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Abstract

The overall topic of this thesis is approximate martingale estimating function-based esti-
mation for solutions of stochastic differential equations, sampled at high frequency. Focus
lies on the asymptotic properties of the estimators. The first part of the thesis deals with
diffusions observed over a fixed time interval. Rate optimal and efficient estimators are
obtained for a one-dimensional diffusion parameter. Stable convergence in distribution is
used to achieve a practically applicable Gaussian limit distribution for suitably normalised
estimators. In a simulation example, the limit distributions of an efficient and an inefficient
estimator are compared graphically. The second part of the thesis concerns diffusions with
finite-activity jumps, observed over an increasing interval with terminal sampling time go-
ing to infinity. Asymptotic distribution results are derived for consistent estimators of a
general multidimensional parameter. Conditions for rate optimality and efficiency of es-
timators of drift-jump and diffusion parameters are given in some special cases. These
conditions are found to extend the pre-existing conditions applicable to continuous diffu-
sions, and impose much stronger requirements on the estimating functions in the presence
of jumps. Certain implications of these conditions are discussed, as is a heuristic notion of
how efficient estimating functions might be constructed, thus setting the stage for further
research.
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Summary

Diffusions with and without jumps find wide use in the modelling of dynamical phenomena
in continuous time, thus creating a demand for statistical methods to analyse the accompa-
nying data. Although the models have continuous-time dynamics, data can usually only be
sampled in discrete time. This complicates the statistical analysis, especially in the pres-
ence of jumps. Except in some simple cases, the likelihood function is not known explicitly.
Thus, maximum likelihood estimation is generally rendered somewhat impracticable.

The overall topic of this thesis is parametric estimation for stochastic differential equation
models with and without jumps, which is carried out using approximate martingale esti-
mating functions. More specifically, focus lies on asymptotic theory for the estimators,
which are desired to be rate optimal and efficient.

This thesis essentially consists of two parts. The first part deals with univariate diffusions
(without jumps), observed at high frequency over a fixed time interval. These processes
are assumed to solve stochastic differential equations with an unknown one-dimensional
parameter present in the diffusion coefficient. Existence, uniqueness and asymptotic distri-
bution results are derived for the estimators. The estimators are found to be rate optimal
and, under a simple, additional condition, efficient in a local asymptotic mixed normality
sense. Stable convergence in distribution is used to obtain a practically applicable standard
Gaussian limit distribution for suitably normalised estimators. A concrete example of an
efficient approximate martingale estimating function is given, and it is argued that others
may be found in the literature. Finally, a small simulation study is used to exemplify the
theory, and to compare an efficient and an inefficient estimator graphically.

The second part of the thesis concerns diffusions with finite-activity jumps. These pro-
cesses are assumed to be observed at high frequency over an increasing time interval,
with terminal sampling time going to infinity as the sample size goes to infinity. These
processes are also given as solutions to stochastic differential equations, initially, with a
general multidimensional parameter allowed to be present in the drift, diffusion and jump
coefficients. Again, existence, uniqueness and asymptotic distribution results are obtained
for the estimators. Rate optimality and efficiency criteria are motivated by various results
in the literature. Subsequently, conditions are given for rate optimality and efficiency of
the estimators in three classes of sub-models with unknown drift-jump parameters and/or
diffusion parameters. These conditions are found to extend the pre-existing conditions ap-
plicable to continuous diffusions, and they impose considerably stronger requirements on
the estimating functions in the presence of jumps. Certain implications of these condi-
tions are discussed, as is a heuristic notion of how efficient estimating functions could be
constructed, thus setting the stage for further research.
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Resumé

Diffusioner med og uden spring finder bred anvendelse i modelleringen af dynamiske feno-
mener i kontinuert tid. Der skabes derved en efterspgrgsel efter statistiske metoder, som kan
bruges til at analysere de tilhgrende data. Anvendelserne har det tilfelles, at mens model-
lerne beskriver en udvikling i kontinuert tid, sa kan data typisk kun observeres i diskret tid.
Dette besvearligggr den statistiske analyse, specielt nar modellen inkluderer spring. Almin-
deligvis kendes likelihoodfunktionen for de diskrete observationer ikke eksplicit, hvilket
ggr maksimum likelihood estimation uanvendeligt i praksis.

Afhandlingens overordnede emne er parametrisk estimation for stokastiske differentiallig-
ningsmodeller med og uden spring, som udfgres ved brug af approksimative martingal
estimationsfunktioner. Der fokuseres pa asymptotisk teori for estimatorerne, som specielt
gnskes at vere rateoptimale og efficiente.

Ud over det indledende kapitel bestar athandlingen af to hoveddele. Fgrste del omhand-
ler endimensionelle diffusioner (uden spring), som er observeret ved hgj frekvens over et
fast tidsinterval. Processerne antages at vaere lgsninger til stokastiske differentialligninger,
i hvilke der indgar en ukendt parameter i diffusionskoefficienten. Der etableres eksistens-
og entydighedsresultater, samt asymptotiske fordelingsresultater for estimatorerne. Det ses
at estimatorerne er rateoptimale, og under yderligere én betingelse er de ogsa efficiente i en
lokal asymptotisk normalitets-forstand. Stabil konvergens i fordeling benyttes med henblik
pa at opna en praktisk anvendelig graensefordeling for passende transformerede estimato-
rer. Et eksempel gives pa en efficient approksimativ martingal estimationsfunktion, og der
bliver argumenteret for, at flere eksempler findes i den statistiske litteratur. Til sidst prasen-
teres et simulationsbaseret eksempel pa teorien, hvori der laves grafiske sammenligninger
af de asymptotiske fordelinger hgrende til henholdsvis en efficient og en inefficient estima-
tor.

Anden del af athandlingen handler om diffusioner med spring, som ligeledes er observeret
med hgj frekvens, men over et interval hvor sluttidspunktet for observationerne gar mod
uendelig, nar antallet af observationer gar mod uendelig. Disse processer antages ogsa at
Igse stokastiske differentialligninger, som udgangspunkt med en flerdimensionel parame-
ter som ma vere til stede bade i drifts-, diffusions- og spring-koefficienterne. Igen etableres
der eksistens-, entydigheds- og asymptotiske fordelingsresultater for estimatorerne. Kriteri-
er for rateoptimalitet motiveres ud fra forskellige resultater i litteraturen for diffusioner med
og uden spring. Der fremsattes betingelser for rateoptimalitet og efficiens i tre typer del-
modeller med ukendt drift-spring- og/eller diffusionsparameter. Betingelserne udvider de
allerede eksisterende tilsvarende betingelser for kontinuerte diffusioner, men stiller noget
hgjere krav til estimationsfunktionerne, nar der ogsa er spring i modellen. Nogle konse-
kvenser af disse betingelser diskuteres, sammen med en idé til hvordan konkrete eksempler
pa efficiente approksimative martingal estimationsfunktioner potentielt kunne konstrueres.
Samlet lgger disse betragtninger op til videre forskning pa omradet.
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CHAPTER 1

Overview

The overall topic of this thesis is parametric estimation for stochastic differential equations,
by means of approximate martingale estimating functions. Focus lies on asymptotic theory
for the estimators, which are desired to be rate optimal and efficient. Two further chap-
ters follow: one concerning diffusions without jumps (Chapter [2), the other concerning
diffusions with finite-activity jumps (Chapter [3). These chapters correspond to Jakobsen
and Sgrensen| (2015alb). Each may be read separately, although it should be noted that the
bibliography is collected at the end of the thesis.

The rest of this chapter is organised as follows. It commences with a brief background
on estimation for diffusions with and without jumps in Section Sections [1.2] and [I.3]
provide overviews of Chapters [2] and [3] respectively. Each of these sections is divided
into three parts. The first part clarifies the objectives of the chapter in question, while the
second part summarises the main results achieved. Both parts are set in the context of
related literature. The third part serves as a conclusion of the chapter, with perspectives for
further research.

1.1 Introduction

Diffusions with and without jumps find wide use in the modelling of dynamical phenomena
in continuous time, thus creating a demand for statistical methods to analyse the accompa-
nying data. Some examples of fields of application are agronomy (Pedersen, [2000), biology
(Favetto and Samson), 2010), finance (Cox et al., [1985; De Jong et al., 2001}; |Koul 2002;
Mertonl, (1971}, |1976; [Vasicekl |1977) and neuroscience (Bibbona et al., 2010; Ditlevsen and
Lansky, 2006; |Giraudo and Sacerdote, |1997; Jahn et al., [2011; Musila and Lanskyl, (1991}
Patel and Kosko, 2008 [Picchini et al., |2008]).

A shared feature of these applications is that although the models have continuous-time
dynamics, data can usually only be sampled in discrete time. This complicates the statistical
analysis, especially in the presence of jumps.

A diffusion, or, in case of ambiguity, a continuous diffusion or a diffusion without jumps, is
defined as the solution X = (X;);>0 to a stochastic differential equation of the form

dX, = a(X;;0) dt + b(X;; 6) dW, (1.1.1)

where W = (W))»0 is a standard Wiener process. In the usual parametric setting, the drift
and diffusion coefficients, a and b respectively, are known, deterministic functions of (y, 6),

1



Chapter 1. Overview

where 6 is the unknown, finite-dimensional parameter to be estimated.

Let (X, X, ..., Xp) denote n + 1 discrete-time observations of X at times 0 = 7j < 7] <
-+« < ¢, Under appropriate assumptions, Markov properties of X may be used to write the
corresponding log-likelihood function, conditional on Xy, as

£,(0) =

log p(t = 111, Xy, Xpn 1 0) (1.1.2)

i=1

with score function
n
0gln(0) = Oglog p(t — t:’_l,Xt;z,X,;z_] ;0). (1.1.3)
i=1
The function y = p(A,y, x; 8) represents the transition density, i.e. the conditional density
of X;1a given X; = x. However, except in some simple cases, these transition densities are
not known explicitly, rendering maximum likelihood estimation somewhat impracticable

in general.

A large number of alternate parametric estimation procedures based on discrete observa-
tions have been suggested in the literature, many of which perform well under various
sampling scenarios. A non-exhaustive list of references is presented in the following. For
further reference, see also the overview given by (Sgrensen| (2004)).

Pseudo-likelihood methods, i.e. approximations of the likelihood or log-likelihood func-
tions, often of a Gaussian type, were considered by, e.g. |[Florens-Zmirou| (1989), |Genon-
Catalot|(1990),|Genon-Catalot and Jacod|(1993)), Gloter and Sgrensen|(2009)), Jacod! (2006)),
Kessler| (1997), Prakasa Rao| (1983)), |Sgrensen and Uchidal (2003), and [Yoshidal (1992)).
Ait-Sahalial (2002, 2008])), IDacunha-Castelle and Florens-Zmirou| (1986), and [Li (2013
focused on expansions of the transition densities, while the approaches of, e.g. [Bibby
and Sgrensen| (1995)), |Jacobsen| (2001}, [2002)), Sgrensen| (2010), and [Uchidal (2004, 2008])
concerned approximation of the score function. Furthermore, simulation-based likelihood
methods were considered by, e.g. [Beskos et al.| (2006} 2009)), Durham and Gallant| (2002),
Pedersen| (1995)) and Roberts and Stramer| (2001)).

There also exist a number of non-parametric estimation procedures based on discrete obser-
vations. That is, methods designed for diffusion models where, e.g. the drift and diffusion
coefficients a and b themselves are unknown functions to be estimated. For references,
see e.g. |Bandi and Phillips| (2003)), Comte et al.| (2007), [Florens-Zmirou| (1993)), |Genon-
Catalot et al.| (1992), Jacod (2000) and [Schmisser| (2013). Recently, the development of
Bayesian non-parametric methods was the focus of, e.g. |Papaspiliopoulos et al.| (2012),
van der Meulen and van Zanten|(2013)), and |[van der Meulen et al.| (2014).

A diffusion with jumps is defined as the (cadlag) solution X = (X;)>0 to the stochastic
differential equation

dX; = a(X;; 0) dt + b(X;; 0) dW, + f c(X;—, 2, 0) (N’ — ug)(dt, dz) (1.1.4)
R

2



1.1. Introduction

a generalisation of (I.L.T)), where X_ = (X;_);>0 denotes the process of left limits. The
time-homogeneous Poisson random measure N%(dt, dz) is independent of W, and has the
intensity measure ug(dt, dz) = vg(dz) dt for some Lévy measure v4. In extension to the de-
scription surrounding (I.1.T)), in the fully parametric framework, the measure vy is usually
known up to the parameter 6. The jump coefficient c is a known, deterministic function of
(v, z; 8). The compensated drift coefficient @ may be written as

a(y:6) = a(y: 6) + f (2 0) veld2),
R

when the integral exists. When v4(R) < oo, the jumps of X are said to be of finite activity.
In this case, (I.1.4) may also be represented as

dX; = a(X;; 0) dt + b(X;; 0) dW, + f c(X;—,z;0) N°(dt, dz) (1.1.5)
R

and X is often referred to as a jump-diffusion. As opposed to a diffusion, which has contin-
uous sample paths (with probability one), a jump-diffusion exhibits at most finitely many
jumps in any time interval of finite length. In intervals without jumps, it follows the dy-
namics given by (I.1.1). When vy(R) = co, the jumps of X are said to be of infinite activity,
in which case X jumps infinitely many times in any finite time interval.

Under appropriate conditions, a diffusion with jumps is also a Markov process, and the

expressions (1.1.2) and (I.1.3) are still valid. However, the challenge of finding an analytic

expression for the transition density is no less great than for continuous diffusions. In the
absence of a closed-form expression for the log-likelihood function, statistical inference is
complicated further by the following: To the extent that knowledge of the jump times and
sizes is needed, it has to be inferred from the discrete-time observations whether one or
more jumps are likely to have occurred between any two consecutive observation times,
and, if so, how much of the observed increment is attributable to the jump(s). This infor-
mation would be more easily obtainable from the ideal continuous-time observations, at
least, in the case of finite-activity jumps.

Again, a multitude of estimation approaches may be found in the literature. A non-ex-
haustive list of references includes the following: In the context of parametric estima-
tion, pseudo-likelihood methods, primarily involving Gaussian approximations to the log-
likelihood (or score) function, were considered by, e.g. Masudal (2011} |2013)), |Ogihara
and Yoshidal (2011, Shimizu| (2006b), and |Shimizu and Yoshidal (2006). Closed-form ex-
pansion of the transition densities was investigated by, e.g. |[Filipovi¢ et al.| (2013), and
Yu| (2007), while Mai (2014) approximated maximum likelihood estimators obtained from
the continuous-time likelihood function. Mancini| (2004) proposed a quadratic variation-
inspired estimation method in a semiparametric setting, while simulation-based methods
were considered by, e.g. |Giesecke and Schwenkler (2014)), and [Stramer et al.| (2010). Fi-
nally, a selection of non-parametric procedures based on discrete observations exist as well,
see e.g. Bandi and Nguyen| (2003)), Mancini (2009), Mancini and Reno| (2011)), [Schmisser
(2014)) and [Shimizu! (2006a, 2008|,[2009).



Chapter 1. Overview

1.2 Diffusions Without Jumps

1.2.1 Background and Objectives

In Chapter 2] we consider continuous diffusions X solving stochastic differential equations
of the form

for 6 € ®. These constitute a special case of (I.I.I)), where the unknown parameter is
only present in the diffusion coefficient. In the following, the true, unknown parameter is
denoted 6y. For n € N, it is assumed that X is observed at n + 1 discrete, equidistant time-
points t? =i/n,i=0,1,...,n, over the fixed interval [0, 1]. In the following, asymptotics
are considered as n — oco. We say that X is observed at high frequency, because the time-
distance A, = 17 — 1" | satisfies that A, = 1/n — 0 asn — oo.

For simplicity, X; and 6 are both assumed to be one-dimensional. Extension of our results
to a multivariate parameter is expected to be quite straightforward. Drift parameters cannot
be estimated consistently under the fixed-interval asymptotic scenario considered here, and
are therefore excluded from the model. The choice of time-interval [0, 1] is not considered
restrictive, as the results may be generalised to other compact intervals by suitable rescaling
of the drift and diffusion coefficients.

In this setup, the local asymptotic mixed normality (LAMN) property has been shown to
hold (Dohnal, |1987;/Gobet,[2001 ﬂwith rate \/n and random asymptotic Fisher information

(MK )Y 1 [ 80h2 (X 00)

Here, e.g. dgb*(x;6) denotes the partial derivative of b with respect to 6. In the con-
text of local asymptotic mixed normality, a consistent estimator 8, of 8 is rate optimal if
\/ﬁ(@n — By) converges in distribution to a non-degenerate random variable. Furthermore, it
is efficient if this limit distribution may be written on the form 1 (60)" Y%7, where Z follows
a standard normal distribution, and is independent of 7(6p). In general terms, over all con-
sistent estimators 8, the optimal rate of convergence 6, = n is the “fastest possible” rate
at which 6,(8, — 6y) converges in distribution to a non-degenerate limit. Similarly, condi-
tional on J(6p), the distribution characterised by (69)~"/2Z has the “smallest conditional
variance possible”, for a limit distribution of \/ﬁ(@n —0p). (See Section of Chapter
for further details.)

Much of the literature on parametric estimation for diffusions concerns sampling scenar-
ios where nA, — oo as n — oo, with either A, — 0 (high frequency asymptotics) or
A, = A fixed (low frequency asymptotics). In these cases, drift and diffusion parameters
can both be estimated consistently. Limit distributions of suitably normalised estimators
are generally Gaussian, with variances that depend on the true unknown parameter 6,

Dohnal| considered univariate diffusions, |Gobet multivariate diffusions.

4



1.2. Diffusions Without Jumps

and on A in the case of low frequency asymptotics. See, e.g. the asymptotic results of
Dacunha-Castelle and Florens-Zmirou| (1986)), [Florens-Zmirou! (1989), Jacobsen| (2001)),
Kessler| (1997)), Sgrensen| (2010), and [Yoshidal (1992).

Gaussian limit distributions are also obtained within the framework of small-diffusion
asymptotics, as studied in the papers of, e.g. |Genon-Catalot| (1990), |Gloter and Sgrensen
(2009), [Sgrensen and Uchidal (2003)), and [Uchida (2004, [2008)). Small-diffusion asymp-
totics entail A, — 0 with nA, fixed, as in the current setting, but under the additional
assumption that the diffusion coefficient is of the form b(y;6) = eE(y;H), with e —» 0
and n — oo simultaneously. Unlike in our fixed-interval setting, drift parameters can be
estimated consistently, so the drift and/or diffusion coefficient may depend on unknown
parameters. The asymptotic variances of suitably normalised estimators generally depend
on the path of the corresponding ordinary differential equation under the true parameter,
obtained by setting € = 0.

In the current setting, where the asymptotics consist of A, = 1/n — 0 as n — oo with nA,
fixed, the limit distributions of consistent estimators tend to be more complicated. This
is not only because they are generally seen to be normal variance mixtures. Even just
for efficient estimators, it is seen from ([.2.2) that the distributions typically depend on
(X1)ieq0.17- the full sample path of the the diffusion process over the observation interval,
which is only partially observed in practice. Parametric estimation under this particular
asymptotic scenario has previously been considered by |Genon-Catalot and Jacod| (1993}
1994) and, to some extent, by [Dohnal| (1987) and Jacod| (2006), in addition to the local
asymptotic mixed normality results of Dohnall (1987) and |Gobet| (2001).

The setup described here is a special case of the one considered by|Genon-Catalot and Jacod
(1993), who proposed estimators of the diffusion parameter based on a class of contrast
functionsE] When adapted to our framework, these contrast functions have the form

1 n

Un(®) = =~ > f (0K 1008, X = X))
i=1

for functions f(v, w) satisfying certain conditions, and may thus only depend on the obser-
vations through bz(X,;vil ;0) and A;] / 2(X,;v _Xt?, 1 ). Estimators of 6y are obtained by minimis-
ing the contrast functions. They are seen to be rate optimal, and, when suitably normalised,
they converge in distribution to normal variance mixtures, which generally depend on the
sample path (X;)seq0,17 (Genon-Catalot and Jacod, (1993| Theorem 3). The contrast function
based on f(v,w) = logv+ w? /v was identified as efficient (Genon-Catalot and Jacod, 1993,
Theorem 5).

After showing the local asymptotic mixed normality property for the current model and ob-
servation scheme, Dohnal| noted that when 5%(x; 6) = h(x)k(0) for appropriate functions &

2The paper of |Genon-Catalot and Jacod| (1994) generalised their results from|1993, in the sense that the paper
from 1994 focused on random sampling times (and is thus out of the scope of this thesis). In extension of
what is included in the following discussion, their paper from [1993|also allowed non-equidistant sampling
times, multi-dimensional diffusion parameters and multivariate processes with more general drift coefficients
than ours.



Chapter 1. Overview

and k, the efficient limit distribution reduces to a normal distribution, and the local asymp-
totic mixed normality to local asymptotic normality (LAN). (See also (Genon-Catalot and
Jacod, (1993, Example 7.b).) Indeed, it is seen from that 7(6p)~" = 2k%(60)/0gk(6p)*
becomes the (non-random) covariance matrix of the asymptotic distribution in this case.
For example, the squared diffusion coefficients of a number of Pearson diffusions, such as
the Ornstein-Uhlenbeck and square root processes, may be written on the specified product
form. (See Forman and Sgrensen| (2008) for more on Pearson diffusions.) |Dohnal| consid-
ered two examples of sub-models of for which the squared diffusion coefficient was
such a product (one of them an Ornstein-Uhlenbeck process), and proposed some explicit,
efficient estimators for these models, based on their local asymptotic normality.

Furthermore, as part of a more general paper on asymptotics for estimators of parameters
in non-ergodic diffusions, Jacod (2006, Theorem 2.1) proposed a contrast function for es-
timating the diffusion parameter within the present setting. He argued that for the resulting
estimators 8, vVn(6, — 6p) is tight.

On a similar note, in the non-parametric literature, normal variance mixture limit distribu-
tions have been observed as well in connection with related estimation problems. For exam-
ple, when estimating integrated volatility fol b*(X,)ds (Jacod and Protter, 1998; Mykland
and Zhang, |2006)), or the squared diffusion coefficient bz(x) over a fixed interval (Florens-
Zmirou, 1993} Jacod, 2000).

Our main objective in Chapter [2]is to establish the existence of rate optimal and efficient es-
timators of 6y within the general model (I.2.T)), based on the extensive class of approximate
martingale estimating functions. We also aim to find a suitable (data-dependent) normali-
sation of these estimators, which converges in distribution to a practically applicable limit
distribution, that does not depend on any unknown or unobserved quantities.

Approximate martingale estimating functions, defined more precisely in Sections and
[3.2.3] may be written as e.g.

1
nA,

n
Gn(0) = —— > g(An, X, Xy 10),
i=1
where g(t,y, x; 0) is a deterministic function. Here g(z, y, x; 6) is real-valued, whereas for a
d-dimensional parameter 6, it would be R?-valued. The approximate martingale property
assumed to be satisfied by g is a conditional expectation condition of the form

Eo(g(An, Xer, Xin 30) | Xpn ) = AyRo(An, Xer ) (1.2.3)

for some « > 2, where the remainder term Ry(t, x) may be controlled as necessary. Es-
timators based on G,(6) are referred to as G,-estimators, and are essentially obtained as
solutions to the estimating equation G,(6) = 0. Estimating functions of this type were used
by e.g. Bibby and Sgrensen| (1995)), Jacobsen| (2001} |2002), |[Sgrensen| (2010), and [Uchida
(2004), in connection with other diffusion models and asymptotic schemes.

The model (I.2.)) is a sub-model of that studied by [Sgrensen| (2010), which included a drift
parameter. |Sgrensen|considered estimation by approximate martingale estimating functions

6



1.2. Diffusions Without Jumps

under the asymptotic scenario A, — 0 and #;, = nA, — oo as n — oco. Not only did he
give simple conditions for rate optimality and efficiency (in the local asymptotic normal-
ity sense), he also argued that the theory of approximate martingale estimating functions
encompasses a large number of other well-performing estimators in the literature.

Based on the results of [Sgrensen| (2010), it is important, in our opinion, to investigate the
performance of estimators based on approximate martingale estimating functions under the
present high-frequency, fixed-interval observation scheme. We hope to find similar, simple
conditions for rate optimality and efficiency as those found by Sgrensen.

1.2.2 Overview of Main Results

In the following, convergence in distribution and in probability, denoted 2, and 2, re-
spectively, are understood to be under the true probability measure as n — oco. Furthermore,
for example, c')z,g(O, x, x; 8) denotes the second partial derivative of g(0, y, x; ) with respect
to y, evaluated in y = x.

The first main contribution of Chapter [2] is Theorem [2.3.2] which establishes existence,
uniqueness, and asymptotic distribution results for rate optimal G,-estimators, within the
setup described in Section[I.2.1] It also shows that suitably normalised estimators converge
in distribution to a standard Gaussian limit suitable for practical purposes, in that knowl-
edge of the full sample path (X;);cj0,17 is no longer needed. Omitting the technical details
and regularity assumptions, the theorem may be summarised as follows:

Theorem. Suppose that the appropriate assumptions hold. Then,

(i) there exists a consistent G-estimator 6,. In any compact, convex set K C © contain-
ing Oy in its interior, the estimator is unique with probability going to one.

(ii) for any consistent G,-estimator 0, it holds that
N D
(8, - 6y) — W(0y)Z. (1.2.4)

Z follows a standard normal distribution and is independent of W(8y), given by

1 1/2
( [ st a0Re0. X X as
W(b) =

1 (1.2.5)

[ s0u7 0t a0Re00. X, X s ds
0

— —~ P
A further specified transformation of the observed data, W,, with W, — W(6p),
satisfies that

AW (6, - 0) = Z. (1.2.6)
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Due to the general randomness of W(6y), the concept of stable convergence in distribution
was employed in order to obtain (I.2.6). The rate of convergence in (I.2.4)) reveals that the
consistent G,-estimators are rate optimal. This was ensured by imposing the condition

0,8(0,x,x;0) =0 (1.2.7)

for all x and 6, on the function g(¢, y, x; 6).

The second main contribution in Chapter [2] formally established in Corollary [2.3.4] con-
cerns the efficiency of the G,-estimators. Using (1.2.5), it is seen that under the additional
condition

b*(x; 6)

P 0x.6) (1.2.8)

9280, x, x;6) = Kq
for all 6 and x, where Ky is a non-zero, possibly #-dependent constant, any consistent G-
estimator 6, is efficient.

As an example of an efficient estimating function, it may easily be verified that the approx-
imate martingale estimating function G, (6) given by

Ab*(x; 0)

g(t,y, x;0) =
81y, x;6) P 6)

(6= 07 - th*(x;6))

satisfies the conditions (1.2.7) and (T.2.8]), and corresponds to the contrast function shown
to be efficient by |Genon-Catalot and Jacod| (1993, Theorem 5). The latter because with
A, = 1/n, the efficient contrast function of (Genon-Catalot and Jacod may be written on the
form U,(0) = X, @Ay, Xer, Xpr 5 6) with

it,y, x;0) = tlog b*(x; 0) + (y — x)*/b*(x; 6)

and dyii(t, y, x;6) = —g(t,y, x; 6). Thus, U,(0) and G,,(0) yield the same estimators. Further-
more, for the sub-model of li given by dX; = a(X;)dt + \Vob(X,) dW,, Dohnal (1987)
proposed, e.g. the efficient estimator

2
n
o (X - Xe - AaXy )
=, DXy )

The estimator 6, can also be obtained as the unique solution to the estimating equation

when using the efficient approximate martingale estimating function given by

Oob*(x; 0)

gy, x;0) =

For the model dX, = aX,dt + V6dW, with a known, an efficient estimator proposed by
Dohnal was

v

n
b= 7 > (@ + MDXy — 2~ Ai)Xy ).

i=1

1
4



1.2. Diffusions Without Jumps

This estimator is also obtainable as the unique solution to the estimating equation when
using an approximate martingale estimating function based on

3, y, x,0) = (2 + 1a)y — (2 — ta)x)> — 410,

which satisfies the assumptions (1.2.7) and (I.2.8) for the model in question. Lemma[2.2.6|
in Chapter [2] may be used to verify that g, g and g satisfy the approximate martingale

condition (T.2.3).

The expressions (1.2.7) and (1.2.8) correspond to the conditions found for rate optimality
and efficiency of diffusion parameter-estimators within the framework of Sgrensen| (2010)).
Furthermore, as discussed by [Sgrensen, they also emerge in the work of Jacobsen| (2002).
There, they were given as conditions for small A-optimality of martingale estimating func-

tions in the sense of Jacobsen| (2001), in models with only a diffusion parameter. Small
A-optimality concerns the near-efficiency of estimating functions based on discrete obser-
vations, with a fixed distance A close to 0 between observation times. In general terms,
small A-optimal estimating functions yield estimators that achieve a lower bound on the
asymptotic variance in the limit A — 0. Consequently, a number of (approximate) martin-
gale estimating functions discussed by Jacobsen| (2002)) and [Serensen| (2010) also satisfy
our rate optimality and efficiency conditions.

An additional contribution of Chapter [2] is a small simulation study, in which we make
graphical comparisons of the distributions of two estimators, one efficient and one not.
In accordance with our theoretical considerations, the efficient estimator is seen to have
preferable properties. The Gaussian limit distribution in (I.2.6)) approximates the distribu-
tion of the normalised efficient estimator very well for the sample sizes considered. A more
notable discrepancy is seen in the case of the inefficient estimator. It is also illustrated that
the limit distribution in (I.2.4) is much more spread out for the inefficient estimator than
for the efficient estimator.

1.2.3 Conclusions and Perspectives for Further Research

In Chapter[2] we considered estimation of the diffusion parameter of a continuous diffusion
process observed at high frequency over a fixed interval. Existence, uniqueness properties
and asymptotic distribution results were established for rate optimal estimators based on
approximate martingale estimating functions. Rate optimality was ensured by a simple
condition, and a straightforward supplementary condition ensuring efficiency was stated as
well. We used stable convergence in distribution to achieve a practically applicable standard
Gaussian limit distribution for suitably normalised estimators. An example of an efficient
approximate martingale estimating function was givenE] and it was argued that there exist
more approximate martingale estimating functions in the literature, which satisfy our rate
optimality and efficiency conditions. Finally, we compared an efficient and an inefficient
estimating function by simulation, and saw graphically, that the efficient estimator had
preferable properties.

3 As well as two further examples in Section
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The results obtained were for a univariate diffusion process with a one-dimensional dif-
fusion parameter, observed at equidistant time-points with time step A, = 1/n. Based on
our later work presented in Chapter [3|(concerning jump-diffusions with a multidimensional
parameter) it should be quite straightforward to extend the results of Chapter[2]to a multi-
dimensional diffusion parameter as well. Furthermore, in the paper of |Genon-Catalot and
Jacod| (1993)), the stochastic processes considered were also multivariate, and the observa-
tion times not necessarily equidistant. Such extensions of our work are likely to be possible
as well.

Had time permitted, we would have liked to develop the simulation study further. For exam-
ple, with applications in mind, it would be useful to compare the finite sample properties
of different efficient estimators with each other and with more general rate optimal esti-
mators. More specifically, the following question could be posed: For practically feasible
sample sizes, is the Gaussian approximation to the distribution of the normalised estimators
generally better for the efficient estimators than for those that are inefficient?

Finally, it would be fascinating to expand the investigation in Chapter 2] to diffusions with
jumps as well. In light of our later results in Chapter 3| (for the asymptotic scenario A, — 0,
nA, — oo as n — o0), this would probably not be so straightforward. However, based on
the fine theoretical properties of approximate martingale estimating functions in the case of
continuous diffusions, it comes across as an important, yet to our knowledge, unresearched
area.

1.3 Diffusions With Jumps

1.3.1 Background and Objectives

In Chapter [3| we consider ergodic diffusions X with finite-activity jumps (vg(R) < c0) and
cadlag paths, which solve stochastic differential equations of the form

dX, = a(X,;0) dt + b(X,;0) dW, + f e(X,—, 7, 0) N(dt, d7) (1.3.1)
R

with § € O, as seen in @]) The invariant distribution of X is denoted by my, and the
true, unknown parameter by 8y. With (A,),en @ sequence of strictly positive numbers, it is
assumed that for n € N, X is observed at n + 1 discrete, equidistant time-points #;' = iA,,
i=0,1,...,n, over the interval [0, nA,]. Asymptotics are considered as n — oo, in which
case it is assumed that A, — 0 and nA, — oco. With this observation scheme, X is said
to be observed at high frequency over an increasing time interval, with terminal sampling
time 7, = nA, going to infinity. In the limit A, — 0, the whole sample path of the process
is (hypothetically) observed, containing full information on the jump times and sizes. As
in the previous chapter, X; is assumed to be one-dimensional, whereas 8 is assumed to be
d-dimensional for some d € N.

Local asymptotic normality (LAN), and, for fixed-interval asymptotics, local asymptotic
mixed normality, are an active area of research for processes with jumps. Recent devel-
opments include the work of [Becheri et al.| (2014), [Clément and Gloter| (2015), Kawai and
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1.3. Diffusions With Jumps

Masudal (2013)), and [Kohatsu-Higa et al.| (2014, 2015). Within the context of local asymp-
totic normality, it is quite straightforward to characterise rate optimality and efficiency of
estimators. However, in the absence of comprehensive local asymptotic normality results
for the present setup, the criteria for rate optimality and efficiency used in this paper are
more heuristic in nature.

Let M* denote transposition of a matrix (or vector) M. Consider the sub-model of (1.3.1])
given by

dX; = a(X;; @) drt + b(X;; B) dW, + f c(X;_,z; @) N*(dt, dz), (1.3.2)
R

where the unknown parameter 6 is split into a drift-jump parameter « and a diffusion pa-
rameter B, such that 6* = (a*,8*). For this model, based on results in the literatureﬂ we
conjecture on the following properties, over all consistent estimators 8, of 6y: The “fastest
possible” rate of convergence 6, = 8o, of 6,1(9" — 6p) to a non-degenerate limit distribution
(for rate optimality), and the smallest possible asymptotic variance of (50,,,(9" — 6p) (for ef-
ficiency). The matrix ¢, is invertible and diagonal, with diagonal elements satisfying that
(6n)jj > coasn > ooforall j=1,...,d.

Suppose, for a moment, that the Lévy measure vy has density with respect to Lebesgue mea-
sure. Let w — ¢(x, w; @) denote the transformation of the Lévy density by z — c(x, z; @),
and put W(x) = c(x,R;a). In this case, the conjecture (Conjecture may be sum-
marised as follows:

Conjecture. Under suitable assumptions, a consistent estimator 8, of the true, unknown
parameter 0y is rate optimal if

( VnAn(&n - a’O)

D
N - 0,V()),
V(B = o) ) N0 V(o)

and efficient when V(0y) is the (well-defined) inverse of the block diagonal matrix given by
I(6y) = blockdiag(1(6y), I2(6)), with

I](eo)zf(aaa(x;ao)*aaa(x;ao) +f Oap(x, W; 0)* Ogp(x, w; )
X W(x)

dw) g, (dx)

b2(x; Bo) @(x, w; ap)
1 9pb*(x; Bo)*dpb*(x; Bo)
I8 = = dx).
o
Here @,’,‘ = (&, ,@,’[ ), while, e.g. d,a(x;a) denotes the row-vector containing the par-

tial derivatives of a(x; @) with respect to the coordinates of @, and Ny(0, V) is the d-
dimensional, zero-mean Gaussian distribution with covariance matrix V.

“In Sectionof Chapter we motivate the Conjecture using the local asymptotic normality results of
Becheri et al.| and [Kohatsu-Higa et al/ (applicable to[I.3.2]in special cases), and other results of [Gobet] (2002)),
Shimizu and Yoshidal (2006) and |Sgrensen|(1991)).

11



Chapter 1. Overview

Parametric estimation covering sub-models of (I.3.1) has previously been considered by
e.g. Masuda (2011}, [2013)), |(Ogihara and Yoshidal (2011)), Shimizu| (2006b), and |Shimizu
and Yoshida (2006)E] Shimizu and Yoshida|proposed a technique to judge whether or not a
jump is likely to have occurred between two observation times 7 | and 7. They used this
technique to create a contrast function for estimation in sub-models of the form (1.3.2),
which may be written as

1 < 2
H,(0) = oA Z (AXn,i - Ana(Xr;gl;a/)) b 2(Xr;gl;,3)1(|AXn,i| <A
ni=1
n

1
= 2.5 (o2 PP (Xe 5 )) 10X, < A,
i=1 (1.3.3)

n
+ ) (log (X |, AXy 13 @) da(Xer | AXn DUIAX,, ] > A7)
i=1

n
—A,,Zf O, (Xp i) dw .
i=1 Y Wai

1(A) denotes the indicator function of the set A, AX,; = X,;w - X[;'l—l’ ¢n(x,w) is a truncation
function used to ensure integrability, and @, (x, w; @) = ¢(x, w; @)@, (x, w), Wy; = "W(X,:_i 1)
with ¢(x, w; @) and ‘W(x) as described earlier. For finite sample sizes, the choice of the
constant p affects the ability of the contrast function to determine whether or not a jump
has occurred between 7" | and 7.

In their Theorem 2.1, |Shimizu and Yoshidal established the asymptotic distribution of the
estimator obtained by maximising the contrast function H,(6d). They argued that the con-
trast function is efficient for the drift-jump parameter. By the criteria laid out in the afore-
mentioned conjecture, it is also efficient for the diffusion parameter.

Also considering estimation in the model @, Ogihara and Yoshida| (2011)) used a con-
trast function which was essentially identical to the one of |Shimizu and Yoshida. Under
weaker assumptions on the Lévy measure, they proved convergence in distribution of the
estimator to the efficient limit distribution (their Theorem 1). They also proved convergence
of the moments of the estimator to moments of the limit distribution, as well as similar re-
sults for a Bayes type estimator based on the same contrast function. [Shimizu| (2006b)
proposed and investigated the asymptotics of an estimating function heavily inspired by
the efficient contrast function of |Shimizu and Yoshida, but modified with the application to
infinite-activity jumps in mind. In general terms, he concluded that his estimator was not
efficient for jump parameters.

Masudal (2011} |2013)) considered Gaussian quasi-likelihood estimation for diffusions with
(possibly infinite-activity) jumps, which, in special cases, overlap with sub-models of

(L.3.1) of the form
dX; = a(Xy; @) dt + b(X;; B) dW; + f ¢(X;-,B)zN(dt,dz) .
R

3Several of these papers assumed multivariate processes and/or allowed infinite-activity jumps. In the follow-
ing, we mainly refer to their results within the framework of univariate processes with finite-activity jumps.
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1.3. Diffusions With Jumps

Among other things, Masuda studied theoretical asymptotics for his Gaussian quasi-like-
lihood estimators under the current asymptotic scenario. In particular, Theorem 3.4 of
Masuda’s paper from 2011, and Theorems 2.7 & 2.9 of his paper from 2013 established
convergence in distribution of suitably normalised estimators and functions thereof. |Ma-
sudal pointed out that in the presence of jumps, these estimators are not efficient for the
drift or diffusion-jump parameters of the model, or even rate optimal for parameters of
the diffusion coefficient. Estimation using Gaussian quasi-likelihood functions of the types
considered by |Masudal fits into the framework of approximate martingale estimating func-
tions, which were briefly described in Section [I.2.1] For example, the Gaussian quasi-
likelihood function of Masudal (2013)) corresponds to an estimating function of the form
Gu(®) = X1, 8(An. Xir, Xy 10) where g* = (g7, 8;) and

0o 5 *
8a(t,y, x;0) = (bz%z)c(yx);ﬂ)(y — x — ta(x; @))
2 ~2 . RVK
gp(t,y, x;0) = Opb” + )P (6= x = ta(x; @) = 1(B* + E)(x: B)) -

(b? + &)X (x; B)
Using Lemma [3.2.8] from Chapter [3] it may be verified that under the assumptions of Ma-
sudal (2013)), (2, y, x; 6) satisfies the approximate martingale property (I.2.3). However, to
our knowledge, the theoretical asymptotic properties of more general approximate martin-
gale estimating functions for diffusions with jumps have not yet been investigated.

The observation scheme considered here matches that of [Sgrensen| (2010). For continuous
diffusions of the form

dXt = a(Xt,a) dt + b(Xt,ﬂ) th .

Serensen| stated simple conditions ensuring the rate optimality and efficiency of approxi-
mate martingale estimating function-based estimators of the drift and diffusion parameters
« and 8. As mentioned in Section[I.2.1] he also argued that the theory of approximate mar-
tingale estimating functions covers a considerable number of other estimators proposed in
the literature on continuous diffusions. In light of these considerations, it is our belief that
an in-depth study of the asymptotic theory of approximate martingale estimating functions
for jump-diffusions is not only justified, but imperative, and could contribute valuable in-
formation to the field of parametric estimation for diffusions with jumps. The overall goal
of Chapter [3]is to provide preliminary findings in this regard.

More specifically, our primary objective in Chapter [3]is as follows: We aim to establish
existence, uniqueness, and asymptotic distribution results for consistent, approximate mar-
tingale estimating function-based estimators of 6 in the general model (I.3.1), under the
present observation scheme.

Subsequently, we focus on the sub-model @, for which [Shimizu and Yoshidal (2006))
obtained efficient estimators. Our secondary objective in Chapter [3|is the following: We
strive to give conditions on the approximate martingale estimating functions, which ensure
rate optimality and efficiency of estimators of the drift-jump and diffusion parameters. Un-
like the efficient contrast function of Shimizu and Yoshidal (2006)), approximate martingale
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estimating functions are not a priori designed to discriminate between observed increments
with jumps and those without. We expect this distinguishing mechanism to be an inherent
feature of the rate optimality and efficiency conditions, to the extent that it is necessary.

1.3.2 Overview of Main Results

Let G,,(6) be an approximate martingale estimating function as described in Section|1.2.1]
given by the deterministic R4-valued function g(t,y, x;0).

The first main contribution of Chapter [3is regarding the general model (1.3.1), within the
framework described in Section [I.3.1] Theorem [3.3.2] establishes existence, uniqueness,
and asymptotic distribution results for consistent G,-estimators of the true, unknown pa-
rameter 6y. In general terms, omitting details and regularity conditions, the theorem may
be summarised as follows.

Theorem. Suppose that the appropriate assumptions hold. Then,

(i) there exists a consistent G-estimator 0,. In any compact, convex set K C © contain-
ing 0y in its interior, the estimator is unique with probability going to one.

(ii) for any consistent G,-estimator 0, it holds that

A D
VAL (6, — 6p) — Ny(0,V(6))). (1.3.4)
V(6o) is estimated consistently by Vn, vielding the more practically applicable result
- A D
n, Vi P20, = 60) — Na(0,1a)
where 1; denotes the d X d identity matrix.
o

In particular, (I.3.4) is comparable to the asymptotic results derived by Masuda (2011},
2013) for certain Gaussian quasi-likelihood functions, which fit into the theory of approx-
imate martingale estimating functions. A concrete example is given in Example [3.3.3] of
Chapter 3]

We pursue the question of rate optimality and efficiency in three types of sub-models of
(1.3.2). The first is assumed to have only an unknown, d-dimensional drift-jump parame-
ter @, the second only an unknown, one-dimensional diffusion parameter 3, and the third a
two-dimensional drift-jump parameter « and a one-dimensional diffusion parameter 3, both
unknown. In this connection, it should be noted that G,-estimators of the drift-jump param-
eter are already seen to be rate optimal by the general convergence result in (1.3.4), whereas
there is room for improvement in the rate of convergence of the diffusion parameters.

Our second main contribution in Chapter [3|consists of the followingﬁ For the two classes
of sub-models containing diffusion parameters, we give conditions which ensure rate opti-
mality of G,-estimators of these parameters (Conditions |3.4.10{ and [3.4.14)), and establish

®Under the Conjecture [3.4.4] which is definitely true for the models for which Becheri et al.| (2014) and
Kohatsu-Higa et al.| (2014, [2015) established the local asymptotic normality property.
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their limit distributions (Theorems [3.4.11] and [3.4.13)). For all three classes of sub-models,
we state additional conditions on the approximate martingale estimating functions, under
which the estimators are also efficient (Conditions [3.4.6} [3.4.12] and [3.4.16).

