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Preface

This thesis has been prepared in ful�llment of the requirements for the PhD
degree at the Department of Mathematical Sciences, Faculty of Science,
University of Copenhagen, Denmark. The project was funded by SEB
Pension Denmark and the Danish Agency for Sciences, Technology and
Innovation under the Industrial PhD Program.

The work has been carried out under the supervision of Professor Mogens
Ste�ensen, University of Copenhagen, and Frank Pedersen and Per Lin-
nemann, SEB Pension Denmark. The work was carried out in the period
from January 1, 2010 to March 31, 2013 (including 12 weeks of parental
leave).

The main body of this thesis consists of an introduction to the overall work
and �ve chapters on di�erent but related topics. The �ve chapters are
written as individual academic papers and are thus self-contained. They
can be read individually with minor overlaps in the contents of them.
There are minor notational discrepancy among the �ve chapters but it is
unlikely to cause any confusion.
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Abstract

Life insurance and pension decisions are of the more important �nancial
settlements to be decided in a household. In this thesis we investigate
di�erent aspects of relevance for decision making within a household, es-
pecially focusing on life insurance and pension decisions. The focus is on
the relation between household preferences and the related optimal prod-
uct design.

Optimal decisions of a household are considered in continuous-time sto-
chastic control theory models. Within a standard expected utility frame-
work we investigate the e�ects of di�erences between household members
as well as tax-e�ects. The focus is on the consumption, investment and
life insurance demands. In another modeling framework, we modify the
utility measurement and propose a combination of forward and backward
looking preferences. At last, a model with very explicit preferences for
stability in consumption is investigated and we �nd that the optimal con-
sumption pattern derived corresponds to the bene�t pattern of a speci�c
annuity product. This particular product is in a simulation study com-
pared to Unit-Link annuities, which �t perfectly with the consumption
patterns derived under the expected utility models.
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Summary

Life insurance and pensions decisions - go with your guts or think twice. . .

The aim and scope of this thesis is to shed light on the �nancial decision
making of households. This is especially in relation to purchase of life in-
surance and saving for retirement in the younger years and decumulation
of savings via purchase of annuities in retirement. To substantiate �nancial
advice provided, (too) often based on simple guts feelings, we provide sev-
eral models with di�erent preference structures, providing you something
to think twice about.

The �rst model that we investigate in this thesis builds on standard ex-
pected utility theory for an investor with standard preferences yielding a
constant relative risk aversion. The model includes taxation to the problem
of deciding optimal consumption (and saving), investment and purchase
of life insurance (and life annuities). Analytical solutions are available in
this model, allowing for simple comparison of model results with classical
results for the related model without taxation. Results are summarized
in Section 1.2 and the full model is presented in Chapter 2. The taxation
signi�cantly alters the optimal decisions derived in the classical model
without taxation, maybe you should think twice.

In the second model, summarized in Section 1.3 and presented in Chapter
3, we focus on the interdependency between household members. The
model �exibility allows for investigation of several interesting di�erences
between household members. Diversity in salary, consumption needs in
widowhood and expected remaining life time as widow(er) is investigated
for a two-person household. The diversities translates into very di�erent
life insurance sums on the two lives in the household, reserving room for
second thoughts.

The third model presented in this thesis is the �rst of two where we deviate
from standard expected utility theory. Here, we analyze a particular mod-
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i�cation that incorporate both forward and backward (in time) looking
preferences. The forward looking feature of the utility functional dictates
that the certainty equivalent of utility from future consumption is taken
into consideration in measuring utility from present consumption. The
backward looking feature incorporates previous utility from consumption
in the measurement of utility from present consumption. In total, the an-
alytical solution derived for the model is very similar to the solution to the
classical standard expected utility model. The di�erences are shortly ex-
plained in the summary in Section 1.4 and further elaborated on in Chapter
4.

All of the three �rst models result in consumption patterns consistent
with decumulation of savings through purchase of pure Unit-Link annu-
ities. Due to the fact that annuities with smoother bene�t streams are
empirically more popular choices, the last model presented in this thesis
investigates very explicit preferences for stability in consumption. The
model and its solution is summarized in Section 1.5 and fully explored
in Chapter 5. We �nd that the optimal consumption pattern that solves
the model is in general replicated by the bene�ts of a particular annuity
product, Tidspension. Tidspension is also analyzed in Chapter 5 and the
similarities between optimal smooth consumption and bene�ts provided
are explored.

A simulation study, comparing the bene�ts provided by two pure Unit-
Link annuities and a Tidspension annuity, concludes the thesis. The focus
in the comparison is on the year-to-year stability in bene�ts as well as
the bene�t level and expected trend in bene�ts. The simulation study is
summarized in Section 1.6 and fully explored in Chapter 6. The focus in
the study is not on the preferences that leads to purchase of the di�erent
annuities, these are investigated in the prior models: We only want to give
room for second thoughts!
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Summary, English-Danish

Translation

Livs- og pensionsforsikringsbeslutninger - følg din mavefornemmelse eller
tænk dig om . . .

Formålet med denne afhandling er at belyse husholdningers �nansielle
beslutningstagen, specielt i forhold til køb af livsforsikring og opsparing
til alderdommen i de yngre år samt nedsparring via køb af livrenter i pen-
sionisttilværelsen. For at underbygge �nansiel rådgivning, der (alt for) ofte
baseres på simple mavefornemmelser, leverer vi �ere modeller med forskel-
lige præferencer strukturer, som giver dig noget at tænke over.

Den første model, som vi undersøger i denne afhandling, bygger på stan-
dard forventet nytte teori for en investor med standard præferencer, hvilket
giver en konstant relativ risikoaversion. Modellen tilføjer beskatning til
problemet med at beslutte det optimale forbrug (og opsparing), investeringer
og køb af livsforsikring (og livrenter). Analytiske løsninger opnås for denne
model, hvilket giver mulighed for en simpel sammenligning af modellens re-
sultater med klassiske resultater for den tilhørende model uden beskatning.
Resultaterne er opsummeret i afsnit 1.2 og den fulde model er præsenteret
i kapitel 2. Beskatning ændrer væsentligt de optimale beslutninger udledt
i den klassiske model uden beskatning, måske skulle du tænke dig om en
ekstra gang.

I den anden model, som opsummeres i afsnit 1.3 og præsenteres i kapitel
3, fokuserer vi på den gensidige afhængighed mellem husstandsmedlem-
mer. Modellens �eksibilitet giver mulighed for undersøgelse af �ere inter-
essante forskelle mellem husstandsmedlemmer. Specielt undersøger vi i en
to-personers husstand e�ekten af forskelle i løn, forbrugsbehov i enkestand
og forventet resterende levetid som enke/enkemand. Forskellene resulterer
i meget forskellige livsforsikringssummer for de to personer i husstanden,
hvilket giver stof til eftertanke.
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Den tredje model, der præsenteres i denne afhandling, er den første af
to, hvor vi afviger fra standard forventet nytteteori. Her analyserer vi en
særlig modi�kation, som indbefatter præferencer både fremad og bagud
(i tid). Det fremadskuende element i nyttefunktionen medfører, at sikker-
hedsækvivalenten af nytte fra det fremtidige forbrug tages i betragtning
ved bestemmelsen af nytte fra det nuværende forbrug. Det bagudskuende
element medfører, at tidligere nytte fra forbrug tages i betragtning ved
bestemmelse af nytte fra det nuværende forbrug. Alt I alt er den analytiske
løsning a�edt for modellen meget lig løsningen på den klassiske standard
forventet nytte model. Forskellene er kort forklaret i resuméet i afsnit 1.4
og yderligere uddybet i kapitel 4.

De tre første modeller resulterer alle i forbrugsmønstre, der er i overensstem-
melse med nedsparring gennem køb af rene Unit-Link livrenter. På grund
af det faktum, at livrenter med mindre volatile (over tid) ydelsesstrømme
empirisk er et mere populært valg, undersøger vi i den sidste model i
denne afhandling meget eksplicitte præferencer for stabilitet i forbruget.
Modellen og dens løsning er sammenfattet i afsnit 1.5 og detaljeret gen-
nemgået i kapitel 5. Vi �nder, at det optimale forbrugsmønster, der løser
modellen, generelt opfyldes af ydelserne fra et bestemt livrente produkt,
nemlig Tidspension. Tidspension er også analyseret i kapitel 5 og lighed-
erne mellem det optimale forbrug, som løser modellen, og ydelserne fra
Tidspension undersøges.

Afhandlingen afsluttes af et simuleringsstudie, som sammenligner ydelserne
fra to rene Unit-Link ratepensioner og en Tidspension ratepension. Fokus i
sammenligningen er på år-til-år stabiliteten i ydelserne samt ydelsesniveau
og den forventede ydelsesudvikling. Simuleringsstudiet er sammenfattet i
afsnit 1.6 og yderligere uddybet i kapitel 6. Fokus i undersøgelsen er ikke
på hvilke præferencer, som fører til køb af de forskellige ratepensioner,
disse er undersøgt i de tidligere modeller - vi ønsker kun at give stof til
eftertanke!
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1. Introduction

The main purpose of this chapter is to provide an overview of the subse-
quent �ve chapters of the thesis. We establish a general connection between
the topics of each chapter and position them within relevant related liter-
ature. Central aspects of the models in each chapter are commented on
and results are interpreted across the �ve self-contained chapters.

1.1 Personal Finance

Personal �nance refers to the �nancial decisions which an indi-

vidual or a family unit is required to make to obtain, budget,

save, and spend monetary resources over time, taking into ac-

count various �nancial risks and future life events.1

Personal �nance, or household �nance, as a concept covers a big variety
of interesting topics. The aim and scope of this thesis is an elaboration of
models that considers a few of these topics, establishing new knowledge. Of
particular interest to us is the area of life insurance and pension decisions.
This includes a particular focus on preferences and taxation.

A central starting point in the �eld of continuous-time models for personal
�nance is the contributions Merton (1969, 1971). These �rst generation
continuous-time models starts with an investor with the objective, to max-
imize the time-additive utility from consumption �nanced by the returns
on his investments. The joint consumption and investment strategy that
maximizes the investor's expected future utility is referred to as the opti-
mal strategy.

Despite Merton (1969, 1971)'s rather narrow focus on only consumption
and investment within the broader de�nition of personal �nance, the fun-

1De�nition by Wikipedia.com taken on June 2, 2013.
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damental method of modeling is repeatedly used and the papers' citations
counted in thousands. The methodology allows for straight forward exten-
sion to more control processes, including essentially whatever investment
vehicle, insurance and housing decision etc. that one can think of.

The models in chapters 2-5 all build on the methodology of Merton (1969,
1971); deciding on optimal controls in a continuous-time setup by consid-
ering the expected future. Speci�cally, chapters 2 and 3 includes taxation
and life insurance while chapters 4 and 5 considers intertemporal relations
in preferences and consumption. In Chapter 6 we present an analysis of
three annuity products that serves the preferences investigated in chapters
2-5.

1.2 Tax-E�ects on Optimal Personal Behavior

Chapter 2 is the �rst of two that builds on the contribution of Richard
(1975). In Richard (1975), the optimization problem in Merton (1969,
1971) is extended to include life insurance decisions along with consump-
tion and investment. Here, the possibility of dying before all wealth is
consumed is introduced and this way utility from bequest is included in
the modeling. The uncertain life-time is modeled, in consistency with
general continuous-time life insurance mathematics, by an age-dependent
mortality intensity. Being subject to a possible early death and a con-
nected bequest motive, investment in life insurance is introduced in order
for the person to determine the optimal heritage to leave for his heirs.
The model also includes a deterministic labor income stream to add to the
motivation of life insurance purchase in order to protect the �nancial well
being of heirs.

Richard (1975) take as given a set of preferences for the utility from con-
sumption and bequest and a given distribution of remaining life time and
derive optimal strategies for consumption, investment and life insurance.
Formally, the optimization criteria in Richard (1975) reads

supE

(∫ T

0
1{Ns−=0}

[
u(s, cs)ds+ U(s,Xs + Ss)dNs + Ũ(s,Xs)dεT (s)

])
,

2



where I = 1 − N is the indicator for the person being alive and εT (·) =
1{T≤·}. The utility functions u, U and Ũ denotes utility from consumption,
bequest and retirement wealth at time of retirement, T , and supremum
is taken over consumption, investment and life insurance. The person's
wealth follows the dynamics

dXt = rXtdt+ πt(α− r)Xtdt+ πtσXtdWt

+ atdt− ctdt− µ∗tStdt+ StdNt,

X0 = x0,

where a is the rate of income, c is the rate of consumption and π is the
proportion of wealth invested in the risky asset. The life insurance sum,
S, is continuously adjustable and paid for by a natural premium intensity,
µ∗.

In the model in Chapter 2 we elaborate on the model in Richard (1975).
We include taxation in the �nancial model, especially focusing on tax-
incentives for retirement saving and purchase of life insurance. The taxes
considered in the model includes:

• Consumption tax (VAT and other consumption related taxes)
• Labor income tax
• Retirement bene�ts tax (connected to tax exempted contributions)
• Tax deduction on life insurance premium
• Tax paid on the life insurance sum upon death
• Tax on investment return

We investigate two speci�c tax-models for retirement savings, where espe-
cially one of the models serves a dual purpose. In the �rst model, retire-
ment savings are tax exempt while bene�ts are taxed upon payout. When
the tax on labor income, and thereby the value of tax exempt contribu-
tions, is larger than the tax on bene�ts, the model includes a �nancial
motivation for retirement saving.

In the second tax-model considered, there is no possibility of tax exempting
contributions to retirement savings and also no tax on retirement bene�ts.
Instead, a proportional bonus is added on savings contributions during
working life, thereby imposing an extraordinary motivation for saving for
the third age. The special case where proportional bonus is set to zero

3



serves as a base-line scenario in comparison of tax motivation of retirement
saving, since it includes no extraordinary motivational e�ects.

Both models are solved in Chapter 2, leading to analytical solutions for
the optimal controls. This allows for a simple detailed study of tax e�ects
on optimal behavior under the considered tax-regimes. In general, the
following rules are valid under either model:

• Consumption tax does not in�uence optimal behavior
• Increased tax on stock returns increases investment in stocks
• Increasing tax on the life insurance sum paid out upon death/de-
creasing tax deduction on the life insurance premium decreases net
demand for life insurance

The tax incentives for motivation of retirement savings generally works but
does not work equally well. To substantiate this result, a numerical analysis
of optimal behavior under the di�erent regimes is presented in Chapter
2. The numerical study is performed for two representative households,
one inspired by American and one inspired by Danish tax regulations.
Numerous comparative statics are included. A few highlights of the results
are:

• Incenting retirement saving by lowering tax on investment return
forces contributions to be relatively higher in early working life
• Adding a proportional bonus on retirement savings contributions
adds a discontinuity point to optimal consumption at time of re-
tirement
• Taxing retirement bene�ts (made by tax exempt contributions) lower
than labor income adds a discontinuity point to optimal consumption
at time of retirement

Based on the results, we conclude that the tax optimal retirement savings
vehicle does not have a constant premium rate, nor does the premium rate
coincide with the optimal rate derived for a model without taxation. This
holds regardless of the proposed tax model. Summing up, the optimal
product design depends on the underlying tax model.

As a last exercise in Chapter 2, the expected present value of tax cash
�ows is calculated for all tax regimes. From a government point of view,

4



this quantity is relevant as a measure of future losses and gains while im-
posing either of the regimes. Not surprisingly, tax exempting investment
returns and contributions to retirement savings is costly on short horizon
but leads to higher tax revenues in retirement. Comparison of govern-
ment value of tax regimes that people are indi�erent between, is therefore
highly dependent on the discount factor used in calculating the present
value.

It is well known, that investment return tax revenues varies very much with
�nancial markets performance and governments are left with a huge hedg-
ing exercise (if trying to keep tax-�ows perfectly predictable, governments
must monitor and react to every investment decision made by the popula-
tion). An e�ect of closing down tax exemption of contributions is that the
hedging amount shrinks. Also lowering investment return taxation mod-
erates the amount to be hedged by governments. The analysis in Chapter
2 shows that there are reasonable combinations of tax-parameters that
leaves populations indi�erent between tax-regimes while lowering hedging
amounts. For governments, it is a simple exercise to change tax motiva-
tion of retirement saving among the investigated regimes; government and
population preferences can meet at sane tax levels.

In 2013, Danish tax regulations regarding retirement saving is changed
(again!). This time, actually, the system is not worsened. The alteration
dictates, that premiums to one of the three most popular savings products
is no longer tax-exempt while bene�ts no longer are taxed. Since previous
tax regulations dictated tax exemption worth roughly 37.5% of premiums
(labor income tax in the lower tax bracket is roughly 37.5%), while bene�ts
were taxed by 40%, the system is now slighly more attractive from the point
of view of the population.

1.3 Interdependent Relationships within a Fam-
ily

While Chapter 2 considers the interplay between tax rates and personal
behavior regarding consumption, investment and life insurance, Chapter 3
has a more endogenous scope. As we saw above, tax regulations have an
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exogenous in�uence on preferences for consumption, investment and life
insurance and altered both timing of saving/consumption and amounts
spend. Chapter 3 develops and solves a model of optimal consumption,
investment and life insurance for a multi-person household, thereby pro-
viding the opportunity to investigate interdependency among household
members.

In the modeling in Chapter 3 we elaborate on the modeling in Richard
(1975). We are inspired by Kraft and Ste�ensen (2008) who generalize
the model of Richard (1975) to allow the person to insure himself against
�nancial challenges connected to general changes in his life conditions, e.g.
unemployment, disability and so on. State of life for the person is modeled
by a continuous-time �nite-state Markov chain with deterministic time-
dependent intensities. Utility is connected to both consumption in the
various life states and wealth and lump sum bene�ts paid upon transi-
tion between states. Furthermore, utility is scaled by di�erent weights for
consumption depending on time and life state of the person.

