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Equivariant multiplications and idempotent splittings of G-spectra iii

Abstract. This PhD thesis consists of two research papers, background material and
perspectives for future research. In G-equivariant homotopy theory, there are many
possible notions of an E∞ ring spectrum, made precise by Blumberg and Hill’s N∞

rings. My main results are explicit descriptions of the maximal N∞ ring structures of
the idempotent summands of certain equivariant commutative ring spectra in terms
of the subgroup lattice and conjugation in G. Algebraically, my results characterize
the extent to which multiplicative induction on the level of homotopy groups is com-
patible with the idempotent splitting. Here, G always denotes a finite group.
In the first paper “Multiplicativity of the idempotent splittings of the Burnside ring
and the G-sphere spectrum”, the above program is carried out for the G-equivariant
sphere spectrum. As an application, I obtain an explicit description of the multiplica-
tivity of the idempotent splitting of the equivariant stable homotopy category.
In the second paper “Idempotent characters and equivariantly multiplicative split-
tings of K-theory”, the above is established in the case of G-equivariant topological
K-theory. The main new ingredient is a classification of the primitive idempotents of
the p-local complex representation ring. It implies that all of these idempotents come
from primitive idempotents of the Burnside ring, which is used to reduce the solution
for K-theory to that for the sphere given in the first paper.

Resumé. Denne PhD afhandling består af to forskningsartikler, indledende materiale
og perspektiver for fremtidig forskning. I G-ækvivariant homotopiteori er der mange
mulige versioner af E∞ ringspektre som kan gøres præcis via Blumberg og Hills N∞

ringe. Mine hovedresultater er eksplicite beskrivelser af de maksimale N∞ ringstruk-
turer på de idempotente summander af visse ækvivariante kommutative ringspektre
med hensyn til undergrupper og konjugation i G. Algebraisk set karakteriserer mine
resultater i hvilket omfang multiplikativ induktion på homotopigrupper er kompati-
bel med den idempotente opsplitning. Her betegner G altid en endelig gruppe.
I den første artikel “Multiplicativity of the idempotent splittings of the Burnside
ring and the G-sphere spectrum” er det ovennævnte program realiséret for det G-
ækvivariante sfærerspektrum. Som anvendelse opnår jeg en eksplicit beskrivelse af
multiplikativiteten af den idempotente opsplitning af den stabile homotopikategori.
I den anden artikel “Idempotent characters and equivariantly multiplicative splittings
of K-theory” er det ovennævnte etableret for G-ækvivariant K-teori. Den primære nye
ingrediens er en klassifikation af den p-lokale komplekse repræsentationsrings prim-
itive idempotenter. Det medfører at alle disse idempotenter kommer fra primitive
idempotenter i Burnsideringen, hvilket er brugt for at reducére løsningen for K-teori
til løsningen for sfæren fra den første artikel.
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General introduction
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My PhD research concerns multiplicative phenomena in equivariant stable homotopy
theory. Loosely speaking, equivariant homotopy theory is the study of symmetry-
preserving deformations. It is often convenient to analyze geometric objects with sym-
metries by assigning to them algebraic objects, equipped with binary operations such
as addition and multiplication, in a deformation-invariant fashion. Non-equivariantly,
ignoring symmetries, one way to make this precise is via the notion of a commutative
ring spectrum. Similar to classical algebra, one can construct new ring spectra from
others, e.g. by taking products or by inverting elements, a process known as “localiza-
tion”.

Equivariantly with respect to a finite group G, there are several possible notions of a
commutative ring spectrum, the strongest being that of a G-E∞ ring spectrum. Such an
object R comes equipped not only with the usual homotopy-coherent n-ary multipli-
cation maps R∧n → R, but additionally with Hill-Hopkins-Ravenel norm maps [HHR16,
§2.3.2] that can be thought of as “equivariantly twisted multiplications”. Hill and
Hopkins observed that this kind of structure is not compatible with localization: even
inverting a single element in the homotopy ring πG

∗ (R) might yield a G-spectrum that
does not admit all possible norm maps anymore, see [HH14] and [HH16, §6].
An interesting class of examples arises from product decompositions: given a G-E∞

ring spectrum R and a decomposition of 1 ∈ πG
0 (R) into a sum of idempotents ei, R

splits into a product of G-spectra of the form R[e−1
i ]. These are known to admit at

least the weakest possible G-equivariant E∞ ring structure and one can ask about the
best possible structure available on each of these idempotent summands. My PhD re-
search gives a detailed answer in the case of two of the most important G-equivariant
ring spectra, the equivariant sphere spectrum S and equivariant topological K-theory
in its complex version KUG and its real version KOG. See §1.6 for a more detailed
description of the main objectives of my PhD project.

Organization: This PhD thesis is an amalgamation of two research papers, structured
as follows: Part 1 is a general introduction to my thesis project. I provide some back-
ground material and state the main problem in §1 and summarize the contents of the
two papers in §2 and §3, respectively. Finally, possible directions of future research
are outlined in §4.
Part 2 consists of a copy of the first research paper,

Paper A: Multiplicativity of the idempotent splittings of the Burnside ring and the
G-sphere spectrum, cited as [Böh18b].

Part 3 consists of a copy of the second research paper,

Paper B: Idempotent characters and equivariantly multiplicative splittings of K-
theory, cited as [Böh18a].



4 Benjamin Böhme

Publication information: A previous, mostly identical version of Paper A is available
as the electronic preprint [Böh18c] and has been submitted to “Advances in Mathe-
matics”. The updated version included here provides a simpler formulation of The-
orem A suggested by Malte Leip, a slightly improved proof of that result, as well as
small cosmetic changes. Paper B is identical with the arXiv preprint [Böh18a].

1. Background material

This section provides some background material. I recall equivariant operads and
the Hill-Hopkins-Ravenel norms in §1.2, the induced norms on homotopy groups in
§1.3, review the more general notions of N∞ ring spectra and incomplete Tambara
functors in §1.4 and discuss the behavior of norms under localization in §1.5. Finally,
§1.6 collects some facts about idempotent splittings and states the main problem to be
solved in this thesis.

The reader is assumed to be familiar with the notion of a genuine G-spectrum, see
e.g. [GM95, §3], [MM02], [Sch] and the appendices of [HHR16].

1.1. Conventions. Unless otherwise stated, G will always a denote a finite group.
Most results of my two thesis papers are model-independent; for some parts of Pa-
per A, though, it was convenient to work in the Mandell-May category of orthogonal
G-spectra [MM02, §II.2], equipped with the positive complete stable model structure
[HHR16, §B.4.1]. Cofibrancy conditions are only stated informally in Part 1; the reader
is referred to the two papers for details.
Restriction-to-subgroup functors are denoted as ResG

H or as ResH when G is clear from
the context. For brevity, I write RG

H or RH for the induced restriction operations on
homotopy groups.
When working locally, P denotes a collection of prime numbers. I write Z(P) :=
Z
[
p−1 | p /∈ P

]
for the P-local integers, and A(P) := A⊗Z(P) for the P-localization of

a commutative ring A, cf. [Böh18b, §3.1].

1.2. Equivariant operads and norm maps. By a G-operad I mean an operad in
the category of G-spaces endowed with its symmetric monoidal structure given by
cartesian product. Call a map of G-operads f : O → O′ an equivalence if f (n)K is
an equivalence for all n ≥ 0 and all subgroups K ≤ G × Σn. As usual, we let G-
operads act on G-spectra via the (symmetric monoidal) infinite suspension functor
Σ∞
+ : TopG → SpG from G-spaces to genuine G-spectra.

Definition 1.1. A subgroup Γ ≤ G× Σn is called a graph subgroup if Γ ∩ (1× Σn) = 1,
or equivalently, if Γ is the graph of some group homomorphism H → Σn for some
subgroup H ≤ G.
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Definition 1.2. A G-operad O is called a G-E∞ operad if the following holds: for every
n ≥ 0, the n-th level has fixed points (O(n))K a contractible space if K ≤ G× Σn is a
graph subgroup, and is empty otherwise.

It is easy to see that any two G-E∞ operads are equivalent. By a G-E∞ ring spectrum
we mean an algebra in G-spectra over any G-E∞ operad.

Example 1.3. Let U be a universe for the group G (i.e., U ∼=
⊕

N(R⊕ V) for some
finite-dimensional G-representation V). The linear isometries operad on U is a G-operad
as follows: its n-th level is the G-space of linear isometric embeddings U⊕n → U , with
G acting by conjugation, and the structure maps are induced by orthogonal direct sum
of maps and composition.

For any choice of G-E∞ operad O, the homotopy category of O-algebras in G-spectra
is equivalent to the homotopy category of strict commutative monoids in orthogonal
G-spectra, see [GW, Thm. 6.3], [BH15a, Thm. 3.16] and cf. [EKMM97, Thm. II.4.6].
In particular, any G-E∞ ring spectrum R comes equipped with multiplication maps
R∧n → R for n ≥ 0 which are unique up to homotopy and are unital, associative
and commutative up to coherent higher homotopy. In contrast to the non-equivariant
setting, there is even more structure: for any nested subgroups K ≤ H ≤ G, the
restriction functor from H-E∞ rings to K-E∞ rings admits a left adjoint

∧
H/K(−), the

Hill-Hopkins-Ravenel norm functor [HHR16, §2.3.2]. The counits NH
K of these (Quillen)

adjunctions then give rise to Hill-Hopkins-Ravenel norm maps

G+ ∧H NH
K : G+ ∧H

∧
H/K

ResG
K(R)→ R

which can be thought of as “equivariantly twisted” multiplication maps that satisfy
similar coherence conditions.

More generally, for any finite H-set T, one can define a norm map

G+ ∧H NT : G+ ∧H
∧
T

ResG
T (R)→ R

that specializes to the norm map G+ ∧H NH
K if T = H/K and to the usual “untwisted”

multiplication if the action on T is trivial. Any choice of orbit decomposition

T ∼= ä
i

H/Ki

yields a natural equivalence between G+ ∧H NT and the functor

G+ ∧H
∧

i

NH
Ki

: G+ ∧H
∧

i

∧
H/Ki

ResG
Ki
(R)→ R,
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but it is also possible to define G+ ∧H NT in a coordinate-free fashion. I refer to
[HHR16, §B.5.1] and [BH15b] for details.

Following [BH15b], I now explain how norm maps G+ ∧H NT arise from the operad
action on R.

Notation 1.4. Fix a subgroup H ≤ G. For a finite H-set T of cardinality n, write
ϕT : H → Σn for the action homomorphism and ΓT ≤ G× Σn for its graph subgroup,
i.e., the set {(h, ϕ(h)) | h ∈ H}.

Now let R be an algebra in G-spectra over some fixed G-E∞ operad O. Every finite
H-set T gives rise to a norm map

G+ ∧H NT : G+ ∧H
∧
T

ResT(R)→ R,

unique up to homotopy, as follows. Since ΓT is a graph subgroup, the space O(n)ΓT ∼=
mapG×Σn((G× Σn)/ΓT,O(n)) is contractible. Applying the functor (−) ∧Σn R∧n then
yields a contractible space of maps

(G× Σn)/ΓT ∧Σn R∧n → O(n) ∧Σn R∧n.

The left hand side is known to be one possible construction of the norm functor
G+ ∧H

∧
T ResT(R), so post-composing the above map with the operadic structure map

O(n) ∧Σn R∧n → R yields a norm map G+ ∧H NT as desired, unique up to homotopy.
See [BH15b, §6.1] for further details.

1.3. Norms on homotopy groups. We keep the notation of the previous subsec-
tion. Let K ≤ H ≤ G be subgroups. The norm map NH

K for R induces a multiplicative
transfer

NH
K : πK

V(R)→ πH
Ind(V)(R),

on the equivariant homotopy groups of R, where Ind(V) = IndH
K (V) is the induced

representation. It is also called the norm and was first studied by Greenless and May
[GM97]. It can be obtained from the Hill-Hopkins-Ravenel norm map as follows:
given a class in πK

V(R) represented by a map of K-spectra f : SV → R, define the norm
NH

K ([ f ]) to be the class of the composite of maps of H-spectra

SIndH
K (V) '

∧
H/K

ResG
K(S

V)→
∧

H/K

ResG
K(R)→ ResG

H(R),

where the first identification uses the monoidality of the norm functor, the second map
is induced by f and the third is the norm map.

It is well-known that the collection of equivariant homotopy groups {πH
0 (X) |H ≤ G}

of any G-spectrum X together with restriction maps and transfers forms a Mackey
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functor π0(X), see e.g. [May96, §XII.6], [HHR16, §3.1]. If X = R is an equivariant E∞

ring spectrum in a naive sense, then π0(R) is even a Green ring, i.e., all groups πH
0 (R)

come equipped with commutative ring structures that are compatible with restrictions
and transfers. We have just seen that in the case of a G-E∞ ring spectrum, π0(R) is
moreover endowed with multiplicative norms. Brun [Bru07] showed that these make
π0(X) into a Tambara functor. See [Böh18b, §2.3] for definitions and further details and
references.

1.4. N∞ ring spectra and incomplete Tambara functors. In [BH18], Blumberg and
Hill generalized the notion of a G-E∞ operad in order to describe G-equivariant ring
spectra that only come equipped with a partial collection of norm maps for certain
equivariant sets. As we saw in the last subsection that norm maps arise from the
fixed points of the operad, it is natural to expect that operads with fewer fixed points
structure ring spectra with fewer norms.

Definition 1.5. Let F be a family of subgroups of G, i.e., a collection of subgroups
that is closed under conjugation and under taking subgroups. A universal space for F
is a G-space EF such that the fixed points (EF )H are empty if H /∈ F and weakly
contractible if H ∈ F .

By definition, the n-th space in a G-E∞ operad is a universal space for the family of all
graph subgroups of G× Σn.

Definition 1.6 ([BH15b], Def. 1.1). A G-operad O is called an N∞ operad if the follow-
ing holds: Each O(n) is a universal space for a family F (n) of subgroups of G × Σn

such that F (n) is contained in the family of all graph subgroups, and contains at least
all graph subgroups corresponding to equivariant sets with trivial action.
Call an H-set T of cardinality n an admissible set for O if ΓT is contained in F (n).

Thus, algebras over arbitrary N∞ operads interpolate between G-equivariant commu-
tative ring spectra that only have multiplication maps in the non-equivariant sense and
those that admit a full collection of norm maps for all equivariant sets. The former
are often called naive E∞ ring spectra, whereas the latter are the G-E∞ rings defined
above, sometimes also called complete E∞ ring spectra. Examples of N∞ operads that
are neither naive nor complete arise from localization, see §1.5 below.

Write SetH for the category of finite H-sets with its monoidal structure given by dis-
joint union. The data of the admissible sets of an N∞ operad O can be stored conve-
niently as a coefficient system

Orbop
G → Symmetric monoidal categories
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that assigns to an object G/H of the orbit category OrbG the full symmetric monoidal
subcategory of SetH spanned by the admissible H-sets of O. The axioms of an operad
impose certain closure conditions on these collections of admissible sets, axiomatized
by Blumberg and Hill in the notion of an indexing system. The reader is referred
to [Böh18b, Def. 2.5] or [BH15b, Def. 3.22] for a precise definition. Note that the
collection of all possible indexing system forms a poset under inclusion.

The homotopy type of an N∞ operad is completely determined by its associated in-
dexing system. Conversely, any indexing system is the collection of admissible sets of
some N∞ operad. This has been made precise as follows:

Theorem 1.7 (Blumberg-Hill et al.). The functor from the homotopy category of N∞ operads
(with respect to the above notion of weak equivalence) to the poset of indexing systems which
assigns to each N∞ operad its collection of admissible sets is an equivalence of categories.

The fully faithfulness was proven in [BH15b, Thm. 3.24]. The essential surjectivity
was conjectured by Blumberg and Hill and proven independently by Gutiérrez-White
[GW, Thm. 4.7], Rubin [Rub17, Thm. 3.3] and Bonventre-Pereira [BP17, Cor. IV].

As an algebraic counterpart of N∞ rings, Blumberg and Hill [BH18] introduced the
notion of an incomplete I-Tambara functor structured by an indexing system I . It is
a Green ring equipped with additional multiplicative transfers, or norms, NT for all
admissible sets T. Thus, I-Tambara functors for varying I interpolate between Green
rings and (complete) Tambara functors. If R is an algebra over an N∞ operad with
indexing system I , then π0(R) is an I-Tambara functor [BH18, Thm. 1.6]. See also
[Böh18b, §2.3] for more details.

1.5. Norms and localization. Let R be a naive E∞ ring spectrum and let x ∈ πG
V(R)

be an element of its homotopy ring. Using a choice of multiplication map µ : R ∧ R→
R, we obtain a “multiplication by x” map

·x : R ' R ∧ S
id∧x−→ R ∧ R ∧ S−V µ−→ R ∧ S−V ,

unique up to homotopy.

Definition 1.8. The localization R[x−1] is the sequential homotopy colimit

hocolim(R ·x−→ R ∧ S−V ·x−→ R ∧ S−(V⊕V) → . . .).

On homotopy groups, π0(R[x−1]) recovers the levelwise localization of the Green ring
π0(R), whence the name.

Hill and Hopkins [HH14] observed that inverting homotopy elements can destroy the
structure of a G-E∞ operad, cf. [HH16, §6]: the localization R[x−1] does not typically
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admit all norm maps for all equivariant sets anymore. In other words, the indexing
system of the maximal N∞ operad acting on R[x−1] might be strictly smaller than
the maximal indexing system structuring R. A precursor to their result is McClure’s
observation [McC96] that the Tate construction preserves naive E∞ ring structures, but
not G-E∞ ring structures. Hill and Hopkins gave the following necessary and sufficient
conditions for localization to be compatible with norms:

Theorem 1.9 ([HH14], §4). Let R be a G-E∞ ring spectrum. Fix x ∈ πG
∗ (R). Then the

following are equivalent:

(i) The localization R[x−1] is a G-E∞ ring spectrum under R.
(ii) For all K ≤ H ≤ G, the element NH

K (RG
K(x)) divides a power of RG

H(x) in πH
∗ (R).

I will refer to the conditions given in (ii) as the Hill-Hopkins conditions for x.

Building on recent work of Gutiérrez and White [GW, Cor. 7.10], I show in [Böh18b,
Prop. 2.30] that Theorem 1.9 holds for any N∞ structure on the sphere spectrum R = S

in the expected way, by testing condition (ii) only for those K ≤ H such that H/K is
admissible. Bachmann and Hoyois gave an ∞-categorical proof of a similar, but more
general theorem [BH17, Prop. 12.6] in the setting of motivic homotopy theory, which
might be adapted to the equivariant world.