The conditions we find extend the conditions given by [Sgrensen| (2010) for rate optimality
and efficiency of the drift and diffusion parameters in continuous diffusion models of the
form (1.3.2) with c(x, z; @) = 0. In the limit A, — 0, the full sample path of X is (hypothet-
ically) observed. Then, in general terms, g(z,y, x; 6) and its derivatives should be thought
of as evaluated at (¢, y, x) = (0, X;, X;—) instead of (¢, y, x) = (A, X,;z, Xt;’,l ). For continuous
diffusions, X; = X;_ at all times. Thus it makes sense intuitively, that rate optimality and
efficiency entail conditions on the functions when evaluated at (0, y, x) = (0, x, x), as seen
in Sgrensens paper. For jump-diffusions however, X; # X,_ at jump times, so it seems
reasonable that additional conditions could be needed on the off-diagonal y # x, as seen in
our case.

Let d; and d, respectively denote the dimension of the drift-jump parameter o and the
diffusion parameter B, with d = d; + d, > 1. Define g* = (g}, gg), where g,(t,, x; 0)
is R% -valued and gp(t,y, x;0) is R%-valued. In [Sgrensen (ZOIOﬂ the simple condition
0ygp(0, x, x;6) = 0 for all x and 6, ensured rate optimality of estimators of the diffusion
parameter. For jump-diffusions, our investigation as described above reveals the following:
In order to obtain rate optimality for the diffusion parameter, gg(0, y, x; 6) and several of its
partial derivatives need to vanish at an increased number of points depending on the jump
dynamics of the process. Even more when a drift-jump parameter is also present in the
model. For certain jump-diffusions, it might be difficult or even impossible to construct
gp so that the rate optimality conditions and e.g., the implied non-degeneracy condition of
Theorem are satisfied simultaneously. The latter entails that 65 85(0, x, x; 6) does not
vanish my-almost surely for any 6 in the parameter set, which could easily conflict with the
rate optimality condition that, e.g. g(0, y, x; 6) should vanish for “many” y # x.

Regarding the supplementary conditions for efficiency, the condition found for the diffusion
parameter is identical to that of [Sgrensen| (2010) (and Chapter [2), requiring that

9pb*(x; B)

2 0 — @
6},gﬁ(0, X, X, 6) = K9 W

for a non-zero constant Kéz), for all x and 6. The conditions found for the drift-jump pa-
rameter are more involved. For example, with ¢(x, w; @) and “W(x) as described in Section
[1.3.1] an efficient choice of g, should satisfy that for all x and 6,

X0 Oap(x, w; @)*

KD Ooa(x; a)*
o px,wia)

8a(0, x +w,x;0) = " B

and  0,84(0,x, x;6) =
for Lebesgue-almost all w € “W(x), where K(gl) is a non-zero, possibly #-dependent con-
stant. In other words, g,(0,y, x;6) should be able to discriminate between pairs (y, x) =
(X;, X;—) with X; # X;— and X; = X;—. Whenever y # x with y — x the possible size of a

7And in Chapterof this thesis.
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jump increment, g,(0, y, x; 8) is determined by the score function of the jump distribution
(and must vanish if @ is not actually present in the jump mechanism of X). For y = x,
22(0,y, x; 0) should behave like an efficient estimating function of the drift parameter in a
continuous diffusion, as the second equation is in accordance with the efficiency condition
given by Sgrensen| for said parameter.

1.3.3 Conclusions and Perspectives for Further Research

In Chapter 3] we considered approximate martingale estimating function-based estimation
for ergodic diffusions with finite-activity jumps. The processes were assumed to be ob-
served at high frequency over an increasing time interval, with terminal sampling time go-
ing to infinity. Existence, uniqueness properties and asymptotic distribution results were es-
tablished for consistent estimators, in a model with a general, finite-dimensional parameter.
Rate optimality and efficiency criteria were motivated by existing results in the literature.
Subsequently, conditions were given for rate optimality and efficiency of the estimators in
three classes of sub-models, with an unknown drift-jump parameter and/or an unknown
diffusion parameter. These conditions were found to extend the pre-existing conditions ap-
plicable to continuous diffusions, but imposed considerably stronger requirements on the
estimating functions.

It was stated that the overall aim of our study in Chapter 3| was to provide preliminary find-
ings on the topic of asymptotic theory for general approximate martingale estimating func-
tions for jump-diffusions. In our opinion, we succeeded in this respect. First, we proved
a general existence and convergence result for consistent estimators, thus confirming that
the topic is viable. Secondly, the additional conditions which were provided constitute a
starting point for further research. Obvious next steps would be, for example, to determine
to what extent it is possible to find rate optimal and efficient approximate martingale esti-
mating functions in the presence of jumps. Furthermore, to construct concrete examples
of such functions. In Chapter 3] we briefly discussed how, in certain models, the contrast
function (I.3.3)) proposed by [Shimizu and Yoshida (2006) could perhaps be modified to fit
our framework, possibly by weakening our regularity assumptions as well.

On a slightly different note, inspired by the investigation of Masudal (2013)) into efficiency
loss in connection with the Gaussian quasi-likelihood estimators, it could be beneficial to
investigate the efficiency loss associated with more general approximate martingale esti-
mating functions. It might be possible to make use of the knowledge thus obtained, to
create efficient or nearly efficient estimating functions.

Moreover, inspired by our simulated example in Chapter[2] it would be useful to study esti-
mators based on general (not necessarily efficient or rate optimal) approximate martingale
estimating functions by simulation. This could be, for example, in order to ascertain how
well they perform for finite samples, and to determine their practical usefulness.
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CHAPTER 2

Efficient Estimation for Diffusions Sampled at High Frequency
Over a Fixed Time Interval

Nina Munkholt Jakobsen & Michael Sgrensen

Department of Mathematical Sciences
University of Copenhagen

Abstract

This paper considers parametric estimation for univariate diffusion processes, which are
observed at high frequency over a fixed time interval. The processes are assumed to solve
stochastic differential equations with an unknown parameter present only in the diffusion
coefficient. Using approximate martingale estimating functions, we obtain consistent es-
timators of the parameter, which are rate optimal and under an additional condition, also
efficient in the local asymptotic mixed normality sense. When suitably normalised, the
estimators converge in distribution to normal variance-mixtures. These limit distributions
may be characterised as the product of two independent random variables, one of which is
standard normally distributed. The other generally depends on the full path of the diffusion
process over the observation time interval, as well as on the true, unknown parameter. Util-
ising the concept of stable convergence in distribution, we also obtain the more practicable
result that when normalised slightly differently, the estimators converge in distribution to a
standard normal distribution. An example of an efficient estimating function is given, and
it is argued that more may be found in the literature. To exemplify the theory, we perform
a small simulation study using two estimating functions, one of them efficient, where we
make various graphical comparisons of the asymptotic distributions of the estimators.
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Chapter 2. Diftusions Without Jumps

2.1 Introduction

Diffusions given by stochastic differential equations find application in a number of fields
where they are used to describe phenomena which evolve in continuous time. Some ex-
amples include agronomy (Pedersen, 2000), biology (Favetto and Samson, 2010), finance
(Cox et al., [1985} |De Jong et al., |2001; Mertonl, (1971} |Vasicek, [1977) and neuroscience
(Bibbona et al., [2010; |Ditlevsen and Lanskyl, 2006; [Picchini et al., [2008]).

While the models have continuous-time dynamics, the data is mainly only observable in
discrete time, thus creating a demand for statistical methods to analyse such data. With the
exception of some simple cases, the likelihood function is not explicitly known, making
maximum likelihood estimation somewhat infeasible.

A large variety of alternate estimation procedures have been proposed in the literature.
Parametric methods include the following: Maximum likelihood-type estimation using,
primarily, Gaussian types of approximations to the likelihood function was considered by
Florens-Zmirou| (1989)), |(Genon-Catalot! (1990), |Genon-Catalot and Jacod! (1993), |Gloter
and Sgrensen| (2009)), Jacod (20006), Kessler| (1997)), Prakasa Rao| (1983), |Sgrensen and
Uchidal (2003), and [Yoshidal (1992). Analytical expansions of the transition densities were
investigated by |Ait-Sahalia (2002} 2008)) and [Li| (2013)), while approximations to the score
function were studied by [Bibby and Sgrensen| (1995)), Jacobsen| (2001}, 2002), Serensen
(2010), and |Uchida| (2004). Also, simulation-based likelihood methods were developed by
Beskos et al.| (2006, 2009), Durham and Gallant| (2002)), Pedersen| (1995), and Roberts and
Stramer| (2001)).

Non-parametric methods have been studied as well, see, e.g. |[Bandi and Phillips| (2003)),
Comte et al.| (2007), Florens-Zmirou| (1993)), |Genon-Catalot et al.| (1992)), Jacod (2000),
and |Schmisser] (2013)). Recently, |Papaspiliopoulos et al.| (2012), van der Meulen and van
Zanten| (2013), and [van der Meulen et al.|(2014) focused on the development of Bayesian
non-parametric methods.

This paper concerns parametric estimation in a setup where the diffusion process X =
(X1)>0 solves a stochastic differential equation of the form

dX[ = a(X[) dt + b(X[; 9) dW[ , (211)

where (W;),»0 is a standard Wiener process. The drift and diffusion coeflicients a and b are
known, deterministic functions of y and (y; 8), respectively, and 6 is the unknown parameter
to be estimated. For ease of exposition, X; and 6 are both assumed to be one-dimensional.
At least, the extension of our results to a multivariate parameter is expected to be quite
straightforward. For each sample size n € N, we assume observations X, Xpn, ..., Xn) of
X over the interval [0, 1], at discrete, equidistant time-points 7! = i/n withi =0, 1,..., nﬂ
Asymptotics are considered as n — oo. The diffusion is said to be sampled at high fre-
quency, because the time step A,, = 1/n satisfies that A, — 0 as n — oo.

"With a slight abuse of terminology, as there are, in fact, n + 1 observations.

18



2.1. Introduction

The choice of the time-interval [0, 1] is not particularly restrictive, results generalise to
other compact intervals by suitable rescaling of the drift and diffusion coefficients. No
parameter is assumed in the drift coefficient, as such parameters cannot be estimated con-
sistently in the asymptotic scenario under consideration. Here, and in the following, e.g.
0,.f denotes the (partial) derivative of a function f with respect to the variable u.

It was shown by Dohnal| (1987); |Gobet| (2001) that the local asymptotic mixed normality
property holds within this setup, with rate v/ and random asymptotic Fisher information

1 2 1 2 2
0gb(X,; 6, 1 dob”(X,; 0
I(00)=2f (—9 (X 0)) ds=—f (—02 (X 0)) ds
o \ b(Xs;60) 2 Jo \ b*(Xy;60)
In this context, a consistent estimator 8, of the unknown, true parameter 6 is said to be
rate optimal if v/n(6, — 6p) converges in distribution to a non-degenerate random variable
as n — oo, Furthermore, the estimator is said to be efficient if the limit may be written on

the form 7 (6y)~'/2Z, where Z follows a standard normal distribution and is independent of
1 (o). These concepts are elaborated in Section [2.2.6]

Estimation in the situation described above was considered by |Genon-Catalot and Jacod
(1993, [1994), within the framework of a more general model and observation scherneE]
Genon-Catalot and Jacod| (1993) proposed estimators based on a class of constrast func-
tions, which were only allowed to depend on the observations through bz(X,?_l;H) and
A;l/ 2(Xty - Xt?,l)- These estimators were shown to be rate optimal, and an example was
given of an efficient estimator.

In this paper, we investigate estimators based on the extensive class of approximate mar-
tingale estimating functions

Gn(0) =

1

g(An’ Xl;” Xt;l—l 5 9) .
1

n

The real-valued function g(z, y, x; 6) satisfies a conditional expectation condition of the form
Eo(g(An, Xp, X 30) | Xin ) = AyRo(Ap, X )

for some « > 2, where the remainder term Ry(?, x) on the right-hand side can be controlled
as necessary. Estimators are essentially obtained as solutions to the estimating equation
G,(6) = 0. More precise definitions of the estimating functions and estimators are given in

Section 2.2.31

Estimating functions of the (approximate) martingale type were used by, e.g. |Bibby and
Sgrensen| (1995)), Jacobsen| (2001}, [2002)), Sgrensen| (2010) and [Uchidal (2004), in connec-
tion with other models and asymptotic schemes (see also Sgrensen| (2012))). In particular,
the model given by (2.1.1) is a sub-model of that considered by Sgrensen| (2010), who stud-
ied approximate martingale estimating functions for high frequency observations over an

’In the following, we disregard the extended setup of |Genon-Catalot and Jacod and focus on the interpretation
of their results within the model and observation scheme of the present paper.
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increasing time interval with terminal sampling time #; = nA, — oo as n — co. Not only
were simple conditions for rate optimality and efficiency given (there, in a local asymptotic
normality sense), it was also argued that the theory of approximate martingale estimating
functions covers a large number of other well-performing estimators in the literature.

First, we establish existence and uniqueness results regarding consistent estimators 8, of
the true parameter 6y, which are based on approximate martingale estimating functions. We
show that these estimators are rate optimal, in that \n(6, — 6o) converges in distribution
to a normal variance-mixture distribution. The limit distribution may be represented by
the product W(6y)Z of independent random variables, where Z follows a standard normal
distribution. W(6p) is generally random, and depends on the path of the diffusion process
over the time-interval [0, 1].

Normal variance-mixture distributions were also obtained as the asymptotic distributions of
the estimators of (Genon-Catalot and Jacod| (1993). These distributions appear as limit dis-
tributions in comparable non-parametric settings as well, e.g. when estimating integrated
volatility fol b*(X,)ds (Jacod and Protter, [1998; Mykland and Zhang, 2006) or the squared
diffusion coefficient b2(x) (Florens-Zmiroul |1993; [Jacod, 2000).

Rate optimality is ensured by the condition that
0,8(0,x,x;0) =0 (2.1.2)

for all x in the state space of X, and all parameters 8, where d,g(0, x, x; 8) denotes the first
derivative of g(0, y, x; #) with respect to y, evaluated in y = x. This was the same condition
found for rate optimality of the estimator of the diffusion parameter in Sgrensen| (2010). It
was referred to by Serensen|as Jacobsen’s condition, as it is one of the conditions for small
A-optimality in the sense of Jacobsen| (2001), for a model with only a diffusion parame-
ter (Jacobsen, 2002). Jacobsen! (2002) considered near-efficiency of martingale estimating
function-based estimators using discrete observations, with a fixed distance A close to 0
between observation times. The asymptotic covariance matrix of the estimators was ex-
panded in powers of A in the limit A — 0, and, loosely put, small A-optimal estimators
were those which minimised the leading term of this expansion.

For some models, W(6y) does not depend on (X)sepo,17- In these cases, W(6p) is determin-
istic, making W(6p)Z a zero-mean normal distribution with variance W(6p)?. Otherwise,
however, due to its dependence on (Xy)seqo.17, the limit distribution is not particularly use-
ful for statistical applications, such as constructing confidence intervals and test statistics.
Therefore, we construct ITV,,, a function of (X,g, X"f’ ..., X), which converges in probabil-
ity to W(6p). Taking into account that there is actually stable convergence in distribution
of \/ﬁ(@n — bp) towards W(60p)Z, we are then able to derive the more practically applicable
result that \/n VT/,; 1@, - 6o) converges in distribution to a standard normal distribution.

The additional condition that

Aeb*(x; )

9> 0,x,x;,0) = K
yg( X, X ) 6 b4(x,0)

(2.1.3)
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2.2. Preliminaries

for all x in the state space of X, and all parameters 6, ensures efficiency of our estimators in
the local asymptotic mixed normality-framework. (Here, Ky # 0 is a possibly #-dependent
constant.) This condition was also obtained by [Sgrensen| (2010) for efficiency of the dif-
fusion parameter-estimator, and is identical to another condition given by Jacobsen|(2002)
for small A-optimality. The approximate martingale estimating function given by

Ab*(x; 6)
b*(x;0)
satisfies (2.1.2) and (2.1.3), and corresponds to the contrast function shown to be efficient
by |Genon-Catalot and Jacod (1993, Theorem 5). By the overlap between conditions, ex-

8(t,y, x;0) = (607 - 1h*(x;0)) (2.1.4)

amples of approximate martingale estimating functions satisfying our rate optimality and
efficiency conditions may also be found in the papers of Jacobsen| (2002) and |S¢rensen
(2010).

To exemplify the theory, we perform a small simulation study based on a model which
satisfies our conditions, and for which the limit distribution of the estimators is an actual
normal variance-mixture (and not merely a normal distribution). Using two estimating
functions, one of them given by (2.1.4) and therefore efficient, we make various graphi-
cal comparisons of the asymptotic distributions of the estimators. In accordance with the
theoretical considerations, the efficient estimator is seen to have preferable properties.

The assumptions made in this paper are similar to those of [Sgrensen| (2010), although
here, ergodicity of X is not needed to obtain results of the law of large numbers-type. To
some extent, we use similar methods of proof as well, e.g. convergence in probability is
shown after the expansion of relevant conditional moments in powers of A,. However,
due to the differences in the respective asymptotic schemes, higher-order expansions than
in the work of |Sgrensen| are sometimes needed here. Furthermore, in order to establish
(stable) convergence in distribution in the current paper, a more complicated central limit
theorem is required than that used by |Sgrensen. Finally, while convergence in distribution
was sufficient for the asymptotic scenario considered by |Serensen, in our case, due to the
randomness of W(6p), we need to entertain the stronger concept of stable convergence in
distribution, in order to obtain practically applicable convergence results.

The rest of this paper is structured as follows: Section[2.2] presents definitions, notation and
terminology used throughout the paper, as well as the main assumptions on the diffusion
process and the approximate martingale estimating functions. Section [2.3]states and dis-
cusses our main results, including the simulation example. Section [2.4] contains main lem-
mas used to prove the main theorem, the proof of the main theorem, and the proofs of the
main lemmas. Appendix [2.A]consists of auxiliary results, some of them with proofs, while
Appendix [2.B| summarises some important theorems from the literature, without proofs.

2.2 Preliminaries

Section [2.2.T] serves to introduce some notation associated with the diffusion process and
the observation scheme under consideration. In Section [2.2.2] a notation and terminology
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Chapter 2. Diftusions Without Jumps

regarding the concept of polynomial growth is established for subsequent use. Section
[2.2.3| contains formal definitions of approximate martingale estimating functions and their
corresponding estimators. Section [2.2.4]introduces the main assumptions on the diffusion
process (Assumption 2.2.4) and the estimating function (Assumption 2.2.5). In Section
[2.2.5] notation pertaining to the (infinitesimal) generator of the diffusion process is estab-
lished, and some useful technical results expressed in terms of the generator are discussed.
Finally, in Section[2.2.6] the concept of local asymptotic mixed normality is defined very
briefly, and the accompanying notions of rate optimality and efficiency, as adopted in this
paper, are elaborated on.

2.2.1 Model and Observations

Let (€, ) be a measurable space which supports a real-valued random variable U, and
an independent standard Wiener process W = (W;);»0. Let (F;)>0 denote the filtration
generated by U and W, and let (Py)ge@ be a family of probability measures on (€2, 7). The
one-dimensional parameter set ® is assumed to contain the true parameter 6.

Consider the stochastic differential equation
dX, = a(X;) dt + b(X;;0)dW,, Xo=U, (2.2.1)

for 8 € . X, is assumed to take its values in an open, not necessarily bounded interval
X C R, and the drift and diffusion coefficients, a : X — Rand b : X X ® — R respectively,
are assumed to be known, deterministic functions.

Let 1} = iA, with A, = 1/n for i € Ny, n € N. For each n € N, X is assumed to be sampled
at times tl’?, i=0,1,...,n, yielding the observations (X,g,Xt7, ..., Xpn). Let G, ; denote the
o-algebra generated by (Xpr, Xy, ..., Xin), with G, = Gyn. For purely theoretical reasons,
observations of X at times #; for i > n occasionally come into play as well.

2.2.2 Polynomial Growth

In the following, to avoid cumbersome notation, C denotes a generic, strictly positive, real-
valued constant. Often, the notation C,, is used to emphasise that the constant depends on u
in some unspecified manner, where # may be e.g. a number, a set of parameters or both. It
is important to note that, for example, in an expression of the form C,(1 + |x|€), the factor
C, and the exponent C,, need not be equal. Generic constants C,, often depend (implicitly)
on the unknown parameter 6y, but never on the sample size n.

Definition 2.2.1. A function f : [0,1] x X?> x ® — R is of polynomial growth in x and
v, uniformly for ¢ € [0, 1] and 8 in compact, convex sets, if for each compact, convex set
K C O there exist constants Cx > 0 such that

sup  |f(t,y, 0| < Cx(1 + 1K + [y|°%)
t€[0,1],0eK

for x,y € X.
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2.2. Preliminaries

cf,?;,,([o, 1] x X? x ©) denotes the class of continuous, real-valued functions f(z,y, x; 6)
which satisfy that

(i) f and the mixed partial derivatives 6§6§6§ ft,y,x,60),i=0,...,p,j=0,...,q and
k=0,...,rexist and are continuous on [0, 1] x X% x @.

(ii) f and the mixed partial derivatives from [(1)| are of polynomial growth in x and y,
uniformly for ¢ € [0, 1] and 6 in compact, convex sets.

Similarly, the classes CE?,I([O, 11xXX0), Cgf’rl(X2 X 0), Cgf’rl({\’x ®) and CEOI(X) are defined

for functions of the form f(¢, x; 6), f(y, x;0), f(y;6) and f(y), respectively. o

Note that in Definition [2.2.1] differentiability of f with respect to x is never required, and
that for functions not depending on ¢ (respectively 6), the “uniformly for #* (“uniformly for
0”) part of the definition becomes superfluous.

For the duration of this paper, R(z, y, x; #) denotes a generic, real-valued function defined
on [0, 1] x X? x ®, which is of polynomial growth in x and y uniformly for ¢ € [0, 1] and
@ in compact, convex sets. R(t,y, x; 6) may depend (implicitly) on 6y. R(z, x; ), R(y, x; 6)
and R(¢, x) are defined correspondingly. The notation R,(#, x; 6) indicates that R(¢, x; 6) also
depends on A € O in an unspecified way. In particular, Ry(t, x, 6) = Ry(t, x).

2.2.3 Approximate Martingale Estimating Functions

Let Eg denote expectation under Py. In this paper, (approximate) martingale estimating
functions, along the lines of those specified by e.g. Sgrensen|(2012), are defined as follows:

Definition 2.2.2. Let g(¢,y, x; 6) be a real-valued function defined on [0, 1] x X2 x0. Sup-
pose the existence of a constant « > 2, such that foralln e N,i=1,...,n, 0 € O,

Ep (2(An X, X :0) | X ) = ALRo(An, Xir ). (22.2)

Then, the function
n
Gn(0) = " g(Au, X, X 56) (2.23)
i=1

is called an approximate martingale estimating function. In particular, when (2.2.2) is
satisfied with Ry(t, x) = 0, (2.2.3)) is referred to as a martingale estimating function. o
By the Markov property of X, it is seen that when Ry(z, x) = 0, (G,,)1<i<n defined by

i
Gui0) = ) 8(An Xp, X
j=1

;0)

is a zero-mean, real-valued (G, )1<i<n,-martingale under Py for each n € N, thus giving rise
to the terminology in Definition [2.2.2] However, when not ambiguous, approximate mar-
tingale estimating functions may sometimes just be referred to as estimating functions in
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the following. An approximate martingale estimating function is essentially an approxima-
tion to the score function of the observations (X,g, X,»]w, ..., X;), conditional on X,g, which
itself is a martingale.

A G,-estimator 0,, that is, an estimator based on the approximate martingale estimating
function G,(0), is essentially obtained as a solution to the estimating equation G,(6) = 0.
A more precise definition, based on the definitions of Jacod and Sgrensen| (2012| Definition
2.1) and [Sgrensen| (2012, Defintion 1.57), is given in Definition[2.2.3]

Formally, an approximate martingale estimating function may be considered a function of
both 6 € ® and w € Q, while a G,-estimator may be considered a function of w. For the
purpose of the following definition, it is convenient to make this dependence explicit and
write G,(6, w) and 8,(w).

Definition 2.2.3. Let G, (6, w) be an approximate martingale estimating function as defined
in Definition Put ®,, = O® U {oo} and let

D, ={w e Q| G,(0,w) = 0 has at least one solution 6 € B} .

A Gy-estimator 0,(w) is any G,-measurable function Q — ®,, which satisfies that for
Py, -almost all w, 8,(w) € ® and G,(8,(w), w) = 0 if w € D,,, and G(w) = o if w ¢ D,.

For any M,, # 0, which may depend on e.g. A,, G,(0) and M,,G,(0) yield identical estima-
tors of 6. The estimating functions G,(6) and M, G,(0) are referred to as versions of each
other. For any given estimating function, it is sufficient that there exists a version of the
function which satisfies the assumptions of this paper, in order to draw conclusions about
the resulting estimators.

2.2.4 Assumptions

Assumption 2.2.4. The parameter set © is a non-empty, open, not necessarily bounded
subset of R, which contains the true parameter 6y. The continuous, (F;);s0-adapted Markov
process X = (X;)=0 solves a stochastic differential equation of the form (2.2.1), the coeffi-
cients of which satisfy that

a(y) e Cl" (X) and  b(y:6) € C)) (XX ©) .
The following holds for all 6 € ©.
(i) Forally e X, b*(y;0) > 0.
(ii) There exists a real-valued constant Cy > 0 such that for all x,y € X,

la(x) — a()l + 1b(x; ) = b(y; 6)] < Cglx —yl.

(iii) There exists a real-valued constant Cy > 0 such that for all y € X,

la)l + 1b(y; )] < Co(1 + |y .

24



2.2. Preliminaries

(iv) Forallm € N,

sup Eg (IX,|") < o0.
t€[0,00)

<&

Assumptions[2.2.4][(i1)|and [(1i0), known as the global Lipschitz and linear growth conditions,
ensure that X is well-defined. By these assumptions, for each 8 € @, there exists a unique,
(F1)r=0-adapted, non-exploding solution to with continuous sample paths ¢ — X, (w),
which is a Markov process. For use in the following, observe that under Py, X, may be

written as
! !
X, =Xy + f a(Xg)ds + f b(Xs;0)dW,.
0 0

Assumption [2.2.4]is very similar to the corresponding Condition 2.1 of [Sgrensen| (2010).
However, an important difference is that in the current paper, X is not required to be ergodic.
Here, law of large numbers-type results are obtained by what is, in essence, the convergence
of Riemann sums.

Assumption 2.2.5. The function g(t,y, x; 0) satisfies that
g(t.y. x:0) € Ch% ,(10. 11X X* X ©) ,

and defines an approximate martingale estimating function G,(0) as prescribed by Defini-
tion[2.2.2} In particular,

(i) for some constant k > 2,
Eo ((An Xer, X 50) | Xir ) = ASRo(An, Xir )
forallneN,i=1,...,nand 0 € ©.
Furthermore, the following holds for all 6 € ©.
(ii) Forall x € X, 8,g(0, x, x;6) = 0.
(iii) The expansion

8(A,y,x,0) = g(0,y,x:0) + Ag Dy, x;0) + 1A% Py, x;:0) + 1A’ gDy, x; 0)
+A*R(A, y, x;0)
2.2.4)

holds for all A € [0, 1] and x,y € X, where g(y, x; 0) denotes the jth partial deriva-
tive of g(t,y, x; 0) with respect to t, evaluated in t = 0.
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Assumption [2.2.5][(i1)]is referred to by [Sgrensen|(2010) as Jacobsen’s condition, as it is one
of the conditions of small A-optimality in the sense of Jacobsen| (2001), for a model with
only a diffusion parameter (Jacobsen, 2002). The assumption ensures rate optimality of
the estimators in this paper, and, similarly, of the estimators of the diffusion parameter in
Sgrensen's article.

The assumptions of polynomial growth serve to simplify the exposition and proofs, and
could be relaxed. For example, we make use of the fact that due to Assumption [2.2.4](iv),
measurable transformations f(y, x) of (X;n, X ), which are of polynomial growth in x and
y, have finite moments. Instead, at the expense of readability, we could simply have as-
sumed the existence of the moments necessary for our results.

2.2.5 The Infinitesimal Generator

For parameters 1 € ® and functions f(y) € CIZ’OI(X), define the (infinitesimal) generator
L, through its action on f(y), as

Laf©) = a()dy f) + 507 DO f () .

More generally, for f(z,y, x,0) € Cgozl 0 0([0, 1] x X% x ®), let

L1f(t,y,x,0) = a()dy f(t,y, %0 + $b°(v; VB, f (1, y, x; 6).. (2.2.5)

Often, the notation L, f(¢,y, x; 0) = L (f(¢; 0))(y, x) is used, so e.g. L (f(0; 8))(x, x) means
L,1(0,y, x;6) evaluated in y = x. Whenever well-defined, £2 2f 1s to be understood as
L,(L,1f), and similarly £* W= L,l(ﬂ‘ Lf) for k € N, with Lof f.

The infinitesimal generator notation is particularly useful for expressing the result of the
following Lemma [2.2.6]

Lemma 2.2.6. Suppose that Assumption [2.2.4|holds, and that for some k € N,

a(y) € ' (X).  b(y:0) € Chl((Xx©) and f(y.x:0) €Chyy, || (X* X ©).

2(k+1),0
Then, forO<t<t+A<land 1€,
E (f(XHA,Xt; 0) | X

—Z Lﬂf(x,,x,,0)+ f f f 2 (L5 f K X:0) | X,) dutsy -+~ duy

where, furthermore,

f f f K> X630 | X0) dutgrr - -duy = AR (A, X36)
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The expansion of the conditional expectation in powers of A in the first part of the lemma
corresponds to the expression of |[Florens-Zmirou| (1989, Lemma 1) (or [Dacunha-Castelle
and Florens-Zmirou| (1986, Lemma 4), after the correction of a small typo). It may be
proven by induction on k using It6’s formula, see, for example, the proof of|Sgrensen/ (2012,
Lemma 1.10). As seen in the proof of Kessler| (1997, Lemma 1), the characterisation of the
remainder term follows by applying Corollary to Lﬁ” f E|

Assumption[2.2.4|ensures that a(y) € CSZI(X) and b(y; 0) € CgZIO(XX(D) fork=0,1,2,3,so

when Lemma [2.2.6]is used for these values of k (as is done in this paper), the assumptions

on a and b are automatically satisfied.

In addition to its application in proofs presented in this paper, Lemma[2.2.6]is, together with

Assumption [2.2.5][(D)] key to proving Lemma[2.2.77] which reveals two important properties
of the approximate martingale estimating functions. Lemma [2.2.7] corresponds to Lemma

2.3 of Sgrensen| (2010)), to which we refer for further details on the proof.

Lemma 2.2.7. Suppose that Assumptions and[2.2.5|hold. Then
80,x,5:0)=0 and  gV(x,x,0) = =Ly(3(0, ), x)
forall x e X and 9 € ©. o

In concrete examples, Lemma [2.2.6] is also useful for verifying Assumption a
fundamental property of approximate martingale estimating functions, and, conversely, it
can be used to create such estimating functions as well.

2.2.6 Local Asymptotic Mixed Normality

Note that in this paper, all convergence in probability and convergence in distribution, de-

P D . .
noted — and — respectively, is assumed to be under Py, as n — oo.

Local asymptotic mixed normality was introduced by Jeganathan| (1982), and is discussed
in e.g. Jacod|(2010) and [Le Cam and Yang| (2000, Chapter 6). Below, the local asymptotic
mixed normality property is defined in a univariate setting, along the lines of the definition
presented by |Jacod (2010, Section 3.2).

Recall that G, is the o-algebra generated by the observations (th, X,»lz, ..., Xp), and let Py
denote the restriction of Py to G,,. Define the likelihood ratios Q,(4; 6) = log(dP’)/dPy).

Definition 2.2.8. Suppose that there exist sequences R,(6y) and 1 ,(6p) of G,-measurable
random variables with Pg (Z,(6p) > 0) = 1, and a deterministic sequence 6, of strictly
positive real numbers with d,, — oo as n — oo, such that for all u € R,

u u? P
On (90 + 6_’00) — uR,(6p) + ?]n(OO) — 0
n

3The last part of Section in Chapterof this thesis is dedicated to the proof of Lemma 3.2.8} a jump-
diffusion counterpart to Lemma [2.2.6 Itself being a modification and extension of the proofs presented by
Flachs| (2011); |Sgrensen| (2012)) in the case of ergodic continuous diffusions, this proof is easily converted to

a proof of Lemma@
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and
(Ru(60). T(60)) —> (1(60)'*Z, T(60)).

where Z is standard normally distributed, Pg,(Z(6p) > 0) = 1, and Z and 7 (6p) are indepen-
dent. Then, the statistical model (Q, 7, (Py)geco) is locally asymptotically mixed normal at
6o, with rate ¢,, and random Fisher information 7 (6y). o

I (6p) is generally random, and may be interpreted as a measure of how well 6y can be
estimated, based on, in the current setting, a particular realisation of (X;);e[o,17-

Rate Optimality and Efficiency

In the context of local asymptotic mixed normality, the definitions of rate optimality and
efficiency are quite straightforward.

Definition 2.2.9. Suppose that the model (Q, 7, (Pg)gce) for X is locally asymptotically
mixed normal at 6y, with rate ¢, and random Fisher information 7(6y). Then, a sequence
of estimators 6, is rate optimal if 5,8, — 60) converges in distribution to a non-degenerate
limit under Py, as n — oco. Additionally, the sequence is efficient if the limit is the nor-
mal variance-mixture 7(6p)~'/2Z, with Z standard normally distributed and independent of
I(6)). o

Loosely put, d, is the “fastest possible” rate of convergence in distribution, the best rate at
which 6y can be estimated. See e.g. Jacod| (2010) for further details. Also, it was shown by
Jeganathan| (1982) that if the local asymptotic mixed normality property is satisfied, and 6,
is a rate optimal but not necessarily efficient estimator of gy with 5,8, — 60) £> L(6p), the
following holds under certain further assumptions. Conditionally on Z(6p), the distribution
of L(6p) is a convolution of the zero-mean normal distribution with variance 7(6p)~' and
some other distribution. Loosely put, the distribution of L(6p) is more spread out than the
specified normal distribution. Let V4 denote variance under Py. If the relevant quantities
exist, Vg, (L(6o) | Z(6p)) > T (6p)~!, implying that also unconditionally,

Ve, (L(60)) = By (Va,(L(6o) | 1(60))) + Vi, (Bay (L(60) | 1(60))) > Eq(Z(60) ")

If the estimator is efficient, the lower bounds are achieved, i.e. the estimator has the smallest
possible variance, both when conditioned on Z(6p), and unconditionally (the latter only if
the unconditional variance exists).

2.3 Main Results

In Section 2.3.1] the main theorem of this paper, Theorem [2.3.2] is presented. The theo-
rem establishes existence, uniqueness and asymptotic distribution results for rate optimal
estimators of ) based on approximate martingale estimating functions. In Section[2.3.2] a
condition is stated, which ensures that the rate optimal estimators found in Theorem [2.3.2]
are also efficient, and efficient estimators are discussed in some further detail. Section[2.3.3]
contains an example of the theory, in the form of a small simulation study.
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2.3.1 Main Theorem

Assumption[2.3.1]is the final assumption needed for the main theorem, Theorem[2.3.2] The
notation A, B and C corresponds to the notation of Lemma and is used in the proof
of Theorem as well.

Assumption 2.3.1. The following holds Py-almost surely for all 6 € ©.

(i) Forall A + 6,
1
A4,60) = § f (0> (X, 0) — b* (X, 1))0;8(0, X, Xs: D) ds # 0.
0
(ii) Furthermore,
1
B0 == [ 000300260 X, X0 ds #0.
0
(iii) and

1
Co:0) =3 f b (Xs:0)0,8(0, X;, X:60)* ds # 0.
0

Assumption[2.3.T]can be difficult to check in practice, seeing that it involves the full sample
path of X over the interval [0, 1]. It requires, in particular, that for all § € ©, with Py-
probability one, ¢ > b*(X;;6) — b*(X,; A) is not Lebesgue-almost surely zero when A #
(Genon-Catalot and Jacod, {1993 Hypothesis H4). As also noted by |Genon-Catalot and
Jacod, this requirement holds true (by the continuity of the function) if, for example, Xy =
U is distributed according to &y, the degenerate probability measure with point mass in xo,
and b*(xo; 6) # b*(xo; A) for all 6 # A.

In Section [2.3.2] it becomes clear that for an efficient estimating function, Assumption
[2.3.T|reduces to conditions on X, more specifically, conditions involving only the squared
diffusion coefficient 5%(x; 6) and its derivative dgb*(x; 6), with no further conditions on the
estimating function.

Theorem [2.3.2]is the main theorem presented in this paper. Recalling that [Dohnal| (1987)
and |Gobet| (2001)) showed that the local asymptotic mixed normality property holds at 8
with rate 4/n and random Fisher information

1 2 1 2 2
I R R N e et
ron=2 (i) @=3 ) (pacay) @ @

within the current framework, Theorem [2.3.2] establishes rate optimal G,-estimators of
6o, based on approximate martingale estimating functions. (See Definition [2.2.3] for the
definition of a G,-estimator.)
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Theorem 2.3.2. Suppose that Assumptions[2.2.4)[2.2.5|and2.3.1\hold. Then,

(i) there exists a consistent Gy-estimator 6,. Choose any compact, convex set K C ©
with 6y € int K, where int K denotes the interior of K. Then, the consistent G,-
estimator 0, is eventually unique in K, in the sense that for any G-estimator 8, with
]Pgo(@,, € K) > 1 asn — oo, it holds that Pgo(é’,, +6,) > 0asn — co.

(ii) for any consistent G-estimator 6, it holds that
V(B — ) —> W(Bo)Z. (2.32)

The limit distribution is a normal variance-mixture, where Z is standard normally
distributed, and independent of W(6y) given by
1 1/2
1b*(X,3 0000780, Xy, X, 60)* ds
02 55 00)0y,8(U, A, A5 00

W(6p) = (2.3.3)

1
[ s0xaRe0. X, Xs ) ds
0

(iii) for any consistent G,-estimator 6,

L& 1/2
[A_ Z & (A, X, Xpr 6}1))
— n ._
W, =—— ! (2.3.4)

n
Z 008D, Xy, X 3 6,)
=1

—~ P
satisfies that W, — W(6p), and
VAW, (B, - 60) = Z,

where Z is standard normally distributed.

<&

Observe that the limit distribution in Theorem generally depends on not only the
unknown parameter 6y, but also on the concrete realisation of the sample path ¢ — X;
over [0, 1], which is only partially observed. In contrast, Theorem [2.3.2](ii)| yields a limit
distribution which is of more use in practical applications. The proof of Theorem [2.3.2]is

given in Section [2.4.2]

2.3.2 Efficiency

Under the assumptions of Theorem [2.3.2] the additional condition for efficiency of a con-
sistent G,-estimator is given in Assumption [2.3.3] It is identical to the condition for effi-
ciency of estimators of the diffusion parameter given by Sgrensen| (2010, Condition 1.2)
and, like Assumption one of the conditions for small A-optimality found by Ja-
cobsen| (2002).

30



2.3. Main Results

Assumption 2.3.3. Suppose that for each 6 € O, there exists a constant Ky # 0 such that
forall x € X,

Qb*(x; 6)
8%9(0,x, x;0) = Ky————= .
yg( X, X ) 0 b4(x,9)
Lo

Within the framework considered here, Definition [2.2.9] prescribes efficiency of a G,-

estimator 6, when (2.3.2) holds with W(6y) = Z(6p)"'/?, and I(6p) is given by (2.3.1).
Thus, Corollary [2.3.4 may easily be verified.

Corollary 2.3.4. Suppose that the assumptions of Theorem [2.3.2] and Assumption [2.3.3|
hold. Then, any consistent G,-estimator is also efficient. o

It was noted in Section [2.2.3] that not necessarily all versions of a particular estimating
function satisfy the conditions of this paper, even though they may be used to obtain the
same estimator. Thus, an estimating function is said to be efficient, if there exists a version
which satisfies the conditions of Corollary The same goes for rate optimality.

Under suitable regularity conditions on the diffusion coefficient b, the function

Ab*(x; 6)

o0 (6= 27 - h°(x: 0)) (2.3.5)

8(t,y,x;60) =
yields one example of an efficient estimating function G,(6) = X, g(A,,,X,;l,X,;z_I;H).
The approximate martingale property, Assumption can be verified by the help
of Lemma[2.2.6)

When adapted to the current framework, the contrast functions investigated by |Genon-
Catalot and Jacod|(1993) have the form

1 ¢ _
Un(®) = =~ > f (0K 1008, = X))
i=1

for functions f(v,w) satisfying certain conditions. For the contrast function identified
as efficient by Theorem 5 of |Genon-Catalot and Jacod, f(v,w) = logv + w?/v. Us-
ing that A, = 1/n, it is then seen that their efficient contrast function is of the form
Un(0) = X1, u(An, Xpp, Xpn 3 6) with

i(t,y, x;0) = tlog b*(x;0) + (y — x)*/b*(x; 0)

and dyii(t,y, x;0) = —g(t,y, x; 6). In other words, it corresponds to a version of the efficient
approximate martingale estimating function given by (2.3.5).

A problem of considerable practical interest is how to construct estimating functions that
are (rate optimal and) efficient, i.e. estimating functions satisfying Assumptions [2.2.5][(i1)]
and [2.3.3] Being the same as the conditions for small A-optimality in a model with only a
diffusion parameter (Jacobsen, [2002)), the assumptions are, for example, satisfied by mar-
tingale estimating functions constructed by Jacobsen.
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As discussed by [Sgrensen| (2010)), the rate optimality and efficiency conditions are also sat-
isfied by Godambe-Heyde optimal approximate martingale estimating functions. Consider
martingale estimating functions of the form

8(t,y,x:0) = a(x, 1;0) (f(: ) — £ (x;0)) ,

where gb{o f(x;0) = Eg(f(X;; 0) | Xo = x), and suppose that f satisfies appropriate conditions.
Let a be the weight function for which the estimating function is optimal in the sense of
Godambe and Heyde| see e.g. (Godambe and Heyde| (1987); Heyde| (1997)) or |Sgrensen
(2012|, Section 1.11). It follows by an argument analogous to the proof of Theorem 4.5 in
Sgrensen| (2010) that the estimating function with

g(t,y,x;0) = ta(x, ;) f(y; 0) — ¢}, £ (x; 0)]

satisfies Assumptions and [2.3.3] and is thus rate optimal and efficient. As there
is a simple formula for a (see Section 1.11.1 of Sgrensen| (2012)), this provides a way
of constructing a large number of efficient estimating functions. The result also holds if
¢}, f(x;6) and the conditional moments in the formula for @ are approximated suitably by
the help of Lemma[2.2.6]

Remark 2.3.5. Suppose for a moment that the diffusion coefficient of (2.2.1)) may be pa-
rametrised such that b%(x;0) = h(x)k(@) for suitable, strictly positive functions 4 and k,
with Assumption [2.2.4] satisfied. This holds true for e.g. a number of Pearson diffusions,
including the (stationary) Ornstein-Uhlenbeck and square root processes. (See|Forman and
Sgrensen| (2008) for more on Pearson diffusions.) Then dgh*(x;6) = h(x)dgk(6), yielding
T(60) = 0gk(69)?/(2k*(6p)). In this case, under the assumptions of Corollary an
efficient G,,-estimator 6, satisfies that

Vi — 6) = ¥

where Y is normally distributed with mean zero and variance 2k%(6g)/dpk(6p)>. That is,
for certain “nice” models (2.2.1)), the limit distribution of the efficient estimators is sim-
ply a zero-mean normal distribution with variance depending on 8y, rather than a normal
variance-mixture depending on 6y and (X;)e[0,17- o

As mentioned in Section when Assumption [2.3.3]is satisfied, Assumption [2.3.1] re-
duces to an assumption involving only b%(x; 6) and dyb*(x; 6). In particular, in the special
case described in Remark [2.3.5] for an efficient estimating function, Assumption [2.3.1] is
satisfied when e.g. dgk(0) > 0 or dgk(8) < 0.