The model in Chapter 3 considers a household of multiple economically
and probabilistically dependent person whose aim it is to maximize joint
expected future utility from present consumption throughout their entire
life time. The present state of the household (who is alive and who is not?)
is modeled by a Markov process, Z, which determines the weight on utility
from consumption as well as the mortality intensities of living household
members. Considering a market where �nancial investing is exclusively
in standard Black-Scholes vehicles (bond and stock) and life insurance is
continuously paid for by a natural premium intensity, µ∗, the household
faces the optimization criteria

supE
(∫ ∞

0

∑
j∈{0,1}n

1{Zs=j}u
j(s, cs)ds

)
. (1.1)

The optimization is subject to wealth dynamics

dXt = (r + πt(α− r))Xtdt+ πtσXtdWt

+ aZtt dt− ctdt+
∑
j∈Zt−

Sjt dM
∗Zt−j
t , (1.2)

X0 = x0, (1.3)
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whereM∗ is the compensated counting process related to Z and the inten-
sity µ∗. Supremum is taken over life insurance sums on each individual, S,
proportion of wealth invested in the stock, π, and consumption, c, and a is
the time and state dependent income intensity of the household. We allow
for purchase of negative life insurance and interprets this as purchase of
life annuities.2

The optimal controls for the problem (1.1)-(1.3) is found in Chapter 3
for households consisting of n members, n ∈ N. Due to the structure of
the model we arrive at these controls by means of mathematical induction
techniques. The model allows for analytical solutions of all controls, which
permits simple comparison across individual household members. E�ects
of heterogeneity within a household is considered in Chapter 3 for the
special case of a two-person household, inspired by the middle aged married
couple with grown-up children. The following four cases are speci�cally
investigated, focusing on the over time e�ects on optimal controls and the
related wealth:

• Di�erent labor income of household members until retirement
• Di�erent needs for consumption in widowhood
• Di�erent mortality intensities in widowhood
• No di�erence between household members

The result of the analysis in Chapter 3 is that any of the di�erences among
spouses leads to di�erence in the optimal life insurance sums. For the case
of di�erence in labor income, the life insurance sums, though, coincide
in retirement, a natural result since life insurance is bought to protect
the household against loss of income upon death of a household member.
When needs for consumption in widowhood is di�erent, life insurance sums
di�er since an unequal amount of capital is required upon death of the
spouse in order to �nance consumption in widowhood. The case of di�erent
mortality intensities in widowhood leads to di�erent life insurance sums
due to di�erent life expectancy upon death of the spouse; if you expect
to live longer, you expect a longer period of time for consumption and
thereby require more capital.

In the search for the optimal pension product, the model in Chapter 3

2The model is more carefully explained in Chapter 3.
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learns us, that dependency within a household plays a major role in the
design. This holds in particular for the determination of the date from
which on the purchase of life insurance is substituted by purchase of life
annuities. A date, which most likely is di�erent for the two household
members.

For the work in chapters 2 and 3, a standard power utility function is used
for the measurement of utility from consumption at any time. The focus
in these chapters is on the internal preferences within a household and tax
e�ects on these preferences and the optimal decisions made. The power
utility function has only one parameter that covers both relative risk aver-
sion and elasticity in intertemporal substitution and as we saw, using a
time-additive optimization criteria leads to optimal investment and con-
sumption that is proportional to wealth. Especially the proportional con-
sumption is in contradiction with empirical studies, �rstly pointed out in
the consumption smoothing puzzle of Hansen and Singleton (1983). Chap-
ters 4 and 5 presents optimization criteria that allow for more �exibility
in the modeling of utility from consumption.

1.4 Forward and Backward Looking Preferences

The preference structure of Merton's original model for optimal investment
and consumption is over the years generalized in certain ways. The papers
Epstein and Zin (1989), Du�e and Epstein (1992a,b), Kraft and Seifried
(2010) and Kraft et al. (2012) all consider over-time dependency in prefer-
ences in a continuous-time setup. They do so by use of recursive utility, i.e.
by letting utility of present consumption depend on the certainty equivalent
of expected future utility from consumption. The recursive utility mod-
eling allows for separation of risk aversion and elasticity of intertemporal
substitution in the utility measurement. This separation is also achieved
in Ste�ensen (2011), where he considers consistency issues in a non-linear
optimization criteria involving utility of future consumption.

While recursive utility is forward looking, the papers Sundaresan (1989),
Abel (1990), Constantinides (1990) and Munk (2008) introduce backward
looking preferences in the form of habit formation. The idea is that the

8



utility you experience from present consumption depends on your own (or
a reference groups) previous consumption.

Most literature on continuous-time utility optimization with habit forma-
tion models the present habit levels as accumulated (properly discounted)
past consumption. This modeling has the undesired feature that a unit
increase in present consumption raises the habit stock by one unit but only
raises intertemporal utility by the value of felicity, i.e. there is no dimin-
ishing marginal in habit as there is in utility. For this reason, our habit
modeling in Chapter 4 is inspired by the modeling in Toche (2005), as he
models the present habit level as accumulated discounted past utility from
consumption.

The model in Chapter 4 incorporates both forward and backward looking
preferences, i.e. both recursive utility and habit formation. For the utility
measurement we choose again a power utility function, where we, due to
the recursive utility modeling, can separate relative risk aversion and elas-
ticity of intertemporal substitution. The habit level at time t is calculated
as

ht =

(∫ t

0
e−
∫ t
s Bdτ

(
A
u(cs, Vs)

θVs
ds+ dε0(s)

)) 1
1−φ

,

where εt(·) = 1{t≤·} and u(c, V ) is the forward looking recursive utility
functional measuring utility from consumption. We think of the outer
transformation, taking everything to the power 1

1−φ , as a certainty equiva-
lent with respect to elasticity of intertemporal substitution. The habit level
is incorporated in the utility functional in a multiplicative form, such that
power utility is derived from the consumption to habit level ratio3.

The model allows for analytical solutions regarding optimal consumption
and investment. The solutions show remarkably conformity with the solu-
tions of Merton (1969, 1971), allowing for easy identi�cation of the e�ects
of including the forward and backward looking preferences. Highlights of
the solution's features include

• Investment in the risky asset and consumption is proportional to
wealth as in Merton's original work

3Further details are provided in Chapter 4.
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• The investment proportion is constant and equals the Merton's con-
stant
• The consumption-to-wealth ratio is calculated based on an annuity
that includes parameters connected to both the forward and back-
ward looking part of the utility functional
• Optimal investment and consumption is both in�nite variation pro-
cesses in time, as in Merton's original work and the models in chap-
ters 2 and 3.

The similarity with the classical results of Merton (1969, 1971) allows for
simple comparison of results of results. The elasticity of intertemporal sub-
stitution in�uence consumption behavior as in Kraft et al. (2012) and Stef-
fensen (2011), who consider the analog problem without habit formation.
The inclusion of multiplicative habit driven by past utility adds a param-
eter of persistency to the optimal consumption, such that increased per-
sistency in the habit formation decreases immediate consumption.

The in�nite variation feature of the optimal control processes is classic in
time-additive optimal investment and consumption problems. This charac-
teristic arises since the consumer in his attempt to maximize time-additive
utility, equals expected marginal utility at all future time-points. In or-
der to do this, he continuously adjusts consumption as a reaction to any
non-deterministic investment return. As noted above, the relative volatile
consumption pattern that comes from the optimal consumption strategy
contradicts empirical consumption data, see Hansen and Singleton (1983).
The modeling in Chapter 5 targets this extreme consumption behavior and
presents a model that allows for a smoother consumption patterns.

1.5 Further Consumption Smoothing

The model in Chapter 5 builds, as the model in Chapter 4, on the intertem-
poral relationship in life-time consumption. Where Chapter 4 follows the
more traditional approach of incorporating the dependency in the pref-
erence structure, Chapter 5 deviates and models dependency directly in
consumption dynamics.
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The concern of the model is to explain annuity demands of retirees, where
the majority purchases annuities of �xed of smooth bene�ts rather than
pure Unit-Link annuities. The optimal consumption derived in either of the
models in chapters 2-4 possesses short term variance in the sense that

dc∗t = c∗t (A(t)dt+B(t)σdWt), c
∗
0 = c0,

where A and B are deterministic functions, σ is volatility of the risky
investment andW the Brownian motion driving the risky investment. This
result also holds for the models in Merton (1969, 1971) and Richard (1975).
To replicate the optimal consumption stream by an annuity bene�t, the
solution is in all cases to purchase a continuous-time version of a pure Unit-
Link annuity. This product has the feature that bene�ts are instantly
determined as present capital invested divided by a deterministic time
dependent function. Furthermore, the optimal investment strategies that
we derive in chapters 2-4 are consistent with the more common life cycle
investment strategies that normally comes with Unit-Link products.

In Chapter 5, we propose a model where consumers are only concerned
with drift and variance in consumption and minimizes deviation in actual
consumption away from a prespeci�ed target. Short term variation in
consumption, in the sense explained above, it not allowed in the model,
meaning that we insist on

dct = atdt, c0 > 0,

where c is the instant consumption rate and a is a feed back control process
for the problem. The optimization criterion imposed in the model punishes
quadratic variation of consumption away from a prespeci�ed target as well
as deviation in terminal wealth away from a �xed proportion of terminal
consumption. The particular model is motivated by a retiree whose desire
it is to consume his savings in a smooth manner before his life ends. We
are especially focusing on the case where a positive trend in consumption is
asked for, a trend that can not immediately be �nanced by present wealth
and risk-free investment.

This particular modeling incorporates a habit formation directly in con-
sumption dynamics, since the consumption of tomorrow is highly depen-
dent on the consumption of today. The optimal adjustment of consump-
tion, a, that we derive in Chapter 5 has the features, that
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• it is linear in the di�erence between present wealth and the present
value of preferred future consumption
• it balances the desire for meeting short term consumption needs and
a terminal wealth target
• an attractive investment market attenuates undesired consumption
adjustments

Since the model allows for an analytical solution, the above features are
directly observable in the optimal control.

The optimal investment strategy derived for the model dictates a CPPI
strategy in the sense that risky investments are linear in capital in ex-
cess of the present value of preferred future consumption. Especially, risky
investment is zero when the present capital equals the present value of pre-
ferred future consumption. The proportionally constant is again Merton's
constant and cause positive risky investments when present capital cannot
�nance preferred future consumption by investment in bonds alone.

In the remaining part of Chapter 5, the optimal consumption and invest-
ment strategies are compared to the bene�t stream and investment pro�les
of a speci�c annuity product, Tidspension. Tidspension is a product in the
class of formula based smoothed investment-linked annuities. The core
concept of Tidspension is that investment returns are smoothed over time,
such that volatile investment returns not immediately in�uence annuity
bene�ts.

The comparison shows that the bene�t structure of Tidspension �ts the
optimal consumption stream demanded in the optimization problem. For
the case of no risky investments, we �nd that a constant factor in the
original formulation of Tidspension must be replaced by a time-dependent
deterministic function for a perfect �t. A numerical study of the actual
product shows that the di�erence in bene�ts and demanded consumption
is minor for reasonable preference parameters. Tidspension's bene�ts are
not smoothed enough in the beginning but too much towards the end of
the annuitization period.

When risky investments are included in the comparison, we �nd that one
more technical modi�cation of Tidspension is needed in order for bene-
�ts and optimal consumption to match. The structure of Tidspension is
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preserved but one more constant parameter must be replaced by a deter-
ministic time-dependent function in order for the match of bene�ts and
consumption to be perfect.

The models in chapters 2-4 lead to optimal consumption streams that pos-
sess the characteristics of pure Unit-Link annuities whereas the model in
Chapter 5 leads to consumption dynamics in the form of Tidspension's.
All models are in continuous-time leading to demand for continuous-time
annuities, whereas the typical annuity is a discrete-time product where
bene�ts are annually adjusted. Still, in discrete-time versions, the two
types of annuities are very di�erent products. Chapter 6 presents a com-
parison of two discrete-time pure Unit-Link annuities and a discrete-time
Tidspension annuity.

1.6 Annuity Products and Stability in Bene�ts

An annuity is a �nancial product that provides a stream of bene�ts paid for
at initiation of the contract by a lump sum. The variety of annuities range
from �xed annuities to pure Unit-Link annuities; �xed annuities provide
�xed bene�t streams, pure Unit-Link annuities provide bene�t streams
perfectly linked to the investment returns of an underlying portfolio. In
between these two products, with pro�ts annuities, Unit-Link annuities
with guarantees and Tidspension annuities are more moderate types of
annuities.

In Chapter 6, we present a simulation study, where we simulate a �nancial
model in order to compare two di�erent pure Unit-Link annuities with
a Tidspension annuity. The three annuities fundamentally di�er in their
exposure to investment risk and their bene�t pro�les (how much of the
cash balance is paid out at di�erent points in time). The Tidspension
annuity also has a build-in mechanism that smoothens investment returns
over time. The analysis presented in Chapter 6 answers, to some extent,
the following questions:

• How does the expected bene�t stream relate to the investment and
bene�t pro�les?
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• What is the e�ect on bene�ts of the Tidspension smoothing mecha-
nism?
• How does the products perform in a �nancial crisis investment mar-
ket?

The focus in Chapter 6 is in the �rst place on annual investment returns,
changes in bene�ts and variability in these quantities. As expected, more
risk taking in investment provides a larger expected return and higher
standard deviation which passes on to the annual adjustment of bene�ts.
The smoothing mechanism of Tidspension ensures that standard deviation
in annual bene�t adjustments is signi�cantly lowered compared to the
Unit-Link products, despite of more risk taking in investments. On the
other hand, the risk taking in investment is equally paid for in all three
products in the sense that accumulated bene�ts vary perfectly with risk
exposure.

Also in a �nancial crisis situation, the smoothing mechanism of Tidspen-
sion stabilizes the year-to-year development in bene�ts compared to the
Unit-Link products. Due to the monthly smoothing of returns, while only
annual adjustment of bene�ts, the timing of �nancial losses proves im-
portant for Tidspension, whereas it is irrelevant for Unit-Link annuities.
Having the bene�ts adjusted just after a major �nancial loss, the full blow
is taken on Unit-Link annuity bene�ts, while as little as 1.84% of the loss
a�ects the following bene�t adjustment in Tidspension. The smoothing
mechanism, though, ensures that the full loss e�ect is only smoothed over
the coming years, not avoided.

The analysis in Chapter 6 does not consider the underlying preferences that
customers could have for either of the products. As already pinned out,
the modeling in chapters 2-4 lead to optimal consumption streams that
possess the characteristics of pure Unit-Link annuities and the model in
Chapter 5 leads to a consumption pattern best served for by a Tidspension-
like annuity. Chapter 6 illustrates the characteristics of the two types of
products as a demonstration of the consequence of going with one annuity
over the other. We dare not say one product is better than the other, only
that they serve di�erent household demands.

Preferences are very diverse among households and a great variety of an-
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nuities serves di�erent needs. De�nitely, the more �exibility incorporated
in the annuity, the more preferences are covered.
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2. Consumption, Investment and

Life Insurance under Di�erent Tax

Regimes

Kenneth Bruhn, Annals of Actuarial Science, available at http://journals.

cambridge.org/action/displayAbstract?fromPage=online&aid=8771898 .

AbstractWe study the e�ects of introducing taxation in classical
continuous-time optimization problems with utility from consump-
tion, bequest and retirement savings. Inspired by actual tax favoured
retirement savings programs, we formulate and solve the optimiza-
tion problem for various tax regimes, and compare tax e�ects on
consumption/savings contributions, investment and purchase of life
insurance under the regimes. The optimization problems have ana-
lytical solutions, which allow for easy comparison of tax e�ects under
the di�erent regimes. To substantiate the results we also present a
numerical analysis of the results based on realistic parameter values
and regimes. Based on American and Danish tax regimes we esti-
mate the values of existing retirement saving favouring to be 1 − 2
percent of lifetime income.

Keywords Personal �nance; Stochastic control; Power utility;

Linear taxation

2.1 Introduction

Increasing human life time has put great pressure on public old age pen-
sion systems in many countries. Governments face a challenge of inspiring
citizens to save for retirement, thereby reducing longevity issues for the
national economies. As a consequence, economically attractive retirement
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savings programs have been introduced. The most characteristic features
of these programs are (1) reduced investment return tax on retirement
savings and (2) exempt labour income tax on contributions to retirement
savings, where bene�ts are subsequently taxed at a lower tax rate. The lat-
ter feature is often criticized for favouring people with high labour income
(due to progressive income taxation, see Gale et al., 2006), and for being
excessively costly for governments (costs for various OECD countries are
estimated in Antolín et al., 2004, Yoo and de Serres, 2004 and Caminada
and Goudswaard, 2004). For these reasons, substituting tax exempt con-
tributions with bonuses on contributions is proposed in Gale et al. (2006),
and tax regimes with this feature are now introduced (e.g. the German
Riester scheme has this feature, see Börsch-Supan et al., 2008 and Corneo
et al., 2008).

Tax treatment of life insurance comes in several varieties. Even within
a country there are di�erent schemes allowing for di�erent tax treatment
of premiums and bene�ts (sum paid out upon death). In general, pre-
miums are either paid by income-taxed money and bene�ts are tax free,
or premiums are exempt from labour income tax and the bene�ts taxed.
For the latter case, the bene�ts taxation is typically done by a tax rate
that depends on the income of the inheritor, which potentially leads to
tax favouring or even disfavouring of life insurance. Several studies of the
relation between bequest motives, tax incentives and life insurance pur-
chase has been carried out, this list is not complete: Sauter et al. (2010)
provide a study of tax incentives and bequest motives on demand for life
insurance, based on data from Germany. Sweeting (2009) investigates the
tax treatment of pensions and saving incentives in the UK. Jappelli and
Pistaferri (2003) analyze data on the tax treatment of life insurance and
the introduction of incentives for life insurance in Italy. Finally, Bernheim
(1991) presents empirical evidence that savings are motivated by a desire
to leave bequests.

