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Roslagsv 101, Kräftriket, Stockholm, Sweden

tirabassi@math.su.se

ISBN 978-87-7125-050-3

This thesis has been submitted to the PhD School of The Faculty of Science, University of Copenhagen

mailto:luigi.pagano@math.ku.dk
mailto:larshalvard.halle@unibo.it
mailto:fpazuki@math.ku.dk
dustin.clausen@math.ku.dk
mailto:j.nicaise@imperial.ac.uk
mailto:tirabassi@math.su.se


4



Abstract

The main object of this thesis is the motivic zeta function for Calabi-Yau varieties defined over
a non Archimedean valued field, focusing on Hilbert schemes of points on surfaces. We use the
tools from logarithmic geometry for the construction of semistable models of the surfaces with
trivial canonical sheaf. We exploit such construction in order to give a recipe for constructing
weak Néron models of their Hilbert schemes of points and deduce from this a formula for
computing their motivic zeta function. We use the formula developed in this way in order
to prove that the Hilbert schemes of points have the monodromy property if their underlying
surfaces have it.
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Resumé

Hovedobjektet i denne afhandling er den motiviske zeta funktion for Calabi-Yau varieteter
defineret over et legeme med en ultrametrisk absolut værdi, med fokus p̊a Hilbert skemaer af
punkter p̊a flader. Vi bruger redskaberne fra logaritmisk geometri til at konstruere semistabile
modeller af fladerne med trivielt kanonisk knippe. Vi udnytter s̊adanne konstruktioner til at
give en opskrift p̊a at konstruere svage Néron modeller af deres Hilbert skemaer af punkter og
udleder heraf en formel til at udregne deres motiviske zeta funktion. Vi bruger formlen udledt
p̊a denne m̊ade til at bevise, at Hilbert skemaer af punkter har monodromiegenskaben, hvis
deres underliggende flader har den.
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Introduction

p−adic and motivic zeta functions

Let f ∈ Z[x1, . . . , xn] be a polynomial and fix a prime p. A way to study the asymptotic
behavior of the number Nd of solutions of f modulo pd+1, for d � 1, consists on studying the

Poincaré series Pf (t) :=
∑
d∈N

Nd

pmd
td. In particular, one has that Pf is rational if and only if

Nd/p
md is a linear recurrence sequence and, in such case, the poles of Pf are the roots of the

charachteristic polynomial of the sequence. The p−adic Igusa zeta function was born in order to
address this number-theoretical problem: on one hand the p−adic zeta function has an intrinsic
expression as a p−adic integral, on the other hand it is related to the Poincaré series by the
equation (1.1.1); this equation implies that the Zeta function is rational in p−s if and only if
the Poincaré series is rational. Using the Hironaka resolution of singularities, Igusa proved the
rationality of the zeta function, hence that of the Poincaré series.

After Kontsevich invented the theory of motivic integration, Denef and Loeser adapted the
definition of Igusa zeta function to a totally new context, inventing the motivic zeta function, a
powerful invariant attached to hypersurface singularities. This invariant is a formal series with
coefficients in a Grothendieck ring of varieties which has been proved to be rational by Denef
and Loeser in [10], in a sense that will become clear in §3.6. A further variant of the motivic
integration theory was developed by Loeser and Sebag. In their theory, rather than studying
the hypersurface singularities, one studies their tubular neighbourhoods, i.e. families of smooth
varieties defined over a punctured disk, or over the spectrum of a field endowed with a non
trivial ultrametric absolute value for an algebro-geometric version. The motivic integral, in this
case, measures in what way the family can be filled over the puncture, i.e. what central fibres
should weak Néron models over the disk should have. The motivic zeta function for Calabi-Yau
varieties collects these motivic integrals for all the possible finite étale covers of the punctured
disk and puts the results together in a formal series.

Monodromy conjecture

For all these settings, a question about the poles of these rational functions naturally arises.
The most discussed open question concerning the motivic zeta function is the Monodromy
Conjecture which claims the existence of a relationship between the poles of the zeta functions
and the eigenvalues of the local monodromy operator associated either to the hypersurface
singularity (for Denef and Loeser’s setting) or to the deck tansformations of the universal cover
of the punctured disk (for Loeser and Sebag’s setting). In the situation we will deal with,
i.e. Loeser and Sebag’s setting, we consider a Calabi-Yau variety X → SpecK, for some field
K with an ultrametric valuation, the étale fundamental group of SpecK, i.e. the absolute
Galois group of K, acts on X, inducing an action on its cohomology with coefficients in Ql.
Under the assumption that the wild inertia acts trivially on X, we can identify the action
of Gal(K|K) with the action of its tame quotient, which admits a topological generator σ.

13
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The corresponding cohomology operator σ∗ : H∗(XK ,Ql) → H∗(XK ,Ql) is a quasi-unipotent
linear operator; its eigenvalues are thus roots of the unity. The monodromy conjecture relates
these eigenvalues to the poles of the motivic zeta function of X. Halle and Nicaise proved
in [17] that the monodromy conjecture holds when X is an Abelian variety; in such case the
motivic zeta function has always a single pole. Jaspers has proved in [23] that whenever X is
a K3 surface admitting a Crauder-Morrison model, then the monodromy conjecture holds for
X. In [36], Overkamp proved that all the Kummer surfaces satisfy the monodromy property.
Lunardon proved in [26] that K3 surfaces admitting a model with ADE singularities satisfy the
monodromy conjecture. All these works provide a large class of surfaces with the monodromy
property, giving sense to our investigation on Hilbert schemes of points over surfaces.

Hilbert schemes

Hilbert schemes are the answer to one of the most natural moduli problem that mathematician
study: parametrizing subschemes of a given variety. Hilbert schemes of points on surfaces with
trivial canonical bundle are Calabi-Yau varieties as well; moreover if the surface is K3, then its
Hilbert schemes of points are Irreducible Holomorphic Symplectic varieties. In this thesis we will
construct weak Néron models of Hilbert schemes by accurately using the moduli problem they
solve. Starting with a degeneration of surfaces we will use techniques from logarithmic geometry
in order to construct other degenerations over the extensions of the base ring. Applying the
Hilbert functor to these degenerations one gets proper, but singular, models for the Hilbert
schemes of points on the surfaces. Starting with these models for Hilbert schemes, applying
the theory of Weil restriction of scalars, it is possible to obtain weak Néron models of Hilbert
schemes over an arbitrary base change of K and, moreover, it is possible to study accurately
their central fibre.

The main result

This construction lead us to a formula for the motivic zeta function of the Hilbert schemes in
terms of the zeta functions of the underlying surface and of its base changes over the finite
extensions of K. From that formula it will be possible to deduce the main theorem of this
manuscript:

Theorem. Let X be a surface with trivial canonical bundle satisfying the monodromy conjecture.

Then the conjecture holds also for Hilbn(X), ∀n ∈ N.

This formula has sees application not only in the context of Hilbert schemes of points, but
also in some moduli spaces of sheaves over the K3 surface, as we will see in the end of the thesis.

Outline of the thesis

In chapter 1 we give an historical introduction on p−adic zeta function and on its corresponding
monodromy conjecture.

In chapter 2 we introduce the Grothendieck rings of varieties and their equivariant versions,
using them to define the main actors of the manuscript.

In chapter 3 we recall the notion of motivic integration and the definition of the Motivic Zeta
Function in two settings: the setting of hypersurface singularities and the setting of Calabi-Yau
varieties. Then we explain the notion of rationality for power series with coefficients in Mk, in
Mk

[
(Lr − 1)−1 : 0 < r ∈ N

]
and in M̂k, giving also a definition of a pole of such functions. We

conclude by stating the Monodromy Conjecture in two forms.
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In chapter 4 we recall the notion of a weak Néron model and show some techniques that we
will use in order to construct them.

In chapter 5 we introduce the notion of logarithmic scheme and the facts that we need later
on in the thesis.

In chapter 6 we define toric schemes over a DVR and explore some similarities with the
theory of toric varieties.

In chapter 7 we adapt the theory of potential semistable reduction of families of surfaces in
our case. We construct a specific equivariant semistable model satisfying a good property with
respect to the Galois action of the extension.

In chapter 8 we discuss some facts concerning the poles of rational functions with coefficients
in our motivic ring. These properties will be useful when applied to the formula that we will
produce for the motivic zeta function of Hilbert schemes.

In chapter 9 we state basic facts about the objects we are mostly interested in, Hilbert
schemes.

In chapter 10 we give a construction of the weak Néron models of Hilbert schemes of points
on surfaces and use those models to compute their motivic zeta function.

We finally discuss the monodromy property in chapter 11.
In chapter 12 we compute explicitly the poles of the zeta function of the Hilbert scheme of

two points of a quartic K3 surface.
In chapter 13 we prove birationality between some moduli spaces of sheaves over a K3 surface

and a Hilbert scheme of the appropriate dimension; we then use the birational invariance of the
motivic zeta function to prove the monodromy conjecture for those moduli spaces.

Notation and conventions

Throughout the thesis, unless differently stated, R will be a DVR, K its fraction field and k its
residue field, which we will assume to be algebraically closed. We fix an algebraic closure K of
K, so that whenever we consider extensions of K and R we think of algebraic extensions of K
in K and integral extensions of R in K. When m is an integer coprime with the characteristic
exponent of k, we denote by K(m) the unique extension of K of degree m and by R(m) the
integral closure of R in K(m). By variety over a field F we denote a reduced, separated scheme
of finite type over F . The set of natural numbers N contains 0.
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Chapter 1

Zeta functions in algebraic geometry

A large class of algebro-geometric invariants are often denoted by the term ”zeta functions”

1.1 The p−adic Igusa zeta function.

1.1.1 The Igusa zeta function was originally defined as an invariant attached to hypersurface
of some affine spece AnZp .

Definition 1.1.2. Let f ∈ Zp[x1, x2, . . . , xn] be a nonconstant polynomial and consider the
function of complex variable s, in the half-plane {s : <s > 0}:

Zf (s) :=

ˆ
Znp
|f(x)|sp dµ ,

where the p−adic value is normalized by |p|p = p−1 and dµ denotes the Haar measure of the
compact group Znp so normalized that the total measure is 1. This define an holomorphic
function in the domain.

Remark 1.1.3. It is possible to replace Zp with its integral closure in any finite extension K of
Qp and define essentially the same theory with the appropriate Haar measure.

1.1.4 The Haar measure of the oversets, i.e. µ({x ∈ Znp : |f(x)|p ≥ p−d}), for d ∈ N, is related

to the numbers Nd := |{a ∈ (Z/pdZ)n : f(a) ∼= 0 (mod pd)}|, with N0 = 1, by the equation

µ({x ∈ Znp : |f(x)|p ≥ p−d}) = 1− Nd+1

p(d+1)n
.

Because of this property the Igusa zeta function of f becomes a useful invariant for computing
the number of solutions of f modulo all the powers of p; this can be made more explicit via a
functional equation involving the Poincaré power series Pf (p−s), where:

Pf (t) :=
∑
d≥0

Nd

pnd
td ,

indeed the two functions satisfy the equation:

Pf (t) =
1− tZf (s)

1− t
, (1.1.1)

after the substitution t = p−s.

19
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1.1.5 Despite the two functions Zf and Pf are, as we will see soon, useful invariants of singular-
ities, they are not very interesting if f has no critical points, for the numbers Nd, d ≥ 1, are all
equal because of Hensel’s Lemma. On the other hand, this means that Pf is a rational function
of t as soon as f is a smooth polynomial; similarly Zf will be a rational function of p−s in the
same case. Combining this fact with Hironaka’s resolution of singularities, Igusa proved in [22]
that Zf (s) is rational for an arbitrary f , taking advantage of the change of variable formula that
holds for p−adic integrals. It follows that Pf is always a rational function, which was stated
as a conjecture by Borevich and Shafarevich in [2]. Once established that the zeta function is
rational, the most natural task for the Mathematician is determining its poles, possibly with
multiplicity, and understanding the relations existing between them and the ”nature” of V (f).
Indeed this question found a partial answer in the p-adic monodromy conjecture formulated
by Igusa, which links the arithmetic nature of Zf with the topological nature of the Milnor
fibration of V (f) ⊆ Cn.

1.2 Milnor fibration and monodromy action

1.2.1 In order to explain the monodromy conjecture, we need to briefly introduce the Milnor
fibration and the monodromy action on it. Consier the polynomial f as a map Cn → C and
fix a point x ∈ V (f). Let 0 < δ � ε� 1 be small positive real numbers and consider the disk
∆ = D(0, δ) ⊆ C and the ball B = B(x, ε) ⊆ Cn; consider the punctured disk ∆∗ := ∆\{0}
and the tubular neighbourhood B∗ := B ∩ f−1(∆ast). Restricting f results in a locally trivial
fibration fx : B∗ → ∆∗, called the Milnor fibration of f at x. Consider the universal cover
∆̃∗ → ∆∗; the base-change Fx := B ×∆∗ ∆̃∗ is called the (universal) Milnor fibre of f at x.

The group π1(∆∗) of deck transformations of ∆̃∗ → ∆∗ induces automorphism of Fx, which, in
turns, induces a linear action of π1(∆∗) on the singular cohomology

π1(∆∗) y
⊕
i≥0

H i
sing(Fx,Z) .

The action on H∗sing(Fx,Z) of the canonical generator of π1(∆∗), i.e. the transformation corre-
sponding to one single counterclockwise loop, will be simply called the monodromy action of f
at x and the eigenvalues of this map are called monodromy eigenvalues. The p−adic monodromy
conjecture links these with the poles of the Igusa zeta function.

Conjecture 1.2.2 (p−adic monodromy conjecture). Let f ∈ Z[x1, . . . , xn] be a polynomial.
Assume that s is a pole of Zf , where f is considered as an element of Zp[x1, . . . , xn], then
exp(2iπ<(s)) is a monodromy eigenvalue of f , where f is considered as an element of C[x1, . . . , xn].

1.2.3 Notice that if f is smooth at x, then fx is a trivial fibration and the monodromy action
coincide with the identity, while if x is a critical point of f , the monodromy eigenvalues are
more interesting. In any case all the monodromy eigenvalues are roots of 1, [8, Théorème de
monodromie 2.1]; the computation of these eigenvalues is simplyfied by the means of the so
called monodromy zeta function.

1.3 Monodromy zeta function and p−adic monodromy conjec-
ture.

1.3.1 Despite the characteristic polynomial of a linear operator already carries complete in-
formation about the eigenvalues of such operator, it is not very suitable for practical purposes.
For this reason we will introduce the following monodromy zeta function, which will provide
significant computational advantages:



21

Definition 1.3.2. Let f : Cn → C be a non-constant analytic map. The monodromy zeta
function of f at x is

ζf,x :=
∏
i≥0

det(Id− T ·Mx,i|H i(Fx,C))(−1)i+1
.

1.3.3 All the zeroes and the poles of this function are monodromy eigenvalues at x, nevertheless
some of the eigenvalues might be missing due to cancellation between eigenvalues that appear in
different cohomology groups. On the other hand, Denef proved in [9] that if γ is a monodromy
eigenvalue at x, then there is at least one point y ∈ V (f), possibly different than x, such that γ is
either a zero or a pole of ζf,y. Thus the monodromy zeta function, globally speaking, covers the
same informations as the charactristic polynomial, in spite of missing some local information.

1.3.4 The following theorem, due to A’Campo [1, Théorème 3], provides and effective and
efficient way to compute the monodromy zeta functions in terms of resolutions of singularities:

Theorem 1.3.5 (A’ Campo). Let f : Cn → C be a non-constant analytic map, let X0 = V (f)
and let g : Y → AnC be a embedded resolution of singularities of f , with Y0 = g−1(X0). Let
{Ei}i∈I be the set of irreducible components of Y0, where each Ei has multiplcity Ni, and set

E◦i := Ei\

 ⋃
j∈I\{i}

Ej

. Then the following equality gives an expression for the monodromy

zeta function:

ζf,x =
∏
i∈I

(1− TNi)−χ(E◦i ∩g−1(x)) ,

where χ is the topological Euler characteristic.
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Chapter 2

Grothendick ring of varieties

In this section we introduce the rings containing the coefficients of the formal series we will
study later on.

2.1 A motivic ring

2.1.1 Fix a field k and consider the category of algebraic varieties Vark. Let K0(Vark) be
the group whose generators are isomorphism classes in Vark and whose relations, called scissor
relations, are generated by elements in the form

X − Y − (X\Y ) ,

whenever X is an algebraic variety and Y ⊆ X is a closed subvariety. We denote by [X] the
class of X ∈ Vark in K0(Vark).

2.1.2 There is a unique ring structure on K0(Vark) such that for all X,Y ∈ Vark one has

[X] · [Y ] = [X ×k Y ], where by X ×k Y we denote the reduced scheme associated to the product
X ×k Y . With this ring structure, K0(Vark) is called the Grothendieck ring of varieties. It is
also characterized by the following universal property:

Universal property of K0(Vark). Let R be a ring and let Ψ: Vark → R a multiplicative
and additive invariant, i.e. a function, constant on isomorphims classes, which associates to a
variety X an element Ψ(X) ∈ R such that Ψ(X ×k Y ) = Ψ(X)Ψ(Y ) and if X = Y ∪ Z, then
Ψ(X)+Ψ(Y ∩Z) = Ψ(Y )+Ψ(Z). Then there is a unique ring homomorphism ϕ : K0(Vark)→ R
such that

∀X ∈ Vark, one has that ϕ([X]) = Ψ(X) .

2.1.3 We give a couple of examples of this property:

Example 2.1.4. Assume k = C, let χ : Vark → Z be the topological Euler characteristic; then
χ factors through a map χ : K0(VarC)→ Z.

Example 2.1.5. If k = C, we can associate to a variety X → Spec k its Poincaré polynomial

p(X, v) =
2 dimX∑
n=0

bn(X)vn ∈ Z[v], where bn(X) is the n−th Betti number of X. The Poincaré

polynomial induces a ring homomorphism K0(Vark) → Z[v], called the Poincaré specialization
map.

Example 2.1.6. If k = Fq is a finite field, then the point counting map X 7→ #X(Fq) induces
a ring homomorphsm K0(Vark)→ Z.
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2.2 Localised Grothendieck ring

2.2.1 A ring that is worth some consideration is obtained as a localization of K0(Vark).

Definition 2.2.2 (Localised Grothendieck ring of varieties). Let us denote by L the element
[A1
k] ∈ K0(Vark).
The localisation of K0(Vark) with respect to L,

Mk := K0(Vark)[L−1] ,

is called the localised Grothendieck ring of varieties.

2.2.3 By combining the universal property of localization and of K0(Vark), one can define Mk

as a universal ring for all the invariants Vark → R which send A1
k in R∗.

2.3 The Grothendieck ring of algebraic stacks

2.3.1 Consider all the elements of the form 1 − La ∈ Mk. A key role in this manuscript will
be played by the ring obtained by inverting those elements.

Definition 2.3.2. The ring M [(1− La)−1 : a ∈ N] is called the Grothendieck ring of algebraic
stacks.

2.3.3 The name of this ring is due to the fact that it can be obtained with the K−theoretic
construction from the category of algebraic stacks. Anyway we will not need this construction.

2.4 Completed Grothendieck ring

2.4.1 Consider the filtration FnMk := 〈Lr[X]|r ∈ Z , dim[X] + r ≤ −n〉Z.

Definition 2.4.2 (Completed Grothendieck ring of varieties). The completed Grothendieck

ring of varieties M̂k is the completion of Mk with respect to the filtration F•.

2.5 Equivariant setting

2.5.1 All the four rings above have an equivariant version, i.e. can be constructed in the

category VarGk of algebraic varieties endowed with the action of a finite group G.

Definition 2.5.2. A G−action on a variety X is said to be good if every point of X admits a
G−invariant affine open neighbourhood. We say that X is a good G−variety if it is endowed
with a good G−action.