2.3.3 Example: Simulations

This section contains an example of the theory discussed in the previous sections. An
efficient and an inefficient estimating function are compared by simulation, and the model
under investigation is chosen so that the limit distributions of the consistent estimators
obtained by Theorem are non-degenerate normal variance-mixtures, in the sense
that they do not trivialise to normal distributions.
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Model and Estimating Functions

Consider the stochastic differential equation
dX, = —aX,dt + (0 + BX>)"12 aw, (2.3.6)

where a, 8 > 0 are known constants and 6 € (0, o0) is an unknown parameter. Then X is
ergodic, and the invariant probability measure has density proportional to

Hg(x) = exp (—a@xz - %aﬁx“) (9 +/3x2) , xeR, (2.3.7)

with respect to Lebesgue measure. It may be verified that when X is stationary, the process
satisfies Assumption[2.2.4] Two estimating functions are considered, G,(6) and H,,(6) given

by
n n
Gu(0) = D g(A, Xp, X 50)  and  Hy(0) = > h(An, X, X 56)
i=1 i=1
where
86y, x:60) = (y = x)* = (0 + D)™
h(t,y, x;60) = 0+ Bx) 0y — x)* — (6 + px*)’t.

Both g and & satisfy Assumptions[2.2.5]and [2.3.1] and g may be recognised as the efficient
function (2.3.5)), while £ is not efficient.

Let W (69) and Wy (o) be given by (2.3.3)) for the respective estimating functions, that is

1/2

1
C o ( | 2(eo+ﬂX?)18ds)
We(6o) = (%f; — ds) and  Wy(6)) = ~

2\2 1
0

(2.3.8)

Simulations

In this section, numerical calculations and simulations were done in R 3.1.2 (R Core Team,
2014). First, m = 10* trajectories of the process X given by were simulated over the
time-interval [0, 1] with @ = 2, 8 = 1 and 6y = 1, each with sample size n = 10*. These
simulations were performed using the R-package sde (lacus, [2014). For each trajectory,
the initial value Xy was obtained from the invariant distribution of X by inverse transform
sampling, using a quantile function based on , and calculated by numerical proce-
dures in R. For n = 103 and n = 10%, let HG n and HHn denote estimates of 6y obtained by
solving the equations Gn(O) =0and H,(0) =0 numerlcally, on the interval [0.01, 1,99].
Using these estimates, WG » and WHn are calculated by (2 I

4For n = 103, 9H7,, and thus also WH,,I, could not be computed for 44 of the m = 10* sample paths. For n = 10%,
and for the efficient estimator (;'G,,, there were no problems.
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Figure 2.1: QQ-plots comparing ’Z\G,n (left) and ZH,H (right) to the N(0, 1) distribution for
n = 103 (above) and n = 10* (below).

Figure 2.1 shows QQ-plots of
ZGn= NnWg5h @6, —600) and  Zy, = \nWg'@ua—60).

compared with a standard normal distribution, for n = 10% and n = 10* respectively. These
QQ-plots suggest that at least in the current example, as n goes to infinity, the asymptotic
distribution in Theorem [2.3.2][(iii)|becomes a good approximation faster in the efficient case
than in the inefficient case.

Inserting 6y = 1 into (2.3.8), the intergrals in these expressions may be approximated by
Riemann sums, using each of the simulated trajectories of X (with n = 10* for maximal ac-
curacy). This method yields a second set of approximations W¢ and Wy to the realisations
of the random variables W (8p) and Wg(6p), presumed to be more accurate than WGJO“ and
VII\/H,104 as they utilise the true parameter. The density function in R was used (with default
arguments) to compute an approximation to the densities of Wg(6p) and Wg(6p), using the
approximate realisations We and Wy.
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Figure 2.2: Approximation to the densities of Wg(6p) (left) and Wy (6p) (right) based on
WG and WH.

It is seen from Figure @] that the distribution of Wg(6p) is much more spread out than the
distribution of W (6). This corresponds well to the limit distribution in Theorem [2.3.2][(ii)]
being more spread out in the inefficient case than in the efficient case. Along the same lines,
Figure shows similarly computed densities based on \/ﬁ(@c,n —6p) and \/ﬁ(é]—],n —6)) for
n = 10*, which may be considered approximations to the densities of the normal variance-
mixture limit distributions in Theorem These plots also illustrate that the limit
distribution of the inefficient estimator is more spread out than that of the efficient estimator.

35



Chapter 2. Diftusions Without Jumps

0.25

0.20
I

0.10
I

0.05
I

0.00
I

Figure 2.3: Estimated densities of \/ﬁ(@g,n — 69) (solid curve) and \/ﬁ(@H,n — 6p) (dashed
curve) for n = 10%.

2.4 Proofs

Section [2.4.1] states several lemmas needed to prove Theorem [2.3.2] and a brief definition
of stable convergence in distribution is given. Theorem [2.3.2]is proved in Section [2.4.2]
Section contains the proofs of the three main lemmas from Section[2.4.1

2.4.1 Main Lemmas

In order to prove Theorem[2.3.2] the lemmas presented in this section are utilised, together
with results on the existence, uniqueness and convergence of G,-estimators from Jacod
and Sgrensen| (2012), and |Sgrensen| (2012, Section 1.10). Proofs of the main Lemmas
[2.4.1] 2.4.2] and 2.4.4] are given in Section [2.4.3] In particular, a stable limit theorem,
Theorem IX.7.28 of Jacod and Shiryaev| (2003)), is used to prove the stable convergence in
distribution in Lemma[2.4.4

For convenience, the applicable theorems of Jacod, Shiryaev and |Sgrensen|are briefly sum-
marised in Appendix in a simplified form, tailored specifically to fit the framework and
needs of the current paper. Stable convergence in distribution is defined, also very briefly
and with minimum technicality, prior to the presentation of Lemma[2.4.4]

Lemma 2.4.1. Suppose that Assumptions and hold. For § € O, let
n
Gu(0) = D 8(A, Xp, X 56)
i=1

v 1 ¢
G'(0) = - & (An Xp. Xy 10)
"=l
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and
A(6;60) = % fo l (b7(Xy: 60) - b*(X,:6)) 338(0, X, X, 0) ds
B(6;60) = § fo | (67 (X3 80) = b7 (X3 6)) 33062(0, Xy, X, 0) dis
-3 fo l 0gb* (X3 0)378(0, X, X3 0) ds
C(6;600) = 1 fo 1 (6" X1 00) + £ (B2Xe300) = X3 0)) ) 92600, X, X0 ds.
Then,

(i) the mappings 0 — A(6;6y), 0 — B(6;6y) and 6 — C(6;6y) are continuous on ©
(Pg,-almost surely) with A(6o; 6o) = 0 and 0yA(6; 6p) = B(6; 6p).

(ii) forallt> 0,

[nt]

1 P
Ego (g(An, Xin, Xin 360) | X )| — O (2.4.1)
\/A_n ; ‘ Bo (g n L £ 0 t171)|
1 [nt] )
™ ;Eeo (8(An Xe X 160) | X ) 50 (2.42)
1 [nr] »
A2 Z Eey (84(An’Xr;',Xz7_l;Ho) | th_l) —0 (2.4.3)
noj=1

and

[nt]

P ¢
A—§ Eg, (87 (An. X X :60) | Xir ) — § f b* (X, 00)0;8(0, X, X3 60)* ds.
n i 0

24.4)
(iii) for all compact, convex sets K C 0,
P
sup |G,(6) — A(6;600)] — O
OeK
P
sup [0sG(0) — B(6; 6p)| — 0
0eK
P
sup |G1(6) — C(6;6p)] — 0.
0eK
(iv) for any consistent estimator 0, of 6o,
AP sqp P
09Gn(0,) — B(6o;60) and G, (6,) — C(6o; ) .
o
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Lemma 2.4.2. Suppose that Assumptions and hold. Then, for all t > 0,

[nr]

P
VA, > gy (8(8n X, Xz :60) (W = W ) | F ) — 0. (24.5)
n =1

Stable Convergence in Distribution

The results in this paper make use of the concept stable convergence in distribution, as in-
troduced by Rényi/ (1963) and discussed in the works of e.g. |Aldous and Eagleson| (1978),
Hall and Heyde| (1980), Jacod| (1997), |Jacod and Shiryaev| (2003)), and in the survey article
of [Podolskij and Vetter; (2010). Stable convergence in distribution implies, in particular,
convergence in distribution. The implication is evident from the definition below. Here,
the random elements Y, are either real-valued random variables or continuous, univariate
stochastic processes, but, as seen in the references, the definition easily generalises. Defini-
tion[2.4.3)is a slightly modified version of Definition 1 in the paper of Podolskij and Vetter]

Definition 2.4.3. Let (Y,).en be a sequence of random elements defined on (Q, 7, Py),
and Y a random element defined on an extension (Q', ¥, Py) of (Q,F,Py). The sequence
(Yn)nen converges stably in distribution to Y under Py as n — oo if, and only if, for all
bounded, continuous, real-valued functions #, and all bounded, ¥ -measurable, real-valued
random variables Z,

Eo(h(Yn)Z) — Ey(W(Y)Z)
as n — oo, By denoting expectation under Pj. 3

Lemma 2.4.4. Suppose that Assumptions and2.2.5hold. Let
[nt]

noj=1

The sequence of processes (Y p)nen given by Y, = (Y,1)i=0 converges stably in distribution

Yn,t =

under Py, to the process Y = (Y;)1>0 given by

!
Y= 5 fo b*(Xy: 60)3,8(0, X5, X3 60) dB .

B = (By)s>0 denotes a standard Wiener process, which is defined on a filtered extension
(@ F' (F im0, Péo) of (Q, F, (F1)=0, Py,), and is independent of U and W. o

e e e . Dy
As of now, stable convergence in distribution under Py, as n — oo is denoted by =,

Lemma [2.4.5] and [2.4.6] summarise properties of stable convergence in distribution which
will be made use of in the proof of Theorem[2.3.2]
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Lemma 2.4.5. Let V,, W,, V. and W be real-valued random variables, V,, W,, W defined
on (Q,F,Py,), and V defined on an extension (Q’,T’,Péo) of (Q,F,Pg,). Suppose that

Dy
V, — Vand W, i) W. Then,
. Dy
(i) (Vi, Wp) — (V. W).

(ii) for g : R*> = R continuous on C C R? with P, (V,W)eC) =1,
Dst
g(vn, Wn) — g(V, W) .

<&

Lemma 2.4.6. Let Y, = (Y,1)w0 be a sequence of continuous, adapted, real-valued

stochastic processes defined on (0, F,(F1)=0,Pg,), and let Y = (Y;)=0 be defined on a
Dy

filtered extension (Q, F', (F, )0, P'go) of (LT, (F)i=0.Pa,). If Yo — Y then, for fixed

o >0,

Dyt
— Yt() .

Y,

10
<o

Lemma [2.4.5][(D)] see, e.g. (2.3) inJacod| (1997), may be viewed as an improvement of the

D P . D .
result that V,, — V and W,, — w, w € R constant, implies (V,, W,,) — (V,w), and is key

to obtaining Theorem Lemma and Lemma [2.4.6] on the other hand,

correspond to well-known properties of convergence in distribution, and follow easily from

Definition [2.4.3] (and Lemma[2.4.5](i)] when showing|(i1)).

2.4.2 Proof of Main Theorem

This section contains the proof of Theorem[2.3.2]

Proof of Theorem[2.3.2] Let any compact, convex subset K C © with 6 € int K be given,
and recall that

Gu(0) = ) &(An, Xy, Xin 10).

n
i=1

By Lemma and and Assumption 2.3.T][(iD)]

Gu00) 250 and  sup|deGn(6) — B, 00) — 0 (2.4.6)
0eK

with B(6o; 60) # 0, so G,(6) satisfies the conditions of Theorem [2.B.2] (Sgrensen, 2012]
Theorem 1.58).

Now, we show (2.B.1) of Theorem [2.B.3| (Sgrensen, 2012, Theorem 1.59). Let £ > 0 be
given, and let B,(f) and B.(6y), respectively, denote closed and open balls in R with radius
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e > 0, centered at 8y. The compact set K\ B:(8y) does not contain 6y, and so, by Assumption
(1), A(6,609) # O for all & € K\B,(6) with probability one under Pg,.

Because

inf |A(6,60)| > inf ]A(6,6) > 0
0eK\B:(6p) 0K \B.(6o)

Pg,-almost surely, by the continuity of 8 — A(6, 6), it follows that

Pgo( inf |A(9,90)|>0):1.
0eK\B:(0y)

Consequently, by Theorem [2.B.3 for any G,,-estimator 6,,
Po, (fn € K\Bs(60)) >0 as n— oo. (2.4.7)

for any £ > 0.

By Theorem |2.B.2] there exists a consistent G,-estimator &,, which is eventually unique, in
the sense that if 6, is another consistent G,-estimator, then

Py, (9,, # @n) —0 as n-—oo. (2.4.8)
Suppose that 8, is any G,-estimator which satisfies that
Py (fn€K)>1 as n— oo, (2.4.9)

By (2.4.77) also

Py, (0, € K°U Bo(60)) > 1 as n— oo, (2.4.10)

and combining (2.4.9) and (2.4.10), it follows that 8, is consistent. Using (2.4.8), Theorem
2.3.2li(1)| follows.

To prove Theorem recall that A, = 1/n, and observe that by Lemma [2.4.4] (and
Lemma[2.4.6)),

VG, (60) =5 S (60) 2.4.11)

where

1
S (60) = f 5 (X5 00978(0. X, X3 60) dBy
0

and B is a standard Wiener process, independent of U and W. As X is then also inde-
pendent of B, S (6p) is equal in distribution to C(6p; 60)'/?Z, where Z is standard normally
distributed and independent of (X;),>0. Note that by Assumption [2.3.1][(ii)} the distribution
of C(8y; 00)"/%Z is non-degenerate.
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Let 6, be a consistent G,-estimator. By (2.4.6), (2.4.11) and properties of stable conver-
gence (Lemma [2.4.5][(0)),

(x/ﬁano)) D ( S (6o) ]
09Gn(6o) B(60; 00))

Recalling that stable convergence in distribution implies weak convergence, an application
of Theorem [2.B.4] (Sgrensen|, [2012| Theorem 1.60) yields

Vn(@, - 6o) 2, —B(60,60)"'S (8) . (2.4.12)

The limit is equal in distribution to W(6y)Z, where W(6y) = —B(6o, 6p)~' C(6p; 0)'/? and
Z is standard normally distributed and independent of W(6p). This completes the proof of

Theorem[2.3.2]
Finally, Lemma [2.B.5| (Jacod and Sgrensen| 2012, Lemma 2.14) is used to write

V@, - 60) = —B(60; 60)"" VnG,(60) + Vnlb, — Bole(60) »

where the last term goes to zero in probability under Pg,. By the stable continuous mapping
theorem (Lemma [2.4.5][(i1)), (2.4.12) holds with stable convergence in distribution as well.
Lemma [2.4.1)(iv)| may be used to conclude that VT/,Z i W(6p), so Theorem 2.3.2”(iii)
follows from the stable version of (2.4.12)), by application of Lemma [2.4.5] i

2.4.3 Proofs of Main Lemmas

This section contains the proofs of Lemmas [2.4.1] 2.4.2] and [2.4.4] from Section A
number of technical results are utilised in the proofs, these results are summarised in Sec-

tion[2.A] some of them with a proof.

Proof of Lemma First, note that for any f(x;6) € CSOI(X X @), A € ® and compact,
convex set K C ® with A € int K, there exist constants Cg > 0 such that

If(Xs; 0)] < Ci(1 + X,|°)

for all s € [0, 1] and 6 € int K. With probability one under Py,, for fixed w, the integral

1
f Cr(l + [X,(@)F) ds
0

is simply the integral of a continuous function over [0, 1] and therefore finite. Using this
method of constructing Lebesgue-integrable upper bounds, Lemma [2.4.1][(D)] follows by the
usual results for continuity and differentiability of functions given by integrals.

In the rest of this proof, Lemma [2.A.3] and (2.A.7) are repeatedly made use of without
reference. First, inserting 6 = 6 into (2.A.1), it is seen that

[nr] [nt]

A ; ’EGO (8(An. Xir, Xir 360) | ti_1)| =A)? ; R Xz 5600) — 0
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[nf] [nf]

1 2 P
A 2B (800 X Xy 1600) 1 Xy )" = A7 ) RGA Xer 360 = 0,
i=1 i=1

proving (2.4.1) and (2.4.2). Furthermore, using (2.A.1)) and (2.A.3),

n
7)
D " Eay (A X, Xr :6) | X ) — A(8; 60)
i=1

> Eay (8 Xp Xe 10) | Xe ) 250,
i=1

so it follows from Lemma [2.AT| that point-wise for 6 € O,
7)
G,(0)—A6;0) — 0. (2.4.13)
Using (2.A.3) and (2.A.3),

[nt]

™ Z Eq, (gz(An,Xzy,Xty_l ;0) | Xz;’_l)
"=l

!
21 f (b4(Xs;90)+%(bz(Xs;go)—bz(xs;9))2)6§g(0’X5’X3;9)2dS
0

and
[n1] P
4 .
7 2B (8 X X 30) | X ) = 0,

n =l
completing the proof of Lemma [2.4.T][(ii)] when 6 = 6 is inserted, and yielding
Gy(6) — C(6:6p) — 0 (2.4.14)

point-wise for 6 € ® by Lemma 2.A.T] when ¢ = 1 is inserted. Also, using (2.A.2)) and

A%,

n
P
ZEHO (aeg(An,Xzf,ng_l;H) | X,;z_l) — B(6; 6p)
i=1

n
P
D Eay (Gog(8n. X, Xy 10" | Xy ) = 0.

i=1

Thus, by Lemma [2.AT] also
36Ga(6) — B(6:6) — 0. (2.4.15)

point-wise for # € @. Finally, recall that (?ig(O, x,x;0) = 0 for j = 0,1. Then, using
Lemmas [2.A.7] and 2.A.8] it follows that for each m € N and compact, convex subset
K C 0O, there exist constants C,, ¢ > 0 such that forall 6,6’ € K and n € N,

Eg,|(Gn(0) — A(6; 60)) — (Gu(8') — A 00)1*" < Couic 10— 01"
E,|(89G () — B(0;60)) — (9¢G (&) — B3 00))*™ < Cpuic 10— 6" (2.4.16)
Eg,[(G(8) — C(6;60)) — (G 1(0) — C(0;00))*™ < Cou 10— 61"
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By Lemma [2.4.1J(1)} the functions 8 — G,(0) — A(6;6p), 6 — 0yG,(6) — B(6;6y) and
6 — G, (6) — C(6,6p) are continuous on ®. Thus, using Lemma together with
2.4.13), 2.4.14), (2.4.13) and (2.4.16)) completes the proof of Lemma [2.4.T]

Finally, Lemma [2.4.T][(iv)| follows by an application of Lemma [2.A.T0} i

Proof of Lemma2.4.2] The overall strategy in this proof is to expand the expression on
the left-hand side of (2.4.5)) in such a manner that all terms either converge to 0 by Lemma
[2.A73] or are equal to 0 by the martingale properties of stochastic integral terms obtained
by use of It&’s formula.

By Assumption[2.2.5]and Lemma [2.2.7] the formulae

8(0,y,x,0) = 3(v — 020;8(0, x, x;60) + (y — X)’R(y, x; 6)

2.4.17)
P, x:0) = gV(x, x;0) + (v = VR, x; 6)
may be obtained. Using (2.2.4) and (2.4.17),
Eg, (8(An Xe, Xor ;00 (Wr = Wi ) | For )
= Eq, ((Xe — Xu )?028(0. Xr . X 2600)(Wer = W ) | For )
+ Bgy ((Xe = X YPRXpr, X 1 00) (W = W ) | Fr )
(2.4.18)

+ Ay, (g“)(x,?_],x,;,_l ;00) (Wi — Wi ) | ﬁy_])
+ AnBgy ((Xir = Xio JR(X, X 1 00) (W = Wer ) | Fr )
+ NBgy (R(An, Xir, Xr 3 00)(Wer = Wi ) | Fn ) -
Note that
MgV (X, X 60)Bq, (Wt;ﬁ — W | 7’7;1_]) =0,

and that by repeated use of the Cauchy-Schwarz inequality, Lemma [2.A:4] and Corollary

2.A5
[Bay (X = X PR, Xy 3 00)(Wer = W ) | T )| < AZCC1+1X [©)

Ap

By (X = X DRX, X 3 00) Wy = Wy )| T )| < A2C(1+ 1% 1)

A

Egy (R(Ans X, Xt 3 00) (Wi = Wi ) | 7?;1_1)| <AC+ X )

for suitable constants C > 0, with

[nt]
1 m/2 cy ®P
E;An C+Xp [©)— 0

for m = 4,5 by Lemma[2:A3] Now, by (2.4.18)), it only remains to show that
[nt]

P
i Z; P28(0. X . X 1600)Eq, ((Xi = Xp )*(Wy =Wy ) | Fur ) — 0. (24.19)
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Applying It6’s formula with the function
FOw) = (= xim ) (w=wp )
to the process (X;, W,)tzt?_] , conditioned on (thﬁ_l , W,:;_l) = (xt[»_f_l Wi ), it follows that
X = Xgr )Wy = W)

3 3
= Zf (X5 — Xttf'il)(Ws - Wt;ll)a(Xs) ds + f (W - thf’il)bz(Xs; o) ds
t !

7
i-1 i-1

i 1 (2.4.20)
#2 06 =X DhOX 0 s +2 [0 = X OV, = Wi I3 60 W,
i L
t.;l
+ | Xy = Xp ) AW
L
By the martingale property of the It6 integrals in (2.4.20),
By (X = X P Wy = Wy )| T
4
=2 f Eg, (X, = Xin YWy = Wy Ya(Xy) | For ) ds
o
(2.4.21)

1!
+ f Eg, ((Wy = Wi )0* (X3 00) | For ) ds

i
!
+2 f Eg, (X = Xin )b(X,:60) | Xpn ) ds.
i-1

Using the Cauchy-Schwarz inequality, Lemma[2.A.4]and Corollary 2.A.5]again,

17
f Eg, (X, = Xin YWy = Wy Ya(Xy) | Fpr ) ds| < CAX(1 + |Xp [©),

n
iy

and by Lemma[2.2.6]
Egy (X, = Xir )b(X:00) | X ) = (s = £LDR(s = £, Xpr 360,

so also

1!
f Eg, ((X; = X )b(Xs:600) | Xpr ) ds
I3

n
i-1

< CAY(1+|Xi [9).

Now

[nt] 7
1 i

‘ = 0, 580, Xy X 100) fln Eg (X5 = Xp YWy = War Ja(X,) | Ty, ) ds
n =1 i-1

[nt] !
1 i
E azg(o, Xy , Xy 5 6p) f Eg, (X5 — X )b(X;600) | Xin ) ds
/An — y liy i-1 t;‘_l 0 ( s i-1 s li_y )

+
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[nf]

< A2C Y |020(0. Xy X 160)| (1 + X ()
i=1

20

by Lemma[2.A.3] so by (2.4.19) and (2.4.21)), it remains to show that

[nt] £
1 i P
D B0,y X 560 [ B (W= Wy K00 | 77,) ds 0.
VAL 15 i
This time, applying Itd’s formula with the function

FO.w) = (w—we IB*(y: 6p)

and making use of the martingale properties of the stochastic integral terms, yields

1
[ Ea (v - wy e 172 ) ds

i-1

17 S
_ f f Eg, (a(X,)0\0* (X3 00)(Wo = Wer ) | Fopr ) duds
AN A
zi? S
+%f f Eg, (bz(Xu;90)5§b2(Xu290)(Wu_Wf,’-’_l)|T’7—I)duds
Y

wors
+ f f Eoy (b(Xu: 00)0y0% (X3 60) | Fir ) duds.
fiy VI

Again, by repeated use of the Cauchy-Schwarz inequality and Corollary 2.A.5]

l.;l
f Eg, (Wi = W )b* (X3 60) | For ) ds

n
ti—l

<O+ X )AL+ A

Now
1 [n1] 1"
Z 8,80, Xt’?_I,Xt’.’_IQQO)f Eg, (W = W )b* (X3 60) | Fr ) dis
VA, 5 1 l i l I
[nt]
< (A + A7) > 193800, X | Xin 5 60)| €1+ X [€)
i=1
20,
thus completing the proof. O

Proof of Lemma The aim of this proof is to establish that the conditions of Theo-
rem [2.B.1] (Jacod and Shiryaev, 2003, Theorem IX.7.28) hold, by which the desired result
follows directly.

For all > 0,

[ns] [nt]

sup | —— le o (80 Xer X 1000 | Xy ) < = Zl B, (A X X 560) | X )|
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and since the right-hand side converges to 0 in probability under Py, by (2.4.1) of Lemma

[2.4.1] so does the left-hand side, i.e. Theorem [2.B.1][(i) holds. From (2.4.2) and (2.4.4) of
Lemmal[2.4.1] it follows that for all 7 > 0,

nt]

O (B (8200 Xy Xer, 3000 1 X) = B (800 Xers X 3000 | Xer, ) )
i=1

1
Ay

P t
2,1 f b (X, 600850, X, X3 60)° ds.
0

establishing that Theorem [2.B.1|l(i1)]is satisfied. By Lemma [2.4.2] for all # > O,

1 [nr]

P
i Z;Eeo (g(AnaXt;l,th‘_l 100 (Wi = Wi ) | Fn ) — 0,
=

which corresponds to Theorem [2.B.T|[(ii)} Finally, by (2.4.3) of Lemma[2.4.1] for all # > 0,

the Lyapunov condition

1 [nt]

4 ) P
e ZEH" (8* (A Xu. X 160) | X ) — 0
1=

holds, implying the Lindeberg condition of Theorem 2.B.1] Now, by Theorem
the desired result follows.

It should be noted that the original Theorem IX.7.28 of |Jacod and Shiryaev| (2003)) con-
tains an additional convergence in probability condition. This condition has the same form
as Theorem but with Wz — Wy» replaced by Ny — Npn , where N = (Ny)r is
a placeholder for all bounded martingales on (2, ¥, (¥1)r=0, Pg,), which are orthogonal to
W. However, since (7;)>0 is generated by U and W, it follows from the martingale repre-
sentation theorem (Jacod and Shiryaev, |2003, Theorem I11.4.33) that every martingale on
(Q, F, (F1)=0, Pg,) may be written as the sum of a constant term and a stochastic integral
with respect to W, and cannot therefore be orthogonal to W. O
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Appendix

This section contains a number of technical results utilised in the proofs given in Section
2.4.3]

2.A Auxiliary Results

Lemma 2.A.1. (Genon-Catalot and Jacod, 1993| Lemma 9) For i,n € N, let F,; = Ttin
(with Fno = Fo), and let F,,; be an F,, ;-measurable, real-valued random variable. If

n n
P P
D Bay(Fui | Faiot) —> Fand Y Ba(Fr; | Fuict) — 0,
i=1 i=1

for some random variable F, then

n

Fui 5 F.
i=1
o
Lemma[2.A.T]is taken, without proof, from the paper of Genon-Catalot and Jacod.
Lemma 2.A.2. Suppose that Assumptions and[2.2.5|hold. Then, for all 6 € ®,
(i)
Eg, (8(An. X Xpr 160) | X ) oA
= 1A, (B2 (X 1 00) - P(Xpr :0)) 0280, Xpr . Xpr :0) + AZR(A. X 16),
(ii)
Eoy (008(Ans Xir, Xpr :0) | X )
= 1A, (b*(Xer 1 60) — D> (X 36)) 53068(0. Xr | Xir :0) (2.A.2)
— $0,0b* (X 50087800, Xpr , Xin 56) + AXR(A X 56),
(iii)

Egy (8%(An Xir, Xp :0) | X )
2
= 407 (B0 000+ 5 (X300 - BP(Xe,:0)) ) 000, Xy X 107 2A3)
+ ASR(An, Xpn 56),
(iv)

Egy (908(An: X Xy 1607 | X ) = AIR(A. X 26). 2.A4)
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(v)

Eg, (g4(An,Xz;f,X,7_l ;0) | Xt;z_l) = AJR(A X 50). (2.A.5)

<&

Proof of Lemma[2.A.2] For sake of completeness, a proof of all five formulae is given, al-

though (2.A.1)), (2.A.2) and (2.A.3)) are already implicitly given in the proofs of (Sgrensen,
2010, Lemmas 3.2 & 3.4). Note first that using (2.2.5),

L4,(8(0,0))(x, x) = 1b7(x; 00)3;8(0, x, x; 6)
L4,(068(0,0))(x, x) = 3b°(x; 00)83048(0, x, x: 6)
L£5,(8%(0:0))(x, x) = 3b*(x: 60)0;8(0, x, x; 0)°
L4,(300,0)8V(@))(x, x) = =35> (x; 0)b(x: 00)3,8(0, x, x; )

and

Loy (& (0;0)(x,0) = 0
L (g'0:0)(x,x) =0, i=123
L (220,00 @)(x.,x) =0, i=12
Ly (%(0,0)M(0))(x,x) = 0
Lo, (830,608 O)(x, x) = 0
L4(38(0,6))(x, x) = 0.
The verification of these formulae may be simplified by using e.g. the Leibniz formula for
the n’th derivative of a product, together with the results of Lemma and Assumption
to see that many of the partial derivatives which appear during the process are

zero when evaluated in y = x. These results, as well as Lemmas [2.2.6] and and
(2.A8)) are used without reference in the following.

First, see that
Eq, (8(An. Xor. X :0) | X )
= B, (8(0. Xpr, X :60) | Xpr )+ Ay, (8 (X X :0) | X )
+ ATEqg, (R(Aw. Xi, Xpr :60) | Xin )
=80, Xpr |, Xin 50) + AL, (8(0;0)(Xer |, X )
+ A (8 X Xir 10) + AuR(Ay, Xpr 30)) + AR(An, Xir 16)
= 30, (DX :00) = B*(Xpr 30)) 37800, Xpr |, Xir 50) + ALR(A, Xy 36)

which proves Lemma[2.A.2][()} Now, using that

39 La(3(0,0)(x, x) = La(B9g(0, 0)(x, X) + 38 b (x; 0)3,8(0, x, x; 6),
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it follows that
Eq, (00g(An. X X :0) | Xpr )
= B, (008(0. Xpr. Xpr :0) | Xir )+ AyEe, (998 (X, X :60) | X )
+ ATEqg, (R(Aw Xi, Xpr 360) | Xin )
= 0930, Xir Xy 160) + A, L3, (068(0.0)(Xpr | Xpr ) + AR(Ap, Xy 16)
+ A (908" (X . X 16) + AuR(A Xpr :0)) + AZR(An, X 36)
= Au (La,(08(0.0)(Xr . X ) — 0g.Lo(3(0.0))(Xer, X)) + A2R(Ay, X1 :6)
= 1A, (P(X :60) — b’ (X 36)) 53068(0, Xr |, Xir :0)
— 30n09b* (X 3000780, Xpr , X 56) + AXR(Ay, X 56),

thus proving Lemma [2.A.2){(il)] Furthermore,
Eq, (0og(An. Xir Xpr 160 | X1 )
= B, (068(0, Xpr. Xy :0)7 | X )
+ 2A,Eg, (008(0, X, Xpr 0008 (X, X :0) | Xir )
+ AZBg, (R(An, X Xpr 360) | Xpr )
= 08(0, Xy |, X 36)" + £, L3, (368(0,0)) X |, Xy ) + ArR(Ay, Xir 56)
+ 20, (068(0. X . Xpr :0)098"Xpr . Xir 160) + AuR(Ay, X 16))
= AZR(An. Xpr 16),
proving Lemma Similarly,
Eg, (87 (Ans X, X1 560) | Xt;gl)
= Bg, (820, X, X 16) | Xpr ) + 20,Eq, (300, X, X :0)gV (X, X :60) | X )
+ AyEg, (8 (X, Xir 16) + 8(0, X, Xpr :0)g® (X, Xpr :6) | Xir )
+ AYEg, (R(An. X Xpr :6) | Xpr )
= (0, Xy, Xpr 30) + A Loy (820 0)(Xer |, X ) + AT L5 (820 0)(X |, Xir )
+ 20, (8(0. X Xpr 1008V (X | Xpr 16) + Ay Loy (8(0: 08V (O) (X . Xir )
+ A2 (8 (X Xy 10+ 8(0. X X 10)gP (X . Xpr :6)) + AJR(Ay, X 56)
= A7 (1£2,(820: )Xy . X ) + 2Ly (8(0: gV O) X | Xy )
+ A2 (Lo(g(0,0)(Xe . Xe D) + AIR(A Xy 5 0)
= 1A2 (b‘*(x,;;_1 100) + % (b*(Xen 1 60) = B*(Xir ; 9))2)a§g(o, Xy Xp 1 0)
+ AsR(Ap, Xpn 36),
and

Egy (8*(An. Xer Xi 16) | X )
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= By, (8*0. Xo. Xi :0) | Xy )
+ 4A,Eq, (80, Xp, X 008X, Xpr :0) | X )
+ 6A2Eg, (870, Xpr. X 100V (X, Xir 16)* | Xpr )
+ 207y, (80, Xy, X 3 0)gP (X, Xy 360) | Xt )
+ 4ATEq, (800, X Xpr 1 0)gV (X, Xy 16)° | X )
+ 6A3Eg, (870, Xpr. Xi 1008V (X, X 10)8P (X, Xr 160) | Xpr )
+ 203Eq, (830, Xu. Xp 10)g% (X, X 10) | X )
+ AyEq, (R(Aw Xi, Xpr 36) | Xin )
= g*0. Xy . X 10) + Ay Loy (8 0: )X . X )+ 3A7 L5 (8*(0:0)(Xr X )
+ L5 (800X |, X ) + 40,870, X |, Xir 5008V (X, X 5 6)
+ 407 L4y (2 0; 08V O X |, X ) + 245 L5 (7 (0:0)g D O) Xy |, Xir )
+6A78%(0, Xp Xy 160)g" )(X,n X 160)* + 6A) L4, (8%(0; e)g“)(e) )Xo Xpr )
+ 207870, X Xpr 1 0)gP X X 36) + 24, L4, (87 (0:0)gP(O)(Xpr |, X )
+4A58(0, X, Xy -9)g< X X 36)°
+6A,87(0, X, Xy :60)g"! )(X,n X 08P (X Xp 16)
+ 30870, X, Xy 5008V (X, X 36)
+ AsR(Ap, Xpr 1 6)
= AR(Au, X1 36),

which prove Lemma and[(v) as well. i

Lemma 2.A.3. Let x — f(x) be a continuous, real-valued function, and let t > 0 be given.
Then

[nt]

0 )0, >—>ff<X>ds

<&

Lemma[2.A 3|follows easily by the convergence of Riemann sums, and is presented without
proof.

Lemma 2.A.4. Suppose that Assumption holds, and let m > 2. Then, there exists a
constant C,, > 0, such that for 0 <t <t+ A <1,

Ego (IXesa — X | X) < CuA™2 (1 + 1X,™) . (2.A.6)
o

Corollary 2.A.5. Suppose that Assumption holds. Let a compact, convex set K C ©
be given, and suppose that f(y, x; 0) is of polynomial growth in x and y, uniformly for 6 in
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K. Then, there exist constants Cg > 0 such that for0 <t <t+A <1,
Egy (1f X Xi )l | X)) < Cic (1 + 1X,1%)
forall 6 € K. o

Lemma [2.A.4] and Corollary [2.A.5] correspond to Lemma 6 of Kessler| (1997), adapted to
the present assumptionsE] The corollary is a simple consequence of the lemma. For use in
the following, observe that for any 6 € 0, there exists a constant Cy > 0 such that

[nt] [nt]
Bn D Ro(Bn. X D] < Cot ) (141X 1)

i=1 i=1

so it follows from Lemma [2.A.3| that for any deterministic, real-valued sequence (6,)en
with 8, » 0 asn — oo,

[nt]
p
Sulhn ) |Ro(A, Xin )] — 0. 2.A.7)

i=1
In particular, (2.A.7) holds for R(A,, X;» ;6). Also, note that by Corollary @], it holds
that under Assumption [2.2.4]

Eg, (R (A, Xp4n, X1360) | X1) = R(A, X3 6). (2.A.8)

Lemma 2.A.6. Suppose that Assumption 2.2.4|holds, and that the function f(t,y, x; 0) sat-
isfies that

f(t,y,x;60) € c’l’”; ((0,11x X*x®)  with  f(0,x,x;0) =0

forall x € X and 6 € ©. Then, for all 6 € O,
! !
f(t - S9XI7XS;9) = f fl (M - S9XMaXS;H) du + f fz (u - SaXLhXS;g) qu (2A9)
S S

under Py, where fi and f> are given by

fi(t,3,x,0) = 0,f (1, y, %:0) + a()dyf (1., x;0) + §b°(v; 00)0, f (1, y, x; 6)
f(t,y, x;0) = b(y; 00)0y f (t,y, x;6) .

Furthermore, let m € N be given, and let Dk(-;0,8") = k(-;0) — f(-;8). Then, there exist
constants C,, > 0 such that

24, (D10 - 5. X, X000
2m—1 ! NP
< Clt—9) Eg, (lDfl(u—s,Xu,Xs;e,mi )du (2.A.10)
S

!
T Colt — 5! f By (| DAt = 5. X, X300 ™)
S

3Section contains a proof of Lemma|3.A.23| an inequality for jump-diffusions which resembles (2.A.6).
As this proof is essentially an extended version of the proof given by [Flachs| (2011, of the inequality (2.A.6)
for (ergodic) continuous diffusions, it is easily modified to prove Lemma@
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for0<s<t<1and0,0 € ®O. Also, for each compact, convex set K C O, there exists a
constant Cy, g > 0 such that

Eq, (IDfi(t = 5. X0, X1 0.60)P") < Cor 10 — 61"
for j=1,2,0<s<t<1landall 9,0 € K. o

Proof of Lemma[2.A.6] A simple application of Itd’s formula (when conditioning on X, =
xy) yields (2.A9).

By Jensen’s inequality, it holds that for any k € N,

for j = 1,2, and by the martingale properties of the second term in (2.A.9), the Burkholder-
Davis-Gundy inequality may be used to show that
)

2m
Ego ( ) < CmEgo (

k ¢ )
] < (t— 5! f Eq, (|ij(u 5, X, X2 6, 9')|”‘) du
S
QA1)

!
f Dfj(u—s,X.,Xs:0,60) du

N

! !
f sz(u_ S’XIA’XS;eve’)qu f sz(u_ S9XM7X5;9’ 9,)2 du
N A

(2.A.12)
Now, (2.A.9), 2.A.TT)) and (2.A.12)) may be combined to show (2.A.10). The last result of
the lemma follows by a simple application of the mean value theorem. O

Lemma 2.A.7. Suppose that Assumption holds, and let K C ©® be compact and
convex. Assume that

f(t.y.x:0) € Cl% (10,11 x X x @) with  f(0,x,x;6) =0 2.A.13)

forall x € X and 6 € O, and define

Fn(g) = f(An, Xt:.la XI?_] > 9) .

n
i=1
Then, for each m € N, there exists a constant Cy, g > 0, such that
/ 2 /
Egy |[Fn(0) = Fu(@)|" < Cruic 10— 6"
forall 6,6’ € K and n € N. Suppose, furthermore, that the functions

hi(t,y,x,0) = O,f (t,y, x;60) + a()dy f (£, 3, x;0) + 36°(v; 60)0; f (1., x: 0)
ha(t,y, x;6) = b(y; 60)0y f (8, y, x;6)
hjp(t,y, x;0) = b(y; 60)dyh(t, y, x, 0)

also satisfy (2.A.13)) for j = 1,2, and define

— 1 <&
Fu() = = > f(Bn. X Xt :6).
m =1
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Then, for each m € N, there exists a constant Cy, g > 0, such that
- = |2 /
Eg, |Fu(0) = Fa(@)|™" < Crx 16— 6"
forall 6,0 € K andn € N, o

Proof of Lemma[2.A.7] This proof is a rewriting of the proof of [Sgrensen| (2010, Lemma
5.5). For use in the following, define, in addition to &y, h; and h,, the functions

hji(t,y, x;0) = 0:hj(t,y, x;6) + a(y)o,hj(t,y, x; 6) + %bz(y; 90)6§hj(t, v, x;6)
hi1(t,y, x;0) = 8ihjp(t,y, x,0) + a(y)yhja(t,y, x;60) + 367 (y: 00)05hjo (1, y, x; 6)
hina(t,y, x;0) = b(y; 9)0yhjp(t,y, x; 0)

for j = 1,2, and, for ease of notation, let
H(u30,0') = Dhj(u— 1, X, X ;6,0

for j e {1,2,11,12,21,22,121, 122,221,222}, where Dk(-;6,8") = k(-;0) — f(-;6). Re-
call also that A,, = 1/n.

First, by the martingale properties of

n r
) fo L OB 6,6) W,
=

the Burkholder-Davis-Gundy inequality is used to establish the existence of a constant

C,, > 0 such that
2m m
] < CmEgo ( ] .

n 1 n A
Eg, ( An Z j; HY (w3 6,6') dW, A Z L HY (w36, 6)% du
i=1 i-1 i=1 i-1

Now, using also Jensen’s inequality and Lemma[2.A.6]

| ”"1

An

n
Df(Al’h thn’ X[;.ll 5 0’ 0/)
=1

1

n 7 2m n 7 2m
< CpEg, | |An Z H;l’l(u; 0,0 du + CiBy, | |An Z H;’l(u; 0,0 dw, ]
=1 Y15 =1 Y15
n /0 2m n /0 m
< CnA, Z Ego [ f H’f’l(u; 0, 9/) du + CmEgo [ A,% Z f H;’l(u; 0, 9’)2 du )
i=1 U= = Jr,

| 7 2m m
A_n ft; H’f"(u; 0,6 du ] + By, [ )]
i1

4 . 4 .
f Eq, (H|" (3 0,6")") du + f Eg, (1Hy"(u; 0,0 )P") du) (2.A.14)

n
ti—l

n
< Cut" Y [Ego [
i=1
n
<Culy" ) (

=1
< Cnkl0— 6P AZ

| 5
nio . ’
A—ﬁ H2 (u,H,Q) du
nJit_,
liny
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thus

2m
Eq, (IDF (6, 0)P") = A,*"Eg, [ } < Coil0— 01"

n
An Z Df(An, Xe, Xpr 6,6)
i=1

for all ,6" € K and n € N. In the case where also &; and A, satisfy (2.A.13) for all x € X,
6 € ®and j = 1,2, use Lemma[2.A.6[to write

Eq, (1} (3 6,6)1")

U
< Cpu -1t )* ! f Eg, (IH’f’l’(v;H, 9’)|2m) dv
t”

i-1

U
+ Co(u— 21" f Eq, (IH 5 (v:0,6")") dv
!

i-1

U
< Cp(u -t )* ! f Eg, (IH’f’l’(v;Q, 9’)|2m) dv
t”

i-1

U 1%
+ Cu — £ f [(v — )t f Eq, (|H;l’2’1(w; 6, 9’)|2’”) dw) dv
L L

U v . m
+ Cu — )" f ((v—t;?_l)’"—‘ f Eg, (|H’f’2’2(w;6,9’)|2 )dw] dv
tn

i-1 i-1
2 2
< Conil0 = 0P (= 22" + (= £2)*")

and similarly obtain
Eg, (1Hy" (43 0,0)P") < Co k10 = 0P (= 61 )" + (=12 )™") .

Now, inserting into (2.A.14),
Zm]

n 1 o
< Cuk A" ) ( f Eq, (1H" (u:0,0)*™") du + f Eq, (IH3" (u: 6.6)P") du)
i=1 \V1i_| "

ti—l

n
An Y Df(An. X, X :6.6)
i=1

n 1

< Ckl0 = 0P"A2" S f (=2 ) + (= £L)*") du
i=1 Y1

< Conil0 - 0" (A" + A"

and, ultimately,

|

Df(An, Xy, Xy 6,6)

Eg, (IDF,(6,6)") = Eg, [

n
ALY DF(A X X 36,6)
i=1

An

n

2m
i=1 ]
< Cuxl0-01P"(1+A,)

< Cpxld -0, O
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Lemma 2.A.8. Suppose that Assumption is satisfied. Let f € Cg"ll (X X @). Define

1
F@=fﬂ&ﬁw
0

and let K C O be compact and convex. Then, for each m € N, there exists a constant
Cm.x > 0 such that for all 6,6 € K,

Eg,|F(0) — F(@)*" < Cox 10— 61"
o

Lemmal[2.A §|follows from a simple application of the mean value theorem and is presented
without proof.

