
≃ α∗ ◦

(
Alg(C)→ Fun

(
Assoc⊗, C⊗

))

(2) (⊗⊗)∗ ◦ pr1 ◦A⊗ ◦
(

Alg(C)→ Alg(C)⊗
)
≃ (C → C⊗)∗ ◦ ⊗∗ ◦A

(3) (pC)∗ ◦ µ ≃ constµFin∗

30We use Aconst here as notation for the restriction of what was called Aconst in Construc-
tion 6.1.2.4 to Alg(C)⊗, and similarly for µ – like we do for A⊗.
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(4) For every object R of Alg(C), the component µR of µ is (pC)∗-cocarte-
sian.

Let us now explain how the statements we need to prove follow from claims
(1), (2), (3) and (4).

The claims regarding the images of the two functors to Fun(Assoc⊗act,Fin∗)
follow directly from claims (1), (2) and (3), and the identification of

(
C → C⊗

)
∗
◦ ⊗∗ ◦A

then follows from claims (1), (2), (3) and (4)31. The inclusion functor C → C⊗
is fully faithful32, so for construction of a commutative diagram (6.8) it suf-
fices by Proposition B.4.3.1 to show that the two composite functors from
the top left to the bottom right become homotopic after composing with the
inclusion to C⊗. But we have a chain of equivalences as follows.

(
C → C⊗

)
◦ ev〈m〉 ◦ ⊗∗ ◦A

Using compatibility of evaluation with postcomposition.
≃ ev〈m〉 ◦

(
C → C⊗

)
∗
◦ ⊗∗ ◦A

Postcomposing the already obtained equivalence with ev〈m〉.
≃ ev〈m〉 ◦

(
µFin∗

)
!
◦ α∗ ◦

(
Alg(C)→ Fun

(
Assoc⊗, C⊗

))

Using [HTT, 3.1.2.1 (2)].
≃ (µm)! ◦ ev〈m〉 ◦ α

∗ ◦
(
Alg(C)→ Fun

(
Assoc⊗, C⊗

))

Finally, compatibility of evaluations with precomposing and (un)making the
identification C⊗〈1〉 ≃ C.

≃
(
C → C⊗

)
◦ (µm)! ◦ ev〈m〉 ◦

(
Alg(C)→ FunFin∗

(
Assoc⊗, C⊗

))

Finally, the concrete description of (⊗∗ ◦ A)(R) follows directly from the
identification of (C → C⊗)∗ ◦ ⊗∗ ◦A by unpacking the definitions.

So let us now prove claims (1), (2), (3) and (4).
Proof of claim (1): We have equivalences as follows.

(
⊗⊗
)
∗
◦Aconst ◦

(
Alg(C)→ Alg(C)⊗

)

Using the description of Aconst from Proposition 6.1.2.7.
≃
(
⊗⊗
)
∗
◦ (ιact)∗ ◦ α

∗ ◦
(
Alg(C)→ Fun

(
Assoc⊗, C⊗

))

Using that by definition of the functor ⊗ – see Definition 6.1.2.8 – there is
an equivalence ⊗⊗ ◦ ιact ≃ idC .

≃ α∗ ◦
(
Alg(C)→ Fun

(
Assoc⊗, C⊗

))

31We remark that we do not need to worry about the equivalences in claims (1) and (2)
lying over non-identity natural isomorphisms of functors to Fin∗, as the unique active
morphism ⟨m⟩ → ⟨1⟩ in Fin∗ stays unchanged if we pre- and postcompose it by isomor-
phisms.

32This follows from Proposition B.5.3.1 using that {⟨1⟩} → Fin∗ is fully faithful.
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Proof of claim (2): Follows immediately by using that lax monoidal func-
tors such as A and ⊗ are compatible with the inclusion of the underlying
∞-category into the respective ∞-operad.

Proof of claim (3): It suffices to show that the adjoint natural transforma-
tions of functors

Assoc⊗act ×Alg(C)→ Fin∗

are equivalent, i. e. that there is an equivalence between pC ◦qµ and µFin∗ ◦pr1.
We first note that as ⊗⊗ : (C⊗act)

⊗ → C⊗ is a functor over Fin∗, we have an
equivalence as follows.

pC ◦ ⊗
⊗ ≃ pC⊗

act
= ev1 ◦ pr2

Unpacking the definition of µ in Construction 6.1.2.4 we thus obtain equiv-
alences as follows.

pC ◦ qµ

= pC ◦ ⊗
⊗ ◦ qµ ◦

(
idAssoc⊗act

×
(

Alg(C)→ Alg(C)⊗
))

≃ ev1 ◦ pr2 ◦ qµ ◦
(

idAssoc⊗act
×
(

Alg(C)→ Alg(C)⊗
))

≃ ev1 ◦ µ
′′
r ◦
(

idAssoc⊗act
×
(

Alg(C)→ Alg(C)⊗
))

≃ ev1 ◦
((

const〈1〉
)
∧ (i′ ◦ µ̃ ◦ pAssoc ◦ pr1)

)

≃ ev1 ◦ i
′ ◦ µ̃ ◦ pAssoc ◦ pr1

≃ µFin∗ ◦ pr1

Proof of claim (4): Follows immediately by combining that all components
of µ are

(
pC⊗

act

)
∗
-cocartesian by Proposition 6.1.2.6, that ⊗⊗ is symmetric

monoidal by definition, and [HTT, 3.1.2.1].

Proposition 6.1.2.11. Let C be a symmetric monoidal∞-category. Consider
the composition

Alg(C)⊗ A⊗

−−→ Fun
(
Assoc⊗act, C

⊗
act
)⊗ (⊗∗)

⊗

−−−−→ Fun
(
Assoc⊗act, C

)⊗

of functors over Fin∗, where A⊗ is as in Proposition 6.1.2.5 and (⊗∗)
⊗ is the

symmetric monoidal functor induced by ⊗ from Definition 6.1.2.8 on functor
categories with the pointwise symmetric monoidal structure.

Then this composition is a symmetric monoidal functor. ♥

Proof. We will use notation from Construction 6.1.2.4 in this proof33, which
will be similar to the proof of Proposition 6.1.2.10.
33We will though use Aconst as notation for the restriction of what was called Aconst in

Construction 6.1.2.4 to Alg(C)⊗, and similarly for µ, as we do for A⊗.
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Just like in Proposition 6.1.2.5, it suffices to show that for every object 〈m〉
in Assoc⊗act, the composition

ev〈m〉 ◦ pr1 ◦ (⊗∗)
⊗ ◦A⊗

maps pr2◦ιAlg-cocartesian morphisms to pC-cocartesian morphisms. Also like
in Proposition 6.1.2.5, we use the definitions of the various functors to rewrite
this composition into a more suitable form. We start by using the definition
of (⊗∗)

⊗ and compatibility of evaluation with postcomposition of functors to
obtain homotopies as follows.

ev〈m〉 ◦ pr1 ◦ (⊗∗)
⊗ ◦A⊗

≃ ev〈m〉 ◦
(
⊗⊗
)
∗
◦ pr1 ◦A⊗

≃ ⊗⊗ ◦ ev〈m〉 ◦ pr1 ◦A⊗

Let f : X → Y be a pr2 ◦ ιAlg-cocartesian morphism in Alg(C)⊗. From the
natural transformation µ : Aconst → pr1◦A⊗ we obtain a commutative square
as follows.

(
⊗⊗ ◦ ev〈m〉 ◦A

const)(X)
(
⊗⊗ ◦ ev〈m〉 ◦ pr1 ◦A⊗

)
(X)

(
⊗⊗ ◦ ev〈m〉 ◦A

const)(Y )
(
⊗⊗ ◦ ev〈m〉 ◦ pr1 ◦A⊗

)
(Y )

(⊗⊗◦ev⟨m⟩)(µX)

(⊗⊗◦ev⟨m⟩◦A
const)(f) (⊗⊗◦ev⟨m⟩◦pr1◦A⊗)(f)

(⊗⊗◦ev⟨m⟩)(µY )

We need to show that the right vertical morphism is pC-cocartesian. By Propo-
sition 6.1.2.6 we know that µX and µY are (pC⊗

act
)∗-cocartesian, so it follows

from [HTT, 3.1.2.1] and ⊗⊗ being symmetric monoidal by definition that
the top and bottom horizontal morphisms in the diagram are pC-cocartesian.
It thus suffices by [HTT, 2.4.1.7] to show that the left vertical morphism is
pC-cocartesian.

For this we use the description of Aconst from Proposition 6.1.2.7 and that
by definition ⊗⊗ ◦ ιact ≃ idC⊗ to obtain equivalences as follows.

⊗⊗ ◦ ev〈m〉 ◦A
const

≃ ⊗⊗ ◦ ev〈m〉 ◦ (ιact)∗ ◦ α
∗ ◦ pr1 ◦ ιAlg

≃ ⊗⊗ ◦ ιact ◦ ev〈m〉 ◦ α
∗ ◦ pr1 ◦ ιAlg

≃ ev〈m〉 ◦ α
∗ ◦ pr1 ◦ ιAlg

≃ ev〈m〉 ◦ pr1 ◦ ιAlg

So what is left to show is that ev〈m〉 ◦ pr1 ◦ ιAlg maps pr2 ◦ ιAlg-cocartesian
morphisms to pC-cocartesian morphisms. But this follows immediately from
Proposition E.4.2.3 (4).
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Remark 6.1.2.12. Let F : C → D be a symmetric monoidal functor of
symmetric monoidal∞-categories. Then going through the constructions and
using Remark 6.1.2.3 it is straightforward to see that there is a commutative
diagram of symmetric monoidal functors as follows

Alg(C)⊗ Fun
(
Assoc⊗act, C

)⊗

Alg(D)⊗ Fun
(
Assoc⊗act,D

)⊗

(⊗∗)
⊗◦A⊗◦ιAlg

Alg(F )⊗ (F∗)
⊗

(⊗∗)
⊗◦A⊗◦ιAlg

where the horizontal functors are the compositions considered in Proposi-
tion 6.1.2.11 for C and D, respectively. Furthermore, if G : D → E is another
symmetric monoidal functor, then the composite of the compatibility dia-
grams for F and G as above can be identified with the compatibility diagram
for G ◦ F . ♦

6.1.2.4 The functor V : Λ→ Assoc⊗act

Let C be a symmetric monoidal ∞-category. With Proposition 6.1.2.11 we
have now constructed a symmetric monoidal functor

Alg(C)→ Fun
(
Assoc⊗act, C

)

that is the first34 step in the symmetric monoidal functor Bcyc
• . We already

constructed the self-duality functor

−◦ : Λop → Λ

in Section 6.1.1.6. We will now introduce a functor

V : Λ→ Assoc⊗act

so that precomposition with V ◦ (−◦) induces a symmetric monoidal functor

Fun
(
Assoc⊗act, C

)
→ Fun(Λop, C)

with respect to the pointwise symmetric monoidal structures.

Fact 6.1.2.13 ([NikSch, B.1]). There is a functor

V : Λ→ Assoc⊗act

that maps

• [n]Λ to 〈n+ 1〉,
34Or the first two or three, however one wants to count.
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• δj : [n− 1]Λ → [n]Λ to the active map that sends i to i if i < j + 1 and
to i+ 1 otherwise35,

• σj : [n + 1]Λ → [n]Λ to the active map that sends i to i if i ≤ j + 1
and to i− 1 otherwise, with ordering on the preimage of j + 1 given by
j + 1 < j + 2,

• τ : [n]Λ → [n]Λ to the active map that sends 1 to n + 1 and i to i − 1
for i > 1. ♧

Proposition 6.1.2.14. Let C be a symmetric monoidal ∞-category. Then
the functor

Fun
(
Assoc⊗act, C

⊗
)
×Fun(Assoc⊗act,Fin∗) Fin∗

(V ◦(−◦))∗×(V ◦(−◦))∗ id
−−−−−−−−−−−−−−−→ Fun

(
Λ

op, C⊗
)
×Fun(Λop,Fin∗) Fin∗

over Fin∗ upgrades the functor

Fun
(
Assoc⊗act, C

) (V ◦(−◦))∗

−−−−−−−→ Fun(Λop, C)

to a symmetric monoidal functor with respect to the pointwise symmetric
monoidal structures (see [HA, 2.1.3.4]). ♥

Proof. Follows directly from the definition of the respective pointwise sym-
metric monoidal structures and Proposition C.1.1.1 and [HTT, 3.1.2.1].

Remark 6.1.2.15. The symmetric monoidal functor obtained in Proposi-
tion 6.1.2.14 is natural in C. In particular, for F : C → D a symmetric
monoidal functor between symmetric monoidal ∞-categories, we obtain a
commutative square

Fun
(
Assoc⊗act, C

)
Fun(Λop, C)

Fun
(
Assoc⊗act,D

)
Fun(Λop,D)

(V ◦(−◦))∗

F∗ F∗

(V ◦(−◦))∗

of symmetric monoidal functors. ♦

35For the reader confused by why it is j + 1 and not j: This arises from the fact that we
defined δj using elements 0

n+1
, . . . , n

n+1
(i. e. we start counting from 0), whereas the

elements of ⟨n+ 1⟩ are 1, . . . , n+ 1 (i. e. we start counting from 1).
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6.1.2.5 The definition of the cyclic bar construction as a cyclic
object

We are now ready to define the cyclic bar construction Bcyc
• .

Definition 6.1.2.16 ([NikSch, III.2.3]). Let C be a symmetric monoidal
∞-category. We define the cyclic bar construction as the symmetric monoidal
functor36

Bcyc
• : Alg(C)→ Fun(Λop, C)

that is given as the composition of the symmetric monoidal functor

Alg(C)→ Fun
(
Assoc⊗act, C

)

from Proposition 6.1.2.11 and the symmetric monoidal functor

Fun
(
Assoc⊗act, C

)
→ Fun(Λop, C)

from Proposition 6.1.2.14. ♦

Remark 6.1.2.17. Bcyc
• is compatible with symmetric monoidal functors.

If F : C → D is a symmetric monoidal functor, then there is a commuting
diagram

Alg(C) Fun(Λop, C)

Alg(D) Fun(Λop,D)

Bcyc
•

Alg(F ) F∗

Bcyc
•

of symmetric monoidal functors. Furthermore, if G : D → E is another sym-
metric monoidal functor, then the composite of the compatibility squares as
above for F and G can be identified with the compatibility square for G ◦ F .
This follows by combining Remark 6.1.2.12 with Remark 6.1.2.15. ♦

6.1.2.6 Bcyc
• for cocartesian symmetric monoidal ∞-categories

Let C be a symmetric monoidal ∞-category. The cyclic bar construction

Bcyc
• : Alg(C)→ Fun(Λop, C)

is a symmetric monoidal functor and thus induces a functor as follows.

CAlg(C) CAlg(Alg(C))

Fun(Λop,CAlg(C)) CAlg(Fun(Λop, C))

≃

CAlg(Bcyc
• )

≃

(6.9)

36In the codomain with respect to the pointwise symmetric monoidal structure.
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In this section we will give a different description of this dashed functor: It
is the left adjoint of the forgetful functor ev[0]Λ .

To prove this we will proceed as follows. We will first show in Proposi-
tion 6.1.2.18 that already Bcyc

• – so without passing to commutative algebras
– is left adjoint to ev[0]Λ , under the assumption that the symmetric monoidal
structure on C is cocartesian. In order to apply this to the dashed composi-
tion in (6.9), we will then show in Proposition 6.1.2.19 how we can identify
CAlg(Bcyc

• ) (where the cyclic bar construction is taken of algebras in C) with
the cyclic bar construction for CAlg(C).

Proposition 6.1.2.18. Let C a symmetric monoidal∞-category and assume
that the underlying ∞-category admits finite coproducts and that the symmet-
ric monoidal structure is cocartesian in the sense of [HA, 2.4.0.1]. Under
these assumptions the forgetful functor

eva : Alg(C)→ C

is an equivalence by [HA, 2.4.3.9].
Then the composite

Bcyc
• ◦ ev−1

a : C → Fun(Λop, C)

is left adjoint to the evaluation functor ev[0]Λ . ♥

Proof. Let i : {[0]Λ} → Λ
op be the inclusion. We will identify the∞-category

C with Fun({[0]Λ}, C) and consider eva as a functor to Fun({[0]Λ}, C). Under
this identification, the functor ev[0]Λ corresponds to precomposition with i.

We start by noting that we can use Proposition 6.1.2.10 to identify the
composition i∗◦Bcyc

• with eva and this identification provides for every object
R of C a commutative triangle of ∞-categories as follows.

{[0]Λ}

C

Λ
op

i

constR

(Bcyc
• ◦ev−1

a )(R)

It now suffices to show that this triangle exhibits (Bcyc
• ◦ ev−1

a )(R) as a left
Kan extension of constR – see [HA, 4.3.2, 4.3.3, and in particular 4.3.3.7]37.

