On the Hochschild homology
of hypersurfaces as a mixed complex

Volume 1

Malte Sander Leip

This thesis has been submitted to the PhD School of
The Faculty of Science, University of Copenhagen



Malte Sander Leip

Department of Mathematical Sciences

University of Copenhagen
Universitetsparken 5
DK-2100 Kgbenhavn @
Denmark

leip@math.ku.dk
https://malte-leip.net

Date of submission:
Date of defense:

Advisor:

Assessment committee:

ISBN 978-87-7125-055-8
© 2022 Malte Sander Leip

2022-04-12
2022-07-05
Lars Hesselholt

University of Copenhagen, Denmark
and Nagoya University, Japan

Seren Galatius (chair)
University of Copenhagen, Denmark

Michael Larsen
Indiana University, USA

Thomas Nikolaus
University of Miinster, Germany



Abstract

In this thesis we describe Hochschild homology over k of quotients of poly-
nomial algebras k[z1,...,2,]/f for certain polynomials f in n < 2 variables,
as an object of the oo-category of mixed complexes Mixed, where k is a
commutative ring in which 2 is invertible.

In 1992, the Buenos Aires Cyclic Homology Group [BACH] constructed,
for any n and any commutative ring k, a quasiisomorphism between the
standard Hochschild complex over k of k[z1,...,x,]/f and a quite small
chain complex, under the assumption that f is monic with respect to a chosen
monomial order. This result was improved upon by Larsen in 1995 [Lar95]
by taking the mixed structure into account as well, though only considering
polynomials f in n = 2 variables that are monic with respect to one of the
variables.

Assuming a conjectural description of Hochschild homology of polynomial
rings, we extend these previous results by constructing, for a large subset of
the polynomials f considered in [BACH], a strict mixed structure on the chain
complex described in [BACH] and showing that it represents the Hochschild
homology over k of k[x1,...,z,]/f as an object in the oo-category of mixed
complexes. We also verify the conjecture in some cases, leading to uncondi-
tional results for n < 2 variables, as long as 2 is invertible in k.

The results of this thesis do not rely on the two aforementioned prior
results, but instead use the modern approach to Hochschild homology based
on oo-categorical methods. Along the way, to be able to state and prove
our result in this setting, we prove some results that may be of independent
interest.
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Resumé

I denne afhandling beskriver vi Hochschild homologi over k for kvotienter af
polynomiumsalgebraer k[z1, ..., x,]/f for visse polynomier f in < 2 variable,
som et objekt i oo-kategorien Mixed af sakaldte blandede komplekser, for k
en kommutativ ring, hvori 2 er invertibel.

1 1992 konstruerede Buenos Aires Cyclic Homology gruppen [BACH] en
kvasiisomorfi mellem standardhochschildkomplekset over k af k[x1, ..., 2,]/f
og et lille kaedekompleks, under antagelsen, at f er monisk med hensyn til en
valgt monomisk ordning, men for alle n og alle kommutative ring k. Denne
resultat blev forbedret af Larsen i 1995 [Lar95], som ogsd betragtede den
blandede struktur, dog kun for polynomier f i n = 2 variabler som er monisk
med hensyn til én af de to variable.

Under antagelsen af en formodete beskrivelse af Hochschild homologi af
polynomiumsalgebraer generaliserer vi disse tidligere resultater ved at kon-
struere, for en stor delmeengde af de polynomier f studeret i [BACH], en
strengt blandet struktur pa keedekomplekset beskrevet i [BACH] og at vise,
at det repraesenterer Hochschild homologi over k af k[z1,...,x,]/f som ob-
jekt i co-kategorien af blandede komplekser. Vi ogsa verificerer formodningen
i nogle tilfeelde, og far dermed ubetingede resultater for n < 2 variable, forud-
sat, at 2 er invertibel i k.

Resultaterne i denne afthandling atheenger ikke af de to farnsevnte arbejder,
men bruger derimod den moderne tilgang til Hochschild homologi baseret
pa oo-kategoriske metoder. Undervejs til at kunne beskrive og bevise vores
resultat i denne ramme beviser vi nogle resultater som kan have selvsteendig
interesse.
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Chapter 1

Introduction

In this thesis we evaluate Hochschild homology over a commutative ring
k of quotients of polynomial algebras k[z1,...,z,]/f for certain polynomials
f, as an object of the oco-category of mixed complexes Mixed, assuming a
conjectural description of Hochschild homology of polynomial algebras. We do
this by giving an explicit, and quite small, strict mixed complex representing
HH(k[x1,...,2,]/(f)). We verify the conjecture in some cases, leading to
unconditional results in the case of n < 2 variables as long as 2 is invertible
in k. This result improves upon prior work by Larsen [Lar95] where stronger
conditions on f are imposed', and by the Buenos Aires Cyclic Homology
Group [BACH], where only the underlying chain complex was considered.
The results of this thesis do not rely on the two aforementioned prior results,
but use a different approach, employing the modern framework for Hochschild
homology in the setting of co-categories.

The motivation for calculating Hochschild homology as a mixed complex
stems from its usefulness to calculations of algebraic K-theory. The mod-
ern framework for topological cyclic homology by Nikolaus—Scholze [NikSch]
opened up the possibility of obtaining calculations of algebraic K-theory using
trace methods with only Hochschild homology as a mixed complex as input,
via a method developed by Speirs [Spel8; Spe20; Spe2l] and Hesselholt—
Nikolaus [HN20]. In this modern setting, Hochschild homology is a functor
of co-categories

HHy: Alg(D(k)) — D(k)BT

assigning to each associative algebra in the derived category of k an object of
D(k) equipped with an action by the circle group T. The oo-category D (k)BT
is equivalent to the underlying co-category Mixed of a model category Mixed
of strict mixed complexes?, and we denote the composition of HHy with this
equivalence by HHytixeq- We now formulate the main result of this thesis,
and will explain the meaning of the conditions on f and the notation used in
the formula for d later in this introduction.

IBut no assumption is made on invertibility of 2 in k.
2A strict mixed complex is a chain complex with an additional operator d increasing
degree by 1 and satisfying 8d + dd = 0 and d% = 0.
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Theorem A. Let k be a commutative ring in which 2 is invertible’, n < 2 a
positive integer, and = a monomial order (for n variables). Let f be a monic
(with respect to <) polynomial in n variables, and assume that furthermore
the following property holds for any i€ Z% such that the coefficient of
the monomial x© in [ is non-zero: If 1 < j < n and deg-(f); # 0, then
Tj < deg.(f);. In other words, we require that every monomial appearing in
f divides the leading monomial, after replacing by 1 those variables that do

not appear in the leading monomial of f.
Then there is an equivalence?

HHMixed(k[xl’ s ’xn]/f) =~ 7Mixed(k[x17 .. ~7xn]/f & A(d T1,... 7dxn) & F(t))
in Mixed, where
Elxi,...,zn)/f @ A(dxy,...,dz,) @T(F)

is a strict mized complex with underlying Z-graded k-module’ as indicated,
with x; of degree 0, d x; of degree 1 and t of degree 2. The boundary operator J
is defined by extending the following formulas® by k-linearity and the Leibniz
rule, where P € klxy,...,z,]/f, 1 <i<mn, and m > 0.

o(P) =0, d(dz;) =0, 6(t[m]) = —p(d f)t[m—l]

The differential d is defined by extending by k-linearity the following formula
for a polynomial P € k[x1,...,x,], € € {0,1}", and m > 0.

d(p(Pyaz=t™) == (p(A(r§(P))) + mp(ap(af - r}(P)))) da el ©

A proof of Theorem A can be found on Page 590. Most of the steps in the
proof of Theorem A do not require the assumption that n < 2 and that 2 is
invertible in k. We however need Conjecture D to hold for f. Conjecture D
will be formulated and verified for n < 2 as long as 2 is invertible in k£ in
Section 7.5.

Let us now give an overview over the remainder of this chapter. We begin
in Section 1.1 by describing our motivation for studying Hochschild homology
as a mixed complex, which arises from its relevance in the methods used in
calculations of algebraic K-theory groups in [Spe20], [Spe21], and [HN20].

In Section 1.2 we explain how HHytixed (k[Z1, ..., Zn]/f), the main object
of study, as well as the co-category Mixed and 1-category Mixed are defined.

3The assumption that 2 is invertible in k is not needed when n < 1.

44Mixed is a functor from the category of strict mixed complexes with cofibrant underlying
chain complex to Mixed and will be discussed in Section 1.2.2.

5We will use the commutative Z-graded k-algebra structure to write elements and describe
0, but we warn that d does not satisfy the Leibniz rule, so this is not an algebra in
strict mixed complexes.

6We denote by p the quotient morphism p: k[z1,...,zn] — k[z1,...,2n]/f.
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We will then turn towards describing the proof of Theorem A, which splits
up naturally into two main steps. We describe the first main step in Sec-
tion 1.3, which involves writing the quotient k[zi,...,z,]/f as a relative
tensor product k[x1, . .., 2,|®ypk, and then using that HHaixeq preserves rel-
ative tensor products. This yields a strict mixed complex X; of medium size
representing HHytixed (K[21, - - ., 5]/ f). Finding a smaller sub-mixed-complex
such that the inclusion into Xy is a quasiisomorphism is the content of the
second main step in the proof of Theorem A and will be described in Sec-
tion 1.4. Along the way we will introduce the definitions of concepts and
notation used in the formulation of Theorem A.

In Section 1.5 we then give an overview over the content of the individual
chapters and appendices of this thesis, and in Section 1.6 we describe some
directions for future work and questions left open by this thesis.

1.1 Motivation

The project that eventually became this thesis started with the goal of
determining the structure of the algebraic K-theory groups

Ki(k[z1,. .. zn)/ (21 ), (21, ..., 24))

for k a perfect field of positive characteristic, with the polynomial 1 -- -z,
geometrically corresponding to the union of the coordinate hyperplanes. A
method recently made possible by the Nikolaus—Scholze framework for topo-
logical cyclic homology [NikSch], and used by Speirs in the case of trun-
cated polynomial algebras [Spe20]” and the union of coordinate axes [Spe21]®,
and by Hesselholt—Nikolaus for cuspidal curves [HN20], makes attacking such
questions significantly easier.

In all these cases, what is determined are algebraic K-theory groups

K*(k[xlﬂ"'7xn]/(f17~‘~7fm)7(x17"'7xn))

for k a perfect field of positive characteristic, n and m positive integers, and
fi,---, fm specific polynomials in n variables with coefficients in Z. This
is done by employing trace methods, and the input ultimately required for
this method circles around HHy(Z[x1, . .., zn]/(f1,- - -, fm)), though there are
variations between [Spe21], [Spe20], and [HN20] in what precisely is used as
input. The following table is an overview.

"The relevant K-theory groups had first been evaluated by Hesselholt—-Madsen [HM97],
but the calculation was significantly simplified by Speirs.
8Generalizing results by Hesselholt [Hes07] from the two-dimensional case.
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n (fiy- s fm) Input used
[Spe2l] n>1 (x;x;)iz, B%(II)%as an object of 88T
[Spe20] 1 (29), for @ > 1 an  Homotopy groups of
integer HHy(Z[z1]/(x)) together with
Connes’ operator
[HN20] 2 ¢ —ab fora,b>2 HHr(Z[z,x2]/(x¢ — 28)) as an

relatively prime object of D(Z)BT

In [Spe21], Speirs uses that HHy(Z[x1, . .., z,]/(xiz;)ix;) is the Z-lineariza-
tion of a space with T-action B¥°(II), and manages to even determine the
T-equivariant homotopy type of B¥°(II), rather than only its Z-linearization.
In general we would however expect that it will be easier to only determine
HH(Z[z1,. .., za]/(f1,- .-, fm)) itself, which is all that is required.

In contrast, in [Spe20] Speirs manages to get by with even less information
than HHy(Z[x1]/(z$)) as an object of D(Z)BT, only using its homology as
well as Connes’ operator (induced by the circle action), and extracting e. g.
the homotopy groups of the T-fixed points using the fixed points spectral se-
quence. In this particular case, this is made feasible due to HHy(Z[x1]/(2$))
decomposing into pieces whose homology is concentrated in only two succes-
sive degrees, making the relevant spectral sequences easy enough to evaluate.
In more complicated cases we can however not expect to (in general) be able
to fully evaluate those spectral sequences without additional information.

Thus, in order to expand the results of [Spe20], [Spe21], and [HN20] to simi-
lar algebras, it seems reasonable to start by evaluating the relevant Hochschild
homology HHy(Z[x1, ..., 2,]/(f1,..., fm)) as an object of D(Z)BT.

1.2 Hochschild homology as a mixed complex

1.2.1 Hochschild homology as an object with circle
action

Having motivated our interested in HHy, we will now give an idea of how
it is defined. As HHr is a special case of the cyclic bar construction, we begin
in somewhat greater generality.

Let C be a presentable symmetric monoidal co-category. Then the cyclic
bar construction for C is a functor

B¥¢: Alg(C) — C""

that associates to every associative algebra R in C an object with T-action
BY°(R) in C. To construct the underlying object in C of B*¥°(R), one pro-

9BCYC(IT) denotes the cyclic bar construction of the pointed monoid

_ 2 2 2
I={0,1,2z1,27,...,22,25,...,%n,Ts, ... }.



1.2 Hochschild homology as a mixed complex

ceeds in two steps. One first constructs out of R a simplicial object B&°(R)
in C such that BY°(R) is given by R®(™+1) and the structure morphisms
d;: R®" — R®(=1) and s;: R®" — R®("+1) can be described as follows.

1 Ifi <n—2, then d; is id% © p@id5" >~
the multiplication morphism.

, where u: R® R — R is

2. dy_1 is the postcomposition of the symmetry isomorphism that brings

the last tensor factor to the front with yu ® id%("_m.

3. s; is idi-;,H RL® idg(n_i_l), where ¢: 1¢ — R is the unit morphism.

Defining a simplicial object in C, i.e. a functor A°® — C, also requires data
for higher morphisms; for a full definition of the functor

BJ¢: Alg(C) — Fun(A°P,C)

see Section 6.1.2. The underlying object of B(R) is then given by the
geometric realization!® of BY°(R). The circle action on B¥°(R) is constructed
by first using cyclic permutations of the tensor factors to upgrade BZ°(R)
to a cyclic object in C, i.e. lift the functor B to a functor to Fun(A°?,C),
where A is Connes’ cyclic category. The additional structure encoded by A
equips the geometric realization of a cyclic object with the action of the
circle group, so that composing BJ'¢ with the geometric realization functor
for cyclic objects yields a functor B¥°: Alg(C) — CB™. For a more detailed
account of the construction of B¥¢ we refer to Chapter 6.

In the special case C = 8p, the oo-category of spectra, the functor BV is
denoted by THH, and if C is D(k), the derived co-category of a commutative
ring k, we denote the functor B by HHy(—/k) and call HHy(R/k) the
Hochschild homology of R over k. We will from now on fix a commutative
ring k and just write HHp(—) instead of HHy(—/k).

1.2.2 Mixed complexes

Our goal is to determine HHy(R) for specific k-algebras R. However it is
somewhat difficult to write down and manipulate objects of D (k)BT directly,
so we use strict mixed complexes instead. The situation can be summarized
by the following diagram.

Mixed.of
J/’VMixed (1 . 1)
D(k)BT —= Mixed

1080 the underlying object of BY¢(R) is |[BY“(R)| := colimaocr B&Y*(R).
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The horizontal functor is an equivalence between D (k)BT and the oo-category
of mized complexes, which the functor vymixeq €xhibits as the underlying oo-
category of the 1-category with weak equivalences Mixed.os of strict mized
complexes (with cofibrant underlying chain complexes)!!.

We begin explaining diagram (1.1) with the 1-category Mixed. A strict
mixed complex consists of an underlying chain complex of k-modules X (with
boundary operator 9 decreasing degree) together with an additional opera-
tor d, that we sometimes call the differential, increasing degree by 1, and
satisfying the following identities.

dod=0 and dod+9do0d=0

A morphism of strict mixed complexes is a morphism of underlying chain
complexes that commutes with the respective differentials d. The strict mixed
complexes and their morphisms define a 1-category Mixed.

There is also another description of Mixed: It is isomorphic to the category
of left modules in Ch(k) over the differential graded algebra D = k[d]/(d?),
where d is of chain degree 1. Under this isomorphism Mixed = LModp (Ch(k)),
the action by the element d of D corresponds to the differential d. This
suggests the following definition of the co-category of mixed complexes.

Mixed := LModp (D(k))

The symmetric monoidal functor'? : Ch(k)<f — D(k) exhibiting D(k) as
the underlying oco-category of Ch(k) then induces a functor

“YMixed * Mixedcof — Mixed

where Mixed¢os refers to the subcategory of Mixed spanned by those strict
mixed complexes whose underlying chain complex is cofibrant with respect
to the projective model structure'®.

We can make Mixed . into a category with weak equivalences, where a
morphism is a weak equivalence if and only if the underlying morphism of
chain complexes is a quasiisomorphism, and it turns out that vmixed then
exhibits Mixed as the co-category obtained from Mixed . by inverting weak
equivalences. We will discuss both Mixed as well as Mixed in greater detail
in Chapter 4.

The equivalence D(k)BT ~ Mixed is the composition of two different equiv-
alences. There first is an equivalence D (k)BT ~ LModxr(D(k)), where kX T
is the k-linear circle. The remaining equivalence

LModgr(D(k)) ~ LModp (D(k)) = Mixed

" The reason why we do not just say that D(k)BT is exhibited as the underlying co-category
of Mixedof by the composition is that, while both D(k)BT and Mixed carry symmetric
monoidal structures, the equivalence is only shown to be E;-monoidal. We should thus
be careful to distinguish D(k)BT and Mixed whenever Ea-monoidal structures may
become relevant.

12The superscript cof refers to the subcategory of cofibrant objects.

13See Fact 4.1.3.1 for a definition.
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is then induced by an equivalence kX T ~ D in Alg(D(k)). We discuss these
equivalences in detail in Chapter 5.

1.3 The first step in the proof of the main
result

As mentioned before, we define HHyixeq to be the composition of HHp with
a specific equivalence D(k)BT ~ Mixed sketched above. Theorem A then sets
the task before us to define a strict mixed complex that is mapped by Ymixed
to an object in Mixed that is equivalent to HHagixea (k[21, - .-, 0]/ f).

The proof of Theorem A proceeds in two main steps. The idea of the first
main step is to use that HHyixeq is compatible with relative tensor products
and that the quotient k[xi,...,x,]/f can be written as a relative tensor
product of polynomial algebras'4.

Before going into more detail about why HHyixeq is compatible with rel-
ative tensor products, let us first describe the monoidal structure on Mixed.
Given strict mixed complexes X and Y, we define the underlying chain
complex of X ® Y to be the tensor product in Ch(k) of the underlying
chain complexes. The differential d is then defined using the Leibniz rule,
sod(z®y) =d(z) ®y + (—1)%&xn(®)z @ d(y). Taking the perspective that a
strict mixed complex is a left-D-module as described above, this symmetric
monoidal structure arises from a bialgebra structure on D, where the comul-
tiplication maps d to d® 1+ 1®d. Chapter 3 constructs monoidal structures
on oo-categories of left modules over bialgebras in a functorial way, so that
we can upgrade YMixed : Mixedeor — Mixed to a monoidal functor.

That HHy is a symmetric monoidal functor essentially follows from the
fact that A°P is sifted and the tensor product in D(k) preserves colimits
separately in each variable; we roughly obtain equivalences

|Ro+1| ® |S.+1’ ~ |Ro+1®50+1| ~ |(R®S)o+1|

that should make plausible that HHy is symmetric monoidal. HHy also pre-
serves sifted colimits, and hence preserves relative tensor products. For more
details see Chapter 6.

To then deduce that HHygiceqa also preserves relative tensor products it
remains to show that D(k)BT ~ Mixed preserves relative tensor products.
As an equivalence, it is clear that this functor preserves sifted colimits, but
that it is E;-monoidal is not obvious, relying on a longer argument!® carried
out in Section 5.1, showing that D and & X T are equivalent not only as
associative algebras in D(k), but as E,, E;-bialgebras!6 .

14This idea was suggested by Thomas Nikolaus.
15The strategy for this argument was suggested by Achim Krause.
167 e. as commutative and coassociative bialgebras.
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The quotient k[xy,...,2,]/f is isomorphic to the relative tensor product
klz1, ..., 0] @iy k

in Alg(LMody(Ab)), where ¢ acts by multiplication with f on k[z1,...,z,]
and by multiplication with 0 on k. Under the assumptions made for f in
Theorem A, this ordinary relative tensor product calculates the derived one,
so that we obtain an equivalence

klzy,...,xn]/f ~ k21, ..., 0] @ppg b
in Alg(D(k)) as well, inducing an equivalence

HHMixed(k[Ih ey xn]/f) =~ HHMixed(k[xla s 71:77,]) ®HHMiXCd(k[t]) HHMixed(k)

in Mixed.

To proceed we require a description of HHygixed (K[Z1, - .., zy]) as well as
HHyixea (k) as modules over HHpixea (k[t]) in Mixed. The following conjec-
ture provides such a description in terms of the mixed complexes of de Rham
forms.

Conjecture D. Let n > 0 be an integer and f an element of klx1,. .., xy,].
Denote by F: k[t] = k[x1,...,2,] the morphism of commutative k-algebras
that maps t to f and by G: k[t] — k the morphism of commutative k-algebras
that maps t to 0. Then there exists a commutative diagram

HHgixed (K) z Alg(ied) (241
HHytixea (G) Alg(ywied) (22 /1,)
HHtixed (K[t]) — Alg(YMixed) (QZ[t]/k)
HHpgixed (F) Alg(ywicea) (281 )

HHMixed(k[xla cee 7xn]) - ~ Alg(’YMixed) (QZ[ml,,zn]/k)

in Alg(Mixed) such that the horizontal morphisms are equivalences.

We will often refer to the existence of such a commutative diagram for a
specific f as “Conjecture D holds for f”. &

Conjecture D will be discussed in Section 7.5, where we will also show that
it holds if n <1 or n = 2 and 2 is invertible in k.
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Assuming that Conjecture D holds for f, we then obtain an equivalence!”

HHovtixed (K[21, - -+, Tn]) OHH G eeq (k]1) HHavtixed (k)
~ Wixed (B[21, ..., 20] @ A(d @1, .., dT0)) Drpyes (B[ @A(d £)) IMixed (K)

where x; and t are in degree 0, dx; and dt are in degree 1, and ¢ acts
by multiplication with f on klz1,...,2,] ® A(dz,...,dx,) and trivially
on k. As alluded to by the naming, the differential of the respective mixed
complexes maps x; to d z; and ¢ to d t, and is defined on the other elements by
k-linearity and the Leibniz rule, while all three underlying chain complexes
have zero boundary operator.

To obtain a strict mixed complex that represents HHyyixed (K[Z1, - . -, Z0]/f)
we thus have to calculate the derived tensor product in Mixed over k[t]@A(d ¢)
of k[z1,...,zn]®A(d 2y, . ..,dx,) with k. To do so, we need to replace k with
a sufficiently cofibrant replacement as a module over k[t] ® A(dt) in Mixed.
Such a replacement is given by a strict complex A whose underlying graded
k-module is given by the tensor product!'®

Elt] ® A(dt) ® A(s) @ I'(d s)

where t is of degree 0, dt and s are of degree 1, and d s is of degree 2. The
boundary operator 0 and differential d are k-linear and satisfy the Leibniz
rule, and are thus determined by the following formulas.

at)=0, adt)=0, d(s)=t, a(ds[ml) = —dtdsm1
d(t)=dt, ddt)=0, d(s)=dsl, d(ds[m]) —0
There is an obvious morphism of algebras in Mixed from k[t]®A(dt) to A that
maps ¢t to t. In Section 8.2 it is shown that this makes A into a sufficiently
cofibrant replacement for k as a left-(k[t] ® A(d¢))-module to calculate the

derived relative tensor product discussed above as the ordinary relative tensor
product

(k[ml, ce ,mn] ® A(dml, e 7d$n)) Qk[t]@A(d t) (k[t] ® A(dt) ® A(S) ® F(d 8))
> klz,...,zn] @ A(dz1,...,dzn) @ A(s) @ T'(ds) = Xy

in Mixed. We thus obtain an equivalence

HHMixed (k[d?l, e ,xn]/f)
~ Wixed (k[T1, - - s 2n] @ A(dzq, ..., dz,) @ A(s) @ T(d s))

in Mixed. The boundary operator 0 and differential d satisfy the Leibniz rule
on Xy, and d(s) = f.

17The notation A is used for the exterior algebra, see Section 2.3 (29).
18The notation T is used for the divided power algebra, see Section 2.3 (30).
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1.4 The second step in the proof of the main
result

With the strict mixed complex X; as above we already have a reasonably
small strict model for HHygixed (K[Z1, - - ., Zn]/f), but we still want to identify
a smaller, quasiisomorphic, sub-mixed-complex. In particular, X is given
by k[z1,...,z,] in degree 0, while the homology is k[x1,...,z,]/f in degree
0. We will thus try to find a small sub-mixed-complex quasiisomorphic to
Xy such that the k-module in degree 0 is isomorphic — as a k-module — to
k[,Tl, v ,xn]/f

Before we get started with this we first describe one of the assumptions we
need to make on f, which is that f needs to be monic with respect to a chosen
monomial order. A monomial order is a well-order < on the set of mono_Ipials
ini,...,2,, or equivalently on ZZ, such that @ < b implies ¢+¢€ X b+7¢
for @, 3, ¢ € Z%,. From now on we fix a monomial order <. We can then
define f to be monic (with respect to <) if the biggest (with respect to <)
monomial appearing!® in f has coefficient 1. The degree of f (with respect to
=), denoted by deg~(f), is the element of ZZ that is maximal with respect

to < such that the coefficient of 29°¢=() in f is non-zero.

If f is monic, then it is possible to divide polynomials in x1,...,x, by f
with remainder. Specifically, if P is an element of k[z1,...,x,], then there
is a unique decomposition of P as P = q;(P)f + r(P) such that r%(P) is
f-reduced, meaning that only monomials that are not divisible by the lead
monomial of f may appear in r?(P). For more details on these notions for
multivariable polynomials see Section 9.1.

One perspective on the just mentioned decomposition is that it means
that there is a unique f-reduced representative in k[z1,...,x,] for every el-
ement of k[zq,...,x,]/f. We can thus define a section p (as morphisms of
k-modules) of the quotient morphism p: k[xy,...,2,] — k[z1,...,2,]/f by
defining o(p(P)) to be r?(P). Along ¢ we can thus identify klxq,...,2,]/f
as a k-module with the k-submodule of k[x1, ..., x,]| spanned by the reduced
polynomials, i.e. Im(p).

We now start with the sub-graded-k-module Im(p) of X, and discuss what
additional generators we need to add to our sub-graded-k-module to satisfy
the following three conditions.

(a) It needs to be closed under 9, to define a subcomplex.
(b) It needs to be closed under d, to define a sub-mixed-complex.

(c¢) The inclusion into Xy must be a quasiisomorphism.

As we require closedness under d, we first enlarge to the sub-graded-k-

module
Im(g) ® A(dxh s 7dx7l)

9That is, having non-zero coefficient.

10
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of Xy. Now there are however elements that are multiples of d f and which
are cycles but not boundaries, while they are boundaries in Xy. In order
to achieve (c) we will thus need to add elements whose boundary are the
relevant multiples of d f. Our first attempt might be to consider the sub-
graded-k-module

Im(0) ® A(day,....dz,) @ k- {1,d s}

as 0(—d sl!) = d f. As we have now created new multiples of both d f as well
as d sl that will be cycles but not boundaries as needed for (c), we actually
keep going and consider the sub-graded-k-module

Im(o) ® A(dzq,...,dz,) @T(ds)

of Xf.
Let us turn towards condition (a) and check whether this could be a sub-
complex of X;. For this, let R be an element of Im(g). Then we obtain

a(Rds[”) — —Rdf=—g}(RAf)f —rY(Rdf)

For this to lie in our provisional sub-graded-k-module we need to have that
q}(Rd f) = 0, but unfortunately this will in general not be the case. To
fix this, we should then modify Rd s!") by adding another generator whose
boundary will be q} (Rd f)f. Such an element is given by sq}(Rd f), which
leads us to the following definition. We define {, as the set

do = { (7, e, m) € Z%y x {0,1}" x Zxo ‘ xl s f-reduced }
and for (7, €, m) an element of Jo we define

e~ =gzt dz®ds™ 4 sq]lc (df . l‘de?) dstm—1

i,€,m

as an element of X ;. We can then define X5 ; to be the sub-graded-k-module

of Xy spanned by the elements of the form e+ -, for (—f, €,m) in Jo.

It turns out that X§, indeed satisfies condltlons (a) and (c), but not in
general (b). Thus the chain complex X ¢ o does represent the underlying object
in D(k) of HHytixed (K[21, - - -y 20]/f) (thls reproves the main result of [BACH]
as long as Conjecture D is satisfied for f), but we need to make further
assumptions to ensure that X§ ; is a sub-mized-complex of Xj.

In the formulation of Theorem A we use a sufficient condition for f that
is very easy to check and that ensures that X 70 1s a sub-mixed-complex of
Xy. The strict mixed complex used in the statement is then obtained by

merely renaming the basis of X¢ 0, Where the element e = of X¢ o corre-

sponds to the element p(z )dx “tlm] in the strict mixed complex described
in Theorem A.

11
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1.5 Overview over the chapters of this thesis

This thesis tries to give a rigorous proof of Theorem A, so it was attempted
to include a proof for every needed statement for which no proof could be
found in the literature. By necessity this means that many statements and
proofs will already have been known to the experts, and some may even
have already appeared, spread throughout the literature. This holds par-
ticularly with regards to the material contained in the appendices, where
we collect various required statements on various aspects of working in an
oo-categorical setting. We hope that this will help fill some gaps in the litera-
ture. A reader primarily interested in applying the result and already familiar
with Hochschild homology and mixed complexes may thus wish to only read
Chapter 9 containing the statement of the result and the notation and notions
necessary to understand and apply it, as well as Chapter 10, which contains
an example worked out in detail.

The material is ordered linearly; proofs in the appendices only depend
on statements occurring earlier in the appendices, and proofs in the main
text only depend on statements occurring earlier in the main text or in the
appendices.

We now briefly summarize the content of the chapters of this thesis. Each
chapter, and most sections and subsections, also begin with an introduction,
so we refer there for more details.

In Chapter 2 we list and explain the notation and conventions that we
use, and discuss what we assume the reader is familiar with.

In Chapter 3 we construct monoidal structures on oco-categories of left
modules over bialgebras. If C is a symmetric monoidal 1-category and A a
(associative, coassociative) bialgebra in C, then the category of left- A-modules
LMod 4(C) can be given a monoidal structure again, constructed from the
coalgebra structure of A2°. The underlying object in C of the tensor product
of two left-A-modules X and Y is the tensor product in C of the underlying
objects, with action of A defined via the composition

AR X @Y A2x@dy fo po X @Yy MAST8UX, J o X9ARY - XQY

where A is the comultiplication, 7 is the symmetry isomorphism, and the last
morphism is the tensor product of the action morphisms of A on X and Y.

In Chapter 3 we construct such monoidal structures on LMod 4(C), where C
is now allowed to be an Es-monoidal co-category, and A an Eq, E;{-bialgebra
in C. Our construction will be functorial in both A as well as C and thus allow
us to compare Mixed, Mixed, and LMod;gr(D(k)), which are all monoidal
oo-categories arising via this construction.

In Chapter 4 we define the 1-category Mixed and oo-category Mixed. Be-
yond what was already mentioned in Section 1.2.2, we also discuss model

20This monoidal structure should not be confused with the monoidal structure one can
define using relative tensor products over A if A is commutative.

12



1.5 Overview over the chapters of this thesis

structures on both Mixed and Alg(Mixed), show that Mixed and Alg(Mixed)
are the respective underlying oco-categories, and put the classical notion of
strongly homotopy linear morphisms of strict mixed complexes into this con-
text. That every algebra in Mixed has a strict model will play a role in
Chapter 7, when we discuss HHyyixeq Of polynomial algebras as an object of
Alg(Mixed).

In Chapter 5 we construct a monoidal equivalence between D(k)BT and
Mixed, as discussed in Section 1.2.2 above.

In Chapter 6 we define Hochschild homology, both in its modern incar-
nation as a symmetric monoidal functor of co-categories

HHy: Alg(D(k)) — D(k)BT

as well as the classical model for Hochschild homology given by the standard
Hochschild complex. In particular, we discuss how the standard Hochschild
complex represents HHyyixed as a mixed complex (by [Hoy18]) as well as HH
of commutative rings as an object of CAlg(D(k)).

In Chapter 7 we show that the mixed complex of de Rham forms is
a model for HHygixeq Of polynomial algebras in at most 2 variables as an
object in Alg(Mixed). Important input for this will be the comparison results
discussed in Chapter 6 as well as the strictification result for algebras in
Mixed from Chapter 4. We also discuss compatibility with morphisms of
polynomial algebras, by formulating Conjecture C and Conjecture D, and
proving them in some cases.

In Chapter 8 we perform the first step of the proof of Theorem A that
we discussed in Section 1.3 above. The main result of Chapter 8 will be
applicable in more generality, providing a strict mixed complex represent-
ing HHntixed(R/(Y1,-..,yn)) for R a commutative algebra in Ch(k), and
Y1, ---,Yn elements of R in degree 0, providing that the requirements of
Proposition 8.3.0.1 are met, and we in particular are given a strict model
of HHyixed (R) with sufficient structure.

Finally, we put everything together in Chapter 9. This chapter introduces
the necessary notions for multivariable polynomials and carries out the second
step of the proof of Theorem A that we discussed in Section 1.4 above.

For actual applications, we expect that the user of Theorem A will likely
need to further simplify the resulting strict mixed complex. In Chapter 10
we thus discuss the example f = 27 — o3 in detail?!, identifying an even
smaller strict model for HHygixea (Z[x1, 2, 3]/ f) than the one given by The-
orem A (conditional on Conjecture D holding for f). We take care to not only
prove the end result, but to describe the steps in the order and manner that
one would take them when trying to come up with such a simplification, and

21 As this is an example in three variables, Theorem A only holds for f conditional on
Conjecture D. However, it is an interesting example with which we can demonstrate
the combinatorial notions used to formulate the result of Theorem A, and how the
result can be further manipulated.

13



Chapter 1 Introduction

hope that this example will help the reader to similarly simplify the result of
Theorem A for other concrete polynomials.

The appendices contain various material relating to working with various
notions in an oco-categorical setting that do not have a very strong thematic
relation to the main content of this thesis, apart from being needed in it.

Appendix A and Appendix D contain some statements on basic no-
tions of oco-category theory, such as mapping spaces, undercategories, and
adjunctions. The reason this material is split up into two appendices is in
order to conserve linearity of the material in the appendices, as some mate-
rial from Appendix A is needed in the intermediate appendices, from where
Appendix D needs some results.

In Appendix B we discuss the notions of (fully) faithful functors of
oo-categories as well as monomorphisms in Caty,.

Appendix C collects a number of statements involving (co)cartesian fi-
brations. In particular, we discuss for functors of co-categories F': C — Caty
the property of the cocartesian fibration classified by F' that corresponds to
C having all products and F' preserving them.

In Appendix E we discuss various statements that relate to co-operads
and their co-categories of algebras, such as the induced co-operad structures
on oo-categories of algebras, free algebras, and relative tensor products.

Appendix F discusses cartesian symmetric monoidal oco-categories. If C
is a cartesian symmetric monoidal oco-category and O an occ-operad, then
the oo-categories of O-algebras and O-monoids in C are equivalent. A large
part of Appendix F is concerned with iterating this, i.e. applying Alg,, or
Moner to Alg,(C) or Monp(C) and comparing the resulting oo-categories.
The reason is that we not only need to know that there exist some equiva-
lences between the various co-categories, but require concrete descriptions of
specific equivalences.

1.6 Future directions

In this section we present some questions left open by this thesis and direc-
tions for future work. The most obvious open problem is the conjecture our
main result depends on.

(1) Conjecture D is proven in Chapter 7 only for n < 2 variables, in the
case n = 2 requiring an assumption on k. Showing this conjecture for
polynomials in more variables would extend Theorem A.

The next possibility for future work we would like to mention is the appli-
cation to calculations of algebraic K-theory.

(2) Let k be a perfect field of positive characteristic, n a positive inte-
ger, and f a polynomial in n variables satisfying the conditions of
Theorem A. One can then try to determine the structure of the K-
theory groups K. (k[z1,...,2,]/f, (z1,...,2,)) using the techniques of

14



1.6 Future directions

[Spe20], [Spe21], and [HN20], using the strict mixed complex represent-
ing HHytixed (K[z1, ..., 24]/f) as the starting point.

The project that became this thesis was in fact started with the goal
of determining the structure of

Ki(k[z1,. .. zn)/(x1- - 2n), (1, ..., 20))

i.e. of the K-theory groups of the union of hyperplanes. Another first
test case to apply this to might be the cone 23 = xo13, i.e. trying to
determine the structure of K, (k[x1,...,2,]/(2? — zox3), (21, 72, 73)).
To obtain new unconditional results both of these would require first
extending the validity of Theorem A by proving Conjecture D for the
three-variable case.

There are also a number of questions directly left open in this thesis.

(3)

In [Spe20] and [HN20] it is important that THH and HHy have a com-
patible decomposition as a sum, which arises from a grading on the
polynomial ring with respect to which the polynomial divided out is
homogeneous.

Before tackling (2) it will therefore be important to upgrade Theorem A
to take into account such a grading.

In Chapter 5 we show that there is an [£;-monoidal equivalence between
D(k)BT and Mixed. Does there exist an Ey-monoidal equivalence? One
can also add some additional conditions, such as asking for a commu-
tative triangle

D(k)BT = Mixed

of Es-monoidal functors, with the horizontal one being an equivalence,
and where the two other functors are the forgetful ones.

Theorem A is shown in Proposition 9.5.2.3, where, apart from Conjec-
ture D needing to hold for f, the condition is actually that f needs
to be monic and satisfy logdim,(d f) < 1, rather then the condition
used in the the formulation of Theorem A above, which by Corol-
lary 9.4.2.6 implies logdim ;(d f) < 1. This leaves the question whether
Corollary 9.4.2.6 is sharp. To be more precise, suppose f # 1 is a poly-
nomial that is monic with respect to a monomial ordering < and such
that logdim;(d f) < 1. Then does it hold for every i € Z% such that

the coefficient of the mogomial xT in f is non-zero that if 1 < j <n
and deg(f); # 0, then 7 ; < deg(f);?

15



Chapter 1 Introduction

(6) A related question to (5) is what kind of values logdim,(d f) can take.
In particular, is there a monic polynomial f such that logdim ,(d f) is
finite, but bigger than 17

(7) Is there a class of monic polynomials f with logdim(d f) > 1 and
for which X¥%, is not a sub-mixed-complex of Xy, but there is some
other, intermediate sub-mixed-complex that is also equivalent to X;?
For example it may be that there exists such a sub-mixed-complex for
some f in which the power of f is bounded??:23, unlike in X.

It is possible that logdim ;(d f) has already been studied (if so, likely under
a different name), so perhaps there already exist answers to (5) and (6) in
the literature.
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Chapter 2
Notation and conventions

2.1 Prerequisites

We will work extensively in co-categorical settings, and thus reading this
thesis will likely require a solid foundation in the theory of co-categories and
higher algebra as developed in [HTT] and [HA]. We will however try to give
references for any major statements that we use, and we refrain from using
statements that are well-known to experts without giving a proof ourselves if
no citable reference could be found in the literature — many such statements
are thus collected in the appendices.

We assume that the reader is familiar with the basics of (homological)
algebra, as well as the theory of model categories, for which we use [Hov99]
and [HTT, A.2] as our main references. Wherever terminology differs between
[Hov99] and [HTT, A.2], we follow the terminology of [HTT, A.2].

In contrast, it is not strictly necessary to have prior exposure to Hochschild
homology or related concepts, as all the necessary definitions will be provided.

2.2 On how this thesis is structured

To make it easy to reference parts of this thesis we make liberal use of
section subdivisions and encapsulate a large part of the material in various
environments such as remarks, constructions, propositions, proofs, and simi-
lar.

To mark the end of such an environment we use several different symbols,
which appear on the end of the last line of the respective environment, i.e.
rightmost on the page. A square [ is used to denote the end of a proof, as
is usual. For statements that come with a proof we use a heart ©, and for
statements that could come with a proof (facts, conjectures, etc.) but do not
we use a club . Other environments, such as definitions, constructions, etc.
are ended with a diamond . The author first saw the idea to use card suits
for environment end markers in Tashi Walde’s Master’s thesis.

The only types of mathematical statements with proof that we distinguish
in the text are corollaries (for statements whose proof is a direct specialization
of previous results) and propositions (for everything else). The only exception
is Theorem A, which is stated in the introduction.

19



Chapter 2 Notation and conventions

2.3 Various notations and conventions

In this section we state various conventions and notation that will be used
throughout the thesis.

(1)

We fix a commutative ring k£ for the entire thesis. If X and Y are
k-modules, then X ® Y refers to the tensor product over k£ unless some-
thing else is explicitly stated.

With regards to oo-categories, we try to work as model independently
as possible, so by an co-category we mean an object in the (oo,2)-
category of co-categories Cat., not a representative in a specific model,
such as quasicategories'. In particular, if we e.g. talk about a pullback
of oco-categories, then this refers to a pullback in the oco-category of
oo-categories, not to a (categorical) pullback of quasicategories (simpli-
cial sets).

We denote by Cat., the co-category of co-categories. If C and D are
oo-categories, then there exists an oo-category of functors from C to D,
denoted by Fun(C,D). We will thus also consider Cats, as an (o0, 2)-
category, though we will not require a general theory of (oo, 2)-cate-
gories.

We denote by Cat the (oo, 2)-category? of 1-categories®, as a full sub-
category of Cat,,. We will thus not use any notation to indicate the
inclusion® of Cat into Cato; if C is a 1-category, then C is in particular
an oo-category.

We use different fonts to visually distinguish between 1-categories, oo-
categories, quasicategories, and other kinds of objects. Named 1-cat-
egories (like Ring rather than C) use the same font as unnamed 1-
categories, for named oo-categories we use a different calligraphic font
than for unnamed oo-categories.

We illustrate this with the following table.

IFor the implications for (co)cartesian fibrations see the introduction to Appendix C.

2By [HTT, 2.3.4.8] Cat is actually a (2, 2)-category.

3For us, l-categories are oco-categories with discrete mapping spaces, compare [HTT,
2.3.4.1, 2.3.4.5, and 2.3.4.18].

4If we model co-categories by quasicategories, then this inclusion is given by the nerve
construction, see [HTT, 1.1.2.6].
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Type of object Font description Examples

1-category sans-serif C, D E

Named 1-category  sans-serif Cat, Ch(k), Mixed, sSet
oo-category calligraphic C,D, €&

Named oo-category  calligraphic Cateo, D(k), Mixed, 8
Quasicategories® typewriter C, f,p

Other serif and Greek C, @, «, a

(6) The following table collects notation for some named 1-categories.

Notation Description / co-category of Reference

Set sets

Fin finite sets

sSet simplicial sets [HTT, A.2.7]
Top niceStopological spaces [Hov99, 2.4.21]
Ab abelian groups

Ch(k) chain complexes of k-modules Definition 4.1.1.1
PoSet partially ordered sets Definition 6.1.1.2
ZPoSet partially ordered sets with Z-action Definition 6.1.1.2
Mixed strict mixed complexes Definition 4.2.1.2

(7) The following table collects notation for some named oco-categories.

Notation Description / oco-category of Reference

S spaces [HTT, 1.2.16]

Sp spectra [HA, 1.4.3]

D(k) derived category of k Prop. 4.3.2.1 (1)

Pr presentable oo-categories, as a full [HTT, 5.5.0.1]
subcategory of Cat,

Prt presentable  oo-categories, mor- [HTT, 5.5.3.1]

phisms are functors preserving all
small colimits, as a subcategory of
Pr
Mixed mixed complexes Notation 4.4.0.2

(8) We generally follow the notation used in [HA] for oco-operads that we
use, though with a different font to be consistent with (4) and (5).

5Including morphisms.

SIt is not really relevant for us if one takes k-spaces, compactly generated topological
spaces, or another variant. What is important for us is that geometric realization and
the singular simplicial set functor define a Quillen equivalence as follows.
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(10)

22

Notation = Notation = Name Reference

in [HA]
Comm Comm commutative oo-operad [HA, 2.1.1.18]
or Fin, or Fin,
Assoc Assoc associative oco-operad [HA, 4.1.1.3]
Triv Triv trivial co-operad [HA, 2.1.1.20]
LM LM oo-operad of left modules [HA 4.2.1.7]
E, E, oo-operad of little n- [HA, 5.1.0.3

cubes and 5.1.1.6]

By [HA, 5.1.0.7] there is an equivalence of oo-operads E; ~ Assoc. We
will identify these two co-operads along this equivalence and use E; and
Assoc as interchangeable notation. The co-operad E., is by definition
equal to Comm.

We sometimes use parenthesis to cover multiple cases at the same time
to avoid repetitious language. For example we might write

X is adjective; (adjectives, adjectives) if it satisfies property
(propertyz, propertys).

which is to be interpreted as
X is adjective; if it satisfies property;. Furthermore, X is
adjective, if it satisfies property,. Finally, X is adjectives if
it satisfies propertys.

A variant version of this convention is
X is (adverb) adjective if it satisfies property; (propertys).
which is to be read as follows.

X is adjective if it satisfies property;. Furthermore, X is ad-
verb adjective if it satisfies propertys.

If C is an oo-category, then we use the notation
Mape(—,—): CP xC —§

for the mapping space functor. Similarly, if C is a (Ab-enriched, or
LModg (Ab)-enriched) 1-category, then we denote by Morc (by Homc)
the morphism set functor (Hom functor) with codomain Set (Ab and
LModg(Ab), respectively). If C' is an object of C, then we use use
Aut¢e(C) as the notation for the automorphism space of C, i.e. the
subspace of Map.(C, C) spanned by equivalences C' — C'.

We use — as notation for an unnamed argument in order to describe
functions (and functors etc.) without introducing unnecessary notation.
For example, instead of defining the function that maps a real number
to its square by

[ R—>R, f(z) = 2?



(14)

2.3 Various notations and conventions

and then using f in some place where a function R — R is expected,
we would just use the following notation.

2

If there is more than one argument we may subscript —, such as in the
following example.
(—14+ -2 RxR—=R

Finally, we also use e in a similar manner for “inner” functions. For
example
o Zzl — MOI‘Set(R, R)

would refer to the map that sends n to the map that sends z to z™.

Let C be a model category with class of weak equivalences W. Then we
denote by Hoyw (C) the homotopy category of C in the model-category
sense. If C is an oco-category, then we denote by Ho(C) the homotopy
category of C as defined in [HTT, 1.2.3]. For the relationship between
these two definitions, see Proposition A.1.0.1.

Let C be a model category. Then we denote by C®f (by CfiP) the full
subcategory of cofibrant (fibrant) objects of C. The model categories
we consider admit functorial (co)fibrant replacement functors, which
we will denote as follows.

7cof: C— Ccof and 7fib: C— Cfib

Let C be an oo-category admitting products. If X and Y are objects
of C and X x Y a product object of X and Y, then we denote by
pri: X xY — X and pry: X XY — Y the morphisms that exhibit
X xY as a product of X and Y.

If fi: X = Y7 and fo: X — Y5 are two morphisms in C, then we denote
by
f1 X fg: X — Yi X }/2

the induced morphism determined by equivalences pr; o (f1 X f2) =~ f;.

If f1: X1 = Y7 and f3: X5 — Y5 are two morphisms in C, then we will
also denote by

f1><f21X1 xX24)Yl XYQ
the induced morphism between the products, which is determined by
equivalences pr; o (f1 X fa) =~ f; o pr,. While this could in principle lead
to confusion, we will always make clear in the context which of the two
interpretations are intended.

Analogous notation is used for products over more factors, possibly
indexed by a set.
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Chapter 2 Notation and conventions

(15) We say that a functor of oo-categories detects something” if it both
preserves and reflects it.

(16) Let F': C — D be a functor of co-categories and £ another co-category.
Then we sometimes denote by F, the induced functor

Fun(&, F): Fun(€,C) — Fun(€, D)
and by F* the following induced functor.
Fun(F,&): Fun(D, &) — Fun(C,€)

We also use this notation in variant cases, such as induced functors
on subcategories of functor categories, or co-categories of functors over
another oo-category.

(17) Let p: O® — Fin, be an oc-operad. We will often just say that O is
an oo-operad, dropping the ® superscript, or even that F: O — O’
is a morphism of oo-operads when O’ is another co-operad®. If we are
referring to O® as an oo-category, for example talking about an object
of O%, then we will however never drop the superscript. To make this
convention consistent, the total oo-category of a functor to Fin, that
we think of as an oco-operad will always be denoted by a notation that
includes a superscript ®. We hope that this will not lead to confusion in
practice, but will instead make many terms more concise and readable.

(18) Consistent with (17), if O, O, and O” are oc-operads, then we use
the notation BiFunc(O,0’; 0”) for the oo-category of bifunctors of
oo-operads that is denoted by BiFunc(O®,O'®; 0"®) in [HA] - see
[HA, 2.2.5.3].

(19) If O and C are co-operads, then we denote by Alg,(C) the co-category
of oo-operad morphism from O to C ?. If © = Assoc we will also write
Alg(C) instead, and if O = Comm we will also write CAlg(C).

Similarly, if O = Assoc we will just say “monoidal” and if O = Comm
we will say “symmetric monoidal” instead of “O-monoidal”.

(20) For n > 1 an integer and 1 < i < n we denote by p’: (n) — (1) the
morphism of Fin, defined in [HA, 2.0.0.2], i.e. given by the following

formula.
. 1 ifi=j
pi) = {* otherwise

"For example equivalences or colimits.

8Where we of course already use this convention, so implicitly we introduced a func-
tor O’® — Fin, exhibiting O’® as an oco-operad, and F is actually to be a functor
0% — O'® over Fin,.

9See [HA, 2.1.2.7] We will also use the related notation introduced in [HA, 2.1.3.1].
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(25)

2.3 Various notations and conventions

Let O be an ooc-operad. Then we use @ as notation for the operation
defined and discussed in [HA, 2.1.1.15 and 2.2.4.6]. In particular, if X;
is an object in O for 1 < ¢ < n, then X = X; & --- ® X,, will be an
object in (9%0, coming with inert morphisms X — X; in O%® lying over
p*, or equivalently equivalences pf(X) ~ X;.

If we introduce an object X € O%w as X ~ X1®---d X, for X; objects

of O, then we implicitly assume that X comes with inert morphisms
X — X; lying over p’.

If p: C — D is a cocartesian fibration and f: X — Y a morphism
in D, then we usually denote the induced morphism on fibers'® (see
[HTT, 5.2.1]) by fi: Cx — Cy if the cocartesian fibration p is clear
from context, and otherwise as f’.

Let C be an oco-category. A subcategory of C is an oo-category C’ to-
gether with a monomorphism!! +: ¢’ — C in Cat,. Up to equivalence
a subcategory of C is given by specifying a replete subcategory of HoC,
see Section B.6.

Let C, D, and £ be oo-categories. Then we denote by
Z: Fun(C x D,&) = Fun(C, Fun(D, §))

and
Z: Fun(C,Fun(D,£)) = Fun(C x D, €)

the equivalences arising from the x-Fun-adjunction'?. We will use the
same notation for the equivalences

: Fun(D x C,&) = Fun(C, Fun(D, §))

and

: Fun(C, Fun(D, £)) = Fun(D x C, )
and will make clear from context which of the two variants is meant.

Let C be an oo-category. We denote by CFib(C) the subcategory of
(Catoo)/c spanned by the cartesian fibrations and morphisms of carte-
sian fibrations'®. Similarly, we denote by co€Fib(C) the subcategory
of (Cats)/c spanned by the cocartesian fibrations and morphisms of
cocartesian fibrations.

10The notation Cx refers to the fiber of p over X, i.e. to the pullback object {X} xp D
of p along the inclusion of {X}.

11See Appendix B for more on monomorphisms in Cateo.

1286 if F': C x D — £ is a functor, then F: C — Fun(D, &) is its adjoint.

133ee Appendix C for more on (co)cartesian fibrations.
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(26)

(27)

(29)

Let C be an oo-category. We denote by
Gr: Fun(C, Cat,) — coCFib(C)

the Grothendieck construction that maps a functor F': C — Cats to
the cocartesian fibration classified by F.

Let S be a set. Then an S-graded k-module is an S-tuple of k-modules,
or equivalently a functor S — LMod(Ab) from the discrete category
with set of objects S to the category of k-modules.

If (X5)ses is an S-graded k-module, then we can form a k-module
X = P, g Xs, but one should not confuse the k-module X with the
S-graded k-module (X)ses, for example in the context of (28) directly
below.

The category of Z-graded k-modules carries a symmetric monoidal
structure defined just like for chain complexes, in which the symme-
try isomorphism contains signs — see Definition 4.1.2.1. Commutative
algebras in this symmetric monoidal category will then of course in-
volve signs in their commutativity relations, so if z and y are elements
of a commutative Z-graded k-algebra A of degrees n and m, then this
implies that -y = (—1)"y - . In some places in the literature this
is referred to as “graded commutativity”. However, as the mentioned
symmetric monoidal structure on Z-graded k-modules is the only one
we define, there is no other, “non-graded commutativity” one could
consider, so we do not use this terminology.

Let M be a Z-graded k-module that is concentrated in odd degrees.
Then the tensor algebra T'(M) (or Ty (M) if we want to make k explicit)

of M is defined as 4
T(M) =P M*
i>0
where the tensor product of Z-graded k-modules is as in (28). One can
define a multiplication on T'(M) by k-linearly extending the formula

(m1®...®mi).(m’1®...®m;) ;:m1®...®mi®m’1®...®m;

for 4,7 > 0 and ml,...,mi,m’l,...,mg elements of M. This makes
T(M) into a Z-graded k-algebra, with unit given by the element 1 of
k= M®°,

We define the exterior Z-graded k-algebra generated by M, denoted by
A(M) or Ax(M), to be the quotient of T(M) by the two-sided ideal
generated by elements of the form m - m for m € M.

M This definition differs from the one given in [Lod98, A.1] if 2 is not invertible in k. In
those cases the usage of the definition of [Lod98, A.1] is however incorrect with regards
to the results we cite from [Lod98] relating to the mixed complex of de Rham forms —
the definition we give here is the correct one. In particular, the proof of [Lod98, 3.2.2]
implicitly assumes the definition we have given here.
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The composition of the inclusion'® of M into T'(M) with the quotient
morphism to A(M) is an injection, so that we can consider M as a
sub-Z-graded-k-module of A(M), and elements of M generate A(M)
multiplicatively. For m and m’ elements of M it holds in A(M) that

m-m'=(m+m')-(m+m)—m'" - m-—m-m—m'-m'=-m'-m

so that A(M) is in fact a commutative Z-graded k-algebra.
Finally, let us note that we will also use the notation A(xq,...,z,) as
a shorthand for A(k - {x1,...,2,}).

(30) For an even integer n we define a commutative Z-graded k-algebra I'(z),
called the divided power Z-graded k-algebra generated by the variable
x in degree n as follows.

The underlying Z-graded k-module is given by
() =k {1,201 2 1

with 27 of degree i - n, where we let 2% = 1. A multiplication on I'(z)
is defined by k-linearly extending the formula

Sl il <Z ﬂ)x[m]
1

for 4,5 > 0, which makes I'(z) into a commutative Z-graded k-algebra
with multiplicative unit 1.

We furthermore define
D(xy,...,2n) =T(21) @ - @ ()
for all x; of even degree.
(31) Elements for Z%, are tuples of nonnegative integers (a1,...,a,). We
will often write such a tuple as @, and use €; as notation for the

tuple (0,...,0,1,0,...,0), where the single 1 is in the i-th slot. For
€ € {0,1}"™ we furthermore make the following definition.

n
€l=>«
i=1

We use analogous notation for tuples indexed by a set set other than
{1,...,n} for a natural number n.

15This refers to the inclusion of M as the summand M®1.
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Chapter 2 Notation and conventions

(32)

(34)

28

For @ € Z%, we will write @ for the monomial z{*---x% in the
polynomial algebra k[z1,...,x,]. Vectors in Z%, are added pointwise,
and we have e.g. 2910 = 2@ . b
We use analogous notation for exterior and divided power algebras.
Concretely, we will for € € {0,1}" use the notation dz € to refer to
dz€ = daf - daxg
and not to d(z ). One can remember this as the convention that d
binds stronger than exponentiation with a vector.

Similarly, for = L%y we define

P [ia] ..

alt] =gl zlin]

in the divided power algebra I'(z1,...,z,).

If f € klz1,...,2,] is a polynomial and 7€ Z%, a vector, then we

let f € k be the coefficient of the monomial 27 in f, i.e. the unique
decomposition of f as a k-linear combination of monomials is as follows.

[= Z frz®

Tezy,

If n > 0 is an integer, then we denote by X,, the symmetric group on n
elements; it is the group of bijections of the set {1,...,n}, also called
permutations of {1,...,n}. It will sometimes be convenient to extend
an element o of ¥, to a bijection of {0,...,n} by setting o(0) = 0,
which we will do implicitly. If n’ > n, then there exists an inclusion
of ¥, into ¥, given by extending an element o of ¥,, by o(¢) = ¢ for
n < i < n'. We also usually not distinguish in notation between o as
an element of X,, and its extension as an element of X,,/.

Given a permutation o on n elements and a subset S of {1,...,n}, we
say that o preserves the ordering of S if for every pair of elements 7 < i’
in S it holds that o(¢) < o(i’). We also use this terminology for other
injective maps between totally ordered sets. Let 1 < 4,5 < n. Then
there is a unique element of 3, that maps 7 to j and preserves the
ordering of {1,...,4—1,¢+1,...,n}. We will call this element o;_,;.
Note that if n’ > n, then the extension of o;_,; to a permutation of n’
elements is again of the same form, which justifies that n is not part of
the notation.

We define o¢yc,n to be the element 0,1 of ¥,,. If n is clear from context
we will also denote ocycn by Ocye. We denote by C), the subgroup of
X, generated by ocycn-



2.4 Size issues

We also need a manner of restricting permutations. Let o be an element
of ¥, and S a subset of {1,...,n}. Denote the set ¢(S) by S’. Then
there are unique order-preserving bijections ¢: {1,...,]S|} — S and
Y S" — {1,...,]5[}. We define 75(c) to be the element of X5 that

is given by the composition ¥ o a|§ o ¢. This defines a map of sets
rsg: Xy — X|g|. Note that in the above situation we have that if o is
another element of ¥,,, then rg(c’ o o) = rg/(c’) org(o).

We can also add permutations as follows. Let n,n’ > 0. Then there is
a group homomorphism — I —: ¥, x ¥, — 3,4,/ given as follows. If
o is an element of ¥,, and ¢’ an element of X,,/, then we define o I ¢’
as follows.

o o(i) ifl1<i<n
(0’ Oo )(Z) = vy . . /
di—n)+n ifn+l1<i<n+n
Note that r{y . nyo(—=II—) and r{, 41, ninyo(—11—) are the projection
to the first and second factor, respectively.

Given a permutation o on n elements and a subset S of {1,...,n}, we
say that o cyclically preserves the ordering of S if rs(o) is an element of
C\s)- This terminology can easily be extended to more general maps. Let
f: X — Y be an injective map between any finite totally ordered sets
X and Y, and S a subset of X. Then there exist unique order-preserving
bijections ¢: {1,...,|X|} = X and ¢: Im(f) — {1,...,]|X|}, making
o =1 o f|'"™) o ¢ into an element of ¥|x|. We say that f (cyclically)
preserves the ordering of the subset S if o (cyclically) preserves the
ordering of the subset ¢~1(9).

Formulations such as “C admits all colimits” mean that C admits all
small colimits. We never refer to non-small (co)limits with generic for-
mulations. See also Section 2.4 directly below.

2.4 Size issues

In Section 2.3 (4) we defined Cat as the l-category'® of all 1-categories.
Taken directly as stated Cat would be an object of itself and we would run into
the usual set-theoretic paradoxes, so we need to be more careful in defining

Cat.

The usual way to deal with this issue is to postulate the existence of
Grothendieck universes U; € Uy € Uz (and possibly more if required), which
are sets whose elements satisfy the usual axioms of set theory. Sets that are

16We defined Cat as a (2,2)-category, but to make our exposition here easier we only
consider the underlying 1-category.
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Chapter 2 Notation and conventions

elements of U; are called U;-small. We can then perform all the usual oper-
ations of set theory with U;-small sets, but now there exists e.g. a Us-small
set of Uy-small sets (namely Uy ).

For i > j we could (this is ad hoc notation) define an (4, j)-small 1-category
to be a 1-category C whose set of objects is U;-small and for which Morc (X, Y")
is U;-small for all objects X and Y of C. Let us use Cat"’ as ad hoc notation
for the 1-category of (7, j)-small 1-categories. What we usually consider as 1-
categories are (2, 1)-small 1-categories, which then form the 1-category Cat*!,
which will however not be (2,1)-small itself, though it is (3,2)-small. For
a more detailed discussion of Grothendieck universes and size issues in an
oo-categorical context, see [HTT, 1.2.15].

In this thesis we will very often use gadgets such as Cat or Cats,. To be
completely rigorous we should thus always keep track of with respect to which
universe the various objects we consider are small. In most of the thesis this
would however cause significant notational bloat while being completely or-
thogonal to the rest of the content, so to make the exposition more accessible
we will instead stay silent on size issues, while of course still taking care not to
use inadmissible arguments. There will be one part of the thesis, Chapter 7,
where a size issue is somewhat relevant for the argument, and there we will
deal with this issue in an explicit manner.

In particular, we will not decorate Cat,, to keep track of sizes, and might
e.g. define an oo-category as a pullback in Cat., of a diagram that involves
the oo-category Cat.,. While in this notation it would then seem as though
the two occurrences of Cat., refer to the same gadget, a diligent adding of
size decorations would distinguish them, and we will be careful not to make
any arguments in which is not possible to do so consistently.
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Chapter 3

Bialgebras and modules over
them

Let C be a symmetric monoidal category and A an associative algebra in
C. A left module in C over A consists of an object X in C together with a
morphism A ® X — X satisfying some properties. If A is commutative, then
any left-A-module can naturally be made into a A, A-bimodule, so that we
can use the relative tensor product over A to define a monoidal structure on
the category of left-A-modules LMod 4(C).

Now let A be a associative, coassociative bialgebra. Then there is also a
way to define a tensor product on LMod 4(C), and in such a way that the
underlying object in C of the tensor product of two left- A-modules X and Y
is just given by the tensor product of the two underlying objects. To do this,
we need to define an action morphism A® (X ® Y) — X ® Y, which we do
as the composition

A@ (X y) 22dxey,

(AA)R(XY)2(AX)®(AQY) > XY
where A is the comultiplication on A, the middle isomorphism uses associa-
tivity and symmetry of the tensor product to swap the two middle tensor
factors, and the last morphism is the tensor product of the action morphisms
for X and Y. One can then check, that this makes X ®Y into a left- A-module.

It is not only possible to construct the monoidal category LMod4(C) for
individual bialgebras A — this construction enjoys functoriality in both A and
C: If f: A — B is a morphism of bialgebras in C, then there is a monoidal
functor

LMod(C) — LMod 4 (C)

that preserves the underlying object but restricts the action along f. If A is
a bialgebra in C and F': C — D is a symmetric monoidal functor, then F
induces a monoidal functor

LMOdA(C) — LMOdF(A) (D)

that sends a left-A-module with underlying object X to a left-F'(A)-module
with underlying object F(X).
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Chapter 3 Bialgebras and modules over them

To encode this functoriality we can define a category BiAlgOp as follows.
Objects are pairs (C, A) with C a symmetric monoidal category and A an
associative and coassociative bialgebra in C. Morphisms from (C, A) to (D, B)
are pairs (F, f), where F': C — D is a symmetric monoidal functor, and
f: B — F(A) is a morphism of bialgebras in D. We can then upgrade the
construction of LMod 4(C) to a functor

LMod: BiAlgOp — Monpssoc(Cat)

where Monpagsoc(Cat) is the category of monoidal categories.

The goal of this section is to implement this idea for co-categories rather
than just ordinary categories. In this setting, we want to construct an oo-
category BiAlgOp whose objects can be described as pairs (C, A), where C is
an Es-monoidal co-category and A an Eq,E;-bialgebra in C. We then want
to upgrade LMod to a functor

BiAlgOp — Monassoc (Catos)

that can be interpreted as functorially upgrading left module categories over
E; algebras to E;-monoidal co-categories in the way described above.

We now briefly describe our approach to constructing BiAlgOp. Instead of
trying to construct BiAlgOp directly, we will first construct an oco-category
AlgOp that can be described as having as objects pairs (C, A) where C is a E;-
monoidal infinity category and A is an E;-algebra in C, and where a morphism
from (C, A) to (D, B) is given by a pair (F, f) with F': C — D an E;-monoidal
functor and f: B — F(A) a morphism in Algg (D). The oco-category AlgOp
will turn out to have products, with the product of (C, A) and (D, B) given by
(CxD, (A, B)). We can thus consider monoids in AlgOp. A monoid in AlgOp
roughly consists of an object (C,A) in AlgOp together with a coherently
associative multiplication morphism (C, A) x (C,A) — (C, A). Such a mor-
phism corresponds to an E;-monoidal functor F': C x C — C and a morphism
f:A— F(A,A) in Algg (C). By the Eckmann-Hilton argument, F'(A, A) is
equivalent to A ® A, so that we can identify f with a morphism A - A® A,
which we can interpret as being the comultiplication of a coalgebra struc-
ture on A. We will later show that Mong, (AlgOp) indeed implements the
discussed idea of what BiAlgOp should be.

Finally, the functor LMod: AlgOp — Cat., sending a pair (C, A) to the
oo-category LMod 4(C) is product-preserving, so that we obtain an induced
functor BiAlgOp — Mong, (Cate ).

Our approach is heavily inspired by [HA, 4.8]. The goal in [HA, 4.8.3]
is to functorially encode the fact that the oo-category of left-A-modules?
LMod4(C) can be upgraded to an co-category that is right-tensored over C.
The functoriality encoded is however not the same as the one we discussed

1Lurie actually considers right modules, but to keep our exposition consistent we will
discuss Lurie’s results in the analogous form for left modules.
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3.1 Modules over algebras

above: Lurie’s construction maps a morphism A — B of algebras in C to
the functor LMod4(C) — LModg(C) that sends a left-A-module X to the
left-B-module B ® 4 X. The functor Lurie constructs preserves products as
well [HA, 4.8.5.16] and so induces a functor on E;-monoids. However, due
to the covariant functoriality in algebras, this induced functor describes the
E;-monoidal structure induced on LMod 4(C) by an Es-algebra A using the
relative tensor product over A (see the discussion at the start of this section).
Because of this, we will mostly follow the ideas in [HA, 4.8.3 and 4.8.5],
making the changes that are needed to make the construction contravariant
in algebras.

During preparation of this text, the preprint [Rak20] appeared, in which
existence of constructions similar to the ones we discuss below is also claimed
in analogy to Lurie’s construction, though without proof, see [Rak20, 2.2 and
in particular 2.2.6].

We now give a brief overview of the sections below. In Section 3.1 we will
construct AlgOp as well as the functor LMod: AlgOp — Cat,,. We will also
discuss how LMod interacts with presentability. For this we will construct a
variant AlgOpsp, of AlgOp whose objects can be interpreted as pairs (C, A)
with C a presentable monoidal co-category and A an algebra in C, and show
that LMod lifts to a functor AlgOpg, — Prr.

In Section 3.2 we will show that LMod is product-preserving as a func-
tor from AlgOp to Cat,, and hence induces a symmetric monoidal functor
with respect to the respective cartesian symmetric monoidal structures. We
will also construct an appropriate symmetric monoidal structure on AlgOpqp,
and show that the functor LMod: AlgOpyp, — PrY can be upgraded to a
symmetric monoidal functor as well.

Bialgebras will be defined in Section 3.3, and in Section 3.4 we will then
discuss how LMod induces functors Alge (AlgOp) — Monp (Cats) as well as
the variant functor Alge, (AlgOpsp,) — Mondy' (Cat., ), where Mongy (Cato) is
the oo-category of presentable O-monoidal co-categories. We will furthermore
make precise how we can interpret objects of Alg,(AlgOp) as pairs (C, A),
where C is an O ® Assoc-monoidal co-category, and A is an Assoc, O-bialgebra
in C.

3.1 Modules over algebras

In this section we will construct a functor LMod: AlgOp — Cats, imple-
menting the idea described in the introduction to Chapter 3. To do so we first
need to construct the oco-category AlgOp, which is to have as objects pairs
(C, A) with C a monoidal co-category and A an associative algebra in C. We
can thus interpret AlgOp as a sort of co-category of algebras not only in a
single monoidal co-category, but a whole collection of them — in this case all
of them. The notion that encapsulates the idea of a collection of monoidal
oo-categories is that of a cocartesian family of monoidal co-categories, which
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we will define in Section 3.1.1. The process of forming algebras in cocartesian
families of monoidal co-categories is then defined and studied in Section 3.1.2,
and everything is put together to construct AlgOp and LMod in Section 3.1.3.

3.1.1 Cocartesian families of monoidal oco-categories

In this section we discuss the notion cocartesian families of O-monoidal
oco-categories for oo-operads O. We start in Section 3.1.1.1 with the defi-
nition. In Section 3.1.1.2 we discuss an important example: The universal
cocartesian family of O-monoidal co-categories, which can be though of as
the collection of all O-monoidal co-categories. In particular, this will be the
example that we will use to define AlgOp and LMod as discussed in the in-
troduction to Chapter 3. We end the section with Section 3.1.1.3, in which
we discuss the interaction between cocartesian families and products. This
will be relevant later, when we want to argue that the functor to be defined
LMod: AlgOp — Cat is compatible with products.

3.1.1.1 Definition

As we want to form oo-categories like AlgOp in which objects are alge-
bras not just in a single monoidal co-category, but in a whole collection of
monoidal co-categories, we first need a definition that encapsulates the idea of
combining a collection of monoidal co-categories into a single mathematical
object.

If O is an co-operad, then by [HA, 2.4.2.4] a cocartesian fibration over O is
an O-monoidal co-category if and only if the associated functor O® — Cat,
is an O-monoid. We can thus consider a functor

F:C — Monp(Cate)

for some oo-category C as parametrizing a collection of O-monoidal co-cate-
gories by C. Composing with the inclusion of Monp(Cats) into the functor
category Fun(O®, Cat, ), we obtain a functor

F': C — Fun(0%, Cato)

of which we can take the adjoint Fli0® xC — Cato,. By passing to the
cocartesian fibration classified by the functor I’ we then obtain a cocarte-
sian fibration p: D® — O® x C. This cocartesian fibration will have extra
properties that correspond to F’ factoring over Mone (Cate,). This leads us
to the following proposition and definition.

Proposition 3.1.1.1. Let C be an co-category, O an co-operad, and
p: D® - 0% xC

a cocartesian fibration. Then the following are equivalent.
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3.1 Modules over algebras

(1) The functor F: C — Fun(O®, Catw,) that corresponds to p under the
equivalence

COCFIH(OP x €) <X Fun(0® x C, Catos) <=2 Fun(C, Fun(O®, Cat..))
factors through Mone (Caty).

(2) For every object X of C the restriction px : D?g — O% s a cocartesian
fibration of co-operads®. @

Proof. Let G := Gr™*(p), let F be as in (1), and let X be an object of C. Natu-
rality of the Grothendieck construction® (see [GHN17, A.32]) implies that the
cocartesian fibration px is classified by the restriction of G to O® ~ O®x{X}.
[HA, 2.4.2.4] implies that px is a cocartesian fibration of oo-operads if and

only if this restriction is an O-monoid. Using naturality of (—) we can refor-
mulate this as follows: The cocartesian fibration px is a cocartesian fibration
of oo-operads if and only if F(X) is an O-monoid. As Monp(Cates,) is de-
fined as the full subcategory of Fun(O®, Cats,) of O-monoids, this finishes
the proof. O

Definition 3.1.1.2 ([HA, Definition 4.8.3.1]). Let C be an oco-category and
O an oc-operad. A cocartesian C-family of O-monoidal co-categories is a
cocartesian fibration p: D® — O® x C satisfying the conditions in Proposi-
tion 3.1.1.1.

We let coCFamep(C) be the full subcategory of co€Fib(O® x C) spanned
by cocartesian C-families of O-monoidal co-categories. O

Remark 3.1.1.3 ([HA, 4.8.3.3]). Let C be an oo-category and O an oo-
operad. Let ¢ be the inclusion of Monp(Cats,) into Fun(O%, Caty,).

Then the equivalences Gr and (—) as in Proposition 3.1.1.1 restrict as in
the following commutative diagram where the right vertical functor is the
inclusion, and such that all horizontal functors are equivalences.

Fun(C, Fun(O®, Cata ) — = Fun(O x €, Catay) —2 coCFib(OP x C)

~

Fun(C, Monp(Cats)) ~ coCFamp(C)

Note that Fun(C, Mone (Cats)) is contravariantly functorial in C and* O,
so the construction of coCFame (C) must be as well. Using naturality of (—)

2See [HA, 2.1.2.13] for a definition

3Precomposing a functor into Cate, by some functor ¢ corresponds to taking the base
change along ¢ of the corresponding cocartesian fibration.

AIf o: O'® — OP is a morphism of co-operads, then it follows directly from the definition
that the functor a*: Fun(O%®,Cates) — Fun(O'®,Catss) restricts to a functor on
monoids.
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and Gr (see [GHN17, A.32] and [Maz19]) we can describe this functoriality
explicitly as follows.

Let G: C' — C be a functor of oo-categories, a: O'® — O® a morphism
of oo-operads, and F': C — Monp(Cate,) a functor corresponding under the
above equivalence to a cocartesian C-family of O-monoidal co-categories p.
Then the composite functor

c%ely Monp (Cateo) LN Mone- (Cate )

corresponds under the above functor to the pullback p’ of p along a x G, as
in the following diagram.

DR s D®

p’l lp (3.1)

O/®XC/W>O®XC

In particular, the pullback of a cocartesian family of monoidal oco-categories
along a functor of the form a x G is again a cocartesian family of monoidal
oo-categories. O

3.1.1.2 The universal family

In this section we discuss the universal cocartesian family of O-monoidal
oo-categories, from which we can obtain every other cocartesian family of O-
monoidal co-categories by pulling back. This will also be the main example
that we will apply later constructions to.

Definition 3.1.1.4 ([HA, 4.8.3.3]). Let O be an oo-operad.
We define -
P : Monp (Catos)® — OF x Mone (Cats)

to be the cocartesian Mong (Caty, )-family of O-monoidal co-categories that
under the equivalence in Remark 3.1.1.3 corresponds to the identity functor
idMono(Catoo)~ <>
Remark 3.1.1.5 ([HA, 4.8.3.3]). Let O be an oo-operad, let C be an oco-
category, and let p: D® — O® xC be a cocartesian C-family of O-monoidal co-
categories. Let F': C — Monp(Cate,) be the functor corresponding to p under
the equivalence in Remark 3.1.1.3. Then F factors as F' =~ idyone (cato) © F
so by Remark 3.1.1.3 we can conclude that there is a pullback diagram as
follows.

D® — % Monp(Catw,)®

”J e

® ®
0¥ xC W 0% x Mon@(@atoo)
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3.1 Modules over algebras

3.1.1.3 Compatibility of fibers with products

The property described in the following proposition and definition regard-
ing a cocartesian family of monoidal co-categories’ interaction with products
will be needed later.