Lemma 2.A.9. Let K C O be compact and convex. Suppose that H,, = (H,(0))¢ck defines
a sequence (Hy),en of continuous, real-valued stochastic processes such that for all 6§ € K,

H,(0) 2> 0

for fixed 6. Furthermore, assume that for some m € N, there exists a constant Cp x > 0
such that for all 0,6 € K andn € N,

2m

Egy |[Ha(0) — Ho(@)|™" < Crxl0 — 0" (2.A.15)

Then,
7)
sup |H,(0)] — 0.

0eK

(o]

Proof of Lemma[2.A.9] (H,(6))nen is tight in R for all € K, so, using (2.A.13)), it follows
from |Kallenberg| (1997, Corollary 14.9 & Theorem 14.3) that the sequence of processes
(H,)) e 1s tight in C(K, R), the space of continuous (and bounded) real-valued functions on
K, and thus relatively compact in distribution. Also, for all d € N and (64, ...,6,) € K4,

D
—

H,(64) 0

so by [Kallenberg| (1997, Lemma 14.2), H,, 2, 0 in C(K,R) equipped with the uniform
metric. Finally, by the continuous mapping theorem,

D
sup |H,(0)] — 0,
0eK

and the desired result follows. m|
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Lemma 2.A.10. Let (H,,(0))geco, n € N, and (H(0))geo be real-valued, stochastic processes.
Suppose that (H(6))geo is continuous, that

sup |H,(6) — H()l —> 0
0eK

for all compact, convex subsets K C O, and that 0, is a consistent estimator of 6y. Then
AP
H,(6,) — H(6) .
o

Proof of Lemma[2.A.10] The objective is to show that for all 6, & > 0 there exists ny € N
such that

Py, (IH(6,) — H@p) <&)>1-6 for n=ng. (2.A.16)
Choose 6, € > 0. Since 6 — H(0) is continuous, there exists 77 > 0 such that
0-6l<n = |H®-H®@) < 5.

Let K ={0 € ® : |60 -6y <n}. By assumption, there exist n1,ny € N such that

Po, (IBn -0l <m)>1-% for nxn
and

Pg, (ZUEW"(Q) - H(®) < g) >1-% for nxny.
E

Now, let ng = max{n, n,}, and to conclude (2.A.16), use that on the set

(|9n — 0ol < 77) N (sup |H,(0) — HO)| < %)
0eK
it holds that

|H,(8,) — H(60)| < sup |H,(0) — H®)| + |H(8,) — H(6))| < &. O

2.B Theorems from the Literature

In this section, some results from the literature, important to the proof of Theorem[2.3.2] are
summarised in a greatly simplified form, tailored specifically to the approximate martingale
estimating function-setup of the current paper. Section[2.B.T|contains a version of Theorem
IX.7.28 of Jacod and Shiryaev| (2003), while Section @ contains selected results of
Jacod and Sgrensen! (2012) and Sgrensen| (2012}, Section 1.10).
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2.B.1 Stable Limit Theorem

Theorem below is a simplified version of Theorem IX.7.28 of Jacod and Shiryaev
(2003).

Theorem 2.B.1. Fori,n € N, set AW, ; = W,:_z - W,:;_l and Fp,; = 77,:_1 (with Fno = Fo), and
let F,; be a square-integrable, F, ;-measurable, real-valued random variable. Let (C;)s>0
be a continuous, (F)=0-adapted, real-valued process of the form

!
C = f c2ds.
0

Suppose that for all t > 0, the following holds.

(i)
[ns]
sup| ¥ B, (Fai | Faict)| - 0.
s<t i=1
(ii)
[nt] [nf]
ZEHO n,i Fn.i- 1 ZEﬁo(Fnllﬁz l) _>Ct'
(iii)

[nt]

P
D Bay (FuiAWyi | Fuis1) — 0.
i=1

(iv) Forall € > 0,

[nt]
P
> gy (F2A(F il > £) | Fai1) — 0.

Put

[nt]

Yn,t = ZFnz
i=1

Then, the processes Y, = (Y,1)=0 converge stably in distribution under Py, to the process

Y = (Y0 given by
!
Y, = f csdBy .
0
B = (By)s>0 is a standard Wiener process, which is independent of U and W, and defined
on a filtered extension (Q', ", (F/)iz0. Py) of (Q, F , (F1)i=0, Pay)- o

Note that the original theorem (Jacod and Shiryaev, 2003, Theorem 1X.7.28) contains an
additional convergence in probability condition, which becomes superfluous in the current
setup. See the end of the proof of Lemma [2.4.4] for more details.
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2.B.2 Asymptotic Results for Estimating Functions

This section briefly summarises Theorems 1.58, 1.59 and 1.60 and some additional com-
ments from [Sgrensen| (2012)), and Lemma 2.14 of Jacod and Sgrensen| (2012), adapted to
the setup of the current paper. Proofs of these results are given by |Jacod and Se¢rensen
2012).

In the following, let G,(0) be an approximate martingale estimating function as given in
Definition [2.2.2] with associated G,-estimators defined in Definition [2.2.3]

Theorem 2.B.2. |Sgrensen| (2012 Theorem 1.58) Suppose that there exist a compact, con-
vex set K C O with 0y € int K, and a (possibly random) real-valued function 6 — B(8; 6)
on K, such that

(i) G(6o) —> 0.

(ii) The function 0 — G,(0) is continuously differentiable on K for all n € N, with

Sup|99Go(6) — B(B: 60)| —> 0.
0eK

(iii) B(6o; 6o) is non-singular (with probability one under Py).

Then, there exists a consistent G,-estimator @n, which is eventually unique in the sense that
for any other consistent G,-estimator 6, Pg, (9,1 #6,) - 0asn— . o

By [Sgrensen| (2012, p. 87), under the conditions of Theorem the mapping 6 —
B(6; 8p) is continuous on K (up to a Py -null set, if B(6; 6p) is random). Also, there exists a
unique, continuously differentiable real-valued function 6 — A(8; 6) (still, up to a Pg,-null
set), satisfying that A(6y; 6p) = 0, 0 — 9pA(6; 6y) = B(0; 6p) for all 6 € K and

SUp|G(6) — A(9; )] —> 0.
0eK

Theorem 2.B.3. |Sgrensen| (2012 Theorem 1.59) Suppose that the conditions of Theorem
2.B.2)are satisfied, and that the aforementioned function A(8; 6y) satisfies that for all € > 0,

Pgo( inf |A(0;60)|>0):1, (2.B.1)
K\B,(60)

where B,(0y) denotes the closed ball in R, with radius & and centre 8y. Then, for any
G-estimator 9,1, it holds that for all € > 0,

Py, (Bn € K\Be(8)) — 0
asn — oo, <&

58



2.B. Theorems from the Literature

Theorem 2.B.4. Sprensen|(2012, Theorem 1.60) Suppose that G, (0) satisfies the conditions
of Theorem and let 6, be a sequence of non-zero numbers with §, — o0 asn — oo.
Suppose that there exists a real-valued, non-degenerate random variable G(6y), such that

(5nGn(90))£)( G(60) )
99Gn(60) B(6o; 60))

Then, for any consistent G,-estimator 9,,,
N D _1
6n(0y — 00) — —B(6o;60)" G(6p) .

<

Lemma 2.B.5. Suppose that the conditions of Theorem hold. Then, for a consistent
G -estimator 0,

6, = 60 — BB, 60)" G (60) + 16, — Bolen(60) »

where |&,(60)] —> 0., o
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CHAPTER 3

Efficient Estimation for Diffusions With Jumps Sampled at High
Frequency Over an Increasing Time Interval

Nina Munkholt Jakobsen & Michael Sgrensen

Department of Mathematical Sciences
University of Copenhagen

Abstract

This paper concerns parametric estimation for ergodic univariate diffusion processes with
finite activity jumps, given by stochastic differential equations. The processes are assumed
to be observed at high frequency over an increasing time interval, with terminal sampling
time going to infinity. It is established that under quite general assumptions, approximate
martingale estimating functions yield consistent estimators of the parameters of the process.
These estimators are asymptotically normally distributed, and their asymptotic variances
may be estimated consistently. In particular, the estimators are rate optimal for drift-jump
related parameters. Conditions for rate optimality of estimators of the diffusion param-
eter, and efficiency of estimators of the drift-jump and diffusion parameters are given in
three special cases. The overall conclusion is that, depending on the jump dynamics of
the model, it can be considerably more difficult to achieve rate optimal estimators of the
diffusion parameter for a jump-diffusion, than for the corresponding continuous diffusion.
For rate optimal estimators of the diffusion parameter, the supplementary condition for
efficiency is identical to the one for continuous diffusions. Efficiency of estimators of drift-
jump parameters essentially requires the following. The relevant coordinate functions of
the estimating function must be able to discriminate asymptotically between observations
of the process at jump times and non-jump times respectively. In the former case, the co-
ordinate functions are determined by the score function corresponding to the jump. In the
latter case, the coordinate functions must behave like an efficient estimating function for
the drift parameter of the corresponding continuous diffusion.
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3.1 Introduction

In many fields, when modelling phenomena in continuous time, diffusions with jumps are
seen as a natural extension or improvement to continuous diffusion processes with Wiener
noise or to pure-jump processes. See, e.g. |Giraudo and Sacerdote|(1997)), Jahn et al.|(2011)),
Musila and Lansky| (1991), and [Patel and Kosko| (2008) for some examples from neuro-
science, and | Kou| (2002), |De Jong et al.| (2001)), and [Merton| (1976)) for some applications
in finance.

Statistical inference for diffusions with jumps contains a broad spectrum of intriguing chal-
lenges. The models have continuous-time dynamics but, while continuous-time sampling
is ideal in theory, it is generally not feasible. As is the case for continuous diffusions, a
closed-form expression for the likelihood function based on discrete-time observations is
usually not available, rendering maximum likelihood estimation somewhat impracticable.
However, the presence of jumps also creates a new, crucial obstacle for alternate estima-
tion procedures. To the extent that knowledge of jump times and sizes is needed, it has to
be inferred from the discrete-time observations whether one or more jumps are likely to
have occurred between any two consecutive observation times, and, if so, how much of the
observed increment is attributable to the jump(s).

A multitude of estimation approaches exist in the literature, a non-exhaustive list of refer-
ences includes the following. In the context of parametric estimation, pseudo-likelihood
methods involving primarily Gaussian-inspired approximations of the log-likelihood (or
score) function were considered by e.g. Masuda|(2011},/2013),/Ogihara and Yoshida|(2011)),
Shimizu (2006b), and [Shimizu and Yoshidal (2006). Closed-form expansion of the transi-
tion densities was investigated by e.g. [Filipovic et al.| (2013) and [Yu| (2007), while Mai
(2014)) approximated the maximum likelihood estimators obtained from the continuous-
time likelihood function. Mancini (2004) proposed a quadratic variation-inspired estima-
tion method in a semiparametric setting, while simulation-based methods were considered
by e.g. |Giesecke and Schwenkler| (2014)), and [Stramer et al.| (2010). Finally, a selection of
non-parametric procedures based on discrete observations exist as well, see e.g. | Bandi and
Nguyen|(2003)), Mancini (2009), Mancini and Reno| (201 1)), Schmisser| (2014) and |Shimizu
(20064, 2008}, 12009).

This paper concerns parametric estimation in a framework where the ergodic stochastic
process X = (X;);»0 is a cadlag solution to a stochastic differential equation of the form

dX; = a(X;; 0) dt + b(X;; 6) dW; + f c(X,—,z;0) N°(dt, dz) . (3.1.1)
R
The drift and diffusion coefficients a and b, and the jump coefficient ¢ are known, determin-
istic functions of (y; #) and (y, z; ) respectively, and 6 is the unknown, finite-dimensional
parameter to be estimated. As usual, X_ = (X;_)s>0 is defined as the process of left limits
of X. The standard Wiener process (W,),>o is supposed to be independent of NY(dt, dz),
a time-homogeneous Poisson random measure on [0, o0) X R, with the intensity measure
g given by pg(dt,dz) = vg(dz)dt. Furthermore, vy is a Lévy measure on R for which
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vo(R) < oo, i.e. the jumps of X are of finite activity. For simplicity, X; is assumed to be
one-dimensional.

Let (Ay)nen be a sequence of strictly positive numbers. For each n € N, we assume obser-
vations (th, X,rlw, ..., X) of X over the interval [0, nA,], at discrete, equidistant time-points
t;? =iA,, fori =0,1,...,n. Asymptotics are considered as n — oo, in which case it is as-
sumed that A,, — 0 and nA,, — oo. With this observation scheme, X is said to be observed
at high frequency, over an increasing time interval, with terminal sampling time #, = nA,
going to infinity. In the limit, the whole sample path of the process is (hypothetically)
observed, with full information about jump times and sizes.

Local asymptotic normality (LAN), and, for fixed-interval asymptotics, local asymptotic
mixed normality (LAMN) results are an active area of research for stochastic processes with
jumps, recent developments including Becheri et al.| (2014]), Clément and Gloter| (2015),
Kawai and Masudal (2013)) and |Kohatsu-Higa et al.| (2014, 2015). Within the context of
local asymptotic normality, it is quite straightforward to characterise rate optimality and
efficiency of estimators. In the absence of general local asymptotic normality results for
the present setup, the criteria for rate optimality and efficiency used here are more heuristic
in nature, motivated not only by the applicable local asymptotic normality results of Becheri
et al., and [Kohatsu-Higa et al., but also by results of |Gobet| (2002), Shimizu and Yoshida
(20006)), and [Sgrensen! (1991)).

Parametric estimation situations similar that described above were considered by e.g. |(Ogi-
hara and Yoshida| (2011), and |[Shimizu and Yoshidal (2006), in the case of finite-activity
jumps, and Masudal (2011}, 2013)), and [Shimizu| (2006b), who also allowed infinite-activity
jumps Shimizu and Yoshida proposed a technique to judge whether or not a jump is likely
to have occurred between two observation times £ | and #;. They used this technique to
create a contrast function for estimation in the sub-model of (3.1.1)) given by

dX, = a(X;; @) dt + b(Xy; 8) dW, + f c(X;—, ;@) N*(dt, dz) , (3.1.2)
R

where the general parameter 6 is split into a drift-jump parameter @ and a separate diffu-
sion parameter 8. Their contrast function treats the pair (Xi , X;») differently, depending
on whether or not a jump is presumed to have occurred between the two observation times.
Shimizu and Yoshidaargued that estimators based on their contrast function are (rate opti-
mal and) efficient for the drift-jump parameter, and, by the criteria laid down in the present
paper, the same goes for the diffusion parameter. The contrast function used by|Ogihara and
Yoshida (2011)) was almost identical to that of [Shimizu and Yoshidal, while the estimating
function used by [Shimizu| (2006b)) was heavily inspired it.

Masudalconsidered estimation within a class of stochastic differential equation models with
jumps, which, in special cases, overlap with sub-models of (3.1.1)) of the form

dX, = a(X,; @) dt + b(X;; B) dW, + f &(X,—, B)z N(dt, dz) .
R

!'Several of these papers assumed multivariate processes as well, in the following, we only refer to their results
in the univariate case.

63



Chapter 3. Diftusions With Jumps

In the articles of [Masudal (2011} [2013)), estimation was performed using a specific type of
Gaussian quasi-likelihood functions. As noted by Masudal a type of estimation known to
work well for diffusions without jumps. Among other things, Masuda studied the asymp-
totic properties of his Gaussian quasi-likelihood estimators under the current asymptotic
scenario. He pointed out that in the presence of jumps, these estimators are not efficient for
the drift or diffusion-jump parameters of the model, or even rate optimal for parameters of
the diffusion coefficient.

Under certain regularity conditions, the Gaussian quasi-likelihood estimators investigated
by|Masuda!fit into the framework of approximate martingale estimating functions, the topic
of this paper. Approximate martingale estimating functions, which can be viewed as ap-
proximations to the score function, may be written on the form

1
ni,

n
G(0) = —— > 8(An, X, X1 36). (3.1.3)
i=1

For some constant k > 2, the R%-valued function g(t,y, x; 0) satisfies a conditional expecta-
tion condition of the form

Eo(g(An, Xpr, Xin 30) | Xp ) = AyRo(Ap, X ), (3.14)

with a remainder term on the right-hand side which can be controlled as necessary. Estima-
tors are essentially obtained as solutions to the estimating equation G,(¢) = 0. More precise
definitions of approximate martingale estimating functions and the corresponding estima-
tors are given in Section [3.2.3] Estimating functions of this type were also used by, e.g.
Bibby and Sgrensen| (1995)), Jacobsen| (2001}, [2002)), |Sgrensen| (2010) and [Uchidal (2004)
for continuous diffusionsE] To our knowledge, high-frequency asymptotics for the general
class of approximate martingale estimating functions have not previously been studied for
diffusions with jumps.

The observation scheme considered here matches that of |Sgrensen| (2010). For continu-
ous diffusions of the form (3.1.2) with c(x,z; @) = 0, Sgrensen| showed that under simple
conditions, approximate martingale estimating function-based estimators of the drift and
diffusion parameters @ and 8 are rate optimal and efficient. |Sgrensen| also argued that the
theory of approximate martingale estimating functions covers a number of other estimators
proposed in the literature on continuous diffusions. On the one hand, estimators which
are efficient under the present asymptotic scenario, e.g. those of [Florens-Zmirou| (1989),
Kessler| (1997) and [Yoshida (1992), and, on the other hand, a number of estimators which
perform well under other sampling schemes (see Sgrensen|(2010) for further references).

Based on their efficacy in the case of continuous diffusions, we believe that a thorough
investigation into the behaviour of general approximate martingale estimating functions
in the current setting is justified, and has the potential to contribute valuable information

2 Approximate martingale estimating functions were also applied in the setting of continuous diffusions in
ChapterE}
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to the field of estimation for diffusions with jumps. For example, rate optimality and ef-
ficiency conditions in the style of Sgrensen| (2010), but for diffusions with jumps, could
perhaps facilitate the construction of efficient approximate martingale estimating functions
in sub-models of (3.1.1). The results presented in this paper may be considered preliminary
findings on the matter, with much research yet to be done.

Initially, supposing the existence of a true parameter 6y, we provide the general Theo-
rem [3.3.2] which establishes existence and uniqueness properties, and asymptotic distri-
butions for consistent estimators of gy based on approximate martingale estimating func-
tions. In general terms, the theorem states that under suitable regularity assumptions on the
jump-diffusion model (3.1.1)) and on the chosen approximate martingale estimating func-
tion , there exists a consistent estimator 6, such that

it @, — 60) == N0, V(6p)). (3.1.5)

Nz(0, V) denotes the d-dimensional zero-mean Gaussian distribution with variance V, and
2, denotes convergence in distribution under the true probability measure. Furthermore,
V(8y) may be estimated consistently. For (exact) martingale estimating functions, in which
case the right-hand side of (3.1.4) vanishes, there are no additional requirements on the
speed at which A, goes to zero. For all other approximate martingale estimating functions
it is required that nA2~! — 0, with « determined by (3.1.4).

Adapting the model and estimating function considered by Masudal (2011)) to our frame-
work and assumptions, it is seen in Example [3.3.3] that the limit distribution in (3.1.3) re-
lates to the one obtained by Masuda (2011}, Theorem 3.4). Similarly, the limit distribution
is comparable to the one obtained by [Masudal (2013| Theorem 2.9).

Having established the general theorem, we pursue the question of rate optimality and ef-
ficiency within the sub-model (3.1.2). As approximate martingale estimating functions are
not a priori designed to discriminate observed increments with jumps from those without,
we expect such a distinguishing mechanism to be an inherent feature of the conditions for
rate optimality and efficiency, to the extent that it is necessary.

Preceded by some extra regularity assumptions not mentioned here, we state conditions
under which an approximate martingale estimating function yields rate optimal and effi-
cient estimators in three sub-models of (3.1.2). The first model is assumed to have only
an unknown, d-dimensional drift-jump parameter «, the second only an unknown, one-
dimensional diffusion parameter 3, and the third a two-dimensional drift-jump parameter
a and a one-dimensional diffusion parameter 8, both unknown. In order to obtain rate op-
timality of the estimator of § when using non-exact martingale estimating functions, it is

assumed that nA2*™ D 0.

In addition to the rate optimality and efficiency conditions obtained by [Sgrensen| (2010)
for diffusions without jumps, several new jump-related conditions appear. In particular, an
important observation is made in connection with the conditions for efficient estimation
of the drift-jump parameter @. In the limit A, — 0, when a full sample path of X is
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(hypothetically) observed, and all jump times and sizes may be identified by X; # X;_, the
following is required: In general terms, whenever g(0, X;, X;—; 0) is evaluated at a jump time
t, particular coordinate functions should behave like the score function of the distribution
of the jump. At all other times, these coordinate functions should behave like those of
an efficient estimating function for the drift parameter of the corresponding continuous
diffusion. In other words, not only should these coordinates of the estimating function be
able to discriminate, asymptotically, between pairs (y, x) = (X;, X;—) with X; # X;_ and
X; = X;_, there is essentially no freedom of choice regarding the coordinate functions in
the former case.

In connection with our rate optimality conditions for estimators of the diffusion parameter,
the following is observed as well. For models with certain types of finite activity jump
dynamics, creating an estimating function which is rate optimal for the diffusion parameter,
and which satisfies the remaining regularity assumptions we impose on the function, might
be quite challenging, and sometimes impossible. This stands in contrast to the situation
for continuous diffusions studied by |Sgrensen (2010ﬂ, where it is quite straightforward
to construct rate optimal estimating functions satisfying essentially the same regularity
assumptions as here.

Finally, as a suggestion for further research, we discuss how, in certain models, an approxi-
mate martingale estimating function satisfying the rate optimality and efficiency conditions
put forth might be constructed as a modification of the efficient contrast function of [Shimizu
and Yoshidal (2006)).

The general method of proof in this paper is inspired by that of |[Sgrensen| (2010). How-
ever, the presence of jumps complicates matters considerably, and creates a large variety of
additional, complex challenges to deal with.

The structure of the rest of this paper is as follows: Section[3.2]presents definitions, notation
and terminology used throughout the paper, as well as the main assumptions imposed on the
jump-diffusion and the approximate martingale estimating functions. Section [3.3] presents
the general theorem on approximate martingale estimating function-based estimators of
the parameter of the jump-diffusion model (3.1.1). Section [3.4]is devoted to the question
of rate optimality and efficiency of estimators of the drift-jump and diffusion parameters in
sub-models of the form (3.1.2)). In particular, our criteria for rate optimality and efficiency
are elaborated on. Section [3.5] contains main lemmas used to prove our theorems, the
proofs of these theorems, and the proofs of the main lemmas. Appendix [3.A]consists of a
considerable number of technical auxiliary results used in the proofs of these main lemmas,
most of them presented with a proof. Appendix summarises some important theorems
from the literature without proofs.

3As well as the situation for continuous diffusions studied in Chapterof this thesis.
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3.2 Preliminaries

Section [3.2.1] elaborates on, and serves to introduce some notation associated with the
jump-diffusion process and the observation scheme under consideration. In Section [3.2.2]
a notation and terminology regarding the concept of polynomial growth is established for
subsequent use. Section [3.2.3|contains formal definitions of approximate martingale esti-
mating functions and their corresponding estimators. Section [3.2.4]introduces the general
assumptions on the jump-diffusion processes (Assumption [3.2.5) and on the estimating
functions (Assumption [3.2.6). Finally, in Section notation pertaining to the (in-
finitesimal) generator of the diffusion process is established, and some useful technical
results expressed in terms of the generator are discussed.

For a moment, let p,q € N. In this paper, the following notation is used: M* denotes
transposition of a matrix (or vector) M, and ||M|| the Euclidean norm. For any R”-valued
function f,let f = (fi,..., f»)*, where fj denotes the j’th (real-valued) coordinate function
of f. For an R?-valued argument u, let d,, f; be the jk’th element of the p X g matrix
0uf, where 0,, f; denotes the (partial) derivative of f; with respect to u;. Furthermore,
let 2 = ( flz, cees fdz)*. For a p x g matrix-valued function F' = (F ) (with real-valued
coordinate functions), we define d,F = (0,F j), if u is real-valued, and F 2=(F 12])

3.2.1 Model and Observations

Let (Q, ) be a measurable space equipped with a filtration (¥;),>0 and a family of proba-
bility measures (Py)gc@. The d-dimensional parameter set ® is assumed to contain the true
parameter 8y. Assume also an (F;)>0-adapted standard Wiener process W = (W,);>0, and
an independent, time-homogeneous Poisson random measure N 9(dt, dz) on [0, o) xR, with
the intensity measure py given by ug(dt, dz) = vg(dz) dt. For all 6 € O, vy is a Lévy measure
on R, which satisfies that v({0}) = 0 and v4(R) < 0.

Consider the stochastic differential equation
dX; = a(X;; 0) dt + b(X;; 0) dW, + fC(Xt—,Z; 0) N°(dt,dz), Xo=U, (3.2.1)
R

where U is an y-measurable random variable, and independent of W and N?. It is assumed
that X; takes its values in an open (not necessarily bounded) interval X C R, and that the
drift, diffusion and jump coefficients, a,b : XX® — Rand ¢ : XXRX® — R respectively
are known, deterministic functions.

The assumption vg(R) < oo implies that the jumps of X have finite activity, i.e. that there
are (Py-almost surely) only finitely many jumps in any given finite time interval / C [0, o).
Consequently, the stochastic integral in (3.2.1)) is well-defined. Under Py, X; may be written
as

! ! !
X =Xp + f a(Xs;0)ds + f b(Xs;0)dW, + f fc(Xs_,z; 0) N%(ds, dz) .
0 0 0 JR
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From (3.2.1)) it is seen that in intervals with no jumps, X follows the dynamics of the
corresponding continuous diffusion with ¢(x, z;6) = 0.

Let (A,)nen be a sequence of strictly positive numbers such that
A,—0 and nA, 500 as n-—o oo,

with Ag = max{A, : n € N}. For each n € N, X is supposed to be sampled equidis-
tantly over the time-interval [0, nA,] at times ¢! = iA,, i = 0,1,...,n, yielding the ob-
servations X, X, . Xip). Define G, i = 1,2, ...,n, to be the o-algebra generated by
(th,th‘, ce ,X;Irt), and let G, = g,,,,,.

3.2.2 Polynomial Growth

Throughout this paper, in order to avoid cumbersome notation, C denotes a generic, strictly
positive, real-valued constant. Often, the notation C,, is used to emphasise that the constant
depends on some u, where u may be, e.g. a parameter-value 8 € ®, some number m € Ny,
a set K C O or a combination of these. It is important to note that, for example, in an
expression of the form C,(1 + |x|€v), the factor C, and the exponent C,, need not be equal.
C or C, often depend (implicitly) on, e.g. the unknown parameter 6y, the maximum time
step Ag and the dimension d of the parameter space ®, but never on the sample size n.

Definition 3.2.1 (Polynomial Growth). A (coordinate) function f : X> x ® — R is of
polynomial growth in x and y, if for each 6 € © there exist constants Cy > 0 such that

1f (7, x;0)] < Co(1 + |x]? + [y|?)

for x,y € X.

Choose &y > 0 and define (0, Ag),, = (0—&p, Ag +&p). Then, a function f : (0, Ag)g, X X% x
® — R is of polynomial growth in x and y, uniformly for ¢ € (0, Ag)s, and 6 in compact,
convex sets, if for each compact, convex set K C ©, there exist constants Cx > 0 such that

sup £ (6,3, x,0)] < Ck (1 + % + [y¥)
te(O,AO)EO ,0eK

for x,y € X.

Cg?ql, rs((0, Ag)gy XX 2x©) denotes the class of real-valued functions f(t, y, x, 6) which satisfy
that

(i) f and the mixed partial derivatives d; &, 8,9, f(1,y,x;6),i=0,...,p, j=0,....q,
k=0,...,r,1=0,...,sand m = 1,...,d, exist and are continuous on (0, Ag),, X
X?x0.

(i1) f and all the mixed partial derivatives from [(1)| are of polynomial growth in x and y,
uniformly for ¢ € (0, Ag),, and 6 in compact, convex sets.
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Similarly, the classes C2%%; ((0, Ag)ey X X X ©), CPA (X% X ©), C2% (X x ©) and C2*' (X)
are defined for functions of the form f(z, x;0), f(y,x;6), f(y;6) (or f(x;6)) and f(y) (or
f(x). 3

Definition 3.2.2 (Product-Polynomial Growth). For functions of the form f : XXRx® —
R, f(y,z;6) is defined to be of product-polynomial growth in y and z, uniformly for 6 in
compact, convex sets if for each of such sets K C 0, there exist constants Cg > 0 so that

sup |£(v,2,0)| < Ck (1 +[y1%) (1 + |2%)
6eK

forally € X and z € R.

CE:EOI (X X R x @) denotes the class of real-valued functions f(y, z; 8) which satisfy that

(i) f and the mixed partial derivatives c’); 8£k f60,z0),i =0,...,9, j =0,...,s, and
k=1,...,d,exist and are continuous on X X R x ©.

(i1) f and all the mixed partial derivatives from [(1)| are of product-polynomial growth in
y and z, uniformly for 6 in compact, convex sets. o

Note that in Definition [3.2.2] differentiability of f with respect to z is not required. For
functions not depending on ¢ (respectively, 6), the “uniformly for ¢’ (“uniformly for 6”)
parts of Definitions[3.2.1]and [3.2.2] become superfluous.

For the duration of this paper, R(¢,y, x;6) denotes a generic function defined on the set
(0, Ag)g, X X2 x @, which may be real-valued, R9-valued, or take values in the space of
d x d matrices with real entries. The coordinate functions of R(z, y, x; 8) are of polynomial
growth in x and y, uniformly for ¢ € (0, Ag),, and 6 in compact, convex sets. R(t,y, x, 0)
may depend (implicitly) on 8y. R(z, x; 8), R(y, x; 8) and R(¢, x) are defined correspondingly.
Finally, e.g. R(¢, x; 0) indicates that R(z, x; 6) also depends on A4 € ® in an unspecified way.
In particular, Ry(t, x, 8) = Ry(t, x).

3.2.3 Approximate Martingale Estimating Functions

Let Eg denote expectation under Py. In this paper, (approximate) martingale estimating
functions, along the lines of those defined by, e.g. [Sgrensen| (2012, Sections 1.3 & 1.5.3),
are defined as follows:

Definition 3.2.3. Let g(z,y, x; 6) be an R<-valued function defined on (0, Ap)gy X X 2% 0,
with (0, Ag)g, = (0 — &9, Ag + &p) for some gy > 0. Suppose that there exists some constant
k > 2, such that

Eo (8(An. Xu. Xp 16) | X ) = ASRo(An, X ) (32.2)
forallneN,i=1,...,nand 0 € ©. Then, the function

1
ni,

Gu(0) = —— > &(An, X1, X ) (323)
i=1
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is referred to as an approximate martingale estimating function. In particular, when (3.2.2)
is satisfied with Ry(z, x) = 0, (3.2.3) is referred to as a martingale estimating function. o

When not ambiguous, approximate martingale estimating functions may sometimes just be
referred to as estimating functions in the following. By the Markov property of X, it is seen
that when Ry(¢, x) = 0, (G,,,i)1<i<n defined by

1 i
Gni0) = —— D 8(An, X, X 36)
=1

nh, 4
n]_

is a zero-mean, R%-valued (Gn.i)1<i<n-martingale under Py for each n € N, thus giving rise
to the terminology in Definition [3.2.3] An approximate martingale estimating function is
essentially an approximation to the score function of the observations (X, X, ..., Xp),
conditional on X;:, which itself is a martingale.

A G,-estimator 0,, that is, an estimator based on the approximate martingale estimating
function G,(6), is essentially obtained as a solution to the estimating equation G,(6) = 0. A
more precise definition, based on|Jacod and Sgrensen| (2012], Definition 2.1) and |Sgrensen
(2012| Definition 1.57), is given in Definition [3.2.4]

Formally, an approximate martingale estimating function may be considered a function of
both 6 € ® and w € Q, while a G,-estimator may be considered a function of w. For the
purpose of the following definition, it is convenient to make this dependence explicit and
write G,(0, w) and 0,(w).

Definition 3.2.4. Let G,,(0, w) be an approximate martingale estimating function as defined
in Definition[3.2.3] Put ®, = ® U {co} and let

D, = {w € Q| G,(0, w) = 0 has at least one solution 6 € O}.

A G, -estimator 9,,(0)) is any G,-measurable function Q — @, which satisfies that for
Py, -almost all w, 8,(w) € ® and G,(8,(w), w) = 0 if w € D,,, and G (w) = o if w ¢ D,. ¢

For any invertible d X d matrix M, with real entries, which may depend on e.g. A,, G,(0)
and M, G,(0) yield identical estimators of 6. The estimating functions G,(0) and M,,G,(6)
are referred to as versions of each other. For any given estimating function, it is sufficient
that there exists a version of the function which satisfies the assumptions of this paper, in
order to draw conclusions about the resulting estimators.

3.2.4 Assumptions

In the following, — denotes convergence in probability. Unless otherwise mentioned, it
is assumed to be under Py, as n — oo.

Assumption 3.2.5. The parameter set © is a non-empty, open, not necessarily bounded
subset of RY for some d € N, which contains the true parameter 6y. The cadlag, (F;)-
adapted Markov process X = (X;)>0 solves a stochastic differential equation of the form
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(B-2.1), the coefficients of which satisfy that
a(y:6), b(y:60) € Co5(X x©) and c(y,z:60) € Ci2" (X xR x©).
The following holds for all 6 € ©:
(i) Forally € X, b*(y;0) > 0.
(ii) There exist real-valued constants Cy > 0 such that for all x,y € X and z € R,

la(x; ) — a(y; )| + |b(x; ) — b(y; )] + lc(x, 2;0) — c(v, 7 DI(1 + |21°) ™" < Colx -yl

(iii) There exist real-valued constants Cy > 0 such that
la(y; O)] + 1b(y; )l + le(y, 2 O)I(1 +121“) ™" < Co(1 + Iyl
forall x,y e Xand z e R.

(iv) Forallm € N,

sup Eg (IX,|") < o0.
t€[0,00)

(v) X is ergodic, i.e. there exists an invariant probability measure my such that for any
ng-integrable function f,

1 (7 P
Tf f(Xth—)ff(x)ﬂ'g(dx) (3.2.4)
0 X

under Pg as T — oo, Also, for allm € N,

f |x|" mg(dx) < o0
X

(vi) The Lévy measure vy has density q(z; 6) = £&(0)p(z; 0) with respect to a o-finite mea-
sure ¥, where p(z; 0) is a probability density with respect to V.

Finally, the following holds for the densities of the Lévy measures:

(vii) The functions 6 — 8gkq(z; 0), j=0,1,2, k=1,...,d, exist and are continuous, and
for each compact, convex set K C O, there exists a measurable function px : R —
[0, c0) with

f 2" @k (2) ¥(dz) < 0
R

for all m € Ny, such that for all z € R and 6 € K,

d d
9@ 0) + ) 100,901 + 15,4z 0)] < ¢k(2).
k=1 k=1
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o
Note that by Assumption forall@ € ® and m € N,
f |zI" vo(dz) < oo. (3.2.5)
R

Assumption implies that a(y; 6), b(y; 6) and c(y, z; 6) are Lipschitz continuous in
y. Under Assumption [3.2.5] there exist constants Cy > 0 such that

[ etz - etz 0P v < € [ (14+%) vt =3P < ol =P
R R

f *(y,2;0) v(dz) < Cy f (1+ 121) vo(dz) (1 + yl)> < Co(1 + 1)
R

R

for all x,y € X, from which it follows that conditions C1 and C2 of |Applebaum| (2009, pp.
365-366) are satisfied. Thus, by |Applebaum| (2009 Theorems 6.2.9 & 6.4.6), there exists
a unique, cadlag, (¥;)-adapted (strong) solution to under each Py, which is also a
Markov process. That is, X is well-defined.

By Assumption [3.2.5|[(iii)] for all 6 € @ there exist constants Cy > 0 such that

fRIC(y,Z;H)I vo(dz) < Co(1 +yl) fR(l +121“) ve(dz) < Co(1 + Iy,

which means that a(y; 6) given by
a(y; 0) = a(y; 0) + fR c(y, z;0) vo(dz)
is also of linear growth in y. Sometimes, under Py, it is convenient to write as
dX; = a(Xy; 0) dt + b(X;; 6) dW; + ngc(X,_,z; 0) (N? — up)(dt,dz), Xo=U (3.2.6)

and X; as

t t !
Xt:XO+fZz(XS;H)ds+fb(Xs;6)dWS+f fc(XS_,z;Q)(Ng—,ug)(ds,dz)‘
0 0 0 JR
(3.2.7)

Assumption [3.2.5]is similar to assumptions of e.g. Masudal (2013), [Ogihara and Yoshida
(2011)), and |[Shimizu and Yoshidal (2006). E.g. [Masudal (2007, [2008]) gives conditions that
ensure the existence of an ergodic theorem of the form (3.2.4), and under which X has
bounded moments as in Assumption [3.2.5]

Assumption 3.2.6. For some interval (0, Ag)s, = (0—&o, Ao+&o) with gy > 0, the Re-valued
Sfunction g(t,y, x; 0) satisfies that for j=1,...,d,

gi(t.y,x:0) € C1 |, ((0, Ag)e, X X? X ©) ,

and defines an approximate martingale estimating function G,(0) as prescribed by Defini-
tion[3.2.3] In particular,
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(i) for some constant k > 2, and foralln e N, i=1,...,nand 6 € O,

Eg (g(An,ng,Xzy_] :0) | Xz;l_,) = AyRo(Ap, Xin ) -

Also, the following is true for all § € ©O:
(ii) The expansion
g(A,y,x:0) = g(0,y, x;0) + AgV(y, x;0) + A’R(A, y, x; 0)

1 1 1
holds for A € (0,A¢),, and x,y € X, where gV = (gg ). .,g;))*, and gi. )(y, x;0)
denotes the 1st partial derivative of g(t,y, x; 0) with respect to t, evaluated in t = 0.

<&

The assumptions of polynomial growth, together with the assumptions on the moments of
e.g. X;, vy and my, serve to simplify the exposition and proofs in this paper, and could
be relaxed. Likewise, asides from ensuring (3.2.5)), the purpose of Assumption [3.2.3]
is to provide sufficient (but not necessary) conditions for interchanging integration and
differentiation in Lemma [3.A.2]

3.2.5 The Infinitesimal Generator

Definition 3.2.7. Suppose that Assumption [3.2.5|holds. Let
F(t.y,x:0) € Ch% (0, Ag)g, X X* X ©)
and define, for A € O, the (infinitesimal) generator L) (through its action on f) by

-E/lf(t’ Vs X5 9)
= a(y: DAy f(1,y, x:60) + 36°(v: DI, f (1, 3, x:6) (3.2.8)

+ fR (ft,y+c(y,z ), x,0) = f(t,y,x;0) va(dz) .
o

Often, the notation £, f(z,y, x;0) = L (f(t;0))(y, x) is used. Since v (R) < oo, Lemma
.A.T]yields constants C, > O such that

f F(ty + (3,20, x:0) = f(t,3, 5 0)| va(dz) < Cap (1 + 3 + )
R

for € (0,Ap)s), X,y € X and 6 € @, implying that the integral in (3.2.8) is well-defined.
In essence, Lemmas [3.A.1) and [3.A.2] of Appendix [3.A.1] verify that integrals with respect
to the Lévy measure inherit polynomial growth properties of the integrand. This is often

used (implicitly) in the current paper, in particular in connection with applications of the
infinitesimal generator.
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The operator L, always acting on the variable y of the function it is applied to, is defined
correspondingly for e.g. functions f(y) € CgOI(X ) and f(y,x;0) € Cgoé o(X? X ©), and
functions f(t,y, x, Zx; 6), for which

(.. x:0) > f(t.y,x.2:0) € ChY ) (0, Ag)s, X X* X ©)

for y-almost all zx = (21, ...,zx)* € RX. In the latter case, the notation £, ft,y, x,2;;0) =

LA(f(t, 21 0))(y, x) is used.

Whenever the expression is well-defined, *’:31 f is to be understood as £,(L,f), and simi-
larly L% f = L(LY f) for k € Nwith L9f = f.If f = (fi,..., fo)* is R%-valued and the
generator is well-defined for each coordinate function, L, f = (L1f1, ..., Lifs)*. Further-
more, if F is a d X d matrix-valued function, £, F, provided that it is well-defined, denotes
the d X d matrix with ij’th element £, F;;. The infinitesimal generator notation is useful for
expressing the following Lemma[3.2.8]

Lemma 3.2.8. Suppose that Assumption [3.2.5| holds, and that for some k € N,
£, x:0) € Ch, 1) 0,0 (X2 X ©).
Suppose also that

a(y:0) . b(y:0) € Chy (X x©) and  c(y,z:0) € Cf (X xR x ©).

Then, forO <t <t+A<t+Agand 1€ 0O,
Ea (f(Xe+n, X150) | Xi)

k Ai ) A Uy U
=Zi—,L3f(Xt,X,;H)+fof0 fo E (L5 f KXo Xe:0) | X1) dutgr -+~ duy
i=0

and, furthermore,

A Uy U
f f f E, (‘£§+1f(Xz+uk+l’Xt;9) | Xt) dugsr - -duy = Ak+1R/1(A>Xt;9)’
0 0 0

The first part of Lemma [3.2.8]is effectively a jump-diffusion extension of the expression
given by e.g. |[Florens-Zmirou| (1989, Lemma 1) for continuous diffusions. Formula (13)
of Masudal (2011) demonstrates a similar expansion for stochastic processes with jumps
within his setup. A proof of Lemma[3.2.8]is given in Appendix [3.A.4]

Aside from its application in technial proofs, Lemma [3.2.8|is, together with Assumption

key to proving Lemma [3.2.9] which reveals two important properties of the ap-
proximate martingale estimating functions. Lemma[3.2.9]is very similar to Lemma 2.3 of

Sgrensen| (2010), to which we refer for further details on the proof.
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Lemma 3.2.9. Suppose that Assumptions and hold. Then, for all x € X and
00,

20,x,x;0) =0 and g(l)(x, x;0) = —Ly(2(0,0) (x, x).
o

In concrete examples, Lemma [3.2.8] is also useful for verifying Assumption a
fundamental property of approximate martingale estimating functions, and, conversely, it
can be used to create such estimating functions as well.

Remark 3.2.10. Note, for use in the following, that under Assumptions [3.2.5|and[3.2.6

L(g(0,0))(x, x)
= a(x; )0,g(0, x, x; 6) + %bz(x; ﬂ)(’)ﬁg(o, x,x;0)

+fg(O,x+c(x,z;/l),x;H)v/l(dz)
R

L(098(0, 0))(x, x)
= a(x; )9y068(0, x, x; 0) + $b*(x; 13;068(0, x, x; 6)

+ f 99g(0, x + c(x,7; 1), x; 0) v (dz)
R

09 Lo(8(0,0)(x, x)
= Lo(058(0,0))(x, ) + 8,8(0, x, x; 0)dga(x; ) + 3078(0, x, x;0)dgb* (x; 6)

+ f 0,8(0, x + c(x, z; 0), x; 6)dgc(x, z; 0) ve(dz)
R
+ f 20, x + c(x, z; 0), x; )0gq(z; 0) V(dz)
R
L)(gg*(0,0))(x, x)

= bz(x; )0 ,gayg*(O, X, x;,0) + fgg*(O, x+c(x,z;4), x;0) v(dz)
R

forall x € X and 4,6 € O, by (3.2.8)) and Lemmas[3.2.9|and [3.A.2] o

3.3 General Existence, Uniqueness & Convergence Theorem

This section contains Theorem [3.3.2] the general theorem on the properties of consistent
approximate martingale estimating function-based estimators of 6 in the model (3.2.1).
Assumption [3.3.1]is the final assumption needed for the theorem. The notation A, B and
C corresponds to the notation of Lemma [3.5.1] and is also used in Theorem [3.3.2] and its
proof.

Assumption 3.3.1. The following holds for all 6 € ©.
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Chapter 3. Diftusions With Jumps

(i) The R?-vector

AL 0) = fx (La(@(0: D), x) — La(8(0: D)(x, 2)) 70(dl)

is non-zero whenever A # 6.