2.5.3 Quasi projective G−varieties are always good. If not differently stated we assume that
G−varieties are good.

2.5.4 As before, the equivariant Grothendieck group of varieties K0(VarGk ) is the group gener-
ated on the isomorphism classes of good G−varieties with relation of two kinds:

Scissor relations Let X be a G−variety and Y a G−invariant closed subscheme, then

X − Y − (X\Y ) ,

is 0 in K0(VarGk ).
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Trivializing relations Let S ∈ VarGk and let V → S be a G−equivariant affine bundle of rank
d. Then

V − (S × Adk) ∈ VarGk

is set to 0, where G acts trivially on the second factor of S × Adk.

There is a unique ring structure on K0(VarGk ) such that for every two X,Y ∈ VarGk , we have
[X] · [Y ] := [X ×k Y ], where the action of G on X ×k Y is the diagonal action.

2.5.5 We use again the symbol L := [A1
k], where the group G acts trivially on the affine line;

thus the trivializing relations tell us nothing more than:

[V ] = Ld[S] ,

whenever V → S is an equivariant affine bundle of rank d.

2.5.6 Similarly to what we did in the previous sections, we define the localisation

MG
k := K0(VarGk )[L−1] and its completion M̂G

k with respect to the filtration

FnMk := 〈Lr[X]|r ∈ Z , dim[X] + r ≤ −n〉Z .
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Chapter 3

Motivic zeta functions

3.1 Jet spaces and arc spaces

3.1.1 Taking inspiration from the p−adic zeta function, it is possible to define an invariant,
called motivic zeta function, in a different context, namely for varieties defined over a field
or for varieties defined over a DVR of equicharacteristic 0. This is possible after the work of
Kontsevich, who used the notion of arc spaces in order to construct a measure, defined on
constructible subsets of a variety, that take values in a suitable Grothendieck ring of varieties.

3.1.2 Let k be a field and X → Spec k a variety. Consider the functors Jn, with n ∈ N, defined
by

Jn(X) : Schopp
k → Sets

T 7→ X(T ×k k[t]/(tn+1)) .

Proposition 3.1.3 ([29, Proposition 4.3]). Each functor defined above is represented by sep-
arated schemes of finite type Ln(X), called n−th jet scheme of X. If X is affine, then so is
Ln(X).

3.1.4 For m ≥ n, we have a truncation map

k[t]/(tm+1)→ k[t]/(tn+1)

that induces a natural transformation of functors Jm → Jn, and in turns a morphism of schemes,
also called truncation map:

πmn : Lm(X)→ Ln(X) ,

the composition of these functors follows the rule of the composition of truncation maps, i.e.
for l ≥ m ≥ n one has that πmn ◦πlm = πln. Since the maps πm0 : Jm(X)→ J0(X) = X are affine,
it follows that all the truncation maps are affine as well. It follows form this that the projective
limit

L(X) := lim←−
n

Ln(X)

exists in the category of schemes and it is called the arc scheme of X.

Example 3.1.5 (Jet scheme of an affine space.). Let A be a k−algebra. Then Jn(Adk)(A) =

Adk(A[t]/(tm+1)), which is a d−tuple of elements in A[t]/(tm+1), thus Lm(Adk) = A(m+1)d
k .

The map πm0 is just the projection on the coordinates corresponding to the constant coeffi-
cients of each element in the d−uple of A[t]/(tm+1). In the same spirit, the truncation map

A[t]/(Tn+1)→ A[t]/(Tm+1) induces a projection Ad(n+1)
k → Ad(m+1)

k .
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3.1.6 A morphism of varieties h : Y → X induces by pushforwars a natural transformation
among the jest functors and consequently morphisms L(h) : L(Y ) → L(X) are defined. These
pass to the limit, giving a morphism of arc spaces:

L(h) : L(Y )→ L(X) .

Proposition 3.1.7. If X is smooth of pure dimension d, then ∀n ≥ mLn(X)→ Lm(X) is an
affine bundle of rank d · (n−m).

Proof. Up to replacing X with a Zariski open cover, we may assume that there is an étale map
f : X → Adk. This induces a commutative diagram

Ln(X) A(n+1)d
k

Lm(X) A(m+1)d
k

Ln(f)

Lm(f)

πnm(X) πnm(Ad)

,

where the horizontal maps are étale, while the rightmost is a Zariski localy trivial fibration with
fibre isomorphic to Ad(n−m). It follows from the cartesianity of the diagram, which shall be
explained soon, that also the leftmost map is a Ad(n−m)−bundle in the Zariski topology.

In order to prove that the diagram above is cartesian it is enough to do it for m = 0. In
such case, let A be a k−algebra and consider a commutative diagram of the form:

SpecA Ln(Adk)

X Adk
f

πn0 (Ad)

,

which corresponds, by definition of Ln(Adk), to the following diagram of solid arrows:

SpecA SpecA[t]/(tn+1)

X Adk
f

,

which induces, by étaleness of X → Adk, a unique dashed arrow, which in turns is the morphism
SpecA→ Ln(X) expected from the universal property of fibered products, showing the desired
cartesianity.

3.2 Kontsevich motivic measure

3.2.1 We now introduce the core of Kontsevich’s theory

Definition 3.2.2. A subset C ⊆ L(X) is called a cylinder if, for some m ∈ N there is a
constructible subset Cm ⊆ Lm(X) such that C = (πm)−1(Cm).
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3.2.3 Clearly, if Cm ⊆ Lm(X) is constructible, then so is (πnm)−1(Cm) ⊆ Ln(X), for πnm is

a locally trivial fibration with fibre Ad(n−m)
k . It follows that the set of cylinders is a boolean

algebra and that we can define a motivic measure as follows:

Definition 3.2.4. Let C = (πm)−1(Cm) ⊆ L(X) be a cylinder, for some m ∈ N and Cm ⊆
Lm(X). We define the motivic measure of C

µ(C) := [Cm]L−d(m+1) ∈Mk .

Remark 3.2.5. The good definition follows, indeed, from the fact that, for n ≥ m, [Cn] =
[Cm] · Ld(n−m), as shown in Poposition 3.1.7. On the other hand, if X is not regular, it is no
longer true that [Cn] = [Cm] · Ld(n−m); nevertheless the theory of motivic integration can be
approached in a different way.

3.2.6 We use this measure in order to define the class of integrable functions, according to this
measure, and the value of their motivic integral :

Definition 3.2.7. We say that a function

α : L(X)→ N ∪ {∞}

is integrable if it takes finitely many values and if ∀i ∈ N, the fibre α−1(i) is a cylinder.

In such case the motivic integral of α is

ˆ
L(X)

L−α :=
∑
i∈N

µ(α−1(i))L−i ∈Mk .

3.2.8 We define a parametrical version of the motivic integral, whose output is a formal series
with coefficients in Mk. This will be used for the definition of the motivic zeta function.

Definition 3.2.9. Consider two functions

α, β : L(X)→ N ∪ {∞} .

The couple (α, β) is said to be integrable if ∀i ∈ N, the fibres α−1(i), β−1(i) are cylinders and
if β takes finitely many values on each cylinder α−1(i).

In such case the motivic integral of TαL−β is the formal series

ˆ
L(X)

TαL−β :=
∑
i,j∈N

µ(α−1(i) ∩ β−1(j))T iL−j ∈Mk[[T ]] .

Remark 3.2.10. The finiteness of {β(α−1(i))} guarantee that the coefficient of T i is well defined
in Mk.

3.2.11 For historical reasons, the formal variable T is identified with the symbol L−s, where
s is (again) a formal variable; the linear function αs + β is said to be integrable if the couple
(α, β) is integrable in our notation. With this language, the function α has the same role of the
absolute value in p−adic integration and the variable s is often considered a complex variable.
Indeed, this analogy is more clear when α is interpreted as the evaluation with respect to a
Cartier divisor F in X, i.e. ∀ arc ψ : F [[t]] → X, we set ordt F (ψ) := minf∈F ordt(ψ

∗(f)).
The following theorem, due to Denef and Loeser, is one of the most powerful tools in motivic
integration, which provides a good link with singularity theory:
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Theorem 3.2.12 (Change of varialbes formula). Assume that k is a perfect field. Let h : Y → X
be a proper birational morphism and assume that Y → Spec k is smooth. Let Jach be its Jacobian
sheaf. If (α, β) is integrable on X and if Jach takes finitely many values on α−1(i), for i ∈ N,
then also (α ◦ L(h), β ◦ L(h)) is integrable on Y and the equalityˆ

L(X)
T−αL−β =

ˆ
L(Y )

T−α◦L(h)L−(β◦L(h)+ordt Jach)

holds in Mk[[T ]].

Let F ∈ Mk[[T ]], we say that F is rational if there is a finite set S ⊆ N × N+ such that

F ∈Mk

[
T,

1

1− L−aT b
: (a, b) ∈ S

]
.

3.3 Rational functions in Mk[[T ]]

3.3.1 The notions discussed in this paragraph are introduced, for instance, in [32].

Definition 3.3.2. Let F ∈Mk[[T ]], we say that F is rational if there is a finite set S ⊆ N×N+

such that F ∈Mk

[
T,

1

1− L−aT b
: (a, b) ∈ S

]
.

In such case, we say that F has a pole of order at most n ∈ N in q ∈ Q if there exist a finite

set S′ ∈ N× N+ such that
a

b
= q ⇒ (a, b) /∈ S′ and a positive integer N such that

(1− L−qNTN )nF ∈Mk

[
T,

1

1− L−aT b
: (a, b) ∈ S′

]
.

We say that F has a pole of order n ≥ 1 in q ∈ Q if F has a pole of order at most n, but not a
pole of order at most n− 1.

3.3.3 The definition can be simplified, provided that we work on a ring R endowed with a
map Mk → R such that the images of all the elements of the form Lr − 1, with r ∈ N\{0},
are invertible. The minimal such choice for R is, clearly, the localization in Mk with respect
to that set of elements, i.e. the Grothendieck ring of algebraic stacks, for it can be obtained
by repeating the construction we have seen in §2 starting with the category of algebraic stacks.
Another natural choice for R is the completed Grothendieck ring of varietes: M̂k, where the
inverse of 1−Lr is 1 +Lr +L2r + · · · . The following lemma clarifies why in this case it is easier
to define a pole:

Lemma 3.3.4. Let R be a ring as above and F ∈ R[[T ]] any rational function. Then ∃N > 0
a positive integer and a finite set S ⊆ Q such that:

F (T ) = g(T ) +
∑
q∈S

fq(T )

(1− L−qNTN )aq
, (3.3.1)

for some polynomials g, fq ∈ R[T ] and positive integers aq.

Proof. Since F is rational, it admits an expression of the form

h(T )∏
i∈I(1− LmiTni)ai

,

where h ∈ R[T ], I is a finite set and mi, ni ∈ N. Let N := lcm(ni : i ∈ I), then

F (T ) =
h′(T )∏

i∈I(1− L
mi
ni
N
TN )ai

,
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for some h′ ∈ R[T ]. We begin by noticing that, given µ > ν positive integers, one has that

1

(1− LµTN )(1− LνTN )
=

1

1− Lµ−ν

(
1

1− LνTN
− Lµ−ν

1− LµTN

)
,

where N ∈ N.
By applying the previous step with an induction on a+ b, one obtains the following identity

1

(1− LµTN )a(1− LνTN )b
=

u(TN )

(1− LµTN )a
+

v(TN )

(1− LνTN )b
,

for positive integers a, b and polynomials u, v ∈ Z
[
L,

1

1− Lµ−ν
, t

]
such that degt(u) < a,

degt(v) < b. In particular any rational function in R[[T ]] with two candidate poles is the sum
of two functions with a single pole. We conclude the proof by induction on the number of poles
of F .

Definition 3.3.5. If F is written as in (3.3.1) and q ∈ S, then we say that F has a pole of
order at most aq in q.

If, moreover, there is no integer N ′ ∈ N+ such that fq ∈ (1−L−qN ′TN ′)R[T ], then F has a
pole of order exactly aq in q.

Remark 3.3.6. Let F ∈ Mk[[T ]] and let F̃ ∈ R[[T ]] be the image of F under the completion
map (or localisation map).

Because of Lemma 3.3.4, any pole q of F̃ of order a ∈ N is also a pole of F of order greater
or equal than a. Indeed, if by contradiction q were a pole of order at most a − 1 of F , then
Lemma 3.3.4 would provide an expression of F̃ where q appears as a pole of order lower than a.

3.4 Denef and Loeser’s motivic zeta function

3.4.1 We are now ready to define the zeta function:

Definition 3.4.2. Let X → Spec k be a smooth variety of pure dimension and let f : X → A1
k

be a k−morphism. We define the motivic zeta function as:

Zf (T ) :=

ˆ
L(X)

T ordt f ∈Mk[[T ]] .

3.4.3 This function has been proven to be rational by Denef and Loeser, if char k = 0. Another
result of Denef and Loeser, that we are going to illustrate, provides a way to compute Zf (T )
in terms of an embedded resolution of singularities for f . Let h : Y → X be such a resolution
and let {Ei}i∈I be the set of irreducible component of the snc divisor (f ◦h) ⊆ Y ; let Ni be the
multiplicity of Ei and νi := ordEi(Jach) + 1. For every subset J ⊆ I we define EJ :=

⋂
j∈J Ej

and E◦J := Ej\
(⋃

i∈I\J Ei

)
.

Theorem 3.4.4 (Denef-Loeser). Keeping the notation introduced above, the following identity
holds:

Zf (T ) = L−d
∑
J⊆I

[E◦J ]
∏
j∈J

(L− 1)
L−νjTNj

1− L−νjTNj
∈Mk[[T ]] .

3.5 Motivic and p−adic zeta functions

3.5.1 We conclude the section by showing a few interaction that exist between the motivic and
the p−adic worlds.
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Motivic Poincaré series Similarly to what happen for the p−adic zeta function, one method

for computing the value of the integral

ˆ
L(X)

T ordt(f) consists in measuring the subsets of L(X)

where f has a given order. For this purpos a motivic analog of the Poincaré series has been
introduced; it is defined as follows:

Qmot(T ) :=
∑
m≥0

[Lm(Vf )]Tm+1 .

After observing that, for a k−algebra A, Lm(Vf )(A) consists of the morphisms A[t]/(tm+1)→ X
that split through Vf , one deduces that (πm)−1(Lm(Vf )) ⊆ L(X) is a cylinder containg all an
only the arcs where f vanishes with order at least m+ 1; thus we obtain the identity:

Zf (T )− Zf (0)

1− L−dT
= Qmot(L−dT ) .

Specialization from the motivic to p−adic zeta functions Let K be a number field and
OK its ring of integers. Let X → SpecK be a variety and let X→ OK one of its models. For
P ⊆ OK maximal ideal, consider the number of rational points of its reduction modulo P , i.e.
XP (kP ). The sequence of these numbers depends on the choice model, but it gives a well defined
element of the adelic ring AK , i.e. two such sequences differ for a finite number of elements. Since
the number of rational points is additive with respect to the disjoint union and multiplicative
with respect to the fibre product, it extends to a ring homomorphism K0(VarK) → AK . This
induces another morphism, between the ring of rational functions with coefficients in

N : MK

[
L−bT a

1− L−bT a
: (a, b) ∈ Z>0

]
→ A′K ,

where

A′K =

 ∏
P⊆OK max.

Q
[
|kP |−as−b

1− |kP |−as−b

]
(a,b∈Z2

>0)

 /

 ⊕
P⊆OK max.

Q
[
|kP |−as−b

1− |kP |−as−b

]
(a,b∈Z2

>0)

 .

Let f ∈ K[x1, . . . , xd] be a polynomial; it defines a morphism f : AdK → A1
K . For all but a

finite number of maximal ideals P ⊆ OK , f defines also a morphism ÔK
d
→ ÔK ; the collection

of the associated P−adic zeta functions Zf,P (s), as P vaires, define an element of A′K .

Consider also the motivic zeta function associated to f , Zf (T ). Then, a theorem of Denef
and Loeser explains how this is related to the P−adic zeta functions above:

Theorem 3.5.2 ([29, Theorem 5.5]). With the notation introduced above, the map N : MK →
A′K sends Zf (T ) in the sequence (Zf,P (s))Pmax ∈ A′K .

3.6 Motivic integration over discretely valued fields

3.6.1 Let us fix a complete DVR R and letK denote its fraction field, while k denotes its residue
field, which we assume to be algebraically closed. Denote by ∆ := SpecR and ∆∗ = SpecK.

3.6.2 Let Y → ∆∗ be a smooth Calabi Yau variety and let ω be a volume form on Y . Fix a
weak Néron model, as in Definition 4.1.5, Y→ ∆ of Y . For a connected component C ∈ π0(Y0)
let ordC(ω) be the order of ω, considered as a meromorphic function, on the generic point of C.



33

3.6.3 It follows from a result of Loeser and Sebag (see [27, Proposition 4.3.1]), that the following
definition does not depend on the choice of the weak Néron model of Y :

Definition 3.6.4. (Motivic integral) With the same notation introduced in this paragraph, we
call motivic integral of the volume form ω on Y the element of Mk given by the following sum:ˆ

Y
ωdµ =

∑
C∈π0Y0

[C]L− ordC(ω) .

3.6.5 Now fix a Calabi Yau variety X → ∆∗, together with a volume form ω ∈ ωX(X).
For every positive integer m, define X(m) := X ×∆∗ ∆∗(m). Since the map ∆∗(m) → ∆∗

is an étale map, the basechange map X(m) → X is étale as well. The pull-back of ω through
that map is thus a volume form on X(m), which we denote by ω(m). Using this construction,
a formal series with coefficients in Mk is defined:

Definition 3.6.6 (Motivic Zeta Function). Keep the notation of this paragraph. The Motivic
Zeta Function of X with respect to the volume form ω is the formal series

ZX,ω(T ) :=
∑
m≥1

char k-m

(ˆ
X(m)

ω(m)dµTm

)
.

Remark 3.6.7. Bultot and Nicaise [5, Definition 5.2.2] gave an alternative definition of the zeta
function that involves also the motivic integrals over wild extensions of K. Their definition
depends on the choice of the uniformizer of R if char k > 0.

3.6.8 This formal series is know to be rational if X admits a log-smooth model over ∆. In
such case [5, Theorem 5.3.1] provides an explicit formula for computing the zeta function.

3.6.9 The motivic integral and the Zeta function have an equivariant counterpart in MG
k [[T ]],

provided that the volume form of the Calabi-Yau variety is chosen to be G−equivariant.

3.6.10 We conclude this section by explaining the main problem we are going to face. Let R

be one of the three rings Mk,Mk

[
(Lr − 1)−1 : 0 < r ∈ N

]
or M̂k. Assume that the wild inertia

group of K acts trivially on X, so that the action of the absolute Galois group of K on X is
identified with the action of its tame quotient.

Definition 3.6.11. Let σ a topological generator of Gal(K|K). The induced operator σ∗ : H∗(XK ,Ql)→
H∗(XK ,Ql) is called the monodromy operator on the cohomology of X.

3.6.12 The monodromy operator is known to be quasi-unipotent, i.e. there are integers a, b ∈ N
such that ((σ∗)a − id)b = 0, so its eigenvalues, called monodromy eigenvalues are roots of the
unity; the monodromy conjecture states that there is a relation between these eigenvalues and
the poles of the zeta function of X. We give a statement of the monodromy conjecture that
depends on how the ring of coefficients for the zeta function is interpreted:

Conjecture 3.6.13 (Monodromy conjecture in R). Let X → SpecK be a Calabi-Yau variety
and let ω be a volume form on it. Let q ∈ Q be a pole of ZX,ω(T ) ∈ R[[T ]], then e2πiq is a
monodromy eigenvalue of X.