Proposition 3.1.1.6. Let C be an co-category, O an oo-operad,
p: D® = 0% xC
a cocartesian C-family of O-monoidal co-categories, and
F: C — Monp(Cats)

the functor corresponding to p as in Proposition 3.1.1.1. Assume that C admits
all products. Then the following are equivalent.

(1) F preserves products.
(2) For every object O in O% the cocartesian fibration

po: DS =D xpsyc ({0} xC) 22 {0} xC S ¢
has fibers compatible with products in the sense of Definition C.2.0.1.

(8) For every object O in O the cocartesian fibration
po: DY =D xpeyxc ({0} xC) 22 {0} xC = ¢C

has fibers compatible with products in the sense of Definition C.2.0.1.
v

Proof. Proof that (1) implies (2): Let ¢ denote the inclusion of the full sub-
category Monp(Cats,) into Fun(O®, Cats,), which preserves products by
Proposition F.2.0.1. Let O be an object in O%. As limits in in functor cat-
egories are computed pointwise by [HTT, 5.1.2.3], the evaluation functor
evo: Fun(O®, Caty,) — Caty, preserves products as well, and thus the com-
posite evporoF preserves products. By using naturality of the Grothendieck
construction and (—) we can conclude that the cocartesian fibration po is
classified by evp oro F', and hence po having fibers compatible with products
follows from Remark C.2.0.2.

Proof that (2) implies (3): Clear.

Proof that (3) implies (1): Using notation from above, that po has fibers
compatible with products for every object O in O implies by Remark C.2.0.2
that evporoF preserves products for every O in O. Combining that products
in functor categories are detected pointwise and that the composition

Monp (Cate,) = Fun(O%®, Caty,) — Fun(O, Caty,)

detects products as well by Proposition F.2.0.1 we can conclude that F' pre-
serves products. O
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Definition 3.1.1.7. Let C be an oo-category, O an co-operad, and
p: D® - 0% x C

a cocartesian C-family of O-monoidal co-categories.
We say that p has the product-fiber-property if C admits all products and
satisfies the equivalent conditions in Proposition 3.1.1.6. &

The product-fiber-property is preserved by taking the pullback as in Re-
mark 3.1.1.3 of a cocartesian family of monoidal co-categories, as long as the
functor G preserves products, as we record in the following proposition.

Proposition 3.1.1.8. In the situation of diagram (3.1) of Remark 3.1.1.3,
if p has the product-fiber-property, C' admits all products, and G preserves
products, then p' has the product-fiber property as well. V)

Proof. Follows immediately from the definition in terms of condition (2) in
Proposition 3.1.1.6 using that (induced maps on) fibers of p’ can be identified
with (induced maps on) fibers of p by Proposition C.1.1.1. O

Finally, we end this section by noting that the universal cocartesian family
of O-monoidal co-categories satisfies the product-fiber-property.

Proposition 3.1.1.9. Let O be an co-operad. Then p® has the product-fiber-
property. Q

Proof. Follows immediately from the description Proposition 3.1.1.6 (1), as
the functor corresponding to p® is by definition the identity functor, which
preserves products. O

3.1.2 Algebras in cocartesian families

Given a cocartesian C-family of O-monoidal co-categories p: D€ — O%® xC,
Lurie defines® in [HA, Notation 4.8.3.11] an oo-category Algy (D) whose
objects can be described as being pairs (X, A) where X is an object of C
(and hence determines a O-monoidal co-category DY) and A is an object of
Algor /o (D%). We will discuss a definition of Algp0(D) in Section 3.1.2.1.
Lurie’s definition is not quite written down like the definition we present how-
ever, so we next show in Section 3.1.2.2 that the two definitions agree. We will
then spend some time discussing various functorialities exhibited by this con-
struction. Fixing O’ — O, we can vary the cocartesian family of @-monoidal
oo-categories D by taking pullbacks along functors ' — C. In fact, we showed
in Remark 3.1.1.5 that every family of O-monoidal co-categories can be ob-
tained like this from the universal family of O-monoidal co-categories p©.
The main message of Section 3.1.2.3 is that we also do not obtain anything

5While the definition is only written down for O'® = ©O® = Assoc® and
O'® = O® = LM®, we present a straightforward generalization.

38



3.1 Modules over algebras

new when taking algebras: Alg, /O(D) can be obtained as a pullback of

Alg, /O(mlo(eatw)). More useful is functoriality when varying O’, which
we discuss in Section 3.1.2.4, and functoriality that is encoded by the family
itself, which will be discussed in Section 3.1.2.5, and in which we we will show
that there is a cocartesian fibration Algy ,o(D) — C. We end this section
with Section 3.1.2.6, in which we discuss the interaction of this cocartesian
fibration with products in C.

3.1.2.1 Definition

Definition 3.1.2.1. Let C be an oo-category, a: O'® — O® a morphism
of oco-operads, and p: D® — Q% x C a cocartesian C-family of O-monoidal

oo-categories. Then we define Algy, o (D) together with pre and pr,, as the
following pullback of co-categories.

Algoy j0(D) —2E Fun(0'®, D®)

pre | 2

C E— FUD(O/®,O® X C)
(axide)

&

Proposition 3.1.2.2. Let C be an oco-category, a: O'® — O® a morphism
of co-operads, and p: D® — O® x C a cocartesian C-family of O-monoidal
oo-categories. -

Let A be an object of Algo,/o(D). Then the following are equivalent.

(1) The functor prp,,(A): O'® — D® sends inert morphisms to p-cocarte-
sian ones.

(2) The functor A’: O'® — Dgc(A) over O® which corresponds to A under
the equivalence

Algor/0(D) ey (a)
~ Fun(O'®, D%) Xpuno® 09 xc) C Xc {pre(A)}
~ Fun (0", D%) Xpun(o®,09xc) {Pre(4)}
~ Fun(O'®, D%) X pyn(0r® 09 xc)
Fun(O'®, 0% x {pre(A4)}) Xpun(o® 0oy {a}
~ Fun(0'®, D% xpaxc (0% x {pre(A4)})) Xpun(ore,0e) {a}

~ '® ®
~ Funs (0%, D%, ()

lies in the full subcategory Algo ;0(Dpr.(a)) of O'-algebras in the O-
monoidal co-category Dgc(A)' v
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Proof. Let A’ be as in (2). The following commutative diagram summarizes
the situation, where pp: O® — Fin, is the canonical morphism of co-operads,
¢ is inclusion of O%® ~ O® x {pr;(A)}, and the square in the middle right is
a pullback square.

Prpu, (4)

[ 1

o® A,po DO
prc(A)

x lpmcw l"

0% — 5 09 xC

Jpe

Fin,

By definition [HA, 2.1.2.7] A’ lies in Algo,/O(Dprc(A)) if and only if A carries
inert morphisms to po © pp,,(a)-cocartesian ones. As « is a morphism of
oo-operads, it sends inert morphisms to pp-cocartesian ones, so it follows from
[HTT, 2.4.1.3 (3)] that A" lies in Algp0(Dpr(a)) if and only if it carries
inert morphisms to pp,(a)-cocartesian ones, which by Proposition C.1.1.1
is the case if and only if prp,,(A) carries inert morphisms to p-cocartesian
ones. O

Definition 3.1.2.3. Let C be an oo-category, a: O'® — O% a morphism
of oco-operads, and p: D® — O x C a cocartesian C-family of O-monoidal
oo-categories. -

Then we define Algy ,o(D) to be the full subcategory of Algy (D)
spanned by those objects satisfying the equivalent conditions in Proposi-
tion 3.1.2.2. &

Remark 3.1.2.4. In the situation of Definition 3.1.2.3 it follows immediately
from Proposition 3.1.2.2 (2) that for any object C of C the fiber Algy, (D)
is naturally equivalent to Algy /o (De). O

3.1.2.2 Comparison with Lurie’s definition

Lurie’s definition is not phrased quite like Definition 3.1.2.3, so we show
below in Proposition 3.1.2.7 that Lurie’s definition is equivalent to the one
we used.

Definition 3.1.2.5 ([HA, 4.8.3.11]). Let C be a quasicategory represent-
ing an co-category C, let 0 be a quasicategorical co-operad representing an
oo-operad O, let p: D® — 0% x C be an inner fibration representing a cocarte-
sian C-family of O-monoidal co-categories, and let a: 0’® — 0% be a mor-

phism of quasicategorical co-operads representing a morphism of oco-operads
a: 0% - 0%,
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We define an unnamed property for functors of quasicategories q: A — C,
which is to hold if there is a natural bijection

MorsSet/c (_7 q) = MorsSet/u® “c (a X =, P)

of functors sSet c — Set. &

Remark 3.1.2.6. In the situation of Definition 3.1.2.5, the Yoneda lemma
implies that if a q with the property exists, then it is unique up to canonical
isomorphism as an object of sSet . O
Proposition 3.1.2.7. Let C be a quasicategory representing an co-category
C, let 0 be a quasicategorical co-operad representing an oo-operad O, let
p: D® — 0% x C be an inner fibration of quasicategories representing a co-
cartesian C-family of O-monoidal co-categories, and leta: 0'® — 0% be a mor-
phism of quasicategorical co-operads representing a morphism of co-operads
a: O'® — 0%,
Define E and q via the following categorical pullback square in sSet.

E— Fun(0'®7D®)

l Jr-

¢ ——— Fun(0'®,0% x C)
(axide)

Then the following hold.
(1) The map q satisfies the property defined in Definition 3.1.2.5.

(2) In particular, if a = idassoc and a = idLm, then q can be identified with

the functors of quasicategories A\lé(D) — C and LMod(D) — C as defined
in [HA, 4.8.3.11], respectively.

(8) The pullback is a homotopy pullback with respect to the Joyal model
structure.

(4) The pullback square represents the pullback square of oo-categories in
Definition 3.1.2.1 that defines Algp: o (D).

(5) If a = idassoc, then Alg(D) — C as defined in [HA, 4.8.3.11] repre-
sents Alg asoc(D) as defined in Definition 3.1.2.3. If a = idim, then
LMod(D) — C as defined in [HA, 4.8.5.11] represents Alg, (D) as
defined in Definition 3.1.2.3. v

Proof. Proof of (1): Let s: K — C be a map of simplicial sets. Then there is
a sequence of bijections natural in s (as an object of sSet /) as follows.

MorsSet/c (Sv q)
= Morgset (K7 E) X Morgse: (K,C) {S}’
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=~ Morsset (K, Fun(0'®,D%))

X Morgset (K,Fun(0'® ,09 xC)) Morsset (X, C) X Mor.se: (K,C) {s}
= Morsset (K,Fun(O@,D@)) X Morsser (K,Fun(0’® 09 xC)) {(a/G)}
= MorsSet(D/® X K7D®) X Morgser (09 xK,09 xC) 1(2 X 8)}

= Morsset/D® XC(a X 8,P)

Proof of (2): Follows directly from the definition.

Proof of (3): By assumption, p is a cocartesian fibration in the sense of
[HTT, 2.4.2.1], so that by [HTT, 3.1.2.1] the functor of quasicategories p, is
again a cocartesian fibration in the sense of [HTT, 2.4.2.1]. That the pullback
square is a homotopy pullback square in the Joyal model structure follows
now by applying [HTT, 3.3.1.4] (to the opposite diagram).

Proof of (4): Follows directly from (3).

Proof of (5): Immediate by unwrapping the definitions of the respective
full subcategories. O

3.1.2.3 Functoriality when varying families

We next consider functoriality of oco-categories of algebras of cocartesian
families of monoidal co-categories when we vary the cocartesian family. We
first discuss functoriality in the oo-operad factor, for which the following
proposition can be considered a generalization of Proposition E.2.0.2.

Remark 3.1.2.8. Let C be an oco-category, let a: O'® — O% as well as
B: 0"® — O'® be morphisms of co-operads, and p: D® — O% x C a co-
cartesian C-family of O-monoidal oo-categories. Assume that the following
diagram is a pullback diagram in Cat.

pe G, ps

pl lp (3.2)

0% xC———— 0% xC
axide
By Remark 3.1.1.3 is p’ is a cocartesian C-family of @’-monoidal co-categories.

Consider the following commutative diagram, where the square on the left
is the pullback square of Definition 3.1.2.1 and the square on the right is
induced by the pullback square (3.2) by applying Fun(O”®, —) and hence
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3.1 Modules over algebras

also a pullback square.

— . ®
Algon jor (D) 220, Pun(072, D) — = Fun(0"®, D)

pre | 2 [

C —— Fun(0"®,0'® x C) ——— Fun(0"®, 0% x C)
L (ﬂXidc) (Oz><1dc)*

(D) ((aop) xide)

By the pasting lemma for pullbacks [HTT, 4.4.2.1], the outer square is a
pullback as well, so that we obtain a canonical identification as follows.

Algon/ol (D/) ~ AlgO///O(D)
Furthermore, with the description of p’-cocartesian morphisms from Propo-
sition C.1.1.1 it follows directly from Definition 3.1.2.3 in the form of Propo-
sition 3.1.2.2 (1) that this equivalence restricts to an equivalence of co-cate-
gories of algebras as follows.

Algou/o/ (D/) ~ Algo///o(p) <>

We now turn to functoriality in the oo-category that parametrizes our
cocartesian family of monoidal co-categories.

Construction 3.1.2.9. Let F: ¢’ — C be a functor of oco-categories, let
a: O'® — 0% be a morphism of co-operads, and let p: D® — O%® x C be a
cocartesian C-family of O-monoidal co-categories. Assume that the following
diagram is a pullback diagram in Caty.

pe G, pe

/| b g

0% xC ——— 0® xC
idpg xF
Remark 3.1.1.3 implies that p’ is a cocartesian C’-family of O-monoidal oco-
categories.
Then there is a commutative cube as follows

Mool e
F. .-
Algo//o(D) Prrun Fun((’)/®, D®) p;
| .
pre c’ Fun(O'®, 0% x ')

(axider)
F
’ / %@XF)*

Fun(O'®, 0% x C)

43



Chapter 3 Bialgebras and modules over them

Wheig/the front and bic/k squares are the respective defining pullback squares
for Algy ,0(D) and Algp,o(D’), and the dashed functor F is the induced
one.

The square on the right is obtained by applying Fun(OQ’®, —) to the pull-
back square (x) and is thus a pullback square as well. As the front square is
also a pullback square, it follows that their composition, which we can iden-
tify with the composition of the left and back square, is a pullback square as
well. As the back square is also a pullback square, if finally follows using the
pasting law for pullbacks [HTT, 4.4.2.1] that the square

— P~
AlgO//o(D/) — Alg@'/O(D)

prc/l lprc (3.3)

c —C
is a pullback square. &

Proposition 3.1.2.10. Let us assume we are in the situation of Construc-
tion 3.1.2.9. Then the pullback square (3.3) restricts to a pullback square in
Cato, as follows.

F,
Algp)0(D') —— Algp 0(D)

Prc/l J{PTC

¢
v

Proof. 1t suffices to show that the dashed functor in the following commuta-
tive diagram (where the vertical functors are the canonical inclusions) exists
and that the square is a pullback square in Cat.

l l

AlgO’/O(D/) = AlgO//o(D)

Let A be an object in Algy /o (D'). Then by Definition 3.1.2.3 and Proposi-
tion 3.1.2.2 (1), A is in Alge, o (D) if and only if pre,, (A): O'® — D'® sends
inert morphisms to p’-cocartesian morphisms, which by Proposition C.1.1.1
is the case if and only if G® o prp,,(4) ~ prp,,(Fi(A)) sends inert mor-
phisms to p-cocartesian morphisms. Thus A is in Alge, /O(D’ ) if and only if
Fy(A) is in Algp (D). This shows that in the following commutative dia-
gram of co-categories, where the small square is defined as a pullback square,
the dashed functor making the outer square commute exists, and that the
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induced dotted functor is essentially surjective (this uses the description of
& given in Proposition B.5.2.1).

Algyr/0(D') 7 Algor/0(D)

By Proposition B.5.2.1 the functor ¢ is fully faithful, so the dotted functor
is fully faithful as well and hence an equivalence. It follows that the outer
square is a pullback square because the inner square is. O

Remark 3.1.2.11. Let C be an oo-category, let a.: O'® — O® be a morphism
of co-operads, let p: D® — O x C be a cocartesian C-family of O-monoidal
oo-categories, and let F': C — Monp(Cats) be the functor corresponding
to p under the equivalence in Remark 3.1.1.3. By Remark 3.1.1.5 there is a
pullback diagram as follows.

DE ——— Monp(Cate,)®

1 i

® ®
0¥ xC g xF 0% x Monp (Cat)

Applying Proposition 3.1.2.10 we obtain a pullback diagram of algebra oo-
categories.

F, T

Prcl lprl\/lono (Catoo)

C —_— Mone (Cateo)

3.1.2.4 Functoriality when varying the operad

In this section we discuss functoriality of Algy /o (D) when varying O'.
Construction 3.1.2.12. Let C be an oco-category, lat a: O'® — O% as well

as B: O"® — O'® be morphisms of co-operads, and let p: D® — O® x C be
a cocartesian C-family of O-monoidal co-categories.
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Then the commutative diagram

(axide)

Fun(0'®, 0% x C) B Fun(O'®, D®)

idcl J{B* J{ﬂ*
Fun(0"®,0% x C) +——— Fun(0"%,D¥)

—_
(=) ((aoB) xide)

induces a functor on pullbacks as follows.

B*: Algor/0(D) = Algor0(D) %

Remark 3.1.2.13. In the situation of Construction 3.1.2.12, if we are given
another morphism of co-operads v: O"'® — ©"”®, then it is clear from the
definition that the composition v* o §* is equivalent to (8 o v)*. &

Proposition 3.1.2.14. In the situation of Construction 3.1.2.12, the functor
B*: Algorj0(D) = Algpr 0 (D)
restricts to a functor on algebras as follows.

Proof. What we have to show is by Definition 3.1.2.3 in the form of Proposi-
tion 3.1.2.2 (1) that the functor

B*: Fun(0/®,D®) — Fun(@"®,D®)

sends functors that send inert morphisms to p-cocartesian morphisms to func-
tors with the same property. But this follows immediately from the fact that,
as it is a morphism of oc-operads, 8 preserves inert morphisms. O

Remark 3.1.2.15. Assume we are in the situation of Construction 3.1.2.12,
and let C' be an object of C. The functor 5*: Algy, /0 (D) = Algon/0(D) is
a functor over C and thus induces a functor as follows.

Bt Algoj0(D)e = Algor,0(D)c

It follows directly from the definition together with Remark 3.1.2.4 that this
functor can be identified with the following functor induced by .

Remark 3.1.2.16. Assume we are in the situation of Construction 3.1.2.9
and we are given another morphism of co-operads 3: O"® — O'®. Then it
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follows from the respective constructions that 8* and F, commute in the
sense that there is a commutative diagram as follows.

F.
AlgO//o(Dl) - Alg@,/O(D)

ﬁ*l lﬁ*

3.1.2.5 Functoriality encoded by families

Let C be an oo-category, let a: O'® — O® be a morphism of co-operads,
and let p: D® — O%® x C be a cocartesian C-family of J-monoidal co-cate-
gories. In Section 3.1.2.1 we constructed a functor of co-categories

and identified the fiber of pre over an object C' in C with Algy,o(Dc), see
Remark 3.1.2.4.

As was explained at the start of Section 3.1.1, we can interpret p as a
collection of O-monoidal co-categories that is indexed by C. We will show
below that pr, is again a cocartesian fibration, and thus classified by a functor
C — Caty, which we can then interpret as encoding the functoriality of the
construction Alge, /o (—) that produces the co-category of O’-algebras out of
an O-monoidal co-category.

Proposition 3.1.2.17 ([HA, 4.8.3.13]). Let C be an oo-category and let
a: O'® — 0% be a morphism of oco-operads. Let p: D® — O® x C be a
cocartesian C-family of O-monoidal co-categories. Then the following hold.

(1) pre: Xl/go,/o(D) — C is a cocartesian fibration and a morphism f is
pre-cocartesian if and only if prey, (f)(X) is p-cocartesian for every
object X of O'® (see Definition 3.1.2.1 for this notation,).

(2) pre: Algos0(D) — C is a cocartesian fibration and a morphism f in
Algor0(D) is pre-cocartesian if and only if Pre, (f)(X) is p-cocarte-
sian for every object X of O'®.

(3) A morphism f in Algo,o(D) is pre-cocartesian if and only if the
morphism pre,, (f)(X) is p-cocartesian for every object X of O'.  Q

Proof. Proof of (1): This is a combination of [HTT, 3.1.2.1] (preservation
of cocartesian fibrations under application of Fun(O'®,—)) with Proposi-
tion C.1.1.1 (preservation of cocartesian fibrations under pullbacks).

Proof of (2): It suffices to verify the assumption needed to apply the dual of

Proposition C.1.2.1 to the restriction of pre: Kl/go,/o (D) — Cto Algo /0(D).
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So let A be an object in Algo,/O(D) and f: A — B a pre-cocartesian mor-

phism in Algy, (D). We have to show that B also lies in Algy, /o (D). By
definition this means that we need to show that prg,, (B): O'® — D® sends
inert morphisms to p-cocartesian morphisms. So let p: X — Y be an inert
morphism in O’®. We obtain a commutative diagram in D® as follows.

Tpun (F)(X)
erun(A) (X) pF—> Fun(B
erun<A><«:>J Preun(B) (¢ (*)
PIrun (A) (Y) Prpgs (£ (Y erun(B

As f is pre-cocartesian, the top and bottom horizontal morphisms are p-
cocartesian by (1). As A lies in Alg,, /O(D), the left vertical morphism is
p-cocartesian as well. That the right vertical morphism is also p-cocartesian
now follows from [HTT, 2.4.1.7].

Proof of (3): Let f: A — B be a morphism in Algy, /o (D) and assume that
for every object Y in O’ the morphism prg,,(f)(Y) in D® is p-cocartesian.
Let X ~ X @& --- @ X,, be an object in (’)2%, and denote by v;: X — X;
the inert morphism in O'® lying over p‘. We have to show that then also
Prean(f)(X) is p-cocartesian.

Let 1 < i < n. Consider the following diagram in D®

D v D,
/ i@ i@j

Prpuy, (f)(X Prrun (B)(7:)
erun — — PIfun (B —— — 7 Plrun (B) (XZ)

DT (A) (1) %n(f)(xi)

erun ) (XZ )

lying over the following commutative diagram in O% x C

Pl"c (B)) —20 M ((X,), pre (B))

(id,pre(£)) J
id

pre(f) (a7),id)
Leprelh, pl"c( ) — (a(Xi), pre(B))

C
\ (id,pre (f))

i), pre(A))

(a(X),pr
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and such that the morphisms ® and ¥ in D® are p-cocartesian lifts of
(ida(x), Pre(f)) and (a(vi),idp:, (By), respectively, and such that the dashed
morphisms are the canonical fillers. As +y; is inert and A in Alg,, /O(D) the
morphism prp,, (A)(7;) is p-cocartesian, and the morphism prp,,, (f)(X;) is
p-cocartesian by assumption, as X; is an object of O’. Considering the outer
diagram it thus follows from [HTT, 2.4.1.7] that ©; is p-cocartesian, and thus
by [HTT, 2.4.1.5] an equivalence.

We now want to conclude that also ® must be an equivalence. For this,
note that as pp, (p) is a cocartesian fibration of oo-operads, the following
functor induced by the inert morphisms a(~;) on fibers

(D?rc(B)) a(X) M 1§121n (Dgc(B))a(Xi)

is an equivalence of co-categories. By Proposition C.1.1.1 we can identify this
functor with the following functor.

Hhaen @OV T 02,

1<i<n

D®

(a(X),pre(B)) i):pre(B))

The morphism O lies in D?@O‘(X)’prc(B)), and by definition ©; ~ (a(y;),id)i(0).
As we previously concluded that ©; is an equivalence for every 1 < i < n
we can thus conclude that © is an equivalence, and hence p-cocartesian by
[HTT, 2.4.1.5]. As ® is p-cocartesian by definition we can then use [HTT,

2.4.1.7] to deduce that prg,,(f)(X) is also p-cocartesian. O

Remark 3.1.2.18. Let C be an oo-category, a: O'® — O% a morphism
of oo-operads, and p: D® — O%® x C a cocartesian C-family of O-monoidal
oo-categories. A morphism g: C — C’ in C induces on fibers of p an O-
monoidal functor® G': D% — D?,. Combining the identifications

Alg(y/o(p}?) = Algo'/o(p®)X

from Remark 3.1.2.4 (for X = C as well as X = C”) with Proposition 3.1.2.17,
in particular description Proposition 3.1.2.17 (2), we can conclude that we
can identify the functor induced by g on fibers of pry: Alg,, /O(D) — C with
the functor Alge, /0 (G). &

Definition 3.1.2.19. Let a: O’'® — O be a morphism of co-operads. Then
we define
Algor /0 Monp (Cats) — Catu

the be the functor that the cocartesian fibration
Pritono(eat) Algorjo (Mono(€atec) ) — Mono(€atac)
is classified by. &

6This is clear from Proposition 3.1.1.1.
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Remark 3.1.2.20. Let a: O'® — O® be a morphism of co-operads. The
functor Algy /o sends by Remark 3.1.2.4 an O-monoidal oo-category C to
the oco-category Algo,/o(C), so that we can interpret Algy o as encoding
the full functoriality of the construction of oco-categories of (O’'-algebras in
O-monoidal co-categories.

Now let C be an oo-category, p: D® — O%® x C a cocartesian C-family of
O-monoidal co-categories, and F': C — Mone (Caty,) the functor correspond-
ing to p under the equivalence in Remark 3.1.1.3. Then it follows from Re-
mark 3.1.2.11 and naturality of the Grothendieck construction (see [GHN17,
A.32] and [Maz19]) that the cocartesian fibration

is classified by the following composition.

Alg
28010, Gat, o
Proposition 3.1.2.21. Let C be an oco-category, a: O'® — O as well as
B: 0"% — O'® morphisms of co-operads, and p: D® — O® xC a cocartesian
C-family of O-monoidal co-categories.

Then the functor

¢ L Mono (Catoo)

B*: Algor0(D) = Algor /0(D)

constructed in Construction 8.1.2.12 and Proposition 3.1.2.14, which by con-
struction is a functor over C, is a functor of cocartesian fibrations, i. e. sends
pre-cocartesian morphisms to prg-cocartesian morphisms. Q

Proof. By definition of §* there is a commutative diagram as follows.

Fun(0'®, D?®) ", Fun(0"®,D®)
erunT Terun
5"

)

As the top horizontal functor clearly preserves pointwise p-cocartesian mor-
phisms, criterion Proposition 3.1.2.17 (2) implies that the middle horizontal
functor preserves pr-cocartesian morphisms. O

3.1.2.6 Algebras in cocartesian families and products

Let C and C’ be two O-monoidal co-categories. Then there is an induced
O-monoidal structure on C x C’, and it is reasonable to expect that there
should be an equivalence as follows.

Algo 10(C x C') = Algp /0(C) x Algo /0(C')
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The next proposition shows that this is indeed the case.

Proposition 3.1.2.22. Let C be an oo-category, let a: O'® — O be a
morphism of co-operads, and let p: D® — O%® x C be a cocartesian C-family
of O-monoidal co-categories that has the product-fiber property from Defini-
tion 8.1.1.7. Then the cocartesian fibrations

Prc: KI?%O//O(D) —C

and
have fibers compatible with products in the sense of Definition C.2.0.1. v

Proof. Let I be a set, let X; be an object in C for every element i of I, and
let X = Hie ; Xi. We have to prove that the two functors induced on fibers

e [Licspri e
Algo jo(D)x —— H Algor /0(D)x, (*)
iel
and
ITicrprsy
Algo/o(D)x —— HAIgO’/O(D)Xi (%)
iel

are equivalences.
We start by considering the following commutative triangle induced by the
projections pr;: X — X;.

H, (priy)
= 0% X[1;e; 0% Hie] D%

\ / (4 % )

Both px and pr; in this diagram are cocartesian fibrations, and the horizon-
tal functor sends px-cocartesian morphisms to prj-cocartesian morphisms.
The statement for px and pr; follows from p being a cocartesian fibration
and applying Proposition C.1.1.1, and in the case of the functor on the right
also using that products of cocartesian fibrations are again cocartesian fi-
brations by [HTT, 3.1.2.1]. This also gives a description of the respective
cocartesian morphisms, and with that the statement about the horizontal
functor boils down to a statement about p-cocartesian morphisms that holds
by [HTT, 2.4.1.7]. By assumption p has the product-fiber property, which pre-
cisely means that the horizontal functor in the above diagram is a fiberwise
(over O%?) equivalence. It now follows from [HTT, 2.4.4.4] that the horizontal
functor is itself an equivalence.
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Chapter 3 Bialgebras and modules over them

We now consider the first of the two functors, (*). Unpacking the definition

(Definition 3.1.2.1) of Xl?go,/o (D) as a pullback and using Proposition C.1.1.1
we can identify the functor () with

Fun((’)@,D@) —)Hie[(idxpri)! HFun((’)/®,D®)

id,,@ X const x id, g xconstx,

where the fibers are taken over Fun(O'® O® x C), and id x pr; is the nat-
ural transformation of functors O'® — O% x C from idpe X consty to
idpe x constx, that is given by the identity in the O% factor and pr; in
the C factor.

Using that Fun(O'®, —) commutes with pullbacks together with [HTT,
3.1.2.1] we can further identify functor (x) with the functor

Hie](pri!
_—

Funee (02, D2) L [T Funes (0%, D% )

and in another step, using composability of pullback diagrams, that the func-
tor Fun(O’®, —) commutes with products, Proposition C.1.1.1 and [HTT,
3.1.2.1] some more, we can further identify this with the following functor.

I Tiy
Fungs (0, 05) 0 Ty (o@,o@ M., 00 HD;%)
el

This exactly Funpe (O’®, —) applied to the horizontal functor in (x * *), so
this is an equivalence.

Using Proposition 3.1.2.2 one can see that under these equivalences the
functor (#x) (which is a restriction of (%) on domain and codomain to full
subcategories) corresponds to the application of Alg, e (—) to the horizontal
functor in (* * %), so this functor is also an equivalence. O

Corollary 3.1.2.23. Let a: O'® — O be a morphism of co-operads. Then
the cocartesian fibration

PI'Mono (Cata)  Alor /0 (1\71\0/110(621‘500)> — Monp (Cate)

has fibers compatible with products in the sense of Definition C.2.0.1. V)

Proof. Combine Proposition 3.1.2.22 and Proposition 3.1.1.9.

3.1.3 Functorial construction of co-categories of left
modules

In Definition 3.1.2.19 we constructed a functor

AlgAssoc/Assoc : MODASSOC (eatoo ) — eatoo
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3.1 Modules over algebras

that sends an (Assoc-)monoidal” co-category C to Alg(C) := Alg /Assoc(C); the
oo-category of Assoc-algebras in C, and can thus be interpreted as encoding
the functoriality of the construction C — Alg(C), see Remark 3.1.2.20.

In this section we will similarly construct a functor LMod that can be
interpreted as encoding the functoriality of the construction that maps a pair
(C, A) with C a monoidal co-category and A an associative algebra in C, to the
oo-category LMod 4(C) of left A modules®. For functoriality in C, a monoidal
functor F': ¢ — D should induce a functor LMod 4(C) — LModg (D) when
A is an associative algebra in C. For functoriality in A, we should be able
to form the base change along a morphisms of algebras f: A — B in C, i.e.
restricting the action, providing us with a functor LModp(C) — LMod 4(C).

We already have constructed an co-category whose objects can be described
as pairs (C, A) with C a monoidal co-category and A an associative algebra
in C, namely

‘Alg = Alg/—\ssoc//—\ssoc (mASSOC(ea’tOO))

see Remark 3.1.2.20. By taking algebras in mAssoc(Gatoo) with respect to
two other oo-operads, we will obtain a commutative diagram as follows.

AlgCMod ——— AlgObj ——— Alg

\ | / (3.4)

Monpssoc (Cates)

Objects in AlgLMod can be described as tuples (C, A, M), with C a monoidal
oco-category, A an associative algebra in C, and M a left module in C over
A. Objects in AlgObj can be described as tuples (C, A, X), with C and A
as before, but X just an object of C. The functors in diagram (3.4) are the
obvious forgetful functors.

However, Alg is not quite the oo-category needed to encode the functo-
riality of LMod that we alluded to at the start of this sub-subsection: A
morphism from (C, A) — (D, B) consists of a monoidal functor F': C — D
and a morphism F'(A) — B of algebras in D. So for our sought-after functo-
riality of LMod we would like the algebra-part of those morphisms to go in
the opposite direction. Luckily, the horizontal functors in diagram (3.4) are
morphisms of cocartesian fibrations over Monagoec(Cats ), S0 we can apply
the fiberwise —°P-construction to fix this. We obtain a commuting triangle

AlgOpL ModOp ——— AlgOpObjOp

\ / (3.5)

AlgOp

"We follow e.g. [HA, 4.1.1.10] and call Assoc-monoidal co-categories just monoidal
oco-categories.
8See [HA, 4.2] for this “pointwise” construction of co-categories of left modules.
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Chapter 3 Bialgebras and modules over them

that turns out to be a morphism of cocartesian fibrations over AlgOp. Now
AlgOp is the category we are looking for, but the fiber of the cocartesian
fibration

AlgOpLModOp — AlgOp

over (C, A) is LMod 4(C)°P. By passing to the opposite category fiberwise, and
converting the morphism of cocartesian fibrations to a natural transformation
of functors to Cats,, we obtain a natural transformation that evaluated at
(C, A) is given by the forgetful functor LMod4(C) — C.

Let us now give a brief overview of the subsections below. We will start
in Section 3.1.3.1 with reviewing the relevant oo-operads as well as some
morphisms between them that we will need. In Section 3.1.3.2 we will then
carry out the construction of LMod as a functor from AlgOp to Cat., as
outlined above. If C is a presentable monoidal co-category and A is an algebra
in C, then LMod 4 (C) is also presentable by [HA, 4.2.3.7 (1)]. In Section 3.1.3.3
we will define a variant AlgOpsy, of AlgOp whose objects can be thought of
as as pairs (C, A) where C is a presentable monoidal co-category and A is an
algebra in C, and show that LMod lifts to a functor from AlgOp,, to Prl.

3.1.3.1 Review of the relevant operads

Diagram (3.4) is constructed by taking algebras in mAssoc(Gatm) with
respect to different oco-operads, so we begin by discussing the relevant oo-
operads in this section.

Lurie defines in [HA, 4.2.1]° an oc-operad LM, which encodes the structure
of a left module over an associative algebra: If C is a symmetric monoidal
oo-category, then we can interpret an LM-algebra in C as a pair (A4, M), where
A is an associative algebra in C and M is a left module over A. Indeed, if C
is a 1-category, then this description holds literally, with the usual classical
notions of associative algebras and left modules over them, see [HA, 4.2.1.4].
The underlying co-category of LM is a discrete 1-category with two objects,
which we denote by a and m as in [HA, 4.2.1.1]. In the interpretation of an
LM-algebra in C as a pair (A, M) as before, the underlying object of A is given
by evaluation at a and the underlying object of M is given by evaluation at
m.

We next fix notation for some morphisms of oo-operads defined in [HA,
4.2.1] that we will need.

Definition 3.1.3.1. We let

LAssoc . Assoc® — LM®

9Note that our conventions are such that what we denote by LM® is what Lurie writes
as LM® or LM® (as we do not notationally distinguish between 1-categories as objects

of Cat and Catso). We also use LM to both denote to LM%> as well as a shorthand to

talk about the co-operad LM® — Fin,, which should not be confused with with the
different type of object that Lurie denotes by LM (see [HA, 4.2.1.1]).

o4



3.1 Modules over algebras

be the morphism of co-operads defined in [HA, 4.2.1.10] and
Vassoc . LM® — Assoc®

the morphism of co-operads defined in [HA, 4.2.1.9]. O

Continuing with our discussion from before, these to morphisms of oo-
operads can be interpreted as follows: tassoc induces a functor

AlgLM (C) — AlgAssoc (C)

that can be interpreted as mapping (A, M) to A (see [HA, 4.2.1.3)), and vassoc
induces a functor
AlgAssoc (C) - AlgLM (C)

that can be interpreted as mapping A to (A, A), with the second A in the
pair being A considered as a left module over itself (see [HA, 4.2.1.5]).

We will also need to make use of the trivial co-operad Triv defined in [HA,
2.1.1.20], over which algebras are nothing more than objects of the underlying
oo-category. Specifically, the underlying oo-category of Triv is discrete with
a unique object, and for any oc-operad O, the functor Algr, (O) — O
induced by evaluation at this object is an equivalence, see [HA, 2.1.3.5].

We can now define an additional morphism of oo-categories that we will
need.

Definition 3.1.3.2. We let
tTriv: Triv® — LM®
be the morphism of co-operads that under the equivalence
Algr, (LM) = LM, = {a,m}
corresponds to the element m. O

The previous discussion implies that we can interpret the functor induced
by LTriv
Alg (C) — Algr,,, (C)

as mapping (A, M) to the underlying object of M.

3.1.3.2 Comnstruction of LMod

We write O® B O’® for the coproduct of co-operads as discussed in [HA,
2.2.3]. We are now ready to construct diagram (3.4): The sequence of mor-
phisms of co-operads

. ssocBa riv SSOC
Assoc® —2— Assoc® H Triv® e v, | M@ HAsee, Aggoc® (3.6)

L J

id

Assoc®
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Chapter 3 Bialgebras and modules over them

induces as in Construction 3.1.2.12 and Proposition 3.1.2.14 on algebras in the
universal family of Assoc-monoidal co-categories pA**°° (see Definition 3.1.1.4)

a commutative diagram as follows, where we shorten mAssoc(Gato@) to Mon.

AlgLM/Assoc (MOH) - AlgAssocEElTriv/Assoc (MOH) - AlgAssoc/Assoc (MOH)

Monassoc (eatoo )

The functors to Monassoc(Cats, ) are the respective functors that are all called
PI'Monpgee (Catoo) 111 Definition 3.1.2.1, and which are cocartesian fibrations by
Proposition 3.1.2.17. The above diagram precisely implements the description
of diagram (3.4) given in the introduction to Section 3.1.3, as we will see below
in Remark 3.1.3.4. This justifies making the following definition.

Definition 3.1.3.3. We define
Alg = Algacoc/Assoc (l\f&u\mc (C’atoo)>
AlgObJ = AlgAssocBﬂTriv/Assoc (M\O/HASSOC<GatOO))

AlgLMod := Alg| \ /assoc (MonASSOC(GatOO))

and denote the respective functors'® prypo,, . (eat..) 10 Monassoc(Catos) by
qAlg, QA1gObj, and galgcod, respectively. Furthermore, we denote the func-
tors induced by the morphisms of co-operads in (3.6)

AlgLMod — AlgObj and AlgObj — Alg
by U({jgﬁod and U®P| respectively. o

Remark 3.1.3.4. We can summarize our previous discussions as follows.

Let G: C — C' be a monoidal functor of monoidal co-categories that we
also consider as a morphism of Monagsoc(Cato, ). By definition, we can identify
the monoidal functor induced by G on fibers of the universal family of Assoc-
monoidal co-categories pA*°° (see Definition 3.1.1.4) with G®: C® — (C'®
itself.

As Uég‘f"d and U1 are morphisms of cocartesian fibrations over the co-
category Monassoc(Cats, ) by Proposition 3.1.2.21, we obtain an induced com-
mutative diagram as follows.

( LMod)C (Uobj

AlgLMode —2¢5 AlgObj, ——— Alg,

i N |

108ee Definition 3.1.2.1.
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3.1 Modules over algebras

Using Remark 3.1.2.4, Remark 3.1.2.15, and Remark 3.1.2.18 we can iden-
tify this diagram with the following commutative diagram induced by G and
the morphisms of co-operads in (3.6).

AlgLM/Assoc (C) E— AlgAssocEElTriv/Assoc (C) I AlgAssoc/Assoc (C)
AlgLM/Assoc(G)J/ A]gAssocEETrTv/Assoc(G)J/ AlgAssoc/Asscc(G)J/

AlgLM/Assoc(C/) — AlgAssocEEITriv/Assoc(C/) — AlgAssoc/Assoc(C/)

The oco-category of algebras over a coproduct of co-operads can be identi-
fied with the product of the oo-categories of algebras by [HA, 2.2.3.6]'!, and
the co-category of algebras over Triv is by [HA, 2.1.3.6] equivalent to the un-
derlying oo-category. Considering also the definition of LMod [HA, 4.2.1.16]
we can thus identify the above diagram with the following diagram

LMod(C) —— Alg(C) x C —>1— Alg(C)
LMod(G)l Alg(G)xGl Alg(G)l
LMod(C") ——— Alg(C’) x ' — Alg(C")
where the left horizontal functors are on the first factor the forgetful functors
Uhesoc from left modules to algebras from [HA, 4.2.1.13] that send a pair
(A, M) with A an associative algebra and M a left module over it to A, and

on the second factor the forgetful functors evy, that send a pair (A, M) to M
considered as just an object of C or C'. &

Next we fix the variance of morphisms in the fibers.
Definition 3.1.3.5. By applying the functor

coCFib(Monassoc (Catos ))
— FuH(MOHAssoc(GatOO) ’ eato@)

u) Fun(Monassoc(Cateso ), Catoo )

— coCFib(Monassoc (Catus ))

and U°PI of cocartesian fibrations over the oo-cate-

. . 5 s LModOp
gory Monagsoc(Catso) we obtain morphisms of cocartesian fibrations Vorijon

to the morphisms Uég‘f‘)d

and VOPI9P ag depicted in the following diagram.

L’vl'od()p
UbJUp

AlgOpL ModOp — fllgOpObJOp 4> AlgOp

qugOpObJOp
qAlgOpLModOp qAlgOp
ateo

MonAssoc e

HTo apply this in our situation, combine this with Proposition E.2.0.3 and the fact that
pullbacks commute with products.
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Chapter 3 Bialgebras and modules over them

We define AlgOpLModOp, AlgOpObjOp, AlgOp, qA1g0pLModOp, TAIEOPODiOpPs

and gaigop as indicated in the diagram. We furthermore define Y £MedOp

s Objop  1/AModOp
be the composition V' o Vobjop - O

Proposition 3.1.3.6. VLJVFOdOp and VOPIOP from Definition 3.1.3.5 are
cocartesian fibrations and ngj}%s P s q morphism of cocartesian fibrations

over AlgOp.

Furthermore, a morphism in AlgOpLModOp is VEMAOP_cocartesian pre-
cisely if it is the composition of a gaizopLModop-cocartesian morphism with a
(VAMedOP) o _cocartesian morphism for C a monoidal co-category. The analo-
gous statement holds for VOPIOP_cocartesian morphisms. V)

Proof. By [GHN15, 9.6]'2:13 to show that V£MedOp and V7 OPIOP are cocarte-
sian fibrations, it suffices to show the following.

(1) qaigopLModop, dAlgopobjop and gaigop are cocartesian fibrations.

(2) The functor VAMedOP maps JAlg0pLModop-cocartesian morphisms to
morphisms that are gaigop-cocartesian, and VOP9P maps ga1g0p0bjop-
cocartesian morphisms to morphisms that are g4igop-cocartesian.

(3) Let C be an object of Monagsoc(Cats ). Then the functor
(V£MedOP)  AlgOpLModOpe — AlgOp
induced by V4MedOp op fibers over C is a cocartesian fibration.
(3’) Let C be an object of Monagsoc(Cateso). Then the functor
(VOPIOP) - AlgOpObjOp, — AlgOpe
induced by VOPi% on fibers over C is a cocartesian fibration.

(4) Let
M -2+ N

5J{ b (3.7)

M’T>N’

be a commuting diagram in AlgOpLModOp lying over the following
diagram in Monassoc(Cato)-

_¢,

QAo
Q<9
Q.

—_
¢

12The referenced proposition can be summarized as saying that a morphism of cocartesian
fibrations over some oo-category C is itself a cocartesian fibration if the restriction to
fibers over any object of C is a cocartesian fibration, and the functor on fibers induced
by a morphism in C preserves those cocartesian morphisms of the fibers.

13[GHN17] is the published version of [GHN15], but does not contain [GHN15, 9.6].
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3.1 Modules over algebras

Assume that o and 6 are gaigopsMmodop-cocartesian and that the mor-
phism 3 is (U*M°d9P)_cocartesian. Then « is (U*M°49P)y_cocarte-
sian.
(4) Let

M —“*- N

6l l’v

M’ — N’
be a commuting diagram in AlgOpObjOp lying over the following dia-
gram in Monagoec(Cateo).

>

N
id

<

Ao
v

—
2

Assume that o and 0 are gaigoponjop-cocartesian and that the mor-
phism 3 is (U9%9P)c-cocartesian. Then 7 is (U®PIP)p-cocartesian.

From the proof of [GHN15, 9.6] it also follows that the VOP9P_cocartesian
morphisms will be precisely the compositions of ga1z0p0bjop-cocartesian mor-
phisms with (V9%9P)._cocartesian morphisms for C an object of the co-cat-
egory Monpssoc(Catess). A similar statement holds for VAMedOp  From this it

follows that to show that ngjg/g’s 9P is a morphism of cocartesian fibrations

from VAMedOp to 1OPIOP it will suffice to show the following.

LModOp . .
(5) VObjOp sends ¢a1g0pcModop-cocartesian morphisms to galgopobjop-

cocartesian morphisms.

(6) Let C be an object of Monpassoc(Cats). Then the functor (Vébj;gsor))c

maps morphisms that are (V<M°d9P)._cocartesian to morphisms that
are (VOPiOP)_cocartesian.

Proof of (1), (2) and (5): Hold by definition.

Proof of (3): Let C be an object of Monassoc(Cateo). By Remark 3.1.3.4
we can identify the functor (V*MedOP). with the opposite of the following
forgetful functor.

Uassoc: LMod(C) — Alg(C)

This forgetful functor is a cartesian fibration by [HA, 4.2.3.2], and thus
(VAModOPY, js a cocartesian fibration. Furthermore, [HA, 4.2.3.2] also im-
plies that a morphism in LMod(C) is (V*™M°49P)._cocartesian if and only if
evy of that morphism is an equivalence.
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Chapter 3 Bialgebras and modules over them

Proof of (3°): Just as above we can identify the functor (V°Pi°P). using
Remark 3.1.3.4 with the opposite of the left vertical functor in the following
pullback diagram.

Alg(C) xC 225 ¢

o J (3.8)

Alg(C) — «

It follows by Proposition C.1.1.1 and [HTT, 2.4.1.5] that (VOPOP); is a
cocartesian fibration and that a morphism in Alg(C) x C is (VOPOP)._co-
cartesian if and only if pry of that morphism is an equivalence.

Proof of (6): Follows immediately from the description of the respective co-
cartesian morphisms given above together with the description of the functor
(VébJ;/E;sOp)C in Remark 3.1.3.4.

Proof of (4) and (4’): The two proofs are analogous, so we only prove (4).

We use the same notation as in the statement of (4), and by the description
of (VAMedOp) 1 cocartesian morphisms in the proof of (3) we have to show
that evy, () is an equivalence. Applying evy, to diagram (3.7) we obtain

evm ()

evm (M) evm (V)
evm(ﬁ)l levm('y) (3.9)

evm(M’) W eVm(N/)
where by Proposition 3.1.2.17 the top and bottom horizontal morphisms are
pAs°_cocartesian. Furthermore, the vertical morphism evy,(3) is an equiva-
lence, so by [HTT, 2.4.1.5 and 2.4.1.7] we can conclude that evy(7y) is also
an equivalence. O

Remark 3.1.3.7. Let C be a monoidal co-category, and let us consider it as
an object in Monagoc(Catso). Then using Remark 3.1.3.4 we can identify the
diagram

( LModOp)
c

AlgOpLModOp, AlgOpObjOp,
(VLModm A)jop)c
AlgOpc
with the following diagram.
(thssoc)”? X (€Vin )P op o
LMod(C)°” Alg(C)%P x CoP

(LASSN /
Alg(C
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3.1 Modules over algebras

Let A be an associative algebra in C. Then it follows that we can identify the

functor (Vgg}%ﬁol’) A= ((Véb%osop)c) 4, with the following functor.

(evm)P: LModa(C)°P — C°P

Let us now turn to morphisms in AlgOp and induced functors on fibers.
As the functor gaigop: AlgOp — Monassec(Cats) is a cocartesian fibration,
every morphism in AlgOp is the composite of a g4150p-cocartesian morphism
and a morphism in a fiber. Let G: C — C’ be a monoidal functor of monoidal
oo-categories, considered as a morphism in Monasoec(Cateo). Then by Re-
mark 3.1.3.4 the induced functor on fibers

G, : AlgOp, — AlgOp,
can be identified with the functor
Alg(G)°P: Alg(C)°® — Alg(C)®

which sends an object A of Alg(C) to an associative algebra Alg(G)(A) in C’,
that has underlying object G(A), and so we will sometimes also write G(A)
for Alg(G)(A). Hence a morphism in AlgOp from an object A in AlgOp, to an
object A" in AlgOpe, consists of the composition of a g41g0p-cocartesian mor-
phism A — G(A) lying over a monoidal functor G: C — C’ and a morphism
of associative algebras A" — G(A).

Let us first consider a gaigop-cocartesian morphism G: A = G(A) in
AlgOp lying over a monoidal functor G: C — C’. By the description of cocarte-
sian morphisms with respect to VAMedOP and Y OPiOP in Proposition 3.1.3.6,
we know that the the functors induced by this morphism on fibers of the
cocartesian fibrations V4MedOP and VOPIOP are the restrictions of of the
functors induced by G on fibers of the cocartesian fibrations gaigopsnModop
and gaigopobjop- Thus using Remark 3.1.3.4 again we can identify the in-
duced commutative diagram

( L'Z'v[od(‘)p)

Objop

AlgOpLModOp ;, —————2— AlgOpObjOp 4

N |

objop ) g(a)

with the following commutative diagram.

(evm )P

LMod 4 (C)°" cop

LMod(G)“pJ( Lgop

LMOdG(A) (C/)Op —p> C/Op

(evim)®
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Chapter 3 Bialgebras and modules over them

Let us now consider a morphism f: A" — A of associative algebras in
some monoidal oco-category C, considered as a morphism f: A — A’ in
AlgOpe ~ Alg(C)°P. Again using the description of cocartesian morphisms
from Proposition 3.1.3.6 together with Remark 3.1.3.4 and [HA, 4.2.3.2] we
can identify the commutative diagram

( LModOp)A

ObjOp

AlgOpLModOp 4, ——— AlgOpObjOp 4

i |

Objop A

with the following commutative diagram.

(evm)°P

LMod 4 (C)°P cop

LMod f(idc)o"J( kid

LMod 4/ (€)*? ————— C°P

(evim)

o

Definition 3.1.3.8. By Proposition 3.1.3.6 we have a morphism of cocarte-
sian fibrations over AlgOp as depicted in the following diagram.

‘L JY[‘odOp
AlgOpLModOp AlgOpObjOp
Ve Mm AOp
AlgOp

Under the equivalence

(=°").

coCFib(AlgOp) % Fun(AlgOp, Cate,) — Fun(AlgOp, Caty,)
the cocartesian fibrations V4MedOp and VOPiOP correspond to functors
AlgOp — Catoo

that we will denote by LMod and pr, respectively. The morphism of cocarte-

sian fibrations Vgg}%ﬁ op corresponds to a natural transformation from LMod
to pr that we will denote by evy,. &

Remark 3.1.3.9. Let C be a monoidal co-category and A an associative
algebra in C. Then Remark 3.1.3.7 shows that the natural transformation
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3.1 Modules over algebras

evy as defined in Definition 3.1.3.8 evaluated at A (considered as an object
of AlgOp,) can be identified with the usual forgetful functor'4

evy: LModa(C) — C

justifying the notation we chose for the two functors and the natural trans-
formation. Furthermore, Remark 3.1.3.7 shows that LMod, pr, and evy, are
similarly compatible with usual notations on morphisms. &

3.1.3.3 LMod and colimits

In this section we put together some results from [HA] that imply that
the functor LMod interacts well with the property of admitting and being
compatible with colimits.

Definition 3.1.3.10 ([HA, 4.8.1.1 and 4.8.3.5] and [HTT, 5.5.3.1]). Let J
be a collection of small co-categories and O% an oco-operad.

We define an oo-category Cato, (J) together with a monomorphism to Cate
as the monomorphism that under the construction of Remark B.6.0.1 corre-
sponds to the replete subcategory of Ho Cat., whose objects are co-categories
that admit J-indexed colimits'® and whose morphisms are represented by
those functors that preserve J-indexed colimits.

We similarly define an oco-category Mon% (Cats, ) together with a monomor-
phism to Mone(Cats,) as the monomorphism corresponding to the replete
subcategory of HoMonep(Cat,) whose objects are the O-monoidal oo-cat-
egories that are compatible with J-indexed colimits in the sense of [HA,
3.1.1.19 and 3.1.1.18], and whose morphisms are represented by O-monoidal
functors C® — D® such that for every object X of O the underlying functor
of co-categories Cx — Dx preserves J-indexed colimits.

Now let J be the collection of all small co-categories. We denote by Prk
the full subcategory of Cat.,(J) spanned by the presentable co-categories!®.

We furthermore define Monyy (Cato,) to be the full subcategory of the
oo-category Mon%(eatoo) spanned by O-monoidal oco-categories which are
presentable in the sense of [HA, 3.4.4.1]. o

Definition 3.1.3.11. Let J be a collection of small co-categories. We define
AlgOpy and gaigop, via the following pullback diagram of oo-categories

AlgOpy ——— AlgOp

q./llg@pjj/ i‘mlg(ﬂp

Mong\ssoc(eatoo) — MonAssoc(eatoo)

14Here LMod 4 (C) refers to what is defined in [HA, 4.2.1.13].
15This means that they must admit Z-indexed colimits for every Z in J.
168ee [HTT, 5.5]
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Chapter 3 Bialgebras and modules over them

where the lower horizontal functor is the inclusion from Definition 3.1.3.10.
We similarly define AlgOpsy, and qaigop,, via the following pullback diagram

AlgOpy, ——— AlgOp

q.AlgOpg:rl J{qﬂlg@p

Monisrsoc (Gatoo ) — MOHASSOC (Gatoo )

where the lower horizontal functor is the inclusion from Definition 3.1.3.10.
&

Proposition 3.1.3.12 ([HA, 4.2.3.5 and 4.2.3.7]). Assume that J is a col-
lection of small co-categories. Then the restriction of the natural transfor-
mation evy to AlgOpy factors through Cateo(J). Analogously, the restriction
to AlgOps, factors through PrY. The situation is depicted in the following
diagram.

_I:Ii/[_o»d‘
-7 H AN L
AlgOpop, fHevm Pr
S U/ ’//;{
-
LMod_
- 0 !
AlgOp; v Catoo(J) (3.10)
. H o
o
LMod
Alg@p Hcvm eatoo
\_/
pr

As suggested by the diagram, will denote the induced functors and natural
transformations by the same name again. Q@

Proof. Let E: [1] x AlgOp — Cats be the functor encoding the natural
transformation evy,. By definition the right vertical functors in diagram (3.10)
are monomorphisms, so by Proposition B.4.3.1 the composition

[1] x AlgOp; — [1] x AlgOp —Z— Catoo

can be lifted to Cat(J) if and only if Im(E o (idj;) x (AlgOpy — AlgOp))) is
contained in Im(Cats(J) — Catoo), and similarly for the lift to Pr*.

In light of Remark 3.1.3.7 and Remark 3.1.3.9, this boils down to the fol-
lowing statements for any oo-category Z, monoidal co-category C, associative
algebra A in C, monoidal functor G: C — D, and morphism of associative
algebras g: B — G(A).
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3.2 LMod and monoidality

(1) If the monoidal co-category C is compatible with Z-indexed colimits in
the sense of [HA, 3.1.1.18], then LMod 4(C) admits Z-indexed colimits.

(2) If C is a presentable monoidal co-category in the sense of [HA, 3.4.4.1],
then LMod 4 (C) is presentable.

(3) If the monoidal co-category C is compatible with Z-indexed colimits,
then the forgetful functor

evy: LMods(C) — C
preserves Z-indexed colimits.

(4) If C admits and G preserves Z-indexed colimits, then the functor in-
duced by G and g

LMod,(G): LMod(C) — LModp(D)

also preserves Z-indexed colimits.

Proof of (1): This is [HA, 4.2.3.5 (1)].

Proof of (2): This is [HA, 4.2.3.7 (1)].

Proof of (3): This is [HA, 4.2.3.5 (2)].

Proof of (4): This is a slight generalization of [HA, 4.2.3.7 (2)]. From the
natural transformation ev,, we obtain a commuting diagram

LMod 4(C) M 1 Mod (D)
% D

G

where by assumption the lower horizontal functor preserves Z-indexed colim-
its. It then follows immediately from [HA, 4.2.3.5 (2)] that the top horizontal
functor also does so. U

3.2 LMod and monoidality

In this section we will start in Section 3.2.1 by showing that the functor
LMod: AlgOp — Cat., preserves products and can thus be upgraded to a
symmetric monoidal functor with respect to the respective cartesian sym-
metric monoidal structures. Furthermore, this induces a symmetric monoidal
structure on the restriction LMod: AlgOpp, — Prl (see Proposition 3.1.3.12).
This will be shown in Section 3.2.3, after we discuss the relevant symmetric
monoidal co-categories in Section 3.2.2.
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3.2.1 LMod and products

In this short section we show that LMod: AlgOp — Cat, preserves prod-
ucts and can thus be upgraded to a symmetric monoidal functor with respect
to the respective cartesian symmetric monoidal structures.

Proposition 3.2.1.1. The cocartesian fibrations

qAlg0pLModop : AlZOPLModOp — Monassoc (Catoo)
GAlgOpObjOp * AlgOpObJOp — MonAssoc(eatoo)
qAlgOp AlgOp — Monpassoc(Cates)

have fibers compatible with products in the sense of Definition C.2.0.1. Q

Proof. Proposition F.2.0.1 implies that the co-category Monassoc(Cats,) ad-
mits products. Combining Remark C.2.0.2 with the fact that the functor
(—)°P: Caty, — Caty is an equivalence and thus preserves products we are
reduced to showing that gaigcnod, qalgobj, and gaie have fibers compatible
with products. But this follows from combining Proposition 3.1.2.22 with
Proposition 3.1.1.9. O

Proposition 3.2.1.2. The cocartesian fibrations!” V*MedOp gnq 1/0biOP
from Definition 3.1.3.5 have fibers compatible with products in the sense of
Definition C.2.0.1. Q@

Proof. These cocartesian fibrations are by definition also morphisms of co-
cartesian fibrations over Monagssoc (Catoo ). As those cocartesian fibrations have
fibers compatible with products by Proposition 3.2.1.1, the statement follows
from Proposition C.2.0.4. O

Proposition 3.2.1.3. The oco-category AlgOp admits all products and the
functors
LMod, pr: AlgOp — Caty

preserve products. @
Proof. Follows directly from Proposition 3.2.1.2, Remark C.2.0.2, and the
fact that (—)°P is an equivalence and thus preserves products. O

Remark 3.2.1.4. Let C and C’ be monoidal co-categories and A and A’

associative algebras in C and C’, respectively. Then Proposition C.2.0.3 and

Proposition 3.2.1.1 imply that the pair (A, A’) considered as an object in
(Alg(C) x Alg(C')*® ~ Alg(C x ") ~ AlgOpe v/

is a product in AlgOp of A and A’.
That LMod preserves products by Proposition 3.2.1.3 means in particular
that there is an equivalence as follows.
LMOd(A7A/)(C X C’) >~ LMOdA(C) X LMOdA/ (C’) <>

7That they are cocartesian fibrations was shown in Proposition 3.1.3.6.

66



3.2 LMod and monoidality

3.2.2 AlgOp,, as a symmetric monoidal co-category

To be able to make sense of the claim that LMod: AlgOpy, — Pr' should
be upgradable to a symmetric monoidal functor, we first need to define sym-
metric monoidal structures on Pr" and in particular on AlgOps,. This is
what we will discuss in this section.

We will start in Section 3.2.2.1 by recalling the symmetric monoidal struc-
ture on Pr’, before discussing the symmetric monoidal structure on the oo-
category Monjx' (Cat,,) in Section 3.2.2.2. While we will be able to define
Moniy’,. . (Cats)® directly, showing that this is indeed a symmetric monoidal
structure on Monr,,(Catso) will require a fair amount of work comparing it
to Alg(Pr™)®, the induced symmetric monoidal structure on algebras in Pr".
The reason why we bother to do this rather than just using Alg(fPrL)® is
that Monj., (Cats,) is a better fit when discussing the symmetric monoidal
structure on AlgOps,, which we do in Section 3.2.2.3.

3.2.2.1 The symmetric monoidal structure on Prt

In this section we recall the symmetric monoidal structures on Pr¥ and
Cateo (J) for T a collection of small oco-categories, closely following [HA, 4.8.1].

Definition 3.2.2.1 ([HA, 4.8.1.2, 4.8.1.4 and 4.8.1.15]). Let J be a collection
of small oco-categories. We define a monomorphism

Catoo (7)% — Catl

corresponding as in Remark B.6.0.1 to a replete subcategory H of Ho(CatZ,)
that we describe next.

An object C1®- - -®C,, of (Catso) Xn> with C1, ..., C, oo-categories is to be an
object of H if and only if each C; admits all J-indexed colimits. A morphism
CL& - dC, = CL® - DC], lying over ¢: (n) — (m) is to be in H if and
only if for each 1 < j < m the associated functor

II ¢—¢;
w(i)=3
preserves J-indexed colimits separately in each variable.

Now let J be the collection of all small co-categories. We define IPrL® to be
the full subcategory of Cato,(J)® spanned by those objects C ~C; &« -- & Cp
where each C; is presentable. &

Remark 3.2.2.2. It is clear from the definitions that the functors
(Cateo(3))F, = (Cateo)yy  and  (PrM)f) — (Catas) Q)]

which are induced by the functors defined in Definition 3.2.2.1 can be identi-
fied with the functors

Catoo(JT) — Cateo and Prl = Catoo (J)
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from Definition 3.1.3.10. &

Proposition 3.2.2.3 ([HA, 4.8.1.4 and 4.8.1.15]). Let J be the collection of
all small co-categories, let J be a subcollection of J and T’ a subcollection of
J. Then the following statements hold.

(0) The monomorphism Cato(3)¥ — Cat’ from Definition 3.2.2.1 factors
through the monomorphism Cats.(3)® — Cat’ from Definition 3.2.2.1.
The lift obtained in this manner is also a monomorphism.

(1) The compositions
Catoo (3)® — CatX — Fin,

and o
Prl” - CatX — Fin,

where the first functor is the monomorphism from Definition 3.2.2.1
and the second functor is the canonical morphism of co-operads, are
cocartesian fibrations of oo-operads.

(2) The functors
Pr 5 Catoo (3)® — Cato (7)® — Cat’

from Definition 8.2.2.1 and (0) are lax symmetric monoidal with respect
to the symmetric monoidal structures from (1).

(38) A morphism in Cats(J)® or Pl s inert if an only if its image in

Cat’, is inert.

(4) The functor
Pl Cateo (3)%

is symmetric monoidal with respect to the symmetric monoidal structure

from (1).

. . ® . . . .
(5) A morphism in Pr” is cocartesian with respect to the canonical mor-

phism of co-operads Prl® Fin, if and only if its image in Gatm(3)®
s cocartesian with respect to the canonical morphism of oo-operads
Catoo (3)¥ — Fin,. v

Proof. Proof of (0): Immediate from the definition together with Proposi-
tion B.4.3.1 and Proposition B.1.2.1.

Proof of (1) and (2) for the compositions to Cat’ : This is [HA, 4.8.1.4 and
4.8.1.15).

Proof of (4): This is [HA, 4.8.1.15].

Proof of(3) and (5): The functors Cat.,(J)® — Cat’, and P Cat

. ® N
were already shown to be morphisms of co-operads, and P Cat oo (J)®
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3.2 LMod and monoidality

was already shown to be symmetric monoidal. As these functors are also
monomorphisms'® and hence conservative by Proposition B.4.1.2, we can
apply Proposition E.1.2.1 to deduce the claims.

Proof of the rest of (2): Follows directly from (3). O

3.2.2.2 The symmetric monoidal structure on Mon}y (Cat.,)

In this section we construct the symmetric monoidal structure on the
oco-category Monil  (Cats,). While defining Monjy’,  (Cato,)® is relatively
straightforward, showing that this defines a symmetric monoidal structure
(which is Proposition 3.2.2.10) will require a bit more work, requiring a com-
parison result between Monj.  (Catss)® and Alg(Pr™)® that will be shown
in Proposition 3.2.2.8.

Definition 3.2.2.4 ([HA, 4.8.5.14]). Let J be a collection of small co-cate-
gories and © an oc-operad. We define a monomorphism'®

Mon, (Cates)® — Mone (Categ)™

corresponding as in Remark B.6.0.1 to a replete subcategory H of the 1-
category of Ho(Monp (Cats,)*) that we describe next.

An object C; @ -+ ® C,, of Ho(Monp(Cats)™) is to be in H if and only
if for each 1 < i < n the O-monoidal co-category C; is compatible with
J-indexed colimits in the sense of [HA, 3.1.1.19 and 3.1.1.18]. A morphism
in Ho(Mone(Cats)™) between two objects of H is to be in H if and only
if Ho((ev(1y)*) maps that morphism to a morphism in the replete image
Im(Ho(Catw, (3)®) — Ho(Cat))?°.

Now let J be the collection of all small co-categories. We then define
Mongy (Cate)® to be the full subcategory of Mond, (Cato, ) spanned by those
objects C1 @ - - - B C,, for which for each 1 < i < n the O-monoidal co-category
C; is presentable O-monoidal in the sense of [HA, 3.4.4.1]. o

Remark 3.2.2.5. It is clear from the definitions that the functors
Monjo(eatoc)%> — Mono(Cateo) ),

and

Mond' (Cat ) % — Mon, (Cat.,) <Xl>

which are induced by the functors defined in Definition 3.2.2.4 can be identi-
fied with the functors

Mon, (Cats,) — Mone(Cato,)

18That Prl® — Catoo(J)® is a monomorphism follows from Proposition B.4.4.1 and that
Pl CatX, is a monomorphism then follows from Proposition B.1.2.1.

For products in Monp (Cates) see Proposition F.2.0.1.

20This condition boils down to associated underlying functors of the form ]_Lp(i):j Ci — C;-

preserving J-indexed colimits separately in each variable.
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and
Mongy (Cates) — Mond (Cato,)
from Definition 3.1.3.10. &

Remark 3.2.2.6. It follows directly from the definitions in Definition 3.2.2.4
together with Proposition B.4.3.1 that for J a collection of small co-categories
and 7’ a subcollection of J the monomorphism

Mon, (Catee)® — Mone (Categ )™
factors through the monomorphism
Mon, (Catse)® — Mone(Cates )™
and the lift is by Proposition B.1.2.1 again a monomorphism. &

For easier reference we introduce some notation that we are going to use
in some statements and proof below.

Notation 3.2.2.7. The following notation will be used only when specifically
invoked, but not elsewhere. In the notation below, J will be a collection of
small co-categories, J' a subcollection of J, and O an oo-operad.

¢ Some of the below notations will use a superscript or subscript J. In the
case J = () we will allow ourselves to drop this superscript or subscript.

o We denote by
Po: 0% = Fin,

the canonical morphism of co-operads.

e We let a be the bifunctor defined as the following composition.
idFin, . . —A—
Fin, x O% % Fin, x Fin, Ay Fin,

e We denote by

p3: Catoo(3)® — Fin,
PPyt (PrL® — Fin,

Palgs: Algo(Cato(3))® — Fin,

®
DAlg,Pr: Algy (TrL) — Fin,

the canonical morphism of co-operads, where for pajg 5 and paig pr this
is with respect to the induced symmetric monoidal structures as in
Proposition E.4.2.3 with respect to the bifunctor «.
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e« We will denote the lax symmetric monoidal functors from Proposi-
tion 3.2.2.3 (2) as indicated below.

P\ ® 37,)® 7 \®
ppt® (43 Catoo (3) &3)7 Cateo (3)® —>( ) Cat’

We set (®77)® == ($7)® o (937)%.

e We will denote the monomorphisms from Definition 3.2.2.4 and Re-
mark 3.2.2.6 as indicated below.

Mon®r ® (¥57)° 3 v (¥5)° 3 ®
ony (Cate,)® ——— Monp (Cate)® ——— Monp, (Cate)

(+7)°

—~—Z2— Monp(Caty, )™
We set (U71)® = (7)o (U7)®,
e We denote by
PMon: Monp(Cate,)™ — Fin,

the canonical morphism of oco-operads, and define pyon,5 and puyion, Pr
as the following compositions.

PMon,3 = PMon © (¥7)®

PMon,Pr = PMon © (\I/Tr)@)

o The cartesian symmetric monoidal structure CatX comes with a carte-
sian structure

7: Catl — Catoo

that we will denote by , see [HA, 2.4.1.5]. Similarly, we denote the
cartesian structure

TMon: Monp (Cate, )™ — Monp (Cate,)
of 1\/Ior1@(€atoo)X by TMon- &
Proposition 3.2.2.8 ([HA, 4.8.5.16 (1)]). In this proposition we will make

use of Notation 3.2.2.7.

Let T be a collection of small co-categories, 3’ a subcollection of J, and O
an oo-operad. Then there is a commutative diagram as follows such that the
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horizontal functors are equivalences
Mongr(ﬁfabtoo)®

® oy
Algo (P1") e
Algo(d)%)r)@) (‘llg)")®
@@
Alg,, (Catoo(3))® — Mon3, (Catao)®
3.11
Meo (3 (#2)° (310
e%, '
Algy, (Cato (37)% 2 Mon2, (Cats,)®
Alge (@j,>® (\II:,/)(X!
Algy,(Cato)® Gj Mono (Cato)
The functor ©%® can be chosen in such a way that for every object X in O
there is a commutative diagram as follows.
o X
= Mone (Cates)
(3.12)

Alg, (Gatoo)®

€V X Opr|OLalg

Fin,

where the functors to Cat), are the symmetric monoidal forgetful functors®!.
Furthermore, ©% can be chosen such that the underlying equivalence

O: Alg,(Cats) — Monp(Cateo)
is the equivalence from [HA, 2.4.2.5], i. e. there is a commutative diagram

—2  Monp(Cates)

Alg,(Catoo)
(3.13)

|

Fungi,, ((9®, (ﬂ’at;(o)

Fun (0%, Cat),) —— Fun(0%, Caty)

21Gee Proposition E.4.2.3 (5) for the forgetful functor Alge(Cateo)® — CatX that
is given by evaluation at X and Proposition F.2.0.1 for the forgetful functor
evyx: Monp(Cates) — Cateo preserving products and hence inducing a functor

(evx)*: Monp(Cates)™ — CatX.
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where the vertical functors are the canonical projections or inclusions. Q

Proof. We start by constructing ©% together with diagram (3.12).
By Proposition F.3.0.2 there is a functor w1, making the following diagram
commute

Algp, (Catog)® ------- L CR— s Mono (Cato)
LA“{
Fun(O®, Cat) Xpun(0® Fin,) Fin. (3.14)
|
Fun(0%, Cat),) ————— Fun(0%, Cats)

where 1), is as in Proposition E.4.2.3 and the unlabeled vertical functor on
the right is the inclusion. Furthermore, Proposition F.3.0.2 also shows that
TAlg is a cartesian structure. Applying [HA, 2.4.1.7] we obtain a symmetric
monoidal functor ©® making the following diagram commute.

Monp (Caty)
TAlg TMon
Algy(Catog)® o° Mono (Cates ) (3.15)
PAlg %
Fin,

Of diagram (3.12) that we want to construct we have thus constructed ©%
as a functor over Fin,. The two forgetful functors to Cat’, are already given
as functors over Fin,, so it remains to construct a filler for the small triangle
at the top, considered as a diagram over Fin,.

So let X be an object of O. As both the forgetful functor

Algy(Catyg)® TP, @apX
as well as the composition

x (evx)*

® ©% X
Alg,(Cate ) — Monp(Cate,)” ——— Catly

are symmetric monoidal, giving a homotopy between them as symmetric
monoidal functors (and hence functors over Fin,.) is by [HA, 2.4.1.7] equivalent
to giving a homotopy of weak cartesian structures between

Algy, (Catog)® T PREAE, 0ot X Ty Caty,
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and the following composition.

x (evx)™

® ®® X T
Alg,(Cates)® — Monp(Cats)” ——— Catl, — Cateo

Such a homotopy is encoded in the outer commutative diagram depicted
below

Monp (Cate) ™ )7, Cat,

- [ |

Algo (Gatoo)® T MODO (Catoo) T Gatoc
pry OLAng/ l ‘
Fun((9®, eat:o) 7‘_4*> Fun((9®, @atoo) T Gatoo
evx 7T
Cat

where the upper left commutative triangle is the one from (3.15), the upper
right commutative square arises from the functoriality of the construction
(=), the middle left commutative square is the one from (3.14), the middle
lower commutative square is one by definition, and the bottom commutative
square arises from naturality of evx.

We have now constructed ©® as a functor over Fin, as well as diagram
(3.12) for every object X of O. Let us now consider diagram (3.13) concerning
the underlying functor ©. The composition of the inclusion of

Monp (Cate) ~ Mon@((i’atoo)?w

into Mono((iatoo)X with myon is by definition homotopic to the identity, so
we obtain from the commutative diagram (3.15) a homotopy between © and
the the composition

TAlg

Algy (Cato,) — Algy(Catae)® —= Mone (Caty, )

The desired commutative diagram (3.13) can now be obtained by combining
this with commutative diagram (3.14).

From this description of © it now follows from [HA, 2.4.2.5] that © is an
equivalence. Using that ©% is symmetric monoidal we can thus conclude from
[HA, 2.1.3.8] that © is an equivalence as well.

To construct diagram (3.11), we will show the following claims for each
collection of small co-categories J.

(A) (¥7)® is a monomorphism.

(B) Alg(®”)® is a monomorphism.
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(C) Im(Ho(O% o Alg,(®7)®)) is equal to Im(Ho((¥7)®)).

Let us assume claims (A), (B), and (C) for the moment and deduce the
statements we have to prove.

Existence of an equivalences @? together with commutative squares of the
form

®
Algo (Catoo(3)® ——— 5 Mond(Cato)®
Algo (27)% (v7)®
Algo(eatoo)® 9N® Monp (Catsg) ™

then follows from Proposition B.4.3.1, see also Remark B.6.0.1. That there
is a compatibility square between @? and @? follows immediately from the
uniqueness part of Proposition B.4.3.1 using that (\Iljl)@’ is a monomorphism.

Finally, we need to construct the dashed equivalence fitting into the square
depicted at the top of the commutative diagram below, where J is the collec-
tion of all small co-categories, and X is an object of O.

L @ @?r Pr ®
Algo (Tr ) B » Mong, (Cateo)
Algo (77)® (w3)®
ey 3.16
Algo (Cateo(3))” = Mon, (Cate)® (3.16)
evXOprloLA1gOAlg@(<I>3)® (evX)Xo(W3)®
Cat

The functor (@gr)@’ is by definition the inclusion of the fully faithful subcate-
gory of Catw, (J)® spanned by objects C; @ - - - ©C,, such that the co-category
®J(C;) is presentable for each 1 < i < n, see Definition 3.2.2.1. It follows
from the definition of the induced functor Alg,(®3")® in Remark E.4.2.2
together with Proposition B.3.0.1, Proposition B.5.1.1, Remark B.5.1.2, and
Proposition B.5.3.1, that Algo(¢§r)® is again a fully faithful functor with
essential image spanned by objects C1 @ --- @ C,, such that the underlying
oo-category (evx o Alg,(®7))(C;) of C; is presentable for each 1 < i < n and
object X of O%2.

