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Abstract

Group actions on algebras obtained by formal deformation quantization are the main topic of this
thesis. We study these actions in order to obtain an equivariant algebraic index theorem that leads to
explicit formulas in terms of equivariant characteristic classes. The Fedosov construction, as realized
in a deformed version of Gelfand’s formal geometry, is used to obtain the results.

We describe the main points of Gelfand’s formal geometry in the deformed case and show how it
leads to Fedosov connections and the well-known classification of formal deformation quantization in
the direction of a symplectic structure.

A group action on a deformation quantization induces an action on the underlying symplectic
manifold. We consider the lifting problem of finding group actions inducing a given action by sym-
plectomorphisms. We reformulate some known sufficient conditions for existence of a lift and show
that they are not necessary. Given a particular lift of an action by symplectomorphisms to the defor-
mation quantization, we obtain a classification of all such lifts satisfying a certain technical condition.
The classification is in terms of a first non-Abelian group cohomology. We supply tools for computing
these sets in terms of a commuting diagram with exact rows and columns. Finally we consider some
examples to formulate vanishing and non-vanishing results.

In joint work with A. Gorokhovsky and R. Nest, we prove an equivariant algebraic index theorem.
The equivariant algebraic index theorem is a formula expressing the trace on the crossed product
algebra of a deformation quantization with a group in terms of a pairing with certain equivariant
characteristic classes. The equivariant characteristic classes are viewed as classes in the periodic cyclic
cohomology of the crossed product by using the inclusion of Borel equivariant cohomology due to
Connes.

Resumé

Denne afhandling handler om gruppevirkninger p̊a algebraer, der kommer fra formelle deformation-
skvantisering. Vi studerer disse virkninger for at opn̊a en ækvivariant algebraisk index sætning, hvilket
giver anledning til eksplicitte formler i ækvivariante karakteristiske klasser. Fedosov konstruktionen,
som realiseret i en deformeret udgave af Gelfands formelle geometri, bruges til at udlede resultaterne.

Vi beskriver hovedpointerne i Gelfands formelle geometri i det deformerede tilfælde og viser hvor-
dan det leder til Fedesov connections og velkendte klassifikationen af formelle deformationskvantisering
i retning af en symplektiske struktur.

En gruppevirkning p̊a en deformationskvantisering inducerer en virkning p̊a den underliggende
symplektiske mangfoldighed. Vi undersøger løfteproblemet om at finde en gruppevirkning som in-
ducerer en given virkning gennem symplektomorfier. Vi omformulerer nogen velkendte tilstrækkelige
betingelse for eksistensen af et løft og viser at de er overflødige. Givet et løft af en gruppevirkning gen-
nem symplektomorfier p̊a deformationskvantiseringenen, klassificerer vi alle s̊adanne løft som opfylder
en bestemt teknisk betingelse. Klassifikationen best̊ar af en første ikke-Abelsk gruppe cohomologi. Vi
giver metoder til at bestemme disse mængder i form af et kommuterende diagram med eksakte række
og kolonner. Endeligt gennemg̊ar vi nogle eksempler for at formulere n̊ar de forsvinder eller ikke.

I samarbejde med A. Gorokhovsky og R. Nest, viser vi en ækvivariant algebraisk index sætning.
Den ækvivariante algebraiske index sætning er en formel, som udtrykker sporet p̊a en krydsprodukt
algebra af en deformation quantization og en gruppe i form af en parring med bestemte ækvivariante
karakteristiske klasser. De ækvivariante karakteristiske klasser er betragtes som klasser i den periodiske
cykliske cohomologi af krydsproduktet ved brug af Connes’ inklusion af Borel ækvivarant cohomologi.
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CHAPTER 1

Introduction

There are no limits. There are plateaus,
but you must not stay there,

you must go beyond them.
Bruce Lee

As the title of this thesis suggests, it is mainly concerned with the topics of group actions on
deformation quantizations and corresponding versions of the algebraic index theorem. We do not
expect the reader to be immediately aware of the meaning of this title. First of all the theory of
deformation quantization has many wildly varying aspects [105] and we should be more precise about
what we mean by “deformation quantization”. The algebraic index theorem [45, 86] is an adaptation
of the Atiyah-Singer index theorem [2] from a specific quantization, pseudo-differential operators, to
a more general class of deformation quantizations. It deserves an introduction even more, because of
the fact that it is less well-known than its celebrated analytic counterpart.

In this introduction we will motivate why the main objects of study, deformation quantizations
and algebraic index theorems, are of any interest at all. Simultaneously we will fix some conventions
and notations that are used in the rest of this thesis. Finally, we will formulate some objectives that
we pursue in the course of the thesis and give a clear picture of the degree to which different parts of
the thesis are attributable to the author.

In particular, we shall provide all of the motivation coming from mathematical and theoretical
physics in 1.1. We shall provide the definition of formal deformation quantization, some motivation
for this definition and some general remarks about the definition in section 1.2. Section 1.3 is devoted
to a very brief reminder of the Atiyah-Singer index theorem in order to motivate the algebraic index
theorem, which we introduce in section 1.4. The objectives and attributions are handled in section
1.5.

Let us describe the structure of the thesis as a whole. In chapter 2 we set up the framework
of formal geometry. We will use a deformed version of this framework in order to derive the main
results of this thesis. In chapter 3 we will give a rather complete discussion of the formal Moyal–Weyl
algebra. This will allow us to prove a great deal of the statements in the rest of the thesis with
relative ease, since the corresponding formal computations are carried out in chapter 3. In chapter 4
we present the deformed analog of the framework of formal geometry and the Fedosov construction
[46]. In chapter 5 we present the results on existence and, mostly, classification of group actions on
deformation quantizations, these are part of the main results of this thesis. In chapter 6 we formulate
and prove our equivariant version of the algebraic index theorem. Chapter 7 is devoted to a summary of
the main results and a discussion of the further research directions offered by these results. Appendix
A contains the definitions of the various chain and cochain complexes used in the main body of the
thesis, as well as several general results about these complexes. Finally, appendix B contains a brief
summary of the deformation theory of associative algebras.

Notation 1.0.1. Let us collect here some notation that is used throughout the thesis. First of
all, a manifold will almost always mean a smooth, i.e. C∞, finite dimensional real manifold and will

1



1.1. CLASSICAL AND QUANTUM MECHANICS 2

often be denoted M . The algebra of smooth (complex valued) functions will be denoted C∞(M) and
the differential forms on M will be denoted by Ω•(M). We shall denote the manifold with boundary
[0, 1] by I and shall often denote the natural coordinate on I by t. Given a vector bundle E → M ,
we shall denote the space of smooth sections by Γ(E). We shall always denote the tangent bundle
of M by TM and the cotangent bundle by T ∗M . We shall denote tensor products by ⊗ and add a
subscript to indicate a specific ring if this is needed. We shall denote exterior products, i.e. the anti-
symmetrization of ⊗, by ∧. We shall denote the pull-back along a map ϕ by ϕ∗ and the push-forward
by ϕ∗. In the case of smooth maps ϕ : M →M ′, we shall denote the differential by dϕ : TM → TM ′

or Tϕ. Let us mention in particular that we will always write the action of a map f : X → Y on an
element x ∈ X as f(x) or fx, even when this map is induced by some action of an algebraic object.
For example, if G is a group acting on the set X from the right, we have by definition

g(h(x)) = g(hx) = hgx = hg(x),

for all g, h ∈ G and x ∈ X. Beyond this, we use various well-established conventions that should speak
for themselves, like ⊕ for direct sum and N for the natural numbers.

1.1. Classical and Quantum Mechanics

Although it is not always at the surface, the theory of deformation quantization is about (uni-
fying) the mathematical formalisms behind the theory of mechanics. We mean this in the following
way. Before the beginning of the 20th century (Western calendar), the mathematical formalism behind
mechanics consisted essentially of time-dependent three dimensional Euclidean geometry. A unified,
and extremely powerful, approach was achieved in the form of the Lagrangian and Hamiltonian for-
mulations of classical mechanics. Einstein’s theories of special and general relativity (generalizing
Galileo’s theory of relativity) required adjustments to these formalisms. It speaks volumes to the
power of pure mathematical thought that the needed adjustments had, in a sense, already been made
in the purely mathematical treatment of non-Euclidean geometry. Namely, instead of considering the
time-dependent Euclidean geometry, one considers the full (pseudo)-Riemannian geometry of space-
time. At the same time, however, another form of mechanics began to play a fundamental role in our
understanding of nature: quantum mechanics.

The mathematical formalism behind the (non-relativistic) mechanics of the very small, quantum
mechanics, is, at first sight, completely different from the formalism of classical mechanics. In par-
ticular it does not seem to come with a clean geometrical interpretation like the rest of the theory
of mechanics. At closer inspection, one finds that the kernels of the formalism of classical mechanics
are still very much a part of the formalism of quantum mechanics. This leads to the consideration
of deformation quantization. It is a way of solidifying the fact that, by generalizing our notion of
geometry, as in the case of general relativity, we can clearly frame the theory of quantum mechanics
in a geometric picture. Especially when we consider the more recent development of non-commutative
geometry, we find that, in the formalism of classical mechanics, commutative geometry was used to
approximate non-commutative geometry, just as Euclidean geometry was once used to approximate
(pseudo)-Riemannian geometry.

In this section we shall present a very brief overview of the mathematical formalisms behind
(non-relativistic) classical and quantum mechanics. We do this partly to motivate the following and
partly to fix some conventions and notations. This thesis is not a survey of the philosophy behind
and development of deformation quantization, however. This section is included rather to allow the
reader, should they be so inclined, to consider the contents of the thesis in their broader context within
mathematical physics.

1.1.1. Classical Mechanics. In this section we will discuss the Hamiltonian formulation of
classical mechanics. In particular we will show that the Hamiltonian formulation leads us, in a natural
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way, to consider symplectic and Poisson geometry. As mentioned above, the mathematical formalism
describing classical mechanics can be formulated using either the Lagrangian or the Hamiltonian
formulation. In many cases the two will in fact be equivalent. The theory of quantum mechanics is
usually phrased in terms of the Hamiltonian formulation rather than the Lagrangian formulation. We
should note that this is only true for the non-relativistic quantum mechanics. When one considers
for instance quantum field theories, they are usually phrased in terms of the Lagrangian formulation.
The theory of deformation quantization boils down to a deformation theory, see appendix B, of the
algebra of functions on Poisson manifolds and so definitely considers the Hamiltonian formulation of
classical mechanics. Since this thesis is not an introduction to the mathematical formalism behind
classical mechanics, we shall only present (a small part) of the Hamiltonian formulation. We refer to
the first chapter of the excellent book [107] for a full treatment. In fact we follow the presentation of
[107] for both the classical and quantum mechanical formalisms.

Mathematically, classical mechanics is concerned with finding paths in the configuration space C
from x0 at time t0 to x1 at time t1. The configuration space is a smooth manifold in which each
point represents the possible configuration of a number of “point particles”. The phase of a classical
mechanical system is a point s in the cotangent bundle T ∗C of the configuration space. In the
Hamiltonian formulation, the Newtown-Laplace determinancy principle, one of the main postulates of
classical mechanics, states that the phase of a (closed) classical mechanical system at a certain time
uniquely determines the phase and thus the configuration at all future and all past times.

This means that the Hamiltonian formulation needs to provide a way to select paths γ : I → T ∗C
that correspond to physical situations. This is done by employing the principle of least action, also
called Hamilton’s principle. This principle postulates that there exists a functional S, the so-called
action functional, on the space of paths in T ∗C (with fixed end-points in C) such that the critical
points correspond to physical trajectories in the phase space T ∗C. The Hamiltonian formulation goes
on to assert that the action functional S has the form

S(γ) =

∫
I

γ∗θ + (γ∗H)dt (1.1.1)

where θ denotes Liouville’s canonical 1-form, t is the standard coordinate on the interval I and the
function H ∈ C∞(T ∗C) is called the Hamiltonian of the physical system. Liouville’s canonical 1-form
is defined by θp = p ◦ dπ for all p ∈ T ∗C, where π : T ∗C → C denotes the projection. Thus, up
to computation, the Hamiltonian formulation reduces the study of classical mechanics to the careful
selection of the Hamiltonian H.

There are reasons to postulate an action like the one in equation (1.1.1), of course. Essentially,
the reasoning proceeds by interpreting the value of H at a certain phase p as the “energy” of that
phase p. The expected properties of energy then lead us to consider symplectic and Poisson geometry
immediately [115] and the action functional above provides the way of picking out physical trajectories
in the phase space if the energy is distributed according to H.

Starting from the action (1.1.1), the principle of least action yields certain differential equations.
Consider a coordinate system (x1, . . . , xn) on C and the corresponding coordinates on T ∗C given by
(ξ1, x1, . . . , ξn, xn), where ξi := dxi. In these terms the principle of least action leads to Hamilton’s
equations

dξi(γ(t))

dt
= −∂H

∂xi
(γ(t)) and

dxi(γ(t))

dt
=
∂H

∂ξi
(γ(t)).

Definition 1.1.1. A symplectic manifold (M,ω) is a smooth manifold M equipped with a closed
non-degenerate two-form ω ∈ Ω2(M).
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By non-degenerate we mean that, for any m ∈M and 0 6= v ∈ TmM , there exists w ∈ TmM such
that ωm(v, w) 6= 0. Note that non-degeneracy of ω implies that the maps

Iω : TmM −→ T ∗mM,

given by Iω(v)(w) = ω(v, w) for all v, w ∈ TmM , are isomorphisms for all m ∈ M . Thus we find the
map

I−1
ω : Ω1(M) −→ X (M),

where X (M) denotes the space of smooth vector fields on M . The manifold T ∗C is the quintessential
example of a symplectic manifold, the two-form dθ defines the symplectic two-form. This is easily seen
from the formula

dθ =

n∑
i=1

dξi ∧ dxi

in coordinates as in the last paragraph. Now we note that Hamilton’s equations correspond to the
requirement that γ is an integral curve for the Hamiltonian vector field

XH := I−1
ω (dH).

Thus the Hamiltonian formulation shows that the formalism of classical mechanics is naturally given
by symplectic geometry. One might say that the discussion above only shows that the formalism of
classical mechanics is given by very specific symplectic manifolds, namely cotangent bundles. However,
when considering specific classical mechanical systems one very often applies various schemes of reduc-
tions and simplifications that constrict the phase space to be a (possibly lower dimensional) general
symplectic manifold. The mathematical formalism outlined above goes under the name Hamiltonian
dynamics. It can be formulated equally well on a Poisson manifold, a symplectic manifold is a special
case of a Poisson manifold. In terms of viewing H as the energy distribution on phase space, the
requirement that the manifold be symplectic instead of just Poisson means that we ask that, for any
two phases p and p′, there is always a sequence of energies Hi and times ti which changes the phase
from p to p′ [115].

Definition 1.1.2. A Poisson bracket on the k-algebra A is a Lie bracket

{·, ·} : A⊗A→ A

such that {f,−} and {−, f}, considered as k-linear endomorphisms, are derivations for all f ∈ A.
A manifold equipped with a Poisson bracket on the algebra of smooth functions is called a Poisson
manifold.

The bracket given by {f, g} = ω(Xf , Xg) gives a symplectic manifold (M,ω) the structure of a
Poisson manifold. Here we use the notation Xf and Xg for the Hamiltonian vector fields corresponding
to f and g respectively. Note that for a general Poisson manifold (not necessarily symplectic) we can
still define Hamiltonian vector fields corresponding to functions by Xf = {f,−}. Note that, since
ω(−, Xg) = −dg defines the Hamiltonian vector field in the symplectic case and Xf (g) = dg(Xf ) in
general, the two definitions agree in the symplectic case.

The observational principle [90] tells us that, if two physical systems return the same value for
every observable quantity, then the systems are the same. In terms of geometry, the observational
principle implies that, although the paths in phase space allow for evaluation of all observables, it is
the observables that matter. The classical algebra of observables is given by the algebra of smooth real-
valued functions on the phase space. This means that observable quantities are determined completely
by the phase of the system. Values of observables become implicitly dependent on time when we
consider the time-evolution of a system along physical trajectories. The Hamiltonian formulation
allows us to write down differential equations for any observable f directly. Namely, since the paths
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that correspond to physical trajectories are integral curves of the Hamiltonian vector field XH , we find
the differential equation

df

dt
= {f,H}+

∂f

∂t
, (1.1.2)

for f as a function of time. In fact it follows from the one-parameter group of diffeomorphisms ψH(t)
given by the flow corresponding to the vector field XH (if it exists). Thus we find the time-evolution
operators ψH(t)∗ : C∞(T ∗C)→ C∞(T ∗C), which can formally be expressed as “ψH(t) = e−t{H,−}”.

Using the above, we can only consider deterministic systems, not statistical ones. This means
that, in order to apply the formalism, we need to have exact knowledge of the phase of a system at
some time. The formalism must therefore be adapted to allow for more elaborate notions of state.
Namely, a state is given by a map µ : C∞(T ∗C) → P(R) to the probability measures on R. Then
for any Borel subset E ⊂ R the number µ(f)(E) is the probability of a measurement of observable f
returning a value in E. So for the completely deterministic systems we simply consider the state that
sends f to the indicator function of f(p) where p is the phase of the system.

The discussion above is very far from complete. It should serve, however, to indicate that the
main ingredients going into determining the time-evolution of a classical mechanical system are a
symplectic/Poisson manifold M and a Hamiltonian H ∈ C∞(M).

1.1.2. Quantum Mechanics. As mentioned, the mathematical formalism behind the theory
of quantum mechanics is very different from the Hamiltonian formulation of classical mechanics at
first sight. In this section we will show how the mathematical formalism behind quantum mechanics
can be interpreted as a kind of deformed Poisson geometry. In particular we will show that the
Poisson algebra C∞(T ∗C) of classical observables can, possibly, be seen as a first order approximation
to a quantum algebra of observables, see also appendix B and section 1.2. There is a need for a
quantum theory in order to describe the mechanics of physical systems that are so “small” that any
measurement will cause significant disturbance of the system. When we considered the mathematical
formalism of classical mechanics, we started describing the first, least abstract, version. As mentioned,
the formalism can eventually be given in terms of a general symplectic manifold, in other words the
manifold is not necessarily the cotangent bundle of configuration space. Similarly, we will present first
the least abstract version of the formalism behind quantum mechanics and subsequently generalize it.

Mathematically, quantum mechanics is concerned with finding the complex valued wave-function
ψ(x, t) dependent on position and time. The square of the norm of the wave-function at time t
represents the probability distribution for the configuration of the system. In other words, for all
t ∈ R we have ψ(x, t) ∈ L2(C) and the probability that the system is in a configuration in the subset
A ⊂ C at time t is ∫

A

‖ψ(x, t)‖2 dx.

Now the Newton-Laplace determinancy principle makes way for a new determinancy principle. Namely,
instead of the phase of the system determining the future and past configurations of the system, the
state, provided by the wave-function, at the time t provides the future and past states of the system.
In other words, we should be able to formulate a time-evolution equation for the wave-function. Note
however that we do find that all wave-functions must satisfy that the integral of their norm squared
over all of C equals 1.

Instead of doing this, however, let us first consider the mathematical formalism of quantum me-
chanics in the abstract. Instead of the phase space of classical mechanics we have the space of states
given by a separable complex Hilbert space (H, 〈·, ·〉). The algebra of observables A is given by the
algebra of linear operators on H. The spectrum of the observables will represent the possible outcomes
of a measurement of that observable. The likelihood of a certain range of the spectrum to be measured
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is determined by the state of the system, which we define below. Since, in nature, observables are re-
quired to produce real values, the physical observables O are given by the self-adjoint linear operators
on H. Note that the self-adjoint bounded operators A0 = O ∩ B(H) form a real vector space. The
states of the quantum system are given by the positive operators S of trace 1, i.e. TrS = 1. Note that
the Hilbert space provides the special pure states Pψ given by orthogonal projection onto the span of
ψ ∈ H, here ‖ψ‖ = 1. The state S assigns to every observable A the probability measure SA on R by
the Born-von Neumann formula

SA(E) = TrPA(E)M,

where E ⊂ R is a Borel subset and PA is the projector valued measure on R associated to the self-adjoint
operator A through von Neumann’s spectral theorem [100].

An aspect of classical mechanics that is only implicitly present in section 1.1.1 is that there are
essentially two ways to consider the time-evolution of a system. Either one considers an evolution of
the state µ of the system, for instance in the deterministic systems this corresponds to the phase-flow
directly, or one considers the evolution operators on the algebra of observables. These two points
of view are sometimes referred to as Liouville’s or Hamilton’s picture of classical mechanics [107]
respectively. In the classical case the distinction is not as often pointed out as in the case of quantum
mechanics. The corresponding pictures in the case of quantum mechanics are called the Schrödinger
or Heisenberg pictures of quantum mechanics. Thus, the time-evolution of the quantum mechanical
system in the Heisenberg picture is given by a strongly continuous one-parameter group of unitaries
U(t) through the formula

A(t) = U(t)A(0)U(t)∗,

for any A ∈ A0. In the Schrödinger picture the states S evolve similarly according to

S(t) = U(t)MU(t)∗.

The analog of the Hamiltonian comes in the form of the ansatz U(t) = e
2πitH
h for some constant self-

adjoint operator H ∈ O, called the (quantum) Hamiltonian and where h denotes Planck’s constant
[63]. This leads to the differential equations

dA

dt
=

2π

ih
[A,H] +

∂A

∂t
(1.1.3)

called Heisenberg’s equations of motion in the Heisenberg picture. Here we have denoted the commu-
tator of operators by square brackets.

The problem now becomes to find out what combination of Hilbert space and Hamiltonian to
associate with a given physical quantum mechanical system. Suppose we want to consider a “free
particle” constrained only to lie on a 1-dimensional space. In this case we are immediately led to
consider the Hilbert space H = L2(R) as above. Note that, in essence, the problem of finding a
Hilbert space is solved by finding out the dimension, but, as we will see, a good choice of Hilbert space
simplifies the Hamiltonian. The correspondence principle, which can be formulated mathematically,
states that, if, in units determined by the characteristic dimensions of the system, h ≈ 0, then the
quantum system reduces to a classical system. In this case it means simply that, since the classical
Hamiltonian Hc for a free particle on a line is given by the kinetic energy and so Hc ∝ v2 where
v denotes the velocity, we consider the Hamiltonian H ∝ −h2∂2

x, since in this case the expectation
values of measurements are exactly the classically predicted values.

The last paragraph leads to the notion of quantization. The idea is that one can construct physi-
cally relevant quantum systems from classical systems. This is motivated by the similarities between
the formalisms of quantum and classical mechanics. In particular we note that A0 is a Lie algebra for
the bracket 1

i [−,−]. So, we see that the equations of motion (1.1.2) and (1.1.3) are exactly the same
when we consider them as equations for evolution of A ∈ g, given a triple (g, L,X) of a real vector
space g with a Lie bracket L and a specific element X ∈ g. Namely in the quantum case g = A0,
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L = 2π
ih [·, ·] and X = H, while in the classical case g = C∞(M), L = {·, ·} and X = Hc. Furthermore,

if we consider the previous example, we arrive at the expression H ∝ p̂2 for p̂ = ih∂x. So, denoting the
operator of multiplication by the identity function by x̂, which the correspondence principle implies,
we find that

[x̂, p̂] = ih = ih{x, ξ}
where we denote the canonical coordinates on R2 = T ∗R by (x, ξ). This motivates the mathematically
rigorous definition of the correspondence principle.

Rigorously then, quantization of the classical mechanical system given by the Poisson manifold
(M, {·, ·}) with the Hamiltonian Hc is given by injective quantization maps

Q~ : C∞(M)→ O
from the classical observables to the quantum observables, i.e. to self-adjoint operators on a Hilbert
space H, satisfying the following properties. First of all the maps Q~ depend on the variable ~ > 0
(although the range may be any subset of R that has 0 as a limit point). Secondly, the restriction
of Q~ to the subspace C∞0 (M) of bounded functions is a linear map to A0. The quantization maps
satisfy the equations

lim
~→0

1

2
Q−1

~ (Q~(f)Q~(g) +Q~(g)Q~(f)) = fg (1.1.4)

and

lim
~→0

Q−1
~

(
1

i~
[Q~(f), Q~(g)]

)
= {f, g} (1.1.5)

for all f, g ∈ C∞0 (M). This last equation (1.1.5) is the mathematical version of the correspondence
principle.

One way of obtaining quantization maps is by deforming the commutative product on C∞(M)
along the parameter ~. This can be seen since equation (1.1.4) means that, up to higher than 0th
order in ~, the product on A0 behaves like the product on C∞0 (M). The equation (1.1.5) puts a
constraint on the 1st order behaviour in ~. In higher orders the constraints are coming from the fact
that we map into a C∗-algebra. The theory of deformation quantization is exactly about this method
of producing quantum mechanical systems from classical mechanical systems. The example of L2(R)
comes from the Moyal deformation of R2d = T ∗Rd with the standard symplectic structure ωst = dθ.
The deformation is provided by the formula (3.0.2), where (q, p) = (x, ξ). This product is obtained by
considering the quantization maps given by the Wigner-Weyl transform [117].

One can consider the problem of deforming a Poisson manifold to a quantum mechanical system as
a combination of two problems. Firstly, there is the purely algebraic problem of finding an associative
product on C∞(M), which deforms the pointwise product in the direction of the Poisson structure
in the sense of equations (1.1.4) and (1.1.5). Secondly, there is the analytic problem of constructing
a Hilbert space such that the deformed product is actually realized as the product of operators on
that Hilbert space. Formal deformation quantization concerns itself only with the first problem. This
means that it is about studying the formal deformations of C∞(M) as explained in appendix B and
section 1.2. There is a very large body of work on this topic, see [105, 42, 65] for nice surveys of and
notes on the field, or [114] for an introductory textbook.

In this thesis we will concern ourselves only with formal deformation quantizations. Let us point
out, however, that, as can also be seen in chapters 2 and 4, a solution of the full problem follows
from a formal solution, if one has an adequate way to check which formal solutions correspond to
full solutions. In the chapters 2 and 4 this way is provided in the form of the Grothendieck and
Fedosov connections respectively. We should mention, as does Fedosov in [48], that the algebraic
index theorem, see sections 1.5 and 6.1, provides a way to show that a formal solution cannot be
obtained from full solutions.



1.2. FORMAL DEFORMATION QUANTIZATION 8

Remark 1.1.3. The discussion of the formalism behind quantum mechanics above is, of course,
very far from complete. We should mention in particular that we have not said anything about the
domains of operators. It has, sadly, become rather common practice in physics courses to ignore
a discussion of domains of operators on Hilbert spaces. We will do the same, however, since the
(functional) analytic aspects of quantum mechanics will not play any role in the thesis. Let us refer
again to [107] for an in-depth treatment of the mathematical formalism behind quantum mechanics.

1.2. Formal Deformation Quantization

In this section we will introduce the main object of study of this thesis. Namely, the algebras
obtained by the process of formal deformation quantization of the algebra of smooth functions on a
manifold. We will see how this always induces the structure of a Poisson manifold. So, we note that
from this point of view the appearance and importance of the Poisson structure in the Hamiltonian
formulation of classical mechanics are explained by the fact that it yields a first order approximation
to the corresponding quantum mechanical algebra of observables.

We saw in the previous section 1.1 how the Hamiltonian formulations of classical and quantum
mechanics lead naturally to the consideration of deformation quantization. We should mention that
the notion was introduced in the influential paper [4] and has taken on a vibrant life afterwards. As
mentioned, the first step one may take in considering the problem of deformation quantization is to
consider the problem of formal deformation quantization. In this thesis we will concern ourselves only
with this formal deformation quantization. We will therefore frequently drop the word “formal” and
sometimes we will even drop the word quantization for reasons that should be evident from appendix
B. Let us point out that in some cases, for instance in the case of index theorems [88], it is in some
sense enough to consider the formal case.

The notion of formal deformation quantization follows from the notion of (deformation) quantiza-
tion in section 1.1.2 by considering the expansion of Q−1

~ (Q~(f)Q~(g)) in powers of ~. In this way the
quantization will provide an associative product on C∞(M)[[~]], formal power series with coefficients
in C∞(M). The equation (1.1.4) implies that this product is a deformation of the algebra C∞(M)
in the sense of appendix B. We do consider one more constraint on the kind of deformations we con-
sider. The constraint arises from the notion of locality in physics. It is expressed by the fact that,
given a deformation quantization of the classical mechanical system (M, {·, ·}), restriction to an open
submanifold U ⊂ M should give us a deformation quantization of the restricted classical mechanical
system (U, {·, ·}) as well. In mathematical terms we could say we want to deform the sheaf of algebras
C∞M , it is given by C∞M (U) = C∞(U) for all open subsets U ⊂ M . These considerations lead to the
following definition.

Definition 1.2.1. A formal deformation quantization of the manifold M is given by a sequence
of linear maps

Bk : C∞(M)⊗ C∞(M) −→ C∞(M)

for all k ∈ N satisfying the following conditions. Firstly the C[[~]]-linear product ? on the vector space
C∞(M)[[~]] := C∞(M)⊗ C[[~]], given by the formula

f ? g = fg +

∞∑
k>0

(i~)kBk(f, g) (1.2.1)

for all f, g ∈ C∞(M), is associative. Here C[[~]] denotes the ring of formal power series in the formal
variable ~ with coefficients in C. Secondly the maps g 7→ Bk(f, g) and g 7→ Bk(g, f) are differential
operators for all f ∈ C∞(M).
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Notation 1.2.2. Note that when we consider a deformation quantization of M we are considering
the complex valued smooth functions on M , since we want to find the relation

[−,−] = i~{−,−}+O(~2).

In the rest of this thesis C∞(M) shall denote the complex valued smooth functions, similarly we will
denote by Ω•(M) the complex valued differential forms on M . An exception is the chapter 2 where
we consider undeformed formal geometry and can therefore always consider real valued functions. We
should note however that the definition still makes sense for real functions, if we replace i~ by ~ in
the formulas. In other words the difference is only a rescaling of the formal variable. In fact most
considerations in this thesis would still makes sense for real valued functions. The convention comes
from the fact that we would like the real momentum (vertical coordinate in T ∗C) to correspond to
the self-adjoint operator i~∂x.

Notation 1.2.3. Note that a deformation quantization defines the algebra (C∞(M)[[~]], ?). In
fact, this is the main point and therefore we shall often refer to this algebra as a deformation quan-
tization, or sometimes a deformation quantization algebra, of M . Bilinear operators that satisfy the
second property that the Bk above should satisfy are called bidifferential operators. Note that the
multiplication f ⊗ g 7→ fg is also a bidifferential operator. Setting B0(f, g) = fg we find that the
?-product gets the form

f ? g =
∑
k≥0

(i~)kBk(f, g).

Note that the requirement that ? defines an associative product can be interpreted as a series of
equalities involving the bidifferential operators Bk. Namely, we find that∑

k+l=n

Bk(f,Bl(g, h)) =
∑
k+l=n

Bk(Bl(f, g), h)

for all f, g, h ∈ C∞(M) and all n ∈ Z≥0. For n = 0 this just reflects the associativity of the pointwise
product on C∞(M). The first non-trivial condition is therefore given by the equation

B1(f, gh) + fB1(g, h) = B1(fg, h) +B1(f, g)h

for all f, g, h ∈ C∞(M). From this equation it follows that 2B−1 defines a Poisson structure, here B−1
is the anti-symmetric part of B1, i.e. B−1 (f, g) = 1

2 (B1(f, g) − B1(g, f)). Of course it was expected,
since the commutator defines a Poisson bracket and

[f, g] = 2i~B−1 (f, g) +O(~2).

Thus, a deformation quantization induces the structure of a Poisson manifold on M . When {Bk}
defines a deformation quantization we will say it is in the direction of the Poisson structure 2B−1 .

Definition 1.2.4. A gauge equivalence is a sequence Tk of differential operators such that T0 = Id
and ∑

k≥0

(i~)kTk : (C∞(M)[[~]], ?) −→ (C∞(M)[[~]], ?′)

is an algebra isomorphism for some deformation quantizations ? and ?′.

Note that it is simply the definition of gauge equivalence in definition B.1.3 with the added
requirement that the gauge equivalence is given by differential operators. In fact it is precisely the
same definition, since the requirement that the linear operators Tk yield an algebra isomorphism
between deformation quantizations implies that they are differential operators [77, 30]. When we
consider deformation quantization in the framework of deformation theory of associative algebras as in
appendix B, we see that the bidifferential operators define a Maurer-Cartan element in g(C∞(M)), see
definitions B.4.4 and B.3.6 specifically. Note that the formal deformation {Bk} induces the C[~]/〈~2〉-
deformation given by f ⊗ g 7→ fg + ~B1(f, g), in the language of appendix B. The Maurer-Cartan
equation in definition B.3.6 over the ring R = C[~]/〈~2〉 is simply the cocycle condition for a Hochshild
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2-cochain. Let us be a bit more precise here and mention that we are actually considering an adaptation
of the Hochschild cochain complex presented in section B.4, see remark B.4.6. Namely, instead of
considering all multi-linear maps C∞(M)⊗p → C∞(M), we shall consider only those that are given by

multi-differential operators. Now it is well-known that the inclusion of the poly-vectorfields Γ(∧• TM),
equipped with the trivial differential, is a quasi-isomorphism [112, 25, 71]. In particular, we see that
it means that B1 = B−1 + dT for some differential operator T .

Corollary 1.2.5. Every deformation quantization is gauge equivalent to one where 2B1 is the
induced Poisson bracket.

Proof.
This is a corollary of the discussion above since the map t = Id− i~T provides the gauge equivalence.
Note that the inverse is given by

∑∞
i=0(i~T )i. It follows since ‖−i~T‖ = 1

2 for the norm induced by
the ~ filtration on the space of C[[~]]-endomorphisms of C∞(M)[[~]], see definition 5.3.15. So we find
the gauge equivalent ?-product

f ?t g := t−1(t(f) ? t(g)) = fg + i~B−1 (f, g) +O(~2).

�

Remark 1.2.6. In a similar way to the proof above one can obtain normalizations of a deforma-
tion quantization [31], see also [55]. A normalized deformation quantization satisfies the additional
conditions

1 ? f = f and f ? 1 = f

for all f ∈ C∞(M). From now on we will always assume that deformation quantizations are normalized.

By corollary 1.2.5, we see that the space of infinitesimal deformations of C∞(M) (up to gauge
equivalence), i.e. C[~]/〈~2〉-deformations, is isomorphic to the space of Poisson structures on M (up
to gauge equivalence). More loosely speaking, the 1st order neighborhood of C∞(M) in the Moduli
space of algebra structures is the space of Poisson structures on M . One is led to ask whether
the space of formal deformations of C∞(M) (up to gauge equivalence) is isomorphic to the space

of formal Poisson structures (up to gauge equivalence). We note that the space h := Γ(∧• TM)
of poly-vector fields can be equipped with the Gerstenhaber structure given by the wedge product,
Schouten-Nijenhuis bracket and trivial differential [53, 102, 92]. Thus we see that corollary 1.2.5
comes from the fact that the quasi-isomorphism (of cochain complexes) h ↪→ g(C∞(M)) induces an
isomorphism DefR(h, 0) → DefR(g(C∞(M)), B0) for R = C[~]/〈~2〉. Formal Poisson structures are
exactly the Maurer-Cartan elements of h with respect to the local complete ring C[[~]]. Thus we see that
the formal deformations are indeed parametrized by formal Poisson structures if the dgl algebras h and
g(C∞(M)) are quasi-isomorphic, i.e. there exists a chain map that is also a Lie algebra homomorphism
and such that the induced map on cohomology is an isomorphism. This requirement turns out to be
too strong. However, the same reasoning shows that the formal deformations are parametrized by
formal Poisson structures if the L∞-algebras h and g(C∞(M)) are quasi-isomorphic [79]. This is
exactly what was proved by Kontsevich in his celebrated paper [71], see also [70, 108, 109].

Although we would be remiss if we did not mention Kontsevich’s classification result above, in this
thesis we will stick to symplectic manifolds. We will call deformation quantizations in the direction of
a Poisson structure induced by a symplectic structure: symplectic deformation quantizations. In this
case the classification takes on an even better form, since the formal Poisson structures where the first
order term is fixed to be non-degenerate are parametrized by the second de Rham cohomology of the
symplectic manifold M , see definition A.2.18. This result has many incarnations, in this form it was
shown in [50, 74]. We will present a proof, based on [89], in chapter 4. Beyond that, there is also a
(completely different) proof by Deligne in [30]. All of these lead to the definition of a characteristic
class [θ] ∈ ω

i~ + H2(M)[[~]], see definition 4.3.2, of the deformation quantization. This class also goes
under the names Weyl curvature or Deligne’s class, [48, 65].
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The version of the classification result for symplectic deformation quantizations that we will present
in chapter 4 is based on a slightly earlier result than the full classification of deformation quantizations.
We mean Fedosov’s construction of symplectic deformation quantizations [46], which leads to the
classification results above by the results of [87] and [6]. This construction, which we say a lot more
about in chapters 3 and 4, is closely related, by design, to the algebraic index theorem [45]. Since a
large part of this thesis revolves around the algebraic index theorem, we should introduce it as well.
Before we do that however, we should give a short introduction of the motivation for the algebraic
index theorem, namely the Atiyah-Singer index theorem 1.3.4.

1.3. The Atiyah-Singer Index Theorem

The Atiyah-Singer index theorem is widely seen as one of the most important theorems in modern
mathematics, this is exemplified by the great number of adaptations and generalizations, [104, 3, 110,
56, 28] to name a few. Another reason is that the theorem itself generalizes some very consequential
theorems like the Gauss-Bonnet, see chapter 9 of [75] and Riemann-Roch, see chapter 6 of [83],
theorems. The Atiyah-Singer index theorem is closely related to deformation quantization. This is
shown in particular by the algebraic index theorem [45, 86], which we shall discuss below, and was
the basis of a lot of Fedosov’s work on the subject [48]. The relation is also simply seen by observing
that the example of quantization given in section 1.1.2 yielded (pseudo)-differential operators.

In this section we shall give a very brief overview of the main points of the Atiyah-Singer index
theorem that will come up in the rest of this thesis. For a more in depth discussion of the theorem
we refer the reader to the notes [72, 103] and [91]. We will start by defining the notion of index of
elliptic differential operators and its relation to K-theory. We will then state a version of the index
theorem in K-theoretic terms. From this we will derive the statement in terms of cohomology classes.
We want to phrase the theorem in terms of cohomology, since the algebraic index theorem follows
from a formula in periodic cyclic cohomology and the corresponding homology is a non-commutative
replacement for de Rham cohomology of a manifold [26].

The Atiyah-Singer index theorem provides an expression for the index of an elliptic pseudo-
differential operator in terms of purely topological data. So let us first mention what exactly the
index is.

Definition 1.3.1. Suppose H1 and H2 are two Hilbert spaces and F is a linear operator between
them. We call F a Fredholm operator if both the kernel and cokernel of F are finite dimensional. The
index of F , denoted Ind F , is defined by the formula

Ind F = Dim KerF −Dim CokerF.

If we restrict our attention to the bounded operators B(H) on a Hilbert space H we see, by
Atkinson’s theorem [66], that an operator F ∈ B(H) is Fredholm if and only if its class in the Calkin
algebra Q(H) = B(H)/K(H) is invertible. Here we have denoted the compact operators on H by
K(H). This allows us to consider the Fredholm index as a construction in K-theory immediately by
considering the exact sequence

0→ K(H) −→ B(H) −→ Q(H)→ 0.

This sequence induces a six term exact sequence in (topological) K-theory. We note that Fredholm op-
erators represent classes in K1(Q(H)) and are therefore mapped to K0(K(H)) ' Z under the boundary
map. The image of the class of a Fredholm operator under this boundary map is exactly the index.
This shows, by homotopy invariance of K-theory, that the index is invariant under homotopy of Fred-
holm operators. We also mention the construction above since similar constructions of the index of
elliptic pseudo-differential operators exist. We will not present these construction in any detail here
however, see the last section of [20].
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The Atiyah-Singer index theorem considers certain pseudo-differential operators. A pseudo-
differential operator of order m ∈ Z on Rn is an operator A on functions f on Rn given by the
formula

Af(x) :=
1

(2π)n

∫
Rn
a(x, ξ)eix·ξ f̂(ξ)dξ

where f̂ denotes the Fourier transform of f and the function a(x, ξ) on R2n is called the symbol
of A. The symbols of pseudo-differential operators are required to lie in so-called symbol classes
Sm ⊂ C∞(R2n) satisfying certain decay conditions

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cαβ(1 + |ξ|)m−|α|,

where we use the notation of section 2.1. We note that Sn ⊂ Sm whenever n < m. The principal
symbol of the pseudo-differential operator A of order m is defined as the class of the symbol of A in
the quotient Sm/Sm−1. We can generalize this definition to consider pseudo-differential operators

A : Γ(E) −→ Γ(F )

between vector bundles E and F over a smooth manifold M . This is done by simply requiring the
operator to be given by a matrix of symbols of the form above on any neighborhood of M that
trivializes both E and F . A pseudo-differential operator is called elliptic if the principal symbol is
invertible away from the (dimension n) submanifold defined by x = 0. We note that the principal
symbols patch together to define a function on the cotangent bundle T ∗M of M . More precisely, we
obtain the bundle homomorphism

σm(A) : π∗E −→ π∗F,

between the pull-backs of the vector bundles along π : T ∗M → M , from the principal symbol of the
pseudo-differential operator A of degree m. We also call this bundle homomorphism the principal
symbol. So we see that, if M is compact, every elliptic pseudo-differential operator A defines the class
[σm(A)] ∈ K0(T ∗M). In fact every class can be obtained in this way [72].

Lemma 1.3.2. Elliptic pseudo-differential operators are Fredholm.

Here we consider the pseudo-differential operators as maps L2(M,E)→ L2(M,F ) for some choice
of Hermitian structure on E and F . A proof of the lemma can be found for instance in [48]. Thus we
find that the index Ind A of the elliptic pseudo-differential operator A is well-defined. On the other
hand we can construct a certain map K0(T ∗X) → Z as follows. Given an inclusion ι : X ↪→ Y of a
compact manifold into another manifold we can construct the wrong-way (or shriek) map

ι! : K0(T ∗X) −→ K0(T ∗Y ),

see [72].

Definition 1.3.3. The topological index map Indt is defined as the composite

K0(T ∗X)
ι!−→ K0(T ∗RN )

i−1
!−→ Z,

where ι denotes the inclusion X → RN for some sufficiently large N and i denotes the inclusion of the
origin in RN .

It turns out that the topological index does not depend on the choice of ι. The Atiyah-Singer
index theorem states that

Ind A = Ind t([σm(A)])

for all pseudo-differential operators of degree m. Note that we can also view the analytic index Ind A
as a map from K0(T ∗X), for compact manifolds at least, by the fact that all classes in K0(T ∗X) can
be realized as principal symbols of pseudo-differential operators [72]. So the index theorem essentially
states that two maps from K0(T ∗X) to the integers are equal.
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One of the applications of the index theorem is, of course, to be able to compute the index of
certain special operators, which can be very hard in general. Although the statement of the index
theorem in terms of K-theory is illuminating on a conceptual level, the statement of the index theorem
in terms of characteristic classes, see theorem 1.3.4, is more suited to computation. The way to
translate the above K-theoretical statement to a statement about characteristic classes is by using the
Chern character map [68]

ch : K0(M) −→ Hev
c (M),

where Hev
c (M) denotes the parts of even degree of the de Rham cohomology for compactly supported

forms, and the Thom isomorphisms [48, 12]

K0(T ∗X) −→ K0(X) and H•cv(T
∗X) −→ H•−ndR (X),

where H•cv(T
∗X) denotes the de Rham cohomology for forms that have compact supports in the

vertical direction. This leads to the following formulation of the Atiyah-Singer index theorem.

Theorem 1.3.4 (Atiyah-Singer Index Theorem). Suppose A is a pseudo-differential operator with
principal symbol σ(A) on the compact manifold X, then we have

Ind A =

∫
X

ch (σ(A))Td(X)

where Td(X) denotes the Todd class of the complexified tangent bundle of X.

The appearance of Td(X) is a consequence of the fact that the square

K0(T ∗X) Hev
cv(T ∗X)

K0(X) Hev
c (X)

commutes only up to multiplication by the Todd class [48]. Note that one consequence of the Atiyah-
Singer index theorem is that the integral on the right hand side in theorem 1.3.4 is forced to be integer
valued.

As mentioned, the connection between the Atiyah-Singer index theorem and deformation quan-
tization can be seen explicitly in the example in section 1.1.2. Namely, the assignment of a pseudo-
differential to its symbol is a quantization of the phase space T ∗C. In this sense, a deformation
quantization can be seen as a generalized symbol calculus for the pseudo-differential operators [48].
It turns out that there is indeed an index theorem associated to any formal deformation quantization
of a manifold [45, 33, 86]. We will discuss a proof of (the symplectic case of) this algebraic version
of the index theorem in section 6.1. In the next section we will give an introduction to this theorem.

1.4. The Algebraic Index Theorem

The Atiyah-Singer index theorem 1.3.4 has an algebraic analog in the algebraic index theorem
6.1.22. The main observation behind the analogy is that the algebra of pseudo-differential operators is
a deformation quantization of the cotangent bundle by considering the map that associates a pseudo-
differential operator to its symbol [48]. In other words, just as a formal deformation quantization is a
quantization up to certain analytic considerations, so is the algebraic index theorem a version of the
Atiyah-Singer index theorem up to certain analytic considerations. In this section we shall give a short
introduction to some of the main ideas behind the algebraic index theorems. In section 6.1 we shall
present a proof of the algebraic index theorem, inspired by the proof in [14, 15], which generalizes to
an equivariant version.
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The idea for an algebraic index theorem was first formulated by Fedosov in [44]. It was proved
by Fedosov in [47] and, a more general version was independently proved by Nest-Tsygan in [86]. A
similar result was obtained, again independently, in [27]. In essence, it is a theorem expressing an
explicit formula for computation of the trace of certain K-theory classes. In [86] it is stressed that this
means we are considering an instance of the pairing of K-theory and periodic cyclic cohomology, by
use of the Chern-Connes character 6.1.17. Comparing this with a certain proof of the index theorem,
which we shall sketch below, shows that the algebraic index theorem is really an algebraic analog of
the Atiyah-Singer index theorem. Moreover, in the article [88] it is shown that, for the deformation
quantization given by the symbol calculus on the cotangent bundle, one recovers the theorem 1.3.4
from 6.1.22.

Let us present here a sketch of the proof of the Atiyah-Singer index theorem 1.3.4 for Rn which
appeared in [40]. This proof motivates the algebraic index theorem, a sketch also appeared in [86] as
a reason for considering the algebraic index theorem an algebraic analog of the Atiyah-Singer index
theorem. Suppose D is an elliptic differential operator on Rn, we will assume that D = 1 outside
some compact K ⊂ Rn. We can naturally associate two projectors to D. First consider the projection
pD : L2(Rn)⊕L2(Rn)→ L2(Rn)⊕L2(Rn) onto the graph of D, we consider it as a pseudo-differential
operator in the trivial C2 bundle on Rn. Secondly, denoting by PD the projection onto the kernel of D
and by QD the projection onto the cokernel of D, we can consider the projector qD = PD ⊕ (1−QD)
(where the ⊕ denotes block sum of matrices). Note that the index of D equals Tr(qD−(0⊕1)). It turns
out that one can construct a homotopy of projections eD(t) such that eD(0) = qD and eD(1) = pD.
So, one would hope to compute the index of D using the projection pD instead of qD. The problem is
that eD − (0⊕ 1) is not trace class. So we try to replace the trace by a suitable “higher trace”, i.e. a
cyclic cocycle. Thus one considers the cocycle Θ given by

Θ(a0, . . . , a2n) =
1

n!

∑
σ∈S2n

ε(σ) Tr
(
a0[χσ(1), a1][χσ(2), a2] . . . [χσ(2n), a2n]

)
,

for all integral operators a0, . . . , a2n and where S2n denotes the symmetric group in 2n letters, ε(σ)
denotes the sign of σ and χ2i+2 = xi while χ2i+1 = ∂xi for all i = 1, . . . , n. One proceeds to prove
that Θ is cohomologous to Tr. This implies that

Tr(qD − (0⊕ 1)) = Θ(qD, . . . , qD).

At this point there are two slight complications. First, one needs to show that the application of Θ
to 2n copies of pD still makes sense. Secondly, one needs to show that the computation showing that
the evaluation of a cyclic cocycle along a continuous path of idempotents is constant still holds for the
path eD(t). Let us denote by Dh the differential operator obtained from D by scaling all the ∂xi by
h ∈ R. Then we find that Ind D = Ind Dh for all h ∈ R. On the other hand we find that

lim
h→0

Θ(pDh , pDh , . . . , pDh) =
1

n!

∫
R2n

σ(D)dσ(D) . . . dσ(D).

From this one deduces the Atiyah-Singer index theorem.

When we consider the algebraic index theorem we note that the analytic subtleties disappear.
Thus, the main thing we take away from the sketch above is that the algebraic input entering the
index theorem is simply the equality of certain cyclic cocycles. So suppose A~(M) is a deformation
quantization of the symplectic manifold M . Fedosov shows in [48] that there is a unique trace, in the
sense of definition 6.1.19, on A~(M). This trace will be the first periodic cyclic cocycle. In [86] the
authors construct a “Poincaré duality” map

CC•−1(A) −→ CC−•per(A)

from the reduced cyclic homology complex of an algebra A, see [78], to the periodic cyclic cohomology
complex of A, see definition A.2.2, given a trace Tr on A. Another way to see it, especially in the
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case where there is a unique trace, is as an action of the reduced cyclic complex on the periodic cyclic
complex. The cohomologous cocycle is now obtained as the image of the generator of a reduced cyclic
homology complex under this Poincaré duality map. The following theorem 6.1.22 is then shown by
explicit computation of this second cocycle.

Theorem 1.4.1 (Algebraic Index Theorem). Suppose e, f ∈ MN (A~(M)), for some N > 0, are
idempotents such that e− f ∈MN (A~c(M)). Then we have

TrN (e− f) =

∫
M

E(ch (σ(e))− ch (σ(f)))
(
Â(TCM)eθ

)
,

where E : CCper• (C∞(M))→ Ω•(M) denotes the Connes-Hochschild-Kostant-Rosenberg map [25, 95],
TrN denotes the composition of the unique normalized trace on A~(M) (see proposition 6.1.20) with
the matrix trace, σ denotes the map given by setting ~ = 0 and finally ch denotes the Chern-Connes
map defined in definition 6.1.17.

In this thesis we will consider another proof of the algebraic index theorem, however. This proof,
see [14, 15] and [89], uses the ideas of Gelfand’s formal geometry, see chapter 2, more seriously. We
will develop the framework of formal geometry in chapter 2 and the deformed version in section 4.1.
Using this it can be shown that the algebraic index theorem can already be proved in the formal
neighborhood, leading to the universal algebraic index theorem 6.1.12. The algebraic index theorem
then follows straightforwardly from the application of the Gelfand-Fuks maps constructed through the
framework of formal geometry, see definitions 2.3.9, 4.1.7 and 6.2.9.

1.5. Objectives and Attribution

In sections 1.1, 1.2, 1.3 and 1.4 we have introduced the concept of deformation quantization and
index theorems. These are the main objects of study in this thesis. Let us use this section to elaborate
on what the objectives of (the research behind) this thesis are. As expected, we have tried to add
to the already vast pool of knowledge around the topics mentioned above. Thus, we will also give
an impression of the work (that we are aware of) that has been carried out in the direction of these
objectives.

The objectives can be divided into three main projects, namely:

(1) derivation of an algebraic index theorem for crossed products of a deformation quantization
with a group;

(2) classification of the actions of (discrete) groups on deformation quantizations;
(3) concretely realizing the Fedosov construction in Gelfand’s framework of formal geometry.

These three objectives are heavily related to each other, of course. The main objective is objective
(1), one might even say it is the only objective and the other two are simply prerequisites. The relation
between objectives (1) and (2) comes from the simple fact that, in order to understand the crossed
product of a group with a deformation quantization algebra, one should first understand the action
of the group on the algebra to some extent. The classification of such actions is a consequence that
is of independent interest. The relation between objectives (1) and (3) comes from the proofs of the
algebraic index theorem given in [86] and [14], in both proofs certain essential ideas from Gelfand’s
formal geometry are used, although it may be hard to realize. On the other hand it can be hard to
conceptualize the ideas behind the Fedosov construction [46]. One way to do this is by considering it in
the framework of formal geometry and, while many people must certainly be aware of this [21, 8, 86],
a straightforward treatment of the relation between the Fedosov construction and formal geometry
seems to be missing.

In this section we shall say a little bit about the three objectives above and how they relate to the
established body of research. We shall conclude this section with an account of precisely which parts
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of the thesis can be attributed to the author and which parts of the thesis are partly or wholly the
work of others.

1.5.1. Objective (3). We shall start our discussion of the objectives of this thesis in reverse
order. We do this since, as was mentioned, the ordering above is by reverse dependence. Of the three
objectives, it is perhaps hardest to determine the degree of success in the case of objective (3). This
is because objective (3) is essentially about supplying an adequate conceptualization of the Fedosov
construction. Thus the degree of success depends greatly on the reader. The objective is therefore,
mainly, to present the Fedosov construction in a way that connects well with the readers whose frame
of mind agrees with Gelfands framework of formal geometry. As mentioned, however, we will also
explicitly use the realization of the Fedosov construction in the framework of formal geometry in the
pursuit of the other two objectives.