3.6.14 The monodromy conjecture in Mk implies the monodromy conjecture in
Mk

[
(Lr − 1)−1 : 0 < r ∈ N

]
by the Remark 3.3.6. In turn, the monodromy conjecture in

Mk

[
(Lr − 1)−1 : 0 < r ∈ N

]
implies the version in M̂k.
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3.6.15 The monodromy conjecture has been proven in several classes of varieties: Halle and
Nicaise proved it for Abelian varieties, [17], and for Hilbert schemes of points of K3 surfaces
with potential good reduction, [18]. Jaspers proved it in [23] when X is a K3 surface admitting
a Crauder-Morrison model and Overkamp proved it for Kummer K3 surfaces in [36]. Yet we do
not know whether all the K3 surfaces satisfy the Monodromy conjecture. We are going to prove
later that if the monodromy conjecture holds for a surface X, then it also holds for Hilbn(X)
for all n ∈ N, if char k = 0 or for all n ≤ p if char k = p > 0.
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Chapter 4

Weak Néron models

4.1 Definition and basic constructions

4.1.1 In order to define the motivic zeta function we will need to introduce the notion of a
weak Néron model and to develop some techniques involved in the construction of such models.

4.1.2 The results we are going to state in this section hold in the context of algebraic spaces,
but we will not work in such generality, thus we state them only in the context of schemes.

Definition 4.1.3. Let R be a DVR and K its fraction field and denote by ∆ := SpecR. Let
X → SpecK be a smooth morphism of schemes. A model for X over ∆ is a flat morphism
X→ ∆ of schemes together with an isomorphism XK→̃X in SchK .

Moreover we say that the model X has a property P (e.g. smooth, proper) if the morphism
X→ ∆ has such property.

4.1.4 The notion we are mostly interested in is that of Weak Néron Model :

Definition 4.1.5. We say that a model X → ∆ of X has the weak extension property if for
any finite étale morphism Z → ∆, there is a bijection Hom∆(Z,X)→̃HomK(ZK , X), (f : Z →
X) 7→ f |ZK .

A smooth model X → ∆ of X → SpecK that satisfies the weak extension property is said
to be a weak Néron model of X.

Remark 4.1.6. Let X → SpecK be a smooth scheme. A weak Néron model of X over ∆ always
exists: the following example shows a way to construct weak Néron models starting from proper
models.

Example 4.1.7. Let X → SpecK be a smooth and proper variety and let X → SpecR be
a proper regular model of X, then the smooth locus of X → SpecR is a weak Néron model
of X. Consider an étale map Z → ∆ and a map ZK → X; due tu the valuative criterion
for properness, there is an extension Z → X; we need to show that the image of such map is
contained in Xsm. Assume by contradiction that this map meets Xsing, then the composition
Z → X→ ∆ would be ramified, contraddicting the étaleness of Z → ∆.

4.2 Weil restriction of scalars

4.2.1 In this paragraph we study some generalities about the functor of the restriction of
scalars. The main content of this paragraph is Proposition 4.2.6, which shall allow us to con-
struct weak Néron models of a finite, tamely ramified base-change of a given scheme X → K.
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Definition 4.2.2. Let S′ → S be a morphism of schemes and let Y → S′ be a scheme. The
functor ResS′/S(Y) : (SchS)opp → Sets defined by T 7→ Y(T ×S S′) is called the Weil restriction
of scalars of Y along S′ → S.

When ResS′/S(Y) is represented by a scheme, we say that the Weil restriction of Y along
S′ → S exists.

4.2.3 It follows from [3, Theorem 7.6] that if S′ → S is a finite, flat and locally of finite
presentation and Y → S′ is quasi-projective, then the Weil restriction of Y along S′ → S exists.
This will always be the case, throughout this manuscript.

Remark 4.2.4. Consider arbitrary morphisms of schemes S′ → S and X → S; then the universal
property of fibered products implies the following:

ResS′/S(X ×S S′) = HomS(S′,X ) ,

where HomS(S′,X ) is the fpqc-sheaf T 7→ HomT (S′ ×S T,X ×S T ).

4.2.5 Let R be a complete DVR and let K be its fraction field and k be its residue field.
We assume k is algebraically closed. Let K ⊆ L be a finite, tame, Galois extension with
G := Gal(L|K) and denote by RL the integral closure of R in L. Let X → SpecRL be a
G−equivariant morphism. For an arbitrary scheme T → SpecR, the action of G on SpecRL
induces an action on TRL , thus, as constructed in [11, Construction 2.4], a right action on
the Weil restriction, ResRL/R(X ): more precisely, given g ∈ G, it induces an automorphisms
ρTRL (g) : TRL → TRL and an automorphism ρX(g) : X → X; the action of G sends the point

corresponding to the morphism ψ : TRL → X to the composition g(ψ) := ρX(g) ◦ψ ◦ ρTRL (g)−1.
The following proposition, already proved in [19, Theorem 3.1], provides a recipe that we will
use for constructing weak Néron models of varieties:

Proposition 4.2.6. Let X′ → RL be a G−equivariant weak Néron model for XL, then X :=(
ResRL/R X′

)G
is a weak Néron model for X.

Proof. It follows from [6, Proposition A.5.2] that the operations of taking the generic fibre and
taking the restriction of scalars commute, therefore

(ResRL/R X′)K = ResL/K XL = HomK(SpecL,X) ,

where the last equality follows from Remark 4.2.4.
Let T → SpecK be a scheme, then a morphism TL → X×SpecK T is G−invariant if and only

if it factors through TL → TL/G = T , this gives a bijection between HomT (TL, X ×SpecK T )
and the set of sections of X ×SpecK T → T , which in turn is HomK(T,X) = X(T ). Therefore
we have that (

(ResRL/R X′)G
)
K

∼= X .

Since X′ → SpecRL is a weak Néron model for XL, it is in particular a smooth morphism, thus,
by [6, Proposition A.5.2] also ResRL/R(X′) → SpecR is smooth. It follows by [11, Proposition
3.4] that the G−fixed locus X is smooth as well.

In order to conclude the proof, we only need to show that all the K−valued points of X
extend to R−valued points of X, since we assumed R to be complete and k to be algebraically
closed.

A morphism SpecK → X induces a unique G−equivariant morphism SpecL → XL. Since
X′ is a weak Néron model for XL, such map extends to a unique map SpecRL → X′, which is also
G−equivariant and correspond, by the definition of the restriction of scalars, to a G−invariant
map SpecRL → ResRL/R X′ which, by G−invariance, factors through a map SpecRL → X ⊆
ResRL/R X′.
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4.2.7 The following lemma says that this construction is well behaved with respect to a tower
of extensions:

Lemma 4.2.8. Let K ⊆ F ⊆ L be a tower of finite tame extensions such that also K ⊆ L
is normal. Let G := Gal(L|K), N := Gal(L/F ) and G/N = H := Gal(F |K). Denote by RF
and RL the integral closures of R in F and L, respectively, and ∆F , ∆L their spectra. Let
F : Schopp

∆L
→ Sets be a functor endowed with an action of G compatible with its action on ∆L.

Then the following two functors are naturally isomorphic:

(
Res∆L/∆ F

)G ∼= (Res∆F /∆

(
Res∆L/∆F

F
)N)H

.

Proof. The left hand side is equal to

(
Res∆F /∆

(
Res∆L/∆F

F
))G

=
((

Res∆F /∆

(
Res∆L/∆F

F
))N)H

,

where N acts as a subgroup of G and H = G/N inherits the action of G on the N−invariant
locus. Thus, we only need to show that there is an H−equivariant isomorphism of functors:

Res∆F /∆

(
Res∆L/∆F

F
)N ∼= (Res∆F /∆

(
Res∆L/∆F

F
))N

.

Given a scheme morphism T → ∆, we have that

Res∆F /∆

(
Res∆L/∆F

F
)N

(T ) =
(
Res∆L/∆F

F
)N

(T ×∆ ∆F )

= (F(T ×∆ ∆L))N

=
(
Res∆F /∆

(
Res∆L/∆F

F
)

(T )
)N

,

and we are done.

4.2.9 The construction above can be made more explicit: in the following paragraphs we will
describe the central fibre and the canonical divisor of X in terms of X′.

4.3 Weil restriction and the central fibre

4.3.1 This subsection and the next one summarize some results contained in an unpublished
manuscript of Lars Halle and Johannes Nicaise. I am grateful to them for letting me use these
results which are crucial for the computation of the motivic integral in §10.3. We keep the
notation of the previous paragraph.

4.3.2 The inclusion X ⊆ ResRL/R X′, as in Proposition 4.2.6, corresponds, according to the
definition of the restriction of scalars, to a map of RL−schemes

h : X×R RL → X′ ,

which gives, over the special fibres a morphism of k−schemes:

hk : Xk → X′k .



40

4.3.3 On the other hand, we can characterize Xk in a different way, using the Greenberg
schemes. The following definition will cover the cases we will use:

Definition 4.3.4. Let d = [L : K] and let m be the maximal ideal of RL; for i ∈ {0, . . . , d− 1},
let RL,i := RL/(m

i+1). For a separated, smooth morphism A→ SpecRL, consider the functor

Gri(A) := ResRL,i/k(A ×RL RL,i) ,

which is representable by a separated, smooth scheme, as it follows from the proof of [3, Propo-
sition 7.6]; this is also called the level i Greenberg scheme of A.

Remark 4.3.5. Clearly, Gr0(A) = Ak, while Grd−1(A) = ResRL/R(A)k, since d = [L : K] is also
the ramification index of SpecRL → SpecR at their closed points.

Remark 4.3.6. The rings RL,i inherit from RL a G−action, thus we get a G−action on the
Greenberg schemes as in §4.2.5.

4.3.7 In our case we have that Xk = (Grd−1(X′))G . Indeed, if T is a k−scheme, we have that

Xk(T ) =
{
f : T ×R RL → X′

}G
= (Grd−1(X′)(T ))G .

4.3.8 The natural truncation maps of Greenberg schemes define G−equivariant affine bundles,
in particular Grd−1(X′) → Gr0(X′) = X′k is a composition of affine bundles. By taking the
G−invariant loci of this map, we get a description, at least locally, of Xk as an affine bundle
over (X′k)

G , in the sense that for each connected component C ⊆ Xk, there is a connected
component C ′ ⊆ (X′k)

G such that C is an Ark−bundle over C ′, where r = dim(X′k)− dimC ′. In
particular the following relation holds in K0(Vark):

[C] = Ldim(Xk)−dimC′ [C ′] .

4.4 Weil restriction and canonical divisor

4.4.1 Let us keep the notation introduced in the previous paragraph, but we also assume
that X is a Calabi-Yau variety, i.e. it has trivial canonical bundle, and that a volume form
ω ∈ ΩdimX

X/K (X) is given. Let ωL ∈ ΩdimX
XL/L

(XL) be the pull-back of ω under the base-change
map. In this paragraph we will study the order of vanishing of ω on each component of Xk,
which we will define as follows, adapting the definition given in [27, §4.1].

4.4.2 Let p ∈ Xk be a closed point. Since R is a Henselian ring and since X → SpecR is
smooth, there is at least a section ψ : SpecR → X such that ψ(0) = p. Consider the line
bundle L := ψ∗ΩdimX

X/R over SpecR. There is a ∈ Z such that πaω extends to a global section

ω′ ∈ ΩdimX
X/R (X), where π ∈ R is the uniformizer. So its pull-back ψ∗(ω′) is a global section of

L. Let M := L/ψ∗ω′OSpecR be the quotient of OSpecR−modules.

Definition 4.4.3. The order of ω at p is defined as:

ordp(ω) := inf{b ∈ N : πbM = 0} − a .

If C ⊆ Xk is a connected component, then ordp(ω) does not depend on the coice of the closed
point p ∈ C, so we define ordC(ω) as the order of ω at any of its closed point. If ordC(ω) > 0
we say that C is a zero of ω, if ordC(ω) < 0 we say that it is a pole of ω.

Remark 4.4.4. If ω extends to a global section of ΩdimX
X/R , then the order of ω at p is

ordp(ω) = lengthL/ψ∗(ω)OSpecR .
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4.4.5 Let Z be a smooth scheme defined over a field F and let V → Z be a vector bundle
over Z. If char k = p > 0 assume gcd(p, d) = 1 and consider the cyclic group G ∼= µd acting
equivariantly on V → Z and let z ∈ Z be a fixed point. There is a unique sequence of integers
(j1, j2, . . . , jrkV ) such that 0 ≤ j1 ≤ j2 ≤ · · · ≤ jrkV ≤ d−1 such that Vz has a basis v1, . . . , vrkV

of eigenvectors such that ζ ? vi = ζ−ji · vi (where ζ is any generator of µd); the tuple (ji)i is
called the tuple of exponents of the G−action.

Definition 4.4.6. We define the conductor of the action of G in z as the sum:

c(V, z) :=

rkV∑
i=1

ji .

If C ⊆ ZG is an irreducible subscheme, then for all z, z′ ∈ C one has that c(V, z) = c(V, z′), so
we simply denote by c(V,C) either of the conductors. Moreover we denote c(Z,C) the conductor
c(TZ , C).

Lemma 4.4.7. Let C be a connected component of Xk and let C ′ = h(C), where h is the map
defined in §4.3.2. Then:

ordC(ω) =
ordC′(ωL)− c(X′k, C ′)

[L : K]
.

Proof. Let ψ′ : SpecRL → X′ be a section that lifts ψ. The map X ×R RL → X′ induces a
monomorphism

α : (ψ′)∗ΩX′/RL → ψ∗ΩX/R ⊗R RL
sending ωL to ω ⊗ 1; in particular

length
(
α
(
(ψ′)∗ΩX′/RL

)
/〈ω ⊗ 1〉

)
= [L : K] length

(
(ψ′)∗ΩX′/RL/〈ωL〉

)
,

thus the statement shall follow from the fact that length cokerα = c(X′k, C
′).

On the other hand, under the identification

TX/R = HomR(R[ε]/(ε2),X) = HomRL
(RL[ε]/(ε2),X′)Gal(L|K) = T

Gal(L|K)
X′/RL

,

the tangent map Th : TX/R×RRL → TX′/RL induces a map

β : (ψ′)∗(TX′/RL)Gal(L|K) ⊗R RL → (ψ′)∗TX′/RL .

Fix a base of eigenvectors of TX′k ; the upcoming Lemma 4.4.8, applied to the subspaces generated

by each element of the base, implies that coker(β) = ⊕di=1RL/m
ji
L , hence

coker(α) =

d∧
i=1

RL/m
ji
L = RL/m

c(X,C′)
L .

Lemma 4.4.8. Let M a free RL−module of rank 1. Assuming that Gal(L|K) acts R−linearly
on M from the left. Let j be the exponent of the action induced on M ⊗RL k, as in Definition

4.4.6. Then the natural morphism MGal(L|K) ⊗R RL →M has cokernel isomorphic to RL/m
j
L.

Proof. Let us fix an element v ∈M such that 0 6= v⊗ 1 ∈M ⊗RL k; by our hypothesis we have
that (ζ ∗ v) ⊗ 1 = ζ−jv ⊗ 1. Let πL a uniformizer for RL such that πdL ∈ K; if 0 ≤ b ≤ d − 1
the vectors vb := πbLv ⊗ 1 ∈M ⊗R k form a base of the vector space M ⊗R k ∼= M ⊗RL RL/md

L.
Moreover that one is a base of G−eigenvectors, for ζ ∗ vb = ζb−jvb.
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By Henselianity we can lift the base {vb} to an R−base {wb : 0 ≤ b ≤ d− 1} of M such that
ζ ∗ wb = ζb−jwb.

Now let x = a0w0 + · · ·+ ad−1wd−1 ∈M be an arbitrary element. We have that x ∈MG iff
x− ζ ∗ x = 0, i.e. iff

d−1∑
b=0

ab(1− ζb−j)wb = 0 ,

therefore, the R−module MG is generated by wj .
It follows that MG ⊗RL is sent onto 〈wj〉 ⊆M , which leads to our coveted statemet.



Chapter 5

Fundaments of Logarithmic
geometry

Logarithmic geometry was introduced with the purpose of dealing with the algebro-geometric
version of differential manifolds with boundary, i.e. for studying the compactification of non-
proper varieties and the degenerations of families.

The datum of a logarithmic scheme consist in a scheme X and a sheaf of monoids MX ,
called log structure, together with a morphismMX → OX . This datum is meant to keep track
of what is the ”ineer part” of the algebraic variety and which one is the ”boundary”. In this
manuscript, we will be dealing with manifolds defined over a discretely valued field K; the role
of ”variety with boundary” is played by models over the ring of integers R ⊆ K, so that the
central fibre will be the boundary. We will see how a theory of resolution of singularities has
been developed in the context of log schemes; this is broadly used for constructing semistable
models, which is indeed what we will aim for.

We intend to follow Ogus’ book [35] and Gabber’s and Ramero’s notes [16], which cover all
the material that we shall use in the subsequent parts.

All the monoids we will encounter througout this thesis shall be abelian, thus we denote by
Mon the category of abelian monoids with their morphisms.

5.1 Operations with monoids

Definition 5.1.1. Let P be a monoid and let ui : P → Qi, for i = 1, 2, be morphisms of
monoids. The amalgamate sum of u1, u2 (or more simply of Q1 and Q2 if no confusion may
arise) is denoted by Q1 ⊕P Q2 and is defined as the colimit of the diagram:

Q1 ← P → Q2 .

5.1.2 If P = {1}, then the amalgamated sum coincide with the direct sum of Q1, Q2; in general
it is isomorphic to the quotient of Q1 ⊕ Q2 with respect to the congruence relation generated
by {u1(p) ∼ u2(p) : p ∈ P}; it coincides with the coproduct in the category of monoids ”under”
P . One has a remarkable case for Q2 = {1}, since Q1 ⊕P {1} is the cokernel of the morphism
u1 and can be denoted also as cokeru1 = Q1/P .

Example 5.1.3. Let P = N, let Q1 = N2 with u1(1) = (1, 1) and let Q2 = N with u2(1) = 2.
Then Q1 ⊕P Q2 = N3/ ∼, where (a, a, 0) ∼ (0, 0, 2a), for a ∈ N; in other words, the result is

isomorphic to the submonoid of Q2 generated by (1, 0), (0, 1) and

(
1

2
,
1

2

)
.
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5.1.4 Let M× be the set of invertible elements of M ; it inherits a structure of monoid from
M and is, in fact, a group. If M× = {1}, then M is said to be sharp. In any case it is
always possible to construct a sharp monoid as the cokernel M ] := M/M×. The monoid M ]

constructed in this way is called the sharpification of M .

Definition 5.1.5. A morphism of monoids ϕ : M → N is said to be local if M× = ϕ−1(N×).

5.1.6 For a monoid M , we denote by M∨ := Hom(M,N) its dual monoid, while M∨,loc will
denote its submonoid of local morphisms.

5.1.7 Let M a monoid and S ⊆ M a submonoid. The localisation of M with respect to S is
the map of monoids M → S−1M that satisfy the following universal property: If ϕ : M → N
is a morphism of monoids, such that ϕ−1(N×) ⊆ M×S, then ϕ factors in a unique
way as M → S−1M → N . If f ∈M and S = {fn : n ∈ N}, we use the notation Mf := S−1M .
If S = M , then S−1M is an abelian group, called the groupification of M and denoted by Mgrp.
It follows direclty from the universal properties that we have a canonical isomorphism:

(Q1 ⊕P Q2)grp ∼= Qgrp
1 ⊕P grp Qgrp

2 ,

for any pair of morphisms ui : P → Qi.

5.2 Properties of monoids

5.2.1 We introduce here some terminology concerning monoids that will be crucial in the
context of the logarithmic geometry.

Definition 5.2.2. A monoid M is said to be finitely generated if there is a finite number of
elements x1, . . . , xn such that for all x ∈M there are a1, . . . , an ∈ N such that x =

∏n
j=1 x

aj
j .

