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Abstract

This thesis is mainly concerned with classification results for non-simple purely in-
finite C∗-algebras, specifically Cuntz–Krieger algebras and graph C∗-algebras, and con-
tinuous fields of Kirchberg algebras. In Article A, we perform some computations con-
cerning projective dimension in filtrated K-theory. In joint work with Sara Arklint and
Takeshi Katsura, we provide a range result complementing Gunnar Restorff’s classifi-
cation theorem for Cuntz–Krieger algebras (Article B) and we investigate reduction of
filtrated K-theory for C∗-algebras of real rank zero, thereby obtaining a characterization
of Cuntz–Krieger algebras with primitive ideal space of accordion type (Article C). In
Article D, we establish a universal coefficient theorem computing Eberhard Kirchberg’s
ideal-related KK-groups over a finite space for algebras with vanishing boundary maps.
This result is used to classify certain continuous fields of Kirchberg algebras in Arti-
cle F. A stronger result for one-parameter continuous fields is obtained in joint work
with Marius Dadarlat (Article E). In Article G, we compute Stefan Schwede’s n-order
for certain triangulated categories of C∗-algebras.
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The following is a Danish translation of the abstract as required by the rules of the
University of Copenhagen.

Resumé

Denne afhandling omhandler klassifikationsresultater for ikke-simple, rent uendelige
C∗-algebraer, specielt Cuntz–Kriegeralgebraer og graf C∗-algebraer, samt kontinuerte
felter af Kirchbergalgebraer. I Artikel A udfører vi diverse udregninger, som omhandler
projektiv dimension i filtreret K-teori. I samarbejde med Sara Arklint og Takeshi Kat-
sura opn̊ar vi et billederesultat som komplimenterer Gunnar Restorffs klassifikations-
sætning for Cuntz–Kriegeralgebraer (Artikel B), og vi udforsker reduktion af filtreret
K-teori for C∗-algebraer af reel rang nul, og dermed f̊ar vi en karakterisering af Cuntz–
Kriegeralgebraer, hvis primitive idealrum er et harmonikarum (Artikel C). I Artikel D
etablerer vi en universel koefficientsætning, som udregner Eberhard Kirchbergs idealre-
laterede KK-grupper over endelige rum for algebraer, hvis randafbildninger forsvinder.
Dette resultat benyttes til at klassificere visse kontinuerte felter af Kirchbergalgebraer i
Artikel F. Et stærkere resultat for én-parameter kontinuerte felter opn̊as i samarbejde
med Marius Dadarlat (Artikel E). I Artikel G udregner vi Stefan Schwedes n-orden for
visse triangulerede kategorier af C∗-algebraer.



Preface

The present thesis contains research material obtained during the three-year period of
my PhD studies at the University of Copenhagen from October 2010 to September 2013.
The results are presented in cumulative form as appendices. In this section, I will provide
some context concerning this work, along the way mentioning also ongoing projects on
which I spent time during my PhD studies. The content of the appended articles will
be described in more detail in the summary.

I started doing mathematical research in 2009, when I began working towards my
Diplom thesis under supervision of Ralf Meyer at the University of Göttingen. The
goal was to elaborate on Meyer’s joint work with Ryszard Nest to decide, given a fi-
nite T0-space X, whether there exists a feasible invariant for C∗-algebras over X com-
puting Kirchberg’s ideal-related Kasparov theory groups under appropriate bootstrap
assumptions in terms of a short exact universal coefficient sequence. This question is
particularly interesting in the light of Eberhard Kirchberg’s classification theorem for
non-simple strongly purely infinite separable nuclear C∗-algebras. In fact, it is no exag-
geration to say that Kirchberg’s result is the main motivation for almost all of my work
to date.

My Diplom thesis resulted in a joint paper with Manuel Köhler titled Universal
coefficient theorems for C∗-algebras over finite topological spaces in which we prove that
the invariant called filtrated K-theory serves the desired purpose if and only if the spaceX
is a disjoint union of so-called accordion spaces. The proof of the main result in that
paper is rather ad hoc; as I shall describe below, I plan to provide a more conceptual
proof using more sophisticated methods in the future.

During a masterclass in Copenhagen, Köhler told Søren Eilers about our joint work.
This lead Eilers to invite us to give a presentation in the operator algebra seminar in
Copenhagen; he also encouraged me to come to Copenhagen for PhD studies under joint
supervision with Ryszard Nest. The primary goal was to use the machinery of homo-
logical algebra in triangulated categories to obtain further classification results for non-
simple purely infinite C∗-algebras, possibly by exploiting specific properties (K-theoretic
or otherwise) of graph C∗-algebras. A strong motivation for this endeavor was Gunnar
Restorff’s classification theorem for Cuntz–Krieger algebras of real rank zero. Some com-
putations in this direction, mainly negative in outcome, were performed in the paper
Projective dimension in filtrated K-theory.

Upon arrival in Copenhagen, I started working with Sara Arklint and Takeshi Kat-
sura. We wrote a joint paper, which was later split into two parts. In The K-theoretical
range of Cuntz–Krieger algebras we provide a range-of-invariant result for Restorff’s
classification. In Reduction of filtered K-theory and a characterization of Cuntz–Krieger
algebras, we investigate how filtrated K-theory can be simplified without losing informa-
tion if the input C∗-algebra is assumed to have real rank zero; this shows in particular
that there exists no phantom Cuntz–Krieger algebra whose primitive ideal space is a
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disjoint union of accordion spaces (or, for that matter, any four-point spaces except the
pseudocircle).

Following a suggestion of Søren Eilers, I investigated the classification problem for
C∗-algebras over a finite space X with vanishing boundary maps. In the paper Kirchberg
X-algebras with real rank zero and intermediate cancellation, I establish a universal
coefficient theorem in this context and, building on the range result with Arklint and
Katsura, show that no phantom Cuntz–Krieger algebra with vanishing boundary maps
exists. The homology theory XK used for the universal coefficient theorem in this setting
takes values in Z/2-graded integral representations of the poset X (here X is considered
as a poset via the specialization preorder); it comprises the Z/2-graded K-theory groups
of certain distinguished ideals in the algebra together with the group homomorphisms
induced by all ideal inclusions among them.

I spent most of the year 2012 abroad, visiting Marius Dadarlat at Purdue University
and Ralf Meyer at the University of Göttingen. While I stayed in Göttingen, my son
Oskar was born; he and his mother would later accompany me for my remaining study
time in Copenhagen.

When I arrived at Purdue, Marius Dadarlat suggested that the universal coefficient
theorem for C∗-algebras over accordion spaces might be useful to study ideal-related
KK-theory over the unit interval. His intuition was correct and resulted in a classifica-
tion theorem discussed in our joint paper One-parameter continuous fields of Kirchberg
algebras with rational K-theory.

A similar approach is used in my paper Classification of certain continuous fields of
Kirchberg algebras, where the unit interval is replaced by an arbitrary finite-dimensional
compact metrizable topological space—at the expense of the strong additional assump-
tion of vanishing boundary maps. For fields with finitely generated K-theory, I provide
a range result in this context.

During my stay in Göttingen, Ralf Meyer made me aware of the existence of module
spectra representing (equivariant) K-theory groups of C∗-algebras and suggested that
it could be useful to achieve something similar for C∗-algebras over finite spaces using
poset diagrams of module spectra. This idea indeed turned out to provide a highly
useful tool for analysing the structure of the bootstrap class in ideal-related KK-theory.

Specifically, I intend to use this approach to establish generalized Bernstein–Gel-
fand–Ponomarev reflection functors identifying the bootstrap categories in ideal-rela-
ted KK-theory for certain pairs of finite spaces. This will imply that the universal
coefficient theorem over accordion spaces reduces to the totally ordered case already
considered by Meyer and Nest; it will also greatly reduce the amount of computation
necessary to establish universal coefficient theorems over certain non-accordion spaces.
(Generalizing an example of Meyer–Nest, I found universal coefficient theorems over
some (four-point) non-accordion spaces in my Diplom thesis. Due to relations with
quiver and poset representations, we expect that there are universal coefficient theorems
involving “invariants of finite type” for many more finite spaces, including all spaces
whose Hasse diagram is a simply laced Dynkin diagram.)

In Homotopy-theoretic E-theory and n-order, I use the above-mentioned spectral
models to compute Stefan Schwede’s n-order for certain triangulated categories aris-
ing from C∗-algebras. In the ongoing project Algebraic models in rational equivariant
KK-theory, I use results of Brooke Shipley and intrinsic formality to establish explicit
algebraic models for rationalizations of some such triangulated categories. As a conse-
quence of this, for an arbitrary finite T0-space X, the ∗-isomorphism types over X of
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stable Kirchberg X-algebras whose simple subquotients have rational K-theory groups
and satisfy the universal coefficient theorem are in natural bijection with the 2-periodic
quasi-isomorphism types of 2-periodic complexes of countable rational poset represen-
tations of X.

In order to establish universal coefficient theorems, one needs length-1 projective
resolutions. But in many interesting situations one only has resolutions of length 2.
Luckily, something still can be done under this assumption. This has been known to
topologists since the work of Aldridge K. Bousfield in the eighties; it involves refining
the given homology theory by remembering a canonical obstruction class in a certain
Ext2-group. In the ongoing project Circle actions on C∗-algebras up to KK-equivalence
and some other cases with Ralf Meyer, we translate Bousfield’s approach to the general
setup of triangulated categories and homological ideals and establish classification results
in circle-equivariant KK-theory and in KK-theory over so-called unique path spaces. In
particular, we show that the gauge actions on two Cuntz–Krieger algebras are KK-equiv-
alent if and only if their defining 0-1-matrices are shift equivalent over the integers.
We also determine when gauge actions on Nekrashevych’s C∗-algebras associated with
certain hyperbolic rational functions are KK-equivalent; the resulting classification turns
out to be very coarse when compared to conjugacy of the involved dynamical systems.
Using the previously mentioned reflection functors, the result for unique path spaces
may be extended to cover all spaces with five points or less. This leaves the six-point
pseudosphere as a minimal unsolved case.

In July 2013, Sara Arklint and I organized a masterclass on classification of non-
simple purely infinite C∗-algebras in Copenhagen. The main speakers were Marius
Dadarlat and Ralf Meyer. On this occasion, Ralf and I realized that XK

(
C∗(E)

)
has

a length-2 projective resolution for every graph C∗-algebra C∗(E) over an arbitrary
finite T0-space X such that all distinguished ideals are gauge-invariant and that the re-

sulting obstruction class in the group Ext2
(

XK0

(
C∗(E)

)
,XK1

(
C∗(E)

))
has an explicit

representative given by the dual Pimsner–Voiculescu sequence

0→ XK1

(
C∗(E)

)
→ XK0

(
C∗(E)T

)
→ XK0

(
C∗(E)T

)
→ XK0

(
C∗(E)

)
→ 0.

As a result, we obtain in particular a classification of purely infinite graph C∗-algebras
with finitely many ideals up to stable isomorphism (and up to actual isomorphism when
we restrict to unital algebras and add the unit class in K0

(
C∗(E)

)
to the invariant).

I hope that this approach might also shed light on the question of existence of phantom
Cuntz–Krieger algebras.
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Introduction

The Elliott Program

The attempt to classify nuclear separable C∗-algebras using K-theoretic invariants (to-
gether with the actions of possible traces on them) has become known as the Elliott
Program – and the sentiment that this could be a viable task as the Elliott Conjecture.
We will describe the history of this endeavor in somewhat greater detail than necessary
to merely provide context for the author’s work. The beginnings of this story lie in
Glimm’s classification of uniformly hyperfinite (UHF) C∗-algebras [27] and, more gen-
erally, Elliott’s classification of approximately finite dimensional (AF) C∗-algebras [21].
The invariant in this case can be expressed in terms of the K0-group equipped with
the additional structure of the dimension range [60, §7.3]. A corresponding descrip-
tion of the range of the invariant was given by Effros, Handelman and Shen [20]. The
proofs of these classification results crucially rely on the so-called intertwining argu-
ment, which has turned out to be applicable in much greater generality. In the course
of time, classification results were established for various inductive limit classes, such as
AT-algebras of real rank zero [22] and simple unital approximately homogeneous (AH)
C∗-algebras with either slow dimension growth and real rank zero [12, 23, 28] or with
very slow dimension growth [24, 29]. On the side of purely infinite rather than stably
finite C∗-algebras, meanwhile, Kirchberg [34] and Phillips [48] classified the class of
Kirchberg algebras satisfying the universal coefficient theorem based on approaches us-
ing Kasparov’s bivariant K-theory [32]. For more detailed surveys on the history of the
classification program for nuclear C∗-algebras, we refer to [25,56,59].

In the meantime, it has become apparent from the work of Rørdam [57] and Toms
[64–66] that additional assumptions – even for simple unital AH-algebras – are neces-
sary for a general result along the lines of the Elliott Program. There exists a whole
range of regularity properties for C∗-algebras with various flavors and intricate rela-
tions. According to a conjecture of Toms and Winter [68], Z-absorption, Blackadar’s
strict comparison of positive elements and Winter–Zacharias’s finite nuclear dimension
are equivalent for unital separable simple infinite-dimensional nuclear C∗-algebras. Fur-
thermore, it is expected that these properties characterize those C∗-algebras that are
classifiable in the sense of the Elliott Conjecture [68]. Both conjectures have been con-
firmed for the class of unital separable simple AH-algebras by the work of Lin, Toms
and Winter [37, 68, 73, 75]. Rørdam proved that Z-stability implies strict compari-
son for unital simple exact C∗-algebras [58]. Winter showed, using Robert’s notion of
n-comparison [52], that finite nuclear dimension implies Z-stability for unital separa-
ble simple infinite-dimensional C∗-algebras [75]. Under certain size assumptions on the
trace simplex, it was proved for C∗-algebras as in the Toms–Winter Conjecture that strict
comparison implies Z-stability by Matui–Sato [39], Sato [62], Toms–White–Winter [69]
and Kirchberg–Rørdam [36]. It follows from results of Winter [75] and Toms [67] that
a unital simple separable approximately subhomogeneous (ASH) C∗-algebra is Z-stable

1



2

if and only if it has slow dimensions growth; using [38,72,76], this implies that unital
simple separable ASH-algebras with slow dimension growth in which projections sepa-
rate traces are classified by their graded ordered K-theory. Recently, Matui and Sato
showed that, for C∗-algebras as in the Toms–Winter Conjecture that are quasidiagonal
and have a unique trace, the conditions strict comparison, Z-stability and finite decom-
position rank are equivalent; moreover, they verify the Elliott Conjecture for the class of
C∗-algebras satisfying all these assumptions and the universal coefficient theorem [40].

The C∗-algebra Z is the so-called Jiang–Su algebra [31, 61]; it is simple, uni-
tal, infinite-dimensional, stably finite, strongly self-absorbing in the sense of Toms–
Winter [70] and KK-equivalent to the C∗-algebra C of complex numbers. A C∗-algebra
is called Z-stable or Z-absorbing if A ⊗ Z ∼= A. Winter characterized Z as the initial
strongly self-absorbing C∗-algebra [74]. Hence tensorial absorption of any strongly self-
absorbing C∗-algebra different from Z gives rise to a regularity property stronger than
Z-stability. Other prominent examples of strongly self-absorbing C∗-algebras are the
Cuntz algebras O2 and O∞ [9], two unital nuclear purely infinite simple C∗-algebras
KK-equivalent to 0 and C, respectively. An O2-absorbing C∗-algebra is trivial in any
K-theoretical sense and, indeed, Kirchberg showed that two separable nuclear stable
O2-absorbing C∗-algebras are isomorphic once they have the same ideal structure [33].
It was shown by Kirchberg and Rørdam that the more general property of O∞-stability
is equivalent, for separable nuclear stable C∗-algebras, to being what they call strongly
purely infinite [35]. Such a C∗-algebra cannot have any traces; in fact, by a result of
Rørdam, a separable nuclear Z-stable C∗-algebra absorbs O∞ if and only if it is trace-
less [58]. An intermediate element between O2 and O∞ in the hierarchy of strongly
self-absorbing C∗-algebras is given by the tensor product O∞⊗MQ, where MQ denotes
the universal UHF-algebra. Since K∗(MQ) ∼= Q ⊕ 0, the Künneth formula [53] shows
that MQ-absorption entails a general rationality in K-theory.

Kirchberg’s classification theorem

The classification problem for separable nuclear O∞-absorbing C∗-algebras amounts
to an important special case of the more general problem for Z-stable C∗-algebras,
where traces may complicate matters. A simple separable nuclear O∞-absorbing C∗-al-
gebra is called a Kirchberg algebra [56]. The celebrated Kirchberg–Phillips classifica-
tion theorem states that a KK-equivalence between stable Kirchberg algebras lifts to a
∗-isomorphism [34,48]. In order to lift isomorphisms on K-theory to KK-equivalences,
one has to make the additional assumption that the algebras belong to the bootstrap
class of Rosenberg and Schochet [53]. This class is defined to be the smallest class
of separable nuclear C∗-algebras containing the C∗-algebra C of complex numbers and
being closed under countable inductive limits, extensions and KK-equivalence. It is
designed such that its members satisfy the universal coefficient theorem, of which the
aforementioned lifting result is a simple corollary (see [5, Proposition 23.10.1]).

The following framework from [43] is convenient for the discussion of classifica-
tion problems for non-simple C∗-algebras and, in particular, invariants whose definition
explicitly involves the collection of ideals of the input C∗-algebra. We fix a second count-
able space X and consider C∗-algebras over X, that is, C∗-algebras A together with a
continuous map ϕ : Prim(A) → X, where Prim(A) denotes the primitive ideal space
of A. Every open subset of X gives rise to a distinguished ideal in A. The analogue of
simplicity in this context is tightness, which asks the map ϕ to be a homeomorphism.
There are natural equivariance conditions for ∗-homomorphisms and KK-cycles (as well
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as their homotopies) in this setting. In particular, there is a bivariant theory KK(X)
with the expected properties (see [6, 33, 43]), which we call Kirchberg’s ideal-related
Kasparov theory. We propose to call a tight separable nuclear O∞-absorbing C∗-algebra
over X a Kirchberg X-algebra. Kirchberg proved a generalization of the Kirchberg–
Phillips theorem that, in our terminology, reads as follows.

Theorem (Kirchberg [33]). A KK(X)-equivalence of stable Kirchberg X-algebras
lifts to a ∗-isomorphism over X.

For the purposes of this thesis, we may treat this theorem as a black box. It leaves
the following crucial question of rather topological nature.

Question. When are two given separable C∗-algebras over X KK(X)-equivalent?

Answering this question requires some sort of generalization of the universal coef-
ficient theorem, of course again under appropriate bootstrap assumptions. A natural
first case to consider is the one where X is finite. In his thesis [6], Bonkat established
a universal coefficient theorem for C∗-algebras over the two-point Sierpiński space or,
equivalently, for extensions of C∗-algebras in terms of the K-theoretic six-term exact
sequence, hence recovering, in combination with Kirchberg’s result, Rørdam’s earlier
classification of stable extensions of UCT Kirchberg algebras [55]. Restorff gave a gen-
eralization of this result for the three-point T0-space with totally ordered topology [51].

An indication of what an appropriate invariant for C∗-algebras over general finite
spaces might look like comes from Restorff’s classification of purely infinite, not neces-
sarily simple Cuntz–Krieger algebras [50]. The resulting invariant goes under various
names, such as filtrated K-theory, filtered K-theory, ideal-related K-theory and K-web.
Meyer and Nest proved that this invariant indeed suffices to obtain a universal coeffi-
cient theorem if the topology of X is totally ordered and that it is inadequate if X is
a certain four-point space [45]. Generalizing this work, Köhler and the author showed
that filtrated K-theory is a suitable invariant if and only if every connected component
of X is a so-called accordion space [4]. For their problematic four-point space, Meyer
and Nest showed how to refine filtrated K-theory in order to establish a universal coeffi-
cient theorem; their method was applied to some other four-point spaces in the authors
final year project [3]. Exhausting this refinement approach remains to be done. A uni-
versal coefficient theorem for KK(X)-theory over an arbitrary finite space X is proved
in Article D for C∗-algebras over X with vanishing boundary maps.

Cuntz–Krieger algebras

In [10, 11], Cuntz and Krieger introduced a class of C∗-algebras—nowadays called
Cuntz–Krieger algebras—associated with certain dynamical systems, namely shift spaces
of finite type. They proved that the stable isomorphism class of their C∗-algebra is an
invariant of the shift space up to flow equivalence. The Cuntz–Krieger algebras form an
interesting class of not necessarily simple, nuclear and often purely infinite C∗-algebras
(a Cuntz–Krieger algebra is purely infinite if and only if it has finitely many ideals).
Rørdam classified the simple Cuntz–Krieger algebras in terms of the K0-group [54] and
Huang classified the Cuntz–Krieger algebras with one proper non-zero ideal using the
Cuntz invariant [30]. Building on work of Boyle and Huang in symbolic dynamics [7],
Restorff proved the following classification theorem.

Theorem (Restorff [50]). Reduced filtered K-theory is a complete stable isomor-
phism invariant for purely infinite Cuntz–Krieger algebras.
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In Article B we prove a range-of-invariant result complementing this classification
theorem. As stated, Restorff’s theorem does not imply that isomorphisms on the invari-
ant necessarily lift to stable isomorphisms of C∗-algebras. It also leaves the following
question raised by Eilers, see [1] for an overview:

Question. Do phantom Cuntz–Krieger algebras exist?

A less catchy formulation of the question is as follows: let A be a unital real-rank-
zero Kirchberg X-algebra for a finite space X such that every simple subquotient S
of A satisfies the universal coefficient theorem, has free K1-group and fulfills the relation
rank K0(S) = rank K1(S) < ∞; then, is A necessarily a Cuntz–Krieger algebra? These
questions could potentially be answered by an approach using Kirchberg’s classification
theorem. We provide partial answers in Articles C and D. One conclusion of Article A is
that one straightforward approach to the problem—trying to establish a universal coeffi-
cient theorem for Cuntz–Krieger algebras by establishing length-1 projective resolutions
in filtrated K-theory—fails.

Continuous fields

Another interesting classification problem is the one of continuous fields of Kirchberg
algebras over a finite-dimensional compact metrizable space. Continuous fields of C∗-al-
gebras [19,26], or C∗-bundles, are generally far from locally trivial; hence complicated
invariants will be needed to capture their potential complexity. The assumption of finite-
dimensionality is crucial: there is a non-trivial unital separable continuous field over the
Hilbert cube with constant fiber O2 [14].

While some recent classification results in this setting rely on the full force of Kirch-
berg’s theorem, there are also alternative approaches. The zero-dimensional case has
been studied quite conclusively by Dadarlat and Pasnicu [18]. It follows from their work
that continuous fields of stable UCT Kirchberg algebras over zero-dimensional spaces
are classified by filtrated K-theory with coefficients. This result is also a consequence of
the more recent universal multicoefficient theorem of Dadarlat and Meyer [17] (in com-
bination with Kirchberg’s classification). Using approximations by so-called elementary
fields of semiprojective Kirchberg algebras, Dadarlat and Elliott classified separable con-
tinuous fields over the unit interval—one-parameter continuous fields—of stable UCT
Kirchberg algebras under certain K-theoretical assumptions on the fibers (torsion-free Kd

and vanishing Kd+1) in [15]. A complementing range result is deduced in [16]. In [13],
Dadarlat proves automatic/conditional (local) triviality theorems for continuous fields
of (stabilized) Cuntz algebras over an arbitrary finite-dimensional compact metrizable
space. In Articles E and F, based on Kirchberg’s theorem, we provide classification
results for continuous fields of Kirchberg algebras under certain K-theoretical assump-
tions.

Triangulated categories

Triangulated categories were introduced by Verdier [71] and Puppe [49] in order to de-
scribe the basic formal structure of derived categories and the stable homotopy category,
respectively. This structure is also present on the category of separable C∗-algebras and
KK-classes, as well as on equivariant generalizations of this category [42,43]. Inspired
by this analogy, one may seek to carry over notions like derived functors or the Adams
spectral sequence to the general setting of triangulated categories. Building on work
of Beligiannis [2] and Christensen [8], Meyer and Nest developed a theory of (relative)
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homological algebra in triangulated categories [41,44] providing a convenient unifying
framework for universal coefficient theorems and several other problems in noncommu-
tative topology; we use it in Articles A and D.

As indicated above, triangulated categories arise in various mathematical fields. It
turns out that triangulated categories of algebraic origin have some instrinsic properties
distinguishing them from many examples of topological or pathological nature [46].
To quantify this phenomenon, Schwede has constructed an invariant called n-order for
every natural number n [63]. It is interesting to ask for the n-order of (equivariant)
KK- or E-theory. In Article G we do some computations to this effect, but we must
restrict to certain triangulated subcategories. Our result says that, as far as the n-order
is concerned, the categories we investigate behave like algebraic triangulated categories.





Summary

For the reader’s convenience, we concisely state in this section the main results of the
articles contained in this thesis. To keep this overview as brief as possible, we refer to
the articles for formal definitions.

Article A: Projective dimension in filtrated K-theory

Tautologically, filtrated K-theory takes values in the category of graded modules
over the ring NT of natural transformations acting on the collection of its various entry
functors. We assume that this ring decomposes as NT = NT niloNT ss into a nilpotent
part NT nil and a semi-simple part NT ss; we do not know a finite space for which this
fails. Generalizing results of Meyer and Nest, we show:

Proposition. An NT -module M has a projective resolution of length n ∈ N if and
only if the abelian group TorNTn (NT ss,M) is free and the abelian group TorNTn+1(NT ss,M)
vanishes.

This result allows for explicit computations that imply the following.

Corollary. The projective dimension of filtrated K-theory over finite spaces is, in
general, not bounded by 2. On Cuntz–Krieger algebras, it is, in general, not bounded
by 1.

The first conclusion shows that there is no Bousfield-type refinement for filtrated
K-theory yielding classification over every finite space. The second conclusion may
be regarded as negative evidence for a universal coefficient theorem for Cuntz–Krieger
algebras in terms of filtrated K-theory.

Article B: The K-theoretical range of Cuntz–Krieger algebras
(with Sara Arklint and Takeshi Katsura)

In this article, we formalize the target category of Restorff’s reduced filtered K-the-
ory functor FKR as modules over a certain graded ring R. We determine the range of
FKR on purely infinite Cuntz–Krieger algebras in terms of exactness, freeness and rank
conditions. In combination with Restorff’s classification theorem, our result reads as
follows.

Corollary. Let X be a finite T0-space. The functor FKR induces a bijection
between the set of stable isomorphism classes of tight purely infinite Cuntz–Krieger al-
gebras over X and the set of isomorphism classes of exact R-modules M such that, for
all x ∈ X, the abelian group M(x1) is free, the abelian groups M(x1) and M(x̃0) are
finitely generated, and the rank of M(x1) coincides with the rank of the cokernel of the

map i : M(∂̃x0)→M(x̃0).
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We also show that there are no restrictions on the class in K0 of the unit of the
Cuntz–Krieger algebra. There is a version of our result for purely infinite graph C∗-al-
gebras.

Article C: Reduction of filtered K-theory and a characterization of
Cuntz–Krieger algebras (with Sara Arklint and Takeshi Katsura)

In this article, we show that, under suitable assumptions, reduced filtrated K-theory
contains as much information as concrete filtrated K-theory. More specifically, we show
the following.

Theorem. Let A and B be C∗-algebras of real rank zero over an EBP space X.
Assume that K1

(
A(x)

)
and K1

(
B(x)

)
are free abelian groups for all points x ∈ X.

Then any isomorphism FKR(A) ∼= FKR(B) lifts to an isomorphism in concrete filtrated
K-theory.

Every accordion space is an EBP space. Combining the theorem with the range
result from Article B and the universal coefficient theorem for C∗-algebras over accordion
spaces, we obtain:

Corollary. The primitive ideal space of a phantom Cuntz–Krieger algebra cannot
be a disjoint union of accordion spaces.

In fact, the same conclusion can be made also for the five four-point non-accordion
spaces, for which universal coefficient theorems have been established.

Article D: Kirchberg X-algebras with real rank zero and intermediate
cancellation

In this article, we consider C∗-algebras over a finite space X which have vanishing
boundary maps. A Kirchberg X-algebra has vanishing boundary maps if and only if
it has real rank zero and intermediate cancellation (a cancellation property formulated
in a similar way as weak cancellation). We establish the following universal coefficient
theorem.

Theorem. Let A and B be separable C∗-algebras over X. Assume that A belongs
to the bootstrap class B(X) and has vanishing boundary maps. Then there is a natural
short exact sequence of Z/2-graded abelian groups

Ext1
(
XK(A)[1],XK(B)

)
� KK∗(X;A,B) � Hom

(
XK(A),XK(B)

)
.

As a result, we obtain the following corollary of Kirchberg’s classification theorem:

Corollary. The functor XK is a strongly complete stable isomorphism invariant
for Kirchberg X-algebras in B(X) with real rank zero and intermediate cancellation.

Together with the range result from Article B, this can be used to show the following.

Corollary. A phantom Cuntz–Krieger algebra cannot have intermediate cancella-
tion.
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Article E: One-parameter continuous fields of Kirchberg algebras with
rational K-theory (with Marius Dadarlat)

We define a version of filtrated K-theory for C∗-algebras over the unit interval and
show the following.

Theorem. Let A and B be separable continuous fields over the unit interval whose
fibers are stable Kirchberg algebras that satisfy the universal coefficient theorem and have
rational K-theory groups. Then any isomorphism of filtrated K-theory FK(A) ∼= FK(B)
lifts to a C[0, 1]-linear ∗-isomorphism.

Besides Kirchberg’s classification theorem, we use the universal coefficient theorem
for C∗-algebras over accordion spaces and results of Dadarlat and Meyer relating E-the-
ory over [0, 1] with the corresponding version of KK-theory and with E-theory groups
over finite approximating spaces of [0, 1].

Article F: Classification of certain continuous fields of Kirchberg algebras

A similar approach as in Article E, but now based on the universal coefficient theorem
in Article D, gives the following result; while the base space X is only required to be
finite-dimensional, the K-theoretic assumptions are stronger.

Theorem. Let A and B be separable continuous fields over a finite-dimensional com-
pact metrizable topological space X whose fibers are stable Kirchberg algebras that satisfy
the universal coefficient theorem and have rational K-theory groups. Assume that A
and B have vanishing boundary maps. Then any isomorphism of K-theory cosheaves
OK(A) ∼= OK(B) lifts to a C(X)-linear ∗-isomorphism.

We also provide a partial range description accompanying the above classification.

Proposition. Let X be a finite-dimensional compact metrizable topological space X.
Let M be a flabby cosheaf of Z/2-graded Q-vector spaces on X such that M(X) is finite-
dimensional. Then M is a direct sum of a finite number of skyscraper cosheaves and
M ∼= OK(A) for a continuous field A as in the previous theorem.

Article G: Homotopy-theoretic E-theory and n-order

Let SWbu be the thick triangulated subcategory of connective E-theory generated
by the C∗-algebra of complex numbers. Let BGE be the ℵ0-localizing subcategory of
G-equivariant E-theory for a compact group G generated by the C∗-algebra of complex
numbers equipped with the trivial action. Let BE(X) be the bootstrap category in
E-theory over a finite space X. We compute Schwede’s n-order for these triangulated
categories.

Theorem. The triangulated categories SWbu, BGE and BE(X) have infinite n-order
for every n ∈ N.

Our proof makes use of results due to Lawson and Angeltveit.
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PROJECTIVE DIMENSION IN FILTRATED K-THEORY

RASMUS BENTMANN

Abstract. Under mild assumptions, we characterise modules with projective
resolutions of length n ∈ N in the target category of filtrated K-theory over
a finite topological space in terms of two conditions involving certain Tor-
groups. We show that the filtrated K-theory of any separable C∗-algebra over
any topological space with at most four points has projective dimension 2 or
less. We observe that this implies a universal coefficient theorem for rational
equivariant KK-theory over these spaces. As a contrasting example, we find
a separable C∗-algebra in the bootstrap class over a certain five-point space,
the filtrated K-theory of which has projective dimension 3. Finally, as an
application of our investigations, we exhibit Cuntz-Krieger algebras which have
projective dimension 2 in filtrated K-theory over their respective primitive
spectrum.

1. Introduction

A far-reaching classification theorem in [7] motivates the computation of Eber-
hard Kirchberg’s ideal-related Kasparov groups KK(X ;A,B) for separable C∗-al-
gebras A and B over a non-Hausdorff topological space X by means of K-theoretic
invariants. We are interested in the specific case of finite spaces here. In [9,10], Ralf
Meyer and Ryszard Nest laid out a theoretic framework that allows for a generalisa-
tion of Jonathan Rosenberg’s and Claude Schochet’s universal coefficient theorem
[16] to the equivariant setting. Starting from a set of generators of the equivariant
bootstrap class, they define a homology theory with a certain universality property,
which computes KK(X)-theory via a spectral sequence. In order for this universal
coefficient spectral sequence to degenerate to a short exact sequence, it remains
to be checked by hand that objects in the range of the homology theory admit
projective resolutions of length 1 in the Abelian target category.

Generalising earlier results from [3,10,15] the verification of the above-mentioned
condition for filtrated K-theory was achieved in [2] for the case that the underlying
space is a disjoint union of so-called accordion spaces. A finite connected T0-space
X is an accordion space if and only if the directed graph corresponding to its
specialisation pre-order is a Dynkin quiver of type A. Moreover, it was shown in
[2,10] that, if X is a finite T0-space which is not a disjoint union of accordion spaces,
then the projective dimension of filtrated K-theory over X is not bounded by 1 and
objects in the equivariant bootstrap class are not classified by filtrated K-theory.
The assumption of the separation axiom T0 is not a loss of generality in this context
(see [11, §2.5]).

There are two natural approaches to tackle the problem arising for non-accordion
spaces: one can either try to refine the invariant—this has been done with some
success in [10] and [1]; or one can hold onto the invariant and try to establish
projective resolutions of length 1 on suitable subcategories or localisations of the
category KK(X), in which X-equivariant KK-theory is organised. The latter is the
course we pursue in this note. We state our results in the next section.

The author was supported by the Danish National Research Foundation through the Centre
for Symmetry and Deformation and by the Marie Curie Research Training Network EU-NCG.
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2. Statement of Results

The definition of filtrated K-theory and related notation are recalled in §3.

Proposition 1. Let X be a finite topological space. Assume that the ideal N T nil ⊂
N T ∗(X) is nilpotent and that the decomposition N T ∗(X) = N T nil ⋊ N T ss holds.
Fix n ∈ N. For an N T ∗(X)-module M , the following assertions are equivalent:

(i) M has a projective resolution of length n.
(ii) The Abelian group TorN T ∗(X)

n (N T ss,M) is free and the Abelian group
TorN T ∗(X)

n+1 (N T ss,M) vanishes.

The basic idea of this paper is to compute the Tor-groups above by writing down
projective resolutions for the fixed right-module N T ss.

Let Zm be the (m+1)-point space on the set {1, 2, . . . ,m+1} such that Y ⊆ Zm

is open if and only if Y ∋ m+1 or Y = ∅. A C∗-algebra over Zm is a C∗-algebra A
with a distinguished ideal such that the corresponding quotient decomposes as a
direct sum of m orthogonal ideals. Let S be the set {1, 2, 3, 4} equipped with
the topology {∅, 4, 24, 34, 234, 1234}, where we write 24 := {2, 4} etc. A C∗-algebra
over S is a C∗-algebra together with two distinguished ideals which need not satisfy
any further conditions; see [11, Lemma 2.35].

Proposition 2. Let X be a topological space with at most 4 points. Let M = FK(A)
for some C∗-algebra A over X. Then M has a projective resolution of length 2 and
TorN T ∗

2 (N T ss,M) = 0.
Moreover, we can find explicit formulas for TorN T ∗

1 (N T ss,M); for instance,
TorN T ∗(Z3)

1 (N T ss,M) is isomorphic to the homology of the complex

(1)
3⊕

j=1
M(j4)

( i −i 0
−i 0 i
0 i −i

)

−−−−−−−−→
3⊕

k=1
M(1234 \ k) ( i i i )−−−−→ M(1234) .

A similar formula holds for the space S; see (6).

The situation simplifies if we consider rational KK(X)-theory, whose morphism
groups are given by KK(X ;A,B) ⊗ Q; see [6]. This is a Q-linear triangulated
category which can be constructed as a localisation of KK(X); the corresponding
localisation of filtrated K-theory is given by A 7→ FK(A) ⊗ Q and takes values in
the category of modules over the Q-linear category N T ∗(X) ⊗ Q.

Proposition 3. Let X be a topological space with at most 4 points. Let A and B
be C∗-algebras over X. If A belongs to the equivariant bootstrap class B(X), then
there is a natural short exact universal coefficient sequence

Ext1
N T ∗(X)⊗Q

(
FK∗+1(A) ⊗ Q,FK∗(B) ⊗ Q

)
֌ KK∗(X ;A,B) ⊗ Q

։ HomN T ∗(X)⊗Q
(
FK∗(A) ⊗ Q,FK∗(B) ⊗ Q

)
.

In [6], a long exact sequence is constructed which in our setting, by the above
proposition, reduces the computation of KK∗(X ;A,B), up to extension problems,
to the computation of a certain torsion theory KK∗(X ;A,B;Q/Z).

The next proposition says that the upper bound of 2 for the projective dimension
in Proposition 2 does not hold for all finite spaces.
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Proposition 4. There is an N T ∗(Z4)-module M of projective dimension 2 with
free entries and TorN T ∗

2 (N T ss,M) 6= 0. The module M ⊗Z Z/k has projective
dimension 3 for every k ∈ N≥2. Both M and M ⊗Z Z/k can be realised as the
filtrated K-theory of an object in the equivariant bootstrap class B(X).

As an application of Proposition 2 we investigate in §10 the obstruction term
TorN T ∗

1
(
N T ss,FK(A)

)
for certain Cuntz-Krieger algebras with four-point primitive

ideal spaces. We find:

Proposition 5. There is a Cuntz-Krieger algebra with primitive ideal space homeo-
morphic to Z3 which fulfills Cuntz’s condition (II) and has projective dimension 2
in filtrated K-theory over Z3. The analogous statement for the space S holds as
well.

The relevance of this observation lies in the following: if Cuntz-Krieger algebras
had projective dimension at most 1 in filtrated K-theory over their primitive ideal
space, this would lead to a strengthened version of Gunnar Restorff’s classification
result [14] with a proof avoiding reference to results from symbolic dynamics.

3. Preliminaries

Let X be a finite topological space. A subset Y ⊆ X is called locally closed if it
is the difference U \ V of two open subsets U and V of X ; in this case, U and V
can always be chosen such that V ⊆ U . The set of locally closed subsets of X is
denoted by LC(X). By LC(X)∗, we denote the set of non-empty, connected locally
closed subsets of X .

Recall from [11] that a C∗-algebra over X is pair (A,ψ) consisting of a C∗-al-
gebra A and a continuous map ψ : Prim(A) → X . A C∗-algebra (A,ψ) over X is
called tight if the map ψ is a homeomorphism. A C∗-algebra (A,ψ) over X comes
with distinguished subquotients A(Y ) for every Y ∈ LC(X).

There is an appropriate version KK(X) of bivariant K-theory for C∗-algebras
over X (see [7, 11]). The corresponding category, denoted by KK(X), is equipped
with the structure of a triangulated category (see [12]); moreover, there is an
equivariant analogue B(X) ⊆ KK(X) of the bootstrap class [11].

Recall that a triangulated category comes with a class of distinguished candid-
ate triangles. An anti-distinguished triangle is a candidate triangle which can be
obtained from a distinguished triangle by reversing the sign of one of its three
morphisms. Both distinguished and anti-distinguished triangles induce long exact
Hom-sequences.

As defined in [10], for Y ∈ LC(X), we let FKY (A) := K∗
(
A(Y )

)
denote the

Z/2-graded K-group of the subquotient of A associated to Y . Let N T (X) be the
Z/2-graded pre-additive category whose object set is LC(X) and whose space of
morphisms from Y to Z is N T ∗(X)(Y, Z) – the Z/2-graded Abelian group of all
natural transformations FKY ⇒ FKZ . Let N T ∗(X) be the full subcategory with
object set LC(X)∗. We often abbreviate N T ∗(X) by N T ∗.

Every open subset of a locally closed subset of X gives rise to an extension of
distinguished subquotients. The corresponding natural maps in the associated six-
term exact sequence yield morphisms in the category N T , which we briefly denote
by i, r and δ.

A (left-)module over N T (X) is a grading-preserving, additive functor from N T (X)
to the category AbZ/2 of Z/2-graded Abelian groups. A morphism of N T (X)-
modules is a natural transformation of functors. Left-modules over N T ∗(X) are
defined similarly. ByMod

(
N T ∗(X)

)
c we denote the category of countable N T ∗(X)-

modules.
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Filtrated K-theory is the functor KK(X) → Mod
(
N T ∗(X)

)
c taking a C∗-algebra

A over X to the collection
(
K∗(A(Y ))

)
Y ∈LC(X)∗ with the obvious N T ∗(X)-module

structure.
Let N T nil ⊂ N T ∗ be the ideal generated by all natural transformations between

different objects, and let N T ss ⊂ N T ∗ be the subgroup spanned by the identity
transformations idY

Y for objects Y ∈ LC(X)∗. The subgroup N T ss is in fact a
subring of N T ∗ isomorpic to ZLC(X)∗ . We say that N T ∗ decomposes as semi-
direct product N T ∗ = N T nil ⋊ N T ss if N T ∗ as an Abelian group is the inner
direct sum of N T nil and N T ss; see [2, 10]. We do not know if this fails for any
finite space.