The framework of formal geometry is a name that we have given to a set of ideas proposed by
Gelfand at the 1970 ICM in Nice [51, 52] A rigorous formulation and treatment of these ideas is hard
to find, as mentioned for instance in [8], even though the content seems to be well-known among a large
group of mathematicians [86, 8, 21, 71]. In [8] the authors present a (brief) treatment of the theory,
since they use the theory in that paper, they mention that they were introduced to the ideas at B.
Feigin’s Moscow seminar. We have similarly been introduced to the topic through private discussions
with the author’s advisor R. Nest and (as of yet) unpublished notes written by R. Nest. Therefore, we
have taken the opportunity to relay a written account of the main aspects of the framework of formal
geometry in chapter 2.

The framework of formal geometry consists of two main parts. First, one considers the geometry of
the formal neighborhood of a point in some higher dimensional space (also called the formal polydisc
[8]). Secondly, one finds a way of globalizing the results of the first step, i.e. “gluing together
the formal neighborhoods”. We shall perform the first step in the deformed case in chapter 3 by
studying the formal Moyal–Weyl algebra. This algebra appears in all the sources considering the
Fedosov construction [114, 89, 46] in the symplectic setting, although there are essentially two ways
to construct it. Our discussion in chapter 3 is mainly based on the treatment of the Moyal–Weyl
algebras in [14] and [89].

Objective (3) is carried out in chapter 4. There we consider the second part of the framework of
formal geometry in the deformed case. We note that it is expected that the framework generalizes,
partly because of the ideas of non-commutative geometry. Namely, one expects the deformation
quantization to behave algebraically like a manifold, except that it is not commutative. In chapter
4 we first show how the process of globalization applied in the undeformed case can be translated to
the deformed case and yields Fedosov connections [114, 89], this is done in section 4.1. Secondly, in
section 4.2, we present the Fedosov construction as carried by B. Fedosov in [48]. We conclude by
considering the characteristic class of the deformation quantization in section 4.3.

We should note that, as mentioned, the ideas of formal geometry can be found, in varying degrees,
in many works on deformation quantization, notably [71, 32, 8, 86, 46]. We would like to mention
the paper [21] specifically. In this paper the authors consider an analog of Kontsevich’s construction
of ?-products on Poisson manifolds by means of a Fedosov-like construction using the framework of
formal geometry.

1.5.2. Objective (2). Objective (2) arose from the need to understand the notion of group
actions on deformation quantizations well. The topic of group actions on deformation quantizations is
historically well-studied [65, 7]. Especially in the case of Lie groups, where one tries to generalize the
notion of momentum map [41] and perform symplectic reductions [81, 41]. We shall only seriously
consider actions by discrete groups, although some results do apply to the Lie group setting as well.
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When one considers the action of a group on a deformation quantization algebra it is split essen-
tially into a deformed part and an undeformed part. The action will induce an action on the underlying
Poisson manifold. So one would like to know how much of the action is encoded by this induced action.
By classification we mean classification of the different group actions on the deformation quantization
that induce the same action on the manifold. Thus, we reduce the problem to considering actions by
Poisson maps and existence of a lift of such actions to the deformation quantization. In chapter 5
we consider first the question of existence of lifts and proceed to find a classification of the actions
inducing a fixed (liftable) action on the underlying (symplectic) manifold. We phrase the question of
classification of group actions completely in the setting of the Fedosov construction and the framework
of formal geometry. Although we should take care to be clear about the generality of the obtained
results.

We should note that a lot of work had already been carried out towards objective (2). Notably,
one can consider the (somehow reversed) question of invariance of ?-products. In other words, one can
try to parametrize those ?-products that are invariant under the action on the underlying manifold. In
the article [7] a complete parametrization of such ?-products up to equivariant equivalence is provided.
In the, more recent, work [98] these results were extended to include a notion of quantum momentum
map. Another result of interest is the construction of an equivariant formality map in [32], which
works for arbitrary Poisson manifolds.

The main difference between the treatment of group actions in this thesis and the notion of
invariant ?-products is that we allow the action to differ in higher orders of ~ from the action on
the manifold. We do this to create an independence of the treatment from the choice of Fedosov
connection realizing the deformation quantization. This has the benefit that in our treatment of the
equivariant index theorem, in section 6.2, we will not have to impose any restrictions on the action or
the deformation quantization.

1.5.3. Objective (1). The main objective of this thesis is to explain and prove an equivariant
version of the algebraic index theorem 6.2.23. By equivariant we mean that we consider the action of
a discrete (countable) group Γ on a deformation quantization A~(M) and subsequently let the role of
the deformation quantization in the algebraic index theorem 6.1.22 be played by the crossed product
A~(M)oΓ, see definition A.3.1. This corresponds roughly to replacing the underlying manifold by the
Borel construction M ×ΓEΓ. We call this algebraic index theorem for crossed products an equivariant
algebraic index theorem since the periodic cyclic cohomology of the crossed product is identified as
the equivariant version [113, 62, 67] when one compares with K-theory (or rather KK-theory).

The crossed product is a well-known non-commutative analog of the quotient [26]. Suppose a
group Γ acts on a manifold M by diffeomorphisms and suppose the quotient M/Γ remains a smooth
manifold, eg. the group acts freely and properly. In that case the crossed product C0(M) o Γ is
Morita equivalent to the quotient C0(M/Γ) = C0(M)Γ [99]. In general, however, we can not be
assured that M/Γ is a smooth manifold and the functions C0(M)Γ do not accurately describe the
(non-commutative) geometry of the quotient. It turns out that the crossed-product still does. Note
also that we can sometimes realize the crossed product as the convolution algebra on the action
groupoid M o Γ.

Since the algebraic index theorem is essentially a statement about periodic cyclic cocycles, the
hypothesis naturally arises that there exists a formula, similar to the one in theorem 6.1.22, for the
crossed product algebra A~(M)oΓ. A consequence of the Fedosov construction of deformation quan-
tizations [48, 89] is that there exists a quasi-isomorphism from the deformation quantization A~(M)
to the complex of differential forms with values in the bundle with fibers given by the formal Moyal–
Weyl algebra equipped with the Fedosov connection, see proposition 4.1.9. This can be combined
with the well-known fact that the Borel equivariant cohomology H•Γ(M) includes in the periodic cyclic
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cohomology of the crossed product C∞(M) o Γ [23, 26]. Thus we try to define a map from the
crossed product A~(M)o Γ to a model for differential forms on the Borel construction with values in
the formal Moyal–Weyl algebra equipped with an equivariant version of the Fedosov connection. This
process is executed in section 6.2.

There have been many generalizations and adaptations since the conception of the algebraic index
theorems. Notably there is a version that can be applied to Poisson manifolds [33]. There are versions
tailored to symplectic Lie algebroids [89], complex manifolds [14] and gerbes [15]. Recently there
were adaptations to more general Lie algebroids [9]. The adaptation to the case of symplectic Lie
groupoids and orbifolds carried out in the papers [97] and [96] are of particular interest to us. Such
Lie groupoids can arise from actions on deformation quantizations like the ones that we consider.

1.5.4. Attribution. As is to be expected, the material in this thesis is not exclusively attributed
to the author. In this section we will try to outline, chapter by chapter, to what degree the material
is completely original research and to what degree it should be attributed to other sources.

None of the material in the introduction can be attributed in any way to the author. The material
in section 1.1 is mostly based on (the first two chapters of) the book [107] by L. Takhtajan. The
material in section 1.2 is mostly common knowledge in the field of deformation quantization. Partic-
ularly good surveys of this “common knowledge” can be found in [65] and [42]. The same goes for
the material in section 1.3, we refer the interested readers to the excellent article [72]. A particularly
relevant reference, that we have used extensively, is the book [48] by B. Fedosov. The material in
section 1.4 is mostly based on the articles [86], [14] and the book [48].

As mentioned earlier, the material in chapter 2 is common knowledge for a large group of mathe-
maticians, although finding a comprehensive source is hard. The presentation in this thesis is inspired
nearly exclusively by private discussions with and unpublished notes of the author’s advisor R. Nest.
Most of the proofs were reproduced independently, however.

The material in chapter 3 is well-known as well. Section 3.1 is based in particular on the articles
[89] and [14]. The results of section 3.2 were rederived independently, although some of the results
already appear in the sources mentioned above. The results of section 3.3 are based on the article
[14]. The proofs of section 3.1 and 3.2 were rederived independently, while the proofs in section 3.3
are directly based on the proofs of [14].

The material in chapter 4 is the deformed version of the material in chapter 2. The material
in section 4.1 is based on the article [86] and to a small degree on [89]. The material in section
4.2, including proofs, is simply a rephrasing of sections 5.1 and 5.2 of [48] and is included for the
convenience of the reader. The material in section 4.3 is to some extent a comparison of section 4.1
and 4.2, as such that material is based on [86], [89] and [48].

The material in chapter 5 is based on the preprint [69], written by the author. The material in
sections 5.1 and 5.2 was essentially known, but was rephrased in a way that fits well into the general
structure of this thesis. The results of section 5.2 were rederived independently. The results of section
5.3 were obtained completely independently and are, as far as the author is aware, original. Of course
we mean to exclude supporting lemmas, like lemmas 5.3.23 and 5.3.16, from this statement.

Section 6.1 is an adaptation of the proofs of the universal algebraic index theorem and algebraic
index theorem in [14] and [15]. Section 6.2 on the other hand is based on work carried out in
collaboration with A. Gorokhovsky and R. Nest. A preprint should appear in the near future, possibly
adapted from the exposition given in this thesis. Accordingly the results of this section are original
and the proofs were obtained in collaboration with A. Gorokhovsky and R. Nest.
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The material contained in appendix A is, of course, well-known and not at all original. Section
A.1 is based for the most part on the appendix of the book [79], although the proofs were rederived
independently. Section A.2 consists of various standard definitions found for instance in [116] or [78]
for section A.2.1; in [17] and [58] for sections A.2.2 and A.3.2; in [12] for section A.2.3 and finally
[116] for section A.2.4. The well-known proposition A.2.12 was relayed to the author by D. Sprehn in
a private discussion and the proof of proposition A.3.4 is based on a similar proof in [12] or [1]. The
content of section A.3 was relayed to the author through private communication with A. Gorokhovsky
and is based further on the articles [1] and [93].

The material contained in appendix B is also well-known and not at all original. This material
is based mostly on the lecture notes [35] and some general knowledge. The constructions and proofs,
especially in the differential graded case, were rederived independently, however.



CHAPTER 2

The Framework of Formal Geometry

In this chapter we will set up the framework of Gelfand-style formal geometry [51, 52, 8, 21].
This is a framework in which one first studies the geometry of the formal neighborhood of a point in
some higher dimensional space and studies a manifold by its associated cover by formal neighborhoods.
By “formal neighborhood” we mean the smallest neighborhood of the point that is large enough to
exhibit the value of every derivative of a function at that point. Thus the algebra of functions on the
formal neighborhood will be isomorphic to an algebra of formal power series, hence the name.

We will start by building up the framework in this sense. It can be generalized however, see [5],
to consider foliated manifolds. This is done by considering the formal neighborhood of a point in a
foliated higher dimensional space, see section 2.4. We will not present this generalization in detail,
however. In the next sections we will present a generalization of the framework of formal geometry
to the context of symplectic formal deformation quantization and show how this leads to a natural
conceptualization of the Fedosov construction and the associated classification of symplectic formal
deformation quantizations.

We choose to present the undeformed case for the trivial foliation first, since it is most easily
understood, while the ideas and proofs carry over mutatis mutandi. The main result and the main
application of the framework in this thesis will be the construction of the Gelfand-Fuks maps

GFM : C•Lie(Wn, hn;L) −→ Ω•(M ;L)

from the relative Lie algebra cohomology of a certain (fixed) pair of Lie algebras hn ⊂Wn with values
in a module L to the de Rham cohomology of the n-dimensional smooth manifold M with values in a
vector bundle, with fibers given by L, associated to the frames bundle of M .

Remark 2.0.1. It is helpful to note the similarity to the case of homogeneous spaces. In this
setting the Lie algebra Wn corresponds to the Lie algebra of the Lie group G, hn corresponds to the
Lie algebra of the subgroup H ⊂ G and M would be the homogeneous space G/H. In fact we will see

that the Gelfand-Fuks map arises from a principal bundle M̃ → M that only fails to be a Lie group

if there exists no “global translation” on M . More explicitly the principal bundle M̃ fails to be a Lie
group if certain lowest degree vectors in Wn cannot be integrated globally.

Remark 2.0.2. When considering (differential) geometric properties of a manifold M , it is often
useful to split up these properties in terms of local data and global data. Čech cohomology, subordinate
to a good cover, offers a tidy way to encode this, for an example see the proof of 5.3.22. A “good cover”
is usually defined as a cover by open subsets that are diffeomorphic to Rn/contractible and such that
all non-empty (iterated) intersections of these subsets are also diffeomorphic to Rn/contractible. Of
course, for certain problems, different covers may be considered “good”. It is often useful to consider
the framework of formal geometry as a way to make sense of the “cover by formal neighborhoods”.

The chapter is set up as follows. In section 2.1 we will define and analyze the kth order neigh-
borhoods of a point in Euclidean space. This will naturally lead to the definition of the jet bundles of
coordinate charts and eventually the manifold of non-linear frames in the section 2.2. In section 2.3
we will show that this manifold carries a natural Maurer-Cartan type connection and we will show how

20
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this allows us to define the Gelfand-Fuks maps. Finally, we shall provide some rudimentary examples
of the application of the framework in section 2.4. The main example is of course the application in
the deformed case, which will be carried out in the subsequent chapters.

2.1. kth Order Neighborhoods

The notion of a kth order neighborhood of a point is well-known in algebraic geometry. For
instance, the dual numbers over some field L form a 1st order or infinitesimal neighborhood of a
point in the corresponding affine line. In differential geometry the concept seems to be a little less
well-known. As we will see, it can still be quite useful however. In the spirit of non-commutative and
algebraic geometry we define these kth order neighborhoods in terms of their algebras of functions.
Thus, we will study first the algebra of k-jets at a point of a manifold. This is an algebra which
encodes the “up to order k” behaviour of the manifold at a certain point. In particular, we will show
that the k-jets at a point are classified, up to algebra isomorphism, by dimension of the manifold. We
will also determine the automorphisms and derivations of these algebras in explicit terms.

Definition 2.1.1. We define the algebra of k-jets at m ∈M as

Am,k := C∞(M)
/

(Ker evm)
k+1

where evm denotes the evaluation at m ∈M . We shall also denote

Ak := C∞(Rn)
/

(Ker ev0)
k+1 = A0,k.

Remark 2.1.2. Note that we abuse notation by denoting Ak instead of An,k. In the following
section we fix the dimension n. Many objects should therefore be considered as implicitly carrying a
subscript n, which may appear if the need for such clarity arises.

Notation 2.1.3. We will denote the quotient maps by

Jkm : C∞(M) −→ Am,k.

Notation 2.1.4. We will often use the symbol α to denote multi-indices, i.e. α ∈ (Z≥0)
n
. When

we do this, we denote

|α| :=
n∑
i=1

αi, xα :=

n∏
i=1

xαii , α! :=

n∏
i=1

αi! and ∂αx :=

n∏
i=1

∂αixi ,

where ∂xi denotes the operator of partial derivative in the direction xi.

The notion of jets of functions is intimately tied up with the notion of differential operators. In
fact, we shall see that the “bundle of ∞-jets” (a limit of a bundle with fibers given by the k-jets
defined above) is naturally identified as the C∞(M)-dual of differential operators on M . So, let us
give a particularly useful definition of differential operators. It is left to the reader to consolidate this
definition with the definition the reader is familiar with.

Notation 2.1.5. Denote by XM the sheaf of Lie algebras on M given by the smooth vector fields
with the Lie bracket given by Lie derivative, i.e. [X,Y ] = LXY . Note that XM is a module over the
sheaf of smooth functions C∞M . By abuse of notation, we will often write a ∈ F to mean a section a in
the sheaf F . By this we simply mean a ∈ F(U) for some/any open set U . As above, we shall denote
in particular C∞n := C∞Rn and Xn := XRn .

Definition 2.1.6. Let OpM denote the sheaf of differential operators on M . It is given by the
following construction. Let T (XM ) denote the sheaf which associates the tensor algebra generated by
C∞M (U) and XM (U) to an open U , i.e. it is the free R-algebra on those generators. Then OpM is given
by taking the quotient of T (XM ) by the ideal IM generated by the elements

X ⊗ Y − Y ⊗X − [X,Y ], X ⊗ fY − fX ⊗ Y −X(f)Y and f ⊗X − fX
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for all X,Y ∈ XM and f ∈ C∞M (the last relation is also included for X ∈ C∞M ). We consider the
sections of T (XM ) as a graded algebra by assigning C∞M the degree 0 and XM the degree 1. We denote
the sections of degree k by T (XM )k. This grading induces a filtration on OpM . We will denote the
elements of OpM of degree lower than p ∈ Z by FpOpM , i.e. we have

0 = F−1OpM ⊂ F0OpM ⊂ . . . ⊂ FpOpM ⊂ Fp+1OpM ⊂ . . . ,
where FpOpM is the image of

⊕p
k=0 T (XM )k ⊂ T (XM ) under the quotient map. Note that OpM is a

C∞M module for the module structure induced from T (XM ). As above, we shall denote in particular
Opn := OpRn .

Remark 2.1.7. Note that every D ∈ OpM defines a linear operator on C∞M by

(X1 ⊗ . . .⊗Xp)f = X1 (X2 (. . . (Xp(f)))) ,

where Xi ∈ XM acts on functions by the usual [111] identification with derivations and Xi ∈ C∞M acts
by multiplication.

Lemma 2.1.8. Suppose f ∈ C∞n , then f ∈ (Ker ev0)
k+1

iff Df(0) = 0 for all differential operators
D ∈ FkOpn.

Proof.
Suppose f ∈ (Ker ev0)

k+1
, then

f =
∑

i1,...,ik+1

fi1fi2 . . . fik+1

for some fij ∈ Ker ev0. Now suppose D ∈ FkOpn, then, by repeated application of the product rule,
we see that Df will be a sum of terms of the form

(D1fi1)(D2fi2) . . . (Dk+1fik+1
),

for some differential operators Dj such that D1D2 . . . Dk+1 ∈ FkOpn. Thus we see that there is at least
one 0 ≤ j ≤ k + 1 such that Dj ∈ F0Opn(= C∞n ). Thus Df(0) = 0 since Djfij (0) = Dj(0)fij (0) = 0,
since fij ∈ Ker ev0.

Conversely, suppose Df(0) = 0 for all D ∈ FkOpn. Keeping this in mind, Taylor’s theorem [111]
says that we have

f(x) =
∑
|α|=k

Rα(x)xα

for all x ∈ Rn. Here the Rα are smooth functions such that Rα(0) = 0. Thus we see that indeed

f ∈ (Ker ev0)
k+1

. �

Corollary 2.1.9. The algebras Am,k are classified, up to isomorphism, by the dimension of M .

Proof. This follows since all n-dimensional manifolds are locally diffeomorphic to Rn by definition
and differential operators are local [111]. �

Proposition 2.1.10. The algebra Ak is isomorphic to Ãk := R[x1, . . . , xn]
/
〈x1, . . . , xn〉k+1 for

all k ≥ 0.

Proof.
Consider the inclusion

i : R[x1, . . . , xn] ↪→ C∞(Rn)

given by the standard coordinates on Rn. Let ϕk := Jk0 ◦ i, then, by lemma 2.1.8, we see that
Kerϕk = 〈x1, . . . , xn〉k+1. So there is an induced map

ϕk : Ãk −→ Ak.
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On the other hand we can consider the map

ek : C∞(Rn) −→ Ãk
given by

f 7→

∑
|α|≤k

1

α!
(∂αx f) (0)xα

 .
Again by 2.1.8, we find that Ker ek = (Ker ev0)

k+1
. So we have the induced map ek. Note that

ek = ϕ−1
k follows from the definitions. �

From now on we will implicitly equate Ãk and Ak (using the isomorphism from proposition 2.1.10).

Proposition 2.1.11. The k-th jet group Gk := Aut(Ak) is isomorphic to RNk o GL(n,R) as a
Lie group, for some Nk ∈ N and some Lie group structure on RNk .

Proof.
Note that giving an algebra endomorphism (a unital one) of Ak is equivalent to giving the images
ϕ1, . . . , ϕn of the generators x1, . . . , xn. So suppose ϕ is the endomorphism given by

ϕp =
∑
|α|≤k

ap,αx
α,

with ap,α ∈ R for all 1 ≤ p ≤ n and α ∈ (Z≥0)n.

If the ϕp give a well-defined algebra endomorphism ϕ, we have

0 = ϕ(xk+1
p ) = ϕk+1

p = ak+1
p,(0,...,0) + S,

where S ∈ 〈x1, . . . , xn〉. This implies that ap,(0,...,0) = 0. Suppose, on the other hand, that the
ap,(0,...,0) vanish for all 1 ≤ p ≤ n and denote by ϕ the map

ϕ : R[x1, . . . , xn] −→ Ak
given by extending ϕ(xp) = ϕp as (unital) algebra homomorphism. One verifies that

〈x1, . . . , xk〉k+1 ⊂ Kerϕ

and thus ϕ induces an algebra endomorphism of Ak. This endomorphism is exactly given by ϕ. So we
see that the ϕp provide a well-defined algebra endomorphism ϕ if and only if ap,(0,...,0) = 0 for all p.

So consider the algebra endomorphism ϕ given by

ϕp =
∑

0<|α|≤k

ap,αx
α.

Then the condition for ϕ to be (invertible) an automorphism is exactly that the matrix Φ with entries
Φij given by the coefficient of xi in ϕj is invertible. This is apparent since constructing the inverse

is an unobstructed process once one knows that Φ has an inverse. Note that the corresponding map
Gk −→ GL(n,R), which maps ϕ to Φ, is a group homomorphism. Moreover, given an invertible matrix
(aij)

n
i,j=1 ∈ GL(n,R), the polynomials ϕj =

∑n
j=1 aijxi define an automorphism A of Ak and A ∈ Gk

maps to (aij)
n
i,j=1 ∈ GL(n,R). Note also that the map GL(n,R)→ Gk, given by (aij)

n
i,j=1 7→ A, is a

group homomorphism for all k. So we find that the exact sequences

0→ K −→ Gk −→ GL(n,R)→ 0

split for all k. Since there are no constraints on the coefficients ap,α for |α| > 1, we find that the kernel
K can be parametrized by RNk . The induced group multiplication on RNk can be expressed in terms
of polynomials and therefore it supplies RNk with the structure of a Lie group (in fact it supplies RNk
with the structure of a smooth algebraic group). �
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Remark 2.1.12. Note that the proof of proposition 2.1.11 makes explicit the implied Lie group
structure on RNk . In fact it also makes clear that

Nk
n

=

k∑
i=2

(
n+ i− 1

n− 1

)
.

This is because the ap,α with |α| > 1 form a coordinate system. For each 1 ≤ p ≤ n there are as many
ap,α as there are elements α ∈ (Z≥0)n such that 1 < |α| < k + 1. This number is in turn equal to
the sum over 1 < i < k + 1 of the number of weak compositions cn(i) of i into exactly n parts. The

formula for Nk now follows from the fact that cn(i) =
(
n+i−1
n−1

)
.

Definition 2.1.13. The maps

Jk : Diff(Rn, 0)op −→ Gk,

where Diff(Rn, 0) denotes the group of those diffeomorphisms Φ of Rn such that Φ(0) = 0, are defined
by the requirement that the diagram

C∞(Rn) C∞(Rn)

Ak Ak

γ∗

Jkγ

commutes for any diffeomorphism γ ∈ Diff(Rn, 0), i.e. Jkγ ◦ Jk0 = Jk0 ◦ γ∗.

Proposition 2.1.14. The Lie algebras Wk := Der(Ak) of derivations are given by

Wk =

{
n∑
i=1

P̂i∂xi | P̂i ∈ Ker ev0 ⊂ Ak

}
where we view P̂i∂xi as the composition of the operator ∂xi given by∑

α

aαx
α 7→

∑
α

aααix
α̃,

where α̃ = (α1, . . . , αi − 1, . . . , αn) and the second sum runs over only those α ∈ (Z≥0)n such that

αi > 0 and |α| < k + 1, and the operator of multiplication by P̂i.

Proof.
As was the case for endomorphisms, giving the derivation D is equivalent to giving the images Dp of
the generators xp. Again the polynomials

Dp =
∑
|α|≤k

ap,αx
α

yield a well-defined derivation if and only if ap,(0,...,0) = 0 for all p. This is since, on the one hand,

0 = D(xk+1
p ) = (k + 1)xkpDp = (k + 1)xkpap,(0,...,0) + xkpS

where S ∈ 〈x1, . . . , xn〉, which implies ap,(0,...,0) = 0. On the other hand, suppose we have that

ap,(0,...,0) = 0, then consider the map D : R[x1, . . . , xn] → Ak given by composing the derivation
of R[x1, . . . , xn] determined by the polynomials Dp with the projection to Ak. Then we see that

〈x1, . . . , xn〉k+1 ⊂ KerD and thus D induces an operator Ak → Ak. This operator is exactly D and so
we see that the polynomials Dp yield a well-defined derivation. Now note that clearly D =

∑n
p=1Dp∂xp

and the condition that ap,(0,...,0) = 0 simply means that Dp ∈ Ker ev0. �
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2.2. Jet Bundles and the Formal Neighborhood

In this section we will define the bundles of k-jets associated to an n-dimensional manifold M .
These will be principal bundles in which each point is given by the k-jet of a coordinate system centered
at a point m ∈ M . We will also give a description of the manifold structure of the bundles of k-jets.
One then naturally considers the bundle of non-linear frames (the ∞-jet bundle). This will also lead
to the definition of the algebra of ∞-jets at a point, i.e. the formal neighborhood of a point. In this
section we will also describe certain automorphisms and derivations of the formal neighborhood, i.e.
formal coordinate changes fixing a point and formal vector fields.

Definition 2.2.1. Let jk(M) denote the kth jet manifold of M defined by

jk(M) :=
{
ϕm,k : Am,k

∼−→ Ak
}
.

We equip jk(M) with the smooth structure obtained from noting that it is a Gk-principal bundle
over M . Let us describe the smooth structure more explicitly. First consider the maps

Pk : jk(M) −→M

given by ϕm,k 7→ m. We will obtain the smooth structure on jk(M) by providing the bijections

P−1
k (U) −→ U ×Gk

for coordinate charts U ⊂M and showing that they are smoothly compatible for the smooth structure
on Gk given in proposition 2.1.11.

Notation 2.2.2. For each y ∈ Rn we will denote by Ty the diffeomorphism of Rn given by
translation by y, i.e. Ty(x) = x+ y.

Suppose

ψ : Rn ∼−→ U ⊂M
is a coordinate chart. Let

ψk : Rn ×Gk −→ P−1
k (U) (2.2.1)

be given by

ψk(x, χ) = χ ◦ (ψ ◦ Tx)∗ : Aψ(x),k −→ Ak.
Note that this is well-defined since, if f ∈ Ker evψ(x), then f ◦ψ ◦Tx ∈ Ker ev0. The image is in jk(M),
since Tx is a diffeomorphism while ψ is a local diffeomorphism. Also, since ψ is a local diffeomorphism,
we can consider the inverse given by

ϕm,k 7→
(
ψ−1(m), ϕm,k ◦ (T−ψ−1(m) ◦ ψ−1)∗

)
(2.2.2)

where one checks that the map is well-defined, as before. By showing that the maps ψk are smoothly
compatible we will have defined a smooth structure on the jet manifolds jk(M). So suppose we have
two coordinate charts ψU : Rn → U ⊂ M and ψV : Rn → V ⊂ M on M . We note that the images of
ψU,k and ψV,k are disjoint if and only if U ∩ V = ∅. So let us assume that U ∩ V 6= ∅. We find that

ψ−1
V,k ◦ ψU,k : ψ−1

U (U ∩ V )×Gk −→ ψ−1
V (U ∩ V )×Gk

is given by

(x, χ) 7→
(
ψ−1
V ◦ ψU (x), χ ◦ (ψU ◦ Tx)∗ ◦ (T−ψ−1

V ψU (x) ◦ ψ
−1
V )∗

)
.

Now it is checked using proposition 2.1.11 that smoothness of ψ−1
V ◦ψU implies smoothness of ψ−1

V,k◦ψU,k.

Remark 2.2.3. Note that G1 ' GL(n,R) by proposition 2.1.11, since N1 = 0. One verifies that,
as expected, j1(M) → M is isomorphic to the general linear frame bundle of M . In fact, it is easily
verified that jk(M) is a Gk-principal bundle over M for all k ≥ 0 and a Gk/GL(n,R)-principal bundle
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over j1(M) for k ≥ 1. Note also that by proposition 2.1.11 the Lie groups Gk/GL(n,R) ' RNk are
contractible and so for k ≥ 1 we find that

jk(M) ' j1(M)× RNk

as bundles over j1(M).

Definition 2.2.4. We define the bundle of non-linear frames in M , denoted M̃ , by

M̃ := j∞(M) := lim←− j
k(M)

where the inverse system is given by the maps jk(M) → jk−1(M), mapping ϕm,k to ϕm,k−1, where
ϕm,k−1 is the unique map that makes the diagram

Am,k Ak
ϕm,k

Am,k−1 Ak−1ϕm,k−1

commute. Here the vertical arrows are given by the induced quotient maps. The uniqueness, and the
fact that this yields an automorphism, derive from the fact that any isomorphism Am,k → Ak must
map the unique maximal ideal Ker evm to the unique maximal ideal Ker ev0.

Notation 2.2.5. We denote the algebra of ∞-jets at m ∈ M , defined as lim←−Am,k, by Âm. We

shall also denote the limit of the maps Jkm over k by

J∞m : C∞(M) −→ Âm.

We shall denote in particular

Â := lim←−Ak = R[[x1, . . . , xn]].

Note that Âm is the algebra of functions on the formal neighborhood of m ∈M .

Remark 2.2.6. The algebras Âm are equipped with the Ker evm-adic topology. This topology
arises naturally from their definition as a limit. Note that any continuous isomorphism

Âm
∼−→ Â := lim←−Ak = R[[x1, . . . , xn]]

is given by a compatible sequence of isomorphisms Am,k → Ak and thus we find the equivalent
description

M̃ =
{
ϕm : Âm

∼−→ Â
}
.

Remark 2.2.7. Since M̃ is given by the sequence
(
jk(M)

)
k≥0

of smooth manifolds it has the

structure of a pro-finite dimensional manifold. In the following we will consider several differential

geometric objects associated to M̃ . These will always be defined as the appropriate limits of the

corresponding differential geometric objects on the jk(M), for example C∞
(
M̃
)

= lim−→C∞(jk(M)).

In particular we have

TϕmM̃ := lim←−Tϕm,kM.

Note that, by definition of the limit topology, giving a path in M̃ is equivalent to giving compatible
paths in all the jk(M) and so

TϕmM̃ '
{
γ : ]− 1, 1[−→ M̃ | γ(0) = ϕm

}
/∼. (2.2.3)
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Here the equivalence relation ∼ is given by

γ ∼ γ′ iff ∂sf ◦ γ|s=0 = ∂sf ◦ γ′|s=0 for all f ∈ C∞
(
M̃
)
.

Note that f ∈ C∞
(
M̃
)

is an equivalence class of functions jk(M)→ R for the relation that fk ∼ fl if

p∗k,lfl = fk, where pk,l : j
k(M)→ jl(M) for k ≥ l are the maps in the inverse system. Note that, since

the system is sequential and terminates at j0(M) = M , we can always find the unique representative

fk : jk(M)→ R for f ∈ C∞
(
M̃
)

such that there is no l < k with p∗k,lfl = fk. Let us also denote the

maps M̃ → jk(M) by πk (they are the p∞,k if you will). Now we see that the defining equation for ∼
simply says that γ ∼ γ′ if for all f ∈ C∞

(
M̃
)

we have that

∂s(fk ◦ πk ◦ γ)|s=0 = ∂s(fk ◦ πk ◦ γ′)|s=0.

Other geometric objects we will encounter are for instance TM̃ and Ω•
(
M̃
)

the definitions of which

should now be reasonably clear. A nice characterization of a smooth map of pro-finite dimensional

manifolds M̃ → Ñ is that it is a map which induces an algebra homomorphism C∞
(
Ñ
)
→ C∞

(
M̃
)

.

Definition 2.2.8. We define the pro-finite dimensional Lie group Ĝ of∞-jets of diffeomorphisms
of Rn fixing 0 ∈ Rn by

Ĝ := lim←−Gk.

Remark 2.2.9. Note that, since the maps Gk → Gl for k ≥ l in the limit above are Lie group

homomorphisms, we find a group structure on Ĝ and in fact the multiplication and inverse are smooth
maps in the sense of pro-finite dimensional manifolds. Note that by the same reasoning as remark

2.2.6 we find that Ĝ is the group Aut0Â of continuous algebra automorphisms of Â.

For any manifold M the group Ĝ acts from the left on M̃ by post-composition. One verifies that
this action is smooth, free, preserves the fibers of the map

P∞ : M̃ −→M

which sends ϕm : Âm → Â to m ∈ M and acts transitively on these fibers. Note also that since the

Pk : jk(M) → M are all fiber bundles the same is true for P∞. In other words P∞ is a Ĝ-principal
bundle.

Remark 2.2.10. Note that the action of Ĝ on M̃ and in fact the actions of the Gk on the jk(M)
are from the left. It is more usual in the literature to require principal bundles to carry right actions.
Note however that in the usual construction of the general linear frame bundle j1(M) the action of
GL(n,R) is directly on the vector space. In our case, we consider the induced action, by pull-back, on
the 1-jets. This explains why we also obtain actions on the left instead of actions on the right in our

definition of the principal bundles jk(M) and M̃ .

Notation 2.2.11. As before, we denote the limit of the system of maps Jk : Diff(Rn, 0)op → Gk
by

J∞ : Diff(Rn, 0)op −→ Ĝ.

Note that, given a local diffeomorphism Φ: (Rn, 0) → (M,m), we get similarly a continuous isomor-
phism

J∞m Φ: Âm −→ Â.
So let us denote also

J∞m : Diff((Rn, 0), (M,m)) −→ Iso0(Âm, Â),

where Iso0 denotes the set of continuous isomorphisms.
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As for M̃ above, we have that TIdĜ = lim←−TIdGk, which is a limit of the Lie algebras Wk corre-

sponding to the Lie groups Gk. Let us determine in rather clear terms what this Lie algebra is.

Definition 2.2.12. We define W to be the Lie algebra of continuous derivations of Â

W := Der0(Â).

The degree filtration

Â = F0Â ⊃ F1Â ⊃ . . . ⊃ FkÂ ⊃ Fk+1Â ⊃ . . .
where FkÂ := 〈x1, . . . , xn〉k, induces the filtration

W = F−1W ⊃ F0W ⊃ F1W ⊃ . . . ⊃ FpW ⊃ Fp+1W ⊃ . . .
where

FpW :=
{
D ∈ Der0(Â) | D(FkÂ) ⊂ Fk+pÂ ∀k ≥ 0

}
.

Remark 2.2.13. Note that the filtration on Â also induces the filtration

Ĝ = G0 . G1 . G2 . . . . . Gk . . . .

given by

Gk :=
{
ϕ ∈ Ĝ | ϕ = Id mod (Ker ev0)

k+1
}
.

Note that all the embeddings are normal and Gk ' G0/Gk.

It is actually quite easy to be more explicit about the Lie algebra W and provide a presentation
of it. Note that, since W consists of continuous derivations, giving D ∈W is equivalent to giving the
formal power series D(xi) for all i. In this case there are no conditions at all, so we find that

W '

{
n∑
i=1

Pi∂xi | Pi ∈ Â

}
where ∂xi denotes the continuous extension of partial derivative from polynomials to formal power
series. We will therefore also call W the Lie algebra of formal vector fields. From this description it is
clear that the filtration F•W actually derives from a grading given by the linear isomorphism W ' Ân
mapping ∂xi to 1 in the ith copy of Â. Namely by shifting this grading by 1 (since ∂xi should be of
degree −1). We will denote the space of degree p elements by Wp. So we find that

W =
∏
p≥−1

Wp.

Notation 2.2.14. We will denote the formal vector fields vanishing at 0 by

W :=
∏
k≥0

Wk.

We will denote the induced filtration by F•W and the induced grading by Wp.

Consider the map

gl(n,R) −→W
given by (aij)

n
i,j=1 7→

∑n
i,j=1 aijxi∂j . Note that it provides the identification gl(n,R) 'W0. Thus we

find that

W = (F1W)o gl(n,R).

Proposition 2.2.15. We have

Wk ' (F1W/FkW)o gl(n,R)

where Wk denotes the Lie algebra of Gk.
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Proof.
It follows from the explicit description of W, the proposition 2.1.11 and the remark 2.2.13. �

Note that, since F1W = lim←−F1W/FkW, we have deduced that

TIdĜ = lim←−Wk ' F1Wo gl(n,R) 'W.

Remark 2.2.16. Note that any continuous linear endomorphism of Â is obtained as a limit of
a compatible system of linear endomorphisms Ak → Ak. Similarly, as noted above, any continuous
algebra automorphism of Â is obtained as a limit of a compatible system of linear automorphisms
Ak → Ak. However, the limits of compatible systems of derivations Ak → Ak will only recover W ⊂W
by proposition 2.1.14. So we see that the derivations ∂xi are limits of compatible systems of linear
endomorphisms which are not derivations.

2.3. Gelfand-Fuks Map

In this section we will construct the Gelfand-Fuks map mentioned in the introduction to this
chapter. This will also make the analogy with Čech cohomology and the idea of the “cover by formal
neighborhoods” clear. To do this we will first construct a certain connection one-form on the bundle
of non-linear frames of a manifold. The pull-back of this one-form will yield both the “Čech complex”
and the Gelfand-Fuks map.

We will need the following well-known theorem [85].

Theorem 2.3.1 (Borel). The map

J∞m : C∞(M) −→ Âm
is surjective.

Corollary 2.3.2. Any continuous isomorphism

ϕm : Âm −→ Â
is induced by a local diffeomorphism Φ: (Rn, 0)→ (M,m), i.e. ϕm = J∞m Φ.

Proof.
It follows from theorem 2.3.1, since, if f1, . . . , fn ∈ C∞(M) are such that J∞m fi = ϕ−1

m (xi), then they
form a local coordinate system by the inverse function theorem.

�

We obtain the following well-known theorem [5, 71, 21] providing an action of W on M̃ .

Theorem 2.3.3. There is a natural isomorphism

ωM (ϕm) : TϕmM̃ −→W

for all ϕm ∈ M̃ . The induced map ωM defines a one-form in Ω1
(
M̃
)
⊗W satisfying

dωM +
1

2
[ωM , ωM ] = 0 (2.3.1)

where d denotes the exterior derivative.

Proof.
Given X ∈ TϕmM̃ we determine ωM (ϕm)(X) by providing its action on Â. Recall (2.2.3) in remark

2.2.7 and let X = d
dtγ(t)|t=0 for some γ : ]− 1, 1[→ M̃ such that γ(0) = ϕm. By corollary 2.3.2 we can

pick a coordinate system ψU : (Rn, 0)
∼→ (U,m) ⊂ (M,m) such that J∞m ψU = ϕm. Then the system of

diffeomorphisms ψU,k, given by (2.2.1) for ψ = ψU , yields the diffeomorphism

ψU,∞ : Rn × Ĝ ∼−→ P−1
∞ (U).
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Note that we may assume without loss of generality that the image of γ is contained in P−1
∞ (U). Let

us denote mγ,U (t) = pr1

(
ψ−1
U,∞(γ(t))

)
and ϕγ,U (t) = pr2

(
ψ−1
U,∞(γ(t))

)
. Then we set

ωM (ϕm)(X)(f̂) = − d

dt

(
ϕγ,U (t) ◦ J∞0 ◦ T ∗mγ,U (t)(f)

)∣∣∣∣
t=0

for any f̂ ∈ Â, here f ∈ C∞(Rn) is such that J∞0 f = f̂ . To make sense of the differentiation note that
by proposition 2.1.10 we have

ϕγ,U (t) ◦ J∞0 ◦ T ∗mγ,U (t)(f) =
∑
α

1

α!
(∂αx f) (mγ,U (t))ϕγ,U (t)(xα), (2.3.2)

where we recall that any automorphism of Â is given by the images of the xi’s. Now the differentiation
in t simply refers to differentiation in the coefficients which are smooth in t since γ is smooth in t.
Note that, if ωM is well-defined, it is automatically natural. One needs to check that:

(1) ωM (ϕm)(X) is a derivation for any X ∈ TϕmM̃ ,

(2) ωM (ϕm) is a linear isomorphism from TϕmM̃ to W,

(3) ωM (ϕm)(X)(f̂) does not depend on the choice of f ,
(4) ωM (ϕm)(X) does not depend on the choice of γ,
(5) ωM (ϕm)(X) does not depend on the choice of ψU ,
(6) ωM (ϕm) depends smoothly on ϕm and
(7) ωM satisfies the Maurer-Cartan equation (2.3.1).

1) This follows directly from the fact that ϕγ,U (t) ◦ J∞0 ◦ T ∗mγ,U (t) is a composition of algebra

homomorphisms for all t, while ϕγ,U (0) = Id and T ∗mγ,U (0) = Id.

2) Let us unravel the description of ωM (ϕm) above. The description can be given in two steps.

First we identify TϕmM̃ with T(0,Id)

(
Rn × Ĝ

)
by means of the local diffeomorphism ψU,∞. Secondly,

we identify T(0,Id)

(
Rn × Ĝ

)
with W by noting that

T(0,Id)

(
Rn × Ĝ

)
= T0Rn ⊕ TIdĜ 'W−1 ⊕W = W.

Note that both these identifications are by means of linear isomorphisms.
3) Note that, by linearity, it is enough to show that

d

dt

(
ϕγ,U (t) ◦ J∞0 ◦ T ∗mγ,U (t)(e)

)∣∣∣∣
t=0

= 0 (2.3.3)

for any e such that J∞0 e = 0. We have d
dt (∂

α
x e)(mγ,U (t))|t=0 = V (∂αx e) where V is the derivation at 0

given by d
dtmγ,U (t)|t=0 ∈ T0Rn for any α ∈ Zn≥0. Thus, since ∂βx e(0) = 0 for all β ∈ Zn≥0, we find that

d
dt (∂

α
x e)(mγ,U (t))|t=0 = 0 for all α ∈ Zn≥0. So, we see that (2.3.3) follows from (2.3.2) and the product

rule.
4) Recall the unraveling of the definition of ωM at 2) above. This clearly also implies that

ωM (ϕm)(X) only depends on the value of γ at 0 and the first derivative of γ at 0. In other words it
only depends on X and not the choice of γ.

5) Suppose that ψV : (Rn, 0)
∼→ (V,m) ⊂ (M,m) is another coordinate neighborhood such that

J∞m ψV = ϕm. Note that, since we can shorten the path γ arbitrarily without loss of generality, we can
assume that V = U without loss of generality. Note that the formula (2.2.2) means that

−ωM (ϕm)(X)(f̂) =
d

dt

(
γ(t) ◦ (ψ−1

U )∗ ◦ T ∗−mγ,U (t) ◦ J
∞
0 ◦ T ∗mγ,U (t)f)

)∣∣∣∣
t=0

,
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which yields explicitly

−
∑
α

1

α!

d

dt

(
(∂αx f) (mγ,U (t))γ(t) ◦ (ψ−1

U )∗ (x−mγ,U (t)))
α)∣∣∣∣

t=0

.

Then we see from this, the chain rule and the hypothesis that J∞m ψV = J∞m ψU that ωM (ϕm)(X) does
not depend on the choice of ψU .

6) Note first that smoothness of ωM for any manifold M follows from smoothness of ωRn by

naturality. In other words, we may show the smoothness locally. Also, we may identify R̃n with

Rn × Ĝ by using the map Id∞. As explained at 2) ωM (ϕm) is essentially given by the differential of
the map ψ−1

U,∞. Going through the identifications mentioned above, this means Id∗∞ωRn(x, ϕ) is given
by the differential of the map

(y, ψ) 7→
(

Φ−1(y − x), ψ ◦ T ∗(y−x) ◦ (Φ−1)∗ ◦ T ∗−Φ−1(y−x)

)
where J∞0 Φ = ϕ. Note that this differential will depend smoothly on (x, ϕ).

7) Using the well-known formula for the exterior derivative we can rewrite the Maurer-Cartan
equation as

LX(ωM (Y ))− LY (ωM (X))− ωM (LX(Y )) + [ωM (X), ωM (Y )]

where LX denotes the Lie derivative along X and the bracket is the bracket of W. This equation can
be checked explicitly by using the expression of Lie derivative in terms of local flows and the definition
of ωM .

�

Remark 2.3.4. The one-form defined in the theorem 2.3.3 is sometimes called the Kazdan connec-

tion on M . Note that, given any W-module V , we find the cochain complex
(

Ω•
(
M̃
)
⊗ V, d+ ωM∧

)
by the Maurer-Cartan equation for ωM . It is easily verified that this also yields the map

(C•Lie(W;V ), ∂Lie) −→
(

Ω•
(
M̃ ;V

)
, d+ ωM∧

)
from the Gelfand-Fuks cohomology complex of W with values in V , see remark A.2.33, given by

(X1 ∧ . . . ∧Xp 7→ χ(X1, . . . , Xp)) 7→ ((ϕm, Y1 ∧ . . . ∧ Yp) 7→ χ(ωM (ϕm)(Y1), . . . , ωM (ϕm)(Yp)) .

The Gelfand-Fuks map mentioned earlier is supposed to land in the differential forms on M however.
We will need some extra definitions.

Definition 2.3.5. Suppose L is a GL(n,R)-module. Then we denote the vector bundle associated
to the general linear frames bundle j1(M) → M by LM := j1(M) ×GL(n,R) L → M . We define the
differential forms on M with values in LM , denoted Ω•(M ;L), by

Ω•(M ;L) :=
{
η ∈

(
Ω•
(
j1(M)

)
⊗ L

)GL(n,R) | ιXη = 0 ∀X ∈ gl(n,R)
}
.

Here the superscript GL(n,R) refers to taking the invariants with respect to the action given by
α ⊗ v 7→ g∗α ⊗ g−1v for g ∈ GL(n,R), the ιX denotes contraction with the vector field X, gl(n,R)
denotes the Lie algebra of GL(n,R) and associated to the vector X ∈ gl(n,R) we consider the vector
field TIdRx(X) also denoted by X, here Rx : GL(n,R)→ j1(M) is given by Rx(g) = gx.

Remark 2.3.6. The requirements that elements in Ω•
(
j1(M)

)
⊗ L need to satisfy in order to be

differential forms on M with values in L ensure that they actually only depend on data supported
on the manifold M in the following way. Suppose X1, . . . , Xp are vector fields on M and suppose

X̃1, . . . , X̃p and X̃ ′1, . . . , X̃
′
p are two sets of lifts along the projection map P1 : j1(M) → M . Then we

find that, for all η ∈ Ωp(M ;L), we have that η(X̃1, . . . , X̃p) = η
(
X̃ ′1, . . . , X̃

′
p

)
, since the differences

X̃i − X̃ ′i lie in the kernel of TP1 and η vanishes on this kernel. Suppose m ∈ M and fm and f ′m are
two lifts of m along P1. then there is a unique g ∈ GL(n,R) such that fm = gf ′m and, since η is
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invariant, we find that η(X1, . . . , Xp)(f
′
m) = g(η(X1, . . . , Xp)(fm)). One can prove that the definition

above agrees with the definition Ω•(M ;L) = Γ
((
∧• T ∗M

)
⊗ LM

)
, the definition 2.3.5 will be more

convenient for our purposes however.

Lemma 2.3.7. There exists a GL(n,R)-equivariant section

F : j1(M) −→ M̃

of the obvious map π1 : M̃ → j1(M).

Proof.
The map π1 : M̃ → j1(M) is a principal fiber bundle with the structure group G1. By proposition
2.2.15 we find that G1 = expF1W and so by pro-nilpotence of F1W we find that G1 is diffeomorphic

to a pro-finite dimensional vector space and thus contractible. This means that M̃ trivializes over

j1(M). The GL(n,R)-equivariance now follows from the decomposition Ĝ ' G1 oGL(n,R) given by
proposition 2.1.11. �

Note that the section F is not at all unique. Let us simply fix such a GL(n,R)-equivariant section
F . Now we can pull-back the one-form ωM by F to obtain

OF := F ∗ωM ∈ Ω1(j1(M))⊗W.
Note that OF also satisfies the Maurer-Cartan equation (2.3.1) simply because ωM does.

Definition 2.3.8. We define a (W,GL(n,R))-module L as a W-module such that the induced
action of gl(n,R) integrates to an action of GL(n,R).

It is straightforward to check that, by definition of ωM and equivariance of F , we have that, if
η ∈ Ωp(M ;L) for some (W,GL(n,R))-module L, then dη + OF ∧ η is a differential form on M (of
degree p+ 1) with values in LM . Of course we mean the form given by

X1 ∧ . . . ∧Xp+1 7→
1

p!

∑
τ∈Sp+1

ε(τ)OF (Xτ(1))
(
η(Xτ(2), . . . , Xτ(p+1)

)
by OF ∧ η, here Sp+1 denotes the symmetric group in p+ 1 letters and ε(τ) denotes the sign of τ .

Proposition 2.3.9. Suppose L is a (W,GL(n,R))-module, then the map

GFM : (C•Lie (W, gl(n,R);L) , ∂Lie) −→ (Ω•(M ;L),∇F ) ,

where ∇F = d+OF∧, given by

GFM (χ)(X1, . . . , Xp)(fm) = χ(OF (X1)(fm), . . . , OF (Xp)(fm)),

for χ ∈ CpLie (W, gl(n,R);L), fm ∈ j1(M) and X1, . . . , Xp vector fields on j1(M), is a well-defined
map of complexes.

Proof.
∇2
F = 0 by the Maurer-Cartan equation. The rest of the proof follows by straightforward computation.

�

Remark 2.3.10. The examples in the next section will show in what sense the above complex of
differential forms on M with values in LM can be thought of as the Čech complex subordinate to a
cover by formal neighborhoods. Let us make some elementary observations about proposition 2.3.9
above. Note that the power of the proposition is that, although the map GFM and the complex of
differential forms with values in LM depend on M , the Lie algebra complex does not. It should be
shown then that the map GFM is not trivial in general. One can think of the Lie algebra cohomology
as the cohomology of the formal neighborhood of points in the manifold, the Gelfand-Fuks map is then
a way of globalizing cohomology classes along the manifold.
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Remark 2.3.11. The connection ∇F is sometimes called the Grothendieck connection [8, 65, 89].

When we consider the quintessential (W,GL(n,R))-module Â, as we will do in example 2.4.1 below,

we find that the corresponding vector bundle ÂM is isomorphic (by use of the section F ) to the bundle
underlying the sheaf of∞-jets J∞n , see definition 3.1.1 and proposition 3.1.15. Under this isomorphism
the connection ∇F takes the more usual form of the Grothendieck connection ∇G given by

(∇Gl)(X)(D) = X(l(D))− l(XD)

for all l ∈ J∞n , D ∈ Opn and X ∈ Xn.

2.4. Examples

Let us demonstrate that the framework was set up properly. We will do this by first showing
that the complexes of differential forms with values in (W,GL(n,R))-modules are actually quasi-
isomorphic to well-known interesting objects. Secondly, we will show that the Gelfand-Fuks map is
not trivial in general, by showing that certain Pontrjagin classes lie in the image. After this we will also
say some words about the possible generalization of the framework to consider non-trivially foliated
manifolds. The main example of a generalization, the fact that the Gelfand-Fuks map is not trivial
and the applicability of the framework will however be the deformed case concerning deformation
quantization. This will be developed in the subsequent sections.

Example 2.4.1. Let us consider the quintessential (W,GL(n,R))-module Â. As mentioned earlier,

we want to view
(

Ω•(M ; Â),∇F
)

as a Čech cohomology complex subordinate to the cover by formal

neighborhoods. The formal neighborhood of the point m ∈ M is defined as the “manifold” with
algebra of functions given by Â. Thus the complex associated to the module Â has the smooth
functions on M as underlying sheaf. The Čech complex corresponding to the sheaf C∞M and a good
cover is quasi-isomorphic to C∞(M) with trivial differential. So the following result should not be
surprising

Proposition 2.4.2. The map

J∞F : (C∞(M), 0) −→
(

Ω•
(
M ; Â

)
,∇F

)
given by f 7→ (p 7→ F (p)J∞π(p)f) for all f ∈ C∞(M) and p ∈ j1(M) is a quasi-isomorphism of differen-

tial graded associative algebras. In other words C∞(M) ' Ker∇F as algebras and
(

Ω•
(
M ; Â

)
,∇F

)
is acyclic.

Proof.
First of all we may reduce this to a local computation since the sheaf (on M) of differential graded
algebras

U 7→
(

Ω•
(
U ; Â

)
,∇F

)
admits a partition of unity. So let us consider the case where M = Rn. Note that since the tangent
bundle of Rn is trivial we find that

Ω•(Rn; Â) ' Ω•(Rn)⊗ Â.

So 0-forms are simply functions f̂(x, x̂) =
∑
α f̂α(x)x̂α in the variable x on Rn and the formal variable

x̂, i.e. we will use hats to differentiate between actual and formal variables. In this case we can be
very explicit about a choice of section F . Simply take the map

j1(Rn)
Id−1

1−→ Rn ×GL(n,R)
ι−→ Rn × Ĝ Id∞−→ R̃n (2.4.1)
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where ι denotes the inclusion. Thus we find, by definition of the form ωRn and F , that

OF = −
n∑
i=1

dxi ⊗ ∂x̂i

where we write ∂x̂i for the derivations on Â given by ∂x̂i x̂j = δij . Then we see that for a 0-form f̂ to

be in the kernel of ∇F we must have that ∂xi f̂ = ∂x̂i f̂ for all i. In other words f̂(x, x̂) = f(x+ x̂) for
some smooth function f ∈ C∞(Rn). This establishes the isomorphism given in the proposition.

