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Abstract

This thesis consists of a series of independent investigations pertaining primarily
to multi-state modeling in the mathematics of life insurance. First, we study
the dynamics of state-wise prospective reserves in the presence of non-monotone
information. The corresponding main result consists of a generalization of the
stochastic Thiele equations. Next, we present and discuss a series of questions
concerning the representation and computation of expected accumulated cash flows
in the presence of bonus, incidental policyholder behavior, and double stochasticity,
respectively. Central contributions include the derivation of procedures for the
computation of the market value of bonus payments, establishment of links between
measure changes and scaling factors resulting from the exercise of policyholder
options, and the comparison of pros and cons of various concepts of forward transition
rates. Following this, we study experience rating for multi-state life insurance by
applying empirical Bayes methods to a multivariate frailty extension of the classic
setup. The thesis concludes with an extension of the quadratic hedging approach
known as risk-minimization to allow for taxes and expenses.






Preface

“Sigma: But then nothing is settled. We can’t stop now.
Teacher: I sympathise. This latest stage will have important
feedbacks to our discussion. But a scientific inquiry ‘begins and
ends with problems’. [Leaves the classroom.]

Beta: But I had no problems at the beginning! And now I have
nothing but problems!”

— Imre Lakatos, Proofs and Refutations

This thesis has been prepared in partial fulfillment of the requirements for the PhD
degree at the Department of Mathematical Sciences, Faculty of Science, University
of Copenhagen. The work has been carried out between September 2017 and August
2020 as an Industrial PhD project within Innovation Fund Denmark’s program and
with PFA Pension as the industrial partner. I was supervised by Professor Mogens
Steffensen (University of Copenhagen), PhD Kristian Buchardt (PFA Pension),
Professor Niels Richard Hansen (University of Copenhagen), Adjunct Professor
Thomas Mpgller (PFA Pension until August 2018, then AP Pension; University of
Copenhagen throughout), and PhD Peter Holm Nielsen (PFA Pension). Thomas
Mgller supervised until August 2018, while Peter Holm Nielsen supervised from
September 2018.

The thesis consists of manuscripts that have been produced as part of my studies.
The manuscripts constitute stand-alone scientific contributions and should be read
as such. This very nature of the thesis leads to significant discrepancies in especially
notation across chapters. An overview and contextualization of the main contribu-
tions of the thesis and their interconnections can be found in Chapter 1. Minor
differences between the contents of a chapter and the corresponding manuscript
might exist. I take full responsibility for any typographical or mathematical errors.

Ever since defending my master’s thesis in actuarial mathematics at the University
of Copenhagen three years ago, I have been blessed with abundant opportunities for
personal and professional growth. I have not been afraid to speak my mind, and I
have tried to listen. I have overcome some challenges, and some have overcome me.
According to the late Leonard Cohen: “That’s how the light gets in”. Whatever it
might hold, the future excites me.
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Summary

This thesis consists of several independent investigations pertaining primarily to
multi-state modeling in the mathematics of life insurance. Following Chapter 1,
which sets the stage and provides an overview of the main contributions of the thesis
and their interrelations, the investigations are presented in Chapters 2-7, with each
chapter forming a single investigation.

In broad terms, the thesis is concerned with conceptual and computational
challenges arising in multi-state life insurance. We apply and extend methods from
probability theory, specifically the theory of stochastic processes, and mathematical
finance to solve actuarial problems of theoretical and practical importance. The focus
is first and foremost on abstract concepts, but multiple examples and case studies
also illustrate the applicability of our methods and results in actuarial practice.

In Chapter 2, which contains the manuscript Christiansen and Furrer (2020), we
discuss valuation in the presence of non-monotone information. Non-monotonicity
arises if the insurer does not have access to or does not desire to utilize all possible
information concerning the states of the insured, e.g. due to legal constraints resulting
from privacy law. By adopting an infinitesimal approach, we derive stochastic
differential equations describing the dynamics of state-wise prospective reserves.
To this end, we clarify definitions and properties of different notions of state-wise
prospective reserves. A case study involving information discarding upon and after
stochastic retirement exemplifies the methods and results.

Chapter 3-5 are concerned with the representation and computation of expected
accumulated cash flows in the presence of bonus, incidental policyholder behavior,
and double stochasticity, respectively. In Chapter 3, which contains the manuscript
Ahmad, Buchardt, and Furrer (2020), we consider with-profit contracts and the
bonus scheme additional benefits, where dividends are used to buy extra benefits.
Requiring the dividend strategy to be affine in the number of additional benefits, we
derive a procedure for the computation of the market value of bonus payments which
efficiently combines simulation of financial risk with classic methods for insurance risk.
Special attention is given to the case where the number of additional benefits only
depends on financial risk — building a bridge between collective and individual points
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of view. Incidental policyholder behavior leads to payments scaled according to the
exercise times of policyholder options. In Chapter 4, we establish a link between
scaling factors and measure changes using supermartingales as Radon-Nikodym
derivatives. This link can be used to conveniently derive backward and forward
methods for the computation of prospective reserves. Chapter 5, which contains
the paper Buchardt, Furrer, and Steffensen (2019), studies forward transition rates
in doubly stochastic Markov chain models. We establish a theoretical framework,
propose a new concept, and compare it to earlier proposals in the literature: marginal
and state-wise forward transition rates.

Contrary to the remaining investigations, Chapter 6, which contains the paper
Furrer (2019), focuses on statistical rather than probabilistic aspects of multi-state
modeling, namely experience rating for multi-state life insurance. To this end, we
apply empirical Bayes methods to multivariate frailty extensions of classic Markov
chain models. Special attention is given to the case where the group effects are
mutually independent and Gamma-distributed, where the classic link to Poission
regressions is replaced by a link to multivariate negative binomial regressions. The
methods and results are illustrated by a numerical example for disability insurance
using simulated data.

Taxes on investment returns lead to insurance payments which depend on the
investment strategy. Consequently, classic methods for market-consistent valuation
do not apply. In Chapter 7, which contains the paper Buchardt, Furrer, and Mgller
(2020), we consider quadratic hedging of insurance payment processes in the presence
of taxes and expenses. The chapter differs from the remaining investigations by
not having multi-state modeling as its focal point. We propose the criterion of
tax- and expense-modified risk-minimization, which takes into account the effect
of taxes and expenses on the time value of money. We establish existence and
uniqueness of an optimal investment strategy related to the Galtchouk-Kunita-
Watanabe decomposition of the intrinsic value process associated with a tax- and
expense-modified payment process. The investigation concludes with an application
of tax- and expense-modified risk-minimization aimed at multi-state life insurance.



Resumé

Denne afhandling bestar af flere uatheengige undersggelser, som har at ggre med
flertilstandsmodellering i livsforsikringsmatematik. I forleengelse af Kapitel 1, der
saetter scenen og giver et overblik over afhandlingens hovedbidrag og deres indbyrdes
sammenhaenge, praesenteres undersggelserne i Kapitel 27, idet hvert kapitel udger
en enkeltstaende undersggelse.

Overordnet set omhandler denne athandling konceptuelle og beregningsmaessige
udfordringer i flertilstandslivsforsikring. Vi anvender og udvider metoder fra sand-
synlighedsteori, specifikt teorien om stokastiske processer, og finansmatematik for
at lgse aktuarmaessige problemer af teoretisk og praktisk betydning. Fokus er fgrst
og fremmest abstrakte koncepter, men adskillige eksempler og casestudier er ogsa
med til at illustrere anvendeligheden af vores metoder og resultater i aktuarmaessig
praksis.

I Kapitel 2, som indeholder manuskriptet Christiansen og Furrer (2020), disku-
terer vi veerdiansaettelse, nar den tilgeengelige information er ikke-monoton. Ikke-
monotonicitet opstar, hvis forsikringsselskabet ikke har adgang til eller ikke gnsker at
udnytte al information om de forsikredes tilstande, fx pa grund af juridiske begraens-
ninger som fglge af privatlivsret. Ved at anleegge en infinitesimal fremgangsmade
udleder vi stokastiske differentialligninger, som beskriver dynamikken af tilstands-
vise prospektive reserver. Til dette formal afklarer vi definitioner og egenskaber
af forskellige opfattelser af tilstandsvise prospektive reserver. Et casestudie, som
involverer sletning af information ved og efter stokastisk pensionering, eksemplificerer
metoderne og resultaterne.

Kapitel 3—5 omhandler repraesentation og beregning af forventede akkumulerede
cash-flows i forbindelse med henholdsvis bonus, tilfeeldig policetageradfaerd og dob-
beltstokastik. I Kapitel 3, som indeholder manuskriptet Ahmad, Buchardt og Furrer
(2020), betragter vi gennemsnitsrentekontrakter og bonusordningen ydelsesopskriv-
ning, hvor dividender benyttes til at kgbe ekstra ydelser. Under forudsaetning af at
dividendestrategien er affin i antallet af tilkgbte ydelser, udleder vi en procedure til
beregning af markedsveaerdien af bonusbetalinger, der effektivt kombinerer simulation
af finansrisiko med klassiske metoder for forsikringsrisiko. Der leegges seerlig veegt pa

x1
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tilfeeldet, hvor antallet af tilkgbte ydelser kun afhsenger af finansrisiko, hvorved vi
bygger bro mellem kollektive og individuelle synspunkter. Tilfseldigt policetagerad-
feerd forer til betalinger skaleret i henhold til tidspunkterne, hvorpa der ggres brug
af policetageroptionerne. I Kapitel 4 etablerer vi en forbindelse mellem skalerings-
faktorer og malskift ved at benytte supermartingaler som Radon-Nikodym-afledte.
Denne forbindelse kan udnyttes til bekvemt at udlede baglaens- og forleensmetoder
til beregning af prospektive reserver. Kapitel 5, som indeholder artiklen Buchardt,
Furrer og Steffensen (2019), studerer forward-overgangsintensiteter i dobbeltstokas-
tiske Markovkaedemodeller. Vi etablerer en teoretisk ramme, foreslar et nyt koncept
og sammenligner det med tidligere forslag i litteraturen: marginale og tilstandsvise

forward-overgangsintensiteter.

Modsat de gvrige undersggelser fokuserer Kapitel 6, som indeholder artiklen Furrer
(2019), pa statistiske fremfor sandsynlighedsteoretiske aspekter af flertilstandsmo-
dellering, nemlig erfaringstarifering for flertilstandslivsforsikring. Til dette formal
anvender vi empirisk-Bayes metoder pa udvidelser af klassiske Markovkaedemodeller
gennem tilfgjelse af flerdimensionel skrgbelighed. Der laegges seerlig vaegt pa tilfaeldet
med gensidigt uafheengige og Gamma-fordelte gruppeeffekter, hvor den klassiske
forbindelse til Poisson-regressioner erstattes af en forbindelse til flerdimensionel-
le negativ-binomial-regressioner. Metoderne og resultaterne illustreres gennem et
numerisk eksempel for invalideforsikring med simuleret data.

Skat pa investeringsafkast fgrer til forsikringsbetalinger, som afhzenger af in-
vesteringsstrategien. Fglgelig kan klassiske metoder for markedskonsistent veerdi-
ansaettelse ikke finde anvendelse. I Kapitel 7, som indeholder artiklen Buchardt,
Furrer og Mpller (2020), betragter vi kvadratisk afdaekning af forsikringsbetalings-
processer under hensyntagen til skat og omkostninger. Kapitlet adskiller sig fra
de gvrige undersggelser ved ikke at have flertilstandsmodellering som sit centra-
le tema. Vi foreslar kriteriet skat- og omkostningsmodificeret risikominimering,
der tager hensyn til effekten af skatter og omkostninger pa tidsveerdien af penge.
Vi etablerer eksistens og unikhed af en optimal investeringsstrategi relateret til
Galtchouk-Kunita-Watanabe-dekompositionen af den intrinsiske vaerdiproces knyt-
tet til en skat- og omkostningsmodificeret betalingsproces. Undersggelsen afsluttes
med an anvendelse af skat- og omkostningsmodificeret risikominimering rettet mod
flertilstandslivsforsikring.
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Chapter 1

Introduction

This thesis contains a series of investigations that are primarily concerned with
the conceptual and computational challenges arising from multi-state modeling in
actuarial mathematics, specifically within the mathematics of life insurance. They
are preluded by this introductory chapter of the following structure. In Sections 1.1-
1.2, some aspects of the mathematics of multi-state life insurance, including its
interplay with point process theory, are introduced and discussed. The purpose
is neither to give a full account of the historical development of the field nor to
provide an exhaustive list of recent contributions, but instead to describe in various
degrees of detail methods and results of the field that are of particular importance
to the investigations of the thesis. Building on this, Section 1.3 concludes with an
overview of the main contributions of the thesis and their interrelations. Although
the presentation is targeted at actuarial mathematicians with a strong foundation in
stochastic process theory, we focus on conceptual contributions by keeping technical
aspects to a bare minimum.

1.1 Background

The earliest attempt at a unification of the theory on multi-state modeling for life
insurance appears to be Hoem (1969), where the state of the insured is governed
by a Markovian jump process. Half a century later, Markov chains remain popular
in theory and practice: They are easy to grasp and interpret and computationally
viable. An excellent example of the popularity of Markov chains in practice are
the Danish risk tables of 1982 (G82), cf. Henriksen et al. (2014) and Gad and
Nielsen (2016). Markov chain models are introduced and studied in Subsection 1.1.1
following along the lines of Hoem (1969), Norberg (1991), and Buchardt and Mgller
(2015).

In recent decades, the inclusion of duration effects — also in relation to policyholder
behavior — has received significant interest. Duration effects are relevant since
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the infinitesimal probabilities of insurance events are duration dependent (think:
probability of recovery from disability in regards to time since onset of disability)
and since insurance contracts are designed in such a way that payments could depend
on e.g. the time of disability or the retirement age of the insured. The inclusion
of duration effects and other extensions of Markov chain models are discussed in
Subsection 1.1.2.

The interest in models for which the infinitesimal jump probabilities and payments
are also allowed to depend on the duration since the last jump actually predates Hoem
(1969), see Janssen (1966). Early contributions to the field are methodologically
very different from the modern approach; the latter relies on martingale methods
for marked point processes and multivariate counting processes. The links between
actuarial multi-state modeling and point process theory, while already established
and utilized in Hoem and Aalen (1978), were highlighted in a series of papers by
Ragnar Norberg in the early 90s, see Norberg (1990, 1991, 1992). These and other
aspects of multi-state modeling are discussed in more detail in Subsection 1.2.1.

1.1.1 Markov chain models

In Markov chain models, the state of the insured is governed by a Markov chain
Z = (Zi)i>0 on a finite state space J. The elements of J represent biometric
and behavioral states of the insured related to e.g. disability and retirement. The
filtration F = (F%):>0 contains exactly the information generated by Z. It constitutes
the available information. The chain is assumed to admit suitably regular transition
rates p such that the transition probabilities p satisfy Kolmogorov’s classic backward
and forward differential equations:

0
ng t 3 Z /J/zﬁ pl] t S Z ,uzé p@] t S)

LeT LA LET L#£1
0
%pij(t»s) = —pi;(t,s) Z Hjé(s) + Z pié(ta §) e (),
(€T U#] X

pij(t,t) = Lg—jy.

Denote by N the multivariate counting process associated with Z. Its components
Njj, are given by

Niw(t) = #{s € (0,4 : Zs_ = j, Zy = k}.

The insurance contract is modeled by a payment process B describing the accumu-
lated benefits less premiums. It is assumed to take the form

dt) = Niz,—yb;(t)dt+ > byk(t)Njx(dt) (1.1.1)

JET I keET k#j
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for suitably regular deterministic sojourn payment rates b; and transition payments
bji. The payments taking this form is a key assumption.

Regarding the inclusion of lump sum payments and the inclusion of point proba-
bility mass in the distribution of the jumps of the chain, we refer to the more
technical presentation of Milbrodt and Stracke (1997). It also appears very fruitful
for these endeavors to take as the starting point the product-integral, see Gill and
Johansen (1990, Section 4.4). In practice, lump sum payments and point probability
mass might be dealt with on a case to case basis.

The time value of money is described by a savings account Sy, which we suppose
admits a suitably regular short rate r such that

In this section, financial risk is disregarded by assuming r to be deterministic. The
interplay with financial mathematics is discussed in more detail in Subsection 1.2.2.

The present value PV of all future payments is given by
PV (t) = / e~ Ji T du B(gg).
t

By diversifying (averaging out unsystematic insurance risk, think: law of large
numbers in connection with a sizeable portfolio), we arrive at the prospective reserve
V given by

V(O =EIPV()|F) = [ e O A ds)
t
where A are so-called expected accumulated cash flows given by
A(t,s) = E[B(s) - B() | Fi).
These quantities are of interest not only for valuation, but also for risk management

in general and asset liability management specifically.

Note that in the setup of this subsection,

At ds) = 3 pzg(t.s) [ b(s) + 7 wgu(s)byu(s) | ds.

JjeET keT:k#j

This is a consequence of the non-trivial fact that the differences ¢ — Nji(t) —
fg 1yz. —jymjr(s) ds define martingales, see also Subsection 1.2.1. Informally, one
might also argue along the lines of E[Njx(ds) | Fs—] = iz, —;3px(s) ds; the notion
of martingales rigorizes this way of thinking.

This specific representation of the expected accumulated cash flows allows us to
define so-called state-wise expected accumulated cash flows (A;);c 7 and state-wise
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prospective reserves (V;);c7 via

A;(t,ds) = Zpij(t,s) bi(s) + Z wik(s)bik(s) | ds, (1.1.2)

JjeET keJ:k#j

Vi(t) = / e~ Jirtwdn 4.1 ds). (1.1.3)
t

Since A(t, ) = Az, (t,-) and V(t) = Vg, (t), smart computation of state-wise prospec-
tive reserves and/or state-wise expected accumulated cash flows is important to
practitioners. This aspect is examined more closely below.

Backward and forward methods

We now assume the existence of a maximal contract time 1 < oo in the sense that
b;j(t) =0 and b, (t) = 0 for t > 7.

From (1.1.2)—(1.1.3) we see that we can compute V (¢g) by first calculating the
relevant state-wise expected cash flow, using Kolmogorov’s classic forward differential
equations to compute the transition probabilities p(tg, -), and then discounting and
accumulating it. The concept of forward method refers exactly to this computational
scheme.

The following differential equations can be derived by differentiating (1.1.3) and
using Kolmogorov’s backward differential equation, cf. Hoem (1969). It generalizes
Thiele’s differential equation for a term life insurance dating back to 1875 to multi-
state life insurance payments. The differential equations read

Vi) =rOVit) = bi(t) = > (bi (8) + V5 (1) = Vit) g (t) (1.1.4)
JET g#i

with boundary conditions V;(n) = 0, i € J. They are known in the literature as
Thiele’s differential equations. An application of these differential equations yields
the state-wise prospective reserves not only for a fixed time point tg but for all
time points. They provide an alternative to the forward method and, essentially,
generalize Kolmogorov’s classic backward differential equations. The application of
Thiele’s differential equations to compute the state-wise prospective reserves for all
time points between a fixed initial time point ¢y and the maximal contract time 7 is
referred to as the backward method.

If one intends to compute the prospective reserve at a fixed time point for various
short rates, then the forward method is attractive. If one intends to compute the
prospective reserve for a fixed short rate for all time points, then the backward
method is attractive. Which method you should use thus depends on the nature of
the questions you are investigating.
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1.1.2 Duration dependence and double stochasticity

While prevalent in practice and computationally rather simple, Markov chain models
are unable to fully capture the inherent complexity of multi-state life insurance. In
this subsection we discuss some extensions intended to rectify the situation. The
extensions relate to the inclusion of duration effects in the form of semi-Markovian
models (see e.g. Hoem, 1972; Helwich, 2008; Christiansen, 2012; Buchardt, Mgller,
and Schmidt, 2015) and policyholder behavior (see e.g. Buchardt and Mgller, 2015;
Buchardt, Mgller, and Schmidt, 2015) and the inclusions of systematic insurance
risk via doubly stochastic modeling (see e.g. Christiansen, 2006; Buchardt, 2017).

Semi-Markov models
Define the duration process U = (Uy)>0 by
Uy =t—sup{s € [0,t] : Zs # Z;}.

This process measures the time spent by the insured in its current state. In
semi-Markov modeling, the setup presented in Subsection 1.1.1 is extended in
two directions. The bivariate process (Z,U) instead of Z itself is required to be
Markovian; we say that Z is a semi-Markovian process. Furthermore, the payment
process takes the form

B(dt) =Y Lyz,_jyb;(t, U dt+ > bj(t, Up—)N;p(dt)
jeT J.keT :k#j
for suitably regular duration-dependent sojourn payment rates b; and transition
payments b;,. If Z is Markovian and the sojourn payment rates and transition

payments are not duration dependent, then we recover the setup of Subsection 1.1.1.

We disregard lump sum payments and point probability mass in the distribution of
the jumps. The latter simplification is equivalent to assuming that the compensators
of the multivariate counting process are absolutely continuous with respect to the
Lebesgue measure. This is obtained by requiring the existence of suitably regular
duration-dependent transition rates p such that the differences

t
tHNjk(t)_/ Lz, —jyiik(s,Us—) ds
0

define martingales. This characterizes the distribution of Z, cf. Subsection 1.2.1.
Inclusion of lump sum payments and point probability mass in the distribution
of the jumps is discussed in Helwich (2008), which builds on the aforementioned
presentation of Milbrodt and Stracke (1997).

The expected accumulated cash flows A are given by

Ut+8 t

A(t,ds) Z/ pz,i(t, s, U, dz) | bj(s,z) + Z wik(s, 2)bjk(s, z) | ds,

JET keJ:k#j
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where p are the transition probabilities defined via
pij(t7s7u7'z) = P(ZS =7 Us <z ’ Zy = i7Ut = u)

We retain the assumption of a maximal contract time 1 < oo in the sense that
bj(t,-) = 0 and bjx(t,-) = 0 for t > n. The backward and forward methods
for Markov chain models can be generalized to semi-Markov models. Since the
transition probabilities satisfy implementable forward integro-differential equations
(see Buchardt, Mgller, and Schmidt, 2015, Section 3), the above results guarantee
that the formulation of a forward method is quite straightforward. In regards to the
backward method, introduce auxiliary functions W;(-,v) via

Wi (t, U)

S—v (

= /?7 e~ Ji r(w) du Z pij(t, s, t —wv,dz) | b(s,z) + Z tik(s, 2)bk(s, z) | ds
t jeg /o kET k#j

for 0 <v <t <mn i€ J. Notethat V(t) = Wy, (t,t — U). Since the family

of functions with elements W;(-,s) satisfy implementable backward differential

equations (see Adékambi and Christiansen, 2017, Corollary 7.8 and Section 8 with

m = 1), the formulation of a backward method is also quite straightforward.

The computational schemes presented for the aforementioned Markov chain
models are to be executed on a suitable grid of J x [0,7n]. In comparison, the
computational schemes for semi-Markov models are to be executed on a suitable grid
of J x {(t,s) € [0,n]?: s <t}. This constitutes a significant increase in numerical
complexity:.

Incidental policyholder behavior

The inclusion of incidental policyholder behavior goes beyond Markov chain and
semi-Markov modeling since it introduces additional duration effects: The free policy
option (see Henriksen et al., 2014; Buchardt, Mgller, and Schmidt, 2015; Buchardt
and Mgller, 2015; Asmussen and Steffensen, 2020) and the option to retire earlier
or later (see Gad and Nielsen, 2016) lead to payments that are scaled by a factor
depending on the exercise time(s) of the option(s).

In the following, we suppose that Z is a Markov chain which admits transition
rates p. Methods and results in the case of a semi-Markovian Z can be found
in Buchardt, Mgller, and Schmidt (2015), while further generalizations are discussed
in Subsection 1.3.2.

Let J = Jo U Jq1 and suppose that Z; € J; implies Z;, € J; for all s > t.
Denote by 7 the first hitting time of [7;. We interpret 7, as the possible states of
the insured before exercise of the option, J; as the possible states of the insured
after exercise of the option, and 7 as the exercise time of the option. Given some
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suitably regular scaling factor p € (0, 1], our interest lies in payments of the form
BP(dt) = p(t, Z,_)""<t B(dt) with B given by (1.1.1) and maximal contract time
7. Thus the payments in states J; are now scaled by some factor p according to the
exercise time of the option (and from which state the insured exercised the option).

The prospective reserve V reads
,r] S
Vi(t) = / e~ Jirwdu gr (¢ gg),
t
where the expected accumulated cash flows A” are given by
AP(t’ 3) = E|:/ p(T, ZT_)]l{t<-r§u}B(du)
t

Let Z” be another Markov chain with values in V U J admitting transition rates pu”

Zt} p(r, Z_)Hrsny (1.1.5)

of the form
15 () = p(t, J)pgr(t), j€ Jo ke,
iy () = (1= p(t. 1)) Zﬂgk J € Jo,
iy (t) =0, kET je g,
Py () =0, keJ,
e () = i (t), otherwise.

Denote by p” the transition probabilities of Z”. Then

APt ) = p(r, Ze-) =0 STt () [ i)+ 0 W0 (s)bsuls) |ds. (1.0.6)
jeg keJ :k#j
This follows by the general results developed in Chapter 4, cf. Subsection 1.3.2.
The result can also be established by non-trivial yet straightforward calculations
following along the lines of Buchardt and Mgller (2015, Appendix A). Indeed, the
forward differential equations for Z# are directly comparable to the p-modified
forward differential equations of Buchardt and Mgller (2015, Proposition 6).

In combination, (1.1.5) and (1.1.6) lead to a forward method of the same numerical
complexity as in Markov chain models without incidental policyholder behavior
since computation of p” is not significantly more involved than computation of p.
Concerning the backward method, introduce auxiliary functions (W/);cs via

n

WE(t) :/ e~ Ji r(w)du prj(t, s)| b;(s)+ Z /A?k(s)bjk(s) ds.
t JeT k€T k]
Note that V (t) = Wy (t)p(r, Z._ )< Since the auxiliary functions (W?);c7 are
state-wise prospective reserves of Z”, pointing to (1.1.4) immediately yields a back-
ward method of the same numerical complexity as in Markov chain models without
incidental policyholder behavior. Similar considerations are found in Asmussen and
Steffensen (2020, Chapter VIL.8).
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Doubly stochastic models

In Markov chain and semi-Markov models, the transition rates are assumed known.
In fact, they have to be estimated and forecasted; this is closely related to the notion
of systematic insurance risk. Recently, doubly stochastic Markov chain models have
seen a rise in popularity since they allow one to model systematic insurance risk in a
multi-state context, see e.g. Steffensen (2000), Christiansen (2006), Norberg (2013),
Buchardt (2014), Biagini, Groll, and Widenmann (2016), and Buchardt (2017).

If the transition rates themselves are suitably regular diffusion processes — in
particular, (Z, p) is then Markovian — the backward and forward methods from
Markov chain models generalize as follows. In place of the backward differential
equations from (1.1.4), one has backward partial differential equations (see Steffensen,
2000), while in place of Kolmogorov’s classic forward differential equations, one
has forward partial integro-differential equations (see Buchardt, 2017); this is a
rather direct consequence of the Markovianity of the multivariate process (u, Z) and
(unstated) regularity conditions pertaining to smoothness. We conclude that the
introduction of stochastic transition rates appears to result in a significant increase
in numerical complexity, since solving partial differential equations is considerably
more demanding than solving ordinary differential equations.

Despite the discouragement expressed in Norberg (2010), some effort has been
put into extending the concept of forward mortality (see e.g. Milevsky and Promis-
low, 2001; Dahl, 2004; Dahl and Mgller, 2006; Bauer, Benth, and Kiesel, 2012)
to doubly stochastic multi-state models, cf. Christiansen and Niemeyer (2015),
Buchardt (2017), and Buchardt, Furrer, and Steffensen (2019). This aspect of
doubly stochastic modeling, which also concerns computability, is discussed in more
detail in Subsection 1.3.2.

1.2 Foundation and interplay

In the previous section, we focused primarily on Markov chain modeling and the
inclusion of duration effects. Point process theory provides a modeling framework
that in particular encompasses these aspects of multi-state modeling. Moving to a
more general and abstract framework typically simplifies the mathematics — and
presently, the point process view is quite popular. In Subsection 1.2.1, we discuss
some elements of point process theory in relation to multi-state life insurance. We
focus on probabilistic aspects, although a brief introduction to likelihood theory in
context of inference and the link to Poisson regressions is also provided.

The presentation of Section 1.1 disregards financial risk, especially since the
interest rate is assumed to be deterministic. The interplay between insurance and
finance is extensive, and the integration of methods from financial and actuarial
mathematics is important from a theoretical as well as practical point of view. In
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Subsection 1.2.2, we discuss some aspects of financial risk in relation to multi-state
life insurance.