Definition 5.2.3. A monoid M is integral if the morphism M → Mgrp is injective. Morover,
if M is finitely generated and integral, it is called fine.

Definition 5.2.4. Let M be an integral monoid. If ∀x ∈Mgrp, the implication

” (∃n ∈ N\{0} : xn ∈M)⇒ x ∈M”

holds, then M is said saturated. We use the abbreviation fs for the monoids that are at the
same time fine and saturated (or, equivalently, finitely generated and saturated), which are the
most relevant in our dissertation.

5.2.5 If M is a monoid, we can construct an integral monoid, M int, out of it simply taking
im(M →Mgrp). Moreover we can construct its saturation M sat as

{x ∈Mgrp : ∃α ∈ N∗, xα ∈M int} .

Definition 5.2.6. A morphism of monoids P → M is said to be integral (resp. saturated), if,
for every integral (resp. saturated) monoid N and morphism P → N , the amalgamated sum
M ⊕P N is integral (resp. saturated).
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5.3 Ideals, faces and localisation

5.3.1 In this section we will introduce some fundamental notions that will allow us to define
geometrical properties of monoids.

Definition 5.3.2. Let (M, ·) be a monoid. A subset I ⊆ M is an ideal if ∀a ∈ M, aI ⊆ I. A
proper ideal is called prime if ∀x, y ∈M such that xy ∈ I, either x ∈ I or y ∈ I. A submonoid
of M such that ∀x, y ∈ M , xy ∈ I ⇒ x, y ∈ I, is called a face. If M is fs, we cal a non-empty
subset I ⊆ Mgrp a fractional ideal if there exist a finite collection of elements a1, . . . , ar ∈ I
such that I =

⋃r
i=1 aiM .

5.3.3 No proper ideal of M contains an invertible element, thus M admits a maximum proper
ideal M+ := M\M×, which is also prime. Notice that a morphism of monoids f : M → N is
local if and only if f−1(N+) = M+, coherently with the therminology of local morphisms of
local rings.

5.3.4 Notice that a face is nothing else than the complement of a prime ideal and the set of
units is the smallest face of M . In particular we can define the localisation of M with respect
to any prime p ⊆M as follows:

Mp := (M\p)−1M .

Definition 5.3.5. Let p ⊆M be a prime ideal.

• The height of p, ht(p), is the maximum length h of a chain of primes:

p = p0 ⊃ p1 ⊃ · · · ⊃ ph .

• The dimension of M is the maximum lenght dimM = d of ascending chains:

∅ = p0 ⊂ p1 ⊂ · · · ⊂ pd = M+ .

5.3.6 Similarly to the case of the Krull dimension for rings, we have the following relation
between height of a prime and dimension of a localised monoid:

dimMp = ht(p) .

Example 5.3.7. If ht(p) = 1, then M ]
p
∼= N. This isomorphism induces (by composition with

the localisation map and quotient by M×p ) a map vp : M → N called the valuation with respect
to p and it extends to a group homomorphism vp : Mgrp → Z.

5.4 Monoidal spaces

5.4.1 Before moving towards the core of logarithmic geometry, i.e. log schemes, we introduce
the notion of monoidal spaces and study some of their properties. The logarithmic schemes will
be a particular case of monoidal space, i.e. schemes whose underlying topological space has a
monoidal structure interacting with the ringed structure.

5.4.2 A monoidal space (T,MT ) is a topological space T endowed with a sheaf of monoidsMT .
Morphisms of monoidal spaces (T ′,MT ′) → (T,MT ) consist of a continuous map f : T ′ → T
and a map of sheaves f−1MT →MT ′ whose induced map on the stalks is a local morphism of
monoids.
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5.4.3 A monoidal space is called sharp if the monoids associated to all the open sets are
sharp. Every monoidal space (T,MT ) can be replaced by a sharp monoidal space, called its

sharpification (T,M]
T ), obtained as the sheafification of

U 7→MT (U)] .

Definition 5.4.4. A chart for (T,MT ) subordinate to the monoid P is a monoid homomor-
phism P → Γ(T,MT ) that induces an isomorphism

P ⊕θ−1(M×T )M
×
T
∼−→MT ,

where P is the P−valued constant sheaf of monoids and θ : P → MT is the associated map.
A chart subordinate to P is said to be coherent (resp. integral, fine, saturated) if P is finitely
generated (resp. integral, fine, saturated).

5.4.5 A basic example of a monoidal space is the spectrum of a monoid P , which as a topological
space is the set SpecP of its prime ideals, endowed with the topology generated by {D(f) : f ∈
P}, where D(f) = {p ∈ SpecP : f /∈ p}; equivalently we could define the family of closed sets
of this topology, i.e. {Z(I) : I is an ideal of P}, where Z(I) = {p ⊇ I}; in analogy with the
terminology of rings, this is called the Zariski topology. Let MP be the sheaf of monoids such
thatMP (D(f)) = Pf . The space (SpecP,MP ), or simply SpecP , is called the spectrum of P .
By construction we have that ∀p ∈ SpecP , the stalk of the sheaf MP,p coincide with Pp. We
can sharpify this construction and obtain (SpecP )], called the sharp spectrum of P .

5.4.6 We can glue together spectra of monoids and construct all the monoidal space that we
shall be interested in:

Definition 5.4.7. A fan is a sharp monoidal space (F,MF ) such that every point admits a
neighbourhood isomorphic to a spectrum of a monoid. We call spectra of monoids affine fans.

A fan is said to be

• locally finite (resp. finite) if it can be covered with (resp. a finite number of) spectra of
finitely generated monoids;

• saturated if it can be covered with spectra of saturated monoids;

• locally fs (resp. fs) if it can be covered with (resp. a finite number of) spectra of fs
monoids.

5.4.8 There is a notion of regularity and of resolution of fans that recalls the theory already
developed for rings and schemes:

Definition 5.4.9. A fan F is said to be regular at t ∈ F if the stalk MF,t is isomorphic to
NdimMF,t . We denote by Freg the set of regular points.

A fan is regular if it is regular at every point.

Definition 5.4.10. Let (F,MF ) be a fan. A subdivision is a morphism of fans ϕ : (F ′,MF ′)→
(F,MF ) such that:

• For every t ∈ F ′, the map induced on stalks Mgrp
F,ϕ(t) →M

grp
F,t is surjective;

• The composition with ϕ induces a bijection Hom(SpecN, F ′)→ Hom(SpecN, F ).

Proposition 5.4.11 ([16, Theorem 3.6.31]). Let F be a locally fs fan. There is a subdivision
ϕ : F ′ → F such that F ′ is regular and ϕ−1(Freg)→ Freg is an isomorphism.
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5.4.12 A method for constructing subdivisions of fans is given by the blowing up of fractional
ideals.

Definition 5.4.13. Let F be a fan. A subsheaf I ⊆Mgrp
F is a fractional ideal sheaf ifMFI ⊆

I and, for U ⊆ F affine, the subset Γ(U, I) ⊆ Γ(U,Mgrp
F ) is a fractional ideal and I |U =

Γ(U, I)MF |U .

5.4.14 Let P be a monoid and I ⊆ P grp a fractional ideal, we define the blow-up of SpecP
at I as the fan obtained in the following way: For a ∈ I let Pa :=

⋃∞
n=0 a

−nIn. For a, b ∈ I
we have Pa[(a/b)

−1] = Pb[(b/a)−1], the blow up of SpecP at I is the union
⋃
a∈I SpecPa, glued

along {SpecPa[(a/b)
−1]}a,b∈I .

5.4.15 Let F be a fan and I a fractional ideal sheaf. The blow-up of F at I is the fan FI
obtained by glueing the blow-ups of its affine subfans U at I |U . FI is a subdivision of F .

5.5 Analogy with toric geometry

5.5.1 The role of fans in logarithmic geometry is comparable to the role of cone complexes
in toric geometry. One should think of the spectrum of a monoid as a cone in the lactice of
1−parametre subgroup. Regular fans correspond to cone complexes whose cones are regular,
i.e. whose intersection with the lactice is isomorphic to a free monoid; subdivision of fans do
the same job as subdivision of cones.

5.5.2 More precisely let (F,MF ) be a fan and let U ⊆ F be an open affine subfan. We consider
the monoid PU := Γ(U,MF ) and its associated real vector space VU := P grp⊗Z R. We have the
polyhedral cone σU := Hom(PU ,R≥0) ⊆ V ∨U . If U1 ⊆ U2 are two affine open subfans of F , then
we get a map PU1 → PU2 which induces a map σU2 → σU1 ; by gluing all the σU s with respect
to these map, we get a polyhedral cone complex ∆F .

5.5.3 For U ⊆ F open affine subfan, we consider the lattice NU := Hom(P grp
U ,Z) ⊆ V ∨U . The

family {NU} is called integral structure of ∆F . There is a narrow link between regularity of
fans and their integral structure, namely a fan F is regular if and only if F can be covered with
affine open subfans Uj ⊆ F such that each monoid σUj ∩NUj is generated by a base of NUj .

5.5.4 If ϕ : F1 → F2 is a map of fan, U2 ⊆ F2 and U1 ⊆ ϕ−1(U2) are affine subfans, then the
map Γ(U2,MF2) → Γ(ϕ−1(U2),MF1) → Γ(U1,MF1) induces a map σU1 → σU2 . These maps
glue together giving ∆F1 → ∆F2 . If F ′ → F is a subdivision of fans, then ∆F ′ → ∆F is a
subdivision of polyhedral complexes.

5.5.5 Given a function f : ∆F → R satysfying the following:

1. f(λx) = λf(x) for λ ∈ R≥0, x ∈ ∆F ;

2. f is continuous and picewise linear;

3. For U ⊆ F affine open, f(σU ∩NU ) ⊆ Z;

4. f is convex on each σU , i.e. ∀x, y ∈ σU , ∀λ, µ ∈ R≥0, one has f(λx+µy) ≥ λf(x)+µf(y).

it is possible to define a fractional ideal If such that for U ⊆ F affine we have

Γ(U, If ) = {a ∈ P grp
U : ∀x ∈ σU , x(a) ≥ f(x)} .

It is possible to choose f with the properties above such that the subdivision FIf → F is regular,
[38, Lemma 2.3].
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5.6 Logarithmic schemes

5.6.1 We will now see how to combine the theory of ringed spaces and the theory of monoidal
spaces; logarithmic geometry studies topologycal spaces endowed with two sheaves. In practice,
this construction turns out to be useful for dealing with singular schemes: one usually endows a
scheme with a suitable monoidal sheaf, then construct a fan (that can be topologically embedded
in the scheme) containing the relevant information on the monoid, and, by focusing on that fan,
one is able to manipulate the scheme and ”improve” its singularities.

Definition 5.6.2. Let X be a scheme. A pre-logarithmic structure on X consists of a sheaf of
monoids MX on X and a homomorphism of sheaves of monoids α : MX → (OX , ·).

If α induces an isomorphism α−1(O×X)→ O×X , then the datum is a logarithmic structure. We
will call logarithmic schemes the pairs X† = (X,α : M → OX) of schemes and log structures
over them. For the sake of simplicity, when confusion may not arise, we shall only write the
monoid and the scheme in order to define a log scheme, namely X† = (X,M).

5.6.3 The divisorial log structure will be our leading example:

Example 5.6.4 (Divisorial logarithmic structure). Let X be a scheme and D a divisor. For
all open subsets V ⊆ X, set

MX(V ) := {f ∈ OX(V ) : f |V \D is invertible} ,

then MX is a log structure, called the divisorial log structure associated to D.
If D = 0, then MX coincide with O×X , which is the trivial logarithmic structure.

5.6.5 As we will see, every pre-log structure can be enhanced to a log structure. Since pre-log
structures contain most of the relevant information, it is preferable to work with them rather
than with log structures, which contain unessential information. Given a pre-log structureMX

on X we construct its associated logarithmic structure Ma
X , defining it as the sheafification of

the presheaf
U 7→MX(U)⊕α−1

U (OX(U)×) OX(U)× .

5.6.6 A morphism of log schemes f † : X† → Y † is the datum of a morphism of schemes between
their underlying schemes f : X → Y and a morphim of sheaves of monoids f−1MY → MX

coherent with the maps αX : MX → OX and αY : MY → OY .

5.6.7 In general f−1MY provides a pre-log structure on X and the map, f−1MY → MX

factors via the associated log structure f−1(MY ) → (f−1MY )a → MX . We say that f is
strict if the second map is an isomorphism.

5.6.8 The datum of a chart 5.4.4 P →MX(X) is equivalent to the datum of a strict morphism
c : X → SpecP . The datum of a morphism of monoids u : Q→ P and charts cX : X → SpecP
and cY : Y → SpecQ is a chart for the morphism f : X → Y if the following diagram commutes:

X SpecZ[P ]

Y SpecZ[Q]

cP

cQ

f SpecZ[u]

,
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5.6.9 In our thesis we shall mainly deal with divisorial log structure coming from snc divisors.

Example 5.6.10. Let X be a scheme and D a strict normal crossing divisor on it, let X† be the
associated log structure (and let us use similar notation for subspaces of X). Fix a point x ∈ X
and choose an open neighbourhood x ∈ U ⊆ X where the ideal defining D admits a generator
f = y1 · · · yr, where the yi are irreducible and the sequence (y1, . . . , yr) can be extended to a
regular one. Then U † admits a chart Nr →MU (U) such that ej 7→ yj .

In the special case of the spectrum of a DVR (R, p), X = SpecR, and D = p, there is a
global chart N→MX that sends 1 ∈ N onto the uniformizer π ∈ p.

5.6.11 Now let us consider a morphism of schemes X → SpecR, where R is a DVR and X is
a sncd scheme with central fibre X0 =

⋃
j∈J Ej , where each Ej is an irreducible component of

multiplicity Nj . In this situation, each point x ∈
⋂
i∈I Ei, for I ⊆ J , admits a neighbourhood

x ∈ U → SpecR where the morphism is given by π 7→ u·
∏
i∈I y

Ni
i , where u ∈ OX(U) is invertible.

It is not always possible to cancel u and find a morphism N→ NI giving a chart for the morphism
of log schemes X† → SpecR†; one can replace NI →MU (U) with NI ⊕ Z →MU (U) sending
(0, 1) 7→ u; at this point there is a chart N→ NI ⊕Z, 1 7→ ((Ni)i∈I , 1). It is not always possible
to remove the factor u in order to simplify the chart as N→ NJ ; if not all the multiplicities Ni

are divisible by char k, then this can be done after replacing X with a suitable finite étale cover
of its.

5.6.12 Together with schemes, logarithmic structures can be pulled back along morphisms of
log schemes. Some advantages of this construction will become more evident when we will
restrict this operation to suitable subcategories, namely the one of fs log schemes, since this
will provide an efficient shortcut towards the resolution of singularities. Let us consider two
morphisms of log schemes fi : Xi → Y for i = 1, 2 and the fibered product of their underlying
schemes:

X1 ×Y X2

X2X1

Y

p2

f1

p1

p

f2

,

then we complete the construction of the fibered product by endowing the scheme with the
monoidal sheaf MX1 ⊕MY

MX2 . Moreover if the morphisms Xi → Y admits charts P → Qi,
then the resulting scheme comes together with a chart X1 ×Y X2 → SpecZ[Q1 ⊕P Q2].

5.6.13 Even if Xi → Y are fine (resp. fs), their fibered product does not necessairily preserve
that property. On the other hand if ui : P → Qi give fine (res. fs) charts of such morphisms,
the construction

X1 ×int
Y X2 := (X1 ×Y X2)×SpecZ[Q1⊕PQ2] SpecZ[(Q1 ⊕Y Q2)int](

resp. X1 ×fs
Y X2 := (X1 ×Y X2)×SpecZ[Q1⊕PQ2] SpecZ[(Q1 ⊕Y Q2)sat]

)
,

correspond to the fibered product in the category of fine (res. fs) logarithmic schemes and the
projection on the second factor provides a chart for its log structure. Notice that, since these
operations are fibered products in a suitable category, they have nice properties with respect to
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composition, e.g. if X → Z and Y1 → Y2 → Z are morphisms of integral (resp. fs) logarithmic
schemes, then

X ×int
Z Y1 = (X ×int

Z Y2)×int
Y2 Y1 ,

resp.
X ×fs

Z Y1 = (X ×fs
Z Y2)×fs

Y2 Y1 .

Example 5.6.14. Let R be a DVR and R ⊆ Rd a totally ramified extension of degree d. Let
X→ SpecR be a regular sncd scheme. Let X† be the log scheme with the divisorial log structure
induced by X0, SpecR† the divisorial log structure induced by 0 and similarly SpecR†d. Then the

underlying scheme of X†×fs
SpecR†

SpecR†d coincides with the normalization of X×SpecR SpecRd,

[5, Proposition 3.7.1].

5.7 Local properties of log maps

5.7.1 In this section we are going to talk about the notions of log smoothnes and étaleness.

Definition 5.7.2. Let f : X → Y be a map of logarithmic schemes. Fix a geometric point
x → X and let y = f(x) and assume that u : Q → P is a chart for f around x 7→ y. We say
that f is a logarithmically étale (resp. smooth) at x, if:

• keru is a finite group whose order is invertible in k(x);

• cokeru (resp. its torsion) is a finite group whose order is invertible in k(x);

• There is some neighbourhood x ∈ U such that f |U factors via

U → Y ×SpecZ[Q] SpecZ[P ]→ Y ,

where the first map is étale (resp. smooth).

Proposition 5.7.3 ([35, IV.3.1.2]). Log smooth and log étale maps are stuble under base change
and composition. Those notion are equivalent to their non logarithmic versions for strict mor-
phisms.

Definition 5.7.4. A morphism of integral log schemes f : X → Y is called integral if ∀x ∈ X,
the morphism of monoids MY,f(x) →MX,x is integral.

Proposition 5.7.5 (Illuise-Ogus). Let f : X → Y be a logarithmically smooth morphism and,
for x ∈ X, denote by dimx f the relative dimension of f at x. The sheaf ΩX†/Y † is locally free
of finite rank.

Moreover, if X and Y are fine, then we have that ∀x ∈ X,

rk ΩX†/Y † ≤ dimx f ,

with the equality holding if f is integral.

Definition 5.7.6. Let X† = (X,MX) be a locally Noetherian fs logarithmic scheme. We say
that X† is log regular at a point x ∈ X if the following conditions:

• The ring OX,x/M+
X,xOX,x is regular;

• dimOX,x = dimOX,x/M+
X,xOX,x + dimMX,x.

are satisfied. A log structure X† is logarithmically regular if it is log regular at each of its
points.
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Example 5.7.7. Let ∆ = SpecR, with R being a discrete valuation ring, and consider the
divisorial log structure associated to its closed point 0 ∈ ∆. Then M+

∆,0O∆,0 = πR, where π

is the uniformizer of R, thus O∆,0/M+
∆,0 is the residue field of R. Moreover M∆,0

∼= N has
dimension 1, as ∆, hence it is a log regular scheme.

Proposition 5.7.8 ([24, Theorem 6.2]). Let X be a locally Noetherian log scheme and fix a
point x ∈ X admitting a sharp fs local chart P →MX(X). Assume that OX,x contains a field
k. Then X is log regular at x if and only if OX,x/M+

X,xOX,x is a regular local ring and the
map k[P ]→ OX,x, induced by the chart, is flat.

Proposition 5.7.9. Let x ∈ X be a point on a log regular scheme, if p ⊆ MX,x is a prime
ideal, then pOX,x is prime of the same height as p.

Proposition 5.7.10. Let X → Y be a log smooth morphism of locally fs log schemes. If Y is
log regular then so is X.

Example 5.7.11. Let X → ∆ a log smooth morphism of log schemes. Since (∆, 0) is log
regular, then also (X,X0) is.