It is left to show that the complex
(

Ω•
(
Rn; Â

)
,∇F

)
has no cohomology in higher degrees. To

see this we note that we may view Ω•
(
Rn; Â

)
as the sections of the (trivial) bundle with fiber given

by ∧• Rn ⊗ Ŝ(Rn) where Ŝ(Rn) denotes the completion of the symmetric algebra on the dual Rn of
Rn in the Rn-adic topology. The formula for ∇F above then makes clear that it simply acts as the
dual of the Koszul differential on the symmetric algebra S(Rn).

To summarize, the proposition follows from the calculation of cohomology of the double complex(
Č•(U ,F•), ∂̌,∇F

)
, where Č• refers to the Čech complex (for some good cover U) and F• denotes

the sheaf of graded vector spaces given by Ω•
(
−; Â

)
. This sheaf may be identified with the sections

of a vector bundle with fibers given by the Koszul resolution associated to the general linear frames
bundle (as mentioned in the previous paragraph). So, by existence of a partition of unity, the spectral
sequence associated to the above double complex collapses on the first page to the Čech complex of
the sheaf of smooth functions. By existence of a partition of unity this complex collapses to C∞(M)
on the second page. The explicit isomorphism mentioned in the proposition is obtained by paying
attention to the explicit local definition of ∇F .

�

Example 2.4.3. The other obvious example of a (W,GL(n,R))-module is the trivial module R.
Since the action is trivial we have that ∇F = ddR and so we simply find that (Ω•(M ;R),∇F ) is the
usual de Rham complex of the manifold M . This means that by considering the trivial module R we
can actually try to construct formal analogs of characteristic classes in the Lie algebra cohomology of
W relative to gl(n,R) with values in R. For example, we can construct the following classes. Consider
the GL(n,R)-equivariant projection

p : W −→ gl(n,R)

given by sending
∑
α,j Pα,jx

α∂xj to the matrix with entries Pij . Then we define the curvature defined
by p to be the map

Rp : ∧2W −→ gl(n,R)

given by Rp(X,Y ) = [p(X), p(Y )]− p([X,Y ]). Note that the map Rp measures the failure of p to be

a Lie algebra homomorphism. Denote by Sp(gl∗n)GL(n,R) the space of invariant symmetric multilinear
functions on gl(n,R) as usual in the Chern-Weil theory of characteristic classes [38]. Then we can
define a map

CWp : Sp(gl∗n)GL(n,R) −→ C2p
Lie (W, gl(n,R);R)

by

χ 7→ (Y1 ∧ Z1 ∧ Y2 ∧ Z2 ∧ . . . ∧ Yp ∧ Zp 7→ χ (Rp(Y1, Z1), . . . , Rp(Yp, Zp))) .

Recall that a symmetric p-linear function χ is determined by the values χ(v, . . . , v) of the corresponding
symmetric polynomial in p variables [38]. We define the degree k symmetric invariant linear functions
P k

2
by the following formula

Det

(
λIn −

A

2π

)
=

n∑
k=0

P k
2
(A, . . . , A)λn−k
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for all A ∈ gl(n,R). Now, since p ◦OF defines a gl(n,R)-valued connection form on M , we see by the
Chern-Weil theory of characteristic classes, that the classes of GF (CWk(P k

2
)) in H2k

dR(M) are exactly

the Pontrjagin classes of the tangent bundle of M . This shows in particular that the Gelfand-Fuks
map is not trivial in general.

Remark 2.4.4. Note that example 2.4.3 also shows that we can view the framework of formal
geometry as a way to obtain a generalized Chern-Weil theory of characteristic classes.

The theory developed above can be generalized in at least two notable ways. The case concerning
deformation quantization will be discussed at length in the rest of this thesis, but we would be remiss
if we didn’t also mention the case of a foliated manifold, see [5]. One can use the above theory
to define characteristic (secondary) classes of a foliation. The recipe to obtain generalizations is in
principle unchanged. The only thing that we need to do is to construct the corresponding foliated
formal neighborhood, manifold of non-linear frames, Lie group of jets of local automorphisms and the
corresponding Lie algebra.

So suppose we have a codimension k foliation F of an n + k dimensional manifold M . Then the
manifold is locally Rn × Rk and we remember that the Rn are leafwise directions. Thus the formal
neighborhood of 0 is given by Ân+k plus a splitting, i.e.

̂C∞(Rn × Rk)0 ' Ân ⊗ Âk ' R[[x1, . . . , xn, λ1, . . . , λk]]

where the λi correspond to transversal directions and the xi correspond to leafwise directions. The

manifold M̃F of non-linear frames subordinate to the foliation is given by those non-linear frames that
respect the foliation, i.e.

M̃F :=
{
ϕm : Âm

∼−→ Ân ⊗ Âk | ϕm
(
ÂFm
)
⊂ R⊗ Âk ⊂ Ân ⊗ Âk

}
where ÂFm is given by the subalgebra of ∞-jets of functions that are constant along leaves. The group

Ĝ is replaced by ĜF in a similar fashion:

ĜF :=
{
g ∈ Ĝ | g(λi) ∈ R⊗ Âk ⊂ Ân ⊗ Âk

}
.

Finally the Lie algebra W is replaced by the Lie algebra WF , given as

WF := Wk nWn[[λ1, . . . , λk]]

with the obvious action of Wk on Wn[[λ1, . . . , λk]]. Again one can construct a Kazdan connection
and a section from the “F-adapted” GL(n,R)×GL(k,R)-principal bundle. Since Wk is a quotient of
WF we get a map in Lie algebra cohomology which yields the secondary characteristic classes of the
foliation mentioned above. Note that the previous sections in this chapter simply correspond to the
trivial foliation, which yields the usual characteristic classes.



CHAPTER 3

The Formal Moyal–Weyl Algebra

In order to apply the framework of formal geometry developed above to deformation quantization
we will need to go through the process of generalization exemplified by the case of a foliation at the
end of the last section. In particular, we will need to find a deformation quantization of a formal
neighborhood, its automorphisms and the Lie algebra of formal vector fields. In this chapter we shall
describe these in quite a lot of detail. We do this since most of the results in this thesis will be obtained
by careful globalization of the corresponding results for the formal neighborhood. It is also in this
section that we see the great benefit of considering symplectic deformation quantizations. They are
in some sense “flat” for two reasons:

• symplectic manifolds are always locally symplectomorphic to Euclidean space with the stan-
dard symplectic structure, by Darboux’s theorem [19], and

• up to gauge equivalence the symplectic deformation quantizations of Euclidean space are
classified by their dimension [65].

These two results mean that we can consider a constant local model of symplectic deformation
quantizations and this is very useful when applying the framework of formal geometry.

We will consider the Moyal product (3.0.2), introduced by Groenewold in [64], as our constant
local model for symplectic deformation quantization of the 2d-dimensional Euclidean space (R2d, ωst),
equipped with the standard symplectic structure. It is given by

(f ? g)(q, p) = exp

(
i~
2

d∑
i=1

∂ξi∂yi − ∂ηi∂xi

)
f(x, ξ)g(y, η)

∣∣∣∣∣x=y=q,
ξ=η=p

, (3.0.2)

where we have denoted by x1, . . . , xd, ξ1, . . . , ξd, and similar for y, η and q, p, the standard (Darboux)
coordinates on R2d. We will call the corresponding algebra of ∞-jets at 0: the formal Moyal–Weyl
algebra. It is the starting point of Fedosov’s approach to deformation quantization of symplectic
manifolds [46].

We will use this chapter to give three explicit constructions of the formal Moyal–Weyl algebra,
analyze its continuous derivations and automorphisms and present computations of its Hochschild
and cyclic homology. While the first objectives are necessary to even start applying the framework
of formal geometry, the last objective, the computation of homology, is done specifically in order to
provide a proof of the algebraic index theorem 6.1.22 later on.

3.1. Constructions

We will give three constructions of the formal Moyal–Weyl algebra and show that they are equiv-
alent. Each construction will have a specific advantage over the others. We start with the geometric
construction of the formal Moyal–Weyl algebra, which follows the concept sketched above most closely.
In fact this geometric construction is given by supplying the∞-jets of functions on R2d with the Moyal
product. The second construction shall be more algebraic and has the advantage that the definition
of the product resembles the definition of the Moyal product (3.0.2) more closely. In this second con-
struction the relation with the symmetric algebra/algebra of formal power series will be clear. Closer

36
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inspection will reveal that it is simply a reformulation of the first construction. The final construction
is most simple and therefore lends itself most easily to explicit computations. It is most simple mainly
because it is closest to naive quantization in the sense that one simply extrapolates the implications
of [v, w] = i~{v, w}. This last construction also resembles the usual construction of the classical Weyl
algebras most clearly.

3.1.1. The Geometric Construction. As mentioned above, this first construction will proceed
by equipping the∞-jets of smooth functions at the origin in R2d with the Moyal product. In the second
construction we will do this rather more ad hoc and use the definition Â of ∞-jets of functions at 0,
given in notation 2.2.5. The following will be made easier by also defining the sheaf (of algebras) of
∞-jets in a slightly more subtle geometric way, however. Our presentation of the first construction is
based on the article [89].

Since the Moyal product is a product on the formal power series in ~ with coefficients in complex
valued smooth functions, all our constructions will be over the ground field C from now on. Note that
most definitions considered below are equally valid over R however. For the following definitions one
should recall the definition 2.1.6 of the sheaf of differential operators.

Definition 3.1.1. We define the sheaf of ∞-jets J∞2d by

J∞2d (U) := HomC∞(U)(Op2d(U), C∞(U))

on an open set U ⊂ R2d. Let

J∞ : C∞2d −→ J∞2d

be the map given by

J∞(f)(D) = D(f)

for all D ∈ Op2d(U) and f ∈ C∞2d(U) for U as above. We denote by the left inverse of J∞, given by
evaluation at 1 ∈ Op2d, by ev1.

The sheaf of∞-jets J∞2d comes equipped with an algebra structure which is given by the convolution
product corresponding to the usual pointwise multiplication of functions and a coalgebra structure on
Op2d. In the following we will describe this coalgebra structure. To avoid conflict of notation we will
denote the product (given by the tensor product) in Op2d and T (X2d) by simple concatenation of
elements.

Definition 3.1.2. Let

∆0 : Op2d −→ Op2d ⊗C∞2d Op2d

be the map descending from the map on T (X2d) given by C∞2d -linear extension of

∆0(X) = X ⊗ 1 + 1⊗X and ∆0(1) = 1⊗ 1

for all X ∈ X2d and the rule that

∆0(D1D2) = ∆0(D1)∆0(D2)

for all D1, D2 ∈ T (X2d), i.e. ∆0 should be a map of C∞2d -algebras.

Example 3.1.3. Note that this means that, for instance,

∆0(XY ) = (XY )⊗ 1 +X ⊗ Y + Y ⊗X + 1⊗ (XY ),

for X,Y ∈ X2d

It can be seen that ∆0 is well-defined since it preserves the ideal I2d defined in definition 2.1.6,
i.e.

∆0(I2d) ⊂ I2d ⊗C∞2d T (X2d) + T (X2d)⊗C∞2d I2d.
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Remark 3.1.4. The coproduct ∆0 actually comes from the fact that Op2d is the universal envelop-
ing algebra of the (quintessential) Lie-Rinehart pair (C∞2d ,X2d). Such algebras are naturally Rinehart
bialgebras [84].

Proposition 3.1.5. The map ∆0 supplies Op2d with the structure of a coassociative cocommutative
C∞2d-coalgebra. Moreover it is counital with counit J∞(1).

Proof.
It is easily seen, from explicit computation, that

(∆0 ⊗ Id) (∆0 (X)) = (Id⊗∆0) (∆0 (X))

for X ∈ X2d and X = 1. The coassociativity follows since

(∆0 ⊗ Id)(D1D2) = (∆0 ⊗ Id)(D1)(∆0 ⊗ Id)(D2)

for all D1, D2 ∈ Op2d ⊗C∞2d Op2d and similarly for (Id ⊗∆0). Denote by τ the flip endomorphism of
Op2d ⊗C∞2d Op2d given by D1 ⊗D2 7→ D2 ⊗D1. Again it is easy to see that

τ(∆0(X)) = ∆0(X) and τ(∆0(1)) = ∆0(1)

for all X ∈ X2d. So the cocommutativity follows since we have

τ(D1D2) = τ(D1)τ(D2)

for all D1, D2 ∈ Op2d ⊗C∞ Op2d. Finally, suppose we have D ∈ FpOp2d, then D =
∑p
k=0Dk with

Dk =
∑
i1,...,ik

Xi1 . . . Xik , with Xj ∈ X2d for all indices and where the sum is finite. Thus we find
that

∆0(D) =

p∑
k=0

∆0(Dk)

and

∆0(Dk) = 1⊗Dk +Dk ⊗ 1 +Rk,

for k > 0, where the rest terms Rk have Xj ’s on each leg, while

∆0(D0) = D0 ⊗ 1 = 1⊗D0

(since D0 ∈ C∞2d). On the other hand, if X1, . . . , Xp ∈ X2d, then we have

J∞(1)(Xp . . . X1) = Xp . . . X1(1) = 0.

So we get

(Id⊗ J∞(1))(∆0(D)) = D ⊗ 1 and (J∞(1)⊗ Id)(∆0(D)) = 1⊗D
for all D ∈ Op2d, which means exactly that J∞(1) is a counit for ∆0.

�

Corollary 3.1.6. The map

J∞2d ⊗C∞2d J
∞
2d −→ J∞2d

given by convolving ∆0 and the pointwise multiplication µ of smooth functions, i.e.

l1l2 = µ ◦ l1 ⊗ l2 ◦∆0,

gives J∞2d the structure of an associative commutative C∞2d-algebra. Again we have that J∞(1) is a unit
for this algebra structure. Moreover, the map J∞ is a unital C∞2d-algebra homomorphism.

Proof.
The associativity, commutativity and unitality of the product follow immediately from the correspond-
ing properties of ∆0 and µ. Let us prove the last statement. Let [m] denote the ordered set {1, . . . ,m}
for all m ∈ N. For m < n let ∆+(m,n) denote the set of strictly increasing maps from [m] to [n]
and let ∆+(0, n) = {en} and ∆+(n, n) = {fn}. The rest of this proof should be significantly easier to
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follow if one keeps in mind that the maps in ∆+(m,n) can be uniquely described in terms of diagrams
of the form (examples for ∆+(3, 5) and ∆+(2, 5)):

.

For 0 < m < n and ϕ ∈ ∆+(m,n), we denote by ϕ ∈ ∆+(n−m,n) the complementary map, i.e.
the unique strictly increasing map such that Im ϕ∩Im ϕ = ∅ (note that the diagrams above correspond
to complementary maps), by ϕ+ the induced map in ∆+(m + 1, n + 1) given by ϕ+(k) = ϕ(k) for
all k ≤ m and ϕ+(m + 1) = n + 1 and by ϕi ∈ ∆(m,n + 1) the composition of ϕ and the inclusion
in : [n] → [n + 1], given by in(k) = k for all k ≤ n. We also set fn := en and en := fn, f+

n := fn+1,
ein := en+1, f in := in and finally e+

n ∈ ∆+(1, n+ 1) is given by e+
n (1) = n+ 1. Given X1, . . . , Xn ∈ X2d

and ϕ ∈ ∆+(m,n) we set

Xϕ :=


Xϕ(m)Xϕ(m−1) . . . Xϕ(1) if m < n

Xn . . . X1 if ϕ = fn

1 if ϕ = en.

Note that we have Xn+1Xϕ = Xϕ+ , Xϕ = Xϕi (whenever this makes sense), ϕ+ = ϕi and ϕ = ϕ.

Note also that for 0 ≤ m < n we have that ∆+(m,n)+ ∪ ∆+(m + 1, n)i = ∆(m + 1, n + 1) while
∆+(m,n)+ ∩∆+(m+ 1, n)i = ∅ and ∆+(n, n)+ = ∆+(n+ 1, n+ 1).

Using the above notation and identities it is easily shown by induction that

∆0(Xn . . . X1) = ∆0(Xn) . . .∆0(X1) =

n∑
m=0

∑
ϕ∈∆+(m,n)

Xϕ ⊗Xϕ. (3.1.1)

On the other hand we obtain similarly that

Xn . . . X1(fg) =

n∑
m=0

∑
ϕ∈∆+(m,n)

Xϕ(f)Xϕ(g) (3.1.2)

using the product rule. The above means that

J∞(fg) = J∞(f)J∞(g),

by definition. �

It turns out that the sheaf of commutative C∞2d -algebras J∞2d is in fact given by the sections of a

pro-finite dimensional commutative C-algebra bundle (associated to M̃ with fiber Â in the real case).
The second construction presented below will be a direct consequence of this fact as well as many
other implications in the following. The formal Moyal–Weyl algebra will be given as a deformation
of this commutative algebra structure on the fiber. It is possible to describe the algebra structure on
the sections of the corresponding bundle of non-commutative algebras analogously to the description
of the commutative structure above. Let us first give a description of this deformation of the algebra
structure on ∞-jets.

From now on deformation will enter the picture. Let us denote a formal parameter by ~ and the
sheaf given by F [[~]](U) = F(U)[[~]] by F [[~]], e.g. C∞2d [[~]] will denote the sheaf of formal power series
in ~ with coefficients in the smooth functions.
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Consider the standard symplectic structure ω on R2d, i.e., if {x1, . . . , xd, ξ1, . . . , ξd} are the stan-

dard coordinates on R2d, we have ω =
∑d
i=1 dξ

i∧dxi. The symplectic structure defines an isomorphism
of the tangent and cotangent bundle given by

TxR2d 3 v 7→ ωx(v,−) ∈ T ∗xR2d for all x ∈ R2d (3.1.3)

and we denote by ω̄ the image of ω ∈ Γ(∧2
T ∗R2d) under the induced isomorphism

Γ
(
∧2

T ∗R2d
)
' Γ

(
∧2

TR2d
)
,

i.e. ω̄ =
∑d
i=1 ∂ξi ∧ ∂xi . Consider the map

Alt : ∧n X2d −→ T (X2d)

given by

Alt(X1 ∧ . . . ∧Xn) =
1

n!

∑
τ∈Sn

ε(τ)Xτ(1) . . . Xτ(n) (3.1.4)

where we denote the symmetric group in n letters by Sn and by the sign of τ ε(τ). Then we can also
consider ω̄ ∈ Op2d ⊗C∞2d Op2d, i.e. we denote the class of Alt(ω̄) by ω̄ as well. The Moyal deformation

(3.0.2) of R2d is given by

f ? g = µ ◦ ei~ω̄(f ⊗ g),

for all f, g ∈ C∞2d [[~]]. Here we have denoted the C[[~]]-linear extension of the usual product of C∞2d by
µ. This leads us to the following definition.

Definition 3.1.7. We define the product ? on J∞2d by

l1 ? l2 = µ ◦ l1 ⊗ l2 ◦ rei~ω̄ ◦∆0,

where we have denoted the operation of right multiplication by B ∈ Op2d ⊗C∞2d Op2d by rB .

Proposition 3.1.8. The pair (J∞2d [[~]], ?) is a sheaf of associative C[[~]]-algebras and the C[[~]]-linear
extension of J∞ defines a C[[~]]-algebra homomorphism

J∞ : (C∞2d [[~]], ?) −→ (J∞2d [[~]], ?).

Proof.
Let us denote E(ω̄) := ei~ω̄. Note that the associativity of ? follows from the equation

(∆0 ⊗ Id)(E(ω̄))(E(ω̄)⊗ 1) = (Id⊗∆0)(E(ω̄))(1⊗ E(ω̄)). (3.1.5)

Let D ∈ Op2d⊗Op2d be given by D =
∑k
j=1Dj1⊗Dj2, we introduce the following (standard) notation

D12 = D ⊗ 1, D13 =

k∑
j=1

Dj1 ⊗ 1⊗Dj2 and D23 = 1⊗D.

Then, if we expand equation (3.1.5) for E(ω̄) and equate the coefficients of different powers of ~, we
get the equivalent series of equations

k∑
l=0

1

l!(k − l)!
(ω̄13 + ω̄23)lω̄

(k−l)
12 =

k∑
l=0

1

l!(k − l)!
(ω̄13 + ω̄12)lω̄

(k−l)
23

for all k ≥ 0. Now note that ω̄ijω̄pq = ω̄pqω̄ij for all possible i, j, p and q and so we can use Newton’s
binomial formula to obtain the equivalent series of equations

k∑
l=0

l∑
r=0

1

(k − l)!(l − r)!r!
ω̄

(l−r)
13 ω̄r23ω̄

(k−l)
12 =

k∑
l=0

l∑
r=0

1

(k − l)!(l − r)!r!
ω̄

(l−r)
13 ω̄r12ω̄

(k−l)
23 ,
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which is easily seen to be satisfied. This shows that ? is associative on J∞2d [[~]].
Note that (3.1.1) and (3.1.2) mean that

D(µ(f ⊗ g)) = µ(∆0(D)(f ⊗ g)) (3.1.6)

for f, g ∈ C∞2d and D ∈ Op2d. This still holds when one considers the C[[~]]-linear extensions on C∞2d [[~]].
Thus we have

J∞(f ? g)(D) = Dµ(E(ω̄)f ⊗ g) = µ((∆0(D)E(ω̄))f ⊗ g) = J∞(f) ? J∞(g)(D)

for all f, g ∈ C∞2d [[~]] and D ∈ Op2d. �

Remark 3.1.9. Note that (3.1.6) together with the proof of associativity of ? on J∞2d [[~]] also gives
the proof of associativity of ? on C∞2d [[~]].

Remark 3.1.10. It is worth mentioning that everything we have been considering here can be
done in much greater generality. The exact same constructions as above yield the C∞M -algebra of
∞-jets J∞M . One also obtains the unital and injective algebra homomorphism

J∞ : C∞M −→ J∞M .

More importantly, given a deformation quantization ? of C∞M [[~]], one also obtains a deformation of the
product on J∞M . The structure is obtained in much the same manner as above for the Moyal product.
Namely, we note that a deformation quantization is given by a sequence of bidifferential operators Bk
in the sense that

f ? g =

∞∑
k=0

(i~)kBk(f, g).

Thus we can consider the element

B =

∞∑
k=0

(i~)kBk ∈ (OpM ⊗C∞M OpM )[[~]]

and define the product

l1 ? l2 = µ ◦ l1 ⊗ l2 ◦ rB ◦∆0,

for all l1, l2 ∈ J∞M [[~]]. Then, by equation (3.1.6), we find that associativity of ? on C∞M [[~]] implies
associativity of ? on J∞M [[~]].

Remark 3.1.11. We should note that, when we consider the differential operators as the universal
enveloping Rinehart bialgebra of the Lie-Rinehart pair (C∞2d ,X2d), we find that E(ω̄) from proposition
3.1.8 defines a so-called (formal) Drinfeld twist [43, 36]. A Drinfeld twist B ∈ H ⊗ H in a Hopf
algebra (H,∆, ε) is an invertible element that satisfies the equations

(∆⊗ Id)(B)(B ⊗ 1) = (Id⊗∆)(B)(1⊗B) and (ε⊗ 1)(B) = 1 = (1⊗ ε)(B).

Note, however, that the equations make sense for any unital and counital bialgebra. A formal Drinfeld
twist is a Drinfeld twist in formal power series that is a deformation of the trivial Drinfeld twist, i.e.
instead of invertibility one asks for the stronger condition that

B = 1⊗ 1 +O(~).

Note that remark 3.1.10 says that all normalized formal deformation quantizations are obtained from
formal Drinfeld twists in differential operators.

To finish our construction of the formal Moyal–Weyl algebra, we should consider the induced
structure on ∞-jets of functions at a point. To do this we will use a different yet equivalent definition
of ∞-jets of functions at a point.
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Definition 3.1.12. Denote by Ĉ∞2dx the ∞-jets of functions at x ∈ R2d. It is given by the classes

of J∞2d (R2d) for the equivalence relation ∼ given by

l1 ∼ l2 if evx ◦ l1 = evx ◦ l2

where evx : C∞(R2d)→ C denotes the evaluation of a function at the point x.

Remark 3.1.13. Note that the∞-jets of functions at x ∈ R2d are naturally a C-vector space. This
is even more clear when one consider that evx is a C-algebra homomorphism. This means thatMeaning
that the induced map on J∞2d (R2d), given by post composition, is also an algebra homomorphism (to
the dual of differential operators) for the convolution product. Then it is easy to see that

Ĉ∞2dx = J∞2d (R2d)
/

Ker evx

yielding a natural C-algebra structure.

Remark 3.1.14. Note that the ∞-jets of functions at x ∈ R2d are a complexification of the
algebras Âx. This can be seen by examining the definitions 2.1.6 and 2.1.1 and the lemma 2.1.8.

Proposition 3.1.15. The sheaf of commutative algebras J∞2d is naturally isomorphic to the sheaf

of sections of the vector bundle with the fiber Ĉ∞2dx over x ∈ R2d.

Proof.
We should show that J∞2d is given by a vector bundle. To do this consider the standard coordinates
{x1, . . . , x2d} of R2d. They give rise to the ordered bases {∂x1 |q, . . . , ∂x2d

|q} at each q ∈ R2d. Given a
differential operator D ∈ FpOp2d, we put it in a normal form by using the relations defining Op2d to
make the degree p part of D have the form∑

i1≤i2≤...≤ip

fi1...ip∂xi1 . . . ∂xip ,

where fi1...ip ∈ C∞2d for all indices. This fixes the degree p part of D and we proceed by induction.
It is part of the content of the Poincaré-Birkhoff-Witt theorem that this normal form is well-defined.
Thus we see that Op2d is generated over C∞2d by the elements

eα =

2d∏
i=1

∂αixi
αi!

where α = (α1, . . . , αn) ∈ (Z≥0)2d.

Denote by lα the dual elements in J∞2d , i.e. such that

lα(eβ) = δαβ

where we denote by δαβ = δα1β1
. . . δαnβn the product of Kronecker deltas. Note that the formula

(3.1.1) shows that we have

lαlβ(eγ) = µ(lα ⊗ lβ(∆0(eγ))) = δ(α+β)γ

(this is why there is the 1
αi!

in the definition above) and thus lαlβ = lα+β . We denote by C the algebra
generated by 1 and the lα with the relations that state 1 is the unit and lαlβ = lα+β . Then C carries
the filtration given by the grading induced by

|lα| =
2d∑
i=1

αi.

We denote by Ĉ the completion of C in the topology induced by this grading. Clearly we have

J∞2d ' C∞2d ⊗C Ĉ
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showing that the ∞-jets are indeed given by sections of a vector bundle. Thus we can write every

∞-jet l in the form l =
∑
α fαlα, meaning l(eα) = fα. This yields the isomorphisms Ĉ∞2dx → Ĉ for all

x ∈ R2d given by

l 7→ l(eα)(x)lα.

�

Remark 3.1.16. Note that the bundle constructed in the previous proposition is exactly the bundle

with fiber Â2d⊗C associated to the bundle R̃2d or, by using the equivariant section F : j1(R2d)→ R̃2d,
the bundle j1(R2d).

The fact that the product ? of 3.1.8 on J∞2d [[~]] is defined in terms of differential operators means

that it will restrict to a product on Ĉ∞2d0
.

Remark 3.1.17. Note that the map

J∞0 : C∞(R2d) −→ Ĉ∞2d0

given by

J∞0 (f) = [J∞(f)]

coincides under the natural identification Ĉ∞2d0
' Â ⊗ C with the previous definition of J∞0 . We will

denote the C[[~]]-linear extension of J∞0 by J∞0 also.

Definition 3.1.18. We define the product ? on Ĉ∞2d0
[[~]] as

[l1] ? [l2] = J∞0 (f1 ? f2)

where fi ∈ C∞(R2d) such that J∞0 (fi) = [li] for i = 1, 2.

Suppose that

∆0(D) =

p∑
k=1

D1,k ⊗D2,k, E(ω̄) =

∞∑
l=0

pl∑
j=1

(i~)lE1,l,j ⊗ E2,l,j and J∞0 (f) = J∞0 (g)

for f, g ∈ C∞2d(R2d) and D ∈ Op2d. Then we find that

D(f ? h)(0) = µ(∆0(D)E(ω̄)(f ⊗ h)))(0) =

p∑
k=1

∞∑
l=0

pl∑
j=1

(i~)lD1,kE1,l,j(f)(0)D2,kE2,l,j(h)(0) =

p∑
k=1

∞∑
l=0

pl∑
j=1

(i~)lD1,kE1,l,j(g)(0)D2,kE2,l,j(h)(0) = µ(∆0(D)E(ω̄)(g ⊗ h)))(0) = D(g ? h)(0).

Note that, since J∞0 (f) = J∞0 (g) if and only if D(f)(0) = D(g)(0) for all D ∈ Op2d, this means that
? above is a well-defined associative product.

Remark 3.1.19. Suppose l1, l2 ∈ J∞2d and f1, f2, f12 ∈ C∞2d such that J∞0 (f1) = [l1], J∞0 (f2) = [l2]
and J∞0 (f12) = [l1 ? l2] then

D(f12)(0) = (l1 ? l2)(D)(0) = µ((l1 ⊗ l2)(∆0(D)E(ω̄)))(0)

while

D(f1 ? f2)(0) = µ(∆0(D)E(ω̄)(f1 ⊗ f2))(0)

for all D ∈ Op2d. Writing these expressions out as above we find that

[l1 ? l2] = [l1] ? [l2]

as expected.
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Definition 3.1.20. We define the 2d-dimensional formal Moyal–Weyl algebra Â~
2d as the space

Ĉ∞2d0
[[~]] equipped with the product ?.

Note that the “2d-dimensional” refers to the dimension of R2d, the algebra Â~
2d is infinite dimen-

sional both over C and over C[[~]].

Remark 3.1.21. Note that, by Borel’s theorem 2.3.1, the map

J∞0 : C∞2d(R2d)[[~]] −→ Â~
2d,

given by mapping f ∈ C∞2d(R2d)[[~]] to the class of J∞(f) in Â~
2d, is surjective. This introduces a

filtration

Â~
2d = F0Â~

2d ⊃ F1Â~
2d ⊃ . . . ⊃ FpÂ~

2d ⊃ Fp+1Â~
2d ⊃ . . .

given by l ∈ FpÂ~
2d if there is f ∈ C∞2d(R2d)[[~]] such that J∞0 (f) = l and the Taylor expansion of f at

0 ∈ R2d in standard coordinates does not contain terms of degree lower then p, where we count the
degree of a term as 2 times the power of ~ plus the order of the monomial in standard coordinates.
For example J∞0 (~2x3

1x2 + ~x1x
2
2 + x5

1) ∈ FpÂ~
2d for p ≤ 5. We supply Â~

2d with the topology induced

from this filtration. Note that Â~
2d is complete in this topology. This topology and filtration will be

made more clear in the second and third constructions.

Remark 3.1.22. Suppose M is a symplectic smooth manifold and ? is a star product on C∞M [[~]].
Then we can consider the corresponding deformation of J∞M as explained in remark 3.1.10. We can

also define the ∞-jets of functions at m ∈M . Let us denote the corresponding deformation by Âm,~,

e.g. Â0,~ = Â~
2d for ? the Moyal product (3.0.2). The Moyal deformation is the unique symplectic

deformation quantization of R2d up to gauge equivalence. From this (and the fact that all symplectic
manifolds are locally symplectomorphic to R2d with the standard symplectic structure) it follows that
(C∞(U)[[~]], ?) is isomorphic to the Moyal deformation of R2d (where Dim M = 2d) for any Darboux
coordinate chart U ⊂M (in fact the isomorphism is induced in lowest order by a symplectomorphism
U ' R2d). Since the deformation of the algebra of ∞-jets at a point m ∈ U clearly only depends on

local behaviour, this implies that Âm,~ ' Â~
2d. In fact, the isomorphism will even be continuous for

the corresponding topologies induced by the filtrations. Note, however, that the isomorphisms are not
canonical.

3.1.2. A Deformed Symmetric Algebra. The second construction of the formal Moyal–Weyl
algebra is motivated by the fact that the sheaf of commutative algebras J∞2d is in fact given as the
sections of a bundle of algebras, see proposition 3.1.15. Thus we may also define the product directly
on the fiber of this bundle at 0 ∈ R2d. Another way to think of this is to note that ∞-jets are simply
given by Taylor expansions and the formula for the Moyal product can be extended from polynomials
to formal power series.The following presentation of the second construction is based on the article
[14].

Let (V, ω) be a complex symplectic vector space of dimension 2d. Let V ∗ := HomC(V,C) denote
the linear dual of V . Then we can consider the Moyal product restricted to the space of polynomials
on V .

Definition 3.1.23. Suppose W is a vector space over the field L, then we denote the tensor
algebra of W (i.e. the free algebra over L generated by W ) by T (W ). We define the symmetric
algebra on W , denoted S•(W ) as the quotient of T (W ) by the ideal generated by elements of the form

v ⊗ w − w ⊗ v

with v, w ∈ W . The • refers to the grading, which is induced from the grading of T (W ), i.e. Sn(W )
consists of words of length n in W considered up to order.
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Definition 3.1.24. We extend ω to a bilinear form on Sn(V ) by C-linear extension of

ω(v1 . . . vn, w1 . . . wn) :=
∑

σ,τ∈Sn

1

(n!)2

n∏
i=1

ω(vσ(i), wτ(i)) =
∑
σ∈Sn

1

n!

n∏
i=1

ω(vσ(i), wi)

and ω(1, 1) = 1 for S0(V ). Here Sn denotes the symmetric group on n letters. We also extend ω to a
map

(S•(V ∗)⊗ Sn(V ))
⊗2 −→ S•(V ∗)

by C-linear extension of
ω(f ⊗ α, g ⊗ β) = fgω(α, β).

Definition 3.1.25. For n ∈ Z≥0, we define the maps

dn : S•(V ∗) −→ S•(V ∗)⊗ Sn(V )

as follows. Note first that S•(V ∗) can be identified with the space of polynomial functions V → C,
see [38]. Now consider the map

d : S•(V ∗)⊗ S•(V ) −→ S•(V ∗)⊗ S•(V )

given by
d = (1⊗ µS) ◦ (1⊗ I−1

ω ⊗ 1) ◦ (ddR ⊗ 1)

where ddR denotes the restriction of the exterior derivative to polynomial functions, Iω denotes the
isomorphism V ' V ∗ induced by ω and µS denotes the symmetric product restricted to V ⊗ S•(V ).
Note that we have implicitly identified the tangent space of the vector space V with V . Now consider
the inclusion

ι : S•(V ∗) ↪→ S•(V ∗)⊗ S•(V )

given by ι(f) = f ⊗ 1 for all f ∈ S•(V ∗). Then we define

dn = dn ◦ ι.

Definition 3.1.26. Let ? be the product on S•(V ∗)[~] (~ is a formal variable) given by

f ? g :=

∞∑
n=0

1

n!

(
i~
2

)n
ω(dnf, dng). (3.1.7)

Proposition 3.1.27. The product ? is a well-defined associative product.

Proof.
Note that the formula for ? above is definitely well-defined, since for all polynomials f there is k ∈ N
such that dk+1f = 0 (namely the order of the polynomial). Thus the sum is finite. The associativity
follows from the fact that by choosing a symplectic basis {x1, . . . , xd, ξ1, . . . , ξd} for V it becomes clear
that ? is simply the restriction of the associative product (3.0.2) (in fact we could have defined it that
way too). �

As mentioned we want to extend the above formula from polynomials to all Taylor expansions
of functions at 0. Note that, by Borel’s theorem 2.3.1, this means we want to extend the formula to
formal power series.

Definition 3.1.28. Let
ev0 : S•(V ∗) −→ C

denote the map which evaluates a polynomial at 0 ∈ V . Denote

m = Ker ev0.

We define the (commutative) algebra of formal power series on V by

Ŝ•(V ∗) := lim←−
n

S•(V ∗)
mn
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where the limit runs over the quotient maps

S•(V ∗)
mn

−→ S
•(V ∗)

mk

if k ≤ n.

Proposition 3.1.29. The formula (3.1.7) for ? extends to define an associative C[[~]]-algebra,

denoted W~(V ), with underlying C[[~]]-module given by Ŝ•(V ∗)[[~]].

This proposition will be a corollary of the following proposition, which will also justify that we
call W~(V ) the formal Moyal–Weyl algebra associated to (V, ω).

Proposition 3.1.30. There is an isomorphism ϕV : Â~
2d −→ Ŝ•(V ∗)[[~]] of C[[~]]-modules satisfying

that

• ϕV is an algebra isomorphism for the commutative algebra structures and

• the pushforward of ? on Â~
2d to Ŝ•(V ∗)[[~]] agrees with the extension of (3.1.7).

Proof.
Note that the commutative algebra structure on the C[[~]]-module underlying Â~

2d is given in the remark
3.1.13. The underlying C[[~]]-module is of course unchanged. Let {v1, . . . , v2d} be a symplectic basis
of V with the dual basis {v1, . . . , v2d}. Now set

cα :=

n∏
i=1

vi
αi

for all α = (α1, . . . , αn) ∈ (Z≥0)2d similar to the definition of the lα’s in proposition 3.1.15. Note that

this provides the isomorphism with Ĉ and thus Ĉ∞2dx (see the proof of proposition 3.1.15). Thus by
considering the C[[~]]-linear extension of this isomorphism we find the isomorphism ϕV providing the
first item.

It is left to check the second item. Note that it is sufficient to check that

cα ? cβ = ϕV ([lα ? lβ ]),

since ? is clearly C[[~]]-bilinear and continuous and we have [lα] ? [lβ ] = [lα ? lβ ] from remark 3.1.19.
Consider also the smooth functions (monomials) fα =

∏n
i=1 x

αi
i . Then we have that J∞(fα) = lα. We

denote the inclusion

ιV : S•(V ∗)[[~]] ↪→ C∞(R2d)[[~]],
given by the identification of V and R2d by way of the symplectic basis {vi}2di=1 and the standard
(Darboux) coordinates {xi}2di=1, by ιV . Then it is clear that

ιV (cα ? cβ) = fα ? fβ

and we have by 3.1.8 that

J∞(fα ? fβ) = lα ? lβ .

On the other hand we note that ϕV ◦ J∞0 ◦ ιV is simply the inclusion S•(V ∗)[[~]] ↪→ Ŝ•(V ∗)[[~]]. So we
find that

cα ? cβ = ϕV (J∞0 (ιV (cα ? cβ))) = ϕV ([lα ? lβ ]),

which completes the proof.
�

Remark 3.1.31. Note that the proposition means that Â~
2d 'W~(V ) as C[[~]]-algebras for all 2d-

dimensional symplectic vector spaces V . The isomorphism is not canonical however and depends on
the choice of a symplectic basis of V in order to identify it with R2d through the standard (Darboux)
coordinates.
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Remark 3.1.32. Note that we could have started the first construction with an arbitrary 2d-
dimensional symplectic vector space V , considered with the canonical smooth structure. This would
have yielded the corresponding bundle of ∞-jets J∞V , the map J∞v : C∞V → J∞V and so on. Had we
done this the corresponding map ϕV in proposition 3.1.30 would of course have been canonical.

Definition 3.1.33. Note that W~(V ) allows for two filtrations

• W~(V ) = F0W~(V ) ⊃ F1W~(V ) ⊃ . . . ⊃ FpW~(V ) ⊃ Fp+1W~(V ) ⊃ . . .
given by

FpW~(V ) =
∑

i+2j≥p

mi~j

• W~(V ) = F ~
0 (W~) ⊃ F ~

1W~(V ) ⊃ . . . ⊃ F ~
pW~(V ) ⊃ F ~

p+1W~(V ) ⊃ . . .
given by

F ~
pW~(V ) = ~pW~(V ).

We supply W~(V ) with the topology induced from the first filtration and note that W~(V ) is
complete for this topology.

Note that
F ~
pW~(V )

/
F ~
p+1W~(V ) ' Ŝ•(V ∗)

for all p ≥ 0 while

FpW~(V )
/
Fp+1W~(V ) = ~

p
2C⊕ ~

p−2
2 m2 ⊕ . . .⊕ ~mp−2 ⊕mp

if p ≥ 0 is even and

FpW~(V )
/
Fp+1W~(V ) = ~

p−1
2 m⊕ ~

p−3
2 m3 ⊕ . . .⊕ ~mp−2 ⊕mp

if p ≥ 0 is odd. Note that this implies that the FpW~(V ) filtration comes from a grading. We will
denote the homogeneous elements of degree p ∈ Z by W~(V )p. This grading is given by assigning
elements of V ∗ the degree 1 and ~ the degree 2. This will be more clear in the following construction.

Remark 3.1.34. Note that the symplectic groups Sp(V ) and Sp(2d,C) act on both W~(V )

(through the action on V ) and Â~
2d (through the action of Sp(2d,R) on R2d induced up to the com-

plexified tangent space) respectively. These actions respect the filtrations F•W~(V ) and F•Â~
2d, so

the actions are by continuous automorphisms. The continuity is obvious for the case W~(V ) and for

Â~
2d it is deduced from the fact that the action of Sp(2d,R) on R2d is by linear transformations. By

picking symplectic bases in the definition of ϕV we ensure that this map is Sp(2d,C)-equivariant (the
basis also yields the isomorphism Sp(V ) ' Sp(2d,C)).

Remark 3.1.35. Note that ϕV corresponding to any choice of symplectic basis will respect the
filtrations F•Â~

2d and F•W~(V ). So these ϕV are in fact continuous Sp(2d,C)-equivariant C[[~]]-algebra

isomorphisms (as are the ϕ−1
V ’s).

3.1.3. The Weyl Construction. Lastly let us present a construction of the formal Moyal–Weyl
algebra that differs from the above two mainly in the fact that the product is not defined using a Moyal-
type formula. It is simply obtained as a quotient of a tensor algebra, as is the case with the classical
Weyl algebra. This last algebra is also where the motivation comes from as it is the algebra generated
by {x1, . . . , xd, ∂x1

, . . . , ∂xd} with the relations given by interpreting them as differential operators,
which is well-known to form a quantization of the algebra of polynomials on a 2d-dimensional vector
space. The following presentation is based mostly on the article [89].

Let (V, ω) be a 2d-dimensional symplectic vector space as above and let (V ∗, ω̄) be the dual
symplectic vector space, i.e. ω̄(α, β) = ω(vα, vβ) for all α, β ∈ V ∗. Here vα ∈ V is defined as the
unique element satisfying the equations ω(vα, w) = α(w) for all w ∈ V .
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Definition 3.1.36. Consider the tensor algebra T (V ∗) and let T̂ (V ∗) be the completion in the

V ∗-adic topology. We define the formal Moyal–Weyl algebra W~(V ) as the quotient of T̂ (V ∗)[[~]] by
the ideal Iω̄ generated by the elements

α⊗ β − β ⊗ α− i~ω̄(α, β)

for α, β ∈ V ∗. We consider T̂ (V ∗)[[~]] as a graded algebra with the degree given by setting |α| = 1 for
all α ∈ V ∗ and |~| = 2. The grading descends to a grading on W~(V ), since the generators of Iω̄ are
homogeneous. We denote by W~(V )p the homogeneous elements of degree p ∈ Z and by

W~(V ) = F0W~(V ) ⊃ F1W~(V ) ⊃ . . . ⊃ FpW~(V ) ⊃ Fp+1W~(V ) ⊃ . . .

the corresponding filtration.

Remark 3.1.37. We consider W~(V ) as a topological algebra for the topology induced by the
grading. Note that W~(V ) is complete for this topology.

Note that the definition of T̂ (V ∗) is analogous to the definition of Ŝ•(V ∗). We should justify
the fact that we also call W~(V ) the formal Moyal–Weyl algebra of V . To this end we note that the

C[[~]]-modules underlying both W~(V ) and W~(V ) are quotients of the same algebra T̂ (V ∗)[[~]]. Thus
we have the diagram

T̂ (V ∗)[[~]]

Ŝ•(V ∗)[[~]] W~(V )

PS PW

(3.1.8)

Definition 3.1.38. Let

SP : Ŝ•(V ∗)[[~]] −→ T̂ (V ∗)[[~]]
be the map given by C[[~]]-linear extension of the well-known section

α1 . . . αn 7→
1

n!

∑
τ∈Sn

ατ(1) ⊗ . . .⊗ ατ(n)

of PS .

Definition 3.1.39. Let

QV = PW ◦ SP : W~(V ) −→W~(V ).

Proposition 3.1.40. The map QV is an isomorphism of C[[~]]-algebras.

Proof.
Consider the gradings on W~(V ) and W~(V ) and note that QV is a C[[~]]-linear and degree preserving
map, simply because PW and SP have these properties. Furthermore, note that, by picking an ordered
basis {α1, . . . , α2d} of V ∗, we see that

Dim W~(V )p = Dim PS

b p2 c⊕
k=0

~k(V ∗)⊗p−2k

 = Dim PW

b p2 c⊕
k=0

~k(V ∗)⊗p−2k

 = Dim W~(V )p.

So in order to show that QV is an isomorphism of C[[~]]-modules we only need to show that it is an
injective C-linear map in each total degree. But then, by C[[~]]-linearity, it is enough to show that

QV (αi1 . . . αik) = 0
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implies that αi1 . . . αik = 0 for all i1 ≤ . . . ≤ ik. Let us denote the product in W~(V ) by ?. Note that

QV (αi1 . . . αik) =
1

k!

∑
σ∈Sk

αiσ(1)
? . . . ? αiσ(k)

= αi1 ? . . . ? αik + ~O

where O is a rest term where every term has a tensor degree lower then k. In other words in the last
expression we have written the elements in terms of the basis determined by the ordering mentioned
above. This shows that QV (αi1αi2 . . . αik) = 0 implies that αi1 ? αi2 ? . . . ? αik = 0. Note that, by
writing the elements of W~(V ) in normal form, by considering the ordered basis given above, it is
evident that W~(V ) does not contain zero divisors. So we have that αi1 ? αi2 ? . . . ? αik = 0 implies
that αi1αi2 . . . αik = 0 and so QV is a C[[~]]-linear degree preserving isomorphism.

It is left to show that QV is also a C[[~]]-algebra isomorphism. Note that, since QV preserves the
grading, it is continuous and thus it is enough to show that

QV ((α1 . . . αp) ? (β1 . . . βq)) = QV (α1 . . . αp) ? QV (β1 . . . βq)

for αi, βi ∈ V ∗. Suppose for convenience that p ≤ q (the other case is completely analogous) and note
that we have

(α1 . . . αp) ? (β1 . . . βq) =

p∑
n=0

1

n!

(
i~
2

)n
ω(dn(α1 . . . αp), dn(β1 . . . βq))

since dn(α1 . . . αp) = 0 for all n > p. Furthermore

ω(dn(α1 . . . αp), dn(β1 . . . βq)) = (n!)2
∑
I,J

αIcβJcω(vαI , vβJ ).

Here we sum over all cardinality n subsets I and J of [p] and [q] respectively. We have denoted the
complements of I and J by Ic and Jc respectively and we set vαI := vαi1 . . . vαin when I = {i1, . . . , in}
and similarly for vβJ , αIc and βJc . In the expression above we have

ω(vαI , vβJ ) =
∑
σ∈Sn

1

n!

n∏
k=1

ω̄(αiσ(k)
, βjk).

So bringing all of it together and applying QV we find that QV ((α1 . . . αp) ? (β1 . . . βq)) equals

p∑
n=0

∑
I,J

∑
σ∈Sn

τ∈Sp+q−2n

(
i~
2

)n γI,Jaτ(1)
? . . . ? γI,Jaτ(p+q−2n)

(p+ q − 2n)!

n∏
k=1

ω̄(αiσ(k)
, βjk), (3.1.9)

where we have relabeled Ic ∪ Jc = {a1, . . . , ap+q−2n} (where a1, . . . , ap−n ∈ Ic) and γI,Jar = αar for all

r ≤ p− n and γI,Jar = βar for all r > p− n. On the other hand

QV (α1 . . . αp) ? QV (β1 . . . βq) =
1

p!q!

∑
σ∈Sp

∑
τ∈Sq

ασ(1) ? . . . ? ασ(p) ? βτ(1) ? . . . ? βτ(q)

To demonstrate that (3.1.9) agrees with this expression let us start with the term with the lowest
power of ~. Note that the n = 0 term in (3.1.9) is

1

(p+ q)!

∑
τ∈Sp+q

γτ(1) ? . . . ? γτ(p+q)

where γr = αr if r ≤ p and γr = βr−p if r > p, so, since the number of (p, q)-shuffles in Sp+q is
(p+q)!
p!q! , we find that after reordering we get exactly QV (α1 . . . αp) ? QV (β1 . . . βq). This is because

the cosets Sp+q/Sp × Sq can be labeled exactly by the (p, q)-shuffles, here we consider the embedding
Sp×Sq ↪→ Sp+q corresponding to separate permutation of the first p and last q letters. The terms for
n > 0 will be killed by the reordering as follows. The reordering will produce terms multiplied by a
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factor of i~ω̄(βr, αs) when we reorder . . . βr . . . αs . . . to . . . αsβr . . ., note that we only need to reorder
such that α’s end up to the left of β’s. It will produce every permutation of the factor multiplying

i~ω̄(βr, αs) exactly (p+q)!
2!(p+q−2)! times, since this is the number of (2, p+q−2)-shuffles. This is because the

permutations that place βr to the left of αs can be decomposed as the permutation ((p+ r), s, 1, 2, . . .)
followed by a permutation of the last p + q − 2 letters and then followed by a (2, p + q − 2)-shuffle.
This accounts for all of the n = 1 terms in (3.1.9). More generally, for 0 ≤ m ≤ p, the reordering will
produce terms multiplied by a factor of

(i~)m
m∏
l=1

ω̄(βrl , αsl).

As for the case n = 1, it will produce every permutation of the factor multiplying it exactly (p+q)!
2m(p+q−2m)!

times. This is because we can decompose all the permutations that put βrl to the left of αsl for
all 1 ≤ l ≤ m as the permutation ((r1 + p), s1, (r2 + p), s2, . . . , (rm + p), sm, 1, 2, . . .) followed by a
(2, . . . , 2)-shuffle (m times 2) of the first 2m letters followed by a permutation of the last (p+ q− 2m)

letters followed by a (2m, p + q − 2m)-shuffle and there are (2m)!
(2!)m shuffles of the type (2, . . . , 2) and

(p+q)!
(2m)!(p+q−2m)! shuffles of the type (2m, p+ q − 2m). This accounts for all the n = m terms in (3.1.9).

So we see that QV (α1 . . . αp) ? QV (β1 . . . βq) agrees with (3.1.9), which means QV is a C[[~]]-algebra
isomorphism.

�

Remark 3.1.41. Note that the action of Sp(V ) on V ∗ extends to an action on W~(V ) since Sp(V )
preserves Iω̄. This action is by continuous automorphisms since it preserves the grading. Clearly
the isomorphism QV is also Sp(V )-equivariant. Note also that, unlike ϕV and thus QV ◦ ϕV , the
isomorphism QV is canonical and thus we are even more justified in calling both W~(V ) and W~(V )
by the same name.

Remark 3.1.42. Note finally that the map QV respects the filtration F•W~(V ) and the filtration
induced by the grading on W~(V ). Thus QV and its inverse are in fact continuous Sp(V )-equivariant
C[[~]]-algebra isomorphisms.

3.2. Derivations and Automorphisms

In this section we will give a rather complete description of the C[[~]]-linear continuous derivations
and automorphisms of W~(V ) for any symplectic vector space (V, ω). This description is very useful
when implementing the framework of formal geometry and the Fedosov construction. The following
is based on [14] and [89].

3.2.1. Derivations. We will denote the Lie algebra Der0(W~(V )) of continuous C[[~]]-linear
derivations of W~(V ) by g~ = g~V .

Proposition 3.2.1. There is an exact sequence of Lie algebras

0→ 1

i~
C[[~]] −→ 1

i~
W~(V )

P
g~
−→ g~V → 0. (3.2.1)

Here we consider 1
i~C[[~]] as Abelian Lie algebra and on 1

i~W~(V ) we consider the bracket

[
1

i~
f,

1

i~
g] =

(
1

i~

)2

[f, g],

where on the right hand side [f, g] denotes the commutator. The first map is given by the inclusion
while

Pg~(
1

i~
f)(g) =

1

i~
[f, g].
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Proof.
Note first that the Lie algebra structures on W~(V ) and Pg~ are well-defined, since the commutator
always produces a factor of i~. It is easily verified that Pg~ is a map of Lie algebras by using the
Jacobi identity for the commutator bracket.

Let us fix a symplectic basis {x1, . . . , xd, y1, . . . , yd} of V ∗, i.e. s.t.

ω̄(xi, xj) = ω̄(yi, yj) = 0 and ω̄(yi, xj) = δij = −ω̄(xj , yi),

where δij denotes the Kronecker delta. Note that we can write every element of W~(V ) as a formal
power series in ~ and the xi and yi in a unique way, by requiring that all monomials appear in the
ordering

~kxi11 . . . xidd y
j1
1 . . . yjdd ,

i.e. first the x’s and then the y’s. Here we have denoted the product in W~(V ) by concate-
nation. In fact, this gives us an identification of W~(V ) with the space of formal power series
C[[~, x1, . . . , xd, y1, . . . , yd]]. Note that

[xk, (i~)kxi11 . . . xidd y
j1
1 . . . yjdd ] = −(i~)k+1jkx

i1
1 . . . xidd y

j1
1 . . . yjk−1

k . . . yjdd

and similarly

[yk, (i~)kxi11 . . . xidd y
j1
1 . . . yjdd ] = (i~)k+1ikx

i1
1 . . . xik−1

k . . . xidd y
j1
1 . . . yjdd .

This invites the notation

1

i~
[xk, f ] =: −∂ykf and

1

i~
[yk, f ] =: ∂xkf. (3.2.2)

In fact, under the identification of W~(V ) and formal power series, mentioned above, the operators
1
i~ [xk,−] and 1

i~ [yk,−] are intertwined with the operators −∂yk and ∂xk respectively. Here the def-
inition of partial differentiation is simply the C[[~]]-linear continuous extension of the definition on
polynomials.