(ii) The d x d matrix

B(6:0) = fx (Lo(068(0; 0))(x, x) — 09 L(8(0; 0))(x, X)) mo(dx)

is non-singular.

(iii) The symmetric d X d matrix

C(0;0) = fX Lo(gg™(0,6))(x, x) mald)

is positive definite.
o

. e e e . D .
In the following, convergence in distribution, denoted —, is assumed to be under the true
probability measure Pg, as n — oo, unless otherwise mentioned.

Theorem 3.3.2. Suppose that Assumptions [3.2.5] [3.2.6| and |3.3.1| hold. If Assumption
holds with Ry(t,x) # 0, i.e. if G,(0) is not a martingale estimating function,
suppose also that nA>~' — 0 as n — co. Then,

(i) there exists a consistent Gy-estimator 6,. Choose any compact, convex set K C ©
with 6y € int K, where int K denotes the interior of K. Then, 9,, is eventually unique
in K, in the sense that for any G,-estimator 6, with Pgo(én €K)—> lasn — oo, it
holds that Pgo(én #0,) > 0asn — oo.

(ii) for any consistent G,-estimator 6,, it holds that
N D
VAL (6, — o) — Na(0,V(6))),
where
V(o) = B(6o: 60)~' C(6o: 00)(B(8o: 60)*)™!

is positive definite, and
B(6; 60) = fX (L6 (368(0; 60))(x, x) = BgLa((0; O)(X, g, ) Tay(dx)

(3.3.1)
(0 00) = fX Lan(88* (0, 00))(x, ) 7 ()

76



3.3. General Existence, Uniqueness & Convergence Theorem

(iii) for any consistent G,-estimator 0,

n _1 n
V= n, (Z og(An, Xpr, X : é,»] (Z 8¢ (An. Xpr. Xp 10
i=1 i=1

n -1
X [Z 008™ (A, X, Xor s 9;1)]

i=1

is a consistent estimator of V(6p), so
S5-1/2,7 D
nA, V, (0, — 60) — Ny(0,1y),

where /‘7,1/ % is the unique, positive semidefinite square root of Vn and 1; is the d X d
identity matrix.

<&

While the limit distribution in Theorem depends on the unknown parameter 6,
Theorem yields a more practically applicable result. The proof of Theorem [3.3.2]
is given in Section[3.5.2]

The stochastic differential equation and the estimating function used in the follow-
ing Example [3.3.3| correspond to the ones considered by Masudal (2011)), but incorporated
into the fully parametric framework of this paper. The asymptotic result (3.3.4) is in ac-
cordance with [Masudal (2011}, Theorem 3.4). Similarly, Theorem is comparable
to Masudal (2013, Theorem 2.9) (in the case of univariate diffusions), when the Gaussian
quasi-likelihood estimator of Masudalis interpreted as an approximate martingale estimat-
ing function.

Example 3.3.3. Let the stochastic differential equation
dX, = a(Xy; @) dt + b(X;; B)o dW, + f b(X,—;8)z (N — p)(dt, dz) (3.3.2)
R

of the form be given. The drift parameter @, and the diffusion-jump parameter S are
the unknown parameters to be estimated. For simplicity, let@ € A C Rand 8 € B C R so
that d = 2 (the results generalise to d € N as well). Put = (¢,8)* and ® = A X B, and
suppose that Assumption holds. Furthermore, suppose that o> + y» = 1, where y;
denotes the kth moment of the Lévy measure v (which does not depend on f3).

By Lemma[3.2.8]

Eo(Xiia | X0) = X + Aa(X;: @) + ARo(A, X;)
Eo((Xisa — X0)* | X)) = AD* (X3 B) + ARy(A, X;)
for0e ®and 0 <r<t+A <t+ Ay, so, under suitable conditions on the functions m(x; 6)
and my(x; 0),

my(x; 0) (y — x — ta(x; a))

my(x; 0) ((y - x - ta(x; ))? - th(x;,B)) (3.3.3)

g(t,y, x;0) =
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Chapter 3. Diftusions With Jumps

satisfies Assumption [3.2.6| with x = 2.

Suppose also that Assumption holds, and that nA} — 0 as n — oco. Then, by The-
orem (i), for any consistent G ,-estimator 6, based on the approximate martingale
estimating function G,(6) given by (3.3.3),

i, By = 60) 2 N (0, V() (3.3.4)

where V(6p) = B(6y: 60)~"C(6y; 60)(B(6o; 60)*)~! with

o [ [mi(xs 60)daalx; ao) 0
B(6o; 60) = L ( 0 o (x: 60055 (X;,Bo)) g, (dx)

and

Cl60:60) = fX ( mi(x; 00)b*(x;B0)  mima(x; 00)b° (x; 6)y3

- 2 g, (dx) .
mamy (x; 60005 (x; 6oYys  m3(x; 60)b* (x; 6p)ya ) %

3.4 Rate Optimality and Efficiency

In this section, we approach the challenge of finding rate optimal and efficient estimators
in sub-models of (3.2.1). In Section [3.4.1] we present a definition of rate optimality and
efficiency. In Section [3.4.2] we propose and motive a conjecture on when a consistent esti-
mator in the type of sub-model under consideration is rate optimal and efficient. In Sections
[3.4.3]and [3.4.4] conditions are given on the approximate martingale estimating functions,
which ensure rate optimality and efficiency of G,-estimators in three specific types of sub-
models. Section [3.4.5] contains a discussion of the challenge of finding rate optimal and
efficient approximate martingale estimating functions, and includes suggestions for future
research.

Suppose in the following that A C R and B C R, and consider the stochastic differential
equation

dX, = a(X,;; @) dt + b(X;; B) dW, + f (X, z;@)N*(dt,dz), Xo = U, (3.4.1)
R

for @ € A and B € B. The parameters a and § are referred to as the drift-jump and diffusion
parameters respectively. The Poisson random measure N(dt, dz) has intensity p,(dt, dz) =
ve(dz) dt, and v, has density g(z; @) = &(@)p(z; @) with respect to a o-finite measure 7,
where p(z; @) is a probability density. Let 6* = (a*,8*) and ® = A X B. For the sake of
simplicity, the following assumption is introduced.

Assumption 3.4.1. Let ¢, ,(z) = c(x,z;@). For all x € X and 6 € O, one of the two
following cases|(a) or|(D)|is applicable:
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3.4. Rate Optimality and Efficiency

(a) The dominating measure V is Lebesgue measure. The set
W(x) = cxo(R) = {w € R | there exists z € R with ¢, 4(2) = w}

is open and does not depend on a. The mapping z v cy4(2) is bijective with a

-1

continuously differentiable inverse w ¢,

(w). In this case, let

o(x, wi @) = g(cr W) @)Bwcr W), we W(x)

be the transformation of the Lévy density by z — ¢y q(z), and let i, denote Lebesgue
measure on W(x).

(b) The dominating measure v is the counting measure on an at most countable set Q C
R, and cyo(z) = ¢x(z) for all z € Q. In this case, put

W(x) = c(Q) = {w € R | there exists z € Q with c(z) = w)

and
plx, wi @) = Z 9z ),
zecs! (bwh)

and let 1y denote the counting measure on “W(x).

In both cases, it is assumed that the interchange of differentiation and integration

9o ( f 8(0, x + w, x; O)p(x, w; @) nx(dW))
W(x)
= f 99(8(0, x + w, x; )p(x, w; @)) mx(dw)
W(x)

is allowed for all x € X. o

3.4.1 Definitions and Local Asymptotic Normality

When drawing inference on parameters, it is obviously of interest to use the best avail-
able estimator. What “best” means, however, is subject to interpretation. For example,
estimators deemed to be optimal by theoretical considerations might be computationally
infeasible in practice. Nonetheless, here, the optimality of the estimators in question is
considered purely from a mathematical perspective. Their practical feasibility lies outside
the domain of this paper.

Let #7 denote a consistent estimator of the d-dimensional parameter 8y, which is based
on observations of X sampled according to some sampling scheme depending on 7, with
T — co. (In this paper, observations (X,g,X,»lz, ..., X;n) at each stage T = n, with tl" =iA,,
A, — 0and nA, — oo as n — oo, unless otherwise mentioned.) We suggest the following
definition of rate optimality and efficiency.

79



Chapter 3. Diftusions With Jumps

Definition 3.4.2. Consider the expression
51(br —60) > Z (3.4.2)

as T — oo. Here 67 denotes a dxd diagonal matrix with strictly positive entries (67);; — o0
for j=1,...,d, and Z is a zero-mean d-dimensional random vector, with positive definite
covariance matrix V(6p). To the extent that is it possible to derive an asymptotic result of
this type for 87, it is preferred that

(1) the rate of convergence, 7, is as fast as possible. If a fastest possible rate do 7 has
been shown to exist for X and the sampling scheme considered, and (3.4.2) holds
with (67);i/(00,r)jj = O(1) as T — oo for j=1,...,d, the estimator 07 is said to be
rate optimal.

(ii) the asymptotic variance V(6p) is as small as possible. Suppose that 7 is rate optimal
for a specific sampling scheme, and that a smallest possible asymptotic covariance
matrix Vp(6p) has been established in the setup in question, in the sense of partial
ordering of positive semidefinite matrices. Then 67 is said to be efficient if
holds with (67 = 6p,7 and) V(6y) = Vo(6p).

<&

Let Gr be the o-algebra generated by the observations up to stage 7', and let Pg denote the
restriction of Py to Gr. Define the likelihood ratios Qr(4;6) = log(dIP’f /cﬂP’g), which are
supposed to exist for all 7', and let 5p.7 be a sequence of invertible, diagonal, d X d matrices
with each entry of 66’1T goingtoQas T — oo.

Definition 3.4.3. The model (Q, 7, (Py)sco) for X is said to be locally asymptotically nor-
mal (LAN) at 8y € O with rate 6or and asymptotic Fisher information I(6p) (under the
specified sampling scheme), if the following local asymptotic normality property holds.
For all u € R?,

7)
Or (60 + 6y yus 60) — u*S7(60) + su* T(Bo)u — 0
as T — oo, for some non-random, positive definite d X d matrix 7(6p) , and a sequence

S 7(6p) of d-dimensional, Gr-measurable random vectors with S 7(6) g N0, 7(6y)) as

T — co. o

For more about LAN, see e.g. |van der Vaart| (2002), who gives a structured overview of
Lucien Le Cam’s contributions to theoretical statistics (with references in|Le Cam|(2002)),
orJacod|(2010); |[Le Cam and Yang|(2000).

It is seen from the theorem of Hajek| (1970), and by [Ibragimov and Has minskii| (1981,
pp. 152-153, see also Theorem 9.1), that if the statistical model for X satisfies the lo-
cal asymptotic normality property under a specified sampling scheme, with rate 6o r and
asymptotic Fisher information 7 (6), then Or is efficient in the sense of Deﬁnition
if holds with 67 = o7 and V(éy) = Z(6p)~". Thus, Definition [3.4.2]is in accor-
dance with the usual notion of (rate optimality and) efficiency within the framework of lo-
cal asymptotic normality, see e.g. Jacod, (2010, Section 3.1) or |Ibragimov and Has’minskii
(1981}, Definition 11.1).
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3.4.2 Conjecture on Rate Optimality and Efficiency

In this section, we first propose our conjecture on rate optimality and efficiency within
models of the form (3.4.1)). Subsequently, we motivate the conjecture using relevant results
from the statistical literature.

Conjecture 3.4.4. Let X be ergodic, and the unique, strong, cadlag solution to the stochas-
tic differential equation . Let 0, with 0% = (&*, ) denote a consistent estimator of
o based on discrete observations of X, sampled at times t = iA,, with A, — 0 and
nA, — oo asn — oo. Under suitable regularity conditions, and under Assumption [3.4.1)
0, is (rate optimal and) efficient if

( W’lAn(a’n - o)
V(B — Bo)

where Vo (6y) is the (well-defined) inverse of

}gM@%%»

11(6p) 0
1(0y) = ,
“)(0 b%J
with
T1(60) = f (aaa(x;azo)*é‘aa(x;ao)Jr f Batp(x, w; @) * Batp(x, W3 @o) i dw)) -
b*(x; Bo) Wx) @(x, w; ap)
1 b (x; Bo)* Opb%(x;

I5(6p) = 5 f;{ pb" (x 50())6‘;)) (x3 o) g, (dX) .

<&

The rest of this section contains some very short summaries of results from the literature,
which are used to motivate Conjecture [3.4.4] It is important to note the following limita-
tions, which are imposed in order to keep the discussion as concise as possible:

First, the results quoted from the literature are often presented in a much less general ver-
sion than what was actually proven in the referenced papers. Results for processes which
may be, for example, multivariate, not necessarily ergodic and/or which are permitted to
have jumps of infinite activity, are all tailored to fit the more simple framework of our
conjecture.

Secondly, no further regularity assumptions are stated in detail. It is understood that each
of the quoted results holds under technical conditions stated in its article of origin, and that
our conjecture is an informal extrapolation on the basis of these findings.

Let X7 denote continuous-time observations of the full sample path of X over the interval
[0,T] for T > 0, and let X,, denote discrete observations (th, X,rll, ..., Xpn) of X sampled as
described in the conjecture.

In the case of continuous diffusions, i.e. when c(x, z; @) = 0, there exist quite general local
asymptotic normality results for the scheme X,.. It was shown by |Gobet| (2002, Theorem
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4.1) that the local asymptotic normality property is satisfied with rate nA,, for a, n for
Bo and asymptotic Fisher information

00 = (I 0 0 ) ,

0 15(6p)

where

11(60) = fx Oqa(x; ap)*dpalx; ap) oy ()

b*(x; Bo)
_ 1 [ 3pb%(x:80)* 3pb* (x; Bo)
I5(80) = 3 j; (e Bo) g, (dx) .

Serensen| (1991)) developed likelihood methods with the purpose of drawing X7 -based in-
ference on the drift-jump parameter @ under the assumption that b(x;8) = b(x), i.e. that
Bo is knownﬂ In case of Assumption it is seen from formulas (3.4), (3.6) and
Corollary 3.3 of Sgrensen| (1991)) that the maximum likelihood estimators & satisfy that

VT (@7 - @) —> Na(0, Z(ap) ™)

as T — oo, where

f doa(x; ag)* 0palx; ap) f Ooap(x, W; 0)* 0gp(x, W; )
I(ag) = +
b*(x) W(x) o(x, w; ap)

dw) g, (dx) .
(3.4.3)
In the article of Shimizu and Yoshida| (2006), a contrast-type estimator @n was derived based

on X,. In case |(a)] of Assumption , it is seen from their Theorem 2.1 that if nA2 — oo,
then

(M(&n - ao>) 25 N0, 260",

\/ﬁ(ﬁn _ﬁO)
where
11(6p) 0
I1(6y) =
(60) ( 0 f2(90)]
with
B doa(x; ap)* dpa(x; ap) Oap(x, w; @) * 0gp(x, w3 )
it = f ( b(x; Bo) " fwm p(x, w; o) dw) ()
3.4.4)
1 b2 (x; Bo)* b (x;
15(6p) = Ef b~ (x ZO()X";)) (x3/o) 7o, (dx) .

#Under this sampling scheme, for all T > 0, P} and P?, are singular for 8 # 8, making likelihood inference
impossible.
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Conjecture [3.4.4]is motivated by the following: Suppose case [(a)] of Assumption[3.4.1] By
Shimizu and Yoshida (2006) and |Sgrensenl (1991}, it is possible to estimate the drift-jump
parameter « on the basis of )?'n, at the same rate and with the same asymptotic variance
as when using maximum likelihood estimation to estimate the parameter using X7. In our
opinion, this maximum likelihood estimator is likely to make optimal use of the information
contained in each continuously-observed sample path, so no estimators based on 3(\,1 are
expected to be able to perform better asymptotically. An argument along these lines also
led IShimizu and Yoshidal to conclude that their contrast function is efficient for the drift-
jump parameter.

Furthermore, by Shimizu and Yoshidal (2006)) and |Gobet| (2002), using fn, it is possible to
estimate the diffusion parameter 8 at the same rate and with the same asymptotic variance
as when estimating the diffusion parameter efficiently in the corresponding model without
jumps. It is our belief that estimation of the diffusion parameter in the latter model should
be easier, why estimators obtained for the jump-diffusion model are not expected to be able
to perform better asymptotically than efficient estimators pertaining to the corresponding
continuous model.

Assume as well, for a moment, that c(x,z;@) = c(x,z) and g(z; @) = g(z). Then (3.4.4)
reduces to

_ [ Oaa(x; ap)*daalx; ap)
Il (00) - L bz(x;ﬁ()) ﬂ-@o(dx) ’

as does , but with b(x; 8) = b(x). Consequently, by the result of|Shimizu and Yoshida
(2006), it is possible to estimate the drift parameter « on the basis of 5(\,1, with the same rate
and asymptotic variance as in the two following cases: When using maximum likelihood
estimation for observations X7, assuming that there are no unknown diffusion parameters
(Sgrensenl [1991)), and when estimating the drift parameter efficiently in the corresponding
model without jumps, also using observations of the type X, (Gobet, 2002). As in the
previous situations, there is no reason to believe that this result can be improved upon in
the presence of jumps.

There also exist several local asymptotic normality results in the literature, which are useful
to include in the discussion. Suppose, still, that case [(a) of Assumption[3.4.T]is applicable,
and that

dX; = a(x;a)dt + b(X,) dW, + fZN“(dt, dz)
R

with v, (dz) = q(z; @) dz. For this model, when nA% — 0 as n — oo, Becheri et al.| (2014,
Propositions 2.1 & 3.1) established the local asymptotic normality property for X with rate
VnA, for ap and asymptotic Fisher information

B 0aa(x; @p)* 0qa(x; ap) 049(z; @0)* 02q(z2; o)
floo) = f ( b2(x) ’ fR q(z; @)

within the framework of (and in accordance with) our Conjecture [3.4.4/P|

3The matrix in Assumption 5 of [Becheri et al.| (2014) may be rewritten to yield (3.4.5).

dz) Tao(dx)  (3.4.5)
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Suppose now that either case [(a) or [(b)] of Assumption [3.4.T]applies. In the model
dX; = a(x; @) dt + b(X,) dW; + fc(X,_, Z)N(dt,dz),
R

with a one-dimensional drift parameter a, Kohatsu-Higa et al.| (2015 Theorem 2.2) showed
that X is locally asymptotically normal with rate vnA, for ag and asymptotic Fisher infor-
mation

[ daalx; ap)*
I(QO)_ﬂbz—mﬂao(dx)’

as conjectured above.

Finally, Kohatsu-Higa et al.| (2014) considered the model
dX, = (o - y)dt + BdW, + f < N(dt, d2)
R

with v,(dz) = yei(dz), where & is the degenerate probability measure with point mass in
1, and the unknown parameter 6* = (a,7, /) is three-dimensional. This is an example of
case[(b)|of Assumption[3.4.1] They showed that the model is locally asymptotically normal
with rate VnA, for (ao,v0)*, Vn for By and asymptotic Fisher information

| 1 -1 0
I(00) = — -1 (o +Bo)/yo 0].
Forl o 0 2

This result is also in accordance with Conjecture [3.4.4]

Further extrapolation on the above leads us to believe that our conjecture holds, under
suitable regularity conditions, in each of the two separate cases described in Assumption
3.4.1]

Remark 3.4.5. For use in the following, see that under Assumptions[3.2.3] [3.2.6]and[3.4.1]
using Remark [3.2.10] (3.3.1)) may be rewritten as

B(6o; 6o)

=— fx ((9yg(0, x, x; 6p)0ga(x; ap) + %aig(O, X, X; 60)0gb* (x; ,80)) g, (dx)

- ff 8(0, x + w, x; 00)0pp(x, w; ap) nx(dw) 7, (dx) ,
X JW(x)

and
C(8o; 6p)

= fx b*(x; B0)dyg0yg* (0, x, x; 60) 7q, (dx)

+ff 287 (0, x + w, x; 6o)g(x, w; ap) 1, (dw) 7tg,(dx) .
X JW(x)
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3.4.3 General Drift-Jump Parameter

In this section, a submodel of (3.4.1)) with (only) a d-dimensional drift-jump parameter «
is considered, that is,

dX; = a(Xy; @) dt + b(X;) dW; + fc(X,_,z; a)N(dt,dz), Xo=U, (3.4.6)
R

with @ € A, where ® = A is a non-empty, open subset of R?. According to Conjecture

[3.4.4] Theorem [3.3.2] already yields rate optimal estimators of the parameter. In order to

ensure efficiency, the following (sufficient) condition is imposed.

Condition 3.4.6 (For use in conjunction with the notation of Assumption[3.4.1). For each
a € A, there exists an invertible d X d matrix K, such that for all x € X,
Oga(x; a)* Oop(x, w; @)*

and g0, x+w,x;a) =K,

0,20, x, x; ) = K,
»8(0, %, x;) b2(x) o(x, wia)

for ny-almost all w € ‘W(x). o

Using Remark [3.4.5] Corollary follows easily.

Corollary 3.4.7. Suppose that the assumptions of Theorem [3.3.2] as well as Assumption
and Condition[3.4.6lhold, and that more specifically, X solves a stochastic differential
equation of the form (3.4.6). Then, any consistent G,-estimator &, is efficient. o

The first equation in Condition[3.4.6|corresponds to the condition given by [Sgrensen| (2010,
Condition 1.2) for efficiency of drift parameter-estimators in the case of continuous diffu-
sions.

The second equation marks the introduction of a new type of jump-related condition on
the function g(¢,y, x; @), not seen in the paper of |Sgrensen, namely conditions on the off-
diagonal y # x when ¢t = 0. Hypothetically, in the limit A, — 0, the full sample path of
X is observed, and whenever relevant, g(0, y, x; @) and its derivatives may be thought of as
being evaluated in y = X; and x = X;_. For continuous diffusions, X, = X,_ for all ¢, in
which case it seems plausible that no conditions are needed for y # x in order to obtain,
e.g. efficiency. For jump-diffusions, however, X; # X, whenever ¢ is a jump time (while
X; = X;- at all other times), so off-diagonal conditions are not surprising.

The essence of Condition [3.4.6]is that in order to estimate « efficiently, the following must
be taken into consideration. Very loosely speaking, in the limit A, — 0, when applied to
“continuous parts” of the data, the estimating function should behave like an efficient ap-
proximate martingale estimating function for continuous diffusions, whereas when applied
to the jumps, the estimating function must correspond to the score function of the jump. In
other words, it is not only necessary to be able to distinguish between the continuous and
discontinuous parts of the data asymptotically, but a very specific estimating function must
be used for the jump-part.

When differentiated with respect to the parameter, thus yielding a score function approxi-
mation comparable to our estimating functions, the efficient contrast function proposed by
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Shimizu and Yoshidal (2006) satisfies the second equation in Condition (for mg,-a.a.
x), although it does not satisfy, e.g. the differentiability assumptions of this paper. (See
Section [3.4.5]for further comments on this topic.)

3.4.4 One-Dimensional Diffusion Parameter

In this section, two sub-models of (3.4.1)) are considered, both with a one-dimensional dif-
fusion parameter. As a supplement to Assumptions [3.2.5| and [3.2.6] Assumption [3.4.§]is
introduced, effectively strengthening the former assumptions in order to obtain rate opti-
mality of estimators of the diffusion parameter. Although only utilised with d; = 0,2 and
d, = 1 in this section, the assumption is formulated for more general d; and d>, for use in
connection with the auxiliary results in Appendix [3.A]

Assumption 3.4.8. The parameter set ® = A X B is a non-empty subset of R%, where A
and B are open subsets of R and R® respectively, with d» > 1 and d = dy + d». Let
a € A and B € B with 0* = (a*,B*). The stochastic process X = (X;);s0 solves a stochastic
differential equation of the form (3.4.1), the coefficients of which satisfy that

a(y:a) €CY (X xA), b)) eCiy(XxB) and c(y.za) e ClL" (X xR XA).
The function g(t,y, x; 6), with go = (81,...,84,)* and gg = (84,+1, - .., 8a)*, satisfies that
2j(t,y,:0) € Ch% | (0, Ag)ey X X* X ©)
for j=1,...,d, and allows the expansion
8(A,y,x,0) = g(0,y, x;:0) + AgV(y, x;0) + 1A% P (y, x;0) + A’R(A, , x; 6)

(li), cees gg))*, and g;i)(y, x; 0) is the ith partial derivative of g;(t,y, x; 0) with

respect to t, evaluated int = 0. o

where g = (g

For notational convenience in connection with off-diagonal conditions, Defintion [3.4.9]is
made use of as well.

Definition 3.4.9. Define, for m € N, z,, = (z1,...,2,)* € R™ and the functions 1, :
XXR"xA — Xby

T (Vs Zims @) = Tm=1(Y + ¢V, Zm @), -1 @)
where zg = () and 7o(y, Zo; @) =y, so that, e.g.

T Z15@) =y + ¢y, 215 @)

Ty, 2;a) =y +c(y, ;) + c(y + c(y, 22; @), 215 @) .
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Without Drift-Jump Parameter
In this section, a special case of (3.4.1) with d; = 0 and d = d» = 1 is considered, that is, X

solves the stochastic differential equation given by

dX, = a(X,)dt + b(X,; ) AW, + f (X, NG, d2), Xo=U,
R

for § € B € R. Condition [3.4.10]is the final condition needed in Theorem [3.4.11] The
theorem establishes (sufficient) conditions under which the consistent G,-estimators ﬁn,
originally discussed in Theorem [3.3.2] are rate optimal in a setup with no drift-jump pa-
rameter, and the asymptotic variances can be estimated consistently.

Condition 3.4.10 (For use with Assumption [3.4.8). Suppose that for all B € B,

80, Ti(x,2zx), x;8) =0, k=12
0,800, e(x,z¢), x;8) =0, k=0,1

for all x € X, and v-almost all z;, € RX, with 1i(x, zx) defined in Deﬁnition o

Theorem 3.4.11. Suppose that the assumptions of Theorem as well as Assumption
and Condition hold (with dy = 0 and dy = 1). If Assumption holds

with Ry(t,x) £ 0, i.e. if G,(0) is not a martingale estimating function, suppose also that

A<D 5 0asn — oo, Let

B(Bo: o) = - fX 1050 (x, Bo)025 0, x. x3 o) 75 ().

D(B;B) = fx 16%(x:)878(0, x, x: 8)* mp(dx) ,
and suppose that D(B;8) > 0 for all B € B. Then, for any consistent G ,-estimator 3,

V(B — Bo) —> N(O, V(Bo) (3.4.7)

where V(By) = B(ﬁo;ﬁo)_zD(ﬂo;ﬂo) > 0. Furthermore,
. n -2 n
Vi =n| > 98 Xp Xe B | D &2 (An Xer, Xor 3 )
i=1 i=1
is a consistent estimator of V(By), so
—_ PN D
ViV 2B, = Bo) — NO, D).

<o

The proof of Theorem [3.4.T1]is given in Section[3.5.2] By Conjecture [3.4.4] the following
Condition [3.4.12]ensuring efficiency is obtained.
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Condition 3.4.12. Suppose that for each 8 € B, there exists a constant Kg € R\{0} such
that for all x € X,

) o 8ﬁb2(x;,8)
9,80, x, x;8) = Kﬁ—b“(x;,B) .

<

Corollary 3.4.13. Suppose that the assumptions of Theorem and Assumption
and Condition hold. Then, any consistent G,-estimator 3, is efficient. o

Condition [3.4.10|for rate optimality and consistent estimation of the asymptotic variance of
By is significantly more complicated than the corresponding condition of Sgrensen| (2010,
Condition 1.1), which is the second equation of our condition with k = 0. As also observed
in Section [3.4.3] for jump-diffusions, conditions also appear on the off-diagonal y # x of
g(0,y, x; B) and selected derivatives.

Condition [3.4.10]does suggest that for models with certain jump dynamics (certain combi-
nations of ¢ and ¥), rate optimal estimation of the diffusion parameter might not be feasible
within the framework of this paper. If, for example, the first equation amounts to the re-
quirement that

800,y,x;8) =0 (3.4.8)

for all x,y € X, e.g. the non-degeneracy condition on D(B; ) in Theorem [3.4.11|becomes
impossible to satisfy.

When the efficient contrast function of [Shimizu and Yoshidal (2006)) is differentiated with
respect to the parameter (and multiplied by A,), the resulting function easily satisfies the
first equation in Condition In fact, it satisfies equation for all x,y € X by
the help of an indicator function depending on, among other things, x and y, thus satisfying
the rest of Condition [3.4.10]as well. However, as mentioned previously, due to its general
non-differentiability, their function cannot readily be adapted to our setup. Also, it does not
satisfy the above-mentioned non-degeneracy condition on D(5; ).

The additional condition for efficiency of the rate optimal estimators of Theorem [3.4.11]
Condition [3.4.12] is the same as the one identified by [Sgrensen| (2010) for continuous dif-
fusions [

3.44.1 Two-Dimensional Drift-Jump Parameter

This section considers a slightly more general model than the previous section, namely,
one which includes both a two-dimensional drift-jump parameter a and a one-dimensional
diffusion parameter 8. The model is a special case of (3.4.1) with d; = 2 and d, = 1
(d=3),ie.

dX; = a(X;; a)dt + b(X;; ) dW; + f c(X;—,z;)N(dt,dz), Xo=U,
R

6 And the same condition obtained for efficiency in Chapterunder a different observation scheme.
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3.4. Rate Optimality and Efficiency

fora € ACR?and 8 € BCR, with * = (*,8) and ® = A X B.

The following Condition [3.4.14] is an additional condition for use in Theorem [3.4.15]
Within the framework of the current model, this theorem establishes rate optimality of
the consistent G ,-estimators 6, with 9,’,‘ = (&, ,@n) obtained by Theorem , and ensures
that their asymptotic variances may be estimated consistently. The coordinates @, estimat-

ing the drift-jump parameter already converge at the optimal rate by Theorem (i1)]
so it is essentially the convergence rate of the coordinate f3,, which estimates the diffusion
parameter, that is improved upon.

Condition 3.4.14 (For use with Assumption [3.4.8). Suppose that for all & € A, 6 € O,

8s(0, 7i(x, 2, @), x;60) =0, k=1,2,3,4
0ygp(0, Ti(x, s @), x;0) =0, k=0,1,2,3
0702850, Ti(x, z; @), x;60) =0, k=0,1
dagl (T1(x,21@), %;6) = 0

for all x € X and v-almost all z;, € R¥, where Ti(x, z; &) is defined in Definition o

Theorem 3.4.15. Suppose that the assumptions of Theorem[3.3.2} as well as Assumption

3.4.8 and Condition [3.4.14) hold (with d; = 2 and d, = 1). If Assumption holds

with Ry(t,x) £ 0, i.e. if G,(0) is not a martingale estimating function, suppose also that
2k—1)
nA;, — 0asn — oo. Let

31(90;90)=—L5yga(0,x,X; 00)dqa(x; @) g, (dx)
- f f 0y8a(0, x + c(x, Z; @p), X; 00)0ac(X, Z; @0) Va, (dz) g, (dx)
X JR
- f f 8a(0, x + c(x, z; @0), X; 60)00q(z; o) ¥(dz) e, (dx) ,
X JR
B> (80: 60) = — fX 10785(0, x, x: 00)3pb> (x; Bo) ma, (dx) ,

E(6:6) = fX B2(x: 810, gy g (0, x, x: 6) mald)

+ffgag;(O,x+c(x,z;a/),x;e)va(dz)ﬂg(dx),
X Jr

Ex(6:6) = fX L5 (s B)Pg5(0. x. x: )7 ()

and assume that E((6;0) is invertible and E»(6;6) # 0 for all 0 € ©. Then, for any
consistent Gy-estimator 0,, it holds that

( VA, (&, — ap)

D
N — N3(0, V(6 349
B o ) 3(0, V(60) (3.4.9)
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Chapter 3. Diftusions With Jumps

where
V(6o) = (31(90;90)_1151(90; 80)(B1(6; 60)*)™! 0
0 B:(60; 80)>E2(80; 60)
is positive definite. Furthermore,
~ (Va1 O
V.= ®
! ( 0 Vn,2]

given by

n n

-1
vn,l = nl, (Z aaga(An’ th’a Xf;',l ; 9n)] (Z gag;(An, Xt;l, Xt?—l ) 9n)

i=1 i=1

n -1
X ( aag(:(An’ Xt,’.’, th'.’_] ; 9n)J
i=1

n -2 n
Vi =n (Z Opgp(An, Xm, Xin 9n)] Z 85D, Xpr, Xpr 5 0,)
i=1 i=1

is a consistent estimator of V(6p), so

712 ( VA, (&, — @)

D
f A — N3(0,13),
vﬁwn—ﬁo>) 3(0.12)

where V,i 12 is the unique, positive semi-definite square root of V. o

The proof of Theorem [3.4.15]is given in Section [3.5.2] Making use of Remark [3.4.5] the
following additional Condition[3.4.16]is obtained for efficiency.

Condition 3.4.16 (For use in conjunction with Assumption 3.4.1). For all 6 € © there

exists an invertible 2 X 2 matrix Kél) and a non-zero constant Kéz), such that for all x € X,

9y80(0, x, x;60) = K" daalx; )*

“ Pxp)
9pb*(x; )
2 oy (9B >

9,850, x, x;0) = K, g
1) Oap(x, w; @)*
8a(0.x +w,x:0) = K XD

(p(x’ w’ a)

for ny-almost all w € ‘W(x). o

Corollary 3.4.17. Suppose that the assumptions of Theorem as well as Assumption
and Condition hold. Then, any consistent G,-estimator 8, is efficient. o

Comparing Condition [3.4.T4]to the corresponding Condition [3.4.10] for the model with no
drift-jump parameter, the number of conditions used to obtain rate optimality of the es-
timators /3, (and ensure that their asymptotic variances may be estimated consistently) is
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3.4. Rate Optimality and Efficiency

seen to have increased substantially. The general reason is that, loosely put, the larger the
dimension d of the parameter is, the more conditions are needed to show uniform conver-
gence in probability with rate optimality of 3, in mind, especially when the model includes
a drift-jump parameter as well.

The additional Condition [3.4.16] for efficiency is well in line with our previously obtained
efficiency conditions, Conditions [3.4.6|and [3.4.12]

3.4.5 On the Existence of Efficient Estimating Functions

For continuous diffusions, conditions under which an approximate martingale estimating
function is rate optimal and efficient are quite straightforward, and it is easy to find esti-
mating functions which satisfy the conditions. This was concluded by [Sgrensen| (2010) for
the current sampling scheme, and in Chapter [2] for fixed-interval asymptotics. The same
cannot be said in the presence of jumps.

Conditions [3.4.10] and [3.4.14) were obtained for rate optimality of the estimator of a one-
dimensional diffusion parameter, in a model with no drift-jump parameter or a two-dimen-

sional drift-jump parameter respectively. Essentially, the gg coordinate of g, as well as
several of its derivatives, need to vanish at a number of points depending on the jump dy-
namics of the process, in order to achieve rate optimality. For some stochastic differential
equations, it could be difficult, or perhaps even impossible, to find estimating functions
which satisfy these rate optimality conditions, as well as the remaining regularity assump-

tions. For example, Theorems |3.4.1 1| and |3.4.15|require that 83 85(0, x, x; 6) does not vanish

mg-almost surely for any 6, which could very easily conflict with the rate optimality condi-
tions.

Conditions [3.4.6] [3.4.12] and [3.4.16] were the supplementary conditions obtained for the
efficiency of rate optimal estimators of the drift-jump and diffusion parameters in three dif-

ferent models. In addition to the usual conditions for efficiency of approximate martingale
estimating functions for continuous diffusions (see again Sgrensen (ZOIOD, the present
conditions include a very specific requirement, tied to the jumps of the process. The essence
of this condition is that in the limit A, — 0, evaluating g,(0, y, x; 6) at a jump increment
v, x) = (X;, X;-) with X; # X,_ should be the same as evaluating the score function of
the the jump. This entails, in particular, that the g,-coordinates of an efficient estimating
function can discriminate, asymptotically, between situations where X; = X;_ and X; # X;_,
because, when X; = X;_, the function must behave like an efficient estimating function for
the drift parameter of the corresponding continuous diffusion.

The assumption that g(¢,y, x; 8) is sufficiently continuously differentiable with respect to,
e.g. t, y and x seems to be the main property distancing the approximate martingale estimat-
ing functions considered in this paper from the efficient contrast function of [Shimizu and
Yoshida (2006). Their contrast function contains indicator functions of the form 1(Jy — x| <
1), and is thus designed to distinguish asymptotically between jumps and “no-jumps”. For

7 And Chapter
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multidimensional drift-jump and diffusion parameters a and 8, estimation based on their
contrast function corresponds to solving the estimating equation H,(8) = 0 where

n
Hy(®) = )" h(An, X, X 56)

i=1

and h* = (h}, hg) with

ot s x;60) = %@ — x—taCra)l(y - x| < #)
dagp(x,y — X, @) 1(ly — x| > ) - tf Oop(x, w; a)* dw,
e(x,y — x;@) W)
sb*(x; B)*
hg(t,y, x;6) = % (6= x = ta(x; @))* = > (x; ) Uy — x| < ).

(For simplicity, we assume here that the additional truncation function used by Shimizu and
Yoshidal to ensure integrability is not necessary for the model under consideration.) Dis-
regarding the indicator functions, /g and the first term in A, yield approximate martingale
estimating functions for the continuous diffusion corresponding to X, obtained by setting
c(x,z; @) = 0 (this may be checked using Lemma[3.2.8). The remaining terms in h, give
rise to an approximation of the score function of the compound Poisson jump-part of X. It
is not immediately obvious whether or not / satisfies the approximate martingale property

of Assumption

However, suppose, for example, that c(x, z; @) > co for some real-valued constant ¢y > 0.
Let the indicator function 1(ly — x| < #°) be replaced by a suitable approximation (%, y, x),
twice differentiable with respect to y, once differentiable with respect to ¢, and satisfying
that (0, x, x) = 1 and ¥(0, y, x) = 0 for y > x + ¢, for all x € X. Then,

= 8(1 5 *
ho(t,y, x;60) = %;))(y —x — ta(x; )W(t,y, x)
" aa‘p(-x’y - -x; a)*(l _ lﬁ(t,y,x)) _ tf 8Q90(X,W;a)* dW
o(x,y — x;@) W(x)
- zb*(x; B)*
h(t,y, x;0) = % (0= x = ta(x; @) = th°(x; B) w2, y, 1)..

For example, for a two-dimensional drift-jump parameter, and a one-dimensional diffusion

parameter, it may be verified that /(t,y, x; 6) satisfies the rate optimality and efficiency

Conditions [3.4.14] and [3.4.16] Furthermore, supposing for further simplicity that @ only

enters into the drift coefficient a(x; @), ﬁa(t, v, x; 6) reduces to

Oqpa(x; a)*
b*(x; B)

It may now be seen that under the additional (and not unreasonable) assumption 9,¥(0, x, x) =

ljla/(t’y’ X5 8) = (y_-x_ ta(-x; a/))'ﬁ(f,y, X).

0 for x € X, the equations
R0, x,x;0) =0
O (x, x;0) = — Lo(R(0; 6))(x, x)
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hold for all x € X and 6 € O. These identities were established in Lemma for
approximate martingale estimating functions, and are used in many of the proofs in this

paper.

It is our hypothesis for future research that under further conditions on ¢ (and perhaps more
relaxed regularity assumptions than those of this paper) we can find sub-models of (3.4.1),
and explicit choices of ¥, for which the functions /(t, y, x; 6) (or similar approximations to
h(t,y, x; 6)) constitute (rate optimal and) efficient, approximate martingale estimating func-
tions. We believe that upon finding a suitable type of y-function, other functions resem-
bling h(z,y, x; 6), with suitable approximate martingale-type components combined with
Y-functions, may be utilised in order to establish a more general class of explicit, efficient
approximate martingale estimating functions for jump-diffusions.

3.5 Proofs

Section [3.5.1] states lemmas needed to prove Theorems [3.3.2] [3.4.11] and [3.4.15] These
theorems are proven in Section [3.5.2] while the lemmas are proven in Section[3.5.3]

3.5.1 Main Lemmas

The lemmas presented in this section are used, together with results on the existence,
uniqueness and convergence of G,-estimators from [Sgrensen| (2012} Section 1.10), to prove
Theorems [3.3.2] 3.4.11] and 3.4.13] For convenience, Theorems 1.58, 1.59 and 1.60 of
Se¢rensen|are briefly summarised in Appendix [3.B.2] in a simplified form, tailored to fit the

framework of the current paper.

Lemma 3.5.1. Suppose that Assumptions and hold. If Assumption

holds with Ry(t, x) # O, i.e. if G,(0) is not a martingale estimating function, suppose also
that nA>*=! — 0 as n — co. Let

A(6;6p) = fx (Lo, (8(0; 0))(x, x) — Lo(g(0; 6)(x, x)) 7, (dx)
B(6; 6y) = fx (Lo,(09g(0; 0))(x, x) — 09 Le(g(0; 0))(x, x)) 74, (dx)
C(6;0o) = fX Lo, (887(0,0))(x, x) mg,(dx)

for 0 € ©. Then,

(i) the mappings 0 — A(6;6p), 6 — B(0;0y) and 6 — C(60; 0y) are continuous on O, with
A(6y; 8y) = 0 and 09A(8;0y) = B(; 0y).

(ii) forall j,k =1,...,d, and all compact, convex sets K C ©,

1 < P
su gj(Au, X, X 560) — Aj(0;60) — O,
66113 nA, ; A !
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1 ,
sup|—— > 96,81(Aws Xpp, Xir 360) = Bji(0: 60)| — 0. (3.5.1)
9eK | Ny e

(iii) for any consistent estimator 8,, it holds that

1 & P
> 0g(An, X, X 0) — B(60: o)
nAn — i i—1

1 < " P
= 288" (B Xy Xur :01) — C(Boi o).
=1

(iv) it holds that

n

D
o > 8(An X, Xer 3.60) —> Na(0, C(603 )
n =1

<&

Lemma 3.5.2. Suppose that Assumptions|3.2.53.2.6} and|3.4.8| and Condition|3.4.10\hold

(withd, = 0 and dy = 1). If Assumption holds with Ry(t, x) # 0, suppose also that
A<D 5 0asn — oo, Let

D(B; Bo)
= [ 4540+ (805~ P ) a0, 57 ()
for B € B. Then,

(i) for any consistent estimator f3,,
I -, AP
e 21] &2 (B, Xor. Xpr 3 Bu) — D(Bo: o) -
P

(ii) it holds that

n

T 2 8 X X o) 25 N, D(Bo: o)) - (3.5.2)
noj=1

<&

Lemma 3.5.3. Suppose that Assumptions|3.2.53.2.6} and|3.4.8| and Condition|3.4.14|hold

(withd, = 2 and dy = 1). If Assumption holds with Ry(t, x) % 0, suppose also that
A<D 5 0asn — oo, Let

i 00 E\(0:60) 0
S.=| 0 vnA, 0| and E(00;90)=( : 8’ 0 Ex(6: 0
0 0 \/ﬁ 2100, 90
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with
E1(60: 60) = fX B2 (x: Bo)y a2 (0, 1, x: 60) ey ()
+ f f 208 (0, x + c(x, 2, @0), X; 00) Ve, (d2) mgy(dx) ,
X JR
Ex(f:60) = fx 1% (s B0) 0% 500, ., 60)° 7 (dx)
Then,

(i) for j = 1,2, and all compact, convex sets K C ©,

sup
0cK

1 <& -
A2 Z;‘ 0a;8p(An, Xin, Xin 16) — 0.
n 1=

(ii) for any consistent estimator 6,

1« AP
Y Z 85D, Xpn, Xpn 50,) — Ex (603 00) -

n =1
(iii) it holds that

1

0
" nA,,

- D
D 8w Xr, Xt 60) = N3 (0, E(6o; 60)) - (3.5.3)
i=1

3.5.2 Proofs of Main Theorems
This section contains the proofs of Theorems [3.3.2] [3.4.11)and [3.4.T5]

Proof of Theorem[3.3.2] Let any compact, convex set K € © with 6 € int K be given, and
recall that

1
nA

n
G(0) = —— > 8(A, Xir, X 3 0).
"=l

Note that uniform convergence in probability (for 6 in compact, convex sets) of a vector or
matrix is implied by the corresponding convergence of each of its coordinates.