22We are using here that only functors preserving inert morphisms are in the essential
image of pry ota)g — this implies that we only need to check the presentability condition
for objects X of O rather than all of O®.
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The functor (¥37)® is by definition (see Definition 3.2.2.4) the inclusion
of the fully faithful subcategory described in the same way?3, so as @? is
compatible with the forgetful functors to Cat’y, we can use Proposition B.4.3.1
to complete diagram (3.16).

We now turn towards proving (A), (B), and (C). We will simplify notation
and write ® := ®7 and ¥ := ¥7.

Proof of (A): That ¥® is a monomorphism holds by definition, see Defini-
tion 3.2.2.4.

Proof of (B): By Remark E.4.2.2, there is a commutative diagram as follows

Algo (€atoc(3))* — Fun(0%, €ato(3)®) Xpun(0® i) Fin.
Algo (€)@ J(w)* Xiaid
v
Algy (Cato)® — Fun(O®, €at’,) Xpun(0® Fin,) Fin.

where 171, and L/Alg are as in Proposition E.4.2.3. ®® is by definition (see
Definition 3.2.2.1) a monomorphism, so ($%®)_ is a monomorphism by Propo-
sition B.5.1.1 and then it follows that (®%), Xiq id is a monomorphism by
Proposition B.5.3.1. As ta1g and ¢y, are fully faithful by definition and hence
monomorphisms by Proposition B.4.4.1, it follows from Proposition B.1.2.1
that Alg(®)® is a monomorphism.

Proof of (C): To describe Im(Ho(0® o Alg,(®)®)) we will go through the
same steps of (B) and identify the replete image of the respective functor at
each step. We start with ®®, for which Im(Ho(®®)) is described in Defini-
tion 3.2.2.1.

Combining this with Proposition B.5.1.1 we can describe Im(Ho((®%).))
as follows.

(ObjI) A functor A: O® — Cat’, considered as an object of the 1-category
Ho(Fun(O%, Cat,)), lies in Im(Ho((®%®),)) if and only if the following
hold.

(Objl.1) For each object X of O% if A(X) ~C; @ --- @ Cp, then for
each 1 <4 < k the co-category C; admits all J-indexed colimits.

(ObjL.2) If B is a morphism in O%, and
AB):CLd - ®C, = C -

lies over a morphism ¢: (k) — (I) of Fin,, then for each 1 < j <1
the associated functor
I] ¢c—¢

e(i)=j

23S0 spanned by objects C1 @ - - - @ Cp, such that the underlying oo-category of C; is pre-
sentable for each 1 <1i < n.
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preserves J-indexed colimits separately in each variable.

(MorI) A natural transformation f: A — B of functors O® — Cat),
considered as a morphism of Ho(Fun(O®, CatX)), is in Im(Ho((®®),))
if and only if the following hold.

(Morl.1) A and B are in Im(Ho((®®),)).
(MorlI.2) For every object X of O® the morphism

fx:CG@® - ®C~AX) > BX)~Cla - &(

lying over a morphism ¢: (k) — (I} is such that for every 1 < j <
the associated functor

I ¢ —c;

e(i)=j
preserves J-indexed colimits separately in each variable.

Describing Im(Ho((®®), x;q id)) needs little extra work, it follows from
Proposition B.5.3.1 that an object or morphism of

Fun (O, €at’,) Xpun(o,Fin,) Fins

is in Im(Ho((®®). xiq id)) if and only if its projection to the first factor is
and object or morphism of Im(Ho((®%),)).

The functor Lglg is defined as the inclusion of the full subcategory of ob-
jects whose projection to the first factor is a functor O® — Cato,(J3)® that
preserves inert morphisms, and taje is defined analogously. As by Proposi-
tion 3.2.2.3 (3) a morphism in Cat(J)® is inert if and only if ®® maps
that morphism to an inert morphism in CatX , we can conclude that an ob-
ject or morphism of Ho(Algy(Cata)®) is in Im(Ho(Algy (®)®)) if and only
if Ho(zalg) maps it into Im(Ho((®%). x;q id)). This leads to the following
description of Im(Ho(Alg, (®)®)).

We will notationally identify (n) A (m) with ((n)° x (m)). and thus write
non-basepoint elements of (n) A (m) as pairs (i,5) with 1 < ¢ < n and
1<j<m.

(ObjIT) An object A of Algo((i’atoo)‘aw considered as an object of the 1-
category Ho(Alg,(Cats)®), is in Im(Ho(Alg, (®)?®)) if and only if the
following hold.

(ObjIL.1) For each k > 0 and object X in (’)<k>,
(pry o taig)(A)(X) =Ca1y) © - O Cnpy

then for each 1 < i; < mn and 1 < iy < k the co-category C(z‘l,iQ)
admits all J-indexed colimits.
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(ObjI1.2) If ¢: (k) — (I) is a morphism in Fin, and f: X — Y a
morphism in O% lying over ¢, and
(pry o LAlg)(A)(f): C(l,l) DD C(n,k) — 02171) D---D CEn,l)
then for each 1 < j; <n and 1 < jo <1 the associated functor
H C(jlvi) - CEleé)
w(i)=j2
preserves J-indexed colimits separately in each variable.
(MorII) A morphism f: A — B of Alg,(Cats)®, lying over a morphism
@: (n) — (m) in Fin, and considered as a morphism of the 1-category

Ho(Algy (Catoo)?®), is in Im(Ho(Algn (®)®)) if and only if the following
hold.

(MorII.1) A and B are in Im(Ho(Algy (®)®)).
(MorII.2) For every k > 0 and object X in O% the morphism

(pry © taig) (f)x: Cay & -+ & Ciny = Clany &+ & Cly
is such that for every 1 < j; < m and 1 < jy < k the associated
functor
H C(i’h) - Céjhjz)
p(i)=j1
preserves J-indexed colimits separately in each variable.

We will now replace these conditions with equivalent descriptions that are
more amenable to describing what happens under the equivalence ©%.
Let A~ A; @ --- @ A, be an object of Algy(Cato)?,, let k > 0, let

(n)’
X >~ X ®---Pd Xy be an object of O%’Q, and let
(prl o LAlg)(A)(X) ~ C(1,1) DD C(n,k)

be the usual decomposition. Let 1 < i < n and let g;: A — A; be an in-
ert morphism lying over p. It follows from Proposition E.4.2.3 (2) that the
morphism (pr; o taig)(g;)(X) can be identified with the inert morphism

C(l,l) DD C(n,k:) — C(i,l) D---D C(i,k)
in Cat’ over p' A id(xy. Furthermore, as A; lies in

Alg, ((iatoo)%> ~ Alg,(Cate)

(see Proposition E.4.2.3 (0)) and thus preserves inert morphisms, we also
obtain an equivalence as follows.

(pry © tatg) (A)(X) = ) (bry 0 atg) (Ai) (X))

1<j<k

It follows that condition (ObjII.1) is equivalent to the following condition.
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(ObjIII.1) For each 1 < ¢ < n and object X of O, the underlying oco-
category?? evx (A;) in Cat., is an co-category that admits all J-indexed
colimits.

Similarly one obtains that if f: X — Y is a morphism in O® lying over
©: (k) = (I) then
(pry 0 tag) (A)(f): Cay @+ ® Crny = Clu1) @ - B Clp

can be identified with a sum A;(f)®---® A, (f) in Cat), and for 1 < j; <n
and 1 < jo <[ the functor

H C(jlai) - Céjl,jz)
w(i)=j2
associated to (pr; o tale)(A)(f) can be identified with the analogous functor
associated to
(pry @ aig) (A3:)(f): Cijny @+ B Cirpy = Clypy @ - gy,

at index (j1,72). It follows that condition (ObjIl.2) is equivalent to the fol-
lowing condition.

(ObjIIL.2) For each 1 < i < m, the O-monoidal co-category A; (which we
consider as an object of Algo(ea‘cm)%1> ~ Alg,(Cats,) =~ Monp (Caty,))
is such that for every morphism f: X; & --- & Xy — Y in O lying over
@: (k) — (1) the associated functor

H evx; Az — eVy Az
1<5<k
is compatible with J-indexed colimits separately in each variable.

Reformulations (ObjIIL.1) and (ObjIIL.2) allow us to rephrase (Objl) as
follows, by using the definitions of © (given by postcomposing with 7) and
the monomorphism Mon, (Cats,) — Mone(Cats,) from Definition 3.1.3.10,
which we can identify with ¥ by Remark 3.2.2.5.

(ObjII) Let A ~ A1&---® A, be an object of Algo(eatoo)aw and consider

A as an object of Ho(Algy (Cate)®). Then A is in Im(Ho(Alg, (®)®))
if and only if for each 1 < i < n, the equivalence

©: Alg,(Cates) — Monp(Cateo)

maps A; to an object in Im(Ho(¥)).

24Here we consider A; as an object of Algo((?atoo)%b1> ~ Algs(Cateo )
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Using that ©® maps A; & --- @ A, to O(A1) & --- & O(A,,) by virtue of
being lax monoidal, as well as the definition of ¥® in Definition 3.2.2.4, we
finally obtain the following reformulation.

(ObjIV) Let A be an object Ho(Algy, (Cato,)®). Then A lies in the subcat-
egory Im(Ho(Alg, (®)®)) if and only if Ho(©%®)(A) is in Im(Ho(¥®)).

This shows (C) for objects. Let us now turn towards reformulating (MorII).
Let f: A — B be a morphism in Alg,(Cats)®, lying over a morphism
w: (n) — (m) in Fin,, and let X ~ X; @ --- @& X be an object of (928,;).
As (pry o ta1g)(A) and (pr; o talg)(B) preserve inert morphisms, we can for
1 < jo < k identify the commutative diagram

(priotaig)(f)x

(pry o tatg)(A)(X) (pry © taig)(B)(X)
(pryotag)(A)(p'2 )J J(prIOLAIg)(B)(pJQ)

(pry 0 ea1g) (A)(X5,) (pry © ta1g) (B)(Xj,)

_—>
(pr1 OLAlg)(f)ij

lying over

(1) g () A (1)

with a diagram as indicated below

Cay @ B Clagy — Clipy @ OC,, 4

J !

Cliga) @+ ®Cnyja) — Cly ) O DC

m,jz2)

and the functor

i
II Cée = Cli
p(i)=j1
associated to the top horizontal morphism at index (j1,72) with 1 < j3 <m
can be identified with the functor associated to the bottom horizontal mor-

phism at the same index. This implies that (Morll.2) is equivalent to the
following condition.

(MorlII.2) For every object X of O, if f is such that

(evX opry o LA1g>(f): C(l,l) b--- P C(n,l) — C(l,l) S---P CEm,l)
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then for every 1 < j < m the associated functor

IT cin —cin

P(i)=j
preserves J-indexed colimits separately in each variable.

For X an object of O, the composition evx o pry o a1, is by commutativity
of diagram (3.12) homotopic to the composition (evx)* o ©%. Combining
this with the definition of ¥ (see Definition 3.2.2.4) and the reformulation of
(MorII.1) made possible by (ObjIV) we finally obtain the following.

(MorlV) Let f: A — B be a morphism in Ho(Alg,(Cats)®). Then f
is a morphism in Im(Ho(Alg,(®)®)) if and only if Ho(©%)(f) is in
Im(Ho(¥®)).

This shows (C) and thereby ends the proof. O
Remark 3.2.2.9. In this remark we will make use of Notation 3.2.2.7.
Let J be a collection of small co-categories, O an oc-operad, and X and

object of the underlying category O. Diagram (3.11) constructed in Equa-
tion (3.11) can be extended to a commutative diagram as follows

® o®
Alg,, (fPrL) O;’r Mond' (Catag)®
\) § ///
Alg(7)° Pl ® (v3)°
vl
e o3 ] 3 ®
Algy (Catos (J)) = Mong, (Cateo)
R L/’///
Alg(#7)” Catoo(3)” (v7)”
\I/j
Alg,,(Cato)® ej’ Monp (Cate) ™
. /X
\ ea’t;o (eV(l))

where we write £ as an abbreviation for evx o pr; otajg.
We will refer to the functors

Mond, (Cates)® — Cato (3)%

and o
Mond (Catoo)® — Pr
as the forgetful functors and denote them by (evy)®. &
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Proposition 3.2.2.10 ([HA, 4.8.5.16 (1)]). In this proposition we make use
of Notation 3.2.2.7.

Let J be a collection of small co-categories, let I’ be a subcollection of J,
and let J be the collection of all small co-categories. Let O%® be an co-operad.
Then the following statements hold.

(1) The functors pumon,s and DMon,pr are cocartesian fibrations of co-oper-
ads and thus exhibit Mon2(Catos)® and Moniy (Cato)® as symmetric
monoidal co-categories.

(2) The functors

(v5)”

MonJ (Cates)® ~—"— Mon} (Catae)®

()

% Monp(Caty)”

(v5)°
R

Mong (Catoe)®

are lax symmetric monoidal with respect to the symmetric monoidal
structures from (1).

(8) A morphism in Mong,(Cats)® or Mondy (Cate)® is inert if and only
if its image under (\Ilj)® or (\Ilcpr)® in Monp (Cate,)™ is inert.

(4) The functor
(\If%)r)@): Mongy (Cate,)® — Mond (Cata,) ™

s symmetric monoidal with respect to the symmetric monoidal structure

from (1).

(5) A morphism f in Mongr(eatoc)® 1S PMon,r-cocartesian if and only if
(\IJ?)@(f) 18 PMon,3-cocartesian.

(6) Let X be an object in O. The forgetful functors
(evx)®: Mond (Catey)® — Cateo(3)%

and
(evx)®: Mond (Catee)® — Pl
from Remark 3.2.2.9 are symmetric monoidal. V)
Proof. All of the statements will be shown by translating them to state-
®
ments regarding Alg,,(Catoo (J3))® and Alg,, (‘.PrL) using Proposition 3.2.2.8.

The individual statements then all follow by combining parts of Proposi-
tion E.4.2.3 with parts of Proposition 3.2.2.3, as indicated in the table below.
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Claim Combine Proposition E.4.2.3  with Proposition 3.2.2.3

(1) (3) (1)
(2) (7) (2)
(3) (2) and (9) (3)
(4) (8) (4)
() (4) and (9) ()
(6) ()

3.2.2.3 The symmetric monoidal structure on AlgOps,
By Proposition 3.2.1.1 and Proposition C.2.0.3 the cocartesian fibration
qaigop : AlgOp — Monassoc(Catoo)

preserves products (see also Remark 3.2.1.4). By [HA, 2.4.1.8] we thus obtain
an induced symmetric monoidal functor

qj‘(llg(‘)p: AlgOpX - NIOHAssoc(eatoo)><

between the respective cartesian symmetric monoidal structures.

In this section we upgrade qaigop, and qaigop,, to symmetric monoidal
functors in a compatible way.

Definition 3.2.2.11 ([HA, 4.8.5.14]). Let J be a collection of small co-cat-
egories. We define functors

q%gopj : AlgOps — Monj.,. (Catee)®
and

U rgop,, - A1BOPG, — Monx’, (Catse)®

as pullbacks, as indicated in the following pullback diagrams

.
AlgOp? S AlgOp*

® X
qmgomJ Jqﬂlg(ﬂp

Mongssoc ( Catoo ) @ W Monassoc ( Cateso ) x

(@)®

AlgOps, AlgOp*

® X
q‘AlgOp«‘Pl.J JqﬂlgOp

Mongsrsoc ( Catoo ) @ W Monassoc ( Catoo ) x

where the lower horizontal functors are the ones defined in Notation 3.2.2.7.

&
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Remark 3.2.2.12. Passing to fibers over (1) we obtain a pullback diagram
(AlgOp,)f;) ————— AlgOp[;,

(q‘AlgOpj)%)J( J{(qﬂlg(ﬂp)zz)

Monf\ssoc((‘fatoo)% — MorlAssoc(Gautoo)<X1>

that can be identified using Remark 3.2.2.5 with the pullback diagram

AlgOp4 AlgOp

qﬂlgoPﬁJ{ {‘L‘llgop

Mongssoc (eatoo ) — Monassoc (eatoo )

from Definition 3.1.3.11. A similar statement holds for (qmgop%)%>. O

Proposition 3.2.2.13 ([HA, 4.8.5.16 (1)]). In this proposition we use nota-
tion from Notation 3.2.2.7.

Let T be a collection of small co-categories, I’ a subcollection of J, and J
the collection of all small co-categories.

(0) The functors () and (UP")® from Definition 3.2.2.11 are monomor-
phisms in Cat.,, and (V)% factors as a composition of a monomor-
phisms (93,)% with (87)®. Similarly, (37*)® factors as a composition
of a monomorphism (¥3")® with (U7)®.

(1) The functors q%lgopj and q%gopy as defined in Definition 3.2.2.11 are
cocartesian fibrations of oco-operads.

(2) The compositions pyon s Oq.%lgOpj and pMonﬂ)qu‘%lgOpg’r exhibit AlgOp?
and AlgOp% as symmetric monoidal o0o-categories.

(3) The morphisms of oco-operads q%gopj and qfflgop% are symmetric
monoidal.

(4) Let f be a morphism in Alg@p?. Then f is PMon,s oq%gopj -cocartesian

if and only if q%lgopj (f) is PMon,3-cocartesian and (\T/j)‘@(f) is qfxugop'
cocartesian. An analogous statement holds for morphisms in Alg(‘)p%.

(5) The functors (03,)% and (V3")® of Definition 3.2.2.11 are lax symmet-
ric monoidal.

(6) Let f be a morphism in AlgOps. Then f is inert if and only if (\T/j)®(f)
is inert. An analogous statement holds for morphisms in Alg@p%r.
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(7) The functor
(U37)®: AlgOp$, — AlgOp$

of (0) is symmetric monoidal.

(8) Let f be a morphism in Alg(‘)p%. Then f s Dvon,Pr © q%gop?r-cocarte-

sian if and only if (\T/gr)‘g’(f) 1S PMon, © qﬁ)lgopq -cocartesian. Q@

Proof. Proof of (0): That the functors factor as indicated follows from com-
posability of pullback diagrams [HTT, 4.4.2.1] together with Remark 3.2.2.6.
By Proposition B.5.2.1, pullbacks of monomorphisms are again monomor-
phisms, so that the functors in question are monomorphisms follows from
Definition 3.2.2.4 and Remark 3.2.2.6.

Proof of (1): The functor q%gopj is a pullback of qﬁlgop, which is a cocarte-
sian fibration of co-operads by Proposition 3.2.1.1 and Proposition C.2.0.6. As
cocartesian fibrations of co-operads are stable under taking pullbacks along
morphisms of co-operads®® and Moni,,, (Cate)® — Monassec(Catog) ™ is a
morphism of co-operads by Proposition 3.2.2.10 (2), we can conclude that
qﬁlgopj is also a cocartesian fibration of co-operads, and thus in particular a
morphism of co-operads by [HA, 2.1.2.14].

Proof of (2): As the oo-operad Mon3,. (Cato)® is in fact a symmetric
monoidal co-category?® by Proposition 3.2.2.10 (1), it follows?” with (1) that
Alg@p? is a symmetric monoidal co-category as well.

Proof of (3): Follows immediately from Proposition C.1.3.1.

Proof of (4): We do the case of Alg@p?, as the proof for AlgOp% is com-
pletely analogous. Let f be a morphism in .Alg@p?. Because qﬁ’lgopg maps
DPMon,J © qﬁ)lgOm -cocartesian morphisms to pyion,5-cocartesian morphisms by
(3), it follows from [HTT, 2.4.1.3 (3)] that f is pamon,5 © q%lgop?—cocartesian
if and only if qﬁ’lgopj (f) is PMon,3-cocartesian and f is q%gopj -cocartesian.
The claim now follows from Proposition C.1.1.1.

Proof of (6): We again only discuss the case of Alg@p?, as the proof for
Alg(‘)p%r is completely analogous. In light of (4) it suffices to show that if f is
a morphism of AlgOp$ lying over an inert morphism in Fin,, then (TH)E(f)
i PMon © @ 4140p-cOcartesian if and only if (T9)®(f) and q%gop7 (f) are inert.

Combining that q;(ugop is a morphism of oc-operads with [HTT, 2.4.1.3

3)] we obtain that (¥7)® being puon © ¢'x -cocartesian is equivalent to
AlgOp

25This is a special case of the functoriality of cocartesian families of monoidal co-categories
discussed in Remark 3.1.1.3 — in this case we consider [0]-families, which are just co-
cartesian fibrations of co-operads.

261 e. the canonical morphism of co-operads Mong‘ssoc(@atoo
fibration.

27Cocartesian fibrations are closed under composition by [HTT, 2.4.2.3 (3)].

)® — Fin, is a cocartesian
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(T)®(f) as well as

(q;llg(f)p © (‘T’j>®> (f) ~ ((‘I’j)® © q%lg(ﬁ)pj> (f)

being inert. The claim now follows by applying Proposition 3.2.2.10 (3).
Proof of (5): Immediate consequence of (6).

Proof of (8): Analogous to the proof of (6), using that qfxugop is even
symmetric monoidal and Proposition 3.2.2.10 (5).

Proof of (7): Immediate consequence of (8). O

3.2.3 LMod as a symmetric monoidal functor

In Section 3.1 we constructed a natural transformation evy,: LMod — pr
of functors AlgOp — Caty, see Definition 3.1.3.8. It was shown in Proposi-
tion 3.2.1.3 that AlgOp admits products and that LMod and pr preserve prod-
ucts. This makes evy, into a morphism in Fun™ (AlgOp, Caty, ), the full subcat-
egory of Fun(AlgOp, Cat,) spanned by the product-preserving functors. [HA,
2.4.1.8] then implies that evy, can be upgraded to a natural transformation
evy < LMod™ — pr* of symmetric monoidal functors AlgOp* — CatX .

We also investigated the behavior of evy, with respect to algebras in pre-
sentable symmetric monoidal oco-categories, showing in Proposition 3.1.3.12
that evy, lifts to a natural transformation of functors AlgOpg, — Pr™.

Finally, in Section 3.2.2 we constructed symmetric monoidal structures on
AlgOpy, and PrY and upgraded the inclusion functors to AlgOp and Cat.,
to lax symmetric monoidal functors (see Proposition 3.2.2.3 and Proposi-
tion 3.2.2.13).

The situation is depicted in the non-dashed part of the following diagram.
Squares that contain parallel arrows on opposing sides are to be interpreted as
encoding two commutative diagrams, one considering only the arrows at the
top, and one only considering the arrows at the bottom, as well as a compati-
ble homotopy between the two natural transformations from the source corner
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3.2 LMod and monoidality

to the target corner that one obtains by pre-composing and post-composing.

(3.17)
AlgOpy, % Pl

AlgOp

The vertical functors are all inclusions of the fiber over (1), the bottom square
was constructed in Proposition 3.1.3.12, and the front square can be obtained
from [HA, 2.4.1.8]. To be more precise about how the above cube is to be
interpreted with regards to parallel arrows, we could also depict the cube
(3.17) in the form shown below (as just a standard commuting cube in Caty),
using that natural transformations are equivalently encoded as functors out
of a product with [1].

[1] x AlgOp%, -------------- e , ppL®
/ /
1] x AlgOp* “rn Cat’,
[1] x AlgOpsp, eVm Pyl
/ /
[1] x AlgOp Ll Catoe

(3.18)

The goal of this section is to complete the cube as indicated by the dashed

arrows, and in such a way that evy,: LMod — pr in its incarnation as a

natural transformation of functors AlgOpyp, — Prl s upgraded to a natural
transformation of symmetric monoidal functors.

Proposition 3.2.3.1 ([HA, 4.8.5.16 (3) and (4)]). Let J be a collection of
small co-categories that includes A°P. Then the restriction to Alg@p? of the

87



Chapter 3 Bialgebras and modules over them

natural transformation evy of symmetric monoidal functors AlgOp* — Cat’,
factors through Cate.(J)®. Analogously, the restriction to Alg@p% factors

through fPrL®. The situation is depicted in the following commutative diagram.

EMo_d_®
S
A]g(‘)pgr Hev% :PI'L®
~. NS ’//’f
e
(\I,%w)@) pr (@%’r)@
LMod®
-7 i T
AlgOp§ ek Cateo(2)° (319)
¥ o
_»é_—’
(#)° i (+7)°
LMod*
AlgOp* Hev,f‘ Cat
~_ ¥
pr*

Furthermore, the two natural transformations ev that we obtain in this
manner are natural transformations of symmetric monoidal functors, and
the underlying diagram of underlying oo-categories of diagram (3.19) can be
identified with diagram (3.10) from Proposition 3.1.3.12. Q@

Proof. In this proof we will use Notation 3.2.2.7 as well as the notation from
Definition 3.2.2.11 and Proposition 3.2.2.13.

Reformulation of the lifting problem: We first note that by combining Propo-
sition 3.2.2.3 (0) with Definition 3.2.2.1 and with Proposition B.4.4.1 and
Proposition B.1.2.1 the right vertical functors ((IJ%DY)® and (q)j)® in diagram
(3.19) are monomorphisms. In this situation Proposition B.4.3.1 implies that
the dashed lifts in the following diagram are essentially unique if they exist.

[1] x AlgOpl, ------"---» ppL®
id x (T37)® (237)®

[1] x AlgOp® %5 Catoe(3)® (%)
idx(7)® (27)®

[1] x AlgOp* —" s eat,

Furthermore, Proposition B.4.3.1 also implies that these lifts exists if and only
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if the following two inclusions of replete subcategories of Ho(Cat’,) hold.

Im (Ho <ev§1 o<id « (Eﬂ)@))) c Im(HO(@j)@)) (A)
Im(Ho(er o(id x(ifj)@) o (id x(\i%’r)®)) C Im(Ho((®7)% o (‘P%’r)@’)))

Verification of the inclusion of replete images for fibers over Fin,: We
start by checking those inclusions for objects and morphisms lying in a fiber
over (n) for some n > 0. Because (¥3")®, (U7)® (®I7)® and ($7)% are all
morphisms of co-operads (see Proposition 3.2.2.3 (2) and Proposition 3.2.2.13
(5)), we can identify the diagram induced by (*) on fibers over (n) with the
following diagram.

[1] x AlgOpg," ---------- y Pt
id x (¥97)% (37)®

[1] x AlgOp3™ -------3 » Catoo ()" ()
id x (97)% ()8

[1] x AlgOp ™ — ==, CatX®

By Remark 3.2.2.12 and Remark 3.2.2.2 this diagram can be identified with
the n-fold product of the lifting problem solved in Proposition 3.1.3.12, so
we deduce that the inclusions (A) hold for objects as well as for morphisms
lying over an identity morphism in Fin,.

Reduction of the presentable case to the other cases: Suppose for the mo-
ment that we have shown the first inclusion of (A) for all families of small
oo-categories. Given that we already know the second inclusion on objects,
the second inclusion will follow if (®37)® and (VI*)® are fully faithful for

J the family of all small co-categories. That ((I%)r)(8 is fully faithful is the

~\®
case by Definition 3.2.2.1, and (‘I’%’r) is fully faithful combining Proposi-
tion B.5.2.1 with Definition 3.2.2.11 and Definition 3.2.2.4.
Verification of the inclusion of replete images for morphisms: Let

r-A4,®---®©A, >B1® @By
be a morphism in AlgOp* lying over a morphism

G:C®---@C,—>D1®---®&Dy,
in Monassoc(Catoo)* lying over a morphism

i {n) = (m)
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in Fin.. Note that by Remark 3.1.3.7 we can interpret A; as an object of
Alg(C;) and similarly for B;. Assume that I' lies in the replete image of
(U9)®. By applying Proposition B.5.2.1, the definition of (¥?)® in Defini-
tion 3.2.2.11, as well as Definition 3.2.2.4 we can unpack this to see that
this implies in particular that the underlying oco-categories of Cy,...,C, and
D4,...,D,, admit J-indexed colimits, that the tensor product functors on
Ci,...,Cn,Dy,...,D,, are compatible with J-indexed colimits, and that for
every 1 < j7 < m the functor

H Ci — Dj
e(i)=J

associated to G preserves J-indexed colimits in each variable separately. Ap-
plying ev to I' we obtain a commutative diagram as follows in Cat’, (see
Remark 3.1.3.9).

LMod, (C1) @ - - @ LModa, (Co) 2T 1 Modp, (D1) @ -+ @ LModg,, (D)
CV:S(Al@“-@An) evy (B1®-®Bm)
CL®-- - aC, C®---aD,,

L ©-®Cy o 1® @

What we have to show is that this diagram is in the replete image of (®7)®.
What we have already shown when considering objects and morphisms in
fibers over Fin, already implies that the four objects as well as the vertical
morphisms are in the replete image of (®7)®, so it only remains to show this
for the horizontal morphisms. By definition (see Definition 3.2.2.1) this means
that we have to show that for every 1 < j < m the two horizontal functors in
the following commutative diagram associated to the diagram above preserve
J-indexed colimits separately in each variable (see Remark 3.1.3.9 for the
identifications made here — in particular the functors called ev,, are the actual
evaluation functors).

H@(i):j LMody, (C;) —— LModg, (D;)

[pciy=s e""‘l le"m

How=C ———— D

The bottom horizontal functor is the same one as the functor associated to G
that we already mentioned preserving J-indexed colimits separately in each
variable. We also already know that the left vertical functor is a product of
functors that preserve J-indexed colimit, so it follows that the compositions
from the top left to the bottom right preserve J-indexed colimits separately
in each variable. As the tensor product in the monoidal co-category D; is
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3.2 LMod and monoidality

compatible with J-indexed colimits, we can now apply [HA, 4.2.3.5] to deduce
that the top horizontal functor also preserves J-indexed colimits separately
in each variable.

On showing that the induced functors are symmetric monoidal: We have
now constructed a commutative diagram (3.19). We next need to prove that
the induced functors LMod® and pr® are symmetric monoidal?®, i.e. that
they preserve morphisms that are cocartesian with respect to the canonical
morphism of co-operads to Fin, (see [HA, 2.1.3.7]).

Proof that the induced functors are lax monoidal: As all solid arrows in
diagram (3.19) are lax monoidal (so preserve inert morphisms)?®, and the
right vertical morphisms of that diagram reflect inert morphisms by Propo-
sition 3.2.2.3 (3), we can already conclude that the functors called LMod®
and pr® preserve inert morphisms, i.e. are lax monoidal.

Reduction of what needs to be checked for symmetric monoidality: Let J
be the collection of all small co-categories. Note that in the commutative
diagram

LMod®
./‘llg(‘)p%’]r Hev‘g PrL®
pr®
(@g:-)@ (<p%’r)® (3.20)
LMod®

the left vertical functor is symmetric monoidal by Proposition 3.2.2.13 (7) and
the right vertical functor reflects cocartesian morphisms with respect to the
canonical morphisms of co-operads to Fin, by Proposition 3.2.2.3 (5). If we
show that the two bottom horizontal morphisms of co-operads are symmetric
monoidal it will thus follow that the same is true for the two top horizontal
ones.

Taking into account Proposition E.1.1.1 it thus remains to show that the
functors

LMod®, pr®: AlgOp? — Catu ()

map Pmon,3 © q%gopj -cocartesian lifts of u and e (see Proposition E.1.1.1 for
the definitions) to pj-cocartesian morphisms.

28The oo-category of symmetric monoidal functors from one symmetric monoidal
oo-category to another one is a full subcategory of the oco-category of functors over
Fin. (see [HA, 2.1.3.7]), so there is no extra condition that we need to check for evy.

298ee Proposition 3.2.2.13 (5) for the left vertical functors and Proposition 3.2.2.3 (2) for
the right vertical functors. The bottom horizontal functor is symmetric monoidal by
construction.
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Cocartesian lifts of €: Denote by () the unique object in (Alg(‘)pj)%, and
let

E:)— A
be a pumon,5 © qﬁ’lgopﬁ—cocartesian lift of e lying over a pwmon,s-cocartesian
morphism?>°

E:0-=cC

in Mon2..,.(Cateo)®.
That E' is DMon,3-cocartesian implies that the functor

E: ]]_eatoo(j) —C
associated to E’ is an equivalence, so that we can identify C with the unit3!
Leat.(3) in Mon3.. (Catoo). N
By Proposition 3.2.2.13 (4) the morphism (¥7)®(E’) is ¢, ,-cocartesian.
The commutative diagram

TAlgOp

AlgOp* ————— AlgOp

X
qugOpl l‘lﬂlgop

Monassoc (Cato )™ e Monassec (Catoy)

where the horizontal functors are the cartesian structures is a pullback di-
agram by Proposition 3.2.1.1 and Proposition F.1.0.2. Applying Proposi-
tion C.1.1.1 we conclude that the functor

ILA]gOp — A

associated to (¥?)®(E’) (where Laigop is the final object in AlgOp, so the unit
object in the cartesian symmetric monoidal structure) is a gaigop-cocartesian
lift of the monoidal functor?

e: [0] = C

associated to (®%)®(E’). The final object 14140, in AlgOp can then using
Remark 3.1.3.7, Proposition 3.2.1.1, and Proposition C.2.0.3 be identified
with the final object in

AlgOpjg =~ Alg([0])°"

BOq.%lgOpj is symmetric monoidal by Proposition 3.2.2.13 (3).
31By Proposition 3.2.2.10 (6) the forgetful functor
(ev<1>)®: Mon3,.,.(Catoeo)® — Cateo (3)®
is symmetric monoidal, so the underlying oo-category of the monoidal unit
IIMOUX (Cates) of Mongssoc(eatoo) is given by the monoidal unit of Cates (J).

32The final object of Monagsoec(Catoo) (which is also the monoidal unit with respect to
the cartesian symmetric monoidal structure) is by Proposition 3.2.2.10 (6) given by
the essentially unique monoidal structure on the oo-category that is final in Cateo, the
discrete category [0] that has a single object and only the identity morphism.
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3.2 LMod and monoidality

which is the unit object 1jo) in [0]**. That the morphism L) — A is qaigop-
cocartesian then implies using Remark 3.1.3.7 that A can be identified as an
object of
AlgOp, ~ Alg(C)°P

with e(1jg) ~ Lc.

Getting back to showing that LMod® and pr® map E'toa py-cocartesian
morphism, we obtain the following commutative diagram in Cat.,(J) by ap-
plying ev® to E'.

LMod®(E’)
T, LMod4(C)

levm

C

evm

S|/ =

o (%)

It suffices to show that the associated horizontal functors as depicted in the
diagram below are equivalences.

1 Catoo(J) — 7 LMod 4 (C)

a e

leat(3) — 75— C

That E is an equivalence was already noted, and the right vertical functor
evy is an equivalence by [HA, 4.2.4.9], as A is the unit object in C.
Cocartesian lifts of p: Let C and D be two objects in Monz,(Cateo), let
A be an algebra in C, and let B be an algebra in D. We can use an analysis
completely analogous to the e-case to describe a pyion,5 © q%go p;cocartesian

lift M': A® B — A ®75 B. Let us just note that from the lax symmetric
monoidal functor Monj...(Cats) — Monassoc(Catos) we obtain a monoidal
functor C x D — C ®3 D, and the induced functor on algebras sends the pair
(A, B) to an object A ®5 B of Alg(C ®5 D), and it is this algebra considered
as an object in AlgOp that is the target of M'.

ev? applied to M’ yields a commutative diagram (after passing to the
associated functors, as before)

LMod 4(C) x LModg (D) —=— LMod 4 z)(C x D)

—®rl lLMod(f@@;f)

LMod 4(C) ®3 LModg (D) — LModag, 5(C @3 D)

evim Qg evml le‘/m

C®3D C®;D

id

33In this case this is completely clear because there is only an essentially unique algebra
in [0], but we could also invoke [HA, 3.2.1.8].
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Chapter 3 Bialgebras and modules over them

and we have to show that the bottom and middle horizontal functors are
equivalences. This can be done by applying [HA, 4.7.3.16], and the verification
of the necessary hypotheses is carried out in [HA, Proof of 4.8.5.16 (4)]. While
our settings are slightly different, for example our functor was constructed
on an oo-category where morphisms of algebras have the opposite variance
compared to Lurie’s oo-category, these differences are not relevant in the
proof, the most that would need to be changed for our setting is replacing
RMod by LMod.

Note that this is the step that requires the assumption that A°P is con-
tained in 7.

Compatibility of the constructed diagram with diagram (3.10) from Proposi-
tion 3.1.3.12: Finally, it only remains to show that the underlying diagram of
(3.19) on underlying co-categories can be identified with diagram (3.10) from
Proposition 3.1.3.12. But this follows from ®7 and @%’r being monomorphisms
together with the uniqueness part of Proposition B.4.3.1. O

3.3 Bialgebras

Let C be a symmetric monoidal category. An (associative) algebra A in
C consists of a multiplication A ® A — A and a unit 1¢ — A such that
diagrams encoding associativity and unitality commute. The notion of (coas-
sociative) coalgebras A in C is dual to this; instead of a multiplication we
require a comultiplication A — A ® A, and instead of a unit we require a
counit A — 1, satisfying diagrams encoding coassociativity and counitality.
Instead of defining coalgebras from scratch like this we can also define them
in terms of algebras: A coalgebra in C is the same thing as an algebra in C°P.

We are often not only interested in individual algebras A in C, but the
category of all (associative) algebras in C, which we denote by Alga....(C).
The data of a morphism of algebras A — B just consists of a morphism in C
from the underlying object of A to the underlying object of B, but we require
that this morphism is compatible with the respective multiplication and unit
morphisms. If we want morphisms of coalgebras to similarly be given by mor-
phisms of underlying objects that are compatible with comultiplication and
counit, then we need to fix having passed to the opposite category by doing
it a second time, leading to the definition of the category of (coassociative)
coalgebras as

COAlgAssoc(C) = AlgAssoc(Cop)op

This is the perspective that is most suitable to extend the definition to the
oo-categorical setting.

Definition 3.3.0.1. Let a: O'® — O® be a morphisms of co-operads and
pe: C® — O% an O-monoidal co-category. Then we set

coAlgp /0(C) = Alge, /6 (CP)°P
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where C°P carries the O-monoidal structure described in [HA, 2.4.2.7]34. {

Notation 3.3.0.2. We will use similar notational shortcuts for coAlg as for
Alg. In particular, in the situation of Definition 3.3.0.1:

o If o is the identity, then we will shorten coAlgy,»(C) to coAlg /O(C).
o If O® = Fin,, then we write coAlgy, (C) instead of coAlgos /comm(C)-

« We write coAlg(C) for coAlg /psec(C) or coAlgag (C)-

o We write coCAlg(C) for coAlgeymm(C). o

The category Algago.(C) inherits a symmetric monoidal structure from C,
so that we can form the category

BiAlgAssoc,Assoc ( C) = COlﬁlgAssoc (AlgAssoc ( C) )

of bialgebras in C. Unpacking the definition, a bialgebra in C consists of
an object A in C together with a multiplication, unit, comultiplication, and
counit, satisfying associativity, coassociativity, unitality, and counitality, and
such that comultiplication and counit are morphisms of algebras. In this
classical setting it is very easy to see that comultiplication and counit are
morphisms of algebras if and only if multiplication and unit are morphisms
of coalgebras, so that there is a canonical isomorphism

COAlgAssoc (AlgAssoc (C)) = Alg/—\ssoc (COAlgAssoc (C) )

or ordinary categories, and we could have taken either side as a definition for
the category of bialgebras BiAlgag e assoc(C)-

Unfortunately, the situation is not quite as easy in the setting of oco-cate-
gories. For the case of commutative and cocommutative bialgebras in a sym-
metric monoidal co-category it is shown in [Lurl8, 3.3.4] that the two possible
definitions coincide. The case of either commutative or cocommutative bial-
gebras is handled in [Rak20, 2.1.2]. In all these cases, the crucial input to
the proof is the fact that tensor products of commutative algebras happen to
be coproducts in the co-category of commutative algebras [HA, 3.2.4.7], so
the proof strategies do not generalize easily to bialgebras which are neither
commutative nor cocommutative. Luckily we will not need to use that the
two possible definitions are equivalent in this text. Instead, for us bialgebra
will always mean coalgebra in algebras.

Definition 3.3.0.3. Let a: 0% x O'® — O0”® be a bifunctor of co-operads,
and C an O”-monoidal co-category. Then we define

BlAlgO/’o(C) = COAlg/O (Algoz/ou (C))
where Algey,0r(C) carries the O-monoidal structure of Proposition E.4.2.3,
and call BiAlgy, (C) the oo-category of O', O-bialgebras in C. O

3480 if the cocartesian fibration pe is classified by a functor F: O® — Catso, then the
cocartesian fibration (C°P)® — O is classified by the composite (—)°P o F.
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Warning 3.3.0.4. In the notation BiAlgy, »(C), the co-operad stated first,
', is employed in the algebra direction, and Alg,, is also what is applied
first (i. e. innermost) to C in our definition. O

Remark 3.3.0.5. Let po: O® — Fin, and po: O'® — Fin, be oo-operads
and C a symmetric monoidal co-category.
There is a canonical bifunctor of co-operads

: 0% x 0'® Z1hD)ewoxpor), Fin.

with respect to which we can form the oo-category of @', O-bialgebras as in
Definition 3.3.0.3.
Note that if we let 3 be the canonical bifunctor of co-operads

ﬂ' Fln X O/® (—/\—)O(id)(po/)

Fin,

then « is the composition o = Bo(po xid). Let Alg, (C)'® be the O-monoidal
category from Proposition E.4.2.3 with respect to a and let Algy, (C)® be the
symmetric monoidal co-category from Proposition E.4.2.3 with respect to f.
It then follows from Remark E.4.2.4 that there is a pullback diagram

Algy (C)® —— Alg,, (C)®

Pr2°LAlgl lpbmAlg

O® T) Flrh<

in Cat.,, and all morphisms in the square are morphisms of oco-operads, while
the vertical morphisms are even cocartesian fibrations of co-operads by Propo-
sition E.4.2.3 (3).

Passing to fiberwise opposites, applying Remark E.2.0.4, and passing to
opposites again we then obtain an induced equivalence

BiAlgo, o(C) = coAlg, o (Alge, (C)') =5 coAlg,(Algy (C)) &

3.3.1 Bialgebras in (co)cartesian symmetric monoidal
oo-categories

Let C be a cocartesian symmetric monoidal oo-category®®. Then if O is
a reduced®® oo-operad, then [HA, 2.4.3.9] shows that the forgetful functor
Alg,(C) — C is an equivalence. In other words, every object of C carries
an essentially unique O-algebra structure. This implies analogous results for
bialgebras of cocartesian or cartesian symmetric monoidal oco-categories, as
the next two propositions show.

35See [HA, 2.4.0.1] for a definition and [HA, 2.4.3] for further discussion.
36See [HA, 2.3.4.1].
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The first of the two, Proposition 3.3.1.1 can be summarized as saying that
every coalgebra in a cocartesian symmetric monoidal co-category can be up-
graded to a bialgebra in an essentially unique way. The second, Proposi-
tion 3.3.1.2, instead says that any algebra in a cartesian symmetric monoidal
oo-category can be upgraded to a bialgebra in an essentially unique way.

Proposition 3.3.1.1. Let C be a cocartesian symmetric monoidal co-cate-
gory, let O be an co-operad, let O' be a reduced oo-operad, and let o be the
essentially unique underlying object of O’.

Then the following composite functor is an equivalence

coAlgy (evo

BiAlgy o(C) =~ coAlgy(Alge (C)) ) coAlg,(C)

where the first functor is the equivalence discussed in Remark 3.3.0.5 and the
second functor is induced on coalgebras by the symmetric monoidal functor
ev, from Proposition E.4.2.3 (5). v

Proof. As the functor

is symmetric monoidal, with the underlying functor being an equivalence by
[HA, 2.4.3.9] (as C is cocartesian symmetric monoidal), it follows from [HA,
2.1.3.8] that ev® is an equivalence of symmetric monoidal oo-categories. It
follows that the induced functor on O-coalgebras is an equivalence. O

Proposition 3.3.1.2. Let C be a cartesian symmetric monoidal co-category,
let O be a reduced co-operad with essentially unique underlying object o, and
let O be an co-operad.

Then the forgetful functor

BiAlgy: o(C) = Algy(Alge, (€)°P)*” 2 (Alge, (C)°P)* =~ Algy, (C)

is an equivalence, where the first equivalence is the one from Remark 3.53.0.5.

Q

Proof. By Proposition F.3.0.2, the symmetric monoidal structure on Alg,, (C)
is cartesian, so the symmetric monoidal structure on Alge,, (C)°P is cocarte-
sian, so that the statement follows from [HA, 2.4.3.9]. O

3.4 Modules over bialgebras
In Section 3.2 we upgraded LMod to a symmetric monoidal functor from
AlgOpyp, to Pr™. In this section we will try to better understand the func-

tor induced on oo-categories of O-algebras Algy, (AlgOpp,) — Algy(Pr)
when O is an oo-operad. By Proposition 3.2.2.8 there is an equivalence
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Algy, (Pr™) ~ Mon' (Pr), so that this functor can be interpreted as pro-
ducing presentable monoidal co-categories out of O-algebras in AlgOpy, in a
functorial way.

In Section 3.4.1 we will give a description of the domain of this functor.
The result can be roughly summarized as follows: An O-algebra in AlgOps,
is given by a pair (O®, A) where C is an O ® Assoc-monoidal co-category and
A is an Assoc, O-bialgebra in C.

In Section 3.4.2 we will then discuss LMod as a functor

Algy, (AlgOpgp,) — Mond' (Caty,)

and describe the O-monoidal structure on an Assoc, O-bialgebra in more con-
crete terms. We will thus see that this construction really implements the
idea described in the introduction to Chapter 3.

3.4.1 Algebras in AlgOp

The goal of this section is to give a description of Alge (AlgOpsp,). It will
turn out that the presentability condition plays little role in the discussion,
so to illustrate the results we will start by unpacking a bit what objects in
Mong;,, (AlgOp) are. Specifically, let us try to understand the multiplication
functor induced by the active morphism u: (2) — (1).

So let C be a monoidal co-category and let A be an Assoc-algebra in C. By
Remark 3.1.3.7 this specifies an object of AlgOp lying over C that we denote
by (C, A).

Suppose (C, A) is the underlying object of a commutative monoid in AlgOp.
We want to describe the multiplication

(€, A) x(C,A) = (C, A)

where the product is taken in AlgOp. Propositions 3.2.1.1 and C.2.0.3 imply
that the product is given by (C x C, (A, A)). So the multiplication map is
given by a morphism

(CxC,(AA) = (C,A)

in AlgOp. We can factor this morphism as indicated in the commutative
triangle below

R (€, F((A,A4)))

(C xC, (Aa A)) J(idc,f)

—_

(€, A)
where F is a gAlgop-cocartesian morphism lifting a monoidal functor

F®:(CxC)® —c®
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and f is a morphism of algebras A — F'((4, A)) (see also Remark 3.1.3.7).
The monoidal functor F® grants us a second tensor product functor on C,
which by the Eckmann-Hilton argument can be identified with the original
one. Thus f can be identified with a morphism of algebras A: A - A® A,
and this provides the comultiplication of a bialgebra structure on A.

To approach such a description more rigorously, we use that the cocartesian
fibration of oco-operads q%gop%: AlgOp$, — Moniar..(Cate)® (see Proposi-
tion 3.2.2.13 (1)) induces a cocartesian fibration

Algo (Alg0py,) > Algo (Monii(Cats))

for every oc-operad O, see Definition 3.4.1.2 and Proposition 3.4.1.3 below.

We start this section by discussing in Construction 3.4.1.1 how we can iden-
tify the codomain of this cocartesian fibration Alg,,(Mony’ (Cats,)) with
Mon&%ssoc((‘fatoo), the oo-category of presentable O ® Assoc-monoidal oo-
categories.

Most of the remainder of this section will then be occupied by determining
the fiber of Alg,(qaigop,,, ) Over a presentable O®Assoc-monoidal oo-category
C, and in Proposition 3.4.1.15 we will show that the fiber over C can be
identified with BiAlgag,c o(C)P.

Construction 3.4.1.1. Let O, O, as well as 0" be oco-operads, and let
a: 0% x 0'® — 0% be a bifunctor of co-operads exhibiting O” as a tensor
product of @ and @', and let J be a collection of small co-categories. Then
there is a commutative diagram as follows, explained below. To save space
we abbreviate expressions such as Mone/ (Cat,) by Mone, i.e. we omit the
Catse in parentheses.

MOH@ (MOH@/)

‘ ~
Alg, (Mon%{) — Alg, (Moné/) ——  Alg,(Moner)

~ ~
~ ~

Algo (Algo, (Pr)) — Algo (Algor (Catao (3))) —— Algo (Alzo,)

|~ ~ ‘ ~
Alg,, (fPrL) 5 Algo(Cata (7)) ———— Algy,
|~

‘: ‘~

MonZy, Mong,., Monep

The equivalence at the top right is the one from [HA, 2.4.2.5], i.e. is the one
induced by mon«- The top two squares are induced on O-algebras by the com-
mutative diagram constructed in Proposition 3.2.2.8, which is a commutative
diagram of co-operads by Proposition 3.2.2.10. The middle two squares are ob-
tained from naturality of the equivalences constructed in Proposition E.5.0.2
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and Proposition E.5.0.1 as discussed in Remark F.3.0.4, applied to the mor-
phisms of co-operads

P Catoo (3)® — Cat’

from Proposition 3.2.2.3 (2). Finally, the commutative diagram constructed
in Proposition 3.2.2.8 induces a commutative diagram on underlying oco-cat-
egories that yields the bottom two commutative squares. &

Definition 3.4.1.2. Let O be an oc-operad and J a collection of small
oo-categories. We define the following oo-categories and morphisms of oo-
categories by applying Alg, to the morphisms of co-operads (see Proposi-
tion 3.2.2.13 (1)) q%lgopj and qﬁlgop%. The equivalences used are the ones
from Construction 3.4.1.1.

BiAlgOpd = Alg, (AlgOp,)
BiAlgOpy' = Alge (AlgOpy,)

Algo (2412005 )

BiAlgOpd, Alg, (Mon,{ssoc(eatoo))
q?jmlgopé\\\\\ JN
~
MOHSO@Assoc(eatOO)
. pr Algo (4415005, ) Pr
BiAlgOpy Algy, (MonAssoc(Gatoo))

Tl ~
Ipiaigopdr S~

Mon(g;r(@Assoc(eatOO)
We will also write ¢5ialgope [OF Gn; 15050, and BiAlgOpe for BiAlgOpl. <

Proposition 3.4.1.3. In the situation of Definition 3.4.1.2, the functors
UBiagopd, O Gpipigopzy are cocartesian fibrations. @

Proof. Combine Proposition 3.2.2.13 (1) with Proposition E.3.2.1. O

We start the process of identifying the fibers of 4BiA1gODPY, and 4BiAIgOpE
by reducing the problem to gsialgop,, -

Proposition 3.4.1.4. We use Notation 3.2.2.7 in this proposition. Let J be
a collection of small co-categories and let O be an oc-operad. Then there is
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a pullback diagram in Cats, as follows.

Alg, (T7
BiAlgOp, | Meo(T) | BiAlgOpo

q'Bi.AlgOp%J JCI‘BiAlgOpO

Mon%@)Assoc(Gatoo) ————— Monpgassoc(Catoo)

(v7)

In particular, if C is an object in MonjO®ASSOC(€atoo), then we can iden-
tify the fiber (BiAlgOpd)e with (fBi.AlgOpo)(q,g)@(c), and if F: C — D is a
morphism in the co-category Mongg@Assoc(Gatoo) we can identify the induced
functor on fibers of IBiAIgOP with the functor induced by (\Ifj)®(F) on fibers
of qBiAIEOP, -

Analogous statements hold for qp; g1gopz: - @

Proof. We only prove the case of gg;4140p3, the case of gz 150,z i com-
pletely analogous.
By Definition 3.2.2.11 we have a pullback diagram

(7)®

AlgOp? AlgOp*

® X
qmgomJ Jqﬂlg(ﬂp

Mongssoc ( Catoo ) @ Tj)@) Monassoc ( eatoo) x

where qﬁlgop is a cocartesian fibration of co-operads (see Proposition 3.2.2.13
(1)) and (¥7)® is a morphism of oo-operads (see Proposition 3.2.2.10 (2)).
Combining Proposition E.1.3.1 and Proposition E.3.1.1 we conclude that the
the top square in the following commutative diagram is a pullback square3”

Alg (‘TJ J )
Alg (AlgOpy) - Alg (AlgOp)

Algo (qa1g0p, ) Algo (qaigop)

Algo (¥7)

Alg, (Monissoc(eatoo)> Alg s (Monassoc (Catoo))

~ ~

MOH%@ASSOC (Cateo) T) Monpgassoc(Cateo)

37The two W7 in the diagram are different functors, the same notation only arises here
because the operad does not occur in the notation.
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where the lower commuting square is the one from Construction 3.4.1.1. This
proves the claim, as the the left and right vertical compositions are by defi-

nition gp; 410,23 a0d ¢BiAlg0p, - O

Before starting to analyze the fibers of ¢sigigop oy it will be helpful to
describe the equivalences from Construction 3.4.1.1 more concretely as done
in the following proposition.

Proposition 3.4.1.5. Let O, O, as well as O” be oo-operads, and let
a: 0% x 0'® — 0" be a bifunctor of co-operads exhibiting O" as a tensor
product of O and O'.
Then there is a commutative diagram as follows
Mone (Moner (Cats)) —— Fun(O®, Fun(O'%, Cats)) +—

~

Alg,(Monp/ (Cateo)) (ms)..

~

Algy(Algy (Categ)) — Fun(O®, Fun(0'®, Cat))

~ Tg -

)
BiFunc(0, 0’; Cats,) ——— Fun(O® x O0'%, Cat,)

~ Ta*

Alge, (Cat,) ———— Fun(0"®, Cat}.)

~ l”*

Monpr (Cate,) ————— Fun(0”%, Caty) ————

where vertical functors on the left are the ones from Construction 3.4.1.1
(where we split up the equivalence in the middle in its two steps from Propo-
sition E.5.0.2 and Proposition E.5.0.1) and the horizontal functors are the
the compositions of the canonical inclusions and projections. Q

Proof. The top square is obtained from the construction of the equivalence
©% by combining the commutative diagrams (3.15) and (3.14) occurring in
the proof of Proposition 3.2.2.8. The two middle squares are from Proposi-
tion F.3.0.3. The bottom square is diagram (3.13) from Proposition 3.2.2.8.
Fir@l\ly, the commutative rectangle on the right is obtained from naturality

of (—). O

The cocartesian fibration gsia1g0p o I8 constructed in multiple steps from
the universal cocartesian family of Assoc-monoidal co-categories, but ends up
with Monpgassoc(Catoo) as a codomain. The next proposition relates the uni-
versal cocartesian family of Assoc-monoidal co-categories with the universal
cocartesian family of Assoc ® O-monoidal co-categories.
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Proposition 3.4.1.6. Let O, O, as well as O" be oco-operads and let
a: 0% x 0% — 0" be a bifunctor of co-operads exhibiting O" as the
tensor product of O and O'. Then there is a commutative diagram as follows
such that both squares are pullback diagrams, and where other parts of the
diagram will be explained further below.

Moner (Cateo)® +————— Mong (Cate)® ————— Monp (Catso)®

. : ;

0"® x Monp (Cate) +— OF x O'® x Monp (Cate,) — OF x Monp (Cate,)

(3.21)
The left and right vertical functors are the universal cocartesian families
of monoidal co-categories defined in Definition 3.1.1.4, whereas the middle
vertical functor is a functor we newly define here as the pullback of either
the left or right square. The bottom left horizontal functor is o x id, and the
bottom right vertical functor is the the product of idpe with the following
composition

O'® x Monp (Cats,) — O'® x Mone: (Monp (Caty,)) (3.22)
— 0" x Fun(0'®, Monp (Cats)) <> Mone (Catu)

where the first functor uses the equivalence from Proposition 8.4.1.5 inter-
preting O as the tensor product O’ ® O wvia o T, where T is the symmetry
equivalence O% x O'® ~ O'® x O%®, and the second functor is the product of
the identity and the canonical inclusion. Q

Proof. Both pO” and p© are by definition cocartesian fibrations, with p©
classified by>® the composition

0% x Monp (Caty,) — O x Fun((’)®, Gatoo) = Cates

where the first functor is the product of the identity functor and the canon-
ical inclusion, and similarly for p°". So by naturality of the Grothendieck
construction®? it suffices to show that the composition of the left bottom hor-
izontal functor in diagram (3.21) with the functor the left vertical cocartesian
fibration is classified by is homotopic to the composition of the right bottom
horizontal functor with the functor the right vertical cocartesian fibration
is classified by. For this consider the following three commutative diagrams,
where we will denote the various canonical inclusions by ¢ and abbreviate

38GSee Definition 3.1.1.4.
39See [GHN17, A.32] and [Maz19)].
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Monp (Cats) by Mone and analogously for O’ and O”.

0% x 0 x Mongr —— XX, 08 » 0 x Fun(0"%, Cat.)
idxidxa™
0% x O'® x Mony: (Monp) 0% x 0% % Fun((9® x 0%, Catoo)
idxidxe idxidxZor

idxidX e
0% x 0'® x Fun(O’®,Mono) lﬂ 0% x 0% x Fun(O’®,Fun((’)®, Gatoo))

idxev idxev

id x
0% x Monp lakd

0% x Fun(O‘X’7 Gatoo)

ev

Catoo
(+)
In the above diagram, the top square arises from Proposition 3.4.1.5 and
the bottom square uses naturality of evaluation. The next two commutative
diagrams only use various naturalities and functorialities.

0% x 0% x Fun(0® x 0'® Caty) ——————
JlXmdX or
0% x 0'® x Fun(0'®, Fun(0%, Caty)) ev (%)
JMV
0% x Fun(0%®, Caty,) = Catoo

O x 0’ x Monpn (Cate,) —9XE 09 % O'® x Fun(0”®, Cato)

axidJ idxidxa™

0" x Monpr (Catee) Y/ 0% x 0® x Fun(0% x 0’2, Cat..)

id x LJ ev

0% x Fun(0"?®, Catw,) v Catoo

(s * %)

The composite of the lower left (right) horizontal functor in diagram (3.21)
with the functor the left (right) vertical cocartesian fibration is classified by
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is precisely the composite via the bottom left corner from the top left to the
bottom right corner in diagram (x x %) (in diagram (x)). Diagrams (x), (),
and (x * *) show that these two composites are homotopic, which proves the
claim. O

We next go through the steps used to construct ¢siaigop from p"%°¢ and
show how we can identify ggiaigzop With a functor obtained from p* as in
Proposition 3.4.1.6. We will use the right pullback square in (3.21) to compare
constructions obtained from p® with the intermediate steps on the way to
gBiAlgop, While using the left pullback square to be able to describe those
constructions in a way helpful to ultimately describe fibers of ¢sigigop as
oo-categories of bialgebras.

Definition 3.4.1.7. Let O’ as well as O” be two oco-operads and let further-
more a: Assoc® x O'® — O0"® be a bifunctor of co-operads that exhibits ©”
as the tensor product of Assoc and O.

Using that the right square in (3.21) is a pullback diagram we can interpret
p® from Proposition 3.4.1.6 as a cocartesian O’® x Mong~ (Caty, )-family of
Assoc-monoidal oco-categories. Passing to Assoc-algebras we obtain by Propo-
sition 3.1.2.10 a pullback, where we will denote the oo-category on the top
left and functor on the left as indicated, and the functor on the right is the
one from Definition 3.1.3.3.

AP = Alg pesoc (ma(eatoo)®) L Alg

QAJ( |qug

0'® x Monpr (Cate,) —————— Monpassoc(Catso)

O

Remark 3.4.1.8. Let C be an oo-category, let O be an co-operad, and let
p: D® — O® x C be a cocartesian C-family of O-monoidal co-categories.
Note that the projection pry: O® x C — C is a cocartesian fibration°
and pry-cocartesian morphisms are those that are (equivalent to) an identity
morphism in the first factor.
By [HTT, 2.4.2.3 (3)] and Proposition C.1.3.1 we obtain a morphism of
cocartesian fibrations over C as follows.

D® 4) O® x C
pr& /

40This is for example easy to see by using that it is the pullback of the functor O® — *
along C — .
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If f: X — Y is a morphism in C, then we obtain an induced commutative
square on fibers as follows.

pg s pE

px| |

o® — o®
By the description of pry-cocartesian morphisms given above the induced
functor on fibers of pr, is the identity, and by assumption on p the two
vertical functors are cocartesian fibrations of co-operads. We thus obtain a
commuting triangle

® pPx ®
%
DX DY

Przh LA
0%

that by Proposition 3.1.1.1 is an O-monoidal functor. It is this O-monoidal
functor that we will refer to as the induced O-monoidal functor on fibers over

f o

Proposition 3.4.1.9. Assume we are in the situation of Definition 3.4.1.7,
and let C be an O"-monoidal co-category. Then the fiber of qa over C (con-
sidered as an object of Monpn (Cate,)) can be identified with the O'-monoidal
oo-category of Assoc-algebrast? AlgASSOC/O”(C)® from Proposition E.4.2.5.
Furthermore, if F: C — D is a O”-monoidal functor, then the induced O’ -
monoidal functor on fibers of qa fits into a commutative diagram as follows

F

AZ

~J

AlgAssoc/O” (C) ©

A

f

AlgAssoc/O” (D) ©

Algpgoe /o (F)®

where AlgAssoc/o,,(F)® is the induced functor from Proposition E.4.2.3 and
the vertical equivalences are the ones from the first claim of this proposition.

Q

Proof. Consider the following commutative diagram, where the top pullback
square is the one from Definition 3.1.2.1, and the bottom square is the induced
pullback square by applying Fun(Assoc®, —) to the left pullback square in di-
agram (3.21) of Proposition 3.4.1.6. We abbreviate Mong (Cats,) by Mone

41With respect to the bifunctor of co-operads a o 7.
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to save space.

A®

A® = KE/ASSOC (ma(eatoo)) — B 5 0'® x Moner

PTFun 1dpge0c® x ©/® x Mon (%)

Fun (Assoc®,1\//i\(;1a(€atoo)®> LN Fun(Assoc®, Assoc® x O'® x Moner )

(axid),

O//
Fun(Assoc®,Mon@u(eatoo)®) SN Fun(Assoc®, 0"® x Monon)

A® is by definition*? the full subcategory of A® spanned by those objects
that are mapped by pry,, to functors Assoc® — Mong(Cates)® that send
inert morphisms to p®-cocartesian ones. By the description of p®-cocartesian
morphisms afforded by the left pullback square in diagram (3.21) of Proposi-
tion 3.4.1.6 in combination with Proposition C.1.1.1 we can thus identify A®
with the full subcategory of A® spanned by those objects that map to functors
Assoc® — m@//(ea‘co@)® which send inert morphisms to p® -cocartesian
ones. Similarly, we obtain from Proposition 3.1.2.17 that a morphism in A®
is g 4-cocartesian if and only if it maps to a natural transformation of functors
Assoc® — mo//(eatoo)® that is pointwise p@” -cocartesian.

Now let C be an O”-monoidal co-category. Then there is a commutative
cube as follows?*3.

:AEASSOC/O” (C)® 0% x {C}

l O/® X MOH@H

Fun(Assoc®,C®) —— | —— Fun(Assoc®, 0"® x {C})

— —

Fun (Assoc®, mo//> —— Fun(Assoc®, 0”® x Monor)

42See Definition 3.1.2.3.
43We abbreviate Mong (Cates) and Mongp (Cates) as Mongp,s and Mong .
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The front square is the composite pullback diagram from (x). The bottom
square is the pullback square obtained by applying Fun(Assoc®7 —) to the
pullback diagram of the identification of C*® as the fiber of pO” over C, see Re-
mark 3.4.1.8. The back one is the pullback diagram from Proposition E.4.2.3.
That there is a commutative square as indicated on the right, where the
top functor is the product of the identity with the inclusion of {C}, can be
checked by unpacking the definitions and using naturality. We obtain the in-
duced top and left square and filler for the cube (using that the front square
is a pullback square), and it follows from [HTT, 4.4.2.1] that the top square
is also a pullback diagram. B

The description of A® as a full subcategory of A® we gave > above together
with the definition of Algasoe o (€)% as a full subcategory of Algpssoc/ 0 ©)®
in Remark E.4.2.1 and an argument very similar to the one in the proof
of Proposition 3.1.2.2 show that the dashed functor in the above diagram
induces an equivalence

AlgAssoc/O” (C)® — A%

on full subcategories.

The description of the functor induced on fibers by a morphism F': C — D
of @”-monoidal oo-categories follows from the description given above for
ga-cocartesian morphisms together with the fact that the @”-monoidal func-
tor induced by F' (considered as a morphism in Mone~(Cate)) on fibers of
p©" can by construction (see Definition 3.1.1.4) be identified with F. O

Proposition 3.4.1.10. Assume we are in the situation of Definition 3.4.1.7.
Then qa is a cocartesian Monpn (Caty, )-family of O'-monoidal oco-categories.

Q

Proof. Follows from the definition** together with Proposition 3.4.1.9 and
Proposition E.4.2.3 (3). O

Definition 3.4.1.11. Assume we are in the situation of Definition 3.4.1.7.
We let
qar: A'® — O'® x Monpr (Cate,)

be the cocartesian fibration obtained by applying the functor

coCFib(O'® x Monopr (Cats))
—Fun(O"® x Monpr (Cata), Cat )

s Fun(0'® x Monor (Cates), Cato)

— coCFib(0® x Monpr (Catu))

to qa: A® — 0% x MOH@//(eatoo). <>

44Definition 3.1.1.2 with variant Proposition 3.1.1.1 (2).
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Proposition 3.4.1.12. Assume we are in the situation of Definition 3.4.1.7.
Then there is a pullback diagram as follows

A® AlgOp

(IA’J J‘L‘Ug(‘)p

O'® x Monpr (Cate,) — Monagsoc(Catoo)

where the bottom functor is the composition (3.22). Q

Proof. Follows immediately from Definition 3.4.1.11 and Definition 3.1.3.5
together with Proposition 3.4.1.6 and naturality of the Grothendieck con-
struction. O

Proposition 3.4.1.13. Assume we are in the situation of Definition 3.4.1.7.
Then the following hold.

(1) qar from Definition 3.4.1.11 is again a cocartesian Mong.(Caty)-
family of O'-monoidal co-categories.

(2) Let C be a O"-monoidal co-category. Then the fiber of qa over C is,
as an O'-monoidal co-category, equivalent to (Algasoe 0n(C)°P)®, the
opposite O’ -monoidal co-category of Algassoc/ 07 c)®

(8) Let F: C — D be a O"-monoidal functor. Then there is a commutative
square

R F
‘AC

~J

(AlgAssoc/O” (C)op)@

'®
‘A'D

f

(AlgAssoc/O” (D)Op)®

(AlgAssoc/O” (F)Op)®

where the top functor is the one induced on fibers of qa:, and the vertical
functors are the equivalences from (2). Q@

Proof. Follows directly from g being a cocartesian family of O’-monoidal
oo-categories by Proposition 3.4.1.10 and the description of its fibers in Propo-
sition 3.4.1.9. O

Proposition 3.4.1.14. Let O’ as well as O" be occ-operads and let further-
more a: Assoc® x O'® — O"® be a bifunctor of co-operads that exhibits O
as the tensor product of Assoc and O.
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Then there is a commutative triangle as follows such that the horizontal
functor is an equivalence

Alg o/ (A") = BiAlgOpy.

PrMonO,,(emoc)\/A qBiAlgOP o/

Mongpr ((i’atoo)

where the functor on the left is as in Definition 3.1.2.3 and Definition 3.1.2.1,
applied to the cocartesian family of O'-monoidal co-categories qar from Def-
inition 3.4.1.11 and Proposition 3.4.1.13. @

Proof. By naturality of the construction —* and [HA, 2.4.2.5] there is a
commutative diagram as follows

Alg, (AlgOp) = Mone (AlgOp)

Algo’(qﬁlgop)J JMOHO/(qﬂlg(‘)p)

Alg», (Monpssoc (Catos ) ——=— Monpr (Monassoc (Cato )

such that the two horizontal functors are equivalences. It follows from Defi-
nition 3.4.1.2 and Construction 3.4.1.1 that there is a commutative square

BiAlgOpp, ————— Mone (AlgOp)

q'BiAIgOPo’J JMOHO/ (qugOp)

Mongp (Gatoo) — Monp: (MonAssoc(Gatoc))

such that the bottom horizontal functor is the equivalence from Construc-
tion 3.4.1.1.
Thus it suffices to show that there is a commutative square as follows

~

Alg,o/(A") ——————— Mono(AlgOp)
prMonO//(Cato@)J JMonoz(q,Ugop)
Monpr (Cates) ——=—— Monpr (Monassec(Catoo))
such that the bottom horizontal functor is the equivalence from Construc-

tion 3.4.1.1.
Now we consider the following diagram® that will be explained in detail

45We abbreviate Monp (Cates) and Monassoc(Catos) as Mong,s and Monagsoc-
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below.
Alg o/ (A') =mmmmmmmmmmmmoee- » Moner (AlgOp)
P
73
py
Fun((’)'®,f{'®) _— Fun(0/® AlgOp
Mone Mon e (Monassoc)

— —

Fun(0'®,0'® x Mongr) ———— Fun(O'®, Monassoc)

The front square is Fun(O’®, —) applied to the pullback square from Propo-
sition 3.4.1.12. In particular, the front square is again a pullback square. The
bottom square arises from naturality of — and the fact that év = id. The
bottom back horizontal equivalence is the one from Construction 3.4.1.1 and
Proposition 3.4.1.5. The left square is the pullback square defining Alg ¢, (A",
see Definition 3.1.2.1. We define the right square to be a pullback square.

As the left and right squares in the cube are pullback diagrams, we obtain
an induced functor ¥ together with fillers for the top and back square and
the cube.

The right big square arises from applying the natural transformation

Mongr (—) — Fun(0'®, —)

to gaigop. We obtain the induced functor ¢ and the two commutative trian-
gles on the right. By definition, ¢ and the bottom functor from the back to
the front on the right side are fully faithful. As the small square is a pull-
back square and taking pullbacks preserves fully faithful functors by Propo-
sition B.5.2.1, v is fully faithful as well. By considering the top triangle on
the right side we then deduce that ¢ is also fully faithful“C.

What we have to show is that there is a dashed top back horizontal functor
making the back big rectangle commute and which is an equivalence. As
the front, left, and right squares are pullback squares it follows from [HTT,
4.4.2.1] that the back lower square is a pullback square as well. As the lower
back horizontal functor is an equivalence, it follows that 9 is an equivalence

461t follows immediately from Definition B.2.0.1 that functors being fully faithful satisfies
the two-out-of-three-property.
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too. It thus suffices to show that an object A of Alg )¢, (A’) is in the essential
image of the functor from Alg,y (A’) if and only if J(A) is in the essential
image of ¢ (see Proposition B.4.3.1).

We first consider the essential image of (, which consists of precisely those
objects that are mapped by 1 to an object that is in the essential image of ¢
i.e. is an O’-monoid. By definition [HA, 2.4.2.1], a functor F': O'® — AlgOp
is an O’-monoid if and only if for every n > 0, objects X; in O’ for every
1 < i < n, and inert morphisms r;: X; @ --- ® X,, — X; lying over p’, the
morphisms F(r;) exhibit FI(X; @ --- @® X,,) as the product of (F(X;))i1<i<n.
By the description of products in AlgOp from Proposition 3.2.1.1 and Propo-
sition C.2.0.3 this is equivalent to the morphisms gaigop(F(r;)) exhibiting
qaigop(F(X1 @ ---® X,,)) as the product of (qaigop(F(X;)))1<i<n and F(r;)
being g4igop-cocartesian for every 1 < ¢ < m. Thus F is in the essential
image of ¢ if and only if gaiz0p © F' is an O’-monoid and F maps inert mor-
phisms to gaigop-cocartesian morphisms. By Proposition B.5.2.1, a functor
F: 0'® — AlgOp lies in the essential image of v if and only if gaigop © F is
an O’-monoid. It follows that an object A of P is in the essential image of ¢
if and only if ¢)(A) maps inert morphisms to gaigop-cocartesian morphisms.

By definition, an object A of Alg,n/ (A’) is in the essential image of the
inclusion from Alg,/(A’) if and only if prp,,(A) maps inert morphisms to
qa/-cocartesian morphisms. By Proposition 3.4.1.12 and Proposition C.1.1.1
this is the case if and only if (9(A)) maps inert morphisms to gaigop-co-
cartesian morphisms. Thus an object A of Alg ¢, (A’) is in the essential image
of the functor from Alg,/(A’) if and only if ¥(A) is in the essential image
of ¢, which finishes the proof. O

With Proposition 3.4.1.14 we can now finally discuss the fibers of ¢z;a1g0p,, -

Proposition 3.4.1.15. Let J be a collection of small co-categories, let O be
an oo-operad. Then the following hold.

(1) Let C be an Assoc ® O-monoidal co-category that is compatible with
J-indezed colimits, and that we also consider as an object of the co-
category Mond g acsoc (Catos). Then the fiber of dmimgopy, over C can be

identified with BiAlga. . »(C)*.

(2) Let F: C — D be a morphism in Mongg@Assoc(Gatoo), Then there is a
commutative diagram

(BiAlgOpd)c d (BiAlgOpd)p
BiAlgAssoc,(’) (C)Op BiAlgAssoc,O (D)Op

BiAlgagoc, 0 (F)P

47Definition 3.1.2.3
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where the top horizontal functor is the one induced by F on fibers of
IBiAlgopd, and the vertical equivalences are those from (1).

Analogous statements holds for IBiA1gOPY - Q

Proof. By Proposition 3.4.1.4 and Proposition 3.4.1.14 we can consider fibers
of

PI'Monpgsocgo (Catos) - Alg/o (A) = Monogassoc(Catoo)

instead. For this we can combine Proposition 3.4.1.13 with Remark 3.1.2.18
and then need only compare with the definition of BiAlg in Definition 3.3.0.3.
O

3.4.2 LMod as a functor from BiAlgOp

In this short section we discuss LMod as a functor from BiAlgOpgr to
Mony (Cato).

Definition 3.4.2.1. Let J be a collection of small co-categories that includes
A°? and O an oo-operad.

Applying Alg,(—) to the natural transformation of symmetric monoidal
functors denoted by ev®: LMod® — pr® of Proposition 3.2.3.1 and postcom-
posing with the underlying equivalences of Proposition 3.2.2.8%% we obtain
natural transformations that we will again denote by evy,: LMod — pr, as
depicted in the commutative diagram below

LMod
Uy 1eonr
MonZig pssoc (Catic) 4O BiAlgOpE H Mon (Catoo)
\E/v
vl INENCES) wlr
LMod
A 3
Mon?g®Assoc(€atoo) PEORS Bifllg(‘)p(j9 Hevnn Mongg(eatoo)
\pr/v
o7 Algo (T7) . oI
O
Monogassoc(Catoo) oo BiAlgOpe Hev"‘ Monp (Cateo)

pr

where the functors U and ¥ are as in Notation 3.2.2.7 and Definition 3.2.2.11,
and the left part of the diagram is induced by the pullback squares of Def-

1830 Algy (Prl) ~ Monj(;r(eatoo) etc.
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inition 3.2.2.11, which are commutative squares of oo-operads by Proposi-
tion 3.2.2.13. &

Remark 3.4.2.2. By Proposition E.4.2.3 (8) the functor induced on O-
algebras by a symmetric monoidal functor can again be upgraded to a sym-
metric monoidal functor with respect to the induced symmetric monoidal
structures. It follows that the natural transformations evy, defined in Defi-
nition 3.4.2.1 acquire the structure of natural transformations of symmetric
monoidal functors between symmetric monoidal co-categories. &

Remark 3.4.2.3. Let O be an oo-operad. Using [HA, 2.4.2.5] and the defi-
nition of the equivalence

O: Alg,(Cate) — Monp(Cateo)
as in diagram (3.13) of Proposition 3.2.2.8, we can identify the functor
LMod: BiAlgOpn — Mone (Cate)
with the functor induced by the product-preserving functor
LMod: AlgOp — Caty,

on O-monoids.