Suppose f, g ∈W~(V ) satisfy
1

i~
[f, h] =

1

i~
[g, h]

for all h ∈W~(V ). Then, using the identification above, we find that

∂xkf = ∂xkg and ∂ykf = ∂ykg

for all indices 1 ≤ k ≤ d. This implies that f − g ∈ 1
i~C[[~]], which shows exactness at W~(V ).

The proposition is proved by showing that, for any continuous derivation D ∈ g~, we can find an
element F ∈W~(V ) such that

D(g) =
1

i~
[F, g]

for all g ∈W~(V ). It is enough to verify the equations above on the x′ks and y′ks since they generate
W~(V ) over C[[~]] (as a topological algebra) and D is a C[[~]]-linear continuous derivation. Under the
identification (3.2.2), this means we want to show that the system of differential equations

∂xkF = −D(yk) and ∂ykF = D(xk)

can be solved for F for any derivation D ∈ g~. Let us denote

Ω̂rV := C[[~, x1, . . . , xd, y1, . . . , yd]]⊗C∧r V ∗,
where 0 ≤ r ≤ 2d and for the anti-symmetric powers we denote the basis of V ∗ by dxk and dyk. Also
define

d̂dR : Ω̂kV −→ Ω̂k+1
V
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as the continuous C[[~]]-linear extension of the exterior derivative on polynomials. Explicitly

d̂dR(f ⊗ η) =

d∑
k=1

(∂xkf)⊗ dxk ∧ η + (∂ykf)⊗ dyk ∧ η,

for f a formal power series and η ∈∧• V ∗. Finally, for D ∈ g~, define

D̂ :=

d∑
i=1

D(xi)⊗ dyi −D(yi)⊗ dxi ∈ Ω̂1
V .

With this rephrasing, the exactness at g~ translates to showing that, given D ∈ g~, one can always
find F ∈ Ω̂0

V such that

d̂dRF = D̂.

Now, by the formal Poincaré lemma [76], this is equivalent to showing that

d̂dRD̂ = 0

for all D ∈ g~. Note that, for any D ∈ g~ and any a, b ∈W~(V ), we have

D([a, b]) = [D(a), b] + [a,D(b)],

since D is a derivation. This implies that

1

i~
[D(xi), xj ] =

1

i~
[D(xj), xi]

1

i~
[yj , D(yi)] =

1

i~
[yi, D(yj)]

and
1

i~
[yj , D(xi)] =

1

i~
[xi, D(yj)]

since D(C[[~]]) = 0 for all D ∈ g~. Using the identification (3.2.2), the above equations are

∂yjD(xi) = ∂yiD(xj), ∂xjD(yi) = ∂xiD(yj) and ∂xjD(xi) = −∂yiD(yj),

which implies d̂dRD̂ = 0 for all D ∈ g~. �

Remark 3.2.2. The short exact sequence above gives rise to a class θ̂ in the continuous Lie algebra
cohomology (Gelfand-Fuks cohomology) group H2

Lie(g
~, a), where we have denoted the Abelian Lie

algebra 1
i~C[[~]] by a. The class is represented by the cocycle given by

X ∧ Y 7→ s([X,Y ])− [s(X), s(Y )]

where s : g~ → 1
i~W~(V ) is a (continuous) linear section. For instance one may choose s by considering

an ordered symplectic basis for V ∗ and considering the corresponding splitting (as a vector space)

1

i~
W~(V ) = g~ ⊕ a.

It is an easy standard check that θ̂ is well-defined. We will call θ̂ the formal Weyl curvature. It is the
formal analog of the characteristic class of a deformation quantization (also called Weyl curvature or
Deligne’s characteristic class [48, 65]).

Definition 3.2.3. We denote the filtration on g~ induced by the filtration F•W~(V ) by

g~ = F−1g
~ ⊃ F0g

~ ⊃ . . . ⊃ Fpg~ ⊃ Fp+1g
~ ⊃ . . . ,

i.e.

Fpg
~ =

{
D ∈ g~ | D(FkW~(V )) ⊂ Fk+pW~(V ) for all k

}
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Note that this makes g~ a filtered Lie algebra, i.e. [Fpg
~, Fqg

~] ⊂ Fp+qg
~, and the g~-module

structure of W~(V ) respects the filtration, i.e. Fpg
~FqW~(V ) ⊂ Fp+qW~(V ). Note that the filtration

on g~ actually comes from a grading, i.e., denoting g~p = Pg~( 1
i~W~(V )p+2), we have that

g~ =

∞∏
k=−1

g~k.

Proposition 3.2.4. There are canonical isomorphisms V ' g~−1 and sp(V ) ' g~0 , where we have

denoted the Lie algebra of Sp(V ) by sp(V ). Under these isomorphisms the action of g~0 on g~−1 coincides
with the natural action of sp(V ) on V and we have

g~−1 ⊕ g~0 ' V o sp(V )

as Lie algebras.

Proof.
Note that, since g~p = 0 for p < −1, we find that the induced bracket on g~−1 vanishes, so that it forms
an Abelian Lie algebra. Recall that the kernel of Pg~ only contains elements of even degree and that
1
i~W~(V )1 = 1

i~V
∗. This yields the sequence of isomorphisms

V −→ 1

i~
V ∗ −→ 1

i~
W~(V )1 −→ g~−1.

The first map is given by 1
i~Iω, where we have denoted the isomorphism V ' V ∗ induced by ω by

Iω, i.e. Iω(v)(w) = ω(v, w) for all v, w ∈ V . Note that the above isomorphism is canonical for the
symplectic vector space (V, ω).

For the degree 0 case, we start by noting that we have the usual inclusion sp(V ) ↪→ V ⊗ V ∗. Now
we can apply the restriction of I−1

ω ⊗ Id to sp(V ) to obtain sp(V ) ↪→ V ∗ ⊗ V ∗. We note that the
condition

ω(v, ϕ(w)) + ω(ϕ(v), w) = 0,

defining sp(V ), implies that the image of sp(V ) in V ∗⊗V ∗ consists of symmetric tensors. We proceed
by applying the restriction of the map 1

i~PW , where PW is as in (3.1.8), to the image of sp(V ) in

V ∗⊗V ∗. Finally, we follow this map by Pg~ to obtain a map sp(V )→ g~. Note that the image clearly

lies in g~0 and thus we find the needed map

sp(V ) −→ g~0 .

Note that this map is constructed canonically given the symplectic vector space (V, ω). Note that
sp(V ) → V ∗ ⊗ V ∗ is an inclusion, the image is given by symmetric tensors and QV from proposition
3.1.40 factors through PW . So we find that sp(V ) → 1

i~W~ is injective. Since the image does not

intersect 1
i~C[[~]] we find that sp(V )→ g~0 is injective. Thus, since

Dim sp(V ) = 2d2 + d = Dim g~0 ,

we find that sp(V ) ' g~0 as vector spaces. Since [F0g
~, F0g

~] ⊂ F0g
~ and [F1g

~, F1g
~] ⊂ F2g

~, we find
that the bracket restricts to g~0 and it is left to show that the isomorphism above respects the brackets.

To show this, Consider a symplectic basis {x̂1, . . . , x̂d, ŷ1, . . . , ŷd} for V with the corresponding
dual basis {x1, . . . , xd, y1, . . . , yd}. This induces the basis

Ŝij = ŷi ⊗ yj − x̂j ⊗ xi, Ŷij = ŷi ⊗ xj + ŷj ⊗ xi and V̂ij = x̂i ⊗ yj + x̂j ⊗ yi
of sp(V ) (identified with the image in V ⊗ V ∗). It gets mapped to the basis

Sij =
1

i~
[xiyj ,−], Yij =

1

i~
[xixj ,−] and Vij =

−1

i~
[yiyj ,−] (3.2.3)

of g~0 . Using these bases it is explicitly verified that the isomorphism sp(V ) ' g~0 respects the brackets.
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Note that, since [g~0 , g
~
−1] ⊂ g~−1, we indeed find an action of g~0 on g~−1. Consider the bases given

above and note that

ŷi 7→
1

i~
[xi,−] and x̂i 7→

−1

i~
[yi,−]

gives the corresponding basis for g~−1. Again it is verified using these bases that the action of g~0
on g~−1 coincides with the action of sp(V ) on V under the above identifications. Note that, since

[g~0 , g
~
0 ] ⊂ g~0 , [g~−1, g

~
0 ] ⊂ g~−1 and [g~−1, g

~
−1] ⊂ g~−1, we find that the bracket restricts to a bracket on

g~0 ⊕ g~−1 =: g~0,−1. Using the identifications above we find the exact sequence

0→ V −→ g~0,−1 −→ sp(V )→ 0

of Lie algebras. The inclusion g~0 → g~0,−1 provides a section of the sequence above. This shows that
indeed

g~0,−1 ' V o sp(V ).

�

The following proposition will deal with the remaining part of g~ = g~0,−1 ⊕ F1g
~ and conclude

our discussion of the Lie algebra of continuous derivations of the formal Moyal–Weyl algebra.

Proposition 3.2.5. The Lie algebra F1g
~ is pro-nilpotent.

Proof.
Note that, since [F1g

~, Fpg
~] ⊂ Fp+1g

~, the bracket descends to define the family of Lie algebras

F p1 g
~ := F1g

~
/
Fpg

~ .

Note also that, given X1, . . . , Xp ∈ F1g
~, we have [X1, [X2, [. . . , [Xp−1, Xp]] . . .] ∈ Fpg~ and thus F p1 g

~

is nilpotent for all p. It is easily verified that

F1g
~ ' lim←−

p

F p1 g
~,

where the limit runs over the projection maps F i1g
~ → F j1 g

~ if j ≤ i. �

Corollary 3.2.6. The subalgebra F0g
~ ⊂ g~ decomposes as

F0g
~ ' F1g

~ o sp(V ).

Proof.
Note that F1g

~ ⊂ F0g
~ is an ideal. The identification g~0 ' sp(V ) yields the exact sequence

0→ F1g
~ −→ F0g

~ −→ sp(V )→ 0

and so the section sp(V ) → F0g
~, given by the above identification and inclusion of g~0 , yields the

result. �

Remark 3.2.7. Consider the action of g~0 ' sp(V ) on the Lie algebras a, g~, and 1
i~W~(V ).

Proposition 3.2.4 and corollary 3.2.6 show that the exact sequence (3.2.1) is g~0-equivariant. Note also
that the sequence (3.2.1) has the subsequence

0→ C −→ 1

i~
W~(V )2 −→ g~0 → 0.

Suppose {x1, . . . , xd, y1, . . . , yd} is a symplectic basis for V ∗. Then define the map

σ : g~0 −→
1

i~
W~(V )2

by

σ(Sij) =
1

i~
xiyj + δij , σ(Yij) =

1

i~
xixj and σ(Vij) =

−1

i~
yiyj
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where δij denotes the Kronecker delta and the Sij , Vij and Yij are as in (3.2.3). Note that σ defines
a section and so we have

1

i~
W~(V )2 ' C⊕ sp(V )

as Lie algebras. We can extend the section σ to a continuous C[[~]]-linear map

σ̃ : g~ −→ 1

i~
W~(V )

by following the procedure laid out in remark 3.2.2. Note that the section s proposed in remark 3.2.2
and σ̃ only differ by their action on the Sij . Now the cochain

X ∧ Y 7→ σ̃([X,Y ])− [σ̃(X), σ̃(Y )]

lifts to g~/g~0 ∧ g~/g~0 . This shows that in fact

θ̂ ∈ H2
Lie(g

~, sp(V ); a),

i.e. the formal Weyl curvature is a relative continuous Lie algebra cohomology class.

3.2.2. Automorphisms. We will denote the group Aut0(W~(V )) of continuous C[[~]]-linear au-

tomorphisms of W~(V ) (with continuous inverses) by Ĝ~
V = Ĝ~. First of all, we will show that Ĝ~

V

can be integrated from F0g
~, by showing the decomposition of Ĝ~

V analogous to the decomposition in
the corollary 3.2.6.

Proposition 3.2.8. The group Ĝ~ decomposes (canonically) as

Ĝ~ ' expF1g
~ o Sp(V ).

Proof.
Suppose ϕ ∈ Ĝ~

V , then by continuity it will preserve the filtration FpW~(V ), i.e.

ϕ(FpW~(V )) = FpW~(V ).

Let ϕn : W~(V )n →W~(V )n be given by

ϕn(w) = ϕ(w) mod Fn+1W~(V )

for all n > 0. Note that ϕn is a well-defined C-linear map, it is invertible with inverse given by
ϕ−1
n = (ϕ−1)n and it satisfies ϕn(~w) = ~ϕn(w). Note that, since

W~(V )n = W~(V )1W~(V )n−1

for all n > 0 and

ϕn+m(vw) = ϕn(v)ϕm(w)

for all v ∈W~(V )n and w ∈W~(V )m, we find that ϕn is determined by ϕ1.

Consider the map p : Ĝ~ → Sp(V ) given by ϕ 7→ ϕ1. Indeed, if v, w ∈ V ∗, we have

i~ω̄(ϕ1(v), ϕ1(w)) = [ϕ1(v), ϕ1(w)] = ϕ1([v, w]) = i~ω̄(v, w),

which shows that ϕ1 ∈ Sp(V ). Suppose on the other hand that A ∈ Sp(V ), then the natural action
on V ∗ extends to an algebra automorphism of W~(V ) (also denoted A) and we clearly have A1 = A
as elements of Sp(V ). Note that this actually defines a section of p. Thus, to show the proposition,
we only need to show that

Ker p = expF1g
~.

Suppose ϕ ∈ Ker p, then ϕ1 = Id and thus ϕn = Id for all n > 0. This means that

(ϕ− Id)(FpW~(V )) ⊂ Fp+1W~
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for all p. Let us denote

Dϕ := Log ϕ :=

∞∑
k=1

(−1)k−1

k
(ϕ− Id)k.

Note that Dϕ is a well-defined continuous endomorphisms of W~(V ), since (ϕ− Id) raises degrees. A
routine computation shows that Dϕ is always a derivation. So, since Dϕ raises degrees, we find that
Dϕ ∈ F1g

~.

On the other hand, suppose D ∈ F1g
~. Since D raises degrees, the map ϕD ∈ End(W~(V )) given

by

ϕD := expD :=

∞∑
k=0

Dk

k!

is well-defined. Another routine computation shows that ϕD(ab) = ϕD(a)ϕD(b) and ϕD is invertible

with inverse ϕ−D = (ϕD)−1. Thus we have a map F1g
~ → Ĝ~. Note that, by definition of ϕD and

the fact that D ∈ F1g
~ raises degrees, we find that (ϕD)1 = Id. In other words ϕD ∈ Ker p for all

D ∈ F1g
~. Now note that, by direct computation,

Log expD = D and exp Log ϕ = ϕ

for all D ∈ F1g
~ and ϕ ∈ Ker p. This shows finally that Ker p = expF1g

~. So we have the sequence

0→ expF1g
~ −→ Ĝ~ −→ Sp(V )→ 0

which splits, as noted above. This shows that Ĝ~ ' expF1g
~ o Sp(V ). �

Remark 3.2.9. Note that, since F1g
~ = Pg~( 1

i~W~(V )3) by proposition 3.2.1, we can go a bit

further. Namely, given D ∈ F1g
~, there is SD ∈ F3W~(V ) such that 1

i~ [SD,−] = D. For S ∈ F3W~(V )
let us set

Ad exp

(
S

i~

)
(a) =

∞∑
n=0

n∑
k=0

(−1)k
(
n
k

)
(i~)nn!

Sn−kaSk

for all a ∈W~(V ). Note that this is a well-defined automorphism, since it is easily deduced that

expD(a) = Ad exp

(
SD
i~

)
(a).

Thus we see that

expF1g
~ = Ad exp

1

i~
W~(V )3 ⊂ Ĝ~

and so

Ĝ~ ' Ad exp

(
W~(V )3

i~

)
o Sp(V ).

Definition 3.2.10. The filtration Fpg
~ of F1g

~ induces the filtration

Ĝ~ = G~
0 . G

~
1 . . . . . G

~
p . G

~
p+1 . . . .

given by G~
p = expFpg

~ for p > 0. The remark 3.2.9 shows that the G~
i ↪→ G~

i−1 are normal inclusions.

Proposition 3.2.11. The group Ĝ~ has the structure of a pro-finite dimensional Lie group.

Proof.
As shown above, the map

exp: F1g
~ −→ G~

1

is a bijection. Thus we topologize G~
1 accordingly. This provides Ĝ~ with a topology, i.e. disregarding

the group structure we have Ĝ~ ' F1g
~ × Sp(V ). This will also provide the quotients

G
~
i := G~

0

/
G~
i



3.3. HOCHSCHILD AND CYCLIC HOMOLOGY 57

with the quotient topology. Note that G
~
1 ' Sp(V ) as Lie groups and

G
~
i ' Cni × Sp(V )

as topological spaces. Here

ni =

i−1∑
k=1

(
2d+ k − 1

k

)
Sik,

where
Sik := #{0 < q < i|q = k mod 2 and k ≤ i}.

Note that each of the G
~
i for i > 0 comes with the quotient map G

~
i → Sp(V ). This is a

continuous group homomorphism and allows for the section Sp(V ) → G~
0 → G

~
i where the first map

is as in proposition 3.2.8. Recall the nilpotent Lie algebras F p1 g
~ of proposition 3.2.5. Since they

are nilpotent, the Campbell-Baker-Hausdorff formula provides them with the structure of a Lie group

which we will denote G~p
1 . It follows that we have the exact sequences of topological groups

0→ G~p
1 −→ G

~
p −→ Sp(V )→ 0

and thus we find that

G
~
i ' G~i

1 o Sp(V )

defines the 2d2 + d+ ni-dimensional Lie group structure on the quotients G
~
i .

Consider the sequence

. . . −→ G
~
p+1 −→ G

~
p −→ . . . −→ G

~
2 −→ Sp(V ) −→ {Id}

of Lie group homomorphisms. Clearly we have

Ĝ~
V = G~

0 = lim←−
p

G
~
p

giving Ĝ~
V the structure of a pro-finite dimensional Lie group.

�

3.3. Hochschild and Cyclic Homology

Finally, let us consider some invariants of the formal Moyal–Weyl algebra, namely its Hochschild
and cyclic homologies. They will not play a role in the Fedosov construction or the classification of
group actions on symplectic deformation quantizations. However, since the algebraic index theorem
6.1.22 is essentially a product formula in cyclic cohomology, they will play a key role in the (equivariant)
index theorem. The following is based on the article [14]. In the following we will usually denote the
completed tensor product over C[[~]] by ⊗.

3.3.1. Hochschild Homology. Let us start by considering (and computing) the Hochschild
homology of W~(V ). The computation will be greatly simplified by considering a smaller complex
with which to compute the Hochschild homology of W~(V ) than the one introduced in the appendix
A.2.1. This smaller complex also clearly shows the link between cyclic homology of the formal Moyal–
Weyl algebra (∞-jets) and (formal) de Rham cohomology.

Definition 3.3.1.

• For p ∈ Z≥0, let

Kp
~(V ) := W~(V )⊗∧p V ∗,

where the tensor product is over C, and define

dK : Kp
~(V ) −→ Kp−1

~ (V )
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by C-linear extension of

w ⊗ v1 ∧ . . . ∧ vp 7→
p∑
i=1

(−1)i[vi, w]⊗ v1 . . . ∧ v̂i ∧ . . . ∧ vp

where the bracket denotes the commutator inW~(V ) (V ∗ ↪→W~(V ) is given by the inclusion
in the tensor algebra) and the hat denotes omission. Note that d2

K = 0 yielding the complex
(K•~, dK), which we call the Koszul complex of W~(V ).

• Let us denote the commutative algebra Ŝ•(V ) by ÔV . Recall the remark 3.1.32 and note

that it implies that ÔV has a C∞(V ) module structure through the map

ϕV ◦ J∞v,0 : C∞(V ) −→ ÔV

(see remarks 3.1.21 and 3.1.32) and the commutative algebra structure on ÔV . Denote by
Ω•(V ) the C∞(V ) module of differential forms on V and denote by ddR the usual (de Rham)
exterior derivative. We denote

Ω̂•V := ÔV ⊗
C∞(V )

Ω•(V ).

Let

d̃dR : ÔV −→ ÔV ⊗
C∞(V )

Ω1(V )

be defined by

d̃dR(ϕV (J∞v,0(f)))(X) = ϕV (J∞v,0(J∞v (f)(X)))

for all smooth vector fields X ∈ V ect(V ). Let

ε : Ω1(V ) ⊗
C∞(V )

Ω•(V ) −→ Ω•+1(V )

be given by

ε(η ⊗ ω) = η ∧ ω.
Finally, we define

d̂ : Ω̂pV −→ Ω̂p+1
V

as

d̂ = (1⊗ ε) ◦ (d̃dR ⊗ 1) + 1⊗ ddR.

Note that d̂ is well-defined (although d̃dR ⊗ 1 and 1⊗ ddR are not). It is easily verified that

d̂2 = 0 and we call (Ω̂•V , d̂) the formal de Rham complex of V .

Note the similarities between the formal de Rham complex and the objects with the same notation
in the proof of proposition 3.2.1.

Proposition 3.3.2. There is an isomorphism of chain complexes of C[[~]]-modules

(K•~(V ), dK) −→ (Ω̂−•V [2d][[~]], i~d̂).

Proof.
Recall the map

QV : W~(V ) −→W~(V )

from definition 3.1.39 and note that it yields, in particular, an isomorphism of the underlying C[[~]]-
modules

qV : W~(V ) −→ ÔV [[~]].
Note also that, for the vector space V , we have the canonical identifications TvV ' V for all v ∈ V .
These yield the isomorphism

cV : C∞(V )⊗C∧• V ∗ −→ Ωq(V ).
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Putting these two together, we obtain the isomorphism of C[[~]]-modules

W~ ⊗
C
∧• V ∗ ∼−→ ÔV [[~]] ⊗

C∞(V )

C∞(V )⊗
C
∧• V ∗ ∼−→ ÔV [[~]] ⊗

C∞(V )

Ω•(V ).

Now consider the isomorphism

∧• V ∗ −→∧2d−•
V ∗

given by
v1 ∧ . . . ∧ vq 7→ ιv1

. . . ιvqω
∧d

where ιv denotes the interior product with v and vi is characterized by ω(vi, w) = vi(w) for all w ∈ V .
Combining this with the isomorphism above provides the isomorphism

K•~(V ) = W~ ⊗
C
∧• V ∗ ∼−→ ÔV [[~]] ⊗

C∞(V )

Ω
2d−•

(V )
∼−→ Ω̂

2d−•
V [[~]]

which we denote by KV . The formula (3.1.7) yields that, under the identification K•~(V ) ' Ω̂•V , we
have

dK(f ⊗ v1 ∧ . . . ∧ vq) =

q∑
k=1

i~(−1)k−1(ιvk d̂f)⊗ v1 ∧ . . . ∧ v̂k ∧ . . . ∧ vq.

Thus we have

KV ◦ dK(f ⊗ v1 ∧ . . . ∧ vq) = i~
q∑

k=1

(−1)k−1(ιvk d̂f)ιv1
. . . ι̂vk . . . ιvqω

∧d.

On the other hand

i~d̂ ◦KV (f ⊗ v1 ∧ . . . ∧ vq) = i~d̂(fιv1 . . . ιvqω
∧d) = i~(d̂f)ιv1 . . . ιvqω

∧d,

where the last equality holds since ω and the vk are constant. Suppose 0 6= f⊗v1∧. . .∧vq and note that
this implies that the vk are linearly independent. Thus we can extend them to a basis {v1, . . . , v2d}
of V ∗. Denote the dual basis of V ∗ by {v∗k}2dk=1. Finally, the facts that d̂f =

∑2d
k=1(ιvk d̂f)v∗k and

v∗k ∧ ιvkη = η, for any differential form η, imply that

KV ◦ dK = i~d̂ ◦KV .

�

Proposition 3.3.3. The natural inclusion

iV : (K•~(V ), dK) −→
(
CHoch• (W~(V )), b

)
is a quasi-isomorphism.

Proof.
First of all, by the natural inclusion we mean the map

w ⊗ v1 ∧ . . . ∧ vq 7→
∑
τ∈Sq

ε(τ)

q!
w ⊗ vτ(1) ⊗ . . .⊗ vτ(q)

for all w ∈W~(V ) and vk ∈ V ∗ where ε(τ) denotes the sign of the permutation τ . It is easily checked
that this identifies (K•~(V ), dK) with a subcomplex of (CHoch• (W~(V )), b). As noted in the remark
A.2.3, the Hochschild complex represents the left derived tensor product of W~(V ) with itself over
W~(V )e. In fact it is given by tensoring the normalized bar complex

. . . −→W~(V )e ⊗W~(V )
⊗2
−→W~(V )e ⊗W~(V ) −→W~(V )e

with W~(V ) over W~(V )e. Note that in this last complex the tensor product is over C[[~]], completed
and the maps are continuous. Similarly, we have the sequence of free W~(V ) bimodules

. . . −→W~(V )e ⊗∧2
V ∗ −→W~(V )e ⊗ V ∗ −→W~(V )e
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where the maps are given by restriction of the maps in the bar complex (again viewing this as a
subcomplex in the complex above using the equivalent of ιV ). Note that the tensor products are over
C in this complex and that tensoring with W~(V ) over W~(V )e yields the Koszul complex of W~(V ).
If we can show this second complex is acyclic, this means both define a resolution of W~(V ) and this
proves the statement of the proposition.

In order to determine acyclicity, let us consider the filtration F ~
•W~(V ) (i.e. the filtration given by

powers of ~ analogous to F ~
•W~(V )). Note that the maps in the sequence above respect this filtration

and all the graded quotients are isomorphic to the (formal) symmetric algebra of V ∗. This means
that, if we can show that the complex

. . . −→ Ŝ•(V ∗)
e
⊗∧2

V ∗ −→ Ŝ•(V ∗)
e
⊗ V ∗ −→ Ŝ•(V ∗)

e

is acyclic, the complex concerning W~(V ) is also acyclic.

The complex concerning Ŝ•(V ∗) is graded by adding the grading of Ŝ•(V ∗) (the •) and of the
exterior powers, i.e.

|f ⊗ v1 ∧ . . . ∧ vq| = |f |+ q

for homogeneous f ∈ Ŝ•(V ∗)
e
. Considering the corresponding filtration and spectral sequence, we find

that the complex above is acyclic if and only if

. . . −→ S•(V ∗)e ⊗∧2
V ∗ −→ S•(V ∗)e ⊗ V ∗ −→ S•(V ∗)e

is. This can be seen more directly as follows. Let us denote by D and D̂ the differentials in the

complexes considering S•(V ∗) and Ŝ•(V ∗)
e

respectively. Then if D̂(
∑∞
n=0 τn) = 0, where we denote by

τn ∈ Ŝ•(V ∗)
e
⊗∧q V ∗ the homogeneous degree n components, we also have D(τn) = 0 separately. Thus

if the complex concerning D is acyclic we can find homogeneous elements σn such that D(σn) = τn,

but then D̂(
∑∞
n=0 σn) =

∑∞
n=0 τn since D̂ is continuous. The complex concerning D is in fact acyclic,

since the Koszul dual of S•(V ∗) is ∧• V [79] (also explaining the name of the Koszul complex). This
shows the acyclicity of the above complex, since it is the Koszul resolution of a Koszul algebra. �

Corollary 3.3.4. We have

HH•(W~(V )) '


0 if • > 2d

C[[~]] if • = 2d

d̂Ω̂
2d−(•+1)
V if 0 ≤ • < 2d.

The corollary follows for • > 2d since the Koszul complex is finite. For • = 2d it follows from
proposition 3.3.2 and since the formal de Rham 0-cocycles are given by the (∞-jets of) constants C,

while Ω̂−1
V = 0. For 0 < • ≤ 2d the proposition follows from the isomorphism in proposition 3.3.2

and the formal Poincaré lemma [76]. Note that in this last case we still find the 2d− •-coboundaries

because of the factor i~ multiplying d̂. The results will take a much nicer (and more useful) form if we
get rid of these last cocycles by formally inverting ~. In other words, we can extend scalars from the
ring C[[~]] to the field C[~−1, ~]] of Laurent series in ~. Note that this means we will be considering the
Hochschild (and later cyclic) homology of W~(V )[~−1] as a C[~−1, ~]]-module, i.e. we should replace
the relevant tensor products by tensor products over this field.

Proposition 3.3.5. There is an isomorphism

(Ω̂•V [~−1, ~]], i~d̂) −→ (Ω̂•V [~−1, ~]], d̂)

Proof.
Consider the map

Î : Ω̂•V [~−1, ~]] −→ Ω̂•V [~−1, ~]]
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given by multiplication by (i~)−p on Ω̂pV [~−1, ~]]. This is clearly an isomorphism that intertwines i~d̂
and d̂. �

Corollary 3.3.6. The Hochschild homology HH•(W~(V )[~−1]) vanishes unless • = 2d and we
have HH2d(W~(V )[~−1]) = C[~−1, ~]].

This corollary follows easily from the above previous propositions and the formal Poincaré lemma.

Remark 3.3.7. Note that we also find the explicit generator 1 ⊗ ωd

d! of HH•(W~(V )[~−1]) over

C[~−1, ~]]. Note that both Ĝ~
V and g~V act on CHoch• (W~(V )[~−1]). However 1⊗ ωd

d! is not a fixed point

for these actions. It is a fixed point for the action of the subgroup Sp(V ) ↪→ Ĝ~
V and Lie subalgebra

sp(V ) ↪→ g~V , however.

Remark 3.3.8. Note that the preceding discussion supplies an explicit quasi-isomorphism(
Ω̂−•[~−1, ~]][2d], d̂

)
−→

(
CHoch• (W~(V )[~−1]), b

)
,

given by the isomorphism
(

Ω̂−•[~−1, ~]][2d], d̂
)
' (K•~(V )[~−1], dK) defined above and the inclusion

of the latter complex into CHoch• (W~(V )[~−1]). It does not supply a quasi-inverse automatically. A
quasi-inverse is given by fixing a complementary vector space W such that

CHoch• (W~(V )[~−1]) ' iV
(
K•~(V )[~−1]

)
⊕W

or even fixing a space W complementary to the space spanned by the generator mentioned above. Of
course the quasi-isomorphism then factors through the projection onto the complement of W .

3.3.2. Cyclic Homology. Finally let us compute the cyclic homology of W~(V )[~−1].

Proposition 3.3.9. We have

HCper• (W~(V )[~−1]) '

{
0 if • = 1 mod 2

C[~−1, ~]] if • = 0 mod 2.

HC−• (W~(V )[~−1]) '


0 if • = 1 mod 2

C[~−1, ~]] if • = 2p where p ≤ d
0 if • = 2p where p > d.

and

HC•(W~(V )[~−1]) '


0 if • = 1 mod 2

0 if • = 2p where p < d

C[~−1, ~]] if • = 2p p ≥ d.

Proof.
We can consider the (naive) spectral sequence associated to the double complex used to define periodic
cyclic homology (CHoch• (W~(V )[~−1]), b, B). In other words, suppose

A0 = (a0, ua2, . . . , u
pa2p, . . .) ∈ CCper0 (W~(V )[~−1])

is a periodic cyclic 0-cycle. This means we have

Ba2p−2 + ba2p = 0

for all p ≥ 0, where we set a−2 = 0. In particular ba0 = 0 and the computation of Hochschild homology
implies there exists a1 ∈ CHoch1 (W~(V )[~−1]) such that ba1 = a0 (unless d = 0). Then we have

b(a2 −Ba1) = Ba0 + ba2 = 0
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implying existence of a3 ∈ CHoch3 (W~(V )[~−1]) such that ba3 + Ba1 = a2 (unless d = 1). Continuing
in this way we obtain (a1, a3, . . . , a2d−1) such that

ba2p+1 +Ba2p−1 = a2p.

Thus we find that b(a2d−Ba2d−1) = 0. Since the Hochschild homology does not vanish in this degree,
we cannot assume existence of a2d+1 ∈ CHoch2d+1 (W~(V )[~−1]) such that

ba2d+1 +Ba2d−1 = a2d.

Assume for a moment that we can find such a2d+1, then we are back in the position we were before
and can continue to obtain

(a1, ua3, . . . , u
pa2p+1, . . .)

b+uB7→ (a0, ua2, . . . , u
pa2p, . . .).

This shows that, if C0 is another 0-cycle, then the class of C0 equals the class of A0 if and only if
the class of a2d − Ba2d−1 equals the class of c2d − Bc2d−1 in Hochschild homology. If we would have
started with a 1-cycle A1, there would have been no obstruction at all to finding a 2-chain A2 such
that (b + uB)A2 = A1, since the Hochschild homology is generated in even degree. Note that, since
the periodic cyclic homology is 2-periodic, we are done. The computation of the negative cyclic and
cyclic homology is done in a similar way.

�

Remark 3.3.10. Note that the representative of the generator of Hochschild homology 1 ⊗ ωd

d!
also provides the generators for the cyclic homologies (after multiplication by the suitable powers of
u). In other words, we find that

HCper•
(
W(V )

[
~−1

])
= kper ⊗C C〈α〉[−2d]

HC−•
(
W~(V )

[
~−1

])
= k− ⊗C C〈α〉[−2d]

and
HC•

(
W~(V )

[
~−1

])
= k ⊗C C〈α〉[−2d],

where α represents [1⊗ ωd

d! ], i.e. it is a degree 2d element, while

kper := C[~−1, ~]][u−1, u]]

k− := C[~−1, ~]][[u]]

and
k := C[~−1, ~]][u−1].

We recall that |u| = −2 and we are considering cyclic homology of C[~−1, ~]] modules.

Remark 3.3.11. We will not compute the cyclic homologies of W~(V ) without localising at ~,
mainly because the result is messy and not very illuminating. It can be computed in much the same
way as above, however one will have to use the Hochschild homology of W~(V ) instead. Note that,
after localising at ~, both the Hochschild and cyclic homologies are directly analogous to the Hochschild
and cyclic homologies of the classical (non-formal) Weyl algebras [78].



CHAPTER 4

Formal Deformed Geometry and the Fedosov Construction

In this chapter we will present the framework of formal geometry in the deformed setting and the
well-known Fedosov construction of deformation quantization algebras [46]. To do this we will show
that the framework of formal geometry, developed in chapter 2, has a counterpart when starting with
a symplectic deformation quantization A~(M) instead of the smooth functions on a manifold. This
will allow us to define the characteristic class of the deformation quantization as the image of the
formal Weyl curvature, mentioned in the remarks 3.2.2 and 3.2.7, under a certain Gelfand-Fuks map.
After this, we will present the Fedosov construction to show every possible class can be reached by a
deformation quantization. Putting them together, we will have presented a proof of the well-known
result that the characteristic class is a complete invariant of symplectic deformation quantizations up
to gauge equivalence.

We will see that, in a sense, the framework of formal deformed geometry applies the Fedosov
construction in reverse. Starting with a deformation quantization and producing a Fedosov connection
and characteristic class. The Fedosov construction, on the other hand, starts with a class, constructs a
connection from it and produces the deformation quantization from the connection. Both viewpoints
will be relevant in the following chapters.

4.1. Formal Deformed Geometry

In this section we will finish the adaptation of the framework of formal geometry to deformation
quantization. Note that the first three parts of our “dictionary” have been obtained in the previous

section. We replace Â by Â~, Ĝ by Ĝ~ and W by g~. Note that these replacements have many
properties analogous to the undeformed counterparts. For instance they come with gradings/filtrations,
corresponding topologies and splittings. In this section we will give the rest of the counterparts, i.e.

the manifold of non-linear frames M̃~ and the Kazdan connection ω~
M . We will also show how this

leads to Fedosov connections.

In order to define the framework of formal geometry, we will need to fix a deformation quantization.
So, for the rest of this section (M,ω) is a 2d-dimensional symplectic manifold and A~(M) is a fixed
deformation quantization of this manifold. Many constructions will depend on the specific deformation
quantization we choose, however we will mostly surpress any notation referring to it directly.

Definition 4.1.1. We will denote the principal symbol map, given by setting ~ = 0, by

σ : A~(M) −→ C∞(M).

Note that σ is an algebra homomorphism. Given an algebra homomorphism ϕ~ : A~(M) → A~(X),
where A~(M) and A~(X) are both deformation quantizations, we say it extends or lifts the smooth

63
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map ϕ : X →M , if the following diagram commutes:

ϕ~
A~(M) A~(X)

ϕ∗
C∞(M) C∞(X)

σ σ

.

An A~(M)-adapted chart consists of a coordinate chart ϕ : R2d → M together with an isomorphism
ϕ~ from A~(U) to the Moyal deformation of R2d which lifts ϕ.

Definition 4.1.2. We define the manifold of non-linear deformed frames M̃~ as

M̃~ :=
{
ϕm : Âm,~

∼−→ Â~
2d

}
,

where we mean continuous algebra isomorphism and we recall the definition of Âm,~ in remark 3.1.22.

The pro-finite dimensional manifold structure on M̃~ is given in essentially the same way as in the
undeformed case. This is possible because the translations

T(l,i) : (R2d, 0, ω)→ (R2d, (l, i), ω)

are symplectic transformations, for any (l, i) ∈ R2d, and moreover they define algebra automorphisms
of the Moyal deformation by translation invariance of the product (3.0.2). So we construct charts for

M̃~, as in the undeformed case, by starting with an A~(M)-adapted chart U on M and then covering

M̃~ by charts of the form R2d × Ĝ~ as in (2.2.1) and (2.2.2). Note that we have already provided the

manifold structure on Ĝ~ in proposition 3.2.11.

Proposition 4.1.3. There is a natural homomorphism

ω~
M (ϕm) : TϕmM̃~ −→ g~,

for all ϕm ∈ M̃~, such that ω~
M defines a one-form in Ω1

(
M̃~

)
⊗ g~ satisfying

dω~
M +

1

2
[ω~
M , ω

~
M ] = 0, (4.1.1)

where d denotes the exterior derivative.

Proof.
Note that the proposition is simply a duplicate of theorem 2.3.3 where we replaced every object by
their deformed counterpart. The construction of ω~

M and the proof of the proposition are in fact
identical so we will refrain from writing it here. �

In order to proceed with our considerations of the framework of formal geometry we would like

to know that M̃~ is a principal bundle both over the manifold M and over the frames bundle of
M . Instead of considering the general linear frames bundle, we will have to reduce to the symplectic
frames bundle, since the isomorphisms ϕm : Âm,~ → Â~

2d always induce symplectomorphisms of the
complexified cotangent spaces. Note also that we find the complexified cotangent bundle instead of
the real cotangent bundle. Thus, we will need to make the following adaptations to the undeformed
case.

First of all, we adapt the definition 2.3.5 by using the bundle of symplectic frames SpM → M
instead of j1(M) and the symplectic group and Lie algebra instead of the general linear one. Suppose
L is a GL(2d,R)-module, then, since Sp(2d,R) ⊂ GL(2d,R), it is also an Sp(2d,R)-module. We note
that the two definitions of differential forms on M with values in LM coincide. This is to be expected
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due to the remark 2.3.6. To deal with the issue of complexification we note that, if (V, ω) is a complex
symplectic vector space such that V = VR ⊗R C and ω = ωR ⊗ 1 for some real symplectic vector space
(VR, ωR), then we have the inclusions VR ↪→W~(V ) and Sp(VR) ↪→ Sp(V ). This leads to the following
adaptations.

Definition 4.1.4. Suppose (V, ω) = (VR ⊗R C, ωR ⊗ 1) is a complexified real symplectic vector

space. We define the reduced group Ĝ~
r,V = Ĝ~

r as the subgroup Ĝ~
r ⊂ Ĝ~ given by

Ĝ~
r = expF1g

~ o Sp(VR) ↪→ expF1g
~ o Sp(V ) = Ĝ~,

where we use the canonical decomposition of the lemma 3.2.8 and the inclusion Sp(VR) ⊂ Sp(V ) given
by the fact that V is a complexification.

Definition 4.1.5. We define the reduced manifold of non-linear deformed frames M̃~,r ⊂ M̃~ to
be the submanifold given by those isomorphisms ϕm such that the induced isomorphism

(ϕm)1 : T ∗mM ⊗R C −→ T ∗0R2d ⊗R C

is induced by a local symplectomorphism (R2d, 0)→ (M,m).

Now note that, if we denote the symplectic linear frame bundle (as associated to the cotangent

bundle, i.e. with a left action of Sp(2d,R)) by SpM , then we have the map π1,r : M̃~,r → SpM , which

defines a Ĝ~
r -principal bundle. We have the following lemma analogous to lemma 2.3.7.

Lemma 4.1.6. There exists a Sp(2d,R)-equivariant section

Fr : SpM −→ M̃~
r

of the map π1,r : M̃~
r → SpM .

Proof.
The proof of lemma 2.3.7 still holds by proposition 3.2.8 and definition 4.1.4. �

Let us fix such a Sp(2d,R)-equivariant section Fr, denote the inclusion M̃~,r ↪→ M̃~ by ιr and
denote the composition ιr ◦ Fr by F . Again we can pull-back the one-form ω~

M by F to obtain

A~
F := F ∗ω~

M ∈ Ω1(SpM )⊗ g~.

Note that A~
F also satisfies the Maurer-Cartan equation (4.1.1) simply because ω~

M does.

We define the notion of a (g~,Sp(2d,R))-module L analogously to definition 2.3.8, note that we
consider real Lie algebras. Again we find that ddR +A~

F∧ defines a square-zero operator on Ω•(M ;L)
for any (g~,Sp(2d,R))-module L.

Proposition 4.1.7. Suppose L is a (g~,Sp(2d,R))-module, then the map

GF ~
M :

(
C•Lie

(
g~, sp(2d,R);L

)
, ∂Lie

)
−→

(
Ω•(M ;L),∇~

F

)
,

where ∇~
F = ddR +A~

F∧, given by

GF ~
M (χ)(X1, . . . , Xp)(fm) = χ(A~

F (X1)(fm), . . . , A~
F (Xp)(fm)),

for χ ∈ CpLie
(
g~, sp(2d,R);L

)
, fm ∈ SpM and X1, . . . , Xp vector fields on SpM , is a well-defined map

of complexes.

Proof.
Again the proof is identical to the proof of proposition 2.3.9. �

Notation 4.1.8. We shall denote the most usual W~(V ), for (V, ω) = (R2d⊗R C, ωst⊗ 1), simply
by W~.
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We will see that the differential ∇~
F is a Fedosov connection in the sense of [89]. From the point of

view of the Fedosov construction we would assume that the kernel of ∇~
F on Ω•(M ;W~) is isomorphic

as an algebra to A~(M). From the formal geometric point of view we would expect the same due to
proposition 2.4.2 and the fact that the deformed bundle of jets is easily identified with the bundle

associated to SpM (or M̃~) with fiber W~.

Proposition 4.1.9. The map

J∞F,~ : (A~(M), 0) −→
(
Ω• (M ;W~) ,∇~

F

)
given by f 7→ (p 7→ F (p)J∞π(p)f) for all f ∈ A~(M) and p ∈ SpM is a quasi-isomorphism of differential

graded associative algebras. In other words A~(M) ' Ker∇~
F as algebras and

(
Ω• (M ;W~) ,∇~

F

)
is

acyclic.

Proof.
Again the proof is essentially identical to the proof of proposition 2.4.2 when one considers the spectral
sequences associated to the ~ filtrations on W~ and A~(M). �

Remark 4.1.10. Suppose for a moment that M = R2d with the standard symplectic structure

and let A~(R2d) denote the Moyal deformation. Then both SpR2d and R̃2d are trivial bundles over
R2d. The trivialization is given by the standard (Darboux) coordinates x1, . . . , xd, ξ1, . . . , ξd. Then
note that, by similar reasoning as in the proof of proposition 2.4.2, we find that

−
d∑
i=1

dxi ⊗ ∂x̂i + dξi ⊗ ∂ξ̂i = AF ∈ Ω1(M)⊗ g~.

Or in other words, we have AF (∂xi) = −∂x̂i and AF (∂ξi) = −∂ξ̂i , which can also be expressed as

AF (X) =
1

i~
[ω(X,−),−].

Now suppose, denoting the coordinates (x1, . . . , ξd) simply by x, we have f̂(x, x̂) ∈ Ω0(M ;W~), then we

see that, in these terms, ∇~
F f̂ = 0 simply means that f̂(x, x̂) = f(x+x̂) for some f ∈ C∞(R2d)[[~]]. Note

that a general symplectic manifold is locally symplectomorphic to R2d with the standard symplectic
structure and deformation quantization is local. This means that we can always find a cover by
coordinate neighborhoods U such that the deformation quantization is given by sections of the form
g(x+ x̂) ∈ Ω0(U,W~) for some g ∈ C∞(U)[[~]].

Let us conclude this section on the framework of formal deformed geometry here, even though we
have not yet given any application of the Gelfand-Fuks maps constructed in proposition 4.1.7. These
applications will follow in the last section of this chapter, where we consider the characteristic class of
the deformation quantization, and more intensively in the chapter on the algebraic index theorem. For
now we should like to make the relation between the above framework of formal deformed geometry
and the Fedosov construction of deformation quantization clear. To do this, we will first need to
present the Fedosov construction itself, of course.

4.2. The Fedosov Construction

The Fedosov construction of deformation quantization will be used in this thesis to present the
classification of symplectic deformation quantizations and also to give the classification of group actions
on symplectic deformation quantizations in the following chapter. Thus it is a good idea to recall the
construction here. There are very many excellent sources on this topic however, [114, 48, 89, 65] to
name a few. The Fedosov construction refers to the process of defining a deformation quantization,
given a two-form, by constructing, in an iterative manner, a certain flat connection in the formal Weyl
algebras bundle [48]. One then shows that the flat sections for this connection are isomorphic to a
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deformation quantization of the manifold M . The following, including proofs, is from the book [48]
by B. Fedosov.

Definition 4.2.1. The Weyl algebras bundle W → M is the bundle of algebras associated to
SpM with the fiber W~.

We shall sometimes denote the product on W by ?. It shall be convenient to work in the setting
adopted in [114] and [48]. This means that instead of the construction W~ we shall use the (naturally
isomorphic) construction W~. Note that, in this setting, we have three (natural) gradings on the
underlying C-module.

• Firstly, we have the degree induced by the weight in the tensor algebra, i.e. the element
~pv1 ⊗ . . . ⊗ vl is of tensor degree l. We shall denote the homogeneous elements of tensor
degree l by W~

⊗(l).

• Secondly, we have the degree induced by the powers of ~, i.e. ~pv1 ⊗ . . .⊗ vl is of degree p.
We shall denote the homogeneous elements of ~-degree p by W~

d~(p).

• Finally, we have the total degree which combines the tensor degree and twice the ~-degree,
i.e. ~pv1 ⊗ . . . ⊗ vl is of total degree 2p + l. We shall denote the homogeneous elements of
total degree k by W~

t(k).

Note that, with the undeformed product, W~ is a graded algebra for each choice of grading. For
the deformed product, W~ is only a graded algebra when one considers the total degree.

Definition 4.2.2. We define the one-form A−1 ∈ Ω1
(
M ;W~

t(1)

)
as the composition

Γ(TM) −→ Γ(T ∗M) −→ Γ(W).

Here the first map is the isomorphism given by the symplectic structure and the second map is given
by the fact that T ∗M is the bundle associated to SpM with fiber R2d (the dual of R2d) and R2d

includes, Sp(2d,R)-equivariantly, in W~. We define D−1 as the one form with values in g~ given by
D−1 = Pg~( 1

i~A−1).

The following lemma summarizes some facts about A−1 and D−1. We will use the Einstein
summation convention in this section.

Lemma 4.2.3.

(1)

D−1 : Ωk
(
M ;W~

t(l)

)
−→ Ωk+1

(
M ;W~

t(l−1)

)
(2) D−1(A−1) = ω ∈ Ω2

(
M ;W~

t(0)

)
(3) D2

−1 = 0
(4) D−1 is an anti-derivation w.r.t. the degree of differential forms.
(5) A−1|U = ωijξ

j ⊗ dxi
(6)

D−1|U (ξi1 . . . ξik ⊗ dxj1 ∧ . . . ∧ dxjl) = −
k∑
p=1

ξi1 . . . ξ̂ip . . . ξik ⊗ dxip ∧ dxj1 ∧ . . . ∧ dxjl ,

where (U, x1, . . . , x2d) is a coordinate chart on M , ωij is the symplectic form tensor in these coordinates
and ξi = dxi as a section of the bundle with fiber W~ over U and the hat signifies omission in 6.

Proof.
Numbers 1, 3, 4 and 5 follow directly from the definitions, number 6 follows from an explicit compu-
tation and number 2 follows from number 6. �
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Proposition 4.2.4. Suppose U , xi and ξi are as in lemma 4.2.3. The map

W+1 : Ω•
(
M ;W~) −→ Ω•

(
M ;W~)

given by
W+1|U

((
ξi1 . . . ξik

)
⊗
(
dxj1 ∧ . . . ∧ dxjl

))
=

=
1

k + l

l∑
p=1

(−1)p
(
ξjpξi1 . . . ξik

)
⊗
(
dxj1 ∧ . . . ∧ d̂xjp ∧ . . . ∧ dxjl

)
,

where the hat signifies omission, is globally well-defined and satisfies the properties

(1) (W+1)2 = 0.

(2) W+1 : Ωl
(
M,W~

t(k)

)
→ Ωl−1

(
M,W~

t(k+1)

)
(3) (D−1 ◦W+1 +W+1 ◦D−1)(a) = a for all a ∈ Ωk

(
M,W~

⊗(l)

)
such that k + l > 0.

Proof.
The fact that W+1 is globally well-defined follows from explicit computation of behaviour under coor-
dinate transformations. The other properties can all be checked explicitly from the local formula for
W+1 and the local formula for D−1 given in lemma 4.2.3. �

Definition 4.2.5. We define the symbol map [48]

σ~ : Ω•
(
M ;W~) −→ Ω•

(
M ;W~)

by
σ~ = Id−D−1 ◦W+1 +W+1 ◦D−1.

Note that σ~ = Id on Ω0
(
M ;W~

⊗(0)

)
while σ~ = 0 on Ωk

(
M,W~

⊗(l)

)
if k + l > 0. Note also that σ~

factors as
Ω•
(
M ;W~) −→ C∞(M)[[~]] ↪→ Γ (W) ,

where the inclusion comes from the inclusion of scalars in the tensor algebra.

The space of connections in a given bundle is isomorphic to the space of one-forms with values
in the linear endomorphisms of that bundle as affine spaces. This means that, relative to a given
connection, every connection is uniquely determined by such a one-form. The Fedosov construction
proceeds by solving certain equations involving the one-forms used in defining a Fedosov connection
relative to some symplectic connection. Let us first introduce some notation and consider some facts
about such symplectic connections. Given any linear connection, we can, by the usual trick used for
instance in [97], construct a torsion-free symplectic connection. Since a linear connection always exists
[48], let us fix a choice of torsion-free symplectic connection ∇0. Recall that a symplectic connection
is a linear connection such that ∇0ω = 0. Note that any symplectic connection defines a connection
in W, since we can extend the action on the generators (T ∗M) of the tensor algebra to a derivation
and we have

∇0([v, w])−∇0(i~ω̄(v, w)) = (∇0v)⊗ w + v ⊗ (∇0w)− (∇0w)⊗ v − w ⊗ (∇0v)−∇0(i~ω̄(v, w)) =

[∇0v, w] + [v,∇0w]−∇0(i~ω̄(v, w)) = i~ω̄(∇0v, w) + i~ω̄(v,∇0w)−∇0(i~ω̄(v, w)) = 0.

Definition 4.2.6. We define the two-form R0 ∈ Ω2
(
M ;W~

t(2)

)
by the local expression

1

4
ωimR

m
jkl(ξ

i ? ξj)⊗ (dxk ∧ dxl),

where again we use the notation of lemma 4.2.3 and Rmjkl is given by the usual curvature tensor
corresponding to ∇0.

Lemma 4.2.7. The symplectic connection ∇0 satisfies the following properties:

(1) ∇0A−1 = 0,
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(2) D−1 ◦ ∇0 +∇0 ◦D−1 = 0 and
(3) ∇2

0a = 1
i~ [R0, a] for all a ∈ Ω•(M ;W~).

Proof.
The first property follows from the torsion-freeness of ∇0, the second one follows from the definition of
D−1 and the third property follows from the definition of the lifting of the linear symplectic connection
∇0 to W. �

Notation 4.2.8. Given A ∈ Ω1
(
M ;W~), we denote

∇A := ∇0 +
1

i~
[A,−].

We also denote AN := A−A−1.

By definition, a connection in a bundle of algebras is given by a connection in the underlying
vector bundle that acts by derivations. By proposition 3.2.1, this means that any connection in W is
given by ∇A for some A and some ∇0.

Definition 4.2.9. A Fedosov connection is defined to be a connection ∇A, for A ∈ Ω1
(
M ;W~),

such that AN ∈ Ω1
(
M ;W~

t(≥3)

)
and ∇2

A = 0.

Definition 4.2.10. For A ∈ Ω1
(
M ;W~), we define the curvature ΩA of ∇A by

ΩA := R0 +∇0(A) +
1

i~
A ? A.

Remark 4.2.11. Note that we have ∇2
Aa = 1

i~ [ΩA, a], by definition of ΩA, and ∇AΩA = 0 by a
simple computation.

We have the following corollary of lemmas 4.2.3 and 4.2.7 and definition 4.2.9.

Corollary 4.2.12. Suppose ∇A is a Fedosov connection, then

ΩA = R0 + ω +D−1(AN) +∇0(AN) +
1

i~
AN ? AN

and ΩA is central.

Definition 4.2.13. Given a Fedosov connection ∇A we define

θA := R0 +D−1(AN) +∇0(AN) +
1

i~
AN ? AN.