37That we only need to check this pointwise for a single (though of course arbitrary) R

boils down to the fact that induced natural transformations between left Kan extensions
are defined essentially uniquely through the universal property of left Kan extensions
and ultimately colimits.
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For this we need to show by [HA, 4.3.2.2 and 4.3.1.3] that for every object
[n]Λ of Λop the induced diagram

(Λop)/[n]Λ ×Λop {[0]Λ} Λ
op C

(
(Λop)/[n]Λ ×Λop {[0]Λ}

)▷

pr (Bcyc
• ◦ev−1

a )(R)

G

where the left vertical functor is the inclusion and G is the functor that is
induced by (Bcyc

• ◦ ev−1
a )(R), exhibits G(∞) = (Bcyc

• ◦ ev−1
a )(R)([n]Λ) as a

colimit of (Bcyc
• ◦ ev−1

a )(R) ◦ pr.
Let us start by unpacking what the category (Λop)/[n]Λ ×Λop {[0]Λ} looks

like. As [0]Λ has no nontrivial endomorphisms (Λop)/[n]Λ ×Λop {[0]Λ} is ac-
tually a discrete category. Objects are morphisms [0]Λ → [n]Λ in Λ

op, so
morphisms [n]Λ → [0]Λ in Λ. There are n + 1 such morphisms, namely fm
for 1 ≤ m ≤ n + 1, where fm is the morphism (1/(n + 1)) · Z → Z in Λ

38

that maps l/(n + 1) to 0 for 0 ≤ l < m − 1 and to 1 for m − 1 ≤ l ≤ n. In
terms of the generators of Λ39 we can write fm as fm := σn0 ◦ τ

m−1.
Hence what we need to show is that the morphism

∐

1≤m≤n+1

(
Bcyc

• ◦ ev−1
a

)
(R)([0]Λ)

∐
1≤m≤n+1(Bcyc

• ◦ev−1
a )(R)(fm)

−−−−−−−−−−−−−−−−−−−−−→
(
Bcyc

• ◦ ev−1
a

)
(R)([n]Λ) (∗)

is an equivalence in C.
For this we need to understand what (Bcyc

• ◦ ev−1
a )(R) maps the morphism

fm to. First we use Fact 6.1.1.13 to see that the self-duality functor −◦ of
Λ maps fm = σn0 ◦ τ

m−1 to τ1−mδn1 . Next we need to apply the functor V
from Fact 6.1.2.13, which maps this to the active morphism 〈1〉 → 〈n+1〉 in
Assoc⊗ that sends 1 to m. Denote this morphism of Assoc⊗act by f ′m.

We can then identify morphism (∗) with the morphism40

∐

1≤m≤n+1

(
⊗∗ ◦A ◦ ev−1

a

)
(R)(〈1〉)

∐
1≤m≤n+1(⊗∗◦A◦ev−1

a )(R)(f ′
m)

−−−−−−−−−−−−−−−−−−−−−→
(
⊗∗ ◦A ◦ ev−1

a

)
(R)(〈n+ 1〉)

in C. With Proposition 6.1.2.10 we can further identify this morphism with

38See Section 6.1.1.2.
39See Section 6.1.1.3.
40We use notation like in Proposition 6.1.2.10.
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the morphism

∐
1≤m≤n+1R

∐
1≤m≤n+1

(
R≃1⊗m−1

C ⊗R⊗1⊗n−m
C

u⊗m−1⊗idR⊗u⊗n−m

−−−−−−−−−−−−−−→R⊗n+1

)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ R⊗n+1

(∗∗)
where u : 1C → R is the unit morphism of the associative algebra ev−1

a (R).
Morphism (∗∗) is an equivalence as the symmetric monoidal structure on C
is cocartesian.

Proposition 6.1.2.19. Let C be a symmetric monoidal ∞-category. We
compare Bcyc

• for CAlg(C) and C in this proposition, so to distinguish them
we will use superscripts such as Bcyc

•
,C.

Then there is a commutative diagram of ∞-categories

CAlg(Alg(C)) CAlg(Fun(Λop, C))

Alg(CAlg(C)) Fun(Λop,CAlg(C))

CAlg(Bcyc
•

,C)

≃ ≃

Bcyc
•

,CAlg(C)

(6.10)

where the left and right vertical equivalences are the canonical ones41. ♥

Proof. The symmetric monoidal forgetful functor ev〈1〉 : CAlg(C) → C in-
duces by Remark 6.1.2.17 a commuting diagram

Alg(CAlg(C)) Fun(Λop,CAlg(C))

Alg(C) Fun(Λop, C)

Bcyc
•

,CAlg(C)

Alg(ev⟨1⟩) (ev⟨1⟩)∗

Bcyc
•

,C

of symmetric monoidal functors. Applying CAlg to this diagram we obtain
the bottom commutative square in the commutative diagram of∞-categories

41For the left equivalence this is the composition

CAlg(Alg(C)) ≃ BiFunc(Comm,Assoc; C) ≃ BiFunc(Assoc,Comm; C) ≃ Alg(CAlg(C))

where the middle equivalence is given by precomposition with the symmetry equiva-
lence and the other two are the ones from Proposition E.5.0.1. For the right vertical
equivalence see [HA, 2.1.3.4].
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below.

Alg(CAlg(C)) Fun(Λop,CAlg(C))

CAlg(Alg(CAlg(C))) CAlg(Fun(Λop,CAlg(C)))

CAlg(Alg(C)) CAlg(Fun(Λop, C))

Bcyc
•

,CAlg(C)

ev⟨1⟩

CAlg(Bcyc
•

,CAlg(C))

CAlg(Alg(ev⟨1⟩))

ev⟨1⟩

CAlg((ev⟨1⟩)∗)

CAlg(Bcyc
•

,C)

(∗)

By [HA, 3.2.4.7] the symmetric monoidal structure on CAlg(C) is cocarte-
sian, from which it follows that the induced symmetric monoidal structure on
Alg(CAlg(C)) is also cocartesian, and hence the left top vertical functor is an
equivalence by [HA, 2.4.3.9]. To see that the lower left vertical functor is also
an equivalence and that the composite left vertical equivalence can be iden-
tified with the one in diagram (6.10), we consider the following commutative
diagram

Alg(CAlg(C)) CAlg(Alg(CAlg(C))) CAlg(Alg(C))

CAlg(Alg(C)) CAlg(CAlg(Alg(C))) CAlg(Alg(C))

≃

ev⟨1⟩

≃

CAlg(Alg(ev⟨1⟩))

≃ =

ev⟨1⟩

≃

CAlg(ev⟨1⟩)

where the middle and left vertical equivalences are (induced by) the canonical
equivalence exchanging the “inner” Alg and CAlg. By Proposition E.6.0.1,
the bottom right horizontal functor is an equivalence, and the composite
equivalence from the bottom left to the bottom right is homotopic to the
identity functor. It follows that the bottom left vertical functor in diagram
(∗) is an equivalence and that the composite left vertical equivalence can be
identified with the left vertical equivalence in diagram (6.10).

We can argue completely analogously for the two right vertical functors
in diagram (∗) being equivalences and the identification of the composite
with the right vertical equivalence in diagram (6.10) – this time we need to
exchange the “inner” Fun(Λop,−) and CAlg.

Proposition 6.1.2.20. Let C be a symmetric monoidal∞-category. Consider
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the composition42

CAlg(C) CAlg(eva)
−1

−−−−−−−−→ CAlg(Alg(C)) CAlg(Bcyc
• )

−−−−−−−→ CAlg(Fun(Λop, C))
≃
−→ Fun(Λop,CAlg(C))

where the last functor is the canonical equivalence [HA, 2.1.3.4]43. This com-
position is left adjoint to the functor ev[0]Λ . ♥

Proof. Using Proposition 6.1.2.19 we can identify the composition in question
with the following composition

CAlg(C) ev−1
a−−−→ Alg(CAlg(C)) Bcyc

•
,CAlg(C)

−−−−−−−−→ Fun(Λop,CAlg(C))

where Bcyc
•

,CAlg(C) is the cyclic bar construction with respect to the sym-
metric monoidal ∞-category CAlg(C). The claim now follows from Propo-
sition 6.1.2.18, as the symmetric monoidal structure on CAlg(C) is cocarte-
sian.

6.1.2.7 Bcyc
• and sifted colimits

The following statement concerning Bcyc
• and sifted colimits will be helpful

later when we want to show that Hochschild homology is compatible with
relative tensor products.

Proposition 6.1.2.21. Let C be a symmetric monoidal ∞-category. Let I
be a small sifted ∞-category44, and assume that the symmetric monoidal
structure of C is compatible with I-indexed colimits in the sense of [HA,
3.1.1.18].

Then the functor

Bcyc
• : Alg(C)→ Fun(Λop, C)

from Definition 6.1.2.16 preserves I-indexed colimits. ♥

Proof. Colimits in functor categories are detected pointwise by [HTT, 5.1.2.3],
so it suffices to show that for every m ≥ 1 the composition ev[m−1]Λ ◦B

cyc
• pre-

serves I-indexed colimits. Unpacking the definition of Bcyc
• , we can identify

this composition with ev〈m〉 ◦ ⊗∗ ◦ A, see Definition 6.1.2.16 and Proposi-
tion 6.1.2.11. Using Proposition 6.1.2.10 we can further identify this compo-
sition with

Alg(C)
ev⟨m⟩
−−−−→ C⊗〈m〉

(µm)!−−−→ C⊗〈1〉 ≃ C

42CAlg(eva) can be identified with the composition

CAlg(Alg(C)) ≃ Alg(CAlg(C)) eva−−→ CAlg(C)
and is thus an equivalence by [HA, 3.2.4.7 and 2.4.3.9].

43This equivalence arises from using that Fun(Fin∗,−) preserves pullbacks and the ×-Fun-
adjunction.

44See [HTT, 5.5.8.1] for a definition.
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where µm : 〈m〉 → 〈1〉 is the unique active morphism in Fin∗.
By [HA, 3.2.3.7], the functor (µm)! appearing above preserves I-indexed

colimits, so it remains to show that

ev〈m〉 : Alg(C)→ C⊗〈m〉

also does so. The inert morphisms ρi : 〈m〉 → 〈1〉 determine natural trans-
formations evρi : ev〈m〉 → ev〈1〉. By definition of Alg(C), these natural trans-
formations will be componentwise inert morphisms in C⊗ lying over ρi. It
follows45 that the natural transformation

∏

1≤i≤m

evρi : ev〈m〉 →
∏

1≤i≤m

ev〈1〉

is a natural equivalence.
It thus suffices to show that

∏

1≤i≤m

ev〈1〉 : Alg(C)→
∏

1≤i≤m

C

preserves I-indexed colimits. As colimits in products of ∞-categories are
detected componentwise by [HTT, 5.1.2.3], we are left to show that

ev〈1〉 : Alg(C)→ C

preserves I-indexed colimits, which is true by [HA, 3.2.3.1 (4)].

6.1.3 Geometric realization of cyclic objects
Let C be a presentable symmetric monoidal ∞-category and X : Λop → C

a cyclic object in C. Recall from Construction 6.1.1.6 that there is a functor
j : ∆op → Λ

op, along which we can precompose X, obtaining a simplicial ob-
ject j∗X. In this section we discuss how the extra automorphisms in Λ provide
the structure of a T-action on the geometric realization |j∗X| = colim j∗X.
We follow the approach of [Hoy18], but see also [NikSch, Appendix B].

We will start in Section 6.1.3.1 by briefly reviewing ∞-groupoid comple-
tions and the fact that the ∞-groupoid completion of Λop is BT, which will
be needed to define the geometric realization functor for cyclic objects in
Section 6.1.3.2. We will end in Section 6.1.3.3 by discussing monoidality of
this construction.

6.1.3.1 The ∞-groupoid completion of Λ
op

In this short section we recall that the ∞-groupoid completion of Λ
op is

given by BT. We first introduce some notation.
45See Proposition A.3.2.1 and [HA, 2.1.1.14].
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Notation 6.1.3.1. Let C be an∞-category. We denote the∞-groupoid com-
pletion of C by Cgpd. Concretely Cgpd is the∞-groupoid obtained by inverting
all morphisms of C, and comes with a functor C → Cgpd that is initial among
functors with domain C and whose codomain is an ∞-groupoid.

This construction can be made into a functor −gpd : Cat∞ → S that is left
left adjoint to the inclusion, see [HTT, 1.2.5.6 and the preceding discussion]
and [HA, 1.3.4.1]. ♦

We can now recall the following result about the ∞-groupoid completion
of Λop. The two references state their results as Λgpd ≃ BT, but Fact 6.1.3.2
can be immediately obtained from this by either using that Λ is self-dual
by Fact 6.1.1.13 or using that −gpd is compatible with passing to opposite
∞-categories and that ∞-groupoids are equivalent to their opposites.

Fact 6.1.3.2 ([Hoy18, 1.2], [NikSch, B.4]). There is an equivalence

(Λop)
gpd ≃ BT

of ∞-groupoids. ♧

6.1.3.2 Definition of the geometric realization

We now come to the definition of the geometric realization of cyclic objects.
This will be defined as a left adjoint, so we start by showing that the left
adjoint exists.

Proposition 6.1.3.3. Let C be an ∞-category. Denote by ϕ : Λop → BT the
canonical functor exhibiting BT as the ∞-groupoid completion of Λ

op, see
Fact 6.1.3.2. Then the following hold.

(1) The functor
ϕ∗ : Fun(BT, C)→ Fun(Λop, C)

is fully faithful, and its essential image is spanned by those functors
that map every morphism in Λ

op to an equivalence in C.

(2) Assume that C is presentable. Then ϕ∗ admits a left adjoint. ♥

Proof. Proof of claim (1): Holds by definition, see [HA, 1.3.4.1].
Proof of claim (2): By [HTT, 5.5.3.6], both Fun(BT, C) and Fun(Λop, C)

are presentable. By the adjoint functor theorem [HTT, 5.5.2.9] it thus suf-
fices to show that ϕ∗ is accessible and preserves small limits. This follows
immediately from the fact that limits and colimits in functor categories are
calculated pointwise46.

We can now make the following definition.
46See [HTT, 5.1.2.3] for the fact that (co)limits are calculated pointwise, and [HTT, 5.4.2.5

and 5.3.4.5] for the definition of accessible functors.
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Definition 6.1.3.4 ([Hoy18, Page 2]). Let C be a presentable ∞-category.
Then we denote the left adjoint to ϕ∗ from Proposition 6.1.3.3 by

|−| : Fun(Λop, C)→ CB T

and call it the geometric realization functor for cyclic objects. ♦

Remark 6.1.3.5. Let
C C′

F

G

⊣

be an adjunction of ∞-categories, with C and C′ both presentable.
Then compatibility of precomposing with postcomposing yields a commu-

tative diagram
Fun(Λop, C) CB T

Fun(Λop, C′) C′ B T

ϕ∗

G∗

ϕ∗

G∗

so that, by passing to left adjoints and using Proposition D.2.2.1 and [HTT,
5.2.6.2] we obtain a commutative diagram

Fun(Λop, C) CB T

Fun(Λop, C′) C′ B T

|−|

F∗
F∗

|−|

relating the geometric realization functors for C and C′. ♦

We end this section with the following comparison between geometric re-
alization of cyclic and simplicial objects, which gives a description of the
underlying object of |X| for a cyclic object X.

Fact 6.1.3.6 ([Hoy18, 1.1]). Let C be a presentable ∞-category. Then there
is a commutative square of ∞-categories as follows

Fun(Λop, C) CB T

Fun(∆op, C) C

|−|

j∗ ev∗

|−|

where ϕ is as in Construction 6.1.1.6, ∗ is the basepoint (i. e. the up to
equivalence unique object) of BT, and the lower horizontal functor is the
geometric realization functor for simplicial objects, so the functor colim∆op .

♧
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6.1.3.3 Monoidality

If C is a presentable symmetric monoidal∞-category, then Fun(Λop, C) and
CB T can both be given the pointwise symmetric monoidal structure47, with
respect to which the functor ϕ∗ from Proposition 6.1.3.3 can be upgraded to
a symmetric monoidal functor. In this section we show that the geometric
realization functor for cyclic objects can also be upgraded to a symmetric
monoidal functor.

Proposition 6.1.3.7. Let O be an ∞-operad and let pC : C⊗ → O⊗ be
a cocartesian fibration of ∞-operads, and assume furthermore that CX is
presentable for every object X of O, and that the O-monoidal structure on C
is compatible with small colimits in the sense of [HA, 3.1.1.18 and 3.1.1.19].

Then the adjunctions |−| ⊣ ϕ∗ from Definition 6.1.3.4 for the presentable
∞-categories CX for objects X of O can be upgraded to an adjunction relative
to O⊗ in the sense of [HA, 7.3.2.2]

Fun(Λop, C)⊗
(
CB T

)⊗

O⊗

(|−|)⊗

(ϕ∗)⊗

where the functors to O⊗ are the canonical O-monoidal functors that exhibit
Fun(Λop, C) and CB T as equipped with the pointwise O-monoidal structure.