In this paper we consider a model for decision of optimal consumption,
investment and life insurance purchase for an individual that is subject to
di�erent tax regimes. The model is based on Richard (1975), who consid-
ers the same problem without taxation1. For the numerical investigation

1As is done in Pliska and Ye (2007), we consider the case where the life time is

18



performed here, we parameterize our model in terms of a household model
in the notion of Bruhn and Ste�ensen (2011). They develop a model for
optimal consumption, investment and life insurance purchase for a general
household consisting of multiple members. A similar model is developed
in Huang and Milevsky (2008) for a two-person household with stochastic
income, and Kwak et al. (2011) for parents with children, with separate
risk preferences of parents and children.

Compared to Richard (1975), our model extensions addresses the intro-
duction of relevant taxes and tax regimes. The taxes introduced are on
consumption, investment returns, labour income, retirement bene�ts (with
a related tax exemption of contributions) and life insurance (with a related
tax deduction on premiums)2. We model taxation of investment returns
as symmetric non-progressive mark-to-market. In general, non-progressive
mark-to-market taxation of investment returns is the most common for
retirement savings with reduced investment return taxation. For non-
favoured savings, most countries have deferred capital gains taxation, but
we omit this feature in our models3. The symmetric assumption on the
tax on investment returns is not entirely realistic. In reality, most coun-
tries do not o�er an immediate tax refund of capital losses. Instead they
allow for building of a negative tax reserve that is later deductible from
tax on capital gains. We make the simplifying assumption of symmetric
taxation of investment returns in order to allow for tractable analytical
solutions.

The contribution of this paper is the following: We formulate and solve
the problem of optimal consumption, investment and purchase of life insur-
ance under two di�erent tax regimes, (1) immediate taxation of all labour
income and bonus on savings contributions and (2) tax exempted contribu-
tions to retirement savings. When bonuses are set equal to zero, the �rst

random and unbounded, whereas Richard (1975) has a bounded distribution of life
time.

2Any tax/tax exemption arising from housing costs and mortgage are omitted in the
modeling in this paper, and we refer to Amromin et al. (2007) for comments on that.

3The papers of Dammon et al. (n.d.), Seifried (2010) and Kraft et al. (2010) among
others investigate deferred capital gains taxation and Kraft et al. (2010) estimates the
utility loss from assuming mark-to-market taxes instead of deferred taxes in investment
decisions is at most 0.5% of present �nancial wealth and life time income.

19



regime also serves as a non-favoured regime. The optimization problem
has explicit solutions for both regimes, which allows for explicit analysis of
the tax e�ects on the optimal controls in both cases. For realistic param-
eterizations of the model (where taxes are inspired by the US and Danish
tax rates), we �nd the tax rates which make an 'average' person/household
indi�erent between saving under the di�erent regimes. We further investi-
gate the expected optimal behaviour of the person over time under these
indi�erence-regimes. Finally, we compute the expected present value of
future tax incomes and expenditures for a government under the di�erent
regimes.

This paper proceeds as follows: In Section 2.2 we present and solve the
classical optimization problem originally presented in Richard (1975). In
Section 2.3 we present the two di�erent tax regimes and solve the optimiza-
tion problems related to them, and in Section 2.4 we present a numerical
investigation of the results. The numerical investigation considers the val-
ues of di�erent tax regimes (both for the person/household facing the opti-
mization problem and for the tax authorities), and the expected behaviour
of the person/household under these regimes. Section 2.5 concludes.

2.2 Classical Results

In this section we reproduce the classical results on optimal consumption,
investment and purchase of life insurance. We need these results for com-
parison of tax e�ects in Section 2.3.

Classical continuous time utility optimization is formalized in Richard
(1975) as the problem of optimizing expected future utility. The util-
ity stems from consumption, bequest and a terminal utility from having
wealth left at a speci�ed future point in time. Here we think of this point
in time as the time of the optimizer's retirement.

For a mathematical formulation of the problem we let

N = (Nt)t≥0,

be the indicator process for the person being alive. Thereby N takes values
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in {0, 1}, such that Nt = 0 corresponds to the person being alive at time
t and Nt = 1 corresponds to the person being dead.

The person has access to an investment market and a life insurance market.
We model a Black-Scholes investment market that consists of a risk free
asset, Z1, and a risky asset, Z2, with dynamics

dZ1
t = rZ1

t dt, Z
1
0 = z1 > 0,

dZ2
t = αZ2

t dt+ σZ2
t dWt, Z

2
0 = z2 > 0,

whereW is a standard Brownian motion. The results that we derive in this
paper can be generalized to more advanced investment market models4.
Since we are mainly concerned with the savings/consumption behaviour
of the person, this simple market is su�cient for our analysis.

The processesN andW are assumed to be independent. We de�ne them on
the measurable space (Ω,F), where F is the natural �ltration of (N,W ).
On (Ω,F) we de�ne the equivalent probability measures P and P∗. We
refer to P as the objective measure and P∗ as the pricing measure. The
pricing measure is used for pricing both market risk (W ) and life insurance
risk (N) by the insurance company.

As in e.g. Richard (1975), Bruhn and Ste�ensen (2011) among others, we
assume that N has intensity µ under P and µ∗ under P∗, and refer to them
as the objective mortality intensity and the pricing intensity.

In the life insurance market the person buys life insurance with a sum
insured at time t, St, and for that coverage he pays premium at the rate
µ∗tSt, where µ

∗ is the natural premium intensity decided by the life insur-
ance company. Any premium loading that the company demands to cover
general expenses for the contract is included in the pricing intensity.

Based on the introduced investment and life insurance market, the wealth

4In general, complete markets are needed in order to obtain analytical solutions
to the optimization problems in this paper. Stochastic interest rate, stochastic excess-
return on the stock etc. are straight forward generalizations of the model, see e.g. Munk
et al. (2004)
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process, X, follows the dynamics

dXt = rXtdt+ πt(α− r)Xtdt+ πtσXtdWt

+ atdt− ctdt− µ∗tStdt+ StdNt,
(2.1)

X0 = x0, (2.2)

where a is the rate of income, c is the rate of consumption and π is the
proportion of wealth invested in the risky asset. The fraction of income
that is not immediately consumed, a − c, is the savings premium of the
person, which is paid into a savings account in a �nancial institution. The
life insurance sum, S, is continuously adjustable and paid for by a natu-
ral premium intensity. The premium is paid out of the savings account,
and we note that this savings vehicle replicates a Variable Universal Life
Insurance5. This type of contract is widely sold in the US and in many
European countries, though under di�erent names.

Given the dynamics of the wealth process, X, the classical utility opti-
mization problem is mathematically formulated as

sup
c,π,S

E0,x0

(∫ T

0
1{Ns−=0}

[
u(s, cs)ds+ U(s,Xs + Ss)dNs

+ Ũ(s,Xs)dεT (s)
])

= sup
c,π,S

E0,x0

(∫ T

0
e−
∫ s
0 µτdτ

[
(u(s, cs) + µsU(s,Xs + Ss)) ds

+ Ũ(s,Xs)dεT (s)
])
,

where εT (·) = 1{T≤·} and Et,x is the conditional expectation under P,
given that the person is alive at time t and holds wealth Xt = x. The

5Instead of saying that the insurance premium is paid out of the savings account,
we could say that it is paid out of the savings premium. Thereby at − ct − µ∗tSt is the
savings premium and µ∗tSt is the insurance premium paid out of the salary at. The
wealth dynamics are identical under both interpretations, and we choose the �rst for
simpler introduction of tax exempted premiums in Section 2.3.
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functions u, U and Ũ denote utility of consumption, bequest and terminal
wealth.

For the remainder of this paper we work with power utility with determin-
istic and time dependent weights. This type of utility is characterized by a
constant relative risk aversion, which in our parametrization is 1− γ, and
constant elasticity of intertemporal substitution (EIS) which is (1− γ)−1.
We parameterize the utility functions as

u(t, c) = 1
γw

1−γ(t)cγ ,

U(t, x) = 1
γF

1−γ(t)(x+G(t))γ ,

Ũ(t, x) = 1
γ F̃

1−γ(t)(x+ G̃(t))γ ,

with γ ∈ (−∞, 1]\{0}, t ≥ 0 and w, F , F̃ , G and G̃ being the deterministic
time dependent weights. The case γ = 0 corresponds to logarithmic utility
since limγ→0(cγ − 1)/γ = ln(c). This particular case of unit relative risk
aversion and EIS will not be dealt with explicitly in this paper6.

The form of the utility functions regarding bequest and retirement sav-
ings, U and Ũ , is highly inspired by the results of Bruhn and Ste�ensen
(2011). For now we think of G and G̃ as measuring a �nancial value of
future expected income of the inheritor and a �nancial value of public re-
tirement payments for the person. The functions w, F and F̃ represent
the individual's relative weights for the three di�erent sources of utility
(consumption, bequest and retirement savings). Note, that since F and
G are deterministic functions, they can not capture a sudden change in
the bequest motive at a future point in time, e.g. in case of death of the
inheritor. We disregard this possibility in the models, as it is common in
related literature. For a model with possible early death of the inheritor
(spouse) see Bruhn and Ste�ensen (2011).

Based on the power utility functions, the optimal value function for the

6The optimal controls we derive in the following for γ ∈ (−∞, 1] \ {0} are in general
also valid for γ = 0, even though the derivation for γ = 0 is di�erent.
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classical optimization problem is

V (t, x) = sup
c,π,S

Et,x

(∫ T

t
e−
∫ s
t µτdτ

[(
1
γw

1−γ(s)cγs

+ µs
1
γF

1−γ(s)(Xs +G(s) + Ss)
γ
)
ds

+ 1
γ F̃

1−γ(s)(Xs + G̃(s))γdεT (s)
])
,

(2.3)

where X follows the dynamics (2.1)-(2.2). We solve this stochastic opti-
mization problems via the Hamilton-Jacobi-Bellman (HJB) equation. For
the problem described by (2.1)-(2.3), the HJB-equation is

Vt + sup
c,π,S

[
1
γw

1−γcγ + µ( 1
γF

1−γ (x+G+ S)γ − V )

+
[
rx+ π(α− r)x+ a− c− µ∗S

]
Vx + 1

2π
2σ2x2Vxx

]
= 0,

V (T, x) = 1
γ F̃

1−γ(T )(x+ G̃(T ))γ .

The problem is solved in e.g. Richard (1975), and in our parametrization
the solution is

V (t, x) = 1
γ f

1−γ(t)(x+ g(t))γ ,

where

f(t) =

∫ T

t
e
− 1

1−γ
∫ s
t µτ−γ(µ∗τ+ϕ)dτ

+ [(w(s) +

(
µs
µ∗γs

) 1
1−γ

F (s))ds+ F̃ (T )dεT (s)],

g(t) =

∫ T

t
e−
∫ s
t r+µ

∗
τdτ [(as + µ∗sG(s))ds+ G̃(T )dεT (s)],

with

ϕ = r +
(α− r)2

2σ2(1− γ)
. (2.4)
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As in Kraft and Ste�ensen (2008) we introduce the mortality intensity

µ′ =

(
µ

µ∗γ

) 1
1−γ

,

and the adjusted interest rate

r′ = − 1
1−γ (µ− γ(µ∗ + ϕ))− µ′.

Letting N have intensity µ′ under the probability measure P′, f and g have
the following Feynman-Kač representations:

f(t) = E′
(∫ T

t
e−
∫ s
t r
′
τdτ1{Ns−=0}

+ [w(s)ds+ F (s)dNs + F̃ (s)dεT (s)]
∣∣∣Nt = 0

)
,

g(t) = E∗
(∫ T

t
e−
∫ s
t rτdτ1{Ns−=0}

+ [a(s)ds+G(s)dNs + G̃(s)dεT (s)]
∣∣∣Nt = 0

)
.

We see that f has the interpretation of an expected present value of the
future utility weights. Similarly, g is expected present value of future
labour income and public pension for the person, where it also, through
G, takes into account the human wealth of the inheritor. We refer to g
as the human wealth of the person and x + g as the total wealth of the
person.

Optimal Controls

The optimal controls in this classical model without taxes (see also Richard,
1975, Kraft and Ste�ensen, 2008 among others) are

c∗t =
w(t)

f(t)
(Xt + g(t)), (2.5)

π∗t =
α− r

σ2(1− γ)

Xt + g(t)

Xt
, (2.6)

S∗t =

(
µt
µ∗t

) 1
1−γ F (t)

f(t)
(Xt + g(t))− (Xt +G(t)). (2.7)
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Based on the interpretations of f and g, the optimal controls have the
following interpretations: The consumption is a fraction of the total wealth
of the person, where the fraction is the weight for immediate consumption
relative to expected present value of future utility weights. The investment
strategy dictates that a constant fraction of total wealth relative to present
wealth must be invested in the risky asset, and the optimal life insurance
sum is found from weighting human wealth of the person relative to human
wealth of the inheritor.

2.3 Models with Taxes

In this section we present the two models including tax, and solve the
related optimization problems. Furthermore we comment on tax e�ects on
the optimal controls.

Taxes

We restrict our modelling to constant relative taxes. Thus, the relation
between gross (before tax) values and net (after tax) values are ā(1−τ) = a,
where τ is the proportional tax rate, ā the gross value and a the net value.
As a general rule, gross values are represented by barred variables, while
the corresponding net values are without bars.

In general we introduce the following tax parameters:

• τC for the consumption tax (VAT and other consumption taxes)
• τL for the labour income tax
• τB for the retirement bene�ts tax (when contributions are tax ex-
empted)
• τI for the tax deduction on life insurance premium
• τD for the tax paid on the life insurance sum upon death
• τ1 for the tax on return from the risk free asset
• τ2 for the tax on return from the risky asset
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2.3.1 Immediate Labour Income Taxation with Bonus on

Contributions

First we focus on the situation where all labour income is taxed immedi-
ately at pay-day, and a proportional bonus is added to the savings contri-
butions. We assume that bene�ts from retirement savings are not subject
to any tax, and that investment returns are taxed immediately upon real-
ization, regardless of whether they are positive or negative.

In this case the wealth, X, follows the dynamics

dXt = r̄(1− τ1)Xtdt+ πt(ᾱ(1− τ2)− r̄(1− τ1))Xtdt+ πtσ̄(1− τ2)XtdWt

+ āt(1− τL)(1 + β)dt− c̄t(1 + β)dt− µ∗t S̄t(1− τI)dt
+ S̄t(1− τD)dNt

= rXtdt+ πt(α− r)Xtdt+ πtσXtdWt

+ at(1 + β)dt− ct
1− τC

(1 + β)dt− µ∗tSt 1−τI
1−τD dt+ StdNt,

(2.8)

X0 = x0. (2.9)

Here ā denotes gross income, c̄ is the gross consumption (before VAT and
other consumption taxes), and S̄ is the gross life insurance sum, while a,
c and S are the corresponding net values. Analogously, r̄, ᾱ and σ̄ are
gross-return parameters of the investment market, and r, α and σ are the
corresponding net values. The proportional bonus received on the savings
contributions is given by β, and the special case β = 0 corresponds to
non-favoured savings.

Under this regime where savings contributions are made after taxation
of all labour income, we assume that no taxation of savings takes place
upon death. The accumulated contributions bonus is in particular not
paid back. Since we model utility from net consumption, c, and the net
life insurance sum, S, the optimal value function for this problem with
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immediate taxation of all labour income is

V λ(t, x) = sup
c,π,S

Et,x

(∫ T

t
e−
∫ s
t µτdτ

[(
1
γw

1−γ(s)cγs

+ µs
1
γF

1−γ(s)((1− τC)(Xs +G(s) + Ss))
γ
)
ds

+ 1
γ F̃

1−γ(s)((1− τC)(Xs + G̃(s)))γdεT (s)
])
.

(2.10)

Here G and G̃ measure the �nancial values of the net future income of
the inheritor and net public pension for the person. Note that utility from
bequest and from retirement savings is adjusted for consumption tax, since
the amounts left for the inheritor and at the time of retirement are (sooner
or later) used for consumption.

The HJB-equation for the problem described by (2.8)-(2.10) is

V λ
t + sup

c,π,S

[
1
γw

1−γcγ + µ( 1
γF

1−γ ((1− τC)(x+G+ S))γ − V λ)

+
[
rx+ π(α− r)x+ a(1 + β)− c

1−τC (1 + β)− µ∗S 1−τI
1−τD

]
V λ
x

+ 1
2π

2σ2x2V λ
xx

]
= 0,

V λ(T, x) = 1
γ F̃

1−γ(T )((1− τC)(x+ G̃(T )))γ ,

which is solved by

V λ(t, x) = 1
γ f

1−γ
λ (t)((1− τC)(x+ gλ(t)))γ , (2.11)
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with

fλ(t) =

∫ T

t
e
− 1

1−γ
∫ s
t µτ−γ(µ̂τ+ϕ)dτ

[(w(s)(1 + β)
− γ

1−γ

+

(
µ

µ̂γ

) 1
1−γ

F (s))ds+ F̃ (T )dεT (s)]

= Eλ
(∫ T

t
e−
∫ s
t r

λ
τ dτ1{Ns−=0}[w(s)(1 + β)

− γ
1−γ ds

+ F (s)dNs + F̃ (s)dεT (s)]
∣∣∣Nt = 0

)
,

gλ(t) =

∫ T

t
e−
∫ s
t r+µ̂τdτ [(as(1 + β) + µ̂sG(s))ds+ G̃(T )dεT (s)]

= Ê
(∫ T

t
e−
∫ s
t rτdτ1{Ns−=0}[as(1 + β)ds+G(s)dNs

+ G̃(s)dεT (s)]
∣∣∣Nt = 0

)
.

Here, ϕ given by (2.4) and

µ̂ = µ∗ 1−τI
1−τD , (2.12)

µλ =

(
µ

µ̂γ

) 1
1−γ

,

rλ = − 1
1−γ (µ− γ(µ̂+ ϕ))− µλ. (2.13)

where for the Feynman-Kač representations, N has intensity µλ under Pλ
and µ̂ under P̂.