Note that θA ∈ Ω2(M)[[~]] is a closed two-form by remark 4.2.11.

Theorem 4.2.14. (Fedosov)
For any closed two-form θ ∈ Ω2(M)[[~]] there is a Fedosov connection ∇A such that

θA = i~θ.

Proof.
Note that the theorem requires us to show that there always exists a solution AN to the equation

for θA above. However, let us first show that there exists a one-form B ∈ Ω1
(
M ;W~

t(≥3)

)
such that

B = −W+1(R0 − i~θ)−W+1(∇0B +
1

i~
B ? B).

To show this, let A0 = −W+1(R0 − i~θ) and consider the recursively defined sequence

An = A0 −W+1(∇0An−1 +
1

i~
An−1 ? An−1),
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for n ∈ N. We will show that (An)n∈Z≥0
is a Cauchy sequence in the complete metric topology given

by the total degree filtration. Note that this means it is enough to show that

An −An+1 ∈ Ω1
(
M ;W~

t(≥n+4)

)
for all n ∈ Z≥0.

We will show this by 2 inductions. First, note that A0 = −W+1(R0 − i~θ) is of degree 3 since
both R0 and i~θ are in degree 2 and W+1 raises degree by +1. Now, suppose Ak is of degree greater
than 3 for all k below some n ∈ N, then An = A0 −W+1(∇0An−1 + 1

i~An−1 ? An−1) is also of degree
greater then 3 since all the summands are. In particular An +An−1 is of degree greater than 3 for all
n ∈ N.

Secondly, note that

A0 −A1 = W+1(∇0A0 +
1

i~
A0 ? A0).

On the other hand∇0A0 ∈ Ω1(M ;W~
t(3)) since∇0 preserves degree and obviously 1

i~A0?A0 is in degree

4. So, A0 − A1 ∈ Ω1(M ;W~
t(≥4)) (since W+1 increases degree) and the base case of our induction is

established. Suppose Ak −Ak+1 is of degree greater then k + 4 for all k < n ∈ Z≥0. Now

An −An+1 = W+1(∇0(An −An−1) +
1

2i~
[An−1 +An, An−1 −An]),

which must be in degree greater than n + 4, since An−1 − An is in degree greater than n + 3 and
An−1 +An is in degree greater than 3.

So, the sequence (An)n∈Z≥0
is Cauchy and we denote A := lim

n→∞
An. Now note that, since it

increases the degree of two-forms, W+1 is continuous on two-forms. Similarly, because it preserves the
degree of one-forms, ∇0 is continuous on one-forms. Furthermore, the map

?

i~
: Ω•

(
M ;W~

t(≥2)

)
−→ Ω•

(
M ;W~

t(≥2)

)
given by B 7→ 1

i~B ? B, also increases degree and is therefore continuous. Now note that, since An is
of degree greater than 3 for all n, so is A and so we have

A0 −W+1(∇0A+
1

i~
A ?A) = lim

n→∞
A0 −W+1(∇0An +

1

i~
An ? An) = lim

n→∞
An+1 = A.

Note that A is completely determined by A0 and therefore by θ and R0. In fact, by simply writing
out the degrees of the equation for A, one sees that A is the unique solution that is of degree greater
than 3. Lastly note that, by construction, W+1A = 0, since (W+1)2 = 0.

Denote AN := A and A := A−1 +AN, we have

W+1(ΩA − ω − i~θ) = W+1(R0 − i~θ +∇0AN +
1

i~
AN ? AN) +W+1D−1AN = −AN +AN = 0.

Thus we find that, since ∇AΩA = 0 and ∇A(ω + i~θ) = d(ω + i~θ) = 0, we have

ΩA − ω − i~θ = W+1D−1(ΩA − ω − i~θ) = W+1(D−1 −∇A)(ΩA − ω − i~θ).
Thus we see that we can compute ΩA−ω− i~θ recursively, since W+1(D−1−∇A) = −W+1∇AN raises
the degree. Now note that the degree 0 and 1 parts of ΩA−ω− i~θ vanish since AN is of degree greater
than 3, but this shows that ΩA − ω − i~θ = 0. Thus we see that in fact ΩA = ω + i~θ and thus ∇A is
a Fedosov connection and θA = i~θ. �

The proof implies the following normalization.

Corollary 4.2.15. Given a symplectic torsion-free connection ∇0 and a closed two-form
θ ∈ Ω2(M)[[~]], there is a unique A ∈ Ω1

(
M ;W~) such that
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• ∇A is a Fedosov connection,
• the degree of AN is greater than 3,
• W+1AN = 0 and
• θA = i~θ.

Proof.
The fact that θA = i~θ in fact implies −D−1AN = R0 +∇0AN + 1

i~AN ? AN. This last equation and

the condition W+1AN = 0 imply that AN = −W+1(R0 − i~θ)−W+1(∇0AN + 1
i~AN ? AN), which has a

unique solution of degree greater than 3. �

The final part of the Fedosov construction consists in showing that the kernel of the constructed
Fedosov connection ∇A, given by the closed two form θ and the torsion-free symplectic connection
∇0, is a deformation quantization. Let us fix a closed two-form θ and let us preemptively denote
A~(M) := Ker∇A, then we have the following proposition.

Proposition 4.2.16. The map σ~ is a linear isomorphism onto the image when restricted to
A~(M) and the induced product on C∞(M)[[~]] is a deformation quantization of (M,ω).

Proof.
Let f ∈ C∞(M)[[~]], we shall also denote the image of f in Γ (W), see definition 4.2.5, by f . Consider
the equation

a = f −W+1(∇A −D−1)a.

Note that, since the operator W+1(∇A−D−1) raises degree, we find that, if the equation has a solution
a, then this solution is completely determined by f .

As before, consider the sequence defined recursively by

an = f −W+1(∇A −D−1)an−1

and a0 = f , i.e. an =

n∑
i=0

(−W+1(∇A −D−1))if . So we see that for k > l we have

ak − al =

k−l∑
i=1

(−W+1(∇A −D−1))l+if.

Thus the degree of ak − al is at least greater than l and the sequence is Cauchy. Denote by af the
(unique) solution to the equation above. Note that

σ~(af ) = σ~(f)− σ~(W+1(∇A −D−1)af ) =

f − (W+1D−1 +D−1W+1 − Id)W+1(D−1 −∇A)af =

f +W+1(D−1 −∇A)af −W+1(D−1 −∇A)af = f.

Note also that

−W+1∇Aaf = −W+1(∇A −D−1)af −W+1D−1af = af − f − af + σ~(af ) = 0.

Then we see that ∇Aaf solves the equation

b = −W+1(∇A −D−1)b

for b, but note that, as twice before, if this equation has a solution then it is unique, so we may
conclude that ∇Aaf = 0.

Thus we have obtained the map τ : C∞(M)[[~]] → A~(M) given by τ(f) = af . Note that τ is
linear by definition. Moreover, we have shown that σ~(τ(f)) = f . So, note that, if a ∈ A~(M), then

−W+1(∇A −D−1)a = W+1D−1a = a− σ~(a),

which shows that τ(σ~(a)) = a and thus τ = σ−1
~ .
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The fact that the product on A~(M) induces a ?-product on C∞(M)[[~]] follows by construction.
�

This concludes our recollection of the Fedosov construction. In the following section we will
show, using the framework of formal geometry, that the construction actually only depends on the
cohomology class of the two form θ. Moreover, we will show that the class of θ provides a complete
invariant of symplectic deformation quantizations up to gauge equivalence.

4.3. The Characteristic Class of A~(M)

In this section we will show the relation between the Fedosov construction, presented in the previ-
ous section 4.2 and the framework of formal deformed geometry presented in section 4.1. To do this,
we should first show that the connection ∇~

F defined in proposition 4.1.7 is in fact a Fedosov connection
as in definition 4.2.9. After we have established this, we will proceed to define the characteristic class
associated to a deformation quantization. We will show that it is a gauge equivalence invariant and
we will use the Fedosov construction to show that it is a complete invariant.

Note that the definition of a Fedosov connection can be put into words in the following way. A
Fedosov connection is a flat connection on the Weyl algebras bundle which has values in the continuous
derivations of W~. This allows us to split up the connection in terms of the grading of g~ and a
Fedosov connection should have a specific degree −1 part, while the degree 0 part should be given by
a symplectic connection.

Proposition 4.3.1. The operator ∇~
F defined in proposition 4.1.7 is a Fedosov connection.

Proof.
We consider the operator∇~

F of proposition 4.1.7 for the (g~,Sp(2d,R))-moduleW~, i.e. as an operator
inW. We want to show that it is a Fedosov connection in the sense of the last paragraph. Since it is, by
construction, a flat connection on the Weyl algebras bundle with values in the continuous derivations
of W~, we actually only have to show that it is given by D−1 in lowest degree and by a symplectic
connection in degree 0. To show this, note first that, by proposition 3.2.1, we can give ∇~

F relative to
a symplectic connection by providing one-forms with values in 1

i~W, i.e.

∇~
F −∇0 = Pg~

(
1

i~
B−1

)
+ Pg~

(
1

i~
B0

)
+ Pg~

(
1

i~
B1

)
+ . . . .

The one-form corresponding to D−1 in this way is simply X 7→ 1
i~ω(X,−) ∈ Γ(W) for all vector

fields X. Now, note that, by remark 4.1.10, we find that locally

∇~
F

∣∣
R2d = ddR −

d∑
i=1

dxi ⊗ ∂x̂i + dξi ⊗ ∂ξ̂i

in standard (Darboux) coordinates. More explicitly, we use the section given by

SpR2d −→ R2d × Sp(2d,R) −→ R2d × Ĝ~
r −→ R̃2d

r,~

analogous to (2.4.1). Which, by the identification (3.2.2), means that ∇~
F |R2d = ddR + D−1, where

we note that on R2d the exterior derivative is a symplectic linear connection. Now we see that, by
naturality of ω~

M ; the fact that
(

1
i~W~

)
−2

= C
i~ and the fact that

(
1
i~W~

)
−1

= 1
i~ (R2d ⊗R C)∗, the

degree −1 part of ∇~
F must be given by D−1. The fact that the degree 0 part of ∇~

F is given by
a symplectic connection follows from the fact that it is given by a section from SpM to the reduced

non-linear frames M̃r,~.
�
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In some sense, the framework of formal deformed geometry supplies a reverse Fedosov construction.
Rather than producing a deformation quantization from a Fedosov connection, it produces a Fedosov
connection, given a deformation quantization. Moreover, the produced Fedosov connection recovers
the deformation quantization we started with, in the sense of the Fedosov construction, by 4.1.9. We
will now show how this reverse Fedosov construction also recovers the two-form θ appearing in the
Fedosov construction.

Definition 4.3.2. The characteristic class, sometimes called Weyl curvature, of the deformation

A~(M) is defined to be the class of θ := GF ~
M (θ̂) where GF ~

M is the Gelfand-Fuks map defined in

proposition 4.1.7 and the cocycle θ̂ ∈ C2
Lie

(
g~, sp(2d,R); C[[~]]

i~

)
is the formal Weyl curvature defined

in remarks 3.2.2 and 3.2.7, where we construct the map σ̃ using the standard symplectic basis of R2d.

Remark 4.3.3. Note that in the remarks 3.2.2 and 3.2.7 the class θ̂ was actually constructed
relative to sp(R2d ⊗R C). However, the inclusion of Sp(2d,R)in Sp(R2d ⊗R C) allows us to define the
class relative to sp(2d,R) as well.

Note that, similar to example 2.4.3, the fact that the action of g~ on C[[~]]
i~ is trivial means that the

complex
(

Ω•
(
M ; C[[~]]

i~

)
,∇~

F

)
has cohomology H•(M)[[~]]

i~ .

Proposition 4.3.4. The class [θ] ∈ H2(M)[[~]]
i~ is a gauge equivalence invariant.

Proof.
Suppose A~(M)′ is another deformation quantization of M and ϕ : A~(M) → A~(M)′ is a gauge
equivalence. Note that, in the terminology of 4.1.1, ϕ is a C[[~]]-linear algebra isomorphism that lifts
the identity on M . Since ϕ is defined in terms of differential operators and lifts the identity, we see
that it also induces continuous isomorphisms

ϕ : Âm −→ Â′m,
of the deformed algebras of ∞-jets at each m ∈ M This allows us to define the diffeomorphism

M̃ ′~ → M̃~ given by Φ(ϕm) = ϕm ◦ ϕ (note that it preserves the reduced submanifolds). Since ϕ

lifts the identity, this defines the Sp(2d,R)-equivariant map SpM → M̃ ′~ given by Φ−1 ◦ F . Now, by
naturality of the Kazdan connection, we find that

(Φ−1 ◦ F )∗ω′~M = F ∗((Φ−1)∗ω′~M ) = F ∗ω~
M .

Thus it is enough to show that the class [θ] is independent of the choice of section Fr.

By contractibility of G~
1 (as a pro-finite dimensional manifold) the map

π∗1,r :

(
Ω•(SpM )⊗ C[[~]]

i~
, ddR

)
−→

(
Ω•(M̃r,~)⊗ C[[~]]

i~
, ddR

)
is a quasi-isomorphism. Since π1,r is Sp(2d,R)-equivariant, we find that M̃r,~/Sp(2d,R) is a fiber
bundle with contractible fibers over M and so the induced map

π∗1,r :

(
Ω•
(
M ;

C[[~]]
i~

)
, ddR

)
−→

(
Ω•(M̃r,~)Sp(2d) ⊗ C[[~]]

i~
, ddR

)
is also a quasi-isomorphism. Now suppose F ′r is another Sp(2d,R)-equivariant section. Then we find
that both Fr and F ′r induce maps

F ∗r , F
′∗
r :

(
Ω•
(
M̃r,~

)Sp(2d)

⊗ C[[~]]
i~

, ddR

)
−→

(
Ω•
(
M ;

C[[~]]
i~

)
, ddR

)
.

Since π1,r ◦Fr = π1,r ◦F ′r = Id, we see that they must induce the same map in cohomology. Now note
that the maps GF ~

M and GF ′~M corresponding to Fr and F ′r are simply the compositions, of F ∗r and
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F ′∗r respectively, with the map analogous to the one in remark 2.3.4 (using ι∗rω
~
M instead of ωM ). So

we see that they induce the same map in cohomology and thus [θ] does not depend on the choice of
Fr.

�

Remark 4.3.5. For degree reasons, only D−1 contributes to the H2(M)
i~ component of [θ]. Using the

explicit description of σ̃ in remark 3.2.7 and the definition of D−1, one verifies, by local computation,
that this component must equal ω

i~ . Thus we find the restriction

[θ] ∈ ω

i~
+ H2(M)[[~]]

on the characteristic class or Weyl curvature of a symplectic deformation quantization.

To conclude this chapter we apply the result of the Fedosov construction to show that the char-
acteristic class is indeed a complete invariant of symplectic deformation quantizations. Suppose
[θ≥1] ∈ H2(M)[[~]], then we can construct a deformation quantization by picking a representative
θ≥1 and applying the Fedosov construction. This means we construct ∇A, along the lines of theorem
4.2.14 and corollary 4.2.15, and identify A~(M) with Ker∇A using σ~. Once we have such a defor-

mation quantization A~(M), we can construct the corresponding bundles M̃~ and M̃r,~ of non-linear
frames and, choosing a section Fr, we obtain the Fedosov connection ∇~

F . By proposition 4.1.9 the
kernel of ∇~

F is isomorphic to the deformation quantization constructed through the Fedosov construc-
tion. This means, by proposition 4.3.4, that the characteristic class of the deformation quantization
defined in 4.3.2 coincides with the class ω

i~ + [θ≥1]. So, we have the following result.

Corollary 4.3.6. The affine space ω
i~ + H2(M)[[~]] provides a parametrization of the gauge equiv-

alence classes of symplectic deformation quantizations of (M,ω).



CHAPTER 5

Group Actions on Deformation Quantizations

The interaction of deformation quantization with groups of symplectic symmetries is interesting for
a variety of reasons, both for Lie groups of continuous symmetries and for discrete symmetries. In the
first case one may study the problem of symplectic reduction of deformation quantizations as is done for
instance in [18]. In general, group actions by automorphisms on a deformation quantization represent
symmetries of a quantum mechanical system these may be exploited in computations or provide further
insight in the algebra itself. In this chapter we shall study group actions on deformation quantizations
in some generality.

Two main topics will be of interest. First of all, it is easily deduced that “quantum symmetries”,
i.e. a group action on a deformation quantization, induce corresponding “classical symmetries”, i.e.
a group action on the underlying symplectic manifold. Thus it is natural to ask whether all classical
symmetries come from quantum symmetries. This question can be phrased in terms of a lifting
problem, which we will do in section 5.2. The second topic is the problem of classification. Since, a
priori, different quantum symmetries may induce the same classical symmetry, it is also natural to
ask whether one can parametrize the quantum symmetries inducing the same classical symmetries in
some meaningful way. We devote section 5.3 to this second topic. In particular, we define a certain
parametrizing object, see theorem 5.3.12, and show in sections 5.3.2 and 5.3.3 that this object can be
determined in familiar terms. We will approach these two topics through the framework of deformed
formal geometry and the Fedosov construction. In section 5.1 we set up a framework of considering
group actions in terms of the Fedosov construction.

Remark 5.0.7. Some work towards both the classification and existence results of group actions
on formal deformation quantizations of symplectic manifolds was already carried out. First of all,
Fedosov comments on the problem in both the paper [46] and the book [48]. Furthermore, when one
restricts to so called invariant star products (a definition will follow), a classification up to equivariant
equivalence was found by Bertelson-Bieliavsky-Gutt [7] and recently this classification was extended
to include a notion of quantum moment maps by Reichert-Waldmann [98].

Notation 5.0.8. We keep using all the conventions of the previous chapter, i.e. (M,ω) is a
symplectic manifold of dimension 2d; We will denote by A~(M) or even A~ a fixed deformation
quantization of M ; W~ = W~(R2d ⊗R C) and W denotes the formal Weyl algebras bundle, i.e. the
bundle associated to SpM with fiber W~.

5.1. Group Actions Through Fedosov

The Fedosov construction of deformation quantization and the added framework of formal ge-
ometry provide a rigid environment for considering group actions by automorphisms on deformation
quantizations. One of the advantages noted in Fedosov’s original paper is that there is a simple way
to lift any symplectomorphism of the manifold to an automorphism of the deformation quantization.
It pays to keep in mind, however, that these lifts do not obviously respect compositions and are in
general not unique. Since group actions on the symplectic manifold can be interpreted as symmetries
of the classical mechanical system, the question of whether one can lift a group action naturally arises
and Fedosov comments on this in his paper [46].

75
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In this section we will lay some groundwork towards the existence and classification results in
the following two sections. We will set up a language of group actions on deformation quantizations
in terms of actions by symplectomorphisms on the underlying manifolds. More explicitly, we will
define what we understand by the extension of an action by symplectomorphisms to an action on the
deformation quantization and give a motivation for this definition.

Before we consider the case of group actions on deformation quantizations, let us consider the
action of a single automorphism. If ϕ is a C[[~]]-linear algebra automorphism of A~ (M), the assignment
f 7→ ϕ (f) mod ~ defines an algebra automorphism of C∞ (M). Thus there is a map

Aut (A~ (M)) −→ Symp (M,ω) ,

given by noting that any automorphism of C∞ (M) is given (uniquely) by the pull-back under a
diffeomorphism (see, for instance, chapter 7 of [90]). The fact that the induced diffeomorphism is a
symplectomorphism can be seen by applying it to a commutator. Let us recall for clarity the part of
definition 4.1.1 that will be most relevant in this section.

Definition 5.1.1. Suppose ϕ ∈ Symp (M,ω), we say αϕ ∈ Aut (A~ (M)) extends ϕ if

αϕ (f) = ϕ∗f + ~Φf ,
with Φf ∈ A~, for all f ∈ C∞ (M) [[~]]. Here ϕ∗ denotes the C[[~]]-linear extension of the pull-back
ϕ∗f = f ◦ ϕ.

Before we consider extending group actions, we should know which symplectomorphisms allow for
lifts. It turns out that the Fedosov construction provides a clear answer to this question [46, 89]. So
let us fix a Fedosov connection ∇A, given as

∇A = D−1 +∇0 +
1

i~
[AN,−]

as in section 4.2. It will turn out that automorphisms of the deformation quantization can be split up
into a global part and a fiberwise part. The following definition will be helpful.

Definition 5.1.2. Note that Sp(2d,R) acts on G~
1 by conjugation. This yields a sheaf of groups

G~1 given by the sections of SpM ×Sp(2d) G
~
1 . Here SpM ×Sp(2d) G

~
1 denotes the quotient of SpM ×G~

1

by the relation (pg, γ) = (p, gγg−1) for any g ∈ Sp(2d,R).

Proposition 5.1.3. The map

Aut (A~ (M)) −→ Symp (M,ω)[θ]

is a surjection. Here [θ] ∈ H2(M)[[~]] denotes the characteristic class of A~ (M) and
Symp (M,ω)[θ] denotes the stabilizer for the obvious (right) action on H2 (M) [[~]].

Proof.
Note that the lemma asserts that, for a symplectomorphism ϕ to extend to the deformation, it is both
a necessary and sufficient condition that it preserves the characteristic class of the deformation. So let
us fix a symplectomorphism ϕ.

We will begin by showing that, if there exists an automorphism αϕ lifting ϕ, then ϕ preserves the
characteristic class. Let A~ (M)

ϕ
denote the deformation quantization given by twisting the product

? of A~ (M) by ϕ, i.e.
f ?ϕ g = ϕ∗ (ϕ∗ (f) ? ϕ∗ (g)) ,

where ϕ∗ denotes the pull-back by ϕ and ϕ∗ denotes the pull-back by ϕ−1. We note that ϕ∗ is
an algebra isomorphism from A~ (M) to A~ (M)

ϕ
. Now suppose there exists an extension αϕ of ϕ.

Then we can consider the composition Gϕ := ϕ∗ ◦ αϕ. By a partition of unity argument (using the
?-product), we find that αϕ restricts to a map A~ (U) → A~

(
ϕ−1 (U)

)
for every open U ⊂ M . This

shows that Gϕ must in fact be a gauge equivalence and thus the characteristic class of A~ (M)
ϕ

must
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be the same as the class of A~ (M) by 4.3.4. On the other hand, it is not hard to see that ?ϕ is induced
by the Fedosov connection (ϕ−1)∗∇A and thus we find that preserving [θ] is a necessary condition.

Suppose now that ϕ preserves the characteristic class of A~(M). Note that the pull-back ϕ∗ is a
well-defined algebra automorphism of Ω• (M ;W~). Clearly, it is an isomorphism

ϕ∗ : Ker∇A
∼−→ Kerϕ∗∇A.

We will show sufficiency, i.e. we will show that there exists a lift αϕ of ϕ, by constructing a map in the
opposite direction given by a section Uϕ of G~1 . This means that the composite map Uϕ ◦ ϕ∗ extends
ϕ. The construction of Uϕ can also be found in [89] or section 5.5 of [48]. The construction of Uϕ
is by an iterative procedure. Note that, since ϕ preserves the characteristic class, we find that ϕ∗∇A
defines the same class. Moreover, since adding any central form to ϕ∗∇A does not change its kernel,
we may as well assume the curvatures (in the sense of 4.2.10), of the connections ∇A and ϕ∗∇A, are
equal.

We have fixed a lift of ∇A to 1
i~W~ relative to ∇0 above, namely A = 1

i~ (A−1 +AN). This provides
the one-forms

rk := Ak − ϕ∗Ak for k > 0 and r0 = σ̃ (∇0 − ϕ∗∇0) .

Note that rk has values in the elements of total degree k in 1
i~W~. Note also that, by lemma 4.2.3,

the form A−1 is a diffeomorphism invariant. Now, since the curvatures of ∇A and ϕ∗∇A are equal,
we find for degree reasons that

1

i~
[A−1, r0] = 0.

By acyclicity of the complex with differential D−1, see the proof of proposition 2.4.2 and the remark
4.1.10, we may choose δ1 ∈ Ω1

(
M,
(

1
i~W~

)
1

)
such that

r0 =
1

i~
[A−1, δ1].

Then, by remark 3.2.9, we can consider the automorphism Ad exp(δ1), note that it is a section of G~1 .
We find that

∇A −Ad exp(δ1) ◦ ϕ∗∇A ◦Ad exp(−δ1) = 0 mod g~>0.

In other words if we replace ϕ∗∇A by Ad exp(δ1) ◦ ϕ∗∇A ◦ Ad exp(−δ1) we find that r0 = 0. This
means for degree reasons that

1

i~
[A−1, r1] = 0,

so we know there exists δ2 such that

r1 =
1

i~
[A−1, δ2].

Continuing like this we can iteratively define δi for all i ∈ N. Since the degrees of the δi necessarily
increase we find the well-defined section

Uϕ := Ad . . . exp δi exp δi−1 . . . exp δ2 exp δ1

of G~1 such that

Uϕ ◦ ϕ∗∇A ◦ U−1
ϕ = ∇A. (5.1.1)

Note that this implies that

Uϕ : Kerϕ∗∇A −→ Ker∇A
is a well-defined isomorphism.

�
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Remark 5.1.4. Note that the proof of sufficiency in proposition 5.1.3 provides a (highly non-
unique) choice of section of the map from algebra automorphisms to symplectomorphisms preserving
the characteristic class [θ]. However, it is not guaranteed that such a section is a group homomorphism.
So let us consider, instead of a single symplectomorphism, a group Γ of symplectomorphisms. In other
words, suppose we have a group Γ acting (from the left) by symplectomorphisms on M , i.e. a group
homomorphism Γ→ Symp(M,ω). Note that we have, by proposition 5.1.3, a map

HomGr (Γop,Aut (A~(M))) −→ HomGr

(
Γ,Symp(M,ω)[θ]

)
, (5.1.2)

although we cannot be assured of surjectivity any longer.

Remark 5.1.5. Note that, by proposition 3.2.8, we find that G~
1 = expF1g

~, while, by proposition

3.2.1, we have that F1g
~ = Pg~

(
1
i~ (W~)≥3

)
. So we find that sections of G~1 can always locally be

given as (conjugation by) exponentials of sections of 1
i~W≥3.

Proposition 5.1.6. A lift αϕ of a symplectomorphism ϕ is of the form

αϕ = cϕ ◦ ϕ∗

where cϕ is a section of G~1 .

Proof.
The automorphism αϕ of A~(M) induces isomorphisms

α̂ϕ,m : Âϕ(m),~ −→ Âm,~.

Thus we find the diffeomorphism ζϕ of M̃~ given by ζϕ(ϕm) = ϕm ◦ α̂ϕ,m. Note that ζϕ is Ĝ~-

equivariant, since the action of Ĝ~ is by pre-composition. We also see that αϕ preserves M̃r,~ since
it lifts a symplectomorphism. Note that we may consider the Weyl algebras bundle as the bundle

with fiber W~ associated to the principal bundle M̃r,~, by choosing the Sp(2d,R)-equivariant section

Fr : SpM → M̃r,~. This means ζϕ induces an automorphism of the sections of the formal Weyl algebras
bundle, we shall denote this automorphism by

α̃ϕ := (π1,r ◦ ζϕ ◦ Fr)∗ .

Suppose U ⊂M is an open subset such that we have trivializations

tU : W|U −→ U ×W~ and tϕ(U) : W|ϕ(U) −→ ϕ(U)×W~.

Then we see that tϕ(U) ◦ α̃ϕ ◦ t−1
U = (ϕ, νϕ) where νϕ : U → G~

1 is a smooth map.
�

In order to apply the Fedosov construction in the context of group actions we need to ask for a
certain compatability between the group action and a Fedosov connection. Combining this with the
previous proposition motivates the following definition.

Definition 5.1.7. An extension of the left action of Γ on M by symplectomorphisms is defined
to be a right action α : Γop → Aut (A~ (M)) such that

αγ = cγ ◦ γ∗, (5.1.3)

for γ ∈ Γ and cγ is a section of G~1 , such that

cγ ◦ γ∗∇A ◦ c−1
γ = ∇A

for some Fedosov connection ∇A such that Ker∇A ' A~(M). Here we have also denoted the sym-
plectomorphism by γ.
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Remark 5.1.8. In [7, 98] and other sources the authors consider only those extensions where the
cγ are trivial. These are of course the most natural extensions (if they exist). The reason to consider not
only the most natural extensions of the action to the deformation quantization is that two equivalent
(Fedosov) star products that allow such a natural action are not necessarily equivariantly equivalent.
This means that, when one transports the natural group action from one to the other (using the
equivalence) it will not be of this most natural form. However, there is in general no clear reason to
prefer one (Fedosov) star product over the other, when one starts from a given characteristic class.
Thus, when one considers all extensions, as defined in definition 5.1.7, one becomes free to consider
an arbitrary Fedosov connection with curvature in the characteristic class. Another, more obvious,
reason is that there may be cases where extensions as in definition 5.1.7 exist while the extension with
trivial cγ does not.

Remark 5.1.9. Note that the condition of compatibility with the Fedosov connection will be
superfluous in many cases, see [46]. In particular given a symplectomorphism that preserves not only
the class [θ], but also a representative θ of that class we can always lift it in a way compatible with a
Fedosov connection.

5.2. Existence of Extensions of Group Actions

In this section we investigate the problem of lifting a group action Γ→ Symp (M,ω)[θ] to a group

action Γop → Aut (A~ (M)). The question of existence of lifts is exactly the question of surjectivity
of the map (5.1.2). We will rephrase the question in a rather compact form. We will also give some
sufficient conditions for the existence of a lift and show that they are not necessary in general.

So, let us fix the group action Γ→ Symp (M,ω)[θ]. As mentioned above, we can, as in proposition

5.1.3, always find a map α : Γop → Aut (A~ (M)) such that αγ 7→ γ ∈ Symp (M,ω)[θ] by the map

mentioned in the previous section. Note also that the proof of proposition 5.1.3 shows that αγ := cγ◦γ∗,
where cγ ◦ γ∗∇A ◦ c−1

γ = ∇A, for some section cγ of G~1 and a given Fedosov connection ∇A. The
following observation is also present in Fedosov’s paper [46]. We have

αγ ◦ αµ = cγγ (cµ) ◦ (µγ)
∗
,

where the action of Γ on sections of G~1 is by conjugation, i.e. γ(c) = γ∗ ◦ c ◦ γ∗. On the other hand
αµγ = cµγ ◦ (µγ)

∗
. So we find that the cγ should satisfy a cocycle condition in order for α to be a

group homomorphism. Indeed, α defines a group action exactly when

cγγ (cµ) c−1
µγ = Id (5.2.1)

for all γ, µ ∈ Γ.

Corollary 5.2.1. The action Γ → Symp (M,ω)[θ] lifts to an action on the deformation quanti-

zation in the sense of definition 5.1.7 iff there exist sections cγ of G~1 , such that cγ ◦ γ∗∇A ◦ c−1
γ = ∇A

for all γ ∈ Γ, that form a cocycle.

Remark 5.2.2. Although it is in general not easy to check the cocycle condition (5.2.1), more
can be said about the question of existence in more general terms. As noted above in corollary 4.2.15
and in [48], one can construct a Fedosov connection ∇A with characteristic class [θ] uniquely, given a
representative θ ∈ Ω2 (M,C[[~]]) and a symplectic torsion-free connection. Moreover, given an invariant
linear connection, one can construct an invariant torsion-free symplectic connection in a canonical way,
this is done (again) by the trick also applied in [97].

Proposition 5.2.3. Suppose there exists an invariant linear connection ∇00 on M , i.e. such
that γ∗∇00 = ∇00 for all γ ∈ Γ. Then the action extends to any deformation quantization which has
characteristic class in the image of the map

ω

i~
+ H2

Γ (M) [[~]] −→ ω

i~
+ H2

dR (M)
Γ

[[~]], (5.2.2)
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where we denote by the cohomology of the complex
(

Ω• (M)
Γ

[[~]], d
)

by H•Γ (M) [[~]] and we denote the

invariants of H•dR(M) by H•dR(M)Γ.

Proof.
The proposition follows immediately from the remark above and is also noted in [48]. For the situation
as described in the lemma it is possible to construct a Fedosov connection ∇A such that γ∗∇A = ∇A
for all γ ∈ Γ. Then γ∗ defines an automorphism of Ker∇A and thus αγ = γ∗ extends the action. �

Remark 5.2.4. Note that the class ω
i~ + [ω] (and similar classes) will always be in the image of

the map stated above. Note also that proposition 5.2.3 is comparable to the results in [7], there the
authors consider more restrictive extensions (i.e. αγ = γ∗) and show that any class in the left hand
cohomology induces an invariant star product up to equivariant equivalence. Recently, these results
where extended to include quantum moment maps in [98].

Corollary 5.2.5. Suppose Γ is a compact Lie group, then any (smooth) action of Γ by symplec-
tomorphisms can be extended to any deformation quantization by αγ = γ∗.

Proof.
By averaging an arbitrary linear connection one obtains an invariant linear connection and by averaging
an arbitrary representative of a characteristic class one obtains a representative of the pre-image in
ω
i~ + H2

Γ (M) [[~]]. �

Remark 5.2.6. Note that the proof of corollary 5.2.5 actually also applies to the case where Γ is
not itself a compact Lie group, but the action of Γ factors through the (smooth) action of a compact
Lie group.

Remark 5.2.7. It is possible to phrase the first condition in proposition 5.2.3 in terms of a
cohomological obstruction in the following way. Consider the right-action of Γ on Ω1 (M,End (TM))
by pull-back. Given an affine connection ∇00, we define

D : Γ −→ Ω1 (M,End (TM))

γ 7−→ γ∗∇00 −∇00

Note that this defines a group cocycle in the group cohomology complex of Γop with values in the
vector space Ω1 (M,End (TM)). Clearly, if ∇00 is invariant we find that D = 0. It is easy to check
that the class of D in H1

(
Γop,Ω1 (M,End (TM))

)
does not depend on ∇00 and in fact [D] = 0 if and

only if there exists an invariant affine connection on M . The class defined above can be identified as
a certain notion of the Atiyah class [73].

Proposition 5.2.3 gives a sufficient condition for the existence of a lift of a group action. It includes
many group actions on manifolds, so a natural question is whether it is possible to extend actions that
do not satisfy the hypotheses of the proposition. In other words, one might wonder if there exist
actions that allow extension, but do not satisfy the hypotheses of proposition 5.2.3, i.e. one wonders
whether the conditions of proposition 5.2.3 are necessary.

Example 5.2.8. Consider the cotangent bundle
(
T ∗S2, dη

)
of the 2-sphere with the canonical

symplectic structure dη. Let Γ be the group of orientation preserving diffeomorphisms of S2 that
fix the equator Eq : S1 ↪→ S2 pointwise. It is an elementary fact of symplectic geometry, found for
instance in [19], that the group of diffeomorphisms of a manifold lifts to symplectomorphisms of the
corresponding cotangent bundle. Note that

H2
dR

(
T ∗S2

)
[[~]] = C[[~]]π∗[ω],

where π denotes the projection T ∗S2 → S2 and ω denotes the standard symplectic structure of S2.

Since Γ consists of orientation preserving diffeomorphisms we find that the class π∗[ω] ∈ H2
(
T ∗S2

)Γ



5.3. CLASSIFICATION OF EXTENDED GROUP ACTIONS 81

is invariant. On the other hand, if β is any 1-form on T ∗S2 such that π∗ω + dβ ∈ Ω2
(
T ∗S2

)Γ
, then

we find

ω + d (z∗β) = z∗f∗] (π∗ω + dβ) = f∗z∗ (π∗ω + dβ) = f∗ (ω + dz∗β)

for all f ∈ Γ, here we have denoted the zero-section of T ∗S2 → S2 by z and the symplectomorphism of
T ∗S2 induced by f by f]. However, note that any non-zero two-form on S2 will have support on some
open U which is disjoint from Eq(S1) and subject to a multitude of “local” diffeomorphisms in Γ. So
since ω+ dz∗θ is invariant under all such diffeomorphisms we find that it vanishes identically, but this
implies that [ω] = 0. Thus we are led to a contradiction, which shows that [ω] is not in the image of
the map (5.2.2), in fact this map is 0. Thus this action does not satisfy the criteria of proposition 5.2.3
and there does not exist any invariant Fedosov connection with non-trivial characteristic class for this
action. On the other hand, we note that, by considering the clutching construction of vector bundles on
S2, we can lift the action of Γ to an action on the line bundle corresponding to the inclusion S1 ↪→ C×
(which has Chern class [ω]). This means we can extend the action of Γ to differential operators on
smooth sections of this line bundle. Thus by the results in [11] we find that the action of Γ does lift
to the deformation quantization with characteristic class ~[π∗ω].

By example 5.2.8, we see that although the conditions of proposition 5.2.3 are sufficient to conclude
existence of extended group actions (as defined in definition 5.1.7), they are not necessary.

5.3. Classification of Extended Group Actions

In this section we will turn to the question of classification of extended group actions. We will
show that extended group actions are classified, up to a technical condition, by the first cohomology
of the group Γ with values in a certain non-Abelian group G∇. We will finish the classification, by
first providing the essential tools for computing this first cohomology and subsequently considering
some examples. The classification will be carried out relative to a given extended group action. So
for this section we will fix a Fedosov connection ∇ (dropping the subscript A) and an extended action
α : Γop → Aut (A~ (M)).

5.3.1. Abstract Classification. In this section we will give a classification of the lifts of group
actions as in definition 5.1.7 in abstract terms, up to a certain technical condition. We will provide
methods of computation of these abstract objects in the next section. To do this, we will first, following
Fedosov [46, 48], introduce an extension of the Weyl algebras bundle such that a subgroup of the
group of invertible sections surjects locally onto the sections of G~1 in a natural way. This will allow us
to understand the bundle G~1 better, in order to provide tools for computation in the following section
and also define a subgroup of the total sections providing the abstract classification.

Definition 5.3.1. Consider the algebra W(~) := W~⊗C[~−1, ~]] where the tensor product is over

C[[~]], i.e. W(~) = W~[~−1]. Note that W(~) carries a grading induced by the grading of W~, i.e.

|~−1| = −2. We define the algebra W+
~ ⊂ W(~) as the subalgebra F0W(~) of elements with degree

greater than 0. In other words we allow power series with negative powers of ~ as long as the total
degree is still greater than 0. Similarly, we denote the bundle associated to SpM with fibers given by
W+

~ by W+ and the bundle associated to SpM with fibers given by W(~) by Wf .

Remark 5.3.2. Note that the Fedosov connection ∇ is well-defined on the bundle Wf . We will
denote the center of W+ and W by Z. Note that Z ' C∞M [[~]] by the inclusion C[[~]] ↪→W+

~ .

Definition 5.3.3. We define the sheaf of fiberwise transformations by assigning the sections of
W+(U) which are given by exponentials of elements of

(
1
i~W(U)

)
≥1

to the open subset U . We will

denote this sheaf by TF . Note that TF i a sheaf of groups by the Campbell-Baker-Hausdorff formula.

Remark 5.3.4. Note that there is map

Ad : TF −→ G~1
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given by assigning to the section E of TF the automorphism of conjugation by E. Note that, by the
proposition 3.2.8 and remark 3.2.9, we find that Ad is locally surjective.

Suppose that, for Eϕ, E
′
ϕ ∈ TF , Uϕ := Ad Eϕ and U ′ϕ := Ad E′ϕ both satisfy (5.1.1). Then we

find that, denoting E = E′ϕE
−1
ϕ ,

Ad E ◦ ∇ ◦Ad E−1 = ∇. (5.3.1)

Conversely, if Uϕ satisfies (5.1.1) and E satisfies (5.3.1), then clearly U ′ϕ := Ad E ◦ Uϕ also satisfies
(5.1.1).

Remark 5.3.5. The discussion above suggests the following technical condition on the kind of
actions we allow. Namely, we will only consider those actions that are of the form

γ 7→ Ad Eγ ◦ αγ ,

with Eγ ∈ TF for all γ ∈ Γ.

Remark 5.3.6. It serves now to compare the technical conditions in definition 5.1.7 and remark
5.3.5. First of all we note that they are in fact compatible. Secondly we compare them to the notion
of isomorphism (and automorphism) of quantum algebras as defined in [48] section 5.5. We note
that the condition in definition 5.1.7 is in fact weaker than the condition of a connection preserving
isomorphism in [48]. On the other hand, the condition in remark 5.3.5 is, in the terms of [48], exactly
the condition that the action is given, relative to αγ , by a fiberwise automorphism preserving the
connection ∇. Thus, if we use the definition of automorphism in section 5.5 of [48], the only technical
condition is preservation of the Fedosov connection ∇. The reason, also offered in [48], to consider
actions through these kinds of actions seriously is that they correspond to the time evolution operators
through Heisenberg’s equations of motion, see equation (1.1.3).

Definition 5.3.7. We define Fedosov’s fiberwise ∇ preserving isomorphisms by

G∇ :=
{
E ∈ TF | ∇

(
E−1

)
E ∈ Ω1 (M ;C[[~]])

}
.

We should mention that, although it is not presented quite in this form, a lot of the following
(excluding the classification) is implicit in the work of Fedosov [48, 46]. We should justify the
nomenclature of G∇.

Lemma 5.3.8. The section E ∈ TF satisfies (5.3.1) if and only if E ∈ G∇.

Proof. Suppose E ∈ TF satisfies (5.3.1), then for all σ ∈ W we find

∇σ = E−1
(
∇
(
EσE−1

))
E = ∇σ + [E−1∇E, σ],

which implies E ∈ G∇, since E−1∇E = −∇(E−1)E. The equation above also shows the converse
statement. �

Notation 5.3.9. We denote the group of automorphisms of W that are given by sections of TF
and induce automorphisms of Ker∇ by Loc (W | ∇).

Lemma 5.3.10.

(i): G∇ is a subgroup of the invertibles (W+)
×

of W+.

(ii): Z× / G∇ and (Ker∇)
×
/ G∇.

(iii): G∇ /Z× ' Loc (W | ∇).
(iv): G∇ forms a sheaf of groups on M .
(v): For any open V ⊂M such that H1

dR (V ) = 0 we have

G∇|V = Z×|V · A~(V )× (5.3.2)

(vi): αγ (G∇) ⊂ G∇ for all γ ∈ Γ.
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Proof.
“(i)” Suppose E,B ∈ G∇, we should show that E−1 and EB are also in G∇. We have E−1 ∈ G∇, since

E−1∇E = Ad E
(
E−1∇E

)
= (∇E)E−1 = −E∇E−1.

Similarly, we have EB ∈ G∇, since

B−1E−1∇EB = Ad B−1
(
E−1∇E

)
+B−1∇B = E−1∇E +B−1∇B.

“(ii)” Since Z× is central we see that ∇z = dz for all z ∈ Z×, this shows that Z× is a subgroup. It is

a normal subgroup because it is central. Of course ∇k = 0 for all k ∈ (Ker∇)
×

showing that it is a
subgroup. It is normal since

∇
(
EkE−1

)
= ∇ (E) kE−1 + Ek∇E−1 = Ad E

(
[E−1∇ (E) , k]

)
= 0 (5.3.3)

for all k ∈ (Ker∇)
×

and E ∈ G∇.
“(iii)” Consider the group homomorphism

Ad : G∇ −→ Loc (W | ∇)

given by restricting the group homomorphism Ad : TF → G~1 . Note that it is well-defined, since 5.3.3
also holds for k ∈ Ker∇. Suppose α = Ad B ∈ Loc (W | ∇), then we find that

0 = Ad B−1 ◦ ∇ ◦Ad B (k) = [B−1∇ (B) , k]

for all k ∈ Ker∇. So ∇ (B)B−1 is in the centralizer of Ker∇. Given kx ∈ Wx at some x ∈ M
we can (by parallel transport) always find a section k ∈ Ker∇ such that k (x) = kx. This shows
that the centralizer of Ker∇ is simply the center and so B ∈ G∇. Thus, Ad is surjective and, since
Ker Ad = Z× (another proof of the first part of (ii)), we find that (iii) holds.
“(iv)” This should be clear from the definition of G∇.
“(v)” Suppose V ⊂M such that H1

dR (V ) = 0. Then suppose E ∈ G∇|V and denote the implied central
one-form by β = E−1∇E. Note that ∇E = βE. We have

dβ = ∇β = ∇
(
∇ (E)E−1

)
= β ∧ β = 0.

So, since H1
dR (V ) = 0, we find that β = dα for some α ∈ C∞ (V ) [[~]]. Then

∇
(
e−αE

)
= −dαe−αE + e−αβE = 0,

so we find that E = eαe−αE, i.e. E is a product of a central section eα and a flat section e−αE.
Finally we note that, if af ∈ W+ is flat, then it cannot contain any negative powers of ~, since it is
uniquely determined by its image under W+

~ → C[[~]], by the proof of proposition 4.2.16. So we see
that Ker∇ ' A~ still holds when we consider ∇ as acting on W+.
“(vi)” Suppose γ ∈ Γ and E ∈ G∇, then Ad αγ (E) = αγ ◦Ad E ◦α−1

γ ∈ Loc (W | ∇). So, by (iii) and
the fact that the αγ define automorphisms of Ker∇ and of Z, we have αγ (E) ∈ G∇. �

Notation 5.3.11. From now on we will be considering group cohomology. Since we are considering
right actions, i.e. Γop, we should be writing the group cohomology with values in B as H•(Γop;B).
For notational convenience and since it will not play any role, we will drop the superscript op.

Theorem 5.3.12. The group cohomology pointed set H1
(
Γ;G∇

)
classifies the actions of Γ on

A~(M) that extend a given action on M , in the sense of 5.1.7 and satisfying the condition in remark
5.3.5, up to conjugation by a fixed element of Loc (W | ∇). Here we denote G∇ := G∇/Z×.

Proof.
Note first of all that the action α also descends to G∇, since it restricts to an automorphism of the
center (via the identification Z ' C∞ (M) [[~]] this is simply the action induced by the action on the

manifold). Suppose S̃ : Γ → G∇ is a cocycle for the action α. Pick any lift S of S̃ to G∇. Then we
have

Sγαγ (Sµ)S−1
µγ ∈ Z× ∀ γ, µ ∈ Γ.
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We see that
β : Γop −→ Aut (A~ (M)) ,

defined by βγ = Ad Sγ ◦ αγ , is a group homomorphism. Note that β is well-defined by point (iii) of
5.3.10 and it is a group homomorphism since

βγ ◦ βµ = αγ ◦Ad α−1
γ (Sγ)Sµ ◦ αµ = αγ ◦Ad α−1

γ (Sµγ) ◦ αµ = Ad Sµγ ◦ αγ ◦ αµ = βµγ .

Note that β does not depend on the particular lift of S̃.

Conversely, suppose βγ = αγ ◦ Ad Eγ where E : Γ → G∇ and β defines an action. Note that β

only depends on the induced map Ẽ into G∇. Since βµγ = βγ ◦ βµ, we find immediately that

Ad αγ (Eγ)αµγ (Eµ) = Ad αµγ (Eµγ) ,

which implies that γ 7→ αγ

(
Ẽγ

)
defines a cocycle. Note that the action corresponding to it by the

construction above is β.

Finally, let us pass to cohomology. So, suppose S̃ and S̃′ are two cohomologous Γop-cocycles in
G∇. Denote by β and β′ the corresponding actions. Then there is an element C̃ ∈ G∇ such that

C̃S̃γαγ

(
C̃−1

)
= S̃′γ .

Then, picking any lifts C, S and S′ of C̃, S̃ and S̃′ to G∇, we find the equations

Ad CSγαγ
(
C−1

)
= Ad S′γ .

So,
β′γ = Ad S′γ ◦ αγ = Ad CSγαγ

(
C−1

)
◦ αγ = Ad C ◦ βγ ◦Ad C−1

for all γ ∈ Γ. Conversely, if β, β′ are two actions with corresponding cocycles S̃ and S̃′ and lifts S, S′

and C ∈ G∇ satisfies Ad C ◦ βγ ◦Ad C−1 = β′γ for all γ ∈ Γ, then we have Ad CSγαγ
(
C−1

)
= Ad S′γ

and thus S̃ and S̃′ are cohomologous. �

5.3.2. Computational Tools. In this section we will provide some tools that should aid in the
concrete computation of the pointed set H1

(
Γ;G∇

)
of equivalence classes of extended group actions.

The main burden of proof will be in showing that there exists a surjective map D from G∇ to Z1(M)[[~]]
(formal power series of closed one forms). This will provide the diagram with exact columns and exact
rows

1 1 1

1 C[[~]]× Z× Z×
/
C[[~]]× 1

1 A~
× G∇ Z1(M)[[~]] 0

1 A~
×/

C[[~]]× G∇ T 1
~ (M) 0

1 1 0 ,

(5.3.4)
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where T 1
~ (M) := H1(M ;C)

/
H1(M ;Z) ⊕ ~H1(M)[[~]]. This matches well with the appearance of

~T 1
~ (M) as a parametrization of equivalence classes of certain formal representations and equivalence

classes of certain formal connections in [11]. Note that, although we will be working with non-Abelian
cohomology, we still obtain (truncated) exact sequences from short exact sequences of coefficient groups
(see section 2.7 of[58]). In the following section we will show how one can exploit this diagram to
compute H1(Γ;G∇).

Notation 5.3.13. From now on we will identify Ker∇ with the deformation quantization A~.
We will often implicitly identify Z ' C∞ (M) [[~]]. For elements of graded algebras (or invertibles of
graded algebras) a subscript will always refer to the degree in this section.

Lemma 5.3.14. We have the following short exact sequence of sheaves of groups

1 → A~
× ↪→ G∇

D−→ Z1[[~]] → 0
g 7−→ g−1∇g .

(5.3.5)

Proof.
Note first that D is well-defined since d

(
g−1∇g

)
= ∇

(
g−1∇g

)
= −

(
g−1∇g

)2
= 0. The proof follows

from the decomposition (5.3.2) and the fact that de Rham cohomology vanishes locally. �

We will show that the above sequence induces an exact sequence of groups on global sections.
Note that this means we should prove surjectivity of D. To do this we will use Čech cohomology and
some facts about rings of formal power series. So let us fix a good cover U = {Ui}i∈J and recall that
for smooth manifolds this choice will not play a role, see section A.2.3. Recall also that A~ (M) and
C∞ (M) [[~]] are complete with respect to the ~-adic topology.

Definition 5.3.15. The ~-adic topology is given by the norm ‖f‖ = 2−k, where k is the smallest
non-negative integer such that fk 6= 0, it satisfies the (in)equalities ‖f + g‖ ≤ max{‖f‖ , ‖g‖} and
‖fg‖ = ‖f‖ ‖g‖.

We have the following fact (see chapter 3 of [60]).

Lemma 5.3.16. Suppose R is a commutative unital ring that contains a copy of the rationals, then
(~R[[~]],+) ' (1 + ~R[[~]], ·) by the maps

exp (f) =

∞∑
n=0

fn

n!
and Log (1 + f) =

∞∑
n=1

(−f)
n

n
.

Lemma 5.3.17. Suppose f ∈ (C∞ (M) [[~]])× ' Z× and f0 = 1, then df
f is exact.

Proof.
It is easily verified that d satisfies the product rule on formal power series. This shows that we have
d exp g = (exp g) dg for all g ∈ ~C∞ (M) [[~]]. But then let g = Log (f) and we see that df

f = dg. �

Proposition 5.3.18. Let us denote the subgroup of exact forms in Z1 (M) [[~]] by dZ and the
restriction of D to Z× by D. Then we have dZ ⊂ Im D and Im D�dZ ' H1 (M ;Z).

Proof.
Suppose dg ∈ dZ such that (dg)0 = 0. Then we may assume that g ∈ ~C∞ (M) [[~]]. We want to show
that there exists an f ∈ Z× such that Df = dg. Clearly f = exp (g) will do the job. This shows
that every exact form dg with (dg)0 = 0 is in Im D. Now suppose dg is a general element of dZ, then
∃f ∈ Z× such that Df = ~ (dg)1 + ~2 (dg)2 + . . . , but then dg = Deg0 +Df = D (eg0f). This shows
the first claim of the proposition.

To show the second claim consider the map

CU : Im D → Ȟ1 (U ;C) [[~]]
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where CU (Df) is represented by η (i, j) = g (i) − g (j) if Df |Ui = dg (i). We leave the routine check
that this map is a well-defined group homomorphism to the reader. Note that KerCU = dZ and
in fact the map CU is simply given by the map which implements the isomorphism of de Rham en
Čech cohomology, see theorems A.2.24 and A.2.22. It is left to show that Im CU ' H1 (M ;Z). Note
that every element in Z× can be written as a product of a nowhere vanishing function and a function
as in lemma 5.3.17. So we find that CU (Df) = CU (Df0) = [η], where η (i, j) = g (i) − g (j) with
eg(i) = f0|Ui . So we see that [η] ∈ Ȟ1 (U ;Z) ↪→ Ȟ1 (U ;C) [[~]]. Where the inclusion comes from the
exact sequence of sheaves

0→ Z 2πi·−→ C e·−→ C× → 1, (5.3.6)

since it is also a short exact sequence of groups. So Im CU ⊂ Ȟ1 (U ,Z). On the other hand consider
the exact sequence of sheaves

0→ Z 2πi·−→ C∞ (M)
e·−→ C∞ (M)

× → 1. (5.3.7)

Now we see that the first connecting map ∂ in the corresponding long exact sequence in Čech cohomol-
ogy is surjective, since Ȟ1 (U ;C∞ (M)) = 0, and ∂ (f0) = [λ] where λ is given by λ (i, j) = g (i)− g (j)
such that eg(i) = f0|Ui , but then Df0|Ui = dg (i) so Ȟ1 (U ;Z) ⊂ Im CU . To get the result, simply note
that Ȟ1 (U ;Z) ' H1 (M ;Z) by theorem A.2.22 and proposition A.2.23. �

Remark 5.3.19. Note that the arguments in the proof of proposition 5.3.18 above are simply the
standard considerations when one notices the fact that D agrees locally with the differential of the
logarithm and one notices the fact that CU ◦D factors through the non-vanishing functions (by noting

that we have the isomorphism Z× ' C∞ (M)
× × (1 + ~C∞ (M) [[~]])).