We define right-modules over N T ∗(X) as contravariant, grading-preserving, ad-
ditive functors N T ∗(X) → AbZ/2. If we do not specify between left and right,
then we always mean left-modules. The subring N T ss ⊂ N T ∗ is regarded as an
N T ∗-right-module by the obvious action: The ideal N T nil ⊂ N T ∗ acts trivially,
while N T ss acts via right-multiplication in N T ss ∼= ZLC(X)∗ . For an N T ∗-module
M , we set Mss :=M/N T nil ·M .

For Y ∈ LC(X)∗ we define the free N T ∗-left-module on Y by PY (Z) := N T (Y, Z)
for all Z ∈ LC(X)∗ and similarly for morphisms Z → Z ′ in N T ∗. Analogously, we
define the free N T ∗-right-module on Y by QY (Z) := N T (Z, Y ) for all Z ∈ LC(X)∗.
An N T ∗-left/right-module is called free if it is isomorphic to a direct sum of degree-
shifted free left/right-modules on objects Y ∈ LC(X)∗. It follows directly from
Yoneda’s Lemma that free N T ∗-left/right-modules are projective.

An N T -module M is called exact if the Z/2-graded chain complexes

· · · → M(U) iY
U−→ M(Y )

r
Y \U

Y−−−→ M(Y \ U)
δU

Y \U−−−→ M(U)[1] → · · ·
are exact for all U, Y ∈ LC(X) with U open in Y . An N T ∗-module M is called
exact if the corresponding N T -module is exact (see [2]).

We use the notation C ∈∈ C to denote that C is an object in a category C.
In [10], the functors FKY are shown to be representable, that is, there are objects

RY ∈∈ KK(X) and isomorphisms of functors FKY
∼= KK(X ;RY , ␣). We let F̂K

denote the stable cohomological functor on KK(X) represented by the same set
of objects {RY | Y ∈ LC(X)∗}; it takes values in N T ∗-right-modules. We warn
that KK(X ;A,RY ) does not identify with the K-homology of A(Y ). By Yoneda’s
lemma, we have FK(RY ) ∼= PY and F̂K(RY ) ∼= QY .

We occasionally use terminology from [9, 10] concerning homological algebra in
KK(X) relative to the ideal I := ker(FK) of morphisms in KK(X) inducing trivial
module maps on FK. An object A ∈∈ KK(X) is called I-projective if I(A,B) = 0
for every B ∈∈ KK(X). We recall from [9] that FK restricts to an equivalence
of categories between the subcategories of I-projective objects in KK(X) and of
projective objects in Mod

(
N T ∗(X)

)
c. Similarly, the functor F̂K induces a con-

travariant equivalence between the I-projective objects in KK(X) and projective
N T ∗-right-modules.

4. Proof of Proposition 1

Recall the following result from [10].

Lemma 1 ([10, Theorem 3.12]). Let X be a finite topological space. Assume that
the ideal N T nil ⊂ N T ∗(X) is nilpotent and that the decomposition N T ∗(X) =
N T nil ⋊ N T ss holds. Let M be an N T ∗(X)-module. The following assertions are
equivalent:

(1) M is a free N T ∗(X)-module.
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(2) M is a projective N T ∗(X)-module.
(3) Mss is a free Abelian group and TorN T ∗(X)

1 (N T ss,M) = 0.

Now we prove Proposition 1. We consider the case n = 1 first. Choose an
epimorphism f : P ։M for some projective module P , and let K be its kernel. M
has a projective resolution of length 1 if and only if K is projective. By Lemma 1,
this is equivalent to Kss being a free Abelian group and TorN T ∗

1 (N T ss,K) = 0.
We have TorN T ∗

1 (N T ss,K) = 0 if and only if TorN T ∗
2 (N T ss,M) = 0 because these

groups are isomorphic. We will show thatKss is free if and only if TorN T ∗
1 (N T ss,M)

is free. The extension K ֌ P ։M induces the following long exact sequence:

0 → TorN T ∗
1 (N T ss,M) → Kss → Pss → Mss → 0 .

Assume that Kss is free. Then its subgroup TorN T ∗
1 (N T ss,M) is free as well.

Conversely, if TorN T ∗
1 (N T ss,M) is free, then Kss is an extension of free Abelian

groups and thus free. Notice that Pss is free because P is projective. The general
case n ∈ N follows by induction using an argument based on syzygies as above.
This completes the proof of Proposition 1.

5. Free Resolutions for N T ss

The N T ∗-right-module N T ss decomposes as a direct sum
⊕

Y ∈LC(X)∗ SY of the
simple submodules SY which are given by SY (Y ) ∼= Z and SY (Z) = 0 for Z 6= Y .
We obtain

TorN T ∗
n (N T ss,M) =

⊕

Y ∈LC(X)∗

TorN T
n (SY ,M) .

Our task is then to write down projective resolutions for the N T ∗-right-modules
SY . The first step is easy: we map QY onto SY by mapping the class of the identity
in QY (Y ) to the generator of SY (Y ). Extended by zero, this yields an epimorphism
QY ։ SY .

In order to surject onto the kernel of this epimorphism, we use the indecompos-
able transformations in N T ∗ whose range is Y . Denoting these by ηi : Wi → Y ,
1 ≤ i ≤ n, we obtain the two step resolution

n⊕

i=1
QWi

( η1 η2 ··· ηn )−−−−−−−−−→ QY ։ SY .

In the notation of [10], the map
⊕n

i=1 QWi → QY corresponds to a morphism
φ : RY → ⊕n

i=1 RWi of I-projectives in KK(X). If the mapping cone Cφ of φ is
again I-projective, the distinguished triangle ΣCφ → RY

φ−→ ⊕n
i=1 RWi → Cφ

yields the projective resolution

· · · → QY → Qφ[1] →
n⊕

i=1
QWi [1] → QY [1] → Qφ →

n⊕

i=1
QWi → QY ։ SY ,

where Qφ = FK(Cφ). We denote periodic resolutions like this by

Qφ
//⊕n

i=1 QWi
// QY → SY .

◦
tt

If the mapping cone Cφ is not I-projective, the situation has to be investigated
individually. We will see examples of this in §7 and §9. The resolutions we construct
in these cases exhibit a certain six-term periodicity as well. However, they begin
with a finite number of “non-periodic steps” (one in §7 and two in §9), which can be
considered as a symptom of the deficiency of the invariant filtrated K-theory over
non-accordion spaces from the homological viewpoint. We remark without proof
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that the mapping cone of the morphism φ : RY → ⊕n
i=1 RWi is I-projective for

every Y ∈ LC(X)∗ if and only if X is a disjoint union of accordion spaces.

6. Tensor Products with Free Right-Modules

Lemma 2. Let M be an N T ∗-left-module. There is an isomorphism QY ⊗N T ∗M ∼=
M(Y ) of Z/2-graded Abelian groups which is natural in Y ∈∈ N T ∗.

Proof. This is a simple consequence of Yoneda’s lemma and the tensor-hom adjunc-
tion. �

Lemma 3. Let ΣR(3)
γ−→ R(1)

α−→ R(2)
β∗−→ R(3) be a distinguished or anti-

distinguished triangle in KK(X), where R(i) =
⊕mi

j=1 RY i
j

⊕⊕ni

k=1 ΣRZi
k

for 1 ≤
i ≤ 3, mi, ni ∈ N and Y i

j , Z
i
k ∈ LC(X)∗. Set Q(i) = F̂K(R(i)). If M = FK(A) for

some A ∈∈ KK(X), then the induced sequence

Q(1) ⊗N T ∗ M
α∗⊗idM // Q(2) ⊗N T ∗ M

β∗⊗idM // Q(3) ⊗N T ∗ M

γ∗⊗idM

��
Q(3) ⊗N T ∗ M [1]

γ∗⊗idM [1]

OO

Q(2) ⊗N T ∗ M [1]
β∗⊗idM [1]
oo Q(1) ⊗N T ∗ M [1]

α∗⊗idM [1]
oo

(2)

is exact.

Proof. Using the previous lemma and the representability theorem, we naturally
identify Q(i) ⊗N T ∗ M ∼= KK(X ;R(i), A). Since, in triangulated categories, dis-
tinguished or anti-distinguished triangles induce long exact Hom-sequences, the
sequence (2) is thus exact. �

7. Proof of Proposition 2

We may restrict to connected T0-spaces. In [11], a list of isomorphism classes
of connected T0-spaces with three or four points is given. If X is a disjoint union
of accordion spaces, then the assertion follows from [2]. The remaining spaces fall
into two classes:

(1) all connected non-accordion four-point T0-spaces except for the pseudo-
circle;

(2) the pseudocircle (see §7.2).
The spaces in the first class have the following in common: If we fix two of them,
sayX , Y , then there is an ungraded isomorphism Φ: N T ∗(X) → N T ∗(Y ) between
the categories of natural transformations on the respective filtrated K-theories such
that the induced equivalence of ungraded module categories

Φ∗ : Modungr(N T ∗(Y )
)

c → Modungr(N T ∗(X)
)

c

restricts to a bijective correspondence between exact ungraded N T ∗(Y )-modules
and exact ungraded N T ∗(X)-modules. Moreover, the isomorphism Φ restricts to
isomorphisms from N T ss(X) onto N T ss(Y ) and from N T nil(X) onto N T nil(Y ).
In particular, the assertion holds for X if and only if it holds for Y .

The above is a consequence of the investigations in [1, 2, 10]; the same kind of
relation was found in [2] for the categories of natural transformations associated to
accordion spaces with the same number of points. As a consequence, it suffices to
verify the assertion for one representative of the first class—we choose Z3—and for
the pseudocircle.
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7.1. Resolutions for the space Z3. We refer to [10] for a description of the
category N T ∗(Z3), which in particular implies, that the space Z3 satisfies the
conditions of Proposition 1. Using the extension triangles from [10, (2.5)], the
procedure described in §5 yields the following projective resolutions induced by
distinguished triangles as in Lemma 3:

Q1[1] // Q4 // Q14 → S14 ,

◦tt
and similarly for S24, S34;

Q1234[1] // Q1[1] ⊕Q2[1] ⊕Q3[1] // Q4 → S4 ;
◦

rr

Q234 // Q1234 // Q1 → S1 ,

◦
tt

and similarly for S2, S3.

Next we will deal with the modules Sjk4, where 1 ≤ j < k ≤ 3. We observe that
there is a Mayer-Vietoris type exact sequence of the form

(3) Q4 // Qj4 ⊕Qk4 // Qjk4

◦
tt

.

Lemma 4. The candidate triangle ΣR4 → Rjk4 → Rj4 ⊕ Rk4 → R4 correspond-
ing to the periodic part of the sequence (3) is distinguished or anti-distinguished
(depending on the choice of signs for the maps in (3)).

Proof. We give the proof for j = 1 and k = 2. The other cases follow from cyclicly
permuting the indices 1, 2 and 3. We denote the morphism R124 → R14 ⊕ R24
by ϕ and the corresponding map Q14 ⊕ Q24 → Q124 in (3) by ϕ∗. It suffices
to check that F̂K(Coneϕ) and Q4 correspond, possibly up to a sign, to the same
element in Ext1

N T ∗(Z3)op
(
ker(ϕ∗), coker(ϕ∗)[1]

)
. We have coker(ϕ∗) ∼= S124 and

an extension S124[1] ֌ Q4 ։ ker(ϕ∗). Since Hom(Q4, S124[1]) ∼= S124(4)[1] = 0
and Ext1(Q4, S124[1]) because Q4 is projective, the long exact Ext-sequence yields
Ext1(ker(ϕ∗), coker(ϕ∗)[1]

) ∼= Hom(S124[1], S124[1]) ∼= Z. Considering the sequence
of transformations 3 δ−→ 124 i−→ 1234 r−→ 3, it is straight-forward to check that such an
extension corresponds to one of the generators ±1 ∈ Z if and only if its underlying
module is exact. This concludes the proof because both F̂K(Coneϕ) and Q4 are
exact. �

Hence we obtain the following projective resolutions induced by distinguished or
anti-distinguished triangles as in Lemma 3:

Q4 // Qj4 ⊕Qk4 // Qjk4 → Sjk4

◦
tt

.

To summarize, by Lemma 3, TorN T ∗
n (SY ,M) = 0 for Y 6= 1234 and n ≥ 1.

As we know from [10], the subset 1234 of Z3 plays an exceptional role. In the
notation of [10] (with the direction of the arrows reversed because we are dealing
with right-modules), the kernel of the homomorphism Q124 ⊕ Q134 ⊕ Q234

( i i i )−−−−→
Q1234 is of the form

Z

����
��
��
��

0oo

��✄✄
✄✄
✄✄
✄✄

Z[1]

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

Z2 Zoo 0

��✄✄
✄✄
✄✄
✄✄

]]❀❀❀❀❀❀❀❀
0oo

��✄✄
✄✄
✄✄
✄✄

]]❀❀❀❀❀❀❀❀
Z[1]oo Z2 .◦oo

◦③
③③
③

}}③③③
③

◦❉❉❉❉

aa❉❉❉❉

Z

^^❃❃❃❃❃❃❃❃
0oo

]]❀❀❀❀❀❀❀❀
Z[1]

__❅❅❅❅❅❅❅❅
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It is the image of the module homomorphism

(4) Q14 ⊕Q24 ⊕Q34

( i −i 0
−i 0 i
0 i −i

)

−−−−−−−−→ Q124 ⊕Q134 ⊕Q234,

the kernel of which, in turn, is of the form

0

��✄✄
✄✄
✄✄
✄✄

Z[1]oo

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

Z[1]

||②②
②②
②②
②②

Z 0oo Z[1]

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

__❅❅❅❅❅❅❅❅

Z[1]3oo

||②②
②②
②②
②②

bb❊❊❊❊❊❊❊❊

Z[1]oo Z .◦oo

◦⑤
⑤⑤
⑤

}}⑤⑤⑤
⑤

◦❇❇❇❇

aa❇❇❇❇

0

]]❀❀❀❀❀❀❀❀
Z[1]oo

__❅❅❅❅❅❅❅❅

Z[1]

bb❊❊❊❊❊❊❊❊

A surjection from Q4 ⊕ Q1234[1] onto this module is given by
(

i i i
δ14

1234 0 0

)
, where

δ14
1234 := δ14

3 ◦ r3
1234. The kernel of this homomorphism has the form

Z[1]

}}③③
③③
③③
③③

Z[1]oo

}}③③
③③
③③
③③

0

��✄✄
✄✄
✄✄
✄✄

Z[1] Z[1]oo Z[1]

}}③③
③③
③③
③③

aa❉❉❉❉❉❉❉❉

0oo

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

__❅❅❅❅❅❅❅❅
0oo 0 .◦oo

◦✁
✁✁
✁

��✁✁
✁✁

◦❂❂❂❂

^^❂❂❂❂

Z[1]

aa❉❉❉❉❉❉❉❉

Z[1]oo

aa❉❉❉❉❉❉❉❉

0

]]❀❀❀❀❀❀❀❀

This module is isomorphic to Syz1234[1], where Syz1234 := ker(Q1234 ։ S1234).
Therefore, we end up with the projective resolution
(5)

Q4 ⊕Q1234[1] // Q14 ⊕Q24 ⊕Q34 // Q124 ⊕Q134 ⊕Q234 //
◦rr

Q1234 → S1234 .

The homomorphism fromQ124⊕Q134⊕Q234 toQ4⊕Q1234[1] is given by
(

0 0 −δ4
234

i i i

)
,

where δ4
234 := δ4

2 ◦ r2
234.

Lemma 5. The candidate triangle in KK(X) corresponding to the periodic part of
the sequence (5) is distinguished or anti-distinguished (depending on the choice of
signs for the maps in (5)).

Proof. The argument is analogous to the one in the proof of Lemma 4. Again, we
consider the group Ext1

N T ∗(Z3)op
(
ker(ϕ∗), coker(ϕ∗)[1]

)
where ϕ∗ now denotes the

map (4). We have coker(ϕ∗) ∼= Syz1234 and an extension Q4 ֌ ker(ϕ∗) ։ S1234[1].
Using long exact sequences, we obtain

Ext1(ker(ϕ∗), coker(ϕ∗)[1]
) ∼= Ext1(S1234[1], Syz1234[1])

∼= Hom(S1234[1], S1234[1]) ∼= Z.

Again, an extension corresponds to a generator if and only if its underlying module
is exact. �

By the previous lemma and §6, computing the tensor product of this complex
withM and taking homology shows that TorN T ∗

n (N T ss,M) = 0 for n ≥ 2 and that
TorN T ∗

1 (N T ss,M) is equal to TorN T ∗

1 (S1234,M) and isomorphic to the homology
of the complex (1).
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Example 1. For the filtrated K-module with projective dimension 2 constructed in
[10, §5] we get TorN T ∗

1 (N T ss,M) ∼= Z/k.

Remark 1. As explicated in the beginning of this section, the category N T ∗(S)
corresponding to the four-point space S defined in the introduction is isomorphic in
an appropriate sense to the category N T ∗(Z3). As has been established in [1], the
indecomposable morphisms in N T ∗(S) are organised in the diagram

12 ◦δ //
r

  ❇
❇❇

❇❇
❇❇

❇ 34
i

!!❉
❉❉

❉❉
❉❉

❉ 2
i

##❍
❍❍

❍❍
❍❍

❍❍

123

r

==③③③③③③③③
◦δ //

r

!!❉
❉❉

❉❉
❉❉

❉ 4
⑤⑤⑤⑤

i

>>⑤⑤⑤

❇❇❇
❇ i

  ❇
❇❇

1 ◦δ // 234

r

;;✇✇✇✇✇✇✇✇✇
i //

r

##●
●●

●●
●●

●●
1234 r // 123 .

13

r

>>⑤⑤⑤⑤⑤⑤⑤⑤
◦δ // 24

i

==③③③③③③③③
3

i

;;✈✈✈✈✈✈✈✈✈✈

In analogy to (1), we have that TorN T ∗(S)
1 (N T ss,M) is isomorphic to the homology

of the complex

(6) M(12)[1] ⊕M(4) ⊕M(13)[1]

( δ −r 0
−i 0 i
0 r −δ

)

−−−−−−−−−→ M(34) ⊕M(1)[1] ⊕M(24)
( i δ i )−−−−→ M(234) ,

where M = FK(A) for some separable C∗-algebra A over X.

7.2. Resolutions for the pseudocircle. Let C2 = {1, 2, 3, 4} with the partial
order defined by 1 < 3, 1 < 4, 2 < 3, 2 < 4. The topology on C2 is thus given by
{∅, 3, 4, 34, 134, 234, 1234}. Hence the non-empty, connected, locally closed subsets
are

LC(C2)∗ = {3, 4, 134, 234, 1234, 13, 14, 23, 24, 124, 123, 1, 2} .
The partial order on C2 corresponds to the directed graph

4 2

3 1 .

• •

• •

//
❄❄

❄❄

��❄
❄❄

❄

??⑧⑧⑧⑧⑧⑧⑧⑧⑧ //

The space C2 is the only T0-space with at most four points with the property
that its order complex (see [10, Definition 2.6]) is not contractible; in fact, it is
homeomorphic to the circle S1. Therefore, by the representability theorem [10, §2.1]
we find

N T ∗(C2, C2) ∼= KK∗(X ;RC2 ,RC2) ∼= K∗
(
RC2(C2)

) ∼= K∗ (S1) ∼= Z ⊕ Z[1] ,

that is, there are non-trivial odd natural transformations FKC2 ⇒ FKC2 . These
are generated, for instance, by the composition C2

r−→ 1 δ−→ 3 i−→ C2. This follows
from the description of the category N T ∗(C2) below. Note that δC2

C2
◦ δC2

C2
vanishes

because it factors through r1
13 ◦ i13

3 = 0.
Figure 1 displays a set of indecomposable transformations generating the cat-

egory N T ∗(C2) determined in [1, §6.3.2], where also a list of relations generating
the relations in the category N T ∗(C2) can be found. From this, it is straight-
forward to verify that the space C2 satisfies the conditions of Proposition 1.
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13
i

��
3 i //

i

��

134

r
55

r //

i

((

14
i

��

123 r //

r

��

1 ◦δ //

◦
δ

��

3

1234

r 66

r ((4 i //

i

KK

234

i
66

r //

r

))

23
i

II

124 r //

r

KK

2 ◦δ //

◦δ

LL

4

24

i

DD

Figure 1. Indecomposable natural transformations in N T ∗(C2)

Proceeding as described in §5, we find projective resolutions of the following
form (we omit explicit descriptions of the boundary maps):

Q123[1] // Q1[1] ⊕Q2[1] // Q3 → S3 ,

◦ss
and similarly for S4;

Q1[1] // Q3 ⊕Q4 // Q134 → S134 ,

◦
ss and similarly for S234;

Q4 // Q134 // Q13 → S13 ,

◦
uu and similarly for S14, S23, S24;

Q3 ⊕Q4 // Q134 ⊕Q234 // Q1234 → S1234 ;
◦rr

Q4 ⊕Q123[1] // Q134 ⊕Q234 // Q1234 ⊕Q13 ⊕Q23 → Q123 → S123 ,

◦rr

and similarly for S124;

Q234 ⊕Q1[1] // Q1234 ⊕Q23 ⊕Q24 // Q123 ⊕Q124 → Q1 → S1 ,

◦qq

and similarly for S2. Again, the periodic part of each of these resolutions is induced
by an extension triangle, a Mayer-Vietoris triangle as in Lemma 4 or a more exotic
(anti-)distinguished triangle as in Lemma 5 (we omit the analogous computation
here).

We get TorN T ∗

1 (SY ,M) = 0 for every Y ∈ LC(C2)∗ \ {123, 124, 1, 2}, and
TorN T ∗

n (SY ,M) = 0 for all Y ∈ LC(C2)∗ and n ≥ 2. Therefore,

TorN T ∗
1 (N T ss,M) ∼=

⊕

Y ∈{123,124,1,2}
TorN T ∗

1 (SY ,M) .

The four groups TorN T ∗
1 (SY ,M) with Y ∈ {123, 124, 1, 2} can be described expli-

citly as in §7.1 using the above resolutions. This finishes the proof of Proposition 2.

8. Proof of Proposition 3

We apply the Meyer-Nest machinery to the homological functor FK ⊗ Q on
the triangulated category KK(X) ⊗ Q. We need to show that every N T ∗ ⊗ Q
module of the form M = FK(A) ⊗ Q has a projective resolution of length 1. It is
easy to see that analogues of Propositions 1 and 2 hold. In particular, the term
TorN T ∗⊗Q

2 (N T ss ⊗ Q,M) always vanishes. Here we use that Q is a flat Z-module,
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so that tensoring with Q turns projective N T ∗-module resolutions into projective
N T ∗ ⊗ Q-module resolutions. Moreover, the freeness condition for the Q-module
TorN T ∗⊗Q

1 (N T ss ⊗ Q,M) is empty since Q is a field.

9. Proof of Proposition 4

The computations to determine the category N T ∗(Z4) are very similar to those
for the category N T ∗(Z3) which were carried out in [10]. We summarise its struc-
ture in Figure 2. The relations in N T ∗(Z4) are generated by the following:

• the hypercube with vertices 5, 15, 25, . . . , 12345 is a commuting diagram;
• the following compositions vanish:

1235 i−→ 12345 r−→ 4 , 1245 i−→ 12345 r−→ 3 ,

1345 i−→ 12345 r−→ 2 , 2345 i−→ 12345 r−→ 1 ,

1 δ−→ 5 i−→ 15 , 2 δ−→ 5 i−→ 25 , 3 δ−→ 5 i−→ 35 , 4 δ−→ 5 i−→ 45 ;

• the sum of the four maps 12345 → 5 via 1, 2, 3, and 4 vanishes.
This implies that the space Z4 satisfies the conditions of Proposition 1.

125
i

##●
●●

●●
●●

●

i

��✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

15

i

==③③③③③③③③
i //

i

!!❉
❉❉

❉❉
❉❉

❉ 135 i //

i

��✲
✲✲
✲✲
✲✲
✲✲
✲✲
✲✲
✲✲
✲✲
✲✲
✲✲
✲ 1235

i

��✻
✻✻

✻✻
✻✻

✻✻
✻✻

✻✻
✻✻

1

◦
✳✳
✳✳
✳✳
✳

δ

��✳
✳✳
✳✳
✳✳25

i

FF☞☞☞☞☞☞☞☞☞☞☞☞☞☞☞

i

��✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷

i

��✱
✱✱
✱✱
✱✱
✱✱
✱✱
✱✱
✱✱
✱✱
✱✱
✱✱

145 i //

i

��✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

1245
i

$$■■
■■

■■
■■

■ 2
◦
❃❃❃

❃

δ ��❃
❃❃❃

5

i

GG✍✍✍✍✍✍✍✍✍✍✍✍✍✍

i

>>⑦⑦⑦⑦⑦⑦⑦⑦

i

  ❅
❅❅

❅❅
❅❅

i

��✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵ 12345

r

EE☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛

r

<<②②②②②②②②②

r

""❊
❊❊

❊❊
❊❊

❊❊

r

��✸
✸✸
✸✸
✸✸
✸✸

✸✸
✸✸
✸✸

5

35

i

II✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓
i //

i

��✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷

235

i

HH✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑

i

##●
●●

●●
●●

● 1345

i

::✉✉✉✉✉✉✉✉✉
3

◦����

δ

@@����

45

i

II✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓
i //

i

!!❉
❉❉

❉❉
❉❉

❉ 245

i

HH✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑✑
i // 2345

i

CC✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟
4

◦✏✏✏✏✏✏✏

δ

GG✏✏✏✏✏✏✏

345

i

EE✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡

i

;;✇✇✇✇✇✇✇✇

Figure 2. Indecomposable natural transformations in N T ∗(Z4)

In the following, we will define an exact N T ∗-left-module M and compute
TorN T ∗

2 (S12345,M). By explicit computation, one finds a projective resolution of
the simple N T ∗-right-module S12345 of the following form (again omitting explicit
formulas for the boundary maps):

Q5 ⊕⊕
1≤i≤4

Q12345\i[1]
⊕

1≤l≤4
Ql5 ⊕Q12345[1]

⊕
1≤j<k≤4

Qjk5

⊕
1≤i≤4

Q12345\i Q12345 S12345.

◦

Notice that this sequence is periodic as a cyclic six-term sequence except for the
first two steps.
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Consider the exact N T ∗-left-module M defined by the exact sequence

0 → P12345

(
i
i
i
i

)

−−−→
⊕

1≤i≤4
P12345\i




i −i 0 0
−i 0 i 0
0 i −i 0
i 0 0 −i
0 −i 0 i
0 0 i −i




−−−−−−−−−−−−→
⊕

1≤j<k≤4
Pjk5 ։M .

(7)

We have
⊕

1≤l≤4 M(l5) ⊕ M(12345)[1] ∼= 0 ⊕ Z3,
⊕

1≤j<k≤4 M(jk5) ∼= Z6, and
M(5) ⊕⊕1≤i≤4 M(12345 \ i)[1] ∼= Z[1] ⊕ Z[1]8. Since

⊕
1≤l≤4

M(l5) ⊕M(12345)[1] // ⊕
1≤j<k≤4

M(jk5)

◦

��
M(5) ⊕ ⊕

1≤i≤4
M(12345 \ i)[1]

jj❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

is exact, a rank argument shows that the map
⊕

1≤l≤4
M(l5) ⊕M(12345)[1] →

⊕

1≤j<k≤4
M(jk5)

is zero. On the other hand, the kernel of the map

⊕

1≤j<k≤4
M(jk5)

( i −i 0 i 0 0
−i 0 i 0 −i 0
0 i −i 0 0 i
0 0 0 −i i −i

)

−−−−−−−−−−−−−−−→
⊕

1≤i≤4
M(12345 \ i)

is non-trivial; it consists precisely of the elements in
⊕

1≤j<k≤4
M(jk5) ∼=

⊕

1≤j<k≤4
Z[idjk5

jk5]

which are multiples of ([idjk5
jk5])1≤j<k≤4. This shows TorN T ∗

2 (S12345,M) ∼= Z. Hence,
by Proposition 1, the module M has projective dimension at least 2. On the other
hand, (7) is a resolution of length 2. Therefore, the projective dimension of M is
exactly 2.

Let k ∈ N≥2 and define Mk = M ⊗Z Z/k. Since TorN T ∗
2 (S12345,Mk) ∼= Z/k is

non-free, Proposition 1 shows that Mk has at least projective dimension 3. On the
other hand, if we abbreviate the resolution (7) for M by

(8) 0 → P (5) α−→ P (4) β−→ P (3) ։M ,

a projective resolution of length 3 for Mk is given by

0 → P (5) ( k
α )−−−→ P (5) ⊕ P (4)

(
α −k
0 β

)

−−−−−−→ P (4) ⊕ P (3) ( β k )−−−−→ P (3) ։Mk ,

where k denotes multiplication by k.
It remains to show that the modules M and Mk can be realised as the filtrated

K-theory of objects in B(X). It suffices to prove this for the module M since
tensoring with the Cuntz algebra Ok+1 then yields a separable C∗-algebra with
filtrated K-theory Mk by the Künneth Theorem.

The projective resolution (8) can be written as

0 → FK(P 2) FK(f2)−−−−→ FK(P 1) FK(f1)−−−−→ FK(P 0) ։M,

because of the equivalence of the category of projective N T ∗-modules and the
category of I-projective objects in KK(X). Let N be the cokernel of the module
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map FK(f2). Using [10, Theorem 4.11], we obtain an object A ∈∈ B(X) with
FK(A) ∼= N . We thus have a commutative diagram of the form

0 // FK(P 2)
FK(f2)// FK(P 1)

FK(f1) //

%% %%❏❏
❏❏

❏❏
❏❏

❏
FK(P 0) // // M .

FK(A)
99

γ
99ttttttttt

Since A belongs to the bootstrap class B(X) and FK(A) has a projective resolution
of length 1, we can apply the universal coefficient theorem to lift the homomorph-
ism γ to an element f ∈ KK(X ;A,P 0). Now we can argue as in the proof of
[10, Theorem 4.11]: since f is I-monic, the filtrated K-theory of its mapping cone
is isomorphic to coker(γ) ∼=M . This completes the proof of Proposition 4.

10. Cuntz-Krieger Algebras with Projective Dimension 2

In this section we exhibit a Cuntz-Krieger algebra A which is a tight C∗-algebra
over the space Z3 and for which the odd part of TorN T ∗(Z3)

1
(
N T ss,FK(A)

)
—

denoted Torodd
1 in the following—is not free. By Proposition 2 this C∗-algebra

has projective dimension 2 in filtrated K-theory.
In the following we will adhere to the conventions for graph algebras and adja-

cency matrices from [4]. Let E be the finite graph with vertex set E0 = {v1, v2, . . . , v8}
and edges corresponding to the adjacency matrix

(9)




B4 0 0 0
X1 B1 0 0
X2 0 B2 0
X3 0 0 B3


 :=




(
3 2
2 3

)
0 0 0

(
1 1
1 1

) (
3 2
1 2

)
0 0

(
1 1
1 1

)
0

(
3 2
1 2

)
0

(
1 1
1 1

)
0 0

(
3 2
1 2

)




.

Since this is a finite graph with no sinks and no sources, the associated graph
C∗-algebra C∗(E) is in fact a Cuntz-Krieger algebra (we can replace E with its
edge graph; see [13, Remark 2.8]). Moreover, the graph E is easily seen to fulfill
condition (K) because every vertex is the base of two or more simple cycles. As
a consequence, the adjacency matrix of the edge graph of E fulfills condition (II)
from [5]. In fact, condition (K) is designed as a generalisation of condition (II): see,
for instance, [8].

Applying [13, Theorem 4.9]—and carefully translating between different graph
algebra conventions—we find that the ideals of C∗(E) correspond bijectively and in
an inclusion-preserving manner to the open subsets of the space Z3. By [11, Lemma
2.35], we may turn A into a tight C∗-algebra over Z3 by declaring A({4}) = I{v1,v2},
A({1, 4}) = I{v1,v2,v3,v4}, A({2, 4}) = I{v1,v2,v5,v6} and A({3, 4}) = I{v1,v2,v7,v8},
where IS denotes the ideal corresponding to the saturated hereditary subset S.

It is known how to compute the six-term sequence in K-theory for an extension
of graph C∗-algebras: see [4]. Using this and Proposition 2, Torodd

1 is the homology
of the complex

(10) ker(φ0)

( i −i 0
−i 0 i
0 i −i

)

−−−−−−−−→ ker(φ1)
( i i i )−−−−→ ker(φ2) ,
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where φ0 = diag
((

B′
4 Xt

1
0 B′

1

)
,
(

B′
4 Xt

2
0 B′

2

)
,
(

B′
4 Xt

3
0 B′

3

))
, φ2 =




B′
4 Xt

1 Xt
2 Xt

3
0 B′

1 0 0
0 0 B′

2 0
0 0 0 B′

3


 ,

φ1 = diag
((

B′
4 Xt

1 Xt
2

0 B′
1 0

0 0 B′
2

)
,

(
B′

4 Xt
1 Xt

3
0 B′

1 0
0 0 B′

3

)
,

(
B′

4 Xt
2 Xt

3
0 B′

2 0
0 0 B′

3

))
,

and B′
4 = Bt

4 − ( 1 0
0 1 ) = ( 2 2

2 2 ) and B′
j = Bt

j − ( 1 0
0 1 ) = ( 2 1

2 1 ) for 1 ≤ j ≤ 3. We obtain
a commutative diagram

ker(φ0)

fK

��

// // (Z⊕2)⊕(2·3)

f

��

φ0 // // im(φ0)

fI

��
ker(φ1)

gK

��

// // (Z⊕2)⊕(3·3)

g

��

φ1 // // im(φ1)

gI

��
ker(φ2) // // (Z⊕2)⊕(4·1) φ2 // // im(φ2) ,

(11)

where f and g have the block forms

f =




id 0 −id 0 0 0
0 id 0 0 0 0
0 0 0 −id 0 0

−id 0 0 0 id 0
0 −id 0 0 0 0
0 0 0 0 0 id
0 0 id 0 −id 0
0 0 0 id 0 0
0 0 0 0 0 −id




, g =
( id 0 0 id 0 0 id 0 0

0 id 0 0 id 0 0 0 0
0 0 id 0 0 0 0 id 0
0 0 0 0 0 id 0 0 id

)
,

and fK := f |ker(φ0), fI := f |im(φ0), gK := g|ker(φ1), gI := g|im(φ1). Notice that f
and g are defined in a way such that the restrictions f |ker(φ0) and g|ker(φ1) are
exactly the maps from (10) in the identification made above.

We abbreviate the above short exact sequence of cochain complexes (11) asK• ֌
Z• ։ I•. The part H0(Z•) → H0(I•) → H1(K•) → H1(Z•) in the corresponding
long exact homology sequence can be identified with

ker(f) φ0−→ ker(fI) → ker(gK)
im(fK) → 0 .

Hence
Torodd

1
∼= ker(gK)

im(fK)
∼= ker(fI)
φ0
(
ker(f)

) ∼= ker(f) ∩ im(φ0)
φ0
(
ker(f)

) .

We have ker(f) = {(v, 0, v, 0, v, 0) | v ∈ Z2} ⊂ (Z⊕2)⊕(2·3).
From the concrete form (9) of the adjacency matrix, we find that ker(f)∩ im(φ0)

is the free cyclic group generated by (1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0), while φ0
(
ker(f)

)

is the subgroup generated by (2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0). Hence Torodd
1

∼= Z/2 is
not free.

Now we briefly indicate how to construct a similar counterexample for the
space S. Consider the integer matrix




B4 0 0 0
X43 B3 0 0
X42 0 B2 0
X41 X31 X21 B1


 :=




(
3
)

0 0 0(
2
) (

3
)

0 0(
2
)

0
(
3
)

0(
2
0

) (
1
0

) (
1
0

) (
2 1
1 2

)




.

The corresponding graph F fulfills condition (K) and has no sources or sinks. The
associated graph C∗-algebra C∗(F ) is therefore a Cuntz-Krieger algebra satisfying
condition (II). It is easily read from the block structure of the edge matrix that the
primitive ideal space of C∗(F ) is homeomorphic to S. We are going to compute the
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even part of TorN T ∗(S)
1

(
N T ss,FK(C∗(F ))

)
. Since the nice computation methods

from the previous example do not carry over, we carry out a more ad hoc calculation.
By Remark 1, the even part of our Tor-term is isomorphic to the homology of

the complex

ker
(

B′
2 Xt

21
0 B′

1

)
◦

(
Xt

42 Xt
41

0 Xt
31

)

//

−r

&&▲▲
▲▲▲

▲▲▲
▲▲▲

▲▲▲
coker

(
B′

4 Xt
43

0 B′
3

)

i

''❖❖
❖❖❖

❖❖❖
❖❖❖

coker(B′
4)

rrrrrrr
−i

88rrrrrr

▲▲▲
▲▲▲

▲ i

&&▲▲
▲▲▲

▲

ker(B′
1) ◦

(
Xt

41
Xt

31
Xt

21

)

// coker
(

B′
4 Xt

43 Xt
42

0 B′
3 0

0 0 B′
2

)
,

ker
(

B′
3 Xt

31
0 B′

1

)
r

88rrrrrrrrrrrrrr

◦

−
(

Xt
43 Xt

41
0 Xt

21

)// coker
(

B′
4 Xt

42
0 B′

2

)

i
77♦♦♦♦♦♦♦♦♦♦♦

where column-wise direct sums are taken. Here B′
1 = Bt

1 − ( 1 0
0 1 ) = ( 1 1

1 1 ) and
B′

j = Bt
j −

(
1
)
=
(
2
)
for 2 ≤ j ≤ 4. This complex can be identified with

Z ⊕ Z/2 ⊕ Z

( 0 1 0
0 0 0

−2 0 2
0 1 0
0 0 0

)

−−−−−−−→ (Z/2)2 ⊕ Z ⊕ (Z/2)2

( 1 0 0 1 0
0 1 1 0 0
0 0 1 0 1

)

−−−−−−−−→ (Z/2)3 ,

the homology of which is isomorphic to Z/2; a generator is given by the class of
(0, 1, 1, 0, 1) ∈ (Z/2)2 ⊕ Z ⊕ (Z/2)2. This concludes the proof of Proposition 5.
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THE K-THEORETICAL RANGE OF CUNTZ–KRIEGER
ALGEBRAS

SARA E. ARKLINT, RASMUS BENTMANN, AND TAKESHI KATSURA

Abstract. We augment Restorff’s classification of purely infinite Cuntz–Krie-
ger algebras by describing the range of his invariant on purely infinite Cuntz–
Krieger algebras. We also describe its range on purely infinite graph C∗-al-
gebras with finitely many ideals, and provide ‘unital’ range results for purely
infinite Cuntz–Krieger algebras and unital purely infinite graph C∗-algebras.

1. Introduction

Cuntz–Krieger algebras form a class of C∗-algebras closely related to symbolic
dynamics [7, 8]. Based on this relationship, classification results for purely infinite
Cuntz–Krieger algebras by K-theoretical invariants have been established by Mikael
Rørdam in the simple case [16] and by Gunnar Restorff in the case of finitely many
ideals [15].

For simple Cuntz–Krieger algebras, the K0-group suffices for classification (be-
cause the K1-group can be identified with the free part of the K0-group). Moreover,
it is known that every finitely generated abelian group arises as the K0-group of
some simple Cuntz–Krieger algebra [17].

The invariant in Restorff’s classification theorem for non-simple purely infinite
Cuntz–Krieger algebras is called reduced filtered K-theory; we denote it by FKR.
Being an almost precise analogue of the K-web of Boyle and Huang [3] in the world
of C∗-algebras, it comprises the K0-groups of certain distinguished ideals and the
K1-groups of all simple subquotients, along with the action of certain natural maps.

The first aim of this article is to clarify the definition of the target category
of reduced filtered K-theory. We define a certain pre-additive category R such
that FKR becomes a functor to R-modules in a natural way. Our second aim is
then to determine the class of R-modules that arise (up to isomorphism) as the
reduced filtered K-theory of some (tight, purely infinite) Cuntz–Krieger algebra.
This involves a natural exactness condition, as well as some conditions that translate
well-known K-theoretical properties of purely infinite Cuntz–Krieger algebras.

A Cuntz–Krieger algebra is purely infinite if and only if it has finitely many
ideals, and if and only if it has real rank zero [11]. For a C∗-algebra with real rank
zero, the exponential map in the K-theoretical six-term exact sequence for every
inclusion of subquotients vanishes [5]. This fact is crucial to our definitions and
results, in this article and in the companion article [1].