Let C be a symmetric monoidal oo-category, A an associative algebra in C,
and consider (C, A) as an object of AlgOp. In the introduction to Section 3.4.1
we discussed how the multiplication morphism induced by the active mor-
phism p: (2) — (1) looks like for a commutative monoid structure on (C, A).
Concretely, the multiplication morphism factors as a composition

(CxC, (A, A) =25 (¢, 4@ A) Y2 (¢, A)

—_~—

where — ® — is a gaigop-cocartesian lift of the tensor product functor
—®—:CxC—=C

and (id, A) is a morphism in the fiber of AlgOp over C —so in Alg(C)°P — given
by a morphism of algebras A: A — A ® A, encoding the comultiplication.

Let us now discuss the induced multiplication on LMod4(C), using Re-
mark 3.1.3.7. The multiplication functor can be identified with the composi-
tion

LMod4(C) x LMod4(C) = LMod 4 4)(C x C)

LMod4,4)(=®—) LModa (C)
% %

LMOdA®A(C) LMOdA (C)

where the first functor arises from compatibility of LMod with products, the

second is induced by %, and the last functor is given by restriction of
the action along A.
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3.4 Modules over bialgebras

Let now X and Y be two objects in LMod4(C). Then LMod4, 4)(— ® —)
sends (X,Y) to the left A ® A-module in C whose underlying object in C is
X ®Y and where the action by A ® A is the tensor-factor-wise one, i.e.

(AA)®(XeY)~(AeX)®(AQY) > XQY (3.23)

where the first morphism uses the symmetric monoidal structure on C and
the second is the tensorwise action of A on X and Y, respectively. Finally,
LModa (C) restricts this action along A.

The unit morphism, as well as the case of co-operads other than the com-
mutative one can be unpacked analogously, and hence the functor

LMod: BiAlgOpy» — Mone (Cate)

really implements the construction sketched at the very beginning of Chap-
ter 3. &

We end this section by considering the case of 1-categories, for which the
constructions discussed so far reduce to the classical ones.

Remark 3.4.2.4. Let C be a 1-category. The data of a symmetric monoidal
structure on C in the classical sense is equivalent to the the data of a sym-
metric monoidal structure on C considered as an oco-category, so there is no
ambiguity when talking about symmetric monoidal structures on C*°.

So assume now that C is a symmetric monoidal 1-category. By [HA, 4.1.1.2
and 2.1.3.3] the oo-categories Alg(C) and CAlg(C) of associative and com-
mutative algebras in C are 1-categories and can be identified with the usual
classical 1-categories of associative and commutative algebras in C. Let O be
either the oo-operad Assoc or Comm. Then we can also conclude that the
oo-category BiAlgag,. o(C) can be identified with the classical 1-category of
Assoc, O-bialgebras in C.

Similarly, if A is an associative algebra in C, then by [HA, 4.2.1.3] the
oo-category LMod 4(C) is a 1-category that can be identified with the usual
classical 1-category of left modules over A. The discussion in Remark 3.4.2.3
furthermore implies that if A is an Assoc, Comm-bialgebra in C, then we
can also identify the symmetric monoidal structure on LMod4(C) with the
classical one that was sketched in the introduction to Chapter 3. &

49The discussion in [HA, after 2.0.0.6 and condition (M2)] can be summarized as follows:
The data of a symmetric monoidal structure on C in the classical sense (up to symmetric
monoidal equivalence) is equivalent to the data of a cocartesian fibration of co-operads

p: C® — Fin, (up to symmetric monoidal equivalence) such that C® is a 1-category.
But if p: C® — Fin, is any cocartesian fibration of co-operads with C(<81> ~ C, then
C?® is automatically a 1-category. Indeed, using that Finy is a 1-category it suffices to
show that for every pair of objects X and Y of C® and morphism f: p(X) — p(Y)
in Fin, the fiber of the map Map¢g (X,Y) — Mapg,, (p(X),p(Y)) over f is discrete.
But by [HTT, 2.4.4.2], this fiber is equivalent to Mapc®( )(f]X, Y'), which is discrete

(Y

as C%

p(v) = C*™ is a 1-category (here n is such that p(Y) = (n)).
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Chapter 4

Mixed complexes

Let A be an associative k-algebra. As will be discussed in Chapter 6, the
Hochschild homology functor HHy produces out of A an object of D(k) with
action by the circle group T, so an object of D(k)BT. It will be useful to
have a strict model for HHp(A), by which we mean an object representing
HHp(A) in a model category whose underlying co-category comes with an
equivalence to D(k)BT. This can indeed by done; there is a result of Hoyois
[Hoy18], which we will discuss in more detail in Section 6.3.4.1, that provides
us with a commutative diagram as follows.

Standard Hochschild complex

Alg(LMody,(Ab)) Mixed

| M

Alg(D(k)) —— D(k)PT —=— Mixed

The standard Hochschild complex functor appearing in this diagram has as
codomain the model category Mixed of strict mized complexes, which are chain
complexes of k-modules together with some extra structure that encodes the
circle action. The oo-category Mixed of mized complezes is (equivalent to)
the underlying co-category of Mixed, and also equivalent to D(k)BT, as we
will see in Chapter 5.

In order to be able to make sense of this, this chapter will introduce and
discuss Mixed and Mixed. We begin in Section 4.1 with reviewing chain com-
plexes, primarily to fix notation. In Section 4.2 we will then discuss Mixed,
including the closed symmetric monoidal structure that can be defined on it as
well as the model structure. We then turn to the corresponding oo-categories.
We will collect the properties we need from D(k) in Section 4.3. Finally,
we discuss the underlying oco-categories of the model categories Mixed and
Alg(Mixed) in Section 4.4.

4.1 Chain complexes

In this section we briefly review the 1-category of chain complexes of mod-
ules over the commutative ring k, to fix notation and sign conventions. We
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Chapter 4 Mixed complexes

refer to books like [Wei94] for a thorough introduction to homological alge-
bra. The book [Lod98], which we will use as our main reference for classical
Hochschild homology, also reviews chain complexes in more detail than we
do.

4.1.1 Ch(k) as a 1-category

To fix notation we briefly review the 1-category of chain complexes of k-
modules.

Definition 4.1.1.1. We denote by Ch(k) the 1-category of chain complexes
of k-modules. We use homological grading, so an object X of Ch(k) con-
sists of k-modules X, for every integer n together with boundary operators
0X: X,, = X,,_1 (we will often omit the sub- and superscript when they are
clear from context) satisfying 0 o 9 = 0.

If x is an element of X,, for some integer n, then we define dege,(x) == n
and call n the (chain) degree of x.

If n is an integer, then we denote by Ch(k)>, = Ch(k),< the full sub-
category of Ch(k) that is spanned by those objects X for which X,, = 0 if
m < n. The full subcategories Ch(k)<,, and Ch(k),,< <n, are defined analo-
gously. &

Definition 4.1.1.2. Let X be an object of Ch(k) and n an integer. Then we
denote by X[n] the n-fold shift of X, which is also an object of Ch(k) that is
defined as follows.

(X[])y = X Ol = (1) -0,

We can extend the construction X — X[n] to an endofunctor of Ch(k) by
setting (f[n])m = fm—n for morphisms f.

Note that some authors denote what we call X [n] by X[—n], see for example
[Wei94, Translation 1.2.8]. The convention we use is chosen to be consistent
with [HA, 1.1.2.7]. &

Definition 4.1.1.3. If X is a k-module, then we will often consider X as a
chain complex of k-modules concentrated in degree 0 without comment. This
is the chain complex X’ defined as follows.

, X ifn=0
X, = .
0 otherwise

If we want to make clear we are considering X as a chain complex rather
than a module we will use X|0]. O

4.1.2 Ch(k) as a closed symmetric monoidal 1-category

In this short section we recall the closed symmetric monoidal structure on
Ch(k), in particular to fix signs.
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4.1 Chain complexes

Definition 4.1.2.1. We equip Ch(k) with the usual symmetric monoidal
structure, described as follows. For X and Y two objects of Ch(k) and f
and g two morphisms in Ch(k) their tensor product is given by the following
formulas®.

(XeY),= @ Xy

i+j=n
XY (2 @y) = 0¥ (x) @y + (—1)¥Bx@z 0 §Y (y)
(feg(rey) = flz)®q(y)

The monoidal unit is k[0], and the symmetry isomorphism is given by the iso-
morphism 7xy: X ®Y — Y ®X that sends z®y to (—1)desen(@) degen(®) g @ 1,

Ch(k) can be upgraded to a closed symmetric monoidal category, with
internal homomorphism objects given by the following formulas.

HOMch) (X, Y),, = HHOMLModk(Ab)(Xia Yiin)
iez

(aHOMcmm(X,Y)(f)) =0 of— (,1)degch(f)f 0 &% &

Remark 4.1.2.2. The tensor product is compatible with the shift functors
defined in Definition 4.1.1.2; For every integer n there are isomorphisms nat-
ural in X and Y as follows

(X)) ®Y = (X®@Y)h] < X ® (Y[n]) (4.1)

where the first isomorphisms maps x®y to z®y, but the second isomorphism
introduces a sign by mapping z®y to (—1)" 98 (®) 2@y, That one of the two
isomorphisms must introduce signs is related to the following compatibility:
The first isomorphism in (4.1) is equal to the composition

(X)) @Y =Y @ (X[n]) = (Y @ X)[n] = (X @Y)[n]

where the first and third isomorphism is (induced by) the symmetry isomor-
phism 7 and the middle isomorphism is the second one from (4.1).

The sign is easier to remember if one thinks of Y[n] as (—)[n] applied to
Y. Then the shift construction is commuted past X, and hence introduces a
sign if the degree of the element of x as well as n are both odd. &

4.1.3 Ch(k) as a model category

We recall the main properties of the projective model structure on Ch(k)
for later use.

IWhen we write X; ® Y; this refers to the tensor product in LModj (Ab), i.e. the relative
tensor product over k.
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Chapter 4 Mixed complexes

Fact 4.1.3.1. Ch(k) can be given the projective model structure where the
weak equivalences are the quasiisomorphisms and the fibrations are the level-
wise surjective morphism, see [HA, 7.1.2.8] and [Hov99, 2.53.11]. This model
structure is left proper and combinatorial [HA, 7.1.2.8]. Furthermore, with
respect to the closed symmetric monoidal structure discussed in Section 4.1.2,
this model structure is a symmetric monoidal model structure [HA, 7.1.2.11]
with cofibrant unit® and satisfies the monoid axiom [HA, 7.1.4.3]. &

When we refer to the model structure on Ch(k), we will always mean the
projective model structure from Fact 4.1.3.1 — while there are other model
structures on Ch(k), the projective one is the only one we will use in this
text.

4.1.4 Homotopies in Ch(k)

In this section we record that the notion of homotopy between morphisms
from a cofibrant to a fibrant chain complex coincides with the usual notion
of chain homotopy.

Proposition 4.1.4.1 ([Hov99, Between 2.3.11 and 2.3.12]). Let Y be a
chain complex. Then the operator of degree —1 on the graded k-module
P:=Y xY x Y[-1] defined as

8((33, Y, Z)) = (axv dy, —6(2) +T - y)

upgrades P into a chain complex. Furthermore the assignments x — (x,x,0)
and (z,y,z) — (z,y) define morphisms of chain complezes

Y P25 VxY
which exhibit P as a path object for Y. Q

Proof. The calculation

9(0((w,y,2))) = 0((0z, 9y, —0(2) + x — y))
= (9(0x),d(dy), —0(—0(z) + = — y) + dz — Jy)
= (0,0,0)

shows that P is a chain complex, and similarly simple calculations show that
7 and p are morphisms of chain complexes.

It is clear that p is levelwise surjective, so p is a fibration. It thus remains
to show that ¢ is a quasiisomorphism. For this consider r: P — Y defined
by (z,y,2) — x. This is also a chain map, and r o4 = idy. It thus suffices

2The definition of a (symmetric) monoidal model category in [HA, 4.1.7] differs slightly
from the definition in [Hov99, 4.2.6]: Lurie requires that the unit object is cofibrant,
while Hovey replaces this condition with a weaker condition. See Section 4.2.2.2 for a
more detailed discussion.
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4.1 Chain complexes

to show that i o r is chain homotopic to the identity. For this consider the
chain homotopy h from P to P that is defined by (x,y,z) — (0, z,0). Then
we obtain

(h((z,y,2))) + h(O((z,y,2)))
= 0((0,2,0)) + h((0z, 0y, —0(2) + © — y))
= (0,0z,—2) + (0,—9(2) +  — y,0)
=0,z -y,—2)
= (xvxvo) - (:uy,z)
= (ior —idp)((z,y, 2))

and thus h is a chain homotopy from i o r to idp. O

Proposition 4.1.4.2 ([Hov99, Between 2.3.11 and 2.3.12]). Let X be a cofi-
brant chain complex, Y a fibrant chain complex, and f and g two morphisms
X = Y in Ch(k). Then f and g are homotopic (in the sense of model cat-
egories) if and only if there exists a chain homotopy from f to g, i.e. there
exists a morphism h of graded k-modules that increases degree by 1 from X
to Y satisfying the following relation.

doch+hod=f—yg @

Proof. By [Hov99, 1.2.6], as X is cofibrant and Y is fibrant, left and right
homotopy define the same equivalence relations on morphisms from X to Y.
Furthermore, to check for right homotopies, we can use any path object for
Y. Thus f and g are homotopic if and only if there exists a morphism of
chain complexes H: X — P such that po H = f x g, where P and p are as
in Proposition 4.1.4.1. As a graded k-module, P is given by ¥ x Y x Y[-1],
so we can write H as H = hg X hy X h, where hg, h1, and h are morphisms of
graded k-modules from X to Y, where h increases degree by 1. The condition
po H amounts to hg = f and h; = g. The remaining data of A is then only
constrained by the requirement that H be a morphism of chain complexes.
This amounts to the equation

QoH=Hod
needing to hold. The left hand side is given by
JdoH=00(fxgxh)=(00f)x(0og)x(=0oh+f—g))
and the right hand side is given by
Hod=(fxgxh)od=((fod) x(god)x (hod))

so, as equality in the first two factors follows automatically from f and g
being morphisms of chain complexes, this boils down to

—Qoh+f—g=hod

which is equivalent to the equation from the statement. O
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Chapter 4 Mixed complexes

4.1.5 Extension of scalars

While we will usually keep the commutative ring k fixed, it will sometimes
be useful to consider functoriality in k. For this we record the following state-
ment.

Fact 4.1.5.1 ([Hov99, Page 48 and before 4.2.17 on page 114]). Let ¢: k — k'
be a morphism of commutative rings.

Then extension and restriction of scalars along ¢ induces a Quillen ad-
junction as follows.

k' ®p—

Ch(k) =L Ch(K)

*

)

Furthermore, k' ®}, — preserves fibrations and can be upgraded to a symmetric
monoidal functor, making the adjunction into a symmetric monoidal Quillen
adjunction in the sense of [Hov99, 4.2.16]. The right adjoint ©* then obtains
the structure of a lax symmetric monoidal functor, but is in general not
symmetric monoidal. &

4.2 Strict mixed complexes

In this section we discuss strict mixed complexes. Strict mixed complexes
where introduced by Kassel in [Kas87], where they are called mized complezxes.
We will use the additional adjective strict to distinguish between the model
category of strict mixed complexes Mixed and its underlying oco-category of
mixed complexes Mixed. A strict mixed complex roughly consists of a chain
complex X together with a homomorphism d,: X,, — X,,+1 increasing de-
gree by 1 for every integer n, and satisfying dod = 0 and 9d + d9 = 0,
see Remark 4.2.1.4. The main examples of strict mixed complexes arise in
the setting of Hochschild homology: The standard Hochschild complex of an
associative ring carries the natural structure of a mixed complex, as will be
discussed in Section 6.3.1. This was already alluded to in the introduction
of Chapter 4, and in that context the operator d is the extra structure that
encodes the circle action.

In Section 4.2.1, we will start by discussing Mixed as a closed symmetric
monoidal 1-category. We will then discuss model structures on Mixed as well
as Alg(Mixed) in Section 4.2.2 and discuss their properties and how they
relate to each other, for example along the various forgetful functors. Fi-
nally, in Section 4.2.3, we will discuss the notion of strongly homotopy linear
morphisms of strict mixed complexes, which are a form of weak morphisms
between strict mixed complexes that only commute with d up to coherent
homotopy.
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4.2 Strict mixed complexes

4.2.1 Mixed as a closed symmetric monoidal 1-category

In this section we define the 1-category of strict mixed complexes Mixed
and discuss its closed symmetric monoidal structure as well as algebra objects
in Mixed. As Mixed will be defined as the category of left modules over a co-
commutative bialgebra D in Ch(k), we start in Section 4.2.1.1 by defining the
D, which then allows us to define Mixed as a symmetric monoidal category in
Section 4.2.1.2 by using the results from Section 3.4. We will unpack the sym-
metric monoidal structure in Section 4.2.1.4 and discuss algebras in Mixed in
Section 4.2.1.5. The symmetric monoidal structure will then be upgraded to
a closed symmetric monoidal structure in Section 4.2.1.6. Finally, when dis-
cussing examples in Chapter 10 it will be helpful to depict mixed complexes
diagrammatically, so we introduce the conventions we will use for this in Sec-
tion 4.2.1.3. Examples of such diagrams will also appear as Example 4.2.1.11
in Section 4.2.1.4.

4.2.1.1 The bialgebra D

Construction 4.2.1.1. Define D to be the chain complex of k-modules
k-{1} @ k- {d} with 1 of degree 0 and d of degree 1. In other words, D is
the chain complex with zero differentials and a copy of k generated by 1 in
degree 0, and a copy of k generated by an element we call d in degree 1.

Then D can be given a unique structure of a commutative algebra in Ch(k)
such that the element 1 in degree 0 is the unit3.

Furthermore, there is a unique way to extend this structure to a commuta-
tive and cocommutative bialgebra in Ch(k). Indeed, if : D — k is the counit
of such a bialgebra structure, then €(1) = 1 is determined by the requirement
that € is a morphism of algebras, and e(d) = 0 is clear for degree reasons.
If A: D— D ® D is the comultiplication of such a bialgebra structure, then
again as A is an algebra morphism we must have A(1) = 1® 1. We can write
A(d)asa-(1®d)+b-(d®1) for some elements a and b of k. But from
counitality we can conclude that @ and b must both be 1. Hence we must
have A(d) =d® 1+ 1®d. That € and A defined like this really define a
commutative and cocommutative bialgebra can easily be checked.

While we will usually just write D, we will also denote this commutative
and cocommutative bialgebra by Dy, if we want to make the base ring explicit.
It follows immediately from the construction that if ¢: k — k' is a morphism
of commutative rings, then the symmetric monoidal functor?

k' ®j, —: Ch(k) — Ch(k)

maps Dy to Dy, as a commutative and cocommutative bialgebra. &

31 being the unit already pins down products x - y if one of & and y is in degree 0, and if
z and y are both in degree 1 then the product is 0 for degree reasons.
4See Fact 4.1.5.1.
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Chapter 4 Mixed complexes

4.2.1.2 Definition of Mixed

We can now define the symmetric monoidal category of strict mixed com-
plexes.

Definition 4.2.1.2. We denote by Mixed the symmetric monoidal category
Mixed := LModp (Ch(k))

where the symmetric monoidal structure we consider here is the one from
Definition 3.4.2.1, see also Remark 3.4.2.4. We will call Mixed the category
of strict mized complexes.

We will sometimes have reason to use strict mixed complexes whose under-
lying chain complex is cofibrant with respect to the projective model structure
(see Fact 4.1.3.1). We will thus use the notation

Mixed.of := LModp (Ch(k)")

for the full symmetric monoidal subcategory of Mixed spanned by those strict
mixed complexes whose underlying chain complex is cofibrant.

If we want to make the base ring explicit we will also use the notation
Mixed;, and Mixedy, cot. &

Remark 4.2.1.3. Let p: k — k' be a morphism of commutative rings. The
symmetric monoidal functor

k' @ —: Ch(k) — Ch(K) (4.2)

from Fact 4.1.5.1 induces by Definition 3.4.2.1 and Remark 3.4.2.4 a symmet-
ric monoidal functor as indicated at the top of the following commutative
diagram.

. k' ®p— .
Mixed, ——— Mixed}

eva( J‘SVm (43)

Ch(k) —— Ch(¥)
k'®p—

As (4.2) preserves cofibrant objects by Fact 4.1.5.1, the top horizontal functor
restricts to a symmetric monoidal functor from Mixedj cor to Mixedy cof.
Furthermore, as the forgetful functors evy, detect colimits by [HA, 4.2.3.5
(2)] and the bottom horizontal functor &’ ® — in (4.3) preserves colimits by
Fact 4.1.5.1, the top horizontal functor in (4.3) preserves colimits as well. <

Remark 4.2.1.4. Let us unpack what an object of Mixed is. A D-module
consists of an underlying chain complex X together with a morphism

w:DX =X
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4.2 Strict mixed complexes

of chain complexes, the action of D on X, satisfying associativity and unital-
ity.

Unpacking the definition of the tensor product in Ch(k) and the definition
of D we see that the data of u corresponds to the data of morphisms of
abelian groups

wl®—),: X, - X, and wld® —=)n: Xp = Xn1

for every integer n. Those morphisms have to satisfy a condition correspond-
ing to p being a morphism of chain complexes.

Let us first note that unitality of the action is equivalent to u(1®—),, being
the identity for every n, so this piece of data is redundant. If = is an element
of X,, for some n, let us write d(z) for u(d ® x). Then u being a morphism
of chain complexes is equivalent to dd + d0 = 0. Finally, associativity of the
action is equivalent to dod = 0.

A morphism of D-modules f: X — Y can similarly be unpacked to be a
morphism of underlying chain complexes (which we also denote by f) such
that fod® =d¥ o f.

The upshot of the above discussion is that the category of strict mixed
complexes is isomorphic to the category of chain complexes with an extra
operator d that increases degree by 1, and that satisfies the two equations
dd+dd = 0 and d? = 0. In the rest of the text we will often switch back and
forth between these two perspectives. &

As an example, we define a very basic family of strict mixed complexes.

Definition 4.2.1.5. Let n be an integer. Then we denote by D,, the strict
mixed complex with underlying chain complex Z-{1} ®Z-{6}[1] (so the same
underlying chain complex as D itself), and with d defined by d(1) =n-4. <

Remark 4.2.1.6. As a D-module, D is isomorphic to D;. Also note that D,,
is isomorphic to D_,,. &

4.2.1.3 Diagrams depicting strict mixed complexes

Convention 4.2.1.7. It will sometimes be helpful to diagrammatically de-
pict strict mixed complexes for which the underlying graded abelian group is
free on some basis (b;);er for a set I. In that case we will use the following
conventions.

« Basis elements are represented by vertices of the diagram.

» A non-squiggly black arrow from b; to b; is used to represent the b;-
coefficient of 9(b;). More concretely, if we write J(b;) as a linear com-
bination Zle ;a1 - by of basis elements, with a; elements of k, then the
label of such a non-squiggly black arrow will be a;. If a; = 0, then we
will omit the arrow.
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Chapter 4 Mixed complexes

e d is represented completely analogously with red squiggly arrows.

o If an arrow has no label without further comment, then the the missing
label is to be interpreted as 1.

e Sometimes we will drop the signs of the labels, or the labels altogether.
In these cases we will point this out in the text. &

Example 4.2.1.8. The strict mixed complex D,,®D,,[1] for n and m integers
can be depicted as follows, where we use 1’ and &’ for the basis elements of
| D

5/
4] I
1
The sign arises from the isomorphism D ® (D,,[1]) & (D ® D,,)[1], see Re-
mark 4.1.2.2. &

Example 4.2.1.9. Let n be an integer. The following is an example of an
acyclic strict mixed complex.

6/

I
N

4.2.1.4 The symmetric monoidal structure on Mixed

Remark 4.2.1.10. Let us unpack the symmetric monoidal structure on
Mixed. By Definition 3.4.2.1 the forgetful functor Mixed — Ch(k) is symmetric
monoidal, so if X and Y are two strict mixed complexes, then the underly-
ing chain complex of X ® Y must be the tensor product of underlying chain
complexes, and it remains to figure out how d acts. Using Remark 3.4.2.4,
this action arises from the composition

idp ®7p,x ®idy
e

DoXoy 288y nopngxey DoX@DoY

X Y
LN '3
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where A is the comultiplication of D as defined in Construction 4.2.1.1, 7 is
the symmetry isomorphism reviewed in Definition 4.1.2.1, and X and pY
are the action morphisms on X and Y, respectively.
By unpacking the definitions we obtain the following.
XYz oy)

= (¥ @p")o(idp®mp,x ®idy) o (A®idy ®idy)(d®z®1Y)

=@ *@p")o(idp®mx®idy)o(d®1®zy+1®dRz®Y)

=@ @u)o (d®x®1®y+(—1)degCh(””)1®x®d®y)

=d¥ (@) @y + (1) @z @ d" (y)

The monoidal unit of Mixed is the unique strict mixed complex with un-
derlying chain complex k[0]. O

Example 4.2.1.11. As an example we discuss the tensor product D,, ® D,,
for n and m positive integers.
The strict mixed complex D,, ® D,,, can be depicted as follows.

)
i®1
1®

Let 4, j be integers such that ged(n, m) = in+ jm. Then another basis for the
free abelian group generated by 6 ® 1 and 1 ® ¢ is given by the two elements

® 0

™~
1®46
o
1

n m
v 14— 1 i 1-4-1®6.
ged(n, m) bl ged(n, m) @0 and jo® i-1®o

Thus we can also depict D,, ® D,, as follows.

I®0

ﬁ‘—\,\,\’\’\’\:’\’g:’(\i( n,m)

Thus D,, ® Dy, is isomorphic in Mixed to Dgcd(n,m) © Dged(n,m)[1]- &

gcd(rflLM) delt

1®1
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4.2.1.5 Algebras in Mixed

As we will later also consider algebras in Mixed, we unpack the definition
in the following remark.

Remark 4.2.1.12. As the forgetful functor from Mixed to Ch(k) is symmetric
monoidal, every algebra in strict mixed complexes has an underlying differ-
ential graded algebra (i.e. an algebra in Ch(k)). An algebra in Mixed then
consists of a differential graded algebra together with a strict mixed complex
structure on the underlying chain complex A, such that the unit morphism
k — A and the multiplication morphism A ® A — A are morphisms of strict
mixed complexes.

Making use of Remark 4.2.1.10 we can rephrase this as the requirement
that d(1) = 0 and that the Leibniz rule

d(z-y) = d(2) -y + (~1) @z - d(y)

is satisfied for every element x and y of A.
Note that the Leibniz rule for z = y = 1 implies d(1) = 2d(1) and hence
d(1) = 0, so if the Leibniz rule holds, then this condition is redundant.
Commutative algebras in Mixed have the analogous description, they con-
sist of a commutative differential graded algebra together with a strict mixed
complex structure on the underlying chain complex satisfying the Leibniz
rule. &

4.2.1.6 The closed symmetric monoidal structure on Mixed

Construction 4.2.1.13. Let X and Y be two strict mixed complexes. We
can define an operator d increasing degree by one on HOMcp)(X,Y) by
letting d act on f by the following formula.

d(f) = dY o f — (—1)degch(f)f ° dX

By unwrapping the definitions it is straightforward to check that this defini-
tion satisfies dod =0 and do 3 + d o d = 0 and thus defines a strict mixed
complex, which we will denote by HOMpixed (X, Y). &

Proposition 4.2.1.14. Let

@: Morch (—1 ® —2, —3) — Morch(x) (—1, HOMch(x) (—2, —3))
fer@e e fey))

be the natural isomorphism that is part of the closed symmetric monoidal
structure on Ch(k). Then ¢ restricts to a natural isomorphism as follows.

Mormixed(—1 ® —2, —3) = Mormixed (—1, HOMmixed (—2, —3))

In particular, this makes Mixed into a closed symmetric monoidal category.

Q
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4.2 Strict mixed complexes

Proof. Let X, Y, and Z be strict mixed complexes and f: X Y — Z a
morphism of chain complexes. The statement then follows from the following
chain of equivalences.

f is a morphism of strict mixed complexes
—=VereX:VyeY:

i (flewy) = (¥ @) @y) + ()0 @ e a’ @)
<= VeeX:VyeY:

& (p(N)@)w)) = () (¥ (@) () + (~1) () (@) (0 ()
—VreX:VyeY:

& (p()(@)w)) — (~1)* D) (@) (a7 @) = ¢() (4% @) )

= Ve e X: dp(f)(@) = o) (4 (@)

<= ¢(f) is a morphism of strict mixed complexes O

4.2.2 Mixed and Alg(Mixed) as model categories

In this section we construct model structures on Mixed and Alg(Mixed)
and discuss various properties that they have. We will start in Section 4.2.2.1
by reviewing a general result by Schwede and Shipley concerning when one
can lift a model structure from a closed symmetric monoidal category with
compatible model structure to a model structure on categories of algebras or
modules over an algebra. We then apply this in Section 4.2.2.2 to Ch(k) in
order to obtain a model structure on Mixed = LModp(Ch(k)). We will also
show that this model structure is again suitably compatible with the closed
symmetric monoidal structure on Mixed, so that we can further lift the model
structure from Mixed to Alg(Mixed), which we do in Section 4.2.2.3. As dis-
cussed in Section 4.2.1.5, an algebra in Mixed consists of a chain complex
that has both an algebra structure as well as a strict mixed complex struc-
ture, satisfying that the Leibniz rule. We thus obtain two forgetful functors
on Alg(Mixed): One forgetting the strict mixed complex structure and map-
ping to Alg(Ch(k)), and one forgetting the algebra structure and mapping
to Mixed. Together with the forgetful functors from Alg(Ch(k)) and Mixed
to Ch(k) they fit into a commutative diagram, and the main result of Sec-
tion 4.2.2.3 is Proposition 4.2.2.12, in which various properties of those for-
getful functors are shown. Finally, it will in practice be helpful to have a
concrete description of homotopies in the model categories Mixed as well as
Alg(Ch(k)) and Alg(Mixed), so we discuss them in Sections 4.2.2.4, 4.2.2.5
and 4.2.2.6.
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Chapter 4 Mixed complexes

4.2.2.1 Model categories of algebras and modules

In order to construct model structures on Mixed = LModp(Ch(k)) and
Alg(Mixed) we will make use of a general theorem by Schwede and Shipley
that allows one to lift model structures to categories of modules and algebras.
We recall their result as Theorem 4.2.2.1 below.

Theorem 4.2.2.1 ([SS00, Theorem 4.1]). Let C be a combinatorial model
category with a closed symmetric monoidal structure such that the tensor
product functor is a Quillen bifunctor (i.e. the pushout product aziom is
satisfied) and satisfying the monoid axiom (see [SS00, 3.3]).

Then there is a combinatorial model structure on Alg(C) such that the
following statements hold.

(1) The adjunction
Free®: C = Alg(C) :evq

where Free™® is the free algebra functor and evq is the forgetful functor,
s a Quillen adjunction.

(2) Alg(C) is cofibrantly generated with the set of generating (acyclic) cofi-
brations given by application of Free®'® to the set of generating (acyclic)
cofibrations of C.

(3) evq preserves and reflects weak equivalences and fibrations.

(4) If the unit of C is cofibrant, then ev, preserves cofibrant objects and
cofibrations between cofibrant objects.

Let A be an algebra in C. Then there is a combinatorial model structure on
LMod 4(C) such that the following statements hold.

(5) The adjunction

FreetMeda. ¢ = LMod4(C) :evy

where Free"™°44 s the functor sending an object X to the free A-module

A® X and evy is the forgetful functor, is a Quillen adjunction.

(6) LMod 4(C) is cofibrantly generated with set of generating (acyclic) cofi-
brations given by application of Free™°4 to the set of generating
(acyclic) cofibrations of C.

(7) evy preserves and reflects weak equivalences and fibrations.

(8) If the underlying object of A is cofibrant in C, then evy preserves cofi-
brations. @
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4.2 Strict mixed complexes

Proof.

Construction of the model structures: By definition (see [HTT, A.2.6.1]),
a combinatorial model category has presentable underlying category, so in
particular every object is small (see [HTT, A.1.1.2]). Furthermore, combina-
torial model categories are by definition also cofibrantly generated, so all the
conditions to applying [SS00, 4.1] are satisfied. We thus obtain the existence
of cofibrantly generated model structures on Alg(C) and LMod 4(C). Let us
now turn to the various properties of these model structures that we claimed.

Proof of claims (1), (2), (3), (5), (6), and (7): See the proof of [SS00, 4.1]
as well as [SS00, 2.3 and the description right before 2.3].

Proof of (4): Part of the statement of [SS00, 4.1 (3)].

Proof that the model structures are combinatorial: It remains to show that
Alg(C) and LMod4(C) are presentable. We refer to [HTT, A.1.1.2] for a
definition of presentable categories. That the two categories are cocomplete is
already part of them being model categories, and as the forgetful functors to
C are faithful it is also clear that the morphisms sets are small. It thus suffices
to show that the two categories are accessible®; condition [HTT, A.1.1.2 (2)]
then follows directly from definition and [HTT, A.1.1.2 (3)] follows from
[AR94, 2.2 (3) and 1.16]. See also [HTT, 5.5.1.1 and 5.5.0.1].

But both Alg(C) and LMod 4(C) are categories of algebras over an accessi-
ble monad on C%, so they are again accessible by [AR94, 2.78].

Proof of claim (8): evy preserves colimits”, so to show that ev,, preserves
cofibrations it suffices to show that ev,, preserves generating cofibrations. So
leti: X — Y bea cofibration in C. We claim that evy, (Free"™°d4 (7)) = id 4 @i
is again a cofibration. But this follows from —® — being a Quillen bifunctor®.

O

4.2.2.2 The model structure on Mixed

The general result Theorem 4.2.2.1 allows us to define a combinatorial
model structure on Mixed that is lifted from the projective model structure on
Ch(k) — all prerequisites to apply Theorem 4.2.2.1 are covered by Fact 4.1.3.1.

Definition 4.2.2.2. We equip Mixed = LModp(Ch(k)) with the combinato-
rial model structure from Theorem 4.2.2.1 that is lifted from the projective
model structure on Ch(k). &

5See [AR94, 2.2 (1)] for a definition. An object is called x-presentable (presentable) in
[AR94, 1.13] precisely if it is called k-compact (small) in [HTT, A.1.1.1]. Thus (keeping
in mind we already know that the categories in question are cocomplete), [AR94, 2.2
(1)] asks for existence of a regular cardinal x and a small set of kK-compact objects such
that every object can be obtained as a k-filtered colimit of objects from that set.
6The proof of [SS00, 4.1] uses this fact, so see there for more details.

"Because we assume that the symmetric monoidal structure on C is closed, the tensor
product preserves colimits separately in each variable, so we can apply [HA, 4.2.3.5].
8See [Hov99, 4.2.1] for a definition. We apply the property to the cofibrations 0 — A and

i, and use that the morphism (0 — A) 04 can be identified with ids ® 3.
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Chapter 4 Mixed complexes

Proposition 4.2.2.3. Let p: k — k' be a morphism of commutative rings.
Then the extension of scalars functor

k' ®p —: Mixed;, — Mixed;

from Remark 4.2.1.3 preserves cofibrations as well as weak equivalences be-
tween objects with cofibrant underlying chain complez. Q

Proof. We first show that the functor preserves cofibrations. As it preserves
colimits by Remark 4.2.1.3, it suffices to show that the functor preserves
generating cofibrations. But this follows immediately from compatibility with
the free module functors by Proposition E.7.4.1 in combination with

K @ —: Ch(k) — Ch(k') (%)

preserving cofibrations by Fact 4.1.5.1.

That the functor preserves weak equivalences between objects with cofi-
brant underlying chain complex follows directly from the forgetful functors
evy detecting weak equivalences, the diagram (4.3) in Remark 4.2.1.3 com-
muting, and (%) preserving weak equivalences between cofibrant objects by
Fact 4.1.5.1. O

Proposition 4.2.2.4. The underlying chain complex of D is cofibrant.
Proof. Follows from [Hov99, 2.3.6]. O

So we have now obtained a model structure on Mixed. We have also al-
ready previously discussed a closed symmetric monoidal structure on Mixed,
see Proposition 4.2.1.14. We would like to show that these to structures are in
fact compatible and make Mixed into a symmetric monoidal model structure.
However, there are slightly different definitions of what properties a monoidal
model structure needs to satisfy, and not all are true in this case. What all def-
initions require is that the tensor product is a Quillen bifunctor. As explained
in [SS00, 3.2] and [Hov99, below 4.2.6], this does not quite suffice to obtain
an induced monoidal structure on the homotopy category, a condition on the
unit object is also necessary. This is because the derived tensor product is
formed by tensoring cofibrant replacements of the two objects one wants to
tensor. If the unit object is not cofibrant, there is no guarantee that the de-
rived tensor product with the unit object is weakly equivalent to the original
object. One condition to guarantee that this is nevertheless the case is given
in [Hov99, 4.2.6] as part of Hovey’s definition of monoidal model structures.
This condition is always satisfied when the unit is in fact cofibrant, and Lurie
requires this more restrictive condition for monoidal model categories [HA,
Start of 4.1.7].

The unit object in Mixed is Z (see Remark 4.2.1.10), which is unfortunately
not cofibrant (see Proposition 4.2.2.5 directly below), so we can not directly
apply some of the result concerning monoidal model categories proven in [HA],
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4.2 Strict mixed complexes

like the result on rectification of algebras [HA, 4.1.8.4]. However, Hovey’s
condition is satisfied, and we will be able to work around the obstacles to
deducing the analogous result to [HA, 4.1.8] in Proposition 4.4.2.3 in Sec-
tion 4.4.2.

Proposition 4.2.2.5. The unit object Z of Mixed (see Remark 4.2.1.10) is
not cofibrant with respect to the model structure from Definition 4.2.2.2.

Proof. Consider the counit e: D — Z. This is a morphism of mixed complexes,
and also a fibration in Mixed as it is levelwise surjective and evy, detects
fibrations by Theorem 4.2.2.1 (7). If Z were cofibrant in Mixed, then there
would have to exist a section of € as strict mixed complexes. However, the
unique section in Ch(k) is not a morphism of strict mixed complexes, as
d(1)=d#0in D. O

Proposition 4.2.2.6. The model structure on Mixed from Definition 4.2.2.2
is a symmetric monoidal model structure (in the sense of [Hov99, 4.2.6]) with
respect to the closed symmetric monoidal structure from Definition 4.2.1.2 and
Proposition 4.2.1.14. Q

Proof. Proof that —®— is a Quillen bifunctor: Let f: W — X be a cofibration
and p: Y — Z a fibration in Mixed. By [Hov99, 4.2.2] if suffices to show that
the induced morphism

HOMMmixed (X, Y") = HOMmixed (X, Z) X HOMpypea(W,2) HOMMixed (W, Y")

is a fibration in Mixed, and acyclic if f or p is acyclic. But this follows im-
mediately from Ch(k) having the corresponding property by Fact 4.1.3.1 and
[Hov99, 4.2.2], in combination with evy, preserving and detecting fibrations
and weak equivalences by Theorem 4.2.2.1 (7), preserving cofibrations by The-
orem 4.2.2.1 (8) and Proposition 4.2.2.4, and mapping HOMmixed to HOMcp 1)
by Construction 4.2.1.13.

Proof of [Hov99, 4.2.6 (2)]: We have to show that if 0 — Z<°f L, 7 is a fac-
torization in Mixed of 0 — Z into a cofibration followed by an acyclic fibration,
then tensoring f with the identity of any cofibrant object on either side yields
a weak equivalence. By Proposition 4.2.2.4 and Theorem 4.2.2.1 (7) and (8),
the forgetful functor evy, : Mixed — Ch(k) preserves weak equivalences as well
as cofibrations, and also detects weak equivalences. Furthermore, evy, is also
symmetric monoidal.

Hence it suffices to show that for a cofibrant chain complex X it holds that

eV (2 @ X Vm(N)@idx, ev(Z) @ X
is a weak equivalence in Ch(k). But note that while Z is not cofibrant an an
object in Mixed, it is cofibrant as a chain complex. Hence

eV (Z°°F) LICN evm(Z) =17
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is a weak equivalence between cofibrant objects. As Ch(k) is a symmetric
monoidal model category, — ® X preserves acyclic cofibrations, and hence
sends weak equivalences between cofibrant objects to weak equivalences (see
[Hov99, 1.1.12]), so the claim follows. O

We next show that Mixed satisfies the monoid axiom. Definitions of the
monoid axiom can be found in [SS00, 3.3] and [HA, 4.1.8.1], however these
two definitions are stated in a slightly different way, so we briefly discuss
them first in the next remark.

Remark 4.2.2.7. Let C be a combinatorial model category that is equipped
with a symmetric monoidal structure.

Let U be the subclass of morphisms of C that are of the form idx ®:, with
X an object in C and 7 an acyclic cofibration. Let U be the weakly saturated
class of morphisms generated by U?. Let U be the subclass of morphisms of C
that can be obtained as a transfinite composition of pushouts of morphisms
in U. Finally, let U’ be the subclass of morphisms of C that are retracts of
morphisms in U.

Then [SS00, 3.3] asks that all morphisms in U are weak equivalences, and
[HA, 4.1.8.1] asks that all morphisms in U are weak equivalences.

From the definitions it is clear that U’ is contained in U. On the other
hand, [HTT, A.1.2.8] implies that U is contained in U’. As weak equivalences
are closed under retracts, U is contained in the class of weak equivalences

if and only if U’ = U is, so definitions [SS00, 3.3] and [HA, 4.1.8.1] are
equivalent. &

Proposition 4.2.2.8. The symmetric monoidal model category'® Mixed sat-
isfies the monoid axiom. Q@

Proof. In this proof we use the following notation. If S is a class of morphisms
in some monoidal category C, then we denote by C ® S the class of all mor-
phisms of the form idx ®s where X is an object of C and s is an element of
S. We denote by S the weakly saturated class of morphisms generated by S
in the sense of [HTT, A.1.2.2].

Denote by W the class of weak equivalences of Ch(k), and by I a set
of generating acyclic cofibrations of Ch(k). We also define FreeM>*? to be
Freel™edp | the left adjoint to the forgetful functor evy, : Mixed — Ch(k).

What we have to show is that the class of morphisms

Mixed @ {acyclic cofibrations in Mixed}

98ee [HTT, A.1.2.2] for a definition. This is smallest subclass of morphisms of C containing
U that is closed under taking pushouts along morphisms of C, transfinite compositions,
and retracts.

10Tn the sense of [Hov99, 4.2.6].
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is contained in the class of weak equivalences of Mixed, which by Theo-
rem 4.2.2.1 (8) is equivalent to showing the following.

eV (Mixed ® {acyclic cofibrations in Mixed}) cw

This will follow from the following easy claims.

(1) Mixed ® {acyclic cofibrations in Mixed} = Mixed ® FreeM>*(1)

(2) evy (Mixed ® FreeMixed (I)) Cevy (Mixed ® FreeMixed(]))

(3) evm (Mixed ® FreeMixed (I)) C Ch(k) ® {acyclic cofibrations in Ch(k)}

(4) Ch(k) ® {acyclic cofibrations in Ch(k)} C W

Proof of claim (1): The class of acyclic cofibrations in Mixed is by Theo-

rem 4.2.2.1 (6) equal to Free™™ (). As the tensor product functor on Mixed
preserves colimits in each variable the claim follows.

Proof of claim (2): Follows from evy, preserving colimits.

Proof of claim (3): Let i be a generating acyclic cofibration of Ch(k) and
X a strict mixed complex. Then we have

€V (idx @ FreeM>ed (Z)) =idxgp @1

where we use that evy, is symmetric monoidal, so the claim follows.
Proof of claim (4): Follows from Ch(k) satisfying the monoid axiom, see
Fact 4.1.3.1. O

4.2.2.3 The model structure on Alg(Mixed)

We can now put together the various results regarding the model structure
on Mixed and apply Theorem 4.2.2.1 in order to obtain a combinatorial model
structure on Alg(Mixed).

Proposition 4.2.2.9. There are combinatorial model structures on the 1-
categories Alg(Mixed) and Alg(Ch(k)) with the properties listed in Theo-
rem 4.2.2.1. Q

Proof. By Definition 4.2.2.2 the model structure on Mixed is combinatorial,
by Proposition 4.2.1.14 there is a closed symmetric monoidal structure on
Mixed, by Proposition 4.2.2.6 the model structure satisfies the pushout prod-
uct axiom, and by Proposition 4.2.2.8 the monoid axiom is satisfied. Ch(k)
has all these properties as well by Fact 4.1.3.1. We can thus apply Theo-
rem 4.2.2.1. O

We end this section by discussing the various forgetful functors, and show
some properties that they have that will be useful later.
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Notation 4.2.2.10. There is a commutative diagram of forgetful functors
as follows.

Alg(Mixed)

Mixed \lg(‘eVm )

/
Alg(Ch(k)) (4.4)
\ " -

To be able to distinguish the two forgetful functors from categories of algebras
to their underlying categories, we give the forgetful functor from Alg(Mixed)
to Mixed an extra superscript Mixed.

The functors evM*ed ey, and ev, all have left adjoints according to The-
orem 4.2.2.1. We denote

Mixed

Alg(Mixed)

o the left adjoint to evM™d by Free,* |

o the left adjoint to evy by FreeM>ed,
o the left adjoint to evy by Free®. &

Proposition 4.2.2.11. The commutative square

Mlxed

Alg(Mixed) —%, Mixed

Alg(evm )J Je"m

Alg(Ch(k)) ——> Ch(k)

from Notation 4.2.2.10 is left adjointable’?, i. e. the push-pull transformation

Alg(Mixed
Free™® o evy, — Alg(evy) o FreeMiEéd e

18 a natural tsomorphism. @

Proof. As the symmetric monoidal structures on Mixed and Ch(k) are compat-
ible with colimits'?, and ev,, is symmetric monoidal and preserves colimits'?
this is a special case of Proposition E.7.2.2 (2). O

We can now collect some properties of the various forgetful functors.

See [HTT, 7.3.1.1] for a definition.

12As both symmetric monoidal categories are closed symmetric monoidal, see Defini-
tion 4.1.2.1 and Proposition 4.2.1.14.

13See for example [HA, 4.2.3.5].
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Proposition 4.2.2.12. The following table summarizes what kind of mor-
phisms or constructions the various forgetful functors from Notation 4.2.2.10
preserve (marked with a P) or detect (marked with a D).

Salene®
18
Functor iﬁomo T’h ok eqﬁbmmon f‘bmﬂo f‘bM v ﬂe’d me
ev'c\l’”xe‘j D D D D D
Alg(eva) D D D P P D D D
evm D D D P P D D D
evy D D D P D D

All properties that make use of a model structure are to be understood
with respect to the model structures from Fact 4.1.3.1, Definition 4.2.2.2, and
Proposition 4.2.2.9. v

Proof. Weak equivalences and fibrations: That evM'Xed, evm, and ev, detect

weak equivalences and fibrations is Theorem 4.2.2.1 (3) and (7). From com-
mutativity of the diagram (4.4) we obtain the same for Alg(evy).

Limits and sifted colimits: That limits and colimits in module categories
are calculated on underlying objects is a standard categorical fact, see for
example [HA, 4.2.3.3 and 4.2.3.5]. Similarly, it is standard that limits and
sifted colimits'® of algebras are calculated on underlying objects, see for exam-
ple [HA, 3.2.2.5] and [HA, 3.2.3.1]. Again, as the three other functors detect
limits and sifted colimits, this also follows for Alg(evpy).

Isomorphisms: That evM'Xed evy, and ev, are conservative, i.e. detect iso-
morphisms, is standard, and then it again follows that Alg(evy,) is conser-
vative as well. However, we could also deduce this from all four functors de-
tecting sifted colimits, as detecting isomorphisms is equivalent to detecting
[0]-colimits.

Colimits: That evy, detects colimits was already mentioned above. As evy,
is also symmetric monoidal, it then follows from Proposition E.7.3.1 that
Alg(evy) preserves colimits as well. As Alg(evy) is conservative, this implies
that Alg(evy,) even detects colimits.

Cofibrations and cofibrations between cofibrant objects: It follows from The-
orem 4.2.2.1 (8) in combination with D being cofibrant in Ch(k) by Propo-
sition 4.2.2.4 that ev,, preserves cofibrations. Furthermore it follows from
Theorem 4.2.2.1 (4) in combination with the monoidal unit of Ch(k) being
cofibrant by Fact 4.1.3.1 that ev, preserves cofibrant objects and cofibrations
between cofibrant objects.

15

4 Cofibrant objects and cofibrations between cofibrant objects.

15This is true for categories of modules in a monoidal category whose tensor product
functor preserves colimits in each variable separately, which is the case for Ch(k), as it
is a closed symmetric monoidal category.

16This again requires the assumption that the tensor product preserves sifted colimits in
each variable separately, which is the case for both Ch(k) and Mixed.
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It remains to show that Alg(evy,) preserves cofibrations. As we already
showed that Alg(evy,) preserves colimits, it suffices for this to show that
Alg(evy) maps generating cofibrations to cofibrations. Generating cofibra-
tions of Alg(Mixed) are by Theorem 4.2.2.1 (2) and (6) morphisms of the

form Free,\A,lliizA ixed)(Free'v”’(ed(i)) with ¢ a (generating) cofibration in Ch(k).
By Proposition 4.2.2.11 there is a natural isomorphism as follows.

Alg(evy) o Freeafégﬂixed) o FreeM™®d =~ Freet® o evy, o FreeM™e
As Free™'® and FreeM™ preserve cofibrations as left Quillen functors'” and
evy, was already shown to preserve cofibrations, the claim follows. O

Proposition 4.2.2.13. Let p: k — k' be a morphism of commutative rings.
Then the extension of scalars functor

k' @5 —: Alg(Mixedy) — Alg(Mixedy)
that is induced on algebras by the symmetric monoidal functor
k' @5 —: Mixed;, — Mixed}
from Remark 4.2.1.3 preserves colimits and cofibrations. Q

Proof. The extension of scalars functor
k' ®p —: Mixed, — Mixed;

is by Remark 4.2.1.3 symmetric monoidal and preserves colimits. As the
tensor product functors of Mixed;, and Mixedys also preserve colimits in each
variable separately by Proposition 4.2.2.6 we can apply Proposition E.7.3.1
to conclude that the induced functor

k' @ —: Alg(Mixedy) — Alg(Mixedy)

preserves colimits.

To show that this functor also preserves cofibrations it now suffices to show
that it maps generating cofibrations to cofibrations. So let i: X — Y be a
cofibration in Mixed;. We have to show that

Alg(Mixedy,) [ -
K @ FreeMifédklxe k)(Z)

is a cofibration in Alg(Mixed/). But by Proposition E.7.2.2 we can identify
this morphism with _
Frocggsllee (0 i)

which is a cofibration as Freeﬁlifém i/XEd"’) is a left Quillen functor by Theo-

rem 4.2.2.1 (5) and

K Rk —: Mixed, — Mixedy
preserves cofibrations by Proposition 4.2.2.3. O
17See Theorem 4.2.2.1 (1) and (5).
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4.2 Strict mixed complexes

4.2.2.4 Homotopies in Mixed

In this section we describe homotopies in Mixed, continuing from and pro-
ceeding analogously to Section 4.1.4.

Proposition 4.2.2.14. Let Y be a strict mized complex. Then defining an
operator d that increases degree by one on P from Proposition 4.1.4.1 as

d((z,y,2)) = (dz,dy,—dz2)

upgrades P to a strict mized complex. Furthermore, the morphisms ¢ and p
that were defined in Proposition 4.1.4.1 are compatible with this strict mixed
structure, exhibiting P as a path object for Y in Mixed. Q

Proof. Tt is clear that d as defined in the statement is k-linear and increases
degree by 1. Let (z,y, z) be an element in P. Then the short calculation

shows that d squares to zero, and the following calculation shows that it also
holds that dod+ dod = 0, so that P indeed becomes a strict mixed complex.

(dod+dod)((z,y,2))
=d((0z,0y,—0(z) +  —y)) + 0((dz,dy, —d 2))
= (d(0(2)),d(0(y)), —d(=0(z) + = — y))

+ (9(d(2)),0(d(y)), —=0(= d(2)) + dz — dy)
= (d(9(x)) + 9(d(=)),d(0(y)) + a(d(y)),

d(9(2)) — d(z) + d(y) + 0(d(2)) + d(z) — d(y))

= (0,0,0)

It is clear that ¢ and p are compatible with d, making them into morphisms

in Mixed. As the forgetful functor evy,: Mixed — Ch(k) detects weak equiv-

alences and fibrations by Proposition 4.2.2.12; it now follows from Proposi-
tion 4.1.4.1 that ¢ and p exhibit P as a path object for Y. O

Proposition 4.2.2.15. Let X be a cofibrant and Y a fibrant object in Mixed,
with respect to the model structure of Definition 4.2.2.2, and f and g two
morphisms X — Y in Mixed. Then f and g are homotopic if and only if there
exists a chain homotopy of strict mixed complexes h from f to g, by which
we mean a chain homotopy h from f to g in the sense of Proposition 4.1.4.2
satisfying additionally’®

h(d(z)) = — d(h(z)) (4.5)

for all elements x of X. v

18To remember the sign, note that both d and h have odd degree, so commuting them
should be expected to introduce a sign.
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Proof. Note that by [Hov99, 1.2.6], as X is cofibrant and Y is fibrant, the
left and right homotopy relations coincide, and the right homotopy relation
can be tested using any path object for Y. For this we use the path object P
from Proposition 4.2.2.14.

Arguing analogously to the proof of Proposition 4.1.4.2, we see that f and
g are homotopic as morphisms of strict mixed complexes if and only if there
exists a morphism of strict mixed complexes H = f xgx h: X — P. That H
is a morphism of chain complexes amounts, just like in Proposition 4.1.4.2,
to

Ooh+hod=f—g

but this time H needs to additionally commute with d, so for x an element
of X the following equality must hold.

The right hand side is given by

d((f (@), g(x), h(x))) = (d(f(x)), d(g(x)), — d(h(x)))

so as f and g are morphisms of strict mixed complexes we can conclude that
equality (%) is equivalent to the following equation.

hd(x)) = - d(h(x)) O

4.2.2.5 Homotopies in Alg(Ch(k))

In this section we describe homotopies in Alg(Ch(k)). The statements of
the first two propositions, concerning an appropriate path object and a con-
crete description of the resulting homotopies, are completely analogous to
the propositions in Sections 4.1.4 and 4.2.2.4. However, this section has an
additional helpful result that reduces the amount of data that needs to be
specified and the amount of properties that need to be checked to construct
homotopies out of differential graded algebras whose underlying Z-graded
k-algebra is free.

Proposition 4.2.2.16. Let Y be a differential graded k-algebra. Then defin-
ing a multiplication on the chain complex P that was defined in Proposi-
tion 4.1.4.1 as

(2,9.2) - (@5, %) = (w2, gy 2y + (~1)%%0Dz2)
upgrades P to a differential graded k-algebra with unit (1,1,0). Furthermore,
the morphisms i and p that were defined in Proposition 4.1.4.1 are compatible

with this multiplicative structure, exhibiting P as a path object for Y in

Alg(Ch(k)). Q0
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4.2 Strict mixed complexes

Proof. It is clear that (1,1,0) is a unit for the multiplication that was defined
in the statement, and that multiplication is k-linear in both factors. For
associativity we carry out the following calculations.

((CC,y7 Z) ' (xlvylv Z/)) ! (x”,yua ZH)
= (xa:’,yy’, 2y + (_1)degc.1(r)le) @y, 2"

/.1

= (x;p z’ ,yy y 2y Y+ ( )degch(x)ley” + ( )degCh(ac)+degCh( )Z‘J}/ZH)

(fﬂ, Y, Z) : ((fﬂl, y', Z/) . ((ﬂ//, y”7 z//))
= ('r’ Y, Z) : (lell,y Yy z'y” + ( 1)ngCh( )x/z")
= (xmgc ,yyy zy’y” +< )degch(ar)ley//_i_( )degCh(x)+degCh($/)mx/Z//)

The next calculations show that the Leibniz rule is also satisfied, making P
into a differential graded algebra.

A(z,y,2) (2',y,2))
=9 (mx', vy, 2y + (—1)d°gCh(m)J;z’)>
= (B(xa:'), o(yy'), —8(zy' + (—1)deg€h(’”)mz’) + za’ — yy’)
(0(@)a’ + (-1 @z0(a’), )y + (~1)*Fya(y),
—0(2)y’ — (~1)%E T 2a(y)
— (1)@ ()2 — 2d(2") + xa’ — yy')

O(w,y,2)) - (@9, 2) + (~1)*%0 ) (@,y,2) - (@', o/, 2')
= (0(2),0(y), =0(=) + = y) - («',y/, )
+ (~1) %@,y 2) - (0(2)), 00), ~() + ' — )
= (0(0)a", o)y, ~0()y + 2y’ — gy — (1) ()2
+ (—1)%E ) (20(2'), oY),
20(y') — (~1)"5020(!) + (~1)*50 Daa’ — (<1)*5a Oy
= (0()a’ + (1) @20(a’), )y + (~1)*Eya(y),
—0(2)y +zy —yy — (—1)%Ed(x)2!
+(=1)38n(®) 29(y) — 20(2) + xa’ — xy’)
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= (0@)a’ + (1)), 0y + (1) yay),
= 0(2)y + (~1)Eez0(y)
—(=1)dean®J(z)2" — 2d(2') + za’ — yy’)

It is immediate from the formula for multiplication on P that the the
morphisms of chain complexes i: Y — P and p: P — Y x Y from Propo-
sition 4.1.4.1 become morphisms of differential graded algebras. As weak
equivalences and fibrations in Alg(Ch(k)) are detected by the forgetful func-
tor to Ch(k) by Proposition 4.2.2.12, it now follows from Proposition 4.1.4.1
that ¢ and p exhibit P as a path object for Y. We remark that a more concep-
tual approach to constructing this path object is described in [SS00, Section
Chain complezes on pages 503 and 504], though there are some differences in
signs. O

Proposition 4.2.2.17. Let X be a cofibrant and Y a fibrant object in
Alg(Ch(k)), with respect to the model structure of Proposition 4.2.2.9, and f
and g two morphisms X — 'Y in Alg(Ch(k)). Then f and g are homotopic if
and only if there exists a chain homotopy of differential graded k-algebras h
from f to g, by which we mean a chain homotopy h from f to g in the sense
of Proposition 4.1.4.2 satisfying additionally

h(z - 2') = h(@)g(a’) + (=1) "8 f(2)h(a") (4.6)
for all elements x and x’ of X. Q@

Proof. Note that by [Hov99, 1.2.6], as X is cofibrant and Y is fibrant, the
left and right homotopy relations coincide, and the right homotopy relation
can be tested using any path object for Y. For this we use the path object P
from Proposition 4.2.2.16.

Arguing completely analogously to the proof of Proposition 4.1.4.2; we
see that f and g are homotopic as morphisms of differential graded alge-
bras if and only if there exists a morphism of differential graded algebras
H=fxgxh: X — P. That H is a morphism of chain complexes amounts,
just like in Proposition 4.1.4.2; to

Qoh+hod=f—g

but this time H needs to additionally preserve the unit, which is equivalent to
h(1) = 0, and the multiplication, so for x and 2’ elements of X the following
equality must hold.

(f(z-2'),g(x-2), h(z-2")) = (f(z),9(x), M=) - (f(2'),9(z"), h(z)) (%)
The right hand side is given by

(f(x)ag(x)a h(x)) ’ (f(x'),g(x’), h(g;/))
= (f@) £@), 9(@) - g(a") h(@)g(@) + (~ )%l f@)h(a"))
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4.2 Strict mixed complexes

so as f and g are multiplicative we conclude that equality (*) is equivalent
to the following equation.

We- o) = hia)g(a’) + (~1)%%® f(2)h(')

Finally, applying this equation for z = 2’ = 1 we obtain that h(1) = 2h(1)
and hence h(1) = 0. O

The following proposition will sometimes be helpful in defining homotopies
of differential graded k-algebras.

Proposition 4.2.2.18. Let X and Y be objects in Alg(Ch(k)), and assume
that the underlying Z-graded k-algebra of X is free on a Z-graded subset Z
of X.

Let f and g be morphisms of differential graded algebras from X to'Y and
h a map from Z to'Y that increases degree by 1. Then there is a unique

extension of h to a morphism of Z-graded k-modules of degree 1 from X to
Y such that

h(z - ') = h(z)g(z) + (~1) %) f(2)h(a') (4.7)

holds for all elements x and x' of X. That unique extension is given by
defining h on the basis given by words in Z by

h(z1---21) = Z (—1)Zrssmio B a) L f ez ) h(z) - g(ziea - 2)

1<i<i
(4.8)
forl >0 and z1,...,21 € Z, and then extending k-linearly.
Furthermore, such an extension h satisfies
Ooh+hod=f—g (4.9)
if and only if this holds on elements of Z. Q@

Proof. We first show uniqueness of the extension. As h must be k-linear, it
suffices to show that the h is already uniquely given on words in Z. This we
do by induction on the word length. By the Leibniz rule (4.7), h must map 1
to 0 (use x = 2’ = 1), so h is uniquely determined on words in Z of length 0.
It is also uniquely determined on elements of Z themselves, as we prescribe
the value on those elements. The induction step then follows directly from
(4.7).

Now define h as in (4.8). It is clear from the definition that this definition
extends the prescribed valued on Z. To verify that (4.7) holds we first note
that both sides of the equation are k-linear in both z and z’, so that it suffices
to check this on a k-basis of X. Solet w = 21 -~z and w’ = 2{ - - - 2, be words
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in Z. Then the following calculation shows that (4.7) is satisfied.
h(w - w")
= Z (—1)2199—1 degch(zj) . f(Zl e Z’L*l) . h(zl) . g(ZZ+1 ceezye w/)

1<i<l

+ Z ( degCh(w) . (71)21§j§i—1degch(z;)
Z (,1)215;‘971 degen (7)) | f(zi .. ’le'—l) . h(zi) 'Q(Zz/‘+1 e Zl,’)

1<i<l!
+
1<i<l

— h(w) - glw) + (~1)5 ) f(w) - h(w)

S ) B (o) )

DZasisicideganl=) L £z oz 1) h(z) - gz 21)

’\ I/\M

degCh (w) | f(w)-

It remains to show the assertion concerning (4.9). That if equality holds in
general, then it also holds on Z is clear. So assume that (4.9) holds on Z. As
both sides of the equation are k-linear it again suffices to show (4.9) on the
k-basis given by words in Z. We show this by induction on the word length.
For the element 1 (i.e. the unique word of length 0) we obtain A(1) = 0 and
(1) = 0 from the respective Leibniz rules, and the right hand side of (4.9)
is zero as well as f(1) = 1 = g(1). On words of length 1, i. e. elements of Z,
the equation (4.9) holds by assumption. So now let w be an element of X
on which (4.9) holds, and z an element of Z. Then the following calculation

shows that (4.9) also holds for w - z, thereby finishing the proof.

O(h(w - 2)) + h(O(w - 2))
We first apply the Leibniz rule twice, for both h and 0.

= 0(h(w) - g(=) + (~1)%% ) f(w) - h(2))
+ h(@(w) sz (—1)desan(@) gy 8(2))

= O(h(w)) - 9(2) + (~1)*5 I h(w) - (g(2))
+ (=1t o f(w)) - h(z)
- (—1)dEat) . (1)) f(w) - o(h(2))
+ h(Ow)) - g(=) + (~1)* )L F(D(w)) - h(z)
+ (—1)%E ) (w) - g(0(2))
+ (—1)tEa () (1)) f(w) - h(0(2))
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Next we reorder the summands.
= 0(h(w)) - g(z) + h(O(w)) - 9(2)
+ (1)t h(w) - 9(g(2)) + (—1) 1) - h(w) - g(3(2))
1)deen(@) . g(f(w)) - h(z) + (1)@ =L . £(§(w)) - h(2)
—1)degen(w) . (—1)desen(w) . £ () - O(h(z))
1)desen(w) . (—1)degan(w) . £(w) . hA((2))
= (0(h(w)) + h(8(w))) - g(2)
+ (1)l h(w) - (—0(g(2)) + g(d(2)))
+ (1)) (9(f(w)) — f(O(w)))
+ f(w) - (8(h(2)) + hd((2)))

Now we can apply the induction hypothesis, and that f and g are morphisms
of chain complexes.

= (f(w) - g(w)) - 9(2) + f(w) - (F(2) — 9(2)
= f(w) - 9(=) — g(w) - g(2) + () f(2) = flw) - 9(2)
— flw-2) — glw-2) :

(=
(=
(
(=

4.2.2.6 Homotopies in Alg(Mixed)

Now we turn to homotopies of algebras in strict mixed complexes. This
results in this section are analogous to those in the preceding Section 4.2.2.5,
and obtained by combining those results with those from Section 4.2.2.4.

Proposition 4.2.2.19. Let Y be an object in Alg(Mixed). Then the strict
mized structure defined in Proposition 4.2.2.14 on the chain complex P from
Proposition 4.1.4.1 satisfies the Letbniz rule with respect to the multiplica-
tion from Proposition 4.2.2.16, upgrading P to an object in Alg(Mixed).
Furthermore, the morphisms i and p exhibit P as a path object for Y in
Alg(Mixed). Q

Proof. Let (x,y,z) and (2',y’,2") be two elements of P. Then the following
calculation shows that d satisfies the Leibniz rule.

d((z,y,2) - (2,9, 7))
((x ?y-y, 2oy + (- 1)degch(w)_x.z,>)

d
R
(4@

d(x —1)tEa) - d(@), d(y) -y + (<)@ y - d(y),
—d(2) -y — (fl)degCh(z) cz-d(y)
_ (_1)dchh(r) d(z) -2 - (_1)ngCh(I) (= 1)ngCh cx-d(z ))
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= (a@) -2 d(w) -y, ~d(z) -y = (1)@ d(a) - )
+ ((Fpteeal) . o (@), (~1) =)y (),
— (—1)deBan(®) L 1 d(y) — (—1)deBan(@) . (_1)deran(@) . 4. d(z’))
= (d(@)- 2. d(y) -, (- d(2) -y + (D)™ d() - )
+ (1t g - d(a!), (-1 y - (),
(1)) 2 d(y) (<) - (<)) (—d(2)))

- (d(l’),d(y), 7d(z)) : (I/7y/a Z/)
+ (1)l 2,y 2) - (d(2'), d(y), —d(2"))
- d((a:,y, Z)) : (x/’ylwzl) + (71)degCh(w) : (xaya Z) : d(($/7y/7zl))

This upgrades P to an object in Alg(Mixed). As i and p are compatible with
both the strict mixed structure by Proposition 4.2.2.14 and the multiplicative
structure by Proposition 4.2.2.16 we can conclude that i and p also lift to
morphisms in Alg(Mixed). As weak equivalences and fibrations in Alg(Mixed)
are detected by the forgetful functor to Ch(k) by Proposition 4.2.2.12, it now
follows from Proposition 4.1.4.1 that ¢ and p exhibit P as a path object for
Y. O

Proposition 4.2.2.20. Let X be a cofibrant and Y a fibrant object in
Alg(Mixed), with respect to the model structure of Proposition 4.2.2.9, and f
and g two morphisms X — 'Y in Alg(Mixed). Then f and g are homotopic
if and only if there exists a chain homotopy of algebras of strict mixed com-
plexes h from f to g, by which we mean a chain homotopy h from f to g in
the sense of Proposition 4.1.4.2 that is simultaneously a chain homotopy of
differential graded algebras from f to g in the sense of Proposition 4.2.2.17
and a chain homotopy of strict mized complexes from f to g in the sense of
Proposition 4.2.2.15. Q

Proof. Note that by [Hov99, 1.2.6], as X is cofibrant and Y is fibrant, the
left and right homotopy relations coincide, and the right homotopy relation
can be tested using any path object for Y. For this we use the path object P
from Proposition 4.2.2.19.

Arguing completely analogously to the proof of Proposition 4.1.4.2, we
see that f and g are homotopic as morphisms of algebras in strict mixed
complexes if and only if there exists a morphism of algebras in strict mixed
complexes H = f x g x h: X — P. While an object in Alg(Mixed) is more
than a chain complex that is equipped with both a strict mixed and an
algebra structure, as d needs to additionally satisfy the Leibniz rule, mor-
phisms of algebras in strict mixed complexes are just morphisms of chain
complexes that are compatible with both multiplication and the strict mixed

146
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structure. Thus the claim now follows directly by combining the proofs of
Propositions 4.2.2.15 and 4.2.2.17. O

The following proposition is an analogue of Proposition 4.2.2.18 and will
sometimes be helpful when trying to define a chain homotopy of algebras in
strict mixed complexes.

Proposition 4.2.2.21. Let X and Y be objects in Alg(Mixed), and let Z
be a Z-graded subset of X. Assume that Z is disjoint from d Z and that the
underlying Z-graded k-algebra of X is free on Z Ud Z.

Let f and g be morphisms of algebras of strict mized complexes from X
toY, and h a map from Z to'Y that increases degree by 1. Then there is a
unique extension of h to a morphism of Z-graded k-modules of degree 1 from
X toY such that

h(z - a') = h(z)g(a’) + (~1) 48 f(2)h(a) (4.10)

and
h(d(@)) = —d(h(x)) (4.11)

holds for all elements x and x' of X. That unique extension is given by first
extending h to ZUd Z via

h(dz) = —d(h(z)) (4.12)

for z an element of Z, and then defining h on the basis given by words in Z
and d Z by

h(zi---2) = Z (—DZasizimrdeean() L f(z iz ) h(z) - g(zipr - a)

1<i<i
(4.13)
forl>0and z1,...,21 € ZUd Z, and then extending k-linearly.
Furthermore, such an extension h satisfies
Ooh+hod=f—g (4.14)
if and only if this holds on elements of Z. Q

Proof. We first show uniqueness of the extension. By (4.11) the extension
to ZUdZ as in (4.12) is uniquely determined, and then uniqueness of the
extension from Z Ud Z to X follows from Proposition 4.2.2.18.

Now define h as in (4.12) and (4.13). Then h is extended from Z U dZ
as in Proposition 4.2.2.18, so Proposition 4.2.2.18 show that (4.10) holds. To
show that (4.11) holds, we start by noting that (4.11) holds on elements of
Z Ud Z. For elements of Z this is by construction, and for d Z this is shown
by the following small calculation, where z € Z.

h(d(d2)) = h(0) = 0 = d(d(h(2))) = — d(r(d(2)))
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As both sides of (4.11) are k-linear, it suffices to show (4.11) on the k-basis
given by words in ZUd Z. By what we just argued (4.11) holds on words of
length 1, and as d(1) = 0 and h(1) = 0 by the respective Leibniz rules we also
have that (4.11) holds for words of length 0. We now show that (4.11) holds
for words of length greater than 1 by induction. So let z and 2’ be elements
of Z such that (4.11) holds on them. Then we have to show that (4.11) also
holds for z - 2/, which we do with the following calculation, using the Leibniz
rule for d as well as the Leibniz rule for h (i.e. (4.10)), which we already
showed.

h(d( ))

=h d )degCh(z)Z . d(z’))

= h(d(2)) - 9(2/) + (=1)deea@E) . f(d(2)) - A(2')

+ (=)l h(z) - g(d(2)) + (~1)Ea - (1)l f(2) - h(d(2))
= —d(h(2)) - g(z') = (=) d(f(2)) - h(=')

— (~1)deeat®In(z) - d(g(2)) — (~1)tEa) . (~1)dEal) f(2) - d(h(2"))
= —d(h(2)) - g(z") = (~1)2EEDn(z) - d(g(2"))

— (=)D d(f(2)) - h(2') — (~1)T8E) . (~1)dea) f(z) - d(h(2))
= —d(h(2) - g(=) — (=) - d(f(2) - h(2"))
= —d(h(z) - 9(=") + (~1)*F ) f(2) - h(2") )
= —d(h(z-2")

It remains to show the assertion concerning (4.14). So assume that (4.14)
holds on elements of Z. Then we first show that (4.14) also holds on elements
of d Z. Indeed, the following calculation verifies (4.14) for d z if z is an ele-
ment of Z, where we use the compatibility of all the involved morphisms and
operators with d.
9(h(d2)) + n(8(d2)) = —0(d((2))) — h(d(0(2))) =

=d((@oh+hod)(z)) =d(f(2) - 9(2))
= f(d(2)) — g(d(2))

Now that we know that (4.14) is satisfied on all of Z U d Z it immediately
follows from Proposition 4.2.2.18 that (4.14) already holds on all of Z. O

4.2.3 Strongly homotopy linear morphisms of strict
mixed complexes

Let X and Y be strict mixed complexes and f: X — Y a morphism of the
underlying chain complexes. We might then want to lift f to a morphism of
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strict mixed complexes, which is possible if and only if f commutes with the
differential d, or equivalently if fod—do f is zero. In practice it may however
happen that f only commutes with d up to homotopy rather than strictly.
In this case fod—do f is nullhomotopic, but not zero, and we could record
this by letting f(*) be a nullhomotopy'® of fod — do f. We can now ask
whether this additional data f(!) commutes with d. Again, this may only be
the case up to a homotopy f(?). If we keep going in this manner we arrive at
the notion of a strongly homotopy linear morphism of strict mixed complexes.
We will give a full definition in Section 4.2.3.1.

To relate the notion of strongly homotopy linear morphisms with the ho-
motopy theory of strict mixed complexes as developed in Section 4.2.2, we
are then going to show in Section 4.2.3.2 that a strongly homotopy linear
morphism f: X — Y corresponds to a (strict) morphism fstict: X — yshl
of strict mixed complexes, where Y*P is a thickened version of ¥ coming
with a quasiisomorphism of strict mixed complexes Y — Y*h. We can thus
interpret the strongly homotopy linear morphism f as encoding a zigzag as
depicted below.

4.2.3.1 Definition of strongly homotopy linear morphisms

Below we record the definition of strongly homotopy linear morphisms that
was sketched in the introduction to Section 4.2.3.

Definition 4.2.3.1 ([Kas87, 2.2] and [Lod98, 2.5.14]). Let X and Y be strict
mixed complexes. A strongly homotopy linear morphism from X to Y consists
of morphisms of graded k-modules f(): X — Y of degree 2i for all i > 0,
satisfying

Do f — fWopg=fi-Dod—do fi-b (4.15)

where we set f(-1 = 0. Note that the condition for i = 0 implies that
9o fO = 069, so that f(9 is a morphism of chain complexes. &

Remark 4.2.3.2. We can compose strongly homotopy linear morphisms
with (strict) morphisms of strict mixed complexes. To be more concrete, let
X and Y be strict mixed complexes, ¢(®: X — Y a strongly homotopy
linear morphism, and f: X’ — X and h: Y — Y’ morphisms of strict mixed
complexes. Then we make the following definition.