The function fλ is an expected value of the future utility weights. The
function gλ is expected present value of future net labour income including
bonus and public pension for the person, where it also takes into account
the human wealth of the inheritor. The expected values are calculated
under di�erent measures compared to the classical case, due to the fact
that the pricing mortality intensity µ∗ is tilted with the tax/tax deduction
on life insurance/life insurance premium.

The bonus parameters in�uence the person's willingness to postpone con-
sumption from the savings period to the retirement period, by changing the
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marginal utility of gross consumption until retirement. In fλ, the bonus
parameter therefore only a�ects the weight on the person's utility from
consumption, w, relative to the weight on bequest and retirement savings.
For a more risk averse person (low EIS), γ < 0, the weight on consumption
is increasing in β, and vice versa for a less risk averse person (high EIS).
The human capital, gλ, is increasing in β and the contribution to human
capital from income increases relative to the contribution from the two
other sources (human capital of the inheritor and public pension).

Contributions to the savings account are made after labour income tax is
paid, so that the present wealth, x, can be thought of as a net value. Since
gλ measures the net human capital (expected value of future net income
including bonus), we refer to x+ gλ as net total wealth.

Optimal Controls

The optimal controls are

c∗t =
w(t)

fλ(t)

1− τC

(1 + β)
1

1−γ
(Xt + gλ(t)),

π∗t =
α− r

σ2(1− γ)

Xt + gλ(t)

Xt
=
ᾱ(1− τ2)− r̄(1− τ1)

σ̄2(1− τ2)2(1− γ)

Xt + gλ(t)

Xt
,

S∗t =

(
µt
µ̂t

) 1
1−γ F (t)

fλ(t)
(Xt + gλ(t))− (Xt +G(t)).

The optimal consumption, c∗, is the only control involving the consumption
tax, τC , and it is linear in it. Especially we �nd that the optimal gross
consumption

c̄∗t =
c∗t

1− τC
=
w(t)

fλ(t)

Xt + gλ(t)

(1 + β)
1

1−γ
,

is independent of the consumption tax, which in particular means that
the optimal savings ratio is independent of the consumption tax. Taxes
relating to the investment and life insurance market a�ect the values of fλ
and gλ and thus in�uence both gross and net consumption.
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The optimal investment proportion and net life insurance sum have the
same form as in the classical case, except that all investment and life
insurance market parameters are tilted with their corresponding taxes.
The investment proportion is calculated as a constant fraction of net to-
tal wealth relative to net present wealth, and the tax parameter for the
returns on the risky asset, τ2, is squared in the nominator of the fraction.
The amount invested in the risky asset is therefore highly dependent on
the investment return taxes, and especially on τ2, such that higher in-
vestment return taxes lead to more risky investments. Since the human
capital is increasing in β, a higher proportional bonus leads to more risky
investments.

The net life insurance sum is found by weighting net human capital of
the person against net human capital of the inheritor. The weighting
explicitly takes the taxes and tax deductions related to life insurance into
account.

2.3.2 Deferred Labour Income Taxation of Contributions

For the optimization problem under this second tax regime, we assume that
contributions to retirement savings are exempt from immediate labour in-
come taxation. Instead, bene�ts are subject to taxation upon withdrawal.
Beside this change, the person is subject to the same taxes as under the
previous regime.

Until retirement, the person's savings evolve according to the dynam-
ics

dXt = r̄(1− τ1)Xtdt+ πt(ᾱ(1− τ2)− r̄(1− τ1))Xtdt+ πtσ̄(1− τ2)XtdWt

+ ātdt− c̄t
1−τLdt− µ

∗
t S̄t

1−τI
1−τLdt+ S̄t(1− τD)dNt

= rXtdt+ πt(α− r)Xtdt+ πtσXtdWt

+ ātdt− ct
(1−τL)(1−τC)dt− µ

∗
t

St
1−τD

1−τI
1−τLdt+ StdNt,

(2.14)

X0 = x0. (2.15)

Note that the life insurance premium is paid out of the savings account,
where contributions are exempt from labour income tax. Therefore the life
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insurance premium is subject to labour income tax before tax deduction
by τI (an appealing special case is τI = τL).

The optimal value function for this problem concerning retirement saving
with deferred labour income taxation of contributions is

V δ(t, x) = sup
c,π,S

Et,x

(∫ T

t
e−
∫ s
t µτdτ

[(
1
γw

1−γ(s)cγs

+ µs
1
γF

1−γ(s)((1− τC)(Xs(1− τD) +G(s) + Ss))
γ
)
ds

+ 1
γ F̃

1−γ(s)
(

(1− τC)(Xs(1− τB) + G̃(s))
)γ
dεT (s)

])
.

(2.16)

As above G and G̃ measure the �nancial values of the inheritor's expected
net lifetime income and the net public pension payments during retirement
for the person. Compared to the optimization problem under the previous
tax regime, the retirement savings are subject to taxation by τD upon
death of the person or τB upon withdrawal at retirement. This feature
is written directly in the utility from bequest and retirement savings in
(2.16), and that enables us to use the same weight functions, w, F , G, F̃
and G̃, as under the previous regime.

The HJB-equation for the problem described by (2.14)-(2.16) is

V δ
t + sup

c,π,S

[
1
γw

1−γcγ + µ( 1
γF

1−γ ((1− τC)((1− τD)x+G+ S))γ − V δ)

+
[
rx+ π(α− r)x+ ā− c

(1−τL)(1−τC) − µ
∗ S

1−τD
1−τI
1−τL

]
V δ
x

+ 1
2π

2σ2x2V δ
xx

]
= 0,

V δ(T, x) = 1
γF

1−γ(T )
(

(1− τC)((1− τB)x+ G̃(T ))
)γ
,

and the solution to the equation is

V δ(t, x) = 1
γ f

1−γ
δ (t)((1− τC)(1− τL)(x+ gδ(t)))

γ , (2.17)
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where

fδ(t) =

∫ T

t
e
− 1

1−γ
∫ s
t µτ−γ(µ̌τ+ϕ)dτ

[(w(s) +

(
µs
µ̌γs

) 1
1−γ

(
1− τD
1− τL

) γ
1−γ

F (s))ds

+

(
1− τB
1− τL

) γ
1−γ

F̃ (T )dεT (s)]

= Eδ
(∫ T

t
e−
∫ s
t r

δ
τdτ1{Ns−=0}[w(s)ds+

(
1− τD
1− τL

) γ
1−γ

F (s)dNs

+

(
1− τB
1− τL

) γ
1−γ

F̃ (s)dεT (s)]
∣∣∣Nt = 0

)
,

gδ(t) =

∫ T

t
e−
∫ s
t r+µ̌τdτ [(ās + µ̌s

G(s)

1− τD
)ds+

G̃(T )

1− τB
dεT (s)]

= Ě
(∫ T

t
e−
∫ s
t rdτ1{Ns−=0}[ā(s)ds+

G(s)

1− τD
dNs

+
G̃(s)

1− τB
dεT (s)]

∣∣∣Nt = 0
)
.

Here, ϕ is given by (2.4) and

µ̌ = µ∗
1− τI
1− τL

,

µδ =

(
µ

µ̌γ

) 1
1−γ

,

rδ = − 1
1−γ (µ− γ(µ̌+ ϕ))− µδ,

and N has intensity µδ under Pδ and µ̌ under P̌.

The function fδ has the interpretation of an expected present value of
the future utility weights. Compared to the �rst tax regime, the weights
F and F̃ are adjusted by tax quotients. For the weight on bequest, F ,
the adjustment is by a ratio of tax on the life insurance sum relative to
labour income tax. For the weight on retirement savings, F̃ , it is by the
ratio of tax on retirement bene�ts relative to tax on labour income. Both
adjustments also involve γ, such that the e�ect is opposite for high risk
aversion/low EIS, γ < 0, and low risk aversion/high EIS, γ > 0.
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We note that gδ is a measure of gross future income, ā, and that the
functions G and G̃ are 'grossi�ed' to make them comparable in size to
gross income. We refer to gδ as gross human wealth and x + gδ as gross
total wealth of the person.

Optimal Controls

The optimal controls are

c∗t =
w(t)

fδ(t)
(1− τL)(1− τC)(Xt + gδ(t)),

π∗t =
(α− r)
σ2(1− γ)

Xt + gδ(t)

Xt
,

S∗t =

(
µt
µ̂t

) 1
1−γ F (t)

fδ(t)
(1− τL)(Xt + gδ(t))− ((1− τD)Xt +G(t)).

The optimal controls under this regime are in general in the same form
as under the regime with immediate taxation of all labour income. Since
x+ gδ is gross total wealth, the optimal consumption, c∗, and the optimal
life insurance sum, S∗, now directly involve the labour income tax, τL.
Furthermore, the optimal proportion invested in the risky asset is a fraction
of gross total wealth relative to gross wealth. The fraction is the same as
under the �rst tax regime.

2.4 Numerical Analysis

In this section we perform a numerical analysis based on the results derived
in Section 2.3. The parametrization of the models and the parameter
values are presented in Section 2.4.1 and Section 2.4.2, and the results are
presented in Section 2.4.3 and Section 2.4.4.
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2.4.1 Utility Weights

Here we motivate and present the utility weights used in the numerical
analysis. The utility weights for bequest and for pension savings at the
time of retirement are highly inspired by Bruhn and Ste�ensen (2011),
which takes the approach of deciding on the weights by solving the related
optimization problems faced by the inheritor and the retired person.

Utility from Consumption

For the weight on consumption, w, we take the classical approach as to
model a constant rate of impatience that puts more weight on present than
expected future consumption. Since we also want to incorporate constant
in�ation into the numerical calculations, we end up with

w1−γ(t) = e−(ρ+γi)t, t ≥ 0,

where ρ is the impatience factor and i is the in�ation rate.

Utility from Bequest

One obvious way of deciding on utility from bequest is inspired by the
utility that the inheritor experiences from consuming the heritage. If the
inheritor faces a similar optimization problem as the one we are interested
in, except for that the inheritor has no bequest motive (utility from leaving
money upon death is zero), this leads to

F (t) =

∫ ∞
t

e
− 1

1−γ
∫ s
t µτ−γ(µ∗τ+ϕ)dτ

W (s)ds,

G(t) =

∫ ∞
t

e−
∫ s
t (r+µ∗τ )dτ (1{s<T}As + 1{s≥T}Ãs)ds.

HereW is the weight that the optimizer puts on the inheritor's utility from
consumption, A is the net income stream and Ã the net public pension of
the inheritor.

35



In accordance with the weight for the person's own consumption, w, we
write

W 1−γ(t) = θ̄w1−γ(t), t ≥ 0,

where θ̄ is the weight that the person puts on the heir's consumption
relative to his own. If the heir is the spouse of the person, θ may re�ect
aspects such as decreased costs and an expected di�erent consumption
pattern for the widow(er). Since the weight must change the marginal
utility of consumption for the person and the heir, it depends on γ, and
we reparametrize the model such that θ̄ = 1

2θ
γ (this parametrization is also

used in Hong and Ríos-Rull, 2012 and Bruhn and Ste�ensen, 2011).

Utility upon Retirement

Utility from pension savings is based on an optimization problem regarding
the retirement period. We propose these weights for utility at the time of
retirement:

F̃ (T ) =

∫ ∞
T

e
− 1

1−γ
∫ s
T µτ−γ(µ∗τ+ϕ)dτ

[w(s) +

(
µ

µ∗γs

) 1
1−γ

F (s)]ds,

G̃(T ) =

∫ ∞
T

e−
∫ s
T r+µ

∗
τdτ (ãs + µ∗sG(s))ds,

where ã is the net public pension rate. These weights correspond to the
post retirement wealth dynamics

dXt = r̄(1− τ̃1)Xtdt+ πt(ᾱ(1− τ̃2)− r̄(1− τ̃1))Xtdt+ πtσ̄(1− τ̃2)XtdWt

+ ãtdt− ctdt− µ∗tStdt+ StdNt

= rXtdt+ πt(α− r)Xtdt+ πtσXtdWt

+ ãtdt− ctdt− µ∗tStdt+ StdNt,

X0 = x0,
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and the retiree solves the optimization problem given by these dynamics
and the optimal value function

V (t, x) = sup
c,π,S

Et,x

(∫ ∞
t

e−
∫ s
t µτdτ

[
1
γw

1−γ(s)cγs

+ µs
1
γF

1−γ(s)(Xs +G(s) + Ss)
γ
]
ds

)
.

Note that the optimal controls related to this problem is given by (2.5)-
(2.7) with f and g substituted by F̃ and G̃.

We have deliberately avoided tax parameters on public pension and life
insurance after retirement, since these taxes are not considered in our nu-
merical analysis. Furthermore the tax on consumption after retirement is
taken care of in the utility functions in (2.10) and (2.16). In the case of
tax exempt contributions to retirement savings, the taxation of bene�ts
is also taken care of in the utility function in (2.16). Thereby this for-
mulation of utility from retirement savings is meaningful under both tax
regimes.

The parameters τ̃1 and τ̃2 are the tax rates on investment returns from
risk free and risky investments. We equip the parameters with tildes to
highlight that they might be di�erent from those faced until retirement.
This is especially the case with reduced investment return taxation until
retirement and a lump sum bene�t.

Household Finance Interpretation

All models so far are presented in terms of personal �nance, taking into
account the behaviour of one single person. The models, though, are easily
generalized to cover an optimization problem for married couples that �le
their tax reports jointly.

In order for the optimization problems to be household �nance related
(a married couple), interpretations of some model elements are slightly
changed. The wealth process is the total wealth of the household, the
income stream, ā, is the total gross labour income of the married couple,
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and A the net income stream of the widow(er) after death of the spouse.
Also ã is the net public pension of the couple and Ã is the net public
pension of the widow(er). Thereby the functions gλ and gδ quantify the
household's human wealth.

The intensities µ and µ∗ are the intensities by which one of the spouses
dies, except for those used in F and G which represent the intensities by
which the widow(er) dies. Therefore it seems reasonable to expect that
the intensities used in the household optimization problem are two times
the intensities used in F and G. All in all this means that the optimal life
insurance sum is the amount paid out to the widow(er) upon death of the
spouse, which means that identical amounts of life insurance is bought on
both lives.

In general this way of introducing a household model denies us the possibil-
ity of imposing di�erences on the spouses. For a model with this possibility
see Bruhn and Ste�ensen (2011).

2.4.2 Model Parameter Estimates

For a basic set of non-favoured tax parameters we rely on values from cur-
rent tax codes in the US and Denmark. For the consumption tax we use
the estimate from Trabandt and Uhlig (2009), since this includes both gen-
eral VAT as well as consumption taxes on e.g. energy/fat/sugar/tobacco
etc.7 All tax parameters are shown in Table 2.1.

In the numerical investigation performed in this section, we restrict the
analysis to the case of constant real income streams, such that nominal
income grows by in�ation. Non-constant income would in general blur the
over-time e�ects of the tax regimes investigated, and constant real income
is in line with the estimates of Cocco et al. (2005) (they �nd that life
cycle income streams are in general not constant, but rather �at from ages
around 30-65).

7Another way of getting robust estimates of tax parameters is by considering the
macro-economic proposal presented in Mendoza et al. (1994). Since our analysis is
performed on micro-level, we go with current tax codes and the estimates of Trabandt
and Uhlig (2009).
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Variable Description US Denmark

τL Labour tax 28% 47.5%

τI Tax refund on life insurance 28% 47.5%

τD Tax on life insurance sum 28% 47.5%

τ1 Investment return tax (bonds) 15% 35%

τ2 Investment return tax (shares) 15% 35%

τC Consumption tax 4.8% 25.9%

Table 2.1: Basic model tax parameter values for numerical results.

We assume that the mortality intensities are the same under P and P∗.
This special case corresponds to zero market price of insurance risk, and
is relevant due to a reference to diversi�cation of risk in the insurance
portfolio of the life insurance company.

The mortality intensities are of Gompertz-Makeham form such that

µt = µ∗t = 2(M1 + 10M2+M3(z+t)−10), (2.18)

where z is the age at time zero. Since the numerical analysis is performed in
terms of a household (married couple) optimizing expected lifetime utility,
z is the age of each of the spouses at time zero. Furthermore, the mortality
intensities in the functions F and G are half these intensities (see Section
2.4.1).

In the following we present results for both an American and a Danish
couple of initial age 30 with 35 years to retirement. The remaining param-
eter values for the studies are found in Table 2.2. Notice especially that
the value γ = −3 corresponds to a risk aversion of 4 and that the value
θ = 0.5 implies that the couple's marginal utility from spending $1.36 to-
gether equals the the marginal utility from spending $1 for either of the
widows. This level of shared costs is based on a study of American data
performed in Hong and Ríos-Rull (2012).
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Variable Description Value

z Age of person and spouse at time of opti-
mization

30

T Time of retirement 35

x Initial wealth at time of optimization 0

ā Gross real labour income rate $150 000

ã Real net public pension rate $15 000

A Real net labour income rate for Ameri-
can/Danish widow(er)

$54 000/$35 625

Ã Real net public pension rate for Ameri-
can/Danish widow(er)

$7 500/$7 500

γ Risk aversion/EIS parameter −3

ρ Impatience factor in w and W 3%

θ Weight factor in W 0.5

i In�ation factor 2%

r̄ Constant drift of the risk free security 4%

ᾱ Constant drift of the risky security 7%

σ̄ Constant volatility of the risky security 20%

M1 Parameter for mortality intensity 0.002353

M2 Parameter for mortality intensity 5.102232

M3 Parameter for mortality intensity 0.04550

Table 2.2: Basic parameter values for numerical results. The mortality

intensity parameters are estimated based on deaths of people over the age

of 50 in America in 2006.

2.4.3 Personal Preferences - Indi�erence Utility and Re-

lated Controls

We want to quantify the e�ect of introducing tax favoured pension sav-
ings accounts, and for that we compare the expected lifetime utility under
di�erent tax regimes.

Since indi�erence between two tax regimes does not imply identical be-
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haviour under the two regimes, we also take a closer look at the related
optimal controls and their expected development over time.