Furthermore, both (|−|)⊗ and (ϕ∗)
⊗ are O-monoidal functors. ♥

Proof. (ϕ∗)⊗ is defined as the induced functor

Fun
(
BT, C⊗

)
×Fun(B T,O⊗) O

⊗ ϕ∗×φ∗ idO⊗
−−−−−−−−→ Fun

(
Λ

op, C⊗
)
×Fun(Λop,O⊗) O

⊗

which by [HTT, 3.1.2.1] and Proposition C.1.1.1 preserves pr2-cocartesian
morphisms and is thus O-monoidal. Furthermore, by Proposition 6.1.3.3 (1),
the functors

ϕ∗ : Fun
(
BT, C⊗

)
→ Fun

(
Λ

op, C⊗
)

and
ϕ∗ : Fun

(
BT,O⊗

)
→ Fun

(
Λ

op,O⊗
)

are both fully faithful, with essential image spanned by those functors that
map all morphisms to equivalences. It then follows from Proposition B.5.3.1
that (ϕ∗)⊗ is also fully faithful, with essential image spanned by those ob-
jects which are mapped by pr1 to functors that invert all morphisms. An
object in Fun(Λop, C)⊗ lying over X ≃ X1 ⊕ · · · ⊕Xn in O⊗ is mapped by
pr1 to a functor Λ

op → C⊗ that factors over the conservative inclusion of
C⊗X ≃ CX1 × · · · × CXn . As morphisms in products of ∞-categories are equiv-
alences if and only if their component morphisms are, we can hence identify
47See [HA, 2.1.3.4].
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the essential image of (ϕ∗)⊗ with the the induced ∞-operad structure as de-
fined in [HA, Start of section 2.2.1] on the full subcategory Fun(BT, C) of
the the underlying ∞-category Fun(Λop, C) of the ∞-operad Fun(Λop, C)⊗.

The claims will now follow from the conclusion of [HA, 2.2.1.9]48. To verify
the requirements to apply that result, it remains to show that the localization
functors

Fun(Λop, CX)
|−|
−−→ Fun(BT, CX)

ϕ∗

−→ Fun(Λop, CX)

for X an object of O are compatible with the O-monoidal structure on
Fun(Λop, C)⊗ in the sense of [HA, 2.2.1.6].

So let f : X1⊕· · ·⊕Xn → Y be a morphism in O⊗, with Xi and Y objects
of O. We obtain an induced functor on fibers
∏

1≤i≤n Fun(Λop, CXi) ≃ Fun(Λop, C)⊗X1⊕···⊕Xn

f!−→ Fun(Λop, C)⊗Y ≃ Fun(Λop, CY )

and what we have to show is that if morphisms gi are an mapped to equiva-
lences by

|−| : Fun(Λop, CXi)→ Fun(BT, CXi)

for each 1 ≤ i ≤ n, then so is f!(g1 ⊕ · · · ⊕ gn).
Using that the forgetful functor ev∗ : Fun(BT, CY ) → CY detects equiva-

lences by Proposition A.3.2.1, and combining this with Fact 6.1.3.6, this boils
down to showing that

(ev∗ ◦ |−|)(f!(g1 ⊕ · · · ⊕ gn)) ≃

(
colim
∆op

◦ j∗
)
(f!(g1 ⊕ · · · ⊕ gn))

is an equivalence if (colim∆op ◦ j∗)(gi) is for every 1 ≤ i ≤ n.
Let us unpack the functor colim∆op ◦ j∗ ◦ f!. We have natural equivalences

as follows, where Ci is an object of CXi .
(

colim
∆op

◦ j∗ ◦ f!

)
(C1 ⊕ · · · ⊕ Cn)

Using that j∗ is O-monoidal with respect to the pointwise O-monoidal struc-
tures on Fun(Λop, C) and Fun(∆op, C).

≃

(
colim
∆op

◦ f!

)
(j∗C1 ⊕ · · · ⊕ j

∗Cn)

Using the definition of the pointwise O-monoidal structure.

≃ colim
∆op


∆

op
∏

1≤i≤n id∆op
−−−−−−−−−→

∏

1≤i≤n

∆
op

∏
1≤i≤n Ci◦j

−−−−−−−−→
∏

1≤i≤n

CXi
f!−→ CY




48That |−|⊗X will be given by |−| : Fun(Λop, CX) → Fun(BT, CX) for X an object of O
follows from [HA, 7.3.2.5] and [HTT, 5.2.6].
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Applying [HA, 3.2.3.7], which is applicable as the O-monoidal structure of
C is compatible with small colimits by assumption and ∆

op is sifted [HTT,
5.5.8.1 and 5.5.8.4].

≃ f!


colim

∆op


 ∏

1≤i≤n

Ci ◦ j






Using that colimits in products are calculated pointwise [HTT, 5.1.2.3].

≃ f!


 ⊕

1≤i≤n

colim
∆op

Ci ◦ j




Thus the claim we need to show ultimately boils down to the following: If
gi : Ci → Di induces an equivalence

colim
∆op

(Ci ◦ j)→ colim
∆op

(Di ◦ j)

for every 1 ≤ i ≤ n, then the induced morphism

f!


 ⊕

1≤i≤n

colim
∆op

(Ci ◦ j)


→ f!


 ⊕

1≤i≤n

colim
∆op

(Di ◦ j)




is an equivalence as well, which is clear.

Remark 6.1.3.8. Let O be an ∞-operad and let pC : C⊗ → O⊗ as well as
pC′ : C′⊗ → O⊗ be cocartesian fibrations of ∞-operads that both satisfy the
conditions of Proposition 6.1.3.7. Let

C⊗ C′⊗

O⊗

F⊗

pC pC

G⊗

⊣

be an adjunction relative to O⊗ in the sense of [HA, 7.3.2.2 and 7.3.2.3], with
both F and G being O-monoidal.

Then proceeding like in Remark 6.1.3.5 and using Proposition 6.1.3.7, we
can conclude that the commutative diagram

Fun(Λop, C) CB T

Fun(Λop, C′) C′ B T

|−|

F∗
F∗

|−|

can be upgraded to a commutative diagram of O-monoidal functors. ♦
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6.2 Hochschild homology
In this section we finally define the functor

HHMixed : Alg(D(k))→Mixed

that the chapters below will be about, and discuss some crucial first proper-
ties49.

We will start with the definition in Section 6.2.1. In Section 6.2.2 we will
then discuss different descriptions of Hochschild homology of commutative
algebras. Finally, we will show in Section 6.2.3 that HHMixed preserves relative
tensor product, which will later be crucial for calculations.

6.2.1 Definition of Hochschild homology
We can now define Hochschild homology by specializing the general discus-

sion of the cyclic bar construction and geometric realization of cyclic objects
of Section 6.1 to the case of D(k). We can apply the definitions of Bcyc

• and
|−| to D(k) as it is a presentable symmetric monoidal ∞-category according
to Proposition 4.3.2.1.

Definition 6.2.1.1. We define HHT to be the symmetric monoidal functor
that is given as the composition

HHT : Alg(D(k))
Bcyc

•−−−→ Fun(Λop,D(k))
|−|
−−→ D(k)B T

where Bcyc
• is the symmetric monoidal functor from Definition 6.1.2.16 and

|−| is the symmetric monoidal functor from Definition 6.1.3.4 and Proposi-
tion 6.1.3.7.

We furthermore denote by

HH : Alg(D(k))→ D(k)

the symmetric monoidal functor given by composing HHT with the symmetric
monoidal functor ev∗.

We refer to both HHT and HH as the Hochschild homology functor. ♦

The reason we use the subscript T for HHT is to distinguish this functor
from the composition with the equivalence D(k)

B T ≃Mixed from Construc-
tion 5.4.0.1, as we will need to refer to both functors in later chapters. We
thus also give the latter functor a name.

Definition 6.2.1.2. We define

HHMixed : Alg(D(k))→Mixed
49We will compare HHMixed with the classical standard Hochschild complex in the next

section, Section 6.3.
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to be the monoidal functor obtained by composing the symmetric monoidal
functor HHT from Definition 6.2.1.1 with the monoidal equivalence from Con-
struction 5.4.0.1. ♦

Notation 6.2.1.3. If we evaluate HH, HHT, or HHMixed at an object of the
form Alg(γ)(R), with R an object of Alg(Ch(k)cof), then we will often omit γ
from the notation and just write e. g. HH(R) instead of HH(Alg(γ)(R)). ♦

Warning 6.2.1.4. As the equivalence D(k)
B T ≃ Mixed from Construc-

tion 5.4.0.1 is only (associatively) monoidal, not symmetric monoidal, the
same is true for HHMixed. ♦

Remark 6.2.1.5. As the monoidal equivalence D(k)
B T ≃ Mixed that was

constructed in Construction 5.4.0.1 is compatible with the forgetful functors
to D(k), we obtain a homotopy

evm ◦HHMixed ≃ ev∗ ◦HHT ≃ HH

of monoidal functors. ♦

Remark 6.2.1.6. Let φ : k → k′ be a morphism of commutative rings.
Then combining Remark 6.1.2.17 with Remark 6.1.3.8 applied to the adjunc-
tion from Remark 4.3.2.2 we obtain a commutative diagram of symmetric
monoidal functors as follows.

Alg(D(k)) D(k)B T D(k)

Alg(D(k)′) D(k′)B T D(k′)

HH

HHT

k′⊗k−

evm

(k′⊗k−)∗ k′⊗k−

HHT

HH

evm

Combining the above with Remark 5.4.0.3 we also obtain a commutative
diagram of monoidal functors as follows.

Alg(D(k)) Mixedk

Alg(D(k′)) Mixedk′

HHMixed

k′⊗k− k′⊗k−

HHMixed

♦
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6.2.2 Hochschild homology and commutative algebras
The functors HHT and HH defined in Definition 6.2.1.1 are symmetric

monoidal functors and thus induce functors on ∞-categories of commuta-
tive algebras. In this section we will give different characterizations of those
induced functors that will be of use later.

We will start in Section 6.2.2.1 by mostly fixing notation. In Section 6.2.2.3
we will show that if R is a commutative algebra in D(k), then HHT(R) can
essentially be obtained as R⊠T, i. e. tensoring R as an object of CAlg(D(k))
with T, considered as a space with a T-action. To properly discuss this, we
will first introduce −⊠− and T in Section 6.2.2.2. As an application of this
description, we will show in Section 6.2.2.4 and Section 6.2.2.5 how interpret
HH of commutative algebras as pushouts and relative tensor products in
CAlg(D(k)).

6.2.2.1 HH for commutative algebras

As the functors HH and HHT from Definition 6.2.1.1 are both symmetric
monoidal, they induce functors on ∞-categories of commutative algebras as
well. By precomposing and postcomposing with canonical equivalences, we
arrive at the following definitions.

Definition 6.2.2.1. We denote by HHT the composition

CAlg(D(k))
≃
−→ CAlg(Alg(D(k)))

CAlg(HHT)
−−−−−−−→ CAlg

(
D(k)

B T
)

≃
−→ CAlg(D(k))

BT

where the individual functors are as follows.

• The first equivalence is the inverse of the following equivalence50.

CAlg(eva) : CAlg(Alg(D(k)))→ CAlg(D(k))

50This functor can be identified with the composition of the equivalence

CAlg(Alg(D(k))) ≃ BiFunc(Comm,Assoc;D(k))

from Proposition E.5.0.1, the equivalence

BiFunc(Comm,Assoc;D(k)) ≃ BiFunc(Assoc,Comm;D(k))

given by precomposing with the symmetry equivalence

Assoc⊗ × Comm⊗ ≃ Comm⊗ × Assoc⊗

the equivalence

BiFunc(Assoc,Comm;D(k)) ≃ Alg(CAlg(D(k)))

from Proposition E.5.0.1, and the functor

eva : Alg(CAlg(D(k)))→ CAlg(D(k))

that is an equivalence by [HA, 3.2.4.7 and 2.4.3.9].
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• The functor HHT appearing in CAlg(HHT) refers to the symmetric
monoidal functor from Definition 6.2.1.1.

• The second equivalence refers to the canonical equivalence, see [HA,
2.1.3.4].

We furthermore denote by HH the composition of the functor HHT above
with the functor

ev∗ : CAlg(D(k))
B T → CAlg(D(k))

that is given by evaluation at the basepoint. Equivalently, HH is the compo-
sition

CAlg(D(k))
≃
−→ CAlg(Alg(D(k)))

CAlg(HH)
−−−−−−→ CAlg(D(k))

where the equivalence is like above and the symmetric monoidal functor HH
occurring in CAlg(HH) is the one from Definition 6.2.1.1. ♦

We next show that the definitions made in Definition 6.2.2.1 are compatible
with the definitions from Definition 6.2.1.1 in the appropriate way.

Proposition 6.2.2.2. There is a commutative diagram

CAlg(D(k)) CAlg(D(k))
B T

Alg(D(k)) D(k)
B T

p∗Assoc

HHT

(ev⟨1⟩)∗

HHT

(6.11)

where pAssoc is the canonical morphism of ∞-operads Assoc⊗ → Comm⊗,
the top horizontal functor is the one from Definition 6.2.2.1 and the bottom
horizontal functor is the one from Definition 6.2.1.1.

Similarly, there is a commutative diagram

CAlg(D(k)) CAlg(D(k))

Alg(D(k)) D(k)

p∗Assoc

HH

ev⟨1⟩

HH

(6.12)

in Cat∞. ♥

Proof. Diagram (6.11) is obtained as the composite outer diagram of the
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following commutative diagram.

CAlg(D(k)) CAlg(D(k))
B T

CAlg(Alg(D(k))) CAlg
(
D(k)

B T
)

Alg(D(k)) D(k)
B T

p∗Assoc

HHT

(ev⟨1⟩)∗
ev⟨1⟩

CAlg(eva)

CAlg(HHT)

ev⟨1⟩

≃

HH

where the upper right vertical functor is the canonical equivalence. The top
square commutes by definition of the top horizontal functor, the bottom
square commutes by naturality of ev〈1〉, and commutativity of the right tri-
angle is clear from the definition. It remains discuss the left triangle, which
we obtain as the outer commutative triangle in the following commutative
diagram

CAlg(Alg(D(k))) CAlg(CAlg(D(k))) CAlg(D(k))

Alg(D(k))

ev⟨1⟩

CAlg(eva)

CAlg(p∗Assoc) CAlg(ev⟨1⟩)
ev⟨1⟩

p∗Assoc

where we use that CAlg
(
ev〈1〉

)
and ev〈1〉 are homotopic and both equiva-

lences by Proposition E.6.0.1 and that CAlg(eva), and hence CAlg(p∗Assoc),
are equivalences as well.

To obtain commutative diagram (6.12) from (6.11) it suffices to remark
that there is an equivalence ev∗ ◦ (ev〈1〉)∗ ≃ ev〈1〉 ◦ ev∗.

6.2.2.2 Circle actions on tensor products with T

There is one object with T-action that is perhaps the most obvious non-
trivial example: T acting on itself. Roughly, this action should be encoded in
a functor BT→ S that maps the object ∗ to the underlying space of T, and a
morphism in BT, corresponding to an element t of T, to the map t·− : T→ T.
A bit more rigorously, we could view T as an object in LModT(S) using
the morphism of ∞-operads LM → Assoc from [HA, 4.2.1.5], and then use
the equivalence SB T ≃ LModT(S) from Proposition 5.3.0.8. As yet another
alternative approach, one can define the functor BT → S as the left Kan

305



Chapter 6 Hochschild homology

extension along the inclusion ∗ → BT of the functor const∗ : ∗ → S, as
discussed in [RSV21, Before 2.12]. We will follow [RSV21] in denoting this
object of SB T by T.

That T defined as a left Kan extension is equivalent to the object with T-
action obtained from T as a left module over itself can be seen by using that
the left Kan extension functor S ≃ Fun(∗, S) → Fun(BT, S) is left adjoint
to the forgetful functor ev∗ by [HTT, 4.3.3.7], that the left-T-module T can
be described as the free T-module generated by ∗ and so as the image of
∗ under the left adjoint of evm by [HA, 4.2.4.8], and that the equivalence
SB T ≃ LModT(S) is shown in Proposition 5.3.0.8 to be compatible with the
respective forgetful functors to S, and hence must also be compatible with
their left adjoints.

Now let C be a presentable ∞-category. S is the unit object in PrL by [HA,
4.8.1.20], so there is a unitality equivalence C ⊗ S ≃ C that amounts to a
functor

−⊠− : C × S→ C

that preserves small colimits separately in each variable51. We thus obtain a
colimit-preserving functor

−⊠ T : C → C

which we should lift to a functor as follows.

−⊠ T : C → CB T

This is indeed the case, and this functor has in fact the following universal
property.

Fact 6.2.2.3 ([RSV21, 2.12]). Let C be a presentable∞-category. Then there
is an adjunction

C CB T
−⊠T

ev∗

such that the composition ev∗ ◦ (−⊠ T) is equivalent to −⊠ T. ♧

6.2.2.3 HH of commutative algebras as a tensor product with T

As D(k) is a presentable symmetric monoidal ∞-category by Proposi-
tion 4.3.2.1, we obtain that CAlg(D(k)) is presentable as well by [HA, 3.2.3.5
(2)]. We can thus apply Fact 6.2.2.3 and obtain a functor

−⊠ T : CAlg(D(k))→ CAlg(D(k))
B T

which we will show is equivalent to the functor HHT from Definition 6.2.2.152.
51Compare with Section 5.2.2 for a more detailed related discussion.
52This claim also appears as Proposition IV.2.2 in [NikSch], but the proof only considers

the underlying objects in D(k).
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Proposition 6.2.2.4. There is an adjunction

CAlg(D(k)) CAlg(D(k))
B T

HHT

ev∗

where HHT is the functor from Definition 6.2.2.1. Furthermore, there is a
homotopy HHT ≃ (−⊠ T) of functors from CAlg(D(k)) to CAlg(D(k))

B T as
well as HH ≃ (−⊠ T) of endofunctors of CAlg(D(k)). ♥

Proof. It suffices to show the claim that HHT is left adjoint to ev∗, as the
other two claims then follow immediately from Fact 6.2.2.3 by using unique-
ness of left adjoints [HTT, 5.2.6] and the definition of HH as ev∗ ◦ HHT in
Definition 6.2.2.1.