(hgf)? =hogDof  fori>0

19 As fod—dof is a morphism of odd degree, this would take the form 8f () — f(V 9 = fd—df,
compare with Definition 4.1.2.1.
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This defines a strongly homotopy linear morphism hgf from X’ to Y/, whose
underlying morphism of chain complexes is the composition of underlying
morphisms of chain complexes. That hgf really is a strongly homotopy linear
morphism can be easily checked using that f and A commute with both 0
and d, as seen below.

hgf)" — (hg$) V0 = 0hg' f —hg" 10
:h@¢of¢mﬂf
:h@W®d—@ﬂ*Uf
= hgWVfd — dhgt—V f
= (hg )"V~ d(hg )" o

4.2.3.2 Strongly homotopy linear morphisms as zigzags

We begin this section with the construction of the strict mixed complex
Ysh! that was mentioned in the introduction to Section 4.2.3, before explain-
ing how to reinterpret a strongly homotopy linear morphism f: X — Y as a
morphism of strict mixed complexes fstict: X — yshl,

Definition 4.2.3.3. Let Y be a strict mixed complex. Then define Y*" to
be the Z-graded k-module

Y;hl = H Y[—m)]

m>0

so that Y58 =T
0 and d of degrees —1 and 1 on Y*" as follows, where (¥, ¥ns1,...) is an

element of Y and e.g. 9(yn,Yni1,---)m refers to the Y,,-component of
yshL

m>n Ym for any integer n. We furthermore define operators

O(yn) ifi=0
OWYns Ynt1r 145 = § —O(Un+i) if i > 0 is odd
O(Yn+i) — Yn—14: if i >0 1is even
d@mwwuumHHp={_M%H) §§20§mm
d(Ynti) + Ynt14s if i >0 is even

The special case for i = 0 in the formula for 0 can be avoided by declaring
Yn_1 to be 0.
Finally, we let (5*': Y — Y1 be the morphism of Z-graded k-modules that

is given by 52 (y) = (y,0,0,...) for every element y of Y. O
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4.2 Strict mixed complexes

Remark 4.2.3.4. The following diagram?’ depicts how one can think of
YsPl The picture only shows part of YS! which continues towards the right,
top, and bottom, but not towards the left.

YnJrl Yn+2 Yn+3 Yn+4 Yn+5
id id

aEd KN“L\ dﬁa - 8Ed RR&L\R d%a - 8§d

Yn Yn+1 Yn+2 Yn+3 Yn+4
id id

al/gd — d%\J—B —id 8\@11 — d%\J—S —id B\B\d

Yn—l Yn Yn+1 Yn+2 Yn+3

¢

Proposition 4.2.3.5. Let Y be a strict mized complex and Y"! as in Defi-
nition 4.2.3.8. Then 0 and d as defined in Definition 4.2.3.3 define a strict
mized complex structure on Y™ which makes L%;lli Y — Vs into a quasiiso-
morphism of strict mized complexes. Q

Proof. We begin by showing that 9 and d upgrade Y*" to a strict mixed
complex. It is easiest to convince oneself of this by considering the diagram
in Remark 4.2.3.4, but we also provide a proof by unpacking the formulas.
So let (Yn,Yni1,--.) be an element of Y P!, Then we obtain the following
calculations, first for odd 4 and then for even 2!, showing that & squares to
Zero.

OO((Yns Ynt1s-+)))p_opi (assuming 4 is odd)
= —9(0((Yn, Ynt1, - - .))n_1+i)
= —0(=0(yn+i))
= 0(9(yn+i))
—0
OO((YnsYnt1s-+)))p_oyi (assuming 4 is even)

(
8(8( Yns Yn+1, - - ‘))n—1+i) - 8((2/77,, Yn+1s- - '))n—2+i
O(OWn+i) = Yn—1+i) + O(Yn—1+i)

0—
0

O(Yn—1+i) + O(Yn-1+i)

20This diagram uses some of the pictorial elements from Convention 4.2.1.7, but is only
meant to help with intuition rather than as a precise depiction of an isomorphism
class of strict mixed complexes. For example Y is the product of the rows, whereas
interpreting the picture while following Convention 4.2.1.7 too closely would suggest
taking the sum.

21Tn the case of i = 0 we set y,—1 = 0 so that we can use the same formulas as for even
1> 0.
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Chapter 4 Mixed complexes

The proof that d squares to 0 is completely analogous. Similarly, the following
calculation shows dd 4+ dd = 0.

((0d + dO) ((Yn> Ynt15 - ))) pges (assuming ¢ is odd)
= —8(d((yn, Yn+1, - '))n+1+i) - d(a((ym Yn+1, - - '))n71+i)
= I(d(yn+i)) + d(0(yn+1))
= (604 40) (1)
=0
((0d + dO) ((Yn> Ynt15 - ))) pges (assuming 7 is even)
= 6(d((yna Yn+1, - - '))n+1+i) - d((ynv Yn+1, - - -))nﬂ
+ d(a((yn, Yn+1; - - '))n—1+i) + a((yna Yn+1, - - ))n-H
= (d(Yn+i) + Ynt1+i) + Ad(Yn—1+)
+ d(0(Yn+i) — Yn—1+i) — O(Yn+1+i)
= (0d + dO)(yn+i) + O(Yn+1+:) + d(Yn—1+4)
= d(Yn-1+i) = OYn+1+i)
=0

It remains to show that (§': Y — Yl is a morphism of strict mixed
shl

complexes as well as a quasiisomorphism. That (3" is compatible with the
boundary operator and differential is clear from the formulas. It thus remains
to show that it is a quasiisomorphism. For this, let Y% for ¢ > 1 be the
sub-Z-graded k-module of Y*!" given by the factor Y[—(2i —1)] x Y[~2i]. If

we let Y*PL0 be the first factor of Y ie. Y0 = Y then we obtain a
product decomposition
Yshl o H Yshl,i

i>0
as Z-graded k-modules. It is immediate from the formulas for the boundary

operator that each Y is closed under 9, making this also product decom-

position considered as chain complexes. As Likll is the inclusion of the first

factor it thus remains to show that for each ¢ > 1 the chain complex Yl is
acyclic. To do so, we define a contracting homotopy as follows.

he VEU = V00 1 @ Vo — Ys.}ilii =Yot2i ® Yiioit1

(Ynt2i—1:Yn+2i) = (—Yn42:,0)
The following calculations shows that & is a contracting homotopy of Yshbi,
where (Yn12i—1,Yns2:) is an element of Y;5hb7,
(Oh + hO)((Yn+2i—15Yn+2i))
= I((=Yn+2i,0)) + A((—=0(Yn+2i-1): O(Yn+2i) — Yn+2i-1))
= (=0(=¥Yn+2:),0 = (=¥Yn+2i)) + (=0(Yn+2i) + Yn+2i-1,0)

152



4.2 Strict mixed complexes

= (0(Yn+2i) — O(Yn+2i) + Yn+2i-1, Yn+2i)
= (Ynt2i—1, Ynt2i)
The following diagram depicts the situation for ¢ = 1 diagrammatically as in

Remark 4.2.3.4, with the contracting homotopy h indicated with the dashed
blue arrow.

Y42 . Yits
e

Yot1 . Yoo
RS

O

The proof of Proposition 4.2.3.5 shows that (58! has a retraction given by
the projection to the first factor, but only as chain complexes. While the
projection to the first factor is not compatible with the differential, it can
however be upgraded to a strongly homotopy linear morphism, as we will
explain next.

Proposition 4.2.3.6. Let Y be a strict mized complex. Define (piﬁ‘l)(i) for

each i > 0 to be the morphisms of Z-graded k-modules from Y to Y of
degree 2i that is the projection to the 2i-th factor, i. e. is defined as follows.

(pibl)gf) Y;hl — Yna (y’m Yn+1,Yn+2; - - ) — Yn+2i

Then this makes p%l‘l into a strongly homotopy linear morphism from YN

to Y. Furthermore, the underlying morphism of chain complexes of piﬁ“ s a

quastisomorphism. Q@

Proof. That (pil“l)(o) is a morphism of chain complexes is clear. As (p?}ﬂ)(o)

is a left inverse of (§M, it also follows immediately from M being a quasi-

isomorphism by Proposition 4.2.3.5 that (piﬁ‘l)(o) is a quasiisomorphism as
well.

It remains to show that the compatibility relations required of (pﬁﬁ‘l)(i) for
1 > 0 in order to make p%ﬁﬂ into a strongly homotopy linear morphism are
satisfied. So let i > 1 be an integer and (¥, Ynt1,-..) an element of Y0l

Then the following calculations show the claim.

(00 G = YD 0 0) ((gns Yt nszs )

= 0(Yn+2i) — O((Yns Ynt1,Yn+2; - - '))n—1+2i
= a(yn+2i) - (8(yn+2i) - yn71+2i)
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= Yn—1+2s

(@) 0d = do B ) (G st Ynsas-- )

d(( Ynyr Yn+1) Yn+2, - - '))n+1+2i—2 - d(yn+2i—2)
= (d(Yn+2i—2) + Ynt142i—2) — Ad(Ynt2i—2)
= Yn+1+42i—2 = Yn—1+2i O

shl shl

The relevance of Y and p$!' stems from the fact that piP! is the univer-
sal strongly homotopy linear morphism to Y; we show next that any other
strongly homotopy morphism with codomain Y factors uniquely as the com-
position of a (strict) morphism of strict mixed complexes to Y*" with pS]“l

Proposition 4.2.3.7. Let X andY be strict mized complexes and f: Y — Y

a strongly homotopy linear morphism. Then there is a unique morphism of

strict mized compleves g: X — YU such that f = pi o g*2. Q

Proof. We first show existence. Define a morphism of Z-graded k-modules g
as

g: X » v =] v[-
m>0
9(T)nt2i = AR (z)
9(@)n+2it1 = (f(i)d - df(i)>(x) = (Bf(i“) - f(i+1)3> (z)

for i > 0 and z elements of X,,, and where g(x),t., refers to the component

inY,1m. As ( Shl)( D is projection to the 2i-th factor, it is clear that f is the

composition p%}“l 0g, so it only remains to show that g is a morphism of strict

mixed complexes. This is proven by the following calculations, where i > 0
and x is an element of X,.

(99 — 90)(¥)n—1+2i
Ag(2)) 142 — F(O(x))
= 0(9(x)nt2i) = 9(&)n-112i — [P (O(x))
=0(f0@)) = (959 = f90) (@) - 1 (D))
=0

This shows what is needed for g to be a morphism of chain complexes for
only the even components, now we check the odd components.

(09 — g0) () ny2i

22See Remark 4.2.3.2 for the composition of a strongly homotopy linear morphism with a
morphism of strict mixed complexes.
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4.2 Strict mixed complexes

= ~0(g@)ns2i1) = (00 = 109 (0(a))
_ _6((af(i+1) _ f(i+1)a) (x)) _ (6f(i+1) _ f(i+1)a) (9(x))
- (_aaf(i-H) + af(i+1)3 _ af(i+1)3 + f(i+1)33) (z)
=0
Next we verify that g commutes with d, beginning with the even components.
(dg — gd)(@)n+142i
= d(g(@)ns2i) + g(@)nt142i — [P (d(@))
=d(fD(@) + (fOd = afO) (@) - rO(d(@))
=0
Finally, we check compatibility with d on odd components.
(dg — gd)(@)n+242i
= —d(g@)ns112) — (SO afD)(a()
——a((f9a-ar)(@) - (94 - as) ()
= (~dsDd+ddf® - fOda+dfa) ()
=0

This shows existence. It remains to show that such a lift g is already
uniquely determined by f. So let g: X — Y*'! be any morphism of strict
mixed complexes such that f = ps?' o g. We can immediately read off that
the even components must be given by

9(T) y0; = () forneZ,i>0and z € X,.

So now let x be an element of X,, and ¢ > 0. Then the following calculation,
using that ¢ is a morphism of chain complexes, shows that g(2)n42i+1 is also
already determined by f.

QJ

g(x)n+2z+1
= 8<g(x)n+21'+2) - (a(g(x)n+2i+2) - 9(1’)n+2z’+1)
= a(g(x)n+2i+2) - (g x))n+2i+1
=0( )

(
g(z) n+2i+2) —g(0(x )n71+2i+2

:50“”@0—ﬂ”Wmm> 0
Definition 4.2.3.8. Let X and Y be strict mixed complexes and f: X — Y
a strongly homotopy linear morphism. Then we denote by f5t"i° the unique

morphism of strict mixed complexes X — YsP lifting f as in Proposi-
tion 4.2.3.7. The assignment f > fS'"i® defines a bijection from the set
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Chapter 4 Mixed complexes

of strongly homotopy linear morphisms X — Y to the set of morphisms of
strict mixed complexes X — YsPL, &

4.3 The derived category of k

The derived category of k is an oo-category D(k) that can be constructed
by inverting the quasiisomorphisms in the category Ch(k) of chain complexes
of (ordinary) k-modules. In this section we discuss D (k) and record the main
properties that we will need later — most of them are proven in various places
in [HA].

We begin in Section 4.3.1 by proving some useful statements concerning
semiadditive co-categories, which we will need in Section 4.3.2, where we will
collect the main properties of D(k). We finish this section with Section 4.3.4,
where we state some properties of the truncation functors on D(k) that we
will need in Chapter 5.

4.3.1 Semiadditive oo-categories

In this section we prove some small helpful results regarding semiadditive
oo-categories that we will need in Section 4.3.2.

Proposition 4.3.1.1. Let C® be a symmetric monoidal oo-category such
that the underlying oo-category C is semiadditive co-category®®. Then C® is
cartesian if and only if it is cocartesian. Q@

Proof. The property of symmetric monoidal structures being (co)cartesian is
defined in [HA, 2.4.0.1]. The symmetric monoidal structure C® is cartesian if
the unit object 1¢ is final and if for every pair of objects X and Y of C the
morphisms

X X@Le+XQY =2 1e®Y ~Y

induced by the essentially unique morphisms X — 1¢ and Y — 1¢ exhibit
X ®Y as a product of X and Y.

Analogously, for C® being cocartesian the unit object must be initial, and
the analogously defined morphisms

X X@Lle > XQY 1Y ~Y

must exhibit X ® Y as a coproduct of X and Y.

23By this we mean that C admits finite products and finite coproducts and has the following
two properties. Firstly, the (essentially unique) morphism from an initial object to a
final object must be an equivalence (i.e. C has zero objects). Secondly, for any two
objects X and Y of C the morphism

[14.9]
xnuy =24, x xy

must be an equivalence (i.e. C has biproducts).
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4.3 The derived category of k

As C is assumed to be semiadditive, every initial object is automatically
final as well, and every final object is automatically initial, which shows equiv-
alence of the first part of the respective definitions. For the second part, let
X and Y be two objects of C. Note that the compositions

XRLle XY - X®1¢

and
1ce®Y - XQY - 1:0Y

are, by functoriality of the tensor product, homotopic to the identity. Func-
toriality also implies that the following square commutes

X®@le — X QY

| |

le®le — 1e®Y
which shows that the composition
X®R1lce - XQY 21:,0Y

and analogously
]lc@Y—)X@Y*)X@]IC

are zero morphisms. We can conclude that the following triangle commutes.

[1d 0]
XY 0id XxY

~ 7

X®Y

The second condition for C® being (co)cartesian is that the morphism on the
right (left) is an equivalence for every X and Y. As the horizontal morphism
is an equivalence by virtue of C being semiadditive, it follows that those two
conditions are equivalent. O

Proposition 4.3.1.2. Let C be a semiadditive co-category, let D be an
oco-category admitting finite products, and let Fy and Fs be two functors

Fy,Fy: C — CMon(D)

such that Fy preserves products.

Denote the forgetful functor CMon(D) — D by V and assume that V o Fy
is naturally equivalent to V o Fy. Then there is also a natural equivalence
between I and Fj. V)
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Proof. As D has finite products we can upgrade D to a symmetric monoidal
oo-category with respect to the cartesian symmetric monoidal structure D>
(see [HA, 2.4.1.5]). Applying [HA, 2.4.1.5 (5) and 2.4.2.5] we obtain an equiv-
alence of co-categories
CMon(D) ~ CAlg(D)

which is compatible with the respective forgetful functors to D. Denote the
composite of F; with this equivalence by F!. It suffices to show that F is
naturally equivalent to Fj.

Note that as V detects products by Proposition F.2.0.1 the equivalence
Vo Fy >~V o F; and F; preserving products implies that F5 preserves prod-
ucts as well. Hence both F| and F} preserve products too, so they induce
symmetric monoidal functors as follows (see [HA, 2.4.1.8]).

E/™:C* — CAlg(D)*
We obtain the following commutative diagram for i = 1 and i = 2

CAlg(C) L2, CAlg(CAlg(D))

UCJ JUCAlg(D)

C T> CAlg(D)
where the vertical functors are the forgetful functors forgetting the “outer”
algebra structure. By Proposition 4.3.1.1, the cartesian symmetric monoidal
structure C* is also cocartesian, so it follows from [HA, 2.4.3.9] that U¢ is an
equivalence. It thus suffices to show that Ucaigpy 0 CAlg(FY) is homotopic
to UCAIg(D) ] CAIg(FQ/)

The symmetric monoidal structure on CAlg(D) used in forming the co-cat-
egory CAlg(CAlg(D)) in the above diagram is the cartesian one CAlg(D)*.
There is also a symmetric monoidal structure induced by D* on CAlg(D),
which we denote by CAlg(D)®, see Propositions E.4.2.3 and E.6.0.1. By
Proposition F.3.0.2 in combination with [HA, 2.4.1.7] and [HA, 2.4.2.5], there
is a symmetric monoidal equivalence CAlg(D)® ~ CAlg(D)* whose under-
lying functor of co-categories is the identity. We can thus replace CAlg(D)*
implicitly used in CAlg(CAlg(D)) with CAlg(D)®.

By Proposition E.6.0.1 there is then a natural equivalence between Ucalg(p)
and CAlg(Up), where Up: CAlg(D) — D is the forgetful functor. We obtain

Ucag(p) © CAlg(F;) ~ CAlg(Up) o CAlg(F;)
~ CAlg(UD @) Fl/)
~ CAlg(V o F;)
soas Vo F} ~ V o F, by assumption we conclude
Ucalg(p) © CAlg(F;) =~ Ucaig(p) © CAlg(Fy)

which is what we needed to show. O
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4.3.2 Properties of D(k)
Proposition 4.3.2.1. The following hold.

(1) D(k) is*4 the presentable symmetric monoidal co-category underlying
the combinatorial and symmetric monoidal model category Ch(k) car-
rying the projective model structure from Fact 4.1.5.1.

We will denote the symmetric monoidal functor Ch(k)°t — D(k) by v. We
will also sometimes denote the composition of v with the cofibrant replacement
functor Ch(k) — Ch(k)*°f by v again®®.

(2) D(k) is stable.
(8) v: Ch(k)°f — D(k) preserves coproducts.

(4) There are natural equivalences for every integer n as follows®°.

From now on we will write k for v(k).

(5) There is a natural isomorphism of functors Ch(k)*f — Ab as follows.
Hompo(p k) (k[n], 7(=)) = Ha (=)

(6) Let Ch(k)L, and Ch(k)_, be the full subcategories of Ch(k) spanned
by the chain complexes whose homology is concentrated in non-negative
and non-positive, respectively, degree. Let D(k)>o be the essential image
of the restriction of v to (Ch(k))%,, and analogously for D(k)<o. Then
the pair (D(k)>o, D(k)<o) determines a t-structure on D(k).

Furthermore, D(k)>o is also the essential image of Ch(k)>o from Defi-
nition 4.1.1.1 and D(k)<o is the essential image of Ch(k)<o.

(7) There is a symmetric monoidal equivalence preserving the respective
t-structures between D(k) and the oo-category of k-modules in spectra
LMody(8p) (where the tensor product is the tensor product over k, see
[HA, 4.5], and the t-structure is defined in [HA, 7.1.1.10 and 7.1.1.13]).

(8) The t-structure on D(k) is compatible with the symmetric monoidal
structure in the sense of [HA, 2.2.1.3].

24We will take this as the definition for D(k), but will also also point out in the proof
below why other possible definitions used in [HA] are equivalent.
25Note that the restriction of this functor to Ch(k)°°f is homotopic to the original functor

.
26See Definition 4.1.1.2 for a definition of the shift in Ch(k) and [HA, 1.1.2.7] for a definition
of the shift in the stable co-category D(k).
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(9) There is a commutative diagram

LMody,(Ab) ‘1% chr)

I v

~

D(k)° —— D(k)

of co-categories, where D(k)Y = D(k)>o N D(k)<o is the heart of D(k),
see [HA, 1.2.1.11], and the lower horizontal functor the inclusion.

Furthermore, the dashed functor is an equivalence. We can thus identify
the heart of D(k) with LMody(Ab). @

Proof. Proof of Claim (1): The projective model structure on chain complexes
with the required properties was discussed in Fact 4.1.3.1. For the construc-
tion of D(k) as the symmetric monoidal co-category underlying Ch(k) see
[HA, 7.1.2.12]. The proof that D(k) is presentable symmetric monoidal can
be found in the proof of [HA, 7.1.2.13].

Finally, let us note that different ways of constructing D(k) are used in
[HA]. They are however all equivalent by [HA, 7.1.2.9] and [HA, 1.3.5.15]%7,
so there is no problem in using results concerning D (k) from different places
in [HA].

Proof of Claim (2): This is [HA, 1.3.5.9].

Proof of Claim (3): By (1) and [HA, 1.3.4.25 and 1.3.4.24] this follows from
the fact that coproducts of cofibrant chain complexes are already homotopy
coproducts?®.

Proof of Claim (4): We start by proving that v(k[n]) = v(k)[n]. First note
that as k is projective as a k-module, the chain complexes k[n] are cofibrant in
the projective model structure by [Hov99, 2.3.6]. Now consider the following
pushout diagram of cofibrant objects in Ch(k)

k[n] —— D"H(k)

% l

— k[n+1]

where D"*1(k) is the chain complex with D"*(k),, = k if m = n or
m = n+ 1 and D"*(k),, = 0 otherwise, and with differential from degree
n+1 to degree n the identity, and where the morphisms k[n] — D""1(k) and
D"+1(k) — k[n+ 1] are the obvious inclusion and projection. The morphism

27The construction of D(A) considered in [HA, 1.3.5] applies to the case A = LMody (Ab)
(the category of ordinary k-modules), as LMody, (Ab) is a Grothendieck abelian category
in the sense of [HA, 1.3.5.1].

28Unpacking the projective model structure (see [HTT, A.2.8.2]) on Fun(J, Ch(k)) for a
discrete category J one can easily see that such a functor is cofibrant if and only if it is
pointwise cofibrant.
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k[n] — D"*1(k) is a cofibration?®, so it follows from [HTT, A.2.4.4, variant
(i)] that this diagram is a homotopy pushout diagram in Ch(k). Applying
[HA, 1.3.4.24] and using that D"T!(k) is acyclic we can conclude that for
every integer n there is a pushout diagram in D(k) of the following form.

V(k[])) ——— 0

.

— v(k[n+ 1))

Using that v(k)[0] = (k) = v(k[0]) it now follows that v(k[n]) = v(k)[n] by
inducting up and down3® from 0.

The general statement now follows by combining that by Remark 4.1.2.2
there is a natural isomorphism

—[n] = (k@ -)n] = k] © -

of endofunctors of Ch(k)“f and that as the tensor product functor of D(k) pre-
serves colimits in each variable separately, there is also such a natural equiv-
alence of endofunctors of D(k), with the fact that v is symmetric monoidal.

Proof of Claim (5): We start by showing that the compositions of the
two functors with the forgetful functor Ab — Set are naturally equivalent.
Applying Proposition A.1.0.1 to Ch(k), we obtain a natural isomorphism as
follows.

Morg, o (x) (V(=), (=) = Morg, cnry (= —)

A standard calculation using left homotopies (see [Hov99, 1.2.4 in combina-
tion with 1.2.6 and 1.2.10]) shows that3!

Mory, cn(r) (k[n], —) = Ha(—) (4.16)

so that we have obtained a natural equivalence between the respective com-
positions with the forgetful functor Ab — Set. This forgetful functor fac-
tors as the composition of the forgetful functors Ab — CMon(Set) and
CMon(Set) — Set. As Ab — CMon(Set) is the inclusion of a full subcategory,
it suffices to show that the two functors in question are naturally equivalent
as functors to CMon(Set).

For this we apply Proposition 4.3.1.2. The category Ch(k)*" is semiaddi-
tive (coproducts of cofibrant objects are again cofibrant by [Hov99, 1.1.11])
and Set admits finite products, so it remains to show that H, (—) as a functor

cof

291t is even one of the generating cofibrations discussed in [Hov99, 2.3.3 and 2.3.11].

30The downwards induction uses that D(k) is stable.

31The main point is that a cylinder object for k[n] is given by k[n] IT1k[n] Sollin, o =, k[n]
where on underlying graded abelian groups igIli; is the inclusion into k[n]®k[n|®k[n+1],
and where 8$+1 sends 1 to (1,0) — (0,1). One also needs to use that every object of
Ch(k) is fibrant, and then the rest is unpacking the definition.
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Chapter 4 Mixed complexes

Ch(k)*f — CMon(Set) preserve products. The forgetful functor from com-
mutative monoids to sets detects products (see Proposition F.2.0.1), so it
suffices to show that H,,(—) preserves products as a functor into Set. But
this is clear, as direct sums in Ch(k) are formed levelwise, and direct sums
are both limits as well as colimits, so are compatible with forming kernels
and cokernels.

Proof of Claim (6): The first part is [HA, 1.3.5.16 and 1.3.5.21]. The second
part follows immediately from the observation that every chain complex with
homology concentrated in nonnegative or nonpositive degrees is quasiisomor-
phic to a chain complex itself concentrated in those degrees, by truncating.

Proof of Claim (7): By [HA, 7.1.2.13] there is an equivalence

0: D(k) — LMod(8p)

of symmetric monoidal co-categories. It remains to show that 6 is compatible
with the respective t-structures.

As a monoidal equivalence, 6 preserves monoidal units, so 6(k) ~ k, which
implies that there is a sequence of natural isomorphism for n > 2 of functors
D(k) — Set as follows.

Hn(_)
Using Claim (5).
= MorHOrD(k)(k[n], -)
Applying Ho 6.
= Morg, Lmod, (sp) (K[, 0(—))

Using that the functor Free: 8p — LMod(8p) is left adjoint to the forgetful
functor. See [HA, 4.2.4.8] and [HTT, 5.2.2.9].

= Morp, sp(S[n], 0(—)) = 7o (Mapg, (S[n], 6(—)))
Using that n > 0.

= wn(Mapsp(& 9(—)))
Using the adjunction %°° -4 Q2°.

=~ 1, (Mapg_ (S°,Q2°0(—))) = m,(Q°0(—))
Using [HA, 1.4.3.8].

=7 (0(-))

By using that H, and , are both compatible with shifts32, we can conclude®?
that H,,(—) & 7, (0(—)) for every integer n, which implies that € is compatible

32For 7, this is by definition, see [HA, 1.2.1.11], for H, this follows from Claim (5) and
)

33 A priori this is only a natural bijection — which is also all we need, as an abelian group
is isomorphic to 0 if and only if its underlying set consists of a single element — but one
can also apply Proposition 4.3.1.2 to deduce that this bijection in fact preserves the
group structure.
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4.3 The derived category of k

with the respective t-structures on D(k) and LMod(Sp) as follows directly
from their respective definitions.

Proof of Claim (8): The t-structure on LMody(8p) is compatible with the
symmetric monoidal structure by [HA, 7.1.3.10], so this also holds for D(k)
by Claim (7).

Proof of Claim (9): Every chain complex concentrated in degree 0 has
obviously vanishing homology outside of degree 0, so yo(—)[0] factors through
the full subcategory D (k)% of D(k).

The induced functor is essentially surjective by the second part of (6).
If two morphisms f and g in LModg(Ab) map to homotopic morphisms,
then they induce the same morphisms on Homygy(p k) (K[0], —), so by (5)
Ho(f]0]) = Ho(g[0]), and hence f = g. Thus Ho(LMody(Ab)) — Ho(D(k)%)
is faithful. Finally, let X and Y be k-modules and f: v(X[0]) — ~v(Y[0]) a
morphism in Ho(D(k)). There is a zigzag of quasiisomorphisms

X[0] = (r<0 0 720) (X*) 4= 70 (X[0]°) — X[0]°"

in Ch(k). As Y'[0] is fibrant we can by Proposition A.1.0.1 and [Hov99, 1.2.10
(iii)] find a morphism f: X°f — Y[0] representing f, i.e. the dashed compos-
ite

(20 720) (X)) = 7m0 (X[01) — 5 (XD

\“\\\\ l’v(?)
[ RN » 7(Y[0])

where the top line is obtained by applying v to the above zigzag, is homotopic
to a representative of f. But it is easy to see that f can be strictly lifted to
a morphism from X1[0], as Y[0] is concentrated in degree 0. This shows that
the functor Ho(LMody (Ab)) — Ho(D(k)%) is full.

As the oo-category D (k)" is a 1-category by [HA, 1.2.1.12], this shows that
the functor LMody(Ab) — D(k)Y is an equivalence. O

Remark 4.3.2.2. Let ¢: k — k' be a morphism of commutative rings. Then
the symmetric monoidal functor

E ®p —: Ch(k)*" — Ch(k’)ef

from Fact 4.1.5.1 preserves weak equivalences and so induces by [HA, 4.1.7.4]
a commutative diagram of symmetric monoidal functors as follows.

Ch(k’)COf K ®p— Ch(k/)cof

D(k) W (k")
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Chapter 4 Mixed complexes

Furthermore, it follows from Fact 4.1.5.1 using [HA, 1.3.4.27] that the functor
K @i —: D(k) — D(K') (4.17)
is left adjoint to the functor
¢": D(K') — D(k)
that is induced by the composition

* __ycof
Ch(k)e°f 25 Ch(k) 5 chk)eo!
where the second functor is the cofibrant replacement functor. In particular,
functor (4.17) preserves small colimits.
As k' ® — is a symmetric monoidal functor, we can use [HA, 7.3.2.7] to
upgrade the adjunction k&’ ®; — - ¢* to an adjunction®*

(W@r-)®
D(k)® T D(k')®
\(¢*)®/
Fin,

relative to Fin, in the sense of [HA, 7.3.2.3], and such that (¢*)® is lax
symmetric monoidal. &

4.3.3 Homology

Homology is a very important invariant of chain complexes, and for D(k)
as well. In this section we will discuss how the different definitions are com-
patible, as well as some properties that we will need.

Definition 4.3.3.1 ([HA, 1.2.1.11]). Let n be an integer. We define a functor
H,: D(k) — LMod(Ab)
to be the composition
D(k) 2 k) T D(k)© ~ LMody, (Ab)

where the equivalence is the one from Proposition 4.3.2.1 (9). &

34The functors to Fin, are to be the canonical cocartesian fibrations of co-operads.
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4.3 The derived category of k

Proposition 4.3.3.2. Let n be an integer. Then there is a commutative

diagram
Ch(k)
R
¥ LMody (Ab)
o
D(k)
in Cates. Q

Proof. We need to show that H,, o« and H,, are naturally isomorphic.

Denote by ¢ the equivalence LMody,(Ab) — D(k)¥ from Proposition 4.3.2.1
(9) and assume we have already shown the claim for n = 0. Then we can
deduce the claim for general n using Proposition 4.3.2.1 (4), as we obtain
equivalences of functors Ch(k) — LMody(Ab) as follows.

H,oxy

=@ torsgoTcoo(=)[-nloy
1

2~ oT390T<0070 ()7
= Hpoyo (—)[-n]

= Hp o (—)[-n]

~H,

We now turn to the case n = 0. Consider the natural transformations of
endofunctors of Ch(k)

idCh(k) — T<0 < T>0 © 7<0 (418)

where T7<¢ and 7>( refer to the truncation functors for chain complexes. The
endofunctor 7>¢ o T<g factors over the inclusion of chain complexes that are
concentrated in degree 0, so it suffices to show the following.

(1) The precompositions of Hg: Ch(k) — LMod(Ab) with the two natural
transformations in (4.18) are natural isomorphisms.

(2) The precompositions of Hg o v: Ch(k) — LMody(Ab) with the two
natural transformations in (4.18) are natural isomorphisms.

(3) The precompositions of Hy and Hg oy with the inclusion of chain com-
plexes concentrated in degree 0 are naturally isomorphic.

Proof of (1): Clear.
Proof of (2): We only consider the first natural transformation, the other
case is similar. We need to show that the natural transformation

T>0 0 T<0 © 7 ©idchk) — T>0 0 T<0 © 7 © T<0
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Chapter 4 Mixed complexes

is a natural equivalence. Let X be a chain complex, and let f be the natural
morphism X — 7<oX. Then f is an isomorphism in homology in non-positive
degrees, while 7<9X has homology concentrated in non-positive degrees, so
the homotopy fiber hofib(f) has homology concentrated in positive degrees.
We obtain a pullback diagram

7(hofib(f)) ——— ~(X)

| !

00— Y(7<0X)

in D(k), with v(hofib(f)) lying in D(k)>1. Applying 7<¢: D(k) — D(k) we
obtain a pullback diagram

0 ——— 7<0(7(X))

| !

0 —— 7<0(¥(7<0X))

in D(k), which, as D(k) is stable, is also a pushout diagram, from which it
follows that
T<0(7(X)) = T<0(Y(T<0X))

is an equivalence. The claim follows.

Proof of (3): What we need to show is that Hy o (—)[0] and Hg o v o (—)[0]
are naturally isomorphic as functors from LMody(Ab) to LMody (Ab).

Hy o (—)[0] is naturally isomorphic to the identity functor right from the
definition. For Hg oy o (—)[0] we can apply Proposition 4.3.2.1 (9) to obtain
equivalences as follows.

Hp 0y 0 (—)[0]
~ ((p‘l 0T5007T<0) © ((D(k)o — D(k)) o p)
~plo idpye 0w
~ <p*1 o
>~ idy,Mod, (Ab) O

Proposition 4.3.3.3. Let n be an integer. Then there is a commutative
diagram

LMody, (Ab)
H7L
D(k)
Homyo (o (k)) (k[n],—)
Ab
in Cateo. v
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Proof. By [HA, 1.3.4.1] it suffices to show that there is a homotopy

evm o Hy oy HomHo('D(k))(k[n]a 7(_))

of functors D(k) — Ab. The former functor is by Proposition 4.3.3.2 homo-
topic to the composition

Ch(k) 22 LMody,(Ab) =™ Ab (%)
and the latter functor is by Proposition 4.3.2.1 (5) homotopic to the functor
Ch(k) 225 Ab
which is by definition the same as the composition (). O

Notation 4.3.3.4. Let n be an integer. In light of Proposition 4.3.3.3 we
will also denote the functor

HOmHO(rD(k))(k'[TL], 7): D(k) — Ab

by H,. However, if it is not clear from context that we mean this functor,
then usage of the notation H,, should be understood to refer to the functor
with image in LMody (Ab). O

Proposition 4.3.3.5. Let n be an integer. The functor
H,: D(k) — LMod(Ab)
preserves products and coproducts. Q

Proof. As the forgetful functor evy,: LMody(Ab) — Ab detects limits and
colimits, it suffices to show that the functor

H,: D(k) — Ab

preserves products and coproducts.
We start by showing that it preserves products. As the forgetful functor
Ab — Set preserves products, it suffices to show that the functor D(k) — Set

Morsso(n ey (k) =) 2= mo (Mapay gy (kl), =) ) - D(k) = Set

preserves products, but this is clear as both Mapy ) (k[n], —) and mo preserve
products.

For coproducts we use the commutative diagram constructed in Proposi-
tion 4.3.2.1 (5) that is depicted below.

Ch(kj)COf
Hn
vl \ Ab
/Hn
D(k)
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Chapter 4 Mixed complexes

As every object of D(k) is represented by a cofibrant chain complex (by
definition) and 7 preserves coproducts®® it suffices to show that the functor
H,, on chain complexes preserves coproducts, which is a classical exercise in
homological algebra3S. O

Remark 4.3.3.6. The functor
HomHO(D(k))(k, —)I HO(@(k)) — Ab

is by [Nee01, 1.1.10] homological in the sense of [Nee01, 1.1.7]. As the forget-
ful functor from LMody(Ab) to Ab detects exact sequences, it follows from
Proposition 4.3.3.3 that the functor

Hy: Ho(D(k)) — LMod(Ab)

is an homological functor as well.
Any cofiber sequence

in D(k) thus induces a long exact sequence

) Ho(—h[-1]) Ho(f) Ho(g) Ho(h) Ho(—f[1])

Ho(X[1]) ——— -+

Ho(X) Ho(Y) Ho(Z)

in LMody (Ab) that we can identify with a long exact sequence

Ho(f)

S HU(Z) s Ho(X) 2 g vy 29 g7y o),

H,l(X) . O

Proposition 4.3.3.7. Let X be an object of D(k) so that H,(X) is a free
k-module with basis®” {b;: k[n] — X }ic1, for every integer n.
Then the morphism

H k[’I’L] HnEZ,'LEI" X

neZ,iel,

is an equivalence in D(k). Q

35Coproducts of cofibrant objects are homotopy coproducts, then use [HA, 1.3.4.25 and
1.3.4.24].

36See for example [Rot08, Exercise 6.9]. One way to show this is as follows. One first
considers finite coproducts, which are biproducts, so one can for example use additivity.
Arbitrary coproducts can be written as filtered colimits of their finite subcoproducts
(this is true also for oo-categories by [HTT, Special case of the proof of 4.2.3.11] but
can of course also be shown in a more elementary way for our application), so it then
suffices to show that filtered colimits in LMody (Ab) are exact, which is done in [Wei94,
Theorem 2.6.15].

37Such a morphism b; represents an element in H,,(X) via Proposition 4.3.3.3.
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4.3 The derived category of k

Proof. Represent X by a chain complex. Unpacking and using the natural
equivalence from Proposition 4.3.2.1 (5) and Proposition 4.3.3.2 we obtain
that the morphism in question is represented by a quasiisomorphism of chain
complexes and is thus an equivalence. O

Proposition 4.3.3.8. Let n be an integer, T a small co-category, and
F:T — D(k) a functor.

Assume that F(I) lies in D(k)>y, for every object I of . Then the canonical
morphism

colzim H,(F(e)) — H, (colzim F)

s an isomorphism.
Analogously, if F(I) lies in D(k)<y, for every object I of I, then the canon-
ical morphism

H, (11%11 F) — h%n H,, (F(e))
is an isomorphism. Q

Proof. Tt suffices to consider the case n = 0. By [HA, 1.2.1.6], the colimit of F’
is again in D(k)> in the first case and in D(k)<( in the second case, and thus
forms the colimit in that full subcategory by [HTT, 1.2.13.7]. The statement
now follows from the fact that 7<o: D(k)>o — D(k)" is left adjoint and
thus preserves colimits and 7>0: D(k)<o — D(k)¥ is a right adjoint and
thus preserves limits. O

4.3.4 Properties of the truncation functors

Let n be an integer. The categories D(k)>,, and D(k)<,, defined as in [HA,
1.2.1.4] with respect to the t-structure discussed in Proposition 4.3.2.1 are
the full subcategories of objects X with H,,(X) = 0 for m < n and m > n,
respectively. By [HA, 1.2.1.6 and 1.2.1.7] we obtain adjunctions

D(k) 72 D(k)<n

L<n -

and
L>n
D(k)>0 L DIK)

with ¢t<, and ¢>, the inclusions of the respective full subcategories.

We will sometimes omit ¢<,, and ¢t>, from the notation and consider 7<,,
and 7>, as endofunctors of D(k).

As the t-structure on D(k) is compatible with the symmetric monoidal
structure, we get more, as the following proposition records.

Proposition 4.3.4.1. The following list of statements hold.
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Chapter 4 Mixed complexes

(1) D(k)>o inherits a symmetric monoidal structure from D(k).

(2) The adjunction t>9 4 7> can be upgraded to an adjunction LQEO - 75’0
of lax monoidal functors relative to Fin, (in the sense of [HA, 7.5.2.3]).

(3) The lax monoidal functor LQSO is symmetric monoidal.

(4) For n > 0, the full subcategory (D(k)>0).

- n

monoidal structure from D(k)>o.

inherits a symmetric

(5) The adjunction T<y = t>0,<n, where t>0,<n : (D(k)>0),, — D(k)>0
is the inclusion, can be upgraded to an adjunction T?n a L(§)0$<n of lax
monoidal functors relative to N(Fin,). - -

(6) The lax monoidal functor Tgnt D(k)go — (D(k)zo)gn is symmetric
monotdal.

Let O® be an oo-operad. Then the following statements hold as well.

(7) The adjunction 1Sy 4 75 induces an adjunction

Algy (720)

and Algy(t>0) is fully faithful with essential image spanned by those
O-algebras A in D(k) such that for every object X of O, the underlying
object evx (A) of A lies in D(k)>o.

(8) The adjunction 72, =412, ., induces an adjunction

Algy (TS.,L)

Algo(D(k)0) 1 Algo((D(k)0)., )
Algy, (ng)sn)

and Algy (t>0,<n) s fully faithful with essential image spanned by those
O-algebras A in D(k)>o such that for every object X of O, the under-
lying object evx (A) of A lies in (D(k)>o).,,- @

Proof. By Proposition 4.3.2.1, the t-structure on D(k) is compatible with
with the symmetric monoidal structure in the sense of [HA, 2.2.1.3], so the
statements (1), (2), and (3) follow from [HA, 2.2.1.1], and the statements (4),
(5), and (6) follow from [HA, 2.2.1.10 and 2.2.1.9].

That we obtain induced adjunctions on algebras as in (7) and (8) now fol-
lows from Proposition E.3.3.1, see also [HA, 2.2.1.5]. Finally, that the functors
induced on algebra categories by the inclusions are again fully faithful as well
as the descriptions of the essential images follow from Proposition E.3.5.1. [

We also record the following for later use.
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4.4 The oco-category of mixed complexes

Proposition 4.3.4.2 ([HA, 1.2.1.6]). Let n be an integer.

Then D(k)<, is closed under small limits and coproducts. In particular,
D(k)<n admits all small limits and finite biproducts and v<,, preserves them.

Analogously, D(k)>y, is closed under small colimits and finite products. In

particular, D(k)<, admits all small colimits and finite biproducts and t>,
preserves them. Q

Proof. The closure properties for limits and colimits are [HA, 1.2.1.6] and

closure under finite biproducts follows from the definition using that H,,(—)
commutes with finite biproducts.

The rest of the claims now follow from the closure claims by [HTT, 1.2.13.7]

O

4.4 The oo-category of mixed complexes

In Notation 4.2.2.10 we constructed a commutative diagram of forgetful
functors as follows.

Alg(Mixed)
evy \A]g(‘evm)
Mixed Alg(Ch(k)) (4.19)

m eVga
Ch

(F)

All four functors preserve weak equivalences by Proposition 4.2.2.12 so we
obtain a commutative diagram on underlying oo-categories. For this, let us
use the following notation.

Notation 4.4.0.1. Denote by Wcn, Walg, Wiixed and Wajg(mixed) the classes
of weak equivalences in Ch(k), Alg(Ch(k)), Mixed, and Alg(Mixed), respec-
tively, where we use the weak equivalences from the model structures defined
in Fact 4.1.3.1, Definition 4.2.2.2, and Proposition 4.2.2.9.

In contexts in which we only consider a full subcategory of those model
categories, we will use the same notation for the class of weak equivalences
between objects in that subcategory. &

Diagram (4.19) now induces a commutative diagram of co-categories as
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Chapter 4 Mixed complexes

follows.

Alg( M Ixed) [WAlg(Mlxed)]

Mixed/

Alg(Ch(k))[W 1]

L

Ch(k)[W¢,']

Mised Wizl

(4.20)
Ch(k)[W¢!] can be identified with the derived category, D(k)®3. The canon-
ical symmetric monoidal functor v: Ch(k)®f — D(k) induces a functor on
commutative and cocommutative bialgebras, so we can apply it to the cofi-
brant commutative and cocommutative bialgebra D (see Construction 4.2.1.1
and Proposition 4.2.2.4) to obtain a commutative and cocommutative bialge-

bra y(D) in D(k).

Notation 4.4.0.2. We will denote the object (D) of BiAlgcomm comm (D (k)
by D (or Dy, if we want to make k explicit).

By the results of Section 3.4 we obtain an induced symmetric monoidal
structure on LModp (D(k)). We will denote this symmetric monoidal co-cate-
gory by Mixed, or, if we want to make the base ring k explicit, by Mixeds. <

We can construct from the symmetric monoidal co-category D(k) and co-
commutative bialgebra D in D(k) the following commutative diagram that is
analogous to (4.19).

Alg(Mixed)
y \lg(fvm)
Mixed Alg(D(k)) (4.21)

ey » e

The goal of this section is to show that diagram (4.21) can be identified
with diagram (4.20).

For algebras, there is a relevant result: For a monoidal model category A
with certain properties, [HA, 4.1.8.4] shows that there is an equivalence

Alg(.A)COf[W/_l] i) Alg(Acof[W—l])

38By Proposition 4.3.2.1 (1) D(k) ~ Ch(k)°f[W—1], but the inclusion of Ch(k)<°f into
Ch(k) and the cofibrant replacement functor induce mutually inverse equivalences after
inverting weak equivalences, see [HA, 1.3.4.16] and Proposition A.3.2.1.
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4.4 The oco-category of mixed complexes

where W and W’ are the respective classes of weak equivalences. The reason
only the full subcategory of cofibrant objects is considered is that we want
the tensor product to be automatically derived. The pushout product axiom
ensures that the tensor product of two cofibrant objects is again cofibrant,
so the tensor product restricts to the full subcategory of cofibrant objects. A
monoidal category also needs a unit object, so in order to ensure that the
subcategory is again a monoidal category, Lurie requires that the unit object
in A is cofibrant. Unfortunately, this does not hold for the monoidal model
category Mixed = LModp(Ch(k)) that we considered above3?, so we can not
directly apply Lurie’s result. However, we proved that Mixed satisfies the
monoid axiom (Proposition 4.2.2.8), which ensures that even though the unit
object is not cofibrant, tensoring with it nevertheless results in the correct
derived tensor product. Another (related) viewpoint would be to note that
the tensor product in Mixed = LMod p (Ch(k)) is calculated on the underlying
chain complexes, and in Ch(k) the unit object is cofibrant. This will open the
possibility of nevertheless proving a result similar to [HA, 4.1.8.4] for our
situation.

We will start in Section 4.4.1 by constructing a comparison natural trans-
formation from diagram (4.20) to diagram (4.21), and then show that the
comparison functors are equivalences in Section 4.4.2. Finally, in the very
short Section 4.4.3 we show that Mixed is a stable co-category, and in the
also short section Section 4.4.4 we discuss how strongly homotopy linear mor-
phisms of strict mixed complexes induce morphisms in Mixed.

4.4.1 Construction of comparison functors

In this section we will construct a comparison natural transformation from
diagram (4.20) to diagram (4.21).

Construction 4.4.1.1. By Fact 4.1.3.1, the subcategory Ch(k)f inherits
a symmetric monoidal structure from Ch(k). As the underlying chain com-
plex of D is cofibrant by Proposition 4.2.2.4, we can view D as an object of
BiAlgAssoc’Comm(Ch(k)COf)‘ By Proposition 3.4.1.15 we can thus consider the
pair (Ch(k)°f D) as an object of BiAlgOpcomm-

The symmetric monoidal functor v: Ch(k)*°f — D(k) is a morphism in
the co-category Moncomm(Cats ). Denote by 7 a 4BiAlgOpc,,, -COCartesian lift
of v with source (Ch(k)<°f, D). By Proposition 3.4.1.15 we can identify the
codomain of the morphism 7 with the bialgebra BiAlgaeoc comm(7)(D), which
we also denote by D.

Applying the natural transformation evy,: LMod — pr of functors from
BiAIEOPcomm 10 Moncomm(Catsy) from Definition 3.4.2.1 we obtain a com-

39See the discussion in Section 4.2.2.2.
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mutative diagram of symmetric monoidal co-categories as follows.

o ®
LModp (Ch(k)ef)® 2200, 1 \fodp (D (k))®

eV%J{ Lev%

(Ch(k))® D(k)®

Applying the natural transformation

evy: Alg(—) = — xgn, {(1)}
we obtain the following commutative cube.

Alg(LModp (Ch(k)“°f)) —————— Alg(LModp(D(k)))

LModp (Ch(k)“’f) — | LModp (D(k)) J

l
J Alg(Ch(k)ef) J Alg(D(k))
Ch(k)eot — D(k) —

where the horizontal functors are all induced by 7, and the left and right
squares are made up of the various forgetful functors. &

Notation 4.4.1.2. We will also denote by Ymixeq the functor

LModp ()
_—

Mixed.or = LModp (Ch(k)*") LModp (D(k)) = Mixed

induced by 7. &

Remark 4.4.1.3. Let p: k — k' be a morphism of commutative rings.
Then the symmetric monoidal and weak-equivalence preserving functor

K ®p —: Ch(k)®f — Ch(k’)ef

from Fact 4.1.5.1 maps by Construction 4.2.1.1 Dy to Dy, and thus induces
a transformation from the cube constructed in Construction 4.4.1.1 with re-
spect to k to the same cube with respect to &’ (i. e. a four-dimensional hyper-
cube). In particular, there is an induced commutative diagram of symmetric
monoidal functors as follows.

. kK ®p— .
Mixedy, cot — Tk Mixedy/ cot

’YMixedJ J’)’Mixed

Mixedy, T Mixedy
e
See also Remark 4.2.1.3, Proposition 4.2.2.3, and Remark 4.3.2.2. &
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4.4 The oco-category of mixed complexes

Proposition 4.4.1.4. The functors

v: Ch(k)*°f = D(k)
YMixed - Mixedcof — Mixed
Alg(y): Alg(Ch(k)*") — Alg(D(k))
Alg(Ymixed) : Alg(Mixedcor) — Alg(Mixed)

all map the respective weak equivalences to equivalences.
In particular, the commutative cube constructed in Construction 4.4.1.1
induces a commutative cube as follows.

Alg(Mixedeof) [W 1 (mixeay) — Alg(Mixed)

Mixedcof [Wl\;i}(ed] 1 Mixed
J Alg(Ch(k)=f) W] ‘(% Alg(D(k))
/
Ch(k)“ [Wg,'] D(k)

where the horizontal functors are all induced by v and the functors on the left
and right sides are (induced by) the various forgetful functors. v

Proof. The following discussion refers to the cube constructed in Construc-
tion 4.4.1.1. Note that by Proposition 4.2.2.12 all the functors on the left
side preserve weak equivalences, so that we obtain a commutative square as
claimed after inverting the respective classes of weak equivalences. It remains
to show that the horizontal functors map weak equivalences to equivalences.

The two functors ev, on the right detect equivalences by [HA, 3.2.2.6],
and by [HA, 4.2.3.3] the left vertical functor evy on the right side also de-
tects equivalences. It follows that equivalences on the right side are detected
in D(k), so it suffices to show that the compositions from the four cate-
gories on the left side to D(k) map weak equivalences to equivalences. But
as all functors (or compositions) to Ch(k)f preserve weak equivalences as
already mentioned, it actually suffices to show that v: Ch(k)*f — D(k) maps
weak equivalences to equivalences. But this is true by definition, see Propo-
sition 4.3.2.1 (1). O

The commutative cube from Proposition 4.4.1.4 is pretty close to being a
comparison natural transformation from diagram (4.20) to diagram (4.21).
However, the left side is not quite given as (4.20) as we are only considering
cofibrant underlying chain complexes. The next proposition shows that this
does not make a difference.

Construction 4.4.1.5. We obtain a commutative cube completely anal-
ogous to the one constructed in Construction 4.4.1.1 from the symmetric

175



Chapter 4 Mixed complexes

monoidal inclusion functor Ch(k)°°f — Ch(k). Using Proposition 4.2.2.12 we
obtain the following induced commutative cube

Alg(Mixedcor) [W/;é;(Mixed)] — Alg(Mixed) [W&;(Mixed)]
—

Mixedcof[Wyimed]

| Mixed [Wyik 4]
Alg(Ch(k)™) [W k] — | —— Alg(Ch(k))[W L]

— —
Ch(k) = We,'] Ch(k)[Wg,']

where the horizontal functors are induced by the inclusion Ch(k)*f — Ch(k)
and the functors on the left and right are the various forgetful functors. <

Construction 4.4.1.6. By Proposition 4.2.2.12 the cofibrant objects in
Alg(Mixed), Mixed,  Alg(Ch(k)), and Ch(k)

all have cofibrant underlying chain complex?®. We thus obtain a commutative
cube as follows

Alg(Mixed) ™ WL o] —— Alg(Mixedeor) Wy ]

Alg(Mixed)

Mixed [, L ] Mixed o [Wyised]

Alg(Ch(k)) W] — | —— Alg(Ch(k)«) Wy L]

Alg
— —
Ch(k)cof[Wall] Ch(kj)COf[Wa]I]

where the horizontal functors are induced by the inclusions and the functors
on the left and right are the various forgetful functors. &

Proposition 4.4.1.7. The horizontal functors in the commutative cubes of
Construction 4.4.1.5 and Construction 4.4.1.6 are equivalences. Q

Proof. The proof is very similar for the eight functors, so we only discuss the
functor

Mixed cof [WI\Zi}(ed] — Mixed [WI\Zbl(ed]

as the example case.

40While ev',;'”"e‘j was not shown in Proposition 4.2.2.12 to preserve cofibrant objects, this
is not a problem, as both Alg(evm) and evq preserve cofibrant objects by Proposi-
tion 4.2.2.12, so their composition does so too.
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4.4 The oco-category of mixed complexes

As already mentioned in Construction 4.4.1.6, by Proposition 4.2.2.12 the
forgetful functor evy, from Mixed to Ch(k) preserves cofibrant objects, so the
cofibrant replacement functor of Mixed lands in Mixed q¢. Let

t: Mixedcor — Mixed
be the inclusion functor and

—<of. Mixed — Mixedcof

the cofibrant replacement functor. The compositions ¢ o —°f and —f o,

come with natural transformations to the identity functors that are point-
wise weak equivalences. As both ¢ and —°°f preserve weak equivalences, we
obtain induced functors after inverting weak equivalences, and by Propo-
sition A.3.2.1 the natural transformations just mentioned become natural
equivalences. Thus the functor induced by ¢,

MlxedCOf[ Mlxed} - Mlxed[ Mlxed]
is an equivalence. O

Definition 4.4.1.8. By composing the cube from Proposition 4.4.1.4 with
the inverse of the cube from Construction 4.4.1.5 (where the horizontal func-
tors are equivalences by Proposition 4.4.1.7), we obtain the following com-
mutative cube.

Alg(Mixed)| Alg(Mlxed)] —— Alg(Mixed)
Mixed[WL ] I Mixed
Alg(Ch(k))[W ] l—> Alg(D(k))
—
Ol SCa

The horizontal functors are induced by the composition of the respective
cofibrant replacement functors and «, and the other functors are (induced
by) the various forgetful functors. &
4.4.2 The comparison functors are equivalences

In this section we show that the horizontal functors in the cube of Defini-
tion 4.4.1.8 are all equivalences.

Proposition 4.4.2.1 ([HA, 4.1.8.4]). The functor

Alg(Ch(k))] Alg] — Alg(D(k))

from Definition 4.4.1.8 is an equivalence. Q
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Proof. By Proposition 4.4.1.7 it suffices to show that the related functor
Alg(Ch(k))*![Wy] — Alg(D(k))

induced by 7 is an equivalence.

By Fact 4.1.3.1 Ch(k) is a combinatorial symmetric monoidal model cat-
egory with cofibrant unit object, satisfies the monoid axiom, is left proper,
and the class of cofibrations is generated by cofibrations between cofibrant
objects*!. The statement thus follows from [HA, 4.1.8.4, variant (B)]. O

Proposition 4.4.2.2 ([HA, 4.3.3.17)). The functor

Mixed[Wp,

! g — Mixed

from Definition 4.4.1.8 is an equivalence. Q

Proof. The proof is very similar to the proof of Proposition 4.4.2.1. Again it
suffices by Proposition 4.4.1.7 to show that the functor

LModp (Ch(k))*™ [Wigeql = LModp (D(k))

is an equivalence.

By Fact 4.1.3.1 Ch(k) is a combinatorial monoidal model category with
cofibrant unit object, and by Proposition 4.2.2.4 D is cofibrant. The statement
thus follows from [HA, 4.3.3.17]. O

We now come to the last functor from Definition 4.4.1.8 that we still need
to prove is an equivalence. As mentioned in the introduction to Section 4.4,
we will not be able to merely cite an appropriate result from [HA], as the
unit of Mixed is not cofibrant. We explain in more detail in Remark 4.4.2.4
below how the condition of the unit being cofibrant is used in the proof of
[HA, 4.1.8.4].

Proposition 4.4.2.3. The functor
Alg(Mixed)[W

é(Mixed)] — Alg(Mixed)

from Definition 4.4.1.8 is an equivalence. Q

Proof. This proof will follow the proof of [HA, 4.1.8.4] closely. As in Proposi-
tion 4.4.2.1 and Proposition 4.4.2.2 it suffices by Proposition 4.4.1.7 to show
that the functor

Alg(LModp (Ch(k)))*™ W4k ixeq)) = Alg(LModp (D(k)))

which we will call Yaig(Mixed) in this proof, is an equivalence.

41For this last bit see the description of the generating cofibrations in [Hov99, 2.3.11 and
2.3.3] in combination with the description of cofibrant objects in [Hov99, 2.3.6].
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4.4 The oco-category of mixed complexes

By Proposition 4.4.1.4 and Construction 4.4.1.6 there is a commutative
square

Alg(LModp (Ch(k))“ W4k ey e, Alg(LModp (D(k)))

i J‘”“

LModp(Ch(k))[Wiged LModp (D(k))
where the horizontal functors are induced by v, and ev'c\"”xed/ is induced by

ev'c\l/“XEd. Proposition 4.4.2.2 shows that ymixed iS an equivalence.
Like the proof of [HA, 4.1.8.4], we will apply [HA, 4.7.3.16] to show that
YAlg(Mixed) 18 an equivalence. For this it suffices to verify the following.

1) evy has a left adjoint, which we will call Freeﬁ?}fﬁimd).

(
(2) Alg(LModp(D(k))) admits geometric realizations of simplicial objects.
(3) evq preserves geometric realizations of simplicial objects.
(4)

4

ev, is conservative.
. ixed)’
(1) ev';"'xed/ has a left adjoint, which we will call Freeﬁlifég/l bxed)”
(2’) The oo-category Alg(LModD(Ch(k)))COf[ng;(Mixed)} admits geometric
realizations of simplicial objects.

(3) evMied’ preserves geometric realizations of simplicial objects.
(4) evﬁ’“xed/ is conservative.
(5) The push-pull natural transformation*?

Alg(Mixed) Alg(Mixed)’
Free) ied O YMixed — VAlg(Mixed) © Freey ey

is a natural equivalence.

Proof of claim (2) and (3): By Proposition 4.3.2.1 (1) D(k) is presentable
symmetric monoidal oo-category, so by the discussions leading to Defini-
tion 3.4.2.1, LModp (D(k)) is also a presentable symmetric monoidal oo-cat-
egory. The claims now follow from [HA, 3.2.3.1] and Proposition E.2.0.2.

Proof of claim (1): Follows from Proposition E.7.2.1, again using that
LModp(D(k)) is presentable symmetric monoidal.

Proof of claim (4): This is [HA, 3.2.2.6].

Proof of claim (2’): By Proposition 4.2.2.9 the model category structure
on Alg(LModp(Ch(k))) is combinatorial, so it follows from [HA, 1.3.4.22]

428ee [HTT, Beginning of 7.3.1].
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that Alg(LModD(Ch(k)))COf[WAé(Mlxed)] is presentable and hence in particular
admits geometric realizations of simplicial objects.

Proof of claim (8’): This is the part of the proof where we need to do
something differently than the proof of [HA, 4.1.8.4], as this is the point
where the unit being cofibrant is used — see Remark 4.4.2.4 below for more
details.

Consider the commutative diagram

cof 1
Alg LMOdD Ch WAlg(Mlxed)

% Alg(evm)’

LModp (Ch(k)) Wiyl ] Alg(Ch(k))[W L]

St

that already appeared above as diagram (4.20)*3. As the diagram commutes,
it suffices to show the following three claims.

(a) The functor ev), in the above diagram detects geometric realizations of
simplicial objects**

(b) The functor Alg(evy,)’ in the above diagram preserves geometric real-
izations of simplicial objects.

(¢) The functor ev) in the above diagram preserves geometric realizations
of simplicial objects.

Proof of claim (a): By Definition 4.4.1.8, Proposition 4.4.2.2, and Proposi-
tion 4.3.2.1 (1), we can identify the functor ev/, in question with the functor

evy: LModp(D(k)) — D(k)

which, as D(k) is presentable symmetric monoidal by Proposition 4.3.2.1 (1),
detects small colimits by [HA, 4.2.3.5 (2)].
Proof of claim (b): By [HA, 1.3.4.24 and 1.3.4.25], it suffices to show that

the functor

Alg(evy): Alg(LModp(Ch(k))) — Alg(Ch(k))

43With the tiny difference that we added a —<°f at the top, but by Proposition 4.4.1.7 this
doesn’t matter anyway.
44In other words it detects A°P-indexed colimits.
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4.4 The oco-category of mixed complexes

preserves homotopy colimits. Homotopy colimits can be calculated by taking
the colimit of a cofibrant replacement of the diagram with respect to the pro-
jective model structure on diagram categories, see [HTT, A.2.8]. As Alg(evy,)
preserves ordinary colimits and weak equivalences by Proposition 4.2.2.12 it
hence suffices to show that

Alg(evy), : Fun(A°P, Alg(LModp(Ch(k)))) — Fun(A°P, Alg(Ch(k)))

preserves generating cofibrations. But this follows from their description
[HTT, A.2.8.5] and the fact that Alg(V") preserves colimits and cofibrations
by Proposition 4.2.2.12.

Proof of claim (c): By Definition 4.4.1.8, Proposition 4.4.2.1, and Proposi-
tion 4.3.2.1 (1), we can identify the functor ev/ in question with the functor

eva: Alg(D(k)) — D(k)

which, as D(k) is presentable symmetric monoidal by Proposition 4.3.2.1 (1),
preserves sifted colimits by [HA, 3.2.3.1].

Proof of claim (4°): Tt suffices to show that the induced functor on ho-
motopy categories is conservative, i.e. reflects isomorphisms. By Proposi-
tion A.1.0.1 we can identify that functor with the functor induced by

evM>ed . Alg(LModp(Ch(k))) — LModp (Ch(k))
on homotopy categories of the model categories, i. e.

HOWAlg(Mixed) (Alg(LMOdD(Ch(k)))) — HOWMTxed (LMOdD(Ch<k)))

which is conservative by the classical constructions for homotopy categories?®,

as ev'c‘l’“XEd detects weak equivalences by Proposition 4.2.2.12.
Proof of claims (1) and (5): We consider the symmetric monoidal functor

LModp () : LModp (Ch(%)*))® — LModp (D (k))®

from Construction 4.4.1.1. We want to show that the underlying functor pre-
serves coproducts and that both LModp (Ch(k)®f) and LModp (D(k)) admit
coproducts and have tensor product functors that preserve coproducts in each
variable separately.

That LModp(D(k)) is a presentable symmetric monoidal oo-category was
already mentioned above.

As the forgetful functor evy,: LModp(Ch(k)) — Ch(k) preserves colimits
by Proposition 4.2.2.12, it follows that the subcategory LModp (Ch(k)") is
closed under coproducts®® and hence admits coproducts, which are calcu-
lated in LModp(Ch(k)) (see [HTT, 1.2.13.7]). As evy detects colimits and

45See [Hov99, 1.2].
46 Cofibrant objects in a model category are closed under coproducts, which can be checked
using the lifting property that defines cofibrations, see [Hov99, 1.1.10].
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is symmetric monoidal, and the tensor product in Ch(k) is compatible with
colimits*” we can conclude that the tensor product of LModp (Ch(k:)“’f) pre-
serves coproducts in each variable separately.

Finally, we show that the functor LModp () preserves coproducts. To see
this, note that as argued in the proof of claim (a), the functor

evy: LModp (D(k)) — D(k)
detects small colimits, and as by the discussion above the forgetful functor
LModp (Ch(k)™f) — Ch(k)=*
preserves coproducts, it suffices to show that the functor
v: Ch(k)®" — D(k)

preserves coproducts, which is true by Proposition 4.3.2.1 (3).
We have now verified that LModp ()® satisfies the assumptions of variant
(2) of Proposition E.7.2.2. We thus obtain a left adjoint
Alg(Mixed) cof cof
Freey od : LModp (Ch(k)*") — Alg(LModp (Ch(k)°°"))

to the forgetful functor ev¥™ed  which can be identified with a restriction of

the functor of the same name defined in Notation 4.2.2.10. More crucially,
Proposition E.7.2.2 shows that the push-pull transformation

Freeps Y o LModp (7) — Alg(LModp (7)) o Freep ™

is an equivalence.
The functor

evi™ed: Alg(LModp (Ch(k)®f)) — LModp (Ch(k)“")

preserves weak equivalences by Proposition 4.2.2.12. We next show that the
functor

Freeme™*®: LModp (Ch(k)*f) — Alg(LModp (Ch(k)*"))
also preserves weak equivalences. As the functor
Alg(evi): Alg(LModp (Ch(k)*f)) — Alg(Ch(k)™")

detects weak equivalences by Proposition 4.2.2.12, it suffices to check that
the composition preserves weak equivalences. This composition is by Propo-
sition 4.2.2.11 naturally isomorphic to the composition of

evim: LModp (Ch(k)®f) — Ch(k)=f

47 As the symmetric monoidal structure is closed by Definition 4.1.2.1.
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4.4 The oco-category of mixed complexes

with Free®'®. But by Proposition 4.2.2.12, ev,, preserves weak equivalences,
and Free™® preserves weak equivalences between cofibrant objects as a left
Quillen functor.

As evMed and Freealifégﬂ ixed) preserve weak equivalences, they induce func-
tors on the oco-categories obtained by inverting weak equivalences. Addition-
ally, unit and counit of the adjunction induce unit and counit of an adjunction
as follows*®

Alg(Mixed)’
Freeyieq

LModp (Ch(k)“) [Wyyieq) T=——— Alg(LModp (Ch(k)*")) [W 3y ixea)

Mixed /
evy

where we think of adjunctions in terms of units and counits as in Proposi-
tion D.2.1.1.
In the non-dashed commutative square

of — YAlg(Mixed)
Alg(LModD(Ch(k))C )[WAIQ(Mixed)} M) L Alg(LModp (D (k)))
Freeﬁ;ggmxed)/i oy Mixed’ Freeﬁiﬁ?jixedw eva (*)
LModp (Ch(k)<) [Wyiked] — LModp (D(k))
from Proposition 4.4.1.4, there is thus an induced left adjoint of ev";/“xed/ as

indicated. Furthermore, as unit and counit of the adjunction on the left are
induced by the unit and counit of the adjunction Freep e o eyMixed e
can identify the push-pull transformation associated to the square with the
natural transformation induced by the push-pull transformation

Freeﬁigﬁ[ xed) LModp(v) — Alg(LModp(y)) o Freemiz’”xec’)

by passing from LModp (Ch(k)**f) to LModp (Ch(k)<°f) [WyiL.4]. As the latter
is a natural equivalence, it follow that the push-pull transformation associated
to diagram (%) is also a natural equivalence.

Finally, the functor

et et”; Alg(LModp (Ch(£)) ") IV 3L o] — LModn (Ch(E) ") [Wygleq]

discussed so far is by Proposition 4.4.1.7 equivalent to the functor

eV'l\lmxed/: Alg<LM0dD(Ch(k)))COf[WX1;(Mixed)] - LMOdD(Ch(k‘))[WI\Zi}(ed]

so this proves claims (1) and (5). O

48See the universal property of inverting morphisms in co-categories in [HA, 1.3.4.1].
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Remark 4.4.2.4. While the statement [HA, 4.1.8.4] is formulated in such a
way as to require the unit object to be cofibrant, thereby preventing us from
using the result directly to show Proposition 4.4.2.3, let us remark on where
this is used in the proof.

The main step in proving [HA, 4.1.8.4] is the lemma [HA, 4.1.8.13], which
shows that if C is a monoidal model category satisfying certain assumptions
and J is a small sifted category, then the forgetful functor evy: Alg(C) — C
preserves J-indexed homotopy colimits.

The proof proceeds by showing that every projectively cofibrant object A
of the functor category Fun(J, Alg(C)) is a retract of a certain transfinite
composition with favorable properties?”. What needs to be shown is that
(evq)«(A) is good, an ad hoc property used in the proof, which is shown by
transfinite induction.

The induction start needs that (evq).(consty.) is good. The argument in
[HA, (3) on page 500] shows that every constant functor whose value is a
cofibrant object in C is good, so if one assumes that the unit 1¢ is cofibrant
in C, then this proves the induction start. Combining [HA, (3) on page 500]
with the definition of good objects [HA, Middle of page 499] one sees that a
constant functor J — C is actually good if and only if the constant value is
cofibrant in C.

So if C = Mixed, where the unit is not cofibrant by Proposition 4.2.2.5,
then the induction start fails, so ev, preserving homotopy colimits needs to
be proven in a different way than [HA, 4.1.8.13]. &

4.4.3 Mixed is stable
In this section we show that Mixed is a stable co-category.
Proposition 4.4.3.1. The oo-category Mixed is stable’”. Q

Proof. The statement follows by combining that D(k) is stable by Proposi-
tion 4.3.2.1 (2) with Mixed admitting all small limits and colimits by [HA,
4.2.3.3 (1) and 4.2.3.5 (1)] and evy,: Mixed — D(k) detecting small colimits
and limits as well as equivalences by [HA, 4.2.3.3 (2) and 4.2.3.5 (2)]. O

4.4.4 Strongly homotopy linear morphisms

In Section 4.2.3 we introduced the notion of strongly homotopy linear mor-
phisms between strict mixed complexes. In this short section we discuss how
they induce morphisms in the oo-category of mixed complexes.

Construction 4.4.4.1. Let X and Y be strict mixed complexes with cofi-
brant underlying chain complexes, and f: X — Y a strongly homotopy lin-
ear morphism. Recall from Proposition 4.2.3.7 and Definition 4.2.3.8 that f

49See [HA, End of page 500 and start of page 501].
50See [HA, 1.1.1.9] for a definition.
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4.4 The oco-category of mixed complexes

lifts to a morphism f5ti¢t: X — Yshl of strict mixed complexes, and from
Proposition 4.2.3.5 that Y*" comes with a quasiisomorphism of strict mixed
complexes L§PI: Y — yshl,

We can’t directly apply Ymixed to f57°t, as Y*h might not have cofibrant
underlying chain complex®'. However we obtain a commutative diagram

Xcof (fStriCt)COf (Yshl)COf (Libl)wf Ycof

l J l (¥

X Yshl Y

potrict shl
Ly

in Mixed, where the vertical morphisms are the cofibrant replacements in
Mixed, and by Proposition 4.2.2.12 all strict mixed complexes except possibly
Y*Plin this diagram have cofibrant underlying chain complex. We can thus
apply Ystrict to the part of the diagram not involving Y.

i (fstrict)COf o i (Lshl)COf
YMixed (XCOf) e ( YMixed ((YShl) f) % YMixed (YCOf)
Mixed (X)) == mmmm e > Mixed ()

Iixed (f)
(4.22)
As the vertical morphisms in diagram (x) as well as (L%}‘l)mf are quasiisomor-
phisms, the corresponding morphisms in diagram (4.22) are equivalences. We
can thus form the composition from X to Y, yielding a morphism in Mixed
that we will denote by ymixed(f) and call the morphism in Mixed induced by
/- o

Remark 4.4.4.2. Let X and Y be strict mixed complexes with cofibrant
underlying chain complex, and let f: X — Y be a strongly homotopy linear
quasiisomorphism®2. Then the induced morphism

'YMixed(f): YMixed (X) —7 YMixed (Y)

is an equivalence. Indeed, considering diagram (4.22) in Construction 4.4.4.1,
it is enough to show that f5t"* is a quasiisomorphism. As the underlying
morphism of chain complexes of f is by definition the composition of fstrict
with the underlying morphism of chain complexes of p?}ll, which is a quasiiso-
morphism by Proposition 4.2.3.6, this follows from the underlying morphism

of chain complexes of f being a quasiisomorphism. &

51This problem is related to the fact that Y=P! involves an infinite product (rather than
an infinite coproduct, which would not be a problem).

52By this we mean a strongly homotopy linear morphism whose underlying morphism of
chain complexes is a quasiisomorphism.
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Mixed complexes and circle
actions

In Section 6.2.1 we will see that Hochschild homology carries a natural
action by the circle group T, i.e. Hochschild homology forms a functor

HHy: Alg(D(k)) — D(k)®" = Fun(BT, k)

where BT can be thought of as the oo-groupoid with one object * and
Autpr(x) ~ T, where T can be defined as { z € C | |z| =1 }. We will define
T properly in Section 5.2.1 and BT in Section 5.3.

For calculations it will be helpful to have model categories available that
represent the involved oco-categories. We have seen in Section 4.3.2 that D(k)
is the underlying co-category of Ch(k) with the projective model structure. By
[HA, 4.1.8.4], the model structure on Alg(Ch(k)) discussed in Theorem 4.2.2.1
has Alg(D(k)) as underlying oco-category. This takes care of the domain of
HHy. How about the codomain?

If BT were a 1-category, then we could apply [HA, 1.3.4.25], which would
then imply that Fun(B T, D(k)) is the underlying co-category of the injec-
tive or projective model structure on Fun(B T, Ch(k)). This is however not
the case — BT is a 2-category, but not a 1-category. We must thus proceed
differently.

In Section 5.2 we will define a cocommutative bialgebra kX T in D(k), and
in Section 5.3 we will show that there is a symmetric monoidal equivalence

D(k)BT ~ LMod,gr(D(k))

where the oo-category D (k)BT carries the pointwise symmetric monoidal
structure and LModggr(D(k)) the one from Definition 3.4.2.1.

By [HA, 4.3.3.17] the model category LMod 4 (Ch(k)), with model structure
as in Theorem 4.2.2.1, has LModxr(D(k)) as its underlying oco-category if A
is a differential graded algebra with cofibrant underlying complex and such
that v(A) ~ kX T as associative algebras.

We will show in Section 5.1 that the differential graded algebra D defined
in Construction 4.2.1.1 represents k X T as an associative algebra. In fact,
we show more — D even represents kK X T as an associative and coassocia-
tive bialgebra. There is thus a monoidal (though not symmetric monoidall)
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equivalence as follows.
D(k)BT ~ LModgr(D(k)) ~ LModp (D(k)) = Mixed

Let us end by briefly going over the contents of the individual sections. We
will start in Section 5.1 by showing a formality statement for commutative
and coassociative bialgebras in D (k) with homology isomorphic to the homol-
ogy of D and kX T. We will actually define T and KX T in Section 5.2, and
then use the result of Section 5.1 to conclude in Section 5.2.4 that D ~ kX T
as bialgebras. We show that there are symmetric monoidal equivalences of the
form Fun(B G,C) ~ LMody g, (c) for presentable oo-categories C and grou-
plike associative monoids G in 8 in Section 5.3. Finally, we put everything
together to obtain the monoidal equivalence D (k)BT ~ Mixed in Section 5.4.

5.1 Formality of certain E., E;-bialgebras

In this section we show that any two commutative and coassociative bial-
gebras in D(k) with homology concentrated in degrees 0 and 1, where it is k,
are equivalent as commutative and coassociative bialgebras.

Let us summarize the strategy used to prove this, which was suggested by
Achim Krause. Let R be a commutative and coassociative bialgebra with ho-
mology as described. Then it suffices to construct another such commutative
and coassociative bialgebra independently of R and construct an equivalence
between that commutative bialgebra and R.

How could we go about to construct a morphism of commutative bial-
gebras? Or more generally, of algebras or coalgebras over some oco-operad?
There is one class of algebras where is easy to define morphisms out of, the
free algebras, using that the free algebra functor is left adjoint to the forgetful
functor. Analogously, it is easy to define morphisms of coalgebras into cofree
algebras. While these concepts are in principle dual to each other, (by passing
to opposite oo-categories), it is in practice easier to work with free algebras
than with cofree coalgebras. This is because the theory of free algebras works
particularly well when the tensor products are compatible with colimits, see
[HA, 3.1.3.5], which is usually the case in the kind of examples that we are
interested in. Analogously, we would want the tensor products to be compat-
ible with limits in order to obtain a good theory of cofree coalgebras, but this
is usually not the case in examples of interest.