5.7.12 We now associate to any logarithmically regular scheme X a topological subspace

F = F (X) := {x ∈ X : M+
X,xOX,x = mX,x} ,

endowed with the monoidal sheaf obtained by pulling back MX/O×X along its inclusion in X.
Kato shows in [24, Proosition 10.1] that F is a fs fan, said to be the fan associated to X.

5.7.13 The construction of F (X) comes together with a map of monoidal spaces π : X → F
which associate to x ∈ X the point π(x) ∈ F corresponding to the prime ideal of OX,x generated
byM+

X,x. It is a continuous and open map of monoidal spaces that admits the inclusion F ⊆ X
as a section; this endows X with the structure of monoidal space over F (X). Given a subdivision
F ′ → F , one can define a new logarithmic scheme X×F (X)F

′ as the final object in the category
of logarithmic schemes admitting a commutative diagram of the following form:

(X ′,MX′/O×X) F ′

(X,MX/O×X) F

π′

π

f

.

The map X ×F F ′ → X is birational and log smooth, thus X ×F F ′ is log regular, because
of Proposition 5.7.10, and F (X ×F F ′) = F ′.

5.7.14 Assuming that X is quasi-compact, so that F (X) is finite. Because of 5.4.11, there is a
regular subdivision F ′ → F (X). Then X ×F (X) F

′ is a regular scheme because of [33, Theorem
4.7 and Lemma 5.2].
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Chapter 6

Toric schemes

In this chapter we introduce the notion of a toric scheme and provide its main properties.
Let R be a DVR with uniformizer π, K its fraction field and k its residue field. Let ∆ =
SpecR. Let F be a free abelian group of finite rank, a torus is a group scheme of the form
T = SpecZ[t±1

1 . . . , t±1
n ] for some positive integer n. For a lattice N , i.e. a free f.g. abelian

group, we denote by NQ := N ⊗Z Q.

6.1 Construction of toric schemes

Definition 6.1.1. A normal toric scheme is an integral normal scheme X→ SpecR, separated
and of finite type over R whose generic fibre XK contains a torus TK and it is endowed with a
group action TR × X→ X extending the multiplication of TK .

6.1.2 Let N be a free abelian group of rank 1, i.e. a lactice. Let Ñ := N ⊕ Z; consider the

exact sequence 0→ N → Ñ
p→ Z→ 0 and the dual sequence 0→ Z→ M̃→M → 0; call e ∈ M̃

the element corresponding to (0, 1) ∈ M ⊕ Z. Let Ñ+
Q be the preimage of Q≥0 under the map

ÑQ
p→ Q. Consider a cone σ ⊂ ÑQ and its dual σ∨ ⊆ M̃Q, which always contain e because

σ ⊆ Ñ+
Q . For a submonoid S ⊆ M̃ denote by A[S] the algebra R[πrχm : (m, r) ∈ S], where we

are considering the isomorphism M × Z ∼= M̃ . Then Xσ := SpecA[σ∨ ∩ M̃ ] is an affine toric
scheme, as shown in [37, Proposition 2.1.4].

6.1.3 The inclusion of cones τ ⊆ σ induces inclusions σ∨ ⊆ τ∨, which, in turn induces open

inclusions Xτ ⊆ Xσ. Fix a fan, i.e. a cone complex, Γ ⊆ Ñ+
Q , each face of Γ induces an affine

toric scheme; consider two faces σ, τ ∈ Γ; it is possible to glue Xσ and Xτ along their common
open subset Xσ∩τ ; we call X(Γ) the toric scheme constructed in this way.

6.2 Orbits and stratifications

6.2.1 Similarly to the theory of toric varieties, the action of the main torus induces a canonical

stratification on toric schemes. Let σ ⊆ Ñ+
Q be a cone. Denote by Oσ the scheme

Oσ := SpecA[σ⊥ ∩M ] ,

if σ ⊆ NQ, or
Oσ := Spec k[σ⊥ ∩M ] ,

otherwise. In the first case Oσ is an orbit of TK , thus a torus over K, while in the second case
an orbit of Tk, thus a torus over k. The following proposition, [37, Proposition 2.1.13]
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Proposition 6.2.2. There is a bijection between orbits of TK in X(Γ)K and faces of Γ in NQ
and a bijection between orbits of Tk in X(Γ)k and faces of Γ in ÑQ not contained in NQ.

Moreover τ ⊆ σ if and only if Oσ ⊆ Oτ , where the closure is taken in X(Γ).



Chapter 7

Equivariant semistable reduction

Throughout this chapter let K be a field with an ultrametric absolute value | · |, let R be its
valuation ring and let k be its residue field, which we assume to be algebraically closed. Let
∆ = SpecR. Let R(m) the totally ramified extension of R of degree m, let ∆(m) = SpecR(m).

7.1 The construction of a semistable model

7.1.1 Let ∆† be the log scheme supported on ∆ with the divisorial log structure associated

to 0 ∈ ∆. Similarly ∆†(m) shall denote the scheme ∆(m) introduced above endowed with the
divisorial log structure for 0 ∈ ∆(m). Let S → ∆ be a sncd model of a smooth surface SK and
let S† be the divisorial logarithmic structure associated to the central fibre Sk. In particular
S† → ∆† is logarithmically smooth and S† is logarithmically regular. Let us fix a positive
integer N such that the multiplicity of any irreducible component of S0 divides N and let m be
an arbitrary positive integer; in case char k = p > 0 let us assume that the multiplicities of the
irreducible components of S0 are coprime with p, choose N,m coprime with p. Let Γ be the fan
associated to the logarithmic structure of S†.

7.1.2 The fs-basechange S† ×fs
∆†

∆(mN)† → ∆†(mN) which is a normal space (see Example
5.6.14), yet not necessarily regular, is endowed with an equivariant µmN−action induced by the
trivial action on the first factor and the Galois action on the second one. This action induces an
action on the fan of S†×fs

∆†
∆(mN)† (it is log regular because of Propositions 5.7.3 and 5.7.10),

which we call Γ(mN).

7.1.3 In the literature it is well known how to perform and embedded resolution of a log
reguar scheme, for instance following the proof of [41, Theorem 4.8], it is possible to construct
a µmN−equivariant logarithmic resolution of singularities of S† ×fs

∆†
∆(mN)†, which gives an

equivariant semistable model S(mN) → ∆(mN) of SK(mN). Despite in [41] characteristic 0 is
assumed, the semistable reduction works also in positive and mixed characteristic.

7.1.4 We conclude the section with the following lemma which grasp the most important, at
least for our purpose, property of the action of µmN on S(mN); in fact this is the only reason
why we did perform the construction in this way:

Definition 7.1.5. For each point p ∈ S(mN)k let Stabp ⊆ µmN be the subgroup consisting of
the elements that fix p.

Lemma 7.1.6. Stab− is locally constant on S(mN)k,sm. In particular, if a point p ∈ S(mN)k,sm
is fixed under the action of µN , then the whole connected component of S(mN)k,sm containing
p is fixed under such action.
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Proof. Each point of S admits an étale neighbourhood U � W ⊆ S (with W being a Zariski
open subset of S) such that the map U → ∆ splits through a smooth map U → V ⊆ SpecR[P ],
where P is a torsion-free monoid giving a local chart P →M for the logarithmic structure on
U . The embedding V ↪→ SpecR[P ] is given by the ideal (χv − π) ⊆ R[P ], where v ∈ P is the
image of 1 under the map of monoids N→ P giving the chart for U † → ∆†.

Let U(mN) → W (mN) ⊆ S(mN) be the base change of U → W ⊆ S with respect to the
map S(mN)→ S arising from the construction above and let V (mN)→ V ×∆ ∆(mN) be the
toric resolution arising from the same subdivision that we performed above; in particular there
is a smooth map ψ : U(mN)→ V (mN) which is equivariant with respect to the natural action
of µmN = Gal(K(mN)|K).

Let us omit the symbol † from the log-schemes, all the object we deal with are interpreted in
the category of log-schemes unless differently stated. Consider the following equivariant map:

V (mN)→ V ×fs
∆ ∆(mN) ⊂ SpecR

[(
P ⊕N

1

mN
N
)sat

]
= SpecR[P ]×fs

∆ ∆(mN) ,

where the amalgamated sum is taken with respect to the obvious inclusion N ⊆ 1
mNN and

N→ P , 1 7→ v ∈ P defined above. This map is an isomorphism outside the central fibre of the
two schemes.

There is an integer d and a primitive element v1 ∈ P such that v = d · v1 (in our case, i.e.
of a log structure arising from an snc divisor, d coincides with the g.c.d. of the multiplicities of
the components containing p, in general it was defined as root index in [5]); by our assumption
on N , we have that d|mN , thus the following identity holds:

V ×fs
∆ ∆(mN) = (V ×fs

∆ ∆(d))×fs
∆(d) ∆(mN) .

We can, thus, consider the base-changes separately; the undelying scheme of V ×fs
∆ ∆(d) is

the normalization of the base-change in the category of schemes. We have that V ×∆ ∆(d) ∼=
SpecR(d) [P ] /(χdv1 − $d), where $ ∈ R(d) is a uniformizer such that $d = π. The chart of
SpecR(d)[P ]/(χdv1 −$d) is given by the map of monoids

P ⊕N
1

d
N→ R(d) [P ] /(χdv1 −$d)(

0,
1

d

)
7→ $ ,

since $ is the d−th root of π. As shown in Lemma 7.1.9, we have that

(
P ⊕N

1

d
N
)sat

∼=

P ⊕ Z/dZ. Then V ×fs
∆ ∆(d) ∼=

∐d−1
i=0 SpecR(d) [P ] /(χv1 − ζid$), and Gal(K(d)|K) acts on it

via a cyclic permutation of the components.

We now assume that d = 1, i.e. that v is primitive. In this case the monoid P (mN) :=
(P ⊕N

1
mNN)sat is sharp [5, Proposition 2.2.2 (3)] and the inclusion P grp ⊆ (P ⊕N

1
mNN)grp

induces an étale map of tori T (mN) := SpecR
[
(P ⊕N

1
mNN)grp

]
→ T := SpecR[P grp] of degree

mN , which is the quotient with respect to the action of µmN ; in particular the group µmN
acts freely and transitively on the kernel of such map and there is an exact sequence of group
schemes over SpecR:

1→ µmN → T (mN)→ T → 1 . (7.1.1)

On the other hand, let us consider the 1−codimensional subtorus T ′ ⊆ T (mN) corresponding
to the quotient P (mN)grp → P (mN)grp/〈u〉, where u is the image of the generator of 1

mNN in
P (mN).
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Claim 7.1.7. The action of T (mN)R on SpecR[P (mN)] induces an action

T ′R ×∆ (V ×fs
∆ ∆(mN))→ V ×fs

∆ ∆(mN)

making V ×fs
∆ ∆(mN)→ ∆ a toric scheme with respect to the torus T ′.

Remark 7.1.8. Even though we are considering schemes over R(mN), they have the structure
of toric schemes over R.

The equivariant toric resolution V (mN) → V ×fs
∆ ∆(mN) is an isomorphims over an open

set containing the dense toric orbit, hence Gal(K(mN)|K) acts also on V (mN) as a subgroup
of T ′.

Let O ⊆ V (mN) be a locally closed stratum in the canonical stratification of V (mN), i.e.
an orbit for the action of T ′, as described in [37, 2.1.13]; then a suitable quotient T ′ � T
acts freely on O and, thus, the image of µmN in T acts freely on O, hence the stabilizer of an
arbitrary point q ∈ O acts trivially on the whole orbit.

In the general case, we may apply the above argument to the map ∆(mN)→ ∆(d), obtaining
the following chain of maps:

V (mN)→ V ×fs
∆ ∆(mN)→ V ×fs

∆ ∆(d)→ V ,

where the first map is a map of toric schemes (over ∆(d)) whose main torus fits in the sequence

1→ µmN
d
→ T (mN)→ T (d)→ 1

and the last map is just the collapse of d copies of V . Since the generator of µmN acts on V (mN)
by permuting the d connected components, then the stabilizer of each point is contained in the
subgroup generated by its d−th power, i.e. µmN

d
, in particular the fact that the stabilizer of a

point is locally constant on each orbit follows from what said for the d = 1 case.
Let q ∈ U(mN)k,sm be a closed point and let O be the stratum of V (mN) containing ψ(q);

and let Q := ψ−1(O) ⊆ U(mN). Since q ∈ U(mN)k,sm, then O is a connected component of
V (mN)k,sm, therefore Q is open in U(mN)k,sm. Since the map U(mN) → V (mN) is equiv-
ariant, we have that Stabq ⊆ Stabψ(q), thus Stabq acts trivially on O. The étale map Q → O

induces a Stabq −equivariant étale map of the complete local rings ÔO,ψ(q) → ÔQ,q, which is an

isomorphism since k is algebraically closed. In particular Stabq acts trivially on ÔQ,q which is
the formal completion of the local ring OQ,q, in particular Stabq acts trivially in a neighbour-
hood of q. Since the fixed locus of Stabq is also closed, it acts trivially on the whole connected
component containing q. It follows that Stab− is locally constant on U(mN)k,sm.

In order to conclude that the stabilizer is locally constant on W (mN)k,sm as well, we will
prove that each point q ∈ U(mN)k,sm has the same stabilizer as its image p ∈ W (mN). Let
q0 ∈ U be the image of q under U(mN)→ U and similarly let p0 ∈W be the image of p under
W (mN) → W . Up to replacing U → V with an open subset U ′ ⊆ U → V we can assume
that q0 is the only preimage of p0 under U → W ; in particular the orbit of q ∈ U(mN) is sent
bijectively onto the orbit of p ∈W (mN) under the µmN−equivariant map U(mN)→W (mN),
so their stabilizers must coincide.

Proof of Claim 7.1.7. Consider the composition of maps of affine schemes

T ′ ×R (V ×fs
∆ ∆(mN))→ T (mN)×R SpecR[P (mN)]→ SpecR[P (mN)] ,

corresponding to the following composition of maps of rings

R[P (mN)]→ R[P grp(mN)]⊗R R[P (mN)]→ R[P (mN)grp/〈u〉]⊗R R[P (mN)]/(χu − π)

χx 7→ χx ⊗ χx 7→ χx ⊗ χx ,
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where x ∈ P grp(mN)/〈u〉 denotes the projection of x ∈ P (mN) and χx denotes the the projec-
tion of χx ∈ R[P (mN)] into R[P (mN)]/(χu − π). Since u = 0, one sees that χu − π is sent to
1⊗ χu − 1⊗ π = 0, thus the map factors throug

R[P (mN)]/(χu − π)→ R[P (mN)grp/〈u〉]⊗R R[P (mN)]/(χu − π)

χx 7→ χx ⊗ χx ,

giving an action T ′R ×∆ V ×fs
∆ ∆(mN)→ V ×fs

∆ ∆(mN).
We conclude by showing that V ×fs

∆ ∆(mN) admit a dense orbit with respect to the action
of T ′K .

Let y ∈ (V ×fs
∆ ∆(mN)) ∩ T (mN)K be a closed point. Since codimT (mN)K T

′
K = 1, then

T ′K · y ⊆ T (mN)K · y = T (mN)K is a closed subscheme of codimension at most 1. Density of
T ′K · y follows from the fact that (V ×fs

∆ ∆(mN))∩ T (mN)K is irreducible and has codimension
1 in T (mN)K .

Lemma 7.1.9. The identity

(
P ⊕N

1

d
N
)sat

∼= P ⊕ Z/dZ, holds.

Proof. We have that (
P ⊕N

1

d
N
)grp

∼=
(
P grp ⊕ 1

d
Z
)
/(v,−1)

and

P grp ⊕ Z/dZ ∼=
(
P grp ⊕ 1

d
Z
)
/(v,−1)

(0, 1) 7→
(
−v1,

1

d

)
,

oreover the monoid P ⊕N
1
dN ⊆

(
P grp ⊕ 1

dZ
)
/(v,−1) corresponds to 〈P, (v1, 1)〉. On one hand,

we have that P ⊕Z/dZ ⊆
(
P ⊕N

1
dN
)sat

. On the other hand, if (x, a) ∈ P grp⊕Z/dZ is such that
t(x, a) ∈ 〈P, (v1, 1)〉 for some t ∈ N, then td(x, a) = (tdx, 0), so x ∈ P because P is saturated.
Thus the identity is proved.
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Chapter 8

Formal series in the motivic rings

In this section, the symbol R shall denote one of the rings Mk,Mk

[
(Lr − 1)−1 : 0 < r ∈ N

]
or

M̂k, unless differently specified.

We will discuss some properties of power series with coefficients in R, then we will describe
some operations that shall be useful for computing the Motivic Zeta Function in our case.

8.1 Quotient by a group action

8.1.1 Let us fix a finite group G, let N E G and let H = G/N be its quotient. Consider the
equivariant versions of the ring R, which we call RG and RH , as in §2.5. For an arbitrary
variety X endowed with a good action of G, we consider the quotient X/N which is again an
algebraic space endowed with an action of the group H, namely the quotient action.

8.1.2 Even if X/N is not a scheme, there exists an open affine subscheme SpecA ⊆ X which
is invariant under the action of G, so that SpecAN ⊆ X/N is a scheme. We may, thus, repeat
the argument for the closed G−invariant subscheme X\ SpecA and, by Noetherian induction,
we stratify X as a union of G−schemes whose quotients with respect to the action of N are
H−schemes; moreover a G−invariant stratification of each stratum induces an H−invariant
stratification of its quotient. Thus there is a well defined map of groups πN : RG → RH by
[X] 7→ [X/N ]; this map does not preserve the products.

8.1.3 In the following definition we extend the map above to a map RG[[T ]]→ RH [[T ]] and in
the subsequent proposition we show that rationality of any power series is well behaved under
this map.

Definition 8.1.4. If F =
∑
n

AnT
n ∈ RG[[T ]], we define the series of the quotients with respect

to N associated to F as

(F/N)(T ) =
∑
n

(An/N)Tn ∈ RH [[T ]] .

Proposition 8.1.5. For f, g ∈ RG[T ], with g being of the form
∏
j∈J(1−LajT bj ), let F be the

rational function F (T ) :=
f(T )

g(T )
. Then F/N =

f/N

g
.

In particular all the poles of F/N belong to the set of poles of F .
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Proof. It suffices to show the statement in the case when f = α ∈ RG is a constant. Let
1

g(T )
=
∑
n

AnT
n, where An ∈ R has a trivial G−action. Then

(
α

g(T )

)/
N =

∑
n

(αAn)/NTn =
∑
n

α/NAnT
n =

α/N

g(T )
.

8.2 Power structures

8.2.1 We need to define a map on the Grothendieck rings which extends the symmetric product
of a variety, allowing us to talk about the symmetric product of a ”difference of varieties”; in
order to do so, we need to use a power structure on K0(Vark), thus we begin by recalling what
a power structure is, as introduced in [15]:

Definition 8.2.2. Let A be a ring. A power structure on A is a map

(1 + tA[[t]])×A→ 1 + tA[[t]]

(F (t), X) 7→ F (t)X

satisfying the following conditions for all F,G ∈ 1 + tA[[t]] and X,Y ∈ A:

• F (t)0 = 1;

• F (t)1 = F (t);

• (F (t)G(t))X = F (t)X ·G(t)X ;

• F (t)X+Y = (F (t))X(F (t))Y ;

• F (t)XY =
(
F (t)X

)Y
;

• (1 + t)X ∈ 1 +Xt+ t2A[[t]];

• F (t)X |t→tn = F (tn)X .

In fact, the last two properties are not part of the original definition, but other authors
include them in their definition.

8.2.3 In the rest of the section, for F =
∑

n FnT
n ∈ K0(Vark)[[T ]], with F0 = 1, and for

X ∈ K0(Vark) we denote by F (T )X the power structure introduced by Gusein-Zade, Luengo
and Melle-Hernandez in [15] that we will describe as follows:

Definition 8.2.4. Let n ≥ 0 be an arbitrary natural number and α = (α1, α2, . . . ) ∈ NN>0 .