Unpacking the definition of HHT in Definition 6.2.2.1 and Definition 6.2.1.1,
the functor HHT of the statement is given by the composition

CAlg(D(k))
CAlg(eva)

−1

−−−−−−−−→ CAlg(Alg(D(k)))

=
CAlg(Bcyc

• )
−−−−−−−→ CAlg(Fun(Λop,D(k)))

=
CAlg(|−|)
−−−−−−→ CAlg

(
D(k)

B T
)

=
≃
−→ CAlg(D(k))

B T (6.13)

where the last equivalence is the canonical one.
By Definition 6.1.3.4 the functor

|−| : Fun(Λop,D(k))→ D(k)
B T

is left adjoint to ϕ∗, where ϕ : Λop → BT is the canonical functor exhibiting
BT as the ∞-groupoid completion of Λop, see Fact 6.1.3.2. Applying Propo-
sition 6.1.3.7 and Proposition E.3.3.1 we obtain that CAlg(|−|) is left adjoint
to CAlg(ϕ∗). From the the commutative diagram

CAlg(Fun(Λop,D(k))) CAlg
(
D(k)

B T
)

Fun(Λop,CAlg(D(k))) CAlg(D(k))
B T

≃

CAlg(ϕ∗)

≃

ϕ∗

where the vertical equivalences are the canonical ones, together with unique-
ness of adjoints, we obtain a commutative diagram as follows.

CAlg(Fun(Λop,D(k))) CAlg
(
D(k)

B T
)

Fun(Λop,CAlg(D(k))) CAlg(D(k))
B T

≃

CAlg(|−|)

≃

|−|
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We can thus identify the composition (6.13) with the following composition.

CAlg(D(k))
CAlg(eva)

−1

−−−−−−−−→ CAlg(Alg(D(k)))

CAlg(Bcyc
• )

−−−−−−−→ CAlg(Fun(Λop,D(k)))
≃
−→ Fun(Λop,CAlg(D(k))) (6.14)
|−|
−−→ CAlg(D(k))

B T

By Definition 6.1.3.4, |−| is left adjoint to ϕ∗ and by Proposition 6.1.2.20
the composition of the first three functors of (6.14) is left adjoint to ev[0]Λ .
It follows from composability of adjoints [HTT, 5.2.2.6] that the composition
of all four functors of (6.14) is left adjoint to

ev[0]Λ ◦ ϕ
∗ ≃ evϕ([0]Λ) ≃ ev∗

which is what needed to be shown.

6.2.2.4 HH of commutative algebras as a pushout

The description of HH for commutative algebras from Proposition 6.2.2.4
allows us to derive the following alternative description that will be useful
when comparing it to the classical standard Hochschild complex.

Proposition 6.2.2.5. The functor

HH : CAlg(D(k))→ CAlg(D(k))

from Definition 6.2.2.1 is homotopic to the functor that maps a commutative
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algebra R to the pushout of53

R ∐R R

R

idR∐idR

idR∐idR (6.15)

in CAlg(D(k)) – the coproduct in the diagram is also to be taken in CAlg(D(k))
and is hence by [HA, 3.2.4.7] given by the tensor product. ♥

Proof. By Proposition 6.2.2.4 the functor HH is homotopic to − ⊠ T. The
underlying space of T is a 1-circle, and there is thus a pushout diagram

∗ ∐ ∗ ∗

∗ T

in S. As − ⊠ − preserves colimits in each variable separately54, the claim
immediately follows using that −⊠ ∗ ≃ id.

6.2.2.5 HH of commutative algebras as a relative tensor product

As pushouts of commutative algebras can be calculated as relative tensor
products, we obtain the following corollary of Proposition 6.2.2.5.
53Here is how to more rigorously define this functor. Let

I = (• ← • → •) = [1]⨿{0} [1]

so that it suffices to construct a functor CAlg(D(k))→ Fun(I,CAlg(D(k))) that maps
an object R to the diagram (6.15), for we can then compose this functor with the functor
colimI . Using the ×-Fun-adjunction, it suffices to construct a functor

I × CAlg(D(k))→ CAlg(D(k))

for which it suffices to produce a commutative diagram as follows.

{0} × CAlg(D(k)) [1]× CAlg(D(k))

[1]× CAlg(D(k)) CAlg(D(k))

with the left vertical and top horizontal functor the inclusion. Each of the two other
functors are to correspond to the natural transformation that sends R to R⨿R

id⨿id
−−−−→ R,

and taking the same functors there is an obvious filler for the diagram, so it suffices to
construct this natural transformation.

The functor mapping R to R ⨿R is the composition

CAlg(D(k))
const
−−−−→ CAlg(D(k))∗⨿∗ colim

−−−−→ CAlg(D(k))

so as colim is left adjoint to the functor const (see [HTT, 4.2.4.3]) we obtain the required
natural transformation as the counit of the adjunction.

54See Section 6.2.2.2.
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Corollary 6.2.2.6. The functor

HH : CAlg(D(k))→ CAlg(D(k))

from Definition 6.2.2.1 is homotopic to the functor that maps a commutative
algebra R to the relative tensor product in CAlg(D(k))

R⊗R⊗R R

where the structure of R as a left and right R ⊗ R-module arises from the
morphism of commutative algebras

R⊗R ≃ R ∐R
idR∐idR−−−−−→ R

– see Construction E.8.0.4 for more details on how to construct the necessary
data to take the relative tensor product of of this. ♥

Proof. Follows immediately from combining Proposition 6.2.2.5 with Propo-
sition E.8.0.5.

Remark 6.2.2.7. If R is a commutative algebra in D(k), then the underlying
morphism in D(k) of the morphism

R⊗R ≃ R ∐R
idR∐idR−−−−−→ R

in CAlg(D(k)) can be identified with the multiplication morphism of R. This
essentially follows from Proposition E.6.0.155. ♦

6.2.3 Hochschild homology and relative tensor products
In this short section we show that HHMixed preserves relative tensor prod-

ucts, which will be crucial later for calculating HHMixed of certain quotients.

Proposition 6.2.3.1. The functors HHT, HHMixed, and HH from Defini-
tion 6.2.1.1 and Definition 6.2.1.2 preserve sifted colimits.

In particular, all three functors being monoidal as well, they also preserve
relative tensor products56. ♥
55Denote for the moment the functor

ev⟨1⟩ : CAlg(CAlg(D(k)))→ CAlg(D(k))

by ev′
⟨1⟩

to distinguish it from the following functor.

ev⟨1⟩ : CAlg(D(k))→ D(k)

Then the morphism in question is – as a morphism in CAlg(D(k)) – the multiplica-
tion morphism of the object R′ in CAlg(CAlg(D(k))) corresponding to R under the
equivalence ev′

⟨1⟩
. As ev⟨1⟩ is symmetric monoidal, it maps this morphism to the multi-

plication morphism of the commutative algebra in D(k) given by CAlg(ev⟨1⟩)(R
′). We

would like to identify this with R, and Proposition E.6.0.1 says that we can.
56See Remark E.8.0.2 for a discussion of what the statement that those functors preserve

relative tensor products means.
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Proof. As D(k) is presentable symmetric monoidal by Proposition 4.3.2.1 (1),
the symmetric monoidal structure on D(k) is in particular compatible with
sifted colimits, and hence we can apply Proposition 6.1.2.21 to conclude that

Bcyc
• : Alg(D(k))→ Fun(Λop,D(k))

preserves sifted colimits. As a left adjoint, the geometric realization functor

|−| : Fun(Λop,D(k))→ D(k)B T

preserves all colimits, so in particular sifted colimits – see Definition 6.1.3.4
and [HTT, 5.2.3.5]. It thus follows that HHT and HHMixed preserve sifted
colimits, and as the forgetful functor ev∗ : D(k)B T → D(k) preserves colimits
by [HTT, 5.1.2.3] it also follows that HH preserves sifted colimits.

All three functors are monoidal by definition, so they also preserve relative
tensor products by Proposition E.8.0.1.

6.3 The standard Hochschild complex
In this section we review the classical definitions for Hochschild homology

on the level of chain complexes. The main point is that if A is a differential
graded algebra, then one can construct a strict mixed complex C(A) out of A,
called the standard Hochschild complex, which represents HHMixed(A). Sim-
ilarly, when A is a commutative differential graded algebra, then the under-
lying chain complex of C(A) can be upgraded to a commutative differential
graded algebra that represents HH(A).

We will start in Section 6.3.1 by reviewing the standard Hochschild complex
for associative algebras, before treating the commutative case in Section 6.3.2.
In Section 6.3.3 we will then discuss in what way γ : Ch(k)cof → D(k) pre-
serves relative tensor products, which will be relevant when we show that
the standard Hochschild complex indeed represents Hochschild homology in
Section 6.3.4.

6.3.1 The standard Hochschild complex for associative
algebras

In Section 6.2.1 we defined a functor

HHMixed : Alg(D(k))→Mixed

called Hochschild homology. This was a definition on the level of the ∞-
category D(k). There is also a classical definition of Hochschild homology
constructed on the level of chain complexes, and we will recall the main
definitions in this section57. We use the book [Lod98] as well as [Hoy18] the
main references for this material.
57We will later see in Section 6.3.4.1 that the classical definition indeed represents the one

from Section 6.2.1.
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We will start in Section 6.3.1.1 by making concrete how the cyclic bar
construction Bcyc

• looks like in the case of the symmetric monoidal category
Ch(k)cof. While in the definition of HHMixed the next step would be the
geometric realization functor for cyclic objects that would yield an object of(
Ch(k)cof)B T, this is not sensible in this setting58 – as Ch(k)cof is a 1-category,

any functor BT→ Ch(k)cof factors though τ≤1(BT) ≃ ∗, so a T-action on an
object of Ch(k)cof yields no extra information. So in Section 6.3.1.2 we instead
give a different construction that produces a strict mixed complex out of a
cyclic object in chain complexes. We end in Section 6.3.1.3 by defining the
standard Hochschild complex as the composite functor from Alg(Ch(k)) to
Mixed.

6.3.1.1 The cyclic bar construction for chain complexes

Ch(k) is a symmetric monoidal category, so we can apply Definition 6.1.2.16
to obtain the cyclic bar construction functor Bcyc

• . The next proposition
makes this functor more concrete.

Proposition 6.3.1.1. The functor

Bcyc
• : Alg

(
Ch(k)cof)→ Fun

(
Λ

op,Ch(k)cof)

from Definition 6.1.2.16 is given on a differential graded algebra A with
cofibrant underlying complex by the following formulas59.

Bcyc
n (A) = A⊗(n+1)

di(a0 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ ai · ai+1 ⊗ ai+2 ⊗ · · · ⊗ an for i < n

dn(a0 ⊗ · · · ⊗ an) = (−1)degCh(an)·
∑n−1
i=0 degCh(ai)an · a0 ⊗ a1 ⊗ · · · ⊗ an−1

si(a0 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ an

t(a0 ⊗ · · · ⊗ an) = (−1)degCh(an)·
∑n−1
i=0 degCh(ai)an ⊗ a0 ⊗ a1 ⊗ · · · ⊗ an−1

In particular, the restriction of Bcyc
• to Alg(LModk(Ab)) via the inclusion

of chain complexes that are concentrated in degree 060 can be identified with
the functor defined in [Lod98, 6.1.12]61 ♥

Proof. This amounts to unpacking the definition of the functors −◦ and V in
Fact 6.1.1.13 and Fact 6.1.2.13 to see where the generators of Λop are taken
by V ◦ (−)◦, and then applying Proposition 6.1.2.1062.
58Even without asking for the construction to be compatible with HHMixed.
59See Notation 6.1.1.12 for the notation we use here.
60This implies that the signs in the formulas above vanish.
61Compare also to [Lod98, 1.6.1, 2.1.0, and 2.5.4] – there are though some differences in

the signs, see [Lod98, 6.1.2.2].
62The signs arise from the signs in the symmetry isomorphism of the symmetric monoidal

structure on Ch(k), see Definition 4.1.2.1.
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6.3.1.2 Geometric realization of cyclic chain complexes

In Definition 6.2.1.2 we defined HHMixed as the composition of the cyclic
bar construction with the geometric realization functor

Fun(Λop,D(k))→ D(k)B T

defined in Definition 6.1.3.4 and the equivalence

D(k)B T ≃Mixed

from Construction 5.4.0.1. There is also a classical way of obtaining a strict
mixed complex out of a cyclic chain complex, as we recall now.

Construction 6.3.1.2 ([Hoy18, Section 2] and [Lod98, 2.5.10]). Let X• be
an object in Fun(Λop,Ch(k)). We then define a number of new operators on
X• as follows.

∂X : Xn → Xn−1, ∂X :=

n∑

i=0

(−1)idi

s−1 : Xn → Xn+1, s−1 := t ◦ sn

t′ : Xn → Xn, t′ := (−1)nt

N : Xn → Xn, N :=

n∑

i=0

t′i

d : Xn → Xn+1, d := (id− t′) ◦ s−1 ◦N

The operator ∂X then satisfies ∂X ◦ ∂X = 0 so that we can consider X•

together with ∂X as a complex in Ch(k), i. e. a double complex63, and hence
can form the total complex, an object of Ch(k), by setting

Tot
(
X•, ∂

X
)
n
:=

⊕

i+j=n

(Xi)j

and for x and element of (Xi)j

∂Tot(X•,∂
X)(x) := ∂X(x) + (−1)i∂Xi(x)

as the boundary operator64.
63To be precise, we set

Xn :=

{
X[n]Λ

if n ≥ 0

0 otherwise
so in particular, (X•, ∂

X) is a upper half plane (or right half plane, depending on which
way around one arranges the two indices) double complex.

64In the formula for the boundary operator, ∂X(x) is an element of (Xi−1)j and ∂Xi (x)

is an element of (Xi)j−1.
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The operator d induces morphisms Tot
(
X•, ∂

X
)
∗
→ Tot

(
X•, ∂

X
)
∗+1

that
we also denote by d, and the identities holding in Λ (see Construction 6.1.1.7)
imply that d makes Tot

(
X•, ∂

X
)

into a strict mixed complex65, see for ex-
ample the arguments in [Lod98, Section 2.1].

This construction is functorial, and we denote the resulting functor

Fun(Λop,Ch(k))→ Mixed

by |−|Mixed. Composing with the forgetful functor that maps strict mixed
complexes to their underlying chain complexes we obtain a functor

Fun(Λop,Ch(k))→ Ch(k)

that we denote by |−|Ch. ♦

Warning 6.3.1.3. Our notation deviates from the notation used in most
previous work. We use ∂ and d instead of b and B, which is the notation
used in for example [Lod98] and [Hoy18], which are the sources we have
otherwise followed in Construction 6.3.1.2. The notation ∂ is widely used
for the boundary operator of a chain complex66, and d fits better with the
relation to the mixed complex of de Rham forms, which will be introduced
in Section 7.1.

Apart from the change of notation, the various operators in Construc-
tion 6.3.1.2 agree with the definitions in [Hoy18, Section 2]. The definitions
also agree with the definitions given in [Lod98, 2.5.10] if we restrict to cyclic
objects in LModk(Ab) (via the inclusion as chain complexes concentrated in
degree 0). While the formulas in [Lod98, 2.5.10] differ by some signs, those
arise from the fact that Loday does not actually define a mixed complex
from the input of a cyclic object in chain complexes, but of a cyclic module
as defined in [Lod98, 2.5.1]. While the data of a cyclic module and a cyclic
object in LModk(Ab) are isomorphic, the isomorphism introduces some signs,
see [Lod98, 6.1.2.2]. After composing Loday’s construction with the isomor-
phism between cyclic objects in LModk(Ab) and cyclic modules, the signs
cancel. ♦

Proposition 6.3.1.4. If X• is a functor Λ
op → Ch(k) that is pointwise

cofibrant, then |X•|Ch is cofibrant as well.
We thus obtain a commutative diagrams as follows

Fun
(
Λ

op,Ch(k)cof) Mixedcof Ch(k)cof

Fun(Λop,Ch(k)) Mixed Ch(k)

|−|Mixed evm

|−|Mixed evm

65See Definition 4.2.1.2 and Remark 4.2.1.4 for the definition.
66So is d, but this would be very confusing when the mixed complex of de Rham forms

shows up in Section 7.1.
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where Mixedcof is the full subcategory of Mixed spanned by those strict mixed
complexes whose underlying chain complex is cofibrant (see Definition 4.2.1.2),
and the vertical functors are (induced by) the inclusion of Ch(k)cof into Ch(k).

♥

Proof. Let X• be an object in Fun(Λop,Ch(k)cof). Define a sequence

. . .→ |X•|
≤−1
Ch → |X•|

≤0
Ch → |X•|

≤1
Ch → . . .

of sub-chain-complexes of |X•|Ch by letting |X•|
≤m
Ch be given by67

(
|X•|

≤m
Ch

)
n
:=

⊕

i+j=n,i≤m

(Xi)j

which one should think of as taking the total complex of the brutal truncation
of X• to degrees less than or equal to m.