By Lemma 3.5.1][(i)] and [(i1), and Assumption [3.3.TJiGiD)}

Gu00) 250 and  sup|84G(6) — B@; 6p)l| - 0
0eK

with B(fy; 6p) invertible. That is, the estimating function G,(6) satisfies the conditions of
Theorem (Sgrensen, 2012, Theorem 1.58).
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Next, we show of Theorem [3.B.3] (Sgrensen, 2012, Theorem 1.59). Let £ > 0 be
given, and let B,(6p) and B,(6y), respectively, denote closed and open balls in R with radius
e > 0, centered at 8y. The compact set K\ B:(8y) does not contain 6y, and so, by Assumption
A(0,6y) # 0 for all € K\B.(8y). Then, by the continuity of 8 — [|A(6, 6p)||,

inf  ||A(6,6p)]| > inf [|A(6,6p)l > 0.
0eK\B,(6y) 0eK\B:(6p)

Now, by Theorem [3.B.3| it follows that for any G,,-estimator 6,,
Py, (6 € K\Bs(6))) >0 as n— oo (3.5.4)

for any € > 0.
By Theorem [3.B.2] there exists a consistent G ,-estimator 6, which is eventually unique in
the sense that if 6, is another consistent G,-estimator, then

Py, (0 # 8) — 0 (3.5.5)

as n — oo. Suppose that 8, is any G,-estimator which satisfies that Py (6, € K) — 1 as

n — oo. By (3.5.4), also
Py, (B € K° U Bo(60)) — 1

as n — oo, and it follows that 8, is consistent. An application of (3.5.5) completes the proof
of Theorem

By Lemma|3.5. 1}f(iv)}
D
0,Gn(6p) — Nu(0,C(6o; 6p)) ,

where 6, = VnA,l; (I; is the d X d identity matrix), and the matrix C(6y; 8y) is positive
definite by Assumption Also, note that 6,0¢G,(6)5,' = 9¢G(6), so

7)
sup [|6,06G(6)5;," — B(8;60)| — 0
0eK
with B(6y; 6p) invertible, as stated previously. Now, Theorem follows from The-
orem (Sgrensen, 2012}, Theorem 1.60), with V(6y) positive definite by Assumption
B3I

Finally, Theorem follows from Lemma and the continuous mapping

theorem. In this connection, it is important to note that V(6y) is non-random, and that
taking the unique, positive semi-definite (principal) square root of a positive semi-definite
real matrix is a continuous transformation. O

Proof of Theorem Let any compact, convex set K C B with 8y € int K be given,
and recall that

1 n
nA,

Gn(B) = 8(An, Xpn, Xp 3 ).
1

i=
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As observed in the proof of Theorem[3.3.2] G, (B) satisfies the conditions of Theorem[3.B.2]
(Serensen, 2012, Theorem 1.58). This leaves the remaining conditions of Theorem
(Sgrensen, 2012, Theorem 1.60) to be verified. Let 6, = vn. By Lemma (i)}
D
61Gn(Bo) — N(0, D(Bo; Bo)) -
Furthermore, 6,,83G,,(,8)6,‘,1 = 08G (), 50

sup [|6:95Gu(B)5;" — BB o) — 0
BeK

continues to hold by (3.5.1)), where B(B;o) is as given by Lemma [3.5.1] In particular,
B(Bo; Bo) # 0. Now, (3.4.7) follows from Theorem Lemma|3.5.1 yields

1
ni,

n
AP
> Opg(An. Xo X 1) — B(Bo: o),
i=1

which, used together with Lemma|[3.5.2][()]and the continuous mapping theorem, completes
the proof. O

Proof of Theorem Let any compact, convex set K C ® with 6y € int K be given.
Still, it is seen directly from Lemma [3.5.1]and Assumption [3.3.T] that

1

n
> 8B X, X 36)
=1

satisfies the conditions of Theorem (Sgrensen, 2012, Theorem 1.58). It remains to
verify the subsequent conditions of Theorem (Sgrensen| 2012, Theorem 1.60). Let

nA, 0 0
o= O vnA, 0
0 0 \Vn

and see that by Lemma|3.5.3|[(i11)}

D
0,Gn(6p) — N3(0, E(6p; 6p)) -

Observe that
1 « 1 <
= Z 0a8a(Bp, Xn, Xpn 5 6) NI 9p8a(Bn, Xpr, Xpn 3 0)
_ n n i
6,09Gn(0)5,," = = Lo ,
R Z 0a8p(bn, X, Xir 160) Z Ipgp(An, Xpr, Xpn 5 6)
no =1 m =1

and recall that g, = (g1,82)* and gg = g3, and that 6* = (e*,8) with «* = (6;,6,) and

B = 6. Let B(6;6p) = (Bjx(6;60))i=1,2,3 be as given in Lemma 3.3.1[ By (3.5.1)), for
hk=1,2,

1« P
sup|—— " 95,8 (An X, Xpr10) = B(6;60) — O
oek |NAn 4= : 356
1 < P (320
Sup | —— " do,83(An, X, X 360) = B33(0: )| — .
0eK nAn =1
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Furthermore, also for j = 1,2,

1
nA,,

1)
sup — 0,

feK

n
D" 06,8(Ans X, Xir 3 60) = Bj3 (65 60)
i=1

so, as the continuous function 6 - Bj3(6; 6p) attains a maximum on K, also

l n
N Z 00,8/ (An, Xpn, Xy 5 6)

sup
ek n =l
1« 3.5.7
< A)?|sup Z 90,8 j(An, Xpn, Xp 3 60) — Bj3(0; 60)| + sup |Bj3(9; 90)| ( )
oeK |MAn 4 beK
20

Let

B11(6;6p) B12(0; 6p) 0
By(6;60) = | B21(6;60) B22(0; 6p) 0
0 0 B33(6; 6p)

Together, (3.5.6)), (3.5.7) and Lemma 3.5.3][(i)] imply that

_ P
sup [16,06Gn(0)5," — Bo(6; 6p)ll — 0,
0eK

where, in particular,

B1(6o; 60) 0

By(6y;609) = .
(603 6o ( 0 B>(6o; 60)

Now, (3.4.9) follows from Theorem [3.B.4]
Finally, by Lemmas [3.5.1]{(ii1)| and [3.5.3][(i1)]

1 < AP
—= D Daga(bu Xy, X :8,) — B1(60: 60)
m =1

1 < . P
A Z 9p8p(An, Xpn, Xpn 36,) —> Ba(6o; bo)
=1

1
nA,

n
AP
Zga/g;(An’thn’Xl;il’en) > E1(90,00)
i=1

1

n
AP
nAZ Z 85(An, X, Xpr 3 6,) —> En(6o3 6p) ,

i=1

as under the present conditions, E(6p; 6p) is equal to (C(6o; 60) jx) jk=1,2 of Lemma @
An application of the continuous mapping theorem completes the proof. O
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3.5.3 Proofs of Main Lemmas

This section contains the proofs of Lemmas [3.5.1] [3.5.2) and [3.5.3] In these proofs, the
notation

gt = gj(An, Xp, X :60)  and  Ej' (o) =By (- | X))

is sometimes used. Also, a martingale difference central limit theorem is utilised several
times (Hall and Heyde, 1980, Corollary 3.1). For convenience, a version of the applicable
result of[Hall and Heyde|, tailored specifically to the current setup, is stated in Section[3.B.1]

Proof of Lemma|3.5.1] The identity A(6y; 6p) = 0 is clearly satisfied. In order to prove the
rest of Lemma | observe the following. For any f(x;6) € Cgo(;(z\’ X ®), 4g € O and

compact, convex K C ® with 4y € int K, there exist constants Cx > 0 such that
lf(x;0)] < Cx(1 + [x%) (3.5.8)

for all # € int K and x € X. Under Assumption which ensures finite moments of
7, the right-hand side of (3.5.8) can be used as a 7, -integrable majorant of f. By the help

of Lemma
09 Ly, (8(0,0))(x, x) = Lg,(0p8(0, 0))(x, x) .

Finally, by Lemma[3.A.8] for each j,k = 1,...,d, the integrands in A ;(6; 6) and C ;x(6; 6p)
are C‘ff’zl(X X @)-functions, while the integrand in B (6; 6p), which is the partial derivative
with respect to 6 of the integrand in A;(6; ), is a Crl’?ll (X x ®)-function. Keeping in
mind these considerations, the remaining results in Lemma follow by the usual
results for continuity and differentiability of functions given by integrals (the dominated

convergence theorem).

Now, in order to prove Lemma[3.5.][(ii)] and [(iii)] combine Lemmas [3.A.8|and [3.A.25| with
Lemma [3.A.29)and Remark [3.A.30] to see that for j, ji, jo,k=1,....,d,

1
ni,

Z Eq, (gj(An, X, X 3 0) | Xz;g)
i=1
1 n
= Z} (Lo (g0: )X . X ) = Lo(g0:0)(Xer . X )

1 n
+ A= ) R Xy :6)
i=1

2 (6560,
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1
nA,,

> Bay (90,810 Xr, Xpr :0) | X )
i=1
1 n
== Z (Lay(99,8/(0. )X . Xr ) = 0, Lo(20. D) Xer . X))
i=1

l n
+ A~ > R(A Xy 26)
i=1

P
— Bj1(6;6p) ,

1
ni,

n
ZIEHO (2,872 (An Xpp. X 16) | X1 )
1=

1 E AN 3.5.9
= 5 22 Lo (831810.0) i, X )+ Ay D R X 30) (3:59)
=1 i=1

P
— Cj,,(0:6p),

and
(nAn)Z ZEH() (gj( ns Xt?»xt;ilae) I X[:Ll) = I’lAn; ZR( ”’Xt;l,l’e) — 0,
i=1 i=1
; 2 . 11 ¢ ] P
(nA,)? ZE90 ((aHkgj) (Aantf’,Xz;’_l,Q) | Xt;'_l) = AT ZR(A”’X’?-N 6) — 0,
i=l i=1
N R (2 (A X X 0) | Xn ) = —— LS R X 16) D0
A 2B (885G X Xer 1) | Xer, ) = e ) R(B Xy 36) = 0,
i=1 —
implying that
AP = Zn:g‘(A Xo. Xp 2 0) — A(6:60)
J nA, =1 ST S5 2y o500
1 + P
(") gy _ ‘ ) o
Bjk (®) = na, ,:Zl aﬁkgj(An’Xt?’Xr;'_l ;0) — B (6, 6p)
1« pa
) ' '
er‘ljz(e) - nA, ; & gjz(An’X’?’X’?fl :0) — Cj,,(6:60)

point-wise for 6 € ® by Lemma[3.A.31]

Let any compact, convex set K C © be given. The functions g;(z,y, x; 0), 9¢,8;(t,y, x;6)
and g;, g, (1, y, x; ) all satisfy the conditions of Lemma[3.A.T6} which may be used together
with Lemma [3.A.22]to conclude the existence of constants p > d and Ck,;, > 0 such that

/ / I3 /
Eg, (A§’”(9) = Aj(0;00) = AT@) + AL0'; 00) ) < Cxpllo -1
/ / p /
a, ([BY @) - Bu(@:00) - BY@) + Bu@s00)|”) < Crcyllo - 017
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™. (8) - Cj,,(6;60) - c(”) NCARNINNCE 90)‘ )< Crplo -

Eeg ( Jijz

Now, by Lemma [3.A.32] for all compact, convex sets K C O,

sup[A%(6) — A,6: 60)] > 0
0eK

P
sup [BY(6) — Bji(6; 60)] — 0
0eK

P

sup [CV" (6) = C},,(8: 60)| — 0,

0K

and Lemma follows. Lemma is immediate by application of Lemma
B.A33

Finally, Lemma [3.5.1][(iv)] is shown using Theorem [3.B.T] (Hall and Heyde, 1980, Corollary
3.1) and the Cramér-Wold device. Note first that by Lemma [3-A.25] used together with
Remark [3.A.30} it holds that for ji, j2, j3, ja = 1,....d,

1 v P
nl nl nt _n,it\ __ _ 0o
(nA )2 Z g]l 8,8}, gj4) n Z - R(An’Xti—l’QO) 0, (3.5.10)
=

and similarly, using also Lemmas [3.A.8|and [3.A.29]
ﬁZE ()28 () =
s ZlEe (&) (¢)E (i) o G
T DB )2 ()5 () () Lo

Initially, suppose that the estimating function is a martingale estimating function, i.e. that
Ry(t, x) = 0 in Assumption Let v € R? be a fixed vector and consider

1
Vnn

Ml’ll = v g(Ath" Xl" 00)

which constitutes a real-valued, zero-mean, square-integrable martingale array with differ-
ences D,,; = (nA,)~'/? V*8(An, Xir, Xpn 5 60), together with the o-algebras G,,; generated by
(th, cee ,thf')~

It holds that
1 n
—— > Ea (79 (A Xp X 1 60) | Xe)
m =1

1
= v*
[nAn —

n
D Bay (88™ (A, X, Xir 3600) | Xir) | v
i=1
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2 v C(6o: 60y,

by (3.5.9), where C(6y; 6p) is a non-random matrix. Furthermore, the conditional Lyapunov
condition

1

n
P
A2 Z Eg, ((v*g)4(An, XIEI’XI;’A;@O) | Xt;’) -0 (3.5.12)
n =l

holds, implying the Lindeberg condition of Theorem The convergence in (3.5.12)
is seen because the left-hand side may be written as a sum of terms of the form (3.5.10)
(multiplied by deterministic constants v;,,v,,Vj;,Vv;,) for ji, j2, j3, ja = 1,...,d. It follows
then, from Theorem [3.B.1] that

1 C * D *
Norw Zlv 8(An. Xu, X :60) — N (0.v*C(6: o)) .
Now, by the Cramér-Wold device, Lemma follows for martingale estimating
functions.

If the estimating function is not a martingale estimating function, i.e. if Assumption
holds with Rg(A,,, Xf?_l) # 0, then nA,Zf‘l — 0 asn — oo for some k > 2. Let

(A, X, Xpr 3 60) = g(An, X, Xir 3 60) — By, (8(An X, Xer :60) | Xir ) -

Since,
! iEg (8(An Xp. Xn 160) | Xp ) = N e iRg Ay Xo ) 250
5 Ty ALy n - - s .
M — 0 n tt i—1 tl*l n n — 0 n tl*l
by Assumption and Remark[3.A.30] it remains to show that
1 < D
Z &(An, Xin, X 560) — Na(0, C(6o; 6p)) . (3.5.13)
ni, P o

Again, let v € R? be a fixed vector and consider

i

1 .n
My = M;v 3B, X, X3 60)

with martingale differences D, ; = (nAn)‘l/zv*g(An,X,;z,X,?_I;HO). Using Lemma [3.A.25
and (3.5.9),

1 C * ~\2
e Z} Eg, ((*2)*(An. Xp. Xy 160) | Xir )
=

1 © .
=y* (nA Z Eg, (gg*(An’Xt,’.’,lef‘_] :60) | Xt?—l) v
=1
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1 n
=y* (nA ZEeo (gg*(An,th,Xt?_l;go) | X’E’_l) v
" i=1

1 <« X
— v* (nA Z E()g (g(A}’hXt,n’ Xt;'_l 5 00) | Xl;'_l)EH() (g(Any th{l,X,:r_l 5 90) | Xt;l_l) ]V
"=l

1 < 31 ¢
= (n A Zl Egy (88" (M. Xy Xor :60) | Xy, ) = A3~ Zl R(An, X 160) |v
= =

P
— V*C(Q(); 9())\/ .
Furthermore, the conditional Lyapunov condition

1
(nAy)?

< N P
D By (72 (A X, Xir 5600) | Xir) — 0 (3.5.14)
i=1

holds, because the left-hand side of (3.5.14) may be written as sums of terms of the forms
(3.5.10) and (3.5.11)) (multiplied by deterministic constants v;,, vj,, v, vj,) for ji, jo, j3, ja =
1,...,d. Now, by Theorem 3.B.1] and the Cramér-Wold device, (3.5.13) follows, thus
Lemma is also proved for approximate (non-exact) martingale estimating func-
tions. O

Proof of Lemma First, use Lemmas[3.A.26][(i1)| [3.A.27]{(ii1)| and [3.A 8| together with
Lemma(3.A.29 and Remark [3.A.30]to see that

1 < )
H_A% l:ZI Eﬂo (g (An,thf’,X[;’_l,ﬁ) | Xl‘;l_l)
n

1 2
== 3 (0 380+ 3 (X 3B0) - Py 3B) ) 90, X Xy 3P
g (3.5.15)

1 n
+ A D" R(Aw X 3 B)
i=1

7)
— D(B; Bo)
and
! Zn:E (A Xip. X P | X)) = llzn:R(A Xp i B) 250,  (35.16
nzAfz_ P ﬁo g ns l‘",la li—l’ l;—l - }’lAnI’l - ns t;l_la B ( e )

yielding
1 P
2
Ap, X, Xpn 5 B) — DB Bo) — O, 3.5.17
A2 ;_1 8 (An, X, Xin 3 B) — D(B; Bo) ( )

pointwise for 8 € B, by Lemma[3.A.31]

In order to prove Lemma [3.5.2)(D)} note that by the arguments similar to those in the proof

of Lemma [3.5.1|(i)l B8 — D(B;Bo) is continuous on B. Also, g*(t,, x;8) satisfies the con-
ditions on f in Lemma [3.A.20 and combining this with Lemma [3.A.22] and (3.5.17), it
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follows from Lemma|[3.A.32] that

sup | — Zg(An,xtn,x,n :8) = D(B: Bo)| —

ﬂEKnni

for any compact, convex set K C B. Now, the convergence in Lemma [3.5.2][(D)] follows from

Lemma[3.A33]

Lemma is shown using Theorem [3.B.1] (Hall and Heyde, 1980, Corollary 3.1).
Note, for use in the following, that by (3.A.78)) and Lemmas [3.A.26|and [3.A.27]

n
i R ()RR ) Lo
1< B (gn,gn,)Ey%l(gnJ)2 20 (3.5.18)

n2A4ZEll 0.

Suppose that the estimating function is a martingale estimating function, i.e. Rg(t,x) = 0
in Assumption [3.2.6][(1)] Consider, for n € N,

M,;=

\M Zg(An,x,,th o).

which constitutes a real-valued, zero-mean, square-integrable martingale array with differ-

ences D, ; = n_l/zA,Zlg(An, Xt{"Xt?,l ; Bo). Firstly, by (3.5.15), it holds that

MZ%g%M%ﬁmw%ﬂmm)

Secondly, by (3.5.16)), the conditional Lyapunov condition

P
o A42Eﬁo (s X, Xy 3 0) | X ) — 0

n =1

holds, implying the Lindeberg condition of Theorem [3.B.T] so (3.5.2) follows in the case of
a martingale estimating function. When the estimating function is not an (exact) martingale
estimating function, i.e. Assumption holds with Rg(t, x) # 0, and nAﬁ(Kfl) — 0 as
n — oo for some « > 2, let

(A X Xpr 3 B0) = (A, Xr, X+ B0) — By (8(Ams Xz X 180} | Xir ) -

1 - P
i ZEﬂo (B, X, X :Bo) | Xy ) = Nl ‘;;Rﬁomn,x,y_ )20
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by Remark [3.A-30] it remains to show that

\/_ ™ Zg(An,th,th o) > N(O, D(Bo: Bo) - (3.5.19)

First, see that

AZZEﬁO F (0. Xy, Xy 2B0) | Xt )

1 < 2
= — D (B (628 Xer Xer, o) | Xer,) =By (0 X X 1600 | Xer, ) )
n =1
n 1 n
— 2 .
- ZEﬁO & (A Xy X 1 Bo) | X ) = A7 ;R(An,X,;wl,,Bo)
R D(Bo; Bo) -

Then, observe that the conditional Lyapunov condition

n
5 P
A D By (34 (A0 X, Xir 380) | Xir ) — 0 (3.5.20)
n =1

holds, since the left-hand side of (3.5.20) may be written as a sum of terms of the form
(3:5.16) and (3.5.18). This implies the Lindeberg condition of Theorem [3.B.1] It follows
then, that (3.5.19) holds, thus completing the proof of Lemma [3.5.2)[(i0)} o

Proof of Lemma[3.5.3] Let

Ex(0;6) = fx (54300 + £ (47030 = D7) ) 20, 3, 3,07 ().

First, use Lemma [3.A.29] and Remark [3.A.30] together with Lemmas [3.A.26] [3.A.27] and
B.A.8lto see that

1 n
g 24 (630 X X001 X )
1 v X
=D (b4(X¢" Bo) + (B> (Xer 3 B0) = B* (X 3 )) )aigg(o,x,ﬁl, Xy 107
N (3.5.21)

1 n
+ A0~ > R(A Xy :6)
i=1

2 E»(6;6p)
and

11

n
D B 00 X X0 X ) =

> ZR(An,X,n 020
n“A;, ‘=
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1 1+ P
— ZE% 883 Xe Xy 10) | X ) = AP 3 R(ALXp:0) — 0 (35.22)
i=1

niy, iz

for j = 1,2, and together with Lemma [3.A28]to see that

1 & 21 1 P
nA? Z Eqy (aa,-g3(An,Xz;’,Xt;’_l ;0) | Xz;’_l) = A,/ P ZR(An,Xt;*_l;Q) — 0,
nAy = i=1

" o, (00 g5(A .6 S R X 0 D50

nzAi; 0 (9a,83(An. X X 16) |X¢1)—;;;R< nXe 16) — 0.

Then, for j = 1,2,

A2 Zgg(An,in X 16) — E(6;60) Lo (3.5.23)
P
—3/2 Z 00,83(An, Xpn, Xpn 360) — 0 (3.5.24)
n =1

pointwise for § € ® by Lemma @ The function d,,83(t, y, x; 6) satisfies the condi-

tions on f in Lemma [3.A.19] so Lemma follows by (3.5.24) and Lemma [3.A.37]

Furthermore, g%(t, ¥, x; 0) satisfies the conditions on f in Lemma|3.A.21} so

su (A, Xpm, Xin 5 60) — Ex(6; 60)| —
GEII() A 283 " 2 0

by (3:5.23) and Lemmas [3.A.22]and [3.A.32] Now, Lemma follows from Lemma
B.A33

In order to prove Lemma [3.5.3]i(i11)} observe first that

1 R
(l’lAn)2 Z 6,Eq, (gg (Ay, thf'e Xt:.’_l ;60) | thf'_] ) On
nA, Z E g”g;(A"’ Xl? ’ Xt;l—l ; 90) 3/2 Z gagﬂ(An, Xt" Xt” 00))

A3/2 ZE@OI (3522 (A Xpr, X 3 60) 22 B (20 X Xer )

noj=1

so combining (3.5.9) and Remark [3.2.10| for the submatrix concerning g,g>, and (3.5.21)
and (3.5.22) for the remaining coordinates, it follows that

1 < P
T > 6uEa, (8% (An Xz, Xir 3600) | Xiz ) 65 —> E (63 60) . (3.5.25)
nroi=1
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Also, for ji, jo, j3,ja = 1,2,
1 n P
n, nl n,a _n,
(I’ZA,,)2 Z E (gjl g]z gj% gj4)

P
nl nl nl n,
A5/2 Z gjl 8j,8),83 ) —0

I’ll l’ll l’ll n, P
g}1 8,83 83 )—o0 (3.5.26)

n2A3

P
nl nl nl n,
n2A7/2 Z g]1g3 83 83 ) —0

P
o A4 ' (85 ey g ey ) — 0

by (3.A.79), Lemma and Remark [3.A.30]

Suppose now that we’re dealing with a martingale estimating function, i.e. Ry(z, x) = 0 in
Assumption Let v € R? be a fixed vector, and
i
D %68 X, X5 60)
=1

M, ;=

ni,
be the variables in a real-valued, zero-mean, square-integrable G, ;-martingale array with

differences D, ; = (nAn)‘lv*(Sng(An,X,;:,X,?_I;GO). By (3.5.25)), it holds that

N -1, % . 2
> Ba (1A V6,84, X, Xr 3 60)) | X,
i=1

1 n
=* (m Z; 0nEqg, (gg*(An,Xty,Xzy_l ;60) | Xt;’_])(sn] v
=

D
—> V*E(Qo; 90)\/ .

Furthermore, the conditional Lyapunov condition

N -1 % . 4
ZEHO (A~ v*8,8(An. X X 160)) | Xop

4
i 3.5.27
= ZE‘%I (( " vagh) + g ) (3221
i 0

holds, implying the Lindeberg condition of Theorem (Hall and Heyde, [1980, Corol-
lary 3.1). The convergence in holds, because the second sum may be written as a
sum of terms of the form @]) for ji, j2, j3, ja = 1,2 (omitting constant factors vy, v
and v3). It follows then, that

n
D
nA, Z V*éng(An’ Xt;?, X;’(l_l ;00) —m N (0, V*E(H(); 90)\/) ,
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thus proving Lemma for martingale estimating functions, by the Cramér-Wold
device.

If we’re not dealing with a martingale estimating function, in which case nA,zf"_l) — 0 as
n — oo for some k > 2, let

(A X, X 1600) = g(An, X, X 3 60) — By, (8(An, X, Xir 160) | Xor ) .

Since
n'2ay1? 0 0
n
SpA! = 0 n2AK12 0 -0
0 0 n'2 AL

as n — oo, it holds that

1
ni,

n 3 1 n P
2 0nBaq (88 X Xt :60) | Xt ) = 6,857~ > R(Aw Xy 160) — 0,
i=1 i=1

and it remains to show that

n _ D
—= D 0nB (B X, Xt 1 00) — N3(0. E(Bo: ). (3.5.28)
™ i=1

Again, let v € R3 be a fixed vector and consider

i

D V6,80 X, X3 60)

n ]:1

Mn,i =
with martingale differences D,,; = (nAn)‘lv*éng(An, X,ln, Xt7_1 ;00). Then,

o -1 xc = 2
D B (0807160280, X Xy 3 60) 1 X, )
i=1
1 n
— * * .
=V (m;%% (g8 (An,Xr;l,th_l,Ho)IXty_l)én]v

1 n
—V* G, AT [; D R X 90)] S Ay
i=1

P
— V*E(GQ; 90)\/ .

Also, the conditional Lyapunov condition
C 1. %x¢ ~ 4 P
D B (08071 8,2(00 X X 5600) 1 X ) D5 0 (3.5.29)
i=1

holds. In order to see this, write
(1)~ v*6,8(A, X, Xt 3 60)

108



3.5. Proofs

= o (gl +v2y’) + i vash!
- g (B (o) + vaBy (85)) - S veEa (e57)

and define, for ji, ja, j3, ja = 1,2, terms of type Ti((r)t) to be of the form

(gj’l’gj’z’gﬁjg;’j) ES l(g;’]’gj’;)E &hEy (g’”)
] nt nt nl nl ] nt nt nt nl
B (g g B (g B (¢ ER (E (E (8,

terms of type Ti(L) to be of the form

‘1(g71’g’}2’g’,’3’g’§’) ‘1(g71’g’}2’g’}3’)E (g%
(g;’,‘g’};g’;‘) g By (8} 8B (B (85
Ego ! (gﬁ,’g'g’ Bl (g” ’)E (g% 9 ’90 ! (gﬁ,’)lEg0 '(g" ’)E’gol(g" DEL (857,

terms of type Tl.(i) to be of the form
(g;’fg’jz’gg ‘g (g']l’gg1 "¢y B (g’“)
Ego '(¢TOE (g7 )E! (gZ ‘23" (gj’l’g'}z’gg’ ’)E‘g0 (g5
Eg, 1(g?l’g'§’)E &hB (g5 E‘ 1(g’“)E N(¢DEL (85 DB (85

E (g} g By (g"’)E’ l(g D,

terms of type TS? to be of the form
El ‘(g’]l’g’; ‘ghgh) B (g B gy ey gy )
By (8} 85 g5 DB (g5 Ej, 1<g'“)E '(g5 g5 DBy (85
E‘ l(gﬁl’gﬁl)E‘ l(g"’)E‘ & Ep 1(g’“)E '(g3OE], 1(g'”)E’ '@,
and, finally, terms of rype Tl.(i) to be of the form
Ef gy gy gy ey Ej ' (gy gy gy B, (gh")
E‘Ol(gg”gg’)E‘ 1(g"’)E‘ (g ) E, 1(g'”)E’ 1(g'”)E’ 1(g'”)E’ gy oF

Using expressions for conditional moments from Lemmas [3.A.25] [3.A.26] and [3.A.27] to-
gether with Lemmas [3.A.8]and [3.A.29] and Remark [3.A.30] it may be verified that

1 O P

The left-hand side of (3.5.29) may be written as sums of terms of the form (3.5.30) (multi-
plied by deterministic constants vj,,vj,,vj;,Vj,). Now, by Theorem @ and the Cramér-
Wold device, (3.5.28) follows, thus completing the proof of Lemma[3.5.3] i
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Appendix

3.A Auxiliary Results

This appendix contains technical results, mostly pertaining to the proofs of the main lem-
mas given in Section [3.5.3] The lemmas in Appendix [3.A.T|essentially verify that integrals
with respect to the Lévy measure inherit polynomial growth properties of the integrand.
Appendix gives expressions for the infinitesimal generator applied to various func-
tions. Appendix [3.A.3|contains inequalities to do with expectations, most of them used to
prove uniform convergence in probability. Appendix [3.A.4] contains a number of expan-
sions of conditional moments, as well as the proof of the expansion lemma, Lemma[3.2.8]
Finally, Appendix [3.A.5]states some results on convergence in probability.

3.A.1 Polynomial Growth
Lemma 3.A.1. Suppose that Assumption[3.2.5| holds, that
(1,7, %:0) € Chly (0, Ag)ey X X* X ©)

or some p,q,r,s € Ny, and that c(y,z;0) € Cp'p‘)l(/\’ XR X @). Let A € O be given, and
q,0
define

Pa(t,y, x;6) = fR ft,y+cy,z;4), x;0)v(dz).
Then ¢a(t,y, x;8) € Chon (0, Ag)ey X X2 X ©) with

6; 5§ 8];816’" oA, y,x;0) = f{‘); (9;: 8’; 616m(f(t,y +c(y,z; ), x;0)) valdz)
R
fori=0,....p,j=0,...,¢.k=0,...,r,{=0,...,5sandm=1,...,d. o

Proof of Lemma @] Let i, j, k, [ and m be given in the following, and introduce the no-
tation f,z(t, x,9,2;0) = f(t,y+c(y,z; ), x; 0) and hy(y, 7) = y+c(y, z; 1), O thatﬂ(t, X,v,2;0) =
S, hi(y,2), x;60). By the chain rule for higher order derivatives (also known as Fad di
Bruno’s formula),

910] 049, falt.x,y,2:0)

J (B0 2\ (3h02)
| )7]‘ 1! J'

mj
) 8,8 850, f(t.ha(.2), x;6)
715-.n)EM
(3.A.1)

wherenzm+---+njande:{x€N6|x1+2x2+~-+jxj:j}.
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Using the product-polynomial growth properties of c(x, z; 1), it may be verified that for
eachn =0,...,jand any compact, convex set K C 0, there exist constants C, Cx > 0 such
that

10} 8 946, £ty + (23 ), % 0)] < Cr (1 + P + 1) (1 + 121K)
and
0c(r, 2z )| < C(1+1y€) (1+ 1) < C(1+ 1+ 1y1€) (1 + 1)

for all £ € (0, Ag)g,, X,y € X,z € Rand 6 € K. Now, (3.A.T)) may be used to conclude that
there exist constants Cx > 0 such that

10} 05,0504, fat, x,3,7:0)] < Ck (1+ [ + 1y %) (1 + 1), (3.A2)

hence
f 100] %3, falt, x,y, 2 0)| va(dz)
R

< Ck (14 1xI% + [y(x) f (1+ 1) va(dz)
R
< Ci (1 + 1 + (%)

for t € (0,Ag)g,. X,y € X, z € Rand 6 € K, showing that the function

7, x;0) > f&; 6§ aljcaémf}(t, X, 9,2, ) va(dz)
R

is well-defined and of polynomial growth in x and y, uniformly for ¢ in (0, Ag),, and 6 in
compact, convex sets, for x,y € X. It is also seen by (3.A.T)) that the partial derivatives

8.8, 8%, fi are continuous in (1, x,y, z; 6).

Now, for any choice of #p € (0,Aq)g,, X0,Y0 € X and A9 € ®, choose & > 0 such that
[xo—&,x0+e]lX[yo—&y0+€]C X% and a compact, convex set K C ® with 4y € int K.
Recall from lb that there exist constants C‘,)< > 0 such that
. . ~ 0 0 0
10} 8 00}, falt x,y.2:0)] < C (1 + [xI% + |y{%) (1 + [21) (3.A.3)

m

for t € (0,A¢)g, x,y € X,z € Rand 0 € K. Let (x*,y") denote the point where the
factor C?((l + |xIC2 + IyIC(I)<) on the right-hand side of li achieves its maximum value
on [xg — &, X0 + €] X [yo — &, ¥0 + €] as a function of (x,y). Now, using the same constants
C(I)( > 0 as in ll the function u : R — (0, co) defined by

u(z) = C (1+ 1% + 1y"|5) (1 + %)

is an integrable upper bound for 8; 6;; 6';62"1 ﬁ(t, x,¥,2;0), for (¢, x,y,0) in the open set
(0, Ag)gy X (x0 — &, x0 + &) X (yo — &, ¥0 + €) X int K. This method of constructing integrable
upper bounds for open neighbourhoods of any (9, xo, yo, 1) may be used to conclude the
desired continuity and differentiability results by the dominated convergence theorem. O
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Lemma 3.A.2. Suppose that Assumption holds, and that
. pol 32
f,:0) € CY),(X* X ©)

Define
Py, x;6) = f fO+c(y,z:0), x;6) vg(dz) .
R
Then ¢(y, x;0) € C’fil’z(X 2 x @) with

) 050, ¢(y,x:6) = fR 8,38, (F(o + c(v,2:6), x;0)q(z: 9)) 7(dz)
for jk=0,1,1=0,1,2andm =1,...,d. o

Lemma[3.A.2]involves, in a sense, more complicated derivatives than Lemma[3.A.T] as the
fixed A is replaced by the variable 6. Therefore, regarding the order of the derivatives, a
less general result is stated in this case, tailored to fit the needs of this paper. The result is
easily verified by differentiation, and the creation of upper bounds similar to those in the
proof of Lemma [3.A.T] Assumption is used to deal with the derivatives of the
Lévy density.

3.A.2 The Infinitesimal Generator

In the following, expressions for the infinitesimal generator, sometimes applied twice, need
to be computed several times for the products of two or more functions. For convenience,
some general formulae are derived first.

For f(y) and h(y), functions of one variable, differentiable as often as necessary, the gener-
alised Leibnitz formula gives:

m

HOIOEDY (Z)aﬁf(y)a’y"‘"h(y). (3.A4)

k=0

In particular, by (3.A.4), the first four derivatives of the product f/ may be written as

Oy(fh) = fOyh +dyfh
03(fh) = f05h + 28, fdyh + 8 fh

83(fh) = fO3h + 30, f0h + 305 foyh + 6, fh

03(fh) = fOyh + 40, fOh + 60, f05h + 48, fOyh + O fh.

(3.A5)

Furthermore, if f = f] f>, omitting combinatorial constants, the first two derivatives of the
product fh may also be written as sums of terms of the following form

oy(fifah) : fifadyh  fidyfoh Oy fifah

B(fifh): fhh fidyfosh  Oyfifrdyh (3.A.6)
fidfoh 9, fidyfoh 85 fifoh.
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and similarly, if also # = hih;y,

oy(fifahih) . fifah10yho f1/20yh1hy 10y fah1hy
Oy f1f2hha

O (fifhiho) = fifah103hy fifadyhdyhy [0y
f10yohi0yhy [0, f20,hihy Oy f1fah1Ovhy
0y f1/20yh1hy fla§f2h1h2 0,110, fah1hy
35 f1frhihy

B (fifahiha) = fifahi6hy fihosmdShy  fi 205k 05k,
fifa0hihy N0y fol&hy 10y 20, Byha
flayfzaghlhz ayf1f2h13§h2 0y f1f20yh10yh)
fifodihhy  f102 oy B, f10y fah1Oyhy
O2fifshidyhy  fi02 frOshihy Oy fi0yfr0yhihy
O3 fifadyhhy £ fahihy 0,105 fahihy
03 fidyohuhy 85 fifahihy (B.A7)

O (fifahih) = fifadih fihdm&hy  fifr0mh
fihmdyhy  fi 05 hihy f18y frh33ha
N10y /20,0 hy  f10yf205hyha - 18y o805 hihy
Oy fifahi&hy Oy fi 0y O5hy By fi f203h1Byhy
Ofifalihy  fids il 85hy  fid; fr0yhiOyhy
N85 fr0ihihy 0y fidyfohiB3hy By f10y f20,hDyha
Oy f10y fo05hihy - 85 fifah85hy 85 fi fr0yhiOyhy
O fihoiby  fi8 fildyhy 0,105 fahidyho
0 f10y faOyhy 85 fifaldyhy  f183 frdyhihy
Oy [182 f0yhihy - 85110, fr0yhihy 83 fi frdyhihy
f18y fohihy 0yf10 fahihy 85105 fahiha
10y kg 8} fifahihy .

Let f(y) € CZOI (X) with ith derivative ('); f(y) fori = 1,...,4. Suppose that Assumption
[3.2.5] holds, and that the order of differentiation and integration may be exchanged when
necessary. Then, for fixed 1 € O,

Lyfy)
e 5 (3.A.8)
= a(y; D)oy f(y) + 367 (y; VO, f() + fR (fO + 0,z D) = f() vald2),
Oy Laf ()
= dya(y; DOy f () + (a(y; A) + 30,67 (v: D) 2 F ) + 367 (v D3 () (3.A.9)

+ fR (0O + (2 D) (1 +0yc(r, 73 D) = 0, (3)) valda)
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8 Laf()
= Ra(y: DA, f() + (20,a(y: ) + 1202 D) £ ()
+ (a0 ) + 8yb% (v D) B3 FO) + 3673 DAL F ()
o [ (0w ez (1 +0c0.0) - 8 r0) vad)
+ f Oy f(y + (v, 23 D)y c(y, 75 ) va(dz) »
R

L)
= a(y: DAy Laf ) + 30°(v: D, L1f ()

+ fR (Lafy + v,z ) = Laf () valdz) .
Now, using (3.A.5) when f = fi f>, the preceding formulae may be rewritten as

Lififa(y)
= a(y; 1) (flc'?yfz + 5yf1fz) o
AP ) (B2 fs + 20, idy fo + i f2) )
. fR (RO +c0,20) ~ fio() valdz),
Lfi ()
= dya(y; A) (flayfz + ayfle) »
+ (a3 ) + 50,670 D) (R85 f2 + 20, /1y fo + 8 f1.12) )
+ 30205 D) (i o + 30,185 f + 38, fidy S + 0,1 f2) )

+ fR (fi0yfo + 0y fi ) 0 + €, 75 ) (1 + By, 23 D) vald2)
- [ (havfs+ 0,1 vt

HLALG)
= 8a(y: D (f10yf2 + 8y fi f2) )
+ (20ya(y: 1) + 32*(v: D)) (f103 f2 + 20, fidy fo + B2 f1 12) )
+ (i ) + 0,b* (2 V) (D3 f2 + 30, £10%f + 30210y fo + B3 fi o) )
+ 3023 ) (i fo + 40, £103 fo + 602162 fo + 403 iy o + GEFi2) ()

+ fR (A5 + 20,12 + 821 2) 0 + e,z D) (1 +Bye(r. 22 D) va(da)
- fR (F025s + 20, fidnfo + P11 f5) 0) va(do)
+ fR (100 + 0y i o) O+ €, 75 ey, 75 D) valdz)
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Chapter 3. Diftusions With Jumps

LAY
= a(y; D Lafi o) + 56° 0 VD Lafi O G.AL5)

+ fR(&flfz(Y +c(,z0) = Lafi () va(dz) .

Condition 3.A.3 (For use with Assumption [3.4.8). Let 7i(x, zx; @) be as defined in Defini-
tion[3.4.9 For all & € A and 0 € ©, it holds that

80, Ti(x, zi; @), x;0) =0, k=1,2
0ygp(0, Te(x, 23 @), x;0) =0, k=0,1

for all x € X and v-almost all z;, € R, o

Condition [3.A.3]is a restatement of some of the conditions used to obtain rate optimality
of G,-estimators of a one-dimensional diffusion parameter 3, see Conditions [3.4.10| and

B.414

Lemma 3.A.4. Suppose that Assumptions [3.2.5] [3.2.6] [3.4.8] and Condition hold.
Then, for j1 = 1,...,d and jo = dy + 1,...,d, the following formulae hold for all x € X
and 6 € ©.

L4, (2/,8(0:0) (x.x) = 0, (3.A.16)
and, furthermore,
L3 (2/181(0:0) (x. %)
= 36°(x; o) (2a(x; a) + Byb*(x Bo)) B2, 65 2, (0, X, x; 6)
+ 16%(x: Bo) (20y8,05 8, + 3078,038,) (0, x, x; 6) (3.A.17)
2
+ f %(bzm(x, z@0): Bo) + b7 (x: o) (1 + ye(x. 23 ) )
R
X 87,058,(0,71(x, 2 @0), X; 6) Vo, (d2)
gﬁf)(x, x; 6)
= —a(x; @)0yg; (0, x, x; 6) — %bz(x;ﬁ)aigjl 0, x, x;0) (3.A.18)
- f 810, 71(x, 23 @), x;6) vo(d2) ,
R
L, (2,(0:0)8(®) (x, x)
= —%a(x; afo)bz(x;,B)(?ygj] Bigjz 0, x, x;0)

— 102 P (x: B0)dg j, 358 (0, x, x;0) (3.A.19)
+ 52(x; B0)dy g, (0, x, x: 00,8 (x, x: 0)

+ f 27,(0,71(x,.@0), x; )8 (1(x, 23 @0), X3 6) Vi (d2)
R
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and

L, (£(0)g1,(0:0)) (x, x)
= —1a(x; )b*(x; Bo)dyg j, 078, (0, x, x; 6)
— 10*(x; )b (x:0)058,058,(0, x, x; 6)

_ %[ﬂ(x;ﬁo) (fR g, (0, 71(x,z; @), x; 6) va(dz)) aigjz(O, X, x;60).