Tax Regimes of Interest

The most common tax favoured retirement saving vehicles in the US are
IRAs and 401(k)s (and to some extent Universal Life Insurance and De-
ferred Life Annuities). All programs allow for tax exempt contributions
(up to a certain amount per year), and tax free accumulation of savings.
Taxation of bene�ts from the saving vehicles is progressive, which often
leads to favourable bene�t taxation compared to the exempt labour income
taxation of contributions.

The Danish saving vehicles Kapitalpension, Ratepension and Livrente have
the same properties as the American vehicles, except that investment re-
turns on savings are not tax free but only favourably taxed. Taxation of
bene�ts is linear for the bene�ts from a Kapitalpension (which must be
paid out as a lump sum at the time of retirement), and progressive for
the annuity bene�ts from the Ratepension and Livrente. The latter often
leads to favourable bene�t taxation as in the US. The annuity bene�ts
are, though, accounted for when the citizens apply for public bene�ts as
e.g. housing subsidies, medicine subsidies etc., and that makes the annuity
bene�t taxation less favourable.

Inspired by the American and Danish retirement savings regimes, we re-
strict our numerical analysis to the following two scenarios:

• The American couple face a tax regime where contributions to re-
tirement savings are tax exempt, and bene�ts are taxed at same rate
as labour income. Investment returns are tax free, and bene�ts are
either paid out as a lump sum at the time of retirement or as an
annuity.

• The Danish couple also face a tax regime where contributions to re-
tirement savings are tax exempt and investment returns are favourable
taxed (by 15% tax). Bene�ts (paid out as a lump sum at the time of
retirement or as an annuity) are taxed at a lower rate than labour in-
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come. We set the rate to be 5%-points lower than the labour income
tax.

Indi�erence Measures

In order to compare the two tax regimes, we calculate the values of certain
parameters for an alternative tax regime, which makes the American and
Danish couples indi�erent between saving under the regimes.

One benchmark is given by a regime without any favouring of retirement
savings. In order to be indi�erent between the two regimes, the couples
each demand an indi�erence sum, ψ, that solves

V λ(t = 0, ψ) = V δ(t = 0, 0),

where V λ and V δ are given by (2.11) and (2.17), V λ is calculated with
β = 0 and V δ is calculated based on the favoured tax values. In line with
common practice we report the indi�erence sums in terms of percentage
of total wealth, x+ gλ.

Similarly we de�ne the indi�erence bonus as the bonus that the households
demand on contributions to retirement savings, in order to be indi�erent
between the two retirement saving regimes. Mathematically we de�ne the
indi�erence bonus as the β that solves

V λ(t = 0, 0) = V δ(t = 0, 0),

where V λ and V δ are given by (2.11) and (2.17), and V δ is calculated
based on the favoured tax values.

Finally, since retirement savings for the Danish couple are favoured both
due to favourable bene�t taxation and investment returns taxation, we
de�ne a third indi�erence measure for the Danes. This is the investment
return taxation, τ , that makes the couple indi�erent between the favoured
tax regime and a tax regime where contributions are not tax exempt, but
investment returns (irrespective of origin) are subject to taxation by τ .
With abuse of notation, τ solves

V λ(t = 0, 0, τ) = V δ(t = 0, 0).
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where again V λ and V δ are given by (2.11) and (2.17), V λ is calculated
with β = 0 and V δ is calculated based on the favoured tax values.

No investment Return Taxation - 'The American Dream'

To investigate the e�ects of the absence of tax on investment returns for
retirement savings, we turn to the married American couple introduced
above. They are given the opportunity to save in a tax deferred savings
account where there is no investment return taxation, and bene�ts are paid
out as either a lump sum at the time of retirement or an annuity. When
paid out as a lump sum, investment return taxation during retirement is
15% (τ̃1 = τ̃2 = 15%), while it is 0% when bene�ts are paid out as an
annuity8.

Table 2.3 shows the indi�erence sum/bonus demanded by the couple in
order to be indi�erent between saving under the di�erent regimes. For
a robustness-check of the results, further indi�erence sums/bonuses are
shown for other values of parameters than those in Table 2.1 and Table
2.2. Table 2.4 shows the related initial saving ratios for the couple.

For a lump sum bene�t, the indi�erence sum for the American couple
of 1.14% (1.54% for annuity bene�ts) of human wealth corresponds to a
net sum of just over $36 000 ($49 000). The value of annuity bene�ts in
this setup is thereby 35% higher than that of lump sum bene�ts, since
the couple have more time to exploit the favourable investment return
taxation.

The indi�erence bonus for a lump sum bene�t of nearly 7% (9.39% for an-
nuity bene�ts) corresponds to a �rst year bonus of around $1 000 ($1 250).
Due to preferences and a stochastic investment market, consumption and
saving contributions vary over time, and these amounts are not constant
over the savings period.

The life insurance premium is paid out of the savings, and is not reported

8Both products are sold in reality, and for that reason we investigate both the lump
sum and the annuity payment. In the setup presented in this paper, the annuity pay-
ments are obviously more valuable to the couple, but in reality there could be numerous
reasons for the couple to choose the lump sum payment.
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Lump Sum Bene�t:

Setting Indif. Sum Indif. Bonus

Basic 1.14% 6.84%

z +/− 5 0.81%/1.46% 5.69%/7.62%

T +/− 5 0.82%/1.39% 6.21%/6.80%

γ +/− 2.5 0.47%/1.34% 5.87%/6.92%

ρ+/− 3%-point 0.43%/1.87% 3.38%/8.92%

Public pension +/− 100% 0.33%/2.11% 3.35%/8.55%

i+/− 1%-point 0.87%/1.27% 5.25%/8.09%

τD +/− 10%-points 0.73%/1.46% 4.31%/8.85%

τ † +/− 10%-points 1.03%/1.23% 7.02%/6.72%

τ ‡ +/− 15%-points 2.27%/0% 13.69%/0%

Annuity Bene�t:

Setting Indif. Sum Indif. Bonus

Basic 1.54% 9.39%

z +/− 5 1.01%/2.13% 7.15%/11.34%

T +/− 5 1.02%/2.11% 7.76%/10.46%

γ +/− 2.5 0.74%/1.79% 9.11%/9.37%

ρ+/− 3%-point 0.68%/2.46% 5.35%/11.92%

Public pension +/− 100% 0.39%/2.94% 3.91%/12.13%

i+/− 1%-point 1.21%/1.68% 7.36%/10.82%

τD +/− 10%-points 1.12%/1.87% 6.72%/11.52%

τ † +/− 10%-points 1.38%/1.68% 9.52%/9.30%

τ ‡ +/− 15%-points 3.10%/0% 19.15%/0%

Table 2.3: Indi�erence sums and bonuses for American couple. Top panel is

the case of bene�ts paid out as a lump sum at the time of retirement (equal

investment return taxes for all 3 regimes during retirement), bottom panel

for annuity payments during retirement (no investment return taxation

under favoured regime during retirement). † Change of τL, τB, τI and

τD by +/− 10%-points. ‡ Change of non-favoured τ1, τ̃1, τ2 and τ̃2 by

+/− 15%-points.
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Lump Sum Bene�t:

Setting Tax favoured Indif. Sum Indif. Bonus

Basic 14.3% 12.0% 12.4%

z +/− 5 11.4%/17.3% 9.1%/14.9% 9.5%/15.5%

T +/− 5 9.1%/20.4% 6.5%/18.4% 6.9%/18.9%

γ +/− 2.5 −2.7%/19.7% −9.9%/18.3% −8.9%/18.6%

ρ+/− 3%-point −0.8%/28.3% −3.4%/26.2% −3.2%/26.8%

Public pension +/− 100% 7.1%/21.6% 4.5%/19.4% 4.8%/20.0%

i+/− 1%-point 11.9%/15.7% 9.3%/13.5% 9.7%/14.0%

τD +/− 10%-points 14.8%/13.9% 13.0%/11.1% 13.3%/11.7%

τ † +/− 10%-points 11.7%/16.6% 9.8%/13.6% 10.3%/14.1%

τ ‡ +/− 15%-points 14.5%/14.2% 9.6%/14.3% 10.6%/14.3%

Annuity Bene�t:

Setting Tax favoured Indif. Sum Indif. Bonus

Basic 14.2% 11.6% 12.3%

z +/− 5 11.3%/17.0% 8.9%/14.4% 9.6%/15.2%

T +/− 5 9.1%/20.2% 6.4%/17.8% 6.8%/18.6%

γ +/− 2.5 −2.5%/19.4% −10.2%/17.9% −8.7%/18.3%

ρ+/− 3%-point −0.1%/28.1% −3.7%/25.8% −3.3%/26.5%

Public pension +/− 100% 7.2%/21.1% 4.5%/18.8% 4.8%/19.5%

i+/− 1%-point 11.8%/15.5% 9.0%/13.1% 9.6%/13.8%

τD +/− 10%-points 14.6%/13.8% 12.7%/10.8% 13.1%/11.5%

τ † +/− 10%-points 11.5%/16.4% 9.5%/13.2% 10.2%/13.9%

τ ‡ +/− 15%-points 14.2%/14.2% 8.9%/14.2% 10.2%/14.2%

Table 2.4: Initial savings ratio for American couple. Top panel is the

case of bene�ts paid out as a lump sum at the time of retirement (equal

investment return taxes for all 3 regimes during retirement), bottom panel

for annuity payments during retirement (no investment return taxation

under favoured regime during retirement). † Change of τL, τB, τI and

τD by +/− 10%-points. ‡ Change of non-favoured τ1, τ̃1, τ2 and τ̃2 by

+/− 15%-points.
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in the tables. The net life insurance sum under the di�erent regimes are
very similar and initially the premium paid is around 5%-points of the
savings-ratios.

Robustness Values

The assumed investment return tax of 15% is based on temporary tax rules
that are to expire in 2011, and holds only for speci�c tax brackets. The
robustness-check in Table 2.3 shows that the value of the retirement savings
regime without investment return taxation doubles when investment return
taxation is doubled.

Increasing the mortality intensities of the persons (z + 5), decreases the
indi�erence sum and bonus since the couple have a smaller probability of
staying alive until retirement, and expect less years of retirement. The
values on the other hand increase when time to retirement is increased
(T + 5), since there are now more years to take advantage of the low
tax.

Increasing γ has two major e�ects. It decreases the risk aversion and the
couple invest more in the risky asset, which in general has a positive e�ect
on the indi�erence sum/bonus. The consumption also increases with γ
and the savings ratio gets low, such that the couple's retirement savings
are mainly generated by the investment return (no short-selling constraint
allows for generating savings by shorting bonds and investing in the risky
asset). This way the couple miss the tax exemption of contributions (since
they are low), but pay taxes on the bene�ts, which in total decrease the
value of the favoured regime.

Changing the life insurance tax, τD, has more e�ect on the favoured regime
than the other two, since wealth upon death is also taxed by τD in the
favoured regime. The initial savings ratios are not very in�uenced by a
change in τD, while the initial purchase of life insurance changes by 15 −
20% when changing τD by 10%-points (values not shown in tables).

The remaining robustness values also show expected e�ects on the indif-
ference sums and bonuses as well as on the initial savings ratios.

Behaviuor over Time
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As we have already seen on the initial savings ratios in Table 2.4, indif-
ference between saving under the di�erent regimes does not mean acting
identically under them. In Figure 2.1 we show, for all three tax regimes,
the expected development of the optimal controls and the wealth of the
household, given that both persons are alive9. We only illustrate the case
of a lump sum bene�t at the time of retirement, and values are in real
terms (corrected for in�ation).

The regime with the initial indi�erence sum as starting wealth has no tax
regulations encouraging more or less retirement saving at any time until re-
tirement. This regime is therefore referred to as the baseline regime. Under
this regime we �nd that consumption (in real terms) decreases over time,
mainly due to the values of the impatience factor, ρ, the risk aversion/EIS
parameter, γ, and the expected rate of net returns on investments.

The value of not paying investment return tax is higher, if savings are made
while young rather than old. Therefore consumption under the favoured
regime starts relatively lower than under the baseline regime. The con-
sumption is increasing over time, again mainly due to the value of the
impatience factor, the risk aversion/EIS parameter and the expected rate
of net returns on investments (lower taxation of investment returns than
in baseline regime).

Adding bonus on the savings premium impose an incentive for retirement
saving for the household that remains stable over the savings period (since
the bonus-percentage is constant). The e�ect of this is that the savings
ratio is higher (consumption until retirement lower) than under the baseline
regime. At the time of retirement the net consumption jumps to a higher
level. The size of the jump is (1 + β)1/(1−γ) − 1, which is the change in
the marginal utility of consumption when the retirement savings motive
disappears.

The net life insurance sum for the household saving under the bonus regime
is higher than under the baseline regime, since the bonus regime reduces
motive for consumption during the savings period relatively to the bequest

9In this notion, expected refers to that we have inserted the expected stock value for
all future time points, i.e. the stock gives an annual return corresponding to the drift
of α = 7%.
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motive. Remember that the household under the baseline regime starts out
with an initial wealth of just over $36 000, and that explains some of the
di�erence in the �rst years.

Favourable Bene�t and Investment Return Taxation - 'The Dan-

ish Double Advantage'

The Danish couple's retirement savings are tax favoured in two ways, by
tax exempt contributions with a favourable bene�t taxation and by re-
duced investment return taxation. For the numerical results presented
here, we let the bene�t taxation, τB, be 42.5%, and the favoured invest-
ment return taxation be 15%. In Table 2.5 we show the indi�erence sum,
bonus and investment return tax (equal for risk free and risky investments),
that the couple demands in order to be indi�erent between the tax favoured
regime, and the three alternative regimes. We show the results both for
lump sum and annuity bene�ts (for the favoured regime, lump sum ben-
e�ts means τ̃1 = τ̃2 = 35% and annuity bene�ts means τ̃1 = τ̃2 = 15%),
along with robustness checks for several parameters. The related initial
savings ratios are shown in Table 2.6.

For the Danish couple, the value of the favoured regime is an indi�erence
sum of 1.60% of human wealth (1.95% for annuity bene�ts), which is a
net sum of roughly $44 000 ($53 500). The indi�erence bonus of 12.10%
(14.95%) corresponds to a �rst year bonus of $600 ($750), which is sub-
stantially lower than for the Americans, despite a higher bonus-percentage.
Higher labour income taxation and a lower optimal savings ratio for the
Danes accounts for the di�erence.

The indi�erence tax on investment returns is 3.0% (6.0%) or a reduction of
taxation by 80% (60%) compared to the favoured regime. When bene�ts
are paid out as an annuity, the indi�erence tax is then assumed paid on
investment returns both before and after retirement. That gives the couple
a longer expected time to take advantage of the favourable tax, and that
accounts for the higher value.

The initial savings ratios are very di�erent for the four regimes. The regime
with the indi�erence sum has the lowest initial savings ratio, since nothing
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Lump Sum Bene�t:

Setting Indif. Sum Indif. Bonus Indif. Inv. Tax

Basic 1.60% 12.10% 3.0%

z +/− 5 0.85%/2.35% 7.69%/15.14% 4.1%/2.6%

T +/− 5 0.94%/2.23% 8.60%/14.14% 4.4%/1.0%

γ +/− 2.5 −0.05%/2.09% −1.11%/13.28% 33.5%/4.2%

ρ+/− 3%-point 0.34%/2.92% 3.57%/16.91% −23.6%/5.8%

Public pension +/− 100% −0.71%/4.69% −19.64%/18.76% 7.5%/3.8%

i+/− 1%-point 0.80%/2.04% 6.88%/15.18% −0.8%/4.7%

τD +/− 10%-points 1.19%/1.88% 8.73%/14.61% 11.5%/− 2.8%

τ † +/− 10%-points 1.17%/1.87% 11.88%/11.90% 0.5%/4.9%

τ ‡ +/− 20%-points 2.39%/0.64% 18.65%/4.71% 3.0%/3.0%

τB +/− 5%-points 0.96%/2.18% 7.09%/16.84% 15.0%/10.4%

Annuity Bene�t:

Setting Indif. Sum Indif. Bonus Indif. Inv. Tax

Basic 1.95% 14.95% 6.0%

z +/− 5 0.96%/3.04% 8.78%/19.98% 5.8%/6.3%

T +/− 5 1.10%/2.86% 10.15%/18.50% 6.4%/5.4%

γ +/− 2.5 0.05%/2.53% 1.14%/16.30% 36.3%/6.8%

ρ+/− 3%-point 0.46%/3.55% 4.88%/20.87% −9.7%/8.0%

Public pension +/− 100% −1.01%/5.93% −29.39%/24.34% 11.7%/7.0%

i+/− 1%-point 0.94%/2.47% 8.11%/18.75% 2.7%/7.1%

τD +/− 10%-points 1.52%/2.24% 11.34%/17.69% 12.3%/1.6%

τ † +/− 10%-points 1.37%/2.34% 14.00%/15.10% 3.4%/7.5%

τ ‡ +/− 20%-points 3.09%/0.64% 24.68%/4.71% 6.0%/6.0%

τB +/− 5%-points 1.30%/2.53% 9.78%/19.82% 15.0%/− 1.9%

Table 2.5: Indi�erence sums, bonuses and investment return taxes for Dan-

ish couple. Top panel is the case of bene�ts paid out as a lump sum at the

time of retirement (equal investment return taxes for all 3 regimes during

retirement), bottom panel for annuity payments during retirement (15%
investment return taxation under favoured regime during retirement). †

Change of τL, τB, τI and τD by +/−10%-points. ‡ Change of non-favoured
τ1, τ̃1, τ2 and τ̃2 by +/− 20%-points.
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Lump Sum Bene�t:

Setting Tax favoured Indif. Sum Indif. Bonus Indif. Inv. Tax

Basic 8.8% 4.9% 5.8% 10.4%

z +/− 5 6.0%/11.9% 2.2%/7.9% 2.8%/9.1% 7.5%/13.6%

T +/− 5 4.1%/14.4% 0.0%/10.8% 0.6%/11.9% 5.8%/16.0%

γ +/− 2.5 −12.7%/15.0% −24.8%/12.7% −25.0%/14.3% −23.9%/16.8%

ρ+/− 3%-point −7.5%/23.9% −11.8%/20.3% −11.5%/21.5% −1.2%/24.9%

Public pension +/− 100% −2.1%/19.8% −6.5%/16.4% −8.7%/17.5% −1.1%/21.1%

i+/− 1%-point 4.0%/11.7% −0.4%/8.2% 0.2%/9.1% 6.5%/12.9%

τD +/− 10%-points 9.5%/8.3% 6.5%/3.7% 7.2%/4.7% 10.5%/10.3%

τ † +/− 10%-points 4.8%/12.1% 0.8%/7.7% 1.7%/8.6% 7.0%/12.8%

τ ‡ +/− 20%-points 8.9%/8.8% 1.0%/8.4% 2.5%/8.8% 10.5%/10.4%

τB +/− 5%-points 9.0%/8.6% 5.5%/4.4% 9.0%/9.6% 9.0%/9.6%

Annuity Bene�t:

Setting Tax favoured Indif. Sum Indif. Bonus Indif. Inv. Tax

Basic 8.9% 4.6% 5.7% 10.0%

z +/− 5 6.0%/11.7% 2.1%/7.3% 2.7%/8.8% 7.3%/12.9%

T +/− 5 4.1%/14.3% −0.1%/10.2% 0.5%/11.7% 5.5%/15.5%

γ +/− 2.5 −12.1%/14.8% −24.9%/12.3% −24.7%/13.0% −25.7%/15.4%

ρ+/− 3%-point −7.4%/23.7% −11.9%/19.8% −11.6%/21.2% −3.1%/24.4%

Public pension +/− 100% −1.5%/19.1% −6.2%/15.4% −9.7%/16.8% −1.3%/20.1%

i+/− 1%-point 4.2%/11.5% −0.6%/7.8% 0.2%/8.9% 6.3%/12.5%

τD +/− 10%-points 9.4%/8.3% 6.2%3.3% 7.0%/4.6% 10.4%/9.7%

τ † +/− 10%-points 4.8%/11.9% 0.6%/7.3% 1.7%/8.4% 6.7%/12.4%

τ ‡ +/− 20%-points 8.9%/8.9% 0.3%/8.4% 2.2%/8.9% 10.0%/10.0%

τB +/− 5%-points 9.0%/8.6% 5.2%/4.0% 5.9%/5.4% 9.0%/10.9%

Table 2.6: Initial savings ratio for Danish couple. Top panel is the case

of bene�ts paid out as a lump sum at the time of retirement (equal in-

vestment return taxes for all 3 regimes during retirement), bottom panel

for annuity payments during retirement (15% investment return taxation

under favoured regime during retirement). † Change of τL, τB, τI and

τD by +/− 10%-points. ‡ Change of non-favoured τ1, τ̃1, τ2 and τ̃2 by

+/− 20%-points.
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motivates extraordinary savings compared to the three other regimes (and
the indi�erence sum is already added to the savings). The bonus regime
has a savings ratio that is lower than that of the regimes with reduced
investment return taxation, since bonus does not motivate early savings.
The highest savings ratio comes with the lowest investment return taxa-
tion.

Robustness Values

The initial savings ratios are almost equal for the favoured and the bonus
regime when investment return taxation is even (they are di�erent in the
fourth decimal, not shown in Table 2.6). This occurs since bonus and
favourable bene�t taxation motivates retirement savings in the same man-
ner. The small di�erence in the savings ratios occurs since bonus is not
paid back if one spouse dies before retirement.

The indi�erence measures are very sensitive to changes in the public pen-
sion, and in fact doubling the public pension leads to a negative indi�erence
sum and bonus. This may seem counter-intuitive, but arises since the high
level of public pension leads to negative savings contributions over most
of the savings period for the favoured regime. The retirement savings are
thereby mainly generated by shorting bonds and investing in stocks. The
fact that savings bene�ts in the favoured regime are subject to taxation
by τB at retirement thereby has a negative value that exceeds the value of
the low investment return taxation. The same explanation holds for the
negative indi�erence sum and bonus in the case of an increase in γ.

Behaviour over Time

In Figure 2.2, we present the expected development over time for the
wealth and the controls for all four regimes, given that both persons stay
alive.

As expected, the regime with the lowest investment return taxation has
the lowest initial consumption and the steepest increase until retirement.
The jumps of the optimal consumption at retirement for the regimes with
bonus or favourable bene�t taxation are due to the change in marginal
utility of consumption, when the savings period ends.

The optimal investment and life insurance sums evolve as expected over
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time.

2.4.4 Non-Indi�erence from a Government's Point of View

Despite the fact that we can formulate several tax regimes that the Amer-
ican and Danish couples are indi�erent between, the couples behave dif-
ferently under the regimes. One consequence of that is di�erent tax cash
�ows experienced by the tax authorities.

In order to investigate the preferred regime for the tax authorities, we
compute the expected present value of tax income and expenditures for
a government. We only take into account the taxes introduced in this
paper. For the regime with immediate labour income taxation and no
retirement savings favouring, we include the taxes τL (labour income), τC
(consumption), τ1, τ2 (investment return) and τI and τD (life insurance).
An indi�erence sum paid out at time zero is a lump sum expenditure for the
tax authorities, and bonus paid during the savings period is a continuous
expenditure. For the regime with tax exempt contributions to retirement
savings, only the part of the salary that is spent on immediate consumption
generates a labour tax income during the saving period. Instead, a lump
sum tax income at the time of retirement is generated by τB. We do not
take the public pension into account, since its value is the same for all
regimes.

In Figure 2.3 we show the expected present values of the tax streams
generated by the di�erent investigated regimes. Retirement savings are
assumed paid out as a lump sum in the favoured regimes.

For low values of the discount factor, the favoured regimes (tax exempt
contributions) are most favourable for the tax authorities. This is due
to the retirement savings tax, τB, that generates a large revenue if both
persons are alive upon retirement. If one of the persons dies before the
retirement age, and contributions are tax exempt, both the life insurance
sum and the retirement savings are taxed by the life insurance tax, τD.
That also adds to the value of the favoured regimes.

Tax exempt contributions to retirement savings on the other hand gener-
ates less labour income tax for the tax authorities. Therefore the regimes
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with indi�erence sums or bonuses are preferable for tax authorities when
the discounting factor is high. This is, though, also due to the higher in-
vestment return taxation in the regimes of indi�erence sums and bonuses.
In addition we see that the Danish regime with immediate labour income
taxation and very low investment return tax (3.0%) is not preferable even
at high values of the discount factor.

2.5 Conclusion

In this paper we investigated the problem of optimizing lifetime utility
with bequest motive under two di�erent taxation regimes. We quanti�ed
the tax impact under the di�erent regimes and found that this was not
identical, some taxes matter more in one regime than another. The regimes
each motivated retirement savings in di�erent ways, and the numerical
analysis showed that this led to savings of di�erent size. Moreover, the
contributions to savings were made at di�erent times during the savings
period.

The indi�erence values calculated indicates that governments wanting to
shift retirement savings incites from tax exempt contributions to bonus
on contributions can do that for reasonable values of the proportional
bonus. The e�ect of that is generally a larger tax revenue during the
savings period, and for su�ciently high values of the discounting-factor,
also larger expected present value of the future tax �ows.
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Figure 2.1: Expected development of real values of wealth, consumption,

investment and life insurance for American couple. Dashed line is the

favoured regime (no investment return tax during savings period), the full

line is the regime with indi�erence sum and the dotted line the regime with

bonus on contributions.
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Figure 2.2: Expected development of real values of wealth, consump-

tion, investment and life insurance for Danish couple. Dashed line is the

favoured regime (low investment return tax during savings and favoured

tax of lump sum bene�t), the dash-dotted line is regime with low invest-

ment return tax during savings, the full line is the regime with indi�erence

sum and the dotted line the regime with bonus on contributions.
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Figure 2.3: Expected value of future income and expenditure for tax au-

thorities for di�erent rates of discounting. Lifetime of the household mem-

bers is calculated by the objective mortality in (2.18). American data

to the left, Danish to the right. Dashed line is the favoured regime (tax

exempt savings contributions and low investment return tax), the dash-

dotted line (in Danish data) is regime with low investment return tax

during savings, the full line is the regime with indi�erence sum and the

dotted line the regime with bonus on contributions.
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3. Household Consumption,

Investment and Life Insurance

Kenneth Bruhn and Mogens Ste�ensen, Insurance: Mathematics and Eco-

nomics 48 (2011) 315-325.

Abstract This paper develops a continuous-time Markov model
for utility optimization for households. The household optimizes ex-
pected future utility from consumption by controlling consumption,
investments and purchase of life insurance for each person in the
household. The optimal controls are investigated in the special case
of a two-person household, and we present graphics illustrating how
di�erences between the two persons a�ect the controls.

Keywords Personal Finance; Household Finance; Multi-State Model;

Stochastic Control; Power Utility

3.1 Introduction

Original consumption-investment problems are formulated in terms of op-
timizing utility of consumption and a terminal utility over a �xed time
horizon for a single person, see Merton (1969) and Merton (1971). Richard
(1975) included the problem of �nding an optimal life insurance strategy,
and formulated the problem of optimizing expected utility over an uncer-
tain life time, where utility now arose from consumption and from leaving
a positive amount of money upon death. Apart from introducing life in-
surance, Richard (1975) also modeled a continuous life time income, and
found that the expected life time income had a positive e�ect on the de-
mand for life insurance. Actually, the inclusion of an insurance decision
in the personal �nance optimization problem was �rst formulated in a
discrete-time setting by Yaari (1965).
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Since the path-breaking article of Hoem (1969), the continuous-time �nite
state Markov chain has played a prominent role in the theory of life insur-
ance, and Kraft and Ste�ensen (2008) applied the continuous-time �nite
state Markov chain to the ideas established by Richard (1975). Kraft and
Ste�ensen (2008) motivated the set-up by a personal �nance model which
allowed the customer to insure himself against disability, unemployment
and similar personal risks.

Inspired by Kraft and Ste�ensen (2008) we use the Markov chain set-
up for modeling household �nance in the sense of optimizing expected
future utility for a household consisting of economically and probabilis-
tically dependent persons. The modeling is �exible enough to capture
several interesting di�erences between the members of the household, and
leads to closed form solutions for the optimal controls of investments, con-
sumption of the household and purchase of life insurance for each of its
members.

The paper is organized as follows: In Section 3.2 we present the general
Markov model including the dynamics of the wealth of the household. Fur-
thermore, we describe the assumptions concerning utility, and the general
optimal value function for the problem. Section 3.3 presents the problem
and the solution in the case of a one-person household, thereby setting
the foundation for the multiple-person models. In Section 3.4 we solve the
problem for a two-person household. We comment on the optimal control
processes regarding consumption, investment and life insurance purchase,
and in Section 3.5 we show numerical examples of these based on expec-
tations to the investment market. In Section 3.6 we explain the mathe-
matical induction technique used for solving the multiple-person problem
and write up the optimal controls in this case. Finally, in Section 3.7 we
present ideas for further development of the model.

3.2 The General Optimization Problem

We let the state of the household be represented by a �nite state multi-
dimensional Markov chain, Z, and the state of the economy be represented
by a standard Brownian motion W . These processes are assumed to be

58



independent and de�ned on the measurable space (Ω,F), where F is the
natural �ltration of (Z,W ).

We let P and P∗ be equivalent probability measures on the measurable
space (Ω,F) and refer to P as the objective measure and P∗ as the pricing
measure, used for pricing both market risk (W ) and life insurance risk
(Z) by the insurance company. We hereby take the modern approach and
consider life insurance policies as standard tradeable �nancial contracts, as
is done in e.g. Richard (1975) and Kraft and Ste�ensen (2008). Illiquidity
issues could be dealt with on the top of that, e.g. by introducing an
illiquidity risk premium, but this is beyond the scope of this article.

It is essential for our studies below that the pricing measure exists such
that pricing is unique and linear. Whereas this is conventional for e.g.
equity risk, the assumption is a less conventional restriction for insurance
risk. The pricing measure with respect to insurance risk may be equal to
the objective measure with reference to diversi�cation. Our results are not
restricted to that case of zero market price on insurance risk but, as it can
be seen below, the results become particularly simple in that case.

When modeling a household consisting of n persons, the state process Z
takes values in {0, 1}n, and by convention it starts in {0, 0, . . . , 0} at time
0. The n marginal processes of Z indicate, for each person, whether or not
that person is dead, and thereby Z is given by

(Zt)t≥0 =
(
Z1
t , Z

2
t , . . . , Z

n
t

)
t≥0

,

where Zk = (Zkt )t≥0 counts the number of deaths for person k, k ∈
{1, 2, . . . , n}.

The state process Z has jump-intensities, µ̂ij under P and µ̂∗ij under P∗,
and we denote the set of states to which Z can jump at time t by Zt. As we
do not allow for multiple deaths in a small time interval or for resurrection,
the number of states in Zt equals the number of persons being alive at time
t.

For any given i = (i1, i2, . . . , in) and j = (j1, j2, . . . , jn), we write the
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transition rate functions

µ̂ijt =
n∏
l=1

(1− Z lt)1−il(Z lt)
ilµijt , µ̂∗ijt =

n∏
l=1

(1− Z lt)1−il(Z lt)
ilµ∗ijt ,

for some deterministic continuous transition rate functions µijt and µ∗ijt .
These functions are non-null only for i and j such that the transition
i → j is possible, i.e. ik = 0 and jk = 1 for exactly one k and il = jl for
l 6= k. In order to have well-de�ned problems we assume that µijt → ∞
and µ∗ijt →∞ for those pairs of states (i, j) for which the transition i→ j
is possible. That implies in particular that

lim
t→∞

P(Zt = {1, 1, . . . , 1}) = lim
t→∞

P∗(Zt = {1, 1, . . . , 1}) = 1.

The compensated jumping process is a martingale under the respective
measures, meaning that M = Z −

∫
µ̂ is a martingale under P and M∗ =

Z −
∫
µ̂∗ is a martingale under P∗. In particular, we will use the marginal

processes, and for j ∈ Zt write

dM∗Ztjt = dZ
ψ(Zt,j)
t − µ∗Ztjt dt

for the dynamics at time t of the marginal martingale given Zt, where
ψ(i, j) gives the coordinate of Z that changes from 0 to 1 upon a jump of
Z from state i to state j. Note that µ̂∗Ztj = µ∗Ztj since j ∈ Zt.

Wealth Dynamics

The household decides on an optimal allocation of wealth in a risky asset
and a risk free asset at all times. The household has access to an invest-
ment market consisting of a bond (B) and a stock (S) with Black-Scholes
dynamics:

dBt = rBtdt,

B0 = b0 > 0,

dSt = αStdt+ σStdWt,

S0 = s0 > 0,
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where r, α and σ are constants andW is a standard Brownian motion. The
proportion of household wealth invested in the stock is described by the
process π. This simple investment market model is chosen since the focus
here is on the life insurance decisions, but the results can be generalized
to more advanced investment market models.

Allowing the household to purchase life insurance for each person at all
times, the household wealth, X, follows the dynamics

dXt = (r + πt(α− r))Xtdt+ πtσXtdWt

+ aZtt dt− ctdt+
∑
j∈Zt−

Sjt dM
∗Zt−j
t ,

X0 = x0,

where aj is the deterministic income process corresponding to state j,
j ∈ {0, 1}n, and c is the total consumption process of the household.
The processes Sj are the sums insured such that Sj is the amount payed
out upon a jump of Z from state Zt− to state j, and µ

∗Zt−j
t Sjt is the

natural premium intensity that the household pays at time t for that life
insurance. The linearity of the premium as a function of the sum insured is
a consequence of assuming existence of a pricing measure. This linearity is
essential for our studies and the application of our results below is restricted
to that situation. The special case of zero market price of insurance risk
corresponds to setting µ∗ = µ and represents a relevant and particularly
simple special case.

In practical, building of reserves in insurance companies is needed for trad-
ing life annuities. That could be dealt with by formulating our optimiza-
tion problem with two types of wealth, personal wealth and institutional
wealth, as it is done by Kraft and Ste�ensen (2008). They �nd, however,
that if we impose no constraints on these wealth processes and allow utility
to depend only on the sum of them, then we need not model two separate
wealth processes (the optimization problem with two wealth processes re-
sults in the same optimal controls as the problem with only one). Since we
allow for utility of consumption only, in our case it is su�cient to model
one wealth process of the household.

A life annuitant leaves his institutional wealth to the insurance company
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upon death. When we do not distinguish between personal and institu-
tional wealth, this is just seen as a sum paid out of the wealth of the
individual to the insurance company. Therefore, we speak of a negative
sum insured as a life annuity payment. Thus, not restricting the sum in-
sured to be positive is essentially equivalent to allowing for purchase of life
annuities.

The Optimization Problem

We consider the problem of maximizing expected utility for the household,
where the utility is assumed to come from consumption only. In particular,
we assume that there is no utility from leaving a positive amount of money
at the time where the last person in the household dies (as is done by e.g.
Richard (1975) and Kraft and Ste�ensen (2008)). Writing uj(t, c) for the
utility of consuming c at time t, given that Zt = j, the optimization
problem is

sup
q∈Q[0,∞)

E0,x,0

(∫ ∞
0

∑
j∈{0,1}n

1{Zs=j}u
j(s, cs)ds

)
,

where q is a control process and Q[0,∞) is the set of controls for the time
after time 0, which are admissible at time 0 and Et,x,z denotes the con-
ditional expectation given that Xt = x and Zt = z. For this problem we
introduce the optimal value function

V z(t, x) = sup
q∈Q[t,∞)

Et,x,z
(∫ ∞

t

∑
j∈{0,1}n

1{Zs=j}u
j(s, cs)ds

)
.