If x is an idempotent, Lemma [Böh18b, Lemma 4.11] translates the Hill-Hopkins con-
ditions into equations that are a bit easier to check in practice:

Lemma 1.10. Let e ∈ πG
0 (R) be idempotent. Then NH

K (RG
K(e)) divides RG

H(e) in πH
0 (R) if

and only if NH
K (RG

K(e)) · RG
H(e) = RG

H(e).

1.6. Idempotent splittings. Recall that a commutative ring R splits as a product
of rings if and only it contains an idempotent element e other than zero and one. Call e
primitive if it cannot be written as a sum of non-zero idempotents. Assume that R only
has finitely many primitive idempotents {ei}. Then there is an idempotent splitting

R ∼= ∏
i

ei · R.

Note that since ei = e2
i , the ideal ei · R is a ring with unit ei which identifies with the

localization R[e−1
i ]. The following is well-known:

Lemma 1.11. The primitive idempotents of R are in canonical bijection with the subsets of
Spec(R) that are both open and closed. If there are only finitely many of these, then they agree
with the connected components of the space Spec(R).

Now let R be a G-E∞ ring spectrum such that the commutative ring πG
0 (R) has only

finitely many primitive idempotents {ei}. Then the idempotent splitting of πG
0 (R)
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gives rise to a splitting of Green rings

(1.12) π0(R) ∼= ∏
i

π0(R)[e−1
i ]

!here localization is taken levelwise. Consequently, the canonical maps R → R[e−1
i ]

assemble into an equivalence of G-equivariant naive E∞ ring spectra

R '∏
i

R[e−1
i ].

But R is a G-E∞ ring, so π0(R) is a Tambara functor, and it is natural to ask whether
the above splitting is just a splitting of Green functors or preserves some additional
structure of non-trivial norm maps.

Main question (algebraic formulation): What is the maximal incomplete Tambara
functor structure that the idempotent summand π0(R)[e−1

i ] inherits from π0(R)? What
is the maximal incomplete Tambara functor structure preserved by the splitting?

Main question (homotopical formulation): What is the maximal N∞ ring structure
that the idempotent summand R[e−1

i ] inherits from R? What is the maximal N∞ ring
structure preserved by the splitting?

Theorem 1.9 and Lemma 1.10 reduce the question to understanding certain multiplica-
tive relations involving norms in the equivariant homotopy ring of R. In general, the
computation of norms and of such relations is far from being easy.
The goal of my thesis project is to find explicit answers to the main question in some
of the most fundamental examples of G-E∞ ring spectra. Paper A covers the case of
the G-equivariant sphere spectrum S, while Paper B covers G-equivariant topological
K-theory in both its complex variant KUG and its real variant KOG. We summarize the
content of these two papers in the next section.

2. Summary of Paper A

The first article [Böh18b] answers the main question in the case of the G-equivariant
sphere spectrum S. We quickly summarize its contents.

2.1. Idempotents in the Burnside ring. The 0-th homotopy Tambara functor π0(S)

can be identified with the Burnside ring Tambara functor A(−), which goes back to
Segal [Seg71, Cor. of Prop. 1]. Dress [Dre69, Prop. 2] proved that the primitive idem-
potent elements eL ∈ A(G) are in bijection with the conjugacy classes of perfect sub-
groups L ≤ G. He also derived an analogous statement in the P-local case. All of this
is discussed in detail in [Böh18b, §3].
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2.2. Understanding the Hill-Hopkins conditions via group theory. The technical
heart of the paper is an analysis of norms in the Burnside ring Tambara functor A(−).
More precisely, we derive a non-obvious reformulation of the Hill-Hopkins conditions
that only depends on the subgroup structure and conjugation in G and can be stated
without reference to norms or the multiplication in A(−).

Theorem 2.1 ([Böh18b], Thm. 4.1). Fix a P-perfect subgroup L ≤ G and arbitrary sub-
groups K ≤ H ≤ G. Then the norm NH

K for A(−)(P) descends to a norm ÑH
K for the

idempotent summand A(−)(P)[e
−1
L ] if and only if the following holds: whenever L′ ≤ H is

conjugate in G to L, then L′ is contained in K.

Definition 2.2. Call H/K admissible for eL if K and H satisfy the equivalent statements
of Theorem 2.1.

Remark 2.3. The condition given in Theorem 2.1 is not quite the condition given in
the arXiv version [Böh18c, Thm. 4.1], but rather an easy and equivalent reformulation
suggested by Malte Leip, cf. [Böh18a, Lemma 3.4]

The key idea in the proof of Theorem 2.1 is the following: for an idempotent e ∈ A(G),
we can translate the Hill-Hopkins conditions for e,

NH
K RG

K(e) divides RH(e) in A(H),

into various equations of integers, using the injectivity of the homomorphism of marks
φ : A(H)→ ∏ Z and [Böh18b, Lemma 4.11]. Since e is idempotent, these integers can
only be 0 or 1. I compute them explicitly using Dress’ description of the marks of e,
a multiplicative version of the double coset formula, and some well-known properties
of the norm. Note that this strategy of proof applies without changes in the P-local
case. See [Böh18b, §4.2] for details.

2.3. Further results. The other main results of the paper besides Theorem 2.1 can
be summarized as follows. In all statements, the “maximality” refers to the poset of
all indexing systems for G, cf. Theorem 1.7.

(1) The admissible sets for eL form an indexing system IL ([Böh18b, Thm. 4.20]).
(2) The idempotent summand A(−)(P)[e

−1
L ] is an IL-Tambara functor, maximally so

([Böh18b, Thm. 4.20]).
(3) The splitting

A(−)(P)
∼= ∏ A(−)(P)[e

−1
L ]

is an isomorphism of I-Tambara functors, maximally so, where I =
⋂ IL ([Böh18b,

Cor. 4.24]).
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(4) For any (suitably cofibrant) N∞ operad OL realizing IL, the idempotent summand
S(P)[e

−1
L ] is an OL-algebra, maximally so ([Böh18b, Cor. 4.26]).

(5) The splitting
S(P) '∏ S(P)[e

−1
L ]

is an equivalence of O-algebras, maximally so, where O is a (suitably cofibrant)
N∞ operad realizing I ([Böh18b, Cor. 4.29]).

The operads OL and O always exist, see [Böh18b, Thm. 2.10] and the references
given there, and the cofibrancy assumption can always be guaranteed, see [Böh18b,
Rem. 2.11].

2.4. The idempotent splitting of the category of genuine G-spectra. I give an
application of my results: Since S is the monoidal unit in the category of G-spectra,
every G-spectrum is naturally a module over S, so the idempotent splitting of S in-
duces a splitting of the entire category of G-spectra by breaking it up into categories
of modules over the idempotent summands S[e−1

L ]:

SpG '∏
(L)

Mod(S[e−1
L ])

Upon restriction, the idempotents eL also induce splittings of the categories of H-
spectra for all H ≤ G. Building on work by Blumberg and Hill [BH15a], I show in
[Böh18b, Cor. 6.1] that all the norm functors

∧
T parametrized by the admissible sets

T of the indexing system I from §2.3 (3) are compatible with this splitting.

3. Summary of Paper B

The second article [Böh18a] answers the main question for G-equivariant complex
topological K-theory KUG and G-equivariant real topological K-theory KOG. This can
be seen as a sequel to the first paper, as the solution here reduces to the one given
there.

In this summary, I will only state the “complex” version my results, but all of what
follows holds without changes for real K-theory KOG and the real representation ring
RO(G).

3.1. Idempotents in the representation ring. The 0-th homotopy Tambara functor
π0((KUG)(P)) of P-local complex K-theory is the complex representation ring Tambara
functor RU(G)(P). Write lin : A(G)(P) → RU(G)(P) for the linearization map given by
sending a finite G-set to its associated permutation representation. Recall from §2.1
that Dress gave a bijection between the conjugacy classes of P-perfect subgroups L ≤ G
and the primitive idempotents eL ∈ A(G)(P). As a first main result, I show in [Böh18a,
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Thm. 1.2] that the elements lin(eC) ∈ RU(G)(P) are precisely the primitive idempotents
in the complex representation ring, where C runs over the conjugacy classes of cyclic
P-perfect subgroups C ≤ G (whereas the other eL for non-cyclic L are in the kernel).
Parts of the statement of [Böh18a, Thm. 1.2] were already known, see Remark [Böh18a,
Rem. 1.3].

I use my classification of idempotents to reduce the analysis of the Hill-Hopkins con-
ditions in the case of the representation ring to the one for the Burnside ring, as
explained in detail in [Böh18a, §3.2].

3.2. Splitting results. The main results regarding the multiplicative properties of
the idempotent splittings of the representation ring and K-theory can be summarized
as follows. As before, the “maximality” refers to the poset of all indexing systems for
G. Let C ≤ G denote a cyclic P-perfect subgroup and let IC be the indexing system
introduced in §2.3 (1).

(1) The idempotent summand RU(−)(P)[e
−1
C ] is an IC-Tambara functor, maximally so

([Böh18a, Thm. 3.8]).
(2) The splitting

RU(−)(P)
∼= ∏ RU(−)(P)[e

−1
C ]

is an isomorphism of Icyc-Tambara functors, maximally so, where Icyc =
⋂ IC

([Böh18a, Prop. 3.11]).
(3) For any (suitably cofibrant) N∞ operad OC realizing IC, the idempotent summand

S(P)[e
−1
C ] is an OC-algebra, maximally so ([Böh18a, Thm. 4.3]).

(4) The splitting
(KUG)(P) '∏(KUG)(P)[e

−1
C ]

is an equivalence of Ocyc-algebras, maximally so, where Ocyc is a (suitably cofi-
brant) N∞ operad realizing Icyc ([Böh18a, Cor. 4.6]).

4. Perspectives

I briefly sketch some possible future directions that extend my thesis project in a
natural way.

4.1. Compact Lie groups. Much of G-equivariant homotopy theory can be carried
out for any compact Lie group G. It is natural to ask whether my thesis results also
hold in this generality. However, there are two caveats: It seems that it is only possible
to define norm maps NH

K when the index of K in H is finite, and moreover, the topol-
ogy on G has to be taken into account when studying the idempotents in A(G), as I
now explain.
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Tom Dieck [tD78] classified the primitive idempotents in the Burnside ring of a com-
pact Lie group. They can be obtained from a certain space of conjugacy classes of
perfect closed subgroups of G [tD78, Thm. 1], where the topology is induced from
that of the underlying space of G. If the number of idempotents is finite, then there
is a product decomposition similar to the one in Equation 1.12 above. In many cases
though, there are infinitely many idempotents and hence the element 1 cannot be
written as a sum of the primitive idempotents. One can ask the following:

Question 4.1. Do Theorem 2.1 and the statements (1), (2) and (4) of §2.3 hold more
generally for any compact Lie group G and any norm ÑH

K along a finite index inclusion
K ≤ H? Do (3) and (5) hold for all compact Lie groups G such that the splitting exists?

My proof of [Böh18a, Thm. 1.2] builds on work by Atiyah [Ati61, Prop. 6.4] on the rep-
resentation ring of a finite group. Segal [Seg68] generalized some of Atiyah’s results
to compact Lie groups. One might hope that my strategy of proof given in [Böh18a,
§2] can be generalized to compact Lie groups as well. It should then be possible to
answer the following:

Question 4.2. For a compact Lie group G, are the primitive idempotents of RU(G)(P)

precisely the elements lin(eC), where eC ∈ A(G)(P) is tom Diecks’s primitive idempo-
tent associated to a P-perfect Cartan subgroup C ≤ G in the sense of Segal [Seg68,
Def. 1.1]?

Here, lin : A(G)(P) → RU(G)(P) can be taken to be the map induced by the unit map
S(P) → (KUG)(P) on 0-th homotopy groups, but it should also be possible to describe
it more directly in terms of equivariant Euler characteristics, cf. e.g. [tD79, §5.3] or
[LMS86, V.§1]. Assuming Question 4.2 can be answered positively, one can again
study splitings of K-theory:

Question 4.3. Do the statements (1) and (3) of §3.2 hold more generally for any com-
pact Lie group G and any norm ÑH

K along a finite index inclusion K ≤ H? Moreover,
do (2) and (4) hold for all compact Lie groups G such that the splitting exists?

4.2. Other idempotent splittings. There are many other G-E∞ rings and Tambara
functors and it might be possible to obtain explicit descriptions of the multiplicativity
of their idempotent splittings as well. Interesting candidates might include appro-
priate G-equivariant versions of complex cobordism or of algebraic K-theory. Their
homotopy rings are only known in a few special cases, though.
Algebraically, it would be interesting to study the idempotent splittings of other repre–
sentation-theoretic gadgets such as the Brauer character ring for representations in
positive characteristic and analyze potential implications for modular representation
theory.
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4.3. Explicit constructions of N∞ operads. Typical examples of N∞ operads in-
clude the linear isometries operads on G-universes and G-equivariant versions of the
classical little disks and Steiner operads, but it is known that not all homotopy types of
N∞ operads arise in such a way [BH15b, Def. 3.11, §4.3]. The various proofs of the es-
sential surjectivity part of Theorem 1.7 are not very explicit and it would be desirable
to find geometrically defined operads that realize all possible indexing systems.
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MULTIPLICATIVITY OF THE IDEMPOTENT SPLITTINGS OF
THE BURNSIDE RING AND THE G-SPHERE SPECTRUM

BENJAMIN BÖHME

Abstract. We provide a complete characterization of the equivariant commutative
ring structures of all the factors in the idempotent splitting of the G-equivariant sphere
spectrum, including their Hill-Hopkins-Ravenel norms, where G is any finite group.
Our results describe explicitly how these structures depend on the subgroup lattice and
conjugation in G. Algebraically, our analysis characterizes the multiplicative transfers
on the localization of the Burnside ring of G at any idempotent element, which is
of independent interest to group theorists. As an application, we obtain an explicit
description of the incomplete sets of norm functors which are present in the idempotent
splitting of the equivariant stable homotopy category.

1. Introduction

Let G be a finite group and recall that the zeroth G-equivariant homotopy group πG
0 (S)

of the G-sphere spectrum identifies with the Burnside ring A(G) [Seg71]. Dress’ clas-
sification [Dre69] of the primitive idempotent elements eL ∈ A(G) in terms of perfect
subgroups L ≤ G gives rise to a splitting of G-spectra

(1.1) S ' ∏
(L)≤G

S[e−1
L ]

where the localization S[e−1
L ] is the sequential homotopy colimit

hocolim(S
eL−→ S

eL−→ . . .)

along countably many copies of (a representative of) eL. The present paper investigates
the multiplicative nature of this splitting.

The sphere is a commutative monoid in any good symmetric monoidal category of G-
spectra and hence admits the structure of a G-E∞ ring spectrum, i.e., it comes equipped
with a full set of Hill-Hopkins-Ravenel norm maps

NH
K :

∧
H/K

ResKS→ ResHS

2000 Mathematics Subject Classification. 55P91, 55P43, 55Q91, 55S91, 19A22.
Key words and phrases. Equivariant stable homotopy theory, Hill-Hopkins-Ravenel norm, equivariant com-
mutative ring spectrum, Burnside ring, multiplicative induction, Tambara functor.
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for all K ≤ H ≤ G. These are equivariantly commutative multiplication maps which
feature prominently in the solution to the Kervaire invariant problem [HHR16]. The
resulting norms on homotopy groups first appeared in [GM97]. They are multiplica-
tive transfer maps

NH
K : πK

0 (S)
∼= A(K)→ A(H) ∼= πH

0 (S)

which equip π0(S)
∼= A(−) with the structure of a Tambara functor [Tam93] (and agree

with the multiplicative transfers of A(−) induced by co-induction of finite G-sets, see
Section 3).

It is known that norm maps behave badly with respect to Bousfield localization of
spectra and levelwise localization of Tambara functors, see Example 2.23. Thus, it is
natural to ask about the equivariant multiplicative behavior of the idempotent split-
ting (1.1). Throughout the paper, we will decorate the norms of a localization with a
tilde to distinguish them from the norms of the original object.

Question 1.2 (Main question, homotopy-theoretic formulation). For which nested sub-
groups K ≤ H ≤ G does the norm map NH

K of S descend to a norm map

ÑH
K :

∧
H/K

ResKS[e−1
L ]→ ResHS[e−1

L ]

on the idempotent localization S[e−1
L ], and which norms are preserved by the idempo-

tent splitting (1.1)?

Question 1.3 (Main question, algebraic formulation). For which nested subgroups
K ≤ H ≤ G does the Green ring π0S[e−1

L ] ∼= A(−)[e−1
L ] inherit a norm map ÑH

K from
that of A(−), and which norms are preserved by the idempotent splitting

A(−) ∼= ∏
(L)≤G

A(−)[e−1
L ]?

We now state our main results which provide an explicit and exhaustive answer to
both questions. All of our results hold locally for any collection of primes inverted.
For simplicity, we only include the integral statements in the introduction.

1.1. Statement of algebraic results. The following result will be restated as Theorem
4.1, including the local variants.

Theorem A. Let L ≤ G be a perfect subgroup and let eL ∈ A(G) be the corresponding
primitive idempotent given by Dress’ classification of idempotents in A(G) (see Theorem 3.4).
Fix subgroups K ≤ H ≤ G. Then the norm map NH

K : A(K) → A(H) descends to a well-
defined map of multiplicative monoids

ÑH
K : A(K)[e−1]→ A(H)[e−1]
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if and only if the following holds:

(?) Whenever L′ ≤ H is conjugate in G to L, then L′ is contained in K.

Theorem A builds on previous work by Hill-Hopkins [HH14] and Blumberg-Hill
[BH18, Section 5.4] which reduced the question to understanding certain division re-
lations between norms and restrictions of the elements eL ∈ πG

0 (S), but did not make
explicit the relationship with the subgroup structure of G. The proof of Theorem A is
entirely algebraic and can be found in Section 4.2.

We now record some immediate consequences of Theorem A that will be restated as
Corollary 4.2 and Corollary 4.3.

Corollary B. Let L ≤ G be perfect. Then L is normal in G if and only if the summand
A(−)[e−1

L ] admits all norms of the form ÑH
K such that K contains a subgroup conjugate in G

to L.

Corollary C. The Green ring A(−)[e−1
L ] admits all norms ÑH

K for all K ≤ H if and only if
L = 1 is the trivial group. In this case, the norm maps equip A(−)[e−1

L ] with the structure of
a Tambara functor.