2010 Mathematics Subject Classification. 46L35, 46L80, (46L55).
Key words and phrases. Cuntz–Krieger algebras, classification, filtered K-theory.
This research was supported by the Danish National Research Foundation through the Centre

for Symmetry and Deformation (DNRF92). The third-named author was partially supported by
the Japan Society for the Promotion of Science.
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Our work is based on the article [10] of Eilers, Katsura, Tomforde and West who
characterized the six-term exact sequences in K-theory of Cuntz–Krieger algebras
with a unique non-trivial proper ideal. We obtain our result by a careful inductive
application of the result in [10].

Combining our range result for purely infinite Cuntz–Krieger algebras with
Restorff’s classification theorem, we obtain an explicit natural description of the set
of stable isomorphism classes of purely infinite Cuntz–Krieger algebras, completing
the picture in a way previously known only in the simple case and the one-ideal
case.

Anticipating potential future classification results generalizing Restorff’s theo-
rem, we also provide a range result for purely infinite graph C∗-algebras with
finitely many ideals. Cuntz–Krieger algebras may be viewed as a specific type
of graph C∗-algebras, namely those arising from finite graphs with no sources [2].
Indeed, our range result is established by graph C∗-algebraic methods. All purely
infinite graph C∗-algebras have real rank zero [11], so that the abovementioned
K-theoretical particularities that make our approach work are still present in this
more general setting.

Finally, we equip reduced filtered K-theory with a unit class and establish corre-
sponding range results for purely infinite Cuntz–Krieger algebras and unital purely
infinite graph C∗-algebras. In [1], this is used to give an “external characteriza-
tion” of purely infinite Cuntz–Krieger algebras under some conditions on the ideal
structure.

1.1. Acknowledgements. Most of this work was done while the third-named au-
thor stayed at the University of Copenhagen. He would like to thank the people
in Copenhagen for their hospitality. The authors are grateful to Søren Eilers for
his encouragement and valuable comments, to Gunnar Restorff for suggesting im-
provements in exposition on an earlier version of the article, and to Efren Ruiz for
a number of corrections leading to the most recent revision.

2. Preliminaries

We follow the notation and definition for graph C∗-algebras of Iain Raeburn’s
monograph [14]; this is also our reference for basic facts about graph C∗-algebras.
All graphs are assumed to be countable and to satisfy Condition (K), hence all
considered graph C∗-algebras are separable and of real rank zero. In this article,
matrices act from the right and the composite of maps A f−→ B

g−→ C is denoted
by fg. The category of abelian groups is denoted by Ab, the category of Z/2-graded
abelian groups by AbZ/2. We let Z+ denote the set of non-negative integers. When
S is a set, we use the symbol MS to indicate the set of square matrices whose rows
and columns are indexed by elements in S.

2.1. Finite spaces. Throughout the article, let X be a finite T0-space, that is,
a finite topological space, in which no two different points have the same open
neighbourhood filter. For a subset Y of X , we let Y denote the closure of Y in X ,
and we let ∂Y denote the boundary Y \ Y of Y . Since X is a finite space, there
exists a smallest open subset Ỹ of X containing Y . We let ∂̃Y denote the set Ỹ \Y .

For x, y ∈ X we write x ≤ y when {x} ⊆ {y}, and x < y when x ≤ y and x 6= y.
We write y → x when x < y and no z ∈ X satisfies x < z < y. The following
lemma is straightforward to verify.
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Lemma 2.1. For an element x ∈ X, the following hold:

(1) An element y ∈ X satisfies y → x if and only if y is a closed point of ∂̃{x}.
(2) We have ∂̃{x} =

⋃

y→x

{̃y}, and consequently ∂̃{x} is open.

(3) An element y ∈ X satisfies x ≤ y if and only if there exists a finite sequence
(zk)

n
k=1 in X such that zk+1 → zk for k = 1, . . . , n−1 where z1 = x, zn = y.

We call a sequence (zk)
n
k=1 as in Lemma 2.1(3) a path from y to x. We denote

by Path(y, x) the set of paths from y to x. Thus Lemma 2.1(3) can be rephrased
as follows: two points x, y ∈ X satisfy x ≤ y if and only if there exists a path from
y to x. Such a path is not unique in general. Two points x, y ∈ X satisfy y → x if
and only if (x, y) is a path from y to x; in this case, there are no other paths from
y to x.

2.2. C∗-algebras over finite spaces. Recall from [13], that a C∗-algebra A over X
is a C∗-algebra A equipped with a continuous map Prim(A) → X or, equivalently,
an infima- and suprema-preserving map O(X) → I(A), U 7→ A(U) mapping open
subsets in X to (closed, two-sided) ideals in A (in particular, one has A(∅) = 0 and
A(X) = A). The C∗-algebra A is called tight over X if this map is a lattice isomor-
phism. A ∗-homomorphism ϕ : A → B for C∗-algebras A and B over X is called
X-equivariant if ϕ

(
A(U)

)
⊆ B(U) for all U ∈ O(X). The category of C∗-algebras

over X and X-equivariant ∗-homomorphisms is denoted by C∗alg(X).
Let LC(X) denote the set of locally closed subsets of X , that is, subsets of the

form U \ V with U and V open subsets of X satisfying V ⊆ U . For Y ∈ LC(X),
and U, V ∈ O(X) satisfying that Y = U \ V and U ⊇ V , we define A(Y ) as
A(Y ) = A(U)/A(V ), which up to natural isomorphism is independent of the choice
of U and V (see [13, Lemma 2.15]). For a C∗-algebra A over X , the Z/2-graded
abelian group FK∗

Y (A) is defined as K∗
(
A(Y )

)
for all Y ∈ LC(X). Thus FK∗

Y

is a functor from C∗alg(X) to the category AbZ/2 of Z/2-graded abelian groups;
compare [12, §2].

Definition 2.2. Let Y ∈ LC(X), U ⊆ Y be open and set C = Y \U . A pair (U,C)
obtained in this way is called a boundary pair. The natural transformations occur-
ing in the six-term exact sequence in K-theory for the distinguished subquotient
inclusion associated to U ⊆ Y are denoted by iYU , rCY and δYC :

FK∗
U

iYU // FK∗
Y .

rCY{{✇✇
✇✇
✇✇
✇✇

FK∗
C

◦❋❋❋❋δUC

bb❋❋❋❋

Lemma 2.3. Let (U,C) be a boundary pair and let V ⊆ U be an open subset. The
following relations hold:

(1) δUC i
Y
U = 0;

(2) iUV i
Y
U = iYV .

Proof. The first statement follows from the exactness of the six-term sequence in
K-theory. The second statement already holds for the ideal inclusions inducing the
relevant maps on K-theory. �
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3. Reduced filtered K-theory

In this section we introduce the functor FKR which (for real-rank-zero C∗-al-
gebras) is equivalent to the reduced filtered K-theory defined by Gunnar Restorff
in [15].

Definition 3.1. Let R denote the universal pre-additive category generated by
objects x1, ∂̃x0, x̃0 for all x ∈ X and morphisms δ∂̃x0

x1
and ix̃0

∂̃x0
for all x ∈ X , and

i∂̃x0

ỹ0
when y → x, subject to the relations

(3.2) δ∂̃x0
x1

ix̃0

∂̃x0
= 0

(3.3) ipi
∂̃x0

ỹ(p)0
= iqi

∂̃x0

ỹ(q)0

for all x ∈ X , all y ∈ X satisfying y > x, and all paths p, q ∈ Path(y, x), where for
a path p = (zk)

n
k=1 in Path(y, x), we define y(p) = z2, and

ip = i
∂̃zn−10

z̃n0
i
z̃n−10

∂̃zn−10

· · · i∂̃z20

z̃30
iz̃20

∂̃z20

.

Here subscripts indicate domains of morphisms and superscripts indicate codomains.

Definition 3.4 (Reduced filtered K-theory). The functor

FKR : C∗alg(X) → Mod(R)

is defined as follows: For a C∗-algebra A over X and x ∈ X , we define

FKR(A)(x1) = FK1
{x}(A)

FKR(A)(∂̃x0) = FK0
∂̃{x}(A)

FKR(A)(x̃0) = FK0

{̃x}(A)

using the notation from §2.1, and for a morphism η in R, we set FKR(A)(η) to
be the corresponding map constructed in Definition 2.2. On an X-equivariant
∗-homomorphism, FKR acts in the obvious way dictated by its entry functors FKY .
It follows from Lemma 2.3 that the functor FKR indeed takes values in R-modules.

Remark 3.5. We would like to make the reader aware of the following slight subtlety.
It may happen that ∂̃{x} = {̃y} for two points x, y ∈ X . But, if M is an exact
R-module in the sense of the definition below, then the map i∂̃x0

ỹ0
: M(ỹ0) → M(∂̃x0)

is an isomorphism. More generally, if ∂̃{x} decomposes as a disjoint union
⊔n
i=1 {̃yi},

then there is an isomorphism
⊕n

i=1M(ỹi0) →M(∂̃x0).

Definition 3.6. For an element x in X , let DP(x) denote the set of pairs of distinct
paths (p, q) in X to x and from some common element which is denoted by s(p, q).
An R-module M is called exact if the sequences

(3.7) M(x1)
δ∂̃x0x1−−−→M(∂̃x0)

i
x̃0

∂̃x0−−−→M(x̃0)

(3.8)
⊕

(p,q)∈DP(x)

M(s̃(p, q)0)
(ip−iq)−−−−−→

⊕

y→x

M(ỹ0)
(i
∂̃x0
ỹ0

)

−−−−→M(∂̃x0) −→ 0

are exact for all x ∈ X .
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Lemma 3.9. Let A be a C∗-algebra over X with real rank zero. Let Y be an open
subset of X and let (Ui)i∈I be an open covering of Y satisfying Ui ⊆ Y for all i ∈ I.
Then the following sequence is exact:

⊕

i,j∈I
FK0

Ui∩Uj (A)
(i
Ui
Ui∩Uj−i

Uj
Ui∩Uj )−−−−−−−−−−−→

⊕

i∈I
FK0

Ui(A)
(iYUi

)
−−−→ FK0

Y (A) −→ 0.

Proof. Using an inductive argument as in [4, Proposition 1.3], we can reduce to
the case that I has only two elements. In this case, exactness follows from a
straightforward diagram chase using the exact six-term sequences of the involved
ideal inclusions. Here we use that the exponential map FK0

V \U (A) → FK1
U (A)

vanishes for every closed subset U of a locally closed subset V of X if A has real
rank zero [5, Theorem 3.14]. �
Corollary 3.10. Let A be a C∗-algebra over X with real rank zero. Then FKR(A)
is an exact R-module.

Proof. We verify the exactness of the desired sequences in FKR(A). The sequence
(3.7) is exact since it is part of the six-term sequence associated to the open inclusion
∂̃{x} ⊆ {̃x}. To prove exactness of the sequence (3.8), we apply the previous lemma
to the covering ({̃y})y→x of Y = ∂̃{x} and get the exact sequence

⊕

y→x,y′→x

FK0

{̃y}∩{̃y′}(A)

(
i
{̃y}
{̃y}∩{̃y′}

−i{̃y′}
{̃y}∩{̃y′}

)

−−−−−−−−−−−−−−−→
⊕

y→x

FK0

{̃y}(A)

(
i
∂̃{x}
{̃y}

)

−−−−−→ FK0
∂̃{x}(A) −→ 0.

Another application of the previous lemma shows that
⊕

(p,q)∈DP(x)

FK0

s̃(p,q)
(A) sur-

jects onto
⊕

y→x,y′→x

FK0

{̃y}∩{̃y′}(A) in a way making the obvious triangle commute.

This establishes the exact sequence (3.8). �

4. Range of reduced filtered K-theory

In this section, we determine the range of reduced filtered K-theory with respect
to the class purely infinite graph C∗-algebras and, by specifying appropriate addi-
tional conditions, on the subclass of purely infinite Cuntz–Krieger algebras. First,
we recall relevant definitions and properties of graph C∗-algebras, and explain how
one can determine, for a graph E, whether the graph C∗-algebra C∗(E) can be
regarded as a (tight) C∗-algebra over a given finite space X . We also introduce
a formula from [6] for calculating reduced filtered K-theory of a graph C∗-alge-
bra using the adjacency matrix of its defining graph. Finally, Proposition 4.7 in
conjunction with Theorem 4.8 consitutes the desired range-of-invariant result.

Definition 4.1. Let E = (E0, E1, s, r) be a countable directed graph. The graph
algebra C∗(E) is defined as the universal C∗-algebra generated by a set of mutually
orthogonal projections {pv | v ∈ E0} and a set {se | e ∈ E1} of partial isometries
satisfying the relations

• s∗esf = 0 if e, f ∈ E1 and e 6= f ,
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• s∗ese = ps(e) for all e ∈ E1,
• ses

∗
e ≤ pr(e) for all e ∈ E1, and,

• pv =
∑

e∈r−1(v) ses
∗
e for all v ∈ E0 with 0 < |r−1(v)| <∞.

If (and only if) E is finite and has no sources, then C∗(E) is a Cuntz–Krieger
algebra, see [2].

Definition 4.2. Let E be a directed graph. An edge e ∈ E1 in E is called a
cycle if s(e) = r(e). A vertex v ∈ E0 in E is called regular if r−1(v) is finite and
nonempty. A vertex v ∈ E0 in E is called a breaking vertex with respect to the
saturated hereditary subset H if s(r−1(v))∩H is infinite and s(r−1(v))\H is finite
and nonempty.

If all vertices in E support two cycles, then C∗(E) is purely infinite, see [11,
Theorem 2.3].

Definition 4.3. Let E be a directed graph. For vertices v, w in E, we write v ≥ w
if there is a path in E from v to w.

Let H be a subset of E0. The subset H is called saturated if s(r−1(v)) ⊆ H
implies v ∈ H for all regular vertices v in E. When H is saturated, we let IH
denote the ideal in C∗(E) generated by {pv | v ∈ H}.

A subset H of E0 is called hereditary if for all w ∈ H and v ∈ E0, v ≥ w implies
v ∈ H .

Definition 4.4. Let E be a directed graph. We say that E satisfies Condition (K )
if for all edges v ∈ E0 in E, either there is no path of positive length in E from v
to v or there are at least two distinct paths of positive length in E from v to v. We
call E row-finite when r−1(v) is finite for all v ∈ E0.

When E satisfies Condition (K) and no saturated hereditary subsets in E0 have
breaking vertices, then the map H 7→ IH defines a lattice isomorphism between the
saturated hereditary subsets in E0 and the ideals in C∗(E), see [9, Theorem 3.5].

4.1. Calculating reduced filtered K-theory of a graph C∗-algebra. Let E
be a countable graph and assume that all vertices in E are regular and support at
least two cycles. Then E satisfies Condition (K) and has no breaking vertices, so
since all subsets of E0 are saturated, the mapH 7→ IH defines a lattice isomorphism
from the hereditary subsets of E0 to the ideals of C∗(E). Given a map ψ : E0 → X
satisfying ψ

(
s(e)

)
≥ ψ

(
r(e)

)
for all e ∈ E1, we may therefore define a structure on

C∗(E) as a C∗-algebra over X by U 7→ Iψ−1(U) for U ∈ O(X).
Assume that such a map ψ is given, that is, that C∗(E) is a C∗-algebra over X .

Define for each subset F ⊆ X a matrix DF ∈Mψ−1(F )(Z+) as DF = AF −1, where
AF (v, w) is defined for v, w ∈ ψ−1(F ) by

AF (v, w) = #{e ∈ E1 | r(e) = v, s(e) = w},
the number of edges in E from w to v; here 1 denotes the identity matrix. For
subsets S1, S2 ⊆ F , we letDF |S2

S1
denote the S1×S2 matrix given byDF |S2

S1
(s1, s2) =

DF (s1, s2) for all s1 ∈ S1 and s2 ∈ S2.
Note that a given map ψ : E0 → X turns C∗(E) into a C∗-algebra over X if and

only if DX |ψ
−1(z)

ψ−1(y) vanishes when y 6≤ z. And if furthermore DX |ψ
−1(z)

ψ−1(y) is non-zero
whenever y < z, then C∗(E) is tight overX (this condition for tightness is sufficient
but not necessary).
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Let a map ψ : E0 → X satisfying ψ
(
s(e)

)
≥ ψ

(
r(e)

)
for all e ∈ E1 be given.

Then FKR
(
C∗(E)

)
can be computed in the following way. Let Y ∈ LC(X) and

U ∈ O(Y ) be given, and define C = Y \U . Then by [6], the six-term exact sequence
induced by C∗(E)(U) →֒ C∗(E)(Y ) ։ C∗(E)(C) is naturally isomorphic to the
sequence

cokerDU
// cokerDY

// cokerDC

0

��
kerDC

[
DY |ψ

−1(U)

ψ−1(C)

] OO

kerDY
oo kerDU

oo

(4.5)

induced, via the Snake Lemma, by the commuting diagram

Zψ
−1(U) //

DU

��

Zψ
−1(Y ) //

DY

��

Zψ
−1(C)

DC

��
Zψ

−1(U) // Zψ
−1(Y ) // Zψ

−1(C).

A more general formula is given in [6] for the case where E is not row-finite. This
will be needed in §5.

When calculating the reduced filtered K-theory of a graph C∗-algebra, we will
denote the maps in the sequence (4.5) by ι, π, and ∆, indexed as the natural
transformations i, r, and δ in Definition 2.2. For a path p in X , a composite ιp of
natural transformations is defined as in Definition 3.1.

4.2. Range of reduced filtered K-theory for graph C∗-algebras. The follow-
ing theorem by Søren Eilers, Mark Tomforde, James West and the third named
author, determines the range of filtered K-theory over the two-point space {1, 2}
with 2 → 1. To apply it in the proof of Theorem 4.8, we quote it here refor-
mulated for matrices acting from the right (thereby changing column-finiteness to
row-finiteness, etc.).

Theorem 4.6 ([10, Propositions 4.3 and 4.7]). Let

G1
ε // G2

γ // G3

0

��
F3

δ

OO

F2
γ′
oo F1

ε′
oo

be an exact sequence E of abelian groups with F1, F2, F3 free. Suppose that there ex-
ist row-finite matrices A ∈Mn1,n′

1
(Z) and B ∈Mn3,n′

3
(Z) for some n1, n

′
1, n3, n

′
3 ∈

{1, 2, . . . ,∞} with isomorphisms

α1 : cokerA→ G1, β1 : kerA→ F1,

α3 : cokerB → G3, β3 : kerB → F3.

Then there exist a row-finite matrix Y ∈Mn3,n′
1
(Z) and isomorphisms

α2 : coker

(
A 0
Y B

)
→ G2, β2 : ker

(
A 0
Y B

)
→ F2
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such that the tuple (α1, α2, α3, β1, β2, β3) gives an isomorphism of complexes from
the exact sequence

cokerA
I // coker

(
A 0
Y B

)
P // cokerB

0

��
cokerB

[Y ]

OO

coker

(
A 0
Y B

)

P ′
oo cokerA,

I′
oo

where the maps I, I ′ and P, P ′ are induced by the obvious inclusions and projections,
to the exact sequence E.

If there exist an A′ ∈ Mn′
1,n1

(Z) such that A′A − 1 ∈ Mn′
1,n

′
1
(Z+), then Y can

be chosen such that Y ∈ Mn3,n′
1
(Z+). If furthermore a row-finite matrix Z ∈

Mn3,n′
1
(Z) is given, then Y can be chosen such that Y − Z ∈Mn3,n′

1
(Z+).

Proposition 4.7. Let A be a purely infinite graph C∗-algebra over X. Then
FKR(A) is an exact R-module, and FK1

{x}(A) is free for all x ∈ X. If A is a purely
infinite Cuntz–Krieger algebra over X, then, for all x ∈ X, the groups FK1

{x}(A)

and FK0

{̃x}(A) are furthermore finitely generated, and the rank of FK1
{x}(A) coin-

cides with the rank of the cokernel of the map i{̃x}
∂̃{x} : FK0

∂̃{x}(A) → FK0

{̃x}(A).

Proof. Exactness of FKR(A) is stated in Corollary 3.10. The group FK1
{x}(A) is free

for all x ∈ X since the K1-group of a graph C∗-algebra is free, and a subquotient
of a real-rank-zero graph C∗-algebra is Morita equivalent to a graph C∗-algebra
[14, Theorem 4.9].

Assume that A is a Cuntz–Krieger algebra. For any Cuntz–Krieger algebra
B, K∗(B) is finitely generated and rankK0(B) = rankK1(B). Since a subquo-
tient of a purely infinite Cuntz–Krieger algebra is stably isomorphic to a Cuntz–
Krieger algebra, the groups FK1

{x}(A) and FK0

{̃x}(A) are finitely generated and

rankFK1
{x}(A) = rankFK0

{x}(A) for all x ∈ X . Since A has real rank zero, the
sequence

FK0
∂̃{x}(A)

i
{̃x}
∂̃{x}−−−→ FK0

{̃x}(A)
r
{x}
{̃x}−−−→ FK0

{x}(A) → 0

is exact by [5, Theorem 3.14]. Hence

rankFK1
{x}(A) = rank

(
coker

(
i
{̃x}
∂̃{x} : FK0

∂̃{x}(A) → FK0

{̃x}(A)
))
. �

Combining Proposition 4.7 with Theorem 4.8, one obtains a complete description
of the range of reduced filtered K-theory on purely infinite tight graph C∗-algebras
over X , and on purely infinite tight Cuntz–Krieger algebras over X .

Theorem 4.8. Let M be an exact R-module with M(x1) free for all x ∈ X. Then
there exists a countable graph E such that all vertices in E are regular and support
at least two cycles, the C∗-algebra C∗(E) is tight over X and FKR

(
C∗(E)

)
is

isomorphic to M . By construction C∗(E) is purely infinite.
The graph E can be chosen to be finite if (and only if ) M(x1) and M(x̃0) are

finitely generated and the rank of M(x1) coincides with the rank of the cokernel of
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i : M(∂̃x0) → M(x̃0) for all x ∈ X. If E is chosen finite, then by construction
C∗(E) is a Cuntz–Krieger algebra.

Proof. For each x ∈ X , we may choose, by [10, Proposition 3.3], a countable, non-
empty set Vx, a matrix Dx ∈ MVx(Z+) and isomorphisms ϕx1 : M(x1) → kerDx

and ϕx0 : M(x0) → cokerDx, where M(x0) := coker(M(∂̃x0)
i−→ M

(
x̃0)
)
. Define

rx0

x̃0
: M(x̃0) → M(x0) as the cokernel map. Given a matrix D, we let E(D) denote

the graph with adjacency matrix Dt. We may furthermore assume that all vertices
in the graph E(1 +Dx) are regular and support at least two cycles. If M(x1) and
M(x̃0) are finitely generated and the rank of M(x1) coincides with the rank of the
cokernel of i : M(∂̃x0) →M(x̃0), then the set Vx can be chosen to be finite.

For each y, z ∈ X with y 6= z we desire to construct a matrix Hyz : ZVz → ZVy

with non-negative entries satisfying that Hyz is non-zero if and only if y > z, and
satisfying that for each x ∈ X there exist isomophisms ϕ∂̃x0

and ϕx̃0
making the

diagrams

M(∂̃x0)
ϕ
∂̃x0

&&▲▲
▲▲▲

▲▲▲
▲▲▲

i
x̃0

∂̃x0 // M(x̃0)

ϕx̃0

��

r
x0
x̃0 // M(x0)

ϕx0yyttt
tt
tt
tt
t

cokerD∂̃{x}

ι
{̃x}
∂̃{x} // cokerD{̃x}

π
{x}
{̃x} // cokerDx

0

��
kerDx

D{̃x}|
ϕ−1(∂̃{x})
ϕ−1(x)

OO

kerD{̃x}
π
{x}
{̃x}

oo kerD∂̃{x}
ι
{̃x}
∂̃{x}

oo

M(x1)

ϕx1

88qqqqqqqqqqq

δ∂̃x0x1

OO

(4.9)

and

M(ỹ0)

ϕỹ0

((PP
PPP

PPP
PPP

PPP

i
∂̃x0
ỹ0 // M(∂̃x0)

ϕ
∂̃x0

��
cokerD{̃y}

ι
∂̃{x}
{̃y} // cokerD∂̃{x}

π
∂̃{x}\{̃y}
∂̃{x} // cokerD

∂̃{x}\{̃y}

0

��
kerD

∂̃{x}\{̃y}

D
∂̃{x}|

ϕ−1({̃y})

ϕ−1(∂̃{x}\{̃y})

OO

kerD∂̃{x}
π
∂̃{x}\{̃y}
∂̃{x}

oo kerD{̃y}
ι
∂̃{x}
{̃y}

oo

(4.10)

commute when y → x, where DF ∈MVF (Z+) for each F ⊆ X is defined as

DF (v, w) =

{
Dx(v, w) v, w ∈ Vx

Hyz(v, w) v ∈ Vy, w ∈ Vx, x 6= y

with VF =
⋃
y∈F Vy. The constructed graph E(DX + 1) then has the desired prop-

erties.



42

10 SARA E. ARKLINT, RASMUS BENTMANN, AND TAKESHI KATSURA

We proceed by a recursive argument, by adding to an open subset an open
point in the complement. Given U ∈ O(X), assume that for all z, y ∈ U , the
matrices Hyz and isomorphisms ϕ∂̃y0 and ϕỹ0 have been defined and satisfy that
the diagrams (4.9) and (4.10) commute for all x, y ∈ U with y → x. Let x be an
open point in X \ U and let us construct isomorphisms ϕ∂̃x0

and ϕx̃0
, and for all

y ∈ ∂̃{x} non-zero matrices Hyx, making the diagrams (4.9) and (4.10) commute.
Consider the commuting diagram

⊕

(p,q)∈DP(x)

M(s̃(p, q)0)
(ip −iq) //

(ϕ
s̃(p,q)0

)

��

⊕

y→x

M(ỹ0)
(i
∂̃x0
ỹ0

)
//

(ϕỹ0)

��

M(∂̃x0) //

(ϕ
∂̃x0

)

��

0

⊕

(p,q)∈DP(x)

cokerD ˜{s(p,q)}
(ιp −ιq)//

⊕

y→x

cokerD{̃y}

(ι
∂̃{x}
{̃y}

)
// cokerD∂̃{x}

// 0.

The top row is exact by exactness of M , and the bottom row is exact by exact-
ness of FK

(
C∗(E(1 +D∂̃{x}))

)
. An isomorphism ϕ∂̃x0

: M(∂̃x0) → cokerD∂̃{x} is
therefore induced. By construction, (4.10) commutes for all y → x.

Now consider the commuting diagram

M(∂̃x0)
i
x̃0

∂̃x0 //

ϕ
∂̃x0

&&▲▲
▲▲▲

▲▲▲
▲▲▲

M(x̃0)
r
x0
x̃0 // M(x0)

ϕx0yyttt
tt
tt
tt
t

cokerD∂̃{x}
// M(x̃0) // cokerDx

0

��
kerDx

OO

Foo kerD∂̃{x}
oo

M(x1)

δ∂̃x0x1

OO

ϕx1

88qqqqqqqqqqq

with the maps in the inner sequence being the unique maps making the squares
commute, and where a free group F and maps into and out of it have been chosen
so that the inner six-term sequence is exact. Apply Theorem 4.6 to the inner six-
term exact sequence to get non-zero matrices Hyx for all y ∈ ∂̃{x} realizing the
sequence, that is, making (4.9) commute.

Finally, we note that the constructed graph algebra C∗(E(DX + 1)) is purely
infinite by [11, Theorem 2.3] since all vertices in E(DX+1) are regular and support
two cycles. Since the graph E(DX + 1) has no sinks or sources, the graph algebra
C∗(E(DX + 1)) is a Cuntz–Krieger algebra when E(DX + 1) is finite. �

Combining the previous theorem with Restorff’s classification of purely infinite
Cuntz–Krieger algebras [15], we obtain the following description of stable isomor-
phism classes of purely infinite Cuntz–Krieger algebras.

Corollary 4.11. The functor FKR induces a bijection between the set of stable
isomorphism classes of tight purely infinite Cuntz–Krieger algebras over X and the
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set of isomorphism classes of exact R-modules M such that, for all x ∈ X, M(x1)
is free, M(x1) and M(x̃0) are finitely generated, and the rank of M(x1) coincides
with the rank of the cokernel of the map ix̃0

∂̃x0
: M(∂̃x0) →M(x̃0).

5. Unital reduced filtered K-theory

Anticipating a generalization of the main result in [15] accounting for actual
isomorphisms rather than stable isomorphisms, we also provide a ‘unital’ version
of our range result. Depending on the space X , the group K0(A) may not be part
of the invariant FKR(A). This slightly complicates the definition of unital reduced
filtered K-theory.

For x, x′ ∈ X , we let inf(x, x′) denote the set {y ∈ X | y → x, y → x′}.
Definition 5.1. The category Mod(R)pt of pointed R-modules is defined to have
objects given by pairs (M,m) where M is an R-module and

m ∈ coker




⊕

x,x′∈X
y∈inf(x,x′)

M(ỹ0)

(
i∂̃x0

ỹ0
ix̃0

∂̃x0
−i∂̃x

′
0

ỹ0
i
x̃′
0

∂̃x′
0

)

−−−−−−−−−−−−−−−−−−→
⊕

x∈X
M(x̃0)


 ,

and a morphism ϕ : (M,m) → (N,n) is an R-module homomorphism from M to N
whose induced map on the cokernels sends m to n.

Lemma 5.2. Let A be a unital C∗-algebra over X of real rank zero, and let U ∈
O(X). Then the sequence

⊕

x,x′∈U
y∈inf(x,x′)

FK0

{̃y}(A)

(
i
{̃x}
{̃y}

−i{̃x′}
{̃y}

)

−−−−−−−−−−−−→
⊕

x∈U
FK0

{̃x}(A)
(iU{̃x})−−−−→ FK0

U (A) → 0

is exact.

Proof. This follows from a twofold application of Lemma 3.9 using that U is covered
by ({̃x})x∈U and that {̃x} ∩ {̃x′} is covered by ({̃y})y∈inf(x,x′). �

Definition 5.3. Let A be a unital C∗-algebra over X with real rank zero. The
unital reduced filtered K-theory FKunit

R (A) is defined as the pointed R-module
(FKR(A), u(A)) where u(A) is the unique element in

coker




⊕

x,x′∈X
y∈inf(x,x′)

FK0

{̃y}(A)

(
i
{̃x}
{̃y}

−i{̃x′}
{̃y}

)

−−−−−−−−−−−−→
⊕

x∈X
FK0

{̃x}(A)




that is mapped to [1A] in K0(A) by the map induced by the family
(
FK0

{̃x}(A)
(iX{̃x})−−−−→

FK0
X(A)

)
x∈X , see Lemma 5.2.

Lemma 5.4. Let A and B be C∗-algebras over X of real rank zero, and let U ∈
O(X). Let a family of isomorphisms ϕ0

{̃x} : FK0

{̃x}(A) → FK0

{̃x}(B), x ∈ U be given

and assume that ϕ0

{̃y}
i
{̃x}
{̃y}

= i
{̃x}
{̃y}

ϕ0

{̃x}
holds for all x, y ∈ U with y → x. Then
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(ϕ0

{̃x})x∈U can be uniquely extended to a family of isomorphisms ϕ0
Y : FK0

Y (A) →
FK0

Y (B), Y ∈ LC(U), that commute with the natural transformations i and r.

Proof. We may assume that U = X . The part of the construction in the proof
[1, Theorem 5.17] that involves only groups in even degree makes sense when X is
an arbitrary finite T0-space and implies the present claim as a corollary. �

For a unital graph C∗-algebra C∗(E), the class of the unit [1C∗(E)] in K0

(
C∗(E)

)

is sent, via the canonical isomorphism K0

(
C∗(E)

)
→ cokerDE , to the class [1] =(

1 1 · · · 1
)
+ imDE , where 1 + Dt

E denotes the adjacency matrix for E, [18,
Theorem 2.2]. Using this and the formula of [6], see §4.1, the unital reduced filtered
K-theory of a unital graph C∗-algebra can be calculated. A graph C∗-algebra C∗(E)
is unital if and only if its underlying graph E has finitely many vertices. So by the
formula of [6], a unital graph C∗-algebra and its subquotients always have finitely
generated K-theory.

Theorem 5.5. Let X be a finite T0-space, and let (M,m) be an exact pointed
R-module. Assume that for all x ∈ X, M(x1) is a free abelian group,

coker(M(∂̃x0)
i
x̃0

∂̃x0−−−→M
(
x̃0)
)

is finitely generated, and rankM(x1) ≤ rank coker(M(∂̃x0)
i
x̃0

∂̃x0−−−→M
(
x̃0)
)
.

Then there exists a countable graph E such that all vertices in E support at
least two cycles, the set E0 is finite, the C∗-algebra C∗(E) is tight over X and the
pointed R-module FKunit

R
(
C∗(E)

)
is isomorphic to (M,m). By construction C∗(E)

is unital and purely infinite.
The graph E can be chosen such that all of its vertices are regular if (and only if )

the rank of M(x1) coincides with the rank of the cokernel of ix̃0

∂̃x0
: M(∂̃x0) →M(x̃0)

for all x ∈ X. If E is chosen to have regular vertices, then by construction C∗(E)
is a Cuntz–Krieger algebra.

Proof. The proof is carried out by the same strategy as the proof of Theorem 4.8.
However, we here construct graphs that may have singular vertices. We refer to [6]
for the formula for calculating six-term exact sequences in K-theory for such graph
C∗-algebras.

By Theorem 4.8 there exists a C∗-algebra B of real rank zero with M ∼= FKR(B),
so we may assume that M = FKR(B). Since, by Lemma 5.2,

coker
( ⊕

y∈inf(x,x′)

M(ỹ0)

(
ix̃0

ỹ0
−ix̃

′
0

ỹ0

)

−−−−−−−−−−→
⊕

x∈X
M(x̃0, 0)

)

is isomorphic to FK0
X(B) = K0(B), we may identify m with its image in FK0

X(B)
but note that this image may not be [1B].

The construction is similar to the construction in the proof of Theorem 4.8. Let
x1 be an open point in X and define U1 = {x1}. Define Uk recursively by choosing
an open point xk in X \ Uk−1 and defining Uk = Uk−1 ∪ {xk}. Let Ck denote the
largest subset of Uk that is closed in X . Observe that

Ck = X \
⋃

y∈CP(X)\Uk
{̃y}
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where CP(X) denotes the closed points in X . And observe that if xk is closed in X
then Ck \ Ck−1 ⊆ {̃xk} and Ck \ {̃xk} = Ck−1, and otherwise Ck = Ck−1. Define
for all closed subsets C of X the element mC of FK0

C(B) as the image of m under
r : FK0

X(B) → FK0
C(B).

For each x not closed in X , choose by Proposition 3.6 of [10] a graph Ex that
is transitive, has finitely many vertices that all support at least two cycles, and
such that K1

(
C∗(Ex)

)
is isomorphic to FK1

{x}(B) and K0

(
C∗(Ex)

)
is isomorphic

to FK0
{x}(B). Define V{x} = E0

x and V ′
{x} = (E0

x)reg, let D{x} ∈ MV{x}(Z+ ∪ {∞})
such that 1 + Dt

{x} is the adjacency matrix for Ex, and let D′
{x} denote the

V ′
{x} × V{x} matrix defined by D′

{x}(v, w) = D{x}(v, w). If rankFK1
{x}(B) =

rankFK0
{x}(B) then V{x} = V ′

{x}. Let isomorphisms ϕ1
{x} : FK1

{x}(B) → kerD′
{x}

and ϕ0
{x} : FK0

{x}(B) → cokerD′
{x} be given. For x closed in X we may by Propo-

sition 3.6 of [10] choose Ex and ϕ0
{x} such that furthermore ϕ0

{x}(m{x}) = [1].
Define

VU =
⋃

x∈U
V{x}, V

′
U =

⋃

x∈U
V ′
{x}

for all U ∈ O(X). As in the proof of Theorem 4.8 we wish to construct for all
x, y ∈ X with x 6= y, V ′

{y} ×V{x} matrices H ′
yx over Z+ with H ′

yx 6= 0 if and only if
y > x. When having constructed such H ′

yx, we construct a V{y} ×V{x} matrix Hyx

over Z+ ∪ {∞} by

Hyx(v, w) =





H ′
yx(v, w) v ∈ V ′

{y}
∞ v ∈ Vy \ V ′

{y} and y > x

0 v ∈ Vy \ V ′
{y} and y < x.

We then define for U ∈ O(X), a V ′
U × VU matrix D′

U over Z+ and a matrix DU ∈
MVU (Z+ ∪ {∞}) by

D′
U (v, w) =

{
D′

{x}(v, w) v ∈ V ′
{x}, w ∈ V{x}

H ′
yx(v, w) v ∈ V ′

{y}, w ∈ V{x}

and

DU (v, w) =

{
D{x}(v, w) v, w ∈ V{x}
Hyx(v, w) v ∈ V{y}, w ∈ V{x}.

For a matrix D, we denote by E(D) the graph with adjacency matrix Dt. Since
the graph E(1 +D{x}) has a simple graph C∗-algebra, it cannot contain breaking
vertices. By construction, neither will E(1+DX). So E(1 +DX) will be tight over
X as in the proof of Theorem 4.8. The matrices (H ′

yxk)y∈∂̃{xk} will be constructed
recursively over k ∈ {1, . . . , n} so that the following holds: For each x ∈ X , there
are isomorphisms making the diagram

FK1
{x}(B)

δ
∂̃{x}
{x} //

ϕ1
{x}∼=
��

FK0
∂̃{x}(B)

i
{̃x}
∂̃{x} //

ϕ0

∂̃{x}
∼=
��

FK0

{̃x}(B)

ϕ0

{̃x}
∼=
��

kerD′
{x}

∆
∂̃{x}
{x} // cokerD′

∂̃{x}

ι
{̃x}
∂̃{x} // cokerD′

{̃x}

(5.6)
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commute and satisfying for all y → x that

FK0

{̃y}(B)
i
∂̃{x}
{̃y} //

ϕ0

{̃y}
∼=
��

FK0
∂̃{x}(B)

ϕ0

∂̃{x}∼=
��

cokerD′
{̃y}

ι
∂̃{x}
{̃y} // cokerD′

∂̃{x}

(5.7)

commutes, and for all k ∈ {1, . . . , n} that the isomorphism

ϕ0
Ck

: FK0
CK (B) → cokerD′

Ck

induced by (ϕ0

{̃x})x∈X , see Lemma 5.4, sends mCk to [1].
Assume that the matrices (H ′

yxi)y∈∂̃{xi} have been constructed for all i < k.
Then isomorphisms (ϕ0

Y )Y ∈LC(Uk−1) are induced by Lemma 5.4.
Assume that xk is a closed point in X . Since DCk\{xk} is already defined, we

may define 1
Ck\{̃xk} as the element in ZVCk\{xk} with

1
Ck\{̃xk}(i) =

{
1 if i ∈ V

Ck\{̃xk}
0 if i ∈ V

(Ck∩{̃xk})\{xk}.

Define m̃Ck\{xk} as the preimage of 1
Ck\{̃xk} under the isomorphism ϕ0

Ck\{xk}. No-

tice that mCkr
Ck−1

Ck
ϕ0
Ck−1

= [1] and that, since Ck−1 is closed in Ck \ {xk},

m̃Ck\{xk}i
Ck
Ck\{xk}r

Ck−1

Ck
ϕ0
Ck−1

= m̃Ck\{xk}r
Ck−1

Ck\{xk}ϕ
0
Ck−1

= m̃Ck\{xk}ϕ
0
Ck\{xk}r

Ck−1

Ck\{xk}

= 1
Ck\{̃xk}r

Ck−1

Ck\{xk} = [1],

so by injectivity of the map ϕ0
Ck−1

, the element mCk − m̃Ck\{xk}i
Ck
Ck\{xk} lies in

ker r
Ck−1

Ck
= im iCk

Ck∩{̃xk}
. Choose m̃

Ck∩{̃xk} in FK0

Ck∩{̃xk}
(B) such that

mCk = m
Ck∩{̃xk}i

Ck

Ck∩{̃xk}
+ m̃Ck\{xk}i

Ck
Ck\{xk}.

Choose m̃{̃xk} in FK0

{̃xk}
(B) such that

m̃{̃xk}r
Ck∩{̃xk}
{̃xk}

= m̃
Ck∩{̃xk}.

Consider the diagram

FK1
{xk}(B)

δ
∂̃{xk}
{xk} //

ϕ1
{xk}∼=
��

FK0
∂̃{xk}(B)

i
{̃xk}
∂̃{xk} //

ϕ0

∂̃{xk}
∼=
��

FK0

{̃xk}
(B)

r
{xk}
{̃xk} //

ϕ0

{̃xk}
��

FK0
{xk}(B)

ϕ0
{xk}

∼=
��

kerD′
xk

// cokerD′
∂̃{xk}

// cokerD′
{̃x}

// cokerD′
{xk},

(5.8)

where m̃{̃xk} is mapped to m{xk} which by ϕ0
{xk} is mapped to [1]. As in the proof

of Theorem 4.8 we apply Theorem 4.6 to construct D′
{̃xk}

from D′
{xk} and D′

∂̃{xk}
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by constructing nonzero matrices Hyxk for all y ∈ ∂̃{xk}. By Proposition 4.8 of [10]
we may furthermore achieve that m{̃xk}ϕ{̃xk} = [1].