Note that for a �xed time T > t the optimal value function has the recur-
sive de�nition

V z(t, x) = sup
q∈Q[t,T )

Et,x,z
(∫ T

t

∑
j∈{0,1}n

1{Zs=j}u
j(s, cs)ds+ Ṽ ZT (T,XT )

)
,

with

Ṽ z(T, x) = sup
q∈Q[T,∞)

ET,x,z
(∫ ∞

T

∑
j∈{0,1}n

1{Zs=j}u
j(s, cs)ds

)
,
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which is convenient when investigating optimization problems where the
controls are constrained in some time periods. In this paper, this is used
for investigating a problem where the household consumes according to a
�xed consumption strategy until time T .

Using the dynamic programming principle, and the fact that the jump
intensities of Z do not depend on the wealth process X, the optimal value
function can be rewritten as

V z(t, x) = sup
q∈Q[t,∞)

Et,x
(∫ s

t
e−
∫ r
t µ

z·
τ dτ
(
uz(r, cr)

+
∑
j∈Zt

µzjr V
j(r,Xr + Sjr)

)
dr + e−

∫ s
t µ

z·
τ dτV z(s,Xs)

)
,

where µz·t =
∑
j∈Zt

µzjt is the total intensity of a jump out of state z at time

t.

We allow the utility of consumption to depend on time and on who is
alive. In the rest of this article we work with power utility, i.e. the utility
functions are given by

uj(t, c) = w1−γ
j (t)ũ(c),

ũ(c) =

{
1
γ c
γ , c > 0,

−∞, c ≤ 0,

for j ∈ {0, 1}n\{1, 1, . . . , 1}, t > 0 and γ ∈ (−∞, 1)\{0}, while uj(t, c) = 0
for j = {1, 1, . . . , 1} (which means that there is no utility from consumption
after all members of the household are death). The separability of the
state and time dependence in the deterministic weight function, w, and
the consumption in the power utility function, u, allows for closed form
solutions of the optimization problems.

The case γ = 0, which corresponds to logarithmic utility since limγ→0(cγ−
1)/γ = ln(c), will not be dealt with.
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3.3 One-Person Household

This section deals with the problem of optimizing expected future utility of
consumption for one person. This problem was solved by Richard (1975),
but since the result is fundamental for solving the problems concerning
multiple-person households we reproduce the results here. Apart from
solving the problem of optimizing expected future utility in the situation
where the person can control consumption, investment and life insurance
purchase until his death, we consider the special case where he is not
allowed to control consumption until a �xed point in time. This point in
time can be thought of as the time of retirement.

For the one-person model, the state process Z takes values in {0, 1}. We
write µt for the intensity under P of a jump from state 0 to state 1 at time
t, and µ∗t for the corresponding intensity under P∗. This two-state model,
often referred to as a survival model, is illustrated in Figure 3.1.

Alive
0

Dead
1-

µ

µ∗

Figure 3.1: The survival model.

In this case the wealth of the one-person household follows the dynam-
ics

dXt = (r + πt(α− r))Xtdt+ πtσXtdWt + atdt− ctdt+ StdM
∗
t ,

X0 = x0,

where we assume that at = 0 for t ≥ T (time of retirement). Because
we allow for a negative sum insured S (purchase of life annuity) and since
the person obtains no utility from leaving money upon death, it is easy
to convince ourselves that the optimal sum insured at all times shall be
as small as possible (why not cash in the risk premium that the insurance
company is willing to pay you to be your only inheritor!). As the life
insurance company will not take over your debt upon your death, we arrive
at the sum insured St = −Xt− for all t > 0. Mathematically, this intuitive
result is shown by introducing utility from leaving money upon death and
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solve this optimization problem, thereafter letting the utility upon death
go to zero, see e.g. Richard (1975) and Kraft and Ste�ensen (2008).

Capitalizing on the above intuition leads to the following dynamics of the
wealth process while the person is alive:

dXt = (r + πt(α− r))Xtdt+ πtσXtdWt + atdt− ctdt+Xtµ
∗
tdt, (3.1)

X0 = x0. (3.2)

Now the problem of optimizing expected future utility can be described by
the wealth dynamics (3.1)-(3.2) and the optimal value function

V (t, x) = sup
q∈Q[t,T )

Et,x
(∫ T

t
e−
∫ s
t µτdτ 1

γw
1−γ(s)cγsds+ e−

∫ T
t µτdτ Ṽ (T,XT )

)
,

where

Ṽ (T, x) = sup
q∈Q[T,∞)

ET,x
(∫ ∞

T
e−
∫ s
T µτdτ 1

γw
1−γ(s)cγsds

)
.

We now solve this problem in two cases; the case where the person con-
trols investment, life insurance purchase and consumption both before and
after the retirement time T , and the case where the person's consumption
until time T is described by a deterministic process c. The latter case
is motivated by a pension saving scheme dictating a �xed amount or a
�xed percentage of salary going into a pension savings account during the
savings period, leaving the residual salary as �xed consumption.

We start by solving the optimization problem at the time of retirement
and thereafter use the solution obtained as the boundary condition in the
problem of optimizing before retirement. The Hamilton-Jacobi-Bellman
equation for the problem after the time of retirement is

Ṽt(t, x)− µtṼ (t, x) + sup
c,π

[
1
γw

1−γ(t)cγ

+
[
(r + π(α− r))x− c+ µ∗tx

]
Ṽx(t, x) + 1

2π
2σ2x2Ṽxx(t, x)

]
= 0,

lim
t→∞

Ṽ (t, x) = 0,
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where the boundary condition stems from the assumption µt → ∞ for
t→∞.

Using the technique of Kraft and Ste�ensen (2008) we �nd the solution

Ṽ (t, x) = 1
γ f̃

1−γ(t)xγ , (3.3)

with

f̃(t) =

∫ ∞
t

e
− 1

1−γ
∫ s
t (µτ−γ(µ∗τ+ϕ))dτ

w(s)ds,

where

ϕ = r +
(α− r)2

2σ2(1− γ)
.

The optimal investment and consumption strategies are in this case given
by

c∗t =
w(t)

f(t)
Xt,

π∗tXt =
α− r

σ2(1− γ)
Xt,

and we recognize them from Richard (1975) in the special case where utility
upon death equals zero.

Now inserting the obtained solution as boundary condition at time T ,
we get the following Hamilton-Jacobi-Bellman equation for the problem
of �nding optimal investment and consumption strategies until retire-
ment:

Vt(t, x)− µtV (t, x) + sup
c,π

[
1
γw

1−γ(t)cγ

+
[
(r + π(α− r))x+ a− c+ µ∗tx

]
Vx(t, x) + 1

2π
2σ2x2Vxx(t, x)

]
= 0,

V (T, x) = 1
γ f̃

1−γ(T )xγ .

Solving this problem leads to

V (t, x) = 1
γ f

1−γ(t)(x+ g(t))γ , (3.4)
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with

f(t) =

∫ ∞
t

e
− 1

1−γ
∫ s
t (µτ−γ(µ∗τ+ϕ))dτ

w(s)ds, (3.5)

g(t) =

∫ T

t
e−
∫ s
t (r+µ∗τ )dτasds, (3.6)

and optimal controls

c∗t =
w(t)

f(t)
(Xt + g(t)),

π∗tXt =
α− r

σ2(1− γ)
(Xt + g(t)).

Inspired by the ideas of Kraft and Ste�ensen (2008) the functions f and g
have the following interpretations:

The function f measures the expected value of the future utility weight w
with

µ̄ =
1

1− γ
µ− γ

1− γ
µ∗

as a utility adjusted mortality intensity and

r̄ =
γ

1− γ
ϕ

as utility adjusted interest rate, taking into account that the person invests
money in the risky asset. Note, that since Kraft and Ste�ensen (2008) have
no risky asset in their optimization problem, they get ϕ = r. Letting the
counting process Z have intensity µ̄ under P̄, f has the following Feynman-
Kač representation:

f(t) = Ē
(∫ ∞

t
e−
∫ s
t r̄τdτ1{Zs=0}w(s)ds

∣∣∣Zt = 0
)
,

where the measure P̄ is created with the sole purpose of representing f
as a conditional expectation, and is connected to neither the objective
nor the pricing measure (note, though, that the intensity µ̄ is a weighted
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average of the intensities under the objective and the pricing measure, µ
and µ∗).

The function g measures the expected value of discounted future income,
where the risk-free rate is used as the discounting rate, and the expecta-
tion is calculated under the pricing measure P∗. This gives the following
Feynman-Kač representation of g:

g(t) = E∗
(∫ T

t
e−
∫ s
t rdτ1{Zs=0}asds

∣∣∣Zt = 0
)
.

This value is often referred to as human wealth since it represents the �-
nancial value of future income. We speak of x+g as the total wealth.

With these interpretations of f and g we �nd that the optimal consumption
at any time is a fraction of total wealth, where the fraction expresses
the demand for immediate consumption relative to the demand for future
consumption. The optimal amount invested in the risky asset, π∗X, is a
constant proportion of total wealth. In particular, the proportion of wealth
invested in the risky asset is constant after retirement.

Fixed Consumption Until Retirement

Assuming that the person can not control consumption until retirement
but instead consumes according to a deterministic process c, leads to the
optimal value function

V (t, x) = sup
π∈Q[t,T )

Et,x
(∫ T

t
e−
∫ s
t µτdτ 1

γw
1−γ(s)cγsds+ e−

∫ T
t µsdsṼ (T,XT )

)
=

∫ T

t
e−
∫ s
t µτdτ 1

γw
1−γ(s)cγsds+ V̄ (t, x),

hereby de�ning

V̄ (t, x) ≡ sup
π∈Q[t,T )

Et,x
(

e−
∫ T
t µsdsṼ (T,XT )

)
.

68



Here again X follows the dynamics (3.1)-(3.2). In order for this problem
to be well de�ned, we need to require that the prespeci�ed deterministic
consumption process, c, ful�lls the condition∫ T

0
e−
∫ s
0 (r+µ∗τ )dτ (as − cs)ds > −x0,

which in words means that the person should be able to avoid bankruptcy
with probability one.

Inserting Ṽ from (3.3), the HJB-equation for the problem formulated in
terms of V̄ is

V̄t(t, x)− µtV̄ (t, x)

+ sup
π

[[
(r + π(α− r))x+ at − ct + µ∗tx

]
V̄x(t, x) + 1

2π
2σ2x2V̄xx(t, x)

]
= 0,

V̄ (T, x) = 1
γ f̃

1−γ(T )xγ .

Solving this problem leads to the optimal value function

V (t, x) = h(t) + 1
γ f

1−γ(t)(x+ g(t))γ , (3.7)

where the functions h, f and g are given by

h(t) =

∫ T

t
e−
∫ s
t µτdτ 1

γw
1−γ(s)cγsds, (3.8)

f(t) =

∫ ∞
T

e
− 1

1−γ
∫ s
t (µτ−γ(µ∗τ+ϕ))dτ

w(s)ds, (3.9)

g(t) =

∫ T

t
e−
∫ s
t (r+µ∗τ )dτ (as − cs)ds, (3.10)

and the optimal amount invested in the risky asset is given by

π∗tXt =
α− r

σ2(1− γ)
(Xt + g(t)).

Notice that the Feynman-Kač representation of g is now

g(t) = E∗
(∫ T

t
e−
∫ s
t rdτ1{Zs=0}(as − cs)ds

∣∣∣Zt = 0
)
,
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which is the present value of expected future income less consumption.
As we motivated this problem by saying that the amount at − ct was
the prespeci�ed savings premium rate paid to the insurance company at
time t, we �nd that g now can be interpreted as the �nancial value of
future premiums. The optimal investment strategy in the case of �xed
consumption until retirement dictates that a �xed proportion of this new
total wealth be invested in the risky asset. For the insurance company
this strategy seems more appealing as it is only based on the savings, X,
and the �nancial value of future premiums. Still, though, for small values
of Xt, we could have that π∗t is greater than one, which is normally not
allowed on savings contracts in practice.

3.4 Two-Person Household

Optimization problems regarding a two-person household are motivated by
married couples that either never had children or where the children have
left home and are no longer economically dependent of their parents.

In this two-person model the state process Z takes values in {0, 1}2. For
a more compact notation we renumber the states such that state {0, 0},
corresponding to both persons being alive, is state 0, state {0, 1}, corre-
sponding to person A being alive and person B being dead, is state 1,
state {1, 0}, corresponding to the opposite, is state 2 and state {1, 1}, cor-
responding to both persons being dead, is state 3. The states and jump
intensities are shown in Figure 3.2.

Given that Zt = 0 (both persons are alive), the wealth of the household
follows the dynamics

dXt = (r + πt(α− r))Xtdt+ πtσ
2XtdWt

+ a0
tdt− ctdt+ S1

t dM
∗01
t + S2

t dM
∗02
t ,

(3.11)

X0 = x0, (3.12)

while the wealth process, given that Zt = i, i = 1, 2 (one person is alive),
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follows these dynamics:

dXt = (r + πt(α− r))Xtdt+ πtσ
2XtdWt + aitdt− ctdt+ S3

t dM
∗i3
t ,
(3.13)

Xτi = Xτi− + Siτi−. (3.14)

Here τi is the time of a jump of Z into state i and S3
t = −Xt− as it is

known from Section 3.3.

Written in terms of the optimal value function, the problem of maximizing
the expected utility from future consumption looks as follows:

V 0(t, x) = sup
q∈Q0

[t,T )

Et,x
(∫ T

t
e−
∫ s
t (µ01τ +µ02τ )dτ

(
1
γw

1−γ
0 (s)cγs

+ µ01
s V

1(s,Xs + S1
s ) + µ02

s V
2(s,Xs + S2

s )
)
ds

+ e−
∫ T
t (µ01τ +µ02τ )dτ Ṽ 0(T,XT )

)
,

(3.15)

where X follows the dynamics from (3.11)-(3.14). The supremum in (3.15)
is taken over controls regarding state 0, highlighted by writing Q0, as we

A alive, B alive
0

A alive, B dead
1

A dead, B alive
2

A dead, B dead
3

���
���

�����

µ01

µ∗01

HHH
HHH

HHHHj

µ02

µ∗02

HHH
HHH

HHHHj

µ13

µ∗13
���

���
�����

µ23
µ∗23

Figure 3.2: State space and intensities for the two-person model.
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have used the Markov property of Z and X, which allows us to insert
the solution from the one-person problem once one of the members of the
household is dead. The functions V 1(t, x) and V 2(t, x) are in the form
given by (3.4) or (3.7), but with di�erent parameters. The exact form
depends on which optimization problem we solve, i.e. whether consumption
until time T is controllable or not.

Like in the one-person model we see that the problem of optimizing ex-
pected future utility before retirement requires that the problem of op-
timizing upon retirement be solved in advance. We will not go into de-
tails with this particular problem, but just assume that the solution is
known.

In order to �nd the optimal investment, consumption and life insurance
processes prior to retirement when both persons are alive, we specify the
HJB-equation

V 0
t (t, x) + sup

c,π,S1,S2

[
1
γw

1−γ
0 (t)cγ + µ01

t

(
V 1(t, x+ S1)− V 0(t, x)

)
+ µ02

t

(
V 2(t, x+ S2)− V 0(t, x)

)
+
[
(r + π(α− r))x+ a0

t − c

− µ∗01
t S1 − µ∗02

t S2
]
V 0
x (t, x) + 1

2π
2σ2x2V 0

xx(t, x)
]

= 0,

V 0(T, x) = Ṽ 0(T, x).

Capitalizing on the fact that V 1 and V 2 in this case are in the form (3.4),
we arrive at the solution

V 0(t, x) = 1
γ f

1−γ
0 (t)(x+ g0(t))γ ,

with f0 and g0 given by

f0(t) =

∫ ∞
t

e
− 1

1−γ
∫ s
t (µ01τ +µ02τ −γ(µ∗01τ +µ∗02τ +ϕ))dτ(

w0(s)

+

(
µ01
s

µ∗01γ
s

) 1
1−γ

f1(s) +

(
µ02
s

µ∗02γ
s

) 1
1−γ

f2(s)
)
ds,

g0(t) =

∫ T

t
e−
∫ s
t (r+µ∗01τ +µ∗02τ )dτ (a0

s + µ∗01
s g1(s) + µ∗02

s g2(s))ds.
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As in the one-person model, introducing the mortality intensities

µ̄0i =

(
µ0i

µ∗0iγ

) 1
1−γ

,

µ̄i3 =
1

1− γ
µi3 − γ

1− γ
µ∗i3t ,

and arti�cial interest rates

r̄0
t = − 1

1− γ
(µ01
t + µ02

t − γ(µ∗01
t + µ∗02

t + ϕ))− µ̄01
t − µ̄02

t ,

r̄it =
γ

1− γ
ϕ,

for i = 1, 2, we get these Feynman-Kač representations for f0 and g0:

f0(t) = Ē
(∫ ∞

t
e−
∫ s
t r̄

Zτ
τ dτ (1{Zs=0}w0(s)

+ 1{Zs=1}w1(s) + 1{Zs=2}w2(s))ds
∣∣∣Zt = 0

)
,

g0(t) = E∗
(∫ T

t
e−
∫ s
t rdτ (1{Zs=0}a

0
s + 1{Zs=1}a

1
s + 1{Zs=2}a

2
s)ds

∣∣∣Zt = 0
)
.

Like in the one-person model we �nd that f0 measures the expected value
of the future utility weights, and that g0 is the human wealth of the house-
hold.

The optimal controls, given that Zt = 0, are

c∗t =
w0(t)

f0(t)
(Xt + g0(t)),

π∗tXt =
α− r

σ2(1− γ)
(Xt + g0(t)),

Si∗t =

(
µ0i
t

µ∗0it

) 1
1−γ fi(t)

f0(t)
(Xt + g0(t))− (Xt + gi(t)), i = 1, 2.

Again, as in the one-person model, the optimal consumption rate at any
time is a fraction of total wealth, balancing the demands for immediate and
future consumption. We notice that the demand for future consumption
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takes into account also the demand for consumption after the death of one
of the persons.