1.2.1 Point process theory

The central mathematical object in Section 1.1 was a non-explosive jump process
Z with values in a finite state space J. Suppose for simplicity that Zy = zy € J.
Denote by (T}, )nen the jump times of Z and by (Y}, )nen the marks given by Y;, = Zp, .
The process (T,Y) is then a non-explosive marked point process with mark space
J. The associated multivariate counting process N has components given by

Nji(t) = Z Ly, <oy Ly, =5, v=k}>
neN

where Yj := z9. To avoid dealing with local martingales, we impose the regularity
conditions

E[N;(t)] < oo, t>0.

The jump process Z, the marked point process (T),Y), and the multivariate counting
process N encode the same information. In the following, the filtration F represents
this information. If no assumptions are made regarding the intertemporal dependence
structure of Z, it is often more convenient to focus instead on (properties of) the
marked point process and the multivariate counting process.

More or less modern classics on probabilistic and statistical aspects of point
process theory include Andersen et al. (1993), Last and Brandt (1995), and Jacobsen
(2006).

Compensators and martingales

According to the Ionescu-Tulcea theorem, the probabilistic model is specifiable via
the (conditional) distributions of the marked point process. The Markov chains
admitting transition rates p of Subsection 1.1.1 are for example obtained by setting

(1= F"(t)) := P(Tpy1 > t|T1,Y1,..., T, Yy)
=e It Xeegiry, Pyne(s) dS)
GR(t) :=P(Ypy1 = k| T, Y1, ..., T, Vi, Trgqr = 1) (1.2.1)

_ P,k (t)
> ve gy, Hyae(t)

Martingale techniques play a central role in the theory and application of point
processes. As a consequence of the Doob-Meyer decomposition theorem, there
exist predictable processes Aj, such that the differences Mj, := N;i — Aj; are
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martingales. Versions of these compensators A of the multivariate counting process
N are explicitly given by

t G%(s)F™(ds
Aji(t) = Z/O ]l(Tn,Tnm(S)]l{Yn:j}%a (1.2.2)

n€eNg

where we have employed the convention T = 0. This formula is due to Jacod (1975).
Under the specification (1.2.1), we have that

t t
Aj(t) = /0 ﬂ(Tn,TnH](8)]1{Yn:j}uynk(8)dSZ/O Lz, =jmjr(s) ds.

neNg

If the compensator is absolutely continuous with resepect to the Lebesgue measure,
then the Radon-Nikodym derivative is denoted intensity process. The existence
of intensity processes is by (1.2.2) equivalent to the absence of point probability
mass in the (conditional) distributions of the jumps. Actually, the compensators
characterize the distribution of the multivariate counting process, equivalently, the
marked point process and the jump process.

A key result in point process theory is the martingale representation theorem
and the explicit characterization of the resulting integrand found in its proof, see
e.g. Jacobsen (2006, Theorem 4.6.1). If X = (X;);>0 is a suitably regular real-valued
stochastic process with F;-measurable differences X; — Xg, t > 0, then the theorem
and its proof imply that

E[X; | F| = E[Xo | Fo] + X — Xo

+ Z /0 Z ]l(Tn:Tn+1](S> hZ(S) Mjk(ds)a

jkeT:k#5 "0 neNg (1.2.3)
hZ(t) = E[Xt_ |T1, Yl, e ,Tn, Yna Tn—l—l - t,Yn+1 = ]{5]
_E[Xt—|T17Y17"'7TTL7Y717TTL+1 >t]

Comparable results can be found in e.g. Christiansen and Djehiche (2020).

We now turn our attention to an application of point process theory for multi-state
life insurance: the derivation of dynamics of prospective reserves. Restrictions on
the intertemporal dependence structure, say Markovianity or semi-Markovianity, are
important to practitioners since they ensure computability of expected cash flows
and prospective reserves, cf. Section 1.1. On the other hand, general results may
reveal what is actually happening behind the scenes. They should also lead to the
establishment of model-independent concepts and could encourage the development
of new mathematical methods.

In the following, technical details are intentionally omitted. We consider a suitably
regular payment process B and assume the existence of a suitably regular predictable
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process AP such that the difference B — AP is a martingale. Let
Xt = / e~ Jorw)du AB(gg).
t

We may then cast the prospective reserve V via V() = efo r(w) du E[X; |F:]. Following
along the lines of the proof of Proposition 3.2 in Christiansen and Djehiche (2020),
the explicit martingale representation of (1.2.3) yields the stochastic differential
equation

V(dt) =r(t) V() dt — AB(dt) + > Hjp(t) Myx(dt),
7 k€T k#j

Lz, —jyHjr(t) = Lyz,__jyelortd (]E[Xt | Fiy Zy = k] — E[X¢ | Fm, Ze = J])-

Point process techniques have been applied in Mgller (1993) for semi-Markovian jump
processes and in Norberg (1992, 1996) in the presence of intensity processes to derive
dynamics of (state-wise) prospective reserves. The potent idea of using an explicit
martingale representation is due to Marcus C. Christiansen, see also Christiansen
and Djehiche (2020), Christiansen (2020), and Christiansen and Furrer (2020).

Likelihoods and Poisson regressions

We conclude the survey on point process theory in relation to multi-state life
insurance by introducing relevant likelihoods and discussing the link to Poisson regres-
sions. Poisson regressions find widespread use in actuarial practice, cf. Gschlossl,
Schoenmaekers, and Denuit (2011) and Furrer (2019).

Let P be another probability measure, and suppose that P; < P, for all ¢ > 0,
where P; and P; denote the restrictions of P and P, respectively, to F;. Denote by A
the compensators of N with respect to P, and suppose for notational convenience
that the components of both A and A are absolutely continuous with respect to
the Lebesgue measure with Radon-Nikodym derivatives A and X, respectively. The
likelihood process £ = (L¢)¢>0 then reads (see e.g. Jacod, 1975)

P, exp{ ~Au(t) + Jy log (Aje(s)) Ny (ds) }

Et = =~ = = — .
APt ke Finns exp{—/\jk(t) + Jy log (Ajx(s)) N; (dS)}

In statistical applications, the probability measure P serves as a fixed reference
measure and the likelihoods are only needed up to a proportionality factor:

b i(keg[kj(p{ —Ag(t) + /O log ()‘jk(s))Njk<dS)}~ (1.2.4)

The results we have presented here pertain to the so-called canonical or self-exciting
case, where the available information — described by the filtration F = (F;);>0 — is
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generated by the multivariate counting process itself. In statistical applications,
one must account for (time dependent) covariates and general censorship, filtering,
and truncation. Central concepts and results in survival and event history analysis
include partial likelihoods and the fact that — under certain conditions — general
censorship, filtering, and truncation preserve the form and martingale properties
of the (partial) likelihood (see e.g. Andersen et al., 1988). This entails that the
discussion below actually is of practical relevance.

As already mentioned, there exists a link between the likelihood of (1.2.4) and
certain Poisson regressions. We now illustrate this fact. Suppose for simplicity that Z
is a Markov chain admitting transition rates p. We assume that the transition rates
are piecewise constant and right-continuous on some grid 0 =ty <t; < ... <t, =1n
of [0, 7n]; this can be viewed as an approximation. The likelihood then reads

Lyoc TT TTGuae() % exp{=E; - pyu(t)}, (1.2.5)

G k€T k#7 i=1

where £ and O;. . are so-called exposures and occurrences given by

t A
E! = /t Liz, —jyds and Oj = Njx(t:) — Njr(ti—1).
i—1
If one assumes independent observations (O;k), ke T, k#74,i=1,...,n, with
distributions
O;k ~ Poisson(E; pin(ti),

one would also arrive at the likelihood of (1.2.5). This observation that Poisson
regressions can be motivated by the form of likelihoods for multivariate counting
processes has long been an established fact in survival and event history analysis, see
e.g. Aalen, Borgan, and Gjessing (2008, Section 5.2.1). In the context of multi-state
life insurance, it has been utilized in Furrer (2019), cf. Subsection 1.3.3.

1.2.2 Financial risk

In the previous (sub)sections, the interest rate was assumed deterministic, which
disregards financial risk. Already in 1989, Hans Biihlmann described the emergence
of Actuaries of the Third Kind, that combine actuarial and financial mathematics
(Bithlmann, 1989). Concurrently, researchers paid increasing amounts of attention
to questions at the interface of insurance and finance (see Mgller, 2002) — a trend
which appears to have continued to this very day.

In the greater part of this thesis, financial risk plays at most a secondary role.
But while the leading role typically sets the stage, the contributions of the remaining
cast are of equal importance. In this subsection, we therefore provide a very brief
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introduction to some aspects of the interplay between financial mathematics and
multi-state life insurance. An early survey on the interplay between insurance and
finance is Mgller (2002), while specifically in regards to financial risk in life insurance,
relevant chapters from the textbooks Mgller and Steffensen (2007) and Asmussen
and Steffensen (2020) might serve as good introductory reading.

Financial valuation principles

The field of financial mathematics is concerned with the modeling of financial markets
in relation to e.g. derivatives pricing and portfolio management. In the following, we
focus on aspects related to valuation (pricing). Classic actuarial valuation principles
are based on diversification of risks. In financial mathematics, valuation (fair pricing)
instead relates to the notion of no arbitrage; an arbitrage possibility is a risk-free
gain with no initial investment.

The pricing of a contract (or claim) in early financial mathematics involves the
identification of a self-financing investment strategy that replicates the payout of
the contract. An investment strategy is said to be self-financing if the value of the
corresponding investment portfolio is always exactly the initially invested amount
added trading gains. The no-arbitrage price of the contract is then given by the
initial investment since any other price would lead to an arbitrage possibility. A
claim is said to be attainable if there exists a self-financing strategy that replicates
its payoff, and the financial market is said to complete if every claim is attainable.

There is a clear link between martingale theory and absence of arbitrage and com-
pleteness: Absence of arbitrage relates to the existence of an equivalent probability
measure making the discounted price processes martingales (a so-called equivalent
martingale measure), while uniqueness of said measure relates to completeness. If
the financial market is free of arbitrage and complete, then the so-called risk-neutral
pricing formula applies.

The completeness property may cease to hold due to various reasons, one of them
being the inclusion of uncertainty which is not generated by the financial market, say
insurance risk. The interplay between life insurance and finance is discussed below.
There exists a multitude of both general and domain specific approaches to pricing
in incomplete markets, including quadratic approaches: mean-variance hedging
and (local and global) risk-minimization. In Chapter 7, see also Subsection 1.3.4,
we take into account taxes on investment returns and propose a modified (global)
risk-minimization criterion. Originally, risk-minimization was introduced by Follmer
and Sondermann (1986) and extended so as to allow for general payment processes
in Mgller (2001).
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Interplay between life insurance and finance

The interplay between life insurance and finance is considerable. Most life insurance
contracts are long-term contracts, and, consequently, they are sensitive to changes
in the time-value of money. Policyholder behavior might also depend on financial
risk; insured might e.g. choose to retire earlier or later depending on the situation on
the financial market. Furthermore, insurance payments in themselves may depend
on financial risk: While obviously the case for so-called unit-linked (equity-linked)
contracts, so-called bonus payments in with-profit (participating) contracts are also
affected by financial risk, since e.g. the emergence of surplus depends on trading
gains and losses. Introductions to with-profit life insurance and bonus can be found
in Ramlau-Hansen (1991) and Norberg (1999).

We conclude this subsection by establishing a more direct link to the methods
and results of Section 1.1. Suppose to this end that the insurance payment process
B does not depend on financial risk and that insurance risk and financial risk are
independent. Then e.g. risk-minimization and mean-variance hedging confirm the
following Brennan/Schwartz-type valuation formula:

V(t) — / e fts f(tu) du A(t’ ds) (126)
t

We have here denoted by f the forward interest rate curves and by A the expected
accumulated insurance cash flows. The nomenclature is inspired by Mgller (2002),
where Brennan and Schwartz (1979a,b) are surveyed and their methods and results
are compared to pricing methods for incomplete markets. Brennan/Schwartz-type
valuation is essentially a two-step procedure: Insurance risk is first diversified, and
then arbitrage-free pricing is applied; conceptually this appears to be in the spirit of
the Solvency II regulatory framework (see Article 77 in EIOPA, 2009).

It is quite straightforward to extend the forward and backward methods described
in Section 1.1 to the present situation, although for the backward method one must
work with auxiliary quantities W defined by

W(to,t):/ e~ i Ttow du A3 )
t

and thus satisfying W (tg,t9) = V(to). This makes the valuation formula (1.2.6)
convenient for practitioners.

If the payment process depends on financial risk, e.g. due to bonus in with-profit
life insurance, cf. Subsection 1.3.2, or if there is dependence between insurance
risk and financial risk, then classic forward and backward methods are not directly
applicable.
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1.3 Overview and contributions

The thesis consists of an introduction and six additional chapters, with each chapter
constituting a stand-alone scientific contribution. This entails significant discrepan-
cies in especially notation across chapters. Before we in the following subsections
describe in more detail the content of each chapter, we first discuss similarities and
differences between chapters.

In Chapter 2, we derive dynamics of so-called state-wise prospective reserves in
the presence of non-monotone information. As our main contribution we present a
generalization of the so-called stochastic Thiele equations of Norberg (1992, 1996).
Chapters 3-5 are concerned with the representation and computation of expected
accumulated cash flows in the presence of bonus, incidental policyholder behavior,
and double stochasticity, respectively. In Chapter 6, we discuss experience rating for
Markov chain models. Contrary to the remaining chapters, we focus on statistical
rather than probabilistic or financial aspects of multi-state modeling. Chapter 7
contains a study of the problem of determining risk-minimizing investment strategies
for insurance payment processes in the presence of taxes and expenses. It especially
differs from the remaining chapters by not having aspects of multi-state modeling
as its focal point.

In both Chapter 2 and Chapter 4, no assumptions are made concerning the
intertemporal dependence structure of the jump process governing the state of the
insured. The methods and results we derive here are essentially independent of the
statistical /probabilistic model (probability measure), and thus they shed light on
the universality of certain concepts and structures arising from multi-state modeling
in the mathematics of life insurance.

While different in their initial focus, we should also like to stress a single yet
important methodological similarity between Chapter 2 and Chapter 7: Martingale
representation theorems are utilized to great effect in both investigations.

In Chapter 3 and Chapter 6, ready-to-implement solutions targeted at actuarial
practitioners are provided. In comparison, the focus of especially Chapter 2 and
Chapter 4 is on the development of model-independent concepts and abstract
methodology. Correspondingly, different chapters not only investigate different
topics, but the styles of presentation also reflect the intent to address differing
audiences.

1.3.1 Dynamics of state-wise prospective reserves in the
presence of non-monotone information

Chapter 2, which contains the manuscript Christiansen and Furrer (2020), investi-
gates the dynamics of state-wise prospective reserves in the presence of non-monotone
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information. Discarding information leads to non-increasing flows of information
for which classic martingale theory does not apply. Via the infinitesimal approach
proposed and developed in Christiansen (2020), we derive stochastic differential
equations generalizing the stochastic Thiele equations of Norberg (1992, 1996).
Secondarily, we present a careful study of the concept of state-wise prospective
reserves, and we study valuation and computation when information is discarded
upon and after stochastic retirement. The latter in particular serves as an application
of the general theory.

In the following, we give a slightly more detailed account of the setup and results
of Chapter 2. We focus on aspects relating directly to the primary contribution:
the generalization of Ragnar Norberg’s stochastic Thiele equations to allow for
non-monotone information. Discussions pertaining to the secondary contributions
and null-set gymnastics are intentionally omitted.

The state of the insured is governed by a non-explosive jump process Z with values
in a finite set J and Zy = zp € J. No assumptions regarding the intertemporal
dependence structure are made: Z is not assumed to be e.g. (semi-)Markovian. The
associated multivariate counting process is denoted N.

The available information is described by the sequence of o-algebras G = (G;)¢>0
given by

G=c({m<t<mi}n{GeC}l:ieNCef),

where (7;);eny and (7;);en are sequences of stopping times with respect to Z with
7; > 1; and ((;)ien is a sequence of random variables with values in a suitably
regular measurable space (F,); each (; is assumed measurable with resepect to
the information generated by (Z;)o<¢<r,. In other words, the available information
consists of elements (; recorded at time 7; and discarded at time 7;. Information
discarding might e.g. result from legal constraints induced by privacy law.

The sequence G is in general non-monotone and thus not a filtration. With
(T});en the point process corresponding to the jumps of Z, we may however recover
the monotone information which Z generates by taking 7, = T;, 7, = oo, and
¢ = (T;, Zr,). The extended marked point process (7, 7;, (;)ien corresponds to
a family of random counting measures v = (V;y)y2, counting replacement of
information ((;);e, by information (¢;)iey, z,y C N, |z| < 00, |y| < 00, y # .

We consider a payment process B of the form
B(dt) =) Tyz,_—pbi(t) m(dt) + D bjk(t)Nji(di),
JjET G k€T k]

where b; and bj;, are suitably regular predictable processes (with respect to the
information generated by Z) and the measure m is a sum of the Lebesgue measure
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and a countable number of Dirac measures. The sojourn payment rate b is given by
b(t) = > ;e 7 L{z,_=4b;(t). The present value PV of all future payments is given
by

= So(t)
¢ So(u)

for a suitably regular deterministic savings account Sy. The prospective reserve

PV(t) = B(du)

under information G is the optional projection PV® of PV with respect to G. It
satisfies

PVE(t) = E[PV(t)]|Gi.

Denote by I, the process indicating if exactly information ((;);e. is available. We
study the dynamics of (non-classic) state-wise prospective reserves PV.® given by

E[l:(t) [ (Gi)iex]

satisfying (according to Section 4 in Christiansen, 2020)

PVE(®) =

PVE(t) Z L (t)PVE(t)

By applying the explicit infinitesimal martingale theorem (see Christiansen, 2020,
Theorem 7.1), we show that the (non-classic) state-wise prospective reserves (PV,®),
satisfy the stochastic differential equations
So(d?)

0= IL(t—)( PVE(dt) — PVE(t
3 1o (PyEtan - PyEe) g

+ ) /RG t,,y,€) gy (At x de) (1.3.1)

YYF£T

- Z /RG (t,y,x,e gym(dtxde))

YYF£T

+ 0= (t) m(dt)

The derivation of the stochastic differential equations (1.3.1) constitutes the main
contribution of the chapter. The processes R®- and R® are so-called sums at
risk giving the change in prospective reserve at information arrival and discarding,
respectively, while bg’ is the G-averaged sojourn payment rate in information state
x given by

o or EILGN0)] ()]
b ) = TR0 [ (Cies)

and the processes gfy_ and gf’x are related to the so-called infinitesimal forward and

backward compensators of v with respect to G via the following informal identities:

E[vay(dt x de) | Gi—] = L (t—)g5, (dt x de),
Elvye (dt x de) | Gi] = L (t) gy, (dt x de).
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If G is actually monotone, then the first term is simply the ordinary compensating
measure for the random counting measure v,,, and the second term is simply the
random counting measure vy,

The last term of (1.3.1) relates to information discarding: Based on the infor-
mation currently available, the term adjusts the dynamics by taking into account
that information discarding might just have occurred. If say G is actually equal to
the monotone information generated by Z, then the last term vanishes and further
calculations then allow one to recover the stochastic Thiele equations of Norberg
(1992, 1996).

1.3.2 Representation and computation of expected accumulated

cash flows

In Chapters 3-5, we study the representation and computation of a range of non-
classic expected accumulated cash flows appearing in the presence of bonus, incidental
policyholder behavior, and double stochasticity. Discrepancies in especially notation
across chapters exist, and each chapter constitutes a stand-alone scientific contribu-
tion and should be read as such. Note that in contrast to Chapter 2, our approach
here to a larger degree emphasizes forward rather than backward methodology.

Expected accumulated bonus cash flows

Chapter 3, which contains the manuscript Ahmad, Buchardt, and Furrer (2020),
is concerned with bonus payments arising in multi-state with-profit life insurance.
Contrary to guaranteed payments, bonus payments may depend on financial risk.
We consider the bonus scheme known as additional benefits, where dividends are
used to buy extra benefits. Requiring the dividend strategy to be affine in the
number of additional benefits, we derive a procedure for the computation of the
market value of bonus payments. Special attention is given to the case where the
number of additional benefits only depends on financial risk.

In the following, we give a more detailed account of the setup and results of
Chapter 3. The bonus payments B® take the form B®(dt) = Q(t)BT(dt), where Q
is the number of additional benefits and BT is a so-called unit bonus cash flow of
the form (1.1.1) with maximal contract time 1 < co. The process Z governing the
state of the insured is assumed to be a Markov chain admitting transition rates .
The dividend yield § is used as a premium rate to buy BT on the so-called technical
basis, which entails that

5(¢)
vyt

Q(dt) = dt, Q(0) = 0.

Here (Vi*’T)ie 7 are so-called state-wise technical unit reserves solving Thiele’s

differential equations with technical transition rates and interest rate (u*,7*).
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The time zero market value of bonus payments V°(0) can be shown to take the form

Vb(0) = E[/” e~ Jor(w du Ab(o,dt)}, (1.3.2)

0

where the expected accumulated bonus cash flow conditionally on financial risk
A%(0,-) reads

b0,dt) = > " p2 (0,1) (bT + > p(t >dt (1.3.3)
JET keT k#j

for so-called Q-modified transition probabilities p® given by

p2,;(0.t) =E[Q(t)L{z,—; | F¥(1)].

The financial market is described by the price processes S, and F¥ = (F);>¢ is the
filtration naturally generated by the price processes S.

We consider dividend strategies ¢ of the form

8(t) = 0o (t, S.nts Ze, I(t)) + 61 (£, Septs Zu, Z(1)) p(r)H =0
+ 0y (t, Sonts Z0, (1)) Q(2),

where 7 is the time of free policy conversion, p is the free policy scaling factor, and
Z = (Z(t))s>0 is the so-called shape of the insurance business consisting essentially
of portfolio-wide means describing the performance of the collective.

Using classic techniques, we establish differential and integral equations for the
computation of the ()-modified transition probabilities. In combination with the
representations (1.3.2)—(1.3.3), this allows us to formulate a forward method for
the computation of the time zero market value of bonus payments which efficiently
combines simulation of financial risk with classic methods for the outstanding
insurance risk. This constitutes the main contribution of the chapter.

We take particular interest in the case with dividend strategies of the form
5(t) = o(t)V, (1)

for some F-adapted process 5. In this case, () itself is F-adapted, thus the expected
accumulated bonus cash flow reads

Ab(0,dt) = Q(t)AT(0, dt),

1(0,dt) =Y " pz,;(0,1) ( + 3wt )dt

JjET ke :k#j

This simplifies the numerical procedure and allows us to bridge the conceptual gap
between the individual point of view expressed in Bruhn and Lollike (2020) and
Falden and Nyegaard (2020) and the collective point of view expressed in Jensen
and Schomacker (2015).
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Incidental policyholder behavior and change of measure techniques

In Chapter 4, we study the expected accumulated cash flows that arise when payments
are scaled by factors depending on the exercise times of options related to incidental
policyholder behavior. We relate to the scaling factors a new probability measure
allowing for classic representations of the expected accumulated cash flows. The
measure is explicitly characterized in terms of the original measure and the scaling
factors. Our methods and results generalize earlier approaches in the literature for
(semi-)Markov models.

In the following, we give a more detailed account of the setup, methodology, and
results of Chapter 4. For the sake of clarity, we consider only the case of a single
option. In Chapter 4, a finite number of options are considered.

The payments of interest B” take the form
BY(dt) = p(r)' o= B(dL),

where B is a suitably regular payment process, 7 is the exercise time of the option,
and p € (0,1] is the corresponding suitably regular scaling process. The process
B is adapted to and p is predictable with respect to the information F = (F3):>0
generated by a general non-explosive jump process Z. The jump process takes
values in a countable set J of the form J = {V} U Jy U J1 with Zy = 29 # V. No
assumptions regarding the intertemporal dependence structure are made: Z is not
assumed to be e.g. (semi-)Markovian. The exercise time of the option 7 corresponds
to the first hitting time of J; by Z, i.e. 7 :=inf{s € [0,00) : Zs € J1}. We suppose
that P({ < oo) = 0, where n := inf{s € [0,00) : Z5 € V} is the first hitting time
of {V} by Z, and without loss of generality that Z; € J; implies Z, € J; for all
s > t. This in particular warrants the interpretation of V as artificial: It plays no
role under the original measure P.

We are interested in representation and computation of the expected accumulated
cash flows A°(t,s) = E[B”(s) — B”(t) | F¢]. To this end, we explicitly construct a
probability measure P? ensuring the desirable identity

Ap(t,S) =FE” |:/t ]l{<>u}B(du)

ft] p(r)tr=n (1.3.4)

with [E” denoting PP-integration. Denote by N the multivariate counting process
associated with Z and by A the compensators of N with respect to IP. The probability
measure P? can be characterized via the compensators A? of N with resepect to P?.
We show that they take the form

AL (dt) = Lyesiy p(t) Ajic(dt), J € Jo, k € T,
AL (dt) = Lo (1 = p(t) Z Aje(dt), Jj€ Jo.k=V,
e

A% () = Lesey Ajr(de), otherwise.
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The result has quite an intuitive interpretation: The probability of receiving payments
rather than the payments themselves are scaled — to identical effect in expectation.
The result may find use in actuarial practice to conveniently derive backward and
forward methods. We exemplified such an application in Subsection 1.1.2.

Since the process t + p(7)lo<<t} is actually a P-supermartingale, by (1.3.4)
the probability measure P? is a so-called Follmer measure for this supermartingale,
cf. Perkowski and Ruf (2015). The idea of describing supermartingales as Radon-
Nikodym derivatives appears not to have found application in multi-state life
insurance hitherto.

Forward transition rates

The generalization of forward mortalities to multi-state models is non-trivial and vari-
ous definitions have been proposed. In Chapter 5, which contains the paper Buchardt,
Furrer, and Steffensen (2019), we establish a theoretical framework for the discussion
of forward transition rates in doubly stochastic Markov chain models. We propose
a new concept, forward equations rates, and compare it to earlier proposals in the
literature: so-called marginal and state-wise forward transition rates.

In the following, we give a more detailed account of the framework of Chapter 5.
The payment process of interest B is of the form (1.1.1), while the process Z
governing the state of the insured is a doubly stochastic Markov chain with suitably
regular transition rates p. This means that the transition rates are stochastic
processes, and the available information is represented by the filtration F = (F)¢>0
generated by (Z, p).

We are interested in representation and computation of the resulting expected
accumulated cash flows A. They can be shown to be given by

A(t,ds) =Y E[Lz,—jy | Fe]bj(s)ds+ Y E[Liz —jyuir(s) | Fi] bjk(s) ds.
Jjeg k€T k#j

The idea behind forward transition rates is inspired by replacement results for
forward mortalities and forward interest rates. For fixed ¢ > 0 we look for suitably
regular JFy-measurable functions myy(t,-) and p% (¢, -), with the latter solving the
forward differential equations

0
%p?tj(ta S) :pgbtj(t,S) Z mjk(t7s) + Z pTZntk(t7s)mkj(t7 S)>
keJ:k#j keJ:k#j

Z pgltj (t, S) =1, (135)

JjeETJ

p?tj(ta t) = ]l{Zt:j}7
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satisfying the identities

Pt s) =E[1iz,_j | 7], (1.3.6)
pz,;(t, s)m;x(t, s) = E[]I{Zkg:j}/ijk:(s) ‘ft}- (1.3.7)

If (1.3.6)—(1.3.7) hold, then

A(t,ds) =Y p7(ts) [ 0;(s) + D myk(t,s)bje(s) | ds.

JjET keJ:k#j

In other words, the expected accumulated cash flow A(t,-) may conveniently be
computed via the forward differential equations (1.3.5); this mimics the forward
method for classic Markov chain models, cf. Subsection 1.1.1. The result is a two-step
algorithm, consisting first of a calibration of suitable m and then the application of
a classic procedure.

We propose and study a new definition of forward transition rates, so-called
forward equations rates, defined uniquely (at least for decrement models) by being F}'-
measurable solutions to (1.3.5)—(1.3.6), where the filtration F# = (F}*)¢>o describes
the information generated solely by u. They are compared to the marginal forward
transition rates from Christiansen and Niemeyer (2015) and the state-wise forward
transition rates introduced in Buchardt (2017). We find that different concepts of
forward transition rates reveal different aspects of doubly stochastic modeling.