(3.A.20)

Proof of Lemma By Lemma [3.A.T] both expressions
Lo,(8),8j,(0;0)(y,x) and Lzo (£),8,(0; ) (y, x)
are well-defined. Using (3.A:12),

Loy (8/187(0:0)) (x, %)
= a(x; ap) (gj1 dygj, + (9ygjlgj2) 0, x, x;0)
+ %bz(X;ﬂo) (gjlaigjz +20,8;,0,8), + aigjlgjz) (0, x, x; )

+ f (21810, 71(x, 7320, X:0) = 2,8,(0, X, %; 0)) Vary(d2) ,
R

and by Condition [3.A.3]and Lemma [3.2.9] (3.A.16) follows. Similarly,

Lo, (2,2,(0:0)) (11 (x, 225 ), x)
= a(t1(x,22; @0); @0) (8,948, + 0,21:22) (0, T1(x, 223 €0), X )

+ %bz(ﬁ(x, 225 @0); Bo) (81'1(958]‘2 +20y8,0y8), + 3381‘1 gjz) (0, 71(x, 225 @), x; 6)
+ f 218,(0,72(x, 22; @), x; 0) Voo (dz1)
R

_fgjlgjz(O,Tl(X,Zz;QO),X;H)Vao(dZI)
R

= $b*(T1(x, 22: @0): B0)8,, 038,(0, T1 (x, 225 @), X3 6)

(3.A.21)
for y-almost all z € R. Using (3-A13) and (3.AT4),
Oy Lay81820. 3. x:0)| _ . = 367(x; 0)dy8,, 3781, (0, x, x;6) (3.A.22)
and
% Loy8 18120, x:0)] _
= 3(a(x; a0) + 8,67 (x: B0)) 0,2, 6;.2,(0, X, x; 6)
(3.A.23)

+ b(x; o) (208,038, + 30387,038,) (0. x, x:60)

2
b [ (14 0rcrza0)’ 8 Ben0.m1Cx 20 6 0) v ).
R
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Finally, by (3:A.15),

L3 (2515(0:0) (x, )
= a(x; ag) 0yLe,8;,85,(0,y, x; 9)|y:x + $0*(x; Bo) 05.Le,8,85,(0,, x; 0)|y:x

+ L; L0,8,8,(0,71(x, 25 @0), X; 0) Vo (d2) .
Insert (3.A.21), (3.A.22) and (3.A.23) to obtain (3.A.17). Lemma[3.2.9]yields
gg.l)(x, x,0)=—-Ly (gj(O; 9)) (x,x),
from which follows. By (3.A.12) and (3.A.18), using that d,g,(0, x, x; ) = 0,

Lo, (27,(0;0)¢') () (x, x)
= (a(x: 20)9y8, (0, x, x:0) + 367(x: B)d2g;, (0, x, x: 0)) ') (x, x: )
+ 523 B0)yg j, (0, x, x; 0)0,8")) (x, x,6)

+ f £71(0,x + (%, @0), x; )8 (x + €(%, 23 @0), X; 6) Ve (d2)
R

= —%bz(x;ﬁ) (G(XQ @0)0ygj, (0, x, x; 6) + %bz(x;ﬁo)aigh 0, x, x; 9)) (’)ig‘,-z 0, x, x; 0)
+ 52(x; Bo)dyg j, (0, %, x; 00,8 (x, x,6)

+ f 8710, 71(x, z; @), X; G)gg)(n(x, 75 @), X; 0) Vo, (dz)
R
and

Lo, (85 (0)2,(0;0)) (x, x)
= 1b(x; Bo)g'y (x, ;)32 (0, x, x; )
= —%bZ(x;,Bo) (a(x; @)0,8;,(0, x, x;0) + %bz(XQﬁ)3§8j1 0, x, x; 9)) Bigjz(O, X, x;0)

- %bz(x;ﬁo)( fR 2,(0,71(x,z; @), x; 0) va<dz>) 9,21,(0,x,x;6),

showing (3.A.19) and (3.A.20). i

Corollary 3.A.5. Suppose that Assumptions [3.2.3] [3.2.6| and [3.4.8| and Condition
hold. Then, for ji, jo =d, + 1,...,d, it holds that for all x € X and 0 € O,

L2 (8782(0:0)) (x. %) = 3b*(x: )¢, 828,(0, x, x: )
and

g5, (0 x:0) = =502 (x: P58, (0. x, x: ), (3.A.24)
Loy (81 0:080(0)) (x, x) = =16 (x: Bb*(x: f0)d2g,j, 22,0, x, x: ).
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Corollary [3.A.5]follows directly from Lemma 3.A.4]

Lemma 3.A.6. Suppose that Assumptions [3.2.5] [3.2.6] [3.4.8] and Condition hold.
Then, for all x € X and 6 € O, the following holds.

(i) For ji,j2,j3=1,...,dand js =d, + 1,...,d,
Lo, (2/,878/,84(0:0)) (x, %) = 0.
(ii) For ji,jo=1,....dand j3, ja =di +1,....d,
L4, (8/,8,873(0:0)) (x,x) = 0 (3.A.25)
L, ((0)81,2:81,(0:0)) (x,x) = 0
Lo, (g 1818503 H)gﬁ)(e)) (x,x)=0.
(iii) For ju=1,....dand jo, js, js = dy + 1.....d,
1350 (gjlgjzgj3gj4(0; 9)) (x,x)=0.
o

Proof of Lemma[3.A.6] First, Lemma and are proven. By Lemma[3.AT] the
expressions Lg,(g;,82/,8),8j.(0; 6))(y, x) and £§0(gj1gjzgj3gj4(0; 0)(y, x) are well-defined
for x,y € X. First, use (3.A:8) to write

Loy (2712/,272,(0:0) (3, %)
= a(y; @)dy (gjlgjzgjggﬁ(O, s X; 0)) + $0%(y: B0)0; (gjlgjzgjggj4(0,y, x; 0)) (3.A.26)

+ L(gjlgjzgjggh((),ﬁ(y, 2.0), %:0) — 8/,2,8/584(0, 7, X, 0)) Vary(d2)
for ji, jo,j3=1,...,dand j4y =d; + 1,...,d, and see that

L, (2/187,2587:(0:0)) (x, %)

= a(x; 00)0y (8),2,8738/4(0, %, %3 0)) + 3b7(x: 00003 (2,878,240, . X:6)) .
Using the generalised Leibnitz formula, see (3.A.7), observe that all terms in the derivatives
3y (28128820, 3. 2:0)  and 2 (g/,8,8/,85(0.y. x:6))
contain at least one factor g;(0, y, x; 6) for some j = ji, j2, j3, j4, meaning that
Oy (2/18128,814(0, %, :0)) = 37 (2,218,850, x, x:6)) = 0,
and Lemma follows.
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Now, use (3.A.9) and (3.A.10)) to write

0yL0,81828:8:(0, ¥, x; 0)
= dya(y; @0)9y(2,8),88:)(0, y, x; )
+ (a(ys o) + 20,6%(v: B0)) 2(37,8,87:8:)(0. ¥, x: 6)
+ 3627 80)3)(8/,81>87:87)(0, , x; 0) (3.A.27)

+ fR 0y(8/,8,8j:8.)0, T1(y, 2, @), X; 9)(1 +6yc(y,z;ao)) Vo, (dz)

- L ay(gjlgl2g]3g]4)(07 y7 x; 9) V(lo(dZ)
and

03 (L0y81128581:(0,, x: 6))
= 3ya(y; @0)3y(8/,8,8:87:)(0: v, x: 6)
+ (2‘9ya(% @) + %aibz(y;ﬁo)) ﬁi(gjlgjnggﬂ)((),y’ . 0)
+ (a(ys o) + 0yb*(v:50)) 33(8,2,8281)(0. y. x: 6)
+ 307 80)9y(8,828:812)(0, ¥, x: 6) (A28)

2
+ fR aﬁ(gjlgjzgjggﬁ)(O,n(y,z;ao),x;6’)(1+6yc(y,z;ao)) Vao (d2)
+ Lay(gjlgjzghgﬂ)((), 71(y, 2; @0), X; 9)356(% 75 @) Vo, (dz)

- jlé 07(2,82858i:)(0,y, X 0) o, (d2) .

Using the generalised Leibnitz formula again, see (3.A.7), it is seen that all terms in the
derivatives

a;(gj1gj2gj3gj4)(0ay9x; 9)’ i= 1,27
contain at least one factor g;(0, y, x; 6) for some j = j2, j3, j4, and all terms in the derivatives
0,(87,8/,8/,8)(0,y, x:0), =34,

contain at least one factor g;(0,y, x;6) or d,g;(0,y, x;6) for some j = j, j3, jsa. So, for
j1 = 1,...,dandj2,j3,j4 =d1 + 1,...,d,

8§(gj1gjzg,-3gj4)(0, T1(x,2520), x;0) =0, i=1,2 (3.A.29)
a§(g]lg]2g]3g]4)(0’x’xae) = 0’ l = 1’2’ 394

Inserting into (3.A.27) and (3.A.28)), it follows that

ay-ﬁé}ogjlgjzgjsgj4(0, Y, X, 0)’y=x = 6§£gogj,gj2gj3gj4(0,y, X; 9)’y:x =0.

120



3.A. Auxiliary Results

Furthermore, by (3.A.26)), (3.A.29) and Condition [3.A.3]

Ly, (gjlgjzgj3gj4(0; 9)) (t1(x, 22; @), X)
= a(-x + C(-x9 Z; CYO)’ a’O)ay(gjl gjzgjxgjz;)(()’ Tl(-x’ ZZ; Q’O), x; 0)

+ 307 (11(x, 2 @0): B0)03 (8, 8,838 (0. T1 (x, 223 @), x; 0)
+fgjlgjzgj3gj4(0,TZ(XaZZ;aO)vx;‘g)V(to(dzl)
R
—fgjlgjzgjggj4(0,TI(X,ZZQCYO),x§Q)Vao(dzl)
R
=0
for y-almost all z, € R. By (3.A-TI),

L5 (8518,85:25(0:6)) (x, )
= a(x; ) a)"59081'1gjzgjégj4(o’y’ X; 9)|y:x
+ %bZ(X;ﬁO) a§£908jlgj28j38j4(0, Y, X5 9)|y:x

+ fR Loy (gjl 81287384(0; 9)) (T1(x, 23 @0), X) Voo (d2)
- [ £ (2h25850:0) (x.)v 2

and Lemma (3.A.6 follows.

In order to prove Lemma [3.A6|[(iD)| for ji, j» = 1,...,d and j3, ja = dy + 1,...,d, recall
that by Condition@ 8j5(0,71(x, z; @), x; 6) = 0 for v-almost all z. First write

-£9o (gjlgjzgj3 (5 9)) (y, x)
= a(y; 0)0y(g;,8,87:)(0.y, x:0) + 1b*(y: B0)3}(8,8,,8j5)(0. y. x: 6)

+ fR (2:852855(0.y + (v, 2: 20, X3 0) — 8,8,85(0. ¥ X 6)) vy (d2) .
By (3.A.6) it is seen that each term in
0y(8/,81,8,)0,y, x;60) and  83(g;,8,87,)(0,, x:6)
contains at least one factor g;(0,y, x; 6) for some j = ji, j2, j3, SO
31(87:8287:)(0, X, x,0) = 9(8,8/,8:)(0 %, x;6) = 0
and (3.A.23) follows. Now, write

Lo, (2i2,27,(0; 08 () (v, %)
= a(y; 20)d (2i8,85(0,3, x:0)8 (3, x: 6))
+ 3023 B0)d; (218,250, 3, x: 0)g (v, x; 6)
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+ fR 88820,y + (0,7 @0), x; )8 (v + (3, 25 @0, X; 6) Vi (d2)
- fR 2i8/,85(0,y, x; G)gﬂl)(y, X;0) Vo, (dz) .
where (i, j) = (j1, ja) or (i, j) = (js, j1). In either case, each term in
3y (2i€/,875(0.y, x: 00 (v, x:0))  and 97 (gigj»255(0,3, x: 0)g'" (3, x: 6)
contains a factor gx(0, y, x; 6) for at least one of k = ji, jo, j3, j4, SO
3y (21812550, x, x;0)g'(x, x:0)) = 35 (218850, x, ;)8 (x, x;0)) = 0,
and the remaining results of Lemma [3.A.6][(i1)| follow. i

Lemma 3.A.7. Suppose that Assumptions [3.2.3] [3.2.6 [3.4.8] and Condition hold,
and that

0304850, x,x;6) = 0 (3.A.30)
forall x e X and 6 € @. Then
L4, (0084(0:0)) (x.x) = 0

da-Lo (85(0:0)) (x, x) = 0
Dagy (x, x,0) = 0

L4, ((928p)*(0:0)) (x,.x) = 0
£} ((9289)(0:0)) (x,.x) = 0,
and, for j=di+1,...,d k=1,...,d,

Lo, (96,8/(0;0)35.85(9)) (x, ) = 0.
<

Proof of Lemma[3.A.7] Observe first that by Lemma [3.2.9] Condition 3.A.3]and the con-
dition (3-A:30), also

aagﬁ(09 Tm(-x’ Zm;Q'O), x9 0) = 09 m= O’ 1’2’

for all x € X and 6 € ©. Now, using Remark [3.2.10]

L, (0285(0;0)) (x, x)
= a(x; 20)8,048p(0, x, x; 6) + 557 (x: B0)D304.85(0. X, x: 6)

+ f 0a8p(0, x + c(x, Z; ap), X; O)Vay (dz)
R
=0
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and

9aLo (25(0:0)) (x. %)
= L(0agp(0.0)(x, x) + dygp(0, x, x; 0)0qa(x; @) + $8785(0, x, x; ), b*(x: f)

+ jl; 0,880, x + c(x, z; @), x; 0)0,¢(X, Z; @) Vo (dz)
+ fR 8s(0, x + c(x, z; @), x; 6)0,q(z; @) ¥(dz)
=0,
and by (3.A.24),
Dagy (x, X;0) = =557 (x: )3 0agp(0, X, x;0) = 0,

proving the first three equalities.
Now, let j=d; +1,...,dand k = 1,...,d;. By 3.A12), (3.A13) and (3.A.T4), as

8,09,8/(0,x,x;0) =0, i=0,1,2

L. . (3.A.31)
0,049,800, 71(x;21520), x;0) =0, i=0,1,
it holds that
Ly, ((9,8)%(0:0) (x,.x) = 0
. 2 . —
0yLay (D080 0) (0| _ =0
2 200 _
& Lo, (90,8)°0:0)) (0| _ = 0.
Since also
99,8(0, 72(x; 225 ), x;6) = 0,
it holds that
L, ((99,8)%(0:0)) (x + c(x, 23 ), X) = 0
as well, and it follows from (3.A.T5) that
L3 (94,20 0)) (x,x) = 0.
Finally, by (3.A.31)) and (3.A.12),
L4, (99,8,(0,6)0,8'" (6 =0
Oo Hkgj( ) ) G’kgj ( ) (X,X) ,
thus completing the proof of the last three equalities. O

Lemma 3.A.8. Let 1 € O be given, and suppose that Assumptions and hold.
Then,
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(i) for jiji,jp=1,....4d,

(x;60) = L(g;(0,0)(x, x)
(x;6) = L(g;(0,0))(x, x)
(x;0) > La(g,25,(0,0)(x, x)

are C’g (X X O) functions.
(ii) under the additional Assumption[3.4.8| for ji =1,....dand j, =d, + 1,....d,

(x:0) = L3 (818,2(0:6)) (x, 0)

(x:0) > L1(2;,(0:0)81,)(0)) (x, x)

(x:0) > L1(25(0)g,(0;0)) (x, x)
are C?’OII (X X ®)-functions.

<&

Proof of Lemma[3.A.8] Note first that if f(y,x;6) € Cl;f)ll’s(Xz X @), then it holds that
F(x;0) = f(x,x;0) € c‘f"j(x X ©). Using Lemmas [3.A.1|and [3.A.2] it is seen that

u@ijmwﬂmzw%m%m>
R
(x;0) = fR 8i18j,(0, x + c(x,z;6p), x; 0) vg,(dz)

(x;0) > f gi(0,x + c(x,z;0), x; 0) vo(dz)
R

are C‘llmz1 (X x ©) functions. Then, Lemma|3.A.8 @follows from the expressions in Remark
3.2.10]

By (3-A.12)) and Lemma [3.AT] under the additional Assumption [3.4.8]

‘590 (gjlgjz((); 9)) v, x)
= a(y; @) (gj] 6ygj2 + aygjl gjz) (0, Y, X5 0)
+ 30°030) (81058, + 958,98, + 93871812) (0.3, x:0)

+ jl; (gj1 gjz(O’y + C(ya 25 a’O)’ X3 0) - gj1gjz(0a Y, X5 9)) Vao(dz)

is aChY ,(X?x®) function, so by (3.A.15). L2 (g,8},(0:))(x, x) is a C}%(X?x®) function.

Finally, by (3:A.19), (3.A.20) and Lemma[3.AT] the remaining results of Lemma[3.A-§|[(iD)]

follow as well. m]
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3.A.3 (Conditional) Expectation Inequalities

Lemma 3.A9. Let 1 € O be given. Suppose that Assumption holds, and that

F(t,9,%,0) € C1% (0, Ag)sy X X* X ®) Then, for 0 < s <1 < 5+ Aq,

f(t—S,Xt,XS;H)_f(S,XS,XS;H)
t t
=ffl(u—s,Xu_,Xs;H)du+ffz(u—s,Xu-,Xs;G)qu
A S

t
+ f f f3(u N\ Xu—, XS’ 25 9) (N/l - /'l/l)(du’ dZ) 5
s JR
under P,, where fi, fo and f5 are given by

fl(t’y’ X3 9) = 8tf(t9y’ X3 9) + -E/l(f(t’ 9))(}’, X)
Ja(t,y, x;0) = b(y; DO, f(1,y, x; 0)
By, x,2,0) = ft,y + c(y, 2, x;0) — f(t,y,x,0),

and where M) = (MEI))VZ(), M® = (Mgz))vzo given by

v
M‘(}]) = f l(s,t](u)f2(u - 5, Xy, Xs;0) dW,
0

MP = f f Vs ) f3(u = 5, Xy, X5, 25 0) (N* = p2)(du, dz)
0 R

are (F)y>0-martingales. o

Lemma [3.A.9]is essentially It6’s formula for stochastic differential equations with jumps
of the form (3.2.1)), see [Applebaum| (2009, Chapter 4.4.2). Assumption [3.2.5]and Lemma
ensure the martingale properties of the stochastic integrals by |Applebaum| (2009,
Theorem 4.3.2).

Assumption 3.A.10. Let f(t,y, x;0) € qu)zl,o,o((()’ Ag)ey X X% x @) with £(0, x, x;6) = 0 for
all x e X and 0 € ©. o

Lemma 3.A.11. Suppose that Assumption holds, and that f(t,y, x;0) satisfies As-
sumption[3.A. 10} Let p = 27 for some q € N, and write

fl(t’y7X;0) = atf(t7y7X; 0) + LOO (f(t’ 9)) (y’x)
fZ(I’y’ X5 9) = b(y;e())ayf(t’y’ X, 9) (3A32)
f3(tay’ x7Z;9) = f(tay + C()%ZHO)JC; 9) - f(t7y’X;9) .

For any function h(-;0), let Dh(-;6,0") = h(-;0) — h(-;8"). Then, there exist constants
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C, > 0 such that

X )

n [;’
< (nA)"7'C, Z f Eg, (Dfi(u = £y, X Xpr :0.60)) du
i=1 Y1

n
Z Df(Am X[:la Xt?—l ; 95 9,)
i=1

n £
+ (A C, Z f Eg, (Dfo(u = 1 X, Xpr :0.0)F) du
i=1 t;lfl

9q n £
—I_ i ,
> AT, Y Eg, (Dfs(u — 1y, X X, 2:0,0)) v (d2) du
=1 i=1 Vi VR .

forall 6,6 € ® and n € N. o

Proof of Lemma[3.A.11] By Ito’s formula (Lemma[3.A.9),

. |

n t?
< C,,E(,O(Zf Dfi(u— 1" Xue, Xpr 16,6 du
i=1 Y0

n

> Df(An Xe, X 36,6
i=1

p
] (3.A.33)

P
+ C,Eq, ( } (3.A.34)

noa
Z f Dfo(u - t?_l’Xu—,th‘_l;gy 0')dw,
P

P
) (3.A.35)

n [l('
+ CpEq, ( Z f LD}%(M — 1 Xy X [, 2:60,6) (N® — pg,)(du, dz)
i=1 Vi

i—

for suitable constants C,, > 0. Starting with (3.A.33)), and using Jensen’s inequality twice,

=3 )

o
Zf Dfi(u 1", Xy, Xpr 36,6 du
i=1 L
I 1
Z—f Dfi(u—1 ., Xue Xy 56,6) du

n A n
i=1 TVl

)

n i
< (nAy)"! Z ftn Egy (Dfi(u =1 Xyo, Xp 16,6')) du (3.A.36)
i=1 -1

= (nAn)pEQO [

Now, consider (3.A.34). By the martingale properties of the stochastic integral, the Burk-
holder-Davis-Gundy inequality may be used to deduce the existence of a constant C,, > 0
such that
)
n

1 1 (%
- Z — f Df(u— tf‘_l,Xu_,Xt?_l :0,0) du

2 2
n= = Ay Ju,

I 1 ,
_ZATL Dfa(u—1' ), X, X 36,6 AW,

i=1 i-1

17/2}
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Now, in the same manner as before, we may write

.|

not
> f Dfp(u =ty Xue, Xp 160,0) AW,
i=1 t?—l

p)
1 1 (7 . ,
Z ~ Dfr(u - ti_l’Xu—a Xt;.ll;ga 0) dw,

n A
i=1 " i

= (nAy)"Eg, [

p)
1 n 1 1! 2

n . 4
ﬁzpf Dfa(u =1y, Xu-, Xir 10,0))" du

i=1 Sn VI

< (nA,)"C,Eg, [

p/Z]
p/Z]
T

n 4
< (nA)P'*C Eq, (Dfo(u — %, Xy, X 360,6)P) du. (3.A.37)
P P 0 i-1 i-1
i=1 i-1

I1& 1 (7
- — | DpHw—1" X, Xp 56,6') du
n =1 Ay o -1 -

< (nA)P*C By, (

Finally, for (3.A.35), let M® = (M®), .o and S® = (§*),5( be given by

v n
My = f f D M @D f3 = £, X, X 230,60 (N = g, )(lu, d2)
0 YR

" n
S = f f D A @D fsu — 8y X X 26,6 vy (d2) du
0 YRGS
for k € N, and note that the quadratic variation of M® may be written as

W n
MP, M7, = f f D L D fu =1, X, X, 236,6))% N*(du, d)
0 VRIS
= @ 4 g0
v v .

M® is an (7,),s0 martingale, so by the Burkholder-Davis-Gundy inequality, it holds that
for any m > 1, there exist constants C,, > 0 such that

Eq, (1M°1")
< CBe, (IMP, M©])172)

m/2 m/2
< CEq, ((Mﬁz")) ) + CEq, ((S ) ) .
In particular, inserting 2/ in place of k£ and 247J in place of m for j € {0,1,...,q — 1},

) 24~ i) 24-(+1) @) 24=G+1)
Eg, ((M ) )scpEgo ((M ) )+c,,Eg0 ((S ) )

This inequality may be used iteratively to obtain

2 () <oz a9) 6, 3o 55
=1
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and since EQO(M‘EP ) ) = 0 by properties of the Poisson integral,

Ea (M) < €, Zq: Eg, ((S ‘VZ’))W) .

=1

That is,

P
q n £ 247!
1 , ]
< CpZEGQ [(Zf fRDJ%(u — 1y Xu—s Xin 260,60 ) Ve;o(dz)du) J
=1 i=1 Y

Recalling that vy has density g( - ; 8) with respect to ¥, where g(z; 8) = £(0)p(z; 0) and p(-; 0)
is a probability density with respect to ¥, Jensen’s inequality is used twice to write

n i 207!
Ea || Dfsu =11 Xuos Xer 250,60 v (d2) du
=1 Vi YR o

= (@A)
11 (7 2
X Eg, —Z—f fos(u—tf'_l,Xu_,th_ ,2:0,0) p(z; 60) 7(d2) du
n Ay Je Jr !

Eg, (Dfs( = 11 Xumr X |, 2:6.60)) v, (d2) du

L
Z f f Df?)(” - t?_]’ Xll—vxt:.tl ) Z, 07 6/) (NQO _MHO)(dua dZ)
=1 Vi VR

—,

no A
—1_ i

< E@nAY> ! f
i=1 t;l—l

n 1
—l_ ! n ’
= mA)*7Cy ) f f Eg, (Dfs(u =1y, X, X, 2:60,6')) vgy(d2) du
i=1 Vi, VR
Thus,

e

Z f fo3(u - t?_],Xu—,Xt;Ll’Z; 9’ 0’) (NHO _ﬂe())(du’ dZ)

i=1 iy JR

=3 )

q n £
<> mAa)* e, Y f fR Eg, (Dfsu — 1. X Xpp . 2:60,6')) vg,(d2) du. (3.A.38)
=1 Yl

=1

Note that for fixed w € Q, X,(w) # X,-(w) for at most countably many u in any finite
interval / C [0, o). Tonelli’s theorem for non-negative functions was therefore used on the
right-hand side of (3.A.38)) to exchange the integration order and see that the X,,_ could be
replaced by X, in the Lebesgue integral.

Now, inserting equations (3.A.36), (3.A.37) and instead of (3.A.33)), (3.A.34) and
(3.A.35)) the desired result follows. O

Lemma 3.A.12. Suppose that Assumption holds and let m € Ny. Define z,, =
(215 ... ,2m), With the convention 7y = (), and assume that (t,y,x;60) — f(t,y,x,Zy;0)

128



3.A. Auxiliary Results

satisfies Assumption |3.A.10| for v-almost all z,, € R". Let p = 29 for some q € N, and
define

f1@y, X, 2,,50) = 01 f(t,y, X, 25 0) + Lo, (f(t,2,50)) (v, X)
S8, y, X, 25 0) = b(y; 00)0, f (L, , X, Z; 0)
f3(t’y9 -x’ Zm’ Z’ 0) = f(t’y + C(Y,Z; 90), -x’ Zm,e) - f(t’y’ -x’ Zm; 0) .

For any function h(-;0), let Dh(-;6,0") = h(-;0) — h(-;8"). Then, there exist constants
C, > 0 such that

]EH() (Df(t - s, X[9 XS’Zm; 0’ 0/)[))

t
<(t- s)”_ICpf Eg, (Dfi(u — s, Xy, X, 2Zm3 0,0)7) du
N

!
+ (- s 1c, f Eg, (Dfo(t = 5, Xu» X, 23 6,0)P) du
N

q s
+[Z(t—s)2q1_l]cp f f Egy (Df3(ut = 5, Xus X5, 2, 736, 6')) v, (d2) du
=1 s R

forall 6,0’ € ®,0 < s <t < s+ Ay, and V-almost all z,,,. o

The proof of Lemma [3.A.12]is identical to the proof of Lemma [3.A.TT] in the case where
J depends on an extra variable z,,, and n = 1, #f = rand i | = s (so that A, =1 — s).

Lemma 3.A.13. Suppose that Assumption holds, and let m € Ny. Define z,, =
(z1,--.,2m), with the convention 7y = (), and assume that

(i) f(t,y,x,2,;0) is differentiable with respect to 8 on © for t € (0, Ag)gy, X,y € X and
v-almost all z,, € R™.

(ii) for all compact, convex subsets K C ©,

m
. 2 C n C Iﬂ C m
sup 1901,y % 2 OIF < Cicn (1+ 1 + 1) [ T (1 + 121
t»s(O,Ao)‘90 0eK Jj=1

for x,y € X and v-almost all 7,,, € R™.

Let Df(-;60,0") = f(-;0) — f(-;8). Then, for p = 29 with q € N, there exist constants
Ckm,p > 0 such that

m
E90 (Df(u - S, XLHXS’ Zm; 9’ 9’)]7) S CK,m,p ||9 - 0’”[7 l_l (1 + |Zj|CK’m,p)
j=1

forO<s<u<s+Ayalb,¢ €K and v-almost all z,,, € R™. o

Lemma[3.A.T3|follows by application of the mean value theorem and the Cauchy-Schwarz
inequality.
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Definition 3.A.14. Define, form € N, z,, = (z1,...,22)* € R™ and the functions 7, :
XXR"x 0 — X by

TV Zm; 0) = Ti—1 (Y + (¥, 23 6), Zin—1; )

where zg = () and 1(y, Zo; 6) = y, so that, e.g.

T1(y,21;60) =y + c(y,21;6)
720, 22;0) =y + c(y,22;0) + c(y + ¢(y,22;0),21; 60) .

Definition[3.A.14]is a slight generalisation of Definition [3.4.9] for use in the following.
Remark 3.A.15. Suppose that Assumption [3.2.5|holds, and let 7,,(y, Z»; 6p) be as defined

by Definition [3.A.14]

(1) It may be seen by induction that for any m € N, there exist constants C,, > 0 such
that

m

[T, 2m3 60)] < Cn(1+ DD | (1 + 1251

J=1

So, for f(t,y,x;0) € Cgfgoo((o, Ag)g, X X? x 0®) and K C ® compact and convex, it
may be verified that there exist constants Ckg,,, > 0, such that

m
£ T 2 00), %0 < Crem (1 4+ 16+ ) [ ]+ 121%m)
j=1

forall r € (0, Ag)gy, 6 € K, x,y € X and z,, € R™. That is, for each m € N, also

((t.y.%:0) > [T (Y. 23 00). x: 6)) € COY (0, Ag)gy X X X ©).

(i) Suppose that f(z,y,x;6) € C?% ) (0, Ag)s, X X* X ®) and z € R. Then,

=0y f(t,y + c(y,2:600), x; 0)(1 + 0yc(y, 25 60))
& (f(t,y + c(v,2:60), x; 0))
= 0 f(t,y + (. 2:60), x: O)(1 + By (v, 2: 60))>
+ 3y f(t,y + (v, 23 6p), x; 0)02¢(y, 23 6p) ,
and [()l may be used to conclude that for fixed z; € R,
(t,y,%:0) > £t 710, 21:60), x:60) € CF% (€0, Ag)ey X X* X ©) .

Using the argument iteratively, it is seen that for fixed z,, € R™, m € N,

(1,7, X:60) = (1, (. 23 60), x:6) € C1% (€0, Ag)ey X X* X ©) .
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Lemma 3.A.16. Suppose that Assumption[3.2.5| holds, and that
f(t.y.x:0) € C}%5 (€0, Ag)sy x X2 x ©)
with f(0,x,x;60) =0 forall x e X and 0 € ®. Let

1

£n(0) = nh,

> FBn Xe Xn 16).
i=1

Then, for p > d of the form p = 29 for some q € N, the following holds: For each compact,
convex set K C O there exists Cg , > 0 such that

Eg, (1£:(0) — £(0)IF) < Ck pll0 — €'1I1P
forall 6,68 € K andn € N. o

Proof of Lemma[3.A.16] Let K C ® compact and convex be given. Choose p > d of the
form p = 29 for some g € N, and note that

n
> Df(n Xe, X 36,6

i=1

p
] . (3.A.39)

Egy (1£(0) = £u(0)I7) = (nAy)™" Eg, (

By Lemma [3.A.TT} there exist constants C, > 0 such that

. )

n 11t
< mA)TICy Y f Eg, (DA = £y, X Xpr :0,6))) du
=1 Y1

n
> Df(An Xe. Xn :6.6)
i=1

n /n
+ (AN, Y f Eg, (Dfo(u = 1y, X, Xpr 0,6 )) du
i=1 Vi

q n T
—l_ ! /
e D), Y [ [ B (DA X Xy 560,60 i)
=1 i=1 i-1
(3.A.40)

for all 6,6’ € K and n € N, where fi, f> and f3 are given by (3.A.32)), and d¢fi(t,y, x; 6),
0gfa(t,y, x;0) and 0y f3(2, y, x, z; 8), well-defined by assumption, satisfy that

10612,y x: I + 19 f2(2. y, x: DI + 19631,y % 2: DI
< Ci (14 1% + () (1 + 121¥)
for all t € (0,Ap)s, and 6 € K (see Lemma and Remark [3.A.15). Then, by Lemma
[3.A.T3] there exist constants Ck,, > 0 such that
"
f Eg, (ij(u — 1y, Xus Xon 36, 9')”) du < CgpAn 10 = 6'|1P (3.A.41)
i -
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for j =1,2 and
4
f fEeo (Df3(u =11, Xus Xor 1,736, 9')’)) v, (dz) du
i, JR

£
< f f Crpllo = &'117 (1 + 1217 ) v (dz) du
iy JR

< CrpAnll6 - 6|7 (3.A.42)

Inserting (3.A.41)) and (3.A.42)) into (3.A.40), yields the existence of C), x > 0 such that

X |

q
<Cpk {(”An)p + (nA)P"? + Z(nAn)qu] 16— &P

n
Z Df(Ans Xt;’ s Xt:'l—l a 9’ 9’)
i=1

=1
< Cpr(nA)? 0 -07, (3.A.43)

since nA, — oo as n — oo. Inserting (3.A.43) into (3.A.39) proves Lemma[3.A.T6] i

Definition 3.A.17. Suppose that Assumption [3.2.5/holds, and that for some m € Ny,
t,y,x;0) = f(t,y,x,Z; 6)

satisfies Assumption [3.A.10| for #-almost all z,, = (z1,...,2,) € R", with the convention
zo = (). Define A;, A, and A3 by their actions on f, respectively, (f,z), z € R, as the
functions

Aif: 6y, x,2050) = 0 f(t,y, X, 2,5 0) + Loy f(2, Y, X, Z; 60)
Aof 1 (Y, %, 2Zm; 0) = D(y;00)0y f(1,y, X, Zn; 0)
A(f, )0 69, X% 2,,2,0) = [, 710,25 60), X, Zn; 0) — f(1,Y, X, 23 0) .

When well-defined, let

Af = AAT ),
AL, wi) = A (A wier), we)

for j=1,2, withﬂ?f=ﬂg(f,wo) = fand wy = (wy,...,w) € RN ke N. o

Remark 3.A.18. Definition B.A.17] is used to define a number of functions used in the
following. Whenever well-defined for some function f(z, y, x; 6), the following notation is
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used, for j,k=1,2.

fi = A;f f = A(f,z21)

fik = AA;f Sk = AA(f,z1)

fik = AFAA;f B = AALA(f,21)

fiz = A(FAAf,21) oz = A(AA(f,z1),22)
fize = AA(AA L, 21) ok = A A (AA(f,21),22)
[ = ANFLAf. 1) o33 = A(FA(fr21), (22.23)
i = A(A;f,z1) /33 = ANf. )

fisk = AA(A;f,21) fak = FAFA(f2)

finu = FAAA(Af,21) f3 = FFALS, 1)

[ = A(AANA;f21),22) fzz = A(FANS 22),23)
fizs = ANA;f22) f33 = Af.z3)

[ = AALA;f, 1) f33k = AA(fo23)

fi3z = ANA;f23) 333 = A(foza)

[k = AANA;S23) fasze = FuA(fo24)

[z = ANA;f 24) f33333 = A(f.2s)

For any of these functions, let m € {0, 1,2, 3,4, 5} be the number of times A3 is applied in
the function definition. Then the resulting function is a function of (¢, y, x, Z,; 6). o

Lemma 3.A.19. Suppose that Assumption [3.2.5| holds, and that
£1,3,%:0) € oYy 1 (0, Ag)e, X X2 x ©)

with

JO, Ti(x,Zx; 6p), x;60) =0, k=0,1,2
0, f(0, Ti(x, 21, 00), x;0) =0, k=0,1
0y f(0, 7i(x, 245 6p), x;0) =0, k=0,1
PO, T(x, 245 60), ::6) =0, k=0,1,

and ti(x, 7i; 0y) defined by Definition Let
1 n
o(0) = —75 D (B, X, X 36).
nA,= =

Then, for any compact, convex set K C O, there exists a constant Cg > 0 such that

Eg, (16:(0) = @) < Cllo - ¢'I1
forall 6,0 € K andn € N. o

Proof of Lemma[3.A.19] In the following, in order to save space, write

Dh(-;6,0') = h(-;60) —h(-;6")
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for any function A( - ; 6), and, for any function of the form A(t, y, x, z,,; 6), put
h(u, t?—l’ 2 0) = h(u — t,"l_l’ Xu Xt:?_l s Zm 0) .

For j = 1,2, 3, the functions f;, fj1, fj2. f3, fj31, fj32, fj33 used in the following are defined
in Remark [3.A.T8] Under the assumptions of this lemma, it may be verified that f, f;, and

[j3 satisfy Assumption [3.AT0] (see also Remark AT, and fj1, fi2, fi31. fi32. fi33
satisfy the assumptions of Lemma[3.A.13]

Write
n 4
Egy (1a(0) = Lu(@)I*) = (nAn) ™A, By, [ D Df (A, X, X 36,6 ] . (BA49)
i=1
By Lemma[3.A.TT] there exist constants C > 0 such that
n 4
Egy || DF (A X, X 36,6 ]
i=1
n t;’
< (A C Y’ f Eg, (D (1, £11:60,6)") duy
i=1 Vi1 (3.A.45)

n 1!
+n8,C f Eg, (DE2(ur, £11:60,6')") duy
i=1 Vi

n l‘;‘
+ (1 + nAn) C Z f ngO (Df3(u1, l‘?_l,m;@, 9’)4) Vgo(dzl) du1
i=1 Vi VR

for all 6,6’ € ® and n € N. Furthermore, applying Lemma [3.A.12] twice consecutively,
there exist constants C > 0 such that

Eq, (Dfj(u1, 2236,6)*)
Uy
<C(u - t7_1)3f Eg, (Di}l(uz,f?_l;& 9')4) duy
"
1 . )
+Cuy — 1) f Eg, (Dfja(uz, 36,6)*) du
L
+C(l +u; —t?_l)

Uy U2
X ( f f (ur =1 ,)° f Eg, (Dfjaaus, £, 21:6,6)*) dus va,(dz1) duy
iy YR LA

U U
+ f f (ur = 1}}) f Eg, (Dfjaa(us, #1216, 6)*) du va,(dz1) duy
L YR A

+f f(1+“2_t?1)
i, JR

)
X f f Eg, (Dfjaa(us, 7. 223 0,6)*) va,(dz2) dus vg,(dzy) duy
t, JR

(3.A.46)
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for j = 1,2 and
Eg, (Df3(u1., 1. 2136,6))

U]
< C(u —t?_])3f Eg, (Df31(uz,t7_1,zl;9,9’)4) duy

liy

Ui
+ C(u; —t?_l)f Eg, (Dfsz(uz,tf’_l,zl;ﬁ,@')4) duy
1

+C(1 oy — tlf’_l)

Uj U
X (f f(uz —1 )’ f Eg, (Df331(143, 1,225 0, 9')4) dus vg,(dzp) duy
n, Jr a

-1

U] U
+ f f (uz — 1)) f Eg, (Dfssz(us, . 22;0, 9')4) duz vg,(220) duy
iy JR my

U]
+f f(1+u2—t:7_1
iy JR

)
Xf fEeo (Df333(M3,t?_l,Z3;9,9')4)V90(d23)dua veo(dz2) dus | .
i, JR

(3.A.47)

Let K C © compact and convex be given. By Lemma [3.A.T3] there exist constants Cx > 0
such that fori=1,...,n, and

Jo €{11,12,21,22}
J1€1{31,32,131,132,231,232}
J2 €{133,233,331,332})

Eg, (Dfjy(us. £11:6.6))*) < Cx llo - ¢/||*
Eg, (D, (u3, £, 21:6,6)*) < Ci 110 = 0/11* (1 + |24 %)

2
Egy (Dfy, (3, 11,223 60,6)*) < Cic 0= 01 | ] (1 + 1l ) (3.A.48)
k=1
3
Eg, (Disss(us. 7 1.23:6.6)%) < Cic 6 - /11 [ ] (1 + 1zl *) .
k=1

Inserting (3.A.48) into (3.A.46) and (3.A.47),
Eq, (Dfj(u1, 2713 0,0)*) < Cur = £ ) 16 - ¢/||*

1
E@O (DfS(Ml, t?_l,ZI;g’ 9’)4) < CK(MI _ t;’l_l)z (1 + |ZI|CK) ”9 _ 9,”4
for j = 1,2. Inserting (3.A.49) into (3.A.45)) yields the existence of Cx > 0 such that

(3.A.49)

n
> Df (b Xe. Xn 16.6))
i=1

Eg,

4]
(3.A.50)
< Ck ((nA* + (A + nAy) AZ1IO - 6|1

< Cx(nA) ' AZIO - 0|
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(recall that nA, — oo as n — o). Now, inserting (3.A.50) into (3.A.44), the desired result
is obtained. o

Lemma 3.A.20. Suppose that Assumption holds, and that
f(t.y,x:0) € O (€0, Ag)sy x X2 X ©)
a(y;0) € C’;?()l (X x0)
b(y:6) € Ch) (X X ©)
c(7.2:0) € C (X xR x ©)
with
O, Tk(x, 245 6p), x;0) =0, k=0,1,2
0, f(0, Ti(x, 243 60), x;0) =0, k=0,1
Oy f (0, Tr(x, 243 00), x;0) =0, k=0,1
8§f(0, Ti(x, 245 60), ;0) =0, k=0,1
8 £(0, Ti(x, 243 60), x:0) =0, k=0
0:0,f(0, Ti(x, 213 6p), x;0) =0, k=0,

and t(x, z; 0y) defined by Definition Let
1 n
G) = Z] FB X, Xin 30).

Then, for any compact, convex set K C O, there exists a constant Cg > 0 such that

Eoy (14a(6) = La(@)IF) < Cillf - |17
forall 6,0 € K andn € N, o
Proof of Lemma[3.A.20] In the following, in order to save space, write
Dh(-;0,6") = h(-;6) — h(-;8)
for any function A( - ; 6), and, for any function of the form A(t,y, x, z,,; 6), put
h(u, 2 |, 2,;0) = h(u - t?_l,Xu,Xt:}_l s I3 0) .