For an arbitrary perfect subgroup L ≤ G, we explain how the levelwise localization
A(−)[e−1

L ] fits into Blumberg-Hill’s framework of incomplete Tambara functors [BH18],
the basics of which we recall in Section 2.3. For K ≤ H ≤ G, call the H-set H/K
admissible for eL if K ≤ H satisfy the condition (?) of Theorem A. Call a finite H-
set admissible if all of its orbits are admissible. Theorem A is complemented by the
following two structural results.

Theorem D (see Theorem 4.20). Let L ≤ G be a perfect subgroup and let eL ∈ A(G) be the
corresponding primitive idempotent. Then the following hold:

i) The admissible sets assemble into an indexing system IL (in the sense of [BH18, Def. 1.2],
see Section 2.1) such that A(−)[e−1

L ] is an IL-Tambara functor under A(−).
ii) In the poset of indexing systems, IL is maximal among the elements that satisfy i).

iii) The map A(−) → A(−)[e−1
L ] is a localization at eL in the category of IL-Tambara func-

tors.

Corollary E (see Corollary 4.24). The localization maps A(−)→ A(−)[e−1
L ] assemble into

a canonical isomorphism of I-Tambara functors

A(−)→ ∏
(L)≤G perfect

A(−)[e−1
L ],
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where I is the intersection
I =

⋂
(L)≤G

IL

of the indexing systems given by Theorem D.

Together, Theorem A, Theorem D and Corollary E answer Question 1.3. A simple
characterization of the norms parametrized by I can be found in Lemma 4.23.

1.2. Statement of homotopical results. It was conjectured by Blumberg-Hill [BH15b,
Section 5.2] and proven in [GW, Rub17, BP17] that any indexing system can be real-
ized by an N∞ operad which encodes norms precisely for the admissible sets of that
indexing system. In particular, for any of the indexing systems IL of Theorem D, we
can choose a corresponding Σ-cofibrant N∞ operad OL. See Section 2.2 for details.
We use general preservation results for N∞ algebras under localization [HH14, GW]
to lift our algebraic results about IL-Tambara functor structures on homotopy groups
to a homotopical statement about OL-algebra structures on G-spectra. The following
result is restated as Corollary 4.26.

Corollary F. Let OL be any Σ-cofibrant N∞ operad whose associated indexing system is IL.
Then:

i) The G-spectrum S[e−1
L ] is an OL-algebra under S.

ii) In the poset of homotopy types of N∞ operads, OL is maximal among the elements that
satisfy i).

iii) The map S→ S[e−1
L ] is a localization at eL in the category of OL-algebras.

A homotopical reformulation of Corollary C shows that the idempotent splitting of S

is far from being a splitting of G-E∞ ring spectra.

Corollary G (see Corollary 4.27). The G-spectrum S[e−1
L ] is a G-E∞ ring spectrum if and

only if L = 1 is the trivial group.

Locally at a prime p, this recovers a (currently unpublished) result of Grodal [Gro,
Cor. 5.5], which we state as Theorem 4.28.
There is a homotopical analogue of Corollary E.

Corollary H (see Corollary 4.29). Let O be any Σ-cofibrant N∞ operad whose associated
indexing system is I . Then the idempotent splitting

S ' ∏
(L)≤G

S[e−1
L ]

is an equivalence of O-algebras, where the product is taken over conjugacy classes of perfect
subgroups.

Together, Corollary F and Corollary H answer Question 1.2.



Multiplicativity of the idempotent splittings of A(G) and SG 5

1.3. Examples. In Section 5, we use our results to explicitly calculate the multiplicative
structure of the idempotent splittings of the sphere in the case of the alternating group
A5 and the symmetric group Σ3 (working 3-locally). Moreover, for arbitrary G, we
deduce that the rational idempotent splitting of SQ cannot preserve any non-trivial
norm maps. The latter is not a new insight, cf. e.g. [BGK17, Section 7].

1.4. Applications to modules. Corollary F, together with the theory of modules of
[BH15a], also characterizes the norm functors which arise on the level of modules over
the N∞ ring S[e−1

L ] and its restrictions to subgroups.

The following result will be restated as Corollary 6.1.

Corollary 1.4. Let L ≤ G be perfect and let OL as in Corollary F. Assume furthermore
that OL has the homotopy type of the linear isometries operad on some (possibly incomplete)
universe U. For all admissible sets H/K of IL, there are norm functors

ResH(S[e−1
L ])N

H,ResH(U)
K,ResK(U)

: Mod(ResG
K(S[e

−1
L ]))→ Mod(ResG

H(S[e
−1
L ]))

built from the smash product relative to S(P)[e
−1
L ] which satisfy a number of relations analogous

to those for the norm functor SpH → SpG, stated in [BH15a, Thm. 1.3].

Any G-spectrum is a module over S, hence the idempotent splitting (1.1) of S induces
a splitting of the category of G-spectra. Corollary 1.4 then says that this does not give
rise to a splitting of G-symmetric monoidal categories in the sense of [HH16]. Indeed,
the categories of modules over (restrictions to subgroups of) S[e−1

L ] will only admit an
incomplete set of norm functors, which then can be read off from Theorem A.

1.5. Topological K-theory spectra. We will answer the analogues of our main ques-
tions for G-equivariant complex and real topological K-theory in the sequel [Böh18],
see Section 6.

Organization: Section 2 provides some background material on N∞ operads and their
algebras in G-spectra, (incomplete) Tambara functors, indexing systems and their be-
havior under localization. In Section 3, we recall Dress’ classification of idempotent
elements in the Burnside ring and explain how to obtain the splitting (1.1) of the
G-equivariant sphere spectrum. We state and prove our results (including the local
variants) in Section 4 and discuss examples in Section 5. Finally, applications are
discussed in Section 6.

Acknowledgements: The present work is part of the author’s PhD project at the Uni-
versity of Copenhagen. The author would like to thank his advisor Jesper Grodal as
well as Markus Hausmann, Mike Hill, Joshua Hunt and David White for many helpful
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this paper. This research was supported by the Danish National Research Foundation
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2. Preliminaries

We briefly recall some background material on N∞ operads and N∞ ring spectra, in-
complete Tambara functors and localizations. Most of this section follows [BH15b,
BH18].

2.1. N∞ operads and indexing systems. Recall that a subgroup Γ ≤ G× Σn is a graph
subgroup if it is the graph of a group homomorphism H → Σn for some H ≤ G, or
equivalently, if Γ ∩ ({1} × Σn) is trivial. By a G-operad we mean an operad in the
category of (unbased) G-spaces.

Definition 2.1 ([BH15b], Def. 1.1). A G-operad O is called an N∞ operad if each G-
space O(n) is a universal space for a family Fn of graph subgroups of G× Σn which
contains all graphs of trivial homomorphisms, i.e., all subgroups of the form H×{id}.

The following properties are immediate from the definition.

Lemma 2.2. For an N∞ operad O, the following holds:

(i) The G-spaces O(0) and O(1) are G-equivariantly contractible.
(ii) The action of Σn on O(n) is free.

(iii) The underlying non-equivariant operad is always an E∞ operad.

Example 2.3 ([BH15b], Lemma 3.15). Let U be a (not necessarily complete) G-universe,
and let L(U) be the associated operad of linear isometric embeddings. Then it is a G-
operad under the conjugation action, and it is always an N∞ operad.

Definition 2.4. An H-set X of cardinality n is called admissible for O if the graph of
the corresponding action homomorphism H → Σn is contained in Fn.

Algebras R over an N∞ operad O are G-equivariant E∞ ring spectra which in addition
admit coherent equivariant multiplications given by Hill-Hopkins-Ravenel norm maps
[BH15b, Thm. 6.11]

NH
K :

∧
H/K

ResG
K(R)→ ResG

H(R)

for those nested subgroups K ≤ H ≤ G such that H/K is an admissible set for O.
(More generally, there is a norm map N f associated to a map of G-sets f : X → Y
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provided that for all y ∈ Y, the preimage f−1(y) is an admissible Gy-set, where Gy

denotes the stabilizer group of y.) Here,
∧

H/K denotes the indexed smash product or
Hill-Hopkins-Ravenel norm functor [HHR16, Section 2.2.3], and the maps NH

K arise as
the counits of the adjunctions [HHR16, Prop. 2.27]

∧
H/K(−) : CommK // CommH : ResH

K (−)oo

between categories of commutative monoids in equivariant spectra.

The data of admissible H-sets for all H ≤ G can be organized in the following way: For
fixed H, the collection of admissible H-sets forms a symmetric monoidal subcategory
of the category SetH of finite H-sets under disjoint union. Together, these assemble
into a subfunctor I of the coefficient system Set whose value at G/H is the symmetric
monoidal category SetH. The operad structure of O forces I to be closed under certain
operations, as captured in the following definition.

Definition 2.5 ([BH18], Def. 1.2). An indexing system is a contravariant functor

I : Orbop
G → Sym, G/H 7→ C(H)

from the orbit category of G to the category of symmetric monoidal categories and
strong symmetric monoidal functors, such that the following holds:

(i) The value I(H) of I at G/H is a full symmetric monoidal subcategory of the
category SetH of finite H-sets and H-equivariant maps which contains all trivial
H-sets.

(ii) Each I(H) is closed under finite limits.
(iii) The functor I is closed under “self-induction”: If H/K ∈ I(H) and T ∈ I(K),

we require that IndH
K (T) = H ×K T ∈ I(H).

The collection of all indexing systems (for a fixed group G) forms a poset under inclu-
sion. N∞ operads give rise to indexing systems.

Definition 2.6. Let I be an indexing system. Call an H-set X admissible if X ∈ I(H).
Call a map f : Y → Z of finite G-sets admissible if the orbit G f (y)/Gy obtained from
stabilizer subgroups is admissible for all y ∈ Y.

Proposition 2.7 ([BH18], Thm. 4.14). The admissible sets of any N∞ operad O form an
indexing system.
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2.2. The poset of N∞ ring structures. Two extreme cases of N∞ operads arise:

Definition 2.8 ([BH15b], Section 3.1). If for all n ∈ N, Fn is the family of all graph
subgroups of G× Σn, then O is called a G-E∞ operad or complete N∞ operad. If for all n,
Fn is the family of trivial graphs H × {id}, then O is called a naive N∞ operad.

Algebras over G-E∞ operads are equivariant E∞ ring spectra which admit all norm
maps and form a category which is Quillen equivalent to that of strict commutative
monoids in G-spectra. Naive N∞ operads are non-equivariant E∞ operads equipped
with the trivial G-action. Their algebras are all G-spectra that are underlying E∞ ring
spectra, but do not necessarily possess any non-trivial norms. The N∞ operads with
other collections of admissible sets interpolate between those two extremes. We refer
to [BH15b, Section 6] for proofs and further details.

The collection of homotopy classes of N∞ operads forms a poset that only depends on
the combinatorial data of the admissible sets, as we recall now.

Definition 2.9 ([BH15b], Def. 3.9). A morphism of N∞ operads O → O′ is a weak
equivalence if it induces a weak equivalence of spaces O(n)Γ → O′(n)Γ for all n ≥ 0
and all subgroups Γ ≤ G× Σn.

Blumberg-Hill conjectured the following equivalence of categories and proved the
“fully faithful" part [BH15b, Thm. 3.24]. Different proofs for the essential surjec-
tivity were given by Gutierrez-White [GW, Thm. 4.7], Rubin [Rub17, Thm. 3.3] and
Bonventre-Pereira [BP17, Cor. IV], and it should be possible to extract an ∞-categorical
proof from [BDG+17] and its sequels.

Theorem 2.10 (Blumberg-Hill et al.). The functor from the homotopy category of N∞ operads
(with respect to the above notion of weak equivalence) to the poset of indexing systems which
assigns to each N∞ operad its collection of admissible sets is an equivalence of categories.

Remark 2.11. We record a technical detail for later reference: [GW, Thm. 4.10] guar-
antees that for each indexing system I , we can find a corresponding N∞ operad O
which is Σ-cofibrant, i.e., each O(n) has the homotopy type of a (necessarily Σn-free)
(G× Σn)-CW complex. This will be used in Section 2.4.

2.3. Mackey functors, Green rings and (incomplete) Tambara functors. Recall that
a Mackey functor M (with respect to an ambient group G which we leave implicit in
the notation) consists of an abelian group M(T) for each finite G-set, equipped with a
structure map M(X)→ M(Z) for each span

X r←− Y t−→ Z,
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subject to a list of axioms. In particular, M is additive in the sense that M(S t T) ∼=
M(S)×M(T). Thus, it is determined on objects by the values M(H) := M(G/H) for
subgroups H ≤ G. We refer to [Str12, Section 3] for details.

A Mackey functor R is a Green ring if R(X) is a commutative ring for all G-sets X
such that all restriction maps are ring homomorphisms and all transfers are homo-
morphisms of modules over the target.

Many naturally occuring examples of Green rings such as the Burnside ring A(−) or
the complex representation ring RU(−) come equipped with additional multiplicative
transfers, called norms. Green rings with compatible norms are known as Tambara func-
tors (originally defined as “TNR functors" [Tam93]) and were generalized in [BH18] to
cases where only some of the norm maps are available. We quickly review these
incomplete Tambara functors.

Let bispanG denote the category of bispans of G-sets. It has objects the finite G-sets and
morphisms the isomorphism classes of bispans of finite G-sets

X r←− Y n−→ Z t−→W.

We refer to [Str12, Section 6] for the definition of composition and further details.
Blumberg-Hill observed that one can restrict the class of maps n which are allowed at
the central position of a bispan to encode Tambara functors with incomplete collections
of norms, as we recall now.

Definition 2.12 ([BH18], Sections 2.2, 3.1). A subcategory D of SetG is called

1) wide if it contains all objects,
2) pullback-stable if any base-change of a map in D is again in D, and
3) finite coproduct-complete if it has all finite coproducts and they are created in SetG.

Theorem 2.13 ([BH18], Thm. 2.10). Let D ⊆ SetG be a wide, pullback-stable subcategory,
then the wide subgraph bispanG

D of the category of bispans that only contains morphisms of the
form

X ← Y → Z →W

where Y → Z is in D, forms a subcategory.

Definition 2.14 ([BH18], Def. 3.9). For an indexing system I , let SetG
I ⊆ SetG be the

wide subgraph which contains a morphism f : X → Y if and only if for all y ∈ Y, the
quotient of stabilizers G f (y)/Gy is in I(G f (y)).

Theorem 2.15 ([BH18], Thm. 3.18). The assignment I 7→ SetG
I gives rise to an isomorphism

between the poset of indexing systems and the poset of wide, pullback-stable, finite coproduct-
complete subcategories D ⊆ SetG.
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Definition 2.16 ([BH18], Def. 4.1). Let D ⊆ SetG be a wide, pullback-stable symmetric
monoidal subcategory.

1) A D-semi Tambara functor is a product-preserving functor bispanG
D → Set.

2) A D-Tambara functor is a D-Tambara functor that is abelian group valued on objects.
3) For an indexing system I and D = SetG

I , define an I-Tambara functor to be a D-
Tambara functor.

4) If D = SetG, then D-Tambara functors are simply called Tambara functors.

Remark 2.17. We did not require that D be finite coproduct-complete in the definition.
If this also holds, i.e., if D corresponds to an indexing system I , then it can be shown
that every I-Tambara functor has an underlying Green ring and all norm maps are
maps of multiplicative monoids, see [BH18, Prop. 4.6 and Cor. 4.8].

The condition that any D-Tambara functor R be product-preserving means that

R(S t T) ∼= R(S)× R(T)

for all finite G-sets S and T. Hence, on the level of objects, R is determined by the
groups R(H) := R(G/H) for all H ≤ G.

Notation 2.18. We will use the following special cases of the structure maps frequently

in the present paper: Spans of the form (Y
f←− X id−→ X id−→ X) give rise to restrictions

R f : R(Y) → R(X) and spans of the form (X id←− X id−→ X
f−→ Y) induce transfers

Tf : R(X) → R(Y). Moreover, spans of the form (X id←− X
f−→ Y id−→ Y) give rise to

norms N f : R(X)→ R(Y). If f : X → Y is the canonical surjection G/K → G/H arising
from nested subgroup inclusions K ≤ H ≤ G, then we write RH

K := R f , TH
K := Tf and

NH
K := N f , respectively.

Example 2.19. The Burnside ring A(G) is a Tambara functor. Restrictions, transfers
and norms are given by restriction, induction and co-induction of G-sets, respectively.
Similarly, the complex representation ring RU(G) is a Tambara functor with restric-
tions, transfers and norms given by restriction, induction and tensor induction of G-
representations, respectively. The “linearization map” A(G) → RU(G) that sends a
finite G-set to its associated permutation representation is a map of Tambara functors,
i.e., it is compatible with all of the structure maps.

Another class of examples arises from equivariant stable homotopy theory: The norm
maps NH

K of an N∞ ring spectrum R give rise to multiplicative transfers on equivariant
homotopy groups

NH
K : πK

V(R)→ πH
IndH

K (V)
(
∧

H/K

R)
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given by sending the K-equivariant homotopy class of f : SV → R to the H-equivariant
homotopy class of the composite

SIndH
K (V) ∼=

∧
H/K

SV
∧

f−→
∧

H/K

R
NH

K−→ R,

see [HHR16, Section 2.3.3].

Theorem 2.20 ([Bru07], [BH18], Thm. 4.14). Let R be an algebra over an N∞ operad O,
then π0(R) is an I-Tambara functor structured by the indexing system I corresponding to O
under the equivalence of categories from Theorem 2.10.

The structure on the entire homotopy ring {πH
V (R)}H≤G, V∈RO(H) is described in [AB18].

For the purpose of the present paper, it suffices to consider the zeroth equivariant ho-
motopy groups.

2.4. Localization and N∞ rings. We record some preservation results for algebraic
structure under localizations of G-spectra which invert a single element x ∈ πG

∗ (S).
For definiteness, we work in the category of orthogonal G-spectra equipped with the
positive complete model structure [HHR16, Thm. B.63].

Notation 2.21. By abuse of notation, let x be a map representing the homotopy class
x ∈ πG

0 (S). We write Cx for the set of morphisms of G-spectra

Cx = {G+ ∧H Sn ∧ x |H ≤ G, n ∈ Z}.

Proposition 2.22. Bousfield localization at Cx has the following properties:

i) It is given by smashing with S[x−1], hence recovers (orbitwise) x-localization on the level
of equivariant homotopy groups.

ii) It is a monoidal localization in the sense that the resulting local model structure is again
a monoidal model category.