That (5.6) and (5.7) hold for xk follows immediately from the construction. To
verify that the map ϕ0

Ck
induced by (ϕ0

{̃y}
)y∈Uk satisfies mCkϕ

0
Ck

= [1], observe

that the map ϕ0

Ck∩{̃xk}
induced by ϕ0

{̃xk}
will map m̃

Ck∩{̃xk} to [1], and consider
the commuting diagram

FK0
Ck\{xk}(B)⊕ FK0

Ck∩{̃xk}
(B)



i
Ck
Ck\{xk}
i
Ck

Ck∩{̃xk}




//

ϕ0
Ck\{xk}

⊕ϕ0

Ck∩{̃xk}
∼=
��

FK0
Ck

(B)

ϕ0
Ck

∼=
��

cokerD′
Ck\{xk} ⊕ cokerD′

Ck∩{̃xk}



ι
Ck
Ck\{xk}
ι
Ck

Ck∩{̃xk}




// cokerD′
Ck
.

Since (m̃Ck\{xk}, m̃Ck∩{̃xk}) is mapped to mCk by

(
iCkCk\{xk}
iCk
Ck∩{̃xk}

)
and to (1

Ck\{̃xk}, [1])

by ϕ0
Ck\{xk}⊕ϕ

0

Ck∩{̃xk}
, we see by commutativity of the diagram thatmCkϕ

0
Ck

= [1].
For k with xk not closed in X , Ck equals Ck−1 and a construction similar to

the one in the proof of Theorem 4.8 applies. As in the proof of Theorem 4.8,
Proposition 4.7 of [10] allows us to make sure that H ′

yxk 6= 0 when y ∈ ∂̃{xk}.
Finally, we note that the constructed graph algebra C∗(E(DX + 1)) is purely

infinite by [11, Theorem 2.3] since all vertices in E(DX + 1) support two cycles
and E(DX + 1) has no breaking vertices. Since the graph E(DX + 1) has no sinks
or sources, the graph algebra C∗(E(DX + 1)) is a Cuntz–Krieger algebra when
E(DX + 1) is finite. �
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REDUCTION OF FILTERED K-THEORY AND
A CHARACTERIZATION OF CUNTZ–KRIEGER ALGEBRAS

SARA E. ARKLINT, RASMUS BENTMANN, AND TAKESHI KATSURA

Abstract. We show that filtered K-theory is equivalent to a substantially
smaller invariant for all real-rank-zero C∗-algebras with certain primitive ideal
spaces – including the infinitely many so-called accordion spaces for which
filtered K-theory is known to be a complete invariant. As a consequence,
we give a characterization of purely infinite Cuntz–Krieger algebras whose
primitive ideal space is an accordion space.

1. Introduction

The Cuntz and Cuntz–Krieger algebras are historically and in general of great
importance for our understanding of simple and non-simple purely infinite C∗-al-
gebras as they were not only the first constructed examples of such but are also
very tangible due to the combinatorial nature of their construction [12]. Cuntz–
Krieger algebras arise from shifts of finite type and it has been shown that they are
exactly the graph C∗-algebras C∗(E) arising from finite directed graphs E with no
sources [5]. Using the Kirchberg–Phillips classification theorem [16,22], the Cuntz
algebras and simple Cuntz–Krieger algebras can be identified, up to isomorphism,
as the unital UCT Kirchberg algebras with a specific type of K-theory [11, 25].
A similar characterization for non-simple, purely infinite Cuntz–Krieger algebras
and, more generally, of unital graph C∗-algebras of this type is desirable.

A Kirchberg X-algebra is a purely infinite, nuclear, separable C∗-algebra with
primitive ideal space homeomorphic toX (in a specified way). WhenX is a so-called
accordion space, see Definition 2.1, the invariant filtered K-theory FK is a strongly
complete invariant for stable Kirchberg X-algebras with simple subquotients in the
bootstrap class [8, 17, 19]. In particular, filtered K-theory is complete for purely
infinite graph C∗-algebras with primitive ideal space of accordion type, and the
main goal of this paper is to use this to achieve a characterization in the sense of
the previous paragraph of such purely infinite Cuntz–Krieger algebras and graph
C∗-algebras. Since a Cuntz–Krieger algebra is purely infinite if and only if it has
real rank zero (and more generally, a purely infinite graph C∗-algebra always has
real rank zero [15]), we will specifically investigate filtered K-theory for C∗-algebras
of real rank zero.

In the companion paper [3], we determine the range of reduced filtered K-the-
ory with respect to purely infinite Cuntz–Krieger algebras and graph C∗-algebras.
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Key words and phrases. C∗-algebras, graph C∗-algebras, classification, filtered K-theory, real
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This invariant was originally defined by Gunnar Restorff [23], who used it to give an
“internal” classification of purely infinite Cuntz–Krieger algebras, inspired by work
of Mikael Rørdam [26] and work of Mike Boyle and Danrun Huang on dynamical
systems [9]. In the present note, we show that under some assumptions on the
primitive ideal space—which are satisfied for accordion spaces—the invariants fil-
tered K-theory and reduced filtered K-theory are in a certain sense equivalent when
restricted to purely infinite graph C∗-algebras.

To be more precise, we show that isomorphisms on the reduced filtered K-theory
of purely infinite graph C∗-algebras over so-called EBP spaces lift to isomorphisms
on concrete filtered K-theory – this invariant may be considered as a more explicit
model of filtered K-theory: the two are known to coincide for many spaces but not
in general (compare Remark 5.16). Along the way, we introduce filtered K-theory
restricted to the canonical base, denoted FKB, and show that, for real-rank-zero
C∗-algebras over an EBP space, isomorphisms on FKB lift to isomorphisms on
concrete filtered K-theory.

For accordion spaces, our results furnish one-to-one correspondences, induced by
the different variants of filtered K-theory, between purely infinite graph C∗-algebras
respectively unital purely infinite graph C∗-algebras or purely infinite Cuntz–Krie-
ger algebras on the one hand, and certain types of modules in the respective target
categories on the other hand. In particular, we obtain the desired characterization
of purely infinite Cuntz–Krieger algebras with accordion spaces as primitive ideal
spaces:

Theorem 1.1. Let A be a C∗-algebra whose primitive ideal space is an accordion
space. Then A is a purely infinite Cuntz–Krieger algebra if and only if A satisfies
the following:

• A is unital, purely infinite, nuclear, separable, and of real rank zero,
• for all ideals I and J of A with I ⊆ J and J/I simple, the quotient J/I

belongs to the bootstrap class, the group K∗(J/I) is finitely generated, the
group K1(J/I) is free and rankK1(J/I) = rankK0(J/I).

In the terms introduced by the first named author in [2], our Theorem 1.1 states
that there is no phantom Cuntz–Krieger algebra whose primitive ideal space is an
accordion space. It is an open question whether this holds for all finite primitive
ideal spaces.

1.1. Historical account. By a seminal result of Eberhard Kirchberg, KK(X)-
equivalences between stable KirchbergX-algebras, that is, stable, tight, O∞-absorb-
ing, nuclear, separable C∗-algebras over a space X , lift to X-equivariant ∗-isomor-
phisms. In [19], Ralf Meyer and Ryszard Nest established a Universal Coefficient
Theorem computing the equivariant bivariant theory KK(X) from filtered K-the-
ory under the assumption that the topology of X is finite and totally ordered.
As a result, for such spaces X , isomorphisms on filtered K-theory between stable
KirchbergX-algebras with simple subquotients in the bootstrap class lift to X-equi-
variant ∗-isomorphisms. This result was generalized in [8] by the second-named
author and Manuel Köhler to the case of so-called accordion spaces. Building on
these results, Søren Eilers, Gunnar Restorff, and Efren Ruiz classified in [13] certain
classes of real-rank-zero (not necessarily purely infinite) graph C∗-algebras using
ordered filtered K-theory.
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On the other hand, Meyer–Nest and the second-named author have constructed
counterexamples to the analogous classification statement over all six four-point
non-accordion connected T0-spaces. More precisely, for each of these spaces X , they
exhibit two non-KK(X)-equivalent Kirchberg X-algebras with simple subquotients
in the bootstrap class whose filtered K-theory is isomorphic (see [6, 19]).

Despite this obstruction, it had previously been shown by Gunnar Restorff in [23]
that filtered K-theory—in fact reduced filtered K-theory—is a complete invariant
for purely infinite Cuntz–Krieger algebras. Any finite T0-space, in particular the
six problematic four-point spaces mentioned above, can be realized as the primitive
ideal space of a purely infinite Cuntz–Krieger algebra. Unfortunately, Restorff’s
result only gives an internal classification of Cuntz–Krieger algebras and admits no
conclusion concerning when a given Cuntz–Krieger algebra is stably isomorphic to
a given purely infinite, nuclear, separable C∗-algebra with the same ideal structure
and filtered K-theory.

In [4], Gunnar Restorff, Efren Ruiz, and the first-named author noted that, for
five of the six problematic four-point spaces, the constructed counterexamples to
classification do not have real rank zero. They went on to show that for four of these
spaces X , filtered K-theory is in fact a complete invariant for Kirchberg X-algebras
of real rank zero with simple subquotients in the bootstrap class. The four-point
non-accordion space for which the constructed counterexample does have real rank
zero will be denoted by D.

It is a general property of Cuntz–Krieger algebras that the K1-group of every
subquotient is free. The same is true, more generally, for graph C∗-algebras. We
observe that, for real-rank-zero C∗-algebras over D satisfying this K-theoretic con-
dition, isomorphisms on the reduced filtered K-theory lift to KK(D)-equivalences
(see Proposition 7.17). There are therefore no known counterexamples to classifica-
tion by filtered K-theory of Kirchberg X-algebras with simple subquotients in the
bootstrap class that have the K-theory of a real-rank-zero graph C∗-algebra.

1.2. Organization of the paper. After fixing some basic conventions and defini-
tions in Section 2, we introduce filtered K-theory FK and concrete filtered K-theory
FKST in Section 3. Section 4 contains some basic definitions and facts concerning
sheaves and cosheaves.

In Section 5, filtered K-theory restricted to the canonical base FKB is defined for
spaces with the unique path property. We introduce EBP spaces and show that the
concrete filtered K-theory FKST (A) of a real-rank-zero C∗-algebra A over an EBP
space is completely determined by the filtered K-theory restricted to the canonical
base FKB(A), see Corollary 5.19.

In Section 6, reduced filtered K-theory FKR is defined, and it is shown in Sec-
tion 7 that the concrete filtered K-theory FKST (A) of a real-rank-zeroC∗-algebraA
over an EBP space satisfying that all subquotients have free K1-groups can be re-
covered from the reduced filtered K-theory FKR(A), see Corollary 7.15. This is of
particular interest because of the range results from [3] for (unital) reduced filtered
K-theory on (unital) purely infinite graph C∗-algebras, see Theorem 6.12 (and 8.10).
In order to proceed from reduced to concrete filtered K-theory in Section 7, an “in-
termediate” invariant is introducted, which serves only technical purposes.

In Sections 8 and 9, unital filtered K-theory and ordered filtered K-theory are
treated. The most complete results in our framework are possible for C∗-algebras
with primitive ideal spaces of accordion type; these are summarized in Section 10.
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2. Notation

In this article, matrices act from the right and the composite of maps A f−→ B
g−→

C is denoted by fg. The category of abelian groups is denoted by Ab, the category
of Z/2-graded abelian groups by AbZ/2.

Let X be a finite T0-space. For a subset Y of X , we let Y denote the closure
of Y in X , and let ∂Y denote the boundary Y \ Y of Y . Since X is a finite space,
there exists a smallest open subset Ỹ of X containing Y . We let ∂̃Y denote the set
Ỹ \ Y . For x, y ∈ X we write x ≤ y when {x} ⊆ {y}, and x < y when x ≤ y and
x 6= y. We write y → x when x < y and no z ∈ X satisfies x < z < y. A path from
y to x is a sequence (zk)

n
k=1 such that zk+1 → zk for k = 1, . . . , n− 1 and z1 = x,

zn = y. We let Path(y, x) denote the set of paths from y to x.

Definition 2.1. An accordion space is a T0-space X = {x1, . . . , xn} such that for
every k = 1, 2, . . . , n − 1 either xk → xk+1 or xk ← xk+1 holds and such that
xk → xl does not hold for any k, l with |k − l| 6= 1.

For instance, ifX is linear, that is, ifX = {x1, . . . , xn} with xn → · · · → x2 → x1,
then X is an accordion space.

3. Filtered K-theory

In this section filtered K-theory and concrete filtered K-theory are defined. Some
properties of objects in their target categories are introduced.

A C∗-algebra A over X is (equivalently given by) a C∗-algebra A equipped with
an infima- and suprema-preserving map O(X) → I(A), U 7→ A(U) mapping open
subsets in X to (closed, two-sided) ideals in A (in particular it holds that A(∅) = 0
and A(X) = A). The C∗-algebra A is called tight over X if the map is a lattice-
isomorphism. A ∗-homomorphism ϕ : A → B for C∗-algebras A and B over X is
called X-equivariant if ϕ

(
A(U)

)
⊆ B(U) for all U ∈ O(X). Let LC(X) denote the

set of locally closed subsets of X , that is, subsets of the form U \ V with U and V
open subsets of X satisfying V ⊆ U . For Y ∈ LC(X), and U, V ∈ O(X) satisfying
that Y = U \V and U ⊇ V , we define A(Y ) as the subquotient A(Y ) = A(U)/A(V ),
which up to natural isomorphism is independent of the choice of U and V (see
[20, Lemma 2.15]).

Definition 3.1. A tight, O∞-absorbing, nuclear, separable C∗-algebra over X is
called a Kirchberg X-algebra.

Let KK(X) be the additive category whose objects are separable C∗-algebras
overX and whose set of morphisms fromA toB is the Kasparov group KK0(X ;A,B)
defined by Kirchberg (see [20, Section 3] for details). For a C∗-algebra A over X , a
Z/2-graded abelian group FK∗Y (A) is defined as K∗

(
A(Y )

)
for all Y ∈ LC(X). Thus

FK∗Y is an additive funtor from KK(X) to the category AbZ/2 of Z/2-graded abelian
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groups. Ralf Meyer and Ryszard Nest constructed in [19] C∗-algebras RY over X
satisfying that the functors FK∗Y and KK∗(X ;RY ,−) are naturally isomorphic.

In their definition of filtered K-theory FK∗, Meyer–Nest consider the Z/2-graded
pre-additive category NT ∗ with objects LC(X) and morphisms

Nat∗(FK
∗
Y ,FK

∗
Z)
∼= KK∗(X ;RZ , RY )

between Y and Z, where Nat∗(FK
∗
Y ,FK

∗
Z) denotes the set of graded natural trans-

formations from the functor FK∗Y to the functor FK∗Z . The target category of FK∗

is the category Mod(NT ∗)Z/2 of graded modules over NT ∗, that is, Z/2-graded
additive functors NT ∗ → AbZ/2. Hence FK∗(A) consists of the groups FK∗Y (A)
together with the natural transformations FK∗Y (A)→ FK∗Z(A).

For reasons of notation we will often find it convenient to consider instead the
pre-additive category NT with objects LC(X) × {0, 1} and morphisms between
(Y, j) and (Z, k) given by natural transformations

Nat(FKj
Y FKk

Z)
∼= KK0(X ; Σk RZ ,Σ

j RY ),

where FKj
Y (A) denotes Kj

(
A(Y )

)
for j = 0, 1 and Σ denotes suspension (with

Σ0A = A). Let Mod(NT ) denote the category of modules over NT , that is,
additive functors NT → Ab.

Given a graded NT ∗-module M , we define an NT -module D(M) as follows: we
set D(M)(Y, i) = M(Y )i for (Y, i) ∈ LC(X) × {0, 1}; for a morphism f : (Y, i) →
(Z, j) in NT , we define D(M)(f) : D(M)(Y, i)→ D(M)(Z, j) as the composite

M(Y )i →֒M(Y )∗
M(f)−−−→M(Z)∗ ։M(Z)j .

It is straightforward to check that this yields a functor D : Mod(NT ∗)Z/2 →
Mod(NT ). In fact, D is an equivalence of categories—an inverse can be defined
by a direct sum construction. Consequently, we define the functor FK: KK(X) →
Mod(NT ) as the composite FK = D ◦ FK∗.
Definition 3.2. Let Y ∈ LC(X), U ⊆ Y be open in Y , and set C = Y \ U . A
pair (U,C) obtained in this way is called a boundary pair. The natural transfor-
mations occuring in the six-term exact sequence in K-theory for the distinguished
subquotient inclusion associated to U ⊆ Y are denoted by iYU , rCY and δYC :

FKU

iYU // FKY

rCY{{✇✇✇
✇✇
✇✇
✇✇

FKC

◦●●●●δUC

cc●●●●

These elements iYU , rCY and δYC correspond to the KK(X)-classes of the ∗-homo-
morphisms RY ։ RU , RC →֒ RY , and the extention RC →֒ RY ։ RU , see [19].
These elements of NT ∗ satisfy the following relations.

Proposition 3.3. In the category NT ∗, the following relations hold.
(1) For every Y ∈ LC(X),

iYY = rYY = idY .

(2) If Y, Z ∈ LC(X) are topologically disjoint, then Y ∪ Z ∈ LC(X) and

rYY ∪Zi
Y ∪Z
Y + rZY ∪Z i

Y∪Z
Z = idY ∪Z .
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(3) For Y ∈ LC(X) and open subsets U ⊆ V ⊆ Y ,

iVU i
Y
V = iYU .

(4) For Y ∈ LC(X) and closed subsets C ⊆ D ⊆ Y ,

rDY r
C
D = rCY .

(5) For Y ∈ LC(X), an open subset U ⊆ Y and a closed subset C ⊆ Y ,

iYU r
C
Y = rU∩CU iCU∩C .

(6) For a boundary pair (U,C) in X and an open subset C′ ⊆ C, (U,C′) is a
boundary pair and we have

iCC′δUC = δUC′ .

(7) For a boundary pair (U,C) in X and a closed subset U ′ ⊆ U , (U ′, C) is a
boundary pair and we have

δUC r
U ′
U = δU

′
C .

(8) For Y, Z,W ∈ LC(X) such that Y ∪W ∈ LC(X) containing Y,W as closed
subsets, Z ∪W ∈ LC(X) containing Z,W as open subsets, and W ⊆ Y ∪Z,
we have

δ
W\Y
Y iZW\Y = r

W\Z
Y δZW\Z .

Proof. We only prove (8), because the other relations can be proved similarly and
more easily (their proofs can be found in [6, Section 3.2]).

Let us take Y, Z,W ∈ LC(X) as in (8). Let us also take a C∗-algebra A over X .
Since both Y and W are closed subsets of Y ∪W ∈ LC(X), Y ∩W is closed both
in Y and in W . Therefore we have a commutative diagram with exact rows

0 // A(W \ Y ) // A(Y ∪W ) //

��

A(Y ) //

��

0

0 // A(W \ Y ) // A(W ) // A(Y ∩W ) // 0.

Since both Z and W are open subsets of Z ∪W ∈ LC(X), Z ∩W is open both in
Z and in W . Therefore we have a commutative diagram with exact rows

0 // A(Z ∩W )

��

// A(W ) //

��

A(W \ Z) // 0

0 // A(Z) // A(Z ∪W ) // A(W \ Z) // 0.

From W ⊆ Y ∪ Z, we get W \ Y ⊆ Z ∩W and W \ Z ⊆ Y ∩W . Since W \ Y
is open in W , we see that W \ Y is open in Z ∩W . Similarly, W \ Z is closed in
Y ∩W . Hence we get a commutative diagram with exact rows

0 // A(W \ Y ) //

��

A(W ) // A(Y ∩W ) //

��

0

0 // A(Z ∩W ) // A(W ) // A(W \ Z) // 0.
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By combining these three diagrams, we obtain a commutative diagram with exact
rows

0 // A(W \ Y )

��

// A(Y ∪W ) //

��

A(Y ) //

��

0

0 // A(Z) // A(Z ∪W ) // A(W \ Z) // 0.

From this digram, we get a commutative diagram

K∗
(
A(Y ∪W )

)

ri

��

r // K∗
(
A(Y )

)
◦δ //

r

��

K∗
(
A(W \ Y )

) i //

i

��

K∗
(
A(Y ∪W )

)

ri

��
K∗

(
A(Z ∪W )

) r // K∗
(
A(W \ Z)

)
◦δ // K∗

(
A(Z)

) i // K∗
(
A(Z ∪W )

)
.

Now (8) follows from the commutativity of the middle square of this natural dia-
gram. �

Remark 3.4. From Proposition 3.3(2), we see that the empty set ∅ is a zero ob-
ject in NT ∗ (because initial objects in pre-additive categories are also terminal).
From this and other relations in Proposition 3.3, we can conclude that composi-
tions of consecutive maps in six-term sequences associated to relatively open subset
inclusions vanish.

Remark 3.5. We usually denote the even and the odd component of the element iYU
in NT ∗ defined in Definition 3.2 simply by iYU . Often, sub- and superscripts are
suppressed when clear from context. Similar comments apply to r and δ.

Definition 3.6. Let ST ∗ be the universal Z/2-graded pre-additive category whose
set of objects is LC(X) and whose set of morphisms are generated by elements as in
Definition 3.2 with the relations as in Proposition 3.3. Let ST be the corresponding
pre-additive category with object set LC(X)× {0, 1}.

By Proposition 3.3, we have a canonical additive functor ST → NT . This
functor has been shown to be an isomorphism in all examples which have been
investigated—including accordion spaces and all four-point spaces (see [6,19]). How-
ever there is an example Q of a finite T0-space for which the functor ST → NT
seems to be non-faithful (see Remark 5.16). For such spaces one would need to
modify the definition of the category ST , but we do not pursue this problem in
this paper.

Let FST : Mod(NT )→Mod(ST ) be the functor induced by the canonical func-
tor ST → NT .

Definition 3.7. We define concrete filtered K-theory FKST : KK(X)→Mod(ST )
as the composition FST ◦ FK.

Remark 3.8. As noted above, filtered K-theory FK and concrete filtered K-theory
FKST coincide for accordion spaces and all four-point spaces.
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Definition 3.9. An NT -module M is called exact if, for all Y ∈ LC(X) and
U ∈ O(Y ), the sequence

M(U, 0)
i // M(Y, 0)

r // M(Y \ U, 0)

δ

��
M(Y \ U, 1)

δ

OO

M(Y, 1)r
oo M(U, 1)

i
oo

is exact. An NT -module M is called real-rank-zero-like if, for all Y ∈ LC(X) and
U ∈ O(Y ), the map δ : M(Y \ U, 0)→M(U, 1) vanishes.

In the same way, we define exact ST -modules and real-rank-zero-like ST -mod-
ules.

Remark 3.10. For a C∗-algebra A over X , the module FK(A) is exact. It follows
from [7, Lemma 3.4] that, if A is tight over X , then FK(A) is real-rank-zero-like if
and only if the underlying C∗-algebra of A is K0-liftable in the sense of Pasnicu–
Rørdam [21]. By [18, Proposition 4], all real-rank-zero C∗-algebras are K0-liftable.
By Theorem 4.2 and Example 4.8 of [21], a tight, purely infinite C∗-algebra A
over X has real rank zero if and only if FK(A) is real-rank-zero-like. Analogous
remarks apply with FKST (A) in place of FK(A).

The following theorem is the basis for the corollaries obtained in Section 10.

Theorem 3.11 ([8, 17, 19]). Let X be an accordion space. The canonical functor
ST → NT is an isomorphism. Moreover, if A and B are stable Kirchberg X-al-
gebras with all simple subquotients in the bootstrap class, then any isomorphism
FK(A)→ FK(B) lifts to an X-equivariant ∗-isomorphism A→ B.

4. Sheaves

In this section we introduce sheaves and cosheaves and recall that it suffices to
specify them on a basis for the topology.

Let X be an arbitrary topological space. Let B be a basis for the topology on X .
We note that the set O of all open subsets is the largest basis for the topology on X .
We also note that for a finite space X , the collection

{
{̃x} | x ∈ X

}
is an example

of a basis. The set B is a category whose morphisms are inclusions.

Definition 4.1. A covering of a set U ∈ B is a collection {Uj}j∈J ⊆ B such that
Uj ⊆ U for all j ∈ J and

⋃
j∈J Uj = U . A presheaf on B is a contravariant functor

M : B → Ab. It is a sheaf on B if, for every U ∈ B, every covering {Uj}j∈J ⊆ B
of U , and all coverings {Ujkl}l∈Ljk

⊆ B of Uj ∩ Uk, the sequence

(4.2) 0 −→M(U)

(
M(i

Uj
U )
)

−−−−−−→
∏

j∈J
M(Uj)

(
M(i

Ujkl
Uj

)−M(i
Ujkl
Uk

)
)

−−−−−−−−−−−−−−→
∏

j,k∈J

∏

l∈Ljk

M(Ujkl)

is exact. A morphism for sheaves is a natural transformation of functors. We denote
by Sh(B) the category of sheaves on B.
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If B is closed under intersection (for example if B = O), then the definition of
sheaf can be replaced with the exactness of the sequence

0 −→ M(U)

(
M(i

Uj
U )
)

−−−−−−→
∏

j∈J
M(Uj)

(
M(i

Uj∩Uk
Uj

)−M(i
Uj∩Uk
Uk

)
)

−−−−−−−−−−−−−−−−−→
∏

j,k∈J
M(Uj ∩ Uk)

for all U ∈ B and every covering {Uj}j∈J ⊆ B of U .

Lemma 4.3. For a basis B for the topology on X, the restriction functor Sh(O)→
Sh(B) is an equivalence of categories.

Proof. This is a well-known fact in algebraic geometry (see, for instance the ency-
clopedic treatment in [27, Lemma 009O]). We confine ourselves on mentioning that
(4.2) provides a formula for computing M(U) for an arbitrary open subset U . �

Definition 4.4. A precosheaf on B is a covariant functor M : B → Ab. It is a
cosheaf on B if, for every U ∈ B, every covering {Uj}j∈J ⊆ B of U , and all coverings
{Ujkl}l∈Ljk

⊆ B of Uj ∩ Uk, the sequence

(4.5)
⊕

j,k∈J

⊕

l∈Ljk

M(Ujkl)

(
M(i

Uj
Ujkl

)−M(i
Uk
Ujkl

)
)

−−−−−−−−−−−−−−→
⊕

j∈J
M(Uj)

(
M(iUUj

)
)

−−−−−−→M(U) −→ 0.

is exact. A morphism for cosheaves is a natural transformation of functors. We
denote by CoSh(B) the category of cosheaves on B.

Similarly to the case of sheaves, if B is closed under intersection, the definition
of cosheaf can be replaced with the exactness of the sequence

(4.6)
⊕

j,k∈J
M(Uj ∩ Uk)

(
M(i

Uj
Uj∩Uk

)−M(i
Uk
Uj∩Uk

)
)

−−−−−−−−−−−−−−−−−→
⊕

j∈J
M(Uj)

(
M(iUUj

)
)

−−−−−−→ M(U) −→ 0.

for U ∈ B and a covering {Uj}j∈J ⊆ B of U .

Lemma 4.7. The restriction functor CoSh(O) → CoSh(B) is an equivalence of
categories.

Proof. This statement is the dual of Lemma 4.3 and follows in an analogous way.
Again, (4.5) can be used to compute M(U) for an arbitrary open subset U . �

With regard to the next section we remark that every finite T0-space (more
generally every Alexandrov space) comes with canonical bases for the open subsets,
namely

{
{̃x} | x ∈ X

}
, and for the closed subsets:

{
{x} | x ∈ X

}
.

Lemma 4.8. Let X be a finite T0-space and let S be a pre(co)sheaf on the basis
B =

{
{̃x} | x ∈ X

}
. Then S is a (co)sheaf.

Proof. This follows from the observation that in the basis B there are no non-trivial
coverings, that is, if U is a covering of U , then U ∈ U . �
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5. Filtered K-theory restricted to the canonical base

In this section, the functor FKB and the notions of unique path spaces and EBP
spaces are introduced. The following lemma is straightforward to verify.

Lemma 5.1. For a finite T0-space X the following conditions are equivalent.
• For all x, y ∈ X, there is at most one path from y to x.
• There are no elements a, b, c, d in X with a < b < d, a < c < d and neither
b ≤ c nor c ≤ b.
• For all x, y ∈ X with x→ y, we have {̃x} ∪ {y} ∈ LC(X).
• For every boundary pair (U,C), the pair (Ũ , C) is a boundary pair.
• For all x ∈ X, ∂̃{x} =

⊔

y→x

{̃y}.

• For all x ∈ X, ∂{x} =
⊔

y←x

{y}.

Definition 5.2. A finite T0-space X is called a unique path space if it satisfies the
equivalent conditions specified in Lemma 5.1.

Let X be a unique path space.

Definition 5.3. Let B denote the universal pre-additive category generated by
objects x1, x̃0 for all x ∈ X and morphisms ry1

x1
, δx̃0

y1
and iỹ0

x̃0
when x → y, subject

to the relations

(5.4)
∑

x→y

r
y1

x1
δx̃0

y1
=

∑

z→x

δz̃0x1
ix̃0

z̃0

for all x ∈ X .

Lemma 5.5. In the category ST , we have the relation
∑

x→y

r
{y}
{x}δ

{̃x}
{y} =

∑

z→x

δ
{̃z}
{x}i

{̃x}
{̃z}

for all x ∈ X.

Proof. Since X is a unique path space, the collections
(
{y}

)
x→y

and
(
{̃z}

)
z→x

are disjoint, respectively. Hence the desired relation simplifies to

r
∂{x}
{x} δ

{̃x}
∂{x} = δ

∂̃{x}
{x} i

{̃x}
∂̃{x},

which follows from Proposition 3.3(8) by setting Y = {x}, Z = {̃x} and W =

{x} ∪ {̃x}. �

Definition 5.6. The previous lemma allows us to define an additive functor B →
ST by x1 7→ ({x}, 1) and x̃0 7→ ({̃x}, 0), and in the obvious way on morphisms. Let

FB : Mod(ST )→Mod(B)

denote the induced functor. Define filtered K-theory restricted to the canonical base,
FKB : KK(X)→Mod(B), as the composition of FKST with FB.
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Remark 5.7. The invariant FKB is only defined for unique path spaces because the
boundary map δ

{̃x}
{y} only exists when {y} ∪ {̃x} belongs to LC(X). We also point

out that the invariant FKB can only be expected to be very useful for spaces such
that the relation (5.14) holds for all boundary pairs (U,C).

Definition 5.8. A B-module M is called exact if the sequence

(5.9) M(x1)

(
r
y1

x1
−δz̃0x1

)

−−−−−−−−−−→
⊕

x→y

M(y1)⊕
⊕

z→x

M(z̃0)


δ

x̃0

y1

ix̃0

z̃0




−−−−−→M(x̃0)

is exact for all x ∈ X .

Lemma 5.10. If M is an exact ST -module, then FB(M) is an exact B-module. In
particular, if A is a C∗-algebra over X, then the B-module FKB(A) is exact.

Proof. Using again that the collections
(
{y}

)
x→y

and
(
{̃z}

)
z→x

are respectively

disjoint, it suffices to prove exactness of the sequence

M({x}, 1)

(
r
∂{x}
{x} −δ∂̃{x}{x}

)

−−−−−−−−−−−−−−→M(∂{x}, 1)⊕M(∂̃{x}, 0)



δ
{̃x}
∂{x}

i
{̃x}
∂̃{x}




−−−−−−→M({̃x}, 0),
which follows from a diagram chase through the commutative diagram

M({x}, 1) // M({x}, 1) //

◦
��

M(∂{x}, 1) ◦ //

◦
��

M({x}, 0)

M({x}, 1) ◦ // M(∂̃{x}, 0) // M({̃x}, 0) // M({x}, 0)
whose rows are exact. �

Definition 5.11. Let X be a finite T0-space. A boundary pair (U,C) in X is called
elementary if U and C are connected, U is open, C is closed and if, moreover, U ⊆ C̃
and C ⊆ U .

Definition 5.12. A unique path spaceX is called an EBP space if every elementary
boundary pair (U,C) in X is of the form ({̃x}, {y}) for two points x and y in X
with x→ y.

Lemma 5.13. Let X be an EBP space, and let (U,C) be a boundary pair in X.
Then the following relation holds in the category ST ∗:

(5.14) δUC =
∑

x→y,x∈U,y∈C
r
{y}∩C
C i

{y}
{y}∩C δ

{̃x}
{y} r

{̃x}∩U
{̃x}

iU{̃x}∩U .

Proof. We would like to show the relation (5.14) for a boundary pair (U,C) in X .
The proof goes by the induction on the number |U ∪ C| of elements of U ∪ C. If
either U or C is empty, then both sides of (5.14) are 0. This takes care of the
case |U ∪ C| = 0. Suppose for a natural number n, we have shown (5.14) for all
boundary pairs (U,C) with |U ∪ C| ≤ n, and take a boundary pair (U,C) with
|U ∪C| = n+1, arbitrarily. We are going to show (5.14) for this pair. If either U or
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C is empty, again both sides of (5.14) are zero. So we may assume that both U and
C are non-empty. Suppose U is not connected, and choose two non-empty open and
closed subsets U1 and U2 of U such that U = U1 ⊔ U2. Then for i = 1, 2, (Ui, C) is
a boundary pair with |Ui ∪C| ≤ n. Thus by the assumption of the induction, both
(U1, C) and (U2, C) satisfy (5.14). Hence by (2), (7) and (3) of Proposition 3.3 we
have

δUC = δUC (r
U1

U iUU1
+ rU2

U iUU2
)

= δU1

C iUU1
+ δU2

C iUU2

=
( ∑

x→y,x∈U1,y∈C
r
{y}∩C
C i

{y}
{y}∩C δ

{̃x}
{y} r

{̃x}∩U1

{̃x}
iU1

{̃x}∩U1

)
iUU1

+
( ∑

x→y,x∈U2,y∈C
r
{y}∩C
C i

{y}
{y}∩C δ

{̃x}
{y} r

{̃x}∩U2

{̃x}
iU2

{̃x}∩U2

)
iUU2

=
∑

x→y,x∈U,y∈C
r
{y}∩C
C i

{y}
{y}∩C δ

{̃x}
{y} r

{̃x}∩U
{̃x}

iU{̃x}∩U

since we for x ∈ Ui have {̃x} ∩ U1 = {̃x} ∩ U because Ui ⊆ U is open. This shows
(5.14) for (U,C). Thus we may now assume U is connected. In a very similar way,
we get (5.14) using the assumption of the induction if C is not connected. Thus we
may assume C is connected. Next suppose we have U 6⊆ C̃. Set U ′ = U ∩ C̃ which
is a proper open subset of U . The pair (U ′, C) is a boundary pair because U ′∪C =

(U ∪C) ∩ C̃ ∈ LC(X). We have δUC = δU
′

C iUU ′ by applying (8) of Proposition 3.3 for
Y = C, Z = U and W = U ′ ∪ C. Since |U ′ ∪ C| ≤ n, we get by the assumption of
the induction that

δUC = δU
′

C iUU ′

=
( ∑

x→y,x∈U ′,y∈C
r
{y}∩C
C i

{y}
{y}∩C δ

{̃x}
{y} r

{̃x}∩U ′

{̃x}
iU

′

{̃x}∩U ′

)
iUU ′

=
∑

x→y,x∈U,y∈C
r
{y}∩C
C i

{y}
{y}∩C δ

{̃x}
{y} r

{̃x}∩U
{̃x}

iU{̃x}∩U

since x → y, x ∈ U and y ∈ C imply x ∈ U ′, and we have {̃x} ∩ U = {̃x} ∩ U ′.
This shows (5.14) for (U,C). Thus we may now assume U ⊆ C̃. In a very similar
way, we get (5.14) using the assumption of the induction if C 6⊆ U . Thus we may
assume C ⊆ U .

It remains to show (5.14) for a boundary pair (U,C) such that U and C are
connected, U ⊆ C̃ and C ⊆ U . To this end, we use the assumption of the lemma.
Take such a pair (U,C). Since X is a unique path space, the pair (Ũ , C) is a
boundary pair by Lemma 5.1. It is not difficult to see that the pair (Ũ , C) is
elementary. Hence by the assumption of the lemma, there exist x ∈ Ũ and y ∈ C
such that Ũ = {̃x}, C = {y} and x→ y. By (6) and (7) of Proposition 3.3, we get

δUC = iCCδ
Ũ
C
rU
Ũ
= i
{y}
C δ

{̃x}
{y}r

U

{̃x}.

It remains to prove that (x, y) is the only pair satisfying x→ y, x ∈ U and y ∈ C.
First note that Ũ = {̃x} implies x ∈ U , and also that C = {y} implies y ∈ C. Now
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take u ∈ U and c ∈ C with u → c. Since U ⊆ {̃x} and C ⊆ {y}, there exist a
path from u to x, and a path from y to c. These two paths together with the arrow
x→ y give us a path from u to c. Since X is a unique path space, this path should
coincide with the arrow u → c. Hence we get u = x and c = y. This finishes the
proof. �

Lemma 5.15. Let X be a finite T0-space. Assume that the directed graph associated
to X is a forrest, that is, it contains no undirected cycles. Then X is an EBP space.

Proof. It is clear that, if the directed graph associated to X is a forrest, then X
is a unique path space. Let us take an elementary boundary pair (U,C). Choose
a minimal element x ∈ U . Since U ⊆ C̃, there is y ∈ C with x > y. We can,
moreover, assume that x → y because U ∪ C is locally closed and x is minimal in
U . Since U is open and C is closed, we have {̃x} ⊆ U and {y} ⊆ C. We will show
that these inclusions are equalities using the fact that X is a forrest. Take u ∈ U
arbitrarily. Since U ⊆ C̃, there exists an element c ∈ C such that u > c. Thus we
have a path from u to c. Since both U and C are connected, there exist undirected
paths from u to x and from y to c. These two paths give us an undirected path
from u to c through the arrow x→ y. This path should coincide with the directed
path from u to c because X contains no undirected cycles. Hence we get a path
from u to x. This shows u ∈ {̃x}, and therefore we get U = {̃x}. In a similar
manner, we get C = {y}. �

Remark 5.16. The above lemma applies, in particular, to accordion spaces. The
conclusion of Lemma 5.13 can also be verified for various unique path spaces which
are not forrests—the smallest example being the so-called pseudocircle with four
points. Consider, however, the sixteen-point space Q defined by the directed graph

y1

y3

y5

y7

y2y4

y6 y8

x1

x3

x5

x7

x2x4

x6 x8

��

kk33

��
RR

++ ss

LL
��

11

QQ

qq

mm





--

MM

++

��

kk

KK

��

&&
FF

ff

.

Then Q is a unique path space that is not an EBP space because the subsets
U = {x1, x2, . . . , x8} and C = {y1, y2, . . . , y8} give an elementary boundary pair
(U,C) that does not satisfy U = {̃x} nor C = {y} for any x, y ∈ X . A simple
computation shows that the boundary decomposition (5.14) of δUC indeed holds in
the category NT ∗. However, we believe that it does not hold in the category ST ∗.
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The following theorem has two important consequences. Firstly, as stated in
Corollary 5.19, it implies that for real-rank-zero C∗-algebras, isomorphisms on FKB
lift to isomorphisms on FKST . By Theorem 3.11, FKST is strongly complete for
stable KirchbergX-algebras whenX is an accordion space. Secondly, by Lemma 5.6
of [8], if X is an accordion space, any exact NT -module is of the form FK(A) for
some Kirchberg X-algebra A, so any exact B-module is of the form FKB(A) for
some Kirchberg X-algebra A of real rank zero. This second consequence is useful
for constructing examples of Kirchberg X-algebras.

Theorem 5.17. Let X be an EBP space. The functor

FB : Mod(ST )→Mod(B)
restricts to an equivalence between the category of exact real-rank-zero-like ST -
modules and the category of exact B-modules.

A proof of this theorem is given after the following remark and corollary.

Remark 5.18. The proof of Theorem 5.17 given below works in fact not only for EBP
spaces but more generally for unique path spaces for which the relation (5.14) holds
in the category ST for all boundary pairs (U,C), see Lemma 5.13 and Remark 5.16.

Corollary 5.19. Let A and B be C∗-algebras of real rank zero over an EBP
space X. Then for any homomorphism ϕ : FKB(A) → FKB(B), there exists a
unique homomorphism Φ: FKST (A)→ FKST (B) such that FB(Φ) = ϕ. If ϕ is an
isomorphism, then so is Φ.

Proof of Theorem 5.17. We will explicitly define a functor from the category of
exact B-modules to the category of exact real-rank-zero-like ST -modules.

Let an exact B-module N be given. We will define an ST -module M . We begin
in the obvious way: For x ∈ X , let M({x}, 1) = N(x1) and M({̃x}, 0) = N(x̃0).

Similarly, for x → y, we define the even component of i{̃y}
{̃x}

to be iỹ0

x̃0
, the odd

component of r{y}{x} to be ry1

x1
, and the odd-to-even component of δ{̃x}{y} to be δx̃0

y1
.