The discussion so far points us towards trying to find some kind of free
resolution of the commutative and coassociative bialgebra R. Unfortunately,
free commutative algebras are not quite as easy to describe as free associative
algebras!, as imposing commutativity requires taking certain (homotopy) or-
bits of actions by the symmetric groups ¥,. Commutative algebras being

L[HA, 3.1.3.13] offers a description of free commutative and free associative algebras. We
discuss the special case of associative algebras in Proposition E.7.2.1, and will unpack
the statement for commutative algebras in the proof of Proposition 5.1.5.3.
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5.1 Formality of certain E., E;-bialgebras

more difficult to deal with in some respects is also reflected in the following
fact. Let C be a reasonably nice symmetric monoidal model category that one
finds in nature. Then it is often the case that Alg(C) inherits a nice model
structure from C such that its underlying oo-category is the oco-category of
algebras in the underlying oo-category of C. However it is unreasonable to ex-
pect the analogous statement to hold for commutative algebras, which has to
do with 3,, orbits of the action of 3J,, on X®" not necessarily being homotopy
orbits?.

So we would prefer to work with free associative algebras. To do so, we
dualize the problem: R is dualizable in the symmetric monoidal co-category
D(k), and the functor mapping a dualizable object to its dual,

(=) (D(k)a)® = D(k)sa
is symmetric monoidal equivalence and thus induces an equivalence
BiAIgComm,Assoc(’D(k)fd) = COAlg(CAIg(D(k)fd)) = Alg(COCAIg(D(k)fd))Op

so that it actually suffices to show that RV is formal.
To do so we will define a diagram

B, —— k B, — k
b
Ay As As Ay (5.1)
[
By —— k

2The relevant compatibility result for associative algebras is [HA, 4.1.8.4], and for com-
mutative algebras [HA, 4.5.4.7]. The assumptions necessary for the result on associative
algebras are mild enough to usually hold in examples one is interested in. The assump-
tions made for commutative algebras however include that every cofibration must be
a power cofibration (see [HA, 4.5.4.2]). This is a strong condition that one can not
expect to hold in general for otherwise nice examples found in nature. For example
Ch(k) with the projective model structure (see Fact 4.1.3.1) does not in general have
this property. The chain complex k[0] is cofibrant, so we would need k[0] to be power
cofibrant. Let n > 1 and let X be the chain complex concentrated in degrees 0 and 1
with Xo = X7 = k9", with 81X = id, and with X, acting by permutation, and let Y
be the chain complex concentrated in degrees 0 and 1 with Yy = Y7 = k, with 8}/ =id,
and with ¥, acting trivially. There is an ¥, -equivariant chain morphism f: X — Y
that maps a tuple (a1,...,an) to > <, <, @. This morphism is an acyclic fibration
in the projective model structure on Ch(k)B>n. Let ¢: k[0] 2 E[0]®" — Y be the
inclusion (i.e. the identity in level 0). If k[0] were power cofibrant, then it would need
to be possible to lift ¢ in a 3, -equivariant manner to a chain morphism @: k[0] — X.
Suppose @ is such a lift. Let $(1) = (a1,...,an). That ¥ is £, equivariant implies that
a:=aj; = -+ = an. We must then have

1=9(1)=f@01) =f((a...,a))=n-a
in k, so n must be invertible in k. But there are many interesting commutative rings
that do not contain Q.
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in Alg(coCAlg(D(k))) such that each square is a pushout square and the
colimit of A; — Ay — ... has homology isomorphic to H.(R"). Furthermore,
every B,, as well as A; will be free as an associative algebra on the underlying
pointed object in coCAlg(D(k)).

It will then be possible to define a morphism A; — R that is surjective
on homology, so that it suffices to show that this morphism can be lifted
inductively to each A,. As k is a zero object in Alg(coCAlg(D(k))) (this
will be shown in Remark 5.1.2.9), this amounts to showing that the com-
posites B,, — A,,—1 — R are nullhomotopic in Alg(coCAlg(D(k))). Using
freeness, dualizing again, and calculations that exploit the homology of RV,
it will actually be possible to show that in fact any morphism B, — RV in
Alg(coCAlg(D(k))) is nullhomotopic.

We now briefly summarize the content of the individual subsections. We
start in Section 5.1.1 by discussing dualizable objects in symmetric monoidal
oo-categories and the symmetric monoidal duality functor. In Section 5.1.2
we will then construct diagram (5.1). In order to show that any two morphism
B,, — RY are homotopic as discussed above, we will need a formality state-
ment for certain associative algebras, which we show in Section 5.1.3, and of
commutative algebras like R as commutative algebras in D(k), which we will
show in Section 5.1.5. As the case of commutative algebras involves arguing
about orbits of actions of X,,, there is also a short Section 5.1.4 discussing
the relationship of orbits of group actions in D(k) with group homology. The
result regarding mapping spaces that we discussed above will then be shown
in Section 5.1.6, and everything will be put together in Section 5.1.7 to show
formality of R as a commutative and coassociative bialgebra in D (k).

The subsections do not all depend on all the previous ones. The following
diagram shows the dependencies.

Section 5.1.1 Section 5.1.2 Section 5.1.4 Section 5.1.3

—

Section 5.1.5

\

Section 5.1.6

Section 5.1.7

5.1.1 Duality

In this section we discuss the notion of dualizable objects in symmetric
monoidal oo-categories, and we mostly follow [HA, 4.6.1], [HA, 5.2.1 and
5.2.2], and [Lurl8, 3.2]. We start by recalling the definition of dualizable
objects.
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5.1 Formality of certain E., E;-bialgebras

Definition 5.1.1.1 ([HA, 4.6.1.7, see also 4.6.1.12]). Let C be a symmetric
monoidal oco-category and let C' be an object of C. The object C is called
dualizable if there exists an object B of C and morphisms c¢: 1¢ — C'® B and
e: B® C — 1 such that the composites

Cole®C 29 0B 9 0@ 1e ~C

and
B~B®lc 222 BoCo®B 29 1,9 B~ B
are homotopic to the identity.

In this case, we call B the dual of C, and write B = CV; by [HA, 4.6.1.6
and 4.6.1.10] CV as well as ¢ and e are essentially uniquely determined by C.
We will also call C together with B, ¢, e, and homotopies as above a duality
datum.

We let Ctq be the full subcategory of C spanned by the dualizable objects.

&

Remark 5.1.1.2. It follows easily from the definition that if C' and C’ are
dualizable objects in a symmetric monoidal oo-category C, with ¢ and e as
in Definition 5.1.1.1 exhibiting C" as the dual of C' and similarly ¢’ and e’
exhibiting C"V as a dual of C’, then the compositions

lexle®le B5% cocY oo oo Lo88e (og o e (CY @)

and

L BT, (Ve Cw Y @0 B 1@l ~ e

(CecM)e(Cal)
exhibit CV®C"V as a dual of C®C’, where 7 is the symmetry equivalence and
le ~ 1¢ ® 1¢ is the unitality equivalence. In particular the tensor product
of two dualizable objects is again dualizable. Furthermore, 1¢ is dualizable
with dual 1, so it follows from [HA, 2.2.1.2] that C¢q inherits a symmetric
monoidal structure from C such that the inclusion can be upgraded to a
symmetric monoidal functor. &

It is easy to see from the definition that if C is dualizable with dual CV,
then CV is again dualizable with dual CVY ~ C. It is also clear from the
definition that a symmetric monoidal functor F': C — D maps Ciq to Dig
and so restricts to a symmetric monoidal functor F': C¢q — Dgq. In fact, the
following is true.

Fact 5.1.1.3 ([Lurl8, 3.2.4]). Let C be a symmetric monoidal co-category.
Then the assignment C — CV sending an object of C to a dual can be upgraded
to an equivalence of symmetric monoidal co-categories

(=)": (Cra)®™® = Cra
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with inverse ((—)Y)°P.

Furthermore, this equivalence is compatible with symmetric monoidal func-
tors in the following sense. Let F': C — D be a symmetric monoidal functor.
Then there is a commutative diagram of symmetric monoidal functors as
follows.

\2

(Csa)°P O, Cia

FOPJ JF

(Dta)°P (_4)v> Dta

&

Remark 5.1.1.4. While the part of the statement of Fact 5.1.1.3 about
compatibility with symmetric monoidal functors is not stated explicitly in
[Lurl8, 3.2.4], this becomes clear by going though every step of the proof.
In this remark we provide some pointers to the relevant parts of the proof of
[Lurl8, 3.2.4] as well as the relevant material in [HA, 5.2.1 and 5.2.2] that is
relevant for checking this.

First, as F' maps dualizable objects to dualizable objects, it suffices to
consider the case in which every object in C and D is dualizable.

Then the construction of the pairing of co-categories

A=pr;: (CxC)xcCp, —CxC

as well as its upgrade to a pairing of symmetric monoidal oco-categories, is
compatible with F. Furthermore, the description of left and right universal
objects in (C x C) x¢ Cjy, from the proof of [Lurl8, 3.2.4] together with the
fact that F' preserves duality data implies that the morphism of pairings of
oo-categories induced by F is left and right representable (see [HA, 5.2.1.16]).
The symmetric monoidal functor (—)" for C is constructed in [HA, 5.2.2.25]
as a lax symmetric monoidal functor — it is the left duality functor D that
uses that X is left representable. It is shown in [Lurl8, 3.2.4] that this functor
is actually symmetric monoidal, but as symmetric monoidal functors form a
full subcategory of lax symmetric monoidal functors [HA, 2.1.3.7] it suffices to
consider these functors as lax symmetric monoidal functors when discussing
compatibility with F'.

So one only needs to check that the construction of the lax symmetric
monoidal left duality functors of left representable pairings of symmetric
monoidal co-categories are compatible with left representable morphisms of
left representable pairings of symmetric monoidal co-categories. The lax sym-
metric monoidal functor @% for C is constructed as the composition of the
inverse of a symmetric monoidal equivalence ¢c: (C9)°P — C°P with the lax
monoidal inclusion ¢¢: (C9)°P — (C»)°P and a symmetric monoidal functor

3Functoriality is however used and alluded to with [Lurl8, 3.2.6].
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5.1 Formality of certain E., E;-bialgebras

Ye: (CA)°P — C, so it suffices to check that each of those is suitably compat-
ible with F.

The inclusion ¢c is defined in [HA, 5.2.1.28], and can be upgraded to a
lax symmetric monoidal functor by the discussion in [HA, 5.2.2.25] together
with [HA, 2.2.1.9]. That it is compatible with F' follows from the definition
together with 5 being fully faithful and [HA, 5.2.1.17].

The symmetric monoidal equivalence @¢ is the composition of (¢ with the
functor constructed in [HA, 5.2.1.29]. Tt is clear from definition that this
latter functor is compatible with F'.

Finally, ¢¢ arises from the counit of an adjunction as discussed in [HA,
5.2.2.24] and is thus compatible with F'. &

Remark 5.1.1.5. Let us give some hints regarding the opposite of the du-
alization functor being its inverse. Let us — as in Remark 5.1.1.4 — reduce
to the case where every object of C is dualizable. The duality functor dis-
cussed so far, in particular in Remark 5.1.1.4 starts with the pairing of
oo-categories A = pr;: M = (C x C) x¢ Cjy, — C x C that is both left
and right representable. This pairing can be upgraded to a pairing of sym-
metric monoidal oo-categories A, and then left representability of \ is used
to construct a lax symmetric monoidal morphism of pairings of symmetric
monoidal oo-categories

TwArr(C)® M®

J |

® . op)® ® . ®
C XFm* (C p) 1dc®—><@§> C XFm* C

where the bottom functor is on the second factor precisely the lax symmetric
monoidal left duality functor that we are interested in and called (—)Y. See
[HA, 5.2.2.25] and also Remark 5.1.1.4.

Now the important point is that the underlying morphism of pairings of
oo-categories is right representable. If we assume this for the moment, then we
can use functoriality of right duality functors (which can be shown completely
analogously to the case of left duality functors sketched in Remark 5.1.1.4)
to obtain a commutative diagram

c® id s C®

(@;")Qﬂ Jid

(cor)® — c®

where the top horizontal functor is the right duality functor of TwArr(C)®,
which can be identified with the identity. This shows that the opposite of
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the right duality functor of A (which is symmetric monoidal by analogous
considerations as the left duality functor) is an inverse to the left duality
functor, as symmetric monoidal functors.

Next, there is a commutative diagram as follows.

(€ xC)xeCie)® —T= (€ xC) xcCpy)?

®

Pr? C® X Fin, C®
I
co® X Fin, c® T c® X Fin, c®

where 7/ maps a tuple (C,D,C® D — 1) to (D,C;DC ~C®D — 1),
where we use the symmetry equivalence of C, and 7 swaps the two factors. As
plr(f<> was a pairing of symmetric monoidal co-categories with left representable
underlying pairing, one can see that the composition on the right is a pair-
ing of symmetric monoidal co-categories with right representable underlying
pairing, and the right duality functor can be identified with the left duality
functor of pr{’. Furthermore, it follows from the description of left and right
universal objects in [Lurl8, 3.2.4] that the morphism of pairings encoded in
the diagram is right representable. By functoriality of right duality functors
we thus obtain a commutative diagram of symmetric monoidal functors

(cor)® 2, ce

o e

®
(cor) e c®
A

that shows that ©F ~ D'® as lax symmetric monoidal (and hence also as
symmetric monoidal) functors. As we previously obtained an equivalence
(DYP)® ~ (D 1)®, this shows that (D) ~ (D).

Finally, let us say a few words on why, given a perfect* pairing of oo-
categories® \: M — C x D, the morphism of pairings

TwArr(() ——— M

J }

Cx(COP)WCxD

constructed in [HA, 5.2.2.24 and 5.2.2.25] is right representable, which means
that the top horizontal functor needs to preserve right universal objects, see

4See [HA, 5.2.1.20 and 5.2.1.22].
5Of which the A\ we discussed so far is an example by the proof of [Lurl8, 3.2.4].
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[HA, 5.2.1.13 and 5.2.1.8]. To start, we first see that by unwrapping the
definition® we have to show that the composition of two morphisms of pairings
of oo-categories as depicted in the follow diagram preserves right universal
objects.

TwArr) () ——— TwArr,(C) ——— M

| L)

CxC?® —————— CxC ——— CxD

Unpacking the definition using [HA, 5.2.1.24] and in particular [HA, 5.2.1.28]
we see that we can describe objects of C{¥ as tuples (Cy, D, ¢), with C, an
object of C°P, D an object of D, and ¢ a morphism D — ©,(C,.) in D. The
fiber in TwArry(C) of a pair (Cy,(C,,D,¢)) in C x C3¥ can be identified
with Map.(Cj, Cr). An object in TwArry(C) that is given by a morphism
f: C; — C, as just described is then mapped to the object in M described
as follows. As ) is left representable, there is a left universal object M, over
C, in M, lying over (C,,Dx(C;)). A A-cartesian lift of the morphism (f, @)
is then a morphism M; — M, in M where M; lies over (C}, D). f is mapped
to this object M;.

By definition (see [HA, 5.2.1.28]) C3°” is the full subcategory of C}” spanned
by those tuples where ¢ is an equivalence, and the left square in the above
commutative diagram is a pullback. One can then see that an object in
TwArr} (C) is right universal precisely if the associated morphism f: C; — C,
as before is an equivalence. This then implies that (f,¢) will be an equiva-
lence, so the A-cartesian lift M; — M, is also an equivalence, and hence M;
is left universal, as M, is so by assumption. But as X is perfect, this means
that M is also right universal, see [HA, 5.2.1.22]. &

We make a bit more explicit how (—)V applies to morphisms in the following
remark.

Remark 5.1.1.6. Let f: C' — D be a morphism of dualizable objects in a
symmetric monoidal co-category C. Then the functor (—)V from Fact 5.1.1.3
sends f to a morphism fY: DV — CV. Unpacking the definitions’, one can
see that this morphism fits into a commutative diagram as follows

DV r cv

~ ‘

DV ®1le le®CY

id®cl Te@id

DVeCeCY WDV@)D@CV

6See [HA, 5.2.2.24 and 5.2.2.25] and also Remark 5.1.1.4.
"See in particular [Lurl8, 3.2.4] and [HA, 5.2.1.9].
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where the top two vertical equivalences are the unitality equivalences of C,
the morphism c¢ takes part in a duality datum for C', and e takes part in a
duality datum for D. &

Applying Fact 5.1.1.3 to the symmetric monoidal functor
v: Ch(k)®" — D(k)
(see Proposition 4.3.2.1) we obtain the following.

Corollary 5.1.1.7. There is a commutative diagram of symmetric monoidal
functors as follows

cof\© (7)\/ co
(Ch(k)gs")™ ——— Ch(k)gs!

(D(k)fd)op T D(k)yq

and both horizontal functors are equivalences. Q

Example 5.1.1.8. Consider the commutative and cocommutative bialge-
bra D in Ch(k) from Construction 4.2.1.1. Its underlying chain complex is
k-{1} @ k- {d} with 1 in degree 0 and d in degree 1. This chain complex is
dualizable with dual® k- {1} @ k- {d"} with 1 in degree 0 and d" in degree
-1

By Fact 5.1.1.3 the commutative and cocommutative bialgebra structure
on D induces again a commutative and cocommutative bialgebra structure on
DY, with unit the basis element we called 1 in degree 0 (see Remark 5.1.1.6).
The rest of the bialgebra structure is then already uniquely determined just
as in Construction 4.2.1.1, with in particular A(d") =1®d" +d"®1. ¢

As ()Y is a symmetric monoidal equivalence, it induces an equivalence
that converts algebras into coalgebras and vice versa, as we note next.

Remark 5.1.1.9. Let C be a symmetric monoidal co-category and O and
O’ two oo-operads. Note that the symmetric monoidal duality functor

(_)\/: (Cfd)Op — Cfd
from Fact 5.1.1.3 induces a symmetric monoidal equivalence

O Al (Algo (CP) )™ = Alge (coAlgn (Cra))® <

8A duality datum is given by defining e by e(1 ® 1) = 1 = e(d¥ ® d) and ¢ by
c(l)=d®d"+1®1.
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5.1.2 Construction of a resolution

The goal of this section is to construct diagram (5.1) that was discussed in
the introduction to Section 5.1, and we refer to there for motivation. We will
construct such a diagram in Alg(coCAlg(Ch(k))) first and then show that
its image in Alg(coCAlg(D(k))) has the required properties. While we are
still discussing algebras and coalgebras in the symmetric monoidal 1-category
Ch(k), one should keep in mind that, as explained in Section 3.3, there is a
canonical isomorphism

Alg(coCAlg(Ch(k))) = coCAlg(Alg(Ch(k))) = BiAlgagoc comm (Ch(k))

so we will be justified in identifying these categories and talking about objects
as cocommutative bialgebras.

Let us now briefly go over the content of the subsections. In order to make
it easier to talk about certain differential graded algebras that have free un-
derlying Z-graded k-algebras, we start in Section 5.1.2.1 by introducing some
convenient notation. We will then begin the actual construction of diagram
(5.1) in Section 5.1.2.2 by constructing a sequence of cocommutative bialge-
bras

A(]—>A1 —)Az—)

in Ch(k). Section 5.1.2.3 will then be devoted to calculating the homology of
colim,, A,. In Section 5.1.2.4 we will construct pushout diagrams

B, — B,

L

Anfl — An

of cocommutative bialgebras in Ch(k). The cocommutative bialgebra B,, itself
is not isomorphic to k, but maps to a cocommutative bialgebra in D(k) that
is equivalent to k, as we will see in Section 5.1.2.5. We then combine the
previous results in Section 5.1.2.6 to describe the induced diagram (5.1) in
Alg(coCAlg(D(k))) and show that it has the required properties. Finally,
in Section 5.1.2.7 we describe A; and B,, as free associative algebras on
underlying pointed cocommutative coalgebras.

5.1.2.1 Notation for freely generated differential graded algebras

In this short section we introduce some notation for differential graded
algebras whose underlying Z-graded k-algebra is free associative.

Notation 5.1.2.1. Let X be a set and let? degc,,(z) be an integer for every
element = of X. Then we can form a Z-graded k-module with basis X as

9Ultimately we want to define differential graded algebras generated by X, and in this
differential graded algebra the chain degree of an element x of X will of course be exactly
what we (prematurely, to avoid introducing more temporary notation) call degc, ()
here, making this notation in the end compatible with the notation in Definition 4.1.1.1.
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follows.
ke X = @) Mdegc, (@)
zeX
We will denote the free associative Z-graded k-algebra generated by k- X by

FreeAssoc (X)

and if X = { @1, x2,... } then we will often write

Assoc (

Free T1, T, ...) = Free™¢(X)

instead. A basis of Free®*¢(X) is given by elements of the form z;, ---z;
for n > 0'° with x;, elements of X for 1 < j <mn.

We can make Free”*°°(X) into an associative differential graded algebra
by furnishing it with the zero boundary operator. But we will sometimes want
to define associative differential graded algebras that have a free underlying
Z-graded k-algebra, but do have nontrivial boundaries. So assume that for
every element x of X we are given an element f(x) of Free®¢(X) ., o (2)—1-
Then we use the notation

Free™*°°(X | 0(z) = f(x))

n

for the differential graded k-algebra whose underlying Z-graded k-algebra is
given by Free®*°°(X) and with boundary operator (uniquely) extended by
k-linearity and the Leibniz rule from the prescription d(z) = f(x) for every
element x of X. This does not in general actually define a differential graded
algebra, as in general there is no reason for the boundary operator to square
to 0, so if we use this notation we will need to check that 9(d(x)) = 0 for
every element = of X.

Sometimes we will omit () in this notation for some elements z of X, in
which case this is to be interpreted as d(z) = 0. &

5.1.2.2 Construction of A as a directed colimit
In this section we construct a sequence of cocommutative bialgebras
Ag > AL — Ay — ...
in Ch(k) and describe its colimit.

Construction 5.1.2.2. We will construct a cocommutative bialgebra in
chain complexes A,, for every integer n > 0. Using Notation 5.1.2.1, we
define the underlying differential graded k-algebra of A,, as

Ay = Free®™ [y, ..y, [0(yr) = Z YiY;
it+j=k

10If n = 0 we interpret the product as 1.
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where degcp (i) (yi) = —1 and where the sum should of course be interpreted

to only be taken over those i and j for which y; and y; are defined!!. For
this to actually define a differential graded algebra structure the definition
of 0 needs to satisfy 9(0(y;)) = 0 for any 1 <! < n, which is the case as the
following basic calculation shows.

9(0(y1)) =0 Z YiYj

i+j=l
= > Ay — Y vid(y))
i+j=l i+j=l
= Z YiYiYk — Z Yiy;ye =0
i+j+k=l i+j+k=l

We next define a cocommutative coalgebra structure on A,. As the un-
derlying graded k-algebra of A,, is free, we can define the counit e: A, — k
as well as the comultiplication A: A, — A, ® A, to be the morphisms of
graded k-algebras determined by

e(yr) =0
Alyg) =10 yr +yr ® 1

for 1 < k < n. By definition comultiplication and counit are morphisms of
algebras, so if this defines a cocommutative coalgebra structure in Ch(k), then
this will make A,, into a cocommutative bialgebra in Ch(k) as claimed.

As counit and unit of the presumptive coalgebra structure are morphisms
of algebras, it suffices to check compatibility of e and A with 0, coassociativity,
counitality, and cocommutativity on multiplicative generators. For example
for the comultiplication being a morphism of chain complexes we can calculate

AQ@r) = A1 > vy

i+j=k

= > (1@y+yel) 1oy +y 1)
i+j=k

= Z 1®uyiy; —y; QUi +¥:i Qyj +yiy; ® 1
i+j=k

= Z 1®yiy; +yiy; ® 1
i+j=k

=01l®ys+yr®1)

= 9(A(yr))

1180 in particular, d(y1) = 0 and 9(y2) = y%.
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and as another example the following calculation verifies coassociativity.
([de@A)AW) =101y + 10y @1+, @101 = (A®id)(A(y))

Compatibility of e with 0, counitality, and cocommutativity are similarly
immediate.

We can completely analogously define a cocommutative bialgebra A in
Ch(k) as

A = Free® [y, s, ... | O(yx) = Z YiYj
itj=k

with counitality and comultiplication defined exactly as for A,,. &

Remark 5.1.2.3. There is a commutative diagram of cocommutative bial-
gebras in Ch(k) as follows

A Ay A
\ A

where all morphisms are the obvious inclusions. This diagram exhibits A as

the colimit of the directed system of inclusions in the top row, as can be

seen using that directed colimits of cocommutative bialgebras in Ch(k) are

calculated on underlying chain complexes by [HA, 3.2.2.5] and [HA, 3.2.3.1]
in combination with [HTT, 5.5.8.3]. &

5.1.2.3 Homology of A

As described in the introduction to Section 5.1 we will later construct
a morphism from the object in Alg(coCAlg(D(k))) represented by A to RY,
the dual of a commutative bialgebra in D (k) with prescribed homology. From
the construction it will be clear that the induced morphism on homology is
surjective, and we will want to conclude that the morphism is an equivalence,
or equivalently that the induced morphism on homology is an isomorphism.
In order to do this we should calculate the homology of A, which we do in
this section.

Proposition 5.1.2.4. The chain complex A that we constructed in Construc-
tion 5.1.2.2 has homology

kE ifn=0o0rn=-1

0 otherwise

H,,(A) = {

and the unit 1 of A and y1 are representatives of elements forming a basis of
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5.1 Formality of certain E., E;-bialgebras

Proof. A is freely generated as a Z-graded k-module by words in the multi-
plicative generators y;, i.e. by elements of the form

Yiy Y,

with n > 0 (for n = 0 we interpret the product as 1) and ¢; elements of Z>1.
For m > 0, let A(m) be the sub Z-graded k-module generated by elements
of this form with Z?Zl i; = m. It follows directly from the definitions that
A(m) is in fact a subcomplex of A, and that furthermore

A EBA(m)

m>0

in Ch(k).

Note that A(0) and A(1) are both concentrated in a single degree and of
rank 1, with A(0) having a basis formed by 1 in degree 0 and A(1) having a
basis formed by y; in degree —1. To finish the proof it thus suffices to show
that A(m) is acyclic for m > 1.

For this, we fix m > 1 and define a chain homotopy h on A(m) by extending
k-linearly from the following definition on the basis.

Yio+1Yis *** Yin ifn>1landi; =1
h(yi, -+ vi,) = { .
0 otherwise
We can now check that h is indeed a contracting homotopy by checking

on basis elements. For this we distinguish three cases. First, the only basis
element for which n <1 is y,,, and for it we have the following calculation.

(ah + ha) (ym) = 8(0) +h Z Yiyi | = Ym
i+j=m

Next, for those basis elements for which n > 1 and ¢; = 1, we obtain the
following.

(Oh + hO)(Y1Yin -~ Vi)

= 0(Yir+1 " Yi,) + h<y1< > ki, - yz) + Y194, 0(Yi, ~~~y¢n)>

k+l=is
= < Z ykylyz‘g"'yi"> ~ Yir+10Yis *** Yin)
ktl=iz+1
- ( Z Yk+1Y1Yis - yiﬂ) + Yir+10(Yis -+ i, )
k+l=is
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= Y1Yi, " Yi, + ( > Yy, yzn> — Yir+10(Yis * ** Yi,,)
k+1l=iq

- < > yk+1y1yi3"'yin> + Yir+10 Wi~ Yi)
k+l=is
= Y1Yiy **  Yin

Finally, for the other basis elements, i.e. those with n > 1 and i; # 1, we
have the following calculation.

(Oh + hO)(Yi, Yiy = Yiy,)

= h(( Z YkYYis yn> —yila(yi2-~~yin,)>
k+1=1i1

= Yi—141Y4 Vi, T Z 0+0
kb=, k>1

=YiYiy ' Yi, O

5.1.2.4 Construction of A4, ; from A,

In order to be able to lift a morphism from A,_; to a morphism from
A, we will describe A,, as a pushout of A,_; in this section. We start by
constructing the relevant commutative square, and show that this square is
a pushout square at the end of this section.

Construction 5.1.2.5. Let n > 1. Using Notation 5.1.2.1 we define a mor-
phism of differential graded algebras as

En _ FreeAssoc (yn) N Free/—\ssoc (yn7 Un

Ayn) = gn) =B,

with degc,(yn) = —1 and degey(y,) = —2.

We can upgrade this morphism of differential graded k-algebras to a mor-
phism of cocommutative bialgebras in Ch(k), by defining counit € and comul-
tiplication A as follows on the multiplicative basis.

€(yn) =0

e(y,) =0

A(yn):1®yn+yn®1
A(yn> :1®gn+yn®1

Checking that e and A are compatible with O as well as coassociativity, couni-
tality, and cocommutativity are similar to Construction 5.1.2.2.
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5.1 Formality of certain E., E;-bialgebras

We can define a morphism of differential graded algebras
B, — A,

by sending y, to y, and y, to O(yn). Tt is easy to check that this is also
compatible with the coalgebra structure, making this a morphism of cocom-
mutative coalgebras.

Finally, the restriction to B,, factors through A,_;, so that we obtain a
commutative diagram

B, —— By

l l (5.2)

Anfl — An
in Alg(coCAlg(Ch(k))). ¢

In order to show that (5.2) is a pushout square, we will need to two pre-
liminary results that allow us to detect colimits in Alg(coCAlg(Ch(k))) on
underlying algebras in Ch(k).

Proposition 5.1.2.6. Let C be a symmetric monoidal co-category and let O
be a reduced!? co-operad with o the essentially unique object in the underlying
oo-category O. Assume that C is cocomplete and the tensor product preserves
colimits separately in each variable.

Then coAlg,(C) is cocomplete and the induced symmetric monoidal struc-
ture on coAlg,(C) is also compatible with colimits. @

Proof. coAlg,(C) is cocomplete by [HA, 3.2.2.5]. Furthermore, the forgetful
functor

evy: coAlg,(C) = C

is symmetric monoidal by Proposition E.4.2.3; conservative by [HA, 3.2.2.6]
and preserves colimits by [HA, 3.2.2.5]. It thus follows that the symmetric
monoidal structure on coAlgy, (C) is also compatible with colimits. O

Proposition 5.1.2.7. Let C be a symmetric monoidal co-category and let O
and O be co-operads. Assume that O is reduced and let o be the essentially
unique object in O'.

Then the forgetful functor

Algp(evo): Algy(coAlgy (C)) — Algp(C) (5.3)

s conservative, 1. e. reflects equivalences.

Assume additionally that C is cocomplete and the tensor product preserves
colimits separately in each variable. Then Alg,(ev,) preserves colimits. In
particular, also being conservative, Algy,(ev,) detects colimits. Q

128ee [HA, 2.3.4.1] for a definition.
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Proof. The symmetric monoidal forgetful functor'3
eve: coAlgn (C) — C

is by [HA, 3.2.2.6] conservative and preserves colimits by [HA, 3.2.2.5]. It thus
follows from Proposition E.3.4.1 and Proposition E.7.3.1'4 that the forgetful
functor (5.3) is also conservative and colimit-preserving, and hence detects
colimits. O

Proposition 5.1.2.8. The commutative square (5.2) constructed in Con-
struction 5.1.2.5 is a pushout diagram in Alg(coCAlg(Ch(k))) @

Proof. 1t follows from Proposition 5.1.2.7'% that the forgetful functor from
cocommutative bialgebras to underlying algebras

Alg(ev(yy): Alg(coCAlg(Ch(k))) — Alg(Ch(k))

detects colimits. It thus suffices to show that the underlying square of differ-
ential graded k-algebras is a pushout square.

The functor from chain complexes of k-modules to Z-graded k-modules
is conservative, symmetric monoidal, and preserves colimits. It thus follows
from Proposition E.3.4.1 and Proposition E.7.3.1 just as in the proof of Propo-
sition 5.1.2.7 that the forgetful functor from differential graded k-algebras to
Z-graded k-algebras detects colimits, so it actually suffices to show that the
underlying commutative square of Z-graded k-algebras is a pushout square.

There is a pushout diagram of Z-graded k-modules

0 ———k-{yn}

| |
) — ()

where all morphisms are the obvious inclusions, which induces the pushout
diagram of Z-graded k-algebras at the top of the following commutative dia-
gram

k FreeAssoc (yn)

J !

FreeASS°C (gn) FreeAssoc <gn’ yn)

l |

Yis--- 7yn—1) E— FreeAssoc(yl’ T ’y”)

Fre eAssoc (

13See Proposition E.4.2.3.

14COA1gOI (C) is cocomplete and its symmetric monoidal structure is compatible with col-
imits by Proposition 5.1.2.6.

15The tensor product of Ch(k) preserves colimits in each variable separately as the sym-
metric monoidal structure is closed by Definition 4.1.2.1.
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5.1 Formality of certain E., E;-bialgebras

where all morphisms are the obvious inclusions. We have to show that the
bottom square is a pushout square. As the top square is a pushout square, it
suffices to show that the big outer square is a pushout.

But the big outer square is Free®*** applied to the following pushout dia-
gram of Z-graded k-modules

0 k-{yn}

| !

E-{vi,o -y yn—1t —— k-{vy1,---,yn }

and is thus a pushout diagram. O

5.1.2.5 Identification of B, up to quasiisomorphism

In this section we show that the cocommutative bialgebras B,, defined in
Construction 5.1.2.5 are quasiisomorphic to k. We start by remarking that &
is a zero object in Alg(coCAlg(Ch(k))).

Remark 5.1.2.9. Let C be a cocomplete and complete symmetric monoidal
oo-category such that the tensor product is compatible with colimits in each
variable. By [HA, 3.2.2.4 and 3.2.3.1], coCAlg(C) is complete and cocomplete,
and the induced symmetric monoidal structure is again compatible with col-
imits by Proposition 5.1.2.6. Another application of [HA, 3.2.2.4 and 3.2.3.1]
yields that Alg(coCAlg(C)) is complete and cocomplete.

By [HA, 3.2.1.8], an initial object is given by the monoidal unit. We want
to show that this object is also final and thus a zero object in Alg(coCAlg(C)).
As the forgetful functor

evg: Alg(coCAlg(C)) — coCAlg(C)

detects limits by [HA, 3.2.2.4] and is also symmetric monoidal by Proposi-
tion E.4.2.3, it suffices to show that the monoidal unit is a final object in
coCAlg(C), which again follows from [HA, 3.2.1.8] (and passing to opposite
categories twice). O

Proposition 5.1.2.10. Let n > 1. The unique morphism in the 1-category
Alg(coCAlg(Ch(k))) from the monoidal unit k (see Remark 5.1.2.9) to By, is
a quasi-isomorphism. Q

Proof. The forgetful functor Alg(ev(;y) is symmetric monoidal and detects
colimits by Proposition 5.1.2.7. By [HA, 3.2.1.8] it thus suffices to show that
the unique morphism in Alg(Ch(k)) from the monoidal unit k to Free™'8(B!)
is a quasiisomorphism, where B, is the chain complex which as a Z-graded

k-module is k - {gn,yn }, with dege,(yn) = —1 and degep(y,) = —2, and
with boundary operator defined by d(y,) =y, .
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But the left adjoint Free®'® to the forgetful functor ev, preserves initial
objects, so this morphism is Free®® applied to the unique morphism of chain
complexes 0 — BJ,.

By Proposition E.7.2.1 we can thus identify & — Free$(B!) with the
following inclusion of the summand indexed by 0

— R/®0 1Q1
k= B;?" - P B
i>0

As the tensor product of a contractible chain complex with another chain
complex is again contractible it hence suffices to show that B!, is contractible,
which is clear. O

5.1.2.6 The resolution in D(k)

In this section we describe the image of the constructions discussed in
Section 5.1.2.2 and Section 5.1.2.4 under the symmetric monoidal functor
7v: Ch(k)*°f — D(k). The important point is that the pushout diagram (5.2)
is in fact a homotopy pushout and thus mapped under v to a pushout in
Alg(coCAlg(D(k))), and likewise for the colimit of Ag — A1 — Ay — ...

Proposition 5.1.2.11. The underlying differential graded k-algebras of A,
and A from Construction 5.1.2.2 and of B,, and B,, from Construction 5.1.2.5
are cofibrant. Furthermore the pushout square (see Construction 5.1.2.5 and
Proposition 5.1.2.8)

En — Bn

L

An—l — An

is a homotopy pushout in Alg(Ch(k)) and the colimit of the directed system
(see Remark 5.1.2.8)
A0%A1—>A2—>...

is a homotopy colimit in Alg(Ch(k)). v

Proof. For the cofibrancy statements it suffices to show that Ay and B,, (for
n > 1) are cofibrant and that the morphisms B,, — B,, are generating cofibra-
tions. The former is the case as Ay = Free®'8(0) and B,, = Free™!8(k - { y, b
and the chain complexes 0 and % - {yn} are cofibrant. The latter is the case

as the morphism in question is isomorphic to Free™'s applied to a generating
cofibration in Ch(k), see [Hov99, 2.3.3], Fact 4.1.3.1, and Theorem 4.2.2.1 (2).

That the pushout square is a homotopy pushout now follows from [HTT,
A.2.4.4], and that the directed colimit is a homotopy colimit follows from
[HTT, A.2.9.24 (i)]*C. O
16The reference shows that the diagram is cofibrant in the projective model structure on

Fun(Zx, Ch(k)) if and only if Ag is cofibrant and A, — Ay, 11 is a cofibration for every
n > 0.
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5.1 Formality of certain E., E;-bialgebras

Notation 5.1.2.12. Recall from Proposition 4.3.2.1 that we denote the sym-
metric monoidal functor from Ch(k)°°f to D(k) by 7.

Let O and O be oo-operads. Then we denote the induced functor on O-
algebras of (’-coalgebras as follows.

78" Algo (coAlge, (Ch(k)f)) — Alge(coAlge, (D(k))) o

Remark 5.1.2.13. As all involved objects have cofibrant underlying chain
complexes by Propositions 5.1.2.11 and 4.2.2.12, the commutative squares
and directed system constructed in Construction 5.1.2.5 and Remark 5.1.2.3
are mapped by 7$oM™ to commutative diagrams in Alg(coCAlg(D(k))). <

Assoc

Corollary 5.1.2.14. For n > 1, the commutative square

Vhowd (Br) — Vi (Bn)

| |

Vhome (An—1) —— YR30 (An)
in Alg(coCAlg(D(k)))) is a pushout diagram and the morphisms
Thowe (An) = Vaowoe (A)

exhibit v™™(A) as a colimit of

Assoc
Viowoe (Ao) =+ YRAE (A1) = Yagwo (A2) = ...
in Alg(coCAlg(D(k))). Q@

Proof. As D(k) is presentable symmetric monoidal by Proposition 4.3.2.1,
it suffices by Proposition 5.1.2.7 to show that the underlying diagrams in
Alg(D(k)) are colimit diagrams.

By Proposition 5.1.2.11 the diagrams of differential graded algebras are
pointwise cofibrant (not just with cofibrant underlying chain complexes) as
well as homotopy colimit diagrams, so the claim follows from combining this
with Proposition 4.4.2.1 and [HA, 1.3.4.24]. O

5.1.2.7 Free generation of certain associative algebras

In order to be able work with morphisms out of 'y%f (B,,), we will show

in this section that 5> (B,,) is the free associative algebra on an object in
Algg (coCAlg(D(k))).

We start by constructing the morphism that exhibits 7%50 (B,,) as a free
associative algebra.

Construction 5.1.2.15. Let n > 1. We define E; to be the sub Z-graded
k-module of B,, (see Construction 5.1.2.5) generated by 1 and y . Note that
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Chapter 5 Mixed complexes and circle actions
B! is closed under § as well as A, and the unique morphism k£ — B, in
Alg(coCAlg(Ch(k))) (see Remark 5.1.2.9) factors over B,.

We can thus consider B), as an object of coCAlg(Ch(k)),,. The underlying
chain complexes of B!, and B, are cofibrant by [Hov99, 2.3.6], so we can

consider the inclusion of By, into B,, as a morphism in coCAlg(Ch(k)"), .
By [HA, 2.1.3.10] there is an equivalence of co-categories
Algg, (coCAlg(Ch(k)*°)) = coCAlg(Ch(k)*), ,
under which we can consider the inclusion
B, = B, (5.4)

as a morphism in Algg_(coAlgg_(Ch(k)")).

Completely analogously we define A’ to be the sub Z-graded k-module of
A; (see Construction 5.1.2.2) spanned by 1 and y; and consider the inclusion
A} — Ay as a morphism in Algg (coAlgg_(Ch(k)“T)). &

Remark 5.1.2.16. By [HA, 2.1.3.9] there is a unique morphism of oo-oper-
ads
ES — Assoc®

which can be interpreted as follows. Let C be a symmetric monoidal co-cate-
gory. Then the induced forgetful functor

AlgAssoc (C) - AlgEo (C) = Cllc/

(where the equivalence is the one from [HA, 2.1.3.10]) sends an associative
algebra A to the unit morphism 1, — A. &

Notation 5.1.2.17. By [HA, 3.1.3.5]'", the forgetful functor

Algagsoc (cOCAlg(D(k))) — Algg, (coCAlg(D(F)))

from Remark 5.1.2.16 has a left adjoint that we will denote as follows.

Freeggg‘zfofgi{g) : Algg, (coCAlg(D(k))) — Algagoc(coCAlg(D(k)))

We use the analogous notation Freeﬁig}z for the left adjoint of the forgetful
Eo
functor Algago.(D(k)) — Algg, (D(K)). &

Proposition 5.1.2.18. In this proposition we use Notation 5.1.2.12.
Let n > 1. The morphism

e (Br) = 76 (B,)

17Using Proposition 5.1.2.6 and Proposition 4.3.2.1 (1).
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induced by the inclusion (5.4) in Algg (coCAlg(D(k))) induces a morphism

Freen £ 00me (15 (BL) ) = Taiscl B.) (5.5)

in Alg(coAlgg_(D(k))). This morphism is an equivalence.
The analogously defined morphism

Alg(coCAlg) Eoo
FreeAlg]E (coCilg) (FY (A/ )) - rYAssoc(Al)
is also an equivalence. Q

Proof. We only discuss the case of B,,, as the case of A; is completely anal-
ogous.
By Proposition 5.1.2.7 the functor

Alg(ev(yy): Alg(coCAlg(D(k))) — Alg(D(k))

is conservative, and hence it suffices to show that the underlying morphism
in Alg(D(k)) of (5.5) is an equivalence.

The functor ev yy: coCAlg(D(k)) — D(k) is symmetric monoidal and pre-
serves colimits'®, so we can apply Proposition E.7.2.2 to conclude that the
underlying morphism in Alg(D(k)) of morphism (5.5) is the morphism?!®

Free:’:gE (%EO (En )) — "YAssoc (En)

adjoint to the morphism g, (B),) — Ve, (B,,)-

Now consider the subcomplex B! of B! generated as a free Z-graded k-
module by y . This complex is cofibrant and the morphism B! — B! in
Ch(k)cot exhlblts B!, as the free Eg-algebra generated by B
tion E.7.2.1.

The symmetric monoidal functor v: Ch(k) — D(k) preserves coproducts by
Proposition 4.3.2.1 (3) so by Proposition E.7.2.2 variant (3) we can identify
Ve, (B,) with Free™sz (7(B,)), and the equivalence

see Proposi-

=n

Free™!8eo (v(B7)) = v, (By,)

is adjoint to the inclusion v(B”) — ~(B.,). Using composability of adjoints
[HTT, 5.2.2.6] we can identify Free Alg o Free™® with Free*®, and under

this identification the morphism

FreeAlg (*y(ﬁ;:)) FreeAlg (")/]EU (B )) — VAssoc(B ) (5'6)

18See the proof of Proposition 5.1.2.6.

19VWe are also using that the various functors induced by v are compatible with the forgetful
functors here, to e.g. identify the underlying associative algebra of 'yfg’s‘;c (B,,) with
YAssoc (En ) .
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which we need to show is an equivalence, is adjoint to the following inclusion.

v(By) = (B,,)

We finish by invoking Proposition E.7.2.2 again, this time variant (2) (us-
ing that -y preserves coproducts by Proposition 4.3.2.1 (3)), and noting that
B! — B, indeed exhibits B,, as the free differential graded algebra generated
by B! by definition. O

5.1.3 Formality of certain associative algebras

Let C be a monoidal co-category and C' an associative algebra in C. By
[HA, 3.2.1.8] (see also [HA, 3.2.1.4]) C is an initial object in Alg e (C) if
and only if the unit morphism 1o — C is an equivalence. In this section
we show that this is the case if and only if there exists any equivalence
l1¢ ~ C in C. In particular, this implies that any two associative algebras in
C whose underlying objects in C are equivalent to 1¢ are already equivalent
as associative algebras.

Notation 5.1.3.1. Let C be a monoidal co-category and 1 a unit of C. We
will use the following notation in this section.
As part of the monoidal structure on C, there are equivalences, natural in
X7
Mx:1oX S X

and
pX,1:X®]li>X

for 1 any unit object in C and X any object in C, called the left unitor and
right unitor, respectively.

The reason why we let 1 be part of the notation is that we will consider
morphisms between two unit objects that might not (a priori) be equivalences,
so it will be important to distinguish them. &

Proposition 5.1.3.2. Let C be a monoidal co-category, let 1 be a unit object
inC, and f and g two endomorphisms of 1. Then fog and go f are homotopic.
V)

Proof. Two morphisms in an oo-category are homotopic if and only if their
images in the homotopy category are equal. It thus suffices to show that the
monoid structure induced by composition on

mo(Mape(1,1)) = Morge(ey (1, 1)

is commutative.
Note that the monoidal structure on the co-category C induces the struc-
ture of an ordinary monoidal category on the homotopy category Ho(C), see
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[HA, 4.1.1.12]. We can define a binary operation x on Morge(c) (1, 1) by let-
ting f g for f and g in Morgec)(1, 1) be given by conjugating f ® g with
the left unitor A; ; as depicted below.

Ar,1
+——1®1

1
fxgi Jf@g
1

1R

4

—1®1
A1,1
Naturality of Ay _— immediately implies that idy is a left unit for the binary
operation x. We could similarly define " using the right unitor py y, for which
idy would be a right unit. As the composition

—1
1255 101 2 g

is the identity??, so * = «, and hence we can conclude that id; is a two-sided

unit for the binary operation x on Morg,c) (1, 1).

As (f®g)o(h®i) = (foh)®(goi)in Morgec)(1,1) by functorial-
ity of the tensor product for f, g, h, and i endomorphisms of 1, we have
(f*g)o(h*i)=(foh)x(goi) and can thus apply the Eckmann-Hilton ar-
gument to conclude that composition is commutative in Morgec)(1,1). O

Proposition 5.1.3.3. Let C be a monoidal co-category and R an Assoc-
algebra in C such that the underlying object in C is a monoidal unit. Let 1 be
another, fixed, unit object. Then the unit morphism ¢: 1¢ — R, that is part
of the data of R as an Assoc-algebra, is an equivalence. Q

Proof. As part of the data of R as an Assoc-algebra there is also a multiplica-
tion morphism p: R ® R — R, as well as a commutative diagram exhibiting
(part of) unitality for R, depicted in the top half of the following diagram.

idg
m
R+—"" 19R —"F yR@R-—"“ 3R
~ J
~|A1,R AR,R | //
idp //’ Y
R —

The morphisms ¢ and v are defined as the induced morphisms that make
the diagrams commute.

20Tn [Mac98, VII.1] this is required as an axiom for the definition of monoidal categories,
but Kelly showed in [Kel64, Theorems 6 and 7] that this in fact follows from the now
usual list of axioms.
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There is also a commutative diagram by naturality of p_ r as follows.

1———R

Pl,RT: l'l\PR,R

]L@RWR@R

Thus ¢ is an equivalence if and only if ¢« ® idg is, which is an equivalence
if and only if ¢ is. But for ¢ we already have a left inverse 1, i.e. Y o ¢ is
homotopic to idg. It follows from Proposition 5.1.3.2 that ¢ o v is then also
homotopic to idg, so ¢ is an equivalence. O

5.1.4 Group homology

Let G be a (discrete) group. The goal of this section is to discuss how
to calculate orbits of G-objects in D(k) and discuss the relation to classical
notions. The category of G-objects in D(k) is defined as

D(k)BE .= Fun(BG, D(k))

where B G is the 1-groupoid with a single object * and Autgg = G. If
F: BG — D(k) is a functor that we think of as an object in D(k) with G-
action, then we will often not distinguish notationally between F' and F'(x).

Let X be a G-object in D(k). Then the G-orbits Xg of X is the colimit of
X considered as a functor BG — D(k).

We want to relate the construction of orbits of G-objects in D(k) to classical
notions of homological algebra. To start we note that by [HA, 1.3.4.25] every
G-object in D(k) is represented by a G-object in Ch(k) that is cofibrant in the
projective model structure on Fun(B G, Ch(k)). Let X be a G-object in Ch(k)
with cofibrant underlying chain complex. We can then apply [HA, 1.3.4.24]
to conclude that v(X)g ~ hocolimp ¢ X.

The category of G-objects in Ch(k) can be identified with Ch(kG), where
kG is the group ring of G over k, see [Wei94, Section 6.1]. This isomorphism
of categories is compatible with the respective forgetful functors to Ch(k),
from which it immediately follows that the respective weak equivalences and
projective fibrations coincide?!, so that this is even an equivalence of combi-
natorial model categories.

The colimit functor Fun(B G, Ch(k)) — Ch(k) is a left Quillen functor that
is left adjoint to the functor const, the homotopy colimit functor is its derived

21For the projective model structure on Fun(B G, Ch(k)), which we take with respect to
the projective model structure on Ch(k), see [HTT, A.2.8.2], and for the projective
model structure on Ch(kG) see Fact 4.1.3.1 — while we did not specifically mention it
there, the assumption that the ring over which we take chain complexes is commutative
is unnecessary for merely obtaining a combinatorial model category (commutativity is
needed if we want to talk about the symmetric monoidal structure).
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5.1 Formality of certain E., E;-bialgebras

functor. Under the equivalence Fun(B G, Ch(k)) = Ch(kG), the functor const
corresponds to the restriction of scalars functor Ch(k) — Ch(kG) that is
induced by restriction along the ring homomorphism kG — k that maps
every element of G to 1. The left adjoint of this functor is given by extension
of scalars, so k ®rc —, see also the discussion in [Wei%4, Exercise 6.1.1 2 and
Lemma 6.1.1].

The upshot is the following: If X is is a G-object in Ch(k), then there is
an equivalence

1(X)e ~ v (k ®fg X')

where on the right we take the derived tensor product and X’ is the object
in Ch(kG) associated to X.

The homology k-modules of this derived tensor product is by definition
given by Tor, and this particular case this is what is called the group homology
of G with coefficients in X (or X’), and denoted by H.(G; X), see [Wei94,
Definition 6.1.2 and Exercise 6.1.2]. We can summarize the discussion as
follows, using Proposition 4.3.3.2.

Proposition 5.1.4.1. Let G be a discrete group and X a G-object in Ch(k).
Then there are isomorphisms

H,(7(X)¢) 2 Tor}® (k, X') = H,(G; X)

for every integer i, where X' is the kG-chain complex associated to X under
the isomorphism discussed above. These isomorphisms are natural in X.

We can conclude the following from this.

Proposition 5.1.4.2. Let G be a discrete group and X a G-object in D(k).
Assume that n is an integer such that the homology of X wvanishes in de-

grees below n. Then the homology of X¢ also vanishes below degree n, and
Hn(XG) = Hn(X)G @

Proof. One way to prove this is to use represent X by a G-object in Ch(k)
concentrated in degrees n and above, and then the statement follows from
Proposition 5.1.4.1.

Another way would be to note that D(k)>,, is by [HA, 1.2.1.6] closed under
colimits, from which it follows that the homology vanishes below degree n,
and use Proposition 4.3.3.8 for homology in degree n. O

5.1.5 Formality of certain commutative algebras

The goal of Section 5.1 is to show that any two commutative bialgebras
in D(k) whose homology is concentrated in degrees 0 and 1, where it is
isomorphic to k, are equivalent. As a stepping stone we show in this section
the analogous and significantly easier statement for commutative algebras, so
forgetting the coalgebra structure.
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Chapter 5 Mixed complexes and circle actions

We start in the following construction by constructing a comparison mor-
phism from a “standard” commutative algebra with the prescribed homol-
ogy (that the homology is the correct one will be shown below in Propo-
sition 5.1.5.3). We will later show that this morphism is an equivalence of
commutative algebras.

Construction 5.1.5.1. Let R be an object of CAlg(D(k)) and
V: eviy(R) = k@ k[n]

an equivalence for some n > 0. Note that this equivalence is not assumed
to have anything to do with the algebra structure on R, this is only an
assumption on the equivalence class of the underlying object in D(k) of R.

As the underlying object of R is in (D(k)>o)<n it follows from Proposi-
tion 4.3.4.1 (7) and (8) that we can consider R as an object of the co-category
CAlg((D(k)>0)<n)-

Denote the inclusions that are part of k & k[n] being a coproduct by
to: k — k® kln] and t,: k[n] — k @ k[n], and let g: k[n] — ev((R) be
g=9""1ou,.

By [HA, 1.2.1.6], [HTT, 1.2.13.7], Proposition 4.3.2.1 (1), and [HA, 3.1.3.5],
the forgetful functor

V(1) : CA]g(@(k))zo) — @(k))zo

admits a left adjoint Free%‘?lg

)0 We thus obtain an induced map of commu-

tative algebras in D(k)>o

CA
f Fre%(gzo(k[n]) —R

that is adjoint to g.

Note that as the inclusion t>¢: D(k)>o — D(k) is symmetric monoidal
(Proposition 4.3.4.1 (3)) and also preserves colimits ([HA, 1.2.1.6] with [HT'T,
1.2.13.7]), we can use Proposition E.7.2.2 to identify CAlg(t>0)(f’) with the
morphism

' Freep S(k[n]) - R
that is adjoint to g.

Finally, as R lies in CAlg((D(k)>0)<n), the morphism f’ is by Proposi-

tion 4.3.4.1 (8) adjoint to a morphism

f CA1g(r§n)(Freefj;‘(*gzo(k[n])) R

of commutative algebras in (D(k)>0)<n- O

The equivalence ¥~ : k@ k[n] = ev(;,(R) in Construction 5.1.5.1 could be
anything on the summand k. However, we already have a candidate morphism
k — ev(1y(R) — the unit morphism of the commutative algebra structure of R.

In the next proposition we show that we can replace 9! on the first summand
by the unit morphism without losing the property of being an equivalence.
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5.1 Formality of certain E., E;-bialgebras

Proposition 5.1.5.2. In the situation of Construction 5.1.5.1, the morphism
1 g: k@ kn] = eviy(R)

is an equivalence in D(k), where v is the unit morphism of the algebra structure
on R. Q

Proof. Tt suffices to show that the composition ¢ o (¢ I g) is an equivalence.
Using the definition of g we can write this morphism as

J 0
V! idk[n]
4

for some morphisms ¢': k — k and "': k — k[n]. It thus suffices to show that
¢/ is an equivalence, as then
/1 0
{—U““4 idmm]
will be an inverse.

While we do not need this, we note that +”/ must actually be nullhomotopic,
as

k& k[n] k & k[n]

o (Map“D(k)(k7 k’[”])) = Ho(k[n]) =0

by Proposition 4.3.2.1 (5) and (4).
Applying the natural transformation idp ) — t<o © T<o (see Section 4.3.4)
we obtain a commuting diagram as follows?2

’
L

kTP s k@ k[ o k

(k) s (@ kn]) T (k) @ (k) — s 7(K)
) 7(9)
7(eviy(R))

in D(k) where the morphisms pr, and pr,, are the projections onto the first
and second factor, respectively.

220 save space we write 7 instead of t<gT<(.
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Chapter 5 Mixed complexes and circle actions

We have to show that ¢/ is an equivalence. As k is in D(k)<o, the leftmost
and rightmost vertical morphisms are equivalences. It thus suffices to show
that the composite from left to right in the middle row is an equivalence.

As a left adjoint 7<o preserves colimits and hence finite biproducts, and ¢t<
preserves finite biproducts as well by Proposition 4.3.4.2. Thus the morphism

t<o0T<0(Prg) X t<oT<o0(pPry,)

in the middle is an equivalence. The morphism pr, on the right (in the middle
row) is an equivalence as 7<o(k[n]) ~ 0%3. As ¥ is an equivalence, <7< (")
is also an equivalence.

It thus remains to show that t<o7<o(¢) is an equivalence. As we have al-
ready seen that domain and codomain of this morphism is equivalent to k
and hence in D(k)>o, this morphism is equivalent to ¢>7>0t<07<0(t), which
by [HA, 1.2.1.10] can be identified with ¢>0t>0,<07<07>0(¢t). As all four in-
volved functors are lax symmetric monoidal by Proposition 4.3.4.1, this is
the unit morphism of a commutative algebra in D(k) whose underlying ob-
ject is equivalent to k. We can thus apply Proposition 5.1.3.3 to conclude
that 1<o7<o(¢) is an equivalence. O

Before we can show that the morphism f from Construction 5.1.5.1 is an
equivalence, we need to determine the homology of Free%‘?g(k[n]) in low
degrees. We do this in the following proposition, where we actually calculate
the homology in a wider range than would be necessary in this section — the
calculations in the extra degrees will be used in later sections.

Proposition 5.1.5.3. Letn > 1 and let
@: k[n] = evy) (Free%?g(k[n]))

be the morphism in D(k) exhibiting Free%l?g(k[n]) as the free commutative

algebra generated by k[n] and let
itk —evp) (Free%?,f(k[n]))

be the unit morphism.

23This can be easily seen using the fiber sequence
t>1721(k[n]) = k[n] = t<o7<o(k[n])

from [HA, 1.2.1.8] in which the first morphism is an equivalence as k[n] lies in D(k)>1.
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5.1 Formality of certain E., E;-bialgebras

Then the following holds for the homology of Free%?]i%(k[n]).

0 ifi<0
k ifi=0
0 if0<i<n
H; (Free%?,i%(k:[n])) >~k ifi=n
0 ifn<i<2n
k if i =2n and n is even
k/(2) ifi=2n andn is odd

Furthermore, a basis of the homology in degrees 0 and n is given by i and ¢,
i.e. illp: k@ k[n] — Free%?g(k;[n]) induces an isomorphism on homology
in degrees smaller than 2n. Q

Proof. Using [HA, 3.1.3.13] and unpacking the definition of the relevant
oo-groupoids P(m) for O® = Comm®?* we obtain that there is an equiv-
alence?®

ev() (Free%’?ﬁ(kz[n])) ~ H (k[n]®m)2m ~ kIl k[n] IT H (k[n]‘@m)E

m>0 m>2

m

in D(k) and under this equivalence the unit morphism and the morphism
¢ exhibiting it as the free commutative algebra generated by k[n] are the
inclusions of the summands indexed by 0 and 1, respectively.

By Proposition 4.3.3.5 H; preserves coproducts, so it suffices to show the
following.

(1) H;((k[n]®™)s,,) 20 for m > 2 and i < nm.

(2) Ha,((k[n]®?)s,) = k if n is even and Ha, ((k[n]®?)s,) = k/(2) if n is
odd.

Proof of Claim (1): Note that if m > 2 then k[n]®™ ~ k[nm] has homology
concentrated in degree nm and is hence in D(k)>pm. As D(k)>pnm is stable
under colimits in D(k) (see [HA, 1.2.1.6]) we can conclude that (k[n]®™)s
is also in D (k) >y, and hence has vanishing homology in degrees smaller than
nm.
Proof of Claim (2): Going through [HA, 3.1.3.13] and [HA, 3.1.3.9] to iden-
tify the action of 35 on k[n]®k[n], we see that the nontrivial element acts via
the symmetry equivalence that is part of the structure of D(k) as a symmetric
monoidal co-category, and which is induced by the symmetry isomorphism
of the symmetric monoidal structure on Ch(k), see Proposition 4.3.2.1 (1)

24We get an equivalence of co-groupoids P(m) ~ BX,,, where B, is the 1-groupoid
with a single object and the symmetric group on m elements as automorphism group.
25The subscript X, denotes a (homotopy) orbit, i.e. a colimit of a functor from BX,,.
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and Definition 4.1.2.1. We can thus represent the Ys-object k[n] ® k[n] in
D(k) by the Xa-object k[n]@k[n] in Ch(k) where the non-trivial element acts
via the symmetry isomorphism. There is an isomorphism k[n] ® k[n] & k[2n]
mapping 1 ®1 to 1, and we obtain an induced Xs-action on k[2n]. If n is odd,
then the non-trivial element of X5 acts as — id, which reflects the fact that if
x is an element in odd degree of a commutative differential graded algebra,
then we have 22 = —z2. If n is even, then the non-trivial element acts as id.

The claim now follows from Proposition 5.1.4.2. O

Proposition 5.1.5.4. In the situation of Construction 5.1.5.1, the morphism
f is an equivalence.

In particular, if R’ is another commutative algebra in D(k) such that the
underlying objects ev1y(R') and ev(1)(R) are equivalent, then R and R’ are
also equivalent as commutative algebras. Q

Proof. The adjoint f of f’ is by definition given by the composition

) ), ALy () (CATg 30,0 (R)

CAlg(t<n) (Free%?,iio (k[n])
— R
where the second morphism the the counit of the following adjunction.
CAlg(7<,) - CAlg(t>0,<n)

This counit is homotopic to the identity by construction?®, so it suffices to
show that CAlg(r<,)(f’) is an equivalence. As t>0,<, and t>¢ are fully faith-
ful and hence conservative, and ev(q is also conservative [HA, 3.2.2.6], it
suffices to show that

L>0 O L>0,<n ©€V(1) O CAlg(Tgn)) (f"
1300 L>0,<n O T<p © ev<1>) ("

L<n © T<n O tz0 0 evry) (f')

n © T<p 0 ev(1y © CAlg(1>0)) (f')

L<n © T<n 0 evyy) (f”)

12

IN

1

L

IN

12
A~ N N/~

1

is an equivalence.
Recall from Construction 5.1.5.1 that

1 Free%(\lf(k[n]) — R

26See [HA, 1.2.1.5] and [HTT, 5.2.7.6, 5.2.7.7, and 5.2.7.8].
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5.1 Formality of certain E., E;-bialgebras

is the morphism in CAlg(D(k)) adjoint to g. There is thus a commutative
diagram

eviyy (FreeS ™8 (k[n ) eviy (R
1y (Free 3% (kln]) o ) ) (R)
where ¢ exhibits Free%?,f(k[n]) as the free commutative algebra generated

by k[n]. If we let ¢ be the unit morphism of Free%‘?,g(k[n]) and ¢ the unit

morphism of R, then f"” oi ~ ¢ as f” is a morphism of commutative algebras.
We can thus extend this commutative diagram to a commutative diagram as
follows.

V

ev iy (FreeS5(kin]) )

k& kin

)
w‘
€V(1) (R

ev<1> (f )

)

The morphism on the right is an equivalence by Proposition 5.1.5.2. We
have to show that 7<,, of the bottom morphism is an equivalence, so it suffices
to show that 7<,, of the left morphism is an equivalence. But this follows from
Proposition 5.1.5.3. O

5.1.6 Identification of some mapping spaces

As explained in the introduction to Section 5.1, it will be important for us
to show that

o (MapAlg(coCAlg(‘D(lc))) (7/&352? (Bn), Rv))

is trivial for certain commutative bialgebras R. We saw in Section 5.1.2.7
that y5°m™(B,,) is free on the pointed cocommutative algebra ’yﬁ(‘)’"‘"‘(ﬁ%), S0

we are led to consider path components of mapping spaces in
Algg, (coCAlg(D(k))) = coCAlg(D(k))x,

and after dualizing of mapping spaces in CAlg(D(k)) /.

This section concerns the steps needed to show that the sets of path
components of such mapping spaces that are of interest to us are indeed
trivial. In Section 5.1.6.1 we will show that the relevant mapping spaces in
CAlg(D(k)) i can be calculated as the mapping spaces between the underly-
ing objects in CAlg(D(k)). In Section 5.1.6.3 we will then show that g of the
relevant mapping spaces in CAlg(D(k)) are trivial. In order to do so, we will
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Chapter 5 Mixed complexes and circle actions

need to construct a commutative algebra with prescribed homology. We will
define such a commutative algebra as a pushout of free commutative algebras
and show that its homology has the required description in Section 5.1.6.2.

5.1.6.1 Identification of a mapping space in an overcategory

In this section we show that, under certain assumptions, mapping spaces in
the oo-category CAlg(D(k)) i, are equivalent to the mapping spaces between
the respective underlying objects in CAlg(D(k)).

Proposition 5.1.6.1. Let R — k and S — k be objects of CAlg(D(k)) .,
and assume that there is an equivalence T<o(ev(1)(R)) ~ k in D(k).
Then the map induced by the canonical forgetful functor on mapping spaces

MapCAlg(D(k))/k (R,S) — Mapcaig(px)) (R, S)
is an equivalence. Q

Proof. By (the dual of) Proposition D.1.3.2 there is a pullback diagram

MapCAlg(“D(k'))/k_(Rv S) ——— {R—k}

! |

MapCAIg(D(k))(R7 S) W MapCAlg('D(k))(Rv k)

in 8, where the left vertical map is the one induced by the forgetful functor.
It thus suffices to prove that Mapc iy (k)) (1: k) is contractible.

k as well as the underlying object ev ) (R) of R are in D(k)>02", so using
that by Proposition 4.3.4.1 (7) CAlg(t>0) is fully faithful with essential image
spanned by those commutative algebras whose underlying object is in D(k)>o,
it suffices to show that

MapCAlg('D(k)Zo) (R, k) =~ Mapcaig(pky) (R: k)

is contractible.
As k actually lies in (D(k)>0)., we can use the adjunction

CAlg(TS()) —| CAlg(Lzo,go)

27TBy [HA, 1.2.1.8] there is a cofiber sequence
LZOTZOR — R — L§,17'571R

and
T§,1R ~ 7571750R2 Tsflk ~0

SO LEOTEOR ~ R is in @(k)zo.
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with fully faithful right adjoint discussed in Proposition 4.3.4.1 (8) to obtain
equivalences

Mabeag (D (k)so) (R, k)
~ Mapcmg((@(k)zo)go) (CAlg(<0)(R), k)
>~ Mapcaig(n k) (CAlg(t<o) CAlg(T<0)(R), k)
By assumption the underlying object
(ev(1y 0 CAlg(1<o) o CAlg(7<0)) (R) ~ (1<0 0 T<p 0 ev(1y ) (R)

of CAlg(1<o) CAlg(7<0)(R) is equivalent to k, so by Proposition 5.1.3.3 the
unit morphism k — CAlg(t<o) CAlg(7<o)(R) is an equivalence. [HA, 3.2.1.9]
then implies that CAlg(1<o) CAlg(7<o)(R) is an initial object of CAlg(D(k)),
so the mapping space

Mapcaig(n(k)) (CAlg(t<o) CAlg(T<0)(R), k)

is contractible. O

5.1.6.2 The homology of a pushout of commutative algebras

Let n > 0 be an integer, and let R be a commutative algebra in D(k) with
homology concentrated in degree 0 and n, where it is isomorphic to k. In
Section 5.1.6.3 we want to show that the mapping space in CAlg(D(k)) from
R to another commutative algebra S with certain restrictions on its homology
is contractible. To do so, we construct a commutative algebra for which it
is easier to calculate mapping spaces out of, and such that its homology is
isomorphic to that of R in degrees smaller than or equal to 2n. We can start
with the free commutative algebra generated by one generator in degree n.
We calculated the homology in the relevant degrees in Proposition 5.1.5.3,
and it is already nearly as we want, except that the homology might not
vanish in degree 2n, where it is generated by a single element. To divide out
that unwanted element we can form a pushout over the free commutative
algebra with a generator in degree 2n.

We will start by carrying out this construction in Construction 5.1.6.2, and
then spend the remainder of this section proving that the homology is as we
require in Proposition 5.1.6.3. One way to do this calculation would be to use
the Tor spectral sequence, see [HA, 7.2.1.19], but we have opted for a more
direct approach with a concrete resolution that suffices in order to calculate
the homology groups in the necessary degrees.

Construction 5.1.6.2. Let n > 0 be an integer. In Proposition 5.1.5.3 we
showed that
Ha,, (Freeg‘?g(k[n])) =~ k
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if n is even and N
CAl ~
Ha, (Free,D(k%(k‘[n])) ~k/(2)

if n is odd. In both cases, this k-module can be generated by a single element.
Let
CAlg
' k[2n] = ev (Fre%(,j(k[n]))

be a morphism in D(k) representing a generator®® of Hgn(Free%?g(k[n])).

We obtain an induced morphism
CAl CAl
VE Freep(k%(k[Qn]) — FreeD(kf(k[n])
in CAlg(D(k)) that is adjoint to f’.
The zero morphism k[2n| — k similarly induces a morphism of commuta-
tive algebras p: Free%‘?;%(k’pn]) — k.
Define P to be the pushout in CAlg(D(k)) as in the following diagram.

Freey S (k[2n]) —— k

]

CAlg

Free,_D(k)

(k[n]) - P
We will use the notation P, f, p, i, and j elsewhere where we explicitly refer
to this construction. &

Proposition 5.1.6.3. Let n > 0 be an integer. For P as in Construc-
tion 5.1.6.2, the following holds for the homology of P.

0 ifi<O
k ifi=0
H;(P)=<0 if0<i<n
k ifi=n
0 ifn<i<2n
Furthermore, the morphism j: Free%‘?,i%(k[n]) — P from Construction 5.1.6.2
induces an isomorphism on H; for i < 2n. Q

Proof. To improve readability in the formulas we will use the following short-
hand notation in this proof. We write Fj,, for Free%‘?g(kpn]) and F,, for

281f 2 is invertible in k and n is odd, then we have k/(2) = 0, which is of course still
generated by a single element 0, so we can carry out this construction also in this case,
even though the construction is not really necessary for applications. However, we would
like to avoid special handling of this one case.
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Free%l(\,i%(k[n]). Furthermore, we will omit writing forgetful functors and will

instead always make explicit in which co-category objects and morphisms are
considered. We will also use the notation from Construction 5.1.6.2.

The strategy of this calculation is as follows. By construction P is a pushout
of commutative algebras, so by Proposition E.8.0.5 can be calculated as a
relative tensor product. We thus resolve k as a left-F5,-module in a manner
that suffices to extract the homology groups we are interested in from the
long exact sequences in homology that we obtain.

Let g: k[2n] — F5, be the morphism in D(k) that exhibits F5, as the
free commutative algebra generated by k[2n]. We first consider the following
composition in LModg,, (D(k))

~ id ® 0
Fon2n] —= Py, @ k[2n] — 22223 Py @ Fyyy — 2 By, —2 s k

(%)
where p is the multiplication, ¢’ is defined as the composition indicated in
the diagram, and Fy, acts on Fy, ® Fy, and Fy, ® k[2n] via the the left tensor
factor, and on k via p?°.

We claim that the composition pg’ from F5,,[2n] to k in () is nullhomotopic
as a morphism in LModg,, (D(k)). In fact, every morphism of Fy,-algebras

29Here are some more details on obtaining these morphisms as morphisms in
LModp,,, (D(k)).
There is a commutative diagram in CAlg(D(k))

F2n ®F2n

iszny X

FQn an k

idp2n P

where idp,,, ®1 is the composition Fby, ~ Fop ® k with the identity tensor the unit of
F5,, — this is the inclusion of the first summand of the coproduct Fb,, ® Fa,, ~ Fs, 1 Fs,
in CAlg(D(k)).

We can now forget down to associative algebras and then use the section
Alg(D(k)) — LMod(D(k)) from [HA, 4.2.1.17] that carries an algebra to the under-
lying object as a module over the algebra itself. We can then restrict the actions to
obtain a commutative diagram of Fs,-modules. This constructs the morphisms p and
p in (*). See also Construction E.8.0.4 for more details for this kind of construction.

The morphism

1
k[2n]) ~2% Fy, @ Fan

in D(k) is adjoint to a morphism of left- Fa,-modules Fa, ® k[2n] — F2p, ® Fby, (here
Fs, ® k[2n] is the free left- Fa,-module generated by k[2n], see [HA, 4.2.4]). The mor-
phism of D(k) underlying this morphism is then by definition given by the composition

idp,, ®1Qg p®idp,,,

Fyy, ® k[2n] Fon @ Fop, ® Fon Fon ® Fop

which is homotopic to idg,, ® g.
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F5,[2n] — k is nullhomotopic, as we have by [HA, 4.2.4.6] an equivalence
Mapy sodp,, (D (k) (F2nl2n], k) ~ Mapyp ) (k[2n], k)

which is contractible as k[2n] is concentrated in degree 2n > 0 and k is
concentrated in degree 0.

The nullhomotopy of ¢’ induces a morphism in LModg,, (D(k)) from the
cofiber of ¢’ to k and a commutative triangle as in the following diagram

Fy,[2n] —2 Fy, —2
(%)

4

-2 Q)

where the top row is a cofiber sequence.

Note that the forgetful functor evy,: LModg,, (D(k)) — D(k) preserves
colimits by [HA, 4.2.3.5]. Using the long exact homology sequence for the
cofiber sequence in D(k) underlying the one from (xx), together with the
calculation of the lower homology groups of Fs,, from Proposition 5.1.5.3, we
obtain that ¢ induces an isomorphism

Ho
k2 Ho(Fan) 2% 1, (0)

and that for i < 4n with i # 0 the homology group H;(C) is zero®°. As
Hgy(p) is an isomorphism (p underlies a morphism of commutative algebras
and hence preserves the unit morphism) it follows that Hy(¢)) must be an
isomorphism as well.

We now take the fiber of ¢ to we obtain another cofiber sequence of left-
Fy,-modules in D(k) as follows.

D%oLk (% % %)

Again using the long exact sequence in homology we can conclude that
H;(D) 20 for i < 4n.

Let us now get back to what we actually need to do, calculate the homology
of P in low degrees. As D(k) is presentable symmetric monoidal by Propo-
sition 4.3.2.1 (1), we can apply Proposition E.8.0.5, which tells us that P is

30The only nonzero homology groups of Fay,[2n] and Fa,, in degrees smaller than 4n are
Ho(F2pn) = k, Hop(Fan[2n]), and Hap(F2p), so the only thing that needs to be done
is check that Hay,(g’) is an isomorphism. By Proposition 5.1.5.3 the homology group

. . 1Qidg[2n)
Hay (F2n[2n]) has a basis represented by the morphism k[2n]

Composing this morphism with g’ we obtain by definition the morphism

1o (idF2’n, ®g) o (1 ® idk[Qn]) ~po(l®g)~g
which also by Proposition 5.1.5.3 forms a basis of Hay, (Fan).

Fop ® k[2n]
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5.1 Formality of certain E., E;-bialgebras

equivalent to the relative tensor product®' F,, ® Fy,, k, where we consider Fj,
and k as right and left modules over Fs,, which is considered as an associa-
tive algebra in CAlg(D(k)). The forgetful functor evy,: CAlg(D(k)) — D(k)
is symmetric monoidal and preserves A°P-indexed colimits by [HA, 3.2.3.2].
We can thus apply Proposition E.8.0.1 to conclude that the underlying object
of F, ®p,, k in D(k) is equivalent to the relative tensor product F,, ®p, k,
where we consider Fb,, as just an associative algebra in D(k).

Tensoring cofiber sequence (x * *) with the right- F»,-module F,, we obtain
by [HA, 4.4.2.15] a cofiber sequence in D(k) as follows.

id ®;q0 id ®iq

F, ®F2nD—>Fn ®ano F, ®F2nk

As H;(P) & H;(F, ®p,, k) for any integer i, we can use the long exact
homology sequence associated to the above cofiber sequence to evaluate the
homology groups of P. As remarked before, D lies in D(k) >4y, and as F), and
Fy,, are both in D(k)>o and taking colimits can only increase connectivity
[HA, 1.2.1.6], it follows that

F, ®p,, D~ |F, ® F5.*D|

is an object of D(k)>4n, as well®2.
We can thus conclude that for ¢ < 2n the morphism idp, ®idp2n1/J induces
an isomorphism as follows.