Lemma 5.3.20. There are maps

P1 : Ȟ1
(
U ;Z×

) ∼−→ Ȟ1
(
U ;C∞ (M)

×
)
,

P2 : Ȟ1
(
U ;A~

×) −→ Ȟ1
(
U ;C∞ (M)

×
)

and

P3 : Ȟ1 (U ; 1 + ~C[[~]]) ∼−→ ~Ȟ1 (U ;C) [[~]],
where P2 has trivial kernel (note that as its domain is not necessarily a group this does not imply that
the map is injective) and P1 and P2 are induced by the map f0 + ~f1 + . . . 7→ f0.

Proof.
The proof for P1 is analogous to the proof for P2 if not simply easier. So we will explicitly show the
proof only for P2. Consider the decreasing filtration given by (A~

×)n = 1 + ~nA~ for n > 0 and
(A~

×)0 = A~
×. Then we have that (A~

×)n+1 C (A~
×)n and (A~

×)n ? (A~
×)m ⊂ (A~

×)min(n,m). So
we have the short exact sequence of (sheaves of) groups

1→
(
A~
×)

1
−→ A~

× −→ C∞ (M)
× → 1. (5.3.8)

Note that, if f, g ∈ (A~
×)n, then f ? g = 1 + ~n(fn + gn) mod (A~

×)n+1 so we also have the short
exact sequences of (sheaves of) groups

1→
(
A~
×)

n+1
−→

(
A~
×)

n
−→ C∞ (M)→ 0, (5.3.9)

for all n ∈ N. The map P2 is induced in the long exact sequence corresponding to 5.3.8. In order to
show that it has trivial kernel, we should show that Ȟ1(U ; (A~

×)1) vanishes. Note first of all that, since
Ȟ1(U ;C∞(M)) = 0, we find surjections Ȟ1(U ; (A~

×)n+1)� Ȟ1(U ; (A~
×)n) (which in fact have trivial

kernel). Suppose S : J2 → (A~
×)1 is a cocycle. Then, by the surjection above, ∃a1 : J → (A~

×)1 such
that the cochain a1 · S : J2 → (A~

×)2 given by

a1 · S (i, j) = a1 (i) ? S (i, j) ? a1 (j)
−1
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is a cocycle. Iterating this process yields a sequence ak : J → (A~
×)k such that, if we denote

bk :=
k

F
j=1

aj := ak ? ak−1 ? . . . ? a1,

then bk · S : J2 → (A~
×)k+1 is a cocycle (cohomologous to S). Let us denote Sk := bk · S. Then we

might consider its values in A~. Suppose k ≥ l ∈ N, we have

‖Sk (i, j)− Sl (i, j)‖ =
∥∥∥(bk (i)− bl (i)) ? S (i, j) ? bk (j)

−1
+ bl (i) ? S(i, j) ? (bk(j)−1 − bl(j)−1)

∥∥∥
≤ max

{
‖bk(i)− bl(i)‖ ,

∥∥bk(j)−1 − bl(j)−1
∥∥} =

= max

{∥∥∥∥(−1 +
k

F
α=l+1

aα (i)

)
? bl (i)

∥∥∥∥ ,
∥∥∥∥∥bl (j)−1

(
−1 +

(
k

F
α=l+1

aα (j)

)−1
)∥∥∥∥∥
}
≤ 2−1−l.

This means the sequence Sk (i, j) is Cauchy in A~ (which is complete) and therefore has a limit
S∞ (i, j) ∈ A~ for all (i, j) ∈ J2. Now note that since all the Sk have values in (A~

×)1 so does
S∞. Similarly we can show that the sequence bk has a limit b : J → (A~

×)1. Moreover, by the
same computation, we see that S∞ = b · S. In particular, S is cohomologous to S∞ and, since
lim←−
(
A~
×)

n
= 1, we see that [S] = [1] ∈ Ȟ1(U ; (A~

×)1). Since we started with an arbitrary cocycle
this shows that the last cohomology pointed set is in fact trivial. This shows the claim about P2 and an
easier version of the same argument shows that P1 is injective (since this is a group homomorphism).

Since C∞ (M) [[~]]× ' C∞ (M)
× × (1 + ~C∞ (M) [[~]]), in the obvious way, we see that P1 is also

surjective.

The map P3 is simply induced by exp from lemma 5.3.16.
�

Remark 5.3.21. To show lemma 5.3.20 we have used a method to pass from cohomology of A~
× to

cohomology of C∞(M)× by showing that Ȟ1
(
U ;
(
A~
×)

1

)
= {1}, using the fact that, by existence of a

smooth partition of unity, Ȟ1 (U ;C∞(M)) = 0. This method works equally well for group cohomology
when H1 (Γ;C∞(M))) = 0 and we will use it in the next section. When we do this we will simply
refer to the proof of lemma 5.3.20, instead of basically repeating the proof. Note that, in general,
the method provides an indication of how the cohomology of A~

× and C∞(M)[[~]]× are both given by
infinitely many copies of the cohomology of C∞(M) and the cohomology of C∞(M)×.

Proposition 5.3.22. D is surjective on total sections.

Proof.
In order to show the proposition, we will show that

Im D�Im D

Ȟ1 (U ; 1 + ~C[[~]])
' H1 (M ;C)

H1 (M ;Z)
.

Then, a triple application of the five lemma will show that Im D = Z1 (M) [[~]]. The inclusion of

Ȟ1 (U ; 1 + ~C[[~]]) in Im D
Im D

should be evident from the proof.

Note that, if g ∈ G∇ and U ⊂ M is a coordinate neighborhood (or any other neighborhood such
that H1

dR (U) = 0), then g|U = f ·k with f ∈ Z×|U and k ∈ Ker∇×|U ' A~
×|U by point (v) of lemma

5.3.10. Now let H : Im D → Ȟ1 (U ;C[[~]]×) be the map given by H (Dg) = [η] where η (i, j) = f(i)
f(j)

with the f(i) given by the decompositions g|Ui = f (i) · k (i). Again we leave it to the reader to check
that this map is well-defined.

Now suppose Dg ∈ KerH then g|Ui = f (i) · k (i) and f(i)
f(j) = c(j)

c(i) with c (i) ∈ C[[~]]× for all i. This

means that g|Ui = f (i) c (i) · k(i)
c(i) and f(i)c(i)

f(j)c(j) = 1, so ∃fc ∈ Z× such that fc|Ui = f (i) c (i). On the



5.3. CLASSIFICATION OF EXTENDED GROUP ACTIONS 88

other hand we have that k (i) · k (j)
−1

= c(i)
c(j) , so ∃kc ∈ A~

× such that k
c |Ui = k(i)

c(i) . This shows that

g = fc · kc and thus KerH = Im D. So we conclude that

Im D
Im D

=
Im D
KerH

' Im H ⊂ Ȟ1
(
U ;C[[~]]×

)
.

Now suppose [λ] ∈ Ȟ1 (U ;C[[~]]×) such that ∃f ∈ Č0 (U ;Z×) and k ∈ Č0
(
U ;A~

×) such that
f(i)
f(j) = λ (i, j) = k (j) k (i)

−1
for all (i, j) ∈ J2. Then f(i)

f(j)k (i) k (j)
−1

= λ(i,j)
λ(i,j) = 1 for all (i, j) ∈ J2. So

∃g ∈ G∇ such that g|Ui = f (i) · k (i) and H (Dg) = [λ]. Conversely, if [λ] = H (Dg) for some g ∈ G∇,
then obviously such 0-cochains exist. So we find that Im H = Ker I ∩ KerY , for I and Y the maps
induced by the inclusions

A~
× Y←↩ C[[~]]× I

↪→ Z×.

Now, by the lemma 5.3.20, we see that Ker I = KerP1 ◦ I and KerY = KerP2 ◦ Y and in fact
these maps agree, i.e. R := P1 ◦ I = P2 ◦ Y . They agree since they are all simply the map induced by

C[[~]]× → C∞ (M)
×

c 7→ c0
.

This map factors like R = ∂ ◦ P , where P is induced by the projection C[[~]]× � C× and ∂ is

induced by the inclusion of C× in C∞ (M)
×

. Now, since C[[~]]× ' C× × (1 + ~C[[~]]) in the obvious
way, we see that Ȟ1 (U ; 1 + ~C[[~]]) = KerP . So, we find that

Im H

KerP
=

KerR

KerP
' Ker ∂.

If we identify Ȟ1
(
U ;C∞ (M)

×
)
' Ȟ2 (U ;Z) using the exponential sequence (5.3.7), then we see that ∂

is simply the connecting map in the exponential sequence (5.3.6) and this shows that Ker ∂ ' Ȟ1(U ;C)

Ȟ1(U ;Z)
,

which proves the claim. �

In light of various exact sequences that appear in the following section, we will be able to use the
following proposition.

Proposition 5.3.23. Let

0→ A
i−→ E

π−→ G→ 1

be a Γ-equivariant central extension, then we also have the exact sequence

0→ AΓ −→ EΓ −→ GΓ −→ H1(Γ;A) −→ H1(Γ;E) −→ H1(Γ;G) −→ H2(Γ;A).

Proof.
As mentioned we only need to extend the sequence to include H2(Γ;A) (see section 2.7 of [58]). We
simply do the usual (Abelian) construction and show that it still works because the extension is central.
So suppose [η] ∈ H1(Γ;G) and let Eγ 7→ ηγ for all γ ∈ Γ. Then (δE)γ,µ ∈ Kerπ for all γ, µ ∈ Γ, so
a := δE : Γ2 → A. By writing out and noting that the computation takes place in the Abelian group
A we find

(δa)γ,µ,χ = (δE)−1
γµ,χγ((δE)µ,χ)(δE)γ,µχ(δE)−1

γ,µ = EγµχE
−1
γµ (δE)−1

γ,µγ(Eµ)EγE
−1
γµχ = 1

So that [a] ∈ H2(Γ;A) and we will need to show that this map [η] 7→ [a] is well-defined. First suppose

that Ẽγ is another lift of ηγ for each γ ∈ Γ. Then note that ẼγE
−1
γ and Ẽ−1

γ Eγ are in A and thus
central for all γ ∈ Γ, so we have

(δẼ)γ,µ(δE)−1
γ,µ = (δẼE)γ,µ ∀γ, µ ∈ Γ
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where (ẼE)γ = ẼγEγ . So both lifts will define cohomologous cocycles in H2(Γ;A). Now suppose
E′γ lifts γ(x)ηγx

−1 for all γ ∈ Γ and some x ∈ G. Then, if π(X) = x, we note that the element

(X · E′)γ := γ(X)−1EγX lifts ηγ for all γ ∈ Γ. Then note that

(δ(X · E′))γ,µ = Ad (γµ)(X−1)((δE)γ,µ) = (δE)γ,µ ∀γ, µ ∈ Γ,

which shows, when combined with the previous remark (concerning Ẽ), that the implied map in
cohomology H1(Γ;G)→ H2(Γ;A) is well-defined. Lastly we should show that the sequence is exact at
H1(Γ;G). So suppose [η] ∈ H1(Γ;G) maps to 0 under the map described above. Then there is a lift
Eγ for every ηγ for all γ ∈ Γ such that (δE)γ,µ = (δα)γ,µ for some α : Γ → A and all γ, µ ∈ Γ. Then
consider Eα−1 given by (Eα−1)γ = Eγα

−1
γ and note that

(δEα−1)γ,µ = (δE)γ,µ(δα)−1
γ,µ = 1 ∀γ, µ ∈ Γ2,

but also Eα−1 7→ η under π. This shows that [η] is in the image of H1(Γ;E)→ H1(Γ;G). �

5.3.3. Computations. Let us show in this section how the tools developed in the previous
section can be applied to computation. In particular we will show that, under sufficiently restrictive
assumptions on the cohomology of the group Γ and the first cohomology of the manifold M , we find
that there is a unique extension of the action to any deformation quantization. We will also show that
in general the extensions are not unique even when the first cohomology of the manifold vanishes and
the group acts faithfully. Most of the computations here are done by applying group cohomology to
the diagram (5.3.4).

Proposition 5.3.24. Suppose H1
dR(M) = 0 and |Γ| <∞, then we have H1(Γ;G∇) = {1}.

Proof.
By vanishing of H1

dR(M) and lemma 5.3.10 we have the exact sequence

1→ C[[~]]× −→ A~
× −→ G∇ → 1, (5.3.10)

since G∇ = Z× · A~
× and Z× ∩ A~

× = C[[~]]×.

The proof proceeds in two steps. First we show that the connecting map

H1
(
Γ;G∇

)
→ H2

(
Γ;C[[~]]×

)
is trivial. Secondly we show that the map

H1
(
Γ;C[[~]]×

)
→ H1

(
Γ;A~

×)
is surjective. Given these two facts, the proposition is implied by proposition 5.3.23. In the following
we shall denote the differential of the cochain c by δc.

Suppose η : Γ → G∇ is a cocycle. We will first show that the image of the class of η under the
connecting map can be represented by a cocycle c with values in C×. So suppose E : Γ→ A~

× lifts η.
By proposition 5.3.23 we find that δE is a 2-cocycle in C[[~]]× for the trivial action. Then, by the fact
that H2(Γ;C) = 0 and an analogous argument to the one used in the proof of lemma 5.3.20, we find

λ : Γ → C[[~]]× such that (δλ)(δE) has values in C×. Now note that, if Ẽ denotes the cochain given

by Ẽγ = λγEγ for all γ ∈ Γ, then Ẽ also lifts η and δẼ = (δλ)(δE) (since C[[~]]× is central in A~
×).

But then, if we write Ẽ =
∑
~kEk, we find that

(δẼ)γ,µ = (δE0)γ,µ + ~Sγ,µ,

for all γ, µ ∈ Γ, here we consider δE0 as the boundary of the cochain E0 : Γ → C∞(M)×. Now the

fact that δẼγ,µ ∈ C× implies that S = 0. So we find that δẼ = δE0 as cochains with values in C×.
So, we have found the cocycle c := δE0 representing the image of the class of η under the connecting
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map. Note that, since H1(M ;Z) = 0, the inclusion of C in C∞(M) and the exponential sequences
(5.3.6) and (5.3.7) induce the commuting diagram with exact rows

H2(Γ;Z) H2(Γ;C) H2(Γ;C×) H3(Γ;Z) H3(Γ;C)

H2(Γ;Z) H2(Γ;C∞) H2(Γ; (C∞)×) H3(Γ;Z) H3(Γ;C∞)
,

where we have abbreviated C∞ := C∞(M). So, we have H2(Γ;C×) ' H2(Γ;C∞(M)×) by the five
lemma, but then [c] is trivial, since it is trivial in H2(Γ;C∞(M)×) by construction. So the map
H1(Γ;G∇)→ H2(Γ;C[[~]]×) is the zero map.

Now suppose η : Γ→ A~
× is a cocycle. Then, writing η =

∑
~kηk, we find that

η0 : Γ→ C∞(M)× is also a cocycle. As above, we find the commuting diagram with exact rows

H1(Γ;Z) H1(Γ;C) H1(Γ;C×) H2(Γ;Z) H2(Γ;C)

H1(Γ;Z) H1(Γ;C∞) H1(Γ; (C∞)×) H2(Γ;Z) H3(Γ;C∞)
.

So, again by the five lemma, we find f ∈ C∞(M)× such that (δf)η0 has values in C×. Denote by η̃
the cocycle given by η̃γ = γ∗(f)ηγf

−1, then

η̃((δf)η0)−1 = 1 + ~S

for some S : Γ→ A~. So, using the exact sequences

1→ 1 + ~k+1A~ −→ 1 + ~kA~ −→ C∞(M)→ 0,

the fact that H1(Γ;C∞(M)) = 0 and the same reasoning as in lemma 5.3.20, we find that there exists
P ∈ 1 + ~A~ such that αγ(P )(1 + ~Sγ)P−1 = 1 for all γ ∈ Γ. Thus we find that

[η] = [η̃] = [(δf)η0] ∈ H1(Γ,A~
×)

which means that the map H1(Γ,C[[~]]×)→ H1(Γ;A~
×) is surjective. So, by the sequence implied by

proposition 5.3.23 and (5.3.10), we find that H1(Γ;G∇) = {1}. �

Corollary 5.3.25. For the conditions in proposition 5.3.24 there is, up to conjugation by a fixed
automorphism, a unique extension of the group action to any deformation quantization by proposition
5.3.24 and corollary 5.2.5.

Note that proposition 5.3.24 in particular contains the cases of the actions of Z/nZ, D2n, A4, S4

and A5 (finite subgroups of SO(3)) by symplectomorphisms on S2.

Remark 5.3.26. Note that the actual properties of the group that were used in the proof of
proposition 5.3.24 are

• Hi(Γ,C) = Hi(Γ, C∞(M)) = 0 for i = 1, 2 (for the trivial action on C)
• H3(Γ,C) ↪→ H3(Γ, C∞(M)) (induced by the inclusion),

all of which are satisfied by finite groups.

Remark 5.3.27. Let us consider for a moment the group Γ acting trivially on the manifold M .
Then of course we can lift this action to the trivial action on any deformation quantization and the
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classification comes down to finding representations of Γ as self gauge equivalences of the deformation.
In this case we find that

H1(Γ;G∇) ' Hom(Γop,G∇)
/
G∇

where the quotient is taken with respect to the inclusion of G∇ in Aut(G∇) as inner automorphisms.
It is to be expected that this yields non-equivalent extensions of the trivial action of Γ. However, they
would be rather pathological examples. Let us show that there may be non-equivalent extensions of
the group action even when this action Γ→ Symp(M) is injective.

Example 5.3.28. Consider the action of Z on S2 by rotation through an irrational angle θ around
the vertical axis. Note that, since H2

dR(S2)[[~]] = C[[~]][α] where α denotes the standard symplectic
structure on S2, we find that any action by symplectomorphisms that preserves an affine connection
extends to any deformation quantization by proposition 5.2.3. In particular, by uniqueness of the Levi-
Civita connection, any action by symplectic isometries lifts to any deformation quantization. Note
that we have H1(Z;G) ' G/ ∼, where g ∼ h if 1(b)gb−1 = h, whenever Z acts on any group G. Since
we have H2(Z;C[[~]]×) = 0 and (5.3.10), we find the sequence

1→ C[[~]]× −→
(
A~
×)Z −→ G∇Z −→ C[[~]]× −→ A~

×/∼ −→ G∇/∼ → 0. (5.3.11)

Suppose c, c′ ∈ C[[~]]× such that their images in A~
×/∼ coincide, i.e. there exists g ∈ A~

× such
that cr∗θ(g) = c′g, where we denote the rotation inducing the action of Z by rθ . Then note that, since
the action has a fixed point at the north pole, we can evaluate g there to find that c = c′. So we find
that the map C[[~]]× → A~

×/∼ is injective. Now suppose f ∈ A~
× such that there is c ∈ C[[~]]× and

c ∼ f . Then, if we write c =
∑
~kck and f =

∑
~kfk, we find that there exists some g0 ∈ C∞(S2)×

such that c0r
∗
θ(g0) = f0g0 (for the undeformed product). Now note that this implies that f0 must take

the value c0 at both the north and south pole. So, we find that the map C[[~]]× → A~
×/∼ is definitely

not surjective, since there exist many non-vanishing functions on S2 that do not have the same value
at the north and south pole. Then exactness of (5.3.11) shows that H1(Z;G∇) ' G∇/∼ 6= {1} and so
there exist multiple extensions of this action to any deformation quantization.

Corollary 5.3.29. Suppose Γ = Z acts on (M,ω) with H1
dR(M) = 0 and there is more than 1

fixed point, then H1(Γ;G∇) 6= {1}.

Finally let us show that the diagram (5.3.4) allows us to make conclusions about H1(Γ;G∇) even
in the case that H1

dR(M) 6= 0.

Example 5.3.30. Consider the action of Z on T2 = T × T by irrational rotation of one of the
coordinates. Then we find that the induced action on T 1

~ (T2) is trivial and so

H1(Z;T 1
~ (T2)) = T 1

~ (T2)

by the discussion in the beginning of example 5.3.28. Suppose 0 6= l ∈ T 1
~ (T2), then we can lift this

to [0] 6= [z] ∈ H1(Z;Z1(M)[[~]]) ' Z1(M)[[~]]/∼, since H2(Z;Z×/C[[~]]×) = 0. By proposition 5.3.22
we can find g ∈ G∇ such that Dg = z. In particular g represents a non-trivial class in H1(Z;G∇). Its
image g in H1(Z;G∇) must, by commutativity of (5.3.4), be mapped the the non-trivial class l and
therefore it cannot be trivial. So we find that H1(Z;G∇) 6= {1}. In fact this shows that

T 1
~ (T2) ↪→ H1(Z;G∇).

Note also that, since H2(Z;Z×) = 0, we find that the map H1(Z;G∇) → H1(Z;G∇) is surjective and,
since H2(Z;C[[~]]×) = 0, so is the map H1(Z;A~

×)→ H1(Z;A~
×/C[[~]]×). Thus we find that H1(Z;G∇)

is essentially given by T 1
~ (T2) and H1(Z;A~

×) the last of which is given essentially by H1(Z;C∞(T2))

and H1(Z;C∞(T2)×).

Many more examples can of course be considered, for instance when Γ is finite, but H1
dR(M) 6= 0.

We will leave these examples to the reader.



CHAPTER 6

Algebraic Index Theorems

In this chapter we will consider the algebraic analog of the Atiyah-Singer index theorem 1.3.4,
namely the algebraic index theorem 6.1.22. The algebraic index theorem is in essence a certain
product formula for periodic cyclic cohomology classes. By the well-known pairing of K-theory and
cyclic cohomology, given by the Chern-Connes map [78], we obtain the theorem 6.1.22. The algebraic
index theorem was first proved in [86] as stated in 6.1.22, although some results had appeared earlier
[48].

Although the method of proof of the algebraic index theorem in [86] is slightly different from
the proof we will present below, the framework of formal geometry was already present. In the next
section we will present a proof of the algebraic index theorem 6.1.22 similar to the proof presented
in [14]. In the section following it we will adapt this proof to prove the equivariant algebraic index
theorem 6.2.23. The equivariant algebraic index theorem is the analog of the algebraic index theorem
when we consider a group action on the deformation quantization. The main application is in the case
that the action of the group is not “nice” enough to allow for a symplectic quotient manifold.

6.1. The Algebraic Index Theorem

In this section we will present a proof of the algebraic index theorem 6.1.22 similar to the proof
presented in [14]. The proof proceeds in the spirit of formal geometry, by first proving the theorem for
the formal neighborhood of a point in 2d-dimensional Euclidean space and subsequently globalizing
by use of an appropriate Gelfand-Fuks map. Thus we will first prove a certain product formula in Lie
algebra cohomology, which we will call the universal algebraic index formula 6.1.12, and then we will
derive the algebraic index theorem 6.1.22 from this one.

6.1.1. Universal Algebraic Index Theorem. In this section we will present a proof, given in
[14], of the universal algebraic index theorem 6.1.12. Let us first motivate why one expects this kind
of theorem. First of all we note that, since the trace Tr appearing in the algebraic index theorem
6.1.22 is defined in terms of integrals, the algebraic index theorem is actually an equation of densities,
rather than their integrals. In other words the algebraic index theorem equates two maps

HCper• (A~(M)) −→ H•dR(M)[[~]].

If this holds for any symplectic manifold (M,ω) and any deformation quantization of it, then it should
certainly hold for the formal neighborhood of 0 ∈ R2d and the unique deformation quantization of it.
The global aspect is given in this case by requiring that the classes we equate are equivariant with
respect to the action of the formal vector fields in g~. This leads to the universal algebraic index
theorem 6.1.12.

Notation 6.1.1. From now on there will be instances where algebras initially defined over C[[~]]
will be localized at ~ and thus defined over C[~−1, ~]]. To avoid cumbersome notation we will turn
subscripts ~ into (~) to signify that we mean the localized version of the algebra. So, we denote for
instance W(~) := W~[~−1] and A(~) := A~[~−1].

Note that, in section 3.3.1, we proved the following proposition.

92
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Proposition 6.1.2. There exists a quasi-isomorphism

µ̃~ :
(
CHoch•

(
W(~)

)
, b
)
−→

(
Ω̂−•[~−1, ~]][2d], d̂

)
.

We will now fix a choice of such a quasi-isomorphism µ̃~. Note that all choices of quasi-isomorphism
are homotopic. Note that in section 3.3.2 we also show the periodic cyclic counterpart of proposition
6.1.2.

Proposition 6.1.3. There exists a quasi-isomorphism

µ~ :
(
CCper•

(
W(~)

)
, b+ uB

)
−→

(
Ω̂−•[u−1, u]][~−1, ~]][2d], d̂

)
.

where u is a formal variable of degree −2 (i.e. on the right hand side we consider the periodicized
formal de Rham complex).

As before, we will fix such a quasi-isomorphism extending the previously fixed µ̃~ in the Hochschild
case. For the periodic cyclic homology of the undeformed formal neighborhood we have another
canonically defined quasi-isomorphism. In the following we will use Â to refer to the complexification
of Â2d.

Proposition 6.1.4. The map

E : CCper•

(
Â
)
−→

(
Ω̂•[u−1, u]], ud̂

)
given by f0 ⊗ f1 ⊗ . . .⊗ fn 7→ 1

n!f0d̂f1 ∧ d̂f2 ∧ . . . ∧ d̂fn is a quasi-isomorphism.

Proof.
A direct check shows that E ◦ b = 0, while E ◦ B = d̂, so E is a map of complexes. Note that
we can view the periodic cyclic complex as the totalization of a double complex in the usual sense,
see appendix A.2.1, and we can see the formal de Rham complex as the totalization of the double

complex
(

Ω̂•[u−1, u]], 0, d̂
)

. Comparing the associated spectral sequences, we see that, by the well-

known [78, 79] fact that

HH•

(
Â
)
' Ω̂•,

E is an isomorphism on the first pages. This implies that E is a quasi-isomorphism. �

Note that proposition 6.1.4 is the formal analog of the Connes-Hochschild-Kostant-Rosenberg
theorem [25, 95].

Proposition 6.1.5. The map

J :
(

Ω̂•[u−1, u]], ud̂
)
−→

(
Ω̂−•[~−1, ~]][u−1, u]][2d], d̂

)
,

given by f0d̂f1 ∧ . . . ∧ d̂fn 7→ ud−nf0d̂f1 ∧ . . . ∧ d̂fn, is an isomorphism of complexes.

Proof.
A simple check shows that J ◦ ud̂ = d̂ ◦ J . Now note that the map Q, given by

f0d̂f1 ∧ . . . ∧ d̂fn 7→ un−df0d̂f1 ∧ . . . ∧ d̂fn,
is seen, by a similar check, to satisfy Q ◦ d̂ = ud̂ ◦Q and clearly Q = J−1. �

Definition 6.1.6. We define the formal topological trace density

τ̂t : (CCper• (W~), b+ uB) −→
(

Ω̂−•[u−1, u]][~−1, ~]][2d], d̂
)

as the composite J ◦E ◦ ι ◦ σ̂. Here σ̂ denotes the map from CCper• (W~) to CCper•

(
Â[[~]]

)
induced by

the map that sets ~ = 0; by ι we mean the map induced in periodic cyclic homology by the extension
of scalars from C[[~]] to C[~−1, ~]] and E and J are C[~−1, ~]]-linear analogs of the maps in propositions
6.1.4 and 6.1.5.



6.1. THE ALGEBRAIC INDEX THEOREM 94

Notation 6.1.7. We denote by

L• := Hom−•
(
CCper• (W~), Ω̂−•[u−1, u]][~−1, ~]][2d]

)
the hom internal to the category of chain complexes. We will denote the differential on L• by ∂L.
Similarly, we denote

L̃• := Hom−•
(
CCper•

(
W(~)

)
, Ω̂−•[u−1, u]][~−1, ~]][2d]

)
.

Suppose D is a derivation of W~, then we define the derivation D : Â → Â by the formula

D(f̂) = σ̂D(f), where, on the right hand side, we consider f ∈W~ in the obvious way. Note that this

means that g~ acts by derivations on Â and thus also on Ω̂−•[u−1, u]][~−1, ~]][2d]. Note that the corre-

sponding action of sp(2d,R) integrates to an action of Sp(2d,R), which makes Ω̂−•[u−1, u]][~−1, ~]][2d]
a (g~,Sp(2d,R))-module. Note that the actions of Sp(2d,R) and g~ on W~ extend to CCper• (W~)
making this an (g~,Sp(2d,R))-module also. In particular, we can consider the complex, i.e. the total
complex associated to a double complex,(

C•Lie
(
g~, sp(2d,R);L•

)
, ∂Lie, ∂L

)
.

Note that, since the formal topological trace density is g~-equivariant, we find that

[τ̂t] ∈ H0
(
g~, sp(2d,R);L•

)
.

On the other hand, as mentioned in the remark 3.3.7, the quasi-isomorphism µ~ is sp(2d,R)-equivariant,
but not g~-equivariant.

Lemma 6.1.8. There are cochains

µ~,p ∈ CpLie
(
g~, sp(2d,R); L̃−p

)
,

for all p > 0, such that

µeq~ := µ~ +
∑
p>0

µ~,p

is a cocycle.

Proof.
The proof follows from the fact that the cohomology of L̃• is one-dimensional, the spectral sequence
associated to the double complex(

C•Lie

(
g~, sp(2d,R); L̃•

)
, ∂Lie, ∂L

)
and an argument very similar to the proof of proposition 3.3.9. �

Definition 6.1.9. We define the formal algebraic trace density

τ̂a ∈
(
C•Lie

(
g~, sp(2d,R);L•

)
, ∂Lie, ∂L

)
as the composite µeq~ ◦ι, where ι is defined in definition 6.1.6. We denote the analogous cochain starting

from Hochschild homology by ˆ̃τa.

Now we have the two classes

[τ̂t], [τ̂a] ∈ H0
(
g~, sp(2d,R);L•

)
.

The universal algebraic index theorem states that these two classes are related by a certain product
formula, i.e. [τ̂a] is given by the product of [τ̂t] with a certain class. Another way to say it is that the
diagram
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σ̂
CCper•

(
Â
)

CCper• (W~)
E

Ω̂•[u−1, u]]

µ~
CCper•

(
W(~)

)
Ω̂−•[~−1, ~]][u−1, u]][2d]

ι J

,

is commutative up to a factor in the derived category of (g~, sp(2d,R))-modules, see [14]. Let us
construct the needed factor that will make the diagram above commutative.

Recall the Chern-Weil construction of classes in example 2.4.3. Note that this construction can
be applied verbatim to the deformed situation. In other words, consider the Sp(2d,R)-equivariant
projection

p : g~ −→ sp(2d,R)

given by the identification of g~0 and sp(2d,C) in proposition 3.2.4 and the inclusion of sp(2d,R) in
sp(2d,C). Just as in example 2.4.3, we have the corresponding curvature map

Rp : g~ ∧ g~ −→ sp(2d,R).

Thus we also find the Chern-Weil homomorphisms

CWp : Sp(sp∗2d)Sp(2d,R) −→ C2p
Lie

(
g~, sp(2d,R)

)
defined exactly as in example 2.4.3.

Definition 6.1.10. We define the formal A-hat class Âf as the image of the symmetric invariant
polynomial √√√√det

(
ad X

2

exp
(
ad X

2

)
− exp

(
−ad X

2

))
under the Chern-Weil homomorphism defined above.

Note that we can also view Âf as a class in C2•
Lie

(
g~, sp(2d,R); a

)
, using the notation of remark

3.2.2. Recall also the Weyl curvature θ̂ ∈ C2
Lie

(
g~, sp(2d,R); a

)
of the remarks 3.2.2 and 3.2.7.

Definition 6.1.11. Suppose [A] ∈ Hev
(
g~, sp(2d,R);C[~−1, ~]]

)
is an even cohomology class and

L is any g(~)[u−1, u]]-module, then we denote by A· the operator

A· : C•Lie
(
g~, sp(2d,R);L

)
−→ C•Lie

(
g~, sp(2d,R);L

)
given by

A · c =
∑
k≥0

udA2d ∧ c

for any c ∈ C•Lie
(
g~, sp(2d,R);L

)
, where A =

∑
k≥0A2k for [A2k] the component of A in the coho-

mology group H2k
(
g~, sp(2d,R);C[~−1, ~]]

)
.

Note that, for any A as in definition 6.1.11 above, the operator A· is of degree 0.

Theorem 6.1.12 (Universal Algebraic Index Theorem). The cocycle

τ̂a −
(
Âfe

θ̂
)
· τ̂t

is cohomologous to 0.
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The proof of theorem 6.1.12 can be found in [14] and implicitly in [86]. Since the proof uses
some rather involved constructions in cyclic homology we will omit it here. A sketch of the proof is as
follows. First of all one notes that, since both the periodic cyclic complex of W(~) and the formal de
Rham complex are one-dimensional in cohomology, the proof only requires computation of µ~(1). The
proof uses the reduced cyclic complex CC•

(
W(~)

)
of the algebra W(~), see [78, 14] for a definition.

In particular it uses the fact that one can define a certain action

CC1−•
(
W(~)[η]

)
[u−1, u]]⊗ CCper•

(
W(~)

)
−→ CCper−•

(
W(~)

)
,

where η is a degree −1 variable such that η2=0, of the reduced cyclic complex on the periodic cyclic
complex. In fact, this can be done for any unital algebra [14]. The proof proceeds by constructing a
certain fundamental cocycle U in the reduced cyclic complex and showing that µ~(U •1) = 1, where we
denote the action of the reduced complex on the periodic complex by •. The theorem then follows from

an explicit computation of U in terms Âf and θ̂. This computation uses the explicit construction, due
to Brodzki [16], of the connecting morphism in the exact triangle defining the reduced cyclic homology
complex.

6.1.2. Globalization of the Universal Formula. The algebraic index theorem basically fol-
lows from the universal theorem 6.1.12 by applying the Gelfand-Fuks map GF ~

M , defined in 4.1.7,
obtained through the framework of formal deformed geometry, see section 4.1. Namely, we note that
the cocycles τ̂a and τ̂t provide maps of complexes

C•Lie
(
g~, sp(2d,R);CCper• (W~)

)
−→ C•Lie

(
g~, sp(2d,R); Ω̂−•[u−1, u]][~−1, ~]][2d]

)
.

This means that, by applying the Gelfand-Fuks map, we obtain the maps of complexes

GF ~
M (τ̂a), GF ~

M (τ̂t) : Ω• (M ;CCper• (W~)) −→ Ω•
(
M ; Ω̂−•[u−1, u]][~−1, ~]][2d]

)
.

The algebraic index theorem 6.1.22 then follows from the observation that the left hand complex
is quasi-isomorphic to CCper• (A~(M)), by proposition 4.1.9, and the right hand complex is quasi-
isomorphic to the usual de Rham complex. The only thing that remains to be done is find out what

the images of τ̂a, Âf , θ̂ and τ̂t under the Gelfand-Fuks map are.

Proposition 6.1.13. We have GF ~
M

(
θ̂
)

= θ, the characteristic class, or the Weyl curvature, of

A~(M) and GF ~
M

(
Âf

)
= Â (TCM), the Â-genus of the complexified tangent bundle.

Proof.
The proposition follows by the definition of the characteristic class 4.3.2 and the definition of the
Â-genus [48]. �

Lemma 6.1.14. There exists a quasi-isomorphism

T0 :
(

Ω•(M ; Ω̂−•[~−1, ~]][u−1, u]][2d]),∇~
F + d̂

)
−→

(
Ω•(M)[~−1, ~]][u−1, u]][2d], ddR

)
.

Proof.
On the left hand side we are referring to the totalization of a (completely) bounded double complex

with the differential ∇~
F acting vertically and the differential d̂ horizontally. Let us also view the

right hand side as the totalization of a completely bounded double complex with the differential ddR

acting vertically and the differential 0 acting horizontally. Consider the natural inclusion of the right
hand complex into the left hand complex. If we associate to both double complexes the spectral
sequence arising from their filtration in terms of the degree of Ω•, we see that this inclusion induces
an isomorphism on the first pages. Moreover the spectral sequences collapse on the second pages.
Thus the natural inclusion is a quasi-isomorphism. Now we let T0 be a quasi-inverse to the natural
inclusion. �
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Remark 6.1.15. Let us consider

GF ~
M (τ̂t) ∈ Hom0

(
CC•per(W~), Ω̂−•M [~−1, ~]][u−1, u]][2d]

)
,

where Ω̂−•M [~−1, ~]][u−1, u]][2d] is the bundle with fibers Ω̂−•[u−1, u]][~−1, ~]][2d] associated to SpM . It
is given by

GF ~
M (τ̂t)(w0 ⊗ . . .⊗ wn) = ud−nσ(w0)d̂σ(w1) ∧ . . . ∧ d̂σ(wn),

where σ sets ~ = 0 as expected. Note that, if f ∈ C∞(M), then locally the∞-jet f̂ of f inW~ satisfies

df̂ = d̂f̂ , by the remark 4.1.10. This shows that T0 ◦GF ~
M (τ̂t) ◦J∞F,~, where J∞F,~ denotes the map that

the map in proposition 4.1.9 induces in cyclic homology and T0 is as in lemma 6.1.14, is exactly the
Connes-Hochschild-Kostant-Rosenberg map defined in [25, 95] (composed with σ). We will denote
this Connes-Hochschild-Kostant-Rosenberg map by E .

Determining the image of τ̂a under the Gelfand-Fuks map is slightly more involved. To do this,
let us return briefly to the class ˆ̃τa defined in terms of the Hochschild homology instead of the cyclic

homology. Note that (∇~
F + b∗ + d̂)GF ~

M (ˆ̃τa) = 0 since ˆ̃τa is a cocycle. Let us denote by L•H the

counterpart of the complex L̃•, see notation 6.1.7, for the Hochschild complex instead of the periodic
cyclic complex. Note that, since the cohomology of L•H is one-dimensional, we know that the extension

of ˆ̃τa to a g~-equivariant class is unique up to homotopy. These two observations together with remark
4.1.10 show the following corollary.

Corollary 6.1.16. In local Darboux coordinates (x1, . . . , xd, ξ1, . . . , ξd) on the chart U ⊂M , we

have that GF ~
M

(
ˆ̃τa

)
(1) is given by

ω(x+ x̂)d

d!(i~)d
=
d(ξ1 + ξ̂1) ∧ d(x1 + x̂1) ∧ . . . ∧ d(xd + x̂d)

d!(i~)d
(6.1.1)

up to an exact form in Ω•
(
U, Ω̂−•[~−1, ~]][u−1, u]][2d]

)
.

Although the algebraic index theorem is essentially a theorem about certain periodic cyclic coho-
mology classes, it can be phrased in terms of K-theory by considering the well-known pairing induced
by the Chern-Connes map [78]. Let us recall the definition of this map here and refer to [78] for more
information on the pairing.

Definition 6.1.17. Suppose A is an algebra, then we define the Chern-Connes map

ch: K0(A) −→ HCper0 (A)

as follows. Suppose [e] ∈ K0(A) is represented by the idempotent e ∈MN (A) then

ch ([e]) =

tr

e+
∑
i≥1

(−u)i
(2i)!

i!

(
e− 1

2

)
⊗ e⊗2i

 ,
where tr denotes the generalized trace [78]

tr(a⊗ b⊗ . . .⊗ c) =
∑

ai0i1 ⊗ bi1i2 ⊗ . . .⊗ cini0
for a, b, c ∈MN (A).

In theorem 6.1.22 below we will consider, instead of this map on cohomology, the underlying
assignment which assigns to the idempotent e the periodic cyclic chain underlying the definition of
ch ([e]).

Notation 6.1.18. We shall denote the compactly supported sections by a subscript c, for any
bundle over M . In particular A~c(M) denotes the ideal of compactly supported functions in A~(M)
and Ω•c(M) denotes the compactly supported differential forms on M .
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The following is a special definition of trace on A~(M) due to Fedosov [48]. It uses the Fedosov
construction explicitly, so let us fix a Fedosov connection ∇ and identify Ker∇ with A~(M).

Definition 6.1.19. A trace on the algebra A~(M) is defined to be a C[[~]]-linear functional

Tr: A~c(M) −→ C[~−1, ~]]
such that

Tr Ad E(f) = Tr f

for all f ∈ A~c(M) and all E ∈ G∇.

Note that the above definition implies the familiar trace identity Tr fg = Tr gf .

Proposition 6.1.20. There is a unique normalized trace Tr on any deformation quantization.

The proof of this proposition may be found in section 5.6 of [48]. A sketch of the proof is as
follows. First, the trace is defined locally as

Tr f = (i~−d)
∫
R2d

f
ωdst
d!
,

this fixes the normalization. It is shown that this formula defines a trace as in the definition 6.1.19.
Then the formula is globalized by considering a (Darboux) cover and a partition of unity subordinate
to it. Finally it is shown that the globalized formula defines a trace as in definition 6.1.19 and does
not depend on the particular cover, trivialization or partition of unity.

Remark 6.1.21. It is also shown in [48] that the trace Tr can be given in terms of a density.
Although we shall not explicitly use this fact, we note that the density is implicit in the proof of
the theorem 6.1.22 below. Also note that, since we shall show that the trace Tr is actually given by
globalization of the formal class ˆ̃τa, existence of a trace density is expected.

The following theorem will now follow easily from the considerations above.

Theorem 6.1.22 (Algebraic Index Theorem). Suppose e, f ∈ MN (A~(M)), for some N > 0, are
idempotents such that e− f ∈MN (A~c(M)). Then we have

TrN (e− f) =

∫
M

E(ch (σ(e))− ch (σ(f)))
(
Â(TCM)eθ

)
,

where E : CCper• (C∞(M))→ Ω•(M) denotes the Connes-Hochschild-Kostant-Rosenberg map [25, 95],
TrN denotes the composition of the unique normalized trace on A~(M) (see proposition 6.1.20) with
the matrix trace, σ denotes the map given by setting ~ = 0 and finally ch denotes the Chern-Connes
map defined in definition 6.1.17.

Proof.
The theorem follows by applying the compositions

CCper• (A~c(M))
J∞F,~−→ Ω•c(M ;CCper• (W~))

V−→ Ω•c(M ; Ω−•[u−1, u]][~−1, ~][2d]]) −→

T0−→ Ω•c(M)[u−1, u]][~−1, ~][2d]

∫
M−→ C[u−1, u]][~−1, ~][2d].

Here J∞F,~ is as in proposition 4.1.9, T0 is as in proposition 6.1.14,
∫
M

denotes integration over the

manifold M and V is either GF ~
M (τ̂a) (for the left hand side) or GF ~

M

((
Âfe

θ̂·
)
τ̂t

)
(for the right

hand side). By proposition 6.1.12 application of both these compositions must agree. Note that the
expression on the right hand side follows from proposition 6.1.13 and remark 6.1.15.

We need to show that the left hand side is indeed the trace. This follows by returning to the
Hochschild complex and ˆ̃τa, since, if we consider the composition above defined with respect to
the Hochschild instead of the cyclic complex, then we see that we obtain a cocycle in the complex
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HomC[[~]]

(
CHoch• (A~c(M)) ,C[~−1, ~]]

)
. By construction of the Gelfand-Fuks map, this cocycle is also

invariant under automorphisms lifting the identity, i.e. it is a trace as in definition 6.1.19. This means
we only need to check that it is normalized (or rather non-zero, since in that case we can always adjust
the map τ̂a to take care of the normalization). Note that we can check this normalization locally and
thus it follows from equation (6.1.1).

�

6.2. An Equivariant Algebraic Index Theorem

In this section we shall formulate and prove the main theorem 6.2.23 of this thesis. It is a
generalization of theorem 6.1.22 to include equivariance under a group action. We mean this in the
following way. Suppose given an action of the group Γ on the deformation quantization A~(M). Then
in particular we find an action of Γ by symplectomorphisms of M (see section 5.1). Now suppose
this action is such that there exists a well-defined symplectic quotient manifold M/Γ, for instance the
action is free and proper, and we find the deformation quantization A~(M)Γ of the quotient manifold.
Then we could apply the theorem 6.1.22 above to obtain an equivariant algebraic index theorem. This
would be a very special case, however. In the case that there is no symplectic quotient manifold we
can still obtain an equivariant index theorem by considering the replacement A~(M)o Γ of A~(M)Γ.
Here A~(M) o Γ denotes the crossed product, see definition A.3.1. The crossed product is the usual
non-commutative manifold replacing the quotient manifold [26]. Thus the generalization of theorem
6.1.22 to the equivariant setting is a similar product formula in periodic cyclic cohomology of the
crossed product A~(M)o Γ. Another reason to consider the crossed product as a replacement for the
quotient is that the periodic cyclic homology of the crossed product is the equivariant periodic cyclic
cohomology of the deformation quantization in the sense of [113].

We will adapt the proof of the algebraic index theorem 6.1.22 given above to prove the equivariant
algebraic index theorem 6.2.23 given below. The main difficulty is that since the group acts by global
transformations it will not act on the formal neighborhood. So, in order to use the universal formula
6.1.12, we will have to define an equivariant version of the Gelfand-Fuks maps given in proposition
4.1.7. Once we have obtained the equivariant Gelfand-Fuks maps we will have to define the pairing
of cyclic homology of the crossed product and the Lie algebra cohomology appearing in the universal
algebraic index theorem 6.1.12. Finally, we shall need to evaluate the equivariant versions of the
characteristic classes appearing in the formula 6.1.22.

6.2.1. Equivariant Gelfand-Fuks maps. As mentioned above we will need to define an equi-
variant version of the Gelfand-Fuks maps. We will do this by considering the usual homotopical
replacement for the quotient, namely the Borel construction M ×Γ EΓ. However, since we work with
differential forms, we will need a smooth version of the Borel construction. Recall that the usual con-
struction to obtain M ×ΓEΓ is by taking the geometric realization of the simplicial manifold Γ•×M .
Thus M ×Γ EΓ is a quotient of ∆• × Γ• ×M . So, we will replace the complex of differential forms on
M by a subcomplex of the complex of differential forms on ∆• × Γ• ×M consisting of forms that are
constant along the equivalence relations defining M ×ΓEΓ. This means that, in order for the Fedosov
connection to preserve the subcomplex, we will need to construct sections F•, analogous to the one
used to define ∇~

F appearing in proposition 4.1.7, that also respect these equivalence relations. Since
the Gelfand-Fuks maps are defined in terms of the section F , this will also supply the definition of the
equivariant Gelfand-Fuks maps.

Let us fix a symplectic deformation quantization A~(M) of the symplectic manifold (M,ω) and a
countable discrete group Γ acting on it by algebra automorphisms for the rest of this section. Note
that this means that Γ acts on the underlying manifold M , the symplectic frames bundles SpM and

the (reduced) manifold of deformed non-linear frames (M̃r,~) M̃~, see the proof of proposition 5.1.6.
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Note that these actions commute with the actions of the structure groups. In order to define the
equivariant Gelfand-Fuks map, we will first show existence of certain systems of sections

Fk : ∆k × Γk ×M −→ ∆k × Γk × M̃r,~

satisfying appropriate boundary conditions.

Notation 6.2.1. We denote by

∆k :=

{
(t0, . . . , tk) ≥ 0 |

k∑
i=0

ti = 1

}
⊂ Rk+1

the standard k-simplex, viewed as a manifold with corners. We denote

P kΓ := ∆k × Γk × SpM

and similarly

Mk
Γ := ∆k × Γk ×M,

M̃k
r,Γ := ∆k × Γk × M̃r,~

and

M̃k
Γ := ∆k × Γk × M̃~.

Note that P kΓ →Mk
Γ is a principal Sp(2d,R)-bundle, namely the pull-back via the obvious projection

to SpM . Similarly M̃k
r,Γ is the pull-back of M̃r,~. We define Ω•(Mk

Γ ;L) for a (g,Sp(2d,R))-module L
as we did for M in definition 2.3.5 above, replacing j1(M) by P kΓ and considering the trivial action of
the symplectic group on ∆k × Γk.

Notation 6.2.2. In the rest of this section we will denote the diffeomorphisms of M , SpM , M̃~
and M̃r,~ defined by an element γ ∈ Γ through the action of Γ on A~(M) simply by γ.

In order to accurately define the subcomplex mentioned above and the boundary conditions that
the sections Fk should satisfy, we will introduce the maps used to define the simplicial structure on
the simplicial manifold Γ• ×M and the corresponding geometric realization.

Definition 6.2.3. For all k ≥ 0 and 0 ≤ i ≤ k we define

εki : ∆k−1 ↪→ ∆k, Dk
i : Γk × SpM −→ Γk−1 × SpM and Cki : Γk × M̃r,~

∼−→ Γk × M̃r,~

by

εki (t0, . . . , tk−1) =

{
(0, t0, . . . , tk−1) if i = 0

(t0, . . . , ti−1, 0, ti, . . . , tk−1) if 0 < i ≤ k,

Dk
i (γ1, . . . , γk, p) =


(γ2, . . . , γk, γ

−1
1 (p)) if i = 0

(γ1, . . . , γiγi+1, . . . , γk, p) if 0 < i < k

(γ1, . . . , γk−1, p) if i = k

and finally

Cki (γ1, . . . , γk, ϕm) =

{
(γ1, . . . , γk, γ1(ϕm)) if i = 0

(γ1, . . . , γk, ϕm) if 0 < i ≤ k.

Lemma 6.2.4. There exist sections

P kΓ M̃k
r,Γ

P kΓ

Fk

= Id∆k×Γk × πr,1
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such that

Fk ◦ (εki × IdΓk×SpM ) =(
Id∆k × Cki

)
◦ (pr1 × pr2 × pr5) ◦ (Id∆k×Γk × Fk−1) ◦

((
εki × IdΓk

)
×
(
Id∆k−1 × Dk

i

))
,

i.e. each Fk satisfies boundary conditions specified by Fk−1 on each face of ∆k.

Proof.
In lemma 4.1.6 we gave the equivariant section

F0 := Fr : P 0
Γ = SpM −→ M̃r,~,

note that F0 does not need to satisfy any boundary conditions (as there is no boundary of P 0
Γ). Now

suppose we have found Fl satisfying the boundary conditions for all l < k. Note that giving Fk is
equivalent to giving

P kΓ M̃r,~

SpM

fk

pr3 πr,1

satisfying the corresponding boundary conditions, since Fk has to be the identity on the component
∆k×Γk. The section Fr from lemma 4.1.6 also yields the trivialization of the principal bundle πr,1, i.e.

M̃r,~ ' SpM ×G~
1 . Using this, we see that giving fk is equivalent to giving a map sk : P kΓ → G1 which

is fixed on the boundary ∂P kΓ by the boundary conditions and Fk−1. Now note that the exponential
map gives us the isomorphism G1 ' F1g

~. So, since this vector space is contractible, we can always
find Fk satisfying the boundary conditions. �

Remark 6.2.5. Note that, since M̃r,~ → SpM is the pull-back of a Ĝ~
r bundle over M and the

action of Γ is by symplectomorphisms, we can extend the sections Sp(2d,R)-equivariantly. From now
on we will assume that we have chosen Sp(2d,R)-equivariant sections Fk for all k ≥ 0 satisfying the
conditions in lemma 6.2.4.

Now, as before in section 4.1, we can use the sections Fk to pull back the canonical connection

form from M̃k
Γ (which was itself pulled back from M̃~), to define a g~-valued differential form AFk on

P kΓ for each k.

Notation 6.2.6. Suppose L is a
(
g~, Ĝ~

r

)
-module. Then we denote the bundle over M associated

to M̃r,~ by L0, i.e. the bundle with total space M̃r,~ ×Ĝ~
r
L. We will denote the pull-back to the Mk

Γ

by the same symbol. Note that, denoting π : SpM → M , the pullback π∗L0 is exactly the bundle

associated to M̃r,~ → SpM with the
(
g~, G~

1

)
-module L, given by G~

1 ↪→ Ĝ~
r , as fiber, i.e the pull-back

has total space M̃r,~ ×G~
1
L. Thus we will denote π∗L0 = L1. Again we will use the same notation for

the pull-backs over the P kΓ .

Remark 6.2.7. Note that, since Γ acts on the Ĝ~
r -bundle M̃r,~ →M , we find that Γ also acts on L0

and, since this action lifts to a Sp(2d,R)-equivariant action on M̃r,~ → SpM , we find a corresponding
action on the space Ω• (M ;L). Let us be a bit more precise about this action. Note first that the

section F0 (from lemma 6.2.4) yields a trivialization of M̃r,~ → SpM . This means that it also yields a
trivialization (denoted by the same symbol)

F0 : SpM × L
∼−→ M̃r,~ ×G~

1
L,

explicitly given by (p, `) 7→ [F0(p), `] with inverse [ϕm, `] 7→
(
πr,1(ϕm),

(
ϕm ◦ F0(πr,1(ϕm))−1

)
(`)
)
. In

these terms the action is given by

γ(η ⊗ `) = (γ∗η)⊗ (F−1
0 )∗γ∗F ∗0 `
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where (F−1
0 )∗γ∗F ∗0 ` is the section given by

p 7→ (γ(p), F0(p)γF0(γ(p))−1`).

We consider the corresponding action of Γ on the spaces Ω•
(
Mk

Γ ;L
)
, where we use Fk instead of F0

(or in fact on Ω• (N ×M,L) for any N).

Definition 6.2.8. Note that the differential forms AFk define flat connections ∇Fk on Ω•
(
Mk

Γ ;L
)

for all k, as in proposition 4.1.7, and so we can consider the product complex∏
k≥0

Ω•
(
Mk

Γ ;L
)
, ∇̃F

 ,

where

∇̃F :=
∏
k≥0

∇Fk .