We say that α is a partition of n if
∑
i>0

iαi = n. In this case we write α a n or |α| = n. We

define the lenght of a partition α as ||α|| :=
∑
i>0

αi. We say that α ∈ NN>0 is a partition if it is

a partition of n for some n ∈ N.

Definition 8.2.5. Let A(T ) = 1 +
∑

i>0AiT
i ∈ 1 + tK0(Vark)[[T ]] and let M be a variety. We

define A(T )[M ] as

A(T )[M ] := 1 +
∑

α partition

πGα

([∏
i

Mαi\∆

]∏
i

Aαii

)
t|α| ,
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where Gα =
∏
i Σαi acts simultaneously on

∏
iM

αi and
∏
iA

αi
i by permuting the factors,

∆ ⊆
∏
iM

αi is the large diagonal, i.e. the subscheme of points at least two equal entries and
πGα :

∏
iM

αi → Sym||α||(M) is the canonical projection.

8.3 Symmetric powers

8.3.1 Keep the notation introduced in the previous paragraph. Let us begin with the following
definition:

Definition 8.3.2 (Symmetric power in GRV). Let α ∈ K0(Vark) and let r ∈ N. The r−th
symmetric power of α is the element Symr(α) ∈ K0(Vark) defined as

Symr(α) := [tr](1− t)−α .

8.3.3 In particular, if α = [U ], we have that Symr([U ]) = [Symr(U)]; in this sense Sym• exends
the notion of symmetric power of an algebraic variety. In general, for α = [U ]− [V ] one gets an
explicit formula by analyzing the coefficients of

(1− t)[V ]−[U ] = (1− t)[V ] · (1 + t+ t2 + · · · )[U ] .

Example 8.3.4. In order to show how this computation can be handled, we compute explicitly
the coefficient of t2, that is, the expression for Sym2([U ] − [V ]). We know, from [15, Theorem
1], that

(1 + t+ t2 + · · · )[U ] = 1 + [U ]t+ [Sym2(U)]t2 + o(t2) ,

thus we get

(1− t)[V ] = (1 + [V ]t+ [Sym2(V )]t2 + o(t2))−1 = 1− [V ]t+ ([V 2]− [Sym2(V )])t2 + o(t2) .

It follows that

Sym2([U ]− [V ]) = [Sym2(U)]− [Sym2(V )] + [V ]2 − [U ][V ] .

8.3.5 It is possible to extend the map Symr : K0(Vark)→ K0(Vark) to a map Symr : Mk →Mk

by Symr L−sα := L−rs Symr(α). In order to ensure that this map is well defined, we only need
to show that, for α ∈ K0(Vark) and for s ∈ N, we have L−rs Symr(α) = L−r(s+1) Symr(Lα).

Indeed, recalling that Symr(An) ∼= Anr, we get

(1− t)Lα =
(

(1− t)−L
)−α

= (1 + Lt+ L2t2 + · · · )−α = (1− Lt)α ,

which implies that ∀α ∈ K0(Vark), Symr(Lα) = Lr Symr(α).

8.3.6 The map Symr can also be defined at the level of M̂k; indeed, for α, β ∈ K0(Vark), we
have that:

∀p ∈ N, (1− t)α+Lpβ − (1− tα) = (1− t)α ·
(

(1− Lpt)β − 1
)
∈ LpK0(Vark)[[t]] ,

thus Symr(α+ Lpβ) ≡ Symr(α) (mod Lp).
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8.3.7 We will also define a version of Symr defined over
Mk

[
(Ln − 1)−1 : 0 < n ∈ N

]
. Since Sym1 is already defined as the identity map we can proceed

inductively on r. Let us assume that all the maps Symi are defined for 1 ≤ i ≤ r − 1. Let us
first check that for α ∈Mk, the value of

Symr
(α

1

)
:=

Symr(α)

1
∈Mk

[
(Ln − 1)−1 : 0 < n ∈ N

]
is well defined, i.e. that if

α

1
=

β

1
, then

Symr(α)

1
=

Symr(β)

1
. If γ ∈ Mk is such that

(Ln − 1)γ = 0 for some n ∈ N, then

Symr(Lnγ) = Symr(γ + (Ln − 1)γ) =
r∑
j=0

Symj(γ) Symr−j(0) = Symr(γ) ,

thus (Lnr − 1) Symr(γ) = 0. By an inductive argument one proves that if
γ

1
= 0, then also

Symr(γ)

1
= 0. It follows that, whenever

α

1
=
β

1
, then

Symr(β)

1
=

Symr(α+ (β − α))

1
=

r∑
j=1

Symj(α)

1

Symr−j(β − α)

1
=

Symr(α)

1
.

Then we define, recursively:

Symr

(
α

Ln − 1

)
:= (Lnr − 1)−1

r∑
i=1

Symi(α) Symr−i
(

α

Ln − 1

)
.

Example 8.3.8. We show how to compute this map in a specific case. For α =
[U ]

1− Ln
, we

have that Sym2(α) =
[Sym2(U)]

1− L2n
+

Ln · [U ]2

(1− Ln)(1− L2n)
.

8.3.9 For a power series F (T ) =
∑
AnT

n ∈ R[[T ]], let us consider the power series obtained
by plugging each coefficient of F into the above mentioned maps Symr:

Symr(F )(T ) :=
∑

Symr(An)Tn .

These maps have very interesting properties when the function F is rational, indeed in this case
we are able to control the poles of Symr thanks to the upcoming results:

Lemma 8.3.10. Let F =
αT h

(1− L−qNTN )e
∈ R[[T ]], where q ∈ Q is such that qN ∈ Z. Then,

for r > 0, we have that Symr(F ) has at most one pole of order (at most) r(e− 1) + 1 in rq.

Proof. Let F =
∑
m≥0

AmT
mN+h; then Am =

(
m+ e− 1

e− 1

)
αL−mqN . It follows that

Symr(Am) =
∑
βar

( (m+e−1
e−1

)
β1, . . . , βr

)
αβ1 · (Sym2 α)β2 · · · (Symr α)βrL−rmqN ;

once β is fixed,

( (m+e−1
e−1

)
β1, . . . , βr

)
is either 0 ∀m ∈ Z (this happens only if e = 1 and β1+· · ·+βr > 1)

or a polynomial in m of degree (e− 1)(β1 + · · ·+ βr).



65

It follows (from the fact that
1

(1− x)n
=
∑
m

pn(m)xm, where pn ∈ Q[t] is a polynomial such

that deg pn = n− 1 and with coefficients in
1

m!
Z) that

∑
m≥0

( (m+e−1
e−1

)
β1, . . . , βr

)
αβ1 · (Sym2 α)β2 · · · (Symr α)βrL−rmqNTmN+h

is a suitable combination with integer coefficients of{
αβ1 · (Sym2 α)β2 · · · (Symr α)βrT h

(1− L−rqNTN )j

}(e−1)(β1+···+βr)+1

j=0

.

Among all the partitions of r, the one which gives the highest possible order of the pole is the
one maximizing β1 + · · · + βr, namely β = (r, 0, 0, . . . ), which gives a pole of order at most
r(e− 1) + 1.

8.3.11 For the rest of the section, we denote by R one of the two rings

Mk

[
(Ln − 1)−1 : 0 < n ∈ N

]
or M̂k: the proofs we will present do not hold for functions with

coefficients in Mk.

Proposition 8.3.12. For i = 1, . . . , s let Fi =
∑

m≥0A
[i]
mTm ∈ R[[T ]] be rational functions and

let Qi ⊆ Q be the set of poles of Fi. Let F =
∑

m≥0A
[1]
m · · ·A[s]

mTm ∈ R[[T ]]. Then F is also
rational and its set of poles, Q, is contained in Q1 +Q2 + · · ·+Qs.

Moreover, for each q ∈ Q, we have that

ordq(F ) ≤ max

{
1− s+

s∑
i=1

ordqi(Fi) : qi ∈ Qi and
∑

qi = q

}
.

Remark 8.3.13. This statement holds, with the same proof, also if we consider functions Fi ∈
Mk[[T ]], provided that each of them is sum of functions with a single pole.

Proof. Let us assume for a moment that, ∀i, Fi = αiT
hi

(1−L−qiNTN )ei
, for some αi ∈ R, 0 ≤ hi < N

integers, qi ∈ Q, 0 < ei ∈ N. In such case A
[i]
mN+hi

=
(
m+ei−1
ei−1

)
αiL−mqiN . Thus F = 0 unless

hi = h ∀i, while in this case we have that

s∏
i=1

A
[i]
mN+h =

(
s∏
i=1

(
m+ ei − 1

ei − 1

)
αi

)
L−mqN ,

where q = q1 + · · · + qs. The degree of
∏s
i=1

(
m+ei−1
ei−1

)
, seen as a polynomial in m, is

∑
ei − s,

thus we get the desired result in this case.
For the general case it is enough to consider F1 = F ′1 + F ′′1 , where F ′1 =

∑
BmT

m and

F ′′1 =
∑
CmT

m; then, setting F ′ :=
∑
BmA

[2]
m · · ·A[s]

mTm and F ′′ :=
∑
CmA

[2]
m · · ·A[s]

mTm, we
have that F = F ′ + F ′′ and if our statement holds for both F ′ and F ′′ then it holds also for F ,
in particular writing all the Fi as in Equation (3.3.1), the proposition follows by an induction
on the number of their summands.

Lemma 8.3.14. Let F ∈ R[[T ]] be a rational function whose set of poles is Q ⊆ Q, or let
F ∈Mk[[T ]] be the sum of functions with at most one pole. For all r ∈ N, let ΣrQ be the set
of rational numbers that are sum of r elements of Q. Then Symr F is also rational and its set
of poles is contained in ΣrQ.
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Moreover, for each q ∈ Q, we have that

ordq(Symr F ) ≤ max

{
1− r +

s∑
i=1

ordqi(F ) : qi ∈ Q and
∑

qi = q

}
.

Proof. If the Lemma holds for F and G, then by Proposition 8.3.12, it holds also for F + G,
since Symr(F +G) = (Symr F ) + (Symr−1 F )G+ · · ·+ (SymrG). Thus it is enough to write F
as in Equation (3.3.1) and notice that for each addendum the statement coincides with Lemma
8.3.10.



Chapter 9

Hilbert schemes

In this chapter we collect a few of the basic facts about Hilbert schemes that can be useful to
undertand the construction that shall appear in the incoming section.

9.1 The moduli problem

9.1.1 Hilbert schemes are the answer to one of the most fundamental moduli problems that
nathematcians happen to face: classifying subschemes of a given variety.

Definition 9.1.2. Let X → S be a projective morphism of schemes.
The Hilbert Functor of S−subschemes of X is the functor:

H (X/S) : SchS → Sets

which associate to any S−scheme T the set

H (X/S)(T ) := {V ⊆ X ×S T |V → T is proper and flat}

and associate to each morphism T ′ → T of S−schemes the map of sets:

H (X/S)(T )→H (X/S)(T ′)

V ⊆ X ×S T 7→ V ×T T ′ ⊆ (X ×S T )×T T ′ ∼= X ×S T ′ .

9.1.3 This functor is actually represented by a scheme Hilb(X/S) which is called the Hilbert
Scheme of X over S. The scheme that can be constructed in this way is arguably unmanageable,
for it has, typically, i.e. when X → S is not finite, an infinite amount of connected components
whose dimension is not even bounded. It is often considered convenient to stratify this scheme
as a disjoint union of locally closed subschemes each of them parametrizing subschemes of X
with similar properties, i.e. classifying the subschemes of X according to an invariant:

Definition 9.1.4. Fix a relatively ample line bundle L over f : X → S. Let F ∈ Coh(X) an
S−flat sheaf; then f∗(F ⊗ L⊗m) is a locally free OS−module, ∀m ∈ Z. There is a polynomial
hX/S,F ,L ∈ Q[t] such that for m >> 1, rk(f∗(F ⊗L⊗m)) = hX/S,F ,L(m), which is called Hilbert
polynomial of F .

9.1.5 Let T → S be a morphism of schemes and denote by g : XT := X ×S T → X the
morphism induced by the base-change. The set of T−flat and proper (also over T ) subschemes
of XT is in natural bijection with the set of quotients of OX×ST which are T−flat and have
proper (over T ) support, i.e.

H (X/S)(T ) = {V ⊆ X×ST |V → T is proper and flat} ∼= {OX×ST � F |F is flat and proper over T} .
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Hence, given a polynomial p ∈ Q[t] and a relatively ample line bundle L over X, we can define
a subfunctor of H (X/S) as:

H p
L (X/S)(T ) = {OXT � F |T − flat, with proper support and such that hXT /T,F ,g∗L = p} ,

which is represented by an open and closed subscheme of Hilb(X/S) which we denote by
HilbpL(X/S). We have, moreover, that

Hilb(X/S) =
⊔

p∈Q[t]

HilbpL(X/S) .

9.1.6 For the purposes of this thesis, we will need only to study only the components cor-
responding to constant polynomials, which are called Hilbert schemes of points, since they
parametrize 0−dimensional subschemes of X. Since the Hilbert polynomial of a finite sub-
scheme of X is independent on the choice of the relatively ample line bundle L, we can omit it
from the notation and denote by Hilbn(X/S) the Hilbert scheme corresponding to the constant
polynomial n, which is often called Hilbert scheme of n points on X, with a slight abuse of
language.

9.1.7 We will need a Lemma which describes how the Hilbert schemes behave under base-
change.

Lemma 9.1.8. Let T → S and X → S be morphisms of schemes, L an S−ample line bundle
over X and let p ∈ Q[t]. Let f : XT → X the basechange morphism with respect to T → S.

Then Hilbpf∗L(XT /T ) ∼= HilbpL(X/S)×S T in SchT .

In particular, if F is a field and SpecF → S is a point of F , the fibre over F of HilbpL(X/S)
coincide with the Hilbert scheme of the fibre: HilbpL|XF

(XF /SpecF ).

Proof. Let us begin by showing that the two functors H (XT /T ) and H (X/S)|SchT coincide.
Let U → T be a morphism of schemes. Then

H (XT /T )(U) = {V ⊆ XT ×T U |V → U is proper and flat}
= {V ⊆ (X ×S T )×T U |V → U is proper and flat}
= {V ⊆ X ×S U |V → U is proper and flat}
= H (X/S)(U) .

It remains to show that the two stratifications induced by the Hilbert polynomials coincide,

but this follows from the fact that, given the composition U
g→ T

f→ S, one has that

(f ◦ g)∗ = g∗ ◦ f∗ .

9.2 Properties of the Hilbert scheme of points

9.2.1 Let X → S be a flat morphism of finite type of Noetherian schemes and let n ∈ N+ a
positive integer. Consider the scheme Symn(X/S) := Xn/Σn, where the symmetric group acts
on the product by permuting the factors. There is a natural morphism

Hilbn(X/S)→ Symn(X/S)

called Hilbert-to-Chow morphism, sending a subscheme of X to its underlying 0−cycle.
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9.2.2 If X → S is a smooth map of relative dimension 2, then Hilbn(X/S) is a smooth
scheme of relative dimension 2n, in particular the Hilbert-to-Chow morphism is a resolution of
singularties of Symn(X/S); the generic points of both Hilbn(X/S) and Symn(X/S) parametrize
reduced subschemes of X. This is no longer true if dimS(X) > 2 and n > 2, unless the couple
(n, dimS(X)) = (3, 3).

9.2.3 The main reason for studying the Hilbert schemes of points on a K3 surface is the
following:

Theorem 9.2.4. If X → SpecK is a K3 surface, then Hilbn(X/K) is an irreducible holomor-
phic symplectic variety of dimension 2n.

9.2.5 Also the case of an abelian surface A is interesting, because in that case the Hilbert
scheme is anyway a smooth Calabi-Yau variety; moreover all IHS varieties of Kummer type can
be constructed as subschemes of Hilbn(A/K).
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Chapter 10

Hilbert schemes of points on a
surface

10.1 Construction of a weak Néron model

10.1.1 LetX → SpecK be a smooth surface with trivial canonical divisor and let ω ∈ ωX/K(X)
be a volume form on it. Let X→ ∆ be a regular model whose central fibre Xk is a strict normal
crossing divisor of X. Let us keep the notation of Chapter 7 concerning the field extension over
K and the corresponding base-changes. If char k = p > 0, we add the further assumption d
that the central fibre Xk has no components with multiplicity divisible by p.

10.1.2 The aim of this section is to provide a closed formula for the zeta function of Hilbn(X)
in terms of the zeta functions of X(i) for 1 ≤ i ≤ n.

10.1.3 Let a be the lcm of the multiplicities of the irreducible components of Xk. For n ∈ N
(and n < char k if the latter is positive), let ñ := a lcm(1, 2, . . . , n) and let K(ñ) be the unique
totally ramified extension of K whose degree is ñ (by our assumptions, if char k = p > 0, then
gcd(ñ, p) = 1), so that Gal(K(ñ)/K) = µñ.

10.1.4 For all 0 < m ∈ N < denote by X(mñ) be the semistable model of X(mñ) obtained from
X using the construction of §7.1. As usual we denote by X(mñ)sm the smooth locus of X(mñ)→
∆(mñ). Since Hilbn(X(mñ)sm/∆(mñ))→ ∆(mñ) is a smooth model of Hilbn(X(mñ)), we have
that

X[n](m) :=
(
Res∆(mñ)/∆(m) Hilbn(X(mñ)sm/∆(mñ))

)µñ → ∆(m)

is a smooth model of Hilbn(X(m)).

Proposition 10.1.5. Assume that either K is perfect or charK > n, then X[n](m)→ ∆(m) is
a weak Néron model of Hilbn(X(m)).

Proof. We assume that a = 1, i.e. that X has semistable reduction on K. The proof in the
general case will descend from Proposition 4.2.6 and Lemma 4.2.8. We just need to show that
every point SpecK(m)→ Hilbn(X(m)) ⊆ X[n](m) extends to a morphism ∆(m)→ X[n](m).

Consider a point SpecK(m) → Hilbn(X(m)) and let Z ⊆ X(mñ) the (µñ−invariant) sub-
scheme representing such point. Either the closure of Z in X(mñ) is contained in X(mñ)sm or
at least one point P ∈ suppZ specializes to the singular locus X(mñ)k,sing. In the first case Z
represents a morphism ∆(m) → X[n](m) extending the given SpecK(m) → Hilbn(X(m)). If
P ∈ suppZ specializes to X(mñ)k,sing, then its residue field k(P ) contains strictly K(mñ), for
X(mñ) is a regular model of X(mñ) (See example 4.1.7).
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Let Q ∈ X(m) be the image of P under the map Spec k(P ) ↪→ X(mñ)→ X(m). The degree
[k(Q) : K(m)] cannot divide ñ, otherwise k(P ) would be K(mñ), thus [k(Q) : K(m)] ≥ n+ 1.

Since Z is µñ−invariant, then it contains the whole orbit of P which is the reduced scheme
associated to the preimage of Q under the map π : X(mñ) → X(mñ)/µñ ∼= X(m). We have
that π−1(Q) = Spec(k(Q) ⊗K(m) K(mñ)), which is a reduced K(mñ)−algebra of dimension
[k(Q) : K(m)] > n.

This contradicts the fact that Z is a subscheme of length n, thus this case cannot occur and
we are done.

10.1.6 Our goal is to study the motivic integral of Hilbn(X(m)) using the models X[n](m)
constructed above. In order to simplify notation, we perform the following computations only
for m = 1, working with X[n] = X[n](1); similar arguments apply when m > 1. Even though
Hilbn(X(ñ)sm/∆(ñ)) is not a weak Néron model of X(ñ), it is a smooth model and the results of

§4.3 apply. It follows that the connected components of X
[n]
k are in bijection with the connected

components of Hilbn(X(ñ)k,sm)µñ , moreover if C ⊆ X
[n]
k is sent to C ′ via this bijection, then

[C] = L2n−dimC′ [C ′].