H,(Fy ®p,, C) = Hi(F, @y, k) = H;(P)

To evaluate the homology groups of F,, ®r,, C' we can use the long exact
homology sequence associated to the cofiber sequence

idF,,L®idF2n idp,, ®idF2W

g’ %2}
F, R Fy, F2n[2n] F, QR Ry, Fyy, F, Q Fyp, C

which we obtain by applying F,, ®r,, — to the cofiber sequence in the top row
of (xx). Using unitality of the relative tensor product [HA, 4.4.3.16] we can
identify this cofiber sequence with the top row in the following commutative
diagram®? in D(k)

Fo2n] ~ F,, ® k[2n] p'o(idr, ®(fog)) F, A F, ®p, C
jJ, JidF" Bidry,, ¥
P—=——F,®p, k

31See Construction E.8.0.4 for an explanation of the relevant module structures.

32Gee [HA, 4.4.2.8] for this description of the relative tensor product. That the bar construc-
tion really looks like this in the individual levels follows from unpacking the definition
[HA, 4.4.2.7].

33The identification of the top left morphism arises from unpacking the definitions. For j

fitting into the commutative diagram, note that the composition Fb, 2 c i) k is by
definition homotopic to p, and then use the identification of the pushout diagram from
Construction 5.1.6.2 with the one from Proposition E.8.0.5.
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Chapter 5 Mixed complexes and circle actions

where f and j are as in Construction 5.1.6.2, ' is the multiplication mor-
phism for F),, and A is a newly introduced name. It thus suffices to show that
H;(A) is an isomorphism for ¢ < 2n and that additionally Ha, (F), ®p,, C) = 0.

In the range we are interested in F,[2n] has only homology in degree 2n
(see Proposition 5.1.5.3), so that it immediately follows using the long exact
sequence in homology that H;(\) is an isomorphism for ¢ < 2n, and the
statements for the homology of P in this range now follow from the calculation
of the homology in low degrees of F,,, see Proposition 5.1.5.3.

It remains to show that Ha, (F, ®p,, C') = 0. By the long exact sequence
in homology we have to show for this that p’' o (idp, ® (f og)) induces a
surjection on Hy,. Let ¢: £k — F,, be the unit morphism. Then by Proposi-
tion 5.1.5.3 there is an isomorphism Hay, (F, ® k[2n]) 2 k, and this homology
group has a basis formed by by (¢t ® idyjap)) 0 7, where n: k[2n] ~ k ® Ek[2n]
is the unitality equivalence of D(k). Composing with p’ o (idp, ® (f o g)) we
obtain?

//o(idpn ®(fog))o (L®idk[2n}) on
~p oL@ (fog))on
~foyg
~ f

which by definition is a generator of Hay, (F},). O

5.1.6.3 On a mapping space of commutative algebras

In this section we show that a mapping space relevant in Section 5.1.7 has
only a single path component.

Proposition 5.1.6.4. Let n > 0 be an integer. Let R and S be commutative
algebras in D(k), and assume that the homology of R is concentrated in degrees
0 and n, where it is isomorphic to k, that the homology of S is concentrated
in degrees i with 0 < i < 2n, and that H,(S) = 0.

Then
o (MapCAlg(D(k))(Rv S)) = x (5.7)
So up to homotopy, there is a unique morphism of commutative algebras
R—S. @

Proof. Consider the commutative algebra P that was constructed in Con-
struction 5.1.6.2. Proposition 5.1.6.3 implies that 7<2,(P) has the same ho-
mology as R. As the homology is free (as a Z-graded k-module) it follows
from Proposition 4.3.3.7 that 7<2,(P) and R are equivalent as objects of
D(k). It then follows from Proposition 5.1.5.4 that 7<2,(P) and R are even
equivalent as commutative algebras in D (k).

34The last step is by definition, see Construction 5.1.6.2.
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5.1 Formality of certain E., E;-bialgebras

We thus obtain an equivalence as follows.

Mapcaig(p iy (B S) = Mapeig (k) (T<2n (P), S)

T<an(P) and S both lie in (CAlg(D(k))>0)<2n by Proposition 4.3.4.1 (7) and
(8), and as the inclusion is fully faithful we obtain another equivalence as
follows.

=~ Map(cAlg(D (k)=o) <an (T<2n(P), 5)
We can now continue with the adjunction from Proposition 4.3.4.1 (8).
=~ Mapcatg(n (k)) s (P5 S)

Finally, we use that CAlg(t>¢) is fully faithful and obtain the following equiv-
alence.

~ Mapcaig(p k) (P2 S)

As P was defined as a pushout in CAlg(D(k)), we obtain a pullback dia-
gram in 8§ (using notation from Construction 5.1.6.2) as follows.

B CAl
Mape atg(n (k) (P S) —— Mapaaig(n(k)) (Fre%(;ﬁ(k[n])vs)

| I

CAl
Mapcarg(p(ky) (K S) — Mabcaig(n k) (Fre%(k%(k[%]), 5)

k is initial as a commutative algebra by [HA, 3.2.1.9], so Mapcag(p () (K S)
is contractible. This implies that3°

MapCAlg(Pa S) s MapCAlg (Free%?;f(k[n}% S)

f*
“— Mapcag (Free%?,i% (k[2n]), S)

is a homotopy fiber sequence of which we can take the long exact sequence of
homotopy groups. To show that 7 (Mapc Alg(D (k) (P S )) & x it then suffices
to show that both

o (MapCAlg(D(k)) (Free%?,i%(k[n] ), S) )

and
T <MapCA1g(D(k)) (Free%?g(kzpn]), S) )

are trivial.

35We shorten CAlg(D(k)) as CAlg.
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Chapter 5 Mixed complexes and circle actions

We can use the adjunction Free%@}f = ev(yy to rewrite these homotopy

groups as follows.

o (MapCAlg(D(k)) (Free%‘(‘,if(k[n]), S)) = 7o (k[n], ev(1y(5)) = Ha(S) = 0

T (MapCAlg(rD(k)) (Free%?é%(k’pn]), S) )

1%

m (k[?n], ev<1>(5))

mo(k2n + 1], ev(1)(9))
Hop41(S) =0 O

1%

1%

5.1.7 Formality of certain E_, [E;-bialgebras

In this section we finally put together the various results from sections
Sections 5.1.1, 5.1.2, 5.1.3, 5.1.4, 5.1.5 and 5.1.6 and show formality of com-
mutative bialgebras with homology concentrated in degrees 0 and 1, where
it is isomorphic to k.

Proposition 5.1.7.1. Let R be on object of BiAlgcomm assoc(D(k)) such that

k fori=0andi=1
H;(R) = :

0 otherwise
Then the underlying object of R in D(k) is dualizable®®.

Let furthermore®”
fit vReed (Ar) = RY

be some morphism in the oco-category Alg(coCAlg(D(k))), where Ay is as in
Construction 5.1.2.2°8, and R is the dual of R, see Remark 5.1.1.9. Then
f1 can be extended to a morphism

Vaom(A) = RY
where A is as in Construction 5.1.2.2. Q

Proof. That the underlying object of R is dualizable follows immediately
from the assumptions on the homology together with the formality statement
Proposition 4.3.3.7, see also Example 5.1.1.8.

By Corollary 5.1.2.14 the morphisms v52™™(A,,) — y2™™(A) exhibit the
object Y52MM(A) as a colimit of

Vacmor' (A1) = Yagmod (A2) = Yagmod (As) — ...

in Alg(coCAlg(D(k))). It hence suffices to prove inductively that given an
integer n > 1 and a morphism f,_1: ’yggsrggn(An_l) — RY there exists an

36See Definition 5.1.1.1.
37Recall Notation 5.1.2.12.
38 A1 is cofibrant as a chain complex by Proposition 5.1.2.11 Proposition 4.2.2.12.
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5.1 Formality of certain E., E;-bialgebras

extension to a morphism f,,: Y52mM(4,) — RY. Also by Corollary 5.1.2.14,
it suffices for this to construct a commutative square

Viowd (Br) — Y% (Bn)

N

|

,YAC;:E? (ATL— 1 ) RY

in Alg(coCAlg(D(k))), where the morphism on the left and top are the ones
constructed in Construction 5.1.2.5. Proposition 5.1.2.10 and Remark 5.1.2.9
imply that v$2™™(B,,) is a zero object in Alg(coCAlg(D(k))), so there is an

essentially unique morphism 'yf\;’s"gé“(Bn) — RY we can fill in on the right.

What remains is to construct a homotopy between the two possible com-

posites from v5om™(B,,) to RY in the diagram. For this it suffices to show

that any two morphisms from y§2m™(B,,) to R are homotopic, i.e. that

o (MapAlg(coCAlg('D(k))) (7225”32“ (Bn)7Rv)) = x
In Proposition 5.1.2.18 it was shown that

¢ Alg(coCAl c
’YA:Snoqzr:n (ﬁn) =~ FreeAlé}f:Z(zCOCi)lg) (,Y]E;)mm (ﬁ./n))

where 75°™™(B,,) is an object in
Algg, (coCAlg(D(k)))

with underlying object equivalent to k@ k[—2], see Construction 5.1.2.15. We
thus obtain an isomorphism as follows.

o (MapAlg(coCAlg(D(k))) (’Yg:srgén (B,), Rv))

= mo (MapAlgEo (coCAlg(D(k))) (ﬂ}/ﬂ‘clgmm (B;z)’ R\/))

By [HA, 2.1.3.10], the co-category of Eg-algebras in a monoidal co-category C
can be identified with Cy,/, so applying this and dualizing (see Fact 5.1.1.3),
we obtain the following isomorphisms.

o (MapAlgEO (cocatg(m (k) (Vg™ (Br), Rv))
= mo (MapcoCAlg(fD(k))k/ (™™ (B,), RV))

= o (Map(cmg(m)))/k (R, 7C°mm(§%)v))

By the assumptions on R, the truncation 7<¢(R) has homology groups
concentrated in degree 0 and Hq(R) is free of rank 1. Using Proposition 4.3.3.7
we can thus apply Proposition 5.1.6.1 to obtain the following isomorphism.

o (Map(CAlg('D(k)))/k (R, Vcomm(ﬁé)v))
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=mo (Ma’pCAlg(D(k)) (R, ,_yComm(B:L)V)>

As the dual of k[l] is k[—I], the underlying object in D(k) of Y™™ (B! )V
is equivalent to k @ k[2]. Now we can apply Proposition 5.1.6.4 to conclude
that this set has exactly one element. O

Proposition 5.1.7.2. Let R be on object of BiAlgcomm assoc(D(K)) such that

k fori=0andi=1
H;(R) = .

0 otherwise
and let g: k[1] = R be a morphism in D(k) representing a basis of Hy(R).
Let = be an element of k. Then there exists a morphism>?

¢: R —~(A)Y

in BiAlgcomm assoc (D (K)) that induces an isomorphism on Hy and is such that
H; (¢) maps the element represented by g to = -yY (see Proposition 5.1.2.4).
Q@

Proof. Consider the commutative algebra v(A})Y. (see Construction 5.1.2.15
for a definition of A}). The underlying object of v(A}) in D(k) is by definition
equivalent to k @ k[—1], so

H;(y(41)") =

k fori=0andi=1
0 otherwise

with the homology group in degree 1 generated by yy'.
Define a morphism ¢ : Free%‘?lg (k[1]) — ~(A})Y such that compos-

k)>o
ing the morphism k[1] — Free%?,i%(k[l]) exhibiting Free%‘?‘g(k[l]) as the

free commutative algebra generated by k[1] with ¢f represents the element
x-yy in Hy(v(A})Y). As a morphism of commutative algebras, the unit mor-
phisms must be preserved, so ¢f induces an isomorphism on Hg by Proposi-
tion 5.1.3.3.

We obtain an induced morphism ¢} as in the following diagram

D(k)>o

—~

R ——=—— CAlg(rer) (Freef35. (k[1]))

J{CAlg(7‘<1)(ap'{)
)Y ———=—— CAlg(<1)(v(41)")

=~

¥(

39For a definition of A, see Construction 5.1.2.2. For the duality functor see Fact 5.1.1.3.
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5.1 Formality of certain E., E;-bialgebras

where the top horizontal equivalence is the one from Proposition 5.1.5.440
and the bottom horizontal equivalence is the one arising from v(A})" already
being concentrated in degrees 0 and 1. ¢} then induces an isomorphism on
Hy and satisfies Hy(p])(g) = = - vy

Applying [HA, 2.1.3.10] and Proposition 5.1.6.1 we can upgrade ¢} to a
morphism in BiAlgc,mnm g, (D(k)). Next, applying Proposition 5.1.2.18 and
dualizing, we can lift this morphism to a morphism

1: R— (A1)

in BiAlgcomm assoc(D(K)) such that the triangle

R—"— v(Ar)Y

RN

v(A1)"

of underlying morphisms of commutative algebras commutes, with the verti-
cal morphism being the dual of v applied to the inclusion A} — A;. Applying
Proposition 5.1.7.1 (and dualizing twice), we can further lift ¢; to a morphism
¢ that fits into a commuting triangle in BiAlge,mnm assoc(P(K)) as follows.

R —F— 5(4)Y

N

v(A1)Y

By Proposition 5.1.2.4 (and dualizing) the homology of v(A)" is k in degrees
0 and 1 and 0 in other degrees, and a basis is formed by 1V in degree 0 and
by yy in degree 1. As the inclusion A} — A sends 1 to 1 and y; to yi, it
follows that the induced morphisms H;(v(A)Y) — H;(v(A4})Y) send 1Y to 1V
and yy to yy and are thus in particular isomorphisms. That ¢ satisfies the
required properties now follows from this together with the description of ¢/
discussed above. O

Proposition 5.1.7.3. Let R and S be objects in BiAlgcomm assoc(D(K)) such
that
k fori=0andi=1

0 otherwise

H; (R) = {

40We choose this equivalence to be such that the morphism k[1] — Freeg?g(k[l}) exhibit-
CAlg
D(k)
the equivalence is homotopic to g.

ing Free (k[1]) as the free commutative algebra generated by k[1] composed with
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Chapter 5 Mixed complexes and circle actions

and

Hi(S)N{k fori=0andi=1

0 otherwise

and let {gr} and {gs} be a basis of Hi(R) and H(S), respectively. Let x be
an element of k.
Then there exists a morphism

p:R— S

in BiAlgcomm assoc (D (K)) such that Ho(p) is an isomorphism and such that

Hi(¢)(9r) =2 - gs.
In particular, ¢ is an equivalence if and only if x is a invertible in k.

Proof. By Proposition 5.1.7.2 we can construct morphisms

R PR fy(A)V ¥ps S

in BiAlgcomm assoc(D(k)) such that both ¢ and ¢g induce an isomorphism
on Hy and

Hi(¢r)(gr) = = - 4y and Hi(ps)(9s) = o

It follows from Proposition 5.1.2.4 and [HA, 3.2.2.6] that g is an equivalence
and ¢pg is an equivalence if and only if x is invertible. We now define ¢ as
the composition (¢g)~! o ¢g. O

5.2 The k-linear circle as an E, [E;-bialgebra

The goal of this section is to define the circle group T as well as its k-linear
version kX T as commutative and cocommutative bialgebras, for T in 8, and
for kT in D(k).

T will be defined in Section 5.2.1. We will then discuss the linearization
functor kX —: 8§ — D(k) in Section 5.2.2, and apply it to define kX T in the
very short Section 5.2.3.

5.2.1 The circle group

Let W be the class of weak equivalences in the model structure on sSet
discussed in [Hov99, Chapter 3] and [HTT, After A.2.7.3] — these are the mor-
phisms whose geometric realization is a homotopy equivalence of topological
spaces. The infinity category of spaces 8 can then be defined by inverting
those weak equivalences of simplicial sets, so as

8 = sSet[W 1]
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5.2 The k-linear circle as an E,, E{-bialgebra

see [HTT, 1.2.16.1] in combination with [HA, 1.3.4.20]. The canonical functor
sSet — 8 preserves finite products, as finite products in sSet are automatically
homotopy products*!. The functor Sing: Top — sSet also preserves products
as a right adjoint, so that the composition Top — 8 also preserves finite prod-
ucts. Giving both involved co-categories the cartesian symmetric monoidal
structure [HA, 2.4.1] upgrades this functor to a symmetric monoidal functor,
and so induces an (again symmetric monoidal) functor of co-categories of
commutative algebras CAlg(Top) — CAlg(8). This allows us to construct
commutative algebras in 8§ by giving an explicit commutative topological
monoid, which we will use in the following construction.

Construction 5.2.1.1. We let the circle group T refer to the object in
CAlg(8S) obtained by applying the above functor CAlg(Top) — CAlg(8) to
the (multiplicative) commutative submonoid { z € C | |z] =1} of C.

Note that every commutative topological monoid can be upgraded to a
commutative and cocommutative topological bimonoid, with comultiplication
given by the diagonal map. This phenomenon is in fact more general, as
we saw in Proposition 3.3.1.2 that any commutative algebra in a cartesian
symmetric monoidal oco-category can be upgraded in an essentially unique
way to a commutative and cocommutative bialgebra.

In particular, we can upgrade T in an essentially unique way to an E, Eo-
bialgebra in spaces. &

5.2.2 The linearization functor

In Section 5.2.1 we considered 8§ as a symmetric monoidal co-category via
the cartesian symmetric monoidal structure. There is also a different way of
defining the symmetric monoidal structure on 8, as we discuss in the following
remark.

Remark 5.2.2.1. The oco-category 8 is the unit object in Prt by [HA,
4.8.1.20], and hence can be upgraded to a presentable symmetric monoidal
oco-category that is initial in CAlg(Pr™) by [HA, 3.2.1.9] in combination with
[HA, 4.8.1.9 and 4.8.1.15].

To show that the so obtained symmetric monoidal structure is equivalent
to the cartesian symmetric monoidal structure, it suffices in light of [HA,
4.8.1.12] to show that the product functor 8§ x § — § preserves colimits
separately in each variable, which is shown in [HTT, 6.1.3.14]. O

The characterization of 8 as an initial object in CAlg(Pr™) allows the fol-
lowing definition.

41 As the geometric realization functor |—|: sSet — Top is the left adjoint of a Quillen equiv-
alence, this follows from every object in sSet being cofibrant, |—| preserving products
[Hov99, 3.1.8], and every object in Top being fibrant.
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Chapter 5 Mixed complexes and circle actions

Definition 5.2.2.2. Let C be a presentable symmetric monoidal co-category.
Then we obtain an essentially unique colimit preserving symmetric monoidal
functor that we denote as follows.

]lc&—:s—)C

As D(k) is a presentable symmetric monoidal co-category by Proposi-
tion 4.3.2.1 (1), we hence obtain a colimit preserving symmetric monoidal
functor

EX —:8 — D(k)

that we sometimes call the k-linearization functor. &

Remark 5.2.2.3. Let p: k — k' be a morphism of commutative rings. Then
universality of the functors defined in Definition 5.2.2.2 imply that we obtain
a commuting triangle

’“x/\

—e D(k)
K ®p,
where k' ®j, — is the colimit-preserving symmetric monoidal functor discussed
in Remark 4.3.2.2. &

Let X be an object of 8. In Section 4.3.3 we discussed the homology functors
H,, on D(k), which we could thus apply to kX X. In the rest of this section we
show that this is compatible with the classical notions of homology of spaces.
We begin by reviewing the definition of homology of simplicial sets.

Construction 5.2.2.4. We construct a functor
k- —: sSet — Ch(k)

as follows. There is a functor, which we also call k- —, from Set to LMody(Ab)
that maps a set X to the free k-module on the basis X . This functor induces
a functor as follows.

sSet = Fun(A°P, Set) = Fun(A°, LMod,(Ab))

The functor k - —: sSet — Ch(k) is then to be the composition of this
functor with the functor

C': Fun(A°?, LMody,(Ab)) — Ch(k)

that maps a functor F' to the chain complex C(F) for which C(F),, := F([n])
and 95 = =37 F(5). O
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Classically, one defines homology for simplicial sets X with coefficients in
the commutative ring k as H, (X, k) := H,,(k - X). For topological spaces one
then defines homology as the homology of their singular simplicial set.

What we would like to show is that there is a commutative diagram

sSet — = Ch(k

v LMOdk (Ab)

) \Hn)
/Hn>

_

S P (k)

where the left vertical functor is the canonical one. That there is a filler for

the right triangle was shown in Proposition 4.3.3.2. It thus remains to show

that there is a filler for the left square. The strategy will be to use that

colimit-preserving functors out of 8§ are determined by their value on the

one-point-space *. So we will show that k- — induces a colimit-preserving

functor on underlying oo-categories that maps * to k. This functor will then

by definition fit into such a commutative square but also be homotopic to
kX —.

Proposition 5.2.2.5. The functor
k- —:sSet — Ch(k)

from Construction 5.2.2.4 preserves weak equivalences as well as cofibrations,
where sSet carries the model structure discussed in [Hov99, Chapter 3] and
[HTT, After A.2.7.3], and Ch(k) carries the projective model structure from
Fact 4.1.3.1. @

Proof. Weak equivalences in sSet are those maps whose geometric realiza-
tion is a homotopy equivalence of spaces, and that singular homology maps
homotopy equivalences to isomorphisms is classical*?.

Now let f: X — Y be a cofibration in sSet, i.e. the map f,: X,, — Y,
is injective for every m > 0. To show that k - f is a cofibration we have by
[Hov99, 2.3.9] to show that k - f is a levelwise split injection and that k - f
has cofibrant cokernel.

But the morphism (k- f),, is a morphism of free k-modules induced by an
injection among the basis sets, so is a split injection. The cokernel can then be
identified with a chain complex that is concentrated in nonnegative degrees
and that in level n > 0 is given by the free k-module with basis Y, \ fn(X,).
Thus the cokernel of k - f is cofibrant by [Hov99, 2.3.6]. O

Definition 5.2.2.6. By Proposition 5.2.2.5 the functor k- — from Construc-
tion 5.2.2.4 induces a functor

k- —: sSet® — Ch(k)*f

42For a discussion in a textbook see for example [Bre93, 16.5]
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preserving weak equivalences and thus a functor on underlying co-categories®3

8 ~ sSet[W 1] — Ch(k)«{[W'~1] ~ D(k)

that we also call k- —.
By construction this functor comes with a commutative square

sSet — = Ch(k)e!
J Jv (5.8)
of co-categories, where the left vertical functor is the canonical one. &

Proposition 5.2.2.7. The functor
k- —:sSet — Ch(k)
from Construction 5.2.2.4 preserves small colimits. V)

Proof. Colimits in both sSet as well as Ch(k) are calculated levelwise. The
statement thus boils down to the functor k- —: Set — LMody (Ab) preserving
colimits. But this functor is left adjoint to the forgetful functor. O

Proposition 5.2.2.8. The functor
k-—:8— D(k)
from Definition 5.2.2.6 preserves small colimits. Q

Proof. By Fact 4.1.3.1 and [HTT, After A.2.7.3] sSet and Ch(k) are combina-
torial model categories. Furthermore, by Proposition 5.2.2.7, [HTT, 5.5.2.9]*4,
and Proposition 5.2.2.5, the functor

k- —: sSet — Ch(k)

is a left Quillen functor between combinatorial model categories.
The claim thus follows from [HA, 1.3.4.26]. O

Proposition 5.2.2.9. The functors k- — from Definition 5.2.2.6 and kX —
from Definition 5.2.2.2 are homotopic as functors of infinity categories from

S to D(k). v

431} is to be the class of weak equivalences in sSet and W’ the class of weak equivalences
in Ch(k).
44 As both sSet and Ch(k) have combinatorial model structures they are presentable.
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5.2 The k-linear circle as an E,, E{-bialgebra

Proof. kX — preserves small colimits by definition and k - — by Propo-
sition 5.2.2.8. Then [HTT, 5.1.5.6] implies that it suffices to check that
kX% ~ k- %, where * is the one-point-space.

As kX — is by definition symmetric monoidal, it maps the monoidal unit
* of § to the monoidal unit k of D(k).

As 7v: Ch(k)®f — D(k) is also symmetric monoidal it thus suffices to show
that the chain complex®® k- x is quasiisomorphic to k[0]. But it can easily be
seen from the definition that k - * is the chain complex*6

R Iy ALY APLLLY APLEY DL
and the obvious inclusion of k[0] is a quasiisomorphism. O

We can now put everything together and summarize the previous results
as follows.

Proposition 5.2.2.10. There is a commutative diagram

sSet — Ch(k

gl LMody (Ab)

) -
\
§ ————— D(k) T

where the left vertical functor is the canonical one. Q@

Proof. For the left commutative square combine Proposition 5.2.2.9 with the
commutative square (5.8) from Definition 5.2.2.6. The right commutative
triangle was constructed in Proposition 4.3.3.2. O

5.2.3 Definition of the k-linear circle
We can now define the k-linear circle as a bialgebra in D(k).

Definition 5.2.3.1. The k-linear circle is the Ey,Ey-bialgebra £ X T in
D(k). ¢

5.2.4 Formality of the k-linear circle as an
E., E;-bialgebra
In this section we apply the main result of Section 5.1, Proposition 5.1.7.3,

to the commutative bialgebra kX T that we defined in Section 5.2.3. We start
by recording the homology of kX T.

45Here * is the simplicial set A°P — Set that is constant with value *. As pointed out
in the introduction to Section 5.2.1, the canonical functor sSet — 8 preserves finite
products, so this simplicial set * maps to the space * in 8.

46The leftmost k is in level 0.
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Chapter 5 Mixed complexes and circle actions

Proposition 5.2.4.1. The following holds for the homology of kKT as
defined in Definition 5.2.3.1.

H,(T X k) k fori=0andi=1
‘ T 10 otherwise

Q

Proof. By Proposition 5.2.2.10 and using the definition of T in Construc-
tion 5.2.1.1 there is an isomorphism

H.(kRT)=H.({z€C||z] =1};k) 2H.(S';k)

where on the right we have the usual singular homology of the topological
1-sphere with coefficients in k. O

We can now put all the work of Section 5.1 to use to obtain an equivalence
of commutative bialgebras between kX T and D.

Proposition 5.2.4.2. Let g be a basis element of Hi(kXT). Then there
exists an equivalencet”
¢:D—=kEXT

in BiAlgcomm assoc(D(K)) that sends the element d of Hi(D) to the element g
in Hi(kXT). Q

Proof. Follows directly from Proposition 5.2.4.1 and Proposition 5.1.7.3. [

From Proposition 5.2.4.2 we obtain an equivalence D ~ kX T as commu-
tative bialgebras. This equivalence is however not canonically determined —
not, even the induced isomorphism on homology is, it depends on the choice
of a element g of Hy(k X T) that forms a basis. If gy is one element that
forms a basis, then the set of all elements forming a basis is given by the
products x - gg where z is an invertible element of k. So which element should
we choose?

We can reduce the indeterminacy by varying the ground ring. It follows
from Construction 4.2.1.1, Remark 4.3.2.2, and Remark 5.2.2.3 that an equiv-
alence of commutative bialgebras Dz ~ ZKXT in D(Z) induces an equivalence
of commutative bialgebras as follows

Dy ~k®; Dy ~k®ZKRT ~kXT

where the first equivalence is the one obtained from combining Construc-
tion 4.2.1.1 with Remark 4.3.2.2; the middle equivalence arises from apply-
ing k ® Z— to the equivalence Dy ~ Z X T, and the last equivalence is the
one from Remark 5.2.2.3. By choosing this equivalence for k, we have thus

47See Notation 4.4.0.2 and Construction 4.2.1.1 for a definition of D and Definition 5.2.3.1
for a definition of £k X T.
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reduced the indeterminacy of the isomorphism on H; to choosing one of the
two generators of H1(ZK T) = Z.

So which generator of Hy (ZXT) should we choose? We will in Section 6.1.1
define a 1-category A and call functors from A°P into an oo-category cyclic
objects in that oo-category. We will consider two relevant constructions on
cyclic objects. We will define a functor

|~ |Mixed : Fun(A°P, Ch(k)*°") — Mixedcor = LModp (Ch®)
in Section 6.3.1.2 and a functor
|—|: Fun(A°P, D(k)) — D(k)BT

in Section 6.1.3. Note that there are automorphisms of D and T that intro-
duce a sign. For D we can describe this automorphism by d — —d, and the
automorphism of T is given by z — z~1. These reflect choices that are made
when defining the two functors we just mentioned — for example for |—|mixed
there is no intrinsic reason to define d the way it is done rather than adding
an extra sign. But in any case, there are choices that have been made for
both |—|mixed and |—|.

The result [Hoy18, 2.3] can now be phrased as follows: There is a generator
of H1(Z X T) such that the following diagram commutes

Fun (AP, Ch(k)<!) Il LModp (Ch™")

’Y*l J{’YMixed

Fun(A°, D(k)) —> D(k)BT —> LModygr(D(k)) —> LModp(D(k))

-

(5.9)
where the middle bottom horizontal equivalence is one we will construct in
Section 5.3, the right bottom horizontal equivalence is the one induced by
the equivalence D ~ kX T arising as discussed above from the choice of
generator of Hi(Z X T), and Ymixed is the functor Mixed.or — Mixed from
Notation 4.4.1.2. We thus make the following convention.

Convention 5.2.4.3. From now on, when we refer to the equivalence of
commutative bialgebras in D(k)

DS EXT

then this is to be the equivalence that arises in the manner discussed above
from the generator of Hy(Z X T) that is such that there is a commutative
diagram (5.9). ¢

Remark 5.2.4.4. The equivalence of bialgebras from Convention 5.2.4.3 in-
duces via the functor LMod from Definition 3.4.2.1 an equivalence of monoidal
oo-categories

LModggr(D(k)) ~ LModp (D(k))
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Chapter 5 Mixed complexes and circle actions

that is compatible with the forgetful functors to D(k).
Furthermore, if ¢: k — k' is a morphism of commutative rings, then there
is a commutative diagram?®

LModzr = LModp, (D(k))
Vi eV
D(k)
K ®r— E®r— K ®p—
D(K")
LMody gt = LModp,, (D(k))

of monoidal functors, where the horizontal equivalences are the ones just
mentioned and the vertical functors are induced by the symmetric monoidal
functor

kK @ —: D(k) — D(k')
from Remark 4.3.2.2. &

5.3 Group actions and modules over group
rings

Let G be a grouplike*® associative monoid in 8. One important class of
examples is supplied by pointed spaces X by taking the loop space QX,
which has a multiplication arising from composition of loops. The details of
this construction are discussed in [HA, Introduction to 5.2.6], where a functor

B1: 8« — Mon%2 _ (8)

Assoc

is constructed that implements this idea. It turns out that there are no other
examples, and that the restriction of 8; to the full subcategory 821 of 8,
spanned by the path connected spaces is an equivalence

Br: 821 = Mong2__(8)

48 There is also supposed to be a filler for the outer diagram that is compatible with the
forgetful functors, i.e. this is a three-dimensional diagram that we are looking at from
the top.

498ee [HA, 5.2.6.2] for a definition.
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5.3 Group actions and modules over group rings

as shown in [HA, 5.2.6.10]. The inverse functor of this equivalence will be
called B. If we interpret BG as an co-groupoid, then B G has (up to equiv-
alence) a unique object, and that object’s automorphism space is equivalent
to QBG ~ G.

Now if C is an oo-category, then we can consider the co-category of objects
with G-action in C, which is defined as®® follows.

CBY% .= Fun(BG,0)

If C carries a symmetric monoidal structure, then CB¢ can be given the
induced pointwise symmetric monoidal structure.

On the other hand, if C is presentable symmetric monoidal, then we can
form out of the Assoc-algebra® G in 8§ the Assoc-algebra 1¢ X G in C (see
Remark 5.2.2.1), and hence consider the co-category LMod; g (C) of left-
1¢ X G-modules in C. In fact, G can be upgraded essentially uniquely to
an object in BiAlgag,c comm(8) by Proposition 3.3.1.2, with comultiplication
given by the diagonal map G Mo xide, &« . We hence also obtain an
Assoc, Comm-bialgebra structure on 1 X G, and thus an induced symmetric
monoidal structure on LMod; .xe(C) by Definition 3.4.2.1.

Let us remark that the diagonal map is also used behind the scenes when
defining the pointwise symmetric monoidal structure on CB¢ — the pointwise
tensor product of two functors F' and G can be written as the composition

BG Mecxidee, g g X9 00 =95, ¢

and the diagonal functor of BG can on automorphism spaces be identified
with the diagonal map of G.

We can now ask the question whether CB¢ and LMod; .g¢(C) are equiv-
alent as symmetric monoidal co-categories, which Proposition 5.3.0.8, which
is the goal of this section, will answer affirmatively.

As technical input we need to start by discussing compatibility of the ten-
sor product of Pr" (see [HA, 4.8.1.15]) with functor categories. We will need
two natural comparison functors, one for presentable symmetric monoidal
oo-categories, and one for presentable oo-categories, but we will show in
Proposition 5.3.0.4 that these constructions are compatible with the forget-
ful functor CAlg(Pr™) — Pr". We will then show in Proposition 5.3.0.6 that
these comparison functors are equivalences.

Construction 5.3.0.1. Let C and D be presentable symmetric monoidal
oo-categories and Z and J small co-categories. By [HA, 4.8.1.9] we can inter-
pret C and D as objects in CAlg(iPrL).

The symmetric monoidal structure on Pr¥ induces a symmetric monoidal
structure on CAlg(ﬂ’rL) such that the forgetful functor ev(;y can be upgraded

50See for example [HA, 6.1.6.2] for this definition.
51By [HA, 2.4.2.5] the oo-categories of Assoc-monoids in § and Assoc-algebras in § are
equivalent, as the symmetric monoidal structure on 8 is cartesian (see Remark 5.2.2.1).
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to a symmetric monoidal functor (see [HA, 3.2.4.4]). By [HA, 3.2.4.10] this
symmetric monoidal structure is cocartesian.

The functor categories Fun(Z,C) and Fun(J,D) and Fun(Z x J,C ® D)
can be given the induced pointwise symmetric monoidal structures (see [HA,
2.1.3.4]). By [HTT, 5.5.3.6] the underlying co-categories are presentable again
and as both the tensor products as well as colimits are calculated pointwise
(see [HTT, 5.1.2.3]), the tensor products again preserve colimits pointwise in
each variable 52,

Let tc: C — C®D and tp: C — C®D be the two morphisms in CAlg(Pr™)
exhibiting C®D as a coproduct of C and D. Using that Fun(Z, C)®@Fun(J, D)
is a coproduct of Fun(Z,C) and Fun(7, D) in CAlg(Pr") we can then define
a morphism gogg in CAlg(Pr") as follows.

) (tco—opry ) II(vpo—opr,)

¢ep: Fun(Z,C) ® Fun(J,D Fun(Z x J,C®D) &

We next construct a functor of presentable co-categories very analogous to
wg:g (and with the same name, which will be justified by Proposition 5.3.0.4),
where we however do not consider any symmetric monoidal structures.

Construction 5.3.0.2. Let C and D be presentable co-categories and Z and
J small co-categories.
Consider the following diagram, which will be explained below.

Fun(Z,C) x Fun(J,D) —— Fun(Z x J,C x D)
v| |- (5.10)
Fun(Z,C) ® Fun(J,D) -------- » Fun(Z x J,C ® D)

First, as already mentioned in Construction 5.3.0.1 are by [HTT, 5.5.3.6] the
various functor categories appearing in the diagram diagram representable
again. ¢’ is to be the functor exhibiting Fun(Z,C) ® Fun(J, D) as the tensor
product in Pr of Fun(Z, €) and Fun(7, D), and likewise v is to be the functor

52To be precise (considering the case of Fun(Z,C)): The pointwise symmetric monoidal
structure comes with symmetric monoidal evaluation functors for every object I of Z.
This means we have commutative diagrams as follows

Fun(Z,C) x Fun(Z,C) =%, Fun(Z,C)

evy X evll leVI

cxC - 1

where the horizontal functors are the respective tensor product functors. The left ver-
tical functor preserves colimits in each component, and the bottom horizontal functor
preserves colimits separately in each variable by assumption. It follows that the compo-
sition from top left to the bottom right along the top right preserves colimits separately
in each variable, and as this is the case for every object I in Z, it follows that this is
also the case for the top horizontal functor.
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exhibiting C ® D as the tensor product®®. We claim that the composite from
the top left over the top right to the bottom right preserves colimits in each
variable separately. For this it suffices by [HTT, 5.1.2.3] to check that the
composition with ev(; j) preserves colimits in each variable separately for
every object I of Z and J of J. But as there is a commutative diagram

Fun(Z,C) x Fun(J, D) —= Fun(Z x J,C x D) 2 Fun(Z x J,C @ D)

evry erJJ( J{eV(I,J) J{eV(I,J)

CxD = CxD m C®D

this follows from ev; and ev; preserving colimits by [HTT, 5.1.2.3] and ¢ by
definition preserving colimits separately in each variable.

It now follows from the universal property® of the tensor product in Pr"
that there is an essentially unique way to complete (5.10) to a commutative
diagram with a colimit preserving dashed functor gog:g . &

Remark 5.3.0.3. The functors ¢ from Construction 5.3.0.2 are compati-
ble with colimit preserving functors of presentable oco-categories and func-
tors of the indexing oco-categories as we will argue now. Let f: Z/ — Z and
g: J' — T be functors of small co-categories and F': C — C’ and G: D — D’
colimit preserving functors between presentable oco-categories.

Then consider the following diagram

Ct x DI - (€ x D)7

(Fo—of)X(GO_OM (FXG)O—O(V

T x ' = (¢ x D)

(22 X (R — y (Co D)

AG)%O(N@Q)

where the vertical functors are (induced) by the various canonical functors
exhibiting a presentable co-category as a tensor product in Prt. The top,
left, and right sides commute by the respective naturalities, and the front
and back commute by construction. The claim we want to show is that there
is an essentially unique filler for the bottom side and the cube. But this follows

53 Again see [HA, 4.8.1.2, 4.8.1.3, 4.8.1.4, and 4.8.1.15].
54See [HA, 4.8.1.2, 4.8.1.3, 4.8.1.4, and 4.8.1.15].
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immediately from the universal property of the back left vertical functor using
the fact that all functors on the bottom preserve colimits.

The functors ¢ from Construction 5.3.0.1 satisfy an analogous naturality
property, which one can deduce directly from the definition using the univer-
sal property of coproducts. &

The next proposition justifies the overloading of notation in Construc-
tion 5.3.0.1 and Construction 5.3.0.2.

Proposition 5.3.0.4. Let C and D be presentable symmetric monoidal co-
categories and L and J small oco-categories.

As the forgetful functor ev yy: CAlg(fPrL) — P is symmetric monoidal,
we can identify the underlying presentable co-categories of the domain and
codomain of @Z:g from Construction 5.5.0.1 with the domain and codomain
of gog’g from Construction 5.3.0.2.

Under this identification there is an essentially unique homotopy of mor-
phisms in Pr" between the underlying functor of wg:g as defined in Construc-

tion 5.5.0.1 and wg:g as in Construction 5.3.0.2. Q

Proof. Let gog"g be the underlying functor of the symmetric monoidal func-
tor defined in Construction 5.3.0.1. By the universal property of the tensor
product in Pr” it suffices to show that cpg:g fits into a commutative diagram
as depicted in (5.10).

For this we ponder the following commutative diagram in Cat.,?°.

’ o2
cT x D7 ° cT @ DI &P (€ © D)YF*I
(tg 0o —opry) X (tp o — o pry) (tg o —opry) @ (tLp o — o pra) - ® -

x| (ceD) T x (coD) T —— (oD ® (C o D)**I

\ (= ® =)

(€ x DI Le X2 (€& D) x (€ ©D)T*I

\ T(w X )

((C x %) x (x x D)T*I ((C x D) x(CxD))IX{_Q?_)(cXD)IXJ

(id X 1 X 1 X id)x *

L J

id

The composite outer diagram is the one that we are after. All the morphisms
1) with some decoration are to be the canonical morphisms exhibiting some
presentable co-category as a tensor product in Prl (one could also say: these
are the functors arising from lax symmetric monoidality of the inclusion of

55To save space we write e. g. Fun(Z,C) as CL.
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Prl into Cats), and 1: * — C is to be the unit morphism of the commu-
tative algebra C in Pr®, i.e. the functor with image 1¢, and similarly for
1: x — D. The morphisms ¢ and tp are to be as in Construction 5.3.0.1.
Finally, the functors — ® — are the internal tensor product functors of the
various symmetric monoidal oo-categories.

Let us now explain how the individual pieces of the above diagram arise.
The top right triangle uses that the tensor product functor is the coprod-
uct idITid in CAlg(fPrL). The top left square arises from naturality of the
functors denoted by 1 with a decoration — the functor on the right is in
fact defined as the essentially unique colimit preserving functor fitting into a
square like this. In the middle square below the two already discussed ones we
can (again®®) identify the composition of the top two functors with the tensor
product functor of (C ® D)IXJ, and then commutativity of the square arises
from the definition of the symmetric monoidal structure on (C ® P)**7 as
the pointwise one. The square on the right arises from ¥: C x D — C ® D
being a symmetric monoidal functor, which is the case because the functor
CAlg(Pr") — CAlg(Caty,) induced by the lax symmetric monoidal inclusion
of Pr" into Cat., is again lax symmetric monoidal, see [HA, 4.8.1.4] and
Proposition E.4.2.3 (7). The upper square on the left comes from functorial-
ity of taking products of functors. The irregularly shaped square at the very
bottom arises from unitality of the tensor product functors on C and D and
the fact that the tensor product on C x D is defined componentwise. Finally,
the bottom left square is constructed from the definitions of ¢ and tp. For
example for (¢, the unit morphism 1: * — C induces a colimit preserving func-
tor 1: 1y ~ 8 — C and we then obtain the dashed functor in the following
diagram.

C B »C®D

| o

Cx*&CxD

idle{
id x1

CxS$ o C®S

The dotted functor ¢¢ is then defined as the composition along the outside of
the diagram, i.e. making the outer diagram commute, which obviously also

560ne can think of it like this: The lax symmetric monoidal inclusion of Pr into Cateo
induces a functor on commutative algebras, which is why a presentable symmetric
monoidal co-category £ comes with a commutative triangle

EXE —®—
| >6
ERE —-®-

where the left vertical functor is the canonical one exhibiting £ ® £ as a tensor product
in Prl and where both functors —® — can be thought of as “the tensor product functor’
— the one on the bottom encodes that colimits are preserved in each variable separately.

i
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implies that there also exists a filler for the top square. O

Notation 5.3.0.5. Given oo-categories C, C' and D, with C and C’ admit-
ting all small colimits, we write Fun®"™(C, D) for the full subcategory of
Fun(C,D) spanned by the colimit-preserving functors. We will also write
Fun®lim xcelim¢ s ¢/ D) for the full subcategory of Fun(C x C’, D) of func-
tors preserving colimits in each variable separately. &

Proposition 5.3.0.6. In both the situation of Construction 5.3.0.1 as well
as the situation of Construction 5.3.0.2 is the functor <pg’g an equivalence of
presentable (symmetric monoidal) co-categories. Q

Proof. This proof will follow ideas of [HA, Proof of 4.8.1.15].

By [HA, 2.1.3.8] is a symmetric monoidal functor is equivalence of sym-
metric monoidal co-categories if and only if the underlying functor of co-cat-
egories is an equivalence. In light of Proposition 5.3.0.4 it thus suffices to
discuss the case of Construction 5.3.0.2.

By [HTT, 5.5.1.1, 5.4.2.7, 5.5.4.2, and 5.5.4.15] any presentable co-category
is equivalent to a localization S~ Fun(K,8) for some small co-category K
and small set of morphisms S in Fun(K,8). It will thus suffice to show the
following claims.

(1) wgg is an equivalence for all small co-categories 7 and J.

(2) Suppose apg:D is an equivalence for fixed presentable co-categories C and
D, but arbitrary small co-categories Z and 7. Then @R{(II,C),Fun(j',D)
is an equivalence for all small co-categories Z', J', Z, and J.

(3) Suppose gog:g is an equivalence for fixed presentable oco-categories C
and D and all small co-categories Z and J. Let S be a small set of

morphisms of C. Then gpg,jl ¢.p 1s also an equivalence.

(4) Suppose @%ZD is an equivalence for fixed presentable oco-categories C

and D and small co-categories Z and J. Then wg:g is an equivalence
as well.

Proof of claim (1): It suffices to show that the composition

0: Fun(Z,8) x Fun(J,8) —= Fun(Z x J,8 x 8) 25 Fun(Z x 7,8 ® 8)

exhibits Fun(Z x J,8 ® 8) as the tensor product of Fun(Z,8) and Fun(J,8)
in Pr’, i.e. we have to show that for any co-category € admitting all colimits
the induced functor

Funconm(Fun(I X J,8®8),E) b7, puncelim x COlim(Fun(Iv 8) x Fun(J7,$§),£)

is an equivalence.
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Using that mapping spaces in products of co-categories are the products of
the respective mapping spaces we obtain the following commutative diagram
of co-categories.

I°oP x J°P = (ZxJ)”
l J
P(Z°P) x P(T°P) P(Z xT)?)
H |
Fun(Z,8) x Fun(J,8) Fun(Z x J,8)

—x-| x T

Fun(Z x 7,8 x 8) — Fun(Z x J,8®38)

where the two top vertical functors are (products of) Yoneda embeddings
[HTT, 5.1.3], the top horizontal one is the canonical equivalence witnessing
that —°P preserves products, and —x —: S®8 — 8§ is the tensor product of the
cartesian presentable symmetric monoidal structure on 8, see Remark 5.2.2.1.

By applying Fun(—, &) and passing to appropriate full subcategories we
obtain a commutative diagram

Fun(Z°P x J°P &) = Fun((Z x J)",€)
Funcolim X colim(j)(zop) % g)(jOp), 5) Funcolim (:P((I ~ I)op)75)

\ J((_X_)*)*

Fun®'™ (Fun(Z x J,8 ® 8), )

The top horizontal functor is an equivalence as it is induced by one. The top
left and right vertical functors are equivalences by [HTT, 5.1.5.6]°". Finally,
the bottom right vertical functor is an equivalence because it is induced by the
equivalence S ® 8 — 8 (see [HA, 4.8.1.20]). It follow that 6* is an equivalence
as well.

Proof of claim (2): Let C and D be as in the claim and Z, 7/, 7, J’ small
oo-categories. We have to show that w%hi(z,7c)7pun( 7.D) is an equivalence.
For this, consider the following diagram where the unlabeled functors are
induced by the unit and counit of the product-Fun-adjunction and symmetry

5TFor the top left functor, note that by passing to ad-
joints Funcelim X colim (p(7op) 5 p(7oP) £) is equivalent to
Fun®lim (P(Z°P), Fun®li™(P(7°P),£)), and now one can apply [HTT, 5.1.5.6]
twice and then pass back to adjoints again.
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equivalences, and the functors v, 1/, ¥, and """ are the various functors
exhibiting a presentable oco-category as a tensor product in Prt.

CIXT o pIXT' v CTXT @ PIXT . .

~

1R

() = (p7) = () o (o7)

.7
—X—= ¢CI/,’D~7I
/ ’ IxJ 4 ’ / IxJ
—x— (CI x DI ) L (CI ® D7 ) wér);;I,"7X‘7,
(=x-), ver ).

((c y D)I’XJ')IXJ (). ((C®D)zw'>w

Nl JN

. (C % ,D)IXI’XJXJ’ P (C®D)IXI’XJXJ’ PR

The two middle squares commute by definition of (i) o D’ and gac D , " and the

top and left square arise from respective naturalities. ‘As the left rectangle on
the left commutes we obtain from the universal property of ¢ that the colimit

preserving vertical composite on the right must be homotopic to LpIXI TXT"

That QSCI/
commutmg right long rectangle being equivalences.

Proof of claim (3): Let C, D, Z, J, and S be as in the statement of the claim.
We will write S for the strongly saturated collection of morphisms of C gener-
ated by S, see [HTT, 5.5.4.5 and 5.5.4.7]. By [HTT, 5.5.4.15] S~IC ~ (S)~!C
is defined. We have to show that it is an

18 an equivalence now follows from all other functors in the

is again presentable, so ‘P?—ch D
equivalence.

Before we do so we need to discuss how localizations commute with tensor
products in Pr* and with Fun(K, —) for small co-categories K.

For interaction with tensor products we note the following, which is taken
from the proof of [HA, 4.8.1.15]. Let £ and F be any presentable co-categories,
and T a strongly saturated class of small generation of morphisms of £. Let
W be the collection of morphisms of the form s ® idp in £ ® F for any s in
S and object F of F. Then W is of small generation, as shown in [HA, Proof
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5.3 Group actions and modules over group rings

of 4.8.1.15]. Now consider the following diagram

T IEXF — 5 EXF —— S EQF

where the top left horizontal functor is induced by the inclusion T7'€ — €&,
the top right horizontal functor and the left vertical functor are the canonical
functors exhibiting the respective targets as tensor products in fPlrL7 and the
right vertical functor is the localization functor. W—=1(€ ® F) is representable
by [HTT, 5.5.4.15], and the composite functor from the top left to the bottom
right preserves colimits in each variable separately®®. We hence obtain the
induced dashed colimit preserving functor that is an equivalence by [HA,
Proof of 4.8.1.15].

We now turn to the interaction of localizations with taking functor cate-
gories. For this, let £ be a presentable oco-category, K a small co-category,
and T a strongly saturated class of morphisms of £ of small generation. Let
L: & — T~1E be the localization functor. Then by Proposition D.2.2.1 and
Fun(KC, —) preserving fully faithful functors by Proposition B.3.0.1 it follows
that the induced functor

L.: Fun(K,€) — Fun(K,T7'€)

is a localization functor again. Furthermore, Fun(KC, T~ 1£) is presentable
again by [HTT, 5.5.3.6]. Let W be the class of morphisms in Fun(K, £) that
are pointwise in 7. By combining [HTT, 5.5.4.15], [HTT, 5.5.4.2], and Propo-
sition A.3.2.1 we see that W consists precisely of those morphisms that are
mapped to equivalences by L. It then follows from [HTT, 5.5.4.2] that there
is a canonical equivalence

Fun(K,T7'€) ~ W' Fun(K, €)

that is compatible with the localization functors.

We now return to showing that wgﬂc p 18 an equivalence. Let T" be the
strongly generated class of morphisms in Fun(l ,C) ® Fun(J, D) that is gen-
erated by morphisms of the form 7 ® idg for any object G in Fun(J, D) and
any morphism 7 in Fun(Z, C) such that n(I) is in .S for all objects I of Z. Let
W be the strongly generated class of morphisms in Fun(Z x J,C ® D) that
is generated by those morphisms for which for every object I of Z and J of
J the evaluation at (I,J) is equivalent to a morphism of the form s ® idp
for s in S and D and object of D.

580ne can see this using that by [HTT, 5.2.7.5] a diagram p: K> — T~1€ is a colimit
if and only if the induced morphism from the colimit taken in £ to the cone object,
Colimp‘K — p(00), is a T-equivalence.
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Consider the following commutative diagram

T-1(cT 9 D7)

/ -

CTODT — (s—'¢)" @ D7

.7 7,7
‘Pc,Dh Ps—1lc,p

L®id), T
( id) ) xJ

@ D)7 (S"'c®D

\ .

W*1<(C ® D)I”)

where L denotes the localization functor C — S~!C, the middle square arises
from naturality of the functors ¢ with respect to the colimit preserving func-
tor L (see Remark 5.3.0.3), and the top and bottom triangles use the com-
patibility of the tensor product and functor categories with localization as
discussed above, with the top and bottom functors being the respective lo-
calization functors.

By assumption cpé’g is an equivalence, and it is clear from the definitions
that the strongly saturated classes of morphisms T and W correspond under

this equivalence, 1. e. wg:g (T') = W. It then follows from [HTT, 5.5.4.20] that
‘Pgﬂc,p is also an equivalence.

Proof of claim (4): One can show in a manner analogous to Remark 5.3.0.3
that there is a commutative diagram

,J
cToDl 27, (coD)tT

’
TLZ NJT*

D7 T ———— (D)7
(2%

where 7 and 7’ are the symmetry equivalences of the symmetric monoidal
structure on Pr". The claim immediately follows from this. O

The proof of Proposition 5.3.0.8 below is also sketched in [Rak20, 2.2.9].
We need a small prerequisite before stating the result.

Proposition 5.3.0.7. Let C be a symmetric monoidal co-category, O an
oo-operad, and O’ a reduced oco-operad®®. Then the unit of the induced sym-
metric monoidal structure on BiAlgy /(C) is a final object. Q

59See [HA, 2.3.4.1] for a definition.

250



5.3 Group actions and modules over group rings

Proof. By definition there is an equivalence as follows.
BiAlgp 0/ (C) =~ Alge, (Algp (C)or)°r

The unit is an initial object in Alg,, (Alg,(C)°P) by [HA, 3.2.1.8] and hence
final in BlAlgO,O’ (C) [

Proposition 5.3.0.8 ([Rak20, 2.2.9]). Let C be a presentable symmetric
monoidal co-category and G an object in Monie (8). Consider G as a co-
commutative bialgebra in 8, and give 1¢ K G the induced cocommutative
bialgebra structure, as discussed in the introduction to Section 5.3.

Then there is a commutative diagram of presentable symmetric monoidal
oo-categories and colimit preserving symmetric monoidal functors®? as follows

G
; LMod; .z (C)

SN L o

where CBC carries the pointwise symmetric monoidal structure discussed
in the introduction to Section 5.3 and LMody.xmc(C) the one from Defini-
tion 8.4.2.1. As indicated in the diagram, ‘I'g is an equivalence of presentable
symmetric monoidal oco-categories.

Furthermore, these equivalences can be chosen in such a way as to be
compatible with morphisms f: G — H in Monio (8) and F: C — D in
CAlg(fPr ), in the sense that for such f and F there is a commutative diagram
in CAlg(Pr"™) as follows.

ve

LMOd1c|Z|H<C)

Fo—oB
/ LModnc X f (F)/

LMOd]lclzG( )

e\x evm
eV

60Tn other words, a commutative diagram in CAlg(iPrL).

(5.12)
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Chapter 5 Mixed complexes and circle actions

Remark 5.3.0.9. In the situation of Proposition 5.3.0.8, let f: G — * be
the essentially unique morphism of grouplike associative monoids in 8. The
induced morphism of cocommutative bialgebras in C given by

1eXf:1eXG = 1 X*x >~ 1¢

is also the essentially unique one, see Proposition 5.3.0.7.

Then there is a commutative diagram by Proposition 5.3.0.8 as follows

C \
B x \IIZ
C LMod;, (C)
(B f)*[ JLMOdlcgf(C)
cB¢ LMod; .xc(C)

ve

Note that the functors ev, and ev,, are equivalences®', and we can interpret

the composites from the top to the bottom left and bottom right as the
functors that map an object of C to that same object equipped with the
trivial action by G. %

Proof of Proposition 5.53.0.8. We start by noting that ignoring the horizon-
tal functors, the rest of diagrams (5.11) and (5.12) are indeed diagrams in
CAlg(‘J’rL). The oo-category CB¢ with the pointwise symmetric monoidal
structure is indeed presentable symmetric monoidal, as is explained in Con-
struction 5.3.0.1. That LMod; .rc(C) is presentable symmetric monoidal is
by construction, see Definition 3.4.2.1 and the propositions referenced there.
(Fo—0oBf): Fun(BH,C) — Fun(BG, D) can be upgraded to a symmet-
ric monoidal functor and preserves colimits as both the symmetric monoidal
structure as well as colimits are pointwise. Similarly, the evaluation functor
ev, is symmetric monoidal and preserves colimits. LMody x;(F) as well as
evy are symmetric monoidal and colimit preserving by construction, see Defi-
nition 3.4.2.1. Finally, the left and right squares in (5.12) arise from naturality
of the respective evaluation functors.

The commutative triangle we have to construct will be given as the com-
posite outer triangle in a commutative diagram in CAlg(fPrL) as indicated
below; we will individually construct each part together with the relevant

61See [HA, 4.2.4.9] for eviy being an equivalence.
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compatibility with respect to f: G — H and F': C — D.

g
s 1
CBG = (C@8B0 — = C®LModg(8) = LMod;,xc(C)
AN e
ide®eva ide®evm
NS
C®S8

(5.13)

The tensor product is the tensor product induced on CAIg(TrL) by the tensor
product of presentable co-categories®2. The bottom vertical equivalence pc is
the right unitor, using that § is the monoidal unit in Pr" (see [HA, 4.8.1.20]).
Construction of the left square: The square arises as the composite outer

square in the following commutative diagram in CAlg(Pr").

*,B G

CBG M (C@S)*XBG <—ch’5 c* ®8BG

ev. ®idgp @

C ®8B¢

va* J{eV(*’*) J{ev* R eva idc®ev*J(

C CRE+———CRS ——————  C®S$§
ldc®s ldcgs

pc d d
Here, the left square is induced by the unitality equivalences
pry: * xBG — BG

(in Cateo) and
pc:C®8—=C

(in CAlg(CPrL)), which is clearly compatible with f and F. The equivalence
goé:lg  is the one from Construction 5.3.0.1, and the middle square as well as
the commutative cube for compatibility with f and F can be constructed
directly using the definition and the universal property of coproducts in
CAlg(fPrL). Finally, the right square arises directly from functoriality of the
tensor product of CAlg(fPrL), and ev, is clearly an equivalence.
Construction of the right square: This square arises as the composite outer

square obtained by combining the following two commutative diagrams in

62See [HA, 4.8.1.15]
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Chapter 5 Mixed complexes and circle actions

CAlg(Pr™).

C ® LMod (8) <229 T Mody, (C) ® LModg(S) = LMod;,ec(C ® 8)

JidC Kevm Jevm ®evm Jevm

C®8 oas C®8 - C®38
LModq
LMody,06(C ® 8) %) I \Mody.za(C)
C ® 8 pPC C

The left square of the first diagram arises from functoriality of the tensor
product, and evy, is an equivalence by [HA, 4.2.4.9 and 2.1.3.8]. Compati-
bility with f and F follows from ev, being a natural transformation, see
Definition 3.4.2.1. The right square of the first diagram as well as its compat-
ibility with f and F is the one arising from ev,,: LMod — pr being a natural
transformation of symmetric monoidal functors

LMod: BiAlgOpes,m — CAlg(Pr")

Comm

by Remark 3.4.2.2. Finally, the second diagram as well as its compatibility
with f and F' arises from the naturality of the right unitor p and evy,. That
there is an equivalence pe(le ® G) =~ 1¢ K G that is compatible with f and F
follows immediately from 8 being initial in CAlg(Pr") (see Remark 5.2.2.1), so
that there is a essentially unique natural equivalence between the composition
of the inclusion®? § — C ® §, which sends G to 1¢ ® G, with pc, and 1 X —.

Construction of the middle triangle: It suffices to construct a commutative
triangle

(5.14)

in CAlg(‘PrL) that is compatible with f, as the middle triangle in Equa-
tion (5.13) we need to construct can then be obtained by tensoring with
C.

As both ev, and ev,, are symmetric monoidal as well as limit preserving
and detecting®, it follows from the symmetric monoidal structure on 8 being
cartesian that the symmetric monoidal structures on 8¢ and LModg(8) are
cartesian as well®. By [HA, 2.4.1.8], any filler for the horizontal functor and

63This is also the functor we could call 1¢gs X —, see Definition 5.2.2.2.
64See [HTT, 5.1.2.3] for ev, and [HA, 4.2.3.3] for evp.
65See [HA, 2.4.0.1] for the definition.
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5.3 Group actions and modules over group rings

the triangle (5.14) in Pr" such that the horizontal functor is an equivalence®?,
can then be lifted in an essentially unique way to a filler for the triangle as
a diagram in CAlg(iPrL). It thus suffices to construct a commuting triangle
(5.14) in Pr" in which the horizontal functor is an equivalence.

In [BP21, 3.9] an equivalence 8¢ ~ LModg, p(8) is constructed as a
sequence of equivalencesS”. See the introduction of Section 5.3 for a discussion
of B1 — the underlying space of 51 BG is 2B G. As B is defined as the inverse
functor to (the appropriately restricted) 3, there is a canonical equivalence
1B G ~ G, so that we obtain an equivalence LModg, g ¢(8) >~ LModg(8).

Let us now go through the individual steps to say something about com-
patibility with forgetful functors to 8 and compatibility with f.

For the first step, let j: BG — Fun(B G°P, 8) be the Yoneda embedding®®
and consider the commutative diagram

Fun(BG,8) <7 Fun®!™ (Fun(B G°?, 8), 8)

where j* is an equivalence by [HTT, 5.1.5.6]. Compatibility with f follows
from naturality of the Yoneda embedding.

Before we discuss the second step, we first need to note something regarding
right fibrations over co-groupoids®®. Let X be an object of 8§ and consider it as
an oo-groupoid. The co-category RFib(X) of right fibrations over X is the full
subcategory of CFib(X) spanned by those cartesian fibrations whose fibers
are oo-groupoids. €Fib(X) in turn is the subcategory of Cat.,,x spanned
by the cartesian fibrations and morphisms of cartesian fibrations. Note that
by [HTT, 2.4.24], if p: &€ — X is a right fibration, then every morphism
of £ is p-cocartesian, so morphisms among cartesian fibrations over X (i.e.
morphisms in Cat,x) are automatically morphisms of cartesian fibrations.
RFib(X) is thus the full subcategory of Cat., ,x spanned by the right fibra-
tions. That X is an oco-groupoid together with [HTT, 2.4.2.4 and 2.4.1.5]
implies that a functor of co-categories £ — X is a right fibration if and only
if £ is an oco-groupoid.

The inclusion § — Caty is also fully faithful, so induces by Proposi-
tion D.1.2.1 a fully faithful functor 8,x — Catoo/x with the same essential
image. We thus obtain a canonical equivalence RFib(X) ~ §,x, see Proposi-
tion B.4.3.1.

66Note that ev. and evy are known to preserve products as already noted, so if the
horizontal functor is an equivalence and hence also preserves products, (5.14) will be a
commutative triangle of product preserving functors.

67[BP21, 3.9] contains an unnecessary use of BG°P ~ B, which likely stems from a
misreading of the definition of P(BG) used in [HTT, 5.1.5.6], which is defined as
Fun(B G°P,8) in [HTT, 5.1.0.1], not Fun(BG, 8).

68See [HTT, Introduction of 5.1.3] for a definition and discussion of j — it can be described
as the functor Mapg (e, —).

69See also [HTT, 5.1.1.1] for a related discussion.
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Chapter 5 Mixed complexes and circle actions

Now we can tackle the second step, for which we consider the following
composite equivalence

Fun(B G, 8) <5 RFib(BG) ~ 8, 5 ¢

where the first equivalence is the Grothendieck construction. This equivalence
is natural in G™ and hence induces a commutative triangle

Fun®"(Fun(B G°?, §),8) ——=—— Fun®"™(8,¢,8)

m A())

that is compatible with f.

Gr(j(x)): X — BG is the right fibration classified by j(x). By [HTT,
4.4.4.5] the oco-groupoid X has a final object and is thus contractible, so that
we can identify Gr(j(x)) with the inclusion of the basepoint of B G.

For the third step the equivalence

S/BG i> Rl\/[OdB1 BG(S)

is used that is described in [HTT, 5.2.6.28 and 5.2.6.29], and which is com-
patible with f. By [HTT, 5.2.6.29] this equivalence fits into a commutative

diagram
S
e

8/* Free
(*—B G)*l
S/BG — RMOd@lBg(S)

where x — B G refers to the inclusion of the basepoint. It follows that
* — BG is mapped to the free right-5; B G-module generated by *, so
to 51 BG considered as a right module over itself, under the equivalence
8,Bc ~ RModg, B¢(8). By definition of B we also have a canonical equiva-
lence 51 BG ~ G. We thus obtain a commuting triangle, compatible with f,
as follows.

colim (8/ BG.S = | Fypcelim (RMod¢g(8),8)

ev(*m /

For the fourth step, it is explained in [BP21, 3.9] that the forgetful functor
LinFung”™ (RMod¢(8), 8) — Fun®"™(RModg (8), S)

"OFor naturality of the Grothendieck construction see [GHN17, A.32].

Fun
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is an equivalence, so that we obtain a commutative triangle

Fun colim (RMOdG — = LlnFunCOhm (RMOdG (8), 8)

\/

that is compatible with f.

Finally, for the fifth step, [HA, 4.8.4.1] is used, where it is shown that there
is an equivalence as indicated by the top horizontal functor in the following
diagram.

LinFung®™ (RMod¢(8),8) ——=—— LModg(8)

That there also is a commutative triangle as indicated follows from unpacking
the definition of the top horizontal equivalence, from which one also sees that
this commutative triangle is also compatible with f, see [HA, 4.8.4.1 and
4.6.2.9].

Combining everything yields a commutative triangle (5.14) in Pr* in a
manner compatible with f. O

5.4 The monoidal equivalence D (k)3T ~ Mixed

We can now combine the main result of Section 5.3 with the equivalence
between the bialgebras k¥ X T and D in D(k) to obtain an equivalence as
follows.

D(k)BT ~ LModgr(D(k)) =~ LModp (D(k))

This equivalence is only (Assoc-)monoidal, not Es-monoidal or even symmet-
ric monoidal, see Warning 5.4.0.2 below.

Construction 5.4.0.1. The co-category D(k) is a presentable symmetric
monoidal co-category by Proposition 4.3.2.1 (1), and as the circle group T is
path connected, it follows from [HA, 5.2.6.4] that T is grouplike as an associa-
tive monoid in 8. Hence we can apply Proposition 5.3.0.8 and Remark 5.3.0.9
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to obtain a commutative diagram in Alg(Pr") as follows

(evi) ™t (even) ™"

D(k)* D(k) LMody,, ,, (D(k))
(BT—4)* R CIC)
(5.15)
D(k)BT = LModyzr(D(k))
D(k)

where the middle horizontal morphism is an equivalence and the morphisms
of bialgebras BT — * and D — 1p() are the essentially unique ones, see
Proposition 5.3.0.7.

Proposition 5.2.4.2 and Convention 5.2.4.3 provide us with an equivalence
of bialgebras in D(k)
0:D—kEXT

and as k is a final object in BiAlgasoc assoc(P(K)) by Proposition 5.3.0.7, we
can extend this to a commutative triangle of bialgebras in D(k) as follows.

D—F kKT

N7

Applying the functor LMod from Definition 3.4.2.1 we obtain a commutative
LMOd]er(k)

diagram in Alg(Pr")
LMod (D(k)) LMod (D(k))
’“‘mﬂmw/ \Dﬁlmm

LModgr (D EHod, () LModp (D (5.16)

\/

where the top triangle is the one induced by the previous diagram, and the
bottom one uses that evy, is a natural transformation.
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5.4 The monoidal equivalence D(k)BT ~ Mixed

Combining (5.15) and (5.16) we obtain a commutative diagram in Alg(Pr"),
i.e. of presentable monoidal co-categories with monoidal colimit preserving
functors, as follows

D(k)* ) D(k) —™ LMody,,,, (D(k))
(BT—),@*J{ J{LMod(D_’E(D(M)(’D(k))
D( LModp(D(k)) = Mixed

k)BT o~
N‘ - %

such that the middle horizontal functor is an equivalence. &

Warning 5.4.0.2. While both D(k)BT and Mixed = LModp (D(k)) carry a
symmetric monoidal structure, the equivalence between them is only Assoc-
monoidal.

For this reason one should be careful to distinguish between “objects of
D(k) with T-action” (or “T-objects in D(k)”) on the one hand and “mixed
complexes” on the other hand whenever the symmetric monoidal structures
might be relevant. ¢

Remark 5.4.0.3. Let p: k — k' be a morphism of commutative rings.
Combining the compatibility statement with colimit preserving symmetric
monoidal functors between presentable symmetric monoidal oco-categories
that is part of Proposition 5.3.0.8 with Remark 5.2.4.4 we obtain a com-
mutative diagram of monoidal colimit preserving functors’!

D (k)BT = LModp, (D(k))
D(k)
(k/®k_)* E'®p— E®p—
D(k)
D(K"BT = LModp,, (D(k))

where the horizontal equivalences are the ones from Construction 5.4.0.1.

"1Like with the diagram in Remark 5.2.4.4, there is also supposed to be a filler for the
outer diagram that is compatible with the forgetful functors.
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Chapter 6
Hochschild homology

In this chapter we introduce the main object of study of this text, Hoch-
schild homology. We will give both a modern account, in which the main
construction is a functor

HHy: Alg(D(k)) — D(k)BT

called Hochschild homology that will be defined and discussed in Section 6.2,
as well as a description of the classical constructions, where one considers a

functor
C: Alg(Ch(k)®") — Mixedcof

called standard Hochschild complex. The latter construction will be discussed
in Section 6.3, where we will also show that the two constructions are related —
the standard Hochschild complex can be considered as a model for Hochschild
homology. For both the definitions the first step is to apply the cyclic bar con-
struction, which takes an associative algebra in an some monoidal co-category
C, and produces a cyclic object in C, i.e. a functor A°® — C, where A is
Connes’ cyclic category. For this reason, we start this chapter in Section 6.1
with a discussion of the cyclic bar construction as well as the geometric real-
ization of cyclic objects.

6.1 The cyclic bar construction and geometric
realization of cyclic objects

In this section we discuss the cyclic bar construction. Given a presentable
symmetric monoidal co-category C, this is a (symmetric monoidal) functor

BY¢: Alg(C) — CP"

that constructs an object in C with T-action out of every (associative) algebra
in C.

The construction proceeds in two main steps. Starting with an algebra R
in C, one first constructs a cyclic object in C, denoted by B&F°(R), and also
called the cyclic bar construction®, which is a functor A°® — C, where A is

Hn fact, we will almost exclusively refer to this construction as the cyclic bar construction
in the remainder of the text.
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Chapter 6 Hochschild homology

Connes’ cyclic category. We will review A in Section 6.1.1, and define the
symmetric monoidal functor

BZ¢: Alg(C) — Fun(A°?,C)

in Section 6.1.2.

Given a cyclic object X in C, one can then take the geometric realization
| X|, which yields an object in C with T-action, as will be discussed in Sec-
tion 6.1.3. The cyclic bar construction B¥ of an associative algebra R can
then be defined as B¥Y°(R) = |BJ°(R)].

As main references for the material below we use [NikSch], [Hoy18], and
[Lod98].

6.1.1 Connes’ cyclic category A

In this section we discuss Connes’ cyclic category A, which has the simplex
category A as a subcategory and is mainly of interest because it encodes circle
actions. More concretely, if C is a presentable oo-category and X : A°? — C
a diagram, then the geometric realization (i.e. colimit) of the restriction of
X to A°P naturally acquires the action of the circle group? T, as we will see
as Fact 6.1.3.6 in Section 6.1.3.2.

We will start by reviewing the two different approaches towards defining the
simplex category A (one via generators and relations, one more abstract) in
Section 6.1.1.1, before discussing analogous definitions of the cyclic category
A in Sections 6.1.1.2 and 6.1.1.3. We will show that the two definitions we give
for A are equivalent in Section 6.1.1.4. Finally, we will introduce the notion
of cyclic objects in Section 6.1.1.5 and describe the self-duality functor of A
in Section 6.1.1.6, which will be relevant for the definition of the cyclic bar
construction in Section 6.1.2.

6.1.1.1 The simplex category A

Recall that there are two approaches towards defining the simplex category
A.

e A can be defined as the category of totally ordered non-empty finite
sets together with (weakly) order-preserving maps.

e A can be constructed as the category with objects [n] for n > 0 and
morphisms generated by d;: [n — 1] — [n] (for n» > 1 and 0 < i < n)
and o;: [n+1] — [n] (for n > 0 and 0 < ¢ < n) satisfying the simplicial

identities>.

2T was defined in Construction 5.2.1.1.
3They can be found for example in [Lod98, B.3] or [Mac98, Page 177]. See also Re-
mark 6.1.1.8 below.
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6.1 The cyclic bar construction and geometric realization of cyclic objects

If we temporarily refer to the second definition as A’, then we can relate
A’ and A with a functor A’ — A that can be described as follows.

 [n] is mapped to the totally ordered set {0 <1 < --- < n}.

e 0;: [n— 1] — [n] is mapped to the injective order-preserving map that
does not have 7 in the image.

o 0;: [n+ 1] — [n] is mapped to the order-preserving map that is surjec-
tive and maps both ¢ and ¢ + 1 to 3.

This functor is an equivalence of categories, as shown in [Mac98, Proposition
2 on page 178]*. We will thus usually identify A and A’ and use whatever
description is most appropriate for the occasion.

Notation 6.1.1.1. Let C be an oo-category. A functor
X:A®? =

will be called a simplicial object in C. We will write X,, instead of X ([n])
and accordingly often also use X, for X if we want to emphasize X being a
simplicial object. We will refer to the morphism induced by the opposite of
d; as d;, and to the morphism induced by the opposite of o; as s;. O

Completely analogously to the situation for the simplex category, there
are two approaches to Connes’ cyclic category A. We will discuss an abstract
definition first in Section 6.1.1.2 and then discuss a definition using generators
and relations in Section 6.1.1.3, before showing that they are equivalent in
Section 6.1.1.4.

6.1.1.2 Definition of A via posets

Definition 6.1.1.2 ([NikSch, page 380]). We denote by PoSet the category of
partially ordered sets with (weakly) order preserving maps. We furthermore
define

ZPoSet := Fun(B Z, PoSet)

to be the category of objects in PoSet with Z-action.

An example for an object in ZPoSet is (1/n) - Z for n > 1; as a subset of
Q this set inherits a partial order, and an integer k acts by addition.

We now define A, to be the full subcategory of ZPoSet spanned by the
objects isomorphic to (1/n) - Z for n > 1. The category Ao is called the
paracyclic category. &

4What is referred to as A in [Mac98] is not what we refer to as A, but also includes the
empty set. What we refer to as A is denoted by AT in [Mac98] and discussed in [Mac98,
Bottom of page 178]. But while the statement of [Mac98, Proposition 2 on page 178]
does not directly deal with our A, it nevertheless directly implies the result, as there
are no maps from a non-empty set to an empty set.
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Recall the equivalence

B1
>1 -
Sk T Monirs)soc (S)

from [HA, 5.2.6, in particular 5.2.6.10] that was discussed in Section 5.3. The
functors #; and B induce mutually inverse equivalences on the respective
oo-categories of commutative monoids, so as Z is commutative B Z acquires
an induced commutative monoid structure. BZ can in fact be identified, as
an object of CMon(S*Zl), with the circle group T (see Construction 5.2.1.1).
To see this it suffices to check that £1(T) ~ Z as commutative monoids in 8,
but as the underlying spaces are discrete this is just a classical exercise using
the Eckmann-Hilton argument?.

As T is path connected, it is grouplike as a monoid in 8 by [HA, 5.2.6.4], so
we can form BT and consider objects with T-action in some co-category D,
i.e. functors BT — D — see the introduction to Section 5.3. The co-groupoid
BT ~ BBZ can be interpreted as the oo-groupoid with a unique object *,
unique morphism, and with Z being the space of 2-morphisms id, — id,. A
T ~ B Z-action on an co-category C, i.e. a functor BT — Cat,, mapping * to
C, then essentially consists of a natural equivalence id¢ — id¢ corresponding
to the generator 1 of Z.

If C = Cis a l-category, then this amounts to giving an automorphism
px: X — X for every object X of C in such a way that these automorphisms
are compatible with every morphism of C, i.e. for every morphism f: X — Y
of C it must hold ¢y o f = fopx. This data is in turn equivalent to a natural
action of Z on the morphism sets of C: We can let n act on Morc(X,Y) by
¢y o —. If instead we have a natural action of Z on the morphism sets given,
then we can recover the automorphisms @x as the result of letting 1 act on
the element idx in Morc (X, X).

We can now state the definition of the cyclic category A as it is given in
[NikSch, page 380].