In Norberg (2010) it is stated that a definition ought to be “fruitful in the sense of
shedding some light on objects other than the one defined” (Norberg, 2010, p. 111),
and it is argued that papers advocating forward mortalities rates fail to deliver
in this respect — accordingly, “forward rates need the applications more than the
applications need them” (Norberg, 2010, p. 111). I am not opposed to Ragnar
Norberg’s remarks: Mathematically, forward transition rates are probably not the
way forward. However, forward rate thinking might appeal to practitioners due
to the aforementioned convenient two-step procedure it gives the impression of
providing, and to my knowledge, forward rate thinking (at least unconsciously)
remains prevalent in practice. This exposes the need to investigate even more
closely the theoretical as well as practical pros and cons of these concepts, and, in
my opinion, it therefore supports the relevance of the investigations presented in
e.g. Christiansen and Niemeyer (2015) and Buchardt, Furrer, and Steffensen (2019).

1.3.3 Experience rating using an empirical Bayes and
multivariate frailty approach

In Chapter 6, which contains the paper Furrer (2019), we discuss experience rating
for multi-state life insurance in terms of shrinkage estimation of group effects.
Specifically, we apply empirical Bayes methods to a multivariate frailty extension
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with latent group effects of classic Markov chain models. Special attention is given to
the case where the group effects are mutually independent and Gamma-distributed.
The classic link to Poisson regression is replaced by a link to multivariate negative
binomial regressions, while under quadratic loss shrinkage estimates are given by
well-known credibility formulae.

In the following, we give a slightly more detailed account of the setup and
results of Chapter 6. The setup consists of independent groups of insured, where
conditionally on a collection of latent group effects, the processes governing the states
of the insured are independent Markov chains admitting transition rates. These
(conditional) transition rates are assumed to take a very specific form: They consist
of common base transition rates u scaled by the latent group effects. The inclusion of
latent group effects introduces dependence within groups and heterogeneity between
groups.

In the classic setting without latent effects, the product structure of the likelihood,
cf. Subsection 1.2.1, is of great importance to practitioners since it — depending on
parametrization — enables splits into simpler terms. We study the impact of latent
effects on this facet by characterizing model features (relating to parametrization

and prior dependence structures) which retain the product structure of relevant
likelihood.

Particularly simple shrinkage estimation is obtained by requiring the latent groups
effects to be mutually independent with marginal I'(1);” l,zbi_ D)-distributions and
by assuming that the transition rates are suitably distinctly parameterized and
piecewise constant. Utilizing the link to Poisson regressions, cf. Subsection 1.2.1,
estimation of the base transition rates p and the prior variances v is then possible
via multivariate negative binomial regressions, while empirical Bayes methodology
suggests estimating the group effects by the Bayes estimator under e.g. quadratic
loss. The latter estimate is shown to satisfy a well-known credibility formula. The
investigation concludes with a numerical example for disability insurance using
simulated data.

1.3.4 Tax- and expense-modified risk-minimization

Chapter 7, which contains the paper Buchardt, Furrer, and Mgller (2020), examines
quadratic hedging of insurance payment processes in the presence of taxes and
expenses. We propose the criterion of tax- and expense-modified risk-minimization,
which takes into account the effect of taxes and expenses on the time value of money.
As our main result, we establish existence and uniqueness of an optimal investment
strategy related to the Galtchouck-Kunita-Watanabe decomposition of the intrinsic
value process associated with a tax- and expense-modified payment process.

In the following, we give a more detailed account of the setup, methods, and results
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of Chapter 7. The setup consists of an arbitrage-free market with savings account Sy
and additional suitably regular price processes (51, ...,Sy) with maximal contract
time n > 0. The price processes are modeled under some equivalent martingale
measure Q. We assume the savings account admits a suitably regular but possibly
stochastic short rate r. The total payment process B! consists of suitably regular
insurance payments B as well as tax- and expense payments B'** and B¢. As a key
modeling assumption the latter take the form

B**(h, dt) Zh ) and B¢(h,dt) = &(t) V(h,t) dt,

where h is an investment strategy, V' is the undiscounted value process, v € [0, 1) is
a suitably regular tax rate, and J is a suitably regular expense rate. In other words,
taxes are paid continuously at rate v as a fraction of all returns from the investment
strategy, while expenses are paid continuously at rate J as a fraction of the value of
the investment strategy.

Since the total payment process B2l depends on the investment strategy,
classic (global) risk-minimization is not applicable. We propose a new criterion,
namely tax- and expense-modified risk minimization, which differs from classic
risk-minimization since a tax- and expense-modified savings account is used as
numeraire. An investment strategy h is said to be risk-minimizing in the presence
of taxes and expenses if it is 0-admissible, i.e. V(fz, n) = 0, and minimizes for all
t € [0,n] the tax- and expense-modified risk process R defined by

R(h,t) = EQ { (é(h, n) — C(h, t)>2

ft:| 9
where C' is the tax- and expense-modified cost process defined by C’(h,dt) =
Sy t(t) C(h,dt). Here Sy is the modified savings account given by

So(dt) = ((1 = ~(1))r(t) — 8(t)) So(t) dt,

while C' is the undiscounted cost process given by

C(h,dt) = V(h, dt) Zh (dt) + Br@l(h, dt).

Denote by V the so-called intrinsic value process associated with the tax- and

expense-modified insurance payments. It is the Q-martingale given by

. n
V(t) =EY [B(O) + / So H(t) B(dt) ‘]—"t} :
0
Using classic techniques we prove the existence and uniqueness of a risk-minimizing
investment strategy h in the presence of taxes and expenses. It is given by

hi(t) = !

_t o for(u)Hs(u) dup Yy
1-— ’y(t—)e ° J ( )7
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for j = 1,...,d, where RV is the integrand appearing in the Galtchouk-Kunita-
Watanabe decomposition of V with rsepect to the discounted price process S;/So,
while the amount invested in the savings account hg is determined such that

V(i t) = E© [/" e I (A=) =5w) du g gp) ‘ Ft} _
t
We also argue that tax- and expense-modified risk-minimization is equivalent to an
alternative approach of classic risk-minimization for an artificial market consisting
of after-tax and after-expense assets, and we show that tax- and expense-modified
risk-minimization is consistent with classic risk-minimization in the sense that a
subsequent application of risk-minimization confirms the optimal investment strategy.
The investigation is concluded with an application of tax- and expense-modified risk

minimization to multi-state life insurance.






Chapter 2

Dynamics of state-wise prospective
reserves in the presence of non-monotone

information

This chapter contains the manuscript Christiansen and Furrer (2020).

ABSTRACT

In the presence of monotone information, stochastic Thiele equations de-
scribing the dynamics of state-wise prospective reserves are closely related
to the classic martingale representation theorem. When the information
utilized by the insurer is non-monotone, classic martingale theory does
not apply. By taking an infinitesimal approach, we derive generalized
stochastic Thiele equations that allow for information discarding. The
results and their implication in practice are illustrated via examples where
information is discarded upon and after stochastic retirement.

Keywords: Life insurance; Stochastic Thiele equations; Infinitesimal martingales;
Marked point processes; Stochastic retirement

2.1 Introduction

Life insurers frequently employ reduced information in the valuation of liabilities
due to e.g. legal constraints and data privacy considerations or to achieve model
simplifications. The possibility of information discarding leads to potentially de-
creasing flows of information for which classic martingale theory does not apply.
Based on the novel infinitesimal approach proposed and developed in Christiansen
(2020), we study the dynamics of so-called state-wise prospective reserves in the
presence of non-monotone information. Our main contribution is a generalization of

27
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the stochastic Thiele equations of Norberg (1992, 1996) to allow for non-monotone
information. Secondary contributions include a careful study of the concept of state-
wise prospective reserves and a discussion of current actuarial practices regarding
valuation in relation to information discarding upon and after stochastic retirement.

In this paper, the only source of randomness consists of the state of the insured,
which is modeled as a non-explosive pure jump process on a finite state space. This
places our work within the field of multi-state life insurance mathematics. The
definitions of retrospective and prospective reserves in Norberg (1991) encompass non-
monotone information, and under (semi-)Markovian assumptions specific instances
of non-monotone information appear in the study of retrospective reserves and bonus
prognosis, see Norberg (1991, 1999, 2001) and Helwich (2008). But to our knowledge,
the literature contains no attempts at the development of a unifying theory for non-
Markovian models under non-monotone information. Our contribution constitutes
the first step towards this goal, since we impose no restrictions on the intertemporal
dependency structure and allow for general information discarding occurring at
stopping times w.r.t. the state of the insured.

The multi-state approach to life insurance dates back at least to Hoem (1969),
where Thiele equations describing the dynamics of the state-wise prospective reserves
are derived under the assumption that the process governing the state of the insured
is Markovian. These differential/integral equations were revisited by Norberg
in his seminal paper Norberg (1991) and have since been generalized in various
directions. This includes relaxing the assumption of Markovianity to allow for
duration dependency (semi-Markovianity), taking market risks into account, and
the study of higher order moments of prospective reserves, see e.g. Mgller (1993),
Steffensen (2000), Helwich (2008), Adékambi and Christiansen (2017), and Bladt,
Asmussen, and Steffensen (2020). We should mention that while the approach
of Steffensen (2000) is very general, the results are only established under strict
smoothness conditions that might not be satisfied in practice.

The ordinary Thiele equations are essentially Feynman-Kac type results. In
contrast, the stochastic Thiele equations of Norberg (1992, 1996) are stochastic
differential equations that apply irregardless of the intertemporal dependency struc-
ture and reveal the universality of Thiele’s original equation. Furthermore, under
Markovian assumptions, stochastic Thiele equations can be used to elegantly derive
Feynman-Kac formulas for the prospective reserve.

In the presence of monotone information, the dynamics of prospective reserves
are characterized by identifying integrands in the classic martingale representation
theorem for random counting measures (Norberg, 1992, 1996; Christiansen and Dje-
hiche, 2020). In similar fashion, our approach relies on the infinitesimal martingale
representation theorem of Christiansen (2020), which extends the classic martingale
representation theorem for random counting measures to allow for non-monotone in-
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formation. Essentially, our methodology and results accompany Christiansen (2020);
while Christiansen (2020) contains the general theory for so-called infinitesimal
compensators and infinitesimal martingales, this theory is here applied to multi-state
life insurance.

Although we focus on state-wise prospective reserves and their dynamics, we
expect the setting and mathematical techniques presented here to be applicable
beyond this specific application, e.g. in relation to estimation and efficient computa-
tion of expected cash flows and reserves in the presence of non-monotone information.
Broadly speaking, with this paper we initialize a program that aims at the devel-
opment of general mathematical methodology for multi-state life insurance in the
presence of non-monotone information.

The paper is structured as follows. In Section 2.2, we present the probabilistic
setup and the main examples concerning information discarding upon and after
retirement. In Section 2.3, we develop a mathematically sound concept of state-
wise prospective reserves in the presence of potentially non-monotone information.
Section 2.4 contains our main result, namely a generalization of the stochastic Thiele
equations to allow for non-monotone information, and its application to information
discarding upon and after retirement. In particular, we illustrate the pertinence and
usefulness of the generalized stochastic Thiele equations by deriving Feynman-Kac
formulas beyond the (semi-)Markovian case.

2.2 Monotone and non-monotone information structures

In this section, we introduce a general modeling framework for the random pattern
of states of the insured in the presence of non-monotone information. The framework
is strongly related to the general theory of non-monotone information for jump
processes introduced by Christiansen (2020). To clarify the theoretical as well
as practical relevance of an approach allowing for non-monotone information and
general intertemporal dependency structures, we further discuss a motivating example
concerning stochastic retirement. This leads to the specification of some explicit
cases of non-monotone information that serve as the main examples in the ensuing

investigation.

2.2.1 General setting

Let (£2,.A, P) be a complete probability space with null sets ', and let Z = (Z;):>0
be a random pattern of states (pure jump process) on the finite state space S =
{1,...,J+1,J + 2}, J € Ny, with initial state Zy = 2y € S, giving at each time ¢
the state of the insured in S.

The total information available is denoted F = (F¢)¢>o; it is the right-continuous
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and complete filtration given by
Fi=0(Zs:s<t)VN.
Since F is a filtration, it represents monotone (increasing) information.

We relate to the random pattern of states Z a multivariate counting process
N = (N(t))e>0 with components Nj, = (N;i(t))i>0, J, k € S, j # k, giving the
number of jumps of Z from state j to state k:

Nj(t) = #{s € (0,t] : Zs_ = j, Zs = k}, t>0.

We impose the following technical condition. It ensures that Z is non-explosive and
that compensated counting processes are true martingales.

Assumption 2.2.1 (No explosions and true martingales). We assume that

E[ > Njk(t)] <

i#k

for allt > 0.

If we denote by T (t) the next jump after time ¢,

T(t) =inf{s € (t,00) : Zs # Z4},
T (00) = o0,

and employ the convention inf () = oo, we can also define a marked point process
(Ti, Z7,)ieno by

7'0:0, TiZT(Ti_l), iEN,

with Z,, = V for some arbitrary cemetery state V. The marked point process,
multivariate counting process, and random pattern of states formulations of the
setup are equivalent in the sense that the information generated by these processes

agree.

A life insurance contract between the insured and the insurer is stipulated by
the specification of a payment process B = (B(t));>0 representing the accumulated
benefits minus premiums. In general, we suppose that B is an F-adapted process
that has cadlag sample paths, finite expected variation on compacts (in particular,
it has sample paths of finite variation on compacts), and a deterministic initial value
B(0) € R.

2.2.2 Non-monotone information

Due to e.g. legal constraints, privacy considerations, or to achieve model and/or
computational simplifications, the insurer might not have access to or desire to utilize
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all information available to it. Examples include the newly introduced General Data
Protection Regulation 2016/679 of the European Union, where Article 17 describes
a so-called 'right to erasure’, and the restriction to a Markovian type of information
even when the Markov property is not satisfied. Representing the resulting utilized
information as a subsequence of o-algebras, one typically finds that the sequence is
non-monotone because certain pieces of information are discarded en route.

To describe the information reductions, we introduce a subsequence of o-algebras
as follows. Let (71;);en and (S;)ien be sequences of F-stopping times with S; > T;,
i € N. Further, let ((;);en be a sequence of random variables with values in a
separable complete metric space E and corresponding Borel o-algebra £ := B(E),
and suppose that each (; is Fr,-measurable. For the sake of a convenient notation,
without loss of generality we assume that 0 ¢ E. The information (; is recorded at
time T; and then discarded at a later time S;; here S; = oo signifies no discarding.
Thus the admissible information at time ¢ > 0 is given by the o-algebra G; C F;
defined by

gt:O'({Ti§t<Si}ﬂ{CiEA}:iEN,AGg)\/N, (221)

while the information available immediately before time ¢t > 0 is given by the
o-algebra G, C F;_ defined by

G- =oc({T; <t<S;}n{¢ieA}:ieN,Ac &) VN. (2.2.2)
We introduce the notation G = (G;);>0 and G_ = (Gi—)¢>o0.

The subsequence of o-algebras G = (G;)¢>0 is in general non-monotone and the
random times T; and S; are not necessarily stopping times w.r.t. G. We do not
assume the random times (7;);en and (.5;);en to take a specific order in time other
than 7; < S;, and we even allow for simultaneous events. We can recover F by
taking S; = oo, T; = 74, and (; = (74, Z7,) for all i € N, and from this point and
onward, that representation is always assumed whenever G = F.

Let S := {z C N: |z| < 0o} be the finite subsets of the natural numbers. Note
that S is countable. For each x € § we define the indicator processes

L(t) = { 1 MNieodTh S8 < S N (N T < £ < S},

0 : else,

so that I,(t) is Gi-measurable for each ¢ > 0 and x € S. We assume in continuation
of Assumption 2.2.1 that

E {Z 1{Ti§t}} <oo, t>0, (2.2.3)
i=1

which implies that on each compact interval we can almost surely find at most
finitely many random times 7;,S;, ¢ € N. As a result, the indicator processes I,



32 CHAPTER 2. CHRISTIANSEN & FURRER (2020)

have cadlag paths of finite variation on compacts. The family of indicator processes
I := (I).es corresponds to the G-adapted non-explosive random pattern of states

Z, = lex(t), t > 0.

TES

This random pattern of states describes the state of information: Z; = x if and only
if exactly the information ((;);c, is available at time ¢; in particular, the information
(Ci)iga has either been recorded and already discarded or is yet to be recorded.

We generally suppose that

Since we assumed that 0 ¢ E| the information at time ¢ and at time ¢t— can be
alternatively represented as

gt:U(CIIx(t)xGS)\/Na tZOa

(2.2.5)
G- =0(, L. (t—) 2 € S)VN, t>0,

where ¢, := ((;)icz, * € S. Let
Tyy =1inf{t > 0: I, (t—)I,(t) = 1},

using the convention inf ) := co. We see that T}, is the exact point in time where
the state of information changes from state x to state y by discarding information
Ca\y and recording information ¢, ,; here we ignore information that is recorded
and immediately discarded. The total information either discarded or recorded at

time T is thus ¢, = ((i)iczay, Where TAy = (x\ y) U (y \ 7).

The extended marked point process (73, S;, (;)ien corresponds to the random
counting measures v, ,y € S, y # z, defined as the unique completions of

ny([ovt] X A) = 1{sz§t}1{Czy€A}7 t>0,4¢€ %(Emy)v

where B, := Elzayl,

If T, = 7; for all 7« € N, the g-algebra G; reveals in particular the indices ¢ of
the admissible observations and thus gives a lower bound on the number of past
discards, cf. Remark 3.1 in Christiansen (2020), which might be an unwanted feature.
As further discussed in Christiansen (2020), by considering suitable permutations
it is often possible to obtain non-informative indices; in that case, the number
of past discards becomes non-admissible information. In the next subsection, we
introduce some specific instances of non-monotone information concerning stochastic
retirement and embed them into the framework above. In particular, we exemplify
how to obtain non-informative indices using suitable permutations.
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2.2.3 Stochastic retirement

Suppose J > 1 and 2o ¢ {J + 1,J + 2}, and let 6 and 1 be the first hitting times of
{J + 2} and {J + 1}, respectively, by Z:

§=inf{t >0:2, =J+2},
n=inf{t >0: 2, =J+ 1}.

We think of ¢ as the time of death and 7 as the time of retirement. Accordingly,
the states {1,...,J} describe the health state of the insured up until retirement or
death. In this subsection, we assume a decrement structure such that retirement
occurs at most once and death is a terminal event:

Assumption 2.2.2 (Decrement structure concerning retirement and death). We
assume that

[0,00) 3t Y Y Nj(t) =0,

jES kes
i>J k<J

[O, OO) S5t— N(J+2)(J+1) (t) =0,

almost surely.

Note that the structure of the state space entails that the insurer is not updating
its information concerning the health state of the insured upon or after retirement.
In Figure 2.1 we have exemplified this setup for the case J = 2 corresponding to a
disability model allowing for recovery before retirement.

In actuarial practice, it is common to impose some Markovian structure by
assuming the random pattern of states Z to be e.g. Markovian or semi-Markovian.
In the following, we illustrate why such assumptions might be insufficient and, as

/\

\—/

Figure 2.1: FEzxtension of classic disability model with recovery to allow for stochastic
retirement.
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an alternative, how to represent similar assumptions as non-monotone information
substructures. This motivates the general non-Markovian framework with non-
monotone information introduced in Subsections 2.2.1-2.2.2.

It is natural to imagine the random pattern of states Z as embedded into a
larger framework. Let Z be a random pattern of states on an extended state space
S={1,....,J4+1,J+2,...,2J +1} with initial state Zy = Zy € {1,...,J}. Denote
the corresponding multivariate counting process by N. Suppose that

E [ Z~ Njk(t)] < (2.2.6)

for all t > 0, and that

0,00) 3t > Y Nj(t) =0,

jeS keS
i>J k<J

[0,00) >t Z Neasik(t) =0,

keS
J<k<2J

almost surely. We think of the states {J + 1,...,2J} as providing information
concerning the health state of the insured upon or after retirement. In Figure 2.2 we
have exemplified this setup for the case J = 2 corresponding to a disability model
allowing for recovery and stochastic retirement. In general, we can now redefine Z

by

Z if Z, € {1,...,J},
Zy =R J+1 ifZ e{J+1,...,2J},
J+2 ifZ, =2J+1

for all t > 0, when we find that zo ¢ {J+1,J+ 2} and that Assumptions 2.2.1-2.2.2

remain satisfied.

The information available to the insured is represented by the filtration F =
(]%)tZO given,by

Fi=0(Zs:5s<t)VN.

In many cases, the information F is not available to the insurer, and then the
insurer must resort to the information given by F; this can e.g. be the case if upon
retirement, disability coverage ceases.

It appears consistent with actuarial practice to propose that the underlying
random pattern of states Z is Markovian or semi-Markovian. We now study the
resulting implications on Z, which is the natural modeling object given information
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dead °

/\

- -
retired 3 retired 4
& active - & disabled

Figure 2.2: Extension of the disability model with retirement of Figure 2.1 where the
health status of the insured remains observed upon and after retirement.

F. Let U = (Ut)>0 and U= (Ut)tZO be the duration processes associated with Z
and Z, respectively, given by

U=t —sup{s € [0,t] : Zs # Z;},
Ui =t—sup{s €[0,t]: Zs # Z;}.

Note that 1<, U = 1{t§n}ﬁt. Let U" = (U] )t>0 be the time since retirement
given by

0 itt <m,
Ur = K
let H = (H¢)t>0 be the state of the insured just before retirement given by

Z if t <mn,
Ht:{t 1 n

Zy— ittt >n,

and let U" = (U}');>0 be the duration of the latest sojourn before retirement given
by

Uth: U, if t <mn,
U, ift>n.

Proposition 2.2.3. Suppose (Z, U) is Markovian. Then (Z,U" U", H) is Marko-
vian. Suppose further that Z is Markovian. Then (Z,U", H) is Markovian.

Proof. See Appendix 2.A. O
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It is possible to derive necessary and sufficient conditions for which (semi-)Markoviani-
ty of Z implies (semi-)Markovianity of Z, see e.g. Serfozo (1971). In general, these
conditions are very restrictive and do not apply to models of actuarial relevance:
in this sense, the complex intertemporal dependency structure implied by Proposi-
tion 2.2.3 must be taken into account. This serves as a motivation for the general
non-Markovian framework presented in Subsection 2.2.1.

Although Proposition 2.2.3 indicates that the mortality as retiree might depend
on the past through e.g. the time since retirement and the last health state before
retirement, it is common in actuarial practice to rely on a standard mortality table —
an example is the longevity benchmark of the Danish financial supervisory authority,
cf. Jarner and Mpgller (2015). This in a sense corresponds to imposing an ‘as if’
Markovian assumption or, alternatively, to only utilize information corresponding to
a specific subsequence of g-algebras rather than F itself. Therefore, we introduce
two subsequences of o-algebras G' = (G});>0 and G2 = (G?);>0 given by

Gt =0(Zsliz,eqn, .01} Loy Loz 18 S VN,

G¢ = 0(ZLzieqr, .y Linsay Liosay 8 S ) VN,
The information G' corresponds to the case where upon retirement or death the
insurer discards the previous health records of the insured. The sub-information

G? C G' even keeps no record on the time of retirement. For most if not all practical
purposes, the discarding of previous information upon death is of no importance.

Further, for describing the admissible information immediately before time ¢t > 0
we define sequences of o-algebras G1 = (G} )i>0 and G2 = (G2 )i>0 by
G =0(Zs1(z, eq1,..y Lest, Lis<sy S <) VN,
Gr =0(Zliz, eq1,..01p Lin<ty, Lo<sy 18 < ) VN

Lemma 2.2.4. The o-algebras G}, G}, G2, and G2, t > 0, can be brought on the
form of (2.2.1)—(2.2.2).

Proof. See Appendix 2.A. O

Lemma 2.2.4 gives a link to the general setting; note that the condition (2.2.3) is
satisfied. From this point onward, for G' and G2 the respective extended marked
point process (T3, S;, (;)ien is always taken to be that from the proof of Lemma 2.2.4,
see also Example 2.2.5 below.

Example 2.2.5. Let
T, = 7, S1 = 0, Cl = (T17ZT1>7
Ty =9, Sz =00, G = (T2, Zr,),
Sori=Ti ATy, Coyi = (Tovis Z1yy,),  1EN,
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and let 1544, © € N, be the jump times of the process counting the number of jumps
of Z except retirement and death. Then according to the proof of Lemma 2.2.4,
cf. Appendix 2.A,

Gl =o({T; <t < S}InN{G €A} ieNAcE)VN,
G =o0({l; <t<S}Nn{GeA:ieNA€E)VN,

for t > 0. The jump times have been permuted so that retirement and death
have indices one and two, respectively. Consequently, the index of the jump time
corresponding to retirement does not carry information concerning the total number
of previous jumps. o

In the following, we develop a mathematically sound concept of state-wise prospec-
tive reserves in the case of non-monotone information, and we derive so-called
stochastic Thiele equations describing the dynamics of state-wise prospective re-
serves in the presence of non-monotone information. The results are exemplified
with non-monotone information given by G' and G2, respectively, allowing us to
discuss current actuarial practice regarding valuation of insurance liabilities in the

presence of (possibly stochastic) retirement.

2.3 Prospective reserves in the presence of non-monotone
information

In the case of monotone information, prospective reserves are so-called optional
projections of accumulated future payments, suitably discounted. To our knowledge,
there appears to be no unifying definition of general state-wise prospective reserves in
the actuarial literature; in Norberg (1992), state-wise prospective reserves are given
implicitly as prospective reserves evaluated on the relevant event, while Norberg
(1996) in principle casts them based on somewhat arbitrary functional representations
of prospective reserves. The properties of the state-wise prospective reserves as
stochastic processes, including the existence and uniqueness of suitably regular
versions, are not investigated. Furthermore, it is unclear from these proposals how to
define state-wise prospective reserves in the presence of non-monotone information.

In this section, we present a sound and fruitful definition of state-wise prospective
reserves in the presence of monotone as well as non-monotone information. In
the presence of non-monotone information, the main idea is to take as underlying
state process not Z giving the state of the insured but rather Z giving the state of
information. The section is structured as follows. In Subsection 2.3.1, we introduce
so-called state-wise counterparts and reveal the non-triviality of developing the
concept of state-wise prospective reserves. In Subsection 2.3.2, we follow Christiansen
(2020) on optional projections in the presence of non-monotone information, which
turns out to be a fruitful Ansatz for a mathematically sound definition of state-wise



38 CHAPTER 2. CHRISTIANSEN & FURRER (2020)

quantities. Definitions of state-wise prospective reserves are introduced and discussed
in Subsection 2.3.3.

2.3.1 State-wise counterparts

Suppose that C = (C;):>0 is a sequence of o-algebras such that
O'(Zt)\/./\/'gctgft, tZO

Examples include C = G. We define sequences of families of sets C; = (Ct,;)¢>0,
Jj €S, by

Ct,j:{AEJT"t_ZAﬂ{Zt :j}éct}

Lemma 2.3.1. For each (t,j) € [0,00) x Z the family of sets Cy; is a o-algebra.

Moreover,
CtZO'(Aﬂ{Zt Zj}IAGCtJ'?j S S)
for any t > 0.
Proof. Follows by standard set-theoretic calculations. Il

Example 2.3.2. Consider monotone information F. Then F; ; = F;_ since F;_ V
O'(Zt) Q ft. @)

Example 2.3.3. Consider the setting of Subsection 2.2.3. By defining

Vi(s) == Zslp, () + i<y L1y () + (Lt Ls<sy) 1423 (),
P2(s) == Zslp, gy (J) + Lis<sy Ligs2y ()

for s > 0 and j € S we find that

o(pl(s):s <t) VN,
o(¥3(s) 15 <t)VAN. o

1
gt7j

2
i

Let Y = (Y (t)):>0 be a real-valued stochastic process, and suppose that Y (¢) is
Ci-measurable for each ¢ > 0. We now define the state-wise counterparts as follows:

Definition 2.3.4. A family of real-valued stochastic processes (Y;)jes
(Y;(t))t>0,jes is said to be state-wise counterparts to Y if for each (t,j) €
[0,00) x S:

o Y;(t) is Ci j-measurable,

o 1i7,_Y;(t) = 1i7,_nY(t).
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In general, we suppress the dependency of state-wise counterparts on the specific
sequence of o-algebras C.

Suppose for the moment that Y9 = (Y9(¢));>0 is the prospective reserve under
information G (to be formally defined later on). Then it is intuitively appealing to
base the definition of the state-wise prospective reserves on the state-wise counter-
parts (ng)jes to Y9: they satisfy the key identity 1{Zt:j}ng(t) =1z, Y9(t)
and only rely on the information G; ;, which is the information available at time ¢—
that remains available at time t if Z; = j.

For each t > 0 let m; be the sub-probability measure that is uniquely defined on
og(Ax{j}:AeC, ,j€S) by

me(A x {j}) = my(A) == P(AN{Z; = j}), AeC, jeSs.