Proof. Since the map ho(SpG)(G/H+ ∧ Sn ∧ x, X) is just the action of x on πH
n (X), we

see that an object X is Cx-local if and only if its equivariant homotopy groups are x-
local. But x-localization is given by smashing with S[x−1]. By [Whi14, Thm. 4.5], the
localization is monoidal if and only if Cx is closed under all functors G+ ∧H Sn ∧ (−),
which holds by definition. �

Even such a seemingly innocent localization need not preserve any of the (non-trivial)
norm maps of an N∞ ring spectrum, as the following example illustrates.
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Example 2.23 ([HH16], Prop. 6.1). The inclusion of 0 into the reduced regular repre-
sentation ρ̃ of G defines an essential map S0 → Sρ̃ of G-spaces all of whose restrictions
to proper subgroups are equivariantly contractible because they necessarily have fixed
points along which the two points of S0 can be connected by an equivariant path. The
resulting map gives rise to an element α ∈ πG

−ρ̃(S) such that the resulting G-spectrum
S[α−1] is non-trivial but all of its restrictions to proper subgroups are equivariantly
contractible. Thus, it cannot admit any norms∧

G/H

ResG
HS[α−1]→ S[α−1]

because on homotopy rings, they would induce ring maps from zero rings to non-
trivial rings.

Remark 2.24. Strictly speaking, the element α is not an element of the Z-graded ho-
motopy groups πG

∗ (S), but only of the RO(G)-graded homotopy groups πG
? (S). How-

ever, our results in Section 4 show that even when we restrict attention to elements
x ∈ πG

0 (S), we can construct many other examples of the loss of N∞ structure un-
der localization in terms of elementary group theory. Indeed, the A5-spectra S[e−1

A5
]

and S[α−1] are very similar in terms of their equivariant multiplicative behavior, see
Section 5.

We now present a preservation result for N∞ ring structures due to Gutierrez and
White. A similar result first appeared in the special case of G-E∞ rings in [HH14,
Cor. 4.11] for G-E∞ ring spectra and goes back at least to [EKMM97, Thm. VIII.2.2].

Definition 2.25 ([GW], Def. 7.3). For a G-operad P , let U denote the forgetful functor
from P-algebras to G-spectra. A Bousfield localization LC is said to preserve P-algebras
if the following two conditions hold:

(1) If E is a P-algebra, then there is some P-algebra Ẽ which is weakly equivalent as
a G-spectrum to LC(E).

(2) In addition, if E is a cofibrant P-algebra, then there is a choice of Ẽ in the category
of P-algebras with U(Ẽ) local in G-spectra, there is a P-algebra homomorphism
rE : E→ Ẽ that lifts the localization map lE : E→ LC(E) up to homotopy, and there
is a weak equivalence βE : LC(UE)→ U(Ẽ) such that βE ◦ lUE ∼= UrE in ho(SpG).

Recall that a G-operad P is called Σ-cofibrant if all of its spaces P(n) have the homo-
topy type of (G × Σn)-CW complexes. The following preservation result is a direct
translation of [GW, Cor. 7.10] to the positive complete model structure on orthogonal
G-spectra.
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Theorem 2.26 ([GW], Cor. 7.10). Let P be a Σ-cofibrant N∞ operad. Let LC be a monoidal
left Bousfield localization. Then LC preserves P-algebras in G-spectra if and only if the functors

G+ ∧H
∧

H/K

ResG
K(−) : SpG → SpG

preserve C-local equivalences between cofibrant objects for all H ≤ G and all transitive H-sets
H/K which are admissible for P .

Remark 2.27. The statement of [GW, Cor. 7.10] is actually phrased in terms of the func-
tors G+ ∧H

∧
T ResG

K(−) for all H ≤ G and all admissible H-sets T. Both formulations
are easily seen to be equivalent, using that

∧
T1 ä T2

(−) ' ∧
T1
(−) ∧ ∧T2

(−) and that
the smash product of two equivalences between cofibrant objects is an equivalence.

Corollary 2.28 ([GW], Cor. 7.5). Let P be any N∞ operad. Then any monoidal left Bousfield
localization LC takes P-algebras in SpG to G-spectra which are at least algebras over some
naive N∞ operad.

If the localization is given by inverting a single element x ∈ πG
0 (S), the condition in

Theorem 2.26 can be verified on homotopy groups, as we explain now. The following
results generalize [HH14, Thm. 4.11] to the N∞ setting in the case of the (p-local)
sphere spectrum.

Lemma 2.29. Fix a transitive H-set H/K and an element x ∈ πG
0 (S). Then:

i) The functor
∧

H/K ResG
K admits a left derived functor L(

∧
H/K ResG

K) which commutes
with sifted homotopy colimits. In particular, it commutes with sequential homotopy col-
imits.

ii) If Sc → S is a cofibrant replacement in the positive complete model structure on orthogonal
G-spectra, then so is Sc[x−1] → S[x−1]. Moreover,

∧
H/K ResG

K Sc →
∧

H/K ResG
K S and∧

H/K ResG
K Sc[x−1] → ∧

H/K ResG
K S[x−1] are cofibrant replacements in orthogonal H-

spectra.
iii) The map

ResG
H(S)

∼=
∧

H/K

ResG
K(S)→

∧
H/K

ResG
K(S[x

−1])

induced from the canonical map S→ S[x−1] induces an equivalence

ResG
H(S)[(NH

K RG
K(x))−1]→

∧
H/K

ResG
K(S[x

−1]).

Proof. i): This is well-known for the restriction functor; for the norm it follows from
[HHR16, Prop. B.104] combined with [HHR16, Prop. A.27, A.53].
ii): The first statement is easy. The sphere is the initial commutative monoid, hence
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cofibrant as a commutative monoid, and so the other two statements follow from
[HHR16, Prop. 2.30] applied to the maps Sc → S and Sc[x−1]→ S[x−1].
iii): Consider the following diagram:

hocolim(
∧

H/K

ResG
K(Sc)

∧
Res(·x)

//

��

∧
H/K

ResG
K(Sc)→ . . .) // (

∧
H/K

ResG
K)(Sc[x−1])

��

hocolim(
∧

H/K

ResG
K(S)

∧
Res(·x)

//
∧

H/K ResG
K(S)→ . . .) // (

∧
H/K

ResG
K)(S[x

−1])

The vertical maps are equivalences by part ii). The dashed horizontal map is induced
by the map

ResG
H(S)

∼=
∧

H/K

ResG
K(S)→

∧
H/K

ResG
K(S[x

−1]),

and similar for the solid horizontal one. The solid horizontal map is an equivalence by
part i) and the fact that left derived functors can be computed by passing to cofibrant
replacements. Hence the dashed arrow is an equivalence. It now suffices to see that the
domain of the dashed arrow computes the localization ResG

H(S)[(NH
K RG

K(x))−1]. This
holds because NH

K RG
K(x) is given as the composite of

∧
H/K ResG

K(x) with the norm
map

∧
H/K ResG

K S→ ResG
H(S), and the latter is an isomorphism since the sphere is the

monoidal unit. �

Proposition 2.30. Let P be a Σ-cofibrant (see Remark 2.11) N∞ operad. Fix x ∈ πG
0 (S).

Then LCx preserves P- algebras in G-spectra if and only if for all H ≤ G and all transitive
admissible H-sets H/K, the element NH

K RG
K(x) divides a power of RG

H(x) in the ring πH
0 (S).

Proof. We have to show that for admissible such H/K, the functors G+∧H
∧

H/K ResG
K(−)

preserve Cx-local equivalences between cofibrant objects if and only if the elements
NH

K RG
K(x) divide powers of RG

H(x).
If Cx-local equivalences are preserved, then in particular the map of G-spectra

G+ ∧H
∧

H/K

ResG
K(x) : G+ ∧H

∧
H/K

ResG
K(S)→ G+ ∧H

∧
H/K

ResG
K(S)

is an x-local equivalence. Under the standard isomorphism πG
∗ (G+ ∧H −) ∼= πH

∗ (−),
the induced map on πG

∗ (−) agrees with multiplication by the element NH
K RG

K(x) and
becomes a unit after inverting RG

H(x), hence the element NH
K RG

K(x) must divide a
power of RG

H(x).
Conversely, assume the division relation holds and let f : X → Y be a Cx-local equiva-
lence between cofibrant objects. Since induction is a left Quillen functor, it suffices to
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show that the map
∧

H/K ResG
K( f ) becomes an equivalence of H-spectra upon smash-

ing with S[RG
H(x)−1]. We are going to show that it is an equivalence upon smashing

with S[NH
K RG

K(x)−1]. Since the element NH
K RG

K(x) divides RG
H(x) by assumption, the

claim then follows.
The map f ∧ S[x−1] is an equivalence by assumption, so for any cofibrant replacement
Sc → S, the map f ∧ Sc[x−1] is an equivalence between cofibrant G-spectra. Then∧

H/K ResG
K( f ∧ Sc[x−1]) is an equivalence of H-spectra by [HHR16, Prop. B.103]. By

part ii) of Lemma 2.29, the map
∧

H/K ResG
K( f ∧ S[x−1]) must be an equivalence. But

the norm and restriction functors commute with smash products, so

(
∧

H/K

ResG
K)( f ) ∧ (

∧
H/K

ResG
K)(S[x

−1])

is an equivalence. Finally, part iii) of Lemma 2.29 implies that

(
∧

H/K

ResG
K)( f ) ∧ S[(NH

K RG
K(x))−1]

is an equivalence, which finishes the proof. �

Corollary 2.31 ([HH14], §4; [BH17], Lemma 12.8). Let n ∈ Z, viewed as the element
n · [G/G] ∈ A(G). Then S[ 1

n ] is a complete G-E∞ ring spectrum.

Consequently, for any collection P of primes, S(P) := S[q−1, q /∈ P] is a complete G-E∞

ring spectrum, or equivalently, a commutative monoid in SpG. One can now mimick
the proof of Proposition 2.30 in the P-local case.

Proposition 2.32. Let P be a Σ-cofibrant N∞ operad. Fix x ∈ πG
0 (S(P)). Then LCx preserves

P-algebras in P-local G-spectra if and only for all H ≤ G and all transitive admissible H-sets
H/K, the element NH

K RG
K(x) divides a power of RG

H(x) in the ring πH
0 (S(P)).

2.5. Localization and incomplete Tambara functors. There are analogous preserva-
tion results for incomplete Tambara functors under localization. Given an I-Tambara
functor R and an element x ∈ R(G), consider the levelwise localization R[x−1](H) :=
R(H)[RG

H(x)−1]. By [Str12, Lemma 10.2], this agrees with the sequential colimit along
countably many copies of multiplication by x, taken in the category of Mackey func-
tors. Multiplication by x is typically not a map of Tambara functors, and the levelwise
localization is usually not a Tambara functor. An alternative notion of localization
which enjoys a universal property in the category of Tambara functors is discussed in
[BH18, Section 5.4]. The two notions agree if and only if the Hill-Hopkins conditions
are satisfied.

Theorem 2.33 ([BH18], Thm. 5.26). Let R be an I-Tambara functor structured by an index-
ing system I . Let x ∈ R(G). Then the orbit-wise localization R[x−1] is a localization in the
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category of I-Tambara functors if and only if for all admissible sets H/K of I , the element
NH

K RG
K(x) divides a power of RG

H(x).

Blumberg and Hill do not give a detailed proof in [BH18], but assert that the proof
strategy of [HH14] can be mimicked in the setting of incomplete Tambara functors.
For completeness, we include a (different and more elementary) proof here.

Proof. As before, we decorate the structure maps of the localization with a tilde. In
order to simplify notation, write xK := RG

K(x) and similar for H. Fix an admissible set
H/K ∈ I(H). If Ñ := ÑH

K exists, it must necessarily be given as

(2.34) Ñ
(

a
xn

K

)
=

N(a)
N(xK)n .

This expression is well-defined if and only N(xK) ∈ R(H) becomes a unit after invert-
ing xH, i.e., if and only if it divides a power of xH.
Thus, R[x−1] is a Green ring equipped with norms ÑH

K for all admissible sets H/K ∈
I(H) and all H ≤ G. From (2.34) we see that the reciprocity relations [BH18, Prop. 4.10,
Prop. 4.11] satisfied by the norms of R imply the reciprocity relations for the norms
of R[x−1]. Thus by [BH18, Thm. 4.13], R[x−1] is a I-Tambara functor. Moreover, the
canonical map R → R[x−1] is a map of I-Tambara functors. One readily verifies that
the unique ring maps out of R(H)[x−1

H ] given by the universal properties for varying
H ≤ G assemble into a map of I-Tambara functors which exhibits R[x−1] as the local-
ization of R at x.
For the “only if" direction, observe that the division relations are also necessary be-
cause the norms and restrictions of the incomplete Tambara functor R[x−1] are multi-
plicative maps. �

As before, this always applies to localizations which invert natural numbers.

Corollary 2.35. Let n ∈ Z, viewed as the element n · [G/G] ∈ A(G). Then A(−)[ 1
n ] is a

complete Tambara functor.

In particular, Question 1.3 also makes sense for the local variants of the Burnside ring.

3. Idempotent splittings of the Burnside ring and the G-sphere spectrum

We review Dress’ classification of idempotents in the (P-local) Burnside ring and de-
scribe the resulting product decompositions of the Burnside Mackey functor and the
G-equivariant sphere spectrum. All of the statements in this section are easy conse-
quences of Dress’ result and are probably well-known to the experts. The author does
not claim any originality for these results.



Multiplicativity of the idempotent splittings of A(G) and SG 17

3.1. Idempotents in the Burnside ring. Let P be a collection of prime numbers and
set Z(P) := Z

[
p−1 | p /∈ P

]
. If P is the collection of all primes, nothing is inverted and

hence Z(P) = Z. If P is the empty set, then all primes are inverted, hence Z(P) = Q.
For P = {p}, we obtain the usual p-localization Z(P) = Z(p), which justifies the
notation. Write A(G)(P) := A(G)⊗Z Z(P) for the P-local Burnside ring.

Lemma 3.1 ([tD78], Prop. 1). Every finite group G has a unique minimal normal subgroup
OP(G) such that the quotient G/OP(G) is a solvable P-group, i.e. a solvable group whose
order is only divisible by primes in P.

Definition 3.2. The group OP(G) ≤ G is called the P-residual subgroup of G. A group
G is called P-perfect if G = OP(G). If P contains all primes, we will write Osolv(G) :=
OP(G) for the minimal normal subgroup with solvable quotient.

Remark 3.3. The following statements are easily verified.

i) For P = {all primes}, this agrees with the usual definition of a perfect group.
ii) For P = {p}, the group OP(G) is known to group theorists as the p-residual

subgroup Op(G) and the condition that the quotient be solvable is redundant
since every finite p-group is solvable.

iii) For P = ∅, every finite group G is P-perfect because the trivial group is the only
P-group.

The following classification result is due to Dress. Recall that the assignment S 7→ |SH |
given by taking the cardinality of the H-fixed points of a finite G-set S extends to an
injective ring homomorphism

φH : A(G)→ ∏
(H)≤G

Z

where the product is taken over conjugacy classes of subgroups H ≤ G [Dre69, (4),
(5), Lemma 1]. The same is true after inverting primes since Z(P) has no torsion. The
number φH(x) is called the mark of x at H.

Theorem 3.4 ([Dre69], Prop. 2). There is a bijection between the conjugacy classes of P-
perfect subgroups L ≤ G and the set of primitive idempotent elements of A(G)(P) which
sends L to the element eL ∈ A(G)(P) whose marks φH(eL) at a subgroup H ≤ G are one if
OP(H) ∼ L are conjugate in G, and zero otherwise.

Remark 3.5. It follows immediately that G is solvable if and only if A(G) does not
have any non-trivial idempotents. This originally motivated Dress’ work in [Dre69].

Remark 3.6. Note that if p does not divide the order G, then all subgroups L ≤ G are
p-perfect, hence all idempotents of A(G)⊗Q are contained in the subring A(G)(p). For
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the other extreme case, if G is a p-group, then only the trivial subgroup is p-perfect,
hence the only idempotents in A(G)(p) are zero and one.

3.2. Idempotent splittings of the Burnside ring. For any commutative ring, decom-
posing 1 into a sum of idempotents yields a product decomposition.

Corollary 3.7. There is an isomorphism of rings

A(G)(P)
∼= ∏

(L)≤G
A(G)(P)[e

−1
L ]

where the product is taken over conjugacy classes of perfect subgroups of L ≤ G.

One readily verifies that the statement above can be upgraded to a splitting of Green
rings, where for any subgroup H ≤ G, we view eL as an element of A(G)(P) via the
restriction map RG

H : A(G)(P) → A(H)(P).

Notation 3.8. For brevity, we will write A(−)(P)[e
−1
L ] for the levelwise localization

A(−)(P)[RG
(−)(eL)

−1], see Section 2.5.

Proposition 3.9. There is an isomorphism of Green rings

A(−)(P)
∼= ∏

(L)≤G
A(−)(P)[e

−1
L ].

The left hand side is even a Tambara functor. Question 1.3 asks whether the factors on
the right hand side inherit norms from A(−)(P), and whether the splitting preserves
these norms.

Remark 3.10. The value of the Green ring A(−)(P)[e
−1
L ] at a subgroup K ≤ G is non-

zero if and only if L is subconjugate to K, as follows from the description of eL in terms
of marks in Theorem 3.4.

Remark 3.11. Note that for any idempotent e ∈ A(G)(P), the localization A(G)(P)[e−1]

is canonically isomorphic to the submodule e · A(G)(P). The restriction maps R̃H
K and

transfer maps T̃H
K of A(−)(P)[e−1] are given by the formulae

R̃H
K (RG

H(e) · a) := RG
K(e) · RH

K (a)

and
T̃H

K (RG
K(e) · b) := RG

H(e) · TH
K (b)

for all a ∈ A(H) and b ∈ A(K), where R and T denote the restrictions and transfers of
A(−)(P) (cf. [LMS86, Thm. V.4.6]). The equations that go into verifying the proposition
can easily be read off from these formulae. The analogous P-local statements hold.
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Remark 3.12. We warn the reader that even though any restriction of eL to a proper
subgroup H ≤ G is still an idempotent, it will in general not be primitive. More
precisely, it splits as an n-fold sum of primitive idempotents of A(H)(P) where n is the
number of H-conjugacy classes contained in the G-conjugacy class of L.

3.3. Idempotent splittings of the sphere spectrum. We now turn to the homotopical
consequences of the above splitting. First recall the following theorem which goes
back to Segal [Seg71, Cor. of Prop. 1].