For j = 1,2,3, the functions f;, fi1, fi2, fio1, fi22, fi23, fi3» fi31, fi32, fj33 used in the
following are defined in Remark [3.A.T8] Under the assumptions of this lemma, it may be
verified that f, f;, fj and fj3, j = 1,2,3, satisfy Assumption @ (see also Remark

BATS|GD), and fi1, fia1, fi22, fj23s fi31s fi325 fj33, J = 1,2, 3 satisfy the assumptions of
Lemma[3.AT3l

Write

n
Z Df(Al’l’ X[?) Xt?—l > 09 9’)

i=1

2
By (1£2(60) = £u(6)F) = (nA) A% By, [ ] . (A5
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By Lemma[3.A.TT] there exist constants C > 0 such that

n

> Df b Xe. Xn 16.6))
i=1

2
ne
<nAC Y f Eq, (Df1(u1,2%1:0,60)%) duy
i=1 Vi

n 1
+ch Eg, (sz(ul,t;?_l;e, 9’)2) du,
=1 Y1

n tlf'
+CH Eq, (Df3(u1. 251,213 0.0)%) vg(dzy) duy
i=1 Vi JR

(3.A.52)

for all 0,6 € ®. Furthermore, using Lemma|3.A.12|three times, there exist constants C > 0
such that

Eg, (Dfj(u1, 2,3 0,6')%)

U
< Clu — 1)) f Eg, (Dfj1(uz, £1_:6.6)?) dus
"
U1 l U
+C f (ur = 1) f Eg, (Dfja1(uz, 11:0,6')?) dus duy
rr i
u11 " 1
+C f f Eo, (Dfjaa(uz, 1)1:6.6')) dus duy
l;ll ttnl
U] Uy
+C f f f Eg, (Dfjpa(us, 1. 21:6.6)) vg,(dzy) dus duy
6y Y JR
U1 U
+Cf f(uz—t?_l)f Eg, (ijsl(u3,lf’_1,Z1;9,9')2) dusz vg,(dz1) duy
o JR .
u11 " 1
+Cf ff Eeo(ij3z(u3,lf’_1,11;9,9')2) duz v, (dzy) duy
i, Jr I,

U 7%
+ Cf f f fE()o (ij33(u3, 1, 22;6, 6’)2) Voo (dz2) dus ve,(dzy) duy
o YRI5, VR

(3.A.53)
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for j =1,2 and

Eg, (Df3(u1,t?_1,Z1 ;6 9’)2)

Uy
< Clur —1})) f Eg, (Dfa1(u, 21,2136, 6)7) du
r;*.l
Uy

7
+C | (- f?_l)f Eg, (Df321(u3, 1,216, 9')2) dus duy
: 7

lig

Uy U
+ Cf f Eg, (Df322(u3, 1,216, 9')2) duz duy
AR

U| Uy
+C f f f Eg, (Dfaza(us, ., 223 60,6)) vg,(dz2) dus du
6y Y

R

U1 U
+ Cf f(uz - l?_l)f Eg, (Df331(u3,tf_1,lz;9, 9')2) dus vy, (dzz) duy
. JR 1
u11 " 1
+C f f f Eg, (Dfasa(us, £, 2230, 6)) dus v, (dz2) duy
ry YR I

i 1o
+ Cf ff fEeo (Df333(u3,t?_1,z3; 0, 9’)2) Ve, (dz3) dus v, (dzp) dus .
6y YR I IR
(3.A.54)

Let K C © compact and convex be given. By Lemma[3.A.13] there exists a constant Cx > 0
such that fori = 1,...,n and

Jo €{11,21,121, 122,221,222}
J1 €1{31,123,131,132,223,231,232,321,322}
J2 € {133,233,323,331,332},

it holds that

Eg, (Dfjy (3, 2 1360,6'7) < Cx llo - |
Eg, (DI, (3,2 1,21:60,6)) < Ci 19— 1> (1 + |21 %)

2
Eay (Dfjy (3, 11, 22:6,67) < Cllo = 61 | | (1 + 1) (3.A.55)
k=1
3
By, (Dfsaa(us, 1, 23:6,6)7) < Cillo = 0'IF [ ] (1+12%) .
k=1

Inserting (3.A.53)) into (3.A.53)) and (3.A.54), we obtain

Eq, (Dfj(u1, 2113 0,6)%) < Cur = £ ) 16 = 0/

(3.A.56)
Ee, (Dfs(ul,tf_l,m;é, 9’)2) < Crluy — tl(z_l)z(l 4 Izlch) 10— ¢

for j = 1,2, (keeping in mind that A, — 0 as n — oo and u; < ¢}'). Inserting (3.A.56) into
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(3.A.52)), we obtain the existence of Cx > 0 such that

n
> Df(Aw X X 16.6))
i=1

2}
(3.A.57)
< Ck ((nAn)* + nA,) A2 116 - ¢/

< Cx(nA,)* A2 116 - 0|17

(recall that nA,, — oo as n — o). Now, inserting (3.A.57) into (3.A.51)), the desired result
is obtained O

Lemma 3.A.21. Suppose that Assumption holds, and that

£y, x:0) € CY% (0. Ag), X X2 x ©)
a(y:60) € C4) (X x ©)
b(y:60) € C}7 (X x ©)
c(y.2:0) € Cjp (X X R x ©)

with

O, (%, 243 60), x;0) =0, k=0,1,2,3,4
8,0, Tk (x, 243 60), x;0) =0, k=0,1,2,3
0y f(0, 7i(x, 245 6p), x;6) =0, k=0,1,2,3
05 £(0, Ti(x, 23 60), x;0) =0, k=0,1,2,3
05 £(0, Ti(x, 243 60), x;6) =0,  k=0,1

0,0, f(0, 7i(x, 245 6p), x;0) =0, k=0,1,

and T(x, zx; 0) defined by Definition Let
1 n
W(0) = — Ay, X, X 5 6).
£n(6) nA%;f( w X X 16)

Then, for any compact, convex set K C O, there exists a constant Cg > 0 such that
Eg, (1£2(0) — Lu@)I*) < Cilio - 0'11*
forall 6,0 € K andn € N, o

Proof of Lemma In the following, in order to save space, write
Dh(-36,60') = h(-;60) = h(-;6")
for any function A( - ; 6), and, for any function of the form A(t, y, x, z,,,; 6), put
i—1°

h(l/t, tlr'l_]’zm;e) = h(u_tn Xu’le’ilazm;G)-

139



Chapter 3. Diftusions With Jumps

For j = 1,2, 3, the functions

i fin fio fi fi2 fiz fin [z fpsz [ fiz

fiz2 [ [z [z [z fi3st fi3se [z fi33zt fi33z2 fi3333

used in the following are defined in Remark [3.A.T8] Under the assumptions of this lemma,
it may be verified that

fi fr fiz fin fizz fizz fi333

satisfy Assumption [3.A.T0|(see also Remark [3.A.T5|[i1)), and

fin fiv fiz fpat fipzz fizz fizr [

Si32 fizs fisr [ fissr fisse fj3333

satisfy the assumptions of Lemma|3.A.13]

Write

n 4
Eg, (122(6) = Zu(@)I*) = (nA\)) ™ A% By, [ D Df (A Xi, Xpr 36,6 ] . (BASS)
i=1
By Lemma[3.A.T1] there exist constants C > 0 such that
n 4
E90 ( Z Df(A}’h Xt;’, Xt;l—l > 9’ 9,) J
i=1
n t;l
<@’ Y [ B (D 12:0.0)") i
i=1 i (3.A.59)

nooaf
+ CnA, Z f Eg, (sz(ul, 56, 9')4) duy
i=1 Y1

ne
+C(1 +nAn)Zf ngo (Df3(ur, 1. 21:0,60)") v (dzy) duy
=1 Vi IR
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forall 6,0’ € ®. Also, by Lemma|3.A.12] there exist constants C > 0 such that

Eg, (Dfj(uy. 1 1:60.60)*)

< Cluy —11))° f Eqg, Dle(uz, ’.:6,60) )duz
+C(uy - 1)f (uz — 1 1)3f Eg, (ij21(u3,t?_1;9,9')4) duz duy

u2
+C(uy = 1)) (Mz—tl 1)f Eq, Dszz(Ms, A 9)4) dus duy

i-1

+C(u; — [’-1_1)

1

U] U
Xf (1 +u - f?_l)f fEeo (ijzs(u3,t?_1,Z1;9, 9')4) ve,(dz1) duz duy
t , JR

n
i-1

+C(1+u -1 )
U| U
X ( f f (ur = 1) f Eo, (Dfja1(us, 1. 21:6.6)*) dus vy (dzy) duy
i i
f f(uz—l, 1)f Eg, ijsz(u& t1,21:6,0) )du3 Voo (dz1) dua

fu]f(1+u2—ll 1)

X f f Eg, (ijss(u3,t?_1,12;9,9’)4) Ve, (dz2) dus ve,(dz1) dus
t’?l R

(3.A.60)
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for j =1,2 and

Eg, (Df3(M1 =11 Xuys X L2150, 9')4)

uy
< C(uy - t?_1)3f Eg, (Dfsl(uz,t?_l,zl;H, 0’)4) duy
"
1 iUy iy
+C(uy — tf_l)f (up — tf’_l)3f Eg, (Dfszl(uaff_],m;@, 9')4) duz duy
i 1

U Uy

+ C(uy —t?_l)f (u2 —t?_l)f Eg, (Dfszz(ua,t?_],zl;& 9’)4) dusz du
1 i

+Cuy — 1))

Ui

U
X (I +up — lf_l)f fEeo (Df323(M3,lf’_1,Zz;9, 9')4) Voo (dz2) dus duy
iy YR

n
liy

+C(1+u — 1)

Ul u
X ( f f (wy =2} f Eg, (Dfsa1 (s, 2, 22:0,6)") dus va,(dz2) duy
i VR 1

t_

U] U
+ f f (up = 1)) f Eg, (Dfaza(us. £ 22 6,0)") dus vg,(dzz) dus
i, JR m,

U| )
+f fa+w—¢p
i, JR

)
X f f Eq, (Dfasa(us. . 23:0,6')") vy, (dzs) dus vg,(dz) duy .
i, JR

(3.A.61)
Furthermore,

Ego (ij23(u3, t?—l ,215 0, 9,)4)

U3

< Clus - 11,)° f Eo, (Df.i231(”4’ fip> 2130, 9/)4) dus
7,
) s . " (3.A.62)
+ C(uz — ti—l)f Eg, (ij232(u4, 51,215 0,0) ) duy
"
1 .
+C(L+uz - tiipf f Eq, (Dfja3a(us. 111,221 0,6)*) ve,(dz) dus.
i, JR

E90 (Df_]32(u3’ t:z_l > Z] a 0’ 0’)4)
13
<Cluz —11,) f Eg, (ij321(”4, 1,216, 9')4) duy
i
o ) » (3.A.63)
+Clus — 1)) f Eg, (Dfjaoa(ua, £ 1,2156,60)*) duy
i
13
+C(1 +uz - t?_l)f fEeo (ijszs(uzx,t;’_l,zz; 6, 9')4) ve,(dz2) duy
t, JR
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Eg, (ij33(u3, 1 ,22;0, 9')4)

us
<Cluz -1, f Eg, (Df:i331(u4,f?_1,12§ 0, 9')4) duy
L

U3
+ C(usz — fL)f Eg, (ij332(u4, 11,2250, 9')4) duy
iy

+C(1+uz—1'))

(f f(u4 - )’ fl Eq, DfJ3331(u5, ! ,23:6,0) )dus vy (dz3) duy

f f(u4 -1 1)[ Eg, DfJ3332(M5, r1,23;60,0) )dus ve,(dz3) duy
[n

ﬁ f(1+u4— )

X f f Eg, (ij3333(”5, 11,2430, 9')4) Vo (dz4) dus ve,(dz3) duy
IR
1
(3.A.64)
Eg, (Df323(u3, 1 ,.22;0, 9/)4)
u3
<Cluz — 1)) f Eg, (Df3231(u4, 1 1.22:0, 9/)4) duy
L
n “ 0 " (3.A.65)
+ Cus — ti_l)f Eg, (Dfszsz(m,t,-_l,Zz;@,@) ) duy
"
1 .
+C( +us ~ t?—l)f fEeo (Df3233(u4, 1 ,.23;0, 9')4) ve,(dz3) duy ,
i, JR

Ee() (Df332(u39 t;l_] 9 ZZ§ 0’ 0’)4)
U3
<Cluz-1',) f Eg, (Df3321(u4, 1,220, 9')4) duy
my

w7 . " (3.A.66)
+ C(usz — fi_l)f By, (Dfsszz(u4, i 1,22;6,0") ) duy
i

+C(1+u3 - t?_l)f fEeo (Df3323(u4, 11,2356, 9')4) ve,(dz3) duy ,
r, JR
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and

Eg, (Df333(M3, 1 .23:0, 9')4)

U3
<Clusz-1',)° f Eg, (Df3331(u4, 1,230, 9')4) duy
Lo

U3

+C(uzs — 1)) | By (Dfsaaa(ua, 2 1,23:6,6)") duy
i-1

+C(1 +uz — t?_l)

u3 U4
X (f f(u4 - l‘?_l)3f Eg, (Dfazaan(us, 12, 243 0,0)*) dus vo,(dzs) duts

f f(bu— 1)f Eeo Df33332(us, 11 1,24:6,6) ) dus vg,(dzs) dugy
IVL

f f(l+u4—tl b

x f f Eq, (Dfsa33a(us. 1. 25:6,0)") v, (dzs) dus ve,(dz) dus | .
n R
1
(3.A.67)

Let K C © compact and convex be given. By Lemma [3.A.T3] there exist constants Cx > 0
such thatfori=1,...,n, and

Jo €{11,21,121, 122,221,222}

J1 €1{31,131,231,321,322,1231,1232,1321, 1322,2231,2232,2321, 2322}

J2 €{331,1233,1323,1331, 1332,2233,2323,2331,2332,3231,3232,3321, 3322}
J3 €1{3233,3323,3331, 3332, 13331, 13332,23331, 23332}

Ja €{13333,23333,33331, 33332}

it holds that

Eq, (Dfj(us. £1_1:6.6))*) < Cx 0 - 0/)|*

Eq, (Dfy, (u3. £11:6.6)*) < Cx 110 = 0/11* (1 + |21 )
2

By, (Dfj, (s, 81,223 0,0)*) < Cic llo = /11 | ] (1+ 1)
k=1

3
By, (Dfjy (s, 81,233 0,6)*) < Cic Nl — 0/11* | ] (1+ 1) (3.A.68)
k=1

4
By, (Dfj,(us, 81,243 0,6)*) < Cic llo - 0'11* | ] (1+ 1)

k=1

5

Eg, (Dfsazas(us, 171,253 0,0)") < Cxllg = 0'11* | T (1 +1a6l%) .
k=1
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Inserting (3.A.68) into (3-A62), (3-A.63), (3.A.64), (3-A-63), (3-A.60), (3.A.67), it follows

that

Eg, (Dfjaa(us, £, 21:6,6)*) < Cx 110 = 0|1 (s = £11) (1 + 122 %)

Eg, (Dfjsa(us, 1, 21:6,6)*) < Cx 110 = 0|1 (s — £1-1) (1 + 122 %)
2
Egy (Dfsa(us, 61, 22360,0)") < Cic 10 = /11 (us = 22 )7 [ ] (1 +126l¥)

=~
—_

Eg, (Dfsa3(us. 11, 22:0,0)") < C 19— 0'l1* s — ) | [ (1+1al)  (3.A69)

Eg, (Dfas2(us, 1, 22:60,0)*) < Cic 10 = ¢/ 11*us — 1) | [ (1 + 1=l¥)

v

=~
W =

By, (Dlsaa(us, 11, 23:6,0)") < Cic 110 = /11 ua = 2 )7 | ] (1+124¥)
k=1

Inserting the expressions from (3.A.69) into (3.A.60) and (3.A.61)) (still using (3.A.68) for
the remaining terms), it follows that for j = 1, 2,

Eg, (Dfj(u. £21:0,0)*) < Cx 110 = ¢/|[*(uy = £ )

(3.A.70)
Eg, (DEs(1, 11, 21:6,0)*) < Cic 10 = 011 Gy = £ )* (1 + 21| F) .
Finally, inserting (3.A.70) into (3.A.39) yields the existence of Cx > 0 such that
0 4
Egy || DF (A, X, X 36,6 ]
= (3.AT1)

< C (A" + (nA)* + nAy) Ay 16 - ¢
< Cx(ndn)* A 10 - 01"

(recall that nA,, — o0 as n — o0). Now, inserting (3.A.71)) into (3.A.58), the desired result
is obtained O

Lemma 3.A.22. Suppose that Assumption holds. Let f(x;0) € CS?IZ(X X 0), and
define

FO) = fX F(x:0) 7 ()

For each m € N and compact, convex set K C O, there exists a constant Ck , > 0 such that
forall 6,0" € K,

Eg, (1F(0) = F(O)I") < Cxmlle - &'II" .
o

Lemma[3.A.22)may be shown by application of Jensen’s inequality, the mean value theorem
for functions of several variables, and the Cauchy-Schwarz inequality, and by use of the
polynomial growth assumptions on the derivative dgf(x; 6).
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Lemma 3.A.23. Ler A € O be given. Suppose that Assumption [3.2.5| holds, and let m > 2.
Then, there exists a constant C,,, > 0 (depending also on Ay), such that

Ea (IXrea = Xi™ | X;) < CamA(1 + [XA|™)
forO<t<t+A<t+Ap. o

Corollary 3.A.24. Suppose that Assumption[3.2.5|holds. Let A € ® and a compact, convex
subset K C O be given. Suppose that f(y, x; 6) is of polynomial growth in x and y, uniformly
for 6 in compact, convex sets. Then, there exists a constant Cyx > 0 (also depending on
Ag), such that for 0 <t <t+ A <t+ Ay,

E (1f Xesa> X3 Ol | Xi) < Cag(1+ [X]46)
o

Lemma [3.A.23] and its corollary correspond to Proposition 3.1 of [Shimizu and Yoshida
(20006), adapted to the current setup. These results are a key element to controlling remain-
der terms in this paper. Comparing to Kessler| (1997, Lemma 6) (see Lemma [2.A.4] and
Corollary 2.A.5), the bound in Lemma[3.A.23]is revealed to be weaker for small A, than its
continuous-diffusion counterpart.

It was seen in the paper of [Shimizu and Yoshida| (2006) that the proof of Lemma [3.A.23]is
very similar to in the continuous case. However, additional measures are needed to control
an additional jump-related term. [Shimizu and Yoshidal (2006, Lemma 4.1) employed a
proof technique of [Bichteler and Jacod| (1983, Lemma (A.14)) to deal with this term. In the
following proof of Lemma[3.A.23] we use Lemma 2.1.5 of Jacod and Protter| (2012) to the
same end.

With reference to|Kessler| (1997), a very detailed proof of the continuous-diffusion versions
of Lemma [3.A.23] and its corollary (albeit with an easily corrected error) exists in [Flachs
(2011, Lemmas 3.3 & 3.4). Following the lines of the proof given in [Flachs| (2011), the
proof of Lemma [3.A.23|presented below essentially reproduces the corresponding proof of
Shimizu and Yoshidal (2006} Proposition 3.1).

Proof of Lemma3.A.23] Let M) = (M{V) 50, M® = (MP) 50 and M® = (M) 50 be
given by

MY = [ L@, 2 d
0

M = [ L @b ) dw,
0

MY = f f L a) ()Xo, 22 ) (N = ) (du, dz).
0 R

Assumption ensures that M® and M® are (7)o martingales by |Applebaum! (2009,
Theorem 4.2.3).
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Using (3.2.7)), for some C,,, > 0,
2) 7 3
X — X" < Co (M " + 1M "+ 1M ™

t+A 1+

By Jensen’s inequality and the Burkholder-Davis-Gundy inequality, for m > 2,
Ea (IM\1" 1 X,)

t+A
1 +A m
A f a(Xy—; ) du IXz]
t

+A
sEA(A’"—‘ f |a(Xu;A)|mdu|Xz)
t

-5

and
) +A
Ea(IM2\1" | X;) < CamEa (A'"/z—l f |b<Xu;A>|'"du|Xt).
t

Also by Jensen’s inequality, still for m > 2,

(3.A.72)

(3.A.73)

(3.A.74)

+A m[2 - r+A
( [ [ c2<xu_,z;am<dz)du) < 872> [T [ et s v du.
t R t R

(3.A.75)

where it was used that £(1)~!v, is a probability measure. Applying Lemma 2.1.5 of Ja-

cod and Protter] (2012)), which they prove using Holder’s and Burkholder-Davis-Gundy’s

inequalities, and inserting (3.A.75),

B (M2 1 X))

+A +A m/2
< CamE; f f le(Xuum 73 DI m(dz)du+( f f Cz(Xu-,Z;/l)m(dz)du) | X,
t R t R

t+A
< C/l,mE/l (f f |C(Xu_, 25 /l)|m V/l(dZ) du | X[) .
t R

(3.A.76)

Combining (3.A.73), (3.-A.74) and (3.A.76) with (3.A.72)), and using that a(y; 2), b(y; )

and c(y, z; A) are of linear growth in y,

E/l (|Xt+A - thm | Xt)

+A
< CamEa ( f (A’"‘Ha(Xu; DI+ A" b(X,; DI+ f le(X,_, z; A)V"vﬂ(dz)) du | X,)
t R

t+A +A
< CamEa (f (1 +1XA™) du + f X, — X:|" du | X,)
t t

A
= Cam (A<1+|Xt|'">+ f E (Xeew — Xil™ | X)) du)
0

for suitable contants C,,, > 0 depending on Ag. Now, the Bellman-Gronwall inequality

yields the desired result

E/I (|Xt+A - thm | Xt)
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Chapter 3. Diftusions With Jumps

A
< Cim (A(1+|X,|’”)+ f u(l+|X,|’")ec‘*’”(A_”)du)
0

< Cam(1 +1X,™) (A + eCanbo fo ’ u du)
< CamA(l + XM g
Note that by Corollary it holds that under Assumption
B (R (A, Xpia, X153 0) | Xp) = RA(A, X;; 0) (3.A.77)

forO<t<t+A<t+Apand A€ O.

3.A.4 Expansion of Conditional Moments

Lemma 3.A.25. Suppose that Assumptions and hold. Then,

Eq, (8(An. X0 Xpr 10) | X )
= A (Lo (8(0; 0D(Xir |, Xir ) = Lo((0;0)Xir |, Xir ) (3.A.78)
+ AnR(Ay X 3 6)
Eg, (90g(An X, X 10) | Xp. )

= A (Loy(068(0,0) (X Xpr ) = 3gLo(3(0,0) (X . Xir )
+ ATR(A Xir 56),

By (88" (Ans X Xy 30) | Xer )
= A Loy(88* (0, 0)(Xer | Xpr ) + ASR(An, X 56),

and
B ((P0)® (A Xy, Xz 30| Xer ) = AuR(A, X :0)
B, (87,8128 (Ans X Xet 36| Xet ) = AR(A X :6)
B (21872838 (Bns Xig Xy 100 Xt ) = DuR(An X 56) (3.A.79)
forall ji. jo. jss js = L.....d )

Proof of Lemma Note, for use in the following, that

gjlgjz(A’ya X5 9)
= 2,,8>(0,3,%:0) + A (g1 21,(0,y, x:0) + 8,8, x:0)) + A’R(A, y, x; ),

and

818180y, x;0) = g,81,85(0,y, x;8) + AR(A, y, x; 6)
8118)28738s(A. ¥, x:0) = 8;,8,838u(0,, x;0) + AR(A, y, x; 6)
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09.81(A,y, %,0) = 3,,(0,y, X;0) + Ay 8 (v, x;0) + A’R(A, y, x; ).

Using Assumption (3-A77), Remark [3.2.10 Lemma [3.2.8] and Lemma [3.2.9]

coordinate-wise, write
Eq, (8(An. X, X :0) | X )
= B, (8(0. Xpr. Xpr :0) | Xpr )+ AyEg, (8 (X Xpr :6) | X )
+ AZEg, (R X Xy :0) | X )
= 2(0. Xpr , Xp 160) + ALy (8(0:0)(Xir , Xy )+ ATR(Ay, Xir 36)
+ A (80 Xir X 10) + AuR(An, X 30)) + AJR(Ay, Xpr 3 6)
= An (Lay(@O:0)(Xpr . X ) — Lo(8(0:0) (X . X)) + A2R(Ap, X1 16).

Eq, (00g(An. Xir, Xpr :6) | Xpr )
= Bg, (008(0. Xir, Xy :0) | X ) + AEq, (398 (X, Xpr :6) | Xir )
+ AyEg (R(Aw, Xir, Xpr 30) | Xin )
= 008(0, Xy . Xpn :6) + AL, (098(0,0)(Xpr |, Xpr ) + ATR(Ay, X 3 6)
+ A (908" (X . X 16) + AuR(A, Xpr 3 0)
= A (Loy(08(0. )X . X ) — pLa(2(0.0)(Xpr . Xy )
+ AZR(An. Xy 36),

Eg, (88" (Au. Xo. X 16) | Xpr )
= By, (88* (0, Xpr, Xp :6) | Xir )
+ AnEq, (8% (0, X, Xir :6) + g(¢™)* (X, Xpr :6) | Xip )
+ AYBg, (R, X Xpr :0) | X )
= 88" (0. Xp Xy 160) + Ay Loy(88*(0,0) (X, X )
+ A (8V8* (0. Xpr | X 10) + 28V (Xer . Xpr 160)) + AAR(An, Xir 16)
= AnLay(88*(0.0)(Xu . Xpr ) + A2R(An X 16).
Furthermore,
Eg, ((968)” (An, Xir, Xpr :0) | X )
= By, ((068)” (0. Xy, X :0) | Xpr )+ AyEoy (R(Au, X, X 360) | Xir )
= (068)* (0, Xy, Xpr ;6) + AR(Ap, Xp1 3 6)
= AR(Ay. Xy 36).

Eoy (87,2785 X, Xt 16) | X )
= Eg, (8182820, Xy, X 160) | X | ) + AuBoy (R(Aw, Xy, Xt 36) | Xiy )
= AHR(Ana Xt;l_l ; 9) ’
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Eg, (818281281 Xyt X 16) | Xy )
= B, (88818740, Xir. Xt 36) | Xyt ) + Ao (R(Aw, Xy, Xy :6) | Xir )
= 018581240, Xt X :0)+ AuR(Ay Xir 3 0)
= AR X 30). 0

Lemma 3.A.26. Suppose that Assumptions[3.2.5] [3.2.6] [3.4.8} and Condition[3.A.3 hold.

(i) For ji=1,...,dand j =d; +1,...,d,

Eoy (8/,82(An X, Xpr :0) | X )
= A (3L£5, (281> (0:0)) (Xir | Xpr ) + 838" (X Xir 3 6)
+ 02 (Lo, (8, 0:0)86)) (Xir . X ) + L, (85 (0)g1,(0:0) X . X )
+ AVR(Ap, Xy 16) .

(ii) In particular, for ji, jo =dy +1,...,d,

Egy (27,8/2(Bn- X, X 16) | X )
2
= 1A2 (b4(x;ﬂ0) + 3 (67(x: Bo) — b2 (x:9)) )aggjlagg 2(0. Xur  Xir 16)
+ AyR(An X 6) .

Proof of Lemma3.A.26] For ji,j»=1,....d,

gj1gj2(A’y’ X5 9)
1
= gj1gj2(0’ ¥, X5 9) +A (gj1(0’ ¥, X5 9)852)()’, X3 0) + gﬁ)()’, X5 9)812(0,)’, X5 9))
2 1 2
+ 30 (80,7, %0087, x:0) + 2885 (3 x:0) + 857, % 0)g1,(0, v, x: 0))
+ AR(A, y, x;0) .
Lemmas [3.2.8] [3.2.9] and [3.A.4] are used to obtain

Eo, (8,82(An: X, Xpr :0) | Xpr )
= B, (87,8/,(0. Xor. X :0) | Xir )

+ AuBay (8,00, X, Xpr 5008 (X, X 360) | Xir )
+ AuBay (85 (X, X 30080, X, X 360) | Xir )
+ 30,Eq, (gjl 0, X, X 3 9)g§-§)(Xty,Xt;11;9) | Xz;zl)
+ A0, (g}, X X101 X )

+ 102Eq, (87 (X, X 10)81,(0. Xp. X 16) | X))
+ AYEgy (R, Xir, Xir 10) | X )
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and, for j; =1,...,dand j, =d; + 1,...,d,

Egy (8,82 (Ans X, Xpr 30) | Xir )

= 2/,8,(0. Xpr . Xy 10) + Ay Lo, (87,85, (0:0)) (X . Xip )
+ 10222 (35,8, (0:0)) (Xu . Xy )
+ Mgy (0. X, X 308 (X |, X 56)
+ A2 Loy (,(0:0)8©0) X X )
+ Mg X X 30250, X, Xin 56)
+ An Loy (25 (0)2,(0:0)) Xir |, X )
+ 30527, (0, X Xpr 3008 (X |, X 56)
+ A0 8 X X 30)
+ 3A2D X X 10)8,(0, Xp X 56)
+ ASR(Ap, Xy 3 6)

= 1A L5 (27,81, (0:0) X . Xin )
+ A2 Lo, (,(0:0)8©0) X X )
+ A% Loy (84 (0)2,,(0:0)) Xz, X )
+ 858 X Xy 30)
+ AR(A X 3 6).

Furthermore, inserting from Corollary@], for ji,jo=d +1,...,d,

E90 (gjl gjz(An’ Xt,’.” Xt:'_] ;0) | Xtt’,’_l)
2
= 183 (b + £ (B2 o) = P B)) ) 2, 020,0(0, X X 36)

+ AsR(Ap, Xpn 36). O

Lemma 3.A.27. Suppose that Assumptions [3.2.5] [3.2.6] and 3.4.8| and Condition
hold. Then,

(i) for j1,jp=1,...,dand j3=d, +1,...,d,
Eoy (818287 (B Xt Xir :0) | Xpr ) = AZR(An, Xir 6).
(ii) for ji,j2, j3=1,...,dand js =d; +1,...,d,
Eo, (8187281387 (Bns X, X 10) | X ) = AZR(An. Xy 16).
(iii) for j1 = 1,....d and jo, js, js = dy +1,....d,

Eo, (2781287384 Xir. Xp 10) | Xir ) = A3R(An. X 16).
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<&

Proof of Lemma3.A.27] Let ji, jo, j3,ja = 1,...,dand Jy = {1,...,k} fork = 3,4. Under

Assumption [3.4.8]

gj]nggj3(A’ v, x;6)

= 8,8,8j:(0,y,x;0)
3
(3.A.80)
+A Z (gi.i)(y, x;0) l_[ 2 (0,y, x; 0)]
k=1 meJs\(k)
+ AZR(A’ y’ x; 0) b

and
818/8)38,(A, y, x;6)
=2,8/,8j:8j:(0,y, x;0)

4
+Azmﬁbwﬁ)[]gmﬂxxﬁ]
k=1

meJy\{k}

4
2
+%Azz[g§k)@’x;9) l_[ 8jn(0,y,x;6)
k=1

meJs\{k}

4
W [gi-pg;?cy,x;m N <>)

k=1 leJy\{k} meJg\{k,l}
+A’R(A, y, x;0).

Using (3:A.80) and Lemmas [3.2.8] 3.2.9]and 3.A.6][(iD}
Eao (27188 (A X Xp 16) | X )
= Eq, (gjlgjzgj3(0= th”th'_l ;0) | Xt;l—l)

] (3.A.81)

3
+ An Z EHO [gj]l()(thz, Xl?fl ) 9) l_l g]m((), thfz, th(lfl ; 6) | Xlﬁl
k=1 meJ3\{k}

+ A%Eeo (R(An, X, X 3 0) | X’E’_l)
= 8182850 X . X :0) + An Ly, (27,81,85(0:0) (X, X )

3
M . .
+ A, Z [gjk (th{l_l , X,;'_l ;0) 1_[ &im (0, Xt:l—l s X’?—1 ;0)
k=1 meJ3\{k}

+ AnR(An. X 3 0)
= AZR(An. Xy 16)
for ji,jo=1,...,dand j3 =d; +1,...,d, proving Lemma [3.A.27}(1)|

Using also (3.A-81)) and Lemma [3.A.6] it holds that for ji, jo,j3 = 1,...,d and j; =
d1 +1,... ,d,

Eg, (gjlgjzgj3gj4(An,ng,Xty_l ;0) | X,:;_l)
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= By, (8/:822)38s(0. X, Xp :0) | Xpr )

4
1
+ A, ) By, [gﬁ.k)(xt;«,x,;l;e) [ gjm(o,xty,x,gl;0>|x,;l]
k=1 meJa\{k}

+ ATBg, (R(An, X, Xpr 30) | X )
= 28,840 Xir , Xt 30) + ALy (2,81,2/,27,(0:0)) (X |, X )

4
+A”Z

=1
+ AnR(A. X 3 6)
= AJR(An. X 56)
and Lemma follows. Similarly,
Eaq (81812813814 (Bns Xyt Xer 360) | Xy )
= By (812815250, Xir, X :0) | X1 )

1
g;}()(Xz;'_l R X,?_l ;0) l_l g0, Xl-l’]_l , Xt:z_l ; 9)]
meJy\{k}

4
1
+A, Z Eg, (gi-k)(Xry,Xz?l :0) 1_[ 8 (0, X, Xpn 50) | X,;ll]
k=1 meJi\[k)

4
2
+%A,%ZEeo[g;)(Xt;,xg_l;e) [ gj,n<0,x¢,x,7_,;e)|xz¢_l)
k=1 meJg\{k}

4

2 1) (1

I DT By (gﬁ-jgj.,)(xt;z,xt;l;e) [1 2O XX 1;0>|X,,n1]
k=1 leJy\{k} meJy\{k,l}

+ AJEg, (R(A Xp, Xpr 20) | Xin )
so, by Lemmas [3.2.8]and [3.2.9]
Eo, (81872828 (Bns X X 10) | Xir )
= A Loy (8/181285:814(0:0)) X |, X )
+ 302 L3 (8),81,87:814(0:0) (X . Xpn )

4
+ 00 Loy |80O ] 2in0:0)| X X )
k=1

meJy\{k}
+ AR(A X 30),

and by Lemma[3.A.6] for j; = 1,...,d and j, j3, ja=di +1,....d,
E90 (gjlgjzgj3gj4(An, Xt;" Xt:?_l 5 9) I Xt;’_l) = AEIR(A, thf'_l 5 0) s
proving Lemma [3-A-27|[(iiD)} i

Lemma 3.A.28. Suppose that Assumptions [3.2.5] [3.2.6] [3.4.8 and Condition hold,
and that 830,85(0, x, x;0) = 0 for all x € X and 6 € ©. Then

Egy (0agp(Bn X, Xi 160) | Xpr ) = AXR(A, Xpr 36)
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Egy (0agp(An, Xor, Xir 100> | X ) = AJR(An, X 16).

<
Proof of LemmaB.A28 For j=d; +1,...,dandk = 1,...,d,,
99,8(A, y, x; 6)
=0 : My 4 1A29 D/ .. 3 ' (3.A.82)
= 09,&j(0,y, x;0) + A@gkgj (y,x;0) + 5A 09kgj v, x;0) + A’R(A, y, x; 0)
and
36.8;(A,y, x;6)*
= Bekgj(O,y, X; 9)2 + ZAangj(O, ¥, X; g)aekgy)(y’ x; 6)
(3.A.83)

+ A (6,200, , x; 006,87 (v, x; 6) + Dy 8 (v, x: 6)7)
+A’R(A,y, x;6).

Using (3.A.82)), (3.A.83) and Lemmas [3.2.8] [3.2.9]and 3.A.7}

Eq, (06,8(Ans Xir, Xir 360 | X )

= Boy (06,200, X, Xpr :0) | X ) + MuEgy (99,8 Ay Xin, Xir 56) | X )
+ AyEg (R(An, X, Xir 360) | Xir )

= 00,80, Xp . Xpr :0) + ALy, (90,8(0:0)) (X : Xir )
+ Mg, 8 (An, Xir | X 3 6) + ATR(A, Xy 56)

= 09,80, Xy, Xpr :0) + Ay Ly, (96,8(0:0)) (X 1 Xpr )
~ And Lo (8/0:0)) (Xer . X ) + A2R(Ay Xy )

= AR(An. Xy 16),

and

Eg, (06,8 (Ans X, Xin 3600 | Xir )

= B, (99,80, Xpr. Xpr :6)* | Xpr )
+ AuBoy (206,800, X, X :0)30,8') (X, X 0) | X )
+ A, (99,80, X, Xir 3 0)05,8 7 X, X 360) | Xir )
+ g, (99,85 (X, X 3600 | Xin )
+ AJEg, (R(Aw. X, Xpr :60) | X )

= 30,850, Xp . Xpr :0)" + Ay Ly, ((95,8))°(0:0)) (X 1 Xpr )
+ %Aﬁlléo ((%kg DAO; 9)) Xe 3 X )
+2A,00,8/(0, Xpr |, X :0)0g.8 X |, X 56)
+ 207 Lo, (96,8,(0; 0)36,8(0)) X 3 X )
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+ Mg, 2(0, X X 300,87 Xpr , Xin 3 0)
+ Mg 8 (X, Xy 3 0)
+ AsR(An, Xpr 3 6)
= A R(Ap, X 36). O

Proof of Lemma

Flachs|(2011) gives a detailed proof of Lemma[3.2.8]in the case of ergodic diffusions with-
out jumps, based on the proof in an earlier version of |Sgrensen! (2012, Lemma 1.10), see
Flachs| (2011, Lemmas 3.7 & 3.8). The proof presented here extends these proofs to cover
diffusions with jumps. Although the general Assumption [3.2.5]includes the assumption of
ergodicity, this is not actually made use of in the proof below.

Proof of Lemma[3.2.8] Observe first, for use in the following, that if the present assump-

tions are satisfied for some k € N, then £;f(y, x;0) € Cg?];]_i) 0 O(XZXG)) fori=0,...,k+1

by the help of Lemma [3.A.T] This implies the existence of constants Cy > 0 such that for
0<v<A,

v +v
E(f IL’Af(XS_,X,;H)Ids) < C@f (1 + sup E(IXulc")) ds < CoAy, (3.A.84)
t t u€[0,00)
allowing for the interchanging of integrals (and conditional expectations).

Furthermore, due to the finite activity of the jumps under consideration, it holds that for
fixed w € Q, X;(w) # X,—(w) for at most countably many ¢ in any finite interval. Hence
X,— may be replaced by X in integrals with respect to time, like in the leftmost inte-
gral in (3.A.84). In the following, such replacements are often made in integrands which
themselves are conditional expectations, by implicitly interchanging the order of the outer
integral and the conditional expectation twice

First, the expansion of the conditional expectation in powers of A,

k .
A
B (f(Xexa X 0) | X0) = ) - Lf(X0 X 0)

i=0
A Uy U il
+ f f f E(-[: * f(X(t+uk+1)—’Xf;0) | Xt) duy -~ duy
0 0 0
(3.A.89)

is proven by induction on k, using Itd’s formula for stochastic differential equations with
jumps, Lemma[3.A.9]

Using the martingale properties of the stochastic integrals, it follows immediately from
Lemma[3.A.9)and the previous observations that

t+A
By (f(Xe4n, X1 0) | Xo) = f(X, X3 0) + By (f Lif(Xs, Xi; 0 ds | Xq
t
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A
= f(X, X1 0) + L EBa (Laf(Xivs, Xi360) | Xy) ds,

proving (3.A.85) for k = 0.

Now, assume that (3.A.85)) holds for some k € Ny, and suppose that the assumptions of the
lemma are satisfied for £ + 1. Then, in particular, Lﬁ“ fO,x;0) € CEOSO(XZ X ). Using

Lemma again,
A uy "
f f e f E, (£ﬁ+1f(Xt+uk+1,X[;0) | Xl) digy - - duy
0 0 0

A U Uk
=f f f L (X, X130) dugerr -+ - duy
o Jo 0

A U U+
+ f f f f Ea (LY F Krvun Xi0) | Xo) dutgrp dutgs - duy
0 0 0 0

Ak+l il
- e o)

A Ui U+ 1
+ f f f E, (£§+2f(Xt+uk+2’Xl;0) | X[) dugyr -+ -duy ,
0 0 0

from which the validity of the expansion follows for k + 1, and thus for general £ € Ny by

induction.

It remains to show that for k € N,

A iUy iy
f f f B(L fKevuger X 0) | X)) ditger - duy = NTIR(A X 36)
0 0 0

As seen in the proof of Kessler| (1997, Lemma 1) for diffusions without jumps, the remain-
der term is controlled by an application of Corollary [3.A.24{to L’/‘l“ I

Let k € Ny be given, so that L5 f(y,x;0) € CSOJO(XZ x @), and choose any compact,

convex subset K C @. By the corollary, there exist constants Cx > 0 such that
B (L57 FXrrar Xi30) 1 X,)| < Cre (14 1X,1F)

for all 8 € K. Then

A Uy Uy
[ [ B K X50) 1 X)) diter -
0 0 0

sup

< AMIck (1 + |X,|C'<) ,
0eK

i.e.
A Ui Uy
A [ [ B (L s X001 X)) dits -y = RS X,50),
o Jo 0
which completes the proof. O
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3.A.5 Convergence in Probability

Lemma 3.A.29. Suppose that Assumption[3.2.5| holds, and that for fixed 6 € ©, the func-
tions x — f(x;60) and x — 0,f(x;60) are continuous and of polynomial growth in x for
x € Xand. Then

1 n
X0 D [ fom @,
nia X

point-wise for 6 € ©. o

Using the ergodicity of X (Assumption[3.2.5][(v)), Lemma[3.A.23] the Cauchy-Schwarz and
Jensen’s inequalities, and the assumptions of polynomial growth, Lemma[3.A.29]is proven
in the same way as the non-uniform part of Kessler] (1997, Lemma 8), see also [Masuda
(2013} p. 1598). The proof is omitted here.

Remark 3.A.30. For all 6 € O, |Ry(t, x)| < Cy(1 + |x|?) for all ¢ € (0, Ao)g, and x € X, so,
by Lemma [3.A.29] whenever (6,,)nen is a sequence of non-negative numbers with 6, — 0

asn — oo,

n

1< 1 N P
- Z‘ IRo(An Xz )| < 64Co 21] (1+1x 1) — 0.
= =

In particular, this is also true for Ry(, x) = R(2, x; 6). o

Lemma [3.A.31] corresponds to Lemma 9 of |Genon-Catalot and Jacod| (1993), the proof is
omitted here.

Lemma 3.A31. Fori=0,...,n,n €N, let F,; = 7-;7, and let F,,; be an F, ;-measurable
random variable. If

n
P P
D Bay(Fui | Faiot) — Z and ) Byy(Fa;| Fryot) — 0,
1

n

i=1 i

for some random variable F, then

<&

Lemma 3.A.32. Let K C ©® be compact and convex. Suppose that forn € N, H,, =
(H,(0))eek is a continuous, real-valued stochastic process, such that

H,(0) 2> 0

point-wise for 6 € K. Furthermore, assume that there exist constants p > d and Ckj > 0
such that for all 6,0 € K andn € N,

Eg, |[Ha(0) — Ho(@)|" < Cpxll0 - 0117
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Then,

sup |Hu(6)] —> 0.
0eK

<&

Lemma 3.A.33. Suppose that for n € N, H,, = (H,(0))gex and (H(6))geco are continuous,
real-valued stochastic process. If

sup [Hy(6) — H©O)| = 0
0eK

for all compact, convex sets K C O, and 9n is a consistent estimator of 6y, then
AP
Hn(gn) B H<90) .
o

Lemmas[3.A.32]and [3.A.33]extend the results of Lemmas[2.A.9/and 2.A.T0} and the proofs
given in Appendix [2.A] easily adapt to the present situation. In particular, Lemma [3.A.32]

may be shown using results from Kallenberg| (1997, Chapter 14).

3.B Theorems from the Literature

This section summarises some theorems from the literature, which are important to the
proofs in Section The theorems are presented here without proof, most of them in a
greatly simplified form, and tailored specifically to fit the approximate martingale estimat-
ing function-setup considered in this paper. Section [3.B.T]contains a version of Corollary
3.1 of Hall and Heyde| (1980), while Section @] contains selected results from Section
1.10 of |Sgrensen| (2012)).

3.B.1 Martingale Central Limit Theorem

This section contains a version of the central limit theorem for martingale differences from
Section 3.2 of [Hall and Heyde| (1980). Recall that we defined G,,; as the o-algebra gen-
erated by (th,X,rlv, e ,X,;w). Suppose that for each n € N, (M, ;)1<i<, is a real-valued,
zero-mean, square-integrable martingale with respect to (Gyi)1<i<n- Let

Dn,i = Mn,i - Mn,i—l , 1<i<n,

with D,o = 0 denote the corresponding martingale differences. This collection consti-
tutes a zero-mean, square-integrable martingale array {M,;,Gn; : 1 < i < n,n € N} with
differences D, ;.

Theorem 3.B.1. (Hall and Heyde, |1980, Corollary 3.1) Suppose that {M,,;,Gn; 1 <i <
n,n € N} is a zero-mean, square-integrable martingale array with differences Dy ;. If

n
> Eay (D211 Guict) 2> Cl60)

i=1
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for some real-valued constant C(6y), and if for all € > 0,
N P
> Ea, (D2 1(Dwil > £) | Grict) — 0
i=1

(the conditional Lindeberg condition holds), then

n

> Dui =5 N(O.C@0)).

i=1

3.B.2 Asymptotic Results for Estimating Functions

This section briefly summarises Theorems 1.58, 1.59 and 1.60 and some additional com-
ments from Sgrensen| (2012}, Section 1.10), adapted to the setup of the current paper. Proofs
of these results are given by Jacod and Segrensen| (2012)).

In the following, let G,(0) be an approximate martingale estimating function as given in
Definition [3.2.3] with associated G,-estimators defined in Definition [3.2.4]

Theorem 3.B.2. \Sgrensen| (2012 Theorem 1.58) Suppose that there exist a compact, con-
vex set K C © with 6y € int K, and a function 0 — B(6; 6y) on K, with values in the set of
d X d matrices, such that

(i) Ga(6o) —> 0.

(ii) The mapping 6 — G,(60) is continuously differentiable on K for all n € N with

P
sup [|0¢G,(6) — B(0; 6p)ll — 0.
0eK

(iii) B(6o; 6p) is non-singular.

Then, there exists a consistent G,-estimator 9;1, which is eventually unique in the sense that
for any other consistent G,-estimator 6, Pg, (9,, #60, - 0asn — oo o

By [Sgrensen| (2012, p. 87), under the conditions of Theorem the mapping 6 —
B(8; o) is continuous on K. Also, there exists a unique, continuously differentiable map-
ping 6 — A(6; 6p) with values in RY, satisfying that A(6g; 6p) = 0, 6 — 0yA(6; 60) = B(6; 6p)
for all 8 € K and

P
sup |G (60) — A(6; 60)ll — 0.
6eK

Theorem 3.B.3. |Sgrensen| (2012 Theorem 1.59) Suppose that the conditions of Theorem
[3.B.2)are satisfied, and that the aforementioned function A(8; 6y) satisfies that for all € > 0,

inf ||A(6;6p)l| > O, (3.B.1)
K\B(6o)
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where Bg(6y) denotes the closed ball with radius € and centre 6y. Then, for any G,-
estimator 0,, it holds that forall € > 0,

Pg, (B € K\Be(8)) — 0
asn — oo, <

Theorem 3.B.4. [Sgrensen| (2012, Theorem 1.60) Suppose that G,(0) satisfies the conditions
of Theorem[3.B.2] and let 5, be a sequence of invertible, diagonal d X d matrices, with each
entry of 6, going to 0 as n — co. Suppose that there exists

(i) an R%valued random variable G(6y), normally distributed with mean zero and pos-
itive definite covariance matrix J(6y), such that

5,Gu(60) —> G(6).

(ii) a deterministic function 6 — H(6; 6y) on K, with values in the set of d X d matrices
and H(6y; 0y) invertible, such that

_ P
sup |16,06Gn(6)5," — H(6;60)l — 0.
0eK

Then, for any consistent G,-estimator 9,1,

86 — 60) —> Na(0, H(B0; 60)~" I (B0) (H (6o 60)*)™).
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