Proposition 2.3.5. Let Y = (Y (t)):>0 be a real-valued stochastic process such that
Y (t) is integrable and Cy-measurable for eacht > 0. Then the state-wise counterparts
(Yj)jes to Y exist and for each t > 0 the mapping Q2 x S 3 (w,j) — Y;(t)(w) is
my-almost everywhere unique.

Proof. See Appendix 2.A. U

The uniqueness of the state-wise counterparts does not extend beyond m;-almost
everywhere for fixed t > 0. In other words, viewed as processes the state-wise
counterparts are not almost surely unique and thus not well-defined. Consequently,
the definition of state-wise counterparts is mathematically flawed and it might
therefore be unfortunate to base the definition of state-wise prospective reserves
thereon.

Before we turn the attention to an alternative foundation based on an explicit
representation of optional projections, we first present some results for the state-wise
counterparts that are useful later.

Define a class of functionals L;(Q, A, P) > X — E; ;[X |C: ;] by

E[X1(z,—;} |Ct ]
E[1{z,-1 |Ct ;]

where we impose the convention 0/0 := 0. If P(Z; = j) > 0, it holds that E; ;[X | C; ;]
are versions of the conditional expectations of Y (t) given C; ; w.r.t. the probability

’

E¢ ;[X |Ci ] =

measure P ; given by

_ P(ANn{Z; =j})
Pyt = SEE A A

cf. Exercise 34.4(a) of Billingsley (1994).
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Based on similar techniques as in the proof of Proposition 2.3.5, one can then show
that

V(1) 2 Ee Y (8) | Coyl. (2.3.1)

This provides an explicit representation of the state-wise counterparts.

We are now ready to derive the following law of iterated expectations:

Lemma 2.3.6. Let X € L1(Q, A, P). Then for each (t,j) € [0,00) X S:

B [BIX[C] [Crj] = B[ X |Cuyl-

Proof. See Appendix 2.A. U

When C, ; is generated by Fy j = fi j((Zs)o<s<t) added null sets N with f; ; some
measurable function, it can be shown that

B [V(8)[Cej] = E[Y (1) | Frys Ze = j], (2.3.2)

where the latter refers to path-wise integration w.r.t. the conditional distribution
of Y(t) given (Fi ;,Z;) and, further, evaluated in {F; ;j(w),j}. This provides an
alternative explicit representation of the state-wise counterparts. Rewrites in the
spirit of (2.3.2) are typical and occur frequently and opaquely in the remainder of
the paper.

2.3.2 Optional projections and state-wise quantities

Let Y = (Y (t)):>0 be a real-valued stochastic process such that Y(¢) is integrable
for each ¢ > 0. If there exists an almost surely unique process X = (X (t));>0 such
that for each t > 0,

X(t) =E[Y (1) ]G]

almost surely, then we denote Y9 := X as the optional projection of Y with respect

to G.

In the following we calculate conditional expectations given (¢, Ty, Cyy)s T, Y €
S,z # y. We throughout assume that they are defined as path-wise integrals with
respect to arbitrary but fixed regular conditional distributions P(- |, Ty, €,y ). For
a cadlag or caglad process Y = (Y (t))>( with finite expected variation on compacts,
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let
EIL ()Y (1) |
A AT TS
o EILOOY(0) ¢,
L ST A TS R
E[L (t-) ()Y ()| ¢,
0= S e (2O (233
G_ e) = E[Ix(t_)y<t)|cxaTxy_t7Czy:€] " o
A A [T e N B A
Y (1) = E[L,t)Y (1) [ ¢y Tey = 1,0y = ], vy e € Bayt >0,

E[Iy (t) | Cy7 T:vy t Ca:y ]

which are almost surely unique processes, cf. the discussion between Theorem 4.2
and Proposition 4.3 of Christiansen (2020). The above state-wise quantities refer to
the state of information and changes in the state of information, rather than the
state of the insured. In Subsection 2.3.3 we interpret these state-wise quantities
when Y describes the accumulated future payments. The following proposition helps
us in this regard.

Proposition 2.3.7. LetY be a cadlag or caglad process with finite expected variation
on compacts. For each t > 0 we almost surely have

)= L) E[Y (1) |G

) = L(t— (t)lgt I

)= L(t-)E [Y(t)lgt , 2 =l
L(1)Y5,(t) = Lt E[Y (t) | G, Ze- = 1],

) = L(t=) EY (t) |G, Tay = 1, Cyyy = €],

) = 1L,(t) EY (1) [ G, Ty = 1, €y = €.

Proof. See Proposition 4.3 and the proof of Theorem 4.2 in Christiansen (2020). [

The state-wise quantities J9 allow for a rather explicit characterization of the
optional projection Y9:

Proposition 2.3.8. Let Y = (Y (t))1>0 be a cadlag process with with finite expected
variation on compacts. Then the optional projection Y9 of Y exists and has the

almost surely unique representation

=S LYW, =0

€S

For each © € S the processes [0,00) > t — L()V9(t) and (0,00) > t
L. (t—)Y9(t) have cadlag modifications with paths of finite variation on compacts.
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Proof. See Section 4 in Christiansen (2020). O

In the special case of monotone information, we now establish a more direct relation
between the different concepts of state-wise quantities. Setting (73, .5;, (;)ien =
(7,00, (Z+;,7i))ien we recover the filtration F = G. In this case, let

Yvﬂc (t) =1z, —j Z y:g_;;_ , (k,1)),

z,y€S

aiatd (2.3.4)
YJJ (t) = Lz, _J}ZI y{x

zeS

for ke S, 5 #k,and t > 0.

Remark 2.3.9. In case of (T}, S;, (;)ien := (73,00, (Z+,,T:))ien, only those indicator
processes I, are different from constantly zero that have an x of the form x =
{1,...,n} € S for some n € Ny; here we define {1,...,n} as the empty set in case
of n = 0. In particular, we have

Ix(t—) = 1{Tn<tSTn+1} if x = {1,...,n}

for t > 0 and with 79 := 0. Moreover, the stopping times 7}, are only then different
from constantly infinity if = and y are of the form x = {1,...,n}, y ={1,...,n+1},
n € Ny. In particular, for each t > 0 we almost surely have

Y ()

=1z -} O Yrnctzray B0 [ (Zey 71), oo (Zey s Tnsr) = (ks 1),
n=0

(2.3.5)
F_
Y ()
E[]‘{Zt:J}Y(t) ‘ (ZT177-1)7 ctty (Z’f 7Tn)]
=1 =j 1 Tn Trn41 z
7 g}; <t} B T (Zr)n s (Zena )]
for j,ke S, j#k. v

In the presence of monotone information, the following result relates the state-wise
counterparts to the state-wise quantities introduced by (2.3.3).

Proposition 2.3.10. Let Y = (Y (¢))i>0 be a cadlag process with finite expected
variation on compacts. Denote by Y7 the corresponding optional projection and
by (Yj]:)jes the state-wise counterparts to Y7 . At each time t > 0 it almost surely

holds that
F _ xF- F_
Yi(t) =Y} (t)+§ Y,

keS
ik
for j € S, where YJJ; and Y,

ki k £ j are almost surely unique predictable processes
defined by (2.3.4).
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Proof. See Appendix 2.A. U

In the following, the notation Yj}_ always refers to the modification given by
Proposition 2.3.10. Insisting on this essentially solves the issue of well-definedness
of the state-wise counterparts in the presence of monotone information. In the
general case, where we allow for non-monotone information, the issue persists.
The next proposition contains results pertaining to the path properties of the
modifications given by Proposition 2.3.10. The results ensure all later applications
of e.g. integration by parts to be feasible.

Proposition 2.3.11. For each j € S and almost each w € Q) the path t — Yf(t,w)
is cadlag and of finite variation on [0,7]|N [T (w), Thy1(w)], ¥ > 0, whenever Z,, (w) =
7, n € Np.

Proof. See Appendix 2.A. U

Example 2.3.12. Consider the accumulated payments B, which is an F-adapted
cadlag process with finite expected variation on compacts; in particular, B” = B.
Proposition 2.3.10 yields

)= 1z, Bf (t)

jeSs
F_ F_
=Y Lz-pnBy; (O + Y Lz—jBi; ()
JES j,keS

i#k

F Fo F_
almost surely for all ¢ > 0. Recall that B},;” () = 1(z,_—;;Bj; (t) and B}~ (t) =
1{Zt_:j}Bﬁ‘ (t) for all j,k € S, j # k. By applying integration by parts and
rearranging the terms, one then finds

)= 1z ;B (dt)+ Y (B (1) — B () Nj(dt) (2.3.6)

jes k€S
i#k

almost surely. This recovers the classic decomposition into sojourn payments and

transition payments in the following sense. Suppose the accumulated payments B
are defined as

)= 1z, —pBi(dt) + Y bik(t) Njr(de),

€S Jj,kES
J j#k

where the cumulative sojourn payments B; shall be F-predictable cadlag processes
with finite expected variation on compacts and the transition payments b;; shall
be bounded and F-predictable processes. By calculating ij_ and B;};‘ in (2.3.6)
explicitly and comparing the results with the definition of B, one can show that

F_
1z, =;3Bj(dt) = 1z, —; B;; (dt)
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almost surely for j € S and for each ¢ > 0,
F_ F
Lz, —pbjn(t) = Lz, =53 (Bj; (t) — Bj; (1))
almost surely for j,k € S, j # k. By defining the process 5 = (8(t));>0 via

B(t) = D bin(t) ANk(t), t>0,
Jj,keS
ik
which equals the difference of a cadlag and a caglad process, we can alternatively
recover the transition payments via the representation

F_
Liz, =jybn(t) = 1yz,_=j3 55 (),

which holds almost surely for all £ > 0 and j,k € S, j # k. o

2.3.3 State-wise prospective reserves

In the previous two subsections, we have introduced a range of state-wise concepts
and quantities, including the state-wise counterparts, and we have studied their
interrelation — in particular in the presence of monotone information. Building on
this, we now turn our attention to mathematical sound definitions of state-wise
prospective reserves. In the presence of monotone information, the definition bases
on the concept of state-wise counterparts and refers to the state of the insured, while
in the presence of non-monotone information, we rely on the state-wise quantities
appearing in the explicit characterization of optional projections; these quantities
refer to the state of information rather than the state of the insured.

Consider a deterministic bank account & : [0,00) > (0,00) assumed measurable,
cadlag, and of finite variation on compacts, with initial value x(0) = 1. Denote with
v the corresponding discount function given by

0, St—u(t) = —.
0.50) 3 ¢ 0lt) =
Denote from this point on by Y = (Y (¢));>0 the accumulated future payments,
suitably discounted, given by
t
Y(t) = / =0 pas).
(t,00) K(s)
Note that Y has cadlag sample paths of finite variation on compacts. We further
suppose that Y (¢) has finite expected variation on compacts. This is for example
the case if k is bounded away from zero.

The prospective reserve under possibly non-monotone information is the almost
surely unique optional projection Y9 = (Y9(t));>0 of Y w.r.t. G satisfying for each
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t>0

/(t,oo) f-{(S) B(d )

almost surely. This definition is consistent with the one proposed in Norberg (1991).

Y9(t) =E[Y(1)] 6] = E

gt] (2.3.7)

State-wise prospective reserves are now defined as follows:

Definition 2.3.13. For j € S the classic state-wise prospective reserve in
insured state j is the not necessarily unique process ng = (ng (t))t>0, where
(ng)jes are the state-wise counterparts to the prospective reserve YY. Forx € S,
the non-classic state-wise prospective reserve in information state x is the

almost surely unique process Y9 = (V9 (t))i>0 given by

ElL@OY(#)¢,]

Y= "ELwc,

fort > 0.

In the following we shall follow the conventions of the literature and write (V;),es
for the classic state-wise prospective reserves in the presence of monotone information
G = F. Similarly, we write V for the prospective reserve in the presence of monotone
information.

Note that for each t > 0, j € S, and = € S, it almost surely holds that

Liz,—jy Y7 (t) = Lz, Y (1),
L(1)Y5 () = L(t)Y9(t),

cf. Definition 2.3.4 and Proposition 2.3.7. The proposed explicit definitions are there-
fore consistent with the implicit definition in the presence of monotone information
put forward by Norberg (1992).

By an application of the law of iterated expectations, cf. Lemma 2.3.6, and the
identity (2.3.1), we can for each ¢ > 0 cast the classic state-wise prospective reserves
as

gt’j, Zt :j , j € S (238)

g a.s. @ s

Example 2.3.14. Consider the case of monotone information F, when by Exam-
ple 2.3.2 we have F; ; = F;_. It follows that for each ¢ > 0 and j € 5,

wn

(Zs)()§3<t7 Zt - .7 s

Vi(t) = E[/(t )%B(ds)

cf. (2.3.8) and (2.3.2). o
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Example 2.3.15. Consider the framework of Subsection 2.2.3 with non-monotone
information G*, i € {1,2}, when by Example 2.3.3 we have Qfé’j = a(w;-(t)) VN. In
the presence of non-monotone information G, i € {1,2}, we then for each ¢t > 0 and
j € S have

(¢§(S))ogs<t, Zi=17]

Y

/@m) w(s) 2149)

cf. (2.3.8). For example,

/(t,oo> w(s) B14)

where U = (Uy)>0 is the duration process associated with Z.

Y9 ()= E U, Zy = J+1

b

Note that for each t > 0,

for j € {1,...,J}, while applying (2.3.2), (2.3.3), and the constructions of G and
G? according to the proof of Lemma 2.2.4, yields

g’ as. )G
Yy @) = y{1}(t)a

g a.8. g' gt
Y7pa(t) = 1{77§t}y{1,2}(t) + 1{n>t}y{2} (t)-
In the following, (Y]g) jes always refers to the modifications given by the above
identities. Insisting on this ensures the classic state-wise prospective reserves to be
well-defined in the presence of non-monotone information G°. o

As already discussed in Subsections 2.3.1-2.3.2, the state-wise counterparts are as
a rule not well-defined as stochastic processes, since they are defined up to null-sets
for an uncountable number of time points. In the presence of monotone information,
G = F, we insist on taking the modification given by Proposition 2.3.10, which
solves the problem of well-definedness, and in the following section we show how
the concept of classic state-wise prospective reserves is sufficient to study dynamics
of state-wise prospective reserves under monotone information. In the presence
of non-monotone information, the classic state-wise prospective reserves are not
well-defined as stochastic processes. Furthermore, as we show in the following
section, the concept of non-classic state-wise prospective reserves, as well as the
additional state-wise quantities given by (2.3.3), is necessary to study the dynamics
of state-wise prospective reserves under non-monotone information. To develop
the general theory of stochastic Thiele equations, we thus focus on the non-classic
state-wise prospective reserves, which refer to the state of information. Still, when
meaningful and relevant for specific instances of information, cf. Example 2.3.15,
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we cast the results in terms of the more intuitively appealing classic state-wise
prospective reserves, which refer to the state of the insured.

In addition to the classic and non-classic state-wise prospective reserves, the
additional state-wise quantities given by (2.3.3) prove useful. Based on Proposi-
tion 2.3.8 and Proposition 2.3.7, for each x,y € S, x # y, we interpret the state-wise

quantities ygx, ygy, and yfy— as follows:

e VY (t) is the prospective reserve for staying in information state z at time ¢:
if in information state x at time ¢— or time ¢, what one would set aside in case

no change in information state occurs at time ¢,

° yfy (t,e) is the backward prospective reserve at transition from information
state x to information state y with information change e: if in information
state y at time ¢, what one would set aside in case a change from information
state  occurred with change in information e at exactly time t,

o yfg (t,e) is the forward prospective reserve at transition from information
state x to y with information change e: if in information state x at time t—,
what one would set aside in case a change to information state y occurs with
change in information e at exactly time t.

2.4 Dynamics of state-wise prospective reserves

In this section, we present the main results of the paper by deriving so-called
stochastic Thiele equations describing the dynamics of state-wise prospective reserves
in the presence of non-monotone information. In principle, our method is based on
the infinitesimal approach introduced and developed by Christiansen (2020) and
relies on the explicit infinitesimal martingale representation theorem (see Theorem
6.1 and Theorem 7.1 in Christiansen, 2020). In comparison, stochastic Thiele
equations in the presence of monotone information are closely related to the classic
martingale representation theorem, see e.g. Norberg (1992) and Christiansen and
Djehiche (2020).

In Subsection 2.4.1, we present and derive so-called infinitesimal forward /backward
compensators describing the systematic part of the development of the state of
information and the payments. Generalized stochastic Thiele equations are derived
and interpreted in Subsection 2.4.2. Finally, in Subsection 2.4.3 we impose the
specific framework of Subsection 2.2.3 with non-monotone information related to
information discarding upon and after stochastic retirement and derive stochastic
Thiele equations and — in the presence of certain intertemporal dependency structures
— Feynman-Kac formulas exemplifying our results.
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In the remainder of the paper, we generally suppose that

B(dt) =Y 1qz, =jbi(t) p(dt) + D bjw(t) Nju(dt),

jes j k€S
ik
where b; and b;;, are F-predictable bounded processes and the measure p is a sum
of the Lebesgue-measure m and a countable number of Dirac-measures (e, )nen:

p(A) =m(A) + ) e, (4), AeB([0,)),

for deterministic time points 0 < t; < to < ... that are increasing to infinity (i.e. there
are at most a finite number of such time points on each compact interval).

2.4.1 Infinitesimal compensators

The so-called compensator ., of the random counting measure v, is the unique
F-predictable random measure such that the difference [0,00) 3 t — v4,([0, 1] X
A) — A3y ([0,¢] x A) is an F-martingale for each A € B(E,,). In particular, we have

Aay((0,8] x A) = lim_ > Elvay (e trer1] x A)| F,] (2.4.1)
T

n

almost surely for each ¢ > 0, where (%,,),en is any increasing sequence (i.e. T,, C
Tt for all n) of partitions 0 =ty < --- < t,, = ¢ of the interval [0,¢] such that
|T,| == max{ty —tx—1:k=1,...,n} — 0 for n — oco. Christiansen (2020) expands
this property to the non-motonone information ¢ and denotes the random measures

75?; and ’ygy defined by

’ngg«ovt] X A) = nli_{IOIOZE[wa((tk’thrl] x A) | gtk]? t>0,A¢e %(Eiﬁy)v
T

n

’ygy(((),t] X A) = nli_{go E[V:ry((tk7tk+1] X A) ’ gtk+1]7 t>0, Ae %(Ewy)a

as infinitesimal forward compensator (IF-compensator) and infinitesimal backward
compensator (IB-compensator) of v, with respect to G, given that the limits exist
for all ¢ > 0 almost surely.

In the special case of monotone information G = F the IF-compensator equals
the classic compensator and the IB-compensator equals the counting measure itself,
ie. fyfy‘ = Azy and fyg’;/ = Uy almost surely.
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Proposition 2.4.1. For each x,y € S, x # y, the IF-compensator 757; and the
I1B-compensator vgy of vzy exist and satisfy

VS (dt x de) = L (t—)gs, (dt x de),  ~¥,(dt x de) = I, (t)g¥, (dt x de),

1
g_ A — {E[l:(s— )1¢s 1>0} - d d
gxy ((Ovt] X ) /(L) fx A E[ ( )’C ] P(( yvay) cds X €’Cm)v

1
G L {E[I4(s) | ¢,]>0}
69,((0,] x A) = /
v osien EL()]C)

almost surely (with A € B(E,,), t > 0).

P((Twy, Cyy) € ds x de| (),

Proof. See Proposition 5.1 and Theorem 5.2 in Christiansen (2020). O

Denote by b the sojourn payment rate given by

= Z Liz, —pybi(t), >0,
jes

and denote by [ the transition payments given by

= ) bik(t) ANj(t), t>0.

J,keSs

J#k
Proposition 2.4.2. The payment process B has an IF-compensator C’g’ with
respect to G of the form

O (dt) = LL(t- pu(dt) + Z/ B (t, )7 Zy (dt x de),

€S z,yeS
z#Y

where bg’ and 55; are the processes defined from b and B by the second and fourth
line in (2.3.3), respectively.

Proof. See Theorem 5.2 and Example 7.2 in Christiansen (2020). Note that (2.2.4)
holds and that 8 can be decomposed into a sum of a cadlag and a caglad process
both with finite expected variation on compacts. O

Applying similar techniques as in the proof of Proposition 2.4.1 and the proof
of Proposition 2.4.2, one can show that if for all ¢ > 0 each b;(t) and bjx(t) is
G;_-measurable, then

Cg (dt) = Zl{zt —i1b;(t Z bjk(t) dt),

JES j,keS
J#k

where T'9- are the IF-compensators of the multivariate counting process N (associ-
ated with Z) w.r.t. G.
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In general, we thus interpret by~ as the (G-averaged) sojourn payments in information
state x € S and Bxgy_ (,e) as the (G-averaged) transition payment for a change in
information e from information state x to information state .

2.4.2 Stochastic Thiele equations

We are now ready to present stochastic differential equations describing the dynamics
of the non-classic state-wise prospective reserves (J9),cs in the presence of general
non-monotone information G:

Theorem 2.4.3 (Generalized stochastic Thiele equation). The non-classic state-

wise prospective reserves (V9)yes almost surely satisfy the stochastic differential
equation

0= It (Ww>ﬁwfwﬂﬁwmw

z€S K/(t_)

+ Y / RI~(t,x,y,€) g5, (dt x de) (2.4.2)

Yiy£T
- Z / RY(t,y,x, e)gym(dt X de))
YyFT

where for x,y € S, x # vy,

R (t,x,y,€) = By, (t,e) + iy (t,€) — Vi (D),
Rg(t7y7m7€) = yygx(tu 6) - ygx(w

Remark 2.4.4. According to Proposition 2.4.1, we might replace ggy_ by q/gy_ in (2.4.2).
In the following, we prefer this representation. Note that we are (in general) unable
to replace ggx by 7533. v

In the presence of monotone information G = F, starting from Theorem 2.4.3 one
can derive the following stochastic differential equations describing the dynamics of
the classic state-wise prospective reserves (V;) cs:

Corollary 2.4.5 (Classic stochastic Thiele equation). The classic state-wise prospec-
tive reserves (Vj)jes almost surely satisfy the stochastic differential equation

O—Zu@ﬂ<mwvwﬁ$%@wmw

JjES
+ Z Rji(t) Ajg dt))

k:k#j

(2.4.3)

where Rji(t) = bjr(t) + Vi(t) — V;(t) are the classic sum at risks and where
Ajj = I‘]].;’ are the classic F-compensators of the multivariate counting process N .
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Before we present the proofs of Theorem 2.4.3 and Corollary 2.4.5, we first provide
an interpretation of the results. In the presence of monotone information, Corol-
lary 2.4.5 yields stochastic differential equations that are directly comparable to the
stochastic Thiele equations of Norberg (1992, 1996). In Norberg (1992, 1996), the
F-compensators A of N are assumed to admit densities w.r.t. the Lebesgue-measure,
and the result is derived by suitably applying the martingale representation theorem
and identifying the integrands. The method of the present paper, while extended to
also cover the non-monotone case, is based on a suitable application of the explicit
infinitesimal martingale representation theorem. In particular, Corollary 2.4.5 can
also be derived directly from the classic martingale representation theorem following
Christiansen and Djehiche (2020); in this case, the restriction to slightly less general
payments, cf. beginning of Section 2.4, is not necessary.

The stochastic differential equation of Theorem 2.4.3 is in a twofold manner
fundamentally different from the stochastic Thiele equation in the presence of
monotone information. Firstly, the sum at risks appearing in the term involving
the IF-compensators, which correspond to ordinary compensators in the presence of
monotone information, take a different form. Rather than being the difference of two
state-wise prospective reserves added the relevant transition payment, it involves the
difference of the forward state-wise prospective reserve and the prospective reserve for
staying in the state added relevant transition payment. In the presence of monotone
information, we can show that the forward state-wise prospective reserve and the
prospective reserve for staying in the state can be replaced by relevant ordinary
state-wise prospective reserves, but this is not necessarily the case in the presence of
non-monotone information. Here the possibility of information discarding entails a
possible improvement in the accuracy of the reserving by utilizing the information
available at time t— and time ¢, rather than utilizing only the information available
at time t.

Secondly, the stochastic differential equation of Theorem 2.4.3 contains an ad-
ditional term involving ggm, y # x, and thus relates to the IB-compensators. In
the presence of monotone information, we can show that this term is zero. It is
the backward looking equivalent of the term involving the IF-compensators. Based
on the information currently available, the term adjusts the dynamics to take into
account the possibility that information discarding has just occurred.

In Subsection 2.4.3, we derive and interpret stochastic Thiele equations in the
presence of specific examples of non-monotone information related to stochastic
retirement. We refer to this subsection for further interpretation and discussion of
the general results.

Proof of Theorem 2.4.3. Analogously to Proposition 2.4.2, one can show that the
discounted payment process B given by B(0) = B(0) and B(dt) := v(t)B(dt) admits
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the IF-compensator

=Y L(t—)v(t) b (t) p(dt) + > / C(t,e)7ds (dt x de).

€S xz,yeS
zH#Y

According to Theorem 7.1 in Christiansen (2020), the process [0,00) > ¢ +— Y (t) =
v(t)Y (t) almost surely satisfies the equation

Y9(dt) = —Cg (dt) + Z / (Ve (te) = VI (1) (Vay — 7Zy ) (dE x de)
rxy;éeys

= X [ o080 = Y 0) vy =25, x ),

z,yES
oty

On the othfar hand, by applying integration by parts on Y (t) %= > owes Lo AL
and using Y9 2 0(t)YY, we can show that

9(dt) = L)Vt + D o) (Y () = VI () vay(dt X Egy).

TES T, yES
TFyY

~—

Thus, by equating the latter two equations and rearranging the terms, while using
the fact that 1o, (dt x de) = L, (t—)vey (At x de) and 7, (dt x de) = I, (t)79, (dt x de)
almost surely and the equation I, (t) = I, (t—)I.(t) + 1{z,_+4}1.(t), we obtain

SN L (yg dt) + v ()b~ (t) p(dt)

€S
+ Z/ (t,x,y,e) 75, (dt x de)
YyFET
_ Z / ORI (t,y, z,e) 'yyx(dt X de))
Yy£T
x,yES
TH£Y
+ Z yxgw yygy(t))’/xy<dt X Egy)
a:zy;fys
- Z / ) (Ve (t,€) = Vi (1) 1z, a1 Lo (t) vy, (dE x de)
Iyy#EZS
+ > o VI (1)) vy (dt X Eay).
x,yES
T#Y

Proposition 2.4.1 and the identity

95, (dt x de) = 1z, 2,197, (dt x de) + 77, (dt x de)
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then yield

=YLt (yg (dt) + ()b~ (1) p(dt)

zeS
+ Z/ ~(t,z,y,e) gg, (dt x de)
YIY£T
_ Z / Rg t,y,x,e) ggw(dt X de)),
YIY£T
o Z yfy t 6 y y(t7e))ywy<dt X Eg:y)
T, yES
z#yY
+ Z yxgm yygy(t))’/my(dt X Exy)
zzz;eys
zyz;éems
+ D — VI (1)) Vay (dE X Eny)
T, yES
m#y
+ 2 / () (Vyo(ts€) = Vi () L (t=)1 2,0 9y (At X de).
T, yES
x#y

The fourth line equals zero because of (6.7) in Christiansen (2020). The fifth, sixth,
seventh, and eighth line together equal

Y o (1) = Vi, (1) vay(dt X Eyy)

_ G (4 ) — )Y
> (Vaal{t} x Bep) — vea({t} X Eyz)) }ggm(dt X de))
Z:ZF#x

+ 3 OV (8) = VI)) vy (dt X Eay)

=Y 0OV (t) — VI, (1) vya(dt X Eya) + > 0() (V5 () = VI (1)) vay(dt x Eqy)

x,yES z,yES

_ MZES (ZZZ# /Ez v(t) (Y9, (t,e) — VI,()) g%, ({t} x de)

(l/yw(dt X Eyp) — Vgy(dt X Exy))>



54 CHAPTER 2. CHRISTIANSEN & FURRER (2020)

almost surely, because > v.o({t} X E.p) and 3, va.({t} X Ey.) are almost
surely non-zero only at finitely many time points. The latter three lines also add up

to zero since
V20 =YL (1- ¥ st < £0)+ 3 [ Ve teabilin) a0
z:zF#x ZIZFT

almost surely. This identity is a consequence of the following observations. If
E[I.(s)]¢,] = 0, then by definition, V¥, (t) = 0, V¢, (t) = 0, and g7, ({t} x de) =
0 almost surely and the identity simply reads 0 = 0. On the other hand, if
E[I,(s)|¢,] > 0, then by applying Proposition 2.3.7, (2.2.5), and Proposition 2.4.1,

Y; () =E[Y (1) ¢, 20 = 2]

CBY ()L (t-)| Car 2o = ] + B [Y(t) S L) \ (o 2= ]

z:zF#x
=EY () [¢,: 2t = 2, 21— = a] E[lo(t-) [y, 21 = 7]
+3 [EY016E = n T = ¢ = (1 x )
zizFx
=5 0(1- X i xra )+ ¥ [ Yo xd)
z:z#x z: z;ﬁx

almost surely.
All in all, we have

0= IL(t- (yg&y+w)@(wma)

zeS

£ [ RS e g8 (a0 x o
v(t)RY(t, 2, y,€) ggm(dt X de)) .