Theorem 3.13 (See [Sch], Thm. 6.14, Ex. 10.11). For all H ≤ G, there is a ring isomorphism
A(H) → πH

0 (S) which sends the class represented by H/K to the element TH
K (id). For

varying H, these maps assemble into an isomorphism of Tambara functors A(−) ∼= π0(S).

Remark 3.14. The isomorphism A(−) ∼= π0(S) is completely determined by the re-
quirements that it be unital and respect transfers.

Dress’ classification of idempotent elements then immediately implies the next state-
ment.

Proposition 3.15. The product of the canonical maps to the localizations is a weak equivalence
of P-local G-spectra

S(P) ' ∏
(L)≤G

S(P)[e
−1
L ]

where the product is taken over conjugacy classes of P-perfect subgroups. For any naive N∞-
operad O, i.e., any N∞ operad whose homotopy type is the unique minimal element in the poset
of N∞ ring structures, this is a splitting of O-algebras (up to equivalence of G-spectra).

Proof. The fact that the eL form a complete set of orthogonal idempotents implies that
the map induces isomorphisms on all equivariant homotopy groups. Moreover, for
any naive N∞ operad O, the G-homotopy equivalence O(0) → ∗ induces a canonical
equivalence of G-spectra (Σ∞

+O(0))(P) → S(P), so we can view the latter as an O-
algebra. Under this identification, the canonical maps S(P) → S(P)[e

−1
L ] are all maps of

O-algebras, as follows from the fact that localization always preserves naive N∞ rings,
see Corollary 2.28. �

Question 1.2 asks about the maximal N∞ ring structures on the localizations S(P)[e
−1
L ],

and about the maximal N∞ ring structure preserved by the splitting. The answer is
given in Corollary 4.26 (Corollary F) and Corollary 4.29 (Corollary H).

4. Norms in the idempotent splittings

We state and prove the results which answer Question 1.3 and Question 1.2, including
the local variants where any collection of primes P is inverted.
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4.1. Theorem A and consequences. The main combinatorial result of this paper is the
following version of Theorem A, stated in full P-local generality:

Theorem 4.1. Let P be a collection of primes. Let L ≤ G be a P-perfect subgroup and let
eL ∈ A(G)(P) be the corresponding primitive idempotent under the bijection from Theorem 3.4.
Fix subgroups K ≤ H ≤ G. Then the norm map NH

K : A(K)(P) → A(H)(P) descends to a
well-defined map of multiplicative monoids

ÑH
K : A(K)(P)[e

−1]→ A(H)(P)[e
−1]

if and only if the following holds:

(?) Whenever L′ ≤ H is conjugate in G to L, then L′ is contained in K.

The characterization of eL in terms of marks in Theorem 3.4 implies that RG
H(eL) = 0

whenever L is not subconjugate in G to H. From this, it is clear that the norm ÑH
K exists

for trivial reasons if K is not super-conjugate in G to L: it is just the zero morphism
between zero rings. Similarly, there cannot be a norm map ÑH

K inherited from NH
K

if K is not super-conjugate to L, but H is. Indeed, it would have to be a map of
multiplicative monoids from the zero ring to a non-trivial ring, hence would satisfy
ÑH

K (0) = 1. But NH
K (0) = [mapK(H, ∅)] = 0 before localizing, which is a contradiction.

The other cases are not obvious. We defer the proof of Theorem 4.1 to Section 4.2 and
first state and prove the locally enhanced versions of Corollary B and Corollary C.

Corollary 4.2. Assume that L ≤ G is P-perfect. Then L is normal in G if and only if the
summand A(−)(P)[e

−1
L ] inherits from A(−)(P) all norms of the form ÑH

K such that K contains
a subgroup conjugate in G to L.

Proof. If L is normal, it is the only group in its G-conjugacy class, hence the condition
(?) of Theorem 4.1 is satisfied for such K ≤ H. Conversely, if the condition holds for
the groups K := L and H := G, then any G-conjugate of L is contained in L, hence L
is normal in G. �

Corollary 4.3. The Green ring A(−)(P)[e
−1
L ] admits norms ÑH

K for all K ≤ H if and only if
L = 1 is the trivial group. In this case, the norm maps equip A(−)(P)[e

−1
1 ] with the structure

of a Tambara functor.

Proof. If L = 1, then all groups are supergroups of L and all subgroup inclusions
give rise to norm maps by Corollary 4.2. It then follows from [BH18, Thm. 4.13] that
A(−)(P)[e

−1
1 ] is a Tambara functor, cf. the proof of Theorem 2.33. Conversely, if L is

non-trivial P-perfect, the inclusion 1→ G does not give rise to a well-defined norm on
A(−)(P)[e

−1
L ]. �
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Remark 4.4. The “only if” part is implicit in work of Blumberg and Hill, at least
integrally: All idempotents eL different from e1 lie in the augmentation ideal of A(G).
If inverting such an element yielded a Tambara functor, then it would have to be the
zero Tambara functor, see [BH18, Example 5.25]. But A(−)[e−1

L ] is always non-zero.

Remark 4.5. It is also implicit in Nakaoka’s work on ideals of Tambara functors
[Nak12] that the idempotent summands of the (P-local) Burnside ring Mackey func-
tor cannot all be Tambara functors, for if they were, then the idempotent splitting
would be a splitting of Tambara functors. But by [Nak12, Prop. 4.15], this implies that
A(1) ∼= Z splits non-trivially, which is absurd. (Note that there is a minor error in
statements (2)–(4) of loc. cit.: the requirement that the respective ideals and elements
be non-zero is missing.)

Remark 4.6. When working p-locally, the ring A(G)(p)[e
−1
1 ] can be described in two

different ways: It agrees with the p-local Burnside ring with p-isotropy, i.e., the p-
localization of the Grothendieck ring of finite G-sets all of whose isotropy groups are
p-groups. Moreover, it can be identified with the p-localization of the Burnside ring of
the p-fusion system of the group G. We refer the reader to [Gro, Section 5] for details.

As an illustration of Theorem 4.1, we will discuss the idempotent splittings of A(A5)

(integrally) and A(Σ3) (locally at the primes 2 and 3) in detail in Section 5. There, we
also spell out what happens in the rational splitting (P = ∅) for any finite group G.

4.2. The proof of Theorem A. The main idea of the proof is that we can check the
hypotheses for preservation of norm maps from Theorem 2.33 on marks. As norm
maps in the Burnside ring are given by co-induction functors of equivariant sets, we
need to understand how they interact with taking fixed points. To that end, we first
record some technical statements before giving the proof of Theorem 4.1 (Theorem A).

Lemma 4.7. For subgroups K, H ≤ N ≤ G, let P be the pullback in the category of G-sets of
the canonical surjections G/H → G/N and G/K → G/N.

P

��

// G/H

��

G/K // G/N

Then P has an orbit decomposition given by

P ∼= ä
n∈K\N/H

G/(K ∩ nH)

where the summation is over representatives of double cosets.
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This implies a multiplicative double coset formula for norm maps of A(−)(P).

Corollary 4.8. For K, H, N and G as before and all x ∈ A(H)(P), the following identity holds
in A(K)(P):

RN
K NN

H (x) = ∏
n∈K\N/H

NK
K∩ n H · cn · Rn−1 K∩H(x)

where we wrote cn for the map induced from conjugation by n ∈ N.

Lemma 4.9. The norms of A(−)(P) satisfy φH(NH
K (a)) = φK(a) for all a ∈ A(K)(P) and all

nested subgroups K ≤ H ≤ G.

Proof. Let Q ≤ G be any subgroup. Under the isomorphism A(G)(P)
∼= πG

0 (S(P)) of
Theorem 3.13, the homomorphism of marks φQ : A(G)(P) → Z(P) identifies with the
map

πG
0 (S(P))→ Z(P),

[
f : S(P) → S(P)

]
7→ deg(φQ( f ))

which sends a class represented by f to the degree of the map φQ( f ) induced on
geometric fixed points, see [Seg71, p. 60]. Thus, it suffices to prove that the degrees of
the two maps of non-equivariant spectra

φH

( ∧
H/K

ResKS(P) →
∧

H/K

ResKS(P)
∼=→ ResHS(P)

)
and φK( f ) coincide. This follows immediately from [HHR16, B.209]. �

Corollary 4.10 (Cf. [Oda14], Lemma 2.2). For Q, K ≤ H, we can compute the marks φQ of
a norm as follows:

φQNH
K (x) = ∏

h∈Q\H/K
φQ∩ hK(x)

Proof. In the following computation, the second equality is the multiplicative double
coset formula of Corollary 4.8, and the third uses that φQ is a ring homomorphism.
The fourth equality is an application of Lemma 4.9.

φQNH
K (x) = φQRH

Q NH
K (x) = φQ

(
∏

h
NQ

Q∩ hKchRK
h−1Q∩K

(x)

)

= ∏
h

φQNQ
Q∩ hKchRK

h−1Q∩K
(x) = ∏

h
φQ∩ hKchRK

h−1Q∩K(x) = ∏
h

φQ∩ hK(x)

�

Lemma 4.11. Let e, e′ ∈ R be idempotents in a commutative ring. Then e divides e′ if and
only if e · e′ = e′.
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Proof. Assume that e divides e′. Then e′ ∈ eR, hence e · e′ = e′, since multiplication
by e is projection onto the idempotent summand eR of R. The other direction is
obvious. �

Lemma 4.12. For H ≤ G and g ∈ G, the following holds:

a) OP(H) ⊆ OP(G)

b) OP(gH) = g(OP(H))

The author learned the proof of part a) from Joshua Hunt.

Proof. Since OP(G) is normal in G, we know that H ∩OP(G) is normal in H. Now
the group H/(H ∩ OP(G)) ∼= (H · OP(G))/OP(G) ≤ G/OP(G) is isomorphic to a
subgroup of a solvable P-group, hence is a solvable P-group itself. By minimality,
OP(H) ≤ H ∩OP(G) ≤ OP(G), which proves a).
The assertion b) follows from the fact that conjugation by g induces a bijection between
the subgroup lattices of H and gH which preserves normality. �

Proposition 4.13. In the situation of Theorem 4.1, the following are equivalent:

(?) Every subgroup L′ ≤ H that is conjugate in G to L is contained in K.
(♦) For all Q ≤ H such that OP(Q) ∼G L, we have φQ(NH

K (RK(eL))) = 1.

Proof. The proof proceeds in three steps. Step 1 and 2 simplify the condition (♦),
whereas Step 3 shows that the resulting reformulation of (♦) is equivalent to (?).
Step 1: Let Q ≤ Q′ ≤ H such that OP(Q) ∼G L ∼G OP(Q′). We claim that if the
statement of (♦) holds for Q, then it does so for Q′.
Indeed, if (♦) holds for Q, then Theorem 3.4 together with Corollary 4.10 implies that
for all h ∈ H, we have OP(Q ∩ hK) ∼G L. From Lemma 4.12, we see that

L ∼G OP(Q ∩ hK) ≤ OP(Q′ ∩ hK) ≤ OP(Q′) ∼G L,

so OP(Q′ ∩ hK) is conjugate to L, and hence the statement (♦) holds for Q′.
The above claim shows that when verifying (♦), we need not take into account all
elements of the set {Q ≤ H |OP(Q) ∼G L} but can restrict attention to its minimal
elements under inclusion, i.e., to the groups L′′ ≤ H such that L′′ ∼G L. In other
words, (♦) is equivalent to:

(♦a) For all L′′ ≤ H such that L′′ ∼G L, we have φL′′(NH
K (RK(eL))) = 1.

Step 2: Let L′′ be as in (♦a). As we have seen, the equation φL′′(NH
K (RK(eL))) = 1 holds

if and only for all h ∈ H, we have OP(L′′ ∩ hK) ∼G L. But

OP(L′′ ∩ hK) = OP( h−1
L′′ ∩ K),

so substituting L′ for h−1L′′ shows that (♦) is equivalent to:
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(♦b) For all L′ ≤ H such that L′ ∼G L, we have OP(L′ ∩ K) ∼G L.

Step 3: We are left to show that for L′ as in (♦b), L′ is in K if and only OP(L′ ∩K) ∼G L.
For the “only if” part, assume that L′ ≤ K, then OP(L′ ∩ K) = L′ ∼G L. For the “if”
part, observe that

L ∼G OP(L′ ∩ K) ≤ L′ ∩ K ≤ L′.

The conjugate copy of L contained in L′ ∩ K must be L′, so L′ ≤ K. �

Proof of Theorem 4.1. We know from Theorem 2.33 that the norm NH
K descends to a

well-defined map ÑH
K if and only if the element NH

K (RK(eL)) divides RH(eL) in A(H)(P).
By Lemma 4.11, this division relation is equivalent to the equation

NH
K (RK(eL)) · RH(eL) = RH(eL)

and holds if and only if for all Q ≤ H, we have

φQ(NH
K (RK(eL))) · φQ(RH(eL)) = φQ(RH(eL)).

Here, we used that the homomorphism of marks

φ = ∏
(Q)≤H

φQ : A(H)(P) → ∏
(Q)≤H

Z(P)

is an injective ring homomorphism.
All three integers in the last equation are idempotents, hence can only be 0 or 1, and
the equation holds in all cases except when φQ(NH

K (RK(eL))) is zero, but φQ(RH(eL))

is one. The formula for marks given in Theorem 3.4 then implies that the equation is
equivalent to the condition (♦) of Proposition 4.13. The latter is equivalent to (?), and
Theorem 4.1 follows. �

4.3. The incomplete Tambara functor structure. It still remains to see how the col-
lection of norm maps described by Theorem 4.1 fits into the framework of [BH18].
First of all, we describe the norm maps in A(−)(P)[e

−1
L ] arising from arbitrary maps of

G-sets. This is the special case R = A(−)(P), x = eL of the following result:

Proposition 4.14. Let x ∈ R(G) be an idempotent. Let f be an arbitrary map of finite G-sets.
Choose orbit decompositions of X and Y such that f is the sum of canonical surjections

f : X = ä
i,j

G/Kij → Y = ä
i

G/Hi

induced by subgroup inclusions Kij ≤ Hi. Then the levelwise localization R[x−1] inherits a
norm map Ñ f from R if and only if each restriction to orbits fij : G/Kij → G/Hi does.

Proof. The proof proceeds in two steps.
Step 1: By the universal property of the product (of underlying multiplicative monoids),
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a potential norm map defined by f is given componentwise by the potential norms
induced by the restricted maps fi : äj G/Kij → G/Hi. Consequently, Ñ f exists if and
only if Ñ fi exists for all i.
Step 2: We are left to show that a map fi : äj G/Kij → G/Hi gives rise to a norm
map if and only if all of the maps fij : G/Kij → G/Hi do. But under the identification
R(äj G/Kij) ∼= ∏j R(Kij), the norm N f is of the form

∏
j

R(Kij)→ R(Hi), (aj)j 7→∏
j

N fij(aj).

The analogous statement holds for the norms of R[x−1], provided they exist. Thus, Ñ fi

exists if and only if Ñ fij exists for all j. �

We would like to use Theorem 2.33 in order to show that A(−)(P)[e
−1
L ] is an incomplete

Tambara functor with norms as described in Theorem 4.1. However, Theorem 2.33 is a
statement about Tambara functors structured by indexing systems, or equivalently (see
Theorem 2.15), structured by wide, pullback-stable, finite coproduct-complete subcat-
egories D ⊆ SetG. Thus, we first need to see that the maps f which give rise to norm
maps form such a category D.

Definition 4.15. Let DL ⊆ SetG be the wide subgraph consisting of all the maps of
finite G-sets f : X → Y such that the orbit G f (x)/Gx obtained from stabilizer subgroups
satisfies the conditions of Theorem 4.1 for all x ∈ X.

Proposition 4.16. The subgraph DL is a wide, pullback-stable, finite coproduct-complete sub-
category of SetG, hence corresponds to an indexing system IL under the equivalence of posets
of Theorem 2.15.

Explicitly, the admissible H-sets in IL are the objects over G/H in DL, see [BH18,
Lemma 3.19]. The three lemmas below constitute the proof.

Lemma 4.17. The graph DL is a wide subcategory of SetG.

Proof. It is wide by definition and clearly contains all identities. Once we have shown
that it is closed under composition, associativity follows from associativity in SetG.
Let f : S → T and g : T → U be admissible maps of G-sets. By Proposition 4.14, we
may assume that S = G/A, T = G/B and U = G/C are transitive G-sets for nested
subgroups A ≤ B ≤ C ≤ G, and f , g are the canonical surjections. Thus, it suffices
to show that if C/B and B/A are admissible, so is C/A. This is immediate from the
condition (?) given in Theorem 4.1. �

Lemma 4.18. The subcategory DL is finite coproduct-complete.
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Proof. This follows directly from Proposition 4.14. �

Lemma 4.19. The subcategory DL is pullback-stable.

Proof. The problem reduces to canonical surjections between orbits by Proposition 4.14.
We have to show that if the canonical surjection G/K → G/H in the following pullback
diagram is admissible, then so is its pullback along the canonical map G/A → G/H,
where A, K ≤ H are subgroups.

P

��

// G/K

��

G/A // G/H

This in turn amounts to verifying the condition (?) of Theorem 4.1 for all summands
of

RH
A(H/K) ∼= ä

[h]∈A\H/K
A/(A ∩ hK).

Note that since H/K is admissible, so are the isomorphic H-sets H/ hK for all h ∈ H.
Fix L′ ≤ A such that L′ ∼G L. We have to show that L′ ≤ A ∩ hK. But L′ is in H and
H/ hK is admissible, so L′ ≤ hK and hence L′ ≤ A ∩ hK. �

We obtain (the locally enhanced) Theorem D:

Theorem 4.20. Let P be a collection of primes. Let L ≤ G be a P-perfect subgroup and let
eL ∈ A(G)(P) be the corresponding primitive idempotent. Then the following hold:

i) The admissible sets for eL assemble into an indexing system IL such that A(−)(P)[e
−1
L ] is

an IL-Tambara functor under A(−)(P).
ii) In the poset of indexing systems, IL is maximal among the elements that satisfy i).

iii) The map A(−)(P) → A(−)(P)[e
−1
L ] is the localization of A(−)(P) at eL in the category of

IL-Tambara functors.