This makes sure that, finally, we will have FB(M) = N . Also, we of course define
δUC : M(C, 0) → M(U, 1) to be zero for every boundary pair (U,C) so that M will
be real-rank-zero-like.

For x ≥ y, let x → x1 → x2 → · · · → xn → y be the unique path from x to y.
Define the even component of i{̃y}

{̃x}
to be the composition ix̃10

x̃0
ix̃20

x̃10
· · · iỹ0

x̃n0
and the

odd component of r{y}{x} as the composition rx11

x1
rx21

x11
· · · ry1

xn1
. In case of x = y, this

specifies to ix̃0

x̃0
= id

M({̃x},0) and rx1

x1
= idM({x},1). If we have x → y, then these

definitions coincide with the ones we gave before.
We observe that the groups M({̃x}, 0) with the maps i{̃y}

{̃x}
define a precosheaf on

B =
{
{̃x} | x ∈ X

}
. By Lemma 4.8 it is in fact a cosheaf. We can therefore apply

Lemma 4.7 and obtain groups M(U, 0) for all sets U and maps iVU : M(U, 0) →
M(V, 0) for open sets U ⊆ V which fulfill the relations (1) and (3) in Proposition
3.3.

For an arbitrary locally closed subset Y ∈ LC(X) we write Y = V \U with open
sets U ⊆ V and define M(Y, 0) as the cokernel of the map iVU : M(U, 0)→M(V, 0).
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That this definition does not depend on the choice of U and V can be seen in a
way similar to the proof of [20, Lemma 2.15] using that pushouts of abelian groups
preserve cokernels. We obtain maps rYV : M(V, 0) → M(Y, 0) for every open set V
with relatively closed subset Y ⊆ V such that the following holds: If Y ∈ LC(X)
can be written as differences Vi \ Ui of open sets for i ∈ {1, 2} such that U1 ⊆ U2

and V1 ⊆ V2, then the diagram

M(U1, 0)
i //

i

��

M(V1, 0)
r // //

i

��

M(Y, 0)

M(U2, 0)
i //M(V2, 0)

r // // M(Y, 0)

(5.20)

commutes.
For a relatively open subset U ⊆ Y ∈ LC(X) we obtain a unique map iYU : M(U, 0)→

M(Y, 0) using the diagram

M(∂̃U, 0)
i //

i

��

M(Ũ , 0)
r // //

i

��

M(U, 0)

i

��
M(∂̃Y, 0)

i // M(Ỹ , 0)
r // // M(Y, 0).

(5.21)

It is easy to check that this map coincides with the previously defined one in case
Y is open.

We find that, for Yi ∈ LC(X) with Y1 ⊆ Y2 open, and Yi = Vi \ Ui for i ∈ {1, 2}
and open sets Ui, Vi such that U1 ⊆ U2 and V1 ⊆ V2, the diagram

M(U1, 0)
i //

i

��

M(V1, 0)
r // //

i

��

M(Y1, 0)

i

��
M(U2, 0)

i // M(V2, 0)
r // //M(Y2, 0)

(5.22)

commutes. We know this already for the left-hand square. For the right-hand
square, it can be seen as follows: since V1 is covered by U1 and Ỹ1, it suffices to check
commutativity on the images iV1

U1

(
M(U1, 0)

)
and iV1

Ỹ1

(
M(Ỹ1, 0)

)
. On iV1

U1

(
M(U1, 0)

)

both compositions vanish. On the image of M(Ỹ1, 0), commutativity follows from
(5.20) and (5.21) considering the diagram

M(Ỹ1, 0)
i
//

i
��

r

**
M(V1, 0) r

// //

i

��

M(Y1, 0)

i

��
M(Ỹ2, 0)

i //

r

33
M(V2, 0)

r // // M(Y2, 0).
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Now let Y ∈ LC(X), let U be a relatively open subset of Y and let C = Y \ U .
Consider the diagram

M(∂̃U, 0)
i //

i

��

M(Ũ , 0)
r // //

i

��

M(U, 0)

i

��
M(∂̃Y, 0)

i //

r
����

M(Ỹ , 0)
r // //

r
����

M(Y, 0)

����
M(∂̃Y \ ∂̃U, 0) i // M(Ỹ \ Ũ , 0) r // // M(C, 0),

(5.23)

whose solid squares commute and whose rows and solid columns are exact. A
diagram chase shows that there is a unique surjective map rCY : M(Y, 0)→M(C, 0),
as indicated by the dotted arrow, making the bottom-right square commute and
making the right-hand column exact at M(Y, 0). Again, we can easily check that
this map coincides with the previously defined one in case Y is open.

We have now defined the even part of the module M completely. It is straight-
forward to check the relations (3) and (4) in Proposition 3.3. We will now prove
that the relation (5) holds as well.

For this purpose, fix Y ∈ LC(X), let U ⊆ Y be open and let C ⊆ Y be closed.
Consider the diagram

M(Ũ , 0)
r // //

i
��

M(U, 0)
r //

i

��

M(U ∩C, 0)

i

��
M(Ỹ , 0)

r // M(Y, 0)
r // M(C, 0)

We would like to prove that the right-hand square commutes. The left-hand square
commutes by definition of the map iYU . Since Ũ ∩ C = U ∩ C, we can therefore
assume without loss of generality that U and Y are open. Commutativity then
follows from (5.22).

Next, we will convince ourselves that the relation (2) in Proposition 3.3 holds
on the even part of M . Let W = Y ⊔Z be a topologically disjoint union of subsets
Y, Z ∈ LC(X). Fix w ∈ M(W, 0). Then (w − wrZW iWZ )rZW = 0 as iWZ rZW = idZ .
Hence there is y ∈M(Y, 0) with yiWY = w−wrZW iWZ . Applying rYW shows y = wrYW
as iWZ rYW = 0. We get

w(rYW iWY + rZW iWZ ) = yiWY + wrZW iWZ = w.

We have shown that rYW iWY + rZW iWZ = idW as desired.
We have defined all even groups for the desired module M and the action of all

transformations between them. We have checked all relations only involving trans-
formations between even groups and verified exactness of M(C, 0) → M(Y, 0) →
M(U, 0) for every boundary pair Y = U ∪ C.

We intend to do the same for the odd part of the module M in an analogous way.
We start out with the given data consisting of the groups M({x}, 1) and the maps
r
y1

x1
, x → y, extend this to a sheaf on the basis

{
{x} | x ∈ X

}
of closed sets and

apply Lemma 4.3. Observing that every locally closed subset of X can be written
as a difference of two nested closed sets and using the functoriality of the kernel of
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a group homomorphism, we define groups M(Y , 1) for all Y ∈ LC(X) and actions
for all transformations between these odd groups. Using arguments analogous to
the ones above, we can verify the relations (1) to (5) in Proposition 3.3 on the odd
part of M .

It remains to define the odd-to-even components of the boundary maps δUC for
all boundary pairs (U,C), which has only been done in the special case U = {̃x},
C = {y} with x→ y. Our general definition for δUC : M(C, 1)→M(U, 0) is

(5.24) δUC =
∑

x→y,x∈U,y∈C
r
{y}∩C
C i

{y}
{y}∩C δ

{̃x}
{y} r

{̃x}∩U
{̃x}

iU{̃x}∩U .

Our next aim is to verify the relations (6), (7) and (8) in Proposition 3.3. We begin
with relation (6). Let (U,C) be a boundary pair and let C′ ⊆ C be relatively open.
We have by the relations (3) and (5) that

iCC′ δUC = iCC′

( ∑

x→y,x∈U,y∈C
r
{y}∩C
C i

{y}
{y}∩C δ

{̃x}
{y} r

{̃x}∩U
{̃x}

iU{̃x}∩U

)

=
∑

x→y,x∈U,y∈C
r
{y}∩C′

C′ i
{y}
{y}∩C′ δ

{̃x}
{y} r

{̃x}∩U
{̃x}

iU{̃x}∩U .

Since C′ is relatively open in C, {y} ∩ C′ is empty unless y ∈ C′. Therefore, the
above sum equals

δUC′ =
∑

x→y,x∈U,y∈C′

r
{y}∩C′

C′ i
{y}
{y}∩C′ δ

{̃x}
{y} r

{̃x}∩U
{̃x}

iU{̃x}∩U .

This shows relation (6). The relation (7) follows similarly.
Next we will check relation (8). Let Y, Z,W ∈ LC(X) such that Y ∪W ∈ LC(X)

containing Y,W as closed subsets, Z∪W ∈ LC(X) containing Z,W as open subsets,
and W ⊆ Y ∪Z. For each x ∈ Z and y ∈ Y with x→ y, we define γx,y : M(Y, 1)→
M(Z, 0) by

γx,y = r
{y}∩Y
Y i

{y}
{y}∩Y δ

{̃x}
{y} r

{̃x}∩Z
{̃x}

iZ{̃x}∩Z .

Since W \ Y is an open subset of Z (see the proof of Proposition 3.3), we have
{̃x}∩ (W \Y ) = {̃x}∩Z for each x ∈ W \Y . We also have y ∈ W if y ∈ Y satisfies
x→ y for some x ∈W \Y because W ⊆ Y ∪W is closed. Therefore, by the relation
(4) we get

δ
W\Y
Y iZW\Y =

( ∑

x→y,x∈W\Y,y∈Y
r
{y}∩Y
Y i

{y}
{y}∩Y δ

{̃x}
{y} r

{̃x}∩(W\Y )

{̃x}
i
W\Y
{̃x}∩(W\Y )

)
iZW\Y

=
∑

x→y,x∈W\Y,y∈W∩Y
r
{y}∩Y
Y i

{y}
{y}∩Y δ

{̃x}
{y} r

{̃x}∩Z
{̃x}

iZ{̃x}∩Z

=
∑

(x,y)∈Λ1

γx,y

where we set

Λ1 = {(x, y) | x→ y, x ∈W \ Y, y ∈W ∩ Y }.
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In a similar way using the facts that W \ Z is a closed subset of Y and that Z is
an open subset of Y ∪ Z, we get

r
W\Z
Y δZW\Z =

∑

(x,y)∈Λ2

γx,y

where we set
Λ2 = {(x, y) | x→ y, x ∈ W ∩ Z, y ∈ W \ Z}.

If we set

Λ′1 = {(x, y) | x→ y, x ∈W ∩ Y ∩ Z, y ∈W ∩ Y },
Λ′2 = {(x, y) | x→ y, x ∈W ∩ Z, y ∈W ∩ Y ∩ Z}

then we have

{(x, y) | x→ y, x ∈ W ∩ Z, y ∈ W ∩ Y } = Λ1 ⊔ Λ′1 = Λ2 ⊔ Λ′2

because W ⊆ Y ∪ Z implies (W ∩ Z) \ Y = W \ Y and (W ∩ Y ) \ Z = W \ Z.
Therefore in order to show the equality δW\YY iZW\Y = r

W\Z
Y δZW\Z , it suffices to show

∑

(x,y)∈Λ′
1

γx,y =
∑

(x,y)∈Λ′
2

γx,y.

For each p ∈ W ∩ Y ∩ Z, we get
∑

y←p

r
{y}
{p} δ

{̃p}
{y} =

∑

x→p

δ
{̃x}
{p} i

{̃p}
{̃x}

from the definition of B-modules. Multiplying from the left with r{p}∩YY i
{p}
{p}∩Y and

from the right with r{̃p}∩Z
{̃p}

iZ
{̃p}∩Z

, and summing up over p ∈W ∩ Y ∩ Z, we get

∑

p∈W∩Y ∩Z
r
{p}∩Y
Y i

{p}
{p}∩Y

( ∑

y←p

r
{y}
{p} δ

{̃p}
{y}

)
r
{̃p}∩Z
{̃p}

iZ{̃p}∩Z

=
∑

p∈W∩Y ∩Z
r
{p}∩Y
Y i

{p}
{p}∩Y

( ∑

x→p

δ
{̃x}
{p} i

{̃p}
{̃x}

)
r
{̃p}∩Z
{̃p}

iZ{̃p}∩Z .

By the relations (3), (4) and (5), we get
∑

p∈W∩Y ∩Z

∑

y←p

r
{y}∩Y
Y i

{y}
{y}∩Y δ

{̃p}
{y}r

{̃p}∩Z
{̃p}

iZ{̃p}∩Z(5.25)

=
∑

p∈W∩Y ∩Z

∑

x→p

r
{p}∩Y
Y i

{p}
{p}∩Y δ

{̃x}
{p} r

{̃x}∩Z
{̃x}

iZ{̃x}∩Z .

Since Y is locally closed, the conditions p ∈ W ∩ Y ∩ Z, y ← p and {y} ∩ Y 6= ∅
imply y ∈ Y . This further implies y ∈ W because W ⊆ Y ∪W is closed. Hence the
left-hand side of (5.25) equals

∑
(x,y)∈Λ′

1
γx,y. In a similar way, we can see that the

right-hand side of (5.25) equals
∑

(x,y)∈Λ′
2
γx,y. Thus we have proven the relation

(8), and this finishes the verification of all relations in Proposition 3.3.
Hence, M is indeed an ST -module. To see that M is exact, it remains to show

that the sequences M(C, 1)
δUC−−→M(U, 0)

iYU−→M(Y, 0) and M(Y, 1)
rCY−−→M(C, 1)

δUC−−→
M(U, 0) are exact for all boundary pairs (U,C) with Y = U ∪ C.
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Fix an element x ∈ X and consider the commutative diagram

M({x}, 1) i // M({x}, 1) r //

◦
��

M(∂{x}, 1)

◦
��

M({x}, 1) ◦ // M(∂̃{x}, 0) i // M({̃x}, 0)

Using exactness of the upper row and the fact that N was an exact B-module, a
diagram chase shows that the bottom row is exact. In a similar way, we see that
the sequence

M({x}, 1)→M(∂{x}, 0)→M({x}, 0).
is exact for every x ∈ X .

Next, let Y ∈ LC(X) and let x ∈ Y be a closed point. Then Y ∩ {̃x} is relatively
closed in {̃x} because Y is locally closed. A diagram chase in the commutative
diagram

M(∂̃{x} \ (Y ∩ ∂̃{x}), 0)

i

��

M({̃x} \ (Y ∩ {̃x}), 0)

i
��

M({x}, 1) ◦ // M(∂̃{x}, 0)

r
����

i //M({̃x}, 0)

r
����

M({x}, 1) ◦ // M(Y ∩ ∂̃{x}, 0) i //M(Y ∩ {̃x}, 0),

whose columns and top row are exact, yields exactness of the bottom row. By a
diagram chase in the commutative diagram

M({x}, 1) ◦ // M(Y ∩ ∂̃{x}, 0) i //

i

��

M(Y ∩ {̃x}, 0)

i

��
M({x}, 1) ◦ // M(Y \ {x}, 0) i // M(Y, 0)

using the exact cosheaf sequence (4.6) for the covering (Y \ {x}, Y ∩ {̃x}) of Y we
obtain exactness of the bottom row. Notice that, using a further diagram chase, it
is not hard to deduce the exactness of the cosheaf sequence for a relatively open
covering of a locally closed set from the open case.

We have established the exactness of the sequence M(C, 1)
δUC−−→ M(U, 0)

iYU−→
M(Y, 0) for all boundary pairs (U,C) with C a singleton. Analogously, we find that

M(Y, 1)
rCY−−→M(C, 1)

δUC−−→M(U, 0) is exact whenever U is a singleton.
We will proceed by an inductive argument. Let n ≥ 1 be a natural number and

assume that exactness of the sequence M(C, 1)
δUC−−→M(U, 0)

iYU−→M(Y, 0) is proven
for all boundary pairs (U,C) for which C has at most n elements. Let (U,C) be a
boundary pair such that C has n+ 1 elements. Write Y = U ∪ C. Let p ∈ C be a
maximal point and set U ′ = U ∪ {p}, C′ = C \ {p}. Then (U ′, C′) is a boundary



68

20 SARA E. ARKLINT, RASMUS BENTMANN, AND TAKESHI KATSURA

pair. A diagram chase in the commutative diagram

M({p}, 1) i // M(C, 1)

◦
��

r // M(C′, 1)

◦
��

◦ // M({p}, 0)

M({p}, 1) ◦ // M(U, 0)

i

��

i // M(U ′, 0)

i

��

r // M({p}, 0)

M(Y, 0) M(Y, 0),

whose rows and third column are exact, shows exactness of the second column.

Again, exactness ofM(Y, 1)
rCY−−→M(C, 1)

δUC−−→M(U, 0) for all boundary pairs follows
in a analogous manner. We conclude that M is an exact ST -module.

Summing up, we have associated an exact real-rank-zero-like ST -module with
every exact B-module. By a routine argument, this assignment extends uniquely
to a functor G from the category of exact B-modules to the category of exact
real-rank-zero-like ST -modules. Let F be the restriction of the functor FB to the
category of exact real-rank-zero-like ST -modules. Then the composition GF is
equal to the identity functor on the category of exact B-modules. It remains to
show that FG is naturally isomorphic to the identity functor on the category of
exact real-rank-zero-like ST -modules.

Let M be an exact real-rank-zero-like ST -module. We will construct a natural
ST -module isomorphism ηM : M → (FG)(M). For x ∈ X we have M({̃x}, 0) =

(FG)(M)({̃x}, 0) and M({x}, 1) = (FG)(M)({x}, 1). Hence we set ηM ({̃x}, 0) =
id

M({̃x},0) and ηM ({x}, 1) = id
M({x},1). Using the universal property of kernels and

cokernels we obtain natural group homomorphisms fY : M(Y, 1)→ (FG)(M)(Y, 1)
and gY : (FG)(M)(Y, 0) → M(Y, 0) for every Y ∈ LC(X). An application of the
Five Lemma shows that these are in fact isomorphisms. We can therefore define
ηM (Y, 1) = fY and ηM (Y, 0) = (gY )

−1.
Finally, we check that this collection of maps constitutes an ST -module homo-

morphism, that is, the group homomorphism ηM : M → (FG)(M) intertwines the
actions of the category ST on M and on (FG)(M). By construction this is true

for the transformations (i{̃y}
{̃x}

, 0), (r{y}{x}, 1) and δ{̃x}{y} for all x, y ∈ X with x→ y. By

Lemma 4.3 and Lemma 4.7 it is also true for the transformation (iVU , 0) for all open
subset U, V of X with U ⊆ V and for (rDC , 1) for all closed subsets C,D of X with
D ⊆ C.

Let V ⊆ X be open and let Y ⊆ V be relatively closed. Since (rYV , 0) was defined
as a natural projection onto a cokernel, our assertion holds for this transformation
as well. Consequently, by (5.21) the assertion also follows for the transformation
(iYU , 0) for Y ∈ LC(X) and U ⊆ Y relatively open. Finally (5.23) implies the
assertion for the transformation rCY with Y ∈ LC(X) and C ⊆ Y relatively closed.
We have shown that η intertwines the actions of all even transformations on the
0-parts of M and (FG)(M). By analogous arguments the same follows for the
actions of all even transformations on the 1-parts of M and (FG)(M).

Our last step is to consider the action of a boundary transformation δUC for a
boundary pair (U,C). Since M and (FG)(M) are real-rank-zero-like the 0-to-1
component of δUC acts trivially on both modules. We have already seen that the
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assertion is true for the 1-to-0 component of δUC in the specific case that (U,C) =

({̃x}, {y}) with x→ y. The general case then follows from (5.24) since X is an EBP
space. �

6. Reduced filtered K-theory

Let X be an arbitrary finite T0-space. We recall some definitions and facts
from [3]. In [23], Gunnar Restorff introduced reduced filtered K-theory FKR and
showed that it classifies purely infinite Cuntz–Krieger algebras up to stable isomor-
phism. In [3], the range of reduced filtered K-theory is established with respect to
purely infinite Cuntz–Krieger algebras.

Definition 6.1 ([3, Definition 3.1]). Let R denote the universal pre-additive cat-
egory generated by objects x1, ∂̃x0, x̃0 for all x ∈ X and morphisms δ∂̃x0

x1
and ix̃0

∂̃x0

for all x ∈ X , and i∂̃x0

ỹ0
when y → x, subject to the relations

(6.2) δ∂̃x0
x1

ix̃0

∂̃x0
= 0

(6.3) ipi
∂̃x0

ỹ(p)0
= iqi

∂̃x0

ỹ(q)0

for all x ∈ X , all y ∈ X satisfying y > x, and all paths p, q ∈ Path(y, x), where for
a path p = (zk)

n
k=1 in Path(y, x), we define y(p) = z2, and

ip = i
∂̃zn−10

z̃n0
i
z̃n−20

∂̃zn−10

· · · i∂̃z20

z̃30
iz̃20

∂̃z20

.

Definition 6.4. It is easy to see that the relations in ST corresponding to (6.2)
and (6.3) hold. We can thus define an additive functor R → ST by x1 7→ ({x}, 1),
∂̃x0 7→ (∂̃{x}, 0) and x̃0 7→ ({̃x}, 0), and in the obvious way on morphisms. Let
FR : Mod(ST ) → Mod(R) denote the induced functor. Define reduced filtered
K-theory, FKR as the composition of FKST with FR.

An equivalent definition of the functor FKR is given in [3, Definition 3.4].

Definition 6.5 ([3, Definition 3.6]). An R-module M is called exact if the se-
quences

(6.6) M(x1)
δ−→M(∂̃x0)

i−→M(x̃0)

(6.7)
⊕

(p,q)∈DP(x)

M(s̃(p, q)0)
(ip−iq)−−−−−→

⊕

y→x

M(ỹ0)
(i

∂̃x0
ỹ0

)

−−−−→M(∂̃x0) −→ 0

are exact for all x ∈ X , where DP(x) denotes the set of pairs of distinct paths (p, q)
to x and from some common element which is denoted s(p, q).

The following lemma is a generalization of [3, Lemma 3.9]. We omit the proof
as the same technique applies here.

Lemma 6.8. Let M be an exact real-rank-zero-like ST -module. Let Y be an open
subset of X and let (Ui)i∈I be an open covering of Y . Then the following sequence
is exact:

⊕

i,j∈I
M(Ui ∩ Uj , 0)

(i
Ui
Ui∩Uj

−iUj
Ui∩Uj

)

−−−−−−−−−−−→
⊕

i∈I
M(Ui, 0)

(iYUi
)

−−−→M(Y, 0) −→ 0.
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Corollary 6.9. Let M be an exact real-rank-zero-like ST -module and set N =
FR(M). Then N is an exact R-module.

Remark 6.10. If X is a unique path space, then the set DP(x) is empty for every
x ∈ X . Hence, for an exact R-module M , the map (i∂̃x0

ỹ0
) :

⊕

y→x

M(ỹ0) → M(∂̃x0)

is an isomorphism. In this sense, the groups M(∂̃x0) are redundant for an exact
R-module in case X is a unique path space.

By combining the following Proposition 6.11 and Theorem 6.12, one may obtain
a complete description of the range of reduced filtered K-theory for purely infinite
graph C∗-algebras and Cuntz–Krieger algebras.

Proposition 6.11 ([3, Proposition 4.7]). Let A be a purely infinite graph C∗-al-
gebra over X. Then FKR(A) is an exact R-module, and FK1

{x}(A) is free for all
x ∈ X.

If A is a purely infinite Cuntz–Krieger algebra over X, then furthermore K1(A(x))

and K0(A({̃x})) are finitely generated, and the rank of K1(A(x)) coincides with the
rank of the cokernel of the map i : K0(A(∂̃{x})→ K0(A({̃x})), for all x ∈ X.

Theorem 6.12 ([3, Theorem 4.8]). Let M be an exact R-module with M(x1) free
for all x ∈ X. Then there exists a countable graph E satisfying that all vertices in
E are regular and support at least two cycles, that C∗(E) is tight over X and that
FKR

(
C∗(E)

)
is isomorphic to M . By construction C∗(E) is purely infinite.

The graph E can be chosen to be finite if (and only if ) M(x1) and M(x̃0) are
finitely generated, and the rank of M(x1) coincides with the rank of the cokernel
of i : M(∂̃x0) → M(x̃0), for all x ∈ X. If E is chosen finite, then by construction
C∗(E) is a Cuntz–Krieger algebra.

In Corollary 7.16, we combine this range-of-invariant theorem with the isomor-
phism lifting result from the next section.

7. An intermediate invariant

In this section, we define one more invariant, which, in a sense, can be thought of
as a union or join of reduced filtered K-theory FKR and filtered K-theory restricted
to canonical base FKB. It functions as an intermediate invariant towards concrete
filtered K-theory FKST .

Let X be a unique path space.

Definition 7.1. Let BR denote the universal pre-additive category generated by
objects x1, x1, x̃0 for all x ∈ X and morphisms ix1

x1
for all x ∈ X and ry1

x1
, δx̃0

y1
and

iỹ0

x̃0
when x→ y, subject to the relations

(7.2)
∑

x→y

r
y1

x1
δx̃0

y1
=

∑

z→x

δz̃0x1
ix̃0

z̃0

for all x ∈ X and

(7.3) ix1
x1
r
y1

x1
= 0

when x→ y.
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As before, there is a canonical additive functor BR → ST , inducing a functor
FBR : Mod(ST ) → Mod(BR). Define FKBR as the composition of FKST with
FBR.

The categoryB embeds into the categoryBR, and a forgetful functor Mod(BR)→
Mod(B) is induced. We define an additive functor FBR,R : Mod(BR) → Mod(R)
by

M(∂̃x0) =
⊕

y→x

M(ỹ0)

and δ∂̃x0
x1

= (ix1
x1
δỹ0

x1
) and otherwise in the obvious way.

Definition 7.4. A BR-module M is called exact if the sequences

(7.5) M(x1)

(
r
y1

x1
−δz̃0x1

)

−−−−−−−−−−→
⊕

x→y

M(y1)⊕
⊕

z→x

M(z̃0)


δ

x̃0

y1

ix̃0

z̃0




−−−−−→M(x̃0)

(7.6) 0→M(x1)
ix1
x1−−→M(x1)

(r
y1
x1

)
−−−→

⊕

x→y

M(y1)

are exact for all x ∈ X .

Lemma 7.7. Let M be an exact real-rank-zero-like ST -module. Then FBR(M) is
an exact BR-module.

Proof. The proof is similar to the proof of Lemma 5.10. �

Theorem 7.8. Assume that X is a unique path space. Let M and N be exact
BR-modules with M(x1) and N(x1) free for all non-open points x ∈ X, and
let ϕ : FBR,R(M) → FBR,R(N) be an R-module homomorphism. Then there ex-
ists a (not necessarily unique) BR-module homomorphism Φ: M → N such that
FBR,R(Φ) = ϕ. If ϕ is an isomorphism then, by construction, so is Φ.

Proof. For x ∈ X , we define Φx1 = ϕx1 and Φx̃0
= ϕx̃0

. In the following, we will
define Φx1

by induction on the partial order of X in a way such that the relations

(7.9) r
y1

x1
Φy1

= Φx1
r
y1

x1
,

(7.10) δz̃0x1
Φz̃0 = Φx1

δz̃0x1

(7.11) ix1
x1
Φx1

= Φx1 i
x1
x1

hold for all y with x→ y and all z with z → x. For closed points x ∈ X , we set

Φx1
= ix1

x1
ϕx1

(
ix1
x1

)−1
.

Here we have used that, by exactness of (7.6), ix1
x1

is invertible as there is no y with
x → y. While the condition (7.9) is empty, (7.10) is guaranteed by ϕ being an
R-module homomorphism, and (7.11) holds by construction.

Now fix an element w ∈ X and assume that Φx1
is defined for all x < w in

a way such that (7.9) and (7.10) hold. Using the exact sequence (7.6) and the
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freeness of
⊕

w→x

M(w1), we can choose a free subgroup V ⊆ M(w1) such that

M(w1) decomposes as an inner direct sum

M(w1) = V ⊕M(w1) · iw1
w1
.

We will define Φw1 by specifying the two restrictions Φw1 |V and Φw1 |M(w1)·iw1
w1

.
Consider the diagram

V // //

##

M(x1)

(
r
y1

x1
,−δz̃0x1

)

//
⊕

x→y

M(y1)⊕
⊕

z→x

M(z̃0)


δ

x̃0

y1

ix̃0

z̃0




//

(
(Φy1),(Φz̃0)

)

��

M(x̃0)

Φx̃0

��
N(x1) (

r
y1

x1
,−δz̃0x1

) //
⊕

x→y

N(y1)⊕
⊕

z→x

N(z̃0) 
δ

x̃0

y1

ix̃0

z̃0




// N(x̃0)

(7.12)

By assumption, the bottom row of this diagram is exact, the top row is exact in⊕

x→y

M(y1) ⊕
⊕

z→x

M(z̃0), and the right-hand square commutes. We can therefore

choose a homomorphism Φx1
|V : V → N(x1) such that the left-hand pentagon

commutes.
By exactness of (7.6), ix1

x1
is injective. Its corestriction onto its image M(x1) · ix1

x1

is thus an isomorphism. We may therefore define the restriction Φx1
|
M(x1)·ix1

x1

in
the unique way that makes the following diagram commute:

M(x1)
ix1
x1 //

ϕx1

��

M(x1) · ix1
x1

Φx1
|
M(x1)·ix1

x1
��

N(x1)
ix1
x1 // N(x1) · ix1

x1

(7.13)

We have to check that Φw1
= (Φw1

|V ,Φw1
|
M(w1)·iw1

w1

) fulfills (7.9) and (7.10) (with
x replaced with w). This is true on V because of the commutativity of the left-
hand side of (7.12). It is also true on the second summand: by (7.3), both sides
of (7.9) vanish on this subgroup; (7.10) follows again from ϕ being an R-module
homomorphism; and (7.11) holds by construction. This completes the induction
step.

The claim, that Φ is an isomorphism whenever ϕ is, follows from a repeated
application of the Five Lemma. �

Corollary 7.14. Assume that X is an EBP space. Let M and N be exact,
real-rank-zero-like ST -modules with M({x}, 1) and N({x}, 1) free for all non-open
points x ∈ X, and let ϕ : FR(M)→ FR(N) be an R-module homomorphism. Then
there exists a (not necessarily unique) ST -module homomorphism Φ: M → N sat-
isfying FR(Φ) = ϕ. If ϕ is an isomorphism then, by construction, so is Φ.

Proof. Combine Theorems 7.8 and 5.17. �
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Corollary 7.15. Let A and B be C∗-algebras of real rank zero over an EBP
space X, and assume that K1

(
A(x)

)
and K1

(
B(x)

)
are free abelian groups for

all non-open points x ∈ X. Then for any homomorphism ϕ : FKR(A)→ FKR(B),
there exist a (not necessarily unique) homomorphism Φ: FKST (A) → FKST (B)
for which FR(Φ) = ϕ. If ϕ is an isomorphism then, by construction, so is Φ.

Corollary 7.16. Let A be a C∗-algebra over X with real rank zero, and assume
that K1

(
A(x)

)
is free for all x ∈ X. Then there exists a purely infinite graph C∗-al-

gebra C∗(E) that is tight over X and satisfies FKR
(
C∗(E)

) ∼= FKR(A). If X is
an EBP space, then automatically FKST

(
C∗(E)

) ∼= FKST (A).
If furthermore for all x ∈ X, the group K∗

(
A(x)

)
is finitely generated and

rankK1

(
A(x)

)
= rankK0

(
A(x)

)
, then C∗(E) can be chosen to be a purely infi-

nite Cuntz–Krieger algebra.

Proof. Combine Theorem 6.12 with Corollary 6.9 and Corollary 7.15. �

7.1. The particular case of the four-point space D. Consider the space D =
{1, 2, 3, 4} defined by 4→ 3, 4→ 2, 3→ 1, 2→ 1. The space D is not a unique path
space. The second-named author showed in [6] that there exists a finite refinement
FK′ of filtered K-theory FK given by adding a C∗-algebra R1\4 over D to the
collection (RY )Y ∈LC(D)∗ of representing objects, creating a larger category NT ′.
By [6, Theorem 6.2.14], isomorphisms on the refined filtered K-theory FK′ lift
to KK(D)-equivalences, and thereby (using [17]) to D-equivariant ∗-isomorphisms,
for stable Kirchberg D-algebras with all simple subquotients in the bootstrap class.
However, there exist two non-isomorphic stable Kirchberg D-algebras A and B with
real rank zero and simple subquotients in the bootstrap class such that FK(A) ∼=
FK(B), see [4, 6].

Proposition 7.17. Let A and B be C∗-algebras over D, assume that A and B have
real rank zero, and assume that K1

(
A(x)

)
and K1

(
B(x)

)
are free abelian groups for

all x ∈ {1, 2, 3}. Then any homomorphism ϕ : FKR(A) → FKR(B) extends (non-
uniquely) to a homomorphism Φ: FK′(A)→ FK′(B). If ϕ is an isomorphism, then
Φ is by construction an isomorphism.

Proof. By Section 6.2.5 of [6], the refined filtered K-theory FK′ consists of the
following groups and maps:

12
f12

!!❉
❉❉

❉❉
❉❉

❉ 34

i

!!❇
❇❇

❇❇
❇❇

❇ 3
i

""❊
❊❊

❊❊
❊❊

❊❊

123

r

==⑤⑤⑤⑤⑤⑤⑤⑤

r

!!❇
❇❇

❇❇
❇❇

❇ ◦δ // 4 ◦
f4 // 1 \ 4

◦③③③③

f34

==③③③③

◦
❉❉❉

❉
f24

!!❉
❉❉❉

f1 // 1 ◦δ // 234

r

<<②②②②②②②②②

r

""❊
❊❊

❊❊
❊❊

❊❊
❊

i // 1234
r // 123

13

f13
==③③③③③③③③

24

i

==⑤⑤⑤⑤⑤⑤⑤⑤
2

i

<<②②②②②②②②②②
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The proof of [4, Lemma 3.4] applies to the space D, hence the two triangles

FK234(A)
r3234i

123
3 δ4123f4 // FK1\4(A)

◦t
ttt

(f34,f1,f24)
zzttt

t

FK34(A)⊕ FK1(A)[1]⊕ FK23(A)

i23434 +δ2341 +i23424

dd❏❏❏❏❏❏❏❏❏

FK1\4(A) ◦
f1δ2341 r3234i

123
3 // FK123(A)

(r12123,δ
4
123,r

13
123)zzttt

tt
tt
tt

FK12(A)⊕ FK4(A)[1]⊕ FK13(A)

f12+f4+f13

dd❏❏❏❏❏❏❏❏❏

are exact. Since A is of real rank zero, the maps

FK0
123(A)

δ4123−−→ FK1
4(A), FK0

12(A)
δ3412−−→ FK1

34(A),

FK0
13(A)

δ2413−−→ FK1
24(A), FK0

1(A)
δ2341−−→ FK1

234(A)

vanish by Proposition 4 of [18]. So for C∗-algebras over D of real rank zero, the
invariant FK′ with the group 1 \ 40 and its related maps omitted, consists of the
following groups and maps:

241

��❄
❄❄

❄ 21

��❄
❄❄

❄ 121

��❄
❄❄

❄ 340

��❄
❄❄

❄ 30

��❄
❄❄

❄ 130

��❄
❄❄

❄

41

??⑧⑧⑧⑧

��❄
❄❄

❄ 2341

??⑧⑧⑧⑧
//

��❄
❄❄

❄ 12341 // 1231

??⑧⑧⑧⑧
//

��❄
❄❄

❄ 40 // 1 \ 41

??⑧⑧⑧⑧
//

��❄
❄❄

❄
11 // 2340

??⑧⑧⑧⑧
//

��❄
❄❄

❄ 12340 // 1230

??⑧⑧⑧⑧

��❄
❄❄

❄ 10

341

??⑧⑧⑧⑧
31

??⑧⑧⑧⑧
131

??⑧⑧⑧⑧
240

??⑧⑧⑧⑧
20

??⑧⑧⑧⑧
120

??⑧⑧⑧⑧

The reduced filtered K-theory FKR consists of the sequences 31 → 40 → 340,
21 → 40 → 240, 11 → 2340 → 12340 together with the maps 340 → 2340 and
240 → 2340 and the group 41.

We will now construct Φ = (Φ∗Y )Y ∈LC(D)∗∪{1\4} from ϕ. Define Φ1
{x} = ϕx1 ,

Φ0
∂̃x

= ϕ∂̃x0
, and Φ0

{̃x} = ϕx̃0
for all x ∈ D. For Y ∈ {3, 2, 123, 13, 12, 1}, the

maps Φ0
Y are constructed as the induced maps on cokernels, as in the proof of

Theorem 5.17.
Since FK1

1(A) is free and the sequence

0 −→ FK0
4(A)

f4−→ FK1
1\4(A)

f1

−→ FK1
1(A) −→ 0

is exact, we can find a free subgroup V1\4 of FK1
1\4(A) for which im f4 ⊕ V1\4 =

FK1
1\4(A). Consider the commuting diagram

V1\4
(f34,f1,f24) //

��

FK0
34(A)⊕ FK1

1(A)⊕ FK0
24(A)

i23434 +δ2341 +i23424 //

Φ0
34⊕Φ1

1⊕Φ0
24

��

FK0
234(A)

Φ0
234

��
FK1\4(B)

(f34,f1,f24) // FK0
34(B)⊕ FK1

1(B)⊕ FK0
24(B)

i23434 +δ2341 +i23424 // FK0
234(B).
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Since the bottom row is exact and the top row is a complex, and due to freeness of
V1\4, we may choose a map ψ : V1\4 → FK1

1\4(B) that makes the left square of the
diagram commute. Define Φ1

1\4 on im f4 ⊕ V1\4 as Φ0
4 + ψ. By construction,

Φ1
1\4f4 = f4Φ

0
4, f1Φ1

1\4 = Φ1
1f

1, f34Φ1
1\4 = Φ0

34f
34, f24Φ1

1\4 = Φ0
24f

24,

and by the Five Lemma, the homomorphism Φ1
1\4 is an isomorphism if ϕ is an

isomorphism.
Similarly, to construct Φ1

12, use exactness of the sequence

0 −→ FK1
2(A)

i122−−→ FK12(A)
r112−−→ FK1

1(A)
δ21−→ FK0

2(A)

and freeness of FK1
1(A) to choose a free subgroup V12 of FK1

12(A) for which im i122 ⊕
V12 = FK1

12(A). Consider the commuting diagram

V12

��

f12 // FK1
1\4(A)

Φ1
1\4
��

f24

// FK0
24(A)

Φ0
24

��
FK1

12(B)
f12 // FK1

1\4(B)
f24

// FK0
24(B).

Using exactness of the bottom row and that the top row is a complex, the map Φ1
12

can be constructed so that

Φ1
12i

12
2 = i122 Φ1

2, f12Φ
1
12 = Φ1

1\4f12.

Again due to the Five Lemma, Φ1
12 is an isomorphism if ϕ is. The maps Φ1

13, Φ1
123,

Φ1
1234, Φ1

234, Φ1
34, and Φ1

24 are constructed similarly and in the specified order.
Finally, the group FK0

1\4(A) is naturally isomorphic to

coker
(
FK0

123(A)
(r12123,δ

4
123,r

13
123)−−−−−−−−−−→ FK0

12(A)⊕ FK1
4(A)⊕ FK1

13(A)
)

= FK1
4(A) ⊕ coker

(
FK0

123(A)
(r12123,r

13
123)−−−−−−−→ FK0

12(A)⊕ FK1
13(A)

)

whose second summand, due to real rank zero, is naturally isomorphic to FK0
1(A)

Therefore, by defining Φ0
1\4 as the map induced by Φ1

4 ⊕ Φ0
1, Φ becomes a NT ′-

morphism. �

Corollary 7.18. Let A and B be C∗-algebras over D. Assume that A and B
have real rank zero, that K1

(
A(x)

)
and K1

(
B(x)

)
are free abelian groups for all

x ∈ {1, 2, 3}, and that A and B are in the bootstrap class of Meyer–Nest. Then any
isomorphism FKR(A)→ FKR(B) lifts to a KK(D)-equivalence.

Proof. Combine Proposition 7.17 with [6, Theorem 6.2.14]. �

Corollary 7.19. Let A and B be stable Kirchberg D-algebras of real rank zero,
assume that K1

(
A(x)

)
and K1

(
B(x)

)
are free abelian groups for all x ∈ {1, 2, 3},

and assume that A(x) and B(x) are in the bootstrap class for all x ∈ D. Then any
isomorphism FKR(A)→ FKR(B) lifts to a D-equivariant ∗-isomorphism A→ B.

Proof. Combine Proposition 7.17 with [6, Theorem 6.2.15]. �
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8. Unital filtered K-theory

In [24, 2.1], Gunnar Restorff and Efren Ruiz showed that if a functor F (that
factors through the functor K0) strongly classifies a certain type of class of C∗-al-
gebras up to stable isomorphism, then the functor A 7→

(
F (A), [1A] ∈ K0(A)

)

classifies unital, properly infinite C∗-algebras in the class up to isomorphism. A
version with slightly generalized assumptions of this so-called meta-theorem may
be found in [14] as Theorem 3.3. With these generalized assumptions, the theorem
applies to filtered K-theory FK over accordion spaces X with respect to Kirchberg
X-algebras with simple subquotients in the bootstrap class.