Now apply integration by parts on Y9 (t) = v(t)Y9(t) and rearrange the terms in
order to end up with the statement of the theorem. Il

Proof of Corollary 2.4.5. By setting (13, S, (;)ien = (73,00, (T4, Z+,))ien We obtain
G = F such that (V] )ses satisfy (2.4.2) almost surely. Since ~;, 2 Vye, We must
have I,.(t—)gy, (dt x de) 2 0 when

L (t—) ./ R (t,2,y,¢€) gy (dt x de) =0

YyFT
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almost surely. By Remark 2.3.9 and starting from (2.4.2), similar arguments as in
the proof of Proposition 2.3.10 yield the following stochastic differential equations:

Z 1{Z-rn:j}1{7n<tSTn+1}y:{7i,l..,n} (dt>

n=0

%1, ) (wt—)— by (1) () — 3 (byalt) + Vi(t) — V() T <dt>)

k:k#j

for j € S. By tedious yet straightforward calculations, it is possible to show that

w

D Vi) =Y ) Az, = r<tar,y) =0, G €S,
n=0

which implies

S 1z o <tz Vi (A 1, 3 Vi(dt), €S,

n=0

by an application of integration by parts. Collecting results establishes the desired
result. O

In the case where the payments B themselves depend on the prospective reserve
V', the (stochastic) Thiele equations rather than (2.3.7) might serve as definition for
the prospective reserve V, see e.g. Djehiche and Lofdahl (2016) and Christiansen
and Djehiche (2020). In the presence of monotone information, this point of view is
encapsulated by the following result.

Proposition 2.4.6. Let there be a maximal contract time n < oo, i.e. each b;
and bji, is constantly zero on the interval (n,o00). Suppose that W;, j € S, are
F-predictable bounded processes such that [0,00) >t +— 15, — 1 W;(t) almost surely
has cadlag paths for all j € S. If W;, j € S, satisfy the stochastic differential
equations

k(dt)
K(t—)

(2.4.4)
£ 3 (yelt) + Walt) - W5 (1)) Ajk<dt>)

k:k#£j

0=1yz,_-j5 (Wj(dt) - W;(t-) + b;(t) p(dt)

with terminal condition W;(n) =0, j € S, then Wy, (t) = V(t) almost surely for all
t €10,n).

Proof. Suppose that [1,,7,11) is an interval where Z; = j. Then W is cadlag on
[Tn, Tnt1] because of our cadlag assumption for 1;z,—;3W;(t) and since the value of
W; at the right end point 7,41 is not relevant for the cadlag property. Furthermore,
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W; has paths of finite variation on [7,,, 7,1, since the stochastic differential equation
implies the finite variation property on (7, 7,+1] and since adding the left end point
does not change the finite variation property. By applying integration by parts and
the stochastic differential equations for the processes Wj, j € S, we obtain

+ Z o(£) (Wi () — W; (1)) Nju(d)

= —o(t) B(dt) + Y w(t)(bir(t) + Wi(t) = W;(£) (Njk — Aje)(di)

j,keS

almost surely. Since each [0,00) 3t — b, (t) + Wi (t) — W;(t) is F-predictable and
bounded, the last term is an F-martingale. Thus, we obtain

HOWz, ()= B o)X 12 Wi(0)| 7]

JjeS
k(1)
_ R v(t)/ ) Bras) } (V1)
|: (t,n] H(S) '
almost surely for all ¢ € [0,n]. Noting v > 0 completes the proof. O

2.4.3 Examples

In this subsection, we consider the framework of stochastic retirement from Sub-
section 2.2.3 and the non-monotone information given by G! and G?. The time of
retirement and death are given by the hitting times n and 9, respectively. Recall
that G' corresponds to the case where upon retirement or death the insurer discards
the previous health records of the insured, while G? even keeps no record on the
time of retirement.

In Subsection 2.4.3, we present some auxiliary results characterizing the relevant
IF- and IB-compensators and state-wise quantities. Stochastic Thiele equations
are then derived in Subsection 2.4.3 using the general theory developed in Subsec-
tion 2.4.2. Finally, in Subsection 2.4.3 we specialize the inter-temporal dependency
structure, derive Feynman-Kac formulas, and relate the results to actuarial practice.

Preliminaries

Denote for j,k € S, k # j, by Y k’ and T9 k " the IF- and IB- compensator of Njy,
respectively, w.r.t. G*, i = 1,2. Recall that A denotes the classic F-compensators of
N. The following result gives an explicit characterization of the relevant IF- and
IB-compensators of N w.r.t. G! and G2.
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Proposition 2.4.7. For allt > 0 we almost surely have
1_ g2 . .
F]g.k ) =T, () =A(t), jef{l,....,Jh ke S\{j},
[9.(t) =T (t) = Npu(t), jeS ke{l,... ., }\{j} orj=J+1,k=J+2

— 1 s<é} .
19 t:/ {’7<—Paedsn, j=J+1,k=J+2,
e = o Pz s €I

2_ 1 s<é} .
19~ (t) = <=0 pseds, Zs. = J+ 1 — T4l k=J+2
]k() /(]P("]<S§5) ( 8, 456 +)7 J + 1, + 2,
gt . 4 .
9, (t) = (O]P(Zn:jm:s)ZNgk(ds), je{l,. ., Jhk=J+1,
ot =1

2 2 .
Fjgk; (dt) = 1{n<t<§}G§‘;k; (dt) J € {17 SRR J}7k =J+1,

1 s ' |
G]g]: /0 P&{PT(I'U; ;(Z>(;))}P( 6 d87Z777 :])7 7 c {17-~-,J},k: J—i—]_,
,t]

SAOESVAG

P(Zs =1 =
:/ (Z5-=jlo=>5) ZNgkds jefl,... I k=J+2.
(0,4

(Z5_75J+1|5—

All remaining IF- and IB-compensators of N equal zero almost surely .

Sketch of proof. Calculate the IF-compensator %gy_ and the IB-compensator vg;y of
Vzy from Proposition 2.4.1 and use the construction of G! and G2 according to the
proof of Lemma 2.2.4. O

In the following, (ngi)jeg refers to the modification of the classic state-wise
prospective reserves w.r.t. G* presented in Example 2.3.15. The next result provides
a characterization of the remaining key terms appearing in the stochastic Thiele
equations w.r.t. G! and G2.

Proposition 2.4.8. For each i € {1,2} and t > 0 we have
i gL i
J+1<t) b{1}< ) E[bJ+1(t) | gt,],
Blriny 12 (t) = 5{1_}{1,2}(757 (t,J +2)) = Elbss1yu+2)(t) | Gi_, 6 = 1]
almost surely on {Z;— = J + 1},
i G Gt ;
bJ+2(t) = 1{77<t}b{172}<t) + 1{772t}b{2}(t) =E[bs12(?) | G;_]
almost surely on {Z;— = J + 2},

Riyiny syt =Bl (®) + YIL0) = Y, 0y ®)
= B[S0 +Y ()]G, 0 =t] —EY (1) [Gi_, Zi = T + 1]



58 CHAPTER 2. CHRISTIANSEN & FURRER (2020)

almost surely on {Z;,_ = J + 1}, and for eacht >0 and j € {1,...,J} we have

L2y (8) = BIY (8) |n =1, Zy = 5] = Y&, 1, (1)
=E[Y(t)|G},n=t 2, =4 —EBY(#)|GF, Ze_ = J + 1]

almost surely on {Zy = J + 1}.

Sketch of proof. Combine suitably the contents of Example 2.3.15, Proposition 2.3.7,
the constructions of G! and G? according to the proof of Lemma 2.2.4, and (2.3.3). O

Stochastic Thiele equations

Based on the characterization of relevant IF- and IB-compensators and state-wise
quantities from Subsection 2.4.3, the following two theorems yield stochastic Thiele
equations for the classic state-wise prospective reserves w.r.t. non-monotone infor-
mation G' and G2.

Theorem 2.4.9. The classic state-wise prospective reserves (ngl)jeg almost surely
satisfy ngl =V, forje{l,...,J} and

k(dt)

R(t=)
Gt

+ R1J+1(J+2) (t) P(J+1)(J+2) (dt)) ’

0= 1z e (YEL () = VL) 4 bl (o) ula)).

0=1(z,_—ss1) (YJ-I—l(dt) YJg+1( —) =% + by (t) p(dt)

Theorem 2.4.10. The classic state-wise prospective reserves (YjQQ)jGS almost surely
satisfy ng2 =V, forje{l,...,J} and

2 2 Hdt
ozl{zt__m}(YJgH(dt) Yo ()29 ) uar)

K(t—)
g?

2
+ RJ+1(J+2) (t) F(J_|_1)(J+2) (dt)

Z Lk:(J+1) k(]+1)(dt))

k(dt)

m bJ+2( )M(dt))-

0= 1{Zt_—J+2}( J+2(dt) YJg+2(t )

Sketch of proof of Theorem 2.4.9 and Theorem 2.4.10. Since {Z; = J +1} = {n <
t<o}={Z ={1}}, {Z=J+2,n<t} ={2, ={1,2}}, and {Z, = J + 2,1 >
t} = {2, = {2}} for all t > 0, following along the lines of the proof of Corollary 2.4.5
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and pointing to Example 2.3.15 yields

Liz, =rey Y7 (dt) = Iy (t-) V) (),
Lz, =142y Y S yo(dt) = I 9y (0=)VE) 5, (dt) + Loy (t-) Yy, (dt)

almost surely. Now apply Theorem 2.4.2, calculate the terms explicitly, collect them,
and apply Proposition 2.4.7 and Proposition 2.4.8. O

Remark 2.4.11. Note that the term
J

liz,_ =j+13 Z Li(J+1) (t) Gg(JH) (dt)
k=1

can be replaced by

Lz, —s+13Lern) (t) G-(J+1) (dt),

where
L%(J+1)(t) = E[Y(t) |77 ] Y{gl}{1}( )
=E[Y(t)[n=1t]-E[Y(t)[n <t <d]
2 1
g dt {P(n<t<5)>0}P dt
Goord) =50 23 <5 P ed)
almost surely. To see this, apply Proposition 2.4.7 and Proposition 2.4.8. v

The stochastic differential equations that follow from Theorem 2.4.9 and Theo-
rem 2.4.10 are fundamentally different from the stochastic differential equations
appearing in the presence of monotone information. Since ngz almost surely equals
Vj for j € {1,...,J}, Corollary 2.4.5 yields the stochastic differential equations

0= 1z, _j (Yﬁ’ (dt) — Y7 (t—) == + b;(t) u(dt)

+ Y (bi(t) + Vi) = YF) Ajk(dt))
k:k#j

for j € {1,...,J}. The sum at risks for k € {J+ 1,J+ 2} take an unusual form
as they involve V;,; and Vo rather than Y 741 and YJ to- Since information
discarding occurs upon or after retirement and death, this just reflects full utilization
of all available information (before retirement and death).

Another fundamental difference is evident in Theorem 2.4.10. Recall that G
does not have the time since retirement as admissible information. Referring to
2
Remark 2.4.11, the stochastic differential equation for YJgJrl includes the term

<E[Y(t) In=t]-E[Y(t)|n<t< 5]) ;Z”j;?;)} P(n € dt).
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It adjusts the dynamics to take into account the possibility that retirement might
just have occurred rather than having occurred some time ago (conditionally on the
insured presently being retired). In the former case, at time ¢ one would reserve
E[Y (t) |n = t], while in the latter case one would reserve E[Y (t)|n <t < §]. This
constitutes a description of the first part of the product. The second part is exactly
the infinitesimal probability of retirement having just occurred, conditionally on the
insured presently being retired.

Feynman-Kac formulas

We now specialize and simplify the setting to provide a more straightforward and
less technical discussion of the general results and their relation to actuarial practice.

Suppose that Z is semi-Markovian such that the F-compensators A of N admit
densities w.r.t. the Lebesgue measure and such that (7, d) is a continuous random
variable. Denote by f(, 5) the joint density function of (1, d), by fys the conditional
density function of n given J, and by f, and fs the marginal density functions of 7
and 0. Further, suppose that b; and b;;, are deterministic for all j,k € S, j # k, and
let there be a maximal contract time n < oo, i.e. each b; and b;; is constantly zero
on the interval (n, 0o).

Because of Proposition 2.2.3, the compensators A have representations of the
form (for j e {1,...,J}, ke {l,....,J+2}\ {4}
Ajk(dt) = 1{Zt7:j}ajk(t,t — Ut_) dt,
Ayt (dt) =1z, —jinyausnuse Gt — Ut — Ul Hy)dt
for deterministic functions o and oy y1)(s42), so-called transition rates.

The next results provide Feynman-Kac formulas that can serve as the starting
point for the development of numerical schemes for the classic state-wise prospective
reserves (V) es.

Proposition 2.4.12. Suppose the assumptions from the beginning of this subsection
hold. If the function Wjio(-) is a bounded cadlag solution of

(dt)

K
WJ+2 (dt) = WJ+2(t_)m — bJ+2(t) ,u(dt), t> 0, (245)
with terminal condition Wyio(n) =0, and the function Wyyq(-,-,-,-) is a bounded

and cadlag solution of (fort >r>s>0,ke{l,...,J})

WJ+1(dt7 ST,y k)

k(dt)
K(t—)
— (brt1y(g12) () + Woga(t) = Wi (t, 5,7, k) o1y g42) (& s, k) dt,

=Wji1(t—,s,m, k)

— by (t) p(dt) (2.4.6)
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with terminal conditions Wyi1(n,s,r, k) =0 for0<s<r<nand ke {1,...,J},
and the functions W;(-,-), j € {1,...,J}, are bounded and cadlag solutions of (for
t>s>0,5€{l,...,J})

r(dt)
K(t—)

— > (biklt) + Wi(t,t) — Wy(t, ) ot s) dt
k< ikt

- (bj(J-H)(t) + Wit s, t,5) — Wj(t, 3)) Oéj(J+1)(t, s)dt
- (bj(J+2) (t) + WJ+2 (t) - Wj (t, S)) A5 (J+2) (t, S) dt,

Wi (dt, s) = W (-, ) % — b (1) p(dt)+

(2.4.7)

with terminal conditions Wj(n,s) = 0 for 0 < s < n, then for allt > 0 and
jed{l,...,J},

Lz=pWilt:t =Up) = 112,253 Vi(t) = Liz,=V(?)
almost surely, and for allt > 0,

Lz—syWosa (bt = Ul t = UL Hy) = Lz, g1y Vi (t)
Liz,=7123Wit2(t) = 1iz,=s42) Vita(t)

1z,—54+1,V (1),
Liz,—r+2 V(1)

almost surely.

Proof. Note that the right-continuity of the solutions of the differential /integral
equations allows us to uniquely expand the domains of the solutions to ¢ > s > 0,
t>r>s>0andt>0. That means that W;(¢,t) and W;11(¢,s,t, k) are indeed
given by the solutions.

Since the bounded and cadlag solution W;io of (2.4.5) is deterministic, it is
also F-predictable and by multiplying (2.4.5) with 1;z, _ ;0 we obtain (2.4.4) for
J = J + 2. By multiplying equation (2.4.6) with 17, _; 1y and replacing s, r and
kbyt—UP t—UJ , and H,_, we obtain that W, (t,t — U} ¢t — U, H;_) is an
F-predictable, bounded, and cadlag solution of (2.4.4) for j = J + 1.

Multiplying equation (2.4.7) with 1y, _;31{s,<¢<-,,,} and replacing s by
Til{ZTi:j} 4+t l{ZTﬁfj}’ we obtain that Wj(t, Til{ZTi:j} +1 1{Zfz’7éj})’ je{l,...,J},
is a solution of (2.4.4) on the interval (7;,7;41]. This follows from the almost sure
identities

1{Zt7:j}Wk(t7Ti1{Z.ri:k} + tl{ZTﬁék}) = 1{2757:].}1/{/]6@7t)7
Lz, —pyWirpr(t,mil{z, —p+t 1z 25,0, )
=1z, =y Wi (t,t = UL UL Hyo)
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for all t € (7;,7341] and j, k € {1,...,J}, j # k. Summing over i € Ny yields that
the bounded and cadlag F-predictable processes

Wit t = Uiz, —3) = > Vrcr<rn pWilt Tiliz, —jy +t 1z, 25)
=0

are solutions of (2.4.4) for j € {1,...,J} due to the fact that
Liz, =ppWi(t,t = U1z, —py) = Lz, =3 Wi(t, 1)
almost surely for all t > 0 and j,k € {1,...,J}, j # k.

All in all, we conclude that the processes W;(t,t — Us_177,_—;3), j €{1,...,J},
Wipi(t,t —UP t — Ul Hy ), and Wy,2(t) form an F-predictable bounded and
cadlag solution of the equation system (2.4.4), which implies that, according to
Proposition 2.4.6, they equal the classic state-wise prospective reserves V;(t) on
{Zy = j} for j € {1,...,J +2}. Since Z; = J + 1 implies n < ¢, we may replace
Lizi—sryWoga(t,t = ULt = UL Hy ) by Lz, jyy Wi (t,t = Ul t — UYL, Hy).
Moreover, we have

Lz = Wi(t,t = Up) = iz, pp Wit t —=Ui_1yz, —j}), jed{l,...,J},

almost surely for all ¢ > 0 under the conventions Uy_ := 0 and Zy_ := Zy. This
implies the statement of the proposition. Ol

The numerical schemes that can be developed based on Proposition 2.4.12 are sig-
nificantly more complex than in the classic (semi-)Markovian case, see e.g. Adékambi
and Christiansen (2017). The sum at risks involve Wji1(¢,s,t,j), which must be
computed based on (2.4.6) for all 0 < s < ¢ using e.g. the method of lines.

Recall that Y]g = V; almost surely for j € {1,...,J}, cf. Theorem 2.4.9 and
Theorem 2.4.10, and due to the assumptions given at the beginning of this subsection,
we also have YJgJ:Q = V42 almost surely. The next results provide Feynman-Kac
formulas for the residuary classic state-wise prospective reserve in the presence of
non-monotone information G' and G2. Proofs are given at the end of the subsection.

Proposition 2.4.13. Suppose the assumptions from the beginning of this subsection
hold. If Wi, (-,-) is a bounded and cadlag solution of

W}—l—l(dta ’r)

k(dt)
K(t—)
— (b)) (8) + W2 (t) = Wi (87) a{yy1)g42) () dt

for 0 < r < t with terminal conditions Wi, ,(n,r) =0 for 0 < r < n, and where
Wiia(-) solves (2.4.5) while

= Wi (t—,r) —by41(t) p(de) (2.4.8)

1 o fap(tr)
@(J+1)(J+2)(tﬂ“) T PG> in=r) 0<r<H, (2.4.9)
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then iz, oty Wi (80) = Lz i1 Y9 (8) = 15 7411V (t) almost surel
en 1iz,— 7413 Wi (6,n) (Zi=d+1} Y71 (1) (Zi=J+1} (t) almost surely
for allt > 0.

Proposition 2.4.14. Suppose the assumptions from the beginning of this subsection
hold. If W3 ., (-,-) is a bounded and cadlag solution of

W;-H (dt) - W3+1 (t_>

— by41(t) p(di)

- (b(J+1)(J+2)(t) + Wya(t) — W3+1(t)) &%J+1)(J+2)<t) dt
+ (Wi (t8) = W3 () Erqa(t) di

(2.4.10)

for 0 <t with terminal condition W7, (n) =0, and where Wy 12(-) and W}, (-,")
solve (2.4.5) and (2.4.8) while

L f(f f(n,c?)(S? t) ds

O‘%J+1)(J+2)<t) T P <t<o) (2.4.11)
Eran(t) = P(nf;—%, (2.4.12)

then 1{Zt:J+1}W3+1(t) = 1{Zt:J+1}YJgH(t) = 1{Zt:J+l}Yg2 (t) almost surely for
allt > 0.

In order to reduce the computation time and simplify actuarial modeling and
statistical estimation, practitioners, when computing the prospective reserve for
non-retirees based on W, j € {1,...,J}, often approximate Wj;,1(t, s,t,j) by a less
complex quantity such as W} 11 (t,t), which discards information concerning previous
health records, or W2 4o(t), which additionally discards information concerning the
time of retirement. Replacing W41 by W} 41 produces approximation errors on the
individual level (and redistribution of wealth on the portfolio level for non-retirees).

Proposition 2.4.13 and Proposition 2.4.14 can be used to develop computational
schemes for W} 41 and W} 11, respectively. Focusing on W} 41, this involves the
transition rate a? J41)(J42) which by (2.4.11) is the hazard rate corresponding to a
classic mortality table for retirees. It also involves the adjustment term

(Wiia(t,t) = W31 (1) €4 (2) dt,

where according to (2.4.12), £;41(t) dt¢ is the infinitesimal probability of retirement
having just occurred (at time t), conditionally on the insured presently being retired.

If the mortality does not depend on the time since retirement, i.e. if

O‘%J+1)(J+2)(tv r) = a%J+1)(J+2) (t),
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we end up with the differential /integral equations

r(dt)
(i) by+1(t) p(di) (2.4.13)

- (b(J+1)(J+2)(t) + Wiga(t) — W3+1(t)) a%J-{-l)(J-i—Z)(t) dt.

Even though the mortality of retirees might depend on the time since retirement,

W§+1(dt) = W§+1(t_)

practitioners often still utilize (2.4.13) directly. This produces additional approxi-
mation errors on the individual level (and redistribution of wealth on the portfolio

level for retirees as well as non-retirees).

Proof of Proposition 2.4.13. Note that (2.4.8) implies that I/V}Jrl(-7 1) has paths of
finite variation on compacts. By applying integration by parts, we obtain

1<ty d<1{zt:J+1}U(t>W}+1(t7 77))

= 1z sy (VW] (At m) = 0(OWoia (=)
— o)Wy (t,n) Ngs1)(s42)(db).

almost surely. Inserting (2.4.8) into the latter term leads to

Lipen d(Lzemsrip o OWS L ()
= —1liz, —yr130()B(dt) —v()Wyr2($) N(y1)(+2)(dt)
+ U(t)r(lJ+1)(J+2)(t)M(1J+1)(J+2)<dt>

almost surely; here r(1J+1)(J+2)(t) = by +2) () + Wige(t) — Wi, (t,n) and

M(1J+1)(J+2)(dt) = N(J+1)(J+2)(dt)_l{Zt7:J+1}@%J+1)(J+2)(t777) dt. Thus, since
{n <t} C{n < s} for s >t >0, we find that almost surely for all ¢t > 0,

1{n<t} 1{Zt:J+1}U(t)W}+1 (75’ 77)

= E[l{n<t}1{Zt:J+1}v(t)W}+1(t> n) |G

=1g< E {U(t) /(t . 1{Zs_:J+1}% B(ds)

gg]

+ 1<y B {/( ]U(S)WJ-i-Z(S) N(r4+1)(742)(ds)
t,n

gg]

—lypan B [/(t ]U(S)r(lj-i-l)(J-i—z)(S) M(1J+1)(J+2) (ds)

gg}

= 1{n<t}1{zt:J+1}U(t)Yg (t)

gg]

Recall that {Z;, = J+ 1} = {Z € {1}}. Pointing to Proposition 2.3.7, the con-
structions of G! according to the proof of Lemma 2.2.4, and (2.3.3), straightforward

— i<y lz,=siy B {/t U(S)T(1J+1)(J+2)(S) M(1J+1)(J+2)(d3)

7n]
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calculations then yield that the last line equals zero. All in all, we conclude that

1{7l<t}1{Zt:J+1}U(t)W}+1(tv77) = 1{n<t}1{Zt:J+1}U(t)Yg (t)
1
- 1{77<t}1{Zt:J+1}v<t)YJg—|—1(t)
almost surely for all £ > 0. Since v and Y9 almost surely have cadlag sample

paths, cf. Proposition 2.3.8, we may replace 11, <13 1¢z,—s41} by 1<y liz,—7+1} =
1yz,—741)- Using v > 0 completes the proof. O

Proof of Proposition 2.4.14. Since the distribution of 7 is assumed to admit a density
w.r.t. the Lebesgue measure, we have (0,00) > ¢ = I{1y(t) = I3 (t—) 113 () almost
surely when

g> _ @3
Yin =Y

almost surely, cf. Example 2.3.14 and (2.3.3). Note (2.4.10) implies that W7, ,(-)
has paths of finite variation on compacts. By applying integration by parts, in-
serting (2.4.10), applying Theorem 2.4.10, and referring to Remark 2.4.11, straight-
forward calculations yield

2

2
d(l{Zt:J—&-l}U(t)W;—i—l(t) —1iz,—54130(t) YJgﬂ(t))
2 2
= 0(t)*1(z,_—sp1y (W31 () = Y7, (1) (0 11y g4y (t) — £ (t)) dt

2 2 G2 2 2
—v(t)2(W3(t) = Y71 (1) (N2 (dt) = Lz, =530 11ys40 (1) db)

J
+ 'U(t)2 (W}_'_l(t) — YJg_’z_l(t>)2 (_ ]_{Zt:JJrl}gJ_i_]_(t) dt ‘|— Z Nk((]+1)(dt)>
k=1

almost surely. Following along the lines of the proof of Proposition 2.4.13, we find
that

2 2

v)?P(Zy = J+ 1) (W3, (t) - YT (1))

=E [1{Zt:J+1}U(t)2(W3+1(t) - YJgjl(t))Q}

=—-E {/t 0(8)* Lz, =11y (W3 (t) — YJQL(t))Z (@lr41)(12)(8) = Eg41(s)) ds

= _ /tn v(s)?P(Zs = J + 1)(W3+1(t) — ijl(t)f (a?J+1)(J+2)<S) — €J+1(S)) ds

almost surely. This means that the function

2 2

F) = v(®)*P(Zy = T + )(Wia () = Y7 (1)

almost surely satisfies the integral equation

ft)=- /t” f(S)(a%J+1)(J+2)<5) - §J+1(S)) ds
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for all ¢ € [0,n] under the convention (n,n] = (). Note that

)] < / FN 02410042, (5) — £741(5)] ds

almost surely for all ¢ € [0,n]. According to the the backward Gronwall inequality
(see Cohen and Elliott, 2012, Lemma 4.7), f(t) = 0 almost surely for all ¢ € [0,n].
Since v > 0, for each t > 0 it then holds that 11z, — ;413 W7 1 (t) = 1{z,—7113 ijl(t)
almost surely. Since the implicated processes almost surely have cadlag sample
paths, cf. also with Example 2.3.15 and Proposition 2.3.8, there exists a joint P-null
set. Thus 1yz, ;13 W7, 1 (t) = Liz,—j41} YJgjl(t) almost surely for all t > 0 as
desired. O
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2.A Proofs

Proof of Proposition 2.2.3. As a consequence of Assumption 2.2.2, the only non-
trivial statement of the proposition relates to intertemporal dependency structure of
Z after retirement, so it suffices to study the quantities

P(Zy=J+1|F)

on the event {Z; = J+ 1} for 0 < ¢t < s < oo . To this end, consider sets
AP :={Z; =J+1,N(t) =n}, n € N, where N = (N(t))¢>0 is the process counting
the total number of jumps of Z given by

N(t)= ) Nj(t), t>0,
g

and denote with 7 = (7;);en and T = (7;);en the point processes corresponding to
the jump times of Z and Z, respectively. Fix 0 < ¢ < s < oo, and fix n € N. On A}
it then almost surely holds that

Tn = Tn =1, Z: e{J+1,...,2J},

T =7 Ze =2z €{1,...,J}, Vi=1,...,n—1

(2

In particular,

P(Zs=J+1|F)layp
&S P(Zs S {J+1,,2J} ’f'n,Zf-n/f'n—lyZ?n_p"-7%1727:1)1A?'
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Suppose (Z U ) is Markovian such that Z is semi-Markovian. By the law of iterated
expectations and the strong Markov property, cf. Theorem 7.5.1 in Jacobsen (2006),
it follows that

P(ZSE{J+1,...,2J}

Tn, Z’T'n,’rn—l?Z?nfl; sy T, 47 )1A?