Proof. Proposition 4.16 shows that IL is an indexing system. Then A(−)(P)[e
−1
L ] is an

IL-Tambara functor by [BH18, Thm. 4.13], see the proof of Theorem 2.33 for details.
Theorem 2.33 also implies part iii). Part ii) follows from Theorem 4.1 together with
Proposition 4.14. �

Finally, we describe the maximal incomplete Tambara functor structure which is pre-
served by the idempotent splitting of the Green ring A(−)(P) stated in Proposition 3.9.
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Lemma 4.21. The (levelwise) intersection of a finite number of indexing systems is an indexing
system. �

Notation 4.22. Write I for the indexing system

I :=
⋂

(L)≤G

IL

where the intersection is over all conjugacy classes of P-perfect subgroups of G, and
the indexing systems IL are the ones given by Theorem 4.20.

For each P-perfect L ≤ G, the IL-Tambara functor A(−)(P)[e
−1
L ] is an I-Tambara func-

tor by forgetting structure. Theorem 4.1 provides a very explicit description of the
admissible sets of I .

Lemma 4.23. Let K ≤ H ≤ G, then H/K is an admissible set for I if and only if for all
perfect L ≤ H, L is contained in K. �

We can now restate Corollary E.

Corollary 4.24. The localization maps A(−)(P) → A(−)(P)[e
−1
L ] assemble into an isomor-

phism of I-Tambara functors

A(−)(P) → ∏
(L)≤G P−perfect

A(−)(P)[e
−1
L ].

Proof. It is an isomorphism of Green rings by Proposition 3.9. Moreover, each of
the localization maps A(−)(P) → A(−)(P)[e

−1
L ] is a map of I-Tambara functors, and

the product in the category of I-Tambara functors is computed levelwise, see [Str12,
Prop. 10.1]. �

Remark 4.25. We point out a possible alternative to our proof of Corollary 4.24. Blum-
berg and Hill generalized parts of Nakaoka’s theory of ideals of Tambara functors
[Nak12] to the setting of incomplete Tambara functors, see [BH18, Section 5.2]. The au-
thor is confident that one could similarly generalize Nakaoka’s splitting result [Nak12,
Prop. 4.15] to the incomplete setting. It would state that an I-Tambara functor R splits
non-trivially as a product of I-Tambara functors if and only if for each admissible set
X of I , there are non-zero elements a, b ∈ R(X) such that a + b = 1 and 〈a〉 · 〈b〉 = 0.
Such a result would reprove our Corollary 4.24, using that the restrictions of the prim-
itive idempotents eL along admissible maps never become zero. We leave the details
to the interested reader.
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4.4. The N∞ ring structure. We return to the situation of Question 1.2, lift our alge-
braic results to the category of G-spectra and prove the locally enhanced versions of
Corollary F, Corollary G and Corollary H.

Observe that for any N∞ operad P , the object S(P) admits the structure of a commu-
tative monoid in orthogonal G-spectra, hence admits a natural P-algebra action that
factors through the commutative operad.

Corollary 4.26. Let L ≤ G be a P-perfect subgroup and let eL ∈ πG
0 (S) be the associated

idempotent. For any Σ-cofibrant N∞ operad OL whose associated indexing system is IL, the
following hold:

i) The G-spectrum S(P)[e
−1
L ] is an OL-algebra under S(P).

ii) In the poset of homotopy types of N∞ operads, OL is maximal among the elements that
satisfy i).

iii) The map S(P) → S(P)[e
−1
L ] is a localization at eL in the category of OL-algebras.

The cofibrancy assumption does not impose an obstruction to the existence of OL, see
Remark 2.11.

Proof. It is clear from Theorem 2.33 that OL satisfies the hypothesis of Proposition 2.26,
which proves part i) and iii). For part ii), assume that there is an N∞ operad O′ whose
homotopy type is strictly greater than that of OL such that S(P)[e

−1
L ] is an O′-algebra.

Then, by Theorem 2.20, its 0-th equivariant homotopy forms a I ′-Tambara functor
for the indexing system I ′ corresponding to O′. But this contradicts the maximality
proved in Corollary 4.20. �

The following local enhancement of Corollary G is a homotopical reformulation of
Corollary 4.3 (Corollary C).

Corollary 4.27. The G-spectrum S(P)[e
−1
L ] is a G-E∞ ring spectrum if and only if L = 1 is

the trivial group.

In particular, we see that the idempotent splitting of S is far from being a splitting of
G-E∞ ring spectra. Locally at the prime p, Corollary 4.27 recovers a (yet unpublished)
result of Grodal.

Theorem 4.28 ([Gro], Cor. 5.5). The G-spectrum S(p)[e
−1
1 ] is a G-E∞ ring spectrum.

Finally, we state the homotopy-theoretic analogue of Corollary 4.24 in order to describe
the maximal N∞-ring structure preserved by the P-local idempotent splitting of the
sphere. It is the local reformulation of Corollary H.
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Corollary 4.29. Let O be a Σ-cofibrant N∞ operad realizing the indexing system I = ∩(L)IL.
Then the idempotent splitting

S(P) ' ∏
(L)≤G

S(P)[e
−1
L ]

is an equivalence of O-algebras, where the product is taken over conjugacy classes of P-perfect
subgroups.

Proof. The splitting is an equivalence of G-spectra by Proposition 3.15. Moreover, all
of the maps to the localizations are maps of O-algebras, as can be seen from 4.26. �

Together, Corollary 4.26 and Corollary 4.29 answer Question 1.2 completely, for any
family of primes inverted.

5. Examples

We illustrate our results in the rational case, in the case of the alternating group A5,
working integrally, and that of the symmetric group Σ3, working 3-locally.

5.1. The rational case. In the case when P = ∅ and hence Z(P) = Q, the rational
Burnside ring A(G)Q has exactly one primitive idempotent eL for each conjugacy class
of subgroups L ≤ G. The incomplete Tambara functor structures of the idempotent
summands A(−)Q[e−1

L ] depend on the subgroup structure of G as described by The-
orem 4.1. However, it is immediately clear from Lemma 4.23 that the idempotent
splitting is only a splitting of Green rings, but not a splitting of I ′-Tambara functors
for any indexing system I ′ greater than the minimal one. This phenomenon is also
discussed in [BGK17, Section 7], and it is precisely the reason why their approach
only provides an algebraic model for the rational homotopy theory of naive N∞ ring
spectra, but cannot possibly account for any non-trivial Hill-Hopkins-Ravenel norms.

5.2. The alternating group A5. It is well-known that A5 is the smallest non-trivial
perfect group. Thus, it is the smallest example of a group whose Burnside ring admits
a non-trivial idempotent splitting when working integrally. Indeed, the only perfect
subgroups are 1 and A5, and these give rise to idempotent elements e1, eA5 ∈ A(A5).
Theorem 3.4 implies that their marks are given by

φH(eA5) =

1, H = A5

0, H 6= A5

and vice versa for e1. We know from Corollary 4.3 that A(A5)[e−1
1 ] is a complete Tam-

bara functor. On the other hand, A(H)[e−1
A5
] is trivial unless H = A5, hence there
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cannot be any norm maps NA5
H for proper subgroups H ≤ A5. Moreover, by Corol-

lary 4.24, the idempotent splitting of A(−) is a splitting of IA5-Tambara functors, i.e.,
it only preserves norms between proper subgroups.
By Corollary 4.26 and Corollary 4.29, the analogous statements hold for the N∞ ring
structures on S[e−1

1 ] and S[e−1
A5
]. Just like Example 2.23, this provides another instance

of the phenomenon that inverting a single homotopy element does not preserve any of
the Hill-Hopkins-Ravenel norm maps from proper subgroups to the ambient group.
Of course, all of this holds for any perfect group G whose only perfect subgroup is the
trivial group.

5.3. The symmetric group Σ3 at the prime 3. Since Σ3 is solvable, its Burnside ring
A(Σ3) does not have any idempotents other than zero and one. We can obtain inter-
esting idempotent splittings by working locally at primes p dividing the group order.
All 2-perfect subgroups of Σ3 are normal, hence the case p = 2 is completely covered
by Corollary 4.2 and we only discuss the more interesting case p = 3 in detail.

Any map in the orbit category can be factored as an isomorphism followed by a canon-
ical surjection, hence the admissibilty of Σ3/H just depends on the conjugacy class of
H and we can just write C2 for any of the three conjugate subgroups of order two.
Note that the 3-residual subgroups O3(H) for H ≤ Σ3 are given as follows:

O3(H) =


Σ3, H = Σ3

1, H = A3

C2, H = C2

1, H = 1

Thus, all subgroups of Σ3 except for A3 are 3-perfect. All subgroups of order two are
conjugate in Σ3, so there are three idempotent elements in A(Σ3)(3), corresponding to
the conjugacy classes of the 3-perfect subgroups 1, C2 and Σ3. In terms of marks, they
are given as

Subgroup H ≤ Σ3 φH(e1) φH(eC2) φH(eΣ3)

1 1 0 0
C2 0 1 0
A3 1 0 0
Σ3 0 0 1

The localization A(−)(3)[e−1
1 ] admits all norms by Corollary 4.3. The norm maps of

A(−)(3)[e−1
Σ3
] are described by Corollary 4.2. In detail, this Mackey functor is zero at

all proper subgroups, but non-trivial at Σ3. Consequently, there are norm maps ÑH
K if

and only if H and hence K is a proper subgroup of Σ3, but all of these norms are maps
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between trivial rings.
It remains to describe the idempotent localization A(−)(3)[e−1

C2
]. The left of the fol-

lowing two diagrams depicts the subgroups H ≤ Σ3 (up to conjugacy) and their in-
clusions. The right hand diagram displays the ranks (as free Z(3)-modules) of the
corresponding values of A(−)(3)[e−1

C2
] at the subgroup H.

Σ3 1

A3

cc

0

C2

DD

1

FF

1

cc

OO

DD

0

FF

There is a norm map from 1 to A3 for trivial reasons (indicated by the solid arrow)
and the only other norm maps which could potentially exist would be the maps ÑΣ3

C2

where C2 is any subgroup of order two (indicated by the dashed arrow). However, if
we choose K = L = (12) and let L′ = (13), then the condition (?) of Theorem 4.1 is
not satisfied. Indeed, L′ is conjugate to L, but not contained in K. Consequently, there
is no norm map ÑΣ3

C2
.

We see from Lemma 4.23 that I = IC2 , so in this case the idempotent splittings of
A(−)(3) and hence S(3) only preserve the norm map NA3

1 .

6. Applications

6.1. Norm functors in the idempotent splitting of SpG. Any G-spectrum X is a mod-
ule over the sphere spectrum, hence admits an idempotent splitting

X ' ∏
(L)≤G

X[e−1
L ]

where X[e−1
L ] is the sequential homotopy colimit along countably many copies of the

map X ∼= X ∧ S
id∧eL−→ X ∧ S ∼= X. Thus, the idempotent elements of A(G) induce a

product decomposition of the category of G-spectra SpG by breaking it up into cat-
egories of modules over the idempotent summands S[e−1

L ]. Similar statements hold
in the local cases, cf. e.g. [Bar09, Thm. 4.4, Section 6]. While this only depends on
the additive splitting of Proposition 3.15, some additional multiplicative structure is
present.

It is useful to consider not just the category of (P-local) G-spectra, but rather the sym-
metric monoidal categories of (P-local) H-spectra for all subgroups H ≤ G together
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with their restriction and norm functors. This kind of structure has been studied in
[HH16, BH15a] under the name of G-symmetric monoidal categories. From this perspec-
tive, Theorem A measures the failure of the idempotent splitting of SpG to give rise to
a splitting of G-symmetric monoidal categories. Indeed, the factors only admit some
of the Hill-Hopkins-Ravenel norm functors and hence form “incomplete G-symmetric
monoidal categories”:

Corollary 6.1. Let L ≤ G be P-perfect and let OL as in Corollary 4.26. Assume further-
more that OL has the homotopy type of the linear isometries operad on a (possibly incomplete)
universe U. For all admissible sets H/K of IL, there are norm functors

ResH(S(P)[e
−1
L ])N

H,ResH(U)
K,ResK(U)

: Mod(ResG
K(S(P)[e

−1
L ]))→ Mod(ResG

H(S(P)[e
−1
L ]))

built from the smash product relative to S(P)[e
−1
L ] which satisfy a number of relations analogous

to those for the norm functor SpH → SpG, stated in [BH15a, Thm. 1.3].

This is an immediate application of [BH15a, Thm. 1.1, Thm. 1.3] to Corollary 4.26. We
refer to [BH15a] for a detailed discussion of modules over N∞ ring spectra.

The reason for the “linear isometries” hypothesis is explained in the introduction to
[BH15a]. It is expected that it is not necessary, and that the ∞-categorical tools devel-
oped in [BDG+17] and its sequels will remove this technical assumption.

6.2. Idempotent splittings of equivariant topological K-theory. Our main questions,
Question 1.2 and Question 1.3, can be asked for any G-E∞ ring spectrum and its
idempotent splitting, assuming there are only finitely many primitive idempotents
and that these admit a suitably explicit description. In the sequel [Böh18], we will
answer the analogues of our main questions for the G-equivariant complex topological
K-theory spectrum KUG and its real analogue KOG. It turns out that the solution can
be reduced to the one given here, but in order to see this, a careful analysis of the
complex representation ring and its relationship with the Burnside ring is required.
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IDEMPOTENT CHARACTERS AND EQUIVARIANTLY
MULTIPLICATIVE SPLITTINGS OF K-THEORY

BENJAMIN BÖHME

Abstract. We classify the primitive idempotents of the p-local complex representation
ring of a finite group G in terms of the cyclic subgroups of order prime to p and show
that they all come from idempotents of the Burnside ring. Our results hold without
adjoining roots of unity or inverting the order of G, thus extending classical structure
theorems. We then derive explicit group-theoretic obstructions for tensor induction
to be compatible with the resulting idempotent splitting of the representation ring
Mackey functor.
Our main motivation is an application in homotopy theory: we conclude that the idem-
potent summands of G-equivariant topological K-theory and the corresponding sum-
mands of the G-equivariant sphere spectrum admit exactly the same flavors of equi-
variant commutative ring structures, made precise in terms of Hill-Hopkins-Ravenel
norm maps.
This paper is a sequel to the author’s earlier work on multiplicative induction for the
Burnside ring and the sphere spectrum, see arXiv:1802.01938v1.

1. Introduction

The purpose of this paper is twofold: We first classify the primitive idempotents in
the real and complex representation rings RO(G) and RU(G) of a finite group G and
their local variants, as summarized in §1.1, extending various classical results. We
then study the compatibility of tensor induction with the splittings of RO(G) and
RU(G) into idempotent summands, and as a consequence obtain an explicit descrip-
tion of the G-equivariant commutative ring spectrum structures occuring as idempo-
tent summands of real and complex G-equivariant topological K-theory. See §1.2 for a
summary of these results.

We begin with some motivation. Multiplicative induction is a familiar tool in repre-
sentation theory and group cohomology. In the wake of Hill, Hopkins and Ravenel’s
ground-breaking solution to the Kervaire invariant one problem [HHR16], it has also

2000 Mathematics Subject Classification. 19L47; 19A22, 20C15, 55P43, 55P60, 55P91, 55S91.
Key words and phrases. Equivariant stable homotopy theory, Hill-Hopkins-Ravenel norm, equivariant com-
mutative ring spectrum, topological K-theory, representation ring, idempotent, multiplicative induction,
Tambara functor.

https://arxiv.org/abs/1802.01938
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received much interest in equivariant homotopy theory. Starting from the observa-
tion that localization can destroy some of the structure of an equivariant commutative
ring spectrum, Hill and Hopkins [HH14] gave a necessary and sufficient criterion
(cf. Proposition 4.4) for the localization

R[x−1] := hocolim
(

R x−→ S−V ∧ R x−→ S−(V⊕V) ∧ R x−→ . . .
)

of a G-E∞ ring spectrum R at an element x ∈ πG
V(R) to admit a G-E∞ ring structure.

The critical part is that R[x−1] might not admit Hill-Hopkins-Ravenel norm maps

NH
K : G+ ∧H

∧
H/K

ResG
K(R)→ R

for all nested subgroups K ≤ H ≤ G. Subsequently, more general notions of equivari-
ant commutative ring spectra equipped with incomplete collections of norm maps,
called N∞ ring spectra, were studied by Blumberg and Hill in [BH15b], [BH18] and
[BH15a].

Interesting examples of equivariant localizations arise from primitive1 idempotent el-
ements e ∈ πG

0 (R). These induce a decomposition of the homotopy Mackey functor
π∗(R) into indecomposable summands (also called blocks) of the form

e · π∗(R) ∼= π∗(R)[e−1]

and hence yield a block decomposition of R as a wedge of G-spectra R[e−1]. One can
now ask about the possible N∞ ring structures on these blocks. Hill and Hopkins’
aforementioned criterion involves checking relations involving multiplicative induc-
tion in πG

0 (R), which in general are hard to access.

Problem 1.1. Determine the nested subgroups K ≤ H ≤ G such that

(1) the norm map NH
K for R descends to a well-defined norm map2

ÑH
K : G+ ∧H

∧
H/K

ResG
K(R[e−1])→ R[e−1]

on the block of R defined by the primitive idempotent e ∈ πG
0 (R)

(2) the induced norm operation on homotopy groups NH
K : πK

0 (R)→ πH
0 (R) descends

to a well-defined norm operation

ÑH
K : πK

0 (R[e−1])→ πH
0 (R[e−1]).

1An idempotent is primitive if it cannot be written as a sum of non-zero idempotents.
2Throughout the paper, we write Ñ for the norms of a localization to distinguish them from the norms
of the original object.
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In the prequel [Böh], the author gave an explicit group-theoretical answer in the funda-
mental example of the G-equivariant sphere spectrum S. It built on an analysis of mul-
tiplicative induction in the Burnside ring A(G) and Segal’s identification πG

0 (S)
∼= A(G)

[Seg71].

In the present paper, we present a complete solution to Problem 1.1 for G-equivariant
complex topological K-theory KUG and its real analogue KOG. The homotopy groups

πG
0 (KUG) ∼= RU(G), πG

0 (KOG) ∼= RO(G)

identify with the complex and real representation ring RU(G) and RO(G), respectively,
see e.g. [Seg68, §2].

1.1. Primitive idempotents in representation rings. Dress’ classification of primitive
idempotents in the Burnside ring and its local variants [Dre69] was the starting point
for the investigation of the idempotent splittings of A(G) and S in [Böh]. Given a
collection P of prime numbers, write A(G)(P) := A(G)⊗Z(P) for the P-local Burnside
ring, where Z(P) := Z

[
p−1 | p /∈ P

]
. Dress showed that the primitive idempotent

elements eL ∈ A(G)(P) are in canonical bijection with the conjugacy classes of P-perfect
subgroups L ≤ G. See § 2.1 for further details.