10.1.7 For any d ∈ N dividing ñ we denote by Y (d) ⊆ X(ñ)k,sm the subscheme consisting of
the points whose stabilizer is exacty µñ/d. Then Y (d) is µñ−invariant, since µñ is an abelian
group and points in the same orbit have the same the stabilizer. Because of Lemma 7.1.6, Y (d)
is at the same time an open and closed subscheme of Xk,sm and we have that:

X(ñ)
µñ/d
k,sm =

⊔
d′|d

Y (d′) .

Remark 10.1.8. Since X(ñ)
µñ/d
k,sm is a scheme of pure dimension 2, it can be identified with the

central fibre of Res∆(ñ)/∆(d) (X(ñ)sm)µñ/d , which is a weak Néron model of X(d), via the map hk
described in §4.3.2. Let C ⊆ Res∆(ñ)/∆(d) (X(ñ)sm)µñ/d be a connected component. It follows
from Lemma 4.4.7 and from the fact that Gal(K(ñ)|K(d)) acts trivially on Thk(C) that, ,

ordhk(C)(ω(ñ)) =
ñ

d
ordC(ω(d)) .

10.1.9 The following statement gives a decomposition of the central fibre as a union of closed
and open subschemes; it is an ad hoc partition that is more suitable, for our computation, than
the ”canonical” stratification of the Hilbert schemes whose strata are related to the combina-
torics of the underlying 0−cycle:

Proposition 10.1.10. Hilbn(X(ñ)k,sm)µñ admits the following decomposition as disconnected
union of subschemes:

Hilbn(X(ñ)k,sm)µñ ∼=
⊔
αan

n∏
j=1

Hilbαj (Y (j)/µj) .

Moreover, for a fixed partition α a n, the isomorphism above restricts to an isomorphim between∏n
j=1 Hilbαj (Y (j)/µj) and a finite union of connected components of Hilbn(X(ñ)k,sm)µñ.

Proof. Fix a k−scheme S. For any closed subscheme Z ⊆ X(ñ)S endowed with a finite map
Z → S, set Zj := Z ∩ Y (j)S . If Z is stable under the action of µñ, then every Zj , which is the
intersection of two stable schemes, is stable as well; moreover the induced action of µj = µñ/µñ/j
on Y (j)S is free, thus the induced maps πj : Y (j)S → Y (j)S/µj and Zj → πj(Zj) are étale of
degree j.
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In this way, from any invariant finite S−subscheme of X(ñ)S we construct a finite subscheme
in each Y (j)S/µj ; on the other hand given a sequence of finite S−subschemes of Y (j)S/µj of

length αj we get a unique µñ−stable S−subscheme of X(ñ)S whose length is
∑
j

jαj .

The last statement follows directly from the fact that the Y (j)−s are themselves open and
closed subschemes of X(ñ)k,sm.

10.1.11 Thus, recalling that Hilbαj (Y (j)/µj) is pure of dimension 2αj , we conclude that X
[n]
k =⊔

αan
X

[n]
k,α, where X

[n]
k,α is an affine bundle of rank

∑
j

2(j − 1)αj on

Hilbα1(Y (1))× · · · ×Hilbαn(Y (n)/µn) .

We thus have the following:

Corollary 10.1.12. The following equation holds in the Grothendieck ring of varieties:[
X

[n]
k

]
=
∑
αan

n∏
j=1

L2(j−1)αj [Hilbαj (Y (j)/µj)] .

10.2 The volume form on X[n]

10.2.1 There is a volume form, ω[n], on Hilbn(X) that naturally arises from the given ω ∈ ωX/K .

In this paragraph we will recall its construction and compute its zeroes and poles on X[n].

10.2.2 Let pri : X
n → X, for i ∈ {1, . . . , n}, denote the projections on the factors. Then

pr∗1 ω ∧ · · · ∧ pr∗n ω is a global section of ωXn/K which, being invariant under the permutation of

coordinates, descends to a global section of ωSymnX/K , which we denote by ϕ. Let finally ω[n]

be the pull-back of ϕ through the Hilbert-Chow morphism, thus ω[n] ∈ H0(Hilbn(X), ωHilbn(X))
is a volume form on Hilbn(X).

10.2.3 Now we will compute the zeroes and poles of ω[n] seen as a rational section of ωX[n]/∆.

Since it is a volume form on the generic fibre of X[n], its zeroes or poles are all irreducible

components of the central fibre. Let us fix a connected component C ⊆ X
[n]
k and let us denote

by C ′ the connected component of Hilbn(X(ñ)k,sm)µñ such that C → C ′ is the affine bundle
described in §4.3.8. In the following lemma we compute the conductor of the action of µñ at
points of C ′ in terms of the partition of n corresponding to the stratum of Hilbn(X(ñ)/∆(ñ))µñ

containing C ′.

Lemma 10.2.4. Consider the decomposition of Hilbn(X(ñ)k,sm)µñ of Proposition 10.1.10 and
fix a point [Z] lying inside the stratum corresponding to α a n. Then:

1. The conductor of the action of µñ at [Z] is

c (Hilbn(X(ñ)k,sm), [Z]) = ñ

n∑
j=1

(j − 1)αj .

2. If we denote by [Zj ] the point of Hilbαj (Y (j)/µj) corresponding to Zj/µj, then one has
that:

ord[Z](ω
[n](ñ)) = ñ

n∑
j=1

ord[Zj/µj ](ω
[αj ](j)) ,
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where Y (j) are considered as part of the central fibre of a weak Néron model for X(j) as
in Remark 10.1.8.

Proof. Since the values of c (Hilbn(X(ñ)k,sm), [Z]) and ord[Z](ω
[n](ñ)) depend only on the con-

nected component containing [Z] and since the generic point of each connected component
corresponds to a reduced scheme, we may compute them with the additional assumption that
Z is a reduced subscheme of X(ñ)k,sm. In particular Z is the disjoint union of α1 orbits of length
1, α2 orbits of length 2 and so on. There is an equivariant isomorphism

T[Z] Hilbn(X(ñ)k,sm) ∼=
⊕

p∈suppZ

TpX(ñ)k,sm .

Let ζ = ζñ be a primitive root of unity and let σ be the unique generator of µñ such that
σ acts on R(ñ) by multiplying the uniformizing parametre by ζ. Consider an orbit of points
p0, . . . , pj−1 ∈ Z, let e1, e2 be two generators of Tp0X(ñ)k, so that σl(e1), σl(e2) will give a basis
of TplX(ñ)k for each l = 0, . . . , j−1. Notice that σj(eh) = eh for h = 1, 2 since µñ/j acts trivially
on the whole connected component cointaining p0.

For i = 0, . . . , j − 1, h = 1, 2 we have that

(eh, ζ
iñ/jσ(eh), ζ

2iñ/jσ2(eh), . . . , ζ
(j−1)iñ/jσj−1(eh)) ∈ Tp0X(ñ)k ⊕ · · · ⊕ Tpj−1X(ñ)

is an eigenvector with eigenvalue ζ−iñ/j. In total there are 2j of such eigenvectors, which
constitute a basis for Tp0X(ñ)⊕ · · · ⊕ Tpj−1X(ñ)k.

The sum of the exponents of this base is

2

j−1∑
i=0

− iñ
j

= −(j − 1)ñ

We construct eigenvectors of T[Z] Hilbn(X(ñ)k) by putting a vector such as the above one at the
coordinates corresponding to an orbit and 0 at the other coordinates. Running through all the
possible orbits, we get a base of eigenvectors of T[Z] Hilbn(X(ñ)k). Thus summing the exponents
among all the eigenvectors will lead to the desired result for the conductor.

Concerning the order of the volume form, we have that

ord[Z](ω
[n](ñ)) =

∑
p∈suppZ

ordp(ω(ñ))

=
n∑
j=1

ñ

j

∑
p∈suppZj

ordp(ω(j))

=

n∑
j=1

ñ
∑

p∈Zj/µj

ordp(ω(j))

= ñ
n∑
j=1

ordZj/µj (ω(j)[αj ]) .

Where the first and the last equality follow from the fact that the stalk of the canonical bundle
at a point with reduced support of a Hilbert scheme are the tensor products of the stalks of the
canonical bundle of the surface at every point in the support. The second equality follows from
Remark 10.1.8. The third equality follow from the fact that ω(j) has the same order on all the
j points of an orbit of µj .
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10.2.5 We are able, now, to compute the order of ω[n] at any point z ∈ X
[n]
k :

Corollary 10.2.6. Let π : X
[n]
k → Hilbn(X(ñ)k,sm) and assume that

π(z) = (π1(z), π2(z), . . . , πn(z))

∈ Hilbα1(Y (1))×Hilbα2(Y (2)/µ2)× · · · ×Hilbn(Y (n)/µn) .

We have that ordz(ω
[n]) =

n∑
j=1

(
(j − 1)αj + ordπj(z)(ω(j)[αj ])

)
.

Proof. As a direct consequence of Lemma 4.4.7 and of the previous lemma we get:

ordz(ω
[n]) =

ordπ(z)(ω(ñ)[n])− c (Hilbn(X(ñ)k,sm), [Z])

ñ
=

n∑
j=1

(
−(j − 1)αj + ordπj(z)(ω(j)[αj ])

)
.

10.3 Motivic integral

10.3.1 We keep the convention on R being one of the three rings Mk,

Mk

[
(Lr − 1)−1 : 0 < r ∈ N

]
or M̂k. We are now ready to perform the main computation of the

manuscript; by using the models we constructed above we are able to compute a generating
function for the motivic integrals of all the Hilbert schemes of points of a surface with trivial
canonical bundle. More precisely the formula we are going to prove is the content of the following
proposition:

Theorem 10.3.2. The following identity holds true in R[[q]] if char k = 0, while it holds true
in R[q]/(qp) if char k = p > 0:

∑
n≥0

(ˆ
Hilbn(X)

ω[n]qn

)
=
∏
m≥1

((
1− Lm−1qm

)−(´X(m) ω(m)
)
/µm
)

.

Corollary 10.3.3. Assume that either char k = 0 or char k > n, then the following equation
holds: ˆ

Hilbn(X)
ω[n] =

∑
αan

∞∏
j=1

(
L(j−1)αj Symαj

((ˆ
X(j)

ω(j)

)
/µj

))
.

Proof. Since

(
1− Lm−1qm

)−(´X(m) ω(m)
)
/µm

=

∞∑
l=0

L(m−1)l Syml

((ˆ
X(m)

ω(m)

)
/µm

)
qml ,

moreover, given a sequence α = (α1, α2, . . . ) such that αj = 0 for j � 1, one has that

degq

 ∞∏
j=1

(
L(j−1)αj Symαj

((ˆ
X(j)

ω(j)

)
/µj

)
qjαj

) =
∞∑
j=1

jαj .

We get the desired result after identifying the coefficients of qn from Theorem 10.3.2.
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10.3.4 Before facing the theorem, let us introduce a piece of notation that will help facing the
computation more smoothly: If Z → Spec k is a scheme and Θ: Z →Mk is a locally constant
function, we denote by

ˆ
Z

Θ(z)dz :=
∑
C⊆Z

connected component

[C]Θ(p) ∈Mk ,

where the p in the sum above is an arbitrary point of the connected component C. We state a
lemma that will be useful for the proof of the theorem:

Lemma 10.3.5. Let Y → Spec k be a smooth surface endowed with a locally constant function
ν : |Y | → R. Suppose that functions ν[n] : |Hilbn(Y )| → R and ν ′[n] : | Symn(Y )| → R are
defined in such a way that, for a given subscheme Z ⊆ Y of length n we have

ν[n](Z) =
∏

p∈supp(Z)

ν(p)length(OZ,p)

and ν[n] = ν ′[n] ◦ pn, where pn : Hilbn(Y )→ Symn(Y ) is the Hilbert-Chow morphism. Then, for
an arbitrary natural number α ∈ N, the following identity holds:

ˆ
Hilbα(Y )

ν[α](z)dz =
∑
βaα

∏
l≥1

(
L(l−1)βl

ˆ
Symβl (Y )

ν ′[lβl](z)dz

) .

Proof. We first suppose that Y is connected and, thus, ν ≡ λ ∈ R is constant. Thus we simply
have that

ˆ
Hilbα(Y )

ν[α](z)dz = λα[Hilbα(Y )] .

It follows from a well known result, for instance [39, §2.2.3], that

[Hilbα(Y )] =
∑
βaα

∏
l≥1

(
L(l−1)βl [Symβl(Y )]

) ,

thus we deduce the desired statement, at least when Y is connected.

Now suppose that C ⊆ Y is a connected component and that the statement holds for Y \C.
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Using the fact that Hilbα(Y ) =
⊔α
j=0

(
Hilbα−j(Y \C)×Hilbj(C)

)
, we deduce that

ˆ
Hilbα(Y )

ν[α](z)dz =
α∑
j=0

(ˆ
Hilbα−j(Y \C)

ν[α−j](z)dz

)
·

(ˆ
Hilbj(C)

ν[j]dz

)

=

α∑
j=0

 ∑
δjaα−j

∏
l≥1

(
L(l−1)δjl

ˆ
Sym

δ
j
l (Y \C)

ν ′l[δ
j
l ](z)dz

) ·
·
∑
γjaj

∏
l≥1

(
L(l−1)γjl

ˆ
Sym

γ
j
l (C)

ν ′l[γ
j
l ](z)dz

)

=
α∑
j=0

 ∑
δjaα−j
γjaj

∏
l≥1

(
L(l−1)(δjl+γjl )

ˆ
Sym

β
j
l (Y \C)×Sym

γ
j
l (C)

ν ′l[δ
j
l+γjl ](z)dz

)


=
∑
βaα

∏
l≥1

(
L(l−1)βl

βl∑
i=0

ˆ
Symβl−i(Y \C)×Symi(C)

ν ′l[βl](z)dz

)
=
∑
βaα

∏
l≥1

(
L(l−1)βl

ˆ
Symβl (Y )

ν ′l[βl](z)dz

) ,

which concludes the proof.

Proof of Theorem 10.3.2. We begin our computation using some identities we proved in the
previous section.

∑
n≥0

(ˆ
Hilbn(X)

ω[n]qn

)
=
∑
n≥1

(ˆ
X
[n]
k

L− ordz(ω[n])dzqn

)
,

by decomposing Xk as union of its strata {Xk,α}αan, we get:

∑
n≥0

(ˆ
Hilbn(X)

ω[n]qn

)
=
∑
n≥1

(∑
αan

(ˆ
X
[n]
k,α

L− ordz(ω[n])dz

)
qn

)
,

by Corollary 10.2.6 we obtain:

∑
n≥0

(ˆ
Hilbn(X)

ω[n]qn

)
=
∑
n≥1

∑
αan

ˆ
X
[n]
k,α

∏
j≥1

(
L(j−1)αj−ord

πj(z)
(ω[αj ](j))

qjαj
)
dz


=

∑
α∈N⊕N≥1

∏
j≥1

(
L(j−1)αjqjαj

ˆ
Hilbαj (Y (j)/µj)

L− ordz(ω(j)[αj ])dz

)
=
∏
j≥1

∑
αj≥0

(
L(j−1)αjqjαj

ˆ
Hilbαj (Y (j)/µj)

L− ordz(ω(j)[αj ])dz

) .

We plug the lemma above in our chain of equalities using Y = Y (j)/µj , ν := L− ordz(ω(j)),
recalling also that l ordz(ω(j)) = ordz(ω(jl)) and that Y (j) naturally embeds in the central
fibre of some weak Néron model of X(lj) (as in Remark 10.1.8 with d = ñ/lj), we get:
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∑
n≥0

(ˆ
Hilbn(X)

ω[n]qn

)
=

=
∏
j≥1

∑
αj≥0

L(j−1)αj
∑
βjaαj

qjαj∏
l≥1

(
L(l−1)βjl

ˆ
Sym

β
j
l (Y (j)/µj)

L− ordz(ω(lj)
[β
j
l
]
)dz

)
=
∏
j≥1

 ∑
βj∈N⊕N≥1

∏
l≥1

(
L(jl−1)βjl qjlβ

j
l

ˆ
Sym

β
j
l (Y (j)/µj)

L− ordz(ω(lj)
[β
j
l
]
)dz

)
=
∏
j,l≥1

∑
βjl≥0

(
L(jl−1)βjl qjlβ

j
l

ˆ
Sym

β
j
l (Y (j)/µj)

L− ordz(ω(lj)
[β
j
l
]
)dz

) .

Recalling that, in the sum above, there is only a finite number of nonvanishing coefficients
of qn, for every positive integer n, we are allowed to group such summands in a different order;
since the map

N+ × N+ → N+ × N+

(j, l) 7→ (j · l, j)

is injective and its image is {(m, j) : j|m}, after the substitution λmj := βjl , we get the equivalent
expression:

∑
n≥0

(ˆ
Hilbn(X)

ω[n]qn

)
=

=
∏
m≥1

∏
j|m

∑
λmj ≥0

(
L(m−1)λmj qmλ

m
j

ˆ
Sym

λm
j (Y (j)/µj)

L− ordz(ω(m)
[λmj ]

)dz

)
=
∏
m≥1

 ∑
λm∈NDiv(m)

(L(m−1)qm
)∑

j|m λmj ∏
j|m

(ˆ
Sym

λm
j (Y (j)/µj)

L− ordz(ω(m)
[λmj ]

)dz

)
=
∏
m≥1

∑
rm≥0

((
L(m−1)qm

)rm ˆ
Symrm((tj|mY (j))/µm)

L− ordz(ω(m)[rm])dz

)
=
∏
m≥1

∑
rm≥0

((
L(m−1)qm

)rm
Symrm

(ˆ
(tj|mY (j))/µm

L− ordz(ω(m))dz

))
=
∏
m≥1

∑
rm≥0

((
L(m−1)qm

)rm
Symrm

((´
X(m) ω(m)

)
/µm
))

=
∏
m≥1

((
1− Lm−1qm

)−(´X(m) ω(m)
)
/µm
)

. (10.3.1)
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10.3.6 Applying this identity to every coefficient of the zeta function ZX,ω(T ), we obtain a
formula for the motivic zeta function for the Hilbert schemes of points of X:

Theorem 10.3.7. Assume that either char k = 0 or char k > n, then the following equation
holds:

ZHilbn(X),ω[n] =
∑
αan

∞∏
j=1

(
L(j−1)αj Symαj

(
ZX(j),ω(j)/µj

))
. (10.3.2)

Proof. It follows after an application of Corollary 10.3.3 to each coefficient of the zeta function.



80



Chapter 11

Proof of the conjecture

11.1 Poles of the Zeta function

11.1.1 Througout this section, we denote by R one of the two rings Mk

[
(Lr − 1)−1 : 0 < r ∈ N

]
or M̂k, while R will denote either R or Mk.

The aim of this section is to study the poles of ZHilbn(X),ω[n](T ) in terms of those of ZX,ω
and deduce the following:

Theorem 11.1.2 (Monodromy conjecture for Hilbert schemes). Let X be a surface with trivial
canonical bundle satisfying the monodromy conjecture in R.
If char k = 0, then the same holds for Hilbn(X), ∀n ∈ N. If char k = p > 0 and X admits a
model as in §10.1, then the monodromy conjecture in R holds for Hilbn(X), ∀n < char k.

11.1.3 Despite not being the aim of our discussion, we report here the following statement,
which can be obtained as a byproduct of the argments we have developed so far:

Proposition 11.1.4. Let Y, Z be two Calabi-Yau varieties endowed with volume forms ω1, ω2

satisfying the monodromy conjecture in R. Let ω be the volume form on Y × Z defined as
ω := pr∗Y ω1∧pr∗Z ω2. Then also Y ×Z, endowed with the volume form ω, satisfies the monodromy
conjecture in R.