_ E[P(ZSG{J+1,...,2J} %n,Z;",%n—%n_l) %n,Z;n,...,ﬁ,Zﬁ}lAg
B[ P(Zs € (741, 20} | T Z T — Pt ) | T Zs Pt Zs | Ly
_ P(ZS e{J+1,...,27) %n,Z%n,%n_l,Z;n_l>1Ag.

Thus on A% = {Z; = J + 1, N(t) = n} it almost surely holds that

P(Zs=J+1|F)

P(Zs:J-l—l

Tn, Z;—n, Tn—1, Zf'n_l )

P(Zy =T+ 1|t =, Zept = Faor Zs, )

=P(Z,=J+1|U}, Z,Ul", Hy),
which does not depend on n. We conclude that if (Z, U ) is Markovian, then on
{Zt =J+ 1}7
P(Zs=J+1|F) < P(Z,=J+1|U{, Z,U}", Hy)

proving the first part of the proposition. The proof of the second and final part
follows by similar arguments. O

Proof of Lemma 2.2.4. Let N~ = (N~ (¢))t>0 be the process counting the number
of jumps of Z except retirement and death given by

N™(t)= Y Nj(t), t>0,
j,kes
RE{5,T+1,7+2}
and denote by (7, );cn the point process corresponding to the jumps of N~. The
o-algebras (2.2.1) and (2.2.2) are equivalent to G} and G} , respectively, if we set

Ty =, S1 = oo, ¢ = (Tv, Z1,),
Ty =6, So = o0, G = (T2, Z1,),
Toyi=1;, Sopi=T1ATo, C(ogi= Toyi,Z1,,,), i€N.

If we replace ¢; = (T1, Z1,) by the constant ¢; = (0, Z,,) = (0,J + 1), then (2.2.1)
and (2.2.2) are equivalent to G and G2, respectively.

Proof of Proposition 2.3.5. Since Y is integrable, for each j € S and ¢t > 0 the
mapping

Ct,j >A— l/t’j<A) = / Y(t) dmt’j
A
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is a finite signed measure on C; ; which is absolutely continuous with respect to the
sub-probability measure m; ; given by

Ci; 2 A= my;(A) =P(AN{Z: = j}).

According to the Radon-Nikodym theorem there exist mappings w — Y;(t)(w) that
are C; j-measurable and satisfy

Vi j (A) = / Y}(t) dmt,j, Ac Ct,j- (2A1)
A
In particular
/ Y(t)dP = / Y;(t)dP, JjeS,AcCy;,
AN{Zy=5} An{Z:=j}
which by Lemma 2.3.1 yields
/ Y<t>1{Zt:j} dP = / Y}‘(t)]-{Zt:j} dP, je S Aed,.
A A

We conclude that 1;7,_;Y;(t) = 1;7,_,Y(t) for each j € S and ¢ > 0. This
establishes existence of the state-wise counterparts. Furthermore, if there is another
real-valued random variable Y;(t) that has the properties of Yj(t), we necessarily
have
0= [ W@-Te)r= [ o) - Hoe) du.)),
An{Z:=j} Ax{j}

for A € C;;, which means that the mapping (w,j) = Yj(t)(w) — Y;(t)(w) is my-
almost everywhere zero. This establishes the desired uniqueness of the state-wise
counterparts. Ol

Proof of Lemma 2.3.6. If P(Z; = j) = 0, the result is trivial. Thus suppose P(Z; =
J) > 0. Since E; ;[E[X | C] | C,;] is the conditional expectation of E[X |C;] given C
w.r.t. P, we find for A € C; ; that

/ Eq,[E[X | C/] | Coy] AP, = / E[X | C] dP,,.
A A

Note that by definition of C; j, we have AN {Z; = j} € C;. It follows that

1
[ Baixie) i) apy = g [ pxiel
1
= _ | X1(z,_;,dP
P(Zt:)/A =i
= [ xdp,,

where we have used that E[X |C;] is the conditional expectation of X given C; w.r.t.
P. In conclusion, E; ;[E[X |C; ;] |Ct ;] is a version of the conditional expectation of
X given C; ; w.r.t. P, ; which completes the proof. O
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Proof of Proposition 2.3.10. Suppose that (T}, S, (;)ien := (74,00, (Z+,, T:))ieN, Such
that F = G. Fixt >0 and j € S. By (2.3.5) we almost surely find

Z Yf,

kesS
J#k

=1z 21}y O rctzray BY O [ (Zey.71), o (Zey s Tgr) = (5:0)]

n=0
_1 Y1 Elz,, =Y O (Zr, 1), (Z2,, )]
- Zi_#J T <t<T,
{ ;éj} n=0 { == +1} E[l{(zﬂ'n+177n+1) (J:t)} ’ ( Tl) 7(ZTn77—TL)]

Since {Z;— # j,Z1 = j,mn < t < Tpy1} = {Zi— # JoTn < t < Tpg1, Tnt1 =
t,Z, ., = j} for any n € Ny, we further conclude on the basis of Example 2.3.2
and (2.3.2) that

E EOO E[]‘{Z:}Y(t) | (ZT 77—1)7"'7(27' 77—n>]
Y.F_ 1 Zt . 1 - - ) t=J 1 n

kesS { _76‘7} n=0 { n<tS nt } E[l{Zt:]} | (ZT17T1)) ey (Zrn,Tn)]

J#k

= 1{Zt775j} Z 1{Tn<t§”rn+1} E[Y(t) |'Ft—a Ly = ]]
n=0

=11z, 2 Y] ()

almost surely. Similarly, Yj];‘ (t) = 14, —i1Y77 (t). Writing

Y7 () = YT Oz, + Y7 (D12 2

and collecting terms completes the proof. O

Proof of Proposition 2.3.11. In this proof we generally suppose that Z, = j.

The value of ij (t) at t = r A 7,41 is irrelevant for the cadlag and finite
variation path property. For t € (7,,7,+1) we have I,(t—) = I,(t—)I,(t) and
L(t—)L(t)YV,.(t) = L.(t—)L.(t) Y] (t) because of (2.3.3) and (2.2.5). The latter
fact and (2.3.4) yield

Y7 () =Y () =1z, iy > L= LOVI(L), 7w <t<Tn,Ze =]
z€S

According to Proposition 2.3.8 the process I,(t—)I,(t)Y] has cadlag paths of finite
variation on [0, 7], so the same path proprties apply for Yj]: on [0,7] N (Ty, Trt1)-

The value of Yj]: (t) at t = 7, is irrelevant for the finite variation path property,
but it is relevant for the cadlag property. By simplifying the second line of (2.3.5) to

E[l{Tn+1>t}Y(t)|(ZT1v7—1)7 sy (ZTn7T7’L)]
E[l{Tn+1>t}|(ZT17T1)7'"7<Z7'n77-n)] ’

YIo(t) =

i Tn <t < Tpt1, 2t = J,
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and applying the Dominated Convergence Theorem, we obtain on {Z, = j} that
. F IRT F_
l}gr&Yj (T +h) = lﬁrngj (Tn + D)

— lLim E[1{7n+1>rn+h}y(7-n + h)|<ZT17Tl)7 SRR (ZTnaTn)]

h{0 E[l{Tn+1>7‘n—|—h}|(ZT177-1)’ ceey (ZTann)]
= [Y<Tn)’(ZT177-1)7'--7(ZTnaTn)]
F-
=D Y, (™)

keSS
kg

— ij(Tn)

due to 1(, . ~-,3 = 1, the first line of (2.3.5), and Proposition 2.3.10. O



Chapter 3

Computation of bonus in multi-state life

insurance

This chapter contains the manuscript Ahmad, Buchardt, and Furrer (2020).

ABSTRACT

We consider computation of market values of bonus payments in multi-
state with-profit life insurance. The bonus scheme consists of additional
benefits bought according to a dividend strategy that depends on the
past realization of financial risk, the current individual insurance risk, the
number of additional benefits currently held, and so-called portfolio-wide
means describing the shape of the insurance business. We formulate
numerical procedures that efficiently combine simulation of financial risk
with more analytical methods for the outstanding insurance risk. Special
attention is given to the case where the number of additional benefits
bought only depends on the financial risk.

Keywords: Market consistent valuation; With-profit life insurance; Participating
life insurance; Economic scenarios; Portfolio-wide means

3.1 Introduction

The potential of systematic surplus in multi-state with-profit life insurance (some-
times referred to as participating life insurance) leads to bonus payments that depend
on the development of the financial market and the states of the insured. This
dependence is typically non-linear and involves the whole paths of the processes
governing the financial market and the states of the insured. Consequently, the
computation of market values of bonus payments lies outside the scope of classic
backward and forward methods. In this paper, we present computational schemes

71
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for a selection of these more involved market values using a combined approach in
which we simulate the financial risk while retaining more analytical methods for the
outstanding insurance risk.

In Denmark, the investment strategy and dividend strategy are to a great extent
controlled by the insurer, and practitioners have traditionally determined the market
value of bonus payments residually by imposing the equivalence principle on the
market basis, cf. Mgller and Steffensen (2007, Chapter 2). In reality, this valuation
method is only applicable if — among other things — one includes payments to and
from the equity, since such payments appear naturally in the context of e.g. cost
of capital and other expenses. Thus a decomposition of the total market value
that specifically displays the market value of bonus payments, as required by the
Solvency II and IFRS 17 regulative frameworks, cf. EIOPA (2009, 2015) and IFRS
(2017), cannot be derived residually unless the market value of payments to and
from the equity is easy to determine. Since the latter generally is not the case, more
sophisticated computational methods are required. The provision of these kinds of
methods constitutes the main contribution of this paper.

The study of systematic surplus and bonus payments in multi-state with-profit
life insurance goes back to Ramlau-Hansen (1991) and Norberg (1999, 2001), where
one finds careful definitions of various concepts of surplus, discussions of general
principles for its redistribution, and the introduction of forecasting techniques in a
so-called Markov chain interest model, see also Norberg (1995). In Steffensen (2006),
partial differential equations for market values of so-called predetermined payments
and bonus payments are derived in a Black-Scholes model.

The projection of bonus payments in multi-state life insurance and the computation
of associated market values has recently received renewed attention, see Jensen
and Schomacker (2015), Jensen (2016), Bruhn and Lollike (2020), and Falden and
Nyegaard (2020). In Jensen (2016), the focus is on projection of bonus payments
conditionally on the insured sojourning in a specific state; this approach targets
e.g. product design and bonus prognosis from the perspective of the insured rather
than market valuation. Conversely, the paper Jensen and Schomacker (2015) also
deals with projection of bonus payments but on a portfolio level, which ensures
computational feasibility but does not shed light on the full complexity of multi-
state with-profit life insurance. Although with-profit life insurance focuses on
the collective and although decisions by the insurer (so-called future management
actions), including possible determination of dividend yields, often depend mainly
on the performance of the collective, one ought to take into account that bonus
payments are individual in nature. This is the starting point in Bruhn and Lollike
(2020), where the focus is on deriving differential equations for relevant retrospective
reserves given a dividend strategy (used to buy additional benefits) that depends
in an affine manner on the reserves themselves. The process governing the state
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of the insured is assumed Markovian. In Falden and Nyegaard (2020), the results
of Bruhn and Lollike (2020) are extended to allow for policyholder behavior, namely
the options of surrender and free policy conversion. In Bruhn and Lollike (2020)
and Falden and Nyegaard (2020), the dependence of the dividend strategy on the
performance of the collective, encapsulated in what we shall term the shape of the
insurance business, and the practical and computational challenges arising from this
are not highlighted.

In this paper, we derive methods for the computation of market values of bonus
payments in a Markovian multi-state model for a financial market consisting of one
risky asset in addition to a bank account governed by a potentially stochastic interest
rate. The insurance risk and financial risk are assumed independent. We include the
policyholder options surrender and free policy conversion following Henriksen et al.
(2014), Buchardt and Mgller (2015), and Buchardt, Mgller, and Schmidt (2015) and
focus on the bonus scheme known as additional benefits, where dividends are used
to buy extra benefits; this bonus scheme is common in practice and is e.g. the focal
point of Mgller and Steffensen (2007, Chapter 2).

In practice, the dividend strategy depends on product design, regulatory frame-
works, and decisions made by the insurer. In this paper, we assume that the
dividend strategy is explicitly computable based on the following information: the
past realization of financial risk, the current individual insurance risk (state of
insured and time since free policy conversion), the current shape of the insurance
business, and the number of additional benefits currently held. Furthermore, the
dividend strategy must be affine in the number of additional benefits. The shape
of the insurance business consists of so-called portfolio-wide means, cf. Mgller and
Steffensen (2007, Chapter 6), which reflect on a portfolio level the current financial
state of the insurance business. Consequently, the shape of the insurance business
depends on the dividend strategy, which again depends on the shape of the insurance
business.

Using classic techniques, we derive a system of differential and integral equations
for the computation of the expected accumulated bonus cash flows conditionally
on the realization of financial risk. This allows us to formulate a procedure for
the computation of the market value of bonus payments which efficiently combines
simulation of financial risk with classic methods for the remaining insurance risk.
We identify the special case where the number of additional benefits depend only on
financial risk — the state independent case — and show how this significantly simplifies
the numerical procedure. It is our impression that the state independent model is
aligned to current actuarial practice, where it might e.g. serve as an approximation
for valuation on a portfolio level.

We should like to stress that while our results are subject to important technical
regularity conditions, it is the general methodology and conceptual ideas that consti-
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tute the main contributions of this paper. Furthermore, our concepts, methods, and
results are targeted academics and actuarial practitioners alike, and, consequently,
we aim at keeping the presentation at a reasonable technical level.

The paper is structured as follows. In Section 3.2, we present the setup. The
general results and general numerical procedure are given in Section 3.3, while the
state independent case is the subject of Section 3.4. Finally, Section 3.5 concludes
with a comparison with recent advances in the literature and a discussion of possible
extensions.

3.2 Setup

In the following, we describe the mathematical framework. Subsections 3.2.1-3.2.3
introduce the processes governing the financial market, the state of the insured, and
the insurance payments, and we discuss the valuation of so-called predetermined
payments. The dividend and bonus scheme is described in Subsection 3.2.4, which
leads to a specification of the total payment stream as a sum of predetermined
payments and bonus payments. Contrary to the predetermined payments, the bonus
payments depend on the development of the financial market, which adds an extra
layer of complexity to the valuation problem. The focal point of this paper is to
establish explicit methods for the computation of the market value of the bonus
payments; a precise description of this problem is given in Subsection 3.2.5. In
the remainder of the paper, the problem is studied for a specific class of dividend
processes specified in Subsection 3.2.6.

A background probability space (€2, F, P) is taken as given. Unless explicitly stated
or evident from the specific context, all statements are in an almost sure sense w.r.t.
P. The probability measure P relates to market valuation and therefore corresponds
to some risk neutral probability measure. Due to the presence of insurance risk, the
market is not complete, which implies that the risk neutral probability measure is
not unique. Since we shall assume financial risk and insurance risk to be independent,
one can think of the probability measure P as the product measure of some risk
neutral probability measure for financial risk and some probability measure for

insurance risk.

3.2.1 Preliminaries

The state of the insured is governed by a non-explosive jump process Z = {Z(t) }+>0
on a finite state space J with deterministic initial state Z(0) = zo € J. Denote by N
the corresponding multivariate counting process with components N;, = {N;x(t) }+>0
for 5,k € J,k # j given by

Nik(t) =#{s € (0,t] : Z(s—) =j, Z(s) = k}.
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Let S; = {S1(t)}+>0 be the price process for some risky asset (diffusion process, in
particular continuous) and let r = {r(t)}:>0 be a suitably regular short rate process

with corresponding bank account Sy(t) = Sp(0) exp <fg r(v) dv), So(0) = sp > 0,
and suitably regular forward interest rates f(¢,-), t > 0, satisfying

E [67 [ r(s)ds

F* (t)} = ¢ S o) ds

forall 0 <t < T as well as f(t,t) = r(t) for all t > 0; here F* is the natural filtration
generated by S := (S, S1), which exactly represents available market information.
The available insurance information is represented by the filtration F# naturally

generated by Z, and the total information available is represented by the filtration
F = F5V FZ naturally generated by (S, 7).

To allow for free policy behavior and surrender, we suppose the state space J
can be decomposed as

J=J°uJh,

with JP := {0,...,J} and J' := {J +1,...,2J + 1} for some J € N. Here JP
contains the premium paying states, while Jf contains the free policy states, and
transition to {J} and {2J + 1} corresponds to surrender as premium paying and
free policy, respectively, cf. Buchardt and Mgller (2015) and Buchardt, Mgller, and
Schmidt (2015). We suppose that J' is absorbing and can only be reached via a
transition from {0} to {J + 1}, {J} and {2J + 1} are absorbing, and that {J} and
{2J 4+ 1} can only be reached from {0} and {J + 1}, respectively. The setup is
depicted in Figure 3.1.

3.2.2 Life insurance contract with policyholder options

The life insurance contract is described by a payment stream B = {B(t)}i>0
giving accumulated benefits less premiums. It consists of predetermined payments
B° = {B°(t)}o<t<n, stipulated from the beginning of the contract, and additional
bonus payments determined when market and insurance information are realized
during the course of the contract; details regarding the latter are given in later
subsections.

We specify the predetermined payments as in Buchardt and Mgller (2015) and
Buchardt, Mgller, and Schmidt (2015). For simplicity, we suppose that the pre-
determined payments regarding the classic states JP consist of suitably regular
deterministic sojourn payment rates b; and transition payments b;;; in particular,
surrender results in a deterministic payment. In the free policy states, no premiums
are paid and the benefit payments are reduced by a factor p € [0, 1] depending on
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Surrender v

\/

2J +1
Surrender
as free

policy

Figure 3.1: General finite state space extended with a surrender state {J} and free policy
states J*. The states JP \ {J} contain the biometric states of the insured, e.g. active,
disabled, and dead. The states J' are a copy of J¥, and a transition from {0} to {J + 1}
corresponds to a free policy conversion. A transition to {J} or {2J 4+ 1} corresponds to a
surrender of the policy.

the time of free policy conversion. In rigorous terms, we have

dB°(t) = dB°P(t) 4 p(1) dB>(t), B°(0) =0,
dBoP(t Z Liz¢-)= j)< t)dt + Z bk (t) dNjx( )) B°P(0) = 0,
jegr kkeijp
jeTt kkij'f

with Jf 2 j— j/ :=j — (J+1) and 21 := max{0, 2}, and where 7 is the time of
free policy conversion given by

T =1inf{t € [0,00) : Z(t) € J'}.

We have 7 = 0 if and only if zg € JT; in this case, the policy is initially a free policy.
Without loss of generality we thus let p(0) = 1. Furthermore, we suppose there are
no sojourn payments in the surrender states, i.e. by = 0.

It is useful to decompose the predetermined payment stream B° into benefit and
premium parts. We add the superscript + to denote the benefit and premium part,
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respectively. Then we have
B%7(t) = B*P (1),
B> (t) = B*PF (1) + p(1) B (1),

dBO,p7 Z ]l(Z(t )= J)( dt+ Z b dek ))7 B°7P7i(0) —=0.

JjeJr keJTP
k#j

In the following, we assume the existence of a maximal contract time n € (0, c0)
in the sense that all sojourn payment rates and transition payments, including those
of the unit bonus payment stream, cf. Subsection 3.2.4, are zero for t > n.

3.2.3 Valuation of predetermined payments

The life insurance contract is written on the technical basis, also called the first
order basis, which is at least originally designed to consist of prudent assumptions
on financial risk and insurance risk. The technical basis is modeled via another
probability measure P* under which the short rate process r* is deterministic
and suitably regular, while Z is independent of S and Markovian with suitably
regular transition rates p*. The assumptions regarding absorption, as illustrated
in Figure 3.1, are retained under P*. Policyholder behavior is not included on
the technical basis, which entails the following constraints on the transition rates,
surrender payments, and free policy factor, see Buchardt and Mgller (2015) and
Buchardt, Mgller, and Schmidt (2015):

b = jhe T kA
bOJ = %*7
Vi (t)

(0,503 £ plt) = 2
0

where for j € JP\{J} the state-wise technical reserve ‘N/j* of predetermined payments
and the corresponding valuation of benefits only V*T are given by

Vi) = E[/tne Jert @y dv qe(g) | Z(t) :j], (3.2.1)

VIt (t) = E{ / e~ Ji T dv q Bt (g)

J
t

Z(t) = j], (3.2.2)

with E* denoting integration w.r.t. P*. It it possible to show that the state-
wise technical reserves of predetermined payments satisfy the following differential
equations of Thiele type:

d ~ 7%
— V(1) = r (V7 (1) — bs(1)

dt
= > () V@) = V) ui(8), Vi(n) =0,

keITP\{J}
k#j

(3.2.3)
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for j € JP\ {J}. By adding +’s as superscripts, one finds an identical system of
differential equations concerning the valuation of benefits only.

We are now ready to define the technical reserve of predetermined payments
denoted V*°. First, for the purpose of bonus allocation, the definitions of state-wise
reserves of predetermined payments are naturally extended from j € JP \ {J} to
j € J via

A0 it j € 7P\ {J},
VIO(t) = 4 p(n)Vit () ifje Jh\ {27 + 1}, (3.2.4)
0 if j € {J,2J +1}.

The technical reserve of predetermined payments V*° is then defined according to
Vee(t) = Vg(:)( ). Note that Vj*’o depends on 7 in the free policy states, thus being
stochastic, while it is deterministic in the premium paying states.

We now turn our attention to valuation under the market basis modeled via P.
Here we assume that Z and S are independent and that Z is Markovian with suitably
regular transition rates pu. The market reserve V° of predetermined payments is

then given by

VO(t) —E {/ e~ f: r(u)du dBO(S)
t

(t)] _ / e~ I ItwWaugoy qg) (3.2.5)
t
with A° the so-called expected accumulated predetermined cash flows given by
A°(t,s) =E[B°(s) — B°(t) | F2(t)] . (3.2.6)

Denote with p the transition probabilities of Z under P. Following Buchardt and
Mgller (2015) and Buchardt, Mgller, and Schmidt (2015), on (Z(t) € J1),

A°(t,ds) Z Pz);(t,s ( Z b, ,k, s) k(s >ds, (3.2.7)

jeJgt kegf
k]

while on (Z(t) € JP),

t dS Z pZ(t)_] t S < Z bjk Njk )d

jETP keJP

ki
(3.2.8)
+ Z pz(t)] (t,s (bJr Z bt ,k,, S) ik (s )ds
jegt kk€¢.7_f

where the so-called p-modified transition probabilities pg’k, j € JPand k € J,
are defined by pf,(t,s) = E[L(z(s)=k)p(T)'= | Z(t) = j] and satisfy for k € J*
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so-called p-modified versions of Kolmogorov’s forward differential equations:

d
—pjkts ijftsuﬂk )
tegt

e (3.2.9)
+ ]l(k::J—H)ij (t7 S)MOR (S)p(S) - pg‘)k (t7 S):u/“ (S)7

while pf, (t,s) = pji(t, s) for k € JP.

3.2.4 Dividends and bonus

With premiums determined by the principle of equivalence based on the prudent
technical basis, the portfolio creates a systematic surplus if everything goes well.
This surplus mainly belongs to the insured and is to be paid back in the form
of dividends. Following Norberg (1999, 2001), we let D = {D(t)}+>0 denote the
accumulated dividends, and we suppose it only consists of absolutely continuous
dividend yields:

where 6 = {J(t)}+>0 is suitably regular and F-adapted. In Subsection 3.2.6, we
specify the dividend strategy further.

We suppose that the dividends are used as a premium to buy additional benefits
on the technical basis corresponding to a so-called unit bonus payment stream BT
that only consists of benefits and thus is unaffected by the free policy option. It is
given by

dBJr Z ]l(Z(t ) ])( dt—|— Z bgk dek )), BT<O) =0,

eJ keT
J k#j

where the payment functions in the premium paying states [JP, bJr and b;rk, are

suitably regular non-negative deterministic functions with bT] =0, Whlle

b;f :b']r/ and b;fk :b;/k/; j7k€jf’k7éj’
bg)J =V

where for j € JP \ {J} we denote by %*’T the state-wise technical unit reserves
of Bt given as (3.2.1) with B° replaced by BT. Again, these state-wise technical
reserves satisfy differential equations of Thiele type, namely (3.2.3) with added
superscripts .
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For the purpose of bonus allocation, the state-wise technical unit reserves are
naturally extended from j € JP\ {J} to j € J via

VIl if j e JP\{J},
=T(t) ifj e Jt\{2J +1}, (3.2.10)
if j € {J,2J +1},

vl =

SRS

when the technical value of the additional benefits V*T reads V*1(t) = |7 (1) (t).

The expected accumulated unit bonus cash flows AT of BT on the market basis
can be found analogously to A° and read

At(t, ds) = al(t,s) ds, (3.2.11)
ZpZ(t)J (ts <bT Z bl () (s ) (3.2.12)
=

The state-wise counterparts are denoted A;r and aj», 1 € J. They satisfy ATZ ) (t, ds) =
aTZ(t)(t, s)ds = a'(t,s)ds = AT(t, ds) by taking the form

Al(t, ds) = al (t, s) ds, (3.2.13)
s) = sz‘j(t, s) (bT + Z b, (8) sk (s ) (3.2.14)
€7

Let Q(t) denote the number of additional benefits held at time ¢. Since § is used as
a premium to buy B on the technical basis, we have that

dD(t) _ ()
Vz*g)(t) VZ*&I)(t)

Imposing this bonus mechanism, the total payment stream consisting of both

dQ(t) =

dt, Q(0)=0. (3.2.15)

predetermined payments and bonus payments is given by
dB(t) = dB°(t) + Q(t)dB'(t), B(0) =0. (3.2.16)

In this paper, we implicitly think of ) as weakly increasing, although this is not
a mathematical requirement. This way of thinking is reflected in the terminology.
Along these lines, we define the payment process BY by

BI(t,ds) = dB°(s) + Q(t)dB'(s), BY(t,t) = B(t), (3.2.17)

and refer to it as the payments guaranteed at time t > 0, while the remaining
payments

(Q(s) = Q(t) dB'(s)
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are referred to as bonus (payments).

In the remainder of the paper, we focus on valuation of the payment stream
(3.2.16), in particular the bonus payments. We assume that @ exists and is suitably
regular, so that the technical arguments in the remainder of the paper are legitimate.
This is an implicit condition that must be checked for any specific model.

3.2.5 Liabilities

Thinking of time zero as now, the present life insurance liabilities of the insurer are
described by the market value of the total payment stream B evaluated at time zero:

V(0)=E Uon e~ Jor(vdv dB(t)} .

By (3.2.16), this amounts to market valuation of the predetermined payments and
bonus payments. Thus V(0) = V°(0) + V?(0) where V°(0) is given by (3.2.5) and

V(o) =E { / S I dB*(t)} - (3:2.18)

0
is the time zero market value of bonus payments.

Remark 3.2.1. By setting Q(0) = 0, we think of time zero as the time of initialization
of the insurance contract. To determine the market value of bonus payments after
initialization of the contract, one could extend the filtration F to include additional
information at time zero and consider a general F(0)-adapted Q(0). This extension
is straightforward and achieved by focusing on Q(-) — Q(0) rather than Q(-), and
thus the requirement Q(0) = 0 is only really made for notational convenience. vV

There exists well-established methods to calculate V°(0) explicitly using the
expected accumulated cash flows of predetermined payments on the market basis
from (3.2.7)—(3.2.8); in particular, this computation does not depend on the dividend
strategy 0 nor further realizations of the financial market (only the forward rate
curve f(0,-) is required). On the contrary, the time zero market value of bonus
payments V°(0) does depend on the strategy d. Due to possibly non-linear path
dependencies regarding both the financial and biometric/behavioral scenarios, this
implies that classic computational methods via (p-modified) Kolmogorov’s forward
differential equations are not applicable.

The focal point of the paper is to establish methods to calculate the market value
of bonus payments V°(0). We consider an approach that combines simulations of the
financial market with more analytical methods for calculations involving the state
of the insured. Everything else being equal, this approach should be numerically
superior to a pure simulation approach for which one would simulate both the
financial market and the state of the insured. To formalize the main idea, we define
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what we shall term @-modified transition probabilities (at time 0) for j € J by
p2 (0,t) = E[Qt)1 20y | F5(t)] (3.2.19)
for all ¢ > 0. We immediately have the following result:

Proposition 3.2.2. Under suitable regularity conditions the time zero market value
of the bonus payments is given by

V(0) = E[/ e~ Jor(®) d“Ab(O,dt)}, (3.2.20)
0
Ab(0,dt) =ab(0,t)dt, (3.2.21)
=D 15;(0.1) (bT + 3 bl (Ot ) (3.2.22)
e (=

Furthermore, if Q is adapted to F°, then

P2 ;(0,t) = Q)= (0, 1), (3.2.23)
a’(0,t) = Q(t)a'(0,1). (3.2.24)

Proof. Since {Q(t)}+>0 is continuous and adapted, it is predictable. Using martingale
techniques, we find that

Vb(O) =E [/0 e Jo r(w)dv Z Q(t)]l(Z(t—):j) (bJr + Z b /ij )dt]

jeJ keT
J k#j

Due to continuity assumptions, we might replace 1(z;_)—;) by 1(z()=;)- Using the
law of iterated expectations and Fubini’s theorem, we conclude that

V*(0)
=E / —Jo T(”)d”ZE 1(Z(t) ])Q |]:S ( —|— Zb ,ujk >dt]

L 0 jeET keJ

k#j

=E / e for(”)d”szj 0,t) (bJr +Z ) pin(t )dt]

/0 jeg ke
_E / e‘ﬁf’”(”)d”ab(o,t)dt].