Note that |X•|
≤m
Ch
∼= 0 for m < 0, and |X•|Ch is the colimit of the above

sequence of inclusions. It thus suffices to show that |X•|
≤0
Ch is cofibrant and

that each inclusion |X•|
≤m
Ch → |X•|

≤m+1
Ch is a cofibration.

That |X•|
≤0
Ch is cofibrant follows immediately from the assumption, as there

is an obvious isomorphism |X•|
≤0
Ch
∼= X0. So now let m be a nonnegative

integer. Then there is a pushout diagram as follows

Sm ⊗Xm+1 |X•|
≤m
Ch

Dm+1 ⊗Xm+1 |X•|
≤m+1
Ch

∂X

i⊗idXm+1

where Sm and Dm+1 are as in [Hov99, 2.3.3]68 and i is the inclusion, ∂X is
to be understood as mapping 1 ⊗ x to ∂X(x), which is defined as in Con-
struction 6.3.1.2, and the right vertical morphism is the inclusion. As Xm+1

was assumed to be a cofibrant chain complex and i is a cofibration, it follows
from Ch(k) being a symmetric monoidal model category that the left vertical
morphism, and hence also the right vertical morphism, are cofibrations.

Remark 6.3.1.5. Construction 6.3.1.2 is clearly compatible with respect to
extension of scalars. Specifically, let φ : k → k′ be a morphism of commutative
rings. Then the symmetric monoidal functor k′⊗k− from Ch(k)cof to Ch(k′)cof

67The boundary operator of |X•|Ch never increases i or j, so this indeed defines a sub-
chain-complex.

68So Sm is k[m], and Dm+1 is concentrated in degrees m and m + 1, with the boundary
operator from degree m+ 1 to degree m being idk.

315



Chapter 6 Hochschild homology

(see Fact 4.1.5.1) induces an obvious commutative diagram

Fun
(
Λ

op,Ch(k)cof) Mixedk,cof

Fun
(
Λ

op,Ch(k′)cof) Mixedk′,cof

|−|Mixed

(k′⊗k−)∗ k′⊗k−

|−|Mixed

of 1-categories. ♦

6.3.1.3 The standard Hochschild complex

Combining Sections 6.3.1.1 and 6.3.1.2 we obtain the following definition.

Definition 6.3.1.6. Composing the cyclic bar construction for associative
algebras in Ch(k)cof69, with the functor |−|Mixed from Construction 6.3.1.2 we
obtain a functor

Alg
(
Ch(k)cof)→ Mixedcof

that we denote by C and call the standard Hochschild complex. ♦

Remark 6.3.1.7. Combining functoriality of Bcyc
• (see Remark 6.1.2.17) and

|−|Mixed (see Remark 6.3.1.5) we can deduce that C is functorial in k. Con-
cretely, if φ : k → k′ is a morphism of commutative rings, then there is a
commutative diagram

Alg
(
Ch(k)cof) Mixedk,cof

Alg
(
Ch(k′)cof) Mixedk′,cof

C

k′⊗k− k′⊗k−

C

in Cat. ♦

6.3.1.4 C for algebras concentrated in degree 0

In this section we discuss the standard Hochschild complex as defined
in Definition 6.3.1.6 for k-algebras R with projective underlying k-module,
which we consider as algebras in Ch(k)cof concentrated in degree 0.

Remark 6.3.1.8. The restriction of the standard Hochschild complex func-
tor C as we defined it to k-algebras whose underlying k-module is projec-
tive agrees with the functor C defined in [Lod98], see [Lod98, Section 1.1,
in particular 1.1.3, and section 2.1, in particular 2.1.7]. This follows from
Proposition 6.3.1.1 and Warning 6.3.1.3. ♦

69See Proposition 6.3.1.1.
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Going through the definitions, one obtains the following description.

Proposition 6.3.1.9. Let R be a k-algebra with projective underlying k-
module. Then the strict mixed complex C(R) is concentrated in nonnegative
degrees and for n ≥ 0 the following hold70.

Cn(R) = R⊗(n+1)

∂(r0 ⊗ · · · ⊗ rn) = (−1)nrn · r0 ⊗ r1 ⊗ · · · ⊗ rn−1

+
n−1∑

i=0

(−1)ir0 ⊗ · · · ⊗ ri · ri+1 ⊗ · · · ⊗ rn

d(r0 ⊗ · · · ⊗ rn) =
n∑

i=0

(−1)in1⊗ ri ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−1

+

n∑

i=0

(−1)inri ⊗ 1⊗ ri+1 ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−1

These formulas agree with the definitions used in [Lod98]71. ♥

Proof. Follows directly by unpacking the definitions in Proposition 6.3.1.1
and Construction 6.3.1.2. Let us go through the steps for the last formula
in a bit more detail. We use that d is defined as (id − t′) ◦ s−1 ◦ N , and go
through the application of each composition factor individually. r0⊗ · · · ⊗ rn
is mapped by N to the following element

n∑

i=0

(−1)inrn+1−i ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ rn−i

where the summand indexed by i = 0 is to be interpreted as r0 ⊗ · · · ⊗ rn.
Using that (n+1)n is even, we can replace i by n+1− i to rewrite the above
expression as

n+1∑

i=1

(−1)inri ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−1

which is also equal to the following sum, as the summand for i = 0 is equal
to the one for i = n+ 1.

n∑

i=0

(−1)inri ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−1

70For n = 0 we instead have ∂(r0) = 0.
71For the boundary operator, see [Lod98, 1.1.1]. For the differential a formula is given

in [Lod98, 2.1.7.3], which is though differing from our formula by the sign before the
second sum, which is presumably due to a typo – the definition given in [Lod98, 2.1.7.1
and 2.1.0] yields the formula we have stated above. That there must be a typo in [Lod98]
around this formula can also be seen by comparing with the formulas for B(a0) and
B(a0, a1) given just below [Lod98, 2.1.7.3], which are compatible with the sign as in
the formula stated above, but not the sign in [Lod98, 2.1.7.3].
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The effect of applying s−1 can be described as inserting a tensor factor 1 at
the start, so the above expression is mapped by s−1 to the following.

n∑

i=0

(−1)in1⊗ ri ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−1

Finally, applying id− t′ we obtain

n∑

i=0

(−1)in1⊗ ri ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−1

−(−1)n+1
n∑

i=0

(−1)inri−1 ⊗ 1⊗ ri ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−2

and after replacing i by i− 1 in the second sum to remove the sign due to

−(−1)n+1(−1)n = 1

and using that the resulting summands for i = 0 and i = n+ 1 are equal we
finally obtain the following.

=

n∑

i=0

(−1)in1⊗ ri ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−1

+

n∑

i=0

(−1)inri ⊗ 1⊗ ri+1 ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−1

6.3.1.5 The normalized standard Hochschild complex

To simplify formulas it is often useful to divide out a particularly easy
to describe acyclic subcomplex of C(R), spanned by elements of the form
r0 ⊗ · · · ⊗ rn with one of the elements r1, . . . , rn being equal to 1. We only
use this for the case where R is concentrated in degree 0 and refer to [Lod98,
1.1.14] for more details.

Proposition 6.3.1.10 ([Lod98, 1.1.14 and 1.1.15]). Let R be a k-algebra
with projective underlying k-module. We define R to be the quotient R/(k · 1)
of k-modules, where k · 1 is the k-submodule of R spanned by the unit 1. We
will use the notation r for the image of an element r of R under the quotient
map R→ R. Define

Cn(R) :=
{
R⊗R

⊗n if n ≥ 0

0 otherwise

for integers n and note that Cn(R) is a quotient of Cn(R).

318



6.3 The standard Hochschild complex

Then the strict mixed complex structure of C(R) induces a strict mixed
complex structure on C(R) such that the following simplified formula holds
for the differential.

d(r0 ⊗ r1 ⊗ · · · ⊗ rn) =
n∑

i=0

(−1)in1⊗ ri ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−1

Furthermore, the morphism of strict mixed complexes

C(R)→ C(R), r0 ⊗ r1 ⊗ · · · ⊗ rn 7→ r0 ⊗ r1 ⊗ · · · ⊗ rn

determines a natural transformation C→ C of functors from the category of
k-algebras with projective underlying k-module to Mixed that is pointwise a
quasiisomorphism.

We call C(R) the normalized standard Hochschild complex. ♥

Proof. That C(R) obtains an induced chain complex structure is [Lod98,
1.6.4] and that the quotient morphism C(R) → C(R) is a quasiisomorphism
is shown in [Lod98, 1.1.15 and 1.6.5]. That these quotient morphisms assemble
to a natural transformation as claimed follows directly from the definition.

That the kernel of C(R)→ C(R) is closed under d is clear by looking at the
formula given for d in Proposition 6.3.1.9, and the expression for the induced
operator d on C(R) also follows immediately. See also [Lod98, 2.1.9].

Remark 6.3.1.11. Functoriality of C with respect to change of scalars as
discussed in Remark 6.3.1.7 passes to C. In particular, for φ : k → k′ a
morphism of commutative rings there exists a dashed natural isomorphism
fitting into a commutative diagram

C(k′ ⊗k −) C(k′ ⊗k −)

k′ ⊗k C(−) k′ ⊗k C(−)

∼= ∼=

of functors from the category k-algebras with projective underlying k-module
to Mixedk′ . The top and bottom natural transformations are (induced by) the
ones from Proposition 6.3.1.10 and the left natural isomorphism is the one
from Remark 6.3.1.7. ♦

6.3.2 The standard Hochschild complex for
commutative algebras

The functor
HHMixed : Alg(D(k))→Mixed
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is monoidal and hence induces a functor on ∞-categories of (associative)
algebras. Unfortunately, the standard Hochschild complex functor

C : Alg
(
Ch(k)cof)→ Mixedcof

that was defined in Definition 6.3.1.6 is not monoidal and not even lax or colax
monoidal, see [Lod98, 4.3.1] and [Kas87]. To get around this for Künneth-
type-formulas, one can employ a weakened notion of morphism between strict
mixed complexes that is called strongly homotopy linear map in [Kas87] and S-
morphism in [Lod98] – see [Kas87, 2.2] and [Lod98, 2.5.14]. This is a morphism
of underlying chain complexes that need not strictly commute with d, but
only up to specified homotopy, which in turn also does not need to strictly
commute with d, but up to specified homotopy, and so on. For a more detailed
discussion of strongly homotopy linear morphisms see Section 4.2.3.

We take the necessity to consider these kind of sequences of higher ho-
motopies as a hint that if one is interested in both the mixed structure as
well as (symmetric) monoidal structure, then one should work at the level of
∞-categories and consider the functor HHT. From this perspective, that C
may not be fully adequate to consider both mixed and multiplicative struc-
tures can also be expected from the fact that while HHT and HH are symmet-
ric monoidal, HHMixed has only been shown to be (associatively) monoidal
– so it would be unexpected for C as a functor to Mixedcof to be symmetric
monoidal72.

To nevertheless be able to do some calculations on the level of chain com-
plexes regarding multiplicative structures, we forget about the strict mixed
complex structure, and only consider C as a functor to Ch(k)cof.

To bring the standard Hochschild complex functor C, considered as a func-
tor to Ch(k)cof, into a form that is more amenable for our purposes, we
discuss the bar resolution CBar(A) of an associative algebra in Ch(k)cof in
Section 6.3.2.1, which will allow us to rewrite C(A) as a relative tensor prod-
uct C(A) ∼= A⊗A⊗Aop CBar(A) in Section 6.3.2.2. We will also show that as
a left-A ⊗ Aop-module, CBar(A) is a cofibrant replacement of A, which will
be relevant in Section 6.3.4.2, where we compare the standard Hochschild
complex to HH. In Section 6.3.2.3 we then introduce the shuffle product on
CBar(A), and upgrade all the relevant constructions to commutative algebras
– provided that A itself was commutative. This will allow us to describe the
standard Hochschild complex of a commutative differential graded algebra
with cofibrant underlying chain complex as an object of CAlg(Ch(k)cof) in
Section 6.3.2.4.

6.3.2.1 The bar resolution

In this section we introduce the bar resolution, that will be used in Sec-
tion 6.3.2.2 to give an alternative description of the standard Hochschild com-
plex of Definition 6.3.1.6. We closely follow [Lod98, 1.1.11 to 1.1.13], though
72At least in a homotopically meaningful way that is compatible with HHT.
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6.3 The standard Hochschild complex

we also consider differential graded algebras that are not concentrated in
degree 0.

Construction 6.3.2.1. [Lod98, 1.1.11 to 1.1.13] Let A be an associative
algebra in Ch(k)cof.

We let BarA(A,A)• be the chain complex in Ch(k) (so a double complex)
that is determined by the following formulas.

BarA(A,A)n := A⊗A⊗n ⊗A

∂BarA(A,A)•(a0 ⊗ · · · ⊗ an+1) :=

n∑

i=0

(−1)i(a0 ⊗ · · · ⊗ ai · ai+1 ⊗ · · · ⊗ an+1)

We then define CBar(A), called the bar resolution of A, to be the total complex
of BarA(A,A)•, so we let

CBar(A)n :=
⊕

i+j=n

(BarA(A,A)i)j =
⊕

i+j=n

(
A⊗(i+2)

)
j

and for a an element of (BarA(A,A)i)j we define the boundary operator as
follows.

∂CBar(A)(a) := ∂BarA(A,A)•(a) + (−1)i∂A⊗A⊗i⊗A(a)

Note that if A is concentrated in degree 0, then CBar(A) is precisely the
complex Cbar

∗ defined in [Lod98, 1.1.11].
There are two important extra pieces of structure regarding CBar(A) that

we will also need.
The first is that there is a natural morphism of chain complexes

CBar(A)→ A

that is defined by the formula

(a0 ⊗ · · · ⊗ ai+1) 7→

{
a0 · a1 if i = 0

0 otherwise

an again, this is precisely the augmentation of Cbar
∗ as defined in [Lod98,

1.1.11] if A is concentrated in degree 0.
The second extra piece of structure is that CBar(A) can be given the struc-

ture of a left module over A⊗Aop, where Aop refers to the opposite algebra
of A, i. e. the differential graded algebra with the same underlying chain com-
plex, but if we denote the multiplication in A with · and in Aop with ⋆, then
⋆ is defined as a ⋆ a′ := (−1)degCh(a)·degCh(a

′)a′ · a. The left module structure is
then defined via the following formula.

(a⊗ a′) · (a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1) :=

(−1)(
∑n+1
i=0 degCh(ai)) degCh(a

′)((a · a0)⊗ a1 ⊗ · · · ⊗ an ⊗ (an+1 · a
′))
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One can similarly define a left-A⊗Aop-module structure on A, via

(a⊗ a′) · a′′ := (−1)degCh(a
′) degCh(a

′′)a · a′′ · a′

and this makes the morphism of chain complexes CBar(A) → A into a mor-
phism of left-A ⊗ Aop-modules. This structure is again (for A concentrated
in degree 0) exactly the one considered in [Lod98, 1.1.13].

The above constructions can be summarized in the following diagram

Alg
(
Ch(k)cof) LMod(Ch(k))

Alg(Ch(k))

CBar

A 7→A

A 7→A⊗Aop

where the functor on the right is the forgetful functor, the bottom functor
at the top maps A to A considered as a left-A ⊗ Aop-module as described
above, and the natural transformation at the top lies over the identity natural
transformation of A 7→ A⊗Aop. ♦

To show that the terminology “bar resolution” is reasonable, we will now
prove that CBar(A) is cofibrant as a left-A⊗Aop-module, as well as quasiiso-
morphic to A.

Proposition 6.3.2.2 ([Lod98, 1.1.12]). Let A be an associative algebra in
Ch(k)cof. Then the morphism

CBar(A)→ A

of chain complexes constructed in Construction 6.3.2.1 is a quasiisomorphism.
♥

Proof. The proof is an immediate generalization of the proof of [Lod98,
1.1.12], though we need to add some signs to account for elements of A in odd
degrees. So let ϕ denote the morphism CBar(A)→ A and let ψ : A→ CBar(A)
be the morphism of chain complexes that maps a to 1⊗ a. Then ϕ ◦ψ = idA,
so it suffices to construct a homotopy h between idCBar(A) and ψ ◦ϕ. For this,
define h via

h(a0 ⊗ · · · ⊗ an+1) := 1⊗ a0 ⊗ · · · ⊗ an+1

by k-linearly extending.
If n > 0 we then have
(
∂CBar(A) ◦ h+ h ◦ ∂CBar(A)

)
(a0 ⊗ · · · ⊗ an+1)
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= 1 · a0 ⊗ · · · ⊗ an+1 −
n∑

i=0

(−1)i(1⊗ a0 ⊗ · · · ⊗ ai · ai+1 ⊗ · · · ⊗ an+1)

+ (−1)n+1
n+1∑

i=0

(−1)
∑i−1
j=0 degCh(aj)

(
1⊗ a0 ⊗ · · · ⊗ ∂

A(ai)⊗ · · · ⊗ an+1

)

+

n∑

i=0

(−1)i(1⊗ a0 ⊗ · · · ⊗ ai · ai+1 ⊗ · · · ⊗ an+1)

+ (−1)n
n+1∑

i=0

(−1)
∑i−1
j=0 degCh(aj)

(
1⊗ a0 ⊗ · · · ⊗ ∂

A(ai)⊗ · · · ⊗ an+1

)

= a0 ⊗ · · · ⊗ an+1

while for n = 0 the third term does not appear, so that we obtain
(
∂CBar(A) ◦ h+ h ◦ ∂CBar(A)

)
(a0 ⊗ a1)

= a0 ⊗ a1 − 1⊗ a0 · a1

= (id−ψ ◦ ϕ)(a0 ⊗ a1)

which shows that h is a homotopy as required.