Definition 6.1.1.3 ([NikSch, page 380]). There is an action of Z on the
morphisms spaces of Ay such that the action of an integer k£ on a morphism
f yields the morphism f(—) +k = f(— + k).

Dividing out this action, i.e. identifying a morphism f with f + k for any
integer k, we obtain a category that we denote by A and call Connes’ cyclic
category. &

Notation 6.1.1.4. We will use the notation [n]a for (1/(n + 1)) - Z when
considered as an object in A as described in Definition 6.1.1.2. Up to isomor-
phism, the objects of A are thus given by [n]a for n > 0. &

5The underlying space of B1(T) is QT. This loop space has two monoid structures — an
associative via composition of loops, and a commutative one via pointwise multiplication
using the commutative monoid structure on T.
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Warning 6.1.1.5. Notation 6.1.1.4 deviates from the notation in [NikSch],
where [n]a is defined to be 1/n - Z.

The notation we use is chosen to be more consistent with the notation used
for objects of A — it also matches the notation used in [Lod98], see [Lod98,
6.1.1]. o

The category A contains A as a subcategory, as we note next.

Construction 6.1.1.6 ([NikSch, page 382]). Consider A as the category of
totally ordered non-empty finite sets. We can then define a functor

A — ZPoSet

by mapping a totally ordered non-empty finite set S to Z x S, equipped with
the lexicographic order and action by Z via addition on the first component. If
S ={sp < $1 <-++ < 8y}, then there is an isomorphism Zx S = (1/(n+1))-Z
in ZPoSet that maps (k, s;) to k+ (i/(n+ 1)), so the functor factors through
A

Following [NikSch, page 382], we will denote the resulting functor A — A,
by 796 and the composition

A=A — A

by j°P. It is not difficult to check that j and j°P are faithful and induce
bijections on isomorphism classes of objects. O
6.1.1.3 Definition of A via generators and relations

We now describe A with generators and relations.

Construction 6.1.1.7 ([Lod98, 6.1.1]). We define the 1-category A’ to have
objects [n]as for integers n > 0, and morphisms generated by

di i [n—1ar = [n]ar forn>1land0<i<n
o;: [n+1ar = [n]ar forn>0and 0<i<n
7 [n]ar — [n]ar forn>0

subject to the following relations”.

0j00; =0;005_1 for i < j

0j00; =0;00j41 fori<j

0j00; =0; 0051 fori < j

ojo06; =id fort=jori=j5+1
0j00; =0,_100; fori>j+1

T00; =0;_10T fori >0

6The reason for the °P is that the opposite of this functor is more important (or at least
more often used) and hence gets to have the name with least decorations.
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708y =6, where 7: [n]ar — [n]ar

ToO0;=0; 10T fori >0

To0)=0,0T" where 0¢: [0+ 1Jar = [n]ar

ol idj ., where 7: [n]ar — [n]ar &

Remark 6.1.1.8. If we remove the morphisms 7 as generators in Construc-
tion 6.1.1.7 (as well as the relations involving them), then we obtain precisely
the definition of A via generators and relations. We thus obtain a functor
jP: A — A &

6.1.1.4 Comparison of the two definitions of A

To show that A and A’ are equivalent, we first construct a comparison
functor.

Proposition 6.1.1.9. There is a functor ®: A’ — A defined as follows.
e [n]as is mapped to to [n]a.
e 0;: [n—1]ar — [n]as is mapped to the unique morphism that sends 0 to

0 1—1 1+1 n .. .
0 and has THT o wELr mELr o0 i in its image.

e 0;: [n+1]ar — [n]ar is mapped to the unique morphism that sends 0

. . . 7 1+1 7
to 0, is surjective, and sends — and g to AT

e 7:[n]ar — [n]ar is mapped to the unique morphism that is surjective

_1 _0
and sends P to o

Furthermore, this functor fits into a commutative square

-/o0p

A/ J A/

o] o

A A

that commutes up to natural isomorphism ¢: j°Po®a — P o j'°P where D is
the equivalence from Section 6.1.1.1, and j'°P and j°P are as in Remark 6.1.1.8
and Construction 6.1.1.6. The components of the natural isomorphism ¢ are
to be the isomorphisms

o

ey I () = Z x [n] = (1/(n +1)) - Z = [n]a

that were discussed in Construction 6.1.1.6. Q

7As we do not specify the n as part of the notation of the three types of morphisms,
notation like §; refers to more than a single morphism. The relations below are to be
satisfied for all choices where the morphisms can be composed as indicated and both
sides of the equation have same domain and codomain.
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Proof. Easy but a bit tedious exercise checking the relations. O

For both A and A’ one can show that morphisms decompose uniquely as
the composition of a power of 7 with a morphism in the image of the inclusion
of A, as we will see next. This is what will imply that the functor A’ — A
from Proposition 6.1.1.9 is an equivalence.

Proposition 6.1.1.10. Let f: [n]ar — [m]as be a morphism in A’. Then
there exists a unique morphism g: [n] — [m] in A and integer k with
0 < k < n such that f = j"P(f) o 7*.

An analogous statement also holds for A. Let f: [n]a — [m]a be a mor-
phism in A. Then there is a unique morphism g: [n] — [m] in A and integer
k with 0 < k < n such that f = @pm) 0 jP(f) o cp[;]l o ®(7)*, where we use
notation from Proposition 6.1.1.9. Q

Proof. The statement for A’ is precisely [Lod98, 6.1.3].

For A note that there is a unique 0 < k < n and morphism f’: [n]a — [m]a
such that f = f'o®(7)* and such that f’ maps Z to Z. The claim now follows
from the observation that a morphism Z X [n] = Z X [m] in A, that maps
(0,0) to (0,0) must be of the form idz x g for a unique morphism g: [n] — [m]
in A. O

Corollary 6.1.1.11. The functor ® from Proposition 6.1.1.9 is an equiva-
lence. v

Proof. ® is by definition essentially surjective. That & is also fully faithful
follows immediately from Proposition 6.1.1.10. O

We will from now on not distinguish between A and A’ and use the de-
scription best adapted for each individual situation.

6.1.1.5 Cyclic objects

Notation 6.1.1.12 ([Lod98, 6.1.2.1]). Let C be an co-category. We call a
functor
X: A" = C

a cyclic object in C. We will use the same notational conventions as explained
in Notation 6.1.1.1 for simplicial objects, and will refer to the image of [n]a
under X as X,, (and sometimes write X, for X), to the morphism induced
by the opposite of §; as d;, to the morphism induced by the opposite of o; as
si, and to the morphism induced by the opposite of 7 as ¢. &

6.1.1.6 Self-duality of A
We record that A has a self-duality functor, which will be needed later.

Fact 6.1.1.13 ([Lod98, 6.1.11]). There is an equivalence —°: A°? — A that
maps
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e [n]a to [n]a,
e 6P to oy,

o 0P to dit1,
o TP to T,

where opq1: [N+ 1A — [n]a is what is called the extra degeneracy defined
as opp1 = 0goT L. &

The above is also proven in [NikSch, page 381] using the definition of A
via posets®, and one can check that the two functors agree by unpacking the
definitions.

6.1.2 The cyclic bar construction as a cyclic object

In this section we discuss the cyclic bar construction of associative algebras.
Let C be a symmetric monoidal 1-category and A an associative algebra in
C. Then one can construct a simplicial object in C

—
— —

— — —
A AQARA T— AR A+—— A
— —

where the structure morphisms d;: A®" — A®(™=1 and s;: A®" — A®+1)
can be described as follows”:

1. If i < n—2, then d; is id%' © p®id§" 7"
the multiplication morphism.

, where : A® A — Ais

2. d,_1 is the postcomposition of the symmetry isomorphism that brings
the last tensor factor to the front with p ® idf(nfz).

3. s;is idfjl RL® idf(nﬂ;l), where ¢: 1¢ — A is the unit morphism.

Making use of cyclic permutations of the tensor factors, we can even extend
the above simplicial object to a cyclic object

— — —
— AQARA — AR A+—— A
— —

where the structure morphism t: A®™ — A®" is the symmetry isomorphism
moving the last tensor factor to the front.

8Whereas [Lod98, 6.1.11] uses the definition via generators and relations.
9We omit making explicit any associativity or unitality isomorphisms from the symmetric
monoidal structure on C.
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The goal of this section is to rigorously define a cyclic object implementing
this idea for associative algebras in any symmetric monoidal co-category C.
Furthermore, we will also show that the resulting functor

BJ¢: Alg(C) — Fun(A°?,C)

can be upgraded to a symmetric monoidal functor, where Alg(C) carries

the induced symmetric monoidal structure from Proposition E.4.2.3 and

Fun(A°P,C) the pointwise symmetric monoidal structure from [HA, 2.1.3.4].
BZ¥¢ will be defined as a composition

Alg(C) — Fungis, (Assoc®,C®) N Fun(Assock.,Co;)

actr Yact
®) «
Qﬁ Fun(

e, Fun(A°P,C)

®
Associ.;,C)

and we will define individual ingredients one by one'°.

Let us now give a brief overview over the subsections below. We will
start in Section 6.1.2.1 by discussing the symmetric monoidal envelope of
an oo-operad, which will explain what symmetric monoidal structure we con-
sider on C%,. In Section 6.1.2.2 we will then construct the first row (i.e. the
first two functors) in the composition above that will define B, and show
that the composition of those two functor is lax symmetric monoidal. We will
then define the symmetric monoidal functor ®: C%, — C in Section 6.1.2.3
and show that the composition of the lax symmetric monoidal functor

Alg(C) — Fun(Assocs,,C2,)

from Section 6.1.2.2 with the symmetric monoidal functor (®). is not just
lax symmetric monoidal, but symmetric monoidal. For the last step in the
definition of B¢, we have already defined the functor (—)°, in Fact 6.1.1.13,
and will define the remaining functor V: A — Assoct, in Section 6.1.2.4.
This will be the last ingredient that we need to define B¢, and we will put
everything together in Section 6.1.2.5. We will end this section by giving
a more direct description for CAlg(BZ¥¢), the functor induced by B¢ on
commutative algebras, in Section 6.1.2.6, and showing that B¢ preserves

sifted colimits in Section 6.1.2.7.

6.1.2.1 The symmetric monoidal envelope

Let po: O® — Fin, be an oc-operad. In [HA, 2.2.4] what is called the
symmetric monoidal envelope of O is discussed!!, which is defined in [HA,

10We warn though that while Bg¥® will be shown to be symmetric monoidal, we do not
claim that the individual functors in the above composition are symmetric monoidal
functors of symmetric monoidal co-categories.

1 The definitions in [HA, 2.2.4] are more general, but we only need the symmetric monoidal
case.
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2.2.4.1] as
Env(0)® := O® xgi,. Act(Fin,) (6.1)

where the functor O%® — Fin, is given by pe, the oco-category Act(Fin,)
is defined as the full subcategory of Fun([1],Fin.) spanned by the active
morphisms!?, and the functor Act(Fin,) — Fin, is evo.

Like [NikSch, page 366] and [HA, 2.2.4.3], we will use the notation 0%,
to refer to the subcategory of O® spanned by all objects and the active
morphisms!?, i. e. those morphisms mapped by po to an active morphism in
Fin.. Note that the inclusion

08 - 0%

act

can be identified with the functor

o X Fin, (Fin*)act — 0% XFin, Fin, p4?1> o

where the left functor is the one induced by the inclusion (Fin,),., — Fin,
— this follows from Proposition B.5.2.1 and Proposition B.4.3.1, see also Re-
mark B.6.0.1.

Let penv(o): Env(0)® — Fin, be defined as ev; o pry. Unpacking the
definition of Env(0)®, we can then interpret an object lying over (n) as a
pair (O, a) with O an object of O% and « an active morphism pp(0O) — (n)
in Fin, —see [HA, 2.2.4.2]. In particular, as there is a unique active morphism
from any object of Fin, to (1), one can identify Env((’))%> with O, — see
[HA, 2.2.4.3].

One important result about Env(O) that we will need is the following.

Fact 6.1.2.1 ([HA, 2.2.4.4 and 2.2.4.15]). Let po: O% — Fin, be an co-op-
erad. Then penv(o): Env((’))® — Fin, is a cocartesian fibration of co-operads,
i. e. exhibits O, as a symmetric monoidal co-category.

Furthermore, a morphism in Env(O)® is pEnv(o)-cocartesian if and only
if pry maps that morphism to an inert morphism in O%. &

Let us describe pg,y(0)-cocartesian lifts a bit more concretely. Let O be an
object of O%® a: (n) — (m) an active morphism in Fin,, and consider (O, a)
as an object of Env(O)%m. Let B: (m) — (k) be a morphism of Fin,. Then
we can factor § o « as a composition of an inert morphism v: (n) — (I) and
an active morphism 0: (I) — (k) in a unique way, see [HA, 2.1.2.2]. We can

1230 those morphisms for which the preimage of * has a single element, see [HA, 2.1.2.1].
13See [HA, 2.1.2.1 and 2.1.2.3] for a definition.
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then interpret the commutative diagram

{n) —— ()

al la (6.2)

(m) —— (k)
as a morphism from « to § in Act(Fin,). Let 7: O — O’ be a po-cocartesian
lift of 7. Then 7 together with (6.2) determine a pgyy()-cocartesian mor-
phism

(0,0) = (0',9)

in Env(O) lying over 5. One implication of this discussion is that if O and O’
are two objects of (’)ﬁt, then their tensor product is given by O & O’, see also
[HA, 2.2.4.6]. The monoidal unit of O, is given by the essentially unique
object in (9%.

The identity functor of O® together with the functor O® — Act(Fin,)
that maps an object O to the active morphism idpo(o)14 define a functor'®
0% — Env(0)® over Fin,. Using Fact 6.1.2.1 it follows immediately that this
functor is a morphism of co-operads. We are now ready to state the crucial
result concerning Env(0)®.

Fact 6.1.2.2 ([HA, 2.2.4.9]). Let O — Fin, be an co-operad and D a symmet-
ric monoidal co-category. Then restriction along the functor O® — Env(0)®
discussed above induces an equivalence

Fun®(Env(0), D) = Alg,(D)

between the oo-category of symmetric monoidal functors Env(O) — D and
the oo-category of morphisms of co-operads O — D. &

Remark 6.1.2.3. Let a: @' — O be a morphism of oc-operads and let
G: D — D’ be a symmetric monoidal functor between symmetric monoidal
oo-categories.

It follows from Fact 6.1.2.1 that the morphism of oco-categories o induces
a symmetric monoidal functor

Env(a): Env(O’) — Env(0O)

fitting into a commutative square of morphisms of co-operads as in the left of
the following diagram, where the left horizontal functors are the morphisms

4 More rigorously, we consider the functor (po)s« o const: O® — Fun([1], Fin.) that is
adjoint to the composition

[1] x 0% 22, 0® 29, i,

and remark that it factors through Act(Fin).
15This functor is also discussed in [HA, Before 2.2.4.9].
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of oo-operads discussed above.

0o L Ew(©O) —— 3D

F
GW Env(a)T JG

O Eav(0) D'

The symmetric monoidal functor F in the above diagram is to be the one
corresponding to F' via the equivalence from Fact 6.1.2.2, i.e. making the
triangle at the top commute.

It then follows from commutativity of the above diagram and Fact 6.1.2.2
that there is an equivalence

—_~—

(GoFoa)~GoF oEnv(a)

where (G o F o @) is the symmetric monoidal functor Env(0’) — D’ corre-
sponding to GG o F o o under the equivalence of Fact 6.1.2.2. &

6.1.2.2 From associative algebras to active diagrams

Let us denote by passoc: Assoc® — Fin, the canonical morphism of oo-

operads and let pc: C® — Fin, be a symmetric monoidal co-category. Recall
from Proposition E.4.2.3 that Alg(C) inherits an induced symmetric monoidal
structure pag(c): Alg(C)® — Fin,. This comes with a canonical inclusion

talg: Alg(C)® — Fun(Assoc®,C®) X Pun(Assoc® Fin, ) Fifls (6.3)

where the functors with respect to which the pullback is taken are (p¢), and

idFin, ss0C. . . B —
the functor'® adjoint to Fin, x Assoc® % Fin, x Fin, Ay Fin.. The

functor pajg(cy is then given by the composition pry o tajg-
The functor ta1, will be the first step in the definition of the symmetric
monoidal functor BJ°.
We next recall that the pointwise symmetric monoidal structure on
Fun(Assoc®,,C%,)

act? Yact

is given by the cocartesian fibration of co-operads

Fun(Assock.,,CS )® = Fun(Associ,, (C2,)%) X Fun(Assoc, Fin, ) i

act? Yact
act?

22, Fin, (6.4)

16See also Proposition E.6.0.1.
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that exhibits Fun(AssocS,,C2,) as a symmetric monoidal co-category, where
the pullback is formed with respect to the functors (pc@t)* and the functor
const!”.

We are now ready to construct a functor
® % ; ® ®\®
Fun(Assoc®,C®) X Pun(Assoc® Fin, ) Fis = Fun (Assocs.,Coy)

over Fin, whose composition with ta), will be a lax symmetric monoidal
functor. To be able to understand what this functor does it will later turn
out to be helpful to additionally construct a certain natural transformation
pr ACBSt 5 pro A9,

Construction 6.1.2.4. Let pc: C® — Fin, be a symmetric monoidal oo-
category, and let us use notation as above. We will construct a functor

: ®
A®: Fun(Assoc®,C?) X Pun( Assoc® Fin, ) Fils = Fun(Assoct.,CE,)

over Fin,, as well as a functor

A% Fun(Assoc®,C®) X Pun(Assoc® Fin. ) Fin, — Fun(Associ,, (Co,)®)

together with a natural transformation®® p: A"t — pr; 0A® such that the
natural transformation'® (pry). o i is a natural equivalence. The names ,
A8t and A® will only be used where we directly refer to this construc-
tion. The letter A has been chosen as a reference to the word active, and A®
has the superscript ® as its composition with ¢}, will be shown in Propo-
sition 6.1.2.5 below to be a morphism of co-operads, whereas A"' is not
even a functor over Fin,. The reason why A"t has superscript const and the
natural transformation is called p will become clear during the construction.
We will later also use the notation A® for the functor obtained by composing
A® as constructed here with LAlg, See Proposition 6.1.2.5.

By the definition?? of F un(Assocf’Ct,Cﬁt)@) and the universal property of

pullbacks, constructing A%, A"t and p as stated above is equivalent to

17n other words the functor adjoint to pry: Fins x Assoc®., — Fin,.

18The functor pry appearing in pr; oA® is the following functor.

act’ “act act Assoc®., Fin

act?

®
Fun(Assoc® c® ) = Fun (Assocgit7 (& )®) ><Fun( ) Fin.
25y Pun (Assocgt, (Cgt)@’)

See (6.4).
19The functor pr; appearing in (pr;)« is the following functor.

(Cae

act

)® = C® Xpn. Act(Fin,) 2L C®

See Section 6.1.2.1 and in particular (6.1).
20See the introduction of Section 6.1.2.2.
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constructing a diagram as follows

® ® . pry .
. I SEN
Fun(Assoc®,C®) X Pun(Assoc® Fin.) Fin, Fin,
/ \
/ \
1 \
Aconst | :::#::> 1A const
\\ II
Y v

Fun(AssocZ,, (C2,)®) —————— Fun(Assoc’, Fin,.)

act?
p
( c§t>*

where the oo-category in the upper left is the pullback from (6.3), the two
functors on the right and bottom are as explained around (6.4), and the
square on the right?! is to be a commutative square, while 4 is a natural
transformation from A" to A’ such that (pry).opu is a natural equivalence.
Using the x-Fun-adjunction and plugging in the definition of the symmetric
monoidal envelope Env(C)® = (C2,)® from (6.1) this is in turn equivalent to
constructing a diagram

id X pr
Assoc®, " PT2

® ® IR . t ® .
) [ LN
Assocy., x Fun(Assoc®,C®) X Fun(Assoc® Fin, Fin, Assoc,.. x Fin,
I/ \\
yeonst | = e\ .
A | 5EEES 1 A pra
\\ /I
Y ¥
C® Xgin, Act(Fin,) e Fin.

act

(6.5)
where again the square is to come with a filler exhibiting it as a commutative
square, while p” is merely a natural transformation such that pr; oy is a
natural equivalence.

As the composition from the top left along the top right to the bottom
right is the projection to the last factor and using the definition of Pee, as

evy o pry, we can finally unpack this to see that we need to construct the
following.

2180 involving A’, but not A%onst,
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(1) A commutative diagram as follows.

® ® oo -
Assocg,, x Fun(Assoc®, C®) X Pun(Assoc® Fin, ) FiN=

- ~
// SO 1’

" - ~
A - S Al

- ~

~
- ~
- N
-7 ~
. ~
- So

A
c® ) Act(Fin,) (6.6)

Fin,
This diagram will then encode the functor A” from (6.5).
(2) A natural transformation
[t Alreonst _y qv

such that evg o p! is an equivalence. Together with A} and the filler of
the commutative diagram (6.6) this encodes a natural transformation
p'" s Alconst 5 A" guch that pry o 4 can be identified with iday.

(3) A natural equivalence evy o A ~ prs, which then encodes a filler for
the right square in (6.5).

Construction of A}': We start by giving a definition of Aj'. This is to be
the composition

®

Assoc;

® r® H
X Fun(Assoc ,C ) XFun(Assoc®7Fin*) Fin,
pry Xpr
—1—2 Assoc,, x Fun(Assoc®,C®) <5 C®

that maps a tuple ((m), F, (n}) to F'((m)), which will be an object in C%l)MM)’

as we will see properly next. Indeed, the equivalences??

pc o Aj = pcoevo (pry X pry)
~evo (pry X (pc),) o (pry X pry)
~ ev o (pr, X((PC)* o pry))
>~ ev o (pr1 X ((idFin* /\pAssoc) © pr3))

>~ prg A (pAssoc © prl)

22From the first to the second line we use functoriality of evaluation, from the second to the
third functoriality of products of functors, from the third to the fourth the equivalence
that is part of the data of the pullback over Fun(Assoc®, Fin.), and from the fourth to
the fifth the X-Fun-adjunction and functoriality.
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allows us to identify the composition pec o A} with the functor that can be
informally described as mapping a tuple ({(m), F, (n)) to (n) A (m).

Construction of p1: Let us now think about the functor A!. The constraints
imposed by (1) and (3) imply that A/ needs to map a tuple ((m), F, (n)) to
an active morphism (n) A (m) — (n). The idea is to use the active morphism

id(n) Aitm
AN

{n) A (m) (n) A (1) = (n)

where p, is the unique active morphism (m) — (1) and the isomorphism
(ny A (1) = (n) is the unitality isomorphism, see [HA, 2.2.5.2].

For A!/°"s' we have the same constraint regarding the domain, but no
constraint on the codomain. We can thus let A ©°"* map a tuple ((m), F, (n))
to the active morphism

idimyamy : (n) A (m) — (n) A (m)

which also explains why we are using the superscript const in the notation.
The component of p/ at ((m), F, (n)) is then to be given by the commuta-
tive diagram

(n) A m) ——22C 0y A ()

id(n)A(m,)J Jidm)AMm

{n) A (m) {n) A (1)

id () At
considered as a morphism from id,y(m) t0 id(ny A fiy in Act(Fin,), whose
evaluation at 0 is id () (m), and whose evaluation at 1 is id,y A fm.

To actually construct such functors and such a natural transformation, we
first note that (Fin,)act has a final object (1), so that there exists a section

S: (Fin*)act — ((Fin*)act)/<1>
of the projection, sending (m) to p,,. We thus obtain a composition
(Finy)act 5 ((Finy)act) /(1) L Fun([1], (Finy)act)
where ¢ is the inclusion. That s is a section means that we have an identifica-
tion evg 0o s ~ idfin,),., As evy is right adjoint® to the functor const, we
thus obtain a natural transformation

[L: const —ios

of functors (Finy)act — Fun([1], (Finy)act)-

23Note that as 0 is an initial object of [0], we can identify evg with lim.
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We can now define A/ as the composition

® ® o® :
Assocg., x Fun(Assoc®,C?) X Pun(Assoc® Fin. ) Fins

pryXpry .
—22" 5L Fin, x Assoc®,

idFin, X PAssoc

Fin, x (Finy)

act
idFin, X (70s)
_—

Fin, x Fun([1], (Finy)act)

const x i’

——— Act(Fin,) x Act(Fin,)

25 Act(Fin,)

where ¢’ is the inclusion Fun([1], (Finy)act) — Act(Fin,).
We similarly make the following definitions.

A;«I const = (COHSt [¢) pr3) A (Zl o const o PAssoc © prl)

pr == (const o pry) A (i’ o [i © passoc © Pry)

Construction of the commutative diagram (6.6) in (1): We already obtained
an identification

Ppc © A;l >~ prg A (pAssoc © prl)

above. For evg 0A! we obtain the following sequence of equivalences

evgo A = evg o ((const o pry) A (i’ 04 0 50 passoc © Pry))

~ (evg o const o pry) A (evg 0 i’ 070 50 Passoc © PIy)

~ pra A (eVO 014080 Passoc © pr1)

=~ prg A (pAssoc o prl)
where from the first to second line we use compatibility of evg with the functor
— A —, from the second to the third we use the identification evg o const ~ id
and compatibility of evg with the inclusion ¢/, and from the third to the fourth
we use the identification evg oi o s ~ id(Fin,),., -

On evg o p!! being a natural equivalence, thereby completing (2): Using
identifications as just done for evg o A we see that it suffices to show that
evp o is a natural equivalence. But by definition we can identify evg o iz with
1d(Fin. ).

Construction of a natural equivalence evy o Al ~ pry as in (3): There is a
sequence of equivalences as follows

evy o A >~ pry A (evy 0140 80 Passoc © PT'y)
~ pra A (COnSt<1> © PAssoc © prl)
~ pry A (const<1>)

= pry

277



Chapter 6 Hochschild homology

where the first one is obtained just like for evgo A”| the equivalence from the
first to the second line uses the definition of 4 as the inclusion of (Assoc®.,) /(1)
the equivalence from the second to the third line uses the canonical equiva-
lences for precompositions of constant functors, and the last equivalence uses
the natural unitality equivalence [HA, 2.2.5.2]2* — A (1) = idgp, . &

Proposition 6.1.2.5. Let pc: C® — Fin, be a symmetric monoidal co-cate-
gory. Then the composition of functors over Fin,

LAlg

Alg(C)® —= Fun(Assoc®,C?) X Fun(Assoc® Fin. ) Fin.

®
A% Fun (Assocs,,CE,)

where talg s as discussed in the introduction to Section 6.1.2.2 in (6.3) and
A® s as in Construction 6.1.2.4, is a lax symmetric monoidal functor.
We will also denote this lax symmetric monoidal composition by A®. Q

Proof. We have to show that the composition sends pry o taj.-cocartesian
morphisms over an inert morphism in Fin, to pry-cocartesian morphisms?®.
So let ¢: R — S be a pry o tag-cocartesian morphism in Alg(C)® lying
over an inert morphism in Fin,. We have to show that (A% o taie)(p) is
pry-cocartesian. By the result [HTT, 2.4.1.3 (2)] regarding cocartesian mor-
phisms and pullbacks it suffices for this to show that (pry o A% o ta1e)(¢) is
(pc® )«-cocartesian. Applying the result [HTT, 3.1.2.1] on cocartesian fibra-
tions and functor categories and using that Pee, is a cocartesian fibration
by Fact 6.1.2.1, we are further reduced to showmg that for every object X
of Assoc’.,, the morphism (evy o pry 0 A% o1a1)(p) is Pee -cocartesian. Fi-
nally, using the description of Pee t—cocartesmn morphisms from Fact 6.1.2.1,
we conclude that we need to show that for every object X of Assoct, the
morphism (pry oevy opr; 0 A% 0141,)(¢) is an inert morphism in C®.

Using notation from Construction 6.1.2.4 we have by construction a se-
quence of equivalences?® as follows.

pry oevy opr; o A® oua,
~pryoevy o A ol
~ pry o A” o (constx X talg)
o~ A;/ o (COnStX X LAlg)
~ evo (pr; X pry) o (constx X talg)

= €Vx 0PIy O lAlg

24Depending on the definition one takes, this might even by an equality, see [HA, 2.2.5.1].

25See the introduction to Section 6.1.2.2 for a discussion of the canonical morphisms of
oo-operads from the two symmetric monoidal co-categories to Fin.. Without looking at
the previous pages for reference it may be hard to follow what the various projections
etc. in this proof refer to.

26The pr, in the last line corresponds to pr, in the second to last line.
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The claim now follow directly from Proposition E.4.2.3 (2). O

We will later need the following proposition, which will allow us to de-
duce statements for A® from A"t for which we will also provide a simpler
description in Proposition 6.1.2.7 below.

Proposition 6.1.2.6. Let C be a symmetric monoidal co-category and X an
object of
FU.I’I(ASSOC®,C®) ><Fun(Assoc‘XJ,Fin,‘) Fin..
i.e. of the domain of A® and A©™* from Construction 6.1.2.4. Then the
morphism
px s ACMH(X) = (pry 0A®)(X)

m

Fun(/—\ssocit7 (C2)%)

is (pe@ )«-cocartesian. Q@
act

Proof. Let X be as in the statement. By [HTT, 3.1.2.1] and the description
of poe -cocartesian morphisms in Fact 6.1.2.1 it suffices to show that for

every object Y in Assoc®, the morphism (pr; oevy)(ux) = (evy o (pry))(px)
is inert. But by Construction 6.1.2.4 that morphism is an equivalence, and
hence in particular inert. O

We end this section by giving another, simpler, description for the functor
A8t from Construction 6.1.2.4.

Proposition 6.1.2.7. Let pc: C® — Fin, be a symmetric monoidal co-cate-
gory. Then the functor

A%t Fun(Assoc®, C%) X Fun(Assoc® Fin,) Fin, — Fun(Assocy,, (C2,)%)

act?
constructed in Construction 6.1.2.4 is equivalent to the composition

® A® H
FUD(ASSOC 7C ) ><Fun(Assc;c‘g’,Fin*) Fin,

P Fun (Assoc®,C®)

Funfetace), Fun(Assoc® (Cfﬁt)@)

act?

where o: Assocs.,, — Assoc® is the inclusion, and Lae: C® — (C2,)® is the
functor described before Fact 6.1.2.2. Q@

Proof. In this proof we use notation from Construction 6.1.2.4, as well as the
discussions of the relevant definitions at the start of Section 6.1.2.2.
It suffices to check that the adjoint functors

Assoct, x Fun(Assoc®,C®) Fin, — C® Xfin, Act(Fin,)

X Fun(Assoc® JFin, )
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are homotopic. For A"t this adjoint functor is by construction A’ const,

For the composition given in the statement this adjoint is equivalent to the
following composition, which we will call A”<°5st for now.

® ® o® -
Assocg. x Fun(Assoc®, C?) X Pun(Assoc® Fin, ) Fin=

aopr, ) X pr
{00Pr)XPra  pccoc® x Fun(Assoc®,C®)

v, 0o
209 XEin, Act(Fin,)

To show that two such functor are equivalent we need to show that we can
identify the two corresponding commutative diagrams of the following form.

Assoc ot X Fun Assoc® xFun Assoc® Fin, Fln*

/\
\/

Fin,

Act(Fin,) (6.7)

To simplify this problem we first notice that pryot,et, and hence pr, 0 Al const
by definition factors though const: Fin, — Act(Fin,). Similarly, we have
equivalences as follows.

/const __ A/ const
proo A = A,

By definition we obtain the following.
= (const o pry) A (i’ o const © passoc © Pry)
Using functoriality of — A —.

~ const o (prg A (Passoc © PT7))

This shows that also pry, o A” "' factors through const.

We claim that because of this it actually suffices to construct a homotopy
between pry o A8t and pry o A” %% as we can then obtain a homotopy
between pry o A7t and pr, o A”°"st in such a manner that there is an
evident compatible homotopy between the fillers of the commutative squares
(6.7) as follows.

A1 const
pryo A

Using that const o evy o const >~ const.

=~ const o evy o pry o A” Ot
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Using the canonical homotopy from the diagram (6.7) associated to Al const,

~ const o p¢ o pry o A’ €onst

Using the homotopy pr; o Al const ~ pry o A€ot that we assume given.
~ const o p¢ o pry o A’ st

Using the canonical homotopy from the diagram (6.7) associated to A" const,
=~ const o evg o pry o A”OSt

Using that const o evy o const =~ const.

" 3
~ pry OA const

It thus suffices to show that pr, o A” 8t ~ pr o A”const Byt it follows
immediately from unpacking the definitions that there is an equivalence as
follows.

A’//const — idc® oevo ((a o prl) X pr2)

~evo ((wopry) X pry)
=pr, o A const O

pry ©

6.1.2.3 Tensoring active diagrams together

Let C be a symmetric monoidal co-category. In Section 6.1.2.1 we discussed
the symmetric monoidal structure on the co-category C%,, where the tensor

product can be described as follows.

@Xi® @Xi:@xi

1<i<n n+1<i<n+m 1<i<n+m

In Definition 6.1.2.8 below we will define a symmetric monoidal functor
®: C2, — C, which can be described as mapping Dicicn Xi t0 Qqcicy, Xi-
Given the informal description of the symmetric monoidal structure on Co,
it should be plausible that there is such a symmetric monoidal functor.

Definition 6.1.2.8. Let C be a symmetric monoidal co-category. We let
®:C% —C

be the symmetric monoidal functor that corresponds to the lax symmetric
monoidal functor id¢: C — C (which is actually symmetric monoidal, but we
do not use that here) under the equivalence of Fact 6.1.2.2. &

Note that by definition, the underlying functor of ® from Definition 6.1.2.8
maps objects X of C% to X, so by symmetric monoidality we obtain that

@19’91 X, must be mapped to ®1§i§n X;.
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Remark 6.1.2.9. Let F': C — D be a symmetric monoidal functor of sym-
metric monoidal co-categories. Combining Remark 6.1.2.3 with

F*(idp) = F. (idc)

yields a commutative diagram of symmetric monoidal functors as follows

F®
=, D¥

Cact act
C———D

where the two functors denoted by ® are those from Definition 6.1.2.8.

As ®: C2, — C is a symmetric monoidal functor, it induces a symmetric
monoidal functor

Fun (Assocact, c2y) ©-, pun (Assocact, C)
on functor categories with the pointwise symmetric monoidal structure?”.
Furthermore, the composition (®,)® o A% of the lax symmetric monoidal
functor A® from Proposition 6.1.2.5 with this symmetric monoidal functor is
not only lax symmetric monoidal, but actually symmetric monoidal, as we see
in Proposition 6.1.2.11 below. Before doing so we will use Proposition 6.1.2.6
and Proposition 6.1.2.7 to describe the compositions ev ,,) o @, o A.

Proposition 6.1.2.10. Let pc: C® — Fin, be a symmetric monoidal co-
category.
Then the composition®s

(pc),

Alg(C) — Fun(Assoc®,C®) LN Fun(Assoc,,C®) —= Fun(Assocs,,, Fin.)

act?
is the constant functor with image Passoc © @@ and the composition®?

Alg(C) 2 Fun(Associ.,Co) SIN Fun (Assoc,
(c—c®),

—— Fun(Assoc.,,C®) N Fun(Assoc,

act?

C)

act?

Fin, )

act?

is the constant functor with image constyy.

27This follows directly from the definition [HA, 2.1.3.4] together with Proposition C.1.1.1
and [HTT, 3.1.2.1].

28The functor Alg(C) — Fun(Assoc®,C®) is to be the canonical one, i.e. inclusion into
Fungiy,, (Assoc®,C®) followed by the projection, and « is the inclusion of Assoc?;t into
Assoc®.

29 A is the underlying functor of the lax symmetric monoidal functor from Proposi-
tion 6.1.2.5, and ® is the functor defined in Definition 6.1.2.8.
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Let pF™ : passoc 0 @ — const(yy be the unique natural transformation of
functors Assoct,, — Fin, that is pointwise an active morphism. Then there

s a homotopy between the composition

a*o (Alg(C)HFun(Assoc‘X) ,C®))

®C®

act? )pAssocoa

Alg(C) Fun (Assoc

Fin
u Fun(Assoc’.,C%

act’ ) const ()
and the following functor.

(C—C®), o®,0A: Alg(C) — Fun(Assoc

®
act? ¢ )const<1>

In particular, there is a commutative diagram of co-categories as follows
for every m >0

Alg(C) —2 Fung,, (AssocZ,,C2,) LN Fun(Associ.;,C)

J Jev“m (68)

Fung,, (Assoc®, C®) o Cimy ) Chy =€

where the left vertical functor is the canonical functor and and pi,, is the
unique active morphism (m) — (1) in Fin,.

Now let R be an associative algebra in C. Then (®. o A)(R)({(m)) can be
identified with R®™ and if f: (m) — (m/) is an active morphism in Assoc®,
then we can identify (®.0A)(R)(f) with the morphism R®™ — R®™ induced
by f, so for example for f the unique active morphism (0) — (1) we can
identify (@« o A)(R)(f) with the unit morphism 1l¢ — R.

Proof. In this proof we use notation from Construction 6.1.2.4.
Recall the natural transformation3® p: A"* — pr; o A® from Construc-
tion 6.1.2.4. We can define a natural transformation

o= (®®)* opo (A]g(C) — Alg(C)®)

of functors from Alg(C) to Fun(Assock.,,C%).

act?

We first claim that it suffices to show the following.

(1) (®%9), o Aconst o (Alg(C) = Alg(C)®) ~ o* o (Alg(C) — Fun(Assoc®,C®))
(2) (®%®),0opryo0A®o (Alg(C) — Alg(C)®) ~(C—C?®),0o®.0A

(3) (pc)* o~ COnStHFin*

30We use A°"St here as notation for the restriction of what was called A°°™s* in Construc-
tion 6.1.2.4 to Alg(C)®, and similarly for u — like we do for A®.
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(4) For every object R of Alg(C), the component iy of fi is (p¢).-cocarte-
sian.

Let us now explain how the statements we need to prove follow from claims

(1), (2), (3) and (4).
The claims regarding the images of the two functors to Fun(Assoc®.,, Fin,)
follow directly from claims (1), (2) and (3), and the identification of

(C—C%®), o®,0A

then follows from claims (1), (2), (3) and (4)3!. The inclusion functor C — C®
is fully faithful®2, so for construction of a commutative diagram (6.8) it suf-
fices by Proposition B.4.3.1 to show that the two composite functors from
the top left to the bottom right become homotopic after composing with the
inclusion to C®. But we have a chain of equivalences as follows.

(C — C®) 0eV(m) 0®x0A

Using compatibility of evaluation with postcomposition.

~eviny o (C—C¥), o®,0A
Postcomposing the already obtained equivalence with ev,,.

~ vy o (uF™), 0 a* o (Alg(C) — Fun(Assoc®,C%))
Using [HTT, 3.1.2.1 (2)].

2 (fim ), © €V (my © & o (Alg(C) = Fun(Assoc®,C®))
Finally, compatibility of evaluations with precomposing and (un)making the

identification C% ~C.

~ (C = C®) o (lm), © evyy o (Alg(C) = Fungin, (Assoc®,C?))

Finally, the concrete description of (®, o A)(R) follows directly from the
identification of (C — C®), o ®. o A by unpacking the definitions.

So let us now prove claims (1), (2), (3) and (4).

Proof of claim (1): We have equivalences as follows.

(8%), 0 4 o (Alg(C) — Alg(0)®)
Using the description of A°"* from Proposition 6.1.2.7.
~ (®%), o (tact), © @ o (Alg(C) — Fun(Assoc®,C?))
Using that by definition of the functor ® — see Definition 6.1.2.8 — there is
an equivalence ®% o 1y ~ ide.
~ a* o (Alg(C) — Fun(Assoc®,C?))

31'We remark that we do not need to worry about the equivalences in claims (1) and (2)
lying over non-identity natural isomorphisms of functors to Finy, as the unique active
morphism (m) — (1) in Fin, stays unchanged if we pre- and postcompose it by isomor-
phisms.

32This follows from Proposition B.5.3.1 using that {(1)} — Fin, is fully faithful.
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Proof of claim (2): Follows immediately by using that lax monoidal func-
tors such as A and ® are compatible with the inclusion of the underlying
oo-category into the respective oo-operad.

Proof of claim (3): Tt suffices to show that the adjoint natural transforma-
tions of functors

Assoc®, x Alg(C) — Fin,

are equivalent, i. e. that there is an equivalence between p¢ oﬁ and pFi"= opr,.
We first note that as ®%: (C2,)® — C® is a functor over Fin,, we have an
equivalence as follows.

pc o ®® ~ Pe® = €V] O PTy
act

Unpacking the definition of y in Construction 6.1.2.4 we thus obtain equiv-
alences as follows.

pcof
—pco®®ojio (idAssoc® x (Alg(C) - Alg(C)®))

act

~ evy opryojio (idAssocff’ct X (Alg(C) — Alg(C)®>)
= evi o 1] 0 (idpgoee, % (Alg(€) = Alg(C)?))

~ evy o ((constry) A (i © [ © passoc © PTy))

~evy o i'o ﬁ © PAssoc © PT'y

~ ,Fin.
~ U o pry

Proof of claim (4): Follows immediately by combining that all components
of u are (pcv@.t) -cocartesian by Proposition 6.1.2.6, that ®% is symmetric

monoidal by definition, and [HTT, 3.1.2.1].
O

Proposition 6.1.2.11. LetC be a symmetric monoidal co-category. Consider
the composition

® (®.)%
) (

®
Alg(C)® K Fun(Assoc@ c® —— Fun

® ®
act’ Yact ASSOCaCt ) C)

of functors over Fin,, where A® is as in Proposition 6.1.2.5 and (®.)® is the
symmetric monoidal functor induced by ® from Definition 6.1.2.8 on functor
categories with the pointwise symmetric monoidal structure.

Then this composition is a symmetric monoidal functor. Q

Proof. We will use notation from Construction 6.1.2.4 in this proof33, which
will be similar to the proof of Proposition 6.1.2.10.

33We will though use A"t as notation for the restriction of what was called A°"st in
Construction 6.1.2.4 to Alg(C)®, and similarly for u, as we do for A®.
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Just like in Proposition 6.1.2.5, it suffices to show that for every object (m)

in Assoc’.,, the composition

eV (m) O Pry o (®4)% 0 A®

maps pryotajg-cocartesian morphisms to pe-cocartesian morphisms. Also like
in Proposition 6.1.2.5, we use the definitions of the various functors to rewrite
this composition into a more suitable form. We start by using the definition
of (24)® and compatibility of evaluation with postcomposition of functors to
obtain homotopies as follows.

€V () O PIy © (®*)® 0 A®
> eV(m) © (®®)* opry o A%

~®%o €V (m) O PIy © A®

Let f: X — Y be a pry o tajg-cocartesian morphism in Alg(C)®. From the
natural transformation p: A"t — pr; o A® we obtain a commutative square
as follows.

(®® 0€V (1) ) (kx)
A A

(®% 0 ev(pmy 0 A°™Y)(X) (®% 0 vy o pry 0 A®)(X)

(®%0ev () 0 A< ) (f) (©%0ev(umyopr; 0A® ) (f)

(®% 0 ev(p) o A (Y) (®% 0 evy opr; 0 A®)(Y)

—
(®%F0ev(my ) (1y)

We need to show that the right vertical morphism is p¢-cocartesian. By Propo-
sition 6.1.2.6 we know that ux and py are (pc';@;t)*—cocaurtesian7 so it follows
from [HTT, 3.1.2.1] and ®% being symmetric monoidal by definition that
the top and bottom horizontal morphisms in the diagram are pc-cocartesian.
It thus suffices by [HTT, 2.4.1.7] to show that the left vertical morphism is
pe-cocartesian.

For this we use the description of A"t from Proposition 6.1.2.7 and that
by definition ®® o 1, ~ idee to obtain equivalences as follows.

9% 0 vy 0 AP

~®%o eV(m) © (Lact), © & 0PIy O Lalg
~ ®@% 0 Lact © €V {1y © ¥ 0PIy O LAl
& €V(y) 0 Q" 0PIy O lalg
~ ev<m> O Pry O lAlg
So what is left to show is that ev,,, o pry o talg maps pry o 1a1g-cocartesian

morphisms to pe-cocartesian morphisms. But this follows immediately from
Proposition E.4.2.3 (4). O
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Remark 6.1.2.12. Let F: C — D be a symmetric monoidal functor of
symmetric monoidal co-categories. Then going through the constructions and
using Remark 6.1.2.3 it is straightforward to see that there is a commutative
diagram of symmetric monoidal functors as follows

)®0AP0up,
Alg(C)® (@) = Fun(Assocl,, C)®
Alg(F)ﬂ J(F")Qb
Alg(D)® Fun (AssocZ,, D)

(®*)®OA®OLA1E

where the horizontal functors are the compositions considered in Proposi-
tion 6.1.2.11 for C and D, respectively. Furthermore, if G: D — £ is another
symmetric monoidal functor, then the composite of the compatibility dia-
grams for F' and G as above can be identified with the compatibility diagram
for Go F. ¢
6.1.2.4 The functor V: A — Assoc.,

Let C be a symmetric monoidal co-category. With Proposition 6.1.2.11 we
have now constructed a symmetric monoidal functor

Alg(C) — Fun(Assocs,,C)

that is the first3? step in the symmetric monoidal functor B&Y®. We already
constructed the self-duality functor

—°: A% 5 A
in Section 6.1.1.6. We will now introduce a functor
V: A — AssocZ,
so that precomposition with V o (—°) induces a symmetric monoidal functor

Fun(Assoc?,

act?

C) — Fun(A°?,C)
with respect to the pointwise symmetric monoidal structures.
Fact 6.1.2.13 ([NikSch, B.1]). There is a functor

V: A — Assoc®,

that maps

o [n]a to (n+1),

340r the first two or three, however one wants to count.
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e 0;: [n—1]a — [n]a to the active map that sends i to i if i < j+1 and

to i + 1 otherwise®®,

e 0;: [n+1]a — [n]a to the active map that sends i to i if i < j+1
and to i — 1 otherwise, with ordering on the preimage of j + 1 given by
ji+l<j+2,

e 7:[n]pn — [n]a to the active map that sends 1 ton+1 and i toi—1
fori>1. SN

Proposition 6.1.2.14. Let C be a symmetric monoidal co-category. Then
the functor

Assoc® . Fin,

Fun(Assoc,,C%) X Pun(Assoc®, Fin. ) FiNx

(Vo(=2))* X (vo(_oyxid

Fun(AOp,C®) X Fun(A°P,Fin,) Fin.,

over Fin, upgrades the functor

Fun(AssocZ,,C) e, Fun(A°P,C)

to a symmetric monoidal functor with respect to the pointwise symmetric

monoidal structures (see [HA, 2.1.3.4]). @

Proof. Follows directly from the definition of the respective pointwise sym-
metric monoidal structures and Proposition C.1.1.1 and [HTT, 3.1.2.1]. O

Remark 6.1.2.15. The symmetric monoidal functor obtained in Proposi-
tion 6.1.2.14 is natural in C. In particular, for F': C — D a symmetric
monoidal functor between symmetric monoidal co-categories, we obtain a
commutative square

Fun(Assoc’,,C) e, Fun(A°P,C)

act»

Fun (ASSOC?C“ D) W Fun(Aop’ D)

of symmetric monoidal functors. &

35For the reader confused by why it is j + 1 and not j: This arises from the fact that we
defined §; using elements nLH’ ceey nLH (i.e. we start counting from 0), whereas the
i.e.

elements of (n 4 1) are 1,...,n 4 1 (i.e. we start counting from 1).
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6.1 The cyclic bar construction and geometric realization of cyclic objects

6.1.2.5 The definition of the cyclic bar construction as a cyclic
object

We are now ready to define the cyclic bar construction Bg¥°.

Definition 6.1.2.16 ([NikSch, III1.2.3]). Let C be a symmetric monoidal
oo-category. We define the cyclic bar construction as the symmetric monoidal
functor?®

BJ¢: Alg(C) — Fun(A°P,C)

that is given as the composition of the symmetric monoidal functor
Alg(C) — Fun(Associ,,C)

from Proposition 6.1.2.11 and the symmetric monoidal functor

Fun(Assoc,,

C) — Fun(A°?,C)
from Proposition 6.1.2.14. O

Remark 6.1.2.17. B¢ is compatible with symmetric monoidal functors.
If F: C — D is a symmetric monoidal functor, then there is a commuting
diagram

Alg(C) —2" 5 Fun(A,C)

Alg(r) | |7

Alg(D) ——— Fun(A°?, D)

of symmetric monoidal functors. Furthermore, if G: D — £ is another sym-
metric monoidal functor, then the composite of the compatibility squares as
above for F' and G can be identified with the compatibility square for G o F'.
This follows by combining Remark 6.1.2.12 with Remark 6.1.2.15. O

6.1.2.6 BJ° for cocartesian symmetric monoidal co-categories

Let C be a symmetric monoidal co-category. The cyclic bar construction
BZ¢: Alg(C) — Fun(A°P,C)

is a symmetric monoidal functor and thus induces a functor as follows.

~

CAlg(C) ———=——— CAlg(Alg(C))
J{CAlg(B?’C) (6.9)

Fun(A®?, CAlg(C)) ——=— CAlg(Fun(A®",C))

36In the codomain with respect to the pointwise symmetric monoidal structure.
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In this section we will give a different description of this dashed functor: It
is the left adjoint of the forgetful functor evg, .

To prove this we will proceed as follows. We will first show in Proposi-
tion 6.1.2.18 that already B — so without passing to commutative algebras
—is left adjoint to evg), , under the assumption that the symmetric monoidal
structure on C is cocartesian. In order to apply this to the dashed composi-
tion in (6.9), we will then show in Proposition 6.1.2.19 how we can identify
CAlg(BZ°) (where the cyclic bar construction is taken of algebras in C) with
the cyclic bar construction for CAlg(C).

Proposition 6.1.2.18. Let C a symmetric monoidal co-category and assume
that the underlying co-category admits finite coproducts and that the symmet-
ric monoidal structure is cocartesian in the sense of [HA, 2.4.0.1]. Under
these assumptions the forgetful functor

evy: Alg(C) = C

is an equivalence by [HA, 2.4.5.9].
Then the composite

BP oev,': C — Fun(A°,C)
is left adjoint to the evaluation functor evig, . V)

Proof. Let i: {[0]a} — A°P be the inclusion. We will identify the co-category
C with Fun({[0]a}, C) and consider ev, as a functor to Fun({[0]a },C). Under
this identification, the functor evyy, corresponds to precomposition with i.
We start by noting that we can use Proposition 6.1.2.10 to identify the
composition i* o B¢ with ev, and this identification provides for every object

R of C a commutative triangle of co-categories as follows.

It now suffices to show that this triangle exhibits (B o evy1)(R) as a left
Kan extension of constr — see [HA, 4.3.2, 4.3.3, and in particular 4.3.3.7]%7.

37That we only need to check this pointwise for a single (though of course arbitrary) R
boils down to the fact that induced natural transformations between left Kan extensions
are defined essentially uniquely through the universal property of left Kan extensions
and ultimately colimits.
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6.1 The cyclic bar construction and geometric realization of cyclic objects

For this we need to show by [HA, 4.3.2.2 and 4.3.1.3] that for every object
[n]a of A°P the induced diagram

(Bﬁycoev; ! ) (R)

(A%) ina ¥4 {0]a} pA"p/v c
| G

((4°%) 0y, nor {100a})

where the left vertical functor is the inclusion and G is the functor that is
induced by (B¢ o evy!)(R), exhibits G(co) = (B&® o ev 1) (R)([n]a) as a
colimit of (B&¢ o evy)(R) o pr.

Let us start by unpacking what the category (A®") ;X aer {[0]a} looks
like. As [0]a has no nontrivial endomorphisms (A®?) ;= xaer {[0]a} is ac-
tually a discrete category. Objects are morphisms [0]a — [n]a in A°P; so
morphisms [n]a — [0]a in A. There are n + 1 such morphisms, namely f,,
for 1 < m < n+ 1, where f,, is the morphism (1/(n + 1)) -Z — Z in A38
that maps I/(n+1)to0for 0 <l <m—1landtolform—1<1<n. In
terms of the generators of A3% we can write f,, as f,, == o o 7™ L.

Hence what we need to show is that the morphism

[T B oevi!)(R)([0]a)

1<m<n+1

Ll <mcnir (B Coev ) (R) (fm) (

By oevy ') (R)([n]a) (*)

is an equivalence in C.

For this we need to understand what (B&¥® oev;!)(R) maps the morphism
fm to. First we use Fact 6.1.1.13 to see that the self-duality functor —° of
A maps f,, = oy o 7™ 1 to 717§, Next we need to apply the functor V
from Fact 6.1.2.13, which maps this to the active morphism (1) — (n+1) in

Assoc® that sends 1 to m. Denote this morphism of Assoc®,, by f/ .

We can then identify morphism (*) with the morphism®°

[T (®cdcev!)(R)(1)

1<m<n+1

L1 con<nir(®0Acevi ) (R)(f1,)

(@20 Aoevg ) (R)((n +1))

in C. With Proposition 6.1.2.10 we can further identify this morphism with

38See Section 6.1.1.2.
39See Section 6.1.1.3.
40We use notation like in Proposition 6.1.2.10.
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the morphism

w®M—1gid p @u®n—m

U1§m§n+1 <R:1£®m71®R®1?n77n R®n+1>
R®n+1

(%)
where u: 1¢ — R is the unit morphism of the associative algebra ev;!(R).
Morphism (**) is an equivalence as the symmetric monoidal structure on C
is cocartesian. O

ngmgn+1 R

Proposition 6.1.2.19. Let C be a symmetric monoidal oo-category. We
compare BZC for CAlg(C) and C in this proposition, so to distinguish them
we will use superscripts such as nyc’c.

Then there is a commutative diagram of co-categories

CAlg(Bgre©)

CAlg(Alg(0)) CAlg(Fun(A°?,C))
~ ~ (6.10)
Alg(CAlg(C)) Fun(A°P, CAlg(C))

yc,CAlg(C
BSYe 8(C)

where the left and right vertical equivalences are the canonical onest!. Q@

Proof. The symmetric monoidal forgetful functor ev(;y: CAlg(C) — C in-
duces by Remark 6.1.2.17 a commuting diagram

Beve:CAlg(©)

Alg(CAlg(C)) Fun(A°?, CAlg(C))

Alg(cv<1>)l J(cv“))*

Alg(C) Fun(A°P,C)

cyc,C
BJY*

of symmetric monoidal functors. Applying CAlg to this diagram we obtain
the bottom commutative square in the commutative diagram of co-categories

41For the left equivalence this is the composition
CAlg(Alg(C)) ~ BiFunc(Comm, Assoc; C) ~ BiFunc(Assoc, Comm;C) ~ Alg(CAlg(C))

where the middle equivalence is given by precomposition with the symmetry equiva-
lence and the other two are the ones from Proposition E.5.0.1. For the right vertical
equivalence see [HA, 2.1.3.4].
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below.
Reve,CAlg(C)
Alg(CAlg(C)) > Fun(A°P, CAlg(C))
ev<1> ev<1>
CAlg(Biyc,CAlg(C)
CAlg(Alg(CAlg(C))) CAlg(Fun(A°, CAlg(C))) (%)
CAlg(Alg(ev<1>)) CAlg((eVu))*)
CAlg(Alg(0)) CAlg(Fun(A°P,C))

CAlg(BY*:€)

By [HA, 3.2.4.7] the symmetric monoidal structure on CAlg(C) is cocarte-
sian, from which it follows that the induced symmetric monoidal structure on
Alg(CAlg(C)) is also cocartesian, and hence the left top vertical functor is an
equivalence by [HA, 2.4.3.9]. To see that the lower left vertical functor is also
an equivalence and that the composite left vertical equivalence can be iden-
tified with the one in diagram (6.10), we consider the following commutative
diagram

CAlg(Alg(ev(yy))
_

Alg(CAlg(C)) +—— CAlg(Alg(CAlg(C))) CAlg(Alg(C))

~ ~ =

CAlg(AIg(C)) 55— CAIs(CAIB(AIE(C))) — s CAIs(Alg(C)

where the middle and left vertical equivalences are (induced by) the canonical
equivalence exchanging the “inner” Alg and CAlg. By Proposition E.6.0.1,
the bottom right horizontal functor is an equivalence, and the composite
equivalence from the bottom left to the bottom right is homotopic to the
identity functor. It follows that the bottom left vertical functor in diagram
(*) is an equivalence and that the composite left vertical equivalence can be
identified with the left vertical equivalence in diagram (6.10).

We can argue completely analogously for the two right vertical functors
in diagram (%) being equivalences and the identification of the composite
with the right vertical equivalence in diagram (6.10) — this time we need to
exchange the “inner” Fun(A°P, —) and CAlg. O

Proposition 6.1.2.20. LetC be a symmetric monoidal co-category. Consider
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the composition*?

CAlsleve) L CAlg(Alg(C))

= Fun(A°P, CAlg(C))

CAlg(BSY®
- 5

CAlg(C) ), CAlg(Fun(A°P, C))

where the last functor is the canonical equivalence [HA, 2.1.5.4]43. This com-
position is left adjoint to the functor evig, - V)

Proof. Using Proposition 6.1.2.19 we can identify the composition in question
with the following composition

cyc,CAlg(C)

CAlg(C) < Alg(CAlg(C)) - Fun(A°, CAlg(C))

where nyc’CAlg(c) is the cyclic bar construction with respect to the sym-
metric monoidal co-category CAlg(C). The claim now follows from Propo-
sition 6.1.2.18, as the symmetric monoidal structure on CAlg(C) is cocarte-
sian. O

6.1.2.7 BJC and sifted colimits

The following statement concerning B and sifted colimits will be helpful
later when we want to show that Hochschild homology is compatible with
relative tensor products.

Proposition 6.1.2.21. Let C be a symmetric monoidal co-category. Let T
be a small sifted co-category?4, and assume that the symmetric monoidal
structure of C is compatible with T-indexed colimits in the sense of [HA,
3.1.1.18].

Then the functor

BY¢: Alg(C) — Fun(A°P,()
from Definition 6.1.2.16 preserves L-indexed colimits. Q

Proof. Colimits in functor categories are detected pointwise by [HTT, 5.1.2.3],
so it suffices to show that for every m > 1 the composition evy,, 1), 0Bg¥® pre-
serves Z-indexed colimits. Unpacking the definition of B, we can identify
this composition with ev(,,) o ®. o A, see Definition 6.1.2.16 and Proposi-
tion 6.1.2.11. Using Proposition 6.1.2.10 we can further identify this compo-
sition with

Alg(€) & ¢2 (i), cg =~

42CAlg(evaq) can be identified with the composition

evq

CAlg(Alg(C)) ~ Alg(CAlg(C)) —= CAlg(C)

and is thus an equivalence by [HA, 3.2.4.7 and 2.4.3.9].

43This equivalence arises from using that Fun(Fin,, —) preserves pullbacks and the x-Fun-
adjunction.

44See [HTT, 5.5.8.1] for a definition.
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where pi,,: (m) — (1) is the unique active morphism in Fin,.
By [HA, 3.2.3.7], the functor (u,,), appearing above preserves Z-indexed
colimits, so it remains to show that

€Vim): Alg(C) — C(%n}

also does so. The inert morphisms p®: (m) — (1) determine natural trans-
formations ev i : ev,,) — ev(yy. By definition of Alg(C), these natural trans-
formations will be componentwise inert morphisms in C® lying over p'. It

follows* that the natural transformation

H Vil €Vim) — H ev(1)

1<i<m 1<i<m

is a natural equivalence.
It thus suffices to show that

preserves Z-indexed colimits. As colimits in products of oo-categories are
detected componentwise by [HTT, 5.1.2.3], we are left to show that

ev(1): Alg(C) —=C

preserves Z-indexed colimits, which is true by [HA, 3.2.3.1 (4)]. O

6.1.3 Geometric realization of cyclic objects

Let C be a presentable symmetric monoidal oco-category and X : A°® — C
a cyclic object in C. Recall from Construction 6.1.1.6 that there is a functor
j: A°®P — A°P along which we can precompose X, obtaining a simplicial ob-
ject j* X. In this section we discuss how the extra automorphisms in A provide
the structure of a T-action on the geometric realization |j*X| = colim j*X.
We follow the approach of [Hoy18], but see also [NikSch, Appendix B].

We will start in Section 6.1.3.1 by briefly reviewing oo-groupoid comple-
tions and the fact that the co-groupoid completion of A°P is BT, which will
be needed to define the geometric realization functor for cyclic objects in
Section 6.1.3.2. We will end in Section 6.1.3.3 by discussing monoidality of
this construction.

6.1.3.1 The oo-groupoid completion of AP

In this short section we recall that the oo-groupoid completion of A°P is
given by BT. We first introduce some notation.

45See Proposition A.3.2.1 and [HA, 2.1.1.14].
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Notation 6.1.3.1. Let C be an oo-category. We denote the co-groupoid com-
pletion of C by C#P4. Concretely C8P4 is the co-groupoid obtained by inverting
all morphisms of C, and comes with a functor C — C&P4 that is initial among
functors with domain C and whose codomain is an co-groupoid.

This construction can be made into a functor —8P3d: Cat., — 8§ that is left
left adjoint to the inclusion, see [HTT, 1.2.5.6 and the preceding discussion]
and [HA, 1.3.4.1]. O

We can now recall the following result about the co-groupoid completion
of A°P. The two references state their results as A8*Y ~ BT, but Fact 6.1.3.2
can be immediately obtained from this by either using that A is self-dual
by Fact 6.1.1.13 or using that —#P4 is compatible with passing to opposite
oo-categories and that co-groupoids are equivalent to their opposites.

Fact 6.1.3.2 ([Hoy18, 1.2], [NikSch, B.4]). There is an equivalence
(A°P)®P! ~ BT
of co-groupoids. &

6.1.3.2 Definition of the geometric realization

We now come to the definition of the geometric realization of cyclic objects.
This will be defined as a left adjoint, so we start by showing that the left
adjoint exists.

Proposition 6.1.3.3. Let C be an co-category. Denote by ¢: A°® — BT the
canonical functor exhibiting BT as the co-groupoid completion of A°P, see
Fact 6.1.3.2. Then the following hold.

(1) The functor
¢*: Fun(BT,C) — Fun(A°?,C)

s fully faithful, and its essential image is spanned by those functors
that map every morphism in A°P to an equivalence in C.

(2) Assume that C is presentable. Then ¢* admits a left adjoint. @

Proof. Proof of claim (1): Holds by definition, see [HA, 1.3.4.1].

Proof of claim (2): By [HTT, 5.5.3.6], both Fun(BT,C) and Fun(A°?,C)
are presentable. By the adjoint functor theorem [HTT, 5.5.2.9] it thus suf-
fices to show that ¢* is accessible and preserves small limits. This follows
immediately from the fact that limits and colimits in functor categories are
calculated pointwise®6. O

We can now make the following definition.

46See [HTT, 5.1.2.3] for the fact that (co)limits are calculated pointwise, and [HTT, 5.4.2.5
and 5.3.4.5] for the definition of accessible functors.
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Definition 6.1.3.4 ([Hoy18, Page 2]). Let C be a presentable oo-category.
Then we denote the left adjoint to ¢* from Proposition 6.1.3.3 by

|—|: Fun(A°?,C) — BT
and call it the geometric realization functor for cyclic objects. &

Remark 6.1.3.5. Let
F
%
C é o

be an adjunction of co-categories, with C and C’ both presentable.
Then compatibility of precomposing with postcomposing yields a commu-
tative diagram

Fun(A°?,C) < BT

e.| TG*

Fun(A°P,C") <—¢* Cc'BT

so that, by passing to left adjoints and using Proposition D.2.2.1 and [HTT,
5.2.6.2] we obtain a commutative diagram

Fun(A°P,C) 4>|_| CBT

R JF*

Fun(A°P,C") *>|7| C'BT

relating the geometric realization functors for C and C'. &

We end this section with the following comparison between geometric re-
alization of cyclic and simplicial objects, which gives a description of the
underlying object of | X| for a cyclic object X.

Fact 6.1.3.6 ([Hoyl8, 1.1]). Let C be a presentable co-category. Then there
is a commutative square of oco-categories as follows

Fun(A°?,C) 7l e

| l

Fun(AOp,C) ﬁ C
where ¢ is as in Construction 6.1.1.6, * is the basepoint (i.e. the up to
equivalence unique object) of BT, and the lower horizontal functor is the
geometric realization functor for simplicial objects, so the functor colimaer.

@
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6.1.3.3 Monoidality

If C is a presentable symmetric monoidal co-category, then Fun(A°P, C) and
CBT can both be given the pointwise symmetric monoidal structure*”, with
respect to which the functor ¢* from Proposition 6.1.3.3 can be upgraded to
a symmetric monoidal functor. In this section we show that the geometric
realization functor for cyclic objects can also be upgraded to a symmetric
monoidal functor.

Proposition 6.1.3.7. Let O be an oo-operad and let pc: C® — O be
a cocartesian fibration of co-operads, and assume furthermore that Cx is
presentable for every object X of O, and that the O-monoidal structure on C
is compatible with small colimits in the sense of [HA, 3.1.1.18 and 3.1.1.19].

Then the adjunctions |—| - ¢* from Definition 6.1.3.4 for the presentable
oo-categories Cx for objects X of O can be upgraded to an adjunction relative

to O% in the sense of [HA, 7.3.2.2]

o ® (1-n® BT
Fun(A%,C)® —————— (CB7)®

\(¢ )®/

where the functors to O%® are the canonical O-monoidal functors that exhibit
Fun(A°P,C) and CBT as equipped with the pointwise O-monoidal structure.
Furthermore, both (|—|)® and (¢*)® are O-monoidal functors. v

Proof. (¢*)?® is defined as the induced functor

* X g id
Fun(B T,C®) XFun(BT,0®) O® M Fun(AoP,C@’) X Fun(A°P,09) O®

which by [HTT, 3.1.2.1] and Proposition C.1.1.1 preserves pry-cocartesian
morphisms and is thus O-monoidal. Furthermore, by Proposition 6.1.3.3 (1),
the functors

o Fun(B T,C®) — Fun(AOp,C®)
and

¢*: Fun(BT,0%) — Fun(A°?, 0%)

are both fully faithful, with essential image spanned by those functors that
map all morphisms to equivalences. It then follows from Proposition B.5.3.1
that (¢*)® is also fully faithful, with essential image spanned by those ob-
jects which are mapped by pr; to functors that invert all morphisms. An
object in Fun(AOp,C)® lying over X ~ X; @ --- ® X,, in O® is mapped by
pry; to a functor A°? — C® that factors over the conservative inclusion of
C}‘? ~Cx, X -+ x Cx,. As morphisms in products of co-categories are equiv-
alences if and only if their component morphisms are, we can hence identify

47See [HA, 2.1.3.4].
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the essential image of (¢*)® with the the induced oo-operad structure as de-
fined in [HA, Start of section 2.2.1] on the full subcategory Fun(BT,C) of
the the underlying co-category Fun(A°P,C) of the co-operad Fun(A°P,C)%

The claims will now follow from the conclusion of [HA, 2.2.1.9]*8. To verify
the requirements to apply that result, it remains to show that the localization
functors

Fun(A°, Cy) = Fun(BT,Cx) 2 Fun(A°®, Cx)
for X an object of O are compatible with the O-monoidal structure on
Fun(A°P,C)® in the sense of [HA, 2.2.1.6].

Solet f: X1 ®---®X,, — Y be a morphism in O%, with X; and Y objects
of O. We obtain an induced functor on fibers

[li<icn, Fun(A®.Cx,) ~ Fun(AOP,C)?}l@W@Xn EiN Fun(AOp,C)% ~ Fun(A°P,Cy)

and what we have to show is that if morphisms g; are an mapped to equiva-
lences by

|—|: Fun(A°?,Cx,) — Fun(BT,Cx,)

for each 1 < i <, then sois fi(g1 ® -+ B gn)-

Using that the forgetful functor ev,: Fun(BT,Cy) — Cy detects equiva-
lences by Proposition A.3.2.1, and combining this with Fact 6.1.3.6, this boils
down to showing that

(eva o [=[)(filgr ® -+ @ gn)) ~ (cglign oj*)(ﬁ(gl @ D gn))

is an equivalence if (colimacr © j*)(g;) is for every 1 < i < mn.
Let us unpack the functor colimaer 0 j* o fi. We have natural equivalences
as follows, where C; is an object of Cx,.

<cglggnoj* Of!)(cl O 0 Ch)

Using that j* is O-monoidal with respect to the pointwise O-monoidal struc-
tures on Fun(A°?,C) and Fun(A°?,C).

~ (COAlgnOﬁ)(j*Cl S ®jCh)

Using the definition of the pointwise O-monoidal structure.

[Ti<i<n idaop H1<L<n i
: op == Op
~
colg}r)nA —)”A ”C;(
1<i<n 1<i<n
48That |7|X® will be given by |—|: Fun(A°P,Cx) — Fun(BT,Cx) for X an object of O

follows from [HA, 7.3.2.5] and [HTT, 5.2.6].
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Applying [HA, 3.2.3.7], which is applicable as the O-monoidal structure of
C is compatible with small colimits by assumption and AP is sifted [HTT,
5.5.8.1 and 5.5.8.4].

~ fi| colim || Cioj
Aop
1<i<n

Using that colimits in products are calculated pointwise [HTT, 5.1.2.3].
~ fi @ coAlg}I)nC'io]
1<i<n

Thus the claim we need to show ultimately boils down to the following: If
gi: C; — D; induces an equivalence

cglgn(CZ- 0j)— cglgn(Di 07)
for every 1 < i < n, then the induced morphism
il @ eqim(Ciod) | = fi| D eglim(Dio)
1<i<n 1<i<n

is an equivalence as well, which is clear. O

Remark 6.1.3.8. Let O be an oo-operad and let pc: C® — O® as well as
per: C'® — O% be cocartesian fibrations of co-operads that both satisfy the
conditions of Proposition 6.1.3.7. Let

c® —> e

be an adjunction relative to O% in the sense of [HA, 7.3.2.2 and 7.3.2.3], with
both F and G being O-monoidal.

Then proceeding like in Remark 6.1.3.5 and using Proposition 6.1.3.7, we
can conclude that the commutative diagram

Fun(A°P,C) L> CBT

F | lF*

Fun(A°?,C") —— C'BT

can be upgraded to a commutative diagram of O-monoidal functors. &
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6.2 Hochschild homology

In this section we finally define the functor
HH\tixea : Alg(D(k)) — Mixed

that the chapters below will be about, and discuss some crucial first proper-
ties®?.

We will start with the definition in Section 6.2.1. In Section 6.2.2 we will
then discuss different descriptions of Hochschild homology of commutative
algebras. Finally, we will show in Section 6.2.3 that HHy¢ixeq preserves relative
tensor product, which will later be crucial for calculations.

6.2.1 Definition of Hochschild homology

We can now define Hochschild homology by specializing the general discus-
sion of the cyclic bar construction and geometric realization of cyclic objects
of Section 6.1 to the case of D(k). We can apply the definitions of BJ® and
|—| to D(k) as it is a presentable symmetric monoidal co-category according
to Proposition 4.3.2.1.

Definition 6.2.1.1. We define HHy to be the symmetric monoidal functor
that is given as the composition

HHr: Alg(D(k)) 2 Fun(A°, D(k)) —b D(k)BT
where BJC is the symmetric monoidal functor from Definition 6.1.2.16 and
|—| is the symmetric monoidal functor from Definition 6.1.3.4 and Proposi-

tion 6.1.3.7.
We furthermore denote by

HH: Alg(D(k)) — D(k)

the symmetric monoidal functor given by composing HHp with the symmetric
monoidal functor ev,.

We refer to both HHt and HH as the Hochschild homology functor. &

The reason we use the subscript T for HHry is to distinguish this functor
from the composition with the equivalence @(k)BT ~ Mixed from Construc-
tion 5.4.0.1, as we will need to refer to both functors in later chapters. We
thus also give the latter functor a name.

Definition 6.2.1.2. We define

HHytixeq : Alg('D(k)) — Mixed

49We will compare HHytixeq With the classical standard Hochschild complex in the next
section, Section 6.3.
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to be the monoidal functor obtained by composing the symmetric monoidal
functor HHy from Definition 6.2.1.1 with the monoidal equivalence from Con-
struction 5.4.0.1. O

Notation 6.2.1.3. If we evaluate HH, HHy, or HHyixeq at an object of the
form Alg(y)(R), with R an object of Alg(Ch(k)°°f), then we will often omit y
from the notation and just write e.g. HH(R) instead of HH(Alg(y)(R)). <

Warning 6.2.1.4. As the equivalence D(k)®" ~ Mixed from Construc-
tion 5.4.0.1 is only (associatively) monoidal, not symmetric monoidal, the
same is true for HHy(ixed- &

Remark 6.2.1.5. As the monoidal equivalence D(k)BT ~ Mixed that was
constructed in Construction 5.4.0.1 is compatible with the forgetful functors
to D(k), we obtain a homotopy

eV © HHy\tixeq =~ evy o HH ~ HH

of monoidal functors. &

Remark 6.2.1.6. Let p: k — k' be a morphism of commutative rings.
Then combining Remark 6.1.2.17 with Remark 6.1.3.8 applied to the adjunc-
tion from Remark 4.3.2.2 we obtain a commutative diagram of symmetric
monoidal functors as follows.

HH

Alg(D(k)) — T D(£)BT — ™, D(k)

k' ®p— (k/®k_)* K ®)—

Alg(D(h)") —— D)PT —— D(K)

evm

HH

Combining the above with Remark 5.4.0.3 we also obtain a commutative
diagram of monoidal functors as follows.

Alg(D(k)) —txed o pvfived,

K ®r— K ®p—
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6.2.2 Hochschild homology and commutative algebras

The functors HHy and HH defined in Definition 6.2.1.1 are symmetric
monoidal functors and thus induce functors on oco-categories of commuta-
tive algebras. In this section we will give different characterizations of those
induced functors that will be of use later.

We will start in Section 6.2.2.1 by mostly fixing notation. In Section 6.2.2.3
we will show that if R is a commutative algebra in D(k), then HHp(R) can
essentially be obtained as R T, i. e. tensoring R as an object of CAlg(D(k))
with T, considered as a space with a T-action. To properly discuss this, we
will first introduce — X — and T in Section 6.2.2.2. As an application of this
description, we will show in Section 6.2.2.4 and Section 6.2.2.5 how interpret
HH of commutative algebras as pushouts and relative tensor products in
CAlg(D(k)).

6.2.2.1 HH for commutative algebras

As the functors HH and HHy from Definition 6.2.1.1 are both symmetric
monoidal, they induce functors on co-categories of commutative algebras as
well. By precomposing and postcomposing with canonical equivalences, we
arrive at the following definitions.

Definition 6.2.2.1. We denote by HHy the composition
CAlg(D(k)) =5 CAlg(Alg(D(k))) 2B, a1 (D(k)”) =, CAlg(D(k))PT

where the individual functors are as follows.

o The first equivalence is the inverse of the following equivalence®®.

CAlg(evy): CAlg(Alg(D(k))) — CAlg(D(k))

50This functor can be identified with the composition of the equivalence

CAlg(Alg(D(k))) ~ BiFunc(Comm, Assoc; D(k))
from Proposition E.5.0.1, the equivalence
BiFunc(Comm, Assoc; D(k)) ~ BiFunc(Assoc, Comm; D(k))
given by precomposing with the symmetry equivalence
Assoc® x Comm® ~ Comm® x Assoc®
the equivalence
BiFunc(Assoc, Comm; D(k)) ~ Alg(CAlg(D(k)))
from Proposition E.5.0.1, and the functor
evq: Alg(CAlg(D(k))) — CAlg(D(k))

that is an equivalence by [HA, 3.2.4.7 and 2.4.3.9].
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e The functor HHy appearing in CAlg(HHy) refers to the