0

Furthermore, if Q is F°-adapted, then the Q-modified transition probabilities satisfy

szOj(O’t) E[1(z)=HQ(t) | FZ(t)] = Q(t)p=,;(0, 1),

and thus a®(0,t) = Q(t)a'(0,1), cf. (3.2.12). O
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Since the so-called expected accumulated bonus cash flow A°(0,-) is F°-adapted,
the result provides a representation of V?(0) motivating a computational scheme
based on simulation of the financial market. For each simulated financial scenario,
we should compute A°(0,-) explicitly in each scenario, which in general requires
computation of of szo j(O, -) for all j € J; this we study in Section 3.3. In the special
case where ) is F°-adapted, it holds that pZQOj(O, ) = Q(*)P2y; (0, ), and the problem
simplifies to a direct calculation of @) that does not involve the biometric/behavioral
states, and can essentially be solved by a classic computation of the expected
accumulated cash flow Af(0,-) via Kolmogorov’s forward differential equations; this
is studied in Section 3.4.

As mentioned above, the computation of the expected accumulated bonus cash
flow depends on the actual specification of the dividend strategy ¢ during the course
of the contract, and in practice, this strategy is a control variable that depends on
what we refer to as the shape of the insurance business. In the following subsection,
we formalize the shape of the insurance business and its corresponding controls,
which leads to a specification of a class of dividend strategies.

3.2.6 Shape and controls

We now introduce the shape of the insurance business consisting of key quantities
on a portfolio level that the insurer needs at future time points to determine the
controls, i.e. the dividend strategy and the investment strategy. We only introduce
a few key financial indicators, but we believe that our general methodology allows
for the implementation of additional shape variables.

To describe the shape of the insurance business, we first consider the liabilities,
specifically the technical value and the market value of guaranteed payments on a
portfolio level. Recall that the payments BY(¢,-) guaranteed at time ¢ > 0 take the
form (3.2.17). The market value of guaranteed payments V9 is thus given by

VI(t) = E[ / e~ ST @ Avpa(y )
t

f(t)} =/ e~ Ji T dv g9 (¢ ds), (3.2.25)

t

with A9 denoting the expected accumulated guaranteed cash flows,
A9(t,ds) = A°(t,ds) + Q1) ALy, (¢, ds). (3.2.26)
Similary, the technical reserve of guaranteed payments is given by
V() = Vo) + Q)VE (1), (3.2.27)

The so-called portfolio-wide means of V* and V9 are now obtained by averaging
out the unsystematic insurance risk by applying the law of large numbers w.r.t.
a collection of independent and comparable insured in the portfolio, see e.g. the
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discussions in Mgller and Steffensen (2007, Chapter 6) and Norberg (1991). The
portfolio-wide means take the form

VI(t) =E[VIE) | F ()] and  V*(t) =E[V*(t)| F°(t)]

for t > 0. The portfolio-wide means represent values of liabilities under the as-
sumption that the insurance portfolio is of such a size that unsystematic insurance
risk can be disregarded. It corresponds to what is often referred to as mean-field
approximations in the literature. In Subsection 3.3.1, we show how to compute
these.

We now turn our attention to the assets. They are described by a portfolio of S
which is self-financed by the premium less benefits that the portfolio of insured pays
to the insurer. We denote the value process by U = {U(t) }+>0. We think of this
process as the assets for the whole portfolio, but in our presentation the payments
involved are only the contributions of a single insured. Since an individual insured
pays —dB(t) to the insurer, this contribution to the total payments of the portfolio
can be represented by the expected cash flow —(A°(0,dt) + A°(0,dt)). Thus we let
U take the form

AU (t) = 0(t) dSo(t) + n(t) dS:i(t) — (A°(0,dt) + A%(0,dt)), U(0) = u,

where (0,1) = (0(),n(t)),>, is a suitably regular F°-adapted investment strategy.
We think of 1 as a control variable for the insurer, since the number of units invested
into the bank account is determined residually by 6(t) = (U(t) — n(¢)S1(t))/So(t).
This gives

AU (t) = r(t)(U(t) — n(t)S1(t))dt + n(t) dSi(t) — (A°(0,dt) + A°(0,dt)). (3.2.28)

In this paper, we only consider a single insured and the portfolio-wide mean reserves
represent the contribution of this insured to the shape of the insurance business.
To include this observation into the setting, one can consider Z(0) as stochastic
with distribution corresponding to the empirical distribution of initial states in the
portfolio. The latter can be described by weights w; with the jth weigth giving
the proportion of insured that are initially in state ;7 € J. The corresponding
portfolio-wide means would in this case read

YowiB [V FS0)]  and )Y w B[V [ F)],

JjeT JjeTJ

where E; corresponds to expectation under the assumption that Z(0) = j. Ad-
ditionally, the insured typically belong to different cohorts implying that e.g. the
transition rates and payment processes differ among insured. This is handled in a
similar way. Also, the same considerations apply to the payments affecting the value
process U. We consider these kinds of extensions from a single insured to a whole



3.2. SETUP 85

portfolio straightforward and do not give them further attention in the remainder of
the paper.

Let S(- At) = {S(u) }o<u<t- We can now make the concepts of shape and controls
precise.

Definition 3.2.3. The shape of the insurance business I is the triplet

Z=(U(t),VI(t),V*(t))

>0

while the controls are the pair (6(t),n(t));>o-

Assumption 3.2.4. We suppose that (3,m) are chosen such that the setting is
well-specified in the sense that () exists and is suitably reqular. Furthermore, we

assume that n takes the form

n(t) =n(t, S At),Z(t)) (3.2.29)

for some explicitly computable and suitably reqular deterministic mapping 1, and we
assume that 6 takes the form

5(t) = b0 (¢, S(- A1), Z(), Z(1))
81 (8, 5(- A1), Z(2), Z(2)) p(r) = (3.2.30)
55 (8, S(- A1), Z(8), Z(1) Q(1),

for some suitably reqular deterministic mappings dg, 61 and 6o that we are able to

VAN
VAN
compute explicitly.

Remark 3.2.5. In Remark 3.2.1 we discussed the extension to general Q(0) and the
idea of focusing on Q(-) — Q(0). By rewriting (3.2.30) in the following manner,

6(t) = do (¢, S(- A1), Z(t), Z(t)) + 02 (¢, S(- A t), Z(t),Z(t)) Q(0)
+ 61 (¢, S(- /\t),Z(t),I(t))p(T) 7=
+02 (8, 5(- A1), Z(1), (1)) (Q(t) — Q(0)),
we see how this idea would manifest itself in relation to Assumption 3.2.4. v

In the following, we also use the shorthand notations t — 6;(¢, Z(t)), i =0, 1,2,
which only highlights FZ-measurable quantities.

The assumption that the controls depend only on portfolio-wide means rather
than actual realizations of the balance sheet and the assets is the key choice of this
paper. The risk we hereby account for is only the systematic risk, i.e. the risk that
affects all insured.

Note that it is the assumption of § being dependent on U that makes 1 a process
that affects the payments to the insured, thus justifying it as a control. Note also
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that we allow ¢ to depend on Z, 7, and ), while this is not the case for n. This
is since the dividends are allocated to the individual insured while the assets are
a portfolio level quantity. The specific affine structure on 6 mirrors that of B,
cf. (3.2.16). This is important for practical applications, as the following example
highlights.

Example 3.2.6 (Second order interest rate). Dividends may arise by accumulating
the technical reserve V* from (3.2.27) with a second order interest rate 7 that is
determined based on the shape of the insurance business. This is obtained by letting

5(t) = (r’(t) — r* (1)) V*(t),
ro(t) = ®(t, S(- A1), Z(t)),

for some explicitly computable and suitably regular mapping ®. This corresponds

to setting
So(t, 5) = (r°(t) = (1)) 1jege () Vi (1),
61(t,5) = (0 (1) = 7 () Lgegn 2o V(1)
0a(t, §) = (r(8) — (1)) VT (1),
for all j € J. °

The aim of this paper is to develop methods to compute the market value of
bonus payments V°(0). Recall from Proposition 3.2.2 that this can be done via the
computation of the expected accumulated bonus cash flow A°(0, -), which depends on
the financial market through ). To achieve this within the setup of Assumption 3.2.4,
we adopt a simulation approach. It follows from (3.2.15) that for a simulated financial
scenario, i.e. a realization of the whole path of S, we need the shape of the insurance
business Z(t) = (U(t), V*(t),V9(t)) and corresponding controls (§(t),n(t)) for all
time points ¢t > 0. In other words, starting today from time zero, we must project
the shape of the insurance business and the controls into future time points for each
simulated financial scenario.

In the following sections, we formulate our scenario-based projection models
demonstrating how to project the shape of the insurance business in a specific
financial scenario, and how to apply these projections to calculate the expected
accumulated bonus cash flow A°(0,-). Section 3.3 concerns the general case where
Q is allowed to be FZ v F®-adapted and where we apply (3.2.21)-(3.2.22). In
the subsequent Section 3.4 we specialize to ) being state independent (of Z), i.e.
FS-adapted, where we instead can apply the simpler formula (3.2.24).

3.3 Scenario-based projection model

This section contains the main contributions of the paper and provides the foun-
dation for the special case in Section 3.4. In Subsection 3.3.1, we formulate our
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general scenario-based projection model demonstrating how to project the shape
of the insurance business into future time points in a given financial scenario. The
projections are then in Subsection 3.3.2 used to calculate the @-modified transi-
tion probabilities pZQ0 j (0,-) and corresponding expected accumulated bonus cash
flow A%(0,-). Based on this, we present in Subsection 3.3.3 a procedure for the
computation of V°(0) via an application of Proposition 3.2.2.

As noted in Proposition 3.2.2, we are able to simplify calculations of A°(0,-) to
what we coin state independent calculations of Q and p if @ is assumed F°-adapted.
This special case leads to a notion of a state independent scenario-based projection
model, which is studied in more details in Section 3.4.

3.3.1 Projecting the shape

We now turn our attention to projection of the shape of the insurance business.
This consists of computation of Z = (U, V9, V*) for realizations of S, where each
realization exactly represents a simulated financial scenario.

The method for computation of U for a realization of S follows immediately from
the dynamics of the assets according to (3.2.28). The computational issue reduces
to that of computing pZQOj(O, -), cf. (3.2.21)—(3.2.22) and (3.2.28). Thus we focus on
the projection of the portfolio-wide means V9 and V™.

First, we consider the portfolio-wide mean of the market value of guaranteed
payments, V9. From (3.2.25), calculation of V9 is a matter of calculating the
portfolio-wide means A9 of the expected accumulated guaranteed cash flows A9

defined by
A9(t,s) =E[A9(t,s)| F5(t)]
for 0 <t <s < oo.

Proposition 3.3.1. The portfolio-wide means A9 of the expected accumulated
guaranteed cash flows A9 read

A9(t,ds) = A°(0,ds) + > p2 ;(0,£)Al(t,ds)
jedJ
for allt > 0.

Proof. By (3.2.26), (3.2.19), and due to the assumed independence between Z and
S, we immediately find that

A(t,5) = B[A° () | FS(0)] + 3 B[ 1(200=p Q)AL 5) | FE (1)
JET

=E[A°(t,5)] + ) p2 (0, ) Al(t, ).
jeJ
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By (3.2.6) and the iterated law of expectations,

E[A®(t,s)] = E[B°(s) — B°(t)]
= A4°(0,s) — E[B°(t) — B°(0)].

Since the latter term does not depend on s, we find that

A9(t, ds) = A°(0, ds) + Y _ p2 ;(0,1)Al(t, ds)
JjeT

as desired. O

Calculation of V9(t) now proceeds by discounting A9(t,-) with the forward rate
curve available at time t according to the following expression:

VI(t) = / e~ JO Tt dv g9 (¢ (). (3.3.1)

t

Consequently, given A° and A" the computational issue has been reduced to that
of computing the Q-modified transition probabilities p? (0,-).

z0J
Next we consider the portfolio-wide mean of the technical reserve of guaranteed
payments, V*. We could follow the same approach above and calculate the technical
reserves via expected (accumulated) cash flows, however, since the technical interest
rate is deterministic, a range of technical reserves, including V*, ‘7*, and ‘7*’+,
can be computed more efficiently by solving the differential equations of Thiele type
derived from (3.2.3), cf. Subsection 3.2.3 and Subsection 3.2.4.

Denote by V*° the portfolio-wide mean technical reserves of predetermined
payments given by

V*eo(t) = E[VO(t) | F2 ()]

for t > 0. Since Z and S are assumed independent, we could replace the conditional
expectation by an ordinary expectation.

Proposition 3.3.2. The portfolio-wide mean technical reserve of quaranteed pay-
ments reads

V) = V() + Y 20,0V (1),
JjeET
while the portfolio-wide mean technical reserve of predetermined payments reads
Vo) = 3 pai (0,0VAO + Y 020,V (). (3.3.2)

JETP jegt
Ji#J jA2T+1
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Proof. By (3.2.27) and (3.2.19), direct calculations yield

V() =E[V*°(t) | F°(t)] + > _E []1<Z(t> —H RV ( ‘fs }
JET
)+ > p2 0,V (@)
JjET

To obtain (3.3.2), we split V*° according to the events of Z(¢) being in JP \ {J},
T\ {2J + 1}, and {J,2J + 1}. According to (3.2.4), we then have

vee(t) = E[]l(Z(t)er\{J})Vz*(t) (1) + Lzeangerrn ATV (¢ ‘7:5 }

Bl Y Lzo=pV7 O+ DY Lizw=pe) Vi) fs(t)]
YEJP jEJf
Jj#2J+1
= D OOV + Y 0.0V (),
jJETP ]EJf
i#d jA2T+1
as desired. O

As already mentioned, the technical reserves V*1, ‘N/*, and V*7F can be computed
efficiently using differential equations of Thiele type, while the p-modified transition
probabilities are simply computed according to (3.2.9). Thus Proposition 3.3.2
reduces the computational complexity to that of computing @)-modified transition
probabilities szo j(O, -). This computation is studied in details in the next subsection.

3.3.2 (@-modified transition probabilities

We are now ready to present a system of differential equations for the Q-modified
transition probabilities p?oj(O, -); here pgoj(O, ) 1= Dy (0, ) for 29 € Jt, which is in
accordance with 7 = 0 for z9 € J' and the assumption p(0) = 1.

Theorem 3.3.3. The Q-modified transition probabilities pfoj((), \) satisfy for j € J
the differential equations

d Q DPzyj (Ovt)60(t7j) +p§0j (Ovt)61 (tvj) +szOj (Ovt)62(t7j)
—p2;(0,1) =
dt 0J V* T(t)
=250, e (D) + D 024 (0, s (1), (3:33)
=

p%,;(0,0) =0.
Proof. The boundary conditions follows by the assumption that Q(0) = 0. Referring

0 (3.2.19) and (3.2.15), we have
b ()
E ﬂ(Z(t)—j)/O — du

p2;(0,8) = B[1(2()=Qt) | F*(1)] = @
Z(u)

F* (t)]
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with
5(t) = bo(t, Z(t)) + 61(t, Z(t)p(1) =0 4 65(t, Z (1)) Q(t).
Note that for 0 <u <t and k € J,

E sz(,k(()?u)
pZok‘(O7 U)

(2 (u)=k) Fo(t >] = B[ 1L(z(=rQw) | F*(1)],

} = E[l(z@=rp(r) =]

Thus by Markovianity of Z and independence between Z and S,

t
p2;(0,1) = E[]I(Z(t):j)/ > L (z(w)=ibi? (1) du ]:S(t)] (3.3.4)

0 keg
with b?, k € 7, given by

pZQOk(O,u)
onk (O,U)

5o (u, k) + 61 (u, k) 2ot L5 k)

P2k (0,u)

VT (u)

b2 (u) = (3.3.5)

for all ©w > 0. The assumption of independence between Z and S, Markovianity of
7, and Fubini’s theorem finally yield

p2(0,1) Z Dok (0, w)pr; (u, )b2 () du. (3.3.6)
0 keg

The statement of the theorem is now established by differentiation as follows. Leibniz’

integration rule gives

d d

keJ 0 keg
. 50(t7j>pzoj(0;t) + 51(t7j>pzoj(07t) + 52(t7j>szoj(07t)
Vi)

# [ 3 b0 () ) i

Applying Kolmogorov’s forward differential equations and (3.3.6) to the last line of

the equation we find that

d 5 (tv j)pzoj (07 t) -+ 51 (tv j)pgoj (07 t) + 52 (tv j)szOj (07 t)
dtpzoj (O t) V*,T
7 ()
= P20, )i (t) + D P2 (0, ) e (2)
teg
L#£j

as desired. O
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Remark 3.3.4. There exists a clear link between (Q-modified transition probabilities
and so-called state-wise retrospective reserves. Referring to (3.3.4) and (3.3.5), we
see that for a fixed financial scenario,

corresponds to the state-wise retrospective reserve of Norberg (1991) (in the presence
of information G(t) = F5(t) V o(Z(t)), cf. Norberg, 1991, Subsection 5.B) with
payments

=D Leze=pbs (£) dt
JET

and interest rate zero. Contrary to the primary setup of Norberg (1991), the
payments considered here are functions of the state-wise retrospective reserves
Wi (). v

The system of differential equations for szo j(O, -) from Theorem 3.3.3 involves the
shape of the insurance business Z through the mappings dg, 01, and d5. Together
with the results of the previous subsection, Theorem 3.3.3 allows us formulate a
procedure for the calculation of V?(0). The procedure is presented in the next
subsection.

3.3.3 Numerical procedure

Based on the results of the previous subsections, we demonstrate a procedure for the
scenario-based projection model. In what follows, we suppose we are given mappings
(6,7m) serving as controls. They are assumed to satisfy Assumption 3.2.4.

Besides the financial scenarios, the input consists of the following quantities which
can be precalculated independently of the financial scenarios:

(1) The expected accumulated cash flow of predetermined payments A°(0, s) for
s >0 as in (3.2.8).

(2) The portfolio-wide mean technical reserve of predetermined payments V*°(t)
for all £ > 0 calculated via (3.3.2).

(3) For each t > 0, state-wise expected accumulated unit bonus cash flows A;r- (t,s)
for all s >t and j € J as in (3.2.13)—(3.2.14).

(4) State-wise technical unit reserves Vj*’T(t) for all ¢ > 0 and j € J as in (3.2.10).

(5) Transition probabilities p,,;(0,t) for all t > 0 and j € J.
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As discussed previously, this input can be calculated using classic methods for solving
differential equations of Thiele type as well as (p-modified) Kolmogorov forward
differential equations.

The financial scenarios are N realizations {S*(t)};>0, k= 1,..., N, of {S(¢)}+>0
with corresponding short rate 7* and forward rate curves f¥. We consider them as
output of an economic scenario generator.

The procedure essentially consists of computing pgj ;(0,-), j € J,and U(:) in
each financial scenario by solving a system of (stochastic) differential equations. The
involved part is to evaluate the differentials. The procedure looks as follows. For
each financial scenario k =1,...,N:

o Initialize with p2*(0,0) = 0 for all j € J and U*(0) = uo.

e Apply a numerical algorithm to solve the coupled (stochastic) differential equa-
tion systems for pZQO’f(O, ), j € J, and U*(-) from Theorem 3.3.3 and (3.2.28),
respectively.

— Evaluating the differentials at time ¢ involves the mappings (dg, 01,02, 7)
from (3.2.29)—(3.2.30). By inspection of the differentials and these map-
pings, we see that we require the shape of the insurance business

I(t) = (UF(t), VIR (), Vor(n),

the expected bonus cash flow a®*(0,t), as well as the input. Computa-
tion of V9F(t), V**(t), and a®*(0,t) is achieved via Proposition 3.3.1,
Proposition 3.3.2, and (3.2.22).

e We emphasize that as part of evaluating the differentials we computed the
expected bonus cash flow a®*(0,-).

The procedure completes by computing the market value of bonus payments V°(0)
via

N
1 " ¢
VP(0) ~ N E /0 e~ Jo rk(v)dvab’k((),t) dt
k=1

using an algorithm for numerical integration.

Note that we require the input (3), which are the state-wise expected accumulated
unit bonus cash flows A;r.(-, -) evaluated on the two-dimensional time grid {(¢,s) €
[0,00)% : t < s}. To precompute this input, one must solve Kolmogorov’s forward
differential equations many times, once for every ¢t > 0 and j € J. This significantly
impacts the numerical efficiency of the procedure. Furthermore, the algorithm itself
depends on the market basis for the specific insured through the transition rates pu.
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In practice, where the algorithm must be executed for many insured, one must view
the specific transition rates for a single insured as input.

In the following section, we present the simpler state independent scenario-based
projection model, where we require that the dividend strategy be specified (or
approximated) such that @ is F°-adapted. By presenting a numerical procedure
for the model, we show how this requirement on the dividend strategies leads to a

numerical speedup.

3.4 State independent scenario-based projection model

This section concerns the formulation of the state independent scenario-based
projection model. The model is a special case of the projection model from Section
3.3 which relies on ensuring @Q to be an F°-adapted process such that the simplified
case of Proposition 3.2.2 applies. In Subsection 3.4.1, we provide sufficient conditions
on ¢ such that Q is F¥-adapted. Next, Subsection 3.4.2 revisits the projection of the
shape under this simplification. Finally, in Subsection 3.4.3 we present a procedure
for the computation of the market value of bonus payments in the state independent
projection model.

3.4.1 Class of dividend strategies

Recall from (3.2.15) and (3.2.30) that @ is the solution to the differential/integral
equation
do(t, Z(t) +61(t, Z(t))p(r) =0 + da(t, Z(1))Q(2)

dQ(t) = Vo dt, Q(0) = 0.

To ensure that Q is an F°-adapted process, it suffices to require that &y, 6; and do
are on the form

5i(t, Z(1)) = 0V (1), i=0,2, (3.4.1)
81(t, Z(t)) = 0, (3.4.2)

where we have used the shorthand notation &;(¢) = &; (¢, S(- A t),Z(t)) for suitably
regular deterministic mappings 9;, ¢ = 0,2. This is a consequence of the following
observation. When (3.4.1)—(3.4.2) hold, then simply

dQ(t) = (do(t) + d2()Q(t))dt, Q(0) = 0. (3.4.3)

This implies p2 ;(0,t) = Q(t)p-,;(0,1), cf. (3.2.23).

Remark 3.4.1. Since the class of dividend strategies presented here builds on As-
sumption 3.2.4, affinity in @) is more or less implicitly assumed. The simplifications
we obtain in the following Subsections 3.4.2-3.4.3 build on @ being F°-adapted
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rather than the dividend strategy being affine in (). The results are therefore trivially
extendable to dividend strategies that are non-affine in the number of additional
benefits held. v

3.4.2 Projecting the shape revisited

For the portfolio-wide means A9 we observe a simplification in the part that con-
cerns future bonus payments similar to what we previously saw concerning the
predetermined payments:

Corollary 3.4.2. Assume that the dividend strategy 6 is on the form (3.4.1)—(3.4.2).
The portfolio-wide means A9 of the expected accumulated guaranteed cash flows A9
then read

A9(t,ds) = A°(0,ds) + Q(t) AT (0, ds).

Proof. From Proposition 3.3.1 and its proof, we have
A9(t,s) = A°(0,s) — E[B°(t) — B°(0)] + E[Q(t)AT(t, s) ‘ ]-"S(t)] .

Since by assumption @ is F°-adapted and Z and S are independent, referring
to (3.2.5) with superscript o replaced by t and applying the law of iterated expecta-
tions yields

E[Q)AT(t,5) | F2(t)] = Q(t) E[B'(s) — BY(1)]
= Q()AY(0,5) — Q) E[B(t) — B'(0)]
Consequently,
A9(t, ds) = A°(0, ds) + Q(t)AT(0, ds)

as desired. O

For the technical reserve, the result is similar. Before we present the result, let
the portfolio-wide mean technical unit bonus reserve V*1 be given by

Vi) = B[ Vil o) | 7]

for ¢ > 0. Since Z and S are assumed independent, we could replace the conditional
expectation by an ordinary expectation. It is then a trivial observation that

VAT() =Y peoi (0,)V (1), (3.4.4)
JjET
Corollary 3.4.3. Assume that the dividend strategy 0 is on the form (3.4.1)—(3.4.2).
The portfolio-wide mean technical reserve of guaranteed payments then reads

VE(t) = VRo(t) + Q)VI(t).
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Proof. Since by assumption, Q is F°-adapted and Z and S are independent, the
result follows immediately from (3.2.23), Proposition 3.3.2, and (3.4.4). O

The following example is a continuation of Example 3.2.6 regarding the accumu-
lation of the technical reserve with a second order interest rate.

Example 3.4.4 (Second order interest rate continued). The dividend strategy from
Example 3.2.6 regarding accumulation of the technical reserve V* with a second
order interest rate r® does not satisfy the requirements on ¢ from (3.4.1)—(3.4.2).
Instead, the strategy

5(t) = (r°(t) — r*(1)) ‘_/V;*T(g) Vi (), (3.4.5)
satisfies (3.4.1)—(3.4.2) with
() = 000 = D) g amd ()= 600 =1 (0)

One may think of this strategy as an accumulation of the portfolio-wide mean
technical reserve V* with r° instead, since by (3.4.3),

V() dQ(t) = (r°(t) — r* (1)) V*(¢) dt.

By multiplying the strategy (3.4.5) with

V() nd V*i(t)
V(1) VE&I) (t)

one arrives at strategy of Example 3.2.6. If the two ratios are close to one, the
strategy (3.4.5) approximates the strategy of Example 3.2.6. Note that

E[V*(t)/V*(t) }]—"S(t)] =1,

i.e. the portfolio-wide mean of the first ratio is equal to one. For the latter ratio,
this is not necessarily the case since it is non-linear in VZ*&I)(t). o

3.4.3 Numerical procedure

Based on the results of the previous subsections, we demonstrate a procedure for
the state independent scenario-based projection model. In what follows, we suppose
we are given mappings (9,n) serving as controls. They are assumed to satisfy
Assumption 3.2.4 with § on the form (3.4.1)-(3.4.2).

Besides the financial scenarios, the input consists of the following quantities which
can be precalculated independently of the financial scenarios:
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(1) The expected accumulated cash flow of predetermined payments A°(0, s) for all
s >0 asin (3.2.8).

(2) The portfolio-wide mean technical reserve of predetermined payments V*°(t)
for all £ > 0 calculated via (3.3.2).

(3) The expected unit bonus cash flow af(0, s) for all s > 0 as in (3.2.12).

(4) The portfolio-wide mean technical unit bonus reserve V*7(t) for all + > 0
calculated via (3.4.4)

As discussed previously, this input can be calculated using classic methods for solving
differential equations of Thiele type as well as (p-modified) Kolmogorov forward
differential equations.

The financial scenarios are N realizations {S*(t)};>0, k= 1,..., N, of {S(¢)}+>0
with corresponding short rate 7% and forward rate curves f¥. We consider them as
output of an economic scenario generator.

The procedure essentially consists of computing Q(-) and U(-) in each financial
scenario by solving a system of (stochastic) differential equations. The involved part
is to evaluate the differentials. The procedure looks as follows. For each financial
scenario k =1,...,N:

e Initialize with Q*(0) = 0 and U*(0) = wy.

e Apply a numerical algorithm to solve the coupled (stochastic) differential
equation systems for Q*(-) and U*(-) from (3.4.3) and (3.2.28), respectively.

— Evaluating the differentials at time ¢ involves the mappings (go,gg,n)
from (3.2.29) and (3.4.1). By inspection of the differentials and these
mappings, we see that we require the shape of the insurance business

T(t) = (UM (1), VEE(t), VR (1),

the expected bonus cash flow a”*(0,t) = Q*(t)a'(0,t), cf. (3.2.24), as
well as the input. Computation of V9*(t) and V**(t) is achieved via
Corollary 3.4.2 and Corollary 3.4.3.

e We emphasize that as part of evaluating the differentials we computed the
expected bonus cash flow a®*(0,-).