Proposition 6.3.2.3. Let A be an associative algebra in Ch(k)cof. Then
CBar(A) as defined in Construction 6.3.2.1 is cofibrant as a left-A ⊗ Aop-
module with respect to the model structure of Theorem 4.2.2.1.

In particular, the underlying chain complex of CBar(A) is cofibrant. ♥

Proof. Let us begin by noting that the second claim, that the underlying
chain complex of CBar(A) is cofibrant, follows from the first claim by applying
Theorem 4.2.2.1 (8), which is applicable as the underlying chain complex of
A is cofibrant by assumption.

Let Bar≤mA (A,A)• be the chain complex in Ch(k) defined as the brutal
truncation to degrees smaller or equal to m of BarA(A,A)• from Construc-
tion 6.3.2.1, i. e.

Bar≤mA (A,A)n :=

{
A⊗A⊗n ⊗A if n ≤ m
0 otherwise

and with boundary operator defined by the same formula as in Construc-
tion 6.3.2.1.

We then let CBar
≤m(A) be the total complex of Bar≤mA (A,A)•, which con-

cretely means that CBar
≤m(A) is given in level n by

⊕
i+j=n,i≤m(A⊗(i+2))j .

Note that the left-A ⊗ Aop-module structure restricts from CBar(A) to
CBar

≤m(A), and CBar(A) is the colimit of the sequence

CBar
≤0 (A)→ CBar

≤1 (A)→ CBar
≤2 (A)→ . . .
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so that it suffices to show that CBar
≤0 (A) is cofibrant and each of the morphisms

CBar
≤m(A)→ CBar

≤m+1(A)

is a cofibration.
For CBar

≤0 (A) we note that

CBar
≤0 (A)

∼= A⊗Aop

as left-A ⊗ Aop-modules, so CBar
≤0 (A) is isomorphic to the free left-A ⊗ Aop-

module generated by k and hence cofibrant, as k is cofibrant in Ch(k).
For m ≥ 0 there is an evident pushout diagram in Ch(Ch(k))

A⊗m+3 ⊗ Sm Bar≤mA (A,A)•

A⊗m+3 ⊗Dm+1 Bar≤(m+1)
A (A,A)•

id
A⊗m+3⊗i

′

where A⊗m+3 is concentrated in degree 0 with respect to the “outer” chain
degree, Sm is the chain complex in Ch(k) that is concentrated in degree m,
where it is k[0], the complex Dm+1 is concentrated in degrees m and m+ 1,
where it is k[0], with the boundary operator from degree m+ 1 to degree m
the identity morphism, and i′ is the inclusion.

As the formation of the total complex preserves pushouts, we obtain a
pushout diagram in Ch(k). It is not difficult to see that that square can be
considered as a commutative square of left-A⊗Aop-modules of the following
form

FreeLModA⊗Aop
(
A⊗m+1 ⊗ Sm

)
CBar

≤m(A)

FreeLModA⊗Aop
(
A⊗m+1 ⊗Dm+1

)
CBar

≤m+1(A)

FreeLModA⊗Aop (id
A⊗m+1⊗i)

where i is the inclusion of Sm = k[m] into the chain complex concentrated
in degrees m and m + 1 that is given by (Dm+1)m = (Dm+1)m+1 = k,
with boundary operator the identity, see [Hov99, 2.3.3]. As we assumed A

to have cofibrant underlying complex and i is a cofibration in Ch(k), the
tensor product idA⊗m+1 ⊗ i is a cofibration as well, and it then follows that
FreeLModA⊗Aop (idA⊗m+1 ⊗i) is a cofibration of left-A⊗Aop-modules, and thus
so is the inclusion CBar

≤m(A)→ CBar
≤m+1(A).

6.3.2.2 C as a relative tensor product

Using the bar resolution from Section 6.3.2.1 we can now give a differ-
ent description of the standard Hochschild complex that we defined in Sec-
tion 6.3.1.3.
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Proposition 6.3.2.4 ([Lod98, 1.1.13]). The standard Hochschild complex
functor

C : Alg
(
Ch(k)cof)→ Ch(k)cof

as defined in Definition 6.3.1.6 (but postcomposed with the forgetful functor
from Mixedcof to Ch(k)cof) is naturally isomorphic to the functor73

A 7→ A⊗A⊗Aop CBar(A)

where CBar(A) is as in Construction 6.3.2.1 and A is a right-A⊗Aop-module
via the action defined by a · (a′ ⊗ a′′) := a′′aa′. ♥

Proof. Follows from unpacking the definitions and using isomorphisms of the
following form.

A⊗A⊗Aop
(
A⊗A⊗n ⊗A

)
∼= A⊗A⊗n

a⊗ (a0 ⊗ · · · ⊗ an+1) 7→ an+1 · a · a0 ⊗ a1 ⊗ · · · ⊗ an

6.3.2.3 The shuffle product

In this section we assume that A is a commutative algebra in Ch(k)cof, and
upgrade the bar resolution CBar(A) from Section 6.3.2.1 to a commutative
differential graded algebra.

Definition 6.3.2.5 ([Lod98, 4.2.1] and [BACH, 1.2]). Let n and m be non-
negative integers. Then we define

Bn,m :=
{
σ ∈ Σn+m

∣∣ σ(1) < · · · < σ(n) and σ(n+ 1) < · · · < σ(n+m)
}

=
{
σ ∈ Σn+m

∣∣ σ preserves the ordering of {1, . . . , n}

and {n+ 1, . . . , n+m}
}

where Σn+m is the symmetric group on n + m elements, see Section 2.3
(34). ♦

Construction 6.3.2.6 ([Lod98, E.4.2.2] and [BACH, 1.2]). Let A be a com-
mutative algebra in Ch(k)cof. We then define a product on CBar(A) from
Section 6.3.2.1 by k-linearly extending the following formula

(al ⊗ a1 ⊗ · · · ⊗ an ⊗ ar) · (a
′
l ⊗ an+1 ⊗ · · · ⊗ an+m ⊗ a

′
r)

:=
∑

σ∈Bn,m

(−1)s ·
(
al · a

′
l ⊗ aσ−1(1) ⊗ · · · ⊗ aσ−1(n+m) ⊗ ara

′
r

)

73We take the relative tensor product in Ch(k). That the relative tensor product is isomor-
phic to C(A) shows that it is indeed cofibrant and can thus be considered as functor to
Ch(k)cof.
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where s is a sign (dependent on σ etc.) defined as follows.
s = sgn(σ)

+

(
degCh(ar) ·

n+m∑

i=n+1

degCh(ai)

)
+

(
degCh(a

′
l) ·

(
n∑

i=1

degCh(ai)

))

+ (degCh(ar) · degCh(a
′
l))

+



n+m∑

i=1

degCh(ai) ·


 ∑

i<j,σ(j)<σ(i)

degCh(aj)






To make the formula more intuitive, let us provide the following interpreta-
tion. The summand indexed by σ should be thought of as moving ai, which
previously occupied what we might describe as “slot i” in the tensor product
to “slot σ(i)” – this explains why σ−1 rather than σ occurs in the indices.
Moving the ai past each other then incurs signs coming from the symme-
try isomorphism in Ch(k) (see Definition 4.1.2.1), and this is how the last
summand of s arises. The other three summands of s involving chain de-
grees arise from moving ar and a′l to their correct positions. Finally, sgn(σ)
is needed for compatibility with the part of the boundary operator coming
from ∂BarA(A,A)• – see Construction 6.3.2.1.

A tedious, but straightforward, calculation shows that the above multi-
plication is compatible with the boundary operator as well as associative
and commutative, and with unit 1 ⊗ 1, making CBar(A) into an object of
CAlg(Ch(k)cof) (see Proposition 6.3.2.3 for cofibrancy of the underlying chain
complex). Let us just mention one aspect of the required calculations when
checking that the multiplication is compatible with the boundary operator.
The boundary operator has two summands, with one arising from ∂BarA(A,A)• .
With regards to that summand, multiplying first and then applying the
boundary operator results in (a priori) extra summands (compared to ap-
plying the boundary operator first and then multiplying), where originally
non-neighboring elements have been multiplied together. However, these sum-
mands always arise in pairs from two elements of Bn,m that only differ by a
transposition, and using that A is commutative one can see that they always
cancel each other out. The rest of the needed calculations are mostly checking
that the signs match.

With respect to this commutative algebra structure on CBar(A), it is easy
to check that the morphism CBar(A)→ A from Construction 6.3.2.1 becomes
a morphism in CAlg(Ch(k)cof).

Furthermore, the inclusion of A ⊗ A ∼= CBar
≤0 (A) (see the proof of Proposi-

tion 6.3.2.3 for this notation) into CBar(A) becomes a morphism of commuta-
tive algebras as well, and the left-A⊗A-module structure74 on CBar(A) that
was discussed in Construction 6.3.2.1 can be identified with the one induced
from this morphism of commutative algebras.
74As A is commutative we have A = Aop.
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The left-A ⊗ A-module structure on A considered in Construction 6.3.2.1
can similarly be identified with the one arising from the morphism of com-
mutative algebras A⊗ A→ A that is given by the multiplication morphism.
That the morphism CBar(A) → A is a morphism of left-A ⊗ A-modules is
then reflected in the commutativity of the diagram

CBar(A) A

A⊗A

of commutative algebras in Ch(k).
We can thus summarize these constructions in the commutative diagram

CBar idCAlg(Ch(k)cof)

A 7→ A⊗A

of natural transformations between endofunctors of CAlg(Ch(k)cof).
Finally, note that the right-A ⊗ A-module structure on A considered in

Proposition 6.3.2.4 can also be identified with the one arising from the mor-
phism of commutative algebras A⊗A→ A considered above. ♦

6.3.2.4 C for commutative algebras

Combining the description of the standard Hochschild complex as a relative
tensor product with the bar resolution in Section 6.3.2.2 and the commutative
algebra structure on the bar resolution constructed in Construction 6.3.2.6,
we can now upgrade the standard Hochschild complex for commutative alge-
bras to an object of CAlg(Ch(k)cof).

Proposition 6.3.2.7. The composition of the forgetful functor

CAlg
(
Ch(k)cof)→ Alg

(
Ch(k)cof)

with the standard Hochschild complex functor

C : Alg
(
Ch(k)cof)→ Mixedcof

from Definition 6.3.1.6 and the forgetful functor Mixedcof → Ch(k)cof factors
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through CAlg(Ch(k)cof), so that we obtain a commutative diagram

CAlg
(
Ch(k)cof) CAlg

(
Ch(k)cof)

Alg
(
Ch(k)cof) Mixedcof Ch(k)cof

C

C

where we denote the lift by C as well, and all the unlabeled functors are the
respective forgetful functors.

Furthermore, the functor

C : CAlg
(
Ch(k)cof)→ CAlg

(
Ch(k)cof)

is given by A 7→ A⊗A⊗ACBar(A), where the A⊗A-module structures on A and
CBar(A) arise via the natural transformations of functors to CAlg(Ch(k)cof)
discussed in Construction 6.3.2.6 and the relative tensor product is taken in
CAlg(Ch(k)). ♥

Proof. Follows immediately from Proposition 6.3.2.4 in combination with
Construction 6.3.2.6 using that the symmetric monoidal forgetful functor
from CAlg(Ch(k)) to Ch(k) preserves relative tensor products75.

Remark 6.3.2.8. Going through the definition, it is straightforward to check
that the natural isomorphisms encoding functoriality in k of C of associative
algebras as described in Remark 6.3.1.7 are multiplicative after restricting
to commutative differential graded algebras. So concretely, if φ : k → k′ is a
morphism of commutative rings, then there is a commutative diagram

CAlg
(
Ch(k)cof) CAlg(Mixedk,cof)

CAlg
(
Ch(k′)cof) CAlg(Mixedk′,cof)

C

k′⊗k− k′⊗k−

C

lifting the commutative diagram from Remark 6.3.1.7. ♦

6.3.2.5 C for commutative algebras concentrated in degree 0

Like in Section 6.3.1.4, we unpack the commutative algebra structure on
the standard Hochschild complex C(R) in the case that R is concentrated in
degree 0.
75See Proposition E.8.0.1 and [HA, 3.2.3.1 (4)]. Note that in 1-categories, geometric real-

izations – i. e. colimits over ∆
op – are calculated as coequalizers (see [Rie14, 8.3.8]), so

that relative tensor products are the “classical” ones.
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Definition 6.3.2.9 ([Lod98, 1.3.4]). Let R be a commutative k-algebra and
n ≥ 0 an integer. Then we define an action of the symmetric group Σn on
Cn(R) as follows. For r0, . . . , rn elements of R, we define the action of σ on
r0 ⊗ r1 ⊗ · · · ⊗ rn as

σ · (r0 ⊗ r1 ⊗ · · · ⊗ rn) := r0 ⊗ rσ−1(1) ⊗ · · · ⊗ rσ−1(n)

and extend this k-linearly to an action of Σn on Cn(R). An action of Σn on
Cn(R) is defined analogously. ♦

Proposition 6.3.2.10. Let R be a commutative k-algebra with projective
underlying k-module. Then the unit 1 of R, considered as an element of
C(R)0, is the unit of the commutative algebra structure on C(R), and the
following formula holds for the multiplication76.

(r0 ⊗ r1 ⊗ · · · ⊗ rn) · (r
′
0 ⊗ rn+1 ⊗ · · · ⊗ rn+m)

=
∑

σ∈Bn,m

sgn(σ) · σ · (r0 · r′0 ⊗ r1 ⊗ · · · ⊗ rn+m) ♥

Proof. Follows directly from Construction 6.3.2.6 and Proposition 6.3.2.7.

We also obtain an induced multiplication on the normalized standard
Hochschild complex.

Proposition 6.3.2.11. Let R be a commutative k-algebra with projective un-
derlying k-module. Then the commutative algebra structure on C(R) induces
a commutative algebra structure on C(R) that makes the quotient morphism

C(R)→ C(R)

into a morphism in CAlg(Ch(k)). ♥

Proof. Follows immediately from Propositions 6.3.1.10 and 6.3.2.10.

Remark 6.3.2.12. Given a morphism of commutative rings φ : k → k′, the
diagram of natural transformations

C(k′ ⊗k −) C(k′ ⊗k −)

k′ ⊗k C(−) k′ ⊗k C(−)

∼= ∼=

discussed in Remark 6.3.1.11 can be lifted to a commutative diagram of natu-
ral transformations from the category of commutative k-algebras with projec-
tive underlying k-module to the category CAlg(Mixedk′), such that the left
natural isomorphism is the one from Remark 6.3.2.8 and the top and bottom
natural transformations are the ones from Proposition 6.3.2.11. ♦
76We identify C(R)n for n ≥ 0 with the tensor product R⊗(n+1) for these formulas.
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Warning 6.3.2.13. Let R be a commutative k-algebra with projective un-
derlying k-module. While C(R) has both a strict mixed complex structure as
well as the structure of a differential graded algebra, it is not in general an
algebra in Mixed. To see this, let r and r′ be elements of R Then, using the
formulas from Propositions 6.3.1.9 and 6.3.2.10 we obtain

d(r · r′) = 1⊗ r · r′ + r · r′ ⊗ 1

d(r) · r′ + r · d(r′) = ((1⊗ r) + (r ⊗ 1)) · r′ + r · ((1⊗ r′) + (r′ ⊗ 1))

= (r′ ⊗ r) + (r · r′ ⊗ 1) + (r ⊗ r′) + (r · r′ ⊗ 1)

which shows that, in general, d does not satisfy the Leibniz rule and hence
C(R) does not form an algebra in Mixed – see Remark 4.2.1.12.

The formulas simplify slightly for C(R) so that we get

d(r · r′) = 1⊗ r · r′

d(r) · r′ + r · d(r′) = (r′ ⊗ r) +
(
r ⊗ r′

)

which is however nevertheless not in general equal.
We can note though that

∂
(
1⊗ r ⊗ r′

)
= r ⊗ r′ − 1⊗ r · r′ + r′ ⊗ r

so that the Leibniz rule is at least satisfied up to homotopy for elements of
degree 0 – which is to be expected, as HHMixed(R) has the structure of an
object in Alg(Mixed), and we will see in Section 6.3.4 that C(R) represents
the underlying mixed complex of HHMixed(R) if we consider it as an object
of Mixedcof, and the underlying algebra in D(k) of HHMixed(R) if we consider
it as an object of Alg(Ch(k)cof). ♦

Despite Warning 6.3.2.13, we can show instances of the Leibniz rule for
the normalized standard Hochschild complex under additional assumptions,
as we show next.