Let X be an arbitrary finite T0-space. For x, x′ ∈ X , we let inf(x, x′) denote the
set {y ∈ X | y → x, y → x′}.
Definition 8.1. The category Mod(ST )pt of pointed ST -modules is defined to
have objects (M,m) where M is a ST -module and m ∈ M(X, 0), and morphisms
ϕ : (M,m)→ (N,n) that are ST -morphisms with ϕ(m) = n.

The category Mod(B)pt of pointed B-modules is defined similarly with objects
(M,m) where M is a B-module and

m ∈ coker




⊕

x,x′∈X, y∈inf(x,x′)

M(ỹ0)

(
ix̃0

ỹ0
−ix̃

′
0

ỹ0

)

−−−−−−−−−−→
⊕

x∈X
M(x̃0)


 ,

and a morphism ϕ : (M,m) → (N,n) is a B-morphism whose induced map on the
cokernels sends m to n.

Similarly, the categories Mod(BR)pt and Mod(R)pt of pointed BR-modules re-
spectively pointed R-modules are defined.

Definition 8.2. A pointed ST -module (M,m) is called exact if M is an exact
ST -module, and real-rank-zero-like if M is real-rank-zero-like. Similary, a pointed
B-module, BR-module, or R-module (M,m) is called exact if M is exact.

Lemma 8.3. Let M be an exact real-rank-zero-like ST -module. Then the sequence

⊕

x,x′∈X, y∈inf(x,x′)

M({̃y}, 0)

(
i
{̃x}
{̃y}

−i{̃x}
′

{̃y}

)

−−−−−−−−−−−−→
⊕

x∈X
M({̃x}, 0)

(iX{̃x})−−−−→M(X, 0)→ 0

is exact.

Proof. By Lemma 6.8 the horizontal row of the following commuting diagram is
exact:

⊕

x,x′∈X
M({̃x} ∩ {̃x′}, 0)


i
{̃x}
{̃x}∩{̃x′}

−i{̃x}
′

{̃x}∩{̃x′}




//
⊕

x∈X
M({̃x}, 0) // M(X, 0) // 0

⊕

x,x′∈X

y∈inf(x,x′)

M({̃y}, 0)

(i
{̃x}∩{̃x′}
{̃y}

)

OO


i
{̃x}
{̃y}

−i{̃x}
′

{̃y}



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Furthermore, since for any pair x, x′ ∈ X the collection ({̃y})y∈inf(x,x′) covers {̃x}∩
{̃x′}, we see by Lemma 6.8 that the vertical map in the diagram is surjective. This
establishes the desired result. �

Definition 8.4. Let A be a unital C∗-algebra over a finite T0-space X . Its
unital concrete filtered K-theory FKunit

ST (A) is defined as the pointed ST -module
(FKST (A), [1A]).

If A has real rank zero, then its unital reduced filtered K-theory FKunit
R (A) is

defined as the pointed R-module (FKR(A), u(A)) where u(A) is the unique element
in

coker




⊕

x,x′∈X, y∈inf(x,x′)

FK0

{̃y}(A)

(
ix̃0

ỹ0
−ix̃

′
0

ỹ0

)

−−−−−−−−−−→
⊕

x∈X
FK0

{̃x}(A)




that is mapped to [1A] in K0(A) by the map induced by the family
(
FK0

{̃x}(A)
iX{̃x}−−→

FK0
X(A)

)
x∈X , see Lemma 8.3.

If A has real rank zero and X is a unique path space, then its unital filtered
K-theory restricted to the canonical base FKunit

B (A) is defined similarly.

By Lemma 8.3, we may view the forgetful functor FB : Mod(ST ) → Mod(B)
as a functor from pointed exact real-rank-zero-like ST -modules to pointed exact
B-modules and immediately obtain the following pointed version of Theorem 5.17:

Proposition 8.5. For every EBP space X, the forgetful functor from exact pointed
real-rank-zero-like ST -modules to exact pointed B-modules is an equivalence of cat-
egories.

Proposition 8.6. Assume that X is a unique path space. Let (M,m) and (N,n)
be exact pointed BR-modules with M(x1) and N(x1) free for all non-open points
x ∈ X, and let ϕ : FBR,R(M)→ FBR,R(N) be a pointed R-module homomorphism.
Then there exists a (not necessarily unique) pointed BR-module homomorphism
Φ: M → N satisfying FBR,R(Φ) = ϕ, and if ϕ is an isomorphism, then Φ is by
construction an isomorphism.

Proof. This follows from Theorem 7.8 since the groups M(x̃0) are not forgotten by
FBR,R. �

Corollary 8.7. Let X be an accordion space, and let A and B be unital Kirchberg
X-algebras of real rank zero with all simple subquotients in the bootstrap class. Then
any isomorphism FKunit

B (A)→ FKunit
B (B) lifts to an X-equivariant ∗-isomorphism

A→ B.

Proof. This follows from Theorem 3.3 in [14] together with Theorem 3.11 and Corol-
lary 5.19. �

Corollary 8.8. Let X be an accordion space, and let A and B be unital Kirchberg
X-algebras of real rank zero with all simple subquotients in the bootstrap class. As-
sume that K1

(
A(x)

)
and K1

(
B(x)

)
are free abelian groups for all x ∈ X. Then

any isomorphism FKunit
R (A)→ FKunit

R (B) lifts to an X-equivariant ∗-isomorphism
A→ B.
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Proof. This follows from Theorem 3.3 in [14] together with Theorem 3.11 and Corol-
lary 7.14. �

Remark 8.9. There exist, up to homeomorphism, precisely four contractible unique
path spaces with four points that are not accordion spaces. For all these spaces,
the categories NT and ST coincide. In [4], Gunnar Restorff, Efren Ruiz and the
first-named author showed that if X is one of these spaces, then FK is a complete in-
variant for stable Kirchberg X-algebras of real rank zero. Therefore, Corollaries 8.7
and 8.8 also hold for these spaces. Furthermore, the proof of Proposition 7.17 also
applies to FKunit

R and unital C∗-algebras, hence Corollary 8.8 also holds for the
space D.

We now recall the unital version of the range result from [3].

Theorem 8.10 ([3, Theorem 5.5]). Let X be a finite T0-space, and let (M,m) be
an exact pointed R-module. Assume that for all x ∈ X, M(x1) is a free abelian
group,

coker
(
M(∂̃x0)

i
x̃0

∂̃x0−−−→M(x̃0)
)

is finitely generated, and rankM(x1) ≤ rank coker
(
M(∂̃x0)

i
x̃0

∂̃x0−−−→M(x̃0)
)
.

Then there exists a countable graph E satisfying that all vertices in E sup-
port at least two cycles, that E0 is finite, that C∗(E) is tight over X, and that
FKunit
R

(
C∗(E)

)
is isomorphic to (M,m). By construction C∗(E) is unital and

purely infinite.
The graph E can be chosen to have only regular vertices if (and only if ) the

rank of M(x1) coincides with the rank of the cokernel of i : M(∂̃x0) → M(x̃0) for
all x ∈ X. If E is chosen to have only regular vertices, then by construction C∗(E)
is a Cuntz–Krieger algebra.

Corollary 8.11. Let X be a finite T0-space and let A be a unital C∗-algebra over X
of real rank zero. Assume for all x ∈ X that K1

(
A(x)

)
is free, K0

(
A(x)

)
is finitely

generated, and rankK1

(
A(x)

)
≤ rankK0

(
A(x)

)
.

Then there exists a countable graph E for which C∗(E) is unital, purely infinite,
and tight over X such that FKunit

R
(
C∗(E)

) ∼= FKunit
R (A). If X is an EBP space,

then automatically FKunit
ST

(
C∗(E)

) ∼= FKunit
ST (A).

If furthermore rankK1

(
A(x)

)
= rankK0

(
A(x)

)
for all x ∈ X, then E can be

chosen such that C∗(E) is a purely infinite Cuntz–Krieger algebra.

Corollary 8.12. Let X be an accordion space, and let I →֒ A։ B be an extension
of C∗-algebras. Assume that A is unital and tight over X.

Then A is a purely infinite Cuntz–Krieger algebra if and only if
• I is stably isomorphic to a purely infinite Cuntz–Krieger algebra,
• B is a purely infinite Cuntz–Krieger algebra,
• the exponential map K0(B)→ K1(I) vanishes.

Proof. Recall that Cuntz–Krieger algebras are purely infinite if and only if they
have real rank zero. Assume that A is a purely infinite Cuntz–Krieger algebra. It
is well-known that then B is also a purely infinite Cuntz–Krieger algebra and I is
stably isomorphic to one. By Theorem 4.2 of [21], K0(B) → K1(I) vanishes since
A has real rank zero and therefore is K0-liftable, see Remark 3.10.
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Now, assume that B is a purely infinite Cuntz–Krieger algebra, that I is stably
isomorphic to one, and that the map K0(B) → K1(I) vanishes. By Theorem 4.3
of [28], A is O∞-absorbing since B and I are. Since B and I are K0-liftable and
K0(B) → K1(I) vanishes, A is also K0-liftable (that is, FK(A) is real-rank-zero-
like) by [7, Proposition 3.5]. So by pure infiniteness of A it therefore follows from
Theorem 4.2 of [21] that A has real rank zero. For all x ∈ X , K1

(
A(x)

)
is free since

B and I are stably isomorphic to Cuntz–Krieger algebras. So by Theorem 8.10
there exists a real-rank-zero Cuntz–Krieger algebra C that is tight over X and has
FKunit
R (A) ∼= FKunit

R (C). By Corollary 8.8, A and C are isomorphic. �

Remark 8.13. Corollary 8.12 holds in fact for all spaces X for which FKunit
R is a

complete invariant for unital KirchbergX-algebrasA where A(x) is in the bootstrap
class and K1

(
A(x)

)
is free for all x ∈ X , see Remark 8.9.

9. Ordered filtered K-theory

The notion of ordered filtered K-theory was introduced by Søren Eilers, Gunnar
Restorff, and Efren Ruiz in [13] to classify certain (not necessarily purely infinite)
graph C∗-algebras of real rank zero. We hope that the results in this section will
be useful for future work in this direction.

Recall that for a C∗-algebra A, a class in K0(A) of the from [p]0 for a projection p
in Mn(A) for some n ∈ N is called positive. The positive cone K0(A)

+ consists of all
positive elements in K0(A). For two C∗-algebras A and B, a group homomorphism
ϕ : K0(A)→ K0(B) is called positive if ϕ(K0(A)

+) ⊆ K0(B)+, and a group isomor-
phism ϕ : K0(A)→ K0(B) is called an order isomorphism if ϕ(K0(A)

+) = K0(B)+.
Note that for a finite topological space X , a locally closed subset Y of X , and an

open subset U of Y , the maps iYU : K0

(
A(U)

)
→ K0

(
A(Y )

)
and rY \UY : K0

(
A(Y )

)
→

K0

(
A(Y \ U)

)
are positive.

Definition 9.1. For C∗-algebras A and B over a finite topological space X , an ST -
module homomorphism ϕ : FKST (A)→ FKST (B) is called positive if the induced
maps FK0

Y (A) → FK0
Y (B) are positive for all Y ∈ LC(X), and an ST -module

isomorphism FKST (A)→ FKST (B) is called an order isomorphism if the induced
isomomorphisms are order isomorphisms. For the reduced versions FKR, FKB, and
FKBR of filtered K-theory, analogous definitions apply.

We are indebted to Mikael Rørdam for the elegant proof of the following lemma.

Lemma 9.2. Let A be a real-rank-zero C∗-algebra and let I and J be (closed, two-
sided) ideals in A satisfying I + J = A. Then any projection p in A can be written
as p = q + q′ with a projection q in I and a projection q′ in J .

Proof. Let p a projection in A be given and write p = a + b with a ∈ I and b ∈ J .
We may assume that a = pap and b = pbp. As A has real rank zero, the hereditary
subalgebra pIp has an approximate unit of projections, so there exists a projection
q in pIp satisfying ‖a − aq‖ < 1. Since q = pqp, q ≤ p and we may define a
projection q′ as q′ = p− q. It remains to prove q′ ∈ J . We have

‖q′ − q′bq′‖ = ‖q′(p− b)q′‖ = ‖q′a(p− q)‖ ≤ ‖q′‖‖a− aq‖ < 1.

Since q′bq′ ∈ J , the image of q′ in the quotient A/J is a projection of norm strictly
less than 1. Since such a projection is 0, we get q′ ∈ J . �
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The following theorem is a version of Corollary 5.19 taking the order into account.

Theorem 9.3. Let X be an EBP space, and let A and B be C∗-algebras over X
of real rank zero. Then for any order isomorphism ϕ : FKB(A)→ FKB(B) there is
a unique order isomorphism Φ: FKST (A)→ FKST (B) satisfying FB(Φ) = ϕ.

Proof. By Corollary 5.19, Φ is an isomorphism if and only if ϕ is. Assume that ϕ is
an order isomorphism, and let us show first for Y ∈ O(X) and then for Y ∈ LC(X)
that Φ0

Y is an order isomorphism.
For U an open subset of X , the following diagram has commuting squares and

its rows are exact by Lemmas 4.7 and 4.8.

⊕

y∈inf(x,x′)

FK0

{̃y}(A)

(
i
{̃x}
{̃y}

−i{̃x}
′

{̃y}

)

//

(ϕ0

{̃y})

��

⊕

x∈U
FK0

{̃x}(A)
(iU{̃x}) //

(ϕ0

{̃x})

��

FK0
U (A)

//

Φ0
U

��

0

⊕

y∈inf(x,x′)

FK0

{̃y}(B)

(
i
{̃x}
{̃y}

−i{̃x}
′

{̃y}

)

//
⊕

x∈U
FK0

{̃x}(B)
(iU{̃x}) // FK0

U (B) // 0

Since (A
(
{̃x})

)
x∈U is a finite collection of ideals in A(U), we see by Lemma 9.2

that the map (iU{̃x}) :
⊕

x∈U
K0(A({̃x}) → K0

(
A(U)

)
surjects

⊕

x∈U
K0(A({̃x})+ onto

K0

(
A(U)

)+. Similarly, the map (iU{̃x}) :
⊕

x∈U
K0(B({̃x}) → K0

(
B(U)

)
surjects

⊕

x∈U
K0(B({̃x})+ onto K0

(
B(U)

)+. A simple diagram chase therefore shows that

Φ0
U is an order isomorphism since the map ϕ0

{̃x}
is an order isomorphism for all

x ∈ U .
For a locally closed subset Y of X , choose open subsets U and V of X satisfying

V ⊆ U and U \ V = Y . Then Φ0
U is an order isomorphism. Consider the following

diagram with exact rows and commuting squares.

FK0
V (A)

iUV //

Φ0
V

��

FK0
U (A)

rYU //

Φ0
U

��

FK0
Y (A) //

Φ0
Y

��

0

FK0
V (B)

iUV // FK0
U (B)

rYU // FK0
Y (B) // 0

In [10, Theorem 3.14], Lawrence G. Brown and Gert K. Pedersen showed that given
an extension I →֒ C ։ C/I of C∗-algebras, the C∗-algebra C has real rank zero if
and only if I and C/I have real rank zero and projections in C/I lift to projections
in C. Thus, since A and therefore Mn⊗A(U) for all n has real rank zero, the map
iYU : K0

(
A(U)

)
→ K0

(
A(Y )

)
surjects K0

(
A(U)

)+ onto K0

(
A(Y )

)+. Similarly, the
map iYU : K0

(
B(U)

)
→ K0

(
B(Y )

)
surjects K0

(
B(U)

)+ onto K0

(
B(Y )

)+. A simple
diagram chase therefore shows that Φ0

Y is an order isomorphism. �

We have the following ordered analogs of Theorem 7.8 and Corollary 7.15.
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Theorem 9.4. Let X be a unique path space, and let A and B be C∗-algebras
over X of real rank zero. Assume that K1

(
A({x})

)
and K1

(
B({x})

)
are free

abelian groups for all non-open points x ∈ X. Then for any order isomorphism
ϕ : FKR(A)→ FKR(B) there exists a (not necessarily unique) order isomorphism
Φ: FKBR(A)→ FKBR(B) that satisfies FBR,R(Φ) = ϕ.

Proof. Since the functor FBR,R only forgets K1-groups, the desired follows imme-
diately from Theorem 7.8. �

Corollary 9.5. Let X be an EBP space, and let A and B be C∗-algebras over X of
real rank zero. Assume that K1

(
A({x})

)
and K1

(
B({x})

)
are free abelian groups

for all x ∈ X. Then for any order isomorphism ϕ : FKR(A) → FKR(B) there
exists a order isomorphism Φ: FKST (A)→ FKST (B) that satisfies FR(Φ) = ϕ.

Proof. Combine the previous two theorems. �

10. Corollaries for accordion spaces

We summarize our results in the most satisfying case of accordion spaces. By
combining Theorems 3.11, 5.17, 6.12 and Corollaries 6.9, 7.14 in the stable case and
Proposition 8.5, Corollaries 6.9, 8.7, 8.8, and Theorem 8.10 in the unital case, we
obtain the following characterization of purely infinite graph C∗-algebras, and of
purely infinite Cuntz–Krieger algebras. In the first list, we use that the stabilization
of a graph C∗-algebra is again a graph C∗-algebra by [1, Proposition 9.8(3)].

Corollary 10.1. Let X be an accordion space. The different versions of filtered
K-theory introduced in this article induce bijections between the sets of isomorphism
classes of objects in the following three lists, respectively.

List 1:
• tight, stable, purely infinite graph C∗-algebras over X,
• stable Kirchberg X-algebras A of real rank zero with all simple subquotients

in the bootstrap class satisfying that K1

(
A({x})

)
is free for all x ∈ X,

• countable, exact, real-rank-zero-like NT -modules M with M({x}, 1) free for
all x ∈ X,
• countable, exact B-modules M with M(x1) free for all x ∈ X,
• countable, exact R-modules M with M(x1) free for all x ∈ X.

List 2:
• tight, unital, purely infinite graph C∗-algebras over X,
• unital Kirchberg X-algebras A of real rank zero, with all simple subquotients

in the bootstrap class such that, for all x ∈ X, the group K1

(
A({x})

)
is free

and
rankK1

(
A({x})

)
≤ rankK0

(
A({x})

)
<∞,

• countable, exact, real-rank-zero-like pointed NT -modules M such that, for
all x ∈ X, the group M({x}, 1) is free and

rank
(
M({x}, 1)

)
≤ rank

(
M({x}, 0)

)
<∞,

• countable, exact pointed B-modules M such that, for all x ∈ X, the group
M(x1) is free and

rank
(
M(x1)

)
≤ rank

(
coker

(⊕

y→x

M(ỹ0)→M(x̃0)
))

<∞,
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• isomorphism classes of countable, exact pointed R-modules M such that,
for all x ∈ X, the group M(x1) is free and

rank
(
M(x1)

)
≤ rank

(
coker

(
M(∂̃x0)→M(x̃0)

))
<∞.

List 3:
• tight, purely infinite Cuntz–Krieger algebras over X,
• unital Kirchberg X-algebras A of real rank zero, with all simple subquotients

in the bootstrap class such that, for all x ∈ X, the group K1

(
A({x})

)
is free

and
rankK1

(
A({x})

)
= rankK0

(
A({x})

)
<∞,

• countable, exact, real-rank-zero-like pointed NT -modules M such that, for
all x ∈ X, the group M({x}, 1) is free and

rank
(
M({x}, 1)

)
= rank

(
M({x}, 0)

)
<∞,

• countable, exact pointed B-modules M such that, for all x ∈ X, the group
M(x1) is free and

rank
(
M(x1)

)
= rank

(
coker

(⊕

y→x

M(ỹ0)→M(x̃0)
))

<∞,

• countable, exact pointed R-modules M such that, for all x ∈ X, the group
M(x1) is free and

rank
(
M(x1)

)
= rank

(
coker

(
M(∂̃x0)→M(x̃0)

))
<∞.
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KIRCHBERG X-ALGEBRAS WITH REAL RANK ZERO
AND INTERMEDIATE CANCELLATION

RASMUS BENTMANN

Abstract. A universal coefficient theorem is proved for C∗-algebras over an
arbitrary finite T0-space X which have vanishing boundary maps. Under boot-
strap assumptions, this leads to a complete classification of unital/stable real-
rank-zero Kirchberg X-algebras with intermediate cancellation. Range results
are obtained for (unital) purely infinite graph C∗-algebras with intermediate
cancellation and Cuntz–Krieger algebras with intermediate cancellation. Per-
manence results for extensions of these classes follow.

1. Introduction

Since Eberhard Kirchberg’s groundbreaking classification theorem for non-simple
O∞-absorbing nuclear C∗-algebras [16], much effort has gone into the task of decid-
ing when two separable C∗-algebras over a topological space X are KK(X)-equiv-
alent. This is a hard task even when X is a finite space. The usual way to go
is to prove equivariant versions of the universal coefficient theorem of Rosenberg
and Schochet [27]. For some spaces, such have been established in [3, 4, 7, 21, 24].
In [5], a complete classification in purely algebraic terms of objects in the equivari-
ant bootstrap class B(X) ⊂ KK(X) up to KK(X)-equivalence is given under the
assumption that X is a so-called unique path space. Nevertheless, it seems fair to
state that, for most finite spaces, no classification is available at the present time.

In this note we establish a universal coefficient theorem computing the groups
KK∗(X ;A,B) which holds for all finite T0-spaces X—but only under certain K-the-
oretical assumptions on A. More precisely, we have to ask that the boundary maps
in all six-term exact sequences arising from inclusions of distinguished ideals vanish.
If A is separable, purely infinite and tight over X , this condition is equivalent to
A having real rank zero and the following non-stable K-theory property suggested
to us by Mikael Rørdam: if p and q are projections in A which generate the same
ideal and which give rise to the same element in K0(A), then p and q are Murray-
von Neumann equivalent. This property has been considered earlier by Lawrence
G. Brown [9]. Since the property is stronger than Brown-Pedersen’s weak cancella-
tion property and weaker than Rieffel’s strong cancellation property (compare [11]),
it is referred to as intermediate cancellation.

The invariant appearing in our universal coefficient theorem, denoted by XK,
is relatively simple: for a point x ∈ X , let Ux denote its minimal open neigh-
bourhood. Then XK(A) consists of the collection {K∗

(
A(Ux)

)
| x ∈ X} together

with the natural maps induced by the ideal inclusions A(Ux) →֒ A(Uy) for Ux ⊆ Uy.
Hence XK(A) can be regarded as a representation of the partially ordered setX with
values in countable Z/2-graded Abelian groups. Equivalently, we may view XK(A)
as a countable Z/2-graded module over the integral incidence algebra ZX of X .
The fact that the ring ZX itself is ungraded allows us to show that the universal
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coefficient sequence for KK∗(X ;A,B) splits if both A and B have vanishing bound-
ary maps and that an object in the equivariant bootstrap class B(X) with vanishing
boundary maps is KK(X)-equivalent to a commutative C∗-algebra over X .

A Kirchberg X-algebra is a nuclear purely infinite separable tight C∗-algebra
over X . Combining our universal coefficient theorem with Kirchberg’s theorem, we
find that the invariant XK strongly classifies stable real-rank-zero KirchbergX-alge-
bras with intermediate cancellation and simple subquotients in the bootstrap class
up to ∗-isomorphism over X .

We also describe the range of the invariant XK on this class of C∗-algebras
over X , but only in the case that X is a unique path space. To this aim, we use
a second invariant denoted by OK. It is defined similarly to XK but it contains
the K-groups of all distinguished ideals. The target category of OK is the category
of precosheaves on the topology of X with values in countable Z/2-graded Abelian
groups. It turns out that the range of OK on the class of stable real-rank-zero
Kirchberg X-algebras with intermediate cancellation and simple subquotients in
the bootstrap class consists precisely of those precosheaves which satisfy a certain
cosheaf condition and have injective structure maps; following Bredon [8], we call
these flabby cosheaves.

Appealing to the so-called meta theorem [14, Theorem 3.3], we can achieve strong
classification also in the unital case. The invariant in this case, denoted by OK+,
consists of the functor OK together with the unit class in the K0-group of the whole
C∗-algebra.

We apply our results to the classification programme of (purely infinite) graph
C∗-algebras. Here real rank zero comes for free, as do separability, nuclearity and
bootstrap assumptions. We determine the range of the invariant OK on the class of
purely infinite tight graph C∗-algebras over X with intermediate cancellation. We
also determine the range of the invariant OK+ on the class of unital purely infinite
tight graph C∗-algebras over X with intermediate cancellation and on the class of
tight Cuntz–Krieger algebras over X with intermediate cancellation. Here we use a
result from [2] that allows to construct graph C∗-algebras with prescribed K-theory
data.

As an application, we show that the class of Cuntz–Krieger algebras with inter-
mediate cancellation is, in a suitable sense, stable under extensions (see Theorem 8.4
for the precise statement). A similar result is obtained in [2, Corollary 9.15], but
under different assumptions: in [2] we make assumptions on the primitive ideal
space to make the classification machinery work; in this article we use intermediate
cancellation to achieve that. Similar permanence results hold for (unital) purely
infinite graph C∗-algebras with intermediate cancellation.

2. Preliminaries

Throughout, let X be an arbitrary finite T0-space. A subset of X is locally
closed if it is the difference of two open subsets of X . Every point x ∈ X possesses
a smallest open neighbourhood denoted by Ux. The specialization preorder on X
is the partial order defined such that x ≤ y if and only if Uy ⊆ Ux. For two points
x, y ∈ X , there is an arrow from y to x in the Hasse diagram associated to the
specialization preorder on X if and only if y is a closed point in Ux \ {x}; in this
case we write y → x. We say that X is a unique path space if every pair of points
in X is connected by at most one directed path in the Hasse diagram associated to
the specialization preorder on X .

A C∗-algebra over X is a pair (A,ψ) consisting of a C∗-algebra A and a con-
tinuous map ψ : Prim(A) → X . The pair (A,ψ) is called tight if the map ψ is
a homeomorphism. We usually omit the map ψ in order to simplify notation.
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There is a lattice isomorphism between the open subsets in Prim(A) and the ideals
in A. Hence every open subset U of X gives rise to a distinguished ideal A(U)
in A. A ∗-homomorphism over X is a ∗-homomorphism mapping distinguished
ideals into corresponding distinguished ideals. We obtain the category C∗alg(X) of
C∗-algebras over X and ∗-homomorphisms over X . Any locally closed subset Y
of X determines a distinguished subquotient A(Y ) of A. There is a natural way to
regard the subquotient A(Y ) as a C∗-algebra over Y . For a point x ∈ X , we let
ixC denote the C∗-algebra over X given by the C∗-algebra of complex numbers C
with the map Prim(C) → X taking the unique primitive ideal in C to x. For more
details on C∗-algebras over topological spaces, see [22].

Eberhard Kirchberg developed a version of Kasparov’s KK-theory for separable
C∗-algebras over X in [16] denoted by KK(X). In [22], Ralf Meyer and Ryszard
Nest establish basic properties of the resulting category KK(X), describe a natural
triangulated category structure on it, and give an appropriate definition of the
equivariant bootstrap class B(X) ⊂ KK(X): it is the smallest triangulated subcat-
egory of KK(X) that contains the object set {ixC | x ∈ X} and is closed under
countable direct sums. The usual bootstrap class in KK of Rosenberg and Schochet
is denoted by B. The translation functor on KK(X) is given by suspension and
denoted by Σ. The category KK(X) is tensored over KK; in particular, we can
talk about the stabilization A ⊗ K of an object A in KK(X). Here K denotes the
C∗-algebra of compact operators on some countably infinite-dimensional Hilbert
space.

For an object M in a Z/2-graded category, we write M0 for the even part, M1 for
the odd part and M [1] for the shifted object. If N is an object in the ungraded cat-
egory, we let N [i] denote the corresponding graded object concentrated in degree i.
We write C ∈∈ C to denote that C is an object in a category C.

3. Vanishing boundary maps

In this section, we introduce two K-theoretical conditions for C∗-algebras over X
that are sufficient, as we shall see later, to obtain a universal coefficient theorem.
We provide alternative formulations of these conditions for separable purely infinite
tight C∗-algebras over X .

Given a C∗-algebra A over X and open subsets U ⊆ V ⊆ X , we have a six-term
exact sequence

(3.1)

K1
(
A(U)

)
K1

(
A(V )

)
K1

(
A(V )/A(U)

)

K0
(
A(V )/A(U)

)
K0

(
A(V )

)
K0

(
A(U)

)
.

∂1∂0

Definition 3.2. Let A be a C∗-algebra over X . We say that A has vanishing index
maps if the map ∂1 : K1

(
A(V )/A(U)

)
→ K0

(
A(U)

)
vanishes for all open subsets

U ⊆ V ⊆ X . Similarly, we say that A has vanishing exponential maps if the
map ∂0 : K0

(
A(V )/A(U)

)
→ K1

(
A(U)

)
vanishes for all open subsets U ⊆ V ⊆ X .

We say that A has vanishing boundary maps if it has vanishing index maps and
vanishing exponential maps.

Remarks 3.3. If A is a tight C∗-algebra over X then A has vanishing exponential
maps if and only if the underlying C∗-algebra of A is K0-liftable in the sense of
[26, Definition 3.1].

In the definition above, we could replace the subset V ⊆ X with X , but to us
the definition seems more natural as it stands.
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Another, a priori stronger condition consists in the vanishing of all boundary
maps arising from inclusions of distinguished subquotients. The following lemma
shows that this assumption is in fact equivalent to the one in our definition.

Lemma 3.4. Let Y ⊆ X be locally closed. Let U ⊆ Y be relatively open. Write
C = Y \ U . Let A be a C∗-algebra over X with vanishing index/exponential maps.
Then the index/exponential map corresponding to the extension A(U) ֌ A(Y ) ։
A(C) vanishes, too.

Proof. Write Y = V \ W as the difference of two open subsets W ⊆ V ⊆ X .
Consider the morphism of extensions of distinguished subquotients

A(V \ C) A(V ) A(C)

A(U) A(Y ) A(C).

The first extension has vanishing index/exponential map by assumption. By nat-
urality, the same follows for the second extension. �
Proposition 3.5. Let U ⊆ X be an open subset and write C = X \U . Let A be a
C∗-algebra over X. Then A has vanishing index maps if and only if the following
hold:

• A(U) ∈∈ C∗alg(U) has vanishing index maps,
• A(C) ∈∈ C∗alg(C) has vanishing index maps,
• the index map K1

(
A(C)

)
→ K0

(
A(U)

)
vanishes.

An analogous statement holds for vanishing exponential maps.

Proof. We will only prove the statement for index maps, the case of exponential
maps being entirely analogous. By the previous lemma, the three conditions are
necessary. To show that they are also sufficient, we consider an open subset V ⊆ X .
It suffices to check that the map K0

(
A(V )

)
→ K0

(
A(X)

)
is injective. We consider

the morphism of extensions of distinguished subquotients

A(U ∩ V ) A(U) A
(
U \ (U ∩ V )

)

A(V ) A(U ∪ V ) A
(
(U \ (U ∩ V )

)
.

By the first condition, the upper extension has vanishing index map. By naturality,
so has the second. Hence the map K0

(
A(V )

)
→ K0

(
A(U ∪V )

)
is injective. By the

second and third condition, the composition
K1

(
A(X)

)
→ K1

(
A(C)

)
→ K1

(
A(X \ (U ∪ V ))

)

is surjective. By the six-term exact sequence, the map K0
(
A(U ∪V )

)
→ K0

(
A(X)

)

is thus injective. The result follows. �
Corollary 3.6. Let A be a C∗-algebra over X. Then A has vanishing index/expo-
nential maps if and only if the index/exponential map of the extension

A(Ux \ {x}) ֌ A(Ux) ։ A({x})
vanishes for every point x ∈ X.

Proof. Again, we will only prove the statement for index maps. The condition is
clearly necessary. In order to prove sufficiency, we choose a filtration

∅ = V0 ( V1 ( · · · ( Vℓ = X,
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of X by open subsets Vj such that Vj \Vj−1 = {xj} is a singleton for all j = 1, . . . , ℓ.
By naturality of the index map, the condition implies that the index map of the
extension

A(Vj−1) ֌ A(Vj) ։ A({xj})

vanishes for all j = 1, . . . , ℓ. A repeated application of Proposition 3.5 gives the
desired result, because a C∗-algebra over the one-point space automatically has
vanishing index maps. �

Now we turn to the description of separable purely infinite tight C∗-algebras
over X with vanishing boundary maps.

Proposition 3.7. A separable purely infinite tight C∗-algebra over X has vanishing
exponential maps if and only if its underlying C∗-algebra has real rank zero.

Proof. This is a special case of [26, Theorem 4.2] because X is a quasi-compact
space; see also [26, Example 4.8]. �

The following definition has been suggested to us by Mikael Rørdam; it has been
considered earlier by Lawrence G. Brown [9].

Definition 3.8. A C∗-algebra A has intermediate cancellation if the following
holds: if p and q are projections in A which generate the same ideal and which give
rise to the same element in K0(A), then p ∼ q (that is, the projections p and q are
Murray-von Neumann equivalent).

Lemma 3.9. Let A be a separable purely infinite C∗-algebra with finite ideal lattice.
Then

K0(A) = {[p] | p is a full projection in A}.
Moreover, if p and q are full projections in A with [p] = [q] in K0(A), then p ∼ q.

Proof. It follows from [17, Theorem 4.16], that every non-zero projection in A is
properly infinite. The lemma thus follows from [25, Proposition 4.1.4] because A
contains a full projection by [26, Proposition 2.7]. �

Proposition 3.10. A separable purely infinite tight C∗-algebra over X has vanish-
ing index maps if and only if its underlying C∗-algebra has intermediate cancella-
tion.

Proof. By [17, Proposition 4.3], every ideal in A is purely infinite. The proposition
follows from applying Lemma 3.9 to every ideal of A. �

Corollary 3.11. Let I ֌ A։ B be an extension of C∗-algebras. Assume that A
is separable, purely infinite and has finite ideal lattice. Then A has intermediate
cancellation if and only if the following hold:

• I has intermediate cancellation,
• B has intermediate cancellation,
• the index map K1(B) → K0(I) vanishes.

Proof. Combine Propositions 3.5 and 3.10. �

Remark 3.12. The analogue of Corollary 3.11 with real rank zero replacing inter-
mediate cancellation and the exponential map K0(B) → K1(I) replacing the index
map K1(B) → K0(I) is well-known and holds in much greater generality; see [10,19].
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4. Representations and cosheaves

In this section, we introduce two K-theoretical invariants for C∗-algebras over X
that are well-adapted to algebras with vanishing boundary maps. First we define
their target categories.

We associate the following two partially ordered sets to X :
• the set X itself, equipped with the specialization preorder;
• the collection O(X) of open subsets of X , partially ordered by inclusion.

The map Xop → O(X), x 7→ Ux is an embedding of partially ordered sets.
Here Xop denotes the set X with reversed partial ordering. For the following defin-
ition, recall that every partially ordered set can be viewed as a category such that
Hom(x, y) has one element, denoted by iyx, if x ≤ y and zero elements otherwise.

Definition 4.1. Let AbZ/2
c be the category of countable Z/2-graded Abelian groups.

A representation of X is a covariant functor Xop → AbZ/2
c . A precosheaf on O(X)

is a covariant functor O(X) → AbZ/2
c . A precosheaf M : O(X) → AbZ/2

c is a cosheaf
if, for every U ∈ O(X) and every open covering {Uj}j∈J of U , the sequence

⊕

j,k∈J

M(Uj ∩ Uk)

(
M(i

Uj
Uj ∩Uk

)−M(i
Uk
Uj ∩Uk

)
)

−−−−−−−−−−−−−−−−−−→
⊕

j∈J

M(Uj)
(

M(iU
Uj

)
)

−−−−−−→ M(U) −→ 0

is exact. Letting morphisms be natural transformations of functors, we define
the category Rep(X) of representations of X , the category PreCoSh

(
O(X)

)
of

precosheaves over O(X) and the category CoSh
(
O(X)

)
of cosheaves over O(X).

The notion of cosheaf was introduced by Bredon [8]. Just like sheaves, cosheaves
are determined by their behaviour on a basis. This is made precise in the following
definition and lemma.

Definition 4.2. Let Res : CoSh
(
O(X)

)
→ Rep(X) be the restriction functor given

by
Res(M)(x) = M(Ux), Res(M)(iyx) = M

(
i
Uy

Ux

)
.

Let Colim: Rep(X) → CoSh
(
O(X)

)
be the functor that extends a representa-

tion M of X to a cosheaf on O(X) in a way such that
(
Colim(M)

)
(U) is given by

the cokernel of the map
⊕

x,y∈U

⊕

z∈Ux∩Uy

M(z)
(

M(ix
z )−M(iy

z )
)

−−−−−−−−−−→
⊕

x∈U

M(x)

and Colim(M)(iVU ) is induced by the obvious inclusions
⊕

x∈U M(x) ⊆ ⊕
x∈V M(x)

and
⊕

x,y∈U

⊕
z∈Ux∩Uy

M(z) ⊆ ⊕
x,y∈V

⊕
z∈Ux∩Uy

M(z). We call Colim(M) the
associated cosheaf of the representation M .

Lemma 4.3. The functor Colim indeed takes values in cosheaves on O(X). The
functors Res and Colim are mutually inverse equivalences of categories.

Proof. The corresponding statements for sheaves are well-known: see, for instance,
[29, Lemmas 009N and 009O]. Our dual version for cosheaves is a straight-forward
analogue. Notice that {Ux | x ∈ X} is a basis for the topology on X with the
special property that every covering of an open set in it must contain this open set.
Hence every precosheaf on this basis is already a cosheaf. �

Definition 4.4. The integral incidence algebra ZX of X is the free Abelian group
generated by elements iyx for all pairs (x, y) with y ≤ x equipped with the unique
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bilinear multiplication such that iwz iyx equals iwx if y = z and otherwise is zero. By
Mod(ZX), we denote the category of countable Z/2-graded left-modules over ZX .

The categories Rep(X) and Mod(ZX) are canonically equivalent; we will identify
them tacitly. For every point x ∈ X , we have a projective module P x := ZX · ixx in
Mod(ZX) associated to the idempotent element ixx. Its entries are given by

(P x)(y) =
{
Z[0] · iyx if y ≤ x

0 otherwise
and the map (P x)(izy) for y ≥ z is an isomorphism if x ≥ y and zero otherwise.

Definition 4.5 ([8, §1]). A cosheaf on O(X) is called flabby if all its structure
maps are injective.

The following is our key-lemma towards the universal coefficient theorem.

Lemma 4.6. Let M be a representation of X such that the associated cosheaf
Colim(M) on O(X) is flabby. Then M has a projective resolution of length 1.

Proof. As before, we may choose a filtration
∅ = V0 ( V1 ( · · · ( Vℓ = X,

of X by open subsets Vj such that Vj \Vj−1 = {xj} is a singleton for all j = 1, . . . , ℓ.
For V ∈ O(X) we define a representation PV M of X by

(PV M)(x) = Colim(M)(V ∩ Ux).
Since Colim(M) is flabby, we obtain a filtration

0 = PV0M ⊆ PV1M ⊆ · · · ⊆ PVℓ
M = M.

It follows from the so-called Horseshoe Lemma that an extension of modules with
projective resolutions of length 1 also has a projective resolution of length 1. Hence
it remains to show that the subquotients Qj := PVjM/PVj−1M in our filtration
have resolutions of length 1.

Let us describe the modules Qj explicitly. If xj 6∈ Ux, then we have
(PVjM)(x) = Colim(M)(Vj ∩ Ux) = Colim(M)(Vj−1 ∩ Ux) = (PVj−1M)(x),

so that Qj(x) = 0. Now we assume xj ∈ Ux. We fix y ∈ X with x ∈ Uy and
abbreviate C := Colim(M). Since C is a cosheaf, we have a pushout diagram

C(Vj−1 ∩ Ux) //

��

C(Vj ∩ Ux)

��
C(Vj−1 ∩ Uy) // C(Vj ∩ Uy).

Since pushouts preserve cokernels, we obtain that the map Qj(x) → Qj(y) is an
isomorphism. In conclusion, we may identify Qj ∼= P xj ⊗ Gj , where Gj is some
countable Z/2-graded Abelian group. A projective resolution of length 1 for Qj

can thus be obtained by tensoring the projective module P xj with a resolution
of Gj . �

Now we turn to the definition of our K-theoretical invariants.

Definition 4.7. We define a functor XK: KK(X) → Rep(X) ∼= Mod(ZX) as
follows: set

XK(A)(x) = K∗
(
A(Ux)

)

and let XK(A)(iyx) be the map induced by the ideal inclusion A(Ux) →֒ A(Uy).
Similarly, we define OK: KK(X) → PreCoSh

(
O(X)

)
by OK(A)(U) = K∗

(
A(U)

)

and let the structure maps be the homomorphisms induced by the ideal inclusions.
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We have an identity of functors Res ◦ OK = XK.

Lemma 4.8. A C∗-algebra A over X has vanishing boundary maps if and only if
OK(A) is a flabby cosheaf.

Proof. Suppose that A has vanishing boundary maps. By an inductive argument
as in [8, Proposition 1.3], it suffices to verify the cosheaf condition for all coverings
consisting of two open sets. This case reduces to the Mayer-Vietoris sequence. The
six-term exact sequence (3.1) shows that OK(A) is flabby.