Proposition 6.2.9. Suppose L is a (g~,Sp(2d,R))-module, then the map

GFΓ
M :

(
C•Lie

(
g~, sp(2d,R);L

)
, ∂Lie

)
−→

∏
k≥0

Ω•
(
Mk

Γ ;L
)
, ∇̃F

 ,

given by

GFΓ
M (χ)k = χ ◦A⊗pFk , (6.2.1)

for χ ∈ CpLie
(
g~, sp(2d,R);L

)
and where the subscript k refers to taking the k-th coordinate in the

product, is a well-defined map of complexes.

Note that the definition of GFΓ
M is the same as in proposition 4.1.7 only we now use the compatible

system of sections {Fk}≥0.

Proof.
This proof is exactly the same as in the non-equivariant setting, see propositions 2.3.9 and 4.1.7,
carried out coordinate-wise in the product.

�

The equivariance of the equivariant Gelfand-Fuks map is demonstrated by the following lemma.

Lemma 6.2.10. For all χ ∈ CpLie(g~, sp(2d,R);L), we have that the form

GFΓ
M (χ) ∈

∏
k

Ωp(Mk
Γ ;L)

satisfies

(εki × IdΓk×SpM )∗GFΓ
M (χ)k = (Id∆k−1 ×Dk

i )∗GFΓ
M (χ)k−1

if 0 < i ≤ k ∈ N and

(εk0 × IdΓk×SpM )∗GFΓ
M (χ)k|∆k−1×{γ}×Γk−1×SpM

= γ((Id∆k−1 ×Dk
0 )∗(GFΓ

M (χ)k−1))

where γ ∈ Γ on the right hand side signifies the action on Ωp(∆k−1 × Γk ×M ;L).

Proof.
The boundary conditions put on the sections Fk in lemma 6.2.4 are meant exactly to ensure this
property of the Gelfand-Fuks map GFΓ

M . The lemma follows straightforwardly from these boundary
conditions. �
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Remark 6.2.11. The phrasing of the preceding lemma may obscure its nature a bit. Note that
the left hand sides of the equations in the lemma are simply the restrictions of the forms GFΓ

M (χ)k
to the various boundary components of P kΓ . The lemma states that the forms in the image of the
equivariant Gelfand-Fuks map are constant on the equivalence classes of the relation ∼ on MΓ :=∐
k ∆k×Γk×M such that MΓ/ ∼=: EΓ×ΓM is the Borel construction (through geometric realization

of the corresponding simplicial manifold).

6.2.2. Pairing with HCper
• (A~c(M)o Γ). In order to derive the equivariant version of the

algebraic index theorem 6.2.23, we need to pair the periodic cyclic complex of A~(M)oΓ with the Lie
algebra complex with values in

L• := Hom−•(CCper• (W~), Ω̂−•[u−1, u]][~−1, ~]][2d]),

as in section 6.1.1, in order to interpret the universal formula 6.1.12 in the periodic cyclic cohomology
of A~(M)o Γ. We fix the notation L• to mean the above for the rest of this chapter. We will define
a trace on the crossed product that is “supported at the identity of Γ” in a sense that will be clear
in section 6.2.3, see definition 6.2.19. In this section it will mean that, instead of pairing the full
periodic cyclic complex with the Lie algebra complex, we will only pair the so-called homogeneous
chains, see appendix A.3.1. By theorem A.3.6, this means we can pair with the periodic cyclic chains
by constructing a map from the Lie algebra complex to

C•(Γ,Ω•(M ;L•)),

the group cohomology complex with values in differential forms with values in L•. We will do this
(implicitly) in this section.

Notation 6.2.12. We denote the composition of the projection to the homogeneous summand
with the quasi-isomorphism of theorem A.3.6 by

D : CCper• (A~(M)o Γ) −→ C•(Γ, CC
per
• (A~(M))).

Definition 6.2.13. We define the p-forms ϕ ∈
∏
k≥0 Ω•

(
Mk

Γ ;L•
)

of Sullivan-de Rham type as
those ϕ that satisfy the conditions of lemma 6.2.10 and such that ϕk is a p-form for all k, but are not
necessarily in the image of GFΓ

M . We denote the space of p-forms of Sullivan-de Rham type by

Ωp (M ×Γ EΓ;L•)

and denote by

Ω• (M ×Γ EΓ,L•) :=
⊕
p≥0

Ωp (M ×Γ EΓ,L•)

the forms of Sullivan-de Rham type.

Since the definition uses lemma 6.2.10, we find the following corollary.

Corollary 6.2.14. The image of the Gelfand-Fuks map GFΓ
M is contained in the forms of

Sullivan-de Rham type.

Lemma 6.2.15. There are quasi-isomorphisms

Tk :
(

Ω•(Mk
Γ ; Ω̂−•[~−1, ~]][u−1, u]][2d]),∇~

Fk
+ d̂
)
−→

(
Ω•(Mk

Γ)[~−1, ~]][u−1, u]][2d], ddR
)

for all k ≥ 0.

Proof.
Note that this is essentially the same lemma as lemma 6.1.14. �
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Definition 6.2.16. We define the pairing

〈·, ·〉 : Ω• (M ×Γ EΓ;L•)× CCper−• (A~(M)o Γ) −→ Ω•(M)[2d]

as follows. Given a ∈ CCperk (A~(M)o Γ) we note that D(a) ∈ C•(Γ, CCper• (A~(M))) is given by the

components D(a)p ∈ CCperk−p(A~(M))⊗ (CΓ)
⊗p

for all p ∈ Z≥0. Then let us denote

D(a)p =

q∑
i=0

D(a)p,i,A~ ⊗D(a)p,i,Γ

with D(a)p,i,Γ = γ1,i ⊗ . . .⊗ γp,i for some γj,i ∈ Γ for all j and i, i.e. both legs of the tensor product
are given by the above. Suppose ϕ ∈ Ωk (M ×Γ EΓ;L•) then

〈ϕ, a〉 :=
∑
p≥0

q∑
i=0

∫
∆p×{(γi,1,...,γi,p)}

Tpϕp(J
∞
Fk,~(D(a)p,i,A~)),

where J∞Fk,~ is the map given by taking the ∞-jets of elements of A~(M) relative to the Fedosov

connection ∇Fk , i.e. it is given by the analog of the map in proposition 4.1.9 for Mk
Γ instead of M .

We note that the pairing 〈·, ·〉 is well-defined since the integral of ϕ ∈ Ωk (M ×Γ EΓ;L•) over any
simplex ∆p for p > k will vanish.

Definition 6.2.17. Define

C : C•Lie(g
~, sp(2d,R);L•) −→ CC•per(A~c(M)o Γ)

by

Cϕ(a) =

∫
M

〈GFΓ
M (ϕ), a〉

for all ϕ ∈ C•Lie(g, sp(2d,R);L•) and a ∈ CCper• (A~c(M)o Γ).

Proposition 6.2.18. The map

C :
(
C•Lie(g

~, sp(2d,R);L•), ∂Lie + ∂L
)
−→

(
CC•per(A~c(M)o Γ), (b+ uB)∗

)
is a map of complexes.

Proof.
Suppose ϕ ∈ CrLie(g, sp(2d,R);Ls) and a ∈ CCpert (A~c(M)o Γ). We will show that

C(∂Lie+(−1)r∂L)ϕ)(a) = Cϕ((b+ uB)a).

By proposition 6.2.9, we see that∫
M

〈
GFΓ

M ((∂Lie + (−1)r∂L)χ), a
〉

=

∫
M

〈(
∇̃+ (−1)r∂L

)
GFΓ

M (χ), a
〉
.

Furthermore

∇FkGFΓ(ϕ)k(J∞Fk,~D(a)i,k,A~) = (∇FkGFΓ(ϕ)k) (J∞Fk,~D(a)i,k,A~)

for all i and k since ∇FkJ∞Fk,~ = 0 by definition of J∞Fk,~. Now note that∫
M

∫
∆k×{(µ1,...,µk)}

Tk

((
∇Fk + (−1)r+sd̂

)
GFΓ

M (ϕ)k

)
(b) =

∫
M

∫
∆k×{(µ1,...,µk)}

(
d∆kTkGF

Γ
M (ϕ)k

)
(b)

for any k ≥ 0, µi ∈ Γ, ϕ and b, since
∫
M
ddR = 0 by Stokes’ theorem. Note that we have used the

decomposition

∇Fk = d∆k + dSpM +AFk ,
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where we have denoted the exterior derivative on ∆k by d∆k , for all k ≥ 0. Combining this with the
previous statements we find that C(∂Lie+(−1)r∂L)ϕ)(a) equals∑
k≥0

q∑
i=0

∫
M

(∫
∆k×{(γ1,i,...,γk,i)}

(d
∆k
TkGF

Γ
M (ϕ)k)(J∞Fk,~

D(a)i,k,A~ )+(−1)rTkGF
Γ
M (ϕ)k((b+uB)J∞Fk,~

D(a)i,k,A~)

)
where we use the notation of definition 6.2.16. Now one checks that, since GFΓ

M (ϕ) is of Sullivan-de
Rham type, by corollary 6.2.14 and Stokes’ theorem, the term involving d∆k equals a term where
the group boundary operator acts on D(a) ∈ C•(Γ, CCper• (A~c(M))). Combining this with the term
involving the b+ uB operator yields exactly Cϕ((b+ uB)a).

�

6.2.3. Evaluation of the Equivariant Classes. In the previous sections we constructed the
map

C : H0(g, sp(2d);L•) −→ HC0
per(A~c(M)o Γ).

The last step in proving the main result of this chapter is to evaluate the classes appearing in the
universal algebraic index formula 6.1.12. This will lead to a theorem similar to the algebraic index
theorem 6.1.22. This means that we should expect to consider an ordinary trace on the crossed product
as well as a “higher trace” (the image of the formal topological trace density). In the non-equivariant
setting there was a unique candidate by the result of Fedosov 6.1.20. As mentioned, we will consider
the natural counterpart of this trace “supported at the identity of Γ”.

Definition 6.2.19. We define the trace supported at the identity Tre : A~0(M)o Γ→ C[~−1, ~]]
by the formula

Tre(fδγ) = δe,γ Tr(f),

where the δe,γ on the right hand side is the Kronecker delta.

Now let us consider the equivariant version of the trace density GFΓ
M (τ̂a). By the same reasoning

as in section 6.1.2, we see that we get a trace on A~c(M) o Γ. By following the various (quasi)-
isomorphisms from CHoch• ((A~(M)oΓ)\e) to C•(Γ, C

Hoch
• (A~(M))) constructed in the appendix A.3.1

to obtain theorem A.3.6, we see that this trace comes from the map

τ : C0(Γ, C0(A~c(M))) −→ C[~−1, ~]]

such that τ ◦ (b+ δΓ) = 0. This condition means exactly that the map

τ̃ : A~c(M) −→ C[~−1, ~]]

given by τ̃(f) = τ(f ⊗ e) is a trace. By construction, we see that τ̃ is also invariant under fiberwise
automorphisms and therefore a trace according to definition 6.1.19. Thus we see that τ̃ = Tr and so
the trace induced by the equivariant Gelfand-Fuks map GFΓ

M is exactly the map

fδγ 7→ δe,γ Tr(f)

defined in definition 6.2.19 above.

In the previous sections we have used some complexes to represent Borel equivariant cohomology
[37], which are not completely standard. The following proposition shows that they really do represent
Borel equivariant cohomology.

Proposition 6.2.20. We have

H•(M ×Γ EΓ) ' H•Γ(M ;C)

where on the left hand side we mean the cohomology of Ω•(M ×Γ EΓ;C) and on the right hand side
we mean the cohomology of the Borel construction M ×Γ EΓ.

This proposition holds basically by construction (see for instance [37]).
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Definition 6.2.21. The equivariant Weyl curvature θΓ is defined as the image of θ̂ under GFΓ
M

followed by C[[~]]-linear extension of the map in 6.2.20. Similarly, the equivariant Â-genus of M ,

denoted Â(M)Γ, is defined as the image of Âf under the equivariant Gelfand-Fuks map GFΓ
M followed

by C[[~]]-linear extension of the isomorphism in 6.2.20.

Notation 6.2.22. In the following, we denote the well-known inclusion of the Borel equivariant
cohomology into the periodic cyclic cohomology of the crossed product, as defined (for instance) in
[26] section 3.2.δ, by

Φ: H•Γ(M ;C) ↪→ HC•per(C
∞(M)o Γ).

Finally we obtain the following theorem as a corollary of the previous three sections.

Theorem 6.2.23 (Equivariant Algebraic Index Theorem).
Suppose p, q ∈MN (A~(M)o Γ), for some N > 0, are idempotents such that
p− q ∈MN (A~c(M)o Γ). Then we have

TrN,e(p− q) =
〈

Φ
(
Â(M)Γe

θΓ
)
, ch (σ(p))− ch (σ(q))

〉
,

where TrN,e denotes the composition of the trace defined in definition 6.2.19 with the matrix trace,
σ denotes the map given by setting ~ = 0 and finally ch denotes the Chern-Connes map defined in
definition 6.1.17.

Given the results of the previous three sections this theorem follows from the formal algebraic
index theorem 6.1.12 and a straightforward, but long, calculation that we omit.



CHAPTER 7

Conclusions and Prospects

The theorem 6.2.23 concluding the previous chapter 6 is objective (1) as stated in section 1.5.
Objectives (2) and (3) were “handled” in the chapters 5 and 4 respectively. We should comment on
the degree to which the objectives have been met and provide a clear overview of the main results
of this thesis. In this chapter we will provide such an overview of the main results. We will also
comment on the possibilities of further research offered by these results. We will do these things in a
style similar to section 1.5. So, we shall comment on the degree to which the objective has been met
and the possibilities for further research this offers counting down from (3) to (1).

7.1. Objective (3)

As mentioned in section 1.5, it will be hardest to determine the degree of success for objective (3).
Let us start by giving a quick overview of the results obtained in the pursuit of this objective.

In chapter 4 we have presented a deformed version of the framework of formal geometry presented
in chapter 2. The objective was to show that Fedosov’s construction can be interpreted naturally in this
framework. We have also presented this construction in section 4.2. This led us to proposition 4.3.1,
it shows that the connections obtained as the deformed analogs of the Grothendieck connections,
see proposition 2.3.9 and remark 2.3.11 are Fedosov connections. In section 3.1 we showed that
the formal Weyl algebras bundle appearing in the Fedosov construction [46] is isomorphic to the
deformed bundle of infinity jets, see proposition 3.1.8 and remark 3.1.10. This shows how one can view
(Ω•(M ;W~),∇), for a Fedosov connection ∇, as a replacement for the Čech cohomology complex on M
with values in the (sheaf given by the) deformation quantization, when we consider the cover by formal
neighborhoods. In definition 4.3.2 we define the characteristic class of a deformation quantization in
terms of the framework of deformed formal geometry and the Gelfand-Fuks maps 4.1.7. By remark
4.3.5, the class lands in the affine space ω

i~ + H2
dR(M)[[~]], as expected. This shows that the Fedosov

construction is obtained by solving the equations that arise from assuming a certain class is obtained
as the characteristic class of a deformation quantization in the sense of 4.3.2.

Now let us consider the further research that may be carried out in the direction of objective
(3). First of all, there are many different generalizations of the Fedosov construction and one could
investigate whether each of them allows for a corresponding framework of formal geometry. Most
specifically one may consider generalizing to the case of general Poisson manifolds, instead of symplectic
manifolds. The problem would be that there is, in general, no constant local model for a Poisson
manifold. Even if there is such a local model, it may allow for several inequivalent deformation
quantizations. Nonetheless, this generalization is done to some extent in the article [21]. In that
article the authors relate certain ?-products on Poisson manifolds to connections in jet bundles and
they mention the underlying formal geometry. They do not consider a framework of deformed formal
geometry, however. So, one further direction of research would be to try and combine the results of
this thesis and [21] to obtain an interpretation of that result as we did for the symplectic case here.
Another option in the same vein is to consider the case of dg manifolds [106]. In this article the
authors consider a Fedosov-type construction for dg manifolds, thus one may consider whether there
is a corresponding framework of formal deformed dg geometry. Let us also mention the recent article

107
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[43], the authors consider deformations of the algebra A that correspond to a Drinfeld twist in the
universal enveloping algebra U(g) of a Lie algebra acting on A. They use a Fedosov construction in
order to obtain such Drinfeld twists. If we consider a Lie-Rinehart pair instead, we can associate the
corresponding convolution algebra as a replacement for the algebra of infinite jets, see remark 3.1.4.
Drinfeld twists will also yield deformations of this convolution algebra, see 3.1.8 and the remark 3.1.11.
Thus we may develop a corresponding notion of formal geometry using this, more general, notion of
infinity jets.

Finally, one may use a part of the results summarized above to place the Fedosov construction more
squarely in the framework of deformation theory of associative algebras of appendix B. Namely, the
remark that the formal Weyl algebras bundle appearing in [48] is isomorphic to the deformed bundle
of infinity jets. In particular, this bundle is independent of the class of the deformation quantization
up to isomorphism. In fact, one can already observe in the case of the Fedosov construction that, up
to isomorphism, all deformation quantizations are obtained as subalgebras of the same algebra. When
we consider the framework of formal geometry in the context of deformation theory of associative
algebras, we note the following. We have the quasi-isomorphism of differential graded algebras

J∞ : (C∞(M), 0) −→
(
J∞M (M)⊗C∞(M) Ω•(M),∇G

)
, (7.1.1)

where ∇G denotes the Grothendieck connection, see proposition 2.3.9 and remark 2.3.11. As men-
tioned in remark B.4.7, this implies that we obtain a bijection between the equivalence classes of the
deformations as A∞-algebras. On the left hand side of (7.1.1) this just means deformation quantiza-
tions, since the differential is trivial. We note that the deformation quantizations of M up to gauge
equivalence can be divided into classes parametrized by the induced Poisson bracket, see corollary
1.2.5. Let us denote the classes that induce the Poisson bracket induced by the symplectic structure
by Dω(M). Let us consider now the deformations of the dg algebra on the right hand side of 7.1.1, in
the sense of definition B.1.1. If they lie in the image of J∞, they should be given by (µ≥1, 0), i.e. the
differential remains undeformed. If they even lie in the image of Dω(M) under J∞, then we should
be able to normalize the deformed product to obtain the product on the formal Weyl algebras bundle.
This will mean that the differential has to change and thus we obtain the Fedosov connection. A
prospect of research is to carry out the sketch above in detail and in particular deal with the fact (that
we swept under the rug) that the results of [34] show that only the deformations as A∞-algebras are
identified by a quasi-isomorphism.

7.2. Objective (2)

The treatment of objective (2) is left entirely to chapter 5. In section 5.1 we recall some well-
known facts about group actions on deformation quantizations. We arrive at the definition 5.1.7 of an
extension of the action by symplectomorphisms, motivated by the result on lifts of symplectomorphisms
in propositions 5.1.3 and 5.1.6.

In section 5.2 we consider the question of existence of lifts of a given group action. The main
reason is that we will carry out the classification project relative to a given lift. We arrive at the
well-known condition that the group action Γ → Symp(M,ω) should be contained in the stabilizer
subgroup of the characteristic class. Given an action that satisfies this condition, we can associate
(non-uniquely) a cochain c of Γ with values in the sections of the bundle G~1 that satisfies the equations

cγγ
∗∇c−1

γ = ∇,

for some Fedosov connection ∇ (such that Ker∇ is the deformation quantization). At that point
the existence of a lift comes down to the cocycle condition for c, see corollary 5.2.1. We proceed to
consider more restrictive conditions, leading to the known result, see [7], rephrased in proposition
5.2.3. To conclude our treatment of the question of existence, we show that there exist examples of
group actions that do not satisfy the conditions of proposition 5.2.3, but can lift nonetheless.
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Finally we come to the question of classification relative to a given lift of Γ → Symp(M,ω)[θ] to

the deformation quantization. In section 5.3.1 we construct a certain abstract (pointed) set H1(Γ;G∇)
that parametrizes the equivalence classes of lifts of the action satisfying a certain technical condition.
In fact, it is given as the first group cohomology with values in the non-Abelian group G∇(M). This
solves the problem in the abstract, but it does not immediately allow for easy conclusions about the
number of equivalence classes of lifts. To obtain such results we should supply a method of computation
of the sets H1(Γ;G∇). In particular we would like to have a way to relate it to some more familiar
combination of group cohomology and the cohomology of the manifold.

The main obstacle at this point is the fact that we are dealing with non-Abelian cohomology
and thus we cannot employ the usual tools of homological algebra. Nonetheless, we obtain truncated
long exact sequences from short exact sequences of coefficient groups. Using these, we first prove the
existence of a certain commuting diagram consisting of interlocked exact sequences (5.3.4), in section
5.3.2. We obtain these by considering the non-Abelian Čech cohomology, see the end of section A.2.3
in the appendix. We then use this square to obtain vanishing results for H1(Γ;G∇), namely proposition
5.3.24, and non-vanishing results, see examples 5.3.28 and 5.3.30. Especially the last example shows
how one may apply the diagram (5.3.4) in order to compute H1(Γ;G∇).

Let us also consider some prospects for further research concerning group actions on deformation
quantizations and classification. First of all, we may consider the restriction imposed by the definition
5.1.7. Namely, we only consider those lifts of the action on the symplectic manifold that preserve a
given Fedosov connection. Further research may point out how severe this restriction is in practice.
A point of interest is whether there exist actions that do not preserve any Fedosov connection. One
way to proceed is to consider the approach used to prove the equivariant version of the algebraic index
theorem in section 6.2. In this case we do not require the section F defining the Fedosov connection
to be equivariant with respect to the action of the group, instead we construct a system of sections

P kΓ → M̃k
Γ,r satisfying certain boundary conditions.

Secondly, we can consider the equivariant characteristic class θΓ of the action of Γ on A~(M)
constructed in section 6.2, see definition 6.2.21. The question naturally arises to what degree this class
actually classifies the action. In particular when one considers this class in the light of section 5.3.
For instance, in the case of example 5.3.30, we have that H1(Γ;G∇) contains a copy of T 1

~ (T2), on the

other hand the equivariant class θΓ takes values in H2(T2 ×Z EZ)[[~]] ' C3[[~]], this follows from the
fact that H•(T2 ×Z EZ) ' H•(T2) ⊗ H•(BZ) in this case. The Borel equivariant cohomology comes
with the map H2(T2 ×Z EZ) → H2(T2) induced by the quotient map T2 × EZ → T2 ×Z EZ, which
should map θΓ 7→ θ. The kernel C2 is obtained as K := H1(T2) ⊗ H1(Z;C). At this point we are
tempted to conclude that H1(Z;G∇) = eK . A more conservative statement is that there should be a
more rigorous scheme with which to identify H1(Γ;G∇) with some combination of cohomology of the
underlying manifold and group cohomology, of course proposition 5.3.24 also supports this.

7.3. Objective (1)

Finally we consider the results obtained in the pursuit of the main objective of this thesis: the
equivariant algebraic index theorem 6.2.23. In section 6.1 we consider a proof, which appeared in
[14] and [15], of the algebraic index theorem that proceeds by first proving the universal or formal
algebraic index theorem 6.1.12 and subsequently applying a Gelfand-Fuks map, see proposition 4.1.7.

The first problem with incorporating a group action is that the group acts by global transforma-
tions. So there is no hope of obtaining an equivariant formal algebraic index theorem. This implies
that we should try to obtain an equivariant Gelfand-Fuks map. This amounts to finding an equivariant
version of the section Fr in lemma 4.1.6. As mentioned, we do not want to assume that an equivariant
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section Fr : SpM → M̃r,~ exists a priori. This amounts to fixing special Fedosov connections and ac-
tions of the type of definition 5.1.7. Thus we are led to consider the simplicial manifold Γ•×M whose
geometric realization is the Borel construction. We show, in lemma 6.2.4, that one can find equivariant
sections Fr in the form of a system of sections for this simplicial manifold satisfying certain boundary
conditions. These yield the equivariance of the Gelfand-Fuks maps, given in proposition 6.2.9, in
the sense of lemma 6.2.10. The rest of the program is carried out by following the usual steps. We
choose to pair the Lie algebra complex with the periodic cyclic chain complex directly to simplify the
computations. Now we can use the well-known results [93, 57, 49], recalled in section A.3.1 of the
appendix, to obtain the equivariant algebraic index theorem 6.2.23.

There is a lot of room for further investigation of the formula in theorem 6.2.23. First of all we
should carry out certain interesting examples, like the irrational rotation of one coordinate on the
torus, or the irrational rotation of the sphere proposed in examples 5.3.30 and 5.3.28. Another large
class of examples is given by the actions on manifolds that do allow for a symplectic quotient and
where the invariants A~(M)Γ provide a deformation quantization of the quotient. In this case, we
expect the formula to reduce to the usual algebraic index theorem 6.1.22. In particular, it is of interest
to compute the classes Â(M)Γ and θΓ, defined in definition 6.2.21, in these cases.

Secondly, we should compare the results of theorem 6.2.23 with similar results. In particular we
should compare with the (formal analog) of the results in [101]. A comparison that would be of
particular interest is with the results obtained in the papers [96, 97], in particular [97]. Although
the actions are restricted to a smaller class, the formulas in these articles are more explicit and it may
lead to a more explicit formulation of theorem 6.2.23. As mentioned above, we should also compare
the class θΓ from definition 6.2.21 to the results of section 5.3, i.e. the preprint [69].

Thirdly, we may consider generalizing or adapting the proof of theorem 6.2.23 in section 6.2 to
obtain similar results for certain adaptations of the algebraic index theorem 6.1.22. For instance we
may consider the adaptations put forth in section 1.5.3. Namely, we may consider the case of symplectic
Lie algebroids [89], gerbes [15] or general Lie algebroids [9] equipped with an action. The case of a
complex manifold, see [89, 14], should follow particularly straightforwardly from the treatment in
section 6.2. Finally, one may consider the case of more general Poisson manifolds, as in [33], although
this may be more challenging due to the fact that there is no easy classification of the local models.
Another option is to consider an action twisted by a group cocycle instead of an untwisted action.
One can still form the corresponding crossed product and a straightforward adaptation of the proof
in section 6.2 should provide an analog of theorem 6.2.23 for this case. Finally, one may consider the
case of a Lie group acting smoothly rather than a discrete group. In this case the model for the Borel
equivariant cohomology, put forth in section 6.2, would have to be adapted accordingly.

Another project following naturally from this one is to “integrate” in the sense of obtaining a
corresponding analytic index theorem, like in the article [88]. In particular, given a (regular) foliation
of a smooth manifold, we could consider operators on the foliation algebra, see section 2.8 of [26],
which can sometimes be given in terms of a crossed product along an action twisted by a cocycle, that
are (pseudo)-differential along a transversal. The formal analog would be given exactly by the crossed
product twisted by a cocycle of the deformation quantization corresponding to the symbol calculus
in the cotangent bundle of the transversal. Thus, the adaptation of theorem 6.2.23 proposed in the
previous paragraph would yield an algebraic version. This would allow us to obtain explicit formulas
for instances of the transversal index theorem [29].
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APPENDIX A

Simplicial and Cyclic Structures and (Co)Homology Theories

In this appendix we will give definitions of the various (co)homology theories used in the main
body of the thesis. To name them precisely we use

• Hochschild (co)homology of associative algebras,
• (periodic) cyclic (co)homology of associative algebras,
• group (co)homology,
• de Rham cohomology,
• Čech cohomology (subordinate to a cover),
• singular cohomology and
• cohomology of (topological infinite-dimensional) Lie algebras.

Note that, of these, the singular cohomology is used in a completely rudimentary way. It turns
out that, by considering the notion of simplicial and cyclic structure, we can obtain many of these
theories by simply considering the right simplicial and cyclic modules. So, we will start this appendix
by giving a recollection of simplicial and cyclic structure. We will then provide the definitions of the
various complexes above as well as some remarks that will be of use in the main body of the thesis.
This appendix is mostly used to fix conventions with regard to the various complexes used to compute
the above homologies, however. Section A.3.1 is an exception. In that section we provide a proof of a
well-known result [93, 57, 49] that is used in section 6.2.

A.1. Simplicial and Cyclic Structures

The notion of simplicial structures unifies a lot of (co)homology theories under a single header. In
fact, if the (co)homology theory is defined by use of a (positive) chain complex, the Dold-Kan corre-
spondence [116] implies that there is an underlying simplicial module. Since most of the (co)homology
theories mentioned above are in fact defined by use of (positive) chain complexes, it will be useful to
present parts of the theory of simplicial modules here, in order to fix conventions.

Simplicial modules are right modules over a certain category 4. It turns out that one can expand
this to a larger category 4C, called the cyclic category, in a natural way. Modules over this bigger
category are called cyclic modules and they also give rise to chain complexes. The cyclic homology
theories we use in the main body of this thesis are obtained from certain cyclic modules associated
to associative algebras [24]. In this section we shall first give a description of these categories and
provide a specific presentation of them. This presentation is in essence a convention. So, since the
main aim of this appendix is to fix conventions, the presentation is the main result of this section.

A.1.1. The Simplex and Cyclic Categories. The following section is based on appendix B.5
of [79]. The simplex category 4 and the cyclic category 4C fit into the larger picture of categories

112



A.1. SIMPLICIAL AND CYCLIC STRUCTURES 113

of finite sets, which is neatly expressed in terms of the commutative diagram

4

F

4S

4C

S Bij

Fin

C .

The arrows in this diagram represent functors. Excluding 4S→ F, all arrows represent inclusions.
In the diagram we have denoted the category of finite sets by Fin; the category of finite sets and
bijections by Bij; the skeleton of Fin given by only considering the objects [n] := {0, 1, . . . , n} for all
n ∈ Z≥0 by F and the skeleton of Bij with objects [n] := {0, 1, . . . , n} for all n ∈ Z≥0 by S. We shall
be a bit more precise about the definitions of the other categories, since they define the simplicial and
cyclic structures. Note that

HomS ([n], [m]) =

{
Sn+1 if n = m

∅ otherwise,

where we denote by Sp the symmetric group in p-letters.

Definition A.1.1. We define the simplex category 4 as the category with the totally ordered
sets 〈n〉 := {0 < 1 < . . . < n} for all n ∈ Z≥0 as objects and the weakly increasing maps f : 〈n〉 → 〈m〉,
i.e. such that i < j implies f(i) ≤ f(j), as morphisms.

We define the category C as the subcategory of S that has all objects [n] for n ∈ Z≥0, but only
those morphisms corresponding to the cyclic subgroups Cn+1 ⊂ Sn+1.

The cyclic category 4C will be generated as the so-called bi-crossed product of the matched pair
(4, C). In order to explain what this means, let us construct the ambient category of non-commutative
sets.

Definition A.1.2. We define the category of non-commutative sets 4S as the category with
objects [n] for all n ∈ Z≥0 and with morphisms f : [n] → [m] given by maps of sets equipped with a
total order on the fibers f−1({i}) for every element i ∈ [m].

We should note the definition of the composition of two morphisms f : [n]→ [m] and g : [k]→ [n]
in 4S. As a map of sets f ◦ g is simply the composition of the maps f and g, so all we need to specify
is how we supply the fibers with a total order. Suppose i ∈ [m], then, if a, b ∈ g−1(f−1({i})), we set
a < b, if g(a) < g(b) in the ordering on f−1({i}) determined by f , or, if g(a) = g(b) and a < b, in the
ordering on g−1(g({a}) determined by g.

Note that there is a canonical surjective functor 4S → F given by simply forgetting the total
order on the fibers. Note also that both S and 4 embed into 4S in the obvious way, however neither
embedding is full.

Proposition A.1.3. Any morphism f : [n]→ [m] in 4S can be uniquely decomposed as

f = ϕ ◦ σ
where ϕ : [n]→ [m] is in 4 and σ : [n]→ [n] is in S. Here we have identified the morphisms in 4 and
S with their images in 4S.

Proof.
Suppose we are given a total order on [n], let us denote it (n), e.g. (5) = {3 < 2 < 4 < 0 < 1 < 5}.
We obtain an element σ(n) ∈ Sn+1 defined by the requirement that

σ(n) : (n) −→ 〈n〉
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is order preserving. Here we have identified Sn+1 = AutS([n]) by shifting 0 to 1, 1 to 2 and so on until
we shift n to n + 1 and then considering the canonical action of Sn+1 on {1, . . . , n}. In the example
given above we would have σ(5) = (5)(421)(30) in “cycle” notation. Note that this defines a bijection

σ : {total orderings of [n]} −→ Sn+1.

Suppose f : [n] → [m] ∈ 4S, then we find an induced total order (n)f given by setting i < j if
f(i) < f(j) in 〈m〉 or if f(i) = f(j) and i < j in f−1(f(i)) for all i, j ∈ [n]. Note that (n)σ−1

(n)
= (n).

Note also that

〈n〉
σ(n)f−→ (n)f

f−→ 〈m〉
is weakly increasing, by definition of σ(n)f and (n)f . So, we find the decomposition

f = ϕ ◦ σ,
with ϕ ∈ 4 and σ ∈ S for all f ∈ 4S, by ϕ = f ◦ σ(n)f and σ = σ−1

(n)f
. This proves the existence of

the decomposition.

Now suppose ψ,ϕ ∈ 4 and σ, τ ∈ S such that

ψ ◦ τ = ϕ ◦ σ
in4S. Then ϕ◦σ◦τ−1 is weakly increasing and so ϕ(στ−1(i)) < ϕ(στ−1(j)) implies that both i < j and
στ−1(i) < στ−1(j) while ϕ(στ−1(i)) = ϕ(στ−1(j)) implies that i < j if and only if στ−1(i) < στ−1(j)
by definition of the ordering on the fibers of compositions and the fact that ϕ is weakly increasing.
So we find that i ≤ j if and only if στ−1(i) ≤ στ−1(j). Since στ−1 is a permutation, we find that
στ−1 = Id[n], i.e. σ = τ . Finally ψ = ϕ ◦ στ−1 = ϕ shows uniqueness of the decomposition. �

Definition A.1.4. For σ ∈ Sm+1 and n ∈ Z≥0 let

σ∗ : Hom4([n], [m]) −→ Hom4([n], [m])

be the map that sends ϕ ∈ Hom([n], [m]) to the unique σ∗(ϕ) ∈ Hom([n], [m]) in the decomposition
of σ ◦ ϕ given by proposition A.1.3.

For every ϕ ∈ Hom4([n], [m]) let

ϕ∗ : Sm+1 −→ Sn+1

be the map that sends σ ∈ Sm+1 to the unique ϕ∗(σ) ∈ Sn+1 in the decomposition of σ ◦ ϕ given by
proposition A.1.3.

A convenient summary of this definition is given by the defining identity

σ ◦ ϕ = σ∗(ϕ) ◦ ϕ∗(σ).

The cyclic category 4C is obtained by considering not all morphisms in 4S, but only those
morphisms that decompose in terms of a cyclic permutation and a weakly increasing map. In order
for this to be well-defined, we need the following proposition.

Proposition A.1.5. We have ϕ∗(Cm+1) ⊂ Cn+1 for any ϕ ∈ Hom4([n], [m]).

Proof.
Note that

ϕ∗(σ) = σ−1
(n)σ◦ϕ

in the notation of the proof of proposition A.1.3. Now, if t ∈ Cm+1, we see that, since ϕ is weakly
increasing, t(n)t◦ϕ is in Cn+1, but then its inverse is also in Cn+1. �

Definition A.1.6. The cyclic category 4C is the subcategory of 4S with all objects and those
morphisms f that decompose according to proposition A.1.3 as f = ϕ ◦ c with c in a cyclic subgroup.
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Although it is nice to have a good definition of the simplicial and cyclic categories, it is usually
more useful to consider a certain specific presentation of them by generators and relations. It is
easily deduced and well-known [82] that the simplex category 4 allows for the presentation given by
generators δni ∈ Hom4([n− 1], [n]) and σni ∈ Hom4([n+ 1], [n]), for 0 ≤ i ≤ n, and relations

δnj δ
n−1
i = δni δ

n−1
j−1 if i < j

σnj σ
n+1
i = σni σ

n+1
j+1 if i ≤ j

and

σnj δ
n+1
i =


δni σ

n−1
j−1 if i < j

Id[n] if i = j, j + 1

δni−1σ
n−1
j if i > j + 1.

Here the δni correspond to the maps given by δni (j) = j if j < i and δni (j) = j + 1 if j ≥ i and the σni
correspond to the maps given by σni (j) = j if j ≤ i and σni (j) = j − 1 if j > i. It is sometimes useful
to consider the maps in 4 in terms of “dots and bars” diagrams as used in the proof of corollary 3.1.6.
In these terms the generators for n = 3 are

δ3
0 δ3

1 δ3
2 δ3

3 σ3
0 σ3

1 σ3
2 σ3

3 .

The relation σ4
2δ

5
1 = δ4

1σ
3
1 looks like

= =

in these terms.

From the presentation of the simplex category 4 given above, we obtain the presentation of the
cyclic category 4C, by adding the generator tn of the cyclic group of order n+ 1 for every n ∈ Z≥0.
In other words we add the generator tn ∈ Hom4C([n], [n]) for all n ≥ 0 and we add the relations

tnδ
n
i = δni+1tn−1 if i < n,

tnσ
n
i = σni+1tn+1 if i < n,

tnσ
n
n = σn0 t

2
n+1, tnδ

n
n = δn0 and tn+1

n = Id[n].

Here tn is the map given by tn(j) = j + 1 if j < n and tn(n) = 0. Pictorially we have

σ2
0t

2
3

= =

t2σ
2
2 .
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Remark A.1.7. Note that we could also have provided the generator t−1
n instead of tn. This would

have led to slightly different relations and conventions about the B operator, see equation (A.1.1).
The reader should be careful to realize which presentation is used when considering such expressions
as (A.1.1) for the cyclic operators, which is (partly) why we have included this appendix. For instance
in [93] the generator t−1

n is used instead of tn. Note that the equation (A.1.1) for B as a formal sum
of morphisms in 4C is what matters in the end, the only thing that changes when one uses a different
presentation is the formula.

A.1.2. Simplicial and Cyclic Homologies. As mentioned, modules over the simplex and cyclic
categories give rise to chain complexes. Let us fix our conventions and notations of these chain
complexes here.

Definition A.1.8. For a commutative ring R we define simplicial/cyclic R-modules as contravari-
ant functors from the category4/4C to the category of R-modules. Alternatively we can consider the
Z-graded R-algebras R[4] or R[4C] generated over R by the generators and relations of section A.1.1.
In these terms a simplicial/cyclic R-module is given by a Z-graded right module over R[4]/R[4C].

Definition A.1.9. A morphism of simplicial/cyclic R-modules ϕ : M \ → N \ is given by a natural
transformation of functors or equivalently by a (degree 0) morphism of R[4]/R[4C]-modules.

Remark A.1.10. Note that the definition A.1.8 means explicitly that a simplicial or cyclic R-
module M \ is given by a sequence M \([n]) of R-modules for each n ∈ Z≥0 and R-linear operators

f \ : M \([m]) −→M \([n]),

for each f ∈ Hom([n], [m]), such that for f ∈ Hom([n], [m]) and g ∈ Hom([m], [k]) we have

f \ ◦ g\ = (g ◦ f)\.

In order to provide such a structure we actually only need to provide the R-modules M([n]) and the
operators given by the generators from section A.1.1 above such that they satisfy the relations given
in section A.1.1. When we do this we will always drop the superscript \ on the operators induced by
the generators of section A.1.1. Note that, since we are considering right modules, i.e. contravariant
functors, the operators associated to the generators of section A.1.1 should satisfy the relations of
section A.1.1 in reverse order.

Definition A.1.11. Given two cyclic R-modules M \ and N \, we define the product M\N as the
cyclic R-module given by M\N([n]) = M \([n])⊗R N \([n]) with the diagonal cyclic structure, i.e.

f \ := f \M ⊗ f
\
N : M\N([m]) −→M\N([n])

for all f ∈ Hom([m], [n]).

Given a cyclic R-module M \, we can consider four different complexes associated to the simpli-
cial/cyclic structure. To define them we shall first define two operators: b and B.

The first is induced through the Dold-Kan correspondence and uses only the simplicial structure.
It is given by

bn =

n∑
i=0

(−1)iδni : M \([n]) −→M \([n− 1]).

By using the simplicial identities above, it is easily verified that bn−1bn = 0. To define the “Hochschild”
complex it is enough to have just the operators bn.

To define the three cyclic complexes we shall use the operator

Bn = (t−1
n+1 + (−1)n) ◦ σnn ◦

(
n∑
i=0

(−1)intin

)
: M \([n]) −→M \([n+ 1]). (A.1.1)
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Note that Bn+1Bn = 0, since

n+1∑
i=0

(−1)i(n+1)tin+1 ◦ (t−1
n+1 + (−1)n) =

n+1∑
i=0

(−1)i(n+1)(ti−1
n+1 + (−1)ntin+1) = 0. (A.1.2)

Vanishing of the expression (A.1.2) follows since the sum telescopes except for the first term t−1
n+1 and

the last term −(−1)n(n+1)tn+1
n+1, which also cancel each other. Note also that

bn+1Bn +Bn−1bn = 0, (A.1.3)

this can be seen by writing out both operators as sums of operators in the normal form δnkσ
n−1
l tin.

From now on we will drop the subscripts of the b and B operators. The cyclic module M \ gives
rise to a graded module {M \

n}n∈Z≥0
by M \

n = M \([n]). Then we see that the operator b turns M \ into
a chain complex.

Definition A.1.12. The Hochschild complex (CHoch• (M \), b) of the cyclic module M \ is defined
as CHochn (M \) := M \([n]) equipped with the boundary operator b (of degree −1). The corresponding
homology shall be denoted HH•(M

\).

Note that we have not used the full cyclic structure of M \ to construct the Hochschild complex.
In fact one can form the Hochschild complex

(
CHoch•

(
M4

)
, b
)

of any simplicial R-module M4 in
exactly the same way.

Note that, by equalities (A.1.3), (A.1.2) and the fact that b2 = 0, we find that (b + B)2 = 0.
This implies that we could consider a certain double complex with columns given by the Hochschild
complex. Note, however, that, if b is of degree −1 on the Hochschild complex, the operator B is
naturally of degree +1. We can consider a new grading for which the operator b+B is homogeneous
of degree −1. In order to make this grading clear, it will be useful to introduce the formal variable u
of degree −2. This leads us to several choices of double complexes.

Definition A.1.13. We define the cyclic complex by(
CC•(M

\), δ\
)

:=
(
CHoch• (M \)[u−1, u]]

/
CHoch• (M \)[[u]] , b+ uB

)
,

the negative cyclic complex by(
CC−• (M \), δ\−

)
:=
(
CHoch• (M \)[[u]], b+ uB

)
and finally the periodic cyclic complex by(

CCper• (M \), δ\per
)

:=
(
CHoch• (M \)[u−1, u]], b+ uB

)
.

Here u denotes a formal variable of degree −2. The corresponding homologies will be denoted
HC•(M

\), HC−• (M \) and HCper• (M \) respectively. The cyclic cochain complexes, denoted CC•per(M
\),

CC•−(M \) and CC•(M \), are defined as the R-duals of the chain complexes.

Notation A.1.14. We shall often omit the superscripts \ when there can be no confusion as to
what the cyclic structures are.

Remark A.1.15. Note that every “flavour” of cyclic homology comes equipped with spectral
sequences induced from the fact that they are realized as totalizations of a double complex. The
double complex corresponding to cyclic homology is bounded (second octant) and therefore the spectral
sequence which starts by taking homology on columns converges to HC•. The negative (or periodic)
cyclic double complex is unbounded, but concentrated in the (second,) third, fourth and fifth octant.
This means that the spectral sequence starting with taking homology in the columns converges again
to HC−• (or HCper• ). Note, however, that in this case the negative (or periodic) cyclic homology is
given by the product totalization.
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The remark A.1.15 provides the proof of the following well-known proposition.

Proposition A.1.16. Suppose M \ and N \ are two cyclic R-modules and ϕ : N \ −→ M \ is a
map of cyclic modules that induces an isomorphism on Hochschild homologies. Then ϕ induces an
isomorphism on cyclic, negative cyclic and periodic cyclic homologies as well.

Proof.
The proof follows since ϕ induces isomorphisms on the first pages of the relevant spectral sequences,
which converge. �

Remark A.1.17. When considering the Hochschild or cyclic complexes of associative algebras we
will usually use more convenient complexes than the ones defined above, see section A.2.1. In fact they
come from the general process of normalization. By normalization we mean that there is a certain
quotient of the Hochschild complex of any cyclic R-module M that is quasi-isomorphic [61]. This
quotient is obtained by modding out the “degeneracies”, i.e. the submodules given by the union of
the images of the σni ’s.

A.2. Definitions of (Co)Homology Theories

In this section we will finally provide the definitions of the homology theories used in this thesis.
We will also provide some remarks about properties that are used in the main body of the thesis.
The general scheme for defining these homology theories is by defining the relevant simplicial or cyclic
module and then considering the corresponding “Hochschild” or cyclic homologies. Let us fix the
commutative ring k for the rest of this chapter.

A.2.1. (Co)Homology of Associative Algebras. We shall start by giving the definitions of
the Hochschild and various cyclic complexes associated to associative k-algebras. To do this, we shall
first define the cyclic k-module associated to a unital associative k-algebra.

Definition A.2.1. Given a unital associative k-algebra A, we shall define the cyclic k-module
A\ as follows. We let A\([n]) := A⊗n+1 and the operators corresponding to the generators of section
A.1.1 are given by

δni (a0 ⊗ . . .⊗ an) = a0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an if 0 ≤ i < n

δnn(a0 ⊗ . . .⊗ an) = ana0 ⊗ a1 ⊗ . . .⊗ an−1

σni (a0 ⊗ . . .⊗ an) = a0 ⊗ . . .⊗ ai ⊗ 1⊗ ai+1 ⊗ . . .⊗ an for all 0 ≤ i ≤ n
tn(a0 ⊗ . . .⊗ an) = a1 ⊗ . . .⊗ an ⊗ a0.

So, going through the definitions of the Hochschild and cyclic complexes given in section A.1.2,
we find that

b(a0 ⊗ . . .⊗ an) = (−1)nana0 ⊗ a1 ⊗ . . .⊗ an−1 +

n−1∑
i=0

(−1)ia0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an, (A.2.1)

while B(a0 ⊗ . . .⊗ an) is given by the expression

n∑
i=0

(−1)in (1⊗ ai ⊗ . . .⊗ an ⊗ a0 ⊗ . . .⊗ ai−1 + (−1)nai ⊗ . . .⊗ an ⊗ a0 ⊗ . . .⊗ ai−1 ⊗ 1) ,

for all a0, . . . , an ∈ A. Now note that modding out the degeneracies, as noted in the remark A.1.17,
we obtain instead the map

B : A⊗A⊗n −→ A⊗A⊗n+1
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given by

B(a0 ⊗ . . .⊗ an) =

n∑
i=0

(−1)in1⊗ ai ⊗ . . .⊗ an ⊗ a0 ⊗ . . .⊗ ai−1, (A.2.2)

for a0 ∈ A and a1, . . . , an ∈ A := A/k. So we arrive at the following definitions.

Definition A.2.2. We define the Hochschild and cyclic complexes of a unital associative algebra
A as follows. For p ∈ Z≥0 set

CHochp (A) := A⊗A⊗p,
where we have denoted the module quotient

A := A/k

by A and the tensor products are over k. We let

b : CHochp (A) −→ CHochp−1 (A)

be the Hochschild boundary given by k-linear extension of formula (A.2.1) for all p ∈ Z≥0. Furthermore
we set

CCper• (A) := C∗(A)[u−1, u]],

CC−• (A) := C∗(A)[[u]]

and

CC•(A) := C∗(A)[u−1, u]]
/
uC∗(A)[[u]] ,

where the • degree is given by the ∗ degree minus 2 times the power of u, i.e. u is a formal variable
of degree −2. Finally we let

uB : CCperp (A) −→ CCperp+1(A)

be the operator given by composition of the k-linear extension of formula (A.2.2) with the operation
of multiplication by u, and similar for CC−p (A) and CCp(A).

The Hochschild chain complex of the unital associative algebra A is given by (CHoch• (A), b), the
periodic cyclic chain complex is given by (CCper• (A), b + uB), the negative cyclic chain complex is
given by (CC−• (A), b + uB) and, finally, the cyclic chain complex is given by (CC•(A), b + uB). We
denote the corresponding homologies by HH•(A), HCper• (A), HC−• (A) and HC•(A) respectively.

Remark A.2.3. Suppose A is a flat k-algebra, then it is well-known [116] that the Hochschild
complex represents A⊗L

Ae A in the derived category of k-modules. Here

Ae = A⊗Aop

denotes the enveloping algebra of A and so the Hochschild complex represents the left derived tensor
product of A with itself over the enveloping algebra. Thus we find that

HH•(A) ' TorA
e

• (A,A).

This follows from the fact that the Hochschild complex is obtained by tensoring the usual bar complex
[116] with A and the bar complex is an acyclic projective resolution if A is flat over k.

Definition A.2.4. Suppose A is a non-unital k-algebra. Then we define the unitalization A+ of
A as the minimal unital algebra containing A, explicitly it is given by

A+ = A⊕ k,

as a k-module, with the product

(a+ λ)(b+ µ) = ab+ λb+ µa+ λµ.
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Definition A.2.5. Suppose A is a non-unital k-algebra. Then we define the Hochschild complex
of A as

CHoch• (A) = Ker
(
CHoch• (A+)

p−→ CHoch• (k)
)

where the map p is the one induced by the obvious projection p : A→ k. The definition of the various
cyclic complexes is similar.

Definition A.2.6. The Hochschild cochain complex of A is defined by

C•Hoch(A) = Homk(CHoch• (A), k)

with the differential given by the transpose b∗ of b. The definition of the various cyclic complexes is
similar.

Remark A.2.7. The definitions above all need to be adjusted slightly to be used in the main
body of the thesis, since we are working mostly with infinite dimensional topological algebras. The
definitions are adjusted by requiring tensor products to be completed (this is unambiguous for the
algebras we consider) and for the cochain complexes we consider the continuous dual.

Remark A.2.8. Our definition of “the” Hochschild complex is actually the definition of the
Hochschild complex with coefficients in A. One could consider similar complexes with values in other

A-bimodules M , by considering M ⊗ A⊗• instead of A⊗ A⊗•. Since we will only use the Hochschild
complex with coefficients in A, we shall not give the definition of these other Hochschild complexes
here. For the Hochschild cochain complex this remark is more important, since the definition we give is
not the Hochschild complex with coefficients in A, but rather the Hochschild complex with coefficients
in the dual of A.

A.2.2. (Abelian) Group Homology. As for the case of associative algebras, we can define the
group (co)homology by means of a cyclic module. Note that this means that we have to choose a ring
over which we consider modules. This means that we will really be considering group (co)homology
with values in Abelian groups only. The group (co)homology with values in non-Abelian groups does
play a role in the main body of the thesis. We will define group (co)homology with values in a
non-Abelian group in section A.3.2.

Definition A.2.9. Given a group G, we define the cyclic k-module Gk\ as the cyclic k-module
given by the modules Gk\([n]) := (kG)⊗n+1 and the operators

δni (g0 ⊗ . . .⊗ gn) = g0 ⊗ . . .⊗ ĝi ⊗ . . .⊗ gn for all 0 ≤ i ≤ n
σni (g0 ⊗ . . .⊗ gn) = g0 ⊗ . . .⊗ gi ⊗ gi ⊗ gi+1 ⊗ . . .⊗ gn for all 0 ≤ i ≤ n
tn(g0 ⊗ . . .⊗ gn) = g1 ⊗ g2 ⊗ . . .⊗ gn ⊗ g0.

Note that G acts on Gk\ from the right by g · (g0 ⊗ . . .⊗ gn) = g−1g0 ⊗ . . .⊗ g−1gn.

Definition A.2.10. Suppose (M•, ∂) is a right kG-chain complex. Then we define the group
homology complex of G with values in M as(

C•(G;M), δ(G,M)

)
:= Tot

∏
M• ⊗kG CHoch•

(
Gk\

)
,

where we consider the tensor product of kG-chain complexes with the obvious structure of left kG-chain
complex on CHoch• (Gk\). Note that this means that

Cn(G;M) =
∏

p+q=n

Mp ⊗kG CHochq

(
Gk\

)
and

δ(G,M) = ∂ ⊗ Id + Id⊗ b,
where we use the Koszul sign convention, see notation B.2.1. We denote group homology with values
in F• by H•(G;F ).
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Remark A.2.11. We will often abbreviate the notation δ(G,M) to δG or even simply δ, if there
can be no cause for confusion. We should point out that we have the option to choose either product
or sum totalizations in this definition. In the case that M• is bounded below this does not make any
difference of course. We choose to consider the product totalization here because we will need it when
considering the periodic cyclic (unbounded) complex of the crossed product algebra in section A.3.1
below. Although the group cohomology complex can be defined in much the same terms as above, we
shall not do it here since we will never (explicitly) use the group cohomology complex in this thesis.

Proposition A.2.12. Suppose M is a right kG-module, then M ⊗ kG with the diagonal right
action is a free kG-module.

Proof.
Let us denote the k-module underlying M by F (M) and thus by F (M)⊗kG the free (right) kG-module
induced by the k-module underlying M . Consider the map

M ⊗ kG −→ F (M)⊗ kG
given by m⊗ g 7→ mg−1 ⊗ g. It is obviously a map of kG-modules and allows for an inverse, namely
m⊗ g 7→ mg ⊗ g. �

Proposition A.2.13. Suppose F is a free right kG-module (we view it as a chain complex con-
centrated in degree 0 with trivial differential), then there exists a contracting homotopy

HF : C•(G;F ) −→ C•+1(G;F ).

Suppose (F•, ∂) is a quasi-free right kG-chain complex (i.e. Fn is a free kG-module for all n), then
the homotopies HFn give rise to a quasi-isomorphism

QF : ((F•)G, ∂)
∼−→ (C•(G;F ), δ(G,F )),

where the subscript G denotes taking coinvariants (modding out the G-action).