Proposition 6.3.2.14. Let R be a commutative k-algebra with projective un-
derlying k-module. Let n ≥ 1 and r, s1, . . . , sn elements of C(R) (of arbitrary
degree). Then the following partial Leibniz rule identity holds.

d(r · d(s1) · · · d(sn)) = d(r) · d(s1) · · · d(sn) ♥

Proof. We first note that it suffices to prove the case n = 1. For suppose we
have already proved the statement for all 1 ≤ n ≤ m, and that r, s1, . . . , sm+1

are elements of C(R). Then the following calculation shows how we can de-
duce the claim for n = m+ 1.

d(r · d(s1) · · · d(sm+1))

= d((r · d(s1) · · · d(sm)) · d(sm+1))
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Applying the claim for n = 1.
= d(r · d(s1) · · · d(sm)) · d(sm+1)

Applying the claim for n = m.
= d(r) · d(s1) · · · d(sm) · d(sm+1)

So now assume that n,m ≥ 0, that r is an element of Cn(R) and s is an
element of Cm(R). We have to show that d(r · d(s)) = d(r) · d(s).

Using notation from Section 2.3 (34), the formula from Proposition 6.3.1.10
for the differential d(r) of an element r in degree n of C(R) can be written
in a more concise way as

d(r) =
∑

τ∈Cn+1

sgn(τ) · τ · (1⊗ r)

where 1⊗r is to interpreted as notation for 1⊗r0⊗· · ·⊗rn if r = r0⊗r1⊗· · ·⊗rn
for r0, . . . , rn elements of R, and k-linearly extended for other elements. We
now begin by unpacking the definition of d(r · d(s)).

d(r · d(s))

= d


r ·

∑

τr∈Cm+1

sgn(τr) · τr · (1⊗ s)




= d




∑

τr∈Cm+1,
σ∈Bn,m+1

sgn(σ) · sgn(τr) · σ ·
(
id{1,...,n}∐τr

)
· (r ⊗ s)




=
∑

τr∈Cm+1,
σ∈Bn,m+1,
τ∈Cn+m+2

(
sgn(τ) · sgn(σ) · sgn(τr)

· τ ·
(
id{1}∐σ

)
·
(
id{1,...,n+1}∐τr

)
· (1⊗ r ⊗ s)

)

=
∑

τr∈Cm+1,
σ∈Bn,m+1,
τ∈Cn+m+2

(
sgn
(
τ ◦
(
id{1}∐σ

)
◦
(
id{1,...,n+1}∐τr

))

·
(
τ ◦
(
id{1}∐σ

)
◦
(
id{1,...,n+1}∐τr

))
· (1⊗ r ⊗ s)

)

Next we unpack the definition of d(r) · d(s).

d(r) · d(s)

=


 ∑

τl∈Cn+1

sgn(τl) · τl · (1⊗ r)


 ·


 ∑

τr∈Cm+1

sgn(τr) · τr · (1⊗ s)



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=
∑

τl∈Cn+1

τr∈Cm+1

sgn(τl ∐ τr) · (τl · (1⊗ r)) · (τr · (1⊗ s))

=
∑

τl∈Cn+1

τr∈Cm+1

σ∈Bn+1,m+1

sgn(σ) sgn(τl ∐ τr) · σ · (τl ∐ τr) · (1⊗ r ⊗ s)

=
∑

τl∈Cn+1

τr∈Cm+1

σ∈Bn+1,m+1

sgn(σ ◦ (τl ∐ τr)) · (σ ◦ (τl ∐ τr)) · (1⊗ r ⊗ s)

The claim thus boils down to a statement about different decompositions
of elements of Σn+m+2 that we now make concrete. We define two maps of
sets as follows.

f : Cm+1 ×Bn,m+1 × Cn+1+m+1 → Σn+1+m+1

(τr, σ, τ) 7→ τ ◦
(
id{1}∐σ

)
◦
(
id{1,...,n+1}∐τr

)

g : Cn+1 × Cm+1 ×Bn+1,m+1 → Σn+1+m+1

(τl, τr, σ) 7→ σ ◦ (τl ∐ τr)

To show d(r · d(s)) is equal d(r) · d(s) it then suffices to show that for
every element ρ of Σn+1+m+1 the preimages of ρ under f and g satisfy
|f−1(ρ)| = |g−1(ρ)|. We will show this by going through the following steps.

(1) Proof that f is injective.

(2) Proof that g is injective

(3) Definition of a subset Cn+1,m+1 of Σn+1+m+1.

(4) Proof that Im(g) = Cn+1,m+1.

(5) Proof that Im(f) ⊆ Cn+1,m+1.

(6) Proof that Im(f) = Cn+1,m+1.

Step (1): Let (τr, σ, τ) be an element of Cm+1 × Bn,m+1 × Cn+1+m+1,
and let ρ be the composition ρ = τ ◦ (id{1}∐σ) ◦ (id{1,...,n+1}∐τr). What
we have to show is that τr, σ, and τ are uniquely determined by ρ. First
note that ρ(1) = τ(1). As elements of Cn+1+m+1 are determined uniquely
by their value on a single element, this means that τ is uniquely deter-
mined by ρ. As id{1}∐σ preserves the order of the elements of the subset
{n+ 1 + 1, . . . , n+ 1 +m+ 1}, we obtain

r{n+1+1,...,n+1+m+1}

((
id{1}∐σ

)
◦
(
id{1,...,n+1}∐τr

))
= τr

which shows the claim.
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Step (2): Let σ be an element of Bn+1,m+1, τl an element of Cn+1 and τr
an element of Cm+1. As σ preserves the order of the elements of the subsets
{1, . . . , n+ 1} as well as {n+ 1 + 1, . . . , n+ 1 +m+ 1}, we obtain

r{1,...,n+1}(σ ◦ (τl ∐ τr)) = τl

and similarly
r{n+1+1,...,n+1+m+1}(σ ◦ (τl ∐ τr)) = τr

which implies the claim.
Step (3): We let Cn+1,m+1 be the subset of Σn+1+m+1 consisting of those

permutations ρ for which r{1,...,n+1}(ρ) is an element of Cn+1 and where
r{n+1+1,...,n+1+m+1}(ρ) is an element of Cm+1. One should think of Cn+1,m+1

as a variant of Bn+1,m+1; The permutations in Bn+1,m+1 are those that
preserve the order of the elements of the two subsets {1, . . . , n + 1} and
{n + 1, . . . , n + 1 +m + 1},77 and the permutations in Cn+1,m+1 are those
which cyclically preserve the order of the elements of those subsets.

Step (4): The argument used in step (2) shows that Im(g) ⊆ Cn+1,m+1.
For the other direction, suppose that ρ is an element of Cn+1,m+1. Then let
τl = r{1,...,n+1}(ρ) and τr = r{n+1,...,n+1+m+1}(ρ), and furthermore define
σ := ρ ◦

(
τ−1
l ∐ τ−1

r

)
. Then we obtain

r{1,...,n+1}(σ) = τl ◦ τ
−1
l = id and r{n+1+1,...,n+1+m+1}(σ) = τr ◦ τ

−1
r = id

so that σ is an element of Bn+1,m+1. This shows that Cn+1,m+1 ⊆ Im(g).
Step (5): It follows from the previous step that permutations of the form

(id{1}∐σ) ◦ (id{1,...,n+1}∐τr)

for σ an element of Bn,m+1 and τr an element of Cm+1 lie in Cn+1,m+1. It
thus suffices to show that Cn+1,m+1 is closed under postcomposition with
elements of Cn+1+m+1. This follows from the fact that if X is a subset of
{1, . . . , n + 1 + m + 1} and τ an element of Cn+1+m+1, then rX(τ) is an
element of C|X|.

Step (6): By the previous two steps it suffices to show that

|Im(f)| = |Im(g)|

and as both f and g are injective, it suffices to show that

|Cm+1| · |Bn,m+1| · |Cn+1+m+1| = |Cn+1| · |Cm+1| · |Bn+1,m+1|

which is verified by the following calculation.

|Cm+1| · |Bn,m+1| · |Cn+1+m+1|

= (m+ 1) ·

(
(n+m+ 1)!

n! · (m+ 1)!

)
· (n+ 1 +m+ 1)

77So the respective restrictions yield the elements id{1,...,n+1} of Σn+1 and id{1,...,m+1}

of Σm+1.
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= (m+ 1) ·

(
(n+ 1) · (n+ 1 +m+ 1)!

(n+ 1)! · (m+ 1)! · (n+ 1 +m+ 1)

)
· (n+ 1 +m+ 1)

= (n+ 1) · (m+ 1) ·

(
(n+ 1 +m+ 1)!

(n+ 1)! · (m+ 1)!

)

= |Cn+1| · |Cm+1| · |Bn+1,m+1|

6.3.3 Relative tensor products in Ch(k) and D(k)

The canonical functor γ : Ch(k)cof → D(k) is symmetric monoidal – see
Proposition 4.3.2.1 – and thus preserves tensor products. In this section we
discuss how γ interacts with relative tensor products. There is no reason to
expect that γ preserves ∆

op-indexed colimits in general, so we can not just
apply Proposition E.8.0.1. Instead, we will show that γ preserves relative
tensor products if one of the two modules is cofibrant as a module. Cofibrancy
is here taken to be with respect to the model structure on RModR(Ch(k)) and
LModR(Ch(k)) for an algebra R in Ch(k) from Theorem 4.2.2.178. Note that
as Ch(k) is a 1-category, geometric realizations – i. e. colimits over ∆

op – are
calculated as coequalizers79, so that the relative tensor product in Ch(k) is
the “classical” one.

We begin by noting in Remark 6.3.3.1 below that there is a canonical
comparison map from γ(X)⊗γ(R) γ(Y ) to γ(X ⊗R Y ).

Remark 6.3.3.1. Let F : C → D be a monoidal functor of monoidal ∞-cat-
egories, and assume that the monoidal structures on C and D are compatible
with ∆

op-indexed colimits in the sense of [HA, 3.1.1.18]. The relative tensor
product induces a functor

RMod(C)×Alg(C) LMod(C) −⊗−−
−−−−→ C

and similarly for D, see [HA, 4.4.2.10 and 4.4.2.11].
By [HA, 4.4.2.8] this functor can be identified as the functor mapping a

triple (M,R,N) to |BarR(M,N)•|, the geometric realization of the simpli-
cial object BarR(M,N)• which can be described as M ⊗ R⊗• ⊗ N , see also
Section E.8.

As F is monoidal, it follows from the definition of the bar construction
[HA, 4.4.2.7] that there is a natural equivalence as follows.

BarF (R)(F (M), F (N))• ≃ F ◦ BarR(M,N)•

As there is a natural transformation

|F ◦X•| = colim
∆op

(F ◦X•)→ F

(
colim
∆op

X•

)
= F (|X•|)

78Ch(k) satisfies the assumptions by Fact 4.1.3.1.
79See [Rie14, 8.3.8].
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for simplicial objects X• in C, we thus obtain a canonical natural transforma-
tion comparing first applying F , and then taking the relative tensor product
with first taking the relative tensor product and then applying F .

RMod(C)×Alg(C) LMod(C) C

RMod(D)×Alg(D) LMod(D) D

−⊗−−

RMod(F )⊗Alg(F )LMod(F ) F

−⊗−−

♦

Remark 6.3.3.2. We would like to compare relative tensor products of chain
complexes with relative tensor products in D(k). There is a slight issue here
that Remark 6.3.3.1 does not directly apply to give us what we want: We
can not apply it to γ : Ch(k) → D(k) as this functor is not monoidal, so
the monoidal functor we would want to consider is γ : Ch(k)cof → D(k), but
there is no reason for the full subcategory Ch(k)cof of Ch(k) to be closed
under ∆

op-indexed colimits.
However, this is not actually a problem. If R is an algebra in Ch(k), and

M and N are right and left modules over R, and such that the underlying
chain complexes of R, M , and N are cofibrant, then, because γ is monoidal
on Ch(k)cof, we obtain an equivalence

Barγ(R)(γ(M), γ(N))• ≃ γ ◦ BarR(M,N)•

just like in Remark 6.3.3.1.
We also still obtain a canonical morphism

colim
∆op

(
Barγ(R)(γ(M), γ(N))•

)
≃ colim

∆op
(γ ◦ BarR(M,N)•)

→ γ

(
colim
∆op

(BarR(M,N)•)

)

where on the right the colimit is taken in Ch(k) rather than Ch(k)cof, and the
γ is the functor

γ : Ch(k)→ D(k)

that is given by postcomposing the other functor called γ with the cofibrant
replacement functor.

The upshot is that we still have a canonical comparison transformation as
in Remark 6.3.3.1, even if it doesn’t quite fit into the setup of Remark 6.3.3.1.

♦

Proposition 6.3.3.3. Let (M,R,N) be an object of

RMod
(
Ch(k)cof)×Alg(Ch(k)cof) LMod

(
Ch(k)cof)
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i. e. R is a differential graded algebra, M is a right module over R, N is a
left module over R, and all three have cofibrant underlying chain complex.

Assume that one of M and N is cofibrant as a module over R with respect
to the model structure of Theorem 4.2.2.1. Then the relative tensor product
M⊗RN , calculated in Ch(k), is again cofibrant and the canonical comparison
morphism (see Remark 6.3.3.2)

γ(M)⊗γ(R) γ(N)→ γ(M ⊗R N)

is an equivalence. ♥

Proof. Let R be an object of Alg
(
Ch(k)cof). We will use the notation

FreeRModR
Ch : Ch(k)cof → RMod

(
Ch(k)cof)

as well as FreeLModR
Ch , FreeRModR

D
, and FreeLModR

D
for the left adjoints to the

respective forgetful functors evm. We also let C be the collection of objects
(M,R,N) of

RMod
(
Ch(k)cof)×Alg(Ch(k)cof) LMod

(
Ch(k)cof)

and C≃ the subcollection of those tuples (M,R,N) for which the canonical
comparison morphism

γ(M)⊗γ(R) γ(N)→ γ(M ⊗R N)

is an equivalence. When we refer to colimits below while talking about objects
and morphisms in Ch(k)cof, those colimits are always to be taken in the
category Ch(k).

We first show the claim regarding cofibrancy of the relative tensor product,
and will do the case where N is cofibrant as a module – the other case is
analogous. Fix R and M as in the statement. Then it suffices to show that
the functor

M ⊗R − : LModCh(k)→ Ch(k)
maps generating cofibrations to cofibrations and preserves colimits. That the
functor preserves colimits follows from [HA, 4.4.2.15]. Let i : X → Y be a
cofibration in Ch(k). Then it remains to show that

M ⊗R FreeLModR
Ch (i) : M ⊗R FreeLModR

Ch (X)→M ⊗R FreeLModR
Ch (Y )

is again a cofibration. But this morphism can be identified with the morphism

M ⊗ i : M ⊗X →M ⊗ Y

which is a cofibration as M is cofibrant and i a cofibration.
Let us now turn towards the claim that γ(M)⊗γ(R)γ(N)→ γ(M ⊗R N) is

an equivalence if one of M and N is cofibrant as a module. By the definition
of the model structure on modules80 and [Hov99, 2.1.18 (b) and 2.1.9] it
suffices to show the following.
80Theorem 4.2.2.1
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(1) Let (M,R,N) be in C. Then (M,R, 0) and (0, R,N) are in C≃.

(2) Let R be an object of the category Alg(Ch(k)cof), let M be an object
of RMod(Ch(k)cof), and let X be an object in Ch(k)cof.
Then (M,R,FreeLModR

Ch (X)) is in C≃.

(3) Let (M,R,N) be in C≃ with N cofibrant as a module, let i : X → Y

be a cofibration between cofibrant objects of Ch(k), and let

f : FreeLModR
Ch (X)→ N

be a morphism in LModR
(
Ch(k)cof). Then

(
M,R,N ∐FreeLModR

Ch (X)
FreeLModR

Ch (Y )
)

is again in C≃, where the pushouts are formed with respect to the
morphisms f and FreeLModR

Ch (i).
The analogous statement holds for pushouts of this form in the first
component.

(4) Let R be an object of Alg(Ch(k)cof) and M an object of RMod(Ch(k)cof).
Let λ be an ordinal and let F : λ→ LMod(Ch(k)cof) be a λ-sequence81.
Assume that for every morphism α→ α+1 in λ the induced morphism
F (α) → F (α + 1) is a cofibration in LMod(Ch(k)cof), and that for
every object α of λ the left-R-module F (α) is cofibrant and the triple
(M,R,F (α)) is in C≃.
Then (M,R, colimλ F ) is also in C≃. The analogous statement holds
for transfinite compositions in the first component as well.

As all statements are symmetrical, we will only show the statements with
regards to the last component.

Proof of claim (1): As both γ(M)⊗γ(R) 0 ≃ 0 and M ⊗R 0 ∼= 0, this follows
from γ preserving the zero object by Proposition 4.3.2.1 (3).

Proof of claim (2): Consider the following commutative diagram

γ(M)⊗ γ(X) γ(M ⊗X)

γ(M)⊗γ(R) γ
(

FreeLModR
Ch (X)

)
γ
(
M ⊗R FreeLModR

Ch (X)
)

where the horizontal morphisms are the canonical comparison morphisms,
and the vertical morphisms are induced by the morphism82

(M,k,X)→ (M,R,FreeLModR
Ch (X))

81See for example [Hov99, 2.1.1] for a definition.
82See [HA, 4.4.2.9] for the identification of the relative tensor product over the unit k with

the (non-relative) tensor product.
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in
RMod

(
Ch(k)cof)×Alg(Ch(k)cof) LMod

(
Ch(k)cof)

that is given by the identity of M , the unit morphism k → R, and the
morphism from X to the underlying object of FreeLModR

Ch (X) that exhibits
the latter as a free left-R-module generated by X.