The procedure completes by computing the market value of bonus payments V°(0)
via

N
1 " ¢
Vo (0) ~ N E /o e Ork(”)d“ab’k(O,t) dt
k=1
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using an algorithm for numerical integration.

Note that in comparison with the procedure of Subsection 3.3.3, the expected unit
bonus cash flows aT (t,-), 7 € J, have only to be precomputed for j = zo and t = 0.
This leads to a Speedup Additionally, the procedure itself does not depend on the
market basis for the specific insured (except potentially through the mappings 60, 62,
and 7n7). These are the primary practical advantages that are gained by strengthening
the requirements on the dividend strategy to (3.4.1)-(3.4.2).

3.5 Outlook

In this section, we compare our methodology and results with recent advances in the
literature and discuss possible extension in demand by practitioners. Subsection 3.5.1
contains comparisons with Bruhn and Lollike (2020), Falden and Nyegaard (2020),
and Jensen and Schomacker (2015), while the inclusion of both duration effects
(so-called semi-Markovianity) and the bonus scheme consolidation is the focal point
of Subsection 3.5.2.

3.5.1 Comparison with recent advances in the literature

In Bruhn and Lollike (2020) and the follow-up paper Falden and Nyegaard (2020),
where the methods and results of the former are generalized to allow for surrender
and free policy conversion, primary attention is given to the derivation of differential
equations for quantities such as

B[ Lizi=HV* @) | F>(@1)].

Since V* = V*° 4+ Q- V*', we find that t — L(z)=;V*(t) is an affine function
of t = 1 (z1)=;)Q(t). Thus disregarding free policy conversion, we see a direct link
between the differential equations derived in Bruhn and Lollike (2020) and Falden
and Nyegaard (2020) and those of Theorem 3.3.3. For these results suitable affinity
of the dividend strategy is a key assumption.

The inclusion of the policyholder option of free policy conversion adds an additional
layer of complexity. We assumed the unit bonus payment stream BT to be unaffected
by the free policy option, which leads to the total payment stream given by (3.2.16).
No such assumption is made in Falden and Nyegaard (2020), which leads to more
involved payment streams, although by setting BT = B°™T, our payment stream
equals that of Falden and Nyegaard (2020, Subsection 4.2, cf. (11)—(12)).

We consider some key concepts and provide practical insights that are not within
the scope of Bruhn and Lollike (2020) and Falden and Nyegaard (2020). We explicitly
include financial risk, which serves as a good starting point for the extension to
doubly stochastic models with dependence between the financial market and the
stochastic transition rates. Moreover, we identify and discuss the theoretical and
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practical challenges arising from the fact that the dividend strategy depends on
the shape of the insurance business. Furthermore, we provide ready-to-implement
numerical schemes for the computation of the market value of bonus payments.
Finally, we discuss potential simplifications arising when the number of additional
benefits is (approximated to be) F7-adapted — the state independent case, which
might be of particular interest to practitioners.

The projection model described in Jensen and Schomacker (2015, Section 4)
appears to be conceptually very close to exactly our state independent model. As an
example, additional benefits are in Jensen and Schomacker (2015, see p. 196) bought
according to the portfolio-wide mean V*T of the technical reserve rather than the
actual technical reserve VZ*&T); this is exactly in the spirit of our Example 3.4.4.
Consequently, we believe that our presentation among other things serves to forma-
lize and generalize the pragmatic approach found in Jensen and Schomacker (2015)
and, correspondingly, aims at bridging the gap between the methods and results
found in Bruhn and Lollike (2020) and Falden and Nyegaard (2020) and Jensen and
Schomacker (2015).

3.5.2 Extensions

In both theory and practice, the generalization to so-called semi-Markovian models
introducing duration dependence in the transition rates and payments is popular
and impactful, cf. Hoem (1972), Helwich (2008), Christiansen (2012), and Buchardst,
Mgller, and Schmidt (2015). We believe that the methods we use here can easily be
adapted to semi-Markovian models.

The increase in numerical speed from the general case to the state independent
case is increasing in the complexity of the intertemporal dependence structure,
which can be seen as follows. Referring to Subsection 3.3.3 and Subsection 3.4.3,
the general projection model requires as input the expected unit bonus cash flows
evaluated on a two-dimensional time grid, while evaluation on a one-dimensional
time grid suffices for the state independent model. When including duration effects,
the complexity increases, which ought to entail a four-dimensional time/duration grid
for the expected unit bonus cash flows in general projections and a two-dimensional
time/duration grid in state independent projections. The gain in numerical speed by
assuming the state independent special case is thus far greater in the semi-Markovian
model compared to the Markovian model.

In Denmark, the bonus scheme known simply as consolidation (in Danish:
styrkelse) sees widespread use in practice, cf. Jensen and Schomacker (2015, Subsec-
tion 4.1). Consolidation involves two technical bases: a low (more prudent) basis and
a high (less prudent) basis. At the onset of the contract, the predetermined payments,
i.e. the payments guaranteed at time zero, satisfy an equivalence principle for which
some payments are valuated on the high technical basis and the remaining payments
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are valuated on the low technical basis. Dividends are then used to shift these
payments from the high to the low basis while upholding the relevant equivalence
principle. Typically consolidation is combined with the bonus scheme additional
benefits in the following manner. When all predetermined payments have been
shifted to the low technical basis, future dividends are used to buy additional benefits.
This ruins a key affinity assumption, which increases the complexity significantly.
In particular, an extension of Theorem 3.3.3 appears to require more sophisticated
methods. In the state independent case, the assumption of affinity is not required,
cf. Remark 3.4.1. Consequently, we believe that it is straightforward to extend the
state independent projection model to include consolidation in combination with
additional benefits.
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Chapter 4

Representation of scaled expected
insurance cash flows via change of

measure techniques

ABSTRACT

We consider general life insurance payment processes and study the ex-
pected accumulated cash flows that arise when modifying the payments
by scaling factors depending on the time of occurrence of specific events.
Such modified payment processes arise naturally in the context of in-
cidental policyholder behavior. We associate to the modifications new
probability measures which allows for standard representation of the ex-
pected accumulated cash flows. The measures are characterized in terms
of the original measure and the scaling factors.

Keywords: Life insurance; Incidental policyholder behavior; Jump processes;
Follmer measures

4.1 Introduction

There has recently been an increasing interest in the representation and efficient
computation of expected accumulated life insurance cash flows in the presence of
free policy behavior and stochastic retirement, see Henriksen et al. (2014), Buchardt,
Mpgller, and Schmidt (2015), Buchardt and Mgller (2015), Gad and Nielsen (2016),
and Asmussen and Steffensen (2020). In these investigations, the jump process
governing the state of the insured is assumed (semi-)Markovian, and the focus is on
modeling, representation of expected accumulated cash flows, and computation of
certain transition (sub-)probabilities using modifications of Kolmgorov’s forward

101
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differential equations.

In this paper, we consider general life insurance payment processes in a canonical
jump process framework. We study the representation of the expected accumulated
cash flows that arise when modifying the payments by scaling factors depending on
specific jump times. Contrary to previous investigations in the actuarial literature
with this focus, we do not impose any restrictions on the intertemporal dependence
structure of the jump process. By using supermartingales as Radon-Nikodym
derivatives, we find representations of these expected accumulated scaled cash
flows on classic form w.r.t. a new probability measure. The probability measure is
characterized in terms of the original measure and the scaling factors. In conjunction,
these results shed light on the universality of the previously mentioned advances in
the actuarial literature and provide a natural stepping stone for the derivation of
efficient computation schemes beyond (semi-)Markovian models.

The paper is structured as follows. In Section 4.2, we motivate the investigation
and present the probabilistic setup. Section 4.3 contains the main results. Proofs
are given in Appendix 4.A.

4.2 Motivation and setup

Our work is motivated by recent advances in multi-state life insurance; this aspect is
discussed in Subsection 4.2.1. In Subsections 4.2.2—4.2.3, we introduce and describe
the general framework.

4.2.1 Motivation

In multi-state life insurance mathematics, key objects of interest include expected
accumulated cash flows. If B = (B(t));>0 is a suitably regular payment process
and the filtration F = (F;)s>0 constitutes the available information, then the
corresponding expected accumulated cash flows A are given by

At,s) = E[B(s) — B(t) | Fi].

Markov chain models remain popular in both theory and practice, cf. Hoem (1969),
Norberg (1991), and Buchardt and Mgller (2015). In these models, the payments
take the form

B(dt) =Y Nyz,—pbi(t)dt+ Y biw(t)N(dt) (4.2.1)
jedJ J.keT k#j

for suitably regular deterministic sojourn payment rates b; and transition payments
bjr. Here Z = (Z;);>0 is a Markovian jump process on a finite state space J
admitting suitably regular transition rates . The compensators of the corresponding
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multivariate counting process N = (N (t)):>o are then given by
Ajk(dt) = ]l{Zt_:j},ujk(t) dt.

The filtration F consists of the information naturally generated by Z. Since

A(t,ds) =Y pzi(ts) [ 0i(s) + D mir(s)bir(s) | ds

JjET keJ:k#j

with p denoting the transition probabilities of Z, computation of the expected ac-
cumulated cash flow A(¢, -) simply involves computation of the transition probabilities
p(t,-) via Kolmogorov’s forward differential equations.

In the last decade, the inclusion of incidental policyholder behavior has received
significant interest, see e.g. Henriksen et al. (2014), Buchardt, Mgller, and Schmidt
(2015), Buchardt and Mgller (2015), and Gad and Nielsen (2016). The inclusion
of the free policy option and the option to retire earlier or later leads to payments
that are scaled by a factor depending on the exercise time(s) of the option(s). This
entails that the aforementioned forward method for the computation of expected
accumulated cash flows appears to not be applicable.

To include incidental policyholder behavior, one may set J = JyU J; and assume
that Z; € J1 implies Z; € J; for all s > t. With 7 the first hitting time of 77, we
can then interpret 7 as the states prior to exercise, 7 as the exercise time, and J;
as the subsequent states. Interest now lies in payments B” of the form

Be(dt) = p(r, Z,— )" 7= B(dt)

with p € (0,1] some suitably regular scaling factor and B given by (4.2.1). By
inspecting closely the methods and results of e.g. Buchardt and Mgller (2015), it is
possible to show that the expected accumulated cash flows are given by

AP(t,ds) "2 p(r, Z,o) 0=y ply (8 8) | 0(s) + D HG(s)bn(s) | ds,
JjET keJ k#j

where p? are the transition probabilities of another Markovian jump process Z* =
(Z0)1>0 with values in V U J admitting transition rates p” given by

15 () = p(t, 5) e (1), i€ Jo k€T,
g (t) = (1—p(t, ) Z ik (1), J € Jos

phy (t) =0, re J €,

e () =0, keJ,

1 (t) = (1), otherwise.
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Computation of the expected accumulated cash flow A”(t,-) thus involves computa-
tion of the transition probabilities p” via Kolmogorov’s forward differential equations.
Consequently, the forward method for Markov chain models is easily adapted to
take into account incidental policyholder behavior.

Besides the approach found in Christiansen and Djehiche (2020), which concerns
backward methods and the determination of the scaling factors pq, ..., p, while
maintaining actuarial equivalence, the literature focuses on (semi-)Markovian jump
processes and at most two policyholder options. The above demonstration, which
is akin to a change of measure, is new and actually alludes to a more general link
between scaling factor and changes of measure; our focus is exactly on establishing
this link. To this end, we investigate the general case consisting of an arbitrary (fi-
nite) number of policyholder options and no restrictions regarding the intertemporal
dependence structure of the jump process. The provision of solutions to specific
actuarial problems, in particular in the context of efficient computation of expected
accumulated cash flows in the presence of free policy behavior and stochastic retire-
ment, is postponed to future research. Correspondingly, the following presentation
is shaped in a general probabilistic fashion, and the methods and results are aimed
at users of multi-state models in general.

4.2.2 Canonical framework

Introduce the mark space 7 ={V}U JpU---UT,, n € N, with each J; countable,
equipped with the power-set 27. For i = 1,...,n we denote by J;_ the set
JiU---UJi—1. Fori=0,...,n—1 we denote by J;+ the set J;11 U---U J,.
Consider a background probability space (€2, F,P). Here (2,F) is taken to be the
canonical measurable space of non-explosive random counting measures associated
with the mark space (J,27). We denote by v° the canonical random counting
measure given by the identity map from (£2,F) onto (€2, F). See Jacobsen (2006) for
details regarding the canonical framework.

Let (T,Y) = (Tn, Yn)nen be a non-explosive marked point process with mark
space (J,27). We note that (T,Y) is an isomorphism (bijective and bimeasurable
map) from (£2,F) onto the canonical measurable space of non-explosive marked point
processes with mark space J.

We equip (€2, F) with the canonical filtration F = (F;):>0 generated by v°. Recall
that F is right-continuous. We are not going to complete F; in other words, the
usual conditions do not hold. Consequently, we rely on results pertaining to the
canonical framework (as presented by e.g. Jacobsen, 2006) rather than results from
‘the general theory of processes’.

Set Ty = 0 and Yy = 29 # V, and let Z = (Z;);>0 be the non-explosive jump
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process associated with (T},, Y, )nen In other words, Z is defined by
Zy =Y, (Tn §t<Tn+1)

Note that Z is not an isomorphism from (2, F) onto the canonical measurable space
of non-explosive jump processes with values in (7,27) since Z is not injective
(identical successive marks are not identifiable from Z). Still, we might associate
with Z a random counting measure v : (Q,F) — (€2, F) such that v(]0,t] x J) is the
number of jumps of Z to J C J before time ¢ > 0. Since Z is not injective, v # v°.

It is natural and custom to specify the model through the (compensators of the)
multivariate counting process N = (N (t));>0 associated with Z given by N;,(0) =0
and

Nyult) = #4s € (0,4] : Zoo = j, Zs = k} = /( Dz vlds < (K
0,
for j,k € J,k # j, and t > 0. Observe that the natural filtrations %, F~, and F
generated by Z, N, and v, respectively, agree (see e.g. Jacobsen, 2006, p. 43 mid).

Our techniques rely on the canonical framework and thus pertain to the filtration
F. The probabilistic model can be specified via the canonical compensating measure
C° w.r.t. P, i.e. the compensating measure of v° w.r.t. (F,P), cf. Jacobsen (2006,
Section 4.8, in particular Theorem 4.8.1). Alternatively, one might want to specify the
probabilistic model via the predictable compensators of N w.r.t. the natural filtration
FN. In that case, the following observation concerning the relation between the
canonical framework and the multivariate counting process N is important. When
the model is specified via the multivariate counting process N, we can without loss
of generality assume that there are no identical successive marks under P, i.e.

P(T, < 00,Y, # Yni1) = P(T, < o0) (4.2.2)

for all n € Ny. This follows from the observations that the distribution of v defines
another probability measure on (£, F) that does not alter the distribution of N and
for which (4.2.2) holds. When (4.2.2) holds, one can show that F and F¥ only differ
on P-null sets and that v and v° are P-indistinguishable. This ensures that we may
specify the probabilistic model via the predictable compensators of N, alternatively
via the compensating measure of v, w.r.t. the natural filtration F7, rather than via
the canonical compensating measure. In the following, we suppose (4.2.2) holds.

Terminology A real-valued stochastic process X = (X;);>0 is said to be contin-
uous, cadlag, of finite variation, etc., if that property holds for every path X (w),
w € 2. Furthermore, X is said to be bounded if there exists a universal constant
K > 0 such that | X;(w)| < K for all w € Q and t > 0. Also, a stochastic process
X is said to be a finite variation process if X is real-valued, adapted to F, of
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finite variation, and cadlag. Finally, a finite variation process X is said to have
P-integrable variation if the variation |X| = (|X|¢):>0 of X satisfies E[|.X|] < oo for
all t > 0.

4.2.3 Stopping times and scaling factors
Define 71,...,7,, and ¢ as the first hitting times of [J1,...,J,, and {V} by Z,
respectively:
7; == 1inf{s € [0,00) : Zs € J;}, i=1,...,n,
¢ :=inf{s € [0,00) : Z; = V}.
We use the convention inf ) = co. Note that 7 and ¢ are stopping times w.r.t. F,

see e.g. Jacobsen (2006, Proposition 4.2.1(b)(i)). The following assumptions are
imposed:

Assumption 1: P(¢ < co) = 0. In other words, Z does not hit {V} under P.

Assumption 2: For any i = 1,...,n and j € J;, it holds that P(N,;(t) > 0) =0
for all k € J;,— and all t > 0.

In combination, Assumptions 1-2 in particular imply a decrement structure under
P in the following sense: The jump process Z only exits J; by a transition to J;t
whereafter return to J;,_ U J; is impossible.

Let p1,...,pn be some real-valued FV-predictable and hence also F-predictable
processes. Assume 0 < p; < 1 and that p; is bounded away from zero for each
1=1,...,n.

Define the real-valued processes H; = (H;(t))t>0 by
H;(t) = pi(ri)' <o, t >0,

for i =1,...,n, and define the real-valued process H = (H(t))¢>0 by

It follows that 0 < H < 1 bounded away from zero and that H is a finite variation
process.

4.3 Main results

This section contains the main results of the paper. We show the existence of and
characterize a probability measure P on (€2, F) such that for any finite variation
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process B with P-integrable variation,

E H(u) B(du)

(s:1]

fs] Fas. E [/ ]l{C>u} B(du) Fs] H(S) (4.3.1)
(5,t]

for 0 < s < t < oo. Here and in the following, the operator E denotes P-integration.

In Subsection 4.3.1, we construct the desired probability measure via the (condi-
tional) finite-dimensional distributions of the corresponding marked point process.
Formula (4.3.1) is proven in Subsection 4.3.2. Subsection 4.3.3 is concerned with the
characterization of the new probability measure via its corresponding compensating
measure.

4.3.1 Preliminaries and construction

In this subsection, we explicitly construct the desired probability measure P via the
(conditional) finite-dimensional distributions of the corresponding marked point pro-
cess. Before turning to the construction, we discuss a preliminary result concerning
H. This discussion is intended to motivate the subsequent construction.

Suppose there exists a probability measure P such that (4.3.1) holds. Denote
for t > 0 by P; and ]f"t the restrictions of P and P to Fi, respectively. We should
then find that P, < Py, ¢ > 0, with Radon-Nikodym derivatives (likelihood process)
L = (L¢)i>0 given by

L= %1{0”. (4.3.2)

We may ask: why expect the existence of a probability measure P yielding (4.3.2)7
The following result helps to reveal what is going on behind the scenes:

Proposition 4.3.1. H is a supermartingale w.r.t. (F,P).

Proof. See Appendix 4.A. O

Remark 4.3.2. Unless p; = 1 or P(1; < o0) = 0 for all i« = 1,...,n, one actually
obtains that H is a true supermartingale w.r.t. (F,P), confer e.g. with the proof of
Proposition 4.3.1. v

According to Proposition 4.3.1, the process H = (H(t));>o defined by H(t) =
H(t)/H(0) is a supermartingale w.r.t. (F,P) satisfying E[H(0)] = 1. Since H is
supermartingale, successful change of measure — in the sense of the likelihood process
L being a (local) P-martingale — requires ‘losing’ probability mass. Recall that due
to Assumption 1, the jump process Z does not hit {V} under P, and consequently,
such a loss might be achieved by giving positive probability to hitting {V}. This idea
is also reflected in (4.3.2). The resulting probability measure P would be a so-called
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Féllmer measure associated with the supermartingale H, and (If”, ¢) would be a
so-called Féllmer pair for the supermartingale H (see Definition 2.1 in Perkowski
and Ruf, 2015). General existence and non-uniqueness results for Follmer measures
are given in Perkowski and Ruf (2015).

In the following, we explicitly construct a Follmer measure for H starting from
the (conditional) finite-dimensional distributions of the corresponding marked point
process. The specific choice of new (conditional) finite-dimensional distributions
might seem rather unmotivated, but it is actually inspired by (4.3.2) using the close
link between likelihood processes, compensating measures for the random counting
measures, and (conditional) finite-dimensional distributions for the corresponding
marked point processes (see e.g. Jacod, 1975; Jacobsen, 2006). In other words, it
results from an act of reverse engineering starting from (4.3.2).

Denote with (t—) the total number of jumps up until but not including time
t € (0,00), i.e.
{t=) == v°([0,t) x J),
and denote with =,,, m € Ny, the first m jump times and marks, i.e.
Em = (T1,Y1,..., T, Ym)
with (T, Yy) = (0, zp). Further, denote with P™, m € Ny, the regular conditional

distribution of

—_—

Tyy1 given ZE,, under P,
and denote with 7", m € Ny, the regular conditional distribution of
Yine1 given (Z,,,T41) under P.

In particular, P° is the distribution of T} under P and 7 is the conditional dis-
tribution of Y7 given T7 under P. In the remainder of the paper, we consider a
fixed version of these regular conditional distributions. Note that we hereby also
implicitly fix a version of the corresponding compensating measure and a version of
the corresponding predictable compensators (cf. Jacobsen, 2006, Subsection 4.3).

We now turn our attention to the construction of the new probability measure.
Since the processes p1,...,p, are assumed predictable, there exists measurable
functions (Z,,,t) — f"(Em,t) € (0,1], m € Ny, such that

pi(t) = f7;<t7>(5<t—)at)

for ¢ > 0 using the convention (0—) = 0. For details we refer to e.g. Jacobsen
(2006, Section 4.2, in particular Proposition 4.2.1(b)(iv)). We may then define new
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regular conditional distributions P™ of T},41 given Z,, and new regular conditional
distributions of ™ of Y,, 41 given (Z,,, Tjn11) by setting P° = PY and

- _ 0, VG{Yl,...,Ym},
P™([0,t]|E) = _ '
P™(]0,t]|E,,), otherwise,

for m € N, as well as setting
ﬁm({k} | Em, Tm-i-l) = fim(EmvTm—l—l)ﬂ{ymeﬂf}ﬂ'm({k} | Em,Tm—H)a

for k € J;,i=0,...,n, and m € Ny (using the convention 1y, ¢z 1 = 0) and

ﬁ'm({v} | EmaTm—H) = Z ]1{Y1n€ji—}(1 - fz‘m(Emva—H)) Z Wm({k} ’ Emva—H)a
i=1 keJ;

for m € Ny. Note that for k # V,
AR} | s 1) < 7 ({6} | Z s Ton) (4.3.3)
since p; < 1fori=1,...,n.

In the following, we consider the above version of the regular conditional distribu-
tions fixed. Note that we hereby also implicitly fix a version of the corresponding
compensating measure and a version of the corresponding predictable compensators.
Setting P ([0,t] | Z,) = 0 on (Y;,, = V) is not necessary; since Z does not hit {V}
under P, the behavior of Z after hitting {V} under the new probability measure is
not important for the result we develop. But it does ensure some type of minimality
of the version we fix, in the sense that {V} becomes absorbing under the new
probability measure. The antecedent discussion is related to non-uniqueness of

Follmer measures, see also Perkowski and Ruf (2015).

An application of the Ionescu-Tulcea theorem now yields a uniquely defined
probability measure P on the canonical measurable space of possibly explosive
marked point processes with mark space J with (conditional) marginals P™ and
7™ . It essentially only remains to be shown that we can restrict P to the canonical
measurable space of non-explosive marked point processes.

To verify that the restriction is possible, we need to establish the identity

P[lim T, =oo| = 1.

m—r oo

Since (Ty,)men is increasing, this is equivalent to

Vt>0: lim P[T}, <t]=0.

m— o0

Recall that (T,)men is non-explosive under P. It then holds for all ¢t > 0 that

lim P[T,, <] =0,

m—0o0
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and we can conclude that it is sufficient to establish the identity
P[T,, <t] <P[T}, <]

for all ¢ > 0 and m € N.

Lemma 4.3.3. For allt >0 and m € N,

P[T,, <t] < P[T;, <t].
Proof. See Appendix 4.A. O

Collecting results, we conclude that it is possible to restrict P to the canonical
measurable space of non-explosive marked point processes. Consequently the inverse
of the isomorphism (7,Y) induces a new probability measure P on (£, F) under
which (7,Y) has (conditional) marginals P™ and #™ for m € Nj.

4.3.2 Expectation formulas

We now turn our attention to establishing (4.3.1). Recall that the new probability
measure P was constructed exactly with (4.3.2) in mind. The following result
confirms the intention of the construction.

Proposition 4.3.4. For any t > 0 it holds that P, < P, with Radon-Nikodym
derivative
_dPy 1

t = dI@’t = H(t) {¢>t}s

which defines a bounded cadlag martingale £ = (L4)i>0 w.r.t. (F,P).

Proof. Local absolute continuity and the fact that £ is a cadlag martingale w.r.t.
(F,P) follows immediately by an application of Jacobsen (2006, Theorem 5.1.1(b)).
Since the assumptions on p1, ..., p, guarantee that H is bounded away from zero,
L is also bounded. O

By invoking the Radon-Nikodym derivatives (likelihood process) of Proposi-
tion 4.3.4, we immediately arrive at (4.3.1).

Theorem 4.3.5. Let B = (B(t)):>0 be a finite variation process with P-integrable
variation. Then for any t > 0,

.FS] Fa.s E [/ ]l{(>u} B(du)
s,t]

)

E H(u) B(du)

(s:]

]:S]H(s), 0<s<t.
In particular,

E H(u) B(du)

(0,2]
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Proof. See Appendix 4.A. U

With B defined by B(s) = 14>+ X, s > 0, for a given ¢ > 0 and some real-valued,
Fi-measurable, and P-integrable random variable X, an application of Theorem 4.3.5
yields the following corollary:

Corollary 4.3.6. Lett > 0, and let X be a real-valued, F;-measurable, and P-
integrable random variable. Then

E[H(t)X | Fo) "= B[ 1o X | F] H(s), 0<s<t.
In particular,
E[H()X] = E[1(cnX].

Remark 4.3.7. Corollary 4.3.6 confirms that (}f”, () is indeed a Follmer pair for the
P-supermartingale H, cf. Perkowski and Ruf (2015, Proposition 2.3). v

Example 4.3.8 (True martingales). The following condition, which e.g. ensures
that the differences N — A are true (rather than only local) martingales w.r.t. (F,P),
is often imposed:

E| Y Ni(t)| < oo, t>0. (4.3.4)

JkeT
k#3j

Suppose (4.3.4) holds. Since {V} is absorbing under P, it follows from Theorem 4.3.5
and the inequality H < 1 that

JkET jeg jkeg 7 (0,
kg JAV k#j
<HO)+E| Y H (u) Njj,(du)
j,k;J (Oat]
k#j

for any t > 0. Since H is positive and bounded away from zero, we conclude
that (4.3.4) implies

E| ) Ni(t)| < oo, t>0.

j.keT
k#j

In other words, conditions such as (4.3.4) are stable w.r.t. change of measure from

P to P. o
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4.3.3 Characterization

We conclude our study by characterizing the new probability measure P in terms of
its corresponding compensating measure.

The canonical compensating measure C° w.r.t. P, i.e. the compensating measure

of v° w.r.t. (F,P), is given by (for J € 27)

P<t—> (dt ’ E(t_>)
— P |20’

Co(dt x J) = 7 (T|Epy,t) -

cf. Jacobsen (2006, Definition 4.3.2), and the predictable compensators A of N w.r.t.
(F,P) are given by

Ajk(dt) = ]l{Zt_:j} Co(dt X {]{3})

Denote by C° the canonical compensating measure w.r.t. P, i.e. the compensating
measure of v° w.r.t. (F, I@’), and denote by A the predictable compensators of N
w.r.t. (F,P).

Proposition 4.3.9. It holds that

Co(dt x J) = Liesnpi(t) 172730 (dt x J), JC Jii=0,...,n,

Co(dt x {V}) = Tyeony D yz,_eq3(1—pilt) C°(dE x Ty),

=1

where we use the convention 1z, ¢z, v = 0. In particular,

Ajk(dt) = ]l{CZt}p€<t> Ajk(dt), jEe Ji, k e ﬂ,f > 1,
1=0,....,n—1,

Ajo(dt) =Ty Y (L—pe(t) Y Ajw(dt), j€ Fi=0,...,n—1,

l=i+1 keTp
Avi(dt) =0, keJ k+V,
A (dt) = Lesgy Agi(de), otherwise.
Proof. See Appendix 4.A. U

Example 4.3.10 (Markovian jump processes). Suppose that Z is a Markovian
jump process admitting suitably regular transition rates p under PP, and suppose
that p;(t) = gi(t, Z;—) for suitably regular deterministic functions g1, ..., g,. Since
the predictable compensators characterize the distribution of the jump process
Z, Proposition 4.3.9 yields that Z