Conversely, if OK(A) is a flabby cosheaf, the six-term exact sequence (3.1) shows
that A has vanishing boundary maps. �

It follows from Lemma 4.3 that, on the full subcategory of C∗-algebras over X
with vanishing boundary maps, we have a natural isomorphism Colim ◦ XK ∼= OK.

Remark 4.9. Instead of working with K-theory groups of distinguished ideals, we
could define similar invariants in terms of K-theory groups of distinguished quo-
tients. This would not make a difference for the universal coefficient theorem in
the next section. However, our choice of definition interacts more nicely with the
invariant FKR that we will use in §7.

For reference in future work, we record the following lemma.

Lemma 4.10. Let A be a C∗-algebra over X with vanishing boundary maps such
that the Abelian group K∗

(
A(Y )

)
is free for every locally closed subset Y ⊆ X.

Then XK(A) is projective.

Proof. By Lemma 4.8, the cosheaf OK(A) is flabby. We follow the proof of Lemma
4.6. Our freeness assumption implies that the Abelian groups G coming up in the
proof are free: the six-term exact sequence shows that

Gj = K∗
(
A(Ux)

)
/K∗

(
A(Ux \ {x})

) ∼= K∗
(
A({x})

)
.

Hence XK(A) is an iterated extension of projective modules and thus itself project-
ive. �

5. A universal coefficient theorem

In this section, we establish a universal coefficient theorem for C∗-algebras overX
with vanishing boundary maps. We discuss the splitting of the resulting short
exact sequence and the realization of objects in the bootstrap class as commutative
algebras.

We describe how the invariant XK fits into the framework for homological algebra
in triangulated categories developed by Meyer and Nest in [20]. The set-up is given
by the triangulated category KK(X) and the stable homological ideal I := ker(XK),
the kernel of XK on morphisms. Using the adjointness relation

(5.1) KK∗(X ; ixC, A) ∼= KK∗
(
C, A(Ux)

) ∼= K∗
(
A(Ux)

)

from [22, Proposition 3.13] and machinery from [20], one can easily show the fol-
lowing (a slightly more detailed account for the particular example at hand is given
in [5, §4]):

• the ideal I has enough projective objects,
• the functor XK is the universal I-exact stable homological functor,
• A belongs to B(X) if and only if KK∗(X ;A,B) = 0 for all I-contractible B.

These facts allow us to apply the abstract universal coefficient theorem [20, The-
orem 66] to our concrete setting. We abbreviate A := Mod(ZX).
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Theorem 5.2. Let A and B be separable C∗-algebras over X. Assume that A
belongs to B(X) and has vanishing boundary maps. Then there is a natural short
exact sequence of Z/2-graded Abelian groups
(5.3) Ext1

A
(
XK(A)[1],XK(B)

)
֌ KK∗(X ;A,B) ։ HomA

(
XK(A),XK(B)

)
.

Proof. By [20, Theorem 66], we only have to check that XK(A) has a projective
resolution of length 1. This follows from Lemmas 4.8 and 4.6. �
Corollary 5.4. Let A and B be separable C∗-algebras over X. Assume that A
and B belong to B(X) and that A has vanishing boundary maps. Then every iso-
morphism XK(A) ∼= XK(B) in A can be lifted to a KK(X)-equivalence.
Proof. Since A has vanishing boundary maps, the module XK(A) ∼= XK(B) has a
projective resolution of length 1 by Lemmas 4.8 and 4.6. Hence the result follows
from the universal coefficient theorem [20, Theorem 66] by a standard argument;
see, for instance, [6, Proposition 23.10.1] or [21, Corollary 4.6]. �
Proposition 5.5. Let A and B be separable C∗-algebras over X. Assume that A
belongs to B(X) and that A and B have vanishing boundary maps. Then the short
exact sequence (5.3) splits (unnaturally).
Proof. For this result, it is crucial that the ring ZX itself is ungraded. We can thus
imitate the proof from [6, §23.11]: we have direct sum decompositions XK(A) ∼=
M0 ⊕M1[1] and XK(B) ∼= N0 ⊕N1[1] where Mi and Ni are ungraded ZX-modules
of projective dimension at most 1. By a simple argument based on the universality
of the functor XK (compare [21, Theorem 4.8]), we can find objects Ai and Bi

in B(X) such that XK(Ai) ∼= Mi[0] and XK(Bi) ∼= Ni[0] for i ∈ {0, 1}. By Corol-
lary 5.4, there is a (non-canonical) KK(X)-equivalence A ∼= A1 ⊕ ΣA2. Using the
universal coefficient theorem, we can find an element f ∈ KK0(X ;B,B1 ⊕ ΣB2)
inducing an isomorphism XK(B) ∼= XK(B1 ⊕ ΣB2). By the definition of XK,
the element f induces isomorphisms KK(X ; ixC, B) ∼= KK(X ; ixC, B1 ⊕ ΣB2) for
all x ∈ X . The usual bootstrap argument shows that f induces isomorphisms
KK(X ;D,B) ∼= KK(X ;D,B1 ⊕ ΣB2) for every object D in B(X). We may thus
replace A by A1 ⊕ ΣA2 and B by B1 ⊕ ΣB2. Hence the sequence (5.3) decomposes
as a direct sum of four sequences in which, for degree reasons, either the left-hand
or the right-hand term vanishes, making the construction of a splitting trivial. �
Proposition 5.6. Let A be a separable C∗-algebra over X with vanishing boundary
maps. Then there is a commutative C∗-algebra C over X such that XK(A) ∼=
XK(C). The spectrum of C may be chosen to be at most three-dimensional. If
XK(A) is finitely generated, the spectrum of C may be chosen to be a finite complex
of dimension at most three.
Proof. It is straight-forward to generalize the argument from [6, Corollary 23.10.3].
Using that modules split into even and odd part, a suspension argument reduces
to the case that XK(A) vanishes in degree zero. Choose a projective resolution

0 → P1
f−→ P0 → XK(A) → 0

such that Pi =
⊕

x∈X

⊕
N(P x ⊕P x[1]). Setting Di =

⊕
x∈X

⊕
N
(
ixC⊗C(S1)

)
, we

have Pi
∼= XK(Di). Then there is a ∗-homomorphism ϕ : D1 → D0 over X inducing

the map f . The mapping cone of ϕ has the desired properties. In the finitely
generated case, it clearly suffices to use finite direct sums instead of countable
ones. �
Corollary 5.7. Let A be a separable C∗-algebra over X with vanishing boundary
maps. Then A belongs to the bootstrap class B(X) if and only if A is KK(X)-equiv-
alent to a commutative C∗-algebra over X.
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Proof. If A is a commutative C∗-algebra over X then it is nuclear and the subquo-
tient A({x}) belongs to the bootstrap class B for every x ∈ X . Hence A belongs
to B(X) by [22, Corollary 4.13]. Since B(X) is closed under KK(X)-equivalence,
one implication follows. The converse implication follows from Proposition 5.6 and
Corollary 5.4. �

Remark 5.8. The stable homological functor OK does not fit into this framework
as nicely: if the space X is sufficiently complicated then OK is not universal for
its kernel on morphisms because it has “hidden symmetries.” More precisely, there
are natural transformations among the K-theoretical functors comprised by the
invariant OK, the action of which is not part of the definition of OK (compare
[21, §2.1]).

6. Classification of certain Kirchberg X-algebras

In this section, we use our universal coefficient theorem to obtain classification
results for Kirchberg X-algebras with vanishing boundary maps.

Definition 6.1. A C∗-algebra over X is a Kirchberg X-algebra if it is tight, nuclear,
purely infinite and separable.

Theorem 6.2. Let A and B be stable real-rank-zero Kirchberg X-algebras with
intermediate cancellation and simple subquotients in the bootstrap class B. Then
every isomorphism XK(A) ∼= XK(B) can be lifted to a ∗-isomorphism over X.
Consequently, every isomorphism OK(A) ∼= OK(B) can be lifted to a ∗-isomor-
phism over X.

Proof. By Propositions 3.7 and 3.10, the algebrasA and B have vanishing boundary
maps. Hence the first claim follows from Corollary 5.4 together with Kirchberg’s
classification theorem [16]. Recall that a nuclear C∗-algebra belongs to B(X) if
and only if the fibre A({x}) belongs to B for every x ∈ X by [22, Corollary 4.13].
Notice also that stable nuclear purely infinite C∗-algebras with real rank zero are
O∞-absorbing by [18, Corollary 9.4]. The second claim follows from the equivalence
in Lemma 4.3. �

Next, we establish a range result for the invariant OK on stable real-rank-zero
Kirchberg X-algebra with intermediate cancellation. For this, we need to assume
that X is a unique path space.

Theorem 6.3. Assume that X is a unique path space. Let M be a flabby cosheaf
on O(X). Then there is a stable real-rank-zero Kirchberg X-algebra with inter-
mediate cancellation and simple subquotients in the bootstrap class B such that
OK(A) ∼= M .

Proof. Since M is a flabby cosheaf, its restriction Res(M) ∈∈ Rep(X) has a projec-
tive resolution of length 1 by Lemma 4.6. A simple argument as in [21, Theorem 4.8]
shows that there is a separable C∗-algebra A over X in the bootstrap class B(X)
with XK(A) ∼= Res(M). By [22, Corollary 5.5], we may assume that A is a stable
Kirchberg X-algebra with simple subquotients in B.

Since X is a unique path space, the set Ux \ {x} is the disjoint union of the
sets Uy, where y is a closed point in Ux \ {x}. Hence the map K∗

(
A(Ux \ {x})

)
→

K∗
(
A(Ux)

)
identifies with the map M(Ux \ {x}) → M(Ux) because K-theory pre-

serves direct sums and cosheaves take disjoint unions to direct sums. Since M is
flabby by assumption, Corollary 3.6 therefore shows that A has vanishing boundary
maps. Thus A has real rank zero and intermediate cancellation by Propositions 3.7
and 3.10 and we have OK(A) ∼= Colim

(
XK(A)

) ∼= Colim
(
Res(M)

) ∼= M . �
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Corollary 6.4. Assume that X is a unique path space. The functors OK and XK
implement bijections of isomorphism classes of

• stable real-rank-zero Kirchberg X-algebras with intermediate cancellation
and simple subquotients in the bootstrap class B,

• flabby cosheaves on O(X),
• representations of X whose associated cosheaf is flabby.

Proof. Denote the three sets above by (Kirchberg), (Cosheaves) and (Representa-
tions), respectively. We have maps induced by functors as indicated in the following
commutative diagram.

(Kirchberg)OK

��

XK

  
(Cosheaves)

Res 22
(Representations)Colimrr

We observed in §4 that the functors Res and Colim induce mutually inverse bijec-
tions. By Theorem 6.2, the functor XK induces an injective map. By Theorem 6.3,
the functor OK induces a surjective map. Hence all four maps are bijective. �

Now we enhance our invariant in order to obtain a classification result in the
unital case.

Definition 6.5. A pointed cosheaf on O(X) is a cosheaf M on O(X) together
with a distinguished element m ∈ M(X)0. A morphism of pointed cosheaves is
a morphism of cosheaves preserving the distinguished element. The category of
pointed cosheaves on O(X) is denoted by CoSh

(
O(X)

)+.

Definition 6.6. Let KK(X)+ denote the full subcategory of KK(X) consisting of
all unital separable C∗-algebras over X . We define a functor OK+ : KK(X)+ →
CoSh

(
O(X)

)+ by
OK+(A) =

(
OK(A), [1A]

)
.

Corollary 6.7. Let A and B be unital real-rank-zero Kirchberg X-algebras with
intermediate cancellation and simple subquotients in the bootstrap class B. Then
every isomorphism OK+(A) ∼= OK+(B) can be lifted to a ∗-isomorphism over X.

Proof. This is a consequence of the strong stable classification result in Theorem 6.2
using the so-called meta theorem [14, Theorem 3.3]. �

7. Cosheaves arising as invariants of graph C∗-algebras

In this section, we provide range results for the invariants OK and OK+ on
purely infinite tight graph C∗-algebra over X with intermediate cancellation. For
definitions and general facts concerning graph C∗-algebras we refer to [23]. The
Cuntz–Krieger algebras introduced in [12, 13] are in particular unital graph C∗-al-
gebras; when using the word Cuntz–Krieger algebra we implicitly assume that the
underlying square matrix satisfies Cuntz’s condition (II), which ensures that the
algebra is purely infinite.

Definition 7.1. A tight graph C∗-algebra over X is a graph C∗-algebra C∗(E)
equipped with a homeomorphism Prim

(
C∗(E)

)
→ X . A tight Cuntz–Krieger al-

gebra over X is defined analogously.

We point out that a purely infinite tight graph C∗-algebra over X is in particular
a real-rank-zero Kirchberg X-algebras with simple subquotients in the bootstrap
class B (see [23, Remark 4.3] and [15, §2]). Hence the classification results in
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the previous section apply to purely infinite tight graph C∗-algebras over X with
intermediate cancellation. We obtain the following corollary.

Corollary 7.2. Let A and B be purely infinite tight graph C∗-algebras over X with
intermediate cancellation. If OK(A) ∼= OK(B), then A is stably isomorphic to B.
If A and B are unital and OK+(A) ∼= OK+(B), then A is isomorphic to B.

It is now natural to ask which (pointed) cosheaves arise as the invariant of a
(unital) purely infinite tight graph C∗-algebra over X with intermediate cancella-
tion.

Definition 7.3. A flabby cosheaf M on O(X) is said to have free quotients in odd
degree if the quotient M(V )1/M(U)1 is free for all open subsets U ⊆ V ⊆ X . We
say that M has finite ordered ranks if, for all U ∈ O(X),

rankM(U)1 ≤ rankM(U)0 < ∞.

Similarly, we say that M has finite equal ranks if rankM(U)1 = rankM(U)0 < ∞
for all U ∈ O(X). A pointed cosheaf is called flabby if the underlying cosheaf is
flabby. A flabby pointed cosheaf has one of the three properties above if this is the
case for the underlying cosheaf.

We will use the invariant FKR for C∗-algebras over X from [2].

Definition 7.4 ([2, Definition 6.1]). An R-module N is a collection of Abelian
groups N({x})1, N(Ux)0 and N(Ux \ {x})0 for x ∈ X together with group homo-
morphisms δUx\{x}

{x} : N({x})1 → N(Ux\{x})0 and iUx

Ux\{x} : N(Ux\{x})0 → N(Ux)0

for x ∈ X and iUx\{x}
Uy

: N(Uy)0 → N(Ux \ {x})0 for all pairs (x, y) with y → x such
that certain relations are fulfilled. A homomorphism of R-modules is a collection
of group homomorphisms making all squares commute.

There is a notion of exactness for R-modules (see [2, Definition 6.5]) and our
notation suggests an obvious K-theoretical functor FKR from KK(X) to exact R-
modules (see [2, Definition 6.4 and Corollary 6.9]). Notice that, for Ux ⊆ Uy, we
can obtain the map K0

(
A(Ux)

)
→ K0

(
A(Uy)

)
by composing maps that are part of

the invariant FKR(A).

Theorem 7.5. A flabby cosheaf on O(X) is isomorphic to OK
(
C∗(E)

)
for some

purely infinite tight graph C∗-algebra C∗(E) over X with intermediate cancellation
if and only if it has free quotients in odd degree.

Proof. It is well-known that graph C∗-algebras have free K1-groups. Since (gauge-
invariant) ideals in graph C∗-algebras are themselves graph C∗-algebras by [28],
it follows that OK

(
C∗(E)

)
has free quotients in odd degree if C∗(E) is a purely

infinite tight graph C∗-algebra over X .
Conversely, let M be a flabby cosheaf on O(X) that has free quotients in odd

degree. We associate to M an R-module N in the following way: for x ∈ X , set
N(Ux)0 = M(Ux)0, N(Ux \ {x})0 = M(Ux \ {x})0 and let N({x})1 be the quotient
of M(Ux)1 by M(Ux \ {x})1. The maps iUx

Ux\{x} and iUx\{x}
Uy

for N are defined to be
the even parts of the identically denoted maps for M . The homomorphisms δUx\{x}

{x}
are defined to be the zero homomorphisms.

To check that this really defines an R-module, one has to verify the relations (6.2)
and (6.3) in [2]. This is straight-forward: the relation (6.2) is fulfilled because we
have defined the maps δUx\{x}

{x} as zero maps; the relation (6.3) follows from the fact

that the composition M(U) iV
U−→ M(V ) iW

V−−→ M(W ) is equal to M(U) iW
U−−→ M(W )

for all open subsets U ⊆ V ⊆ W ⊆ X . We observe that the R-module N is exact:
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the exactness of the sequence (6.7) in [2] follows from the fact that M is a cosheaf;
the sequence (6.6) in [2] is exact because M is flabby.

Since M has free quotients in odd degree, [2, Theorem 8.2] implies that there is
a purely infinite tight graph C∗-algebra C∗(E) over X such that FKR

(
C∗(E)

) ∼=
N . Since C∗(E) has real rank zero, it has vanishing exponential maps, so that
the K0-groups of its ideals form an (ungraded) cosheaf on O(X). This cosheaf
coincides with the even part of M on the basis of minimal open neighbourhoods of
points. Since cosheaves are determined by their restriction to a basis, the (ungraded)
cosheaves M0 and OK

(
C∗(E)

)
0 are isomorphic. Since M is flabby this shows that

C∗(E) has vanishing index maps and therefore intermediate cancellation.
Exploiting freeness of the K1-groups and vanishing of boundary maps, we obtain

isomorphisms
K1

(
C∗(E)(U)

) ∼=
⊕

x∈U

K1
(
C∗(E)({x})

)

for all open subsets U ⊆ X such that, under this identification, the homomorph-
isms induced by the ideal inclusions correspond to the obvious subgroup inclusions.
Analogously, we have isomorphisms M(U)1 ∼=

⊕
x∈U N({x})1 for all open sub-

sets U ⊆ X because M is flabby and has free quotients in odd degree. Hence
OK

(
C∗(E)

)
1

∼= M1. It follows that OK
(
C∗(E)

) ∼= M as desired. �
For the proof of the next result, we need to recall that there is a notion of

pointed R-module (see [2, Definition 9.1]) and a functor FK+
R from KK(X)+ to

pointed R-modules.
Theorem 7.6. A flabby pointed cosheaf on O(X) is isomorphic to OK+(

C∗(E)
)

for
some unital purely infinite tight graph C∗-algebra C∗(E) over X with intermediate
cancellation if and only if it has free quotients in odd degree and finite ordered ranks.
Proof. Again, the well-known formulas for the K-theory of graph C∗-algebras show
that OK

(
C∗(E)

)
has free quotients in odd degree and finite ordered ranks if C∗(E)

is a unital purely infinite tight graph C∗-algebra over X . Conversely, to a given
flabby pointed cosheaf (M,m) we associate an exact pointed R-module (N,n) as
in the previous proof. Our assumptions on M then guarantee that we can apply
[2, Theorem 9.11] to obtain a unital purely infinite tight graph C∗-algebra C∗(E)
over X such that there is an isomorphism of pointed R-modules FK+

R
(
C∗(E)

) ∼=
(N,n). An argument as in the previous proof shows that OK+(

C∗(E)
) ∼= (M,m)

and that C∗(E) has intermediate cancellation. �
Theorem 7.7. A flabby pointed cosheaf on O(X) is isomorphic to OK+(OA) for
some tight Cuntz–Krieger algebra OA over X with intermediate cancellation if and
only if it has free quotients in odd degree and finite equal ranks.
Proof. The K-theory formulas for graphC∗-algebras imply that the cosheaf OK(OA)
has finite equal degrees if OA is a tight Cuntz–Krieger algebra over X . Conversely,
OK(OA) having finite equal ranks implies that FKR(A) meets the additional con-
ditions in [2, Theorem 8.2] that guarantee that the graph E in the previous proof
can be chosen finite (it has no sinks or sources by construction). �

8. Extensions of Cuntz–Krieger algebras

In this section, we establish a permanence property of Cuntz–Krieger algebras
with intermediate cancellation with respect to extensions.
Definition 8.1 ([1, Definition 1.1]). A C∗-algebra A over X looks like a Cuntz–
Krieger algebra if A is a unital real-rank-zero Kirchberg X-algebra with simple sub-
quotients in the bootstrap class B such that, for all x ∈ X , the group K1

(
A({x})

)

is free and rank K0
(
A({x})

)
= rank K1

(
A({x})

)
< ∞.
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A C∗-algebra A over X that satisfies these conditions but is stable rather than
unital is said to look like a stabilized Cuntz–Krieger algebra.

The following result generalizes the observation in [1, Corollary 2.4], which is
concerned with Cuntz–Krieger algebras with trivial K-theory.

Corollary 8.2. Let A be a C∗-algebra over X that looks like a Cuntz–Krieger
algebra and has intermediate cancellation. Then A is ∗-isomorphic over X to a
tight Cuntz–Krieger algebra over X with intermediate cancellation.

Proof. Let B be a C∗-algebra over X with intermediate cancellation that looks like
a Cuntz–Krieger algebra. Repeated use of the six-term exact sequence shows that
OK(B) has free quotients in odd degree and finite equal ranks. By Theorem 7.7,
there is a tight Cuntz–Krieger algebra OA over X with intermediate cancellation
such that OK+(B) ∼= OK+(OA). By Corollary 6.7, we have B ∼= OA. �

Corollary 8.3. Let A be a C∗-algebra over X that looks like a stabilized Cuntz–
Krieger algebra and has intermediate cancellation. Then A is stably isomorphic
over X to a tight Cuntz–Krieger algebra over X with intermediate cancellation.

Proof. Let B be a C∗-algebra over X with intermediate cancellation that looks like
a stabilized Cuntz–Krieger algebra. As in the previous proof, we see that OK(B)
has free quotients in odd degree and finite equal ranks. We turn the cosheaf OK(B)
into a pointed cosheaf by choosing an arbitrary element in K0(B). By Theorem 7.7,
there is a tight Cuntz–Krieger algebra OA over X with intermediate cancellation
such that OK(B) ∼= OK(OA). By Theorem 6.2, the algebras B and OA are stably
isomorphic over X . �

Theorem 8.4. Let I ֌ A ։ B be an extension of C∗-algebras. Assume that A
is unital. Then A is a Cuntz–Krieger algebra with intermediate cancellation if and
only if

• the ideal I is stably isomorphic to a Cuntz–Krieger algebra with intermediate
cancellation,

• the quotient B is a Cuntz–Krieger algebra with intermediate cancellation,
• the boundary map K∗(B) → K∗+1(I) vanishes.

A similar assertion holds for extensions of unital purely infinite graph C∗-algebras
with intermediate cancellation.

Proof. The crucial point is that the property of looking like a Cuntz–Krieger algebra
behaves well with extensions (see Remark 3.12). So does intermediate cancellation
when considered for separable purely infinite C∗-algebras by Corollary 3.11. We
have that A ∈∈ KK

(
Prim(A)

)
looks like a Cuntz–Krieger algebra and has interme-

diate cancellation if and only if
• the stabilization I ⊗K ∈∈ C∗alg

(
Prim(I)

)
of the ideal I looks like a stabil-

ized Cuntz–Krieger algebra and has intermediate cancellation,
• the quotient B ∈∈ C∗alg

(
Prim(B)

)
looks like a Cuntz–Krieger algebra and

has intermediate cancellation,
• the boundary map K∗(B) → K∗+1(I) vanishes.

Hence the result follows from Corollary 8.2 applied to A and B and from Corol-
lary 8.3 applied to I. The assertion for unital graph C∗-algebras follows similarly
from Theorem 7.6 and Corollary 6.7. �

As similar argument based on Theorems 7.5 and 6.2 leads to the following per-
manence result for stabilized purely infinite graph C∗-algebras.
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Theorem 8.5. Let I ֌ A։ B be an extension of C∗-algebras. Assume that A has
finite ideal lattice. Then A is stably isomorphic to a purely infinite graph C∗-algebra
with intermediate cancellation if and only if

• the ideal I is stably isomorphic to a purely infinite graph C∗-algebra with
intermediate cancellation,

• the quotient B is stably isomorphic to a purely infinite graph C∗-algebra
with intermediate cancellation,

• the boundary map K∗(B) → K∗+1(I) vanishes.
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ONE-PARAMETER CONTINUOUS FIELDS OF
KIRCHBERG ALGEBRAS WITH RATIONAL K-THEORY

RASMUS BENTMANN AND MARIUS DADARLAT

Abstract. We show that separable continuous fields over the unit in-
terval whose fibers are stable Kirchberg algebras that satisfy the univer-
sal coefficient theorem in KK-theory (UCT) and have rational K-theory
groups are classified up to isomorphism by filtrated K-theory.

1. Introduction

The purpose of this paper is to investigate the classification problem for
continuous fields of Kirchberg algebras over the unit interval by K-theory
invariants. It is natural to associate to a C[0, 1]-algebra A the family of all
exact triangles of Z/2-graded K-theory groups

K∗
(
A(U)

)
// K∗

(
A(Y )

)

}}③③
③③
③③
③③

K∗
(
A(Y \ U)

)

aa❉❉❉❉❉❉❉❉

where Y is a subinterval of [0, 1] and U is a relatively open subinterval of Y .
The family of these exact triangles are assembled into an invariant FK(A)
called the filtrated K-theory of A, see Definition 3.4.

In this article we exhibit several classes of separable continuous fields
over the unit interval whose fibers are stable UCT Kirchberg algebras and for
which filtrated K-theory is a complete invariant. In particular, we show that
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this is the case for fields which are stable under tensoring with the universal
UHF-algebra. A C∗-algebra D has rational K-theory if K∗(D) ∼= K∗(D)⊗Q.

Theorem 1.1. Let A and B be separable continuous fields over the unit
interval whose fibers are stable Kirchberg algebras that satisfy the UCT and
have rational K-theory groups. Then any isomorphism of filtrated K-theory
FK(A) ∼= FK(B) lifts to a C[0, 1]-linear ∗-isomorphism A ∼= B.

The continuous fields classified by this theorem include fields that are
nowhere locally trivial. It is for this reason that one needs to include in-
finitely many subintervals of [0, 1] in any complete invariant. However it
suffices to consider intervals whose endpoints belong to a countable dense
subset of [0, 1]. The result does not extend to continuous fields of Kirchberg
algebras if torsion is allowed, as we will explain shortly.

The main idea of our approach is to combine the following three crucial
ingredients:

• Eberhard Kirchberg’s isomorphism theorem for non-simple nuclear
O∞-absorbing C∗-algebras [15],
• the results from [10] which relate E-theory over a second count-
able space X with the corresponding version of KK-theory and with
E-theory groups over finite approximating spaces of X,
• the universal coefficient theorem for accordion spaces from [2] (gener-
alizing results from [4,18,20,23]) including a description of projective
and injective objects in the target category of filtrated K-theory.

The relevance of accordion spaces in this framework is due to the fact that
sufficiently many non-Hausdorff finite approximating spaces of the unit in-
terval are accordion spaces.

A major difficulty in any attempt to use the result of [15] is the compu-
tation of the group KK(X;A, B) or at least a quotient of this group which
allows to detect KK(X)-equivalences. In [10], the second named author
and Ralf Meyer proved a universal multi-coefficient theorem (abbreviated
UMCT) for separable C(X)-algebras over a totally disconnected compact
metrizable space X. As a consequence, by Kirchberg’s isomorphism the-
orem [15], separable stable continuous fields over such spaces whose fibres
are UCT Kirchberg algebras are classified by an invariant the authors call
filtrated K-theory with coefficients. This result is also implicit in [11].

The filtrated K-theory with coefficients of [10] comprises the K-theory
with coefficients (the Λ-modules defined in [9], also called total K-theory) of
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all distinguished subquotients of the given field, along with the action of all
natural maps between these groups. It is demonstrated in [10], generalising
a result from [7], that coefficients are necessary for such a classification res-
ult over any infinite metrizable compact space. This means that filtrated
K-theory (without coefficients) can only be a classifying invariant on sub-
classes of fields with special K-theoretical properties and this explains the
need for additional assumptions in our results. For comparison let us recall
that the classification result of [8] is restricted to fields whose fibers have
torsion-free K0-groups and vanishing K1-groups or vice versa.

The construction of an effective filtrated K-theory with coefficients for
C∗-algebras over the unit interval remains an open problem. In the final
Section 5 we describe some of the technical difficulties that are encountered
in potential constructions of such an invariant.

2. Preliminaries

In this section we summarize definitions and results by various authors
which we shall use later. We make the convention N = {1, 2, 3, . . .}.

2.1. C∗-algebras over topological spaces. Let X be any topological
space. Recall from [19]:

Definition 2.1. A C∗-algebra over X is a C∗-algebra A equipped with a
continuous map Prim(A)→ X.

Definition 2.2. Let A be a C∗-algebra over X. Let U ⊆ X be an open sub-
set. Taking the preimage under the map Prim(A) → X, we may naturally
associate the distinguished ideal A(U) ⊆ A to U . A morphism of C∗-algebras
over X is a ∗-homomorphism preserving all distinguished ideals.

A subset Y ⊂ X is called locally closed if it can be written as a difference
U\V of two open subsets V ⊆ U ⊆ X. It can be shown that the distinguished
subquotient A(Y ) := A(U)/A(V ) is well-defined.

We assume that X is locally compact Hausdorff in the following two
definitions.

Definition 2.3. A C0(X)-algebra is a C∗-algebra A equipped with a non-
degenerate ∗-homomorphism from C0(X) to the center of the multiplier
algebra of A. A morphism of C0(X)-algebras is a C0(X)-linear ∗-homomor-
phism.
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The category of C∗-algebras over X and the category of C0(X)-algebras
are isomorphic (see [19, Proposition 2.11]). We denote the category of sep-
arable C∗-algebras over X by C∗sep(X).

Definition 2.4. For x ∈ X and a C0(X)-algebra A, we denote the quotient
map A ։ A(x) onto the fiber by πx. The algebra A is called continuous if
the function x 7→ ‖πx(a)‖ is a continuous function on X for every a ∈ A.

2.2. Bivariant K-theory for C∗-algebras over topological spaces.
Let X be a second countable topological space. Let us recall that KK(X) is
the triangulated category that extends KK-theory to separable C∗-algebras
over X, see [19]. In [10], the second named author and Meyer define a ver-
sion of E-theory for separable C∗-algebras over X and establish its basic
properties. This construction yields a triangulated category E(X) and a
functor C∗sep(X) → E(X) which is characterized by a universal property.
We recall two results which are of particular importance for us.

Let U = (Un)n∈N be an ordered basis for the topology on X. Denote
by Xn the finite topological space, which arises as the T0-quotient of X

equipped with the topology generated by the set {U1, . . . , Un}. Observe
that we have a projective system of spaces · · · ։ X2 ։ X1 ։ X0 together
with compatible maps X ։ Xn. By functoriality in the space variable, we
obtain a projective sequence of triangulated categories

(
E(Xn)

)
n∈N together

with compatible functors E(X)→ E(Xn).

Proposition 2.5 ([10, Theorem 3.2]). Let A and B be separable C∗-algebras
over X. Then there is a natural short exact sequence of Z/2-graded Abelian
groups

lim←−
1 E∗+1(Xn;A, B) ֌ E∗(X;A, B) ։ lim←−E∗(Xn;A, B).

Definition 2.6. The bootstrap class BE consists of all separable C∗-algebras
that are equivalent in E-theory to a commutative C∗-algebra. The bootstrap
class BE(X) consists of all separable C∗-algebras over X such that A(U)
belongs to BE for every open subset U ⊆ X.

Proposition 2.7 ([10, Theorem 4.6]). Let A and B be separable C∗-algebras
over X belonging to the bootstrap class BE(X). An element in E(X;A, B) is
invertible if and only if the induced map K∗

(
A(U)

)→ K∗
(
B(U)

)
is invertible

for every open subset U of X.
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2.3. Continuous fields of Kirchberg algebras. In this subsection we as-
sume that X is a finite-dimensional, compact, metrizable topological space.

Proposition 2.8. Let A be a separable continuous C(X)-algebra whose
fibers are stable Kirchberg algebras. Then A is stable, nuclear and O∞-ab-
sorbing.

Proof. Bauval shows in [1, Théorème 7.2] that A, being continuous and
having nuclear fibers, is nuclear (in fact C(X)-nuclear). A combination of
results by Blanchard, Kirchberg and Rørdam in [3, 16, 17, 22] implies that
A⊗O∞ ⊗K ∼= A, see [8, Theorem 7.4] and [14]. �

Corollary 2.9. Let A and B be separable continuous C(X)-algebras whose
fibers are stable Kirchberg algebras. Then every E(X)-equivalence between A

and B lifts to a C(X)-linear ∗-isomorphism.

Proof. From [10, Theorem 5.4] we see that the given E(X)-equivalence is
induced by a KK(X)-equivalence. By Proposition 2.8, we can apply Kirch-
berg’s isomorphism theorem [15]. �

Proposition 2.10. Let A be a separable nuclear continuous C(X)-algebra
whose fibers satisfy the UCT. Then A belongs to the E(X)-theoretic bootstrap
class BE(X).

Proof. This follows from [5, Theorem 1.4] applied to every open subset of X.
�

2.4. Filtrated K-theory over finite spaces. In this subsection we as-
sume that X is a finite T0-space.

Definition 2.11. Let AbZ/2 be the category of Z/2-graded Abelian groups
and Z/2-graded homomorphisms. We denote the collection of non-empty,
connected, locally closed subsets of X by LC(X)∗. For Y ∈ LC(X)∗, we
have a functor FKX

Y : E(X) → AbZ/2 taking A to K∗
(
A(Y )

)
. Let NT X be

the Z/2-graded pre-additive category whose object set is LC(X)∗ and whose
morphisms from Y to Z are the natural transformations from FKX

Y to FKX
Z

regarded as functors from separable C∗-algebras over X with Z/2-graded
morphism groups E∗(X; ␣, ␣) to Z/2-graded Abelian groups with arbitrary
group homomorphisms. The collection

(
FKX

Y (A)
)

Y ∈LC(X)∗ has a natural
graded module structure over NT X . This module is denoted by FKX(A).
Hence we have a functor FKX : E(X)→Mod(NT X)Z/2.
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Remark 2.12. If the space X is not too complicated, it is possible to de-
scribe the category NT X in explicit terms. Suppose for instance that X

is an accordion space in the sense of [2]. Then NT X is generated by six-
term sequence transformations corresponding to inclusions of distinguished
subquotients and an explicit generating list of relations can be given, see [2].

Proposition 2.13 ([2, Theorem 8.9]). Let X be an accordion space. Let A

and B be separable C∗-algebras over X. Assume that A belongs to the boot-
strap class BE(X). Then there is a natural short exact sequence of Z/2-
graded Abelian groups

Ext1
N T X

(
FKX(A),FKX(SB)

)
֌ E∗(X;A, B)

։ HomN T X

(
FKX(A),FKX(B)

)
.

Here we have replaced KK∗(X;A, B) by E∗(X;A, B) in the original state-
ment. This is possible as we explain in the following remark.

Remark 2.14. It was shown in [2] that FKX(A) has a projective resolution of
length 1 for every separable C∗-algebra A over X. Regarding FKX as a func-
tor from E(X), it is the universal I-exact stable homological functor, where
I is now the ideal in E(X) consisting of all elements inducing zero maps
in FKX . This is because KK(X;R, R) ∼= E(X;R, R) by [10, Theorem 5.5],
where R ∈ B(X) is the representing object for FKX . Now the result fol-
lows from the general UCT of [18]. (Here B(X) denotes the KK-theoretic
bootstrap class of C∗-algebras over X defined by Meyer–Nest in [19] as
the smallest class of C∗-algebras containing all one-dimensional C∗-algebras
over X and closed under certain operations. If A is a nuclear C∗-algebra
over X, then A belongs to B(X) if and only if it belongs to BE(X).)

Not every NT X-module belongs to the range of the invariant FKX . In
particular, FKX(A) is an exact NT X-module for every C∗-algebra A over X

as defined in [18, Definition 3.5].

Proposition 2.15. Let X be an accordion space and M an NT X-module.
Then M is projective/injective if and only if M is exact and the Z/2-graded
Abelian group M(Y ) is projective/injective for every Y ∈ LC(X)∗.

Proof. The statement about projective modules is proven in [2]. The claim
about injective modules follows from a dual argument. �
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3. Finite approximations of the unit interval

Let I = [0, 1] be the unit interval. Choose, once and for all, a dense
sequence (dn)n∈N in I. For convenience, we may assume dm 6= dn for m 6= n

and dn 6∈ {0, 1} for all n ∈ N. Consider the ordered subbasis V = (Vn)n∈N

for the topology on I given by V2n−1 = [0, dn) and V2n = (dn, 1]; denote
by In the T0-quotient of I equipped with the topology generated by the set
{V1, . . . , V2n}.

Let A and B be separable C∗-algebras over I. Since the spaces In form a
cofinal family in the projective sequence of approximations corresponding to
the basis generated by the subbasis V above, Proposition 2.5 yields a short
exact sequence

(3.1) lim←−
1 E∗+1(In;A, B) ֌ E∗(I;A, B) ։ lim←−E∗(In;A, B).

We are therefore interested in the computation of the groups E∗(In;A, B).

Lemma 3.2. The spaces In are accordion spaces.

Proof. For a given natural number n ∈ N, we order the set {d1, . . . , dn} by
writing {d1, . . . , dn} = {e1, . . . , en} where ek < ek+1 for 1 ≤ k < n. Then
we have

In =
{
[0, e1), {e1}, (e1, e2), {e2}, (e2, e3), . . . , {en}, (en, 1]

}
.

Denoting u0 = [0, e1), uk = (ek, ek+1) for 1 ≤ k < n, un = (en, 1] and
ck = {ek} for 1 ≤ k ≤ n, a basis for the topology on In given by the family
of open subsets

{{uk} | 0 ≤ k ≤ n
} ∪ {{uk, ck, uk+1} | 0 ≤ k < n

}
.

Hence In is an accordion space of a specific form, the Hasse diagram of the
specialization order of which is indicated in the diagram below.

• → • ← • → • ← • → · · · ← • → • ← • → • ← • �

For n ∈ N, we briefly write NT n for NT In and FKn(A) for FKIn(A).
Assume that A belongs to the bootstrap class BE(I). By Proposition 2.13,

for every n ∈ N, we have a short exact sequence

(3.3) Ext1
N T n

(
FKn(A),FKn(SB)

)
֌ E∗(In;A, B)

։ HomN T n

(
FKn(A),FKn(B)

)
.
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Definition 3.4. Let A be a C∗-algebra over [0, 1]. The filtrated K-theory
of A consists of the Z/2-graded Abelian groups K∗

(
A(Y )

)
for all locally

closed subintervals Y ⊆ I together with the graded group homomorphisms
in the six-term exact sequence K∗

(
A(U)

)→ K∗
(
A(Y )

)→ K∗
(
A(Y \ U)

)→
K∗+1

(
A(U)

)
for every relatively open subinterval U of a locally closed inter-

val Y ⊆ I with the property that the set Y \U is connected. A homomorph-
ism from FK(A) to FK(B) is a family of graded group homomorphisms

{ϕY : K∗
(
A(Y )

)→ K∗
(
B(Y )

)}Y
such that for all pairs U ⊂ Y as above, all squares in the diagram

K∗
(
A(U)

)
//

ϕU

��

K∗
(
A(Y )

)
//

ϕY

��

K∗
(
A(Y \ U)

)
//

ϕY \U

��

K∗+1
(
A(U)

)

ϕU

��
K∗

(
B(U)

)
// K∗

(
B(Y )

)
// K∗

(
B(Y \ U)

)
// K∗+1

(
B(U)

)

commute.
The Z/2-graded Abelian group of homomorphisms from FK(A) to FK(B)

is denoted by HomN T
(
FK(A),FK(B)

)
.

We note that one may consider a variation FK′(A) of FK(A) where only
intervals with endpoints from the sequence (dn)n∈N and 0, 1 are used. It
is not hard to show that the restriction map HomN T

(
FK(A),FK(B)

) →
HomN T

(
FK′(A),FK′(B)

)
is bijective. It follows that

HomN T
(
FK(A),FK(B)

)
= lim←−HomN T n

(
FKn(A),FKn(B)

)
.

Remark 3.5. We can regard FK(A) as a Z/2-graded module over a Z/2-
graded pre-additive category NT with objects the locally closed subinter-
vals of I and morphisms generated by elements iY

U , r
Y \U
Y , δU

Y \U for every
relatively open subinterval U of a locally closed interval Y ⊆ I such that
Y \U is connected. Regardless of the relations among these generators, ho-
momorphisms from FK(A) to FK(B) would then simply be graded module
homomorphisms. This justifies the notation HomN T

(
FK(A),FK(B)

)
.

4. Classification results

We are now ready to put together the facts from the previous sections to
derive classification results.
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Applying inverse limits to the UCT-sequences (3.3), and using that lim←−
1

is a derived functor of lim←−, we obtain the exact sequence

(4.1) 0→ lim←−Ext1
N T n

(
FKn(A),FKn(SB)

)→ lim←−E∗(In;A, B)

→ HomN T
(
FK(A),FK(B)

) d−→ lim←−
1 Ext1

N T n

(
FKn(A),FKn(SB)

)
.