Proof.
Note that F 'M ⊗ kG, since it is a free module. So we find that

Cp(G;F ) = (M ⊗ kG)⊗kG (kG)⊗p+1 'M ⊗ (kG)⊗p+1

by the map m⊗ g⊗ g0⊗ . . .⊗ gp⊗m⊗ g 7→ m⊗ gg0⊗ . . .⊗ ggp. Using this normalization, we consider
the map HF given by

m⊗ g0 ⊗ . . .⊗ gp 7→ m⊗ e⊗ g0 ⊗ . . .⊗ gp
and note that indeed

δp+1
G HF +HF δ

p
G = Id

for all p > 0.

Now for the second statement, we find that Fn ' Mn ⊗ kG for each n, since it is quasi-free. For
each n we have the homotopy HFn given by the formula above on C•(G;Fn). Then we consider the
map

QF : (Fp)G −→ Cp(G;F )

given by

QF ([f ]) = f − δ1
GHf +

∞∑
q=1

(−H∂)qf − ∂(−H∂)q−1Hf − δq+1
G (−H∂)qHf,

where we have dropped the subscript from H and we denote by [f ] the class of f in the coinvariants FG.
One may check by straightforward computation that QF is a well-defined morphism of complexes. Now
we note that the double complex defining C•(G;F ) is concentrated in the upper half plane and therefore
comes with a spectral sequence with first page given by Hp(G;Fq), which converges to Hp+q(G;F ).
Note that, since F• is quasi-free, we find that Hp(G;Fq) = 0 unless p = 0 and H0(G;Fq) = (Fq)G.
Thus, since QF induces on isomorphism on the first page, we find that QF is a quasi-isomorphism. �
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A.2.3. The de Rham Theorem. Given a smooth manifold X, we can define three chain com-
plexes immediately and, given any vector bundle (or sheaf), we can define them with coefficients. The
three chain complexes are the singular chain complex, the de Rham complex and the Čech complex.
We shall use this section to give a definition of the singular chain complex and the de Rham complex
without coefficients and a more elaborate definition of the Čech complex. We do this since we shall
not really use singular cohomology at all, we give a definition of de Rham cohomology with coefficients
in the main body of the thesis (see definition 2.3.5) and we make use of the definition of the Čech
complex rather extensively in section 5.3.

Recall that we denote the standard (geometric) n-simplex by ∆n, see notation 6.2.1. Denote the
nth singular set of X by Singn(X), this is the set of continuous maps

σ : ∆n −→ X.

Definition A.2.14. We define the cyclic module Xk\ as the cyclic module given by the modules
Xk\([n]) = kSingn(X) endowed with the operators

δni (σ) = (εni )∗σ for all 0 ≤ i ≤ n
σni (σ) = (ani )∗σ for all 0 ≤ i ≤ n
tn(σ) = (cn)∗σ.

Here εni is as in definition 6.2.3, ani : ∆n+1 → ∆n is given by

(t0, . . . , tn+1) 7→ (t0, . . . , ti + ti+1, . . . , tn+1)

and finally cn : ∆n → ∆n is given by

(t0, . . . , tn) 7→ (tn, t0, t1, . . . , tn−1).

We define the singular cochain complex of X with values in k by

(S•(X; k), δ) :=
(
CkHoch(Xk\), b∗

)
.

We denote the singular cohomology of X with values in k by H•(X; k).

Now let us also define the de Rham and Čech complexes. Although it is possible to give the
definitions in terms of a simplicial structure, it is in these cases not more convenient to do so.

Definition A.2.15. We define the differential p-forms on X as

Ωp(X) := Γ(∧p T ∗X),

where ∧p T ∗X denotes the vector bundle associated to the frames bundle of X with fiber given by the
alternating p-linear functions on RDimX . Differential forms on X are defined as the direct sum

Ω•(X) =

DimX⊕
p=0

Ωp(X).

The differential forms carry a graded commutative product involved in the definition of the exterior
derivative, i.e. the differential in the de Rham complex.

Definition A.2.16. Suppose ϕ is an alternating p-linear function on Rn and ψ is an alternating
q-linear function on Rn then we define the wedge product ϕ∧ψ as the alternating p+q-linear function
given by

ϕ ∧ ψ(v1, . . . , vp+q) :=
1

p!q!

∑
τ∈Sp+q

ε(τ)ϕ(vτ(1), . . . , vτ(p))ψ(vτ(p+1), . . . , vτ(p+q)),

where Sp+q denotes the symmetric group in p+ q letters and ε(τ) denotes the sign of τ .
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Note that we can extend the wedge product bilinearly to a graded commutative product on the
differential forms on X.

Definition A.2.17. The exterior derivative

ddR : Ω•(X) −→ Ω•(X)

is defined to be the unique linear operator satisfying

• ddR(α ∧ η) = (ddRα) ∧ η + (−1)pα ∧ ddRη,
• d2

dR = 0 and
• ddRf(Y ) = Y (f)

for all α ∈ Ωp(X), η ∈ Ω•(X), vector fields Y on X and where we consider the usual action of vector
fields on functions.

It is well-known [111] and straightforward to deduce that ddR is well-defined.

Definition A.2.18. We define the de Rham complex of X as

(Ω•(X), ddR)

and we shall denote the de Rham cohomology of X by H•dR(X).

Finally let us give a definition of the Čech complex subordinate to a cover U . Suppose that
U = {Ui}i∈I is an open cover of X and F is a sheaf of k-modules on X. We denote by Ip ⊂ I×p the
set of (i1, . . . , ip) such that Ui1 ∩ . . . ∩ Uip 6= ∅.

Definition A.2.19. We define the k-module of Čech p-cochains subordinate to U with values in
F as

Čp(U ;F) :=
{
σ := {σ(ι)}ι∈Ip | σ(i1, . . . , ip) ∈ F(Ui1 ∩ . . . ∩ Uip)

}
.

We define δpj : Čp(U ;F)→ Čp+1(U ;F) by

(δpjσ)(i0, . . . , ip) = σ(i0, . . . , îj , . . . , ip),

for all 0 ≤ j ≤ p, where the hat denotes omission and, on the right hand side, we consider the
restriction to the intersection Ui0 ∩ . . .∩Uip . The Čech cochain complex subordinate to U with values
in F is now given by (

Č•(U ;F), δ
)

where, on p-cochains, δ =
∑p
j=0(−1)jδpj . We shall denote the Čech cohomology subordinate to U with

values in F by Ȟ•(U ;F).

Note that for all sheaves F and all covers U we have Ȟ0(U ;F) = F(X). Although in the main
body of the thesis it is sufficient to consider Čech cohomology subordinate to a cover, we include the
following definition for completeness.

Definition A.2.20. The Čech cohomology with values in F is defined as the direct limit

Ȟ•(X;F) := lim−→ Ȟ•(U ;F).

The maps in the directed system are induced by refinements of covers. Explicitly, refinements are
given by a cover V = {Vi}i∈J and a map f : J → I such that Vj ⊂ Uf(j).

Remark A.2.21. A good cover U of X is a cover such that all intersections Ui1 ∩ . . . ∩ Uip for all

(i1, . . . , ip) ∈ Ip are diffeomorphic to RDimX . It is a well-known fact that all smooth manifolds allow
for a good cover [12]. In fact, one can show that every cover has a good refinement [12]. This means
that in order to compute Čech cohomology on a manifold X one actually only needs to consider good
covers. For two opens V ⊂ U ⊂ X we will denote the restriction F(U)→ F(V ) by ρUV . A partition of



A.2. DEFINITIONS OF (CO)HOMOLOGY THEORIES 124

unity subordinate to a locally finite cover V = {Vi}i∈J of X is given by maps ϕi : F(Vi) → F(X) for
all i ∈ J such that ∑

i∈J
ϕi ◦ ρXVi = IdF(X).

A sheaf is called fine if every open subset U ⊂ X allows for a partition of unity subordinate to any
locally finite open cover of U . It is also well-known [13] that the Čech cohomology of a fine sheaf
subordinate to a locally finite cover is acyclic, this is shown by constructing a specific homotopy.

Let us also record, without proof, the very useful result called Leray’s theorem.

Theorem A.2.22 (Leray). If k > 0 and U = {Ui}i∈I is a cover of X such that

Ȟk(Ui1 ∩ . . . ∩ Uip ;F) = 0

for all p > 0 and all (i1, . . . , ip) ∈ Ip, then the natural map

Ȟk(U ;F) −→ Ȟk(X;F)

is an isomorphism.

The proof goes by constructing a certain resolution of F and applying a spectral sequence argu-
ment, see [13]. From now on we denote the constant sheaf U 7→ k by k.

Proposition A.2.23. There are isomorphisms

Ȟ•(X; k) −→ H•(X; k).

A sketch of the proof of the proposition can be found in [13]. Thus we arrive at the following
version of de Rham’s theorem

Theorem A.2.24 (de Rham). We have isomorphisms

H•dR(X) ' Ȟ•(X;R) ' H•(X;R).

A proof can be found in [12]. It follows from the previous proposition A.2.23 and a spectral
sequence argument using the double complex given by considering the Čech complex with values in
the sheaf Ω•.

Finally, let us consider non-Abelian Čech cohomology. There is a deep theory of non-Abelian
cohomology theories, see [59, 39]. In this thesis we will only consider two and only in the most naive
sense. We will present the first, non-Abelian Čech cohomology, here and the second, non-Abelian
group cohomology, in section A.3.2. The term non-Abelian refers to the coefficients, while these are
usually Abelian groups (Z-modules), in non-Abelian cohomology one considers coefficients in non-
Abelian groups. So let G be a sheaf of not necessarily Abelian groups on X. Note that, if we would
follow the definition A.2.19, we would no longer have δ2 = 0. Thus we cannot define the cohomology as
a quotient Ker δ/Im δ in the usual way. One could try to obtain a definition with δ2 = 0 by reordering
the δpi in the definition of δ, but it turns out that no good reordering would be possible. Instead, we
manually define the 0th and 1st cohomologies as follows.

Definition A.2.25. We define

Ȟ0(U ;G) :=
{
σ ∈ Č0(U ;G) | σ(i)σ(j)−1 = e ∈ G(Ui ∩ Uj) ∀ (i, j) ∈ I2

}
.

Here Č0(U ;G) is as in A.2.19 and e denotes the neutral element.

Note that this is actually the usual definition. The set Ȟ0(U ;G) inherits a group structure from G
as is the case for Abelian Čech cohomology. In essence, no problems arise from the failure of G to be
Abelian for the 0th cohomology.
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Definition A.2.26. We define

Ž1(U ;G) :=
{
σ ∈ Č1(U ;G) | σ(j, k)σ(i, k)−1σ(i, j) = e ∈ G(Ui ∩ Uj ∩ Uk) ∀ (i, j, k) ∈ I3

}
.

Here Č1(U ;G) is as in definition A.2.19 and e denotes the neutral element. We define

Ȟ1(U ;G) := Ž1(U ;G)/∼,

where ∼ denote the equivalence relation given by σ ∼ τ if there exists a ∈ Č0(U ;G) such that

a(i)σ(i, j)a(j)−1 = τ(i, j)

for all (i, j) ∈ I2.

Note that this definition does differ (formally) from the previous one, since we need to take the
order into account when we consider the equivalence relation ∼. In the Abelian case we recover the
definition of Ȟ1, given in definition A.2.19 above. Note that, while Ȟ1(U ;G) is always a well-defined
pointed set (the point is e(i, j) = e for all (i, j) ∈ I2), it is not a group in general.

A.2.4. Lie algebra Cohomology. Finally let us consider the Lie algebra cohomology. If g is
a finite dimensional Lie algebra, then we can consider its universal enveloping algebra U(g). It is
an associative algebra containing the vector space g such that the bracket on g coincides with the
commutator bracket. Then we can simply consider the Hochschild cohomology of U(g) with values
in some module as the definition of Lie algebra cohomology. Let us not give this definition, since we
did not actually define the Hochschild cohomology with values in a general module and we do not use
this complex for Lie algebra cohomology in the main body of the thesis. Instead, we use a different
complex which is defined as follows.

Definition A.2.27. Suppose g is a Lie algebra over the field L and M is a g-module. Then, for
p ≥ 0, we define

CpLie(g;M) := HomL

(∧p g,M)
and we define ∂Lie : CpLie(g;M)→ Cp+1

Lie (g;M) by

(∂Lieχ)(X0, . . . , Xp) :=

p∑
i=0

(−1)iXiχ(X0, . . . , X̂i, . . . , Xp)

+
∑

0≤i<j≤p

(−1)i+jχ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp)

for all χ ∈ CpLie(g;M), X0, . . . , Xp ∈ g and where the hat signifies omission. By direct computation
we see that ∂2

Lie = 0. The Lie algebra complex with values in M is defined as

(C•Lie(g;M), ∂Lie)

and we denote the cohomology by H•Lie(g;M).

Remark A.2.28. Note that, if g is the Lie algebra of the Lie group G, then the Lie algebra complex
with values in R is very similar to the de Rham complex of G. Writing out an explicit definition of
ddR will yield exactly the formula for ∂Lie given in definition A.2.27 above. In fact, proposition A.2.29
below will solidify this similarity. Note that the wedge product defined in definition A.2.16 above also
defines a product on the Lie algebra complex.

Proposition A.2.29. Suppose g is the Lie algebra of the compact connected Lie group G, then

H•Lie(g;R) ' H•dR(G).
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A proof may be found in, for instance, [22]. It is easy to see that the Lie algebra cohomology
will be the same as the cohomology of the subcomplex of G-invariant differential forms, the harder
part of the proof is to show that the de Rham complex contracts onto the complex of G-invariant
forms. Proposition A.2.29 leads to the more general proposition A.2.31. It describes the de Rham
cohomology of a homogeneous space G/H, for G a compact connected Lie group and H a connected
closed subgroup, in terms of the Lie algebra cohomology of the Lie algebra g of G relative to the Lie
algebra h of H.

Definition A.2.30. Suppose h ⊂ g is an inclusion of Lie algebras over the field L and M is a
g-module, then, for p ≥ 0, we define

CpLie(g, h;M) := Homh

(∧p (g/h),M
)
.

We define the Lie algebra complex with values in M relative to h as

(C•Lie(g, h;M), ∂Lie) ,

where ∂Lie is as in definition A.2.27. We denote the relative Lie algebra cohomology with values in M
by H•Lie(g, h;M).

Proposition A.2.31. Suppose H ⊂ G is a connected closed subgroup of a compact connected Lie
group G, then we have

H•dR(M) ' H•Lie(g, h;R),

where h ⊂ g are the Lie algebras of H ⊂ G and M = G/H.

Note that if H is the trivial subgroup we recover proposition A.2.29.

Remark A.2.32. Proposition A.2.31 motivates the definition of the Gelfand-Fuks maps 2.3.9 (and
also definition 4.1.7). Namely, just as G is an H-principal bundle over M in proposition A.2.31, the

manifold of non-linear frames M̃ is a GL(n,R) principal bundle over M̃/GL(n,R), where n = Dim M
and this last quotient is homotopic (at least as far as the de Rham theory is concerned) to M . We do

see, however, that, since M̃ is not a Lie group, the Gelfand-Fuks maps are not quasi-isomorphisms.

Remark A.2.33. As was the case for associative algebras (see remark A.2.7), the definitions
A.2.27 and A.2.30 above are not quite the Gelfand-Fuks cohomology mentioned in the main body
of the thesis. This is (again) since we consider mostly infinite dimensional topological Lie algebras.
So, the Gelfand-Fuks cohomology is actually given by the above definitions, but where we consider
completed tensor products and continuous homomorphisms.

A.3. Replacements for Certain Complexes

In the previous section A.2 we gave definitions of complexes underlying the (co)homology theories
used in the main body of this thesis. In this section we shall provide replacements for a few of these
complexes. Namely, we shall provide a replacement for the cyclic complexes associated to the crossed
product algebra in section A.3.1 and we shall provide a replacement for the group homology complex
in section A.3.2. We shall also give the definition of non-Abelian group cohomology in this last section,
since it is defined by analogy with the replacement given in that section. We use this definition of
non-Abelian group cohomology extensively in section 5.3.

A.3.1. Cyclic Homology of Crossed Products. In section 6.2 we consider the equivariant
cyclic cohomology of A~(M) with respect to the group Γ. In order to prove theorem 6.2.23 we need
the pairing given in definition 6.2.16. This pairing is defined by observing that one can express the
homogeneous summand of the periodic cyclic complex of the crossed product algebra in terms of group
homology with values in the periodic cyclic complex of the underlying algebra. In fact, this is part of
a more general theory of periodic cyclic (co)homology of crossed products, see [93, 49, 57]. We will
now present the various definitions and propositions from this theory that we use in the main body of
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the thesis. For this section we fix the unital associative k-algebra A, for some field k. We also fix a
group G acting on A from the left.

Definition A.3.1. We define the crossed product A o G of A and G as the algebra given, as a
vector space, by

AoG := A⊗k kG
equipped with the product given by k-linear extension of

(aδg)(bδh) = ag(b)δgh,

where we have introduced the notation aδg := a⊗ g.

It is easily verified that A o G is a well-defined associative algebra. We should note that, in the
case A = C∞(M), the algebra A o G is the convolution algebra of the action Lie groupoid M o G.
Again for the case that A is the algebra of functions on a space X, the crossed product is, in many
cases, a better behaved non-commutative analog of the functions on the quotient X/G [26].

Now let us consider the cyclic module (A o G)\ associated to the crossed product algebra in
definition A.2.1. Note that the cyclic structure of (A o G)\ splits over the conjugacy classes of G.
Namely, given a tensor a0δg0 ⊗ a1δg1 ⊗ . . . ⊗ anδgn , the conjugacy class of the product g0 · . . . · gn is
invariant under δni , σni and tn for all i and n.

Definition A.3.2. Denote by 〈G〉 the set of conjugacy classes of G. Then we define the part of
(AoG)\ supported at x ∈ 〈G〉, denoted (AoG)\x, as the span of all tensors a0δg0 ⊗ . . .⊗ anδgn such
that g0 · . . . · gn ∈ x. We shall call (AoG)\e, where e is the (conjugacy class of) the neutral element,
the homogeneous summand (as in [93]).

Note that we have the splitting

(AoG)\ =
⊕
x∈〈G〉

(AoG)\x

as a cyclic module.

What follows is a proof of the well-known fact [93, 49, 57] that one can express the cyclic
homology of the homogeneous summand of the crossed product in terms of group homology of the
cyclic homology of the underlying algebra. We present an adaptation of the proof in [93].

Notation A.3.3. We shall use the specialized notation A\G := A\\Gk\.

Note that A\G carries a right G-action given by the diagonal action (the left action on A is
converted to a right action by inversion, i.e. G ' Gop). Thus the quotient, also called module of
coinvariants,

(A\G)G = A\G
/
〈a− g(a)〉

is another cyclic k-module.

Proposition A.3.4. The homogeneous summand of (A o G)\ is isomorphic to the coinvariants
of A\G as a cyclic module.

(AoG)\e
∼−→ (A\G)G.

Proof.
Consider the map given by

a0δg0
⊗ . . .⊗ anδgn 7→ (g−1

0 (a0)⊗ a1⊗ g1(a2)⊗ . . .⊗ g1 . . . gn−1(an))\(e⊗ g1⊗ g1g2⊗ . . .⊗ g1 · . . . · gn),

it is easily checked to commute with the cyclic structure and allows the inverse given by

(a0 ⊗ . . .⊗ an)\(g0 ⊗ . . .⊗ gn) 7→ g−1
n (a0)δg−1

n g0
⊗ g−1

0 (a1)δg−1
0 g1

⊗ . . .⊗ g−1
n−1(an)δg−1

n−1gn
.

This last tensor can also be expressed as δg−1
n
a0δg0

⊗ δg−1
0
a1δg1

⊗ . . .⊗ δg−1
n−1

anδgn . �
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As a kG-module, we see that A\G([n]) = A\([n]) ⊗ Gk\([n]) = B([n]) ⊗ kG with the diagonal
action, where B([n]) = A⊗n+1 ⊗ kG⊗n. So, by proposition A.2.12, we find that the Hochschild and
various cyclic chain complexes corresponding to A\G are quasi-free. Thus, we can construct the quasi-
isomorphisms from proposition A.2.13 for each chain complex associated to the cyclic module A\G.
So, we find four quasi-isomorphisms which we shall denote QHoch, Q, Q− and Qper corresponding to
the Hochschild, cyclic, negative cyclic and periodic cyclic complexes respectively.

Proposition A.3.5. The map

A\G −→ A\,

given by

(a0 ⊗ . . .⊗ an)\(g0 ⊗ . . .⊗ gn) 7→ a0 ⊗ . . .⊗ an,
induces a quasi-isomorphism on all associated complexes.

Proof.
Note that, by proposition A.1.16, it is sufficient to prove the statement for the Hochschild complexes.
Let us denote by F (G) the standard free resolution of G [17], note that

F (G) = (CHoch• (Gk\), b).

The map given above is obtained by first applying the Alexander-Whitney map, see chapter 8 of [80],

CHochn (A\)⊗ CHochn (Gk\) −→
⊕
p+q=n

CHochp (A\)⊗ CHochq (Gk\),

which yields a quasi-isomorphism

CHoch• (A\G)
∼−→ CHoch• (A\)⊗ CHoch• (Gk\),

where we consider the tensor product of chain complexes on the right-hand side. Then one simply
takes the cap product with the generator in H∗(F (G)∗) ' k, which is also a quasi-isomorphism. So
we find that the map is a quasi-isomorphism for the Hochschild complexes. �

Note that the map given in proposition A.3.5 is also G-equivariant and therefore it induces a map

C•(G,A\G) −→ C•(G,A
\),

which is a quasi-isomorphism when we consider the group homology complex with values in the various
complexes associated to A\.

Theorem A.3.6. The composite maps from the Hochschild and various cyclic complexes associ-
ated to (A o G)\e to the group homology with values in the various Hochschild and cyclic complexes
associated to A\ implied by propositions A.3.4 and A.3.5 are quasi-isomorphisms, i.e. there are quasi-
isomorphisms (

CHoch•

(
(AoG)\e

)
, b
) ∼−→ C•(G;CHoch• (A))(

CC•
(
(AoG)\e

)
, δ\
) ∼−→ C•(G;CC•(A))(

CC−•
(
(AoG)\e

)
, δ\−

)
∼−→ C•(G;CC−• (A))

and (
CCper•

(
(AoG)\e

)
, δ\per

) ∼−→ C•(G;CCper• (A)).

Remark A.3.7. Note that, since the cyclic and Hochschild complexes are bounded below, the
product totalization in our definition of group homology agrees with the (usual) direct sum totaliza-
tions. In the periodic cyclic and negative cyclic cases they do not agree in general.
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A.3.2. Group Homology and Non-Abelian Cohomology. In this section we will first in-
troduce a more convenient complex with which to compute group homology, see definition A.2.10.
Secondly we will define group cohomology in the non-Abelian case. This non-Abelian group coho-
mology is used extensively in section 5.3. In section A.2.2 definition A.2.10 we defined a complex
representing group homology. In most applications it is more useful to consider a certain isomorphic
complex however. In fact in the main body of the thesis we do use this isomorphic complex, see
section 6.2. One obtains the new complex from the old complex by explicitly modding out the group
action across the tensor product. For this section we consider again the group G and the field k. The
following is based on [17].

Definition A.3.8. Suppose (M•, ∂) is a right kG-chain complex, then we set

C̃n(G;M) :=
∏

p+q=n

Mq ⊗ (kG)⊗p.

We define the operators δpi : M• ⊗ (kG)⊗p →M• ⊗ (kG)⊗p−1 by

δp0(m⊗ g1 ⊗ . . .⊗ gp) := g1(m)⊗ g2 ⊗ . . .⊗ gp
δpi (m⊗ g1 ⊗ . . .⊗ gp) := m⊗ g1 ⊗ . . .⊗ gigi+1 ⊗ . . .⊗ gp

for all 0 < i < p and finally

δpp(m⊗ g1 ⊗ . . .⊗ gp) := m⊗ g1 ⊗ . . .⊗ gp−1.

We define
(
C̃•(G;M), δ̃(G,M)

)
to be the chain complex given by

δ̃(G,M) = ∂ ⊗ Id + Id⊗ δG
where δpG =

∑p
i=0(−1)iδpi and we use the Koszul sign convention again, see notation B.2.1.

Proposition A.3.9. There is an isomorphism of chain complexes

C•(G;M) −→ C̃•(G;M).

Proof.
Consider the map

Cn(G;M) −→ C̃n(G;M),

given by
m⊗ g0 ⊗ . . .⊗ gp 7→ g0(m)⊗ g−1

0 g1 ⊗ g−1
1 g2 ⊗ . . .⊗ g−1

p−1gp.

Note that it commutes with the differentials and allows for the inverse given by

m⊗ g1 ⊗ . . .⊗ gp 7→ m⊗ e⊗ g1 ⊗ g1g2 ⊗ . . .⊗ g1 · . . . · gp.
�

We will usually use this chain complex when dealing with group homology and thus we will drop
the tilde in the main body of this thesis.

In section 5.3 we consider group cohomology with values in a certain non-Abelian group. As was
the case for non-Abelian Čech cohomology, see section A.2.3, and for the same reasons, we shall only
define the 0th and 1st non-Abelian group cohomologies. As mentioned there is a broad and deep
theory of non-Abelian cohomology (especially in the case of group cohomology), however, since we
don’t have need for the full theory, we shall stick to the most naive considerations. For this section
we shall fix the action of a group G on a (non-Abelian) group H.

Definition A.3.10. We define the 0th group cohomology of G with values in H as

H0(G;H) :=
{
h ∈ H | hg(h−1) = e ∈ H ∀ g ∈ G

}
,

where e denotes the neutral element.
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Note that this simply means that H0(G;H) = HG, the invariants of H. Thus, as was the case for
Čech cohomology, the fact that H is not Abelian has no effect on the 0th cohomology. In particular
H0(G;H) is a subgroup of H.

Definition A.3.11. We define

Z1(G;H) :=
{
ϕ : G→ H | ϕ(g1)g1(ϕ(g2))ϕ(g1g2)−1 = e ∈ H ∀ g1, g2 ∈ G

}
,

where e denotes the neutral element. We define

H1(G;H) = Z1(G;H)/∼
where ∼ denotes the equivalence relation given by ϕ ∼ ψ if there exists h ∈ H such that

hϕ(g)g(h−1) = ψ(g)

for all g ∈ G.

Again we find that this time the definition is different from the Abelian case. In particular we can
no longer be assured that H1(G;H) is a group. It is still a pointed set, however. The point is given
by e : G→ H given by e(g) = e for all g ∈ G. One verifies, as they do in [58], that this means we still
get truncated exact sequences (of pointed sets)

1→ HG
1 −→ HG

2 −→ HG
3 −→ H1(G;H1) −→ H1(G;H2) −→ H1(G;H3)

from G-equivariant exact sequences of coefficient groups

1→ H1 −→ H2 −→ H3 → 1

in the usual way. We show in 5.3.23 that, in case H1 → H2 is a central inclusion, we can extend
the induced truncated exact sequence to include H2(G;H1), where this last group is defined using the
complex in definition A.3.8.



APPENDIX B

Deformation Theory of Associative Algebras

The theory of formal deformation quantization is an example of the deformation theory of asso-
ciative algebras. Thus it will be helpful to develop some of this theory here. In this appendix we will
recall some parts of the deformation theory of associative algebras. The field of deformation theory
of algebras (of any type) is far richer than what we will present here, however. For instance, we
will only consider R-deformations of associative L-algebras, where L is a field of characteristic 0 and
R = L[~]/〈~k〉 is a k-truncation or R = L[[~]] is the ring of formal power series. More loosely speaking,
we will only consider deformations into the k-th or∞-jet (formal) neighborhood of (differential graded)
associative algebras over a field of characteristic 0, see section 2. For a more in-depth discussion of the
deformation theory of algebras see the quintessential papers [54] or, for a more succinct introduction,
[35]. In this appendix we will consider the deformation theory of (differential graded) associative alge-
bras in a completely abstract setting. In the section 1.2 we explain the relation to formal deformation
quantization. The material in this appendix is based mostly on [35] and [79].

B.1. Deformation of DGA Algebras

In this section we will give the most straightforward definition of a deformation of a differential
graded associative algebra (sometimes shortened to dga or dg algebra). As mentioned, we will only
give the definition of deformations over the local Artinian or local complete rings of k-truncations
L[~]/〈~k〉 or formal power series L[[~]], which will be denoted by R.

Definition B.1.1. An R-deformation of the dg L-algebra (A,µ0, d0) is given by a dg R-algebra
(B,µ, d) equipped with an isomorphism

B ' A⊗L R
of R-modules and such that there exist R-module maps

µ≥1 : B ⊗B −→ B

and

d≥1 : B −→ B,

of degree 0 and +1 respectively, such that, under the identification B ' A⊗R, we have

µ = µ0 + ~µ≥1 and d = d0 + ~d≥1.

Remark B.1.2. Suppose (B,µ, d) is an R-deformation of (A,µ0, d0), then µ and d are R-module
maps and so they are determined by their action on A⊗ 1 ↪→ A⊗R. This means that we can expand

µ = µ0 + ~µ1 + ~2µ2 + . . . and d = d0 + ~d1 + ~2d2 + . . .

where

µi : A⊗A −→ A and di : A −→ A

are L-linear maps of degree 0 and +1 respectively.

The remark B.1.2 means that we could alternatively view an R-deformation of the dg algebra
(A,µ0, d0) as the sequences of linear maps {µi} and {di} (where 0 < i < k or i ∈ N) together with a
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list of equations which require µ to be associative, d2 = 0 and d to be a graded derivation. The first
few (relatively short) equations would read

aµ1(b, c) + µ1(a, bc) = µ1(ab, c) + µ1(a, b)c

aµ2(b, c) + µ1(a, µ1(b, c)) + µ2(a, bc) = µ2(ab, c) + µ1(µ1(a, b), c) + µ2(a, b)c

d1(ab) + d0µ1(a, b) = (d1a)b+ µ1(d0a, b) + (−1)|a| (ad1b+ µ1(a, d0b))

d0d1a+ d1d0a = 0

d0d2a+ d2
1a+ d2d0a = 0

(B.1.1)

for all homogeneous a ∈ A of degree |a| and all b, c ∈ A. Here we have found it convenient to denote
µ0 by concatenation of elements, i.e. µ0(a, b) =: ab. In general

p∑
l=0

µl(a, µp−l(b, c)) =

p∑
l=0

µl(µp−l(a, b), c)

p∑
l=0

dlµp−l(a, b) =

p∑
l=0

µp−l(dla, b) + (−1)|a|µp−l(a, dlb)

p∑
l=0

dldp−la = 0

(B.1.2)

for a, b and c as above and all p in the range dictated by the choice of R.

Definition B.1.3. Suppose (B,µ, d) and (B′, µ′, d′) are R-deformations of (A,µ0, d0). We will
say B and B′ are gauge equivalent if there exists an R-linear algebra isomorphism ϕ : B −→ B′ such
that the induced map

ϕ0 : A ' B/(~B) −→ B′/(~B′) ' A
coincides with the identity. We will call such ϕ gauge equivalences. Note that gauge equivalence is an
equivalence relation on the set of R-deformations of a dg algebra A.

In order to parametrize and handle R-deformations of a given dg algebra, it will be useful, first
of all, to write equations like (B.1.2) without reference to any elements of A. Usually one considers
deformation problems (like this one) by considering a suitable differential graded Lie algebra [79]
(sometimes abbreviated to dgl algebra). Writing the equations without reference to elements will
also bring us one step closer to determining such a differential graded Lie algebra. In this case, a
convenient description of this (differential) graded Lie algebra is given in terms of coderivations of a
certain coalgebra.

B.2. Coderivation

In this section we shall show that one can describe the dga algebra structures on a given graded
vector space V in terms of coderivations that they induce on the tensor coalgebra associated to V .
This will eventually lead us to the dgl algebra that governs the deformation problem we consider.

Notation B.2.1. Vertical bars will denote the degree of homogeneous elements (or maps). Let us
also establish that we will apply the Koszul sign convention from now on. Thus, given homogeneous
linear maps ϕ : V → V ′ and ψ : W → W ′ of graded vector spaces, we shall denote the graded tensor
product, given by

ϕ⊗ ψ(v ⊗ w) = (−1)|ψ|·|v|ϕ(v)⊗ ψ(w)

for homogeneous v ∈ V and w ∈W , by ϕ⊗ψ. Given a graded vector space V , we shall denote the k-
shift of V , given by V [k]p = V p+k, by V [k]. We shall denote the degree +1 suspension isomorphism by
↑ : V → V [−1] and the degree −1 desuspension isomorphism by ↓ : V → V [1]. Note that ↓↑= IdV =↑↓.
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In terms of the notation B.2.1, the equations (B.1.2) are equivalent to

p∑
l=0

µl ◦ (µp−l ⊗ Id) =

p∑
l=0

µl ◦ (Id⊗ µp−l)

p∑
l=0

dl ◦ µp−l =

p∑
l=0

µp−l ◦ (dl ⊗ Id + Id⊗ dl)

p∑
l=0

dl ◦ dp−l = 0.

(B.2.1)

Recall that the equations above are given by writing out the equations

µ ◦ (µ⊗ Id) = µ ◦ (Id⊗ µ), d ◦ µ = µ ◦ (d⊗ Id + Id⊗ d) and d ◦ d = 0

in terms of the ~ grading.

We will describe below how one can associate a coderivation on the tensor coalgebra to every
linear map from tensor powers of a (graded) vector space to this vector space. Doing this to the
map m = µ+ d will show that the equations above coincide exactly with the vanishing of the graded
commutator of this map with itself.

Definition B.2.2. Given a graded vector space V , we denote the tensor coalgebra by (TC(V ),∆).
Here

TC(V ) =
⊕
k≥1

V ⊗k

with the induced grading as a graded vector space, while the coproduct ∆ is given by

∆(v1 ⊗ . . .⊗ vk) =

k−1∑
i=1

(v1 ⊗ . . .⊗ vi)⊗ (vi+1 ⊗ . . .⊗ vk) ∈ TC(V )⊗ TC(V )

for all vi ∈ V . We will say v ∈ TC(V ) is of weight n, if v ∈ V ⊗n, to avoid confusion with the degree
induced from the grading of V .

Note that ∆(v1 ⊗ . . . ⊗ vk) can be described as a sum over all ways to partition {1, . . . , k} into
two non-empty sets I1 and I2 such that a ∈ I1 and b ∈ I2 implies a < b. Then it is easily seen that
both (∆⊗ Id)∆(v1 ⊗ . . .⊗ vk) and (Id⊗∆)∆(v1 ⊗ . . .⊗ vk) can be described as a sum over all ways
to partition {1, . . . , k} into three non-empty sets I1, I2 and I3 such that a ∈ Iα, b ∈ Iβ and α < β
implies a < b. So, ∆ is indeed coassociative, justifying the name tensor coalgebra. The grading on V
induces a grading on TC(V ), which makes it a graded coalgebra, since ∆ is of degree 0.

Notation B.2.3. For a coproduct ∆ we denote ∆(1) := ∆ and we denote

∆(n) = (∆⊗ Id⊗n−1)∆(n−1)

recursively for n ∈ N. Let us also set ∆(0) = Id.

Remark B.2.4. The tensor coalgebra TC(V ) has the universal property of being a cofree (locally)
conilpotent graded coalgebra cogenerated by V . Note in particular the conilpotent in this description
(it is often omitted, which can lead to some confusion). A coalgebra C is said to be (locally) conilpotent
if for all c ∈ C there exists n ∈ N such that ∆(n)c = 0. So, if C is a coassociative (locally) conilpotent
coalgebra and ϕ : C → V is a linear map, then there exists a unique coalgebra map ϕ̃ : C → TC(V )
such that p ◦ ϕ̃ = ϕ. Here p : TC(V )→ V denotes the projection onto the lowest weight.
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Definition B.2.5. A degree k coderivation τ on the coassociative graded coalgebra (C,∆) is a
degree k map τ : C −→ C such that

∆ ◦ τ = (τ ⊗ Id + Id⊗ τ) ∆.

We shall denote the space of degree k coderivations of C by Coderk(C). If m ∈ Coder1(C) is a
coderivation and a differential, i.e. m ◦ m = 0, we call the triple (C,∆,m) a differential graded
coassociative coalgebra (also abbreviated to dg or dga coalgebra).

Remark B.2.6. Note that, if τ is a coderivation on the coalgebra (C,∆), then it can be verified,
by induction on n ∈ N, that

∆(n) ◦ τ =

n∑
i=0

(
Id⊗i ⊗ τ ⊗ Id⊗n−i

)
◦∆(n).

Proposition B.2.7. Suppose V is a graded vector space and pV : TC(V ) −→ V is the projection
onto the lowest weight. The map

p∗ : Coderk(TC(V )) −→ Homk(TC(V ), V ),

given by τ 7→ p◦ τ , is a linear isomorphism. Here Homk(TC(V ), V ) simply denotes the space of degree
k linear maps TC(V )→ V .

Proof.
Note first that the space of degree k coderivations is a linear subspace of the vector space

Homk(TC(V ), TC(V )) and that the map p∗ is linear and well-defined, since p is of degree 0.

Let us first prove that p∗ is injective by showing that one may express any coderivation in terms
of its image under p∗. Note first that

∆(n) : V ⊗n+1 −→ V ⊗n+1

for all n > 0, where on the left hand side V ⊗n+1 ↪→ TC(V ), while we have V ⊗n+1 ↪→ TC(V )⊗n+1

instead on the right hand side. Nonetheless we see that, as a linear map, this restriction of ∆(n)

coincides with the identity. This is evident when one notes that ∆(n)(v0⊗ . . .⊗ vm) can be written as
a sum over all the ways to partition {0, . . . ,m} into non-empty subsets I1, . . . , In+1 such that a ∈ Iα,
b ∈ Iβ and α < β implies a < b. Of course there is only one such way to partition {0, . . . , n} (and
no such ways if m < n). Let us denote the component of a vector in the tensor power V ⊗n+1 by a
superscript (n). Since the components of τ that end in V ↪→ TC(V ) are given by p∗(τ), we need only
consider n > 0. Then we find, by the remark B.2.6, that we have

τ(v1 ⊗ . . .⊗ vm)(n) =

(
n∑
i=0

(
Id⊗i ⊗ τ ⊗ Id⊗n−i

)
◦∆(n)(v1 ⊗ . . .⊗ vm)

)(n)

(B.2.2)

for all τ ∈ Coderk(TC(V )), since(
∆(n)τ(v1 ⊗ . . .⊗ vm)

)(n)

= ∆(n)τ(v1 ⊗ . . .⊗ vm)(n) = τ(v1 ⊗ . . .⊗ vm)(n).

In particular we have τ(v1 ⊗ . . .⊗ vm)(n) = 0 if m ≤ n. Now suppose m > n and write

∆(n)(v1 ⊗ . . .⊗ vm) =:
∑

v(0) ⊗ . . .⊗ v(n),

then the equation (B.2.2) says that

τ(v1 ⊗ . . .⊗ vm)(n) =

(
n∑
i=0

∑
v(0) ⊗ . . .⊗ τ(v(i))

(0) ⊗ . . .⊗ v(n)

)(n)
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(we only see τ(v(i))
(0) because the left hand side lies in V ⊗n+1). Of course τ(v)(0) = p∗(τ)(v) for all

v ∈ TC(V ) and so we see that p∗ is injective, since we have shown that τ can be given in terms of
p∗(τ).

Finally, let us prove that p∗ is surjective by constructing a right inverse. Suppose we have the
homomorphism ϕ ∈ Homk(TC(V ), V ), then define τϕ : TC(V )→ TC(V ) by

τϕ(v1 ⊗ . . .⊗ vm)(n) =

(
n∑
i=0

(
Id⊗i ⊗ ϕ⊗ Id⊗n−i

)
◦∆(n)(v1 ⊗ . . .⊗ vm)

)(n)

.

It is a straightforward, though long, check that we have τϕ ∈ Coderk(TC(V )) and it is deduced easily
that p∗(τϕ) = ϕ.

�

Remark B.2.8. In the proof above we frequently move between V ⊗n as a subspace of TC(V )⊗n

and as a subspace of TC(V ) without noting it every time. Nonetheless this should not cause any
confusion for the attentive reader.

Proposition B.2.9. Suppose C is a graded coalgebra. Then the graded commutator

[τ, θ] = τ ◦ θ − (−1)klθ ◦ τ

is a coderivation of degree k + l for all τ ∈ Coderk(C) and θ ∈ Coderl(C).

Proof.
Clearly [τ, θ] is a degree k + l linear map. Verifying that

∆ ◦ [τ, θ] = ([τ, θ]⊗ Id + Id⊗ [τ, θ]) ◦∆

is a completely straightforward exercise left to the reader. �

Note that the graded commutator bracket supplies the graded vector space

Coder(TC(V )) :=
⊕
k

Coderk(TC(V ))

with the structure of a graded Lie algebra. It turns out that the equations defining the structure of a
dg algebra on V coincide (up to a shift) with the equations that specify the vanishing of the bracket
of a certain coderivation with itself.

Proposition B.2.10. Suppose V is a graded vector space equipped with linear maps

µ : V ⊗2 −→ V and d : V −→ V

of degree 0 and +1 respectively. Then (V, µ, d) is a dg algebra if and only if [m,m] = 0 where the
coderivation m ∈ Coder1(TC(V [1])) is given by

p∗(m) =↓ ◦µ ◦ (↓ ⊗ ↓)−1+ ↓ ◦d◦ ↑ .

Proof.
The “if” statement follows from the straightforward, but long, computation of evaluating

0 =
1

2
p∗([m,m]) = p∗(m) ◦m

on V ⊗n for 0 < n < 4. We leave this computation to the reader.

The “only if” statement follows since p∗(m) vanishes on V ⊗n for all n > 2, while, by the fact that
m = τp∗(m) in the notation of the proof of proposition B.2.7, we see that m lowers the weight by a
maximum of 1. This means that the computation proving the “if” statement is the only computation
that needs to be done. So, if (V, µ, d) is a dg algebra, we find that [m,m] is the unique coderivation
such that p∗([m,m]) = 0 and therefore [m,m] = 0.
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Thus we see that the space of dg algebra structures on a graded vector space V is exactly the space
of degree +1 coderivations m of TC(V [1]) such that p∗(m)(V [1]⊗n) = 0 for all n > 2 and [m,m] = 0.

Remark B.2.11. Strengthening the last condition to p∗(m)(V [1]⊗n) = 0 for all n > 1 recovers the
notion of differential graded vector space (cochain complex). While dropping the last condition that
p∗(m)(V [1]⊗n) = 0 for all n > 2 recovers the notion of A∞ or strong homotopy associative algebra in
the sense that the space of degree +1 coderivations of TC(V [1]) such that [m,m] = 0 is exactly the
space of A∞-structures on V .

Proposition B.2.10 shows that, given a dg algebra (A,µ0, d0), the deformations (A⊗LR,µ, d) will
be given by degree +1 coderivations as specified. If we denote by m0 the coderivation corresponding
to (A ⊗L R,µ0, d0) (R-linear extension of µ0, d0), we see that (A ⊗L R,µ, d) corresponds to the
coderivation m0 + ~m≥1 for a coderivation m≥1 of degree +1 such that p∗(m≥1)(A[1]⊗n) = 0 for all
n > 2 and

0 = [m0 + ~m≥1,m0 + ~m≥1] = ~ (2d(µ≥1) + ~[µ≥1, µ≥1]) . (B.2.3)

Here we have denoted d(a) := [m0, a] and we recall that [m0,m0] = 0, since (A,µ0, d0) is a differential
graded associative algebra. Note that equation (B.2.3) is an incarnation of the Maurer-Cartan equation
“dω + 1

2 [ω, ω] = 0”, see (2.3.1) and (4.1.1). We now have all the necessary elements to specify the
differential graded Lie algebra previously alluded to and how it controls the deformation problem.

B.3. Deformation Lie Algebra

In this section we will explain what we mean when we say that the dgl algebra g controls R-
deformations of (A,µ, d).

Note that our choices of R are local rings for the maximal ideal m = 〈~〉. In fact, most of the
theory developed here is straightforwardly generalized to the setting of local Artinian rings and local
complete rings R. For simplicity we will stick to the k-truncations and formal power series however.

Notation B.3.1. Given a differential graded Lie algebra (g, [·, ·], d), we denote the differential
graded Lie algebra given by

gm := g⊗L m, [X ⊗ a, Y ⊗ b] = [X,Y ]⊗ ab and d(X ⊗ a) = (dX)⊗ a,
with the grading given by (gm)n = gn ⊗L m, by (gm, [·, ·], d).

Note that, since m is either nilpotent or pro-nilpotent (a limit of nilpotent algebras), we find that
gm is also nilpotent or pro-nilpotent respectively. This means that infinite sums such that there are
only finitely many terms of each bracket length always converge in gm.

Definition B.3.2. Given a differential graded Lie algebra g we denote the Gauge group associated
to gm by G(gm). It is given as a set by (gm)0. The group multiplication is given by the Campbell-
Baker-Hausdorff formula

X · Y = Log (exp(X) exp(Y )) = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]] + [Y, [Y,X]]) + . . .

where exp(X) =
∑∞
n=0

Xn

n! and Log X =
∑∞
n=0

(−1)n+1

n+1 (X − 1)n+1.

Note that X · 0 = X = 0 ·X and X · (−X) = 0 = (−X) ·X and so the neutral element of exp(gm)
is given by 0, while the inverse of X ∈ exp(gm) is given by −X.

Remark B.3.3. In the definition B.3.2 we are being a bit sloppy. We mean that X ·Y is given by
writing out the formal power series Log (exp(x) exp(y)) of non-commuting formal variables x and y in
terms of (iterated) commutators and subsequently replacing all instances of x by X and all instances
of y by Y . The resulting sum will be well-defined by the comment on nilpotency above.



B.4. DEFORMATION COHOMOLOGY 137

Definition B.3.4. Given a differential graded Lie algebra g and m ∈ g1, we define the gauge
action with respect to m

αm : G(gm) −→ AutL
(
(gm)1

)
by

αm(X)(Y ) = exp(X)(m+ Y ) exp(−X)−m.

Remark B.3.5. Note that we have been sloppy in the same way as before. We mean that
αm(X)(Y ) is given by writing out the formal power series exp(x)(z+y) exp(−x)−z of non-commuting
formal variables x, y and z in terms of iterated commutators and then substituting all instances of x
by X, y by Y and z by m. The brackets with m should be interpreted in terms of the obvious R-linear
action of g on (gm)0.

Definition B.3.6. Suppose (g, [·, ·], d) is a differential graded Lie algebra. Then we define the set
of Maurer-Cartan elements MC(g) by

MC(g) :=

{
X ∈ g1 | dX +

1

2
[X,X] = 0

}
.

Remark B.3.7. Suppose (g, [·, ·]) is a graded Lie algebra and m ∈ g1 such that [m,m] = 0, then
it is a trivial exercise to verify that

dm : g −→ g,

given by dm(X) = [m,X], gives g the structure of a differential graded Lie algebra.

Proposition B.3.8. Suppose g is a graded Lie algebra with m ∈ g1 such that [m,m] = 0, then
the gauge action with respect to m preserves the set of Maurer-Cartan elements of (g, [·, ·], dm).

Proof.
The proposition follows by direct computation. �

Definition B.3.9. We define the set of R-deformations up to gauge equivalence controlled by the
dgl algebra (g, [·, ·], dm) as above, denoted DefR(g,m), as the quotient

DefR(g,m) := MC(gm)
/
G(gm)

by the gauge action w.r.t. m.

When we say that the dgl algebra g controls R-deformations of (A,µ, d) we mean that the set of
gauge equivalence classes of R-deformations is isomorphic to DefR(g,m) (in a natural way).

Remark B.3.10. It should be evident that we have not even begun to present the full story here.
In general one would find, instead of the sets DefR(g,m), a functor

Def(g) : C −→ Grpd2,

where Grpd2 denotes the category of 2-groupoids and C denotes the category of local Artinian or
local complete (commutative) L-algebras. Also, the differential in g need not be of the form dm for
some m ∈ g1. We will not need the full generality of the theory here however.

B.4. Deformation Cohomology

Now we are in a position to provide the dgl algebra g(A) that controls the R-deformations of the
dga algebra (A,µ0, d0). We should of course be guided by the equation (B.2.3). Let us introduce first
some useful notation.
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Notation B.4.1. For i, j ∈ Z≥0 and i > 0, we denote the space of L-linear maps from A⊗i to A
of degree j by

Cij(A) := Homj
L(A⊗i, A).

For n ≥ 1 we also denote

Cn(A) :=
⊕
i+j=n

Cij(A) and C•(A) :=
⊕
n≥1

Cn(A).

Definition B.4.2. For i, j ∈ Z≥0 (i > 0) let Tij : Cij(A)→ Ci(i+j−1)(A[1]) denote the map given
by

Tij(f) = (−1)
i(i−1)

2 ↓ ◦f◦ ↑⊗i .
We shall denote the induced map

T =
⊕
i,j

Tij : C•(A) −→ C•(A[1]).

We also denote the map defined in the proof of proposition B.2.7 by

τ : C•(A[1]) −→
⊕
k≥0

Coderk(TC(A[1])).

Remark B.4.3. As shown in proposition B.2.7, the map τ is a linear isomorphism. Clearly the
map T is also a linear isomorphism. If we consider C•(A) graded by the total degree, i.e. Cn(A)

are the elements of degree n, and C•(A[1]) graded by the degree of maps, i.e. Homk(A[1]⊗l, A) are
elements of degree k, then T is a degree −1 map. With this same grading on C•(A[1]) we see that τ
is of degree 0.

Definition B.4.4. Let (g(A), [·, ·]G, d) be defined as the dgl algebra given by

g(A)n := C•(A)[1]n

τ ◦ T ([X,Y ]G) = [τ ◦ T (X), τ ◦ T (Y )]

where the brackets on the right hand side are simply the commutator brackets and

dX = [µ0 + d0, X]G.

Theorem B.4.5. The differential graded Lie algebra g(A) is well-defined and controls the defor-
mations of (A,µ0, d0).

Proof.
The fact that [·, ·]G is a well-defined graded Lie bracket follows from the fact that the commutator
bracket on coderivations is a well-defined Lie bracket and that the composition

τ ◦ T : g(A)n −→ Codern(TC(A[1]))

is a degree 0 linear isomorphism. This last fact is checked by simply going through the definitions.
Thus, by remark B.3.7, we find that g(A) is a well-defined dgl algebra if [µ0 + d0, µ0 + d0]G = 0. This
last identity follows from proposition B.2.10.

It remains to verify that

DefR(g(A),m) ' {R− deformations of (A,µ0, d0)}/gauge equivalence ,

where m = µ0 + d0. Note that, again by proposition B.2.10, we find the map

t : MC(g(A)m) −→ {R− deformations of (A,µ0, d0)}

given by

t(c) = (A⊗L R,µ0 + c, d0 + c).
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Note also that, by definition, every R−deformation of (A,µ0, d0) is of the form

(A⊗L R,µ0 + c, d0 + c)

up to gauge equivalence. By proposition B.2.10, it follows that if (B,µ, d) ' (A⊗L R,µ0 + c, d0 + c)
then c ∈ MC(g(A)m). Thus it is only left to check that the gauge group G(g(A)m) acts by gauge
equivalences and that every gauge equivalence between deformations (with B = A ⊗ R) yields an
element of the gauge group G(g(A)m). Note that

G(g(A)m) ⊂ g(A)0
m = C1(A)⊗m =

⊕
i+j=1

Homj
L(A⊗i, A)⊗m = Hom0

L(A,A)⊗m,

since i > 0 and j ≥ 0. So, for X ∈ G(g(A)m), the linear map

expX :=

∞∑
k=0

X◦k

k!
: A⊗R −→ A⊗R

is well-defined. Clearly, the linear map exp(−X) is also well-defined and an inverse to expX. Now
note that, if c ∈MC(g(A)m), then

exp(X) : t(c) −→ t(αm(X)(c)),

where m := µ0+d0, follows from the definition B.3.4 of αm. Note that, by definition, exp(X) is a gauge
equivalence. Thus we find that G(g(A)m) acts on the set of R-deformations by gauge equivalences.
On the other hand suppose

ϕ : (A⊗L R,µ, d) −→ (A⊗L R,µ′, d′)
is a gauge equivalence of R-deformations. Then ϕ = Id + ~ϕ≥1 and the map

Log ϕ =

∞∑
k=0

(−1)n+1

n+ 1
(~ϕ≥1)n+1 : A⊗L R −→ A⊗L R

is a well-defined linear map. Note that Log ϕ ∈ Hom0
L(A,A)⊗m and

αm(Log ϕ)(µ+ d−m) = µ′ + d′ −m.
Thus, every gauge equivalence is implemented by an element of the gauge group.

�

Remark B.4.6. Note that (C•(A), ↑ ◦dm◦ ↓) is a subcomplex of the Hochschild cohomology
complex of (A,µ, d) with values in the A-bimodule (A, d). The bracket [·, ·]G is usually called the
Gerstenhaber bracket and it is part of the Gerstenhaber structure on the Hochschild cohomology of
A with values in A.

Remark B.4.7. Note that, given an isomorphism A → B of dg algebras, we obtain an induced
isomorphism DefR(g(A),mA) → DefR(g(B),mB). When we consider differential graded algebras, we
are more often interested in quasi-isomorphism than isomorphism however. In order to make a similar
statement about quasi-isomorphisms, we would need to be able to construct a quasi-inverse. This
is not always possible. However, if we consider the differential graded algebras as strong homotopy
associative algebras (A∞-algebra) instead, we can always find such inverse ∞-isomorphism [79]. It is
shown in the paper [34] that a quasi-isomorphism of dg algebras induces a corresponding isomorphism
of the deformation functors. Note, however, that one is required to consider deformations of the dg
algebras as A∞-algebras in this case. This amounts technically to allowing j ∈ Z in definition B.4.2.
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