It is known that the complex representation ring RU(G) has no idempotents other than
zero or one, see [Ser77, §11.4, Corollary]. We extend this result to a classification of the
primitive idempotents in the P-local representation ring RU(G)(P) := RU(G)⊗Z(P)

as follows. Consider the “linearization” map

lin : A(G)(P) → RU(G)(P)

given by sending a finite G-set to its associated permutation representation.

Theorem 1.2. The assignment C 7→ lin(eC) defines a bijection between the conjugacy classes
of cyclic subgroups C ≤ G of order not divisible by any prime in P and the primitive idempotent
elements of the ring RU(G)(P). Here, eC ∈ A(G)(P) denotes Dress’ idempotent associated to
C, see Theorem 2.2.

Theorem 1.2 is an instance of the phenomenon that one passes from the Burnside ring
to the representation ring by restricting attention to cyclic subgroups. The proof is
given in §2.

Remark 1.3. Theorem 1.2 extends classical work in the following way: Building on
work by Solomon [Sol67], Gluck [Glu81a] studies the idempotents lin(eC) and their
character values in the rational and the p-local case for a single prime p, but does not
show that they are primitive. He also observes that Dress’ idempotent eL ∈ A(G)(P)
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is in the kernel of the linearization map if L is not a cyclic group; we prove this in the
general P-local case in Corollary 2.4.

We record an immediate consequence of Theorem 1.2. Write RO(G)(P) for the P-local
real representation ring and RQ(G)⊗Z(P) for the ring of Z(P)-linear combinations of
G-representations over the rational numbers. It is well-known that these embed into
RU(G)(P) as subrings.

Corollary 1.4. The primitive idempotents of RU(G)(P) all lie in the subrings RO(G)(P) and
RQ(G)⊗Z(P). Hence, they are precisely the primitive idempotents of these subrings.

In the special case of RQ(G)⊗Q, this result appeared as [Sol67, Thm. 3].

1.2. Multiplicativity of idempotent summands. We now turn to the multiplicative
properties of the idempotent splittings of the complex and real representation rings
and equivariant K-theory spectra. Since the block RU(G)(P)[lin(eC)

−1] agrees with the
A(G)(P)-module localization

RU(G)(P)[e
−1
C ] ∼= RU(G)(P) ⊗A(G)(P)

A(G)(P)[e
−1
C ],

we obtain an identification

(KUG)(P)[lin(eC)
−1] ' (KUG)(P) ∧ S(P)[e

−1
C ]

of the blocks of P-local G-equivariant K-theory with an eC-localization in genuine G-
spectra. By Corollary 1.4, the same is true for RO(G)(P) and (KOG)(P). This enables
us to reduce the solution to Problem 1.1 for equivariant K-theory to the one for the
sphere given in the prequel [Böh]. The resulting classification of the maximal N∞ ring
structures of the idempotent summands of (KUG)(P) can be summarized as follows:

Theorem 1.5. Let C ≤ G be a cyclic group of order not divisible by any prime in P and let eC

be the corresponding primitive idempotent in A(G)(P). Let K ≤ H ≤ G be nested subgroups.
Then the following are equivalent:

(a) The G-spectrum S(P)[e
−1
C ] inherits a norm map ÑH

K from the norm map NH
K of S(P).

(b) The G-spectrum (KUG)(P)[e
−1
C ] inherits a norm map ÑH

K from that of (KUG)(P).
(c) The Mackey functor A(−)(P)[e

−1
C ] inherits a norm map ÑH

K from that of A(−)(P).
(d) The Mackey functor RU(−)(P)[e

−1
C ] inherits a norm map ÑH

K from that of RU(−)(P).
(e) Any subgroup C′ ≤ H conjugate in G to C lies in K.

All of the above holds with (KUG)(P) and RU(−)(P) replaced by their real variants (KOG)(P)

and RO(−)(P).
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The equivalence of (a), (c) and (e) was already proven in [Böh], up to a rephrasing of
statement (e) explained in Lemma 3.4. Theorem 1.5 is made more precise in Theo-
rem 3.3, Theorem 3.8 and Corollary 4.3 in terms of Blumberg and Hill’s framework of
incomplete Tambara functors and N∞ operads.

Remark 1.6. If H does not contain a group conjugate in G to C, then the norms ÑH
K

exist for trivial reasons: It can be seen from Theorem 2.2 that the restriction of eC to H
vanishes, and so A(H)(P)[e

−1
C ] and RU(H)(P)[e

−1
C ] must be zero. In other cases, these

groups are always non-zero.

An immediate consequence of Theorem 1.5 is the following:

Corollary 1.7. The summand (KUG)(p)[e
−1
C ] is a G-E∞ ring spectrum if and only if C ≤ G

is the trivial group. The same is true for real K-theory.

1.3. Organization. In §2, we recall Dress’ work on idempotents in the Burnside ring
and give a proof of Theorem 1.2. The algebraic and homotopical parts of Theorem 1.5
are discussed in §3 and §4, respectively.

1.4. Acknowledgements. The present work is part of the author’s PhD project at the
University of Copenhagen. The author would like to thank his advisor Jesper Grodal
as well as Joshua Hunt, Malte Leip, Riccardo Pengo and David Sprehn for many help-
ful discussions and suggestions. This research was supported by the Danish National
Research Foundation through the Centre for Symmetry and Deformation (DNRF92).

2. Idempotent elements in representation rings

The goal of this section is to prove Theorem 1.2. In §2.1, we show how some parts of
the theorem follow easily from the classification of idempotents in the Burnside ring.
The difficult part is to prove that the images of the Burnside ring idempotents are
indeed primitive. We recall Atiyah’s description [Ati61] of the prime ideal spectrum
Spec(RU(G)(P) ⊗OF) in §2.2, where OF is obtained from Z by adjoining sufficiently
many roots of unity, classify the idempotents of RU(G)(P) ⊗OF in §2.3, and deduce
the primitivity part of Theorem 1.2 in §2.4. In the rational and in the p-local case, it is
possible to prove the primitivity in an easier way, as we explain in §2.5.

2.1. Idempotents in the Burnside ring. We recall Dress’ classification of idempotents
of A(G)(P). For a group H, let OP(H) ≤ H denote its P-residual subgroup, i.e., its
unique minimal normal subgroup such that the quotient is a solvable group of order
not divisible by any of the primes in P. Recall that H is called P-perfect if OP(H) = H.
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Lemma 2.1. A cyclic group is P-perfect if and only if its order is not divisible by any element
of P. �

Recall that for a subgroup H ≤ G, the mark homomorphism φH : A(G)(P) → Z(P) is
extended additively from the assignment X 7→ |XH | for finite G-sets X.

Theorem 2.2 ([Dre69], Prop. 2). There is a canonical bijection between the conjugacy classes
of P-perfect subgroups L ≤ G and the set of primitive idempotent elements of A(G)(P). It
sends L to the element eL ∈ A(G)(P) whose marks φH(eL) at a subgroup H ≤ G are one if
OP(H) and L are conjugate in G, and zero otherwise.

Write χ(V)(g) for the value of the character of V ∈ RU(G)(P) at the element g ∈ G.
The linearization map lin : A(G)(P) → RU(G)(P) satisfies the following simple identity:

Lemma 2.3. For X ∈ A(G)(P), we have χ(lin(X))(g) = φ〈g〉(X) ∈ Z, where φH is the
homomorphism of marks φH(X) = |(lin(X))H | associated to the subgroup H ≤ G.

Recall that by the Chinese remainder theorem, each g ∈ G can be written uniquely as
a product (g)P′ · h, where (g)P′ is a power of g of order prime to P and h is a power of
g of order divisible only by primes in P. The element (g)P′ is called the P-prime part
of g.

Corollary 2.4. Let L ≤ G be a P-perfect subgroup. Then the virtual representation lin(eL)

has character values

χ(lin(eL))(g) = φ〈g〉(eL) =

1 if 〈(g)P′〉 ∼G L

0 otherwise.

In particular, lin(eL) is zero if L is not cyclic. The elements lin(eC) are mutually orthogonal
idempotents summing to one, where C ranges over a set of representatives for the conjugacy
classes of cyclic P-perfect subgroups.

Proof. The statement follows from Theorem 2.2 and Lemma 2.3, using the fact that
OP(〈g〉) = 〈(g)P′〉. �

This proves all the statements of Theorem 1.2 except for the primitivity of the idempo-
tents lin(eC). Note that the rational case (P = ∅) of Corollary 2.4 is stated in [Glu81a,
Theorem] and goes back to a similar result by Solomon [Sol67, Thm. 3].

The following observation is not part of the proof of Theorem 1.2, but we record it for
later reference.
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Lemma 2.5. The P-local Burnside ring splits as

A(G)(P)
∼= ecyc · A(G)(P) × eker · A(G)(P)

where ecyc (respectively eker) is defined to be the sum of all primitive idempotents eL with L
cyclic (respectively non-cyclic). Moreover, the summand eker · A(G)(P) is precisely the kernel
of the linearization map lin : A(G)(P) → R(G)(P).

Proof. The first part follows from Theorem 2.2 by writing 1 = ecyc + eker. Lemma 2.3
implies that the kernel of lin consists of those virtual G-sets whose marks vanish at
all cyclic subgroups. By Corollary 2.4, these are precisely the elements of the ideal
eker · A(G)(P). �

2.2. Prime ideals in the splitting field case. Let exp(G) be the exponent3 of G and
write F for the exp(G)-th cyclotomic extension of Q with ring of integers OF and
Galois group Γ := Gal(F : Q). All characters of G-representations over the complex
numbers take values in OF, and therefore can be viewed as class functions G/∼ → OF,
where G/∼ is the set of conjugacy classes of G. When working P-locally, the elements
of RU(G)(P) are Z(P)-linear combinations of irreducible representations of G over the
complex numbers, hence their characters take values in OF,(P) := OF ⊗Z(P).

Notation 2.6. Any element V ∈ RU(G)(P) ⊗ OF can be written as an OF,(P)-linear
combination V = ∑i λi ·Vi of irreducible G-representations Vi. We write

χ̂(V)(g) := ∑
i

λi · χ(Vi)(g)

for the value of the OF,(P)-linear character of V at g ∈ G.

Atiyah [Ati61] described the structure of the prime ideal spectrum Spec(RU(G)⊗OF).
His proof applies without changes to the open subscheme Spec(RU(G)(P) ⊗OF) cut
out by P-localization.

Proposition 2.7 (Cf. [Ati61], Prop. 6.4). The topological space Spec(RU(G)(P) ⊗OF) can
be described as follows:

(1) Every prime ideal of RU(G)(P) ⊗OF is of the form

Q(p, g) := (χ̂(−)(g))−1(p) = {V ∈ RU(G)(P) ⊗OF | χ̂(V)(g) ∈ p}

for some element g ∈ G and some prime ideal p E OF,(P).
(2) Let p, q E OF,(P) be prime ideals such that Z ∩ q = qZ for a prime q ∈ Z. There is an

inclusion Q(p, g) ⊆ Q(q, h) if and only if p is contained in q and (g)q′ is conjugate in G
to (h)q′ .

3The exponent of a finite group is the least common multiple of the orders of all group elements.
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(3) The prime ideals Q(p, g) with p = (0) are minimal and the ones with p 6= (0) are maximal.
In particular, the Krull dimension of RU(G)(P) ⊗OF is one.

2.3. Idempotents in the splitting field case. We can deduce a classification of the
idempotent elements of RU(G)(P) ⊗OF from Proposition 2.7. Our proof is inspired
by Dress’ approach [Dre69, Prop. 2] to the idempotents in the Burnside ring.

Theorem 2.8. The map
G → π0(Spec(RU(G)(P) ⊗OF))

that sends x ∈ G to the connected component of Q(0, x) induces a bijection between the
set of conjugacy classes of P-prime elements of G and the set of connected components of
Spec(RU(G)(P)⊗OF). In particular, the prime ideal spectrum of RU(G)⊗OF is connected.

This follows directly from:

Proposition 2.9. For any (not necessarily P-prime) elements x, y ∈ G, the prime ideals
Q(p, x) and Q(q, y) lie in the same connected component of Spec(RU(G)⊗OF) if and only
if (x)P′ and (y)P′ are conjugate in G.

Proof. First observe that for p 6= (0), the height one ideal Q(p, x) lies in the closure
of the height zero ideal Q((0), x), so without loss of generality we may assume that
p = q = (0). Since RU(G)(P) ⊗OF has Krull dimension one, two points Q((0), x) and
Q((0), y) lie in the same component if and only if there is a zig-zag of inclusions of
prime ideals

Q(p0, x0) = Q(p0, x1) . . .

Q((0), x0)

44

Q((0), x1)

jj
88

Q((0), xr)

ff

for some elements x = x0, x1, . . . , xr = y ∈ G and some prime ideals pi E OF,(P). By
part (2) of Theorem 2.7, we have an equality Q(pi, xi) = Q(pi, xi+1) if and only (xi)(p′i)

is conjugate in G to (xi+1)(p′i)
, where pi is given by Z∩ pi = piZ.

For the “only if” part of the proposition, given a zig-zag as above, it follows that

(x)P′ = ((x0)p′0
)P′ ∼G ((x1)p′0

)P′ = ((x1)p′1
)P′ ∼G . . . ∼G ((xr)p′r−1

)P′ = (y)P′

where ∼G indicates being conjugate in G.
For the “if” part, assume that (x)P′ ∼G (y)P′ . Since the prime ideals Q((0), g) only
depend on the conjucagy class of g, it follows that Q((0), (x)P′) and Q((0), (y)P′)

agree. Thus, it suffices to show that for any g ∈ G, the prime ideals Q((0), g) and
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Q((0), (g)P′) lie in the same component. We will construct an explicit zig-zag as above.
Let p0, p1, . . . , pr be all primes in P that divide the order of G. By the going-up theo-
rem, we can find prime ideals pi E OF,(P) such that pi ∩Z = piZ. Then (g)P′ may be
computed as

(g)P′ = (· · · ((g)p′0
)p′1
· · · )p′r .

Inductively, define g0 := g and gi := (gi−1)p′i−1
so that we have (gi)p′i

= (gi+1)p′i
. Then

these choices of elements gi and prime ideals pi give rise to a zig-zag between Q((0), g)
and Q((0), (g)P′), which completes the proof. �

Corollary 2.10. The conjugacy classes of P-prime elements (x) of G are in canonical bijection
with the primitive idempotents ex of RU(G)(P) ⊗OF. The character of the element ex is given
as follows:

χ̂(ex)(g) =

1 if (g)P′ ∼G x

0 otherwise

Proof. It is a standard fact of algebraic geometry that for any commutative ring R, the
subsets V ⊆ Spec(R) that are both open and closed are in canonical bijection with
the idempotent elements of R, by assigning to V the global section4 which is constant
one on V and constant zero on the complement of V. Under this identification, the
primitive idempotents correspond to the minimal non-empty open and closed subsets.
The latter agree with the connected components of Spec(RU(G)(P) ⊗OF) since there
are only finitely many of them. The first claim now follows from Theorem 2.8. For
the description of characters, note that χ̂(ex)(g) = 1 if and only if the corresponding
global section ex evaluates to one at the point Q((0), g) if and only if Q((0), x) and
Q((0), g) are in the same connected component. �

Remark 2.11. Roquette [Roq52] shows that the classification given in Corollary 2.10
also holds for the primitive idempotents in the p-adic representation ring after adjoin-
ing all e-th roots of unity.

Remark 2.12. Using Schur’s orthogonality relations, it follows from Corollary 2.10 that
ex is given explicitly as

ex =
1

|CG(x)|∑V
χ(V)(x−1) ·V

where V runs over a system of representatives of the irreducible representations of
G and CG(x) denotes the centralizer of x in G. This observation goes back at least to
Brauer [Bra47, (7)]. The coefficients can also be expressed in terms of Möbius functions,
see [Sol67, Thm. 4], [Glu81b, Prop.] and [Yos83, §3].

4Here we use that by definition, the global sections of Spec(R) agree with the ring R.
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2.4. Idempotents of RU(G)(P). Recall that Γ ∼= (Z/ exp(G))× denotes the Galois
group of the cyclotomic extension F/Q. The left Γ-action on F restricts to an ac-
tion on OF. Let Γ act on RU(G)(P) ⊗ OF via its action on the right factor. Then
clearly RU(G)(P) = (RU(G)(P) ⊗ OF)

Γ. The group Γ then acts from the right on
Spec(RU(G)(P) ⊗ OF) and we have Spec(RU(G)(P)) ∼= (Spec(RU(G)(P) ⊗ OF))/Γ,
cf. [Ser77, §11.4, Exerc. 11.4]. We will now describe these Γ-orbits in terms of the
prime ideals Q(p, x).

First recall that the left Γ-action on OF induces a right Γ-action on Spec(OF) that is
given by p.γ = γ−1(p).

Definition 2.13 ([Ser77], §12.4). Define a right Γ-action on the underlying set of G as
follows: If γ ∈ Γ corresponds to the unit m ∈ (Z/ exp(G))×, let g.γ := gm−1

, where
m−1 is (any integer representing) the inverse of m in the group Γ.

This action is well-defined since the order of g ∈ G divides exp(G). Moreover, it is
compatible with conjugation in G. We can describe the Γ-orbits in G easily:

Lemma 2.14 ([Ser77], §13.1, Cor.). Two elements x, y ∈ G lie in the same Γ-orbit if and only
if they generate the same cyclic subgroup of G.

Proof. Let n divide exp(G). Then Γ ∼= (Z/ exp(G))× permutes the generators of
Z/ exp(G) transitively, and the same is true for the generators of the cyclic group
Z/n, viewed as a subgroup of Z/ exp(G). �

Proposition 2.15. The left Γ-action on RU(G)(P) ⊗OF induces a right Γ-action on the space
Spec(RU(G)(P) ⊗OF) which coincides with the action defined by Q(p, x).γ = Q(p.γ, x.γ).