11.1.5 For an arbitrary positive integer l > 0 we have that

l · ZX(l),ω(l)(T
l) =

l−1∑
i=0

ZX,ω(ζilT ) ,

where we consider the functions as power series with coefficient in an algebraic extensions of
R containing the l−th roots of unity (though after the due cancellations, the above equation
involves only elements of R). Thus, by writing ZX,ω(T ) in the form Equation (3.3.1), with N
divisible by l, we see that the set of poles of ZX(l),ω(l)(T ) is contained in l · P .

11.1.6 Using this remark and the results from §8.3 we get an upper bound on the set of poles
of ZHilbn(X),ω[n](T ):

Corollary 11.1.7. Let X be a surface with trivial canonical bundle and ω a volume form on
it. Assume that ZX,ω(T ) ∈ R[[T ]] can be written as a sum of functions with only one pole. Let
P be the set of poles of ZX,ω. Then all the poles of ZHilbn(X),ω[n](T ) are contained in ΣnP .
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Proof. Let us write ZX(j),ω(j)/µj(T ) =
∑

i≥0A
(j)
i T i. For each α a n, let

Fα(T ) :=
∑
i>0

(
Symα1 A

(1)
i

)
· · ·
(

Symαn A
(n)
i

)
T i .

According to Equation (10.3.1), we have that ZHilbn(X),ω[n](T ) =
∑

αan Ln−|α|Fα(T ), thus we
only need to prove that Fα has only poles inside ΣnP . Lemma 8.3.14 implies that (Symαj ZX(j),ω(j)/µj)(T )
has poles in Σαj (jP) ⊆ ΣjαjP ; our statement follows from Proposition 8.3.12 and from the
identity

Σα1P + Σ2α2P + · · ·+ ΣnαnP = ΣnP .

11.1.8 We are now ready to prove Theorem 11.1.2:

Proof of Theorem 11.1.2. Let q be a pole of ZHilbn(X),ω[n](T ) and let σ ∈ Gal(K|K) be a topo-
logical generator of the tame Galois subgroup. Consider poles q1, . . . , qn of ZX,ω(T ) such
that q = q1 + · · · + qn. Since the monodromy conjecture holds for X, there are elements
v1, v2, . . . , vn ∈ H∗(XK ,Ql) such that σ(vj) = e2πiqjvj . Let us consider the Galois-equivariant
isomorphism from [14, Theorem 2]:

H∗(Hilbn(X),Ql) ∼=
⊕
αan

H∗(Sym|α|(X),Ql)(n− |α|) ;

focusing on the summand H∗(Symn(X),Ql) ∼= H∗(Xn,Ql)
Σn , where the action of Σn on

H∗(Xn,Ql) ∼= H∗(X,Ql)
⊗n is induced by the usual action Σn y Xn given by permutation of

the factors. Thus the element ∑
ρ∈Σn

vρ(1) ⊗ · · · ⊗ vρ(n)

is a non-zero eigenvector of H∗(Hilbn(X),Ql) for the eigenvalue
∏n
j=1 e

2πiqj .

11.1.9 And similarly:

Proof of Proposition 11.1.4. We have that

ˆ
Y (n)×Z(n)

ω(n) =

(ˆ
Y (n)

ω1(n)

)(ˆ
Z(n)

ω2(n)

)
.

Hence Proposition 8.3.12 implies that ∀q pole of ZY×Z,ω(T ) there are a pole q1 of ZY,ω1(T )
and a pole q2 of ZZ,ω2(T ) such that q = q1 + q2.

Since Y and Z satisfy the monodromy conjecture, there are nonzero eigenvectors v ∈
H∗(Y,Ql) with eigenvalue exp(2πiq1) and w ∈ H∗(Z,Ql) with eigenvalue exp(2πiq2), so that
the element v ⊗ w ∈ H∗(Y,Ql)⊗H∗(Z,Ql) ∼= H∗(Y × Z,Ql) is an eigenvector with eigenvalue
exp(2πiq).

11.1.10 We are not able to say much about the monodromy conjecture in Mk for all the Hilbert
schemes of points on a surface, since it is not always possible to write ZX,ω(T ) ∈ Mk[[T ]] as
a sum of functions with a single pole. However, there are a few remarkable classes of surfaces
whose zeta function has a unique pole. In these cases, such a condition is automatically satisfied,
so also ZHilbn(X),ω[n] has a unique pole which is n times the pole of ZX,ω and Hilbn(X) will then
satisfy the monodromy property.

Example 11.1.11. We list a few classes of surfaces satisfying the property above:

• Assume that X is an abelian surface; according to [17], ZX,ω has a unique pole which
coincides with Chai’s basechange conductor of X;
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• If X → SpecK is a K3 surface admitting an equivariant Kulikov model after the base
change with respect to a finite extension F/K, then Halle and Nicaise proved in [18] that
ZX,ω has a unique pole;

• Assume thatX is a Kummer surface constructed from an abelian surfaceA; then Overkamp
proved in [36] that ZX,ω has a unique pole.

Moreover all the surfaces in this list satisfy the monodromy property.

Corollary 11.1.12. Let X be a surface in the list above, then the monodromy conjecture holds
for Hilbn(X), provided that either char k = 0 or char k > n, with the usual assumptions on the
models of X.

Similarly, the monodromy conjecture holds for a product X1×· · ·×Xn, where all the Xi are
surfaces in the list above.

Proof. The first statement follows from 11.1.2, while the latter follows from 11.1.4.
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Part IV

Examples and future perspectives
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Chapter 12

Hilbert scheme of two points on a
surface

12.1 Computation of the poles

12.1.1 It is still an open question whether all the sums of n poles of ZX,ω(T ) are actually
poles of ZHilbn(X),ω[n](T ), or if cancellation might occur. It is reasonable to expect that given a
very general K3 surface X and a positive integer n, if P is the set of poles of ZX,ω, then the
set of poles of ZHilbn(X),ω[n] coincides with ΣnP . We expect this in virtue of the fact that the
expression for ZHilbn(X),ω[n] , obtained by following the algorithm of Corollary 11.1.7 and §8.3,
contains terms having a pole in each element of ΣnP and the cancellation among them ”should
happen only exceptionally”.

12.1.2 Let K := k((t)), R := k[[t]], where char k = 0. Let X ⊆ P3
K (with homogeneous

coordinates [w : x : y : z]) be the surface defined by the quartic polynomial:

w2x2 + w2y2 + w2z2 + x4 + y4 + z4 + tw4 ,

and let, finally, ω be an arbitrary volume form over it; this example was already studied in
[18]. It is possible to prove that ZX,ω has two poles and satisfies the monodromy conjecture
in Mk. A direct computation (relying on a construction we will sketch later) shows that the
poles of ZHilb2(X),ω[2] are actually the three expected poles. Let Y ⊆ P3

R the model of X
obtained by the above equation considered as a polynomial with coefficients in R. The model
constructed in this way is a regular model whose central fibre is an irreducible surface with only
a singular point O of type A1. After blowing up O ∈ Y one obtains a regular model with strict
normal crossing divisor, whose central fibre consists of two components: a regular K3 surface
D (the strict transform of Yk) and a copy of P2

k with multiplicity 2, which we denote by E,
their intersection is a rational curve C which sits in E as a conic. After semistable reduction,
one gets a model X(2) → R(2) of X(2) whose central fibre consists of a smooth K3 surface
(mapped isomorphically onto D) intersecting Ẽ = P1 × P1 along its diagonal, which is mapped
isomorphically onto C.

12.1.3 In [28], Nagai shows that if S is a semistable model of S whose central fibre is a

chain of surfaces, then Hilb2(S,∆) can be desingularizd by blowing up some components of S0,
obtaining a semistable model of Hilb2(S) over ∆. If there is a group action on S that stabilizes
the components of S0, then it is possible to desingularize Hilb2(S,∆) in an equivariant way
with respect to such action.
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12.1.4 Using the construction of Nagai one gets a semistable model for Hilb2(X(2m)) over
R(2m) which is Galois equivariant with respect to the action of µ2 and after Weil-restricting its
smooth locus it is possible to compute the motivic integral of Hilb2(X(m)) for all m ∈ N and
thus ZHilb2(X),ω[2] ∈Mk[[T ]]. After specializing the zeta function using the Poincaré polynomial
one sees that all the three possible poles are indeed poles for ZHilb2(X),ω[2] .

12.1.5 The motivic zeta function of Hilb2(X) is

ZHilb2(X),ω[2](T ) =(L− 1)2[C]2
L−3T 5

(1− T )(1− L−2T 2)(1− L−1T 2)
+ [D◦][Ẽ◦]

L−1T 2

1− L−1T 2

+ (L− 1)[C][D◦]
L−1T 3

(1− T )(1− L−1T 2)
+ (L− 1)[C][Ẽ◦]

L−3T 4

(1− L−2T 2)(1− L−1T 2)

+ [Hilb2(C ×Gm)]
L−2T 3

(1− T )(1− L−2T 2)
+ [Hilb2(D◦)]

T

1− T

+ [Hilb2(Ẽ◦)]
L−2T 2

1− L−2T 2
+ L(L− 1)[C]

L−1T 2

(1− T )(1− L−1T 2)

+ L[E◦]
L−1T

1− L−2T 2
.

This expression shows that ZHilb2(X),ω[2](T ) has at most simple poles in 0,
1

2
, 1. We can check

that all of them are actually poles via the Poincaré specialization, obtained by replacing the
classes of varieties by their Poincaré polynomial. We show how we computed the Poincaré
polynomial of Hilb2(C ×Gm):

Example 12.1.6. One has that C ×Gm is obtained by P1 × P1 by removing two copies of P1,
hence

[Hilb2(C ×Gm)] = [Hilb2(P1 × P1)]− 2[P1] · [P1 ×Gm]− [P1]2 − 2([Sym2(P1)] + L[P1])

= [Hilb2(P1 × P1)]− 2L3 − 7L2 − 4L− 1

It follows from [13, Theorem 0.1] that the Poincaré polynomial of Hilb2(P1 × P1) is

p(Hilb2(P1 × P1), v) =
1

2
p(P1 × P1, v2) + v2p(P1 × P1, v) +

1

2
p(P1 × P1, v)2 ,

thus

p(Hilb2(C ×Gm), v) = v8 + v6 − v4 − v2 .

12.1.7 Similarly one obtains that

p(Hilb2(D◦), v) = p(Hilb2(D), v)− (v2 + 1)p(D, v)− v4 ,

hence, by replacing p(D, v) = v4 + 22v2 + 1, one obtains

p(Hilb2(D◦), v) = v8 + 22v6 + 252v4 + 1 .

Finally

p(Hilb2(Ẽ◦), v) = v8 + 2v6 + 2v4 .
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12.1.8 Thus, the Poincaré specialization of the zeta function is:

PHilb2(X),ω[2](v, T ) =
(v8 − 2v4 + 1)v−6T 5

(1− T )(1− v−4T 2)(1− v−2T 2)
+

(v6 + 22v4 + 21v2)T 2

1− v−2T 2

+
(v6 + 21v4 − v2 − 21)T 3

(1− T )(1− v−2T 2)
+

(v6 + v4 − v2 − 1)v−4T 4

(1− v−4T 2)(1− v−2T 2)

+
(v6 + v4 − v2 − 1)v−2T 3

(1− T )(1− v−4T 2)
+

(v8 + 22v6 + 252v4 + 1)T

1− T

+
(v4 + 2v2 + 2)T 2

1− v−4T 2
+

(v4 − 1)T 2

(1− T )(1− v−2T 2)

+
v4T

1− v−4T 2
.

0 is a pole In order to check that 0 is a pole, let us rewrite the above expression as:

(1− T )PHilb2(X),ω[2](v, T ) =
(v8 − 2v4 + 1)v−6T 5

(1− v−4T 2)(1− v−2T 2)
+

(v6 + 21v4 − v2 − 21)(1− v−4T 2)T 3

(1− v−2T 2)(1− v−4T 2)

+
(v6 + v4 − v2 − 1)v−2(1− v−2T 2)T 3

(1− v−2T 2)(1− v−4T 2)

+
(v8 + 22v6 + 252v4 + 1)(1− v−2T 2)(1− v−4T 2)T

(1− v−2T 2)(1− v−4T 2)

+
(v4 − 1)(1− v−4T 2)T 2

(1− v−2T 2)(1− v−4T 2)
+ (1− T )f(T ) ,

where f(T ) is a function that has not a pole in T = 1. We then replace T 7→ 1 in the RHS and
check that it does not vanish.

1
2 is a pole Similarly, we write

(1− v−2T )PHilb2(X),ω[2](v, T ) =
(v8 − 2v4 + 1)v−6T 5

(1− T )(1− v−4T 2)
+

(v6 + 22v4 + 21v2)(1− T )(1− v−4T 2)T 2

(1− T )(1− v−4T 2)

+
(v6 + 21v4 − v2 − 21)(1− v−4T 2)T 3

(1− T )(1− v−4T 2)

+
(v6 + v4 − v2 − 1)v−4(1− T )T 4

(1− T )(1− v−4T 2)

+
(v4 − 1)(1− v−4T 2)T 2

(1− T )(1− v−4T 2)
+ (1− v−2T 2)g(T ) ,

where g(T ) is a function without poles in T = v. Then replacing T 7→ v in the RHS we check
that it does not vanish, thus Z has a pole in 1

2 .

1 is a pole Similarly, we write

(1− v−4T )PHilb2(X),ω[2](v, T ) =
(v8 − 2v4 + 1)v−6T 5

(1− T )(1− v−2T 2)
+

(v6 + v4 − v2 − 1)v−4(1− T )T 4

(1− T )(1− v−2T 2)

+
(v6 + v4 − v2 − 1)v−2(1− v−2T 2)T 3

(1− T )(1− v−2T 2)

+
(v4 + 2v2 + 2)(1− T )(1− v−2T 2)T 2

(1− T )(1− v−2T 2)

+
v4(1− T )(1− v−2T 2)T

(1− T )(1− v−2T 2)
+ (1− v−4T 2)h(T ) ,
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where h(T ) is a function without poles in T = v2. Then we replace T 7→ v−2 in the RHS and
we check that it does not vanish, hence Z has actually a pole in 1.



Chapter 13

Moduli spaces of stable sheaves

We list a couple of examples where we show that our result sees applications in a broader
context. Namely we prove the monodromy conjecture for a new class of varieties. We begin
proving that some moduli spaces of sheaves on a K3 surface are birationally equivalent to some
Hilbert schemes of points on the same K3 surface, then we compute their motivic zeta function
using its birational invariance and finally we use the birational invariance of the monodromy
eigenvalues to conclude the proof.

13.1 Moduli spaces of sheaves of rank 2

13.1.1 LetX be aK3 surface andH an ample divisor on it. For ninN let us consider the moduli
space of H−slope semistable sheaves MH(2,OX(H), k(n)), with k(n) = (n2 +n+ 1/2)c2

1(H)+3.
This consists of rank 2 semistable sheaves whose determinant is H and whose second Chern
class is k(n); setting l(n) = (2n2 + 2n + 1/2)c2

1(H) + 3, we are going to prove the following
theorem:

Theorem 13.1.2. The moduli space M(2, H, k(n)) is birational to the Hilbert scheme of points
Hilbl(n)(X) for n� 1.

Proof. For n large enough, MH(2,OX(H), k(n))K is irreducible and its generic point is a stable
locally free sheaf by [20, Theorems 9.3.4 and 9.3.2]; this implies that MH(2, H, k(n)) itself is
irreducible; moreover the stability and locally freeness of its generic sheaf can be checked after
base-change, so MH(2,OX(H), k(n)) admits a dense open subset N containing stable locally
free sheaves. For dimensional reasons, in order to prove birationality, it is enough to provide a
generically injective rational map Hilbl(n)(X) 99K N . By the Hirzebruch-Rieman-Roch formula,
for K3 surfaces:

χ(D) = 2 +
D2

2
,

for a divisor D on X. If n is large enough, χ(OXK ((2n + 1)H)) = h0(X,OXK ((2n + 1)H)s),
thus

h0(XK ,OXK ((2n+ 1)H)) =
(2n+ 1)2

2
H2 + 2 = l(n)− 1 .

Hence the global sections OXK ((2n+1)H) do not vanish on the generic point of Hilbl(n)(XK), so

H0(XK , IZ((2n+1)H) = 0. By [25, Corollary 5.27], it follows that H0(XK ,OXK ((2n+1)H)) =

H0(X,OX((2n + 1)H)) ⊗K K and H0(XK , IZ((2n + 1)H)) = H0(X, IZ((2n + 1)H)) ⊗K K;
hence from the exact sequence

0→ H0(X,OX((2n+ 1)H)→ H0(X,OZ)→ H1(X, IZ((2n+ 1)H))→ 0 ,
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it follows that h1(X, IZ((2n + 1)H)) = 1 for generic [Z] ∈ Hilbl(n)(X). This means that there
is a unique non trivial extension

0→ OX → FZ → IZ((2n+ 1)H)→ 0 ,

which is locally free because of [20, Thehorem 5.1.1]. We will prove that FZ is H−slope stable for
generic Z. If not, there is a line bundle L ⊆ FZ with c1(L)·H ≥ 2n+1

2 H2. Since L is not contained
in OX , there is a curve C ∈ |L∨((2n+ 1)H)| containing Z. In order to prove that this cannot
happen for generic Z, it is enough to prove that dim |L∨((2n + 1)H)| ≤ l(n) − 1. For a curve
C ∈ |L∨((2n+ 1)H)|, we have that h0(OC(C)) = C2/2 + 1 = 2n+1

2 ((2n+ 1)H2 − 2c1(L) ·H) ≤
c21(L)

2 ; which implies that

h0(OX(C)) ≤ c2
1(L)

2
+ 2 ≤ (c1(L) ·H)2

2H2
+ 2 ≤ (2n+ 1)2H2

2
+ 2 = l(n)− 1 .

The map Z 7→ FZ is injective, where defined, because h0(X,FZ) = 1, so FZ cannot fit in more
than one exact sequence starting with OX → FZ .

13.1.3 This result, together with [26, Theorem 5.1.12], allow us to compute, via the formula
(10.3.2), the motivic zeta function of MH(2, H, k(n)) for n � 1. Because of [12, Proposition
5.1] the monodromy eigenvalues of MH(2, H, k(n)) coincide with those of Hilbl(n)(X), thus
MH(2, H, k(n)) has the monodromy property if and only if Hilbl(n)(X) has it. This allows us
to conclude the following:

Corollary 13.1.4. Let X be a K3 surfaces that satisfies the monodromy conjecture with coeffi-
cients in R and let H be an ample divisor, then the conjecture holds also for the moduli spaces
MH(2, H, k(n)), for n� 1.



Chapter 14

What’s next?

In this chapter we explain possible developements and generalisations that can be achieved by
similar techniques than the one we used so far. We expect similar techniques can be used for
computing the Zeta function of other symplectic varieties.

14.1 Generalized Kummer varieties

14.1.1 One first way to extend the results of this thesis would be by looking at the Generalized
Kummer varieties. Given an Abelian variety A → SpecK, let A → ∆ a proper model whose
smooth locus is a Néron model of A. Then we can construct weak Néron models of Hilbn(A)
via the construction A[n], the closure of Kumn−1(A) inside A[n] gives a wean Néron model of
Kumn−1(A). It is possible to use this construction in order to compute the motivic integrals
and the motivic zeta functions of the generalized Kummer varieties.

Question 14.1.2. Does the Monodromy conjecture hold for generalized Kummer varieties?

14.2 Moduli spaces of sheaves on a K3 surface

14.2.1 Inaba studied in [21] studied moduli spaces of sheaves on snc varieties. It could be
possible to use his construction in order to give a recipe for constructing weak Néron models of
moduli spaces of sheaves on K3 surfaces and thus computing their motivic zeta functions. Also
in this case the natural question to address is whether they satisfy the monodromy property.
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