It follows from Proposition E.7.4.1 that the induced morphism

γ(X)→ γ
(

FreeLModR
Ch (X)

)

exhibits the codomain as the free left-γ(R)-module generated by γ(X), so it
follows from associativity [HA, 4.4.3.14] and unitality [HA, 4.4.3.16] of the
relative tensor product that both the left and right vertical morphisms in
the above diagram are equivalences83. As the top horizontal morphism is an
equivalence as well, so must be the bottom horizontal morphism.

Proof of claim (3): Applying the canonical comparison transformation for
the relative tensor products to the commutative square

FreeLModR
Ch (X) N

FreeLModR
Ch (Y ) P

f

FreeLModR
Ch (i) (∗)

where we write P for the pushout, we obtain the commuting cube

γ(M)⊗γ(R) γ
(

FreeLModR
Ch (X)

)
γ
(
M ⊗R FreeLModR

Ch (X)
)

γ(M)⊗γ(R) γ(N) γ(M ⊗R N)

γ(M)⊗γ(R) γ
(

FreeLModR
Ch (Y )

)
γ
(
M ⊗R FreeLModR

Ch (Y )
)

γ(M)⊗γ(R) γ(P ) γ(M ⊗R P )

(∗∗)
in D(k). We need to show that the bottom front horizontal morphism is an
equivalence. For this it suffices to show the following.
83One can easily see from the definition of free modules that FreeLModR

Ch (k) ≃ R, and that
FreeLModR

Ch (X) ≃ FreeLModR
Ch (k)⊗X. One thus obtains equivalences

M ⊗R FreeLModR
Ch (X) ≃M ⊗R (R⊗X) ≃ (M ⊗R R)⊗X ≃M ⊗X

and similarly for the other relevant relative tensor product in D(k).
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6.3 The standard Hochschild complex

(a) The right side in diagram (∗∗) is a pushout square.

(b) The left side in diagram (∗∗) is a pushout square.

(c) The horizontal morphism in diagram (∗∗) other than the bottom front
one are equivalences.

Proof of claim (a): In the commutative square

M ⊗R FreeLModR
Ch (X) M ⊗R N

M ⊗R FreeLModR
Ch (Y ) M ⊗R P

M⊗Rf

M⊗RFreeLModR
Ch (i)

the chain complexM⊗RN is cofibrant andM⊗RFreeLModR
Ch (i) is a cofibration

by what we already showed at the beginning of the proof. As (∗) is a pushout
square, and M ⊗R − preserves colimits by [HA, 4.4.2.15], this is again a
pushout square, and by [HTT, A.2.4.4] even a homotopy pushout square.
The claim thus follows by applying [HA, 1.3.4.24].

Proof of claim (b): Follows from [HA, 1.3.4.24] using that (∗) is a homotopy
pushout by [HTT, A.2.4.4].

Proof of claim (c): For the two back horizontal morphisms this follows from
claim (2), and for the top front horizontal morphism this is by assumption.

Proof of claim (4): Analogous to (3), this time using that transfinite
compositions are already homotopy colimits if all morphisms of the form
F (α) → F (α + 1) are cofibrations, which follows from [HTT, A.2.9.24 (1)],
which shows that such diagrams are cofibrant in the projective model struc-
ture on λ-diagrams.

6.3.4 The standard Hochschild complex as a model for
HH

In this section we compare the Hochschild homology functors defined in
Section 6.2 with the standard Hochschild complex functors as defined in
Sections 6.3.1 and 6.3.2, showing that the latter represent the former.

We first discuss the case where we take into account the mixed complex
structure, but not multiplicative structure, in Section 6.3.4.1, and then the
case of commutative algebras, where we take into account the commutative
algebra structure on Hochschild homology, but not the mixed structure, in
Section 6.3.4.2.

6.3.4.1 The mixed case

The following comparison result by Hoyois[Hoy18] shows that the standard
Hochschild complex of A, considered as a strict mixed complex, is a model
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for the mixed complex HHMixed(γ(A)).

Proposition 6.3.4.1 ([Hoy18, 2.3]). There is a commuting diagram84

Alg
(

Ch(k)cof
)

Fun
(
Λ

op,Ch(k)cof) Mixedcof

Alg(D(k)) Fun(Λop,D(k)) D(k)B T Mixed

C

Bcyc
•

Alg(γ)

|−|Mixed

γ∗ γMixed

Bcyc
•

HHMixed

|−| ≃

where the horizontal equivalence at the bottom left is the monoidal equivalence
from Construction 5.4.0.1. ♥

Proof. The top and bottom rectangles commute by the definitions of C and
HHMixed, see Definition 6.3.1.6 and Definition 6.2.1.2. For the left square in
the middle see Remark 6.1.2.17.

For X• a functor Λ
op → Ch(k), the underlying chain complex of |X•|Mixed

is defined in Construction 6.3.1.2 as the total complex of a certain double
complex, which is an upper85 half plane complex. If X[n]Λ is acyclic for every
n ≥ 0, then it follows that the rows of the corresponding double complex are
all acyclic, so that we can apply the acyclic assembly lemma [Wei94, 2.7.3] to
conclude that the total complex |X•|Mixed is acyclic. As colimits of (double)
complexes as well as functor categories are calculated degreewise, and the
construction of the total complex from a double complex preserves colimits,
it follows by using the long exact sequence of homology that every mor-
phism X• → Y• in Fun(Λop,Ch(k)cof) that is pointwise a quasiisomorphism
is mapped under |−|Mixed to a quasiisomorphism.

The upshot is that |−|Mixed induces a functor

K : Fun(Λop,D(k))→Mixed

84Here, γ refers to the symmetric monoidal functor Ch(k)cof → D(k). The construction
Bcyc

• is defined in Definition 6.1.2.16, |−| is defined in Definition 6.1.3.4, |−|Mixed is
defined in Construction 6.3.1.2, C is defined in Definition 6.3.1.6, and HHMixed is defined
in Definition 6.2.1.2.

85Or right, depending on the convention. We will assume in this proof that we convert a
complex of complexes to a double complex such that Xi,j = (Xj)i. If X• = Bcyc

• (A),
then the row indexed by n ≥ 0 contains A⊗(n+1), and the rows indexed by n < 0 are
empty.
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6.3 The standard Hochschild complex

of ∞-categories that fits into a commutative diagram as follows.

Fun(Λop,Ch(k)cof) Mixedcof

Fun(Λop,D(k)) Mixed

|−|Mixed

γ∗ γMixed

K

This is the functor also called K that is defined in [Hoy18, Right before 2.2].
We are thus left to construct a commuting triangle

Fun(Λop,D(k)) D(k)B T

Mixed

|−|

K
≃

where the vertical equivalence is the one from Construction 5.4.0.1. This is
exactly what [Hoy18, 2.3] provides – as long as we chose the correct vertical
equivalence. However, the vertical equivalence has been chosen in Construc-
tion 5.4.0.1 and Convention 5.2.4.3 in reference to [Hoy18, 2.3] as exactly the
one that is required to obtain the above commuting triangle.

Remark 6.3.4.2. Let φ : k → k′ be a morphism of commutative rings.
Then the symmetric monoidal functor k′ ⊗k − : Ch(k)cof → Ch(k′)cof (see
Fact 4.1.5.1) induces a natural transformation from the the commutative
diagram from Proposition 6.3.4.1 for k to the one for k′.

To be more precise, functoriality of the cyclic bar construction (see Re-
mark 6.1.2.17) with respect to the commutative diagram

Ch(k)cof Ch(k′)cof

D(k) D(k′)

k′⊗k−

γ γ

k′⊗k−

(∗)

of symmetric monoidal functors from Remark 4.3.2.2 yields a commutative
cube

Alg
(
Ch(k)cof) Fun

(
Λ

op,Ch(k)cof)

Alg
(
Ch(k′)cof) Fun

(
Λ

op,Ch(k′)cof)

Alg(D(k)) Fun(Λop,D(k))

Alg(D(k′)) Fun(Λop,D(k′))
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where the horizontal functors are all Bcyc
• , the vertical functors are induced

by γ, and the functors from the back to the front are induced by k′ ⊗k −.
Existence of a commutative cube

Fun
(
Λ

op,Ch(k)cof) Mixedk,cof

Fun
(
Λ

op,Ch(k′)cof) Mixedk′,cof

Fun(Λop,D(k)) Mixedk

Fun(Λop,D(k′)) Mixedk′

where the horizontal functors are |−| and |−|Mixed, and the left and right sides
are induced by diagram (∗) is implicit in the proof of [Hoy18, 2.3], though
unfortunately not explicitly stated86. Combining the two commutative cubes
we obtain a commutative cube

Alg
(
Ch(k)cof) Mixedk,cof

Alg
(
Ch(k′)cof) Mixedk′,cof

Alg(D(k)) Mixedk

Alg(D(k′)) Mixedk′

C

C

HHMixed

HHMixed

in Cat∞, where the front and back sides are the big outer squares in Propo-
sition 6.3.4.1, the left and right sides are induced by diagram (∗), the top
is the diagram from Remark 6.3.1.7 and the bottom is the diagram from
Remark 6.2.1.6. ♦

6.3.4.2 The commutative case

We now compare the standard Hochschild complex C in the commutative
case to HH : CAlg(D(k)) → CAlg(D(k)) from Definition 6.2.2.1, which will
be possible because we can write both as a relative tensor product according
to Corollary 6.2.2.6 and Proposition 6.3.2.7, and discussed how to compare
relative tensor products in Ch(k) with relative tensor products in D(k) in
Section 6.3.3.

86See also Remark 5.4.0.3
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Proposition 6.3.4.3. There is a commuting diagram

CAlg
(
Ch(k)cof) CAlg

(
Ch(k)cof)

CAlg(D(k)) CAlg(D(k))

C

CAlg(γ) CAlg(γ)

HH

(6.16)

where C is the functor from Proposition 6.3.2.7 and HH is the functor from
Definition 6.2.2.1 and γ is the symmetric monoidal functor Ch(k)cof → D(k).

♥

Proof. By Proposition 6.3.2.7 we know that C(A) is given as the relative ten-
sor product A⊗A⊗A CBar(A) in CAlg(Ch(k)) – see Construction 6.3.2.6 and
Construction E.8.0.4 for a definition of the relevant A⊗A-module structures.

Like in Remark 6.3.3.1 and Remark 6.3.3.2 we obtain a natural comparison
transformation

CAlg(γ)(A)⊗CAlg(γ)(A⊗A) CAlg(γ)
(

CBar(A)
)
→ CAlg(γ)

(
A⊗A⊗A CBar(A)

)

(∗)
where we use that we already know that the relative tensor product will have
cofibrant underlying chain complex87. We want to show that this morphism
is an equivalence. As the forgetful functor

eva : CAlg(D(k))→ D(k)

87Here are some more details. CAlg(γ) : CAlg(Ch(k)cof) → CAlg(D(k)) is symmetric
monoidal, and thus induces a natural equivalence of bar constructions as follows.

BarCAlg(γ)(A⊗A)

(
CAlg(γ)(A),CAlg(γ)(CBar(A))

)

•
≃ CAlg(γ) ◦ BarA⊗A

(
A,CBar(A)

)

•

The relative tensor product A⊗A⊗A CBar(A) is given by the colimit

colim
∆op

BarA⊗A

(
A,CBar(A)

)

•

calculated in CAlg(Ch(k)) (see the introduction to Section 6.3.3), so comes with a
cocone diagram

(∆op)▷ → CAlg(Ch(k))
but as we know that the relative tensor product has cofibrant underlying chain complex
in this instance, this functor actually factors over CAlg(Ch(k)cof). Postcomposing this
cocone diagram (as a diagram in CAlg(Ch(k)cof)) with CAlg(γ), we obtain a cocone
diagram from CAlg(γ)◦BarA⊗A(A,CBar(A))• to CAlg(γ)(A⊗A⊗ACBar(A)), and hence
by the universal property of colim a morphism as follows.

CAlg(γ)(A)⊗CAlg(γ)(A⊗A) CAlg(γ)
(

CBar(A)
)

≃ colim
∆op

BarCAlg(γ)(A⊗A)

(
CAlg(γ)(A),CAlg(γ)(CBar(A))

)

•

≃ colim
∆op

CAlg(γ) ◦ BarA⊗A(A,CBar(A))•

→ CAlg(γ)(A⊗A⊗A CBar(A))

343



Chapter 6 Hochschild homology

detects equivalences by [HA, 3.2.2.6], it suffices to show that the underly-
ing morphism in D(k) is an equivalence. By [HA, 3.2.3.1 (4)] and Propo-
sition E.4.2.3 (5) in combination with Proposition E.8.0.1, both forgetful
functors

eva : CAlg(Ch(k))→ Ch(k) and eva : CAlg(D(k))→ D(k)

preserve relative tensor products, so that we can identify the composition
of the natural transformation (∗) of functors CAlg(Ch(k)cof) → CAlg(D(k))
with eva with the natural comparison transformation

γ(A)⊗γ(A⊗A) γ
(

CBar(A)
)
→ γ

(
A⊗A⊗A CBar(A)

)

from Remark 6.3.3.2. As CBar(A) is cofibrant as a left-A ⊗ A-module by
Proposition 6.3.2.3, we can apply Proposition 6.3.3.3 to conclude that this is
an equivalence.

We have now seen that the composition CAlg(γ)◦C in (6.16) is homotopic
to the functor that is described by

A 7→ CAlg(γ)(A)⊗CAlg(γ)(A⊗A) CAlg(γ)
(

CBar(A)
)

where the the A ⊗ A-module structures are as in Construction 6.3.2.6 and
Construction E.8.0.4. The natural morphism CBar(A) → A of left-A ⊗ A-
modules from Construction 6.3.2.6 provides a natural transformation

CAlg(γ)(A)⊗CAlg(γ)(A⊗A) CAlg(γ)
(

CBar(A)
)

→ CAlg(γ)(A)⊗CAlg(γ)(A⊗A) CAlg(γ)(A)

that is an equivalence by Proposition 6.3.2.288. As γ and CAlg(γ) are sym-
metric monoidal, we can further identify γ(A⊗A) with γ(A)⊗ γ(A) and the
left and right module structures of γ(A) over γ(A ⊗ A) (which arise from
the morphism of commutative algebras A ⊗ A → A given by the multiplica-
tion morphism) with the module structures arising from the multiplication
morphism γ(A)⊗ γ(A)→ γ(A).

We have thus identified the composition CAlg(γ) ◦ C in (6.16) with the
functor described by

A 7→ γ(A)⊗γ(A)⊗γ(A) γ(A)

which is precisely the description of HH ◦ CAlg(γ) one obtains from Corol-
lary 6.2.2.6.
88Using that equivalences of left-CAlg(γ)(A ⊗ A)-modules are detected by the composi-

tion of the forgetful functors evm : LModCAlg(γ)(A⊗A)(CAlg(D(k)))→ CAlg(D(k)) and
eva CAlg(D(k))→ D(k) by [HA, 3.2.3.1 (4)] and [HA, 4.2.3.3 (2)].
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6.3 The standard Hochschild complex

Remark 6.3.4.4. Let φ : k → k′ be a morphism of commutative rings. Then
there is a commutative cube

CAlg
(
Ch(k)cof) CAlg

(
Ch(k)cof)

CAlg
(
Ch(k′)cof) CAlg

(
Ch(k′)cof)

CAlg(D(k)) CAlg(D(k))

CAlg(D(k′)) CAlg(D(k′))

C

C

HH

HH

in Cat∞, where the top square is the one from Remark 6.3.2.8, the bottom
square is induced by the one from Remark 6.2.1.6, the left and right squares
are induced by the one from Remark 4.3.2.2, and the front and back squares
are the ones from Proposition 6.3.4.3. To see this, one goes through the con-
struction of the fillers for the different sides, which are ultimately constructed
from symmetric monoidality of different functors and the universal property
of colimits – see Remark 6.3.3.1. Using the universal property of colimits,
one is left to check commutativity of a diagram of equivalences of simplicial
objects that looks in level n like the outer diagram of equivalences depicted
below.

(k′ ⊗k γ(R))
⊗k′ (n+1)

(γ(k′ ⊗k R))
⊗k′ (n+1)

k′ ⊗k
(
γ(R)⊗k(n+1)

)
γ
(
(k′ ⊗k R)

⊗k′ (n+1)
)

k′ ⊗k γ
(
R⊗k(n+1)

)
γ
(
k′ ⊗k

(
R⊗k(n+1)

))

The two diagonal equivalences on the left and right arise from γ and k′⊗k −
being symmetric monoidal, and the two horizontal equivalences arise from
the commutative diagram

Ch(k)cof Ch(k′)cof

D(k) D(k′)

k′⊗k−

γ γ

k′⊗k−

from Remark 4.3.2.2. This latter commutative square is actually a commu-
tative square of symmetric monoidal functors, which is how we obtain the
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filler for the above diagram: The dashed equivalences (defined so as to make
the left and right triangle commute) are precisely the equivalences exhibiting
the compositions k′⊗k γ(−) and γ(k′⊗k−) as symmetric monoidal functors,
and the filler for the square in the middle is the one exhibiting the homotopy
between those two compositions being an homotopy of symmetric monoidal
functors. ♦
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