Definition 4.2. Let Kir(I) denote the class of separable continuous C(I)-al-
gebras whose fibers are stable Kirchberg algebras satisfying the UCT.

Theorem 4.3. Let C be a subclass of Kir(I) such that for all A and B

in C , the map d in (4.1) vanishes. Then, for all A and B in C , the map
E∗(I;A, B)→ HomN T

(
FK(A),FK(B)

)
is surjective and every isomorphism

FK(A) ∼= FK(B) lifts to a C(I)-linear ∗-isomorphism.

Proof. Let α ∈ HomN T
(
FK(A),FK(B)

)
. If d(α) = 0, we can use the exact

sequences (4.1) and (3.1) to lift α to an element α̃ ∈ E(I;A, B). If α was an
isomorphism, then α̃ is an E(I)-equivalence by Proposition 2.7. We conclude
the proof by applying Corollary 2.9. �

Remark 4.4. Theorem 4.3 does not hold for the whole class C = Kir(I) as
shown by Example 6.5 from [10]. If the fibers of A and B have torsion in
K-theory, then the map E∗(I;A, B)→ ker(d) ⊂ HomN T

(
FK(A),FK(B)

)
is

typically not surjective.

We will now verify the hypotheses of Theorem 4.3 for certain classes of
C∗-algebras over [0, 1]. Our first example yields (in particular) a proof of
Theorem 1.1.

Example 4.5. (Proof of Theorem 1.1.) By Proposition 2.15, the conclusion
of Theorem 4.3 holds for the class C of C(I)-algebras A in Kir(I) for which
K∗

(
A(Y )

)
is a divisible Abelian group for every locally closed interval Y ⊆ I.

By the Künneth formula for tensor products, the class C contains all objects
in Kir(I) which are stable under tensoring with the universal UHF-algebra
MQ. Let A be as in Theorem 1.1. Since K∗(A(x)) ∼= K∗(A(x)) ⊗ Q it
follows that A(x) ∼= A(x) ⊗MQ, for all x ∈ I, by the Kirchberg–Phillips
classification theorem. We conclude the argument by noting that if each
fiber of a C(I)-algebra A is stable under tensoring with the universal UHF-
algebra MQ, then so is A itself by [14].

Example 4.6. Again by Proposition 2.15, the conclusion of Theorem 4.3
holds for the class C of C(I)-algebras A in Kir(I) for which K∗

(
A(Y )

)
is
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a free Abelian group for every locally closed interval Y ⊆ I because the
Ext1-terms in (4.1) vanish.

Example 4.7. Fix i ∈ {0, 1}. Consider the class C of C(I)-algebras A

in Kir(I) which satisfy Ki
(
A(Y )

)
= 0 for every locally closed interval Y ⊆ I.

For parity reasons, the Ext1-terms in (4.1) vanish. Hence the class C satisfies
the condition of Theorem 4.3.

Remark 4.8. Fix i ∈ {0, 1}. It follows from the main result in [8] that the
condition of Theorem 4.3 is also satisfied for the class C of C(I)-algebras A

in Kir(I) whose fibers have vanishing Kd-groups and torsion-free Kd+1-
groups. However, we have not been able to reprove this by an independent,
purely K-theoretical argument.

5. A remark on coefficients

In order to get a classification result without any K-theoretical assump-
tions, one expects, as indicated in the introduction, to need some version
of filtrated K-theory with coefficients for C∗-algebras over the unit interval.
This requires, to begin with, the correct definition of filtrated K-theory with
coefficients for C∗-algebras over accordion spaces. It was observed in [13]
that, already over the two-point Sierpiński space S, the naïve candidate for
such a definition—using the corresponding six-term sequence of Λ-modules—
produces an invariant which lacks desired properties such as a UMCT.

We argue that, in order to give a fully satisfactory definition of filtrated K-
theory with coefficients for C∗-algebras over S, one has to allow all finitely
generated, indecomposable exact six-term sequences of Abelian groups as
coefficients—just as all finitely generated, indecomposable Abelian groups
as coefficients are needed in the UMCT of [9]. It is easy to see that there
is a countable number of isomorphism classes of such six-term sequences.
However, unlike in the case of Abelian groups, it follows from the main result
in [21] that their classification is controlled Z/p-wild for every prime p. This
wildness phenomenon seems to make filtrated K-theory with (generalized)
coefficients as sketched above very hard to compute explicitly, limiting its
rôle in the theory to a rather theoretical one.

We conclude by remarking that recent results of Eilers, Restorff and Ruiz
in [12] indicate that additional K-theoretical assumptions allow the usage of
a smaller, more concrete invariant.
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CLASSIFICATION OF CERTAIN CONTINUOUS FIELDS OF
KIRCHBERG ALGEBRAS

RASMUS BENTMANN

Abstract. We show that the K-theory cosheaf is a complete invariant for sep-
arable continuous fields with vanishing boundary maps over a finite-dimensional
compact metrizable topological space whose fibers are stable Kirchberg algeb-
ras with rational K-theory groups satisfying the universal coefficient theorem.
We provide a range result for fields in this class with finitely generated K-theory.
There are versions of both results for unital continuous fields.

1. Introduction

The present article is part of a programme aimed at deciding when two C∗-alge-
bras over a (second countable) topological space X are equivalent in ideal-related
KK-theory. In consequence of a fundamental result due to Eberhard Kirchberg [19,
Folgerung 4.3], this is a central question in the classification theory of non-simple
purely infinite C∗-algebras.

We briefly review the existing results in the literature. These are divided into two
classes, namely finite (non-Hausdorff) spaces on the one hand and finite-dimensional
compact metrizable spaces on the other hand. Universal coefficient theorems (UCT),
which compute the KK(X)-groups in terms of K-theoretic invariants and which im-
ply a solution to the given classification problem, have been established for certain
classes of finite T0-spaces in [27, 7, 25, 21, 3, 5]. A solution for finite unique path
spaces using a more complicated kind of invariant is provided in [6]. For arbitrary
finite spaces, the problem remains unsolved and seems rather unfeasible because
certain wildness phenomena occur; see [2]. In the context of finite-dimensional com-
pact metrizable spaces the strongest results are available in the totally disconnected
case [14, 13] and in the case of the unit interval [11, 12, 4].

As these examples illustrate, the feasibility of the classification problem under
consideration depends critically on the space X . However, it is possible to obtain
solutions for more general base spaces under additional K-theoretical assumptions.
For instance, Kirchberg’s isomorphism theorem [19, Folgerung 2.18] states that
two separable nuclear stable O2-absorbing C∗-algebras are isomorphic once their
primitive ideal spaces are homeomorphic (O2-absorption entails in particular the
vanishing of all K-theoretic data). In [1], a UCT for C∗-algebras with vanishing
boundary maps (as we shall define in §3) over an arbitrary finite T0-space is proven.

The main result of the present article is the following; it is based on the UCT
in [1] and Dadarlat–Meyer’s approximation of ideal-related E-theory over an infinite
space X by ideal-related E-theory over finite quotient spaces of X from [13], together
with Kirchberg’s theorem [19].
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Theorem 1.1. Let A and B be separable continuous fields over a finite-dimensional
compact metrizable topological space X whose fibers are stable Kirchberg algebras
that satisfy the UCT and have rational K-theory groups. Assume that A and B have
vanishing boundary maps. Then any isomorphism of K-theory cosheaves OK(A) ∼=
OK(B) lifts to a C(X)-linear ∗-isomorphism A ∼= B.

The K-theory cosheaf OK is a rather simple (but large) K-theoretic invariant
which we shall define in §3; it comprises the K-theory groups of all (distinguished)
ideals of the algebra, together with the maps induced by all inclusions of such ideals.

The proof of this theorem is concluded in §4. We provide a version of the theorem
for unital algebras in Theorem 4.2. An Abelian group G is rational if it is isomorphic
to its tensor product with the field of rational numbers Q; this is equivalent to G
being torsion-free and divisible and to G being a vector space over Q.

Our method of proof is largely parallel to the one in [4], where the UCT from [5]
for C∗-algebras over finite accordion spaces was used, based on the observation
that the unit inverval has sufficiently many finite quotients of accordion type. The
main result of the present article is instead valid for an arbitrary finite-dimensional
compact metrizable base space, but this comes at the expense of the assumption of
vanishing boundary maps.

Using a result from [17], Kirchberg’s isomorphism theorem for O2-absorbing
C∗-algebras mentioned above implies in particular that a separable continuous
C∗-bundle over a finite-dimensional compact metrizable space X whose fibers are
stable UCT Kirchberg algebras with trivial K-theory groups is isomorphic to the
trivial C∗-bundle C(X,O2⊗K); see also [10]. Our classification result may be con-
sidered as an extension of this automatic triviality theorem for continuous O2 ⊗K-
bundles: instead of asking the C∗-bundles to have entirely trivial K-theory, we only
require the collection of the K-theory groups of all ideals in the algebra to form a
flabby cosheaf of Z/2-graded Q-vector spaces (this terminology is explained in §3).

In Section 5, we determine the range of the invariant in the classification result
above, but under the requirement of finitely generated K-theory. More precisely,
we show:

Theorem 1.2. Let M be a flabby cosheaf of Z/2-graded Q-vector spaces on X such
that M(X) is finite-dimensional. Then M is a direct sum of a finite number of
skyscraper cosheaves and M ∼= OK(A) for a continuous field A as in Theorem 1.1.

This theorem also has an analogue for unital continuous fields. The range ques-
tion in the general case where M(X) may be countably infinite-dimensional remains
open.

Acknowledgement. The author is grateful to Marius Dadarlat for helpful conver-
sations on the topic of the present article.

2. Preparations

Throughout this article, we let X denote a finite-dimensional compact metrizable
topological space (arbitrary topological spaces will be denoted by Y ). The topology
of X (its lattice of open subsets) is denoted by O(X). We choose an ordered basis
(Un)n∈N for O(X) and consider the (finite) T0-quotient Xn of X equipped with the
topology O(Xn) generated by the family {U1, . . . , Un} (see [13, §3]).

Our reference for continuous fields of C∗-algebras (or, synonymically, C∗-bun-
dles) is [15]. For basic definitions, facts and notation concerning C∗-algebras over
(possibly non-Hausdorff) topological spaces, we refer to [22]. Versions of KK-theory
and E-theory for separable C∗-algebras over second countable topological spaces



Appendix. F 115

CLASSIFICATION OF CERTAIN CONTINUOUS FIELDS 3

have been constructed in [22] and [13], respectively. By [13, Theorem 3.2], there is
a natural short exact sequence of Z/2-graded Abelian groups

(2.1) lim←−
1 E∗+1(Xn; A, B) ֌ E∗(X ; A, B) ։ lim←−E∗(Xn; A, B)

for every pair A, B of separable C∗-algebras over X .
Recall from [22, §3.2] that there is an exterior product for KK(X)-theory. In

particular, we can form the (minimal) tensor product of a C∗-algebra A over X
with a C∗-algebra D and obtain a C∗-algebra A ⊗ D over X . We let MQ denote
the universal UHF-algebra. Hence K0(MQ) ∼= Q and K1(MQ) = 0. A C∗-algebra B
(over X) is called MQ-absorbing if B ∼= B⊗MQ. If A and B are C∗-algebras over X
and B is MQ-absorbing, then the exterior product

(2.2) KK∗(X ; A, B)⊗KK∗(C, MQ)→ KK∗(X ; A⊗ C, B ⊗MQ) ∼= KK∗(X ; A, B)

turns KK∗(X ; A, B) into a rational vector space.

3. Vanishing boundary maps and flabby cosheaves

A C∗-algebra A over an arbitrary topological space Y is said to have vanishing
boundary maps if the natural map iV

U : K∗
(
A(U)

)
→ K∗

(
A(V )

)
is injective for all

open subsets U ⊆ V ⊆ Y (it suffices to consider the case V = Y ); this is equivalent
to the condition in [1, Definition 3.2] because of the six-term exact sequence.

If A has vanishing boundary maps, one can deduce from the Mayer–Vietoris
sequence and continuity of K-theory that, for every covering (Vi)i∈I of an open
subset V ⊆ Y by open subsets Vi ⊆ V , one has an exact sequence

(3.1)
⊕

j,k∈I

K∗
(
A(Vj ∩Vk)

) (i
Vj
Vj ∩Uk

−i
Vk
Vj ∩Vk

)
−−−−−−−−−−−→

⊕

i∈I

K∗
(
A(Vi)

) (iU
Vi

)
−−−→ K∗

(
A(V )

)
−→ 0;

see [8, Proposition 1.3].

Definition 3.2. The K-theory cosheaf OKY (A) of a C∗-algebra A over Y with
vanishing boundary maps consists of the collection of Z/2-graded Abelian groups(
K∗

(
A(U)

)
| U ∈ O(Y )

)
together with the collection

(
iV
U | V ∈ O(Y ), U ∈ O(V )

)

of graded group homomorphisms.

In Theorem 1.1 we briefly wrote OK(A) for OKX(A). For an arbitrary C∗-alge-
bra A over Y , OKY (A) would only define a precosheaf, that is, a covariant functor
on O(X). However, if A has vanishing boundary maps, then by (3.1), OKY (A)
is indeed a flabby cosheaf of Z/2-graded Abelian groups in the technical sense
of [8, §1]. We reproduce the definition below for the reader’s convinience. The
partially ordered set O(Y ) is considered as a category with morphisms given by
inclusions.

Definition 3.3. A precosheaf on Y is a covariant functor M from O(Y ) to the
category of modules over some ring. For open subsets U ⊆ V ⊆ Y , the induced
map M(U)→M(V ) is denoted by iV

U . A precosheaf M is a cosheaf if the sequence

(3.4)
⊕

j,k∈I

M(Vj ∩ Vk)
(i

Vj
Vj ∩Uk

−i
Vk
Vj ∩Vk

)
−−−−−−−−−−−→

⊕

i∈I

M(Vi)
(iU

Vi
)

−−−→M(V ) −→ 0

is exact for every open covering (Vi)i∈I of an open subset V ⊆ Y . It is flabby if the
map iV

U : M(U)→ M(V ) is injective for all open subset U ⊆ V ⊆ Y . A morphism
of cosheaves is a natural transformation of the corresponding functors.
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Remark 3.5. The invariant OK is necessarily large (in a non-technical sense), as its
purpose is to classify certain C∗-bundles that need not be locally trivial. However,
we may minimize its size without losing essential information by restricting to a
fixed countable basis of O(X). (This is a standard fact about (co)sheaves.)

Consider now one of the approximating spaces Xn (this may have the homeo-
morphism type of any finite T0-space). The crucial step towards the UCT in [1]
was to show that OKXn(A) has a projective resolution of length one (combine Lem-
mas 4.3 and 4.6 from [1]). When we work over the rational numbers, it follows by
exactly the same argument that OKXn(A) ⊗ Q is projective as a cosheaf of Z/2-
graded Q-vector spaces, and the homological algebra in the Q-linear triangulated
category BE(Xn)⊗Q for the homological functor OKXn ⊗Q (see [23,18]) provides
an isomorphism

(3.6) E∗(Xn; A, B)⊗Q ∼= Hom∗
(
OKXn(A) ⊗Q,OKXn (B)⊗Q

)
,

where we write Hom∗(M, N) for Hom(M, N)⊕Hom(M, N [1]).

4. Proof of Theorem 1.1

We are now prepared to prove our main result. As in Theorem 1.1, we ab-
breviate OKX by OK. Assume that A and B as in Theorem 1.1 are given. By
[4, Propositions 2.8 and 2.10], A and B are stable, nuclear and O∞-absorbing, and
belong to the E(X)-theoretic bootstrap class BE(X) defined in [13, Definition 4.1].
Hence, by the comparison theorem [13, Theorem 5.4], Kirchberg’s classification
theorem [19, Folgerung 4.3] and the invertibility criterion [13, Theorem 4.6], it suf-
fices to show that a given homomorphism OK(A) → OK(B) lifts to an element in
E0(X ; A, B).

Since the fibers of A and B have rational K-theory groups, they are MQ-absorbing
by the Kirchberg–Phillips classification theorem [26, §8.4]. By [17], the algebras A
and B themselves are MQ-absorbing. Hence, by (2.2), (3.6), the comparison the-
orem [13, Theorem 5.4] and the Künneth formula for tensor products,

(4.1) E∗(Xn; A, B) ∼= Hom∗
(
OKXn(A),OKXn(B)

)

because Q ⊗ Q ∼= Q. This implies lim←−E∗(Xn; A, B) ∼= Hom∗
(
OK(A),OK(B)

)
(by

Remark 3.5 applied to the chosen basis (Un)n∈N). The claim now follows from (2.1).

4.1. Classification of unital C∗-bundles. For a unital C∗-bundle over X , we
may equip OK(A) with the unit class [1A] ∈ K0(A). This pair is denoted by
OK+(A); it is a pointed cosheaf, that is, a cosheaf M with a distinguished element
in the degree-zero part of M(X). Morphisms of such pointed cosheaves are of
course required to preserve the distinguished element. By [16, Theorem 3.3], we
immediately obtain the following version of our main result for unital algebras.

Theorem 4.2. Let A and B be separable unital continuous fields over X whose
fibers are UCT Kirchberg algebras with rational K-theory groups. Assume that
A and B have vanishing boundary maps. Then any isomorphism OK+(A) ∼=
OK+(B) lifts to a C(X)-linear ∗-isomorphism A ∼= B.

5. Range results

We investigate the question of the range of the invariant in Theorem 4.2 (the
same considerations apply mutatis mutandis and without keeping track of the unit
class in the stable case and yield a proof for Theorem 1.2). For the results in this
section, it would suffice to assume that X is a compact Hausdorff space.
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If a unital C∗-bundle A of the form classified by our result is locally trivial on an
open subset U of X , then A(U) must be isomorphic to C0(U,O2). Hence interesting
examples cannot be locally trivial (around every point in X).

Example 5.1. We will now describe some basic non-trivial examples of C∗-bundles
satisfying the conditions in our classification theorem. Let D1, . . ., Dn be unital
UCT Kirchberg algebras. By the Exact Embedding Theorem [20, Theorem 2.8], we
may find unital ∗-monomorphisms γi : Di → O2. For points x1, . . ., xn in X , we
define

(5.2) A = {f ∈ C(X,O2) | f(xi) ∈ γi(Di) for i = 1, . . . , n}.
This is clearly a continuous field of Kirchberg algebras, with fiber Di at xi and
fiber O2 at all other points. A simple computation using excision shows that

K∗
(
A(U)

) ∼=
⊕

i : xi∈U

K∗(Di).

Hence OK(A) is the direct sum of so-called skyscraper cosheaves ixi

(
K∗(Di)

)
based

at xi with coefficient group K∗(Di). Here ix(G) is defined by

ix(G)(U) =
{

G if x ∈ U ,
0 else.

These cosheaves are indeed flabby. It follows that the continuous field A has
vanishing boundary maps. So, if the algebras Di have rational K-theory groups,
then A satisfies the conditions of Theorem 4.2. Under the identification K0(A) ∼=⊕n

i=1 K0(Di), we have [1A] =
∑n

i=1[1Di ]. Using the range result for K-theory on
unital UCT Kirchberg algebras [26, §4.3], it follows that an arbitrarily pointed
finite direct sum of skyscraper cosheaves whose coefficient groups are countable
Z/2-graded Abelian groups can be realized as the pointed K-theory cosheaf of a
unital continuous field as in (5.2).

The following proposition shows that, if A is a unital continuous field as in
Theorem 4.2 and the Q-vector space K∗(A) is finite-dimensional, then A must be
of the form (5.2).

Proposition 5.3. Let F be a field and let Y be an arbitrary topological space. Let M
be a flabby cosheaf of F-vector spaces over Y . If M(Y ) is finite-dimensional, then
M is a direct sum of a finite number of skyscraper cosheaves.

Proof. We proceed by induction on the dimension of M(Y ). If the dimension is
zero, then there is nothing to prove. Otherwise, by [9, V. Proposition 1.5], there
exists y ∈ Y such that M(Y \ {y}) is a proper subspace of M(Y ). By assumption,
the subcosheaf N of M defined by

N(U) = M(U \ {y})
for U ∈ O(Y ) is a direct sum of skyscraper cosheaves. Since the quotient Q = M/N

vanishes on Y \ {y}, it follows from the exact sequence (3.4) that Q is a skyscraper
cosheaf of the form Q = iy(V ) for some F-vector space V . It remains to show that
the extension N ֌ M ։ Q splits. We have Hom(iy(V ), N) ∼= Hom

(
V, lim←−

U∋x

N(U)
)

and thus
Ext1(Q, N) ∼= Hom

(
V, lim←−

1

U∋x

N(U)
)

= 0

by the Mittag–Leffler condition using that N(U) is a finite-dimensional vector space
for every U . �
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The considerations above are summarized in the following version of Theorem 1.2
for unital continuous fields:

Theorem 5.4. Let (M, m) be a pointed flabby cosheaf of Z/2-graded Q-vector
spaces on X such that M(X) is finite-dimensional. Then M is a direct sum of
a finite number of skyscraper cosheaves and (M, m) ∼= OK+(A) for a continuous
field A as in Theorem 4.2.

Combining the range result above with our classification results, we obtain an
explicit description of the isomorphism classes of the classified continuous fields A
whose K-theory K∗(A) is finite-dimensional over Q. In the case that K∗(A) is
an arbitrary (countable) Q-vector space the situation is unclear: it remains open
whether a countable direct sum of skyscraper cosheaves whose coefficient groups
are countable Z/2-graded Q-vector spaces can be realized as the K-theory cosheaf
OK(A) of a continuous field A as in Theorem 1.1; it also remains open whether any
flabby cosheaf of countable Q-vector spaces over X is necessarily a direct sum of
skyscraper cosheaves.

6. Further remarks

6.1. Real rank zero. We briefly comment on the relationship of the assumptions
in our classification theorem to real rank zero, a property that is often useful for
classification purposes. It was shown in [24, Theorem 4.2] that a separable purely
infinite C∗-algebra A has real rank zero if and only if the primitive ideal space of A
has a basis consisting of compact open subsets and A is K0-liftable (meaning, in
our terminology, that A has “vanishing exponential maps”). While a C∗-bundle
(with non-vanishing fibers) over a compact metrizable space of positive dimension
cannot satisfy the first condition, the second condition of K0-liftability is built
into our assumptions (we also assume that A has “vanishing index maps”). As
Theorem 1.2 shows, at least in the case of finitely generated K-theory, the K-theory
cosheaf of a separable continuous field with vanishing boundary maps has a very
zero-dimensional flavour.

6.2. Cosheaves versus sheaves. The following explanations clarify the relation-
ship (in the setting of fields with vanishing boundary maps) between our K-theory
cosheaf and the K-theory sheaf defined in [11] for C∗-bundles over the unit in-
terval. In [9, Propositions V.1.6 and V.1.8], Glen Bredon provides a structure
result for flabby cosheaves: the compact sections functor provides a one-to-one
correspondence between soft sheaves and flabby cosheaves on O(X). A sheaf is
soft if sections over closed subsets can be extended to global sections. If ÔK(A)
denotes the soft sheaf corresponding to the flabby cosheaf OK(A), then we have
ÔK(A)(Z) ∼= K∗

(
A(Z)

)
for every closed subset Z ⊆ X . Regarding the range ques-

tion considered in §5, we remark that [12, Theorem 5.8] provides a range result for
unital C∗-bundles over the unit interval, but it is not clear when the constructed
algebras have vanishing boundary maps.

6.3. Another classification result. We conclude the note by stating one more
result which follows in essentially the same way as our main result. We comment
below on the required modifications in the proof. Again, a version for unital algebras
can be obtained from [16, Theorem 3.3].

Theorem 6.1. Fix i ∈ {0, 1}. Let A and B be separable continuous fields of stable
UCT Kirchberg algebras over a finite-dimensional compact metrizable topological
space X. Assume that Ki

(
A(Z)

)
= 0 for all locally closed subsets Z ⊆ X. Then

any isomorphism OK(A) ∼= OK(B) lifts to a C(X)-linear ∗-isomorphism A ∼= B.
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Notice that we do not assume that the fibers of A and B have rational K-theory
groups. The K-theoretical assumption in the theorem implies that A and B have
vanishing boundary maps. Hence the universal coefficient theorem [1, Theorem 5.2]
applies (we may write OKXn instead of XnK by [1, Lemma 4.3]) and simplifies to
an isomorphism because the relevant Ext1-term vanishes for parity reasons. The
remainder of the proof is analogous.
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Abstract The bootstrap category in E-theory for C∗-algebras over a finite space is
embedded into the homotopy category of certain diagrams of K-module spectra. There-
fore it has infinite n-order for every n ∈ N. The same holds for the bootstrap category
in G-equivariant E-theory for a compact group G and for the Spanier–Whitehead
category in connective E-theory.
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1 Introduction

Triangulated categories arise in various contexts such as algebraic geometry, represen-
tation theory and algebraic topology. This motivates their distinction into algebraic,
topological (and non-algebraic), and exotic (that is, non-topological) triangulated cat-
egories; see [17]. Every algebraic triangulated category is topological. The converse
is false; topological triangulated categories may exhibit certain torsion phenomena
which cannot occur in algebraic triangulated categories. The most well-known such
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phenomenon is the fact that the endomorphism ring of the mod-2 Moore spectrum is
not annihilated by multiplication by 2.

In [16,17], Schwede introduced the notion of n-order for triangulated categories (a
non-negative integer or infinity for every n ∈ N). This is an invariant (up to triangulated
equivalence) that can often be used to distinguish non-algebraic triangulated categories
from algebraic ones by measuring the occurrence of the afore-mentioned torsion phe-
nomena: Schwede shows that the n-order of every algebraic triangulated category is
infinite for every n ∈ N; on the other hand, he proves that, if p is a prime number, the
Spanier–Whitehead category in stable homotopy theory has p-order equal to p − 1.

One aim of this note is to determine the n-order of certain triangulated categories
arising in C∗-algebra theory. More specifically, we are interested in the bivariant
homology theories

• connective E-theory for separable C∗-algebras, denoted by bu, as defined by
Thom [18],

• G-equivariant E-theory for separable C∗-algebras with a continuous action of a
compact group G by ∗-automorphisms, denoted by EG , as defined by Guentner,
Higson and Trout [5],

• ideal-related E-theory for separable C∗-algebras over a finite space X , denoted
by E(X), as defined by Dadarlat and Meyer [3].

These give rise to triangulated categories denoted by bu, EG and E(X), respec-
tively. The Spanier–Whitehead category SWbu ⊂ bu in connective E-theory is the
thick triangulated subcategory of bu generated by the C∗-algebra C of complex num-
bers. The bootstrap categories BG

E ⊂ EG and BE(X) ⊂ E(X) are the ℵ0-localizing
subcategories generated by the objects with one-dimensional underlying C∗-algebra,
respectively. (While there are no non-trivial G-actions by ∗-automorphisms on C,
there are as many mutually non-isomorphic ways to turn C into a C∗-algebra over X
as there are points in the space X ).

Our computational result is the following; it may be regarded as a generalization of
Schochet’s observation in [12, Proposition 2.4], stating that K-theory with coefficients
in Z/n is annihilated by multiplication by n

Theorem 1.1 The triangulated categoriesSWbu,BG
E andBE(X)have infinite n-order

for every n ∈ N.

The theorem is an application of the following result from [17, Example 2.9], which
is based on results due to Tyler Lawson and to Vigleik Angeltveit [1].

Theorem 1.2 Let R be a commutative symmetric ring spectrum such that π∗R is
torsion-free and concentrated in even dimensions. Let A be an R-algebra spectrum.
Then the derived category of A-module spectra has infinite n-order for every n ∈ N.

In order to apply this theorem, we need to embed our bootstrap categories into
appropriate derived categories of module spectra. The theorem then follows because
the n-order can only increase when we pass to a triangulated subcategory. For connec-
tive E-theory and G-equivariant E-theory we get the desired embeddings essentially for
free from the literature. More specifically, we use a result from Andreas Thom’s thesis
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in the case of connective E-theory and a construction of Dell’Ambrogio–Emerson–
Kandelaki–Meyer in the G-equivariant case. In both cases, Theorem [1] may be applied
with A = R. This is not surprising because the categories bu and EG are monoidal.

In the case of ideal-related E-theory, we have to work a little harder to obtain the
desired embedding. We apply the proposition with R equal to the Dell’Ambrogio–
Emerson–Kandelaki–Meyer spectrum K = K(C) for the trivial group and A equal to
a certain K-algebra spectrum KX which may be called the incidence algebra over K
of the partially ordered set X (a finite T0-space is essentially the same as a partially
ordered set). A construction of this form in the special case of upper-triangular 3 × 3-
matrices is indicated by Schwede in [15, Section 4.5].

The category of KX -module spectra is Quillen equivalent to the category of dia-
grams of K-module spectra indexed by X . The obtained embedding

BE(X) ↪→ Der(KX) ∼= Ho
(
Mod(K)X )

is interesting in its own right: it sets the stage for Morita theory, allowing us to construct
equivalences BE(X) ∼= BE(Y ) for many pairs of finite spaces (X,Y ). This will enable
us to treat many spaces X at once when answering questions such as: is there a
manageable homology theory on BE(X) computing the E(X)-groups via a universal
coefficient theorem? These consequences will be pursued elsewhere.

Some preliminaries We refer to [6] as a general reference on model categories and
to [13,14] for the theory of symmetric spectra. Recall that if M is a stable model
category, then its homotopy category Ho(M), defined as the localization of M at
its weak equivalences, is naturally triangulated. The stable model category of module
spectra over a ring spectrum R is denoted by Mod(R); its homotopy category is called
the derived category of R-module spectra and denoted by Der(R). We will use several
times that an R-module map is a weak equivalence if it induces isomorphisms on
stable homotopy groups.

We write C ∈∈ C to denote that C is an object in a category C. The C∗-algebra of
complex numbers is denoted by C.

2 Connective E-theory

In his thesis [18], Andreas Thom defines connective E-theory for separable
C∗-algebras. This is the universal triangulated homology theory on separable C∗-
algebras satisfying matrix stability (and full excision); it is denoted by bu. The category
of separable C∗-algebras with bu-groups as morphisms is denoted by bu; it carries a
triangulation structure inherited from the (C∗-algebra) stable homotopy category; see
[18, Section 3.3 and Section 4.2].

Definition 2.1 The Spanier–Whitehead category SWbu ⊂ bu in connective E-theory
is the thick triangulated subcategory generated by the C∗-algebra C.

It is shown in [18, Theorem 5.1.2] that there is a triangulated functor

KH : bu → Der(bu)
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inducing a graded ring isomorphism bu∗(C,C) ∼= Der(bu)(bu,bu)∗, where bu :=
KH (C) is a commutative symmetric ring spectrum equivalent to the connective
K-theory spectrum (see [18, Propositions 5.1.1 and D.1.1]).

Proposition 2.2 The functor KH : bu → Der(bu) is fully faithful on the Spanier–
Whitehead category SWbu.

Proof This is a standard argument; compare for instance [15, Proposition 3.10].
Consider the full subcategory of bu consisting of the objects B such that the map
bu∗(C, B) → Der(bu)

(
bu,KH (B)

)
∗ is an isomorphism. This subcategory containsC

and is closed under suspension. It is also closed under exact triangles because KH

is triangulated. Hence it contains SWbu. A similar argument shows that, for fixed
B ∈∈ SWbu, the map bu∗(A, B) → Der(bu)

(
KH (A),KH (B)

)
∗ is bijective for all

A ∈∈ SWbu. Hence KH is fully faithful on SWbu. �	
Proposition 2.3 The essential image of the restriction of the functor KH to SWbu is
a triangulated subcategory of Der(bu).

Proof It suffices to prove that every morphism in the image of the restriction of KH

to SWbu has a cone in the image of the restriction of KH . Such a cone can be obtained
as the image of a cone of the lifting of f to bu. �	

Recall from [18, Theorem 5.1.2] that

π∗bu ∼= Der(bu)(bu,bu)∗ ∼= bu∗(C,C) ∼= Z[u],

where u is of degree two. Together with the previous propositions this shows that
Theorem 1.2 may be applied to prove Theorem 1.1 for the category SWbu.

Remark 2.4 We have restricted ourselves to the Spanier–Whitehead subcategory of bu
because we do not expect bu to possess all countable coproducts.

3 G-equivariant E-theory

Let G be a compact group. A general reference for G-equivariant E-theory is [5].

Lemma 3.1 If a functor from C∗sepG maps all EG-equivalences to isomorphisms,
then it factors through the canonical functor C∗sepG → EG.

Proof First, we observe that every element in EG
0 (A, B) can canonically be written

as the composition of a G-equivariant ∗-homomorphism and the inverse of another
(it is straight-forward to check that the construction in [2, Section 25.6] goes through
in the G-equivariant case). To construct the factorization, we can thus proceed as in
the proof of the universal property of E-theory; see [2, Proof of 25.6.1] for details in
the non-equivariant but analogous case. �	

Now we consider the functor KG : C∗sepG → Mod
(
KG(C)

)
constructed in

[4, Section 3.3]. The construction in the non-equivariant case appeared earlier in [7].
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Proposition 3.2 The composition

C∗sepG KG−−→ Mod
(
KG(C)

) → Der
(
KG(C)

)

descends to a triangulated functor

KG : EG → Der
(
KG(C)

)
.

Proof By the previous lemma, it suffices to check that the functor KG : C∗sepG →
Mod(KG(C))maps EG -equivalences to weak equivalences. This is a consequence of
the natural isomorphism

Der
(
KG(C)

)(
KG(C),KG(B)

)
∗ ∼= EG∗ (C, B)

following from (3.6) and (3.7) in [4] and the identification EG∗ (C, B) ∼= KKG∗ (C, B).
The fact that KG is triangulated follows from [4, Remark 3.6] as in the proof of
[4, Theorem 3.8]. �	
Definition 3.3 The bootstrap category (of the tensor unit)BG

E ⊂ EG in G-equivariant
E-theory is the ℵ0-localizing subcategory generated by the C∗-algebra C with the
trivial G-action.

Remark 3.4 Results in [8] indicate that, if G is a (higher-dimensional) torus, then
the class BG in fact provides the correct domain for a potential universal coefficient
theorem.

Proposition 3.5 The functor KG : EG → Der
(
KG(C)

)
is fully faithful on the boot-

strap category BG
E .

Proof The proof again proceeds along the lines of [15, Proposition 3.10]. We have to
check that the categoryEG has countable coproducts and that the functor KG preserves
them. The former is shown in [5, Proposition 7.1]. To see the latter, we must show that
the canonical map

lim−→
n∈N

KG

(
n⊕

k=1

Ak

)
→ KG

( ∞⊕

k=1

Ak

)

is a weak equivalence for every sequence of objects Ak ∈∈ EG . Since G-equivariant
K-theory preserves countable direct sums, this map induces isomorphisms on stable
homotopy groups and is thus a weak equivalence. �	

As in the previous section, the essential image of the restriction of KG to BG
E is a

triangulated subcategory of Der
(
KG(C)

)
.

The spectrum KG(C) is by construction a commutative symmetric ring spectrum.
In order to apply Theorem 1.2 to prove Theorem 1.1 in the case of BG

E , we need to
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check that the stable homotopy groups π∗KG(C) are torsion-free and concentrated in
even degrees. We may identify

π∗KG(C) ∼= Der
(
KG(C)

)(
KG(C),KG(C)

)
∗ ∼= EG∗ (C,C) ∼= R(G)⊗ Z[β, β−1].

Here R(G) denotes the representation ring of the group G concentrated in degree zero
and β is an invertible element of degree 2 (see [2, Proposition 20.4.4]). Recall that the
underlying Abelian group of the representation ring of G is freely generated by the
isomorphism classes of simple G-modules (see for instance [11]). In particular, R(G)
is torsion-free.

4 Ideal-related E-theory

Let X be a finite T0-space and let C∗sep(X) denote the category of separable
C∗-algebras over X as defined in [9]. In particular, a C∗-algebra over X is a pair
(A, ψ) consisting of a C∗-algebra A and a continuous map from the primitive ideal
space of A to X . Every open subset U of X naturally gives rise to an ideal A(U ) in A.
Let E(X) denote the version of E-theory for C∗-algebras over X defined by Dadarlat
and Meyer [3]. We refer to E(X) as ideal-related E-theory.

Lemma 4.1 If a functor fromC∗sep(X)maps all E(X)-equivalences to isomorphisms,
then it factors through the canonical functor C∗sep(X) → E(X).

Proof By [3, Lemma 2.26] (and its proof) every element in E0(X; A, B) can canoni-
cally be written as the composition of a ∗-homomorphism over X and the inverse of
another. To construct the factorization, we can then proceed again as in [2, Proof of
25.6.1]. �	

We denote the smallest open neighbourhood of a point x in X by Ux . We consider X
as a partially ordered set by setting x ≤ y if and only if Ux ⊇ Uy . In order to make
sense of diagrams indexed by X , we regard X as a category with a unique morphism
from x to y if and only if x ≥ y. For a category C, the diagram category CX consists
of all functors from X to C.

Definition 4.2 Let D : C∗sep(X) → C∗sepX be the functor taking a C∗-algebra A
over X to the diagram D(A) in C∗sep given by D(A)(x) = A(Ux ) and the ideal inclu-
sions D(A)(x → y) = (

A(Ux ) ↪→ A(Uy)
)
. Let K : C∗sep → Mod(K(C)) denote

the functor of Dell’Ambrogio–Emerson–Kandelaki–Meyer with trivial group G (see
[4, Section 3.3]). In the following we abbreviate K := K(C). Let

KX : C∗sep(X) → Mod(K)X

be the composition of D with pointwise application of K.

We equip the category Mod(K)X with the stable model structure described in [6,
Theorem 5.1.3]; the weak equivalences and fibrations are defined pointwise.
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Proposition 4.3 The composition

C∗sep(X) KX−−→ Mod(K)X → Ho
(
Mod(K)X

)

descends to a triangulated functor

KX : E(X) → Ho
(
Mod(K)X

)
.

Proof Every E(X)-equivalence is in particular a pointwise E-equivalence. Hence it is
taken to a pointwise weak equivalence in Mod(K)X . By definition, every pointwise
weak equivalence in Mod(K)X is a weak equivalence and thus becomes invertible in

Ho
(
Mod(K)X

)
. The existence of the factorization now follows from Lemma 4.1. The

fact that the induced functor KX is triangulated is a consequence of the observations
in [4, Remark 3.6]. �	

For x ∈ X , we let ixC denote the C∗-algebra of complex numbers together with the
map taking its unique primitive ideal to the point x ∈ X . This is an object in C∗sep(X).
We set R = ⊕

x∈X ixC.
Let KX denote the endomorphism ring spectrum of a stably fibrant approximation of

KX (R). We call this symmetric (non-commutative) K-algebra spectrum the incidence
algebra of X over K. This construction is motivated by [15, Example 4.5(2)]. By [15,
Theorem 4.16], there is a Quillen equivalence between Mod(K)X and Mod(KX). In

particular, we will henceforth identify Ho
(
Mod(K)X

)
with Der(KX). We have

KX (ixC)(y) =
{

K for y ≤ x

∗ else

with all maps between non-trivial entries being identities. This yields a natural iden-
tification Hom

(
KX (ixC),M

) ∼= M(x) for every x ∈ X and M ∈∈ Mod(K)X . The
corresponding relation in E-theory is the adjunction E(X; ixC, B) ∼= E

(
C, B(Ux )

)

from [3, (4.3)]. It follows that the graded ring homomorphism from E∗(X,R,R)
to Der(KX)

(
KX (R),KX (R)

)
∗ induced by the functor KX is an isomorphism and

that both graded rings are isomorphic to the tensor product of the (ungraded) integral
incidence algebra ZX with the ring of Laurent polynomials Z[β, β−1], where β has
degree 2. The incidence algebra ZX is the category ring of the universal pre-additive
category generated by the category X .

Definition 4.4 The bootstrap category BE(X) ⊂ E(X) is the ℵ0-localizing subcate-
gory generated by the object R.

Proposition 4.5 The functor KX : E(X) → Der(KX) is fully faithful on the bootstrap
category BE(X).

Proof The proof is essentially analogous to the one of Proposition 3.5. We use the
fact that ideal-related K-theory preserves countable inductive limits. �	

123



128

R. Bentmann

As before, the essential image of the restriction of KX to BE(X) is a triangulated
subcategory of Der(KX) and the computation

π∗KX ∼= Der(KX)
(
KX (R),KX (R)

)
∗ ∼= E∗(X;R,R) ∼= ZX ⊗ Z[β, β−1]

with ZX concentrated in degree zero and β of degree 2 shows that we can apply
Theorem 1.2 to prove Theorem 1.1 in the case of BE(X).

5 Conclusion

We have shown that certain triangulated categories related to C∗-algebras have infinite
n-order for every n ∈ N by relating them with certain ring spectra. This means that they
share many structural properties of algebraic triangulated categories, but it is not clear
whether they are actually algebraic. To conclude, we mention that in the specific case
of the derived category of K-module spectra there is an equivalence to an algebraic
triangulated category, but it is not known whether this equivalence is triangulated; see
[10, Theorem 3.1.4.(ii)].
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