Proof. As in Notation 2.6, write ∑i λi ·Vi for a generic element of RU(G)(P)⊗OF. Then

Q(p, x).γ = γ−1(Q(p, g)) = {∑
i

λi ·Vi | ∑
i

γ(λi) · χ(Vi)(g) ∈ p}

= {∑
i

λi ·Vi | ∑
i

λi · γ−1(χ(Vi)(g)) ∈ p.γ}

= {∑
i

λi ·Vi | ∑
i

λi · χ(Vi)(g.γ) ∈ p.γ}

= Q(p.γ, g.γ) �

Corollary 2.16. The map
G → π0(Spec(RU(G)(P)))

that sends an element x to the component of the orbit Q((0), x).Γ induces a bijection between
the Γ-orbits of conjugacy classes of P-prime elements x ∈ G and the set of components of the
topological space Spec(RU(G)(P)). In particular, the spectrum of RU(G) is connected.
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Corollary 2.17. There is a canonical bijection between the Γ-orbits of conjugacy classes of
P-prime elements x ∈ G and the primitive idempotents in RU(G)(P). The idempotent ex.Γ

associated to the orbit of (x) has character given by

χ(ex.Γ)(g) =

1 if (g)P′ ∼G x.γ for some γ ∈ Γ

0 otherwise

Proof. This follows from Corollary 2.16 in the same way that Corollary 2.10 follows
from Theorem 2.8, see the proof of Corollary 2.10. �

Remark 2.18. In particular, we have ex.Γ = ∑γ∈Γ ex.γ in RU(G)(P). A simple calculation
shows that ex.γ = γ−1(ex) in RU(G)(P) ⊗OF. Therefore ex.Γ = trF/Q(ex) is the field
trace of ex. We will not use this fact.

By Lemma 2.14, we can write e′〈x〉 := ex.Γ and rephrase Corollary 2.17 in terms of cyclic
subgroups. At this point, there is no dependence on the field extension F/Q anymore.

Corollary 2.19. There is a canonical bijection between the conjugacy classes of cyclic P-perfect
subgroups C ∈ G and the primitive idempotents in RU(G)(P). The primitive idempotent e′C
has character given by

χ(e′C)(g) =

1 if 〈(g)P′〉 ∼G C

0 otherwise.

In particular, the character of e′C agrees with that of lin(eC) given in Corollary 2.4 and hence
we have e′C = lin(eC).

Theorem 1.2 follows.

Remark 2.20. It is clear from Corollary 2.19 that the primitive idempotents of RU(G)(P)

only depend on those primes p ∈ P that divide the order of G.

2.5. Quick proofs of special cases. In the rational and p-local case, we can give short
ad-hoc proofs of the primitivity of the elements lin(eC) stated as part of Theorem 1.2.

Lemma 2.21. Let x, y ∈ G generate the same subgroup. If all character values of the virtual
representation V ∈ RU(G)(P) lie in Z(P), then χ(V)(x) = χ(V)(y).

Proof. By Lemma 2.14, we can find γ ∈ Γ such that y = x.γ. Then

χ(V)(y) = χ(V)(x.γ) = γ−1(χ(V)(x)) = χ(V)(x)

because χ(V)(x) ∈ Z(P) = (OF,(P))
Γ. �

Corollary 2.22. For any cyclic C ≤ G, the idempotent lin(eC) ∈ RU(G)⊗Q is primitive.
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Proof. Recall that the character of lin(eC) is one on elements that generate subgroups
conjugate to C and zero otherwise. But Lemma 2.21 shows that any integer-valued
character must be constant on the set where lin(eC) is one, hence lin(eC) cannot de-
compose as a sum of idempotents. �

For the p-local case, we need another lemma. It was used in Atiyah’s proof of Theo-
rem 2.7.

Lemma 2.23 ([Ati61], proof of Lemma 6.3). Let V ∈ RU(G)(p) and let p be a prime of
OF,(p) = OF ⊗Z(p). Then χ(V)(g) ≡ χ(V)((g)p′) mod p.

Proof. Without loss of generality, we may assume that G is cyclic and V one-dimensional,
hence its character is multiplicative. Write g = (g)p′ · h where the order of h is pr, then
(χ(V)(h))pr

= 1. But OF,(P)/p is a finite field of characteristic p, so

χ(V)(h) ≡ 1 mod p,

and consequently

χ(V)(g) ≡ χ(V)((g)p′) · χ(V)(h) ≡ χ(V)((g)p′) mod p. �

Definition 2.24. For C ≤ G cyclic of order prime to p, let

SC := {g ∈ G | 〈(g)p′〉 ∼G C}.

Combining Lemma 2.21 and Lemma 2.23 gives:

Corollary 2.25. Let p be any prime ideal in OF,(p). If all character values of V ∈ RU(G)(p)

lie in Z(p), then the character of V is constant modulo p on the set SC.

Finally, a proof similar to that of Corollary 2.22 shows:

Corollary 2.26. For any cyclic p-perfect C ≤ G, the idempotent lin(eC) ∈ RU(G)(p) is
primitive.

Lemma 2.23 does not hold in the general P-local case, as the next example shows.
However, it follows from Theorem 1.2 that the statement becomes true under the ad-
ditional assumption that the character of V be zero outside of SC. We do not know
how to use this assumption to give a quick proof of the primitivity of the elements
lin(eC) that applies to all choices of P.

Example 2.27. Let G = C2 × C3 be the cyclic group of order 6 and P = {2, 3}. Write
1 for the trivial representation and let V ∈ RU(G)(P) be given as the tensor product
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of the sign representation of C2 with the sum of the two non-trivial irreducible C3-
representations. Let g ∈ G be a generator and observe that (g)P′ = 1. However,

χ(V − 1)(g) = 0 6≡ 1 = χ(V − 1)(1) mod p

for any prime ideal p of OF,(P).

3. Idempotent splittings of representation rings

As before, let P be a fixed collection of prime numbers, and let R(G)(P) denote one of
the rings RO(G)(P) or RU(G)(P). The goal of this section is to describe the multiplica-
tivity of the idempotent splitting

R(−)(P)
∼= ∏

(C)
R(−)(P)[e

−1
C ].

We start by briefly recalling the notion of an (incomplete) Tambara functor in §3.1. In
§3.2, we study the multiplicativity of the idempotent splitting of R(−)(P): we char-
acterize the norms which are compatible with eC-localization in Theorem 3.3 and
describe the incomplete Tambara functor structure of each idempotent summand in
Theorem 3.8. It is then easy to read off the structure that is preserved by the entire
splitting, as we explain in §3.3.

3.1. Incomplete Tambara functors. Recall that many naturally arising Mackey func-
tors have additional multiplicative structure.

Definition 3.1. A Green functor is a Mackey functor R equipped with commutative
ring structures on the values R(H) for all H ≤ G such that all restrictions maps
RH

K : R(H) → R(K) become ring homomorphisms and all transfer maps TH
K : R(K) →

R(H) are morphisms of R(G)-modules.

Often, Green functors come equipped with additional multiplicative transfer maps or
norms NH

K : R(K) → R(H) for all subgroup inclusions K ≤ H ≤ G, satisfying a
number of compatibility relations for norms, additive transfers and restrictions. Tam-
bara [Tam93] axiomatized the structure of these objects and called them TNR-functors;
nowadays they are referred to as Tambara functors.

Blumberg and Hill [BH18] introduced the more general notion of an (incomplete) I-
Tambara functor that only admits a partial collection of norms for certain subgroup
inclusions K ≤ H ≤ G, parametrized by well-behaved collections I of admissible H-sets
H/K. These indexing systems form a poset under inclusion. Thus, I-Tambara functors
for varying I interpolate between the notion of a Green functor (which doesn’t nec-
essarily admit any norms) and that of a Tambara functor (which admits all possible
norms). We refer to the above sources for precise definitions and further details.
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Example 3.2. The Mackey functors defined by the Burnside ring A(−) and the rep-
resentation rings R(−) are examples of Tambara functors. The multiplicative norms
NH

K in the Burnside ring are induced by the co-induction functor mapK(H,−) from
finite K-sets to finite H-sets. Those of the representation ring are induced by tensor
induction of representations. The linearization maps lin : A(−) → R(−) are maps of
Tambara functors.
More generally, Brun [Bru07] showed that the zeroth equivariant homotopy groups of
a G-E∞ ring spectrum naturally form a Tambara functor.

3.2. Multiplicativity of the idempotent summands. Observe that the canonical lo-
calization maps R(−)(P) → R(−)(P)[e

−1
C ] are levelwise ring homomorphisms that

are compatible with the Mackey functor structure, hence the idempotent splitting of
R(G)(P) induces a splitting of the underlying Green functor of R(−)(P). Our next goal
is to describe the idempotent summands R(−)(P)[e

−1
C ] by proving the equivalence of

the statements (c), (d) and (e) of Theorem 1.5. For convenience of the reader, we record
this in the following theorem.

Theorem 3.3. Let C ≤ G be a cyclic P-perfect subgroup and let eC ∈ A(G)(P) be the corre-
sponding primitive idempotent element. Fix subgroups K ≤ H ≤ G. Then the following are
equivalent:

(c) The norm map NH
K : A(K)(P) → A(H)(P) descends to a well-defined map of multi-

plicative monoids

ÑH
K : A(K)(P)[e

−1
C ]→ A(H)(P)[e

−1
C ].

(d) The norm map NH
K : R(K)(P) → R(H)(P) descends to a well-defined map of multi-

plicative monoids

ÑH
K : R(K)(P)[e

−1
C ]→ R(H)(P)[e

−1
C ].

(e) Any subgroup C′ ≤ H conjugate in G to C lies in K.

In the prequel [Böh], statement (e) appeared in a slightly more complicated form as
the statement (e’) of the next lemma. The author is grateful to Malte Leip for pointing
out this simplification.

Lemma 3.4. The statement (e) is equivalent to

(e’) One of the following holds:
i) Neither K nor H are super-conjugate in G to L.

ii) Both K and H are super-conjugate in G to L and satisfy the following: If L′ ≤ G
is conjugate in G to L and is contained in H, then it is contained in K. �
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It was proven in [Böh, Thm. 4.1] that the statements (c) and (e’) are equivalent, so
Theorem 3.3 reduces to showing that (c) and (d) are equivalent.

We recall the following fact due to Blumberg and Hill (see [Böh, Thm. 2.33] for an
elementary proof):

Theorem 3.5 ([BH18], Thm. 5.25). Let R be an I-Tambara functor structured by an indexing
system I . Let x ∈ R(G). Then the orbit-wise localization R[x−1] is a localization in the
category of I-Tambara functors if and only if for all admissible sets H/K of I , the element
NH

K RG
K(x) divides a power of RG

H(x).

If the element x is idempotent, then checking the above division relation amounts to
checking an equation:

Lemma 3.6. Let e, e′ ∈ R be idempotents in a commutative ring. Then e divides e′ if and only
if e · e′ = e′.

Proof. Assume that e divides e′. Then e′ ∈ eR, hence e · e′ = e′, since multiplication
by e is projection onto the idempotent summand eR of R. The other direction is
obvious. �

Proof of Theorem 3.3. We only need to show the equivalence (c)⇔ (d). By Theorem 3.5
and Lemma 3.6, the statement (c) (respectively (d)) holds if and only if the equation

NH
K RG

K(x) · RG
H(x) = RG

H(x)

holds in A(H)(P) for x = eC (respectively in R(H)(P) for x = lin(eC)). The linearization
map lin : A(−)(P) → R(−)(P) is a map of Tambara functors, hence preserves norms,
restrictions and multiplication. By Lemma 2.5, lin is injective on the ideal summand
ecyc · A(G)(P) and that summand contains the element eC. It follows that the above
equation holds for x = eC if and only if it holds for x = lin(eC). �

We can use the language of incomplete Tambara functors [BH18] to describe the alge-
braic structure of R(G)(P)[e

−1
C ] in terms of certain indexing systems.

Proposition 3.7 ([Böh], Prop. 4.16). Let L ≤ G be P-perfect. There is an indexing system
IL given as follows: for all H ≤ G, IL(H) is the full subcategory of finite H-sets spanned by
all coproducts of the orbits H/K such that the groups K ≤ H ≤ G satisfy statement (e) of
Theorem 1.5 with respect to L.

Theorem 3.8. Let C ≤ G be a cyclic P-perfect subgroup, and denote by R(−)(P) one of the
Tambara functors RU(−)(P) or RO(−)(P). Then the following hold:

i) The Green functor R(−)(P)[e
−1
C ] admits the structure of an IC-Tambara functor under

R(−)(P).
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ii) The indexing system IC is maximal among the indexing systems that satisfy i).
iii) The canonical map R(−)(P) → R(−)(P)[e

−1
C ] is an eC-localization in the category of

IC-Tambara functors. �

We record two easy consequences of our characterization of norm maps in the idem-
potent summands.

Corollary 3.9. The summand R(−)(P)[e
−1
C ] is a Tambara functor (i.e., has a complete set of

norms) if and only if C is the trivial group. �

Corollary 3.10. The subgroup C is normal in G if and only if the summand R(−)(P)[e
−1
C ]

admits all norms of the form ÑH
K such that K contains a subgroup conjugate in G to C. �

3.3. Multiplicativity of the idempotent splittings. We can now describe the multi-
plicativity of the idempotent splitting of R(−)(P) in terms of the indexing system

Icyc :=
⋂
(C)

IC

arising as the intersection of the indexing systems IC defined in Prop. 3.7.

Proposition 3.11. The localization maps R(−)(P) → R(−)(P)[e
−1
C ] assemble into an isomor-

phism of Icyc-Tambara functors

R(−)(P) → ∏
(C)≤G

R(−)(P)[e
−1
C ]

where the product is taken over conjugacy classes of cyclic P-perfect subgroups. Moreover, Icyc

is maximal among all indexing sets with this property.

Proof. Each of the canonical maps R(−)(P) → R(−)(P)[e
−1
C ] is a map of IC-Tambara

functors by 3.8, hence their product is a map of Icyc-Tambara functors. It is a level-
wise isomorphism by construction. The maximality also follows from Theorem 3.8: it
implies that Icyc is maximal among the indexing systems J such that each summand
R(−)(P)[e

−1
C ] is a J -Tambara functor. �

The admissible sets of Icyc can be characterized as follows.

Lemma 3.12 ([Böh], Lemma 4.23). Let K ≤ H ≤ G, then H/K is an admissible set for Icyc

if and only if for all cyclic P-perfect C ≤ H, C is contained in K.

4. Idempotent splittings of equivariant K-theory

Let KG denote one of the genuine G-spectra KUG or KOG, i.e., either complex or real
equivariant K-theory. We will determine the multiplicativity of the P-local idempotent
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splitting
(KG)(P) '∏

(C)
(KG)(P)[e

−1
C ],

i.e., we will explicitly describe the maximal N∞ algebra structure on each of the factors,
as well as the maximal N∞ algebra structure preserved by the splitting. Recall that as
a consequence of Theorem 1.2, the blocks of (KG)(P) are given as the eC-localizations

(KG)(P) ∧ S(P)[e
−1
C ]

of (KG)(P) in the category of G-spectra.

4.1. Preliminaries. The N∞ operads of [BH15b] structure G-equivariant ring spectra
with incomplete sets of norm maps parametrized by their associated indexing sys-
tems. According to [GW, Thm. 4.7], any given indexing system can be realized as the
indexing system of a Σ-cofibrant5 N∞ operad. Similar existence results were given in
[Rub17, Thm. 3.3] and [BP17, Cor. IV].

Notation 4.1. For each conjugacy class of cyclic P-perfect subgroups C ≤ G, let OC

be a Σ-cofibrant N∞ operad whose associated indexing system is IC. Let Ocyc be a
Σ-cofibrant N∞ operad whose associated indexing system is Icyc.

Note that by definition, an N∞ operad P is a certain operad in the category of unbased
G-spaces. By the usual abuse of notation, we refer to an algebra over the operad Σ∞

+P
in G-spectra as a P-algebra.

Remark 4.2. For any choice of the operad OC, both S and KG are naturally algebras
over OC: both spectra can be modelled as strictly commutative monoids in orthogonal
G-spectra, and hence admit an action by OC that factors through the action of the
commutative operad.

4.2. Multiplicativity of the idempotent summands. We are now ready to state our
main homotopical result.

Theorem 4.3. Let C ≤ G be a cyclic P-perfect subgroup. Then:

i) The G-spectrum (KG)(P)[e
−1
C ] is an OC-algebra under (KG)(P).

ii) The operad OC is maximal among the N∞-operads that satisfy i).
iii) The canonical map (KG)(P) → (KG)(P)[e

−1
C ] is an eC-localization in the category of OC-

algebras in G-spectra.

5An operad O in G-spaces is Σ-cofibrant if each space O(n) is of the homotopy type of a (G × Σn)-CW
complex.
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The key to the proof is the following preservation result for N∞ algebras given in [Böh].
It extends previous work of Hill and Hopkins [HH14] and uses a result of Gutiérrez
and White [GW, Cor. 7.10].

Proposition 4.4 ([Böh], Prop. 2.32). Let P be a Σ-cofibrant N∞ operad. Fix x ∈ πG
0 (S(P)).

Then the Bousfield localization Lx given by smashing with

S(P)[x
−1] = hocolim

(
S(P)

x−→ S(P)
x−→ . . .

)
preserves6 P-algebras in P-local G-spectra if and only if for all H ≤ G and all transitive
admissible H-sets H/K, the element NH

K RG
K(x) divides a power of RG

H(x) in the ring πH
0 (S(P)).

Proof of Theorem 4.3. Ad i): We know from Theorems 3.5 and 3.3 that for each of the ad-
missible sets of IC, hence ofOC, the division relation of Prop. 4.4 holds, so (KG)(P)[e

−1
C ]

is an OC-algebra under (KG)(P).
Ad ii): Assume that P is an element strictly greater than OC in the poset of (homotopy
types of) N∞ operads. Then any norm that comes from P but not from OC induces a
corresponding norm on homotopy groups that does not correspond to an admissible
set of IC, thus contradicting the maximality statement included in Theorem 3.8.
Ad iii): It is an eC-localization in G-spectra and a map of OC-algebras. �

We obtain the homotopical analogue of Corollary 3.9, stated as Corollary 1.7 in the
introduction. There is also a homotopical version of Corollary 3.10:

Corollary 4.5. The group C is normal in G if and only if (KG)(P)[e
−1
C ] admits all norm maps

of the form ÑH
K such that K and H both contain a subgroup conjugate in G to C. �

4.3. Multiplicativity of the idempotent splitting. We can also describe the multiplica-
tivity of the entire idempotent splitting:

Corollary 4.6. Let Ocyc be a Σ-cofibrant N∞ operad realizing the indexing system Icyc =⋂
(C) IC. Then the idempotent splitting

(KG)(P) '∏
(C)

(KG)(P)[e
−1
C ]

is an equivalence of Ocyc-algebras. Here, the product is taken over all conjugacy classes of
cyclic P-perfect subgroups of G.

6 in the sense of [GW, Def. 7.3]
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