For the optimal investment strategy we see that the household �nds it
optimal to invest a constant proportion of the total wealth of the household.
The optimal proportion in the two-person model is exactly the same as
in the one-person model. This means that after the death of one of the
persons in the household, the surviving person invests the same proportion
of the new total wealth in the risky security as before the spouse's death.
Mathematically, this e�ect arises because we assume that the risk aversion
parameter, γ, used in the utility functions, is the same in all states.

Instead of commenting on the optimal sum insured we focus on the optimal
wealth of the surviving person in case the other person dies at time t. In
case of a jump into state i, i = 1, 2, this amount is given by

Xt + gi(t) + Si∗t =

(
µ0i
t

µ∗0it

) 1
1−γ fi(t)

f0(t)
(Xt + g0(t)).

The amount is calculated as a fraction of total wealth of the household.
The �rst term,

(
µ0i
t

µ∗0it

) 1
1−γ

,

measures the market price of the life insurance risk relative to the house-
hold's expectation, where the term also involves the risk aversion param-
eter, γ.

The second term,

fi(t)

f0(t)
,

measures the demand for future consumption after the person's death rela-
tive to the demand for future consumption before the person's death.

Note that with the convention gi(t) = 0 for t ≥ T and i = 0, 1, 2, the above
optimal value function, controls and the interpretation of them hold also
for the time after retirement.
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Fixed Consumption Until Retirement

Like in the one-person model, inspired by �xed contribution saving schemes,
we introduce the problem of �nding optimal investment and life insurance
processes for the time until retirement, given that consumption in state i
follows a deterministic process ci, i = 0, 1, 2. The optimal value function
for this problem is given by (3.15), where X follows the dynamics given
by (3.11)-(3.14) and q ∈ Q0

[t,T ) re�ects that the consumption-process until
retirement is �xed.

Solving this problem is similar to solving the original problem and we
therefore immediately write up the solution to the problem. Given that the
prespeci�ed �xed consumption process, c, ful�lls the bankruptcy criterion
given by∫ T

0
e−
∫ s
t (r+µ∗01τ +µ∗02τ )dτ (a0

s − c0
s + µ∗01

s g1(s) + µ∗02
s g2(s))ds > −x0,

with

gi(t) =

∫ T

t
e−
∫ s
t (r+µ∗i3τ )dτ (ais − cis)ds, i = 1, 2,

the optimal value function is given by

V 0(t, x) = h0(t) + 1
γ f

1−γ
0 (t)(x+ g0(t))γ ,

with h0, f0 and g0 given by

h0(t) =

∫ T

t
e−
∫ s
t (µ01τ +µ02τ )dτ ( 1

γw
1−γ
0 (s)(c0

s)
γ + µ01

s h1(s) + µ02
s h2(s))ds,

f0(t) =

∫ T

t
e
− 1

1−γ
∫ s
t (µ01τ +µ02τ −γ(µ∗01τ +µ∗02τ +ϕ))dτ

(

(
µ01
s

µ∗01γ
s

) 1
1−γ

f1(s)

+

(
µ02
s

µ∗02γ
s

) 1
1−γ

f2(s))ds+

∫ ∞
T

e
− 1

1−γ
∫ s
t (µ01τ +µ02τ −γ(µ∗01τ +µ∗02τ +ϕ))dτ

(w0(s) +

(
µ01
s

µ∗01γ
s

) 1
1−γ

f1(s) +

(
µ02
s

µ∗02γ
s

) 1
1−γ

f2(s))ds,

g0(t) =

∫ T

t
e−
∫ s
t (r+µ∗01τ +µ∗02τ )dτ (a0

s − c0
s + µ∗01

s g1(s) + µ∗02
s g2(s))ds.
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The functions hi, fi and gi, i = 1, 2 are in the forms (3.8)-(3.10). We �nd
optimal controls that are in the same form as in the original problem in
the two-person model, namely

π∗tXt =
α− r

σ2(1− γ)
(Xt + g0(t)),

Si∗t =

(
µ0i
t

µ∗0it

) 1
1−γ fi(t)

f0(t)
(Xt + g0(t))− (Xt + gi(t)), i = 1, 2.

As the f and g functions are changed compared to the original problem,
we �nd that the optimal amount of capital invested risky in this case is
smaller than in the original problem due to the fact that the function g0

is smaller in this case. Like in the one-person model this e�ect arises as
the function takes into account that the household consumes according to
a �xed consumption strategy until retirement.

Also the optimal sums insured is di�erent from in the original case, but
whether they are smaller or larger depends on the �xed consumption rate,
c.

3.5 Numerical Examples for Two-Person House-
holds

In this section a few interesting and realistic examples illustrate what this
type of model can capture. For each di�erent parametrization of the model
we show the expected development over time of the wealth process and
the control processes in the case where the household controls consump-
tion, investment and life insurance purchase both before and after retire-
ment.

The utility of consumption in the household should somehow re�ect that
some costs are shared. E.g., a couple should not spend $2 together to be
as happy as they would be by spending $1 each separately (they might be
happier separated, but we are not trying to model that!).

Hong and Ríos-Rull (2012) study a discrete model, where the connection
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between the utility functions is in the form

u0(t, cθ0 ) = ξu1(t, cθ1 ) + (1− ξ)u2(t, cθ2 ),

with

ui(t, c) = e−ρt 1
γ c
γ , i = 0, 1, 2,

for γ = −2. They estimate parameters based on American data on life
insurance holdings of households consisting of persons with ages varying
between 15-85. Under the hypothesis of no di�erence between the two
persons in the household (which they formalize as ξ = 1

2 and θ1 = θ2 = 1)
they estimate θ0 = 1.08. Under this hypothesis, and with the risk aversion
factor γ = −2, we �nd

u0(t, 1.53c) = u1(t, c) + u2(t, c), (3.16)

which means that the marginal utility from spending $1.53 together equals
the marginal utility from spending $1 separately. Note, that Hong and
Ríos-Rull (2012) reject the hypothesis of no di�erences between man and
wife at the 0.1 percent level, but for comparison of the graphics based on
di�erences between man and wife, we still choose to present graphics based
on this hypothesis.

Assuming that all time dependence is captured by the impatience factor,
ρ, we arrive at these utility weights for the three states:

w1−γ
0 (t) = 1.53−γe−ρt, (3.17)

w1−γ
i (t) = e−ρt, i = 1, 2. (3.18)

The jump intensities of Z are assumed to be equal across possible jumps,
across the measures P and P∗, and in the form

µt = µ∗t = Ã+ 10B̃+C̃(zi+t)−10, i = A,B, (3.19)

where z is the age at time 0 for the person exposed to death.

Based on the parameters in Table 3.1 we get the expected optimal controls
illustrated in Figure 3.3. Since we have not introduced any di�erences
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between the two persons, the optimal controls connected to the states
where only one person is alive are the same no matter who it is. The
expected consumption is decreasing, which is basically due to the fact that
the impatience factor is greater than the expected drift of the investment
portfolio. Note that we have the relationship ci∗t = wi(t)

w0(t)c
0∗
t , t ≥ 0, i = 1, 2,

which only holds in this case where µ = µ∗.

Now, we turn to the case of investigating how di�erences between the
two persons in the household in�uence the optimal controls. We consider
di�erences in the salary processes, and di�erences in the utility functions
and mortality intensities after the death of a spouse.

Assuming that a0 = 90 000, a1 = 30 000 and a2 = 60 000, corresponding

Description Value

zA, zB Age of person A and B at time of optimization 50

T Time of retirement 15

x Initial wealth in USD at time of optimization 400 000

a0 Constant income rate in USD until retirement in
state 0

90 000

a1, a2 Constant income rates in USD until retirement in
state 1 and 2

45 000

ρ Impatience factor for all states of Z 0.05

γ Risk aversion parameter needed in utility functions −2

r The constant drift of the risk free security 0.02

α The constant drift of the risky security 0.05

σ The constant volatility of the risky security 0.2

A Parameter for mortality intensity 0.002353

B Parameter for mortality intensity 5.102232

C Parameter for mortality intensity 0.04550

Table 3.1: Parameters needed for numerical results in Section 3.5. Note

that r, α and σ are thought of as corrected for in�ation, and that the

mortality intensity parameters are estimated based on deaths of people

over the age of 50 in America in 2006.
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to person A's income rate equaling half person B's, the expected optimal
controls are as shown in Figure 3.4. As we have only changed the salary
intensities, the household demands the same consumption after the death
of each spouse. In order to �nance that, the demand for life insurance on
each life is di�erent until the time of retirement.

The opposite scenario occurs if we instead introduce di�erences between
the two persons in their demand for consumption. Hong and Ríos-Rull
(2012) estimate θ0 = 1.33, θ1 = 4.76, θ2 = 1 and ξ = 0.07 in their full
model, where the widow is alive in state 1 and the widower is alive in state
2. Based on these estimates, and with γ = −2, we �nd

u0(t, 1.38c) = u1(t, 1.30c) + u2(t, c),

which shows that marriage forms economic habit for the widow but not
for the widower.

With person A being the wife and person B being the husband we �nd
these weight functions

w1−γ
0 (t) = 1.38−γe−ρt, (3.20)

w1−γ
1 (t) = 1.30−γe−ρt, (3.21)

w1−γ
2 (t) = e−ρt. (3.22)

Expected optimal controls based on these utility weights are presented in
Figure 3.5. Now, the household decides on di�erent consumption strategies
for the widow and widower, and in order to �nance those strategies they
choose di�erent sums insured on their lives while they are both alive. Note,
that we still have ci∗t = wi(t)

w0(t)c
0∗
t , t ≥ 0, i = 1, 2.

The last example is a change in the mortality intensities upon death of the
spouse. Numerous empirical studies have shown an increase in the mortal-
ity intensity of a widower upon death of his wife (see e.g. Liu (2009) and
Martikainen and Valkonen (1996)). Most studies also suggest increasing
mortality intensity of a widow upon death of her husband, but a few (see
e.g. Nagata et al. (2003) and de Leon et al. (1993), who �nd it only in small
scale and only for women over the age of 75) suggest that the e�ect could
be opposite (the mourning widow sometimes looks surprisingly refreshed
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under the veil). In order to fully see the e�ects on the controls that the
household decides upon, when introducing an upward jump in the mor-
tality intensity for the husband and a downward jump for the wife, upon
death of their spouse, we introduce these very dramatic intensities:

µ01 = µ02 = µ∗, (3.23)

µ13 = 1
4µ
∗, (3.24)

µ23 = 4µ∗. (3.25)

Based on these intensities we �nd the expected controls as is seen in Figure
3.6. Notice that even though the sums insured are di�erent, the initial
consumption upon death of a spouse is the same for the widow and the
widower, since

ĉi∗t =
wi(t)

fi(t)
(Xt + Si∗t + gi(t))

=
wi(t)

f0(t)

(
µ0i
t

µ0i∗
t

) 1
1−γ

(Xt + g0(t)),

i = 1, 2, where ĉi∗t is the initial consumption in state i upon a jump into
the state at time t.

The expected consumption after the death of the spouse evolves in di�erent
directions for the widow and the widower. Since µ13 < µ∗13 = µ∗23 < µ23,
we �nd that f1 < f2, which again means that the widower will consume a
larger fraction of his total wealth than the widow will. Furthermore, as the
initial wealth of the widower upon death of his spouse is smaller than that
of the widow, we �nd that his consumption is decreasing in time relative
to the consumption when they are both alive, while her consumption is
increasing.

3.6 Multiple-Person Household

In this section we give a brief description of how to formulate and solve the
optimization problem for a household consisting of multiple persons. This
problem is motivated by married couples with economically dependent
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children or economically dependent parents/grand parents. We only deal
with the problem of optimizing prior to retirement, assuming that the
problem of optimizing at time of retirement is solved in advance.

When modeling an n-person household, n ∈ N, the state process Z takes
values in {0, 1}n, where state {0, 0, . . . , 0} is the state where all persons are
alive, while state {1, 1, . . . , 1} is the state where all persons are dead. For
a more compact notation we rename state {0, 0, . . . , 0} to state 0.

The utility connected to consumption in state i at time t is given by

1
γw

1−γ
i (t)cγ , i ∈ {0, 1}n \ {1, 1, . . . , 1}

and the wealth process of the household follows these dynamics

dXt = (r + πt(α− r))Xtdt+ πtσ
2XtdWt

+ aZtt dt− ctdt+
∑
i∈Zt−

SitdM
∗Zt−i
t , (3.26)

X0 = x0. (3.27)

As in the previous models concerning one- and two-person households, we
assume that ait = 0 for all t ≥ T and i ∈ {0, 1}n \ {1, 1, . . . , 1}.

Now the general optimization problem for the n-person household is spec-
i�ed through the optimal value function

V 0(t, x) = sup
q∈Q[t,T )

Et,x
(∫ T

t
e−
∫ s
t µ

0·
τ dτ ( 1

γw
γ−1
0 (s)cγs

+
∑
i∈Zt

µ0i
s V

i(s,Xs + Sis))ds+ e−
∫ T
t µ0·τ dτ Ṽ 0(T,XT )

)
,

(3.28)

where X follows the dynamics from (3.26)-(3.27).

As we want to solve this problem by mathematical induction we now pro-
ceed as follows:

• State the solution to the problem.

• Show that the solution is correct for n = 1.
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• For n ≥ 2: Assume that the solution is correct for n − 1 and show
that the solution is then also correct for n.

Inspired by the work in Sections 3.3 and 3.4 we now come up with the
following solution to the problem described by (3.26)-(3.28), where con-
sumption is controlled at all times, stated in terms of the optimal value
function and optimal controls:

V 0(t, x) = 1
γ f

1−γ
0 (t)(x+ g0(t))γ , (3.29)

where f0 and g0 are given by

f0(t) =

∫ ∞
t

e
− 1

1−γ
∫ s
t (µ0·τ −γ(µ∗0·τ +ϕ))dτ

(w0(s) +
∑
i∈Zt

(
µ0i
s

µ∗0iγs

) 1
1−γ

fi(s))ds,

g0(t) =

∫ T

t
e−
∫ s
t (r+µ∗0·τ )dτ (a0

s +
∑
i∈Zt

µ∗0is gi(s))ds.

The optimal controls in state 0 are

c∗t =
w0(t)

f0(t)
(Xt + g0(t)), (3.30)

π∗tXt =
α− r

σ2(1− γ)
(Xt + g0(t)), (3.31)

Si∗t =

(
µ0i
t

µ∗0it

) 1
1−γ fi(t)

f0(t)
(Xt + g0(t))− (Xt + gi(t)), i ∈ Zt. (3.32)

In Section 3.3 we showed that (3.29) is correct for n = 1. For n ≥ 2
we assume that (3.29) is correct for n − 1. Considering the optimization
problem for an n-person household, the optimal value function (3.28) be-
comes

V 0(t, x) = sup
q∈Q0

[t,T )

Et,x
(∫ T

t
e−
∫ s
t µ

0·
τ dτ ( 1

γw
γ−1
0 (s)cγs

+
∑
i∈Zt

µ0i
s

1
γ f

1−γ
i (s)(Xs + Sis + gi(s))

γ)ds+ e−
∫ T
t µ0·τ dτ Ṽ 0(T,XT )

)
.
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HereX follows the dynamics from (3.26)-(3.27), and Ṽ 0(T, x) = 1
γ f

1−γ
0 (s)(x+

g0(T ))γ is assumed to be known from solving the optimization problem at
the time of retirement. Note, that the assumption that the solution (3.29)
holds for n− 1 means, in particular, that all functions V i in (3.28) are in
the form (3.29).

The HJB-equation for this problem is

V 0
t (t, x) + sup

c,π,S

[
1
γw

1−γ
0 (t)cγ −

∑
i∈Zt

µ0i
t

(
V 0(t, x)− 1

γ f
1−γ
i (t)(x+ Si + gi(t))

γ
)

+
[
(r + π(α− r))x+ a0

t − c−
∑
i∈Zt

µ∗0it Si
]
V 0
x (t, x) + 1

2π
2σ2x2V 0

xx(t, x)
]

= 0,

V 0(T, x) = 1
γ f

1−γ
0 (T )(x+ g0(T ))γ ,

where S = {Si}i∈Z0 . This problem is solved by the optimal value function
(3.29) and the optimal controls in (3.30)-(3.32).

Fixed Consumption Until Retirement

As in the one- and two-person models, we can also formulate this problem
in the n-person model. The bankruptcy condition is now∫ T

0
e−
∫ s
0 (r+µ∗0·τ )dτ (a0

s − c0
s +

∑
i∈Z0

µ∗0is gi(s))ds > −x0.

This problem can also be solved by mathematical induction, which leads
to the optimal value function

V 0(t, x) = h0(t) + 1
γ f

1−γ
0 (t)(x+ g0(t))γ ,
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with h0, f0 and g0 given by

h0(t) =

∫ T

t
e−
∫ s
t µ

0·
τ dτ ( 1

γw
1−γ
0 (s)(c0

s)
γ +

∑
i∈Zt

µ0i
s hi(s))ds,

f0(t) =

∫ T

t
e
− 1

1−γ
∫ s
t (µ0·τ −γ(µ∗0·τ +ϕ))dτ

∑
i∈Zt

(
µ0i
s

µ∗0iγs

) 1
1−γ

fi(s)ds

+

∫ ∞
T

e
− 1

1−γ
∫ s
t (µ0·τ −γ(µ∗0·τ +ϕ))dτ

(w0(s) +
∑
i∈Zt

(
µ0i
s

µ∗0iγs

) 1
1−γ

fi(s))ds,

g0(t) =

∫ T

t
e−
∫ s
t (r+µ∗0·τ )dτ (a0

s − c0
s +

∑
i∈Zt

µ∗0is gi(s))ds.

The optimal controls for state 0 are

π∗tXt =
α− r

σ2(1− γ)
(Xt + g0(t)),

Si∗t =

(
µ0i
t

µ∗0it

) 1
1−γ fi(t)

f0(t)
(Xt + g0(t))− (Xt + gi(t)), i ∈ Zt.

3.7 Final Remarks

The model framework introduced in this paper can be extended in several
ways. This could happen through a more sophisticated investment mar-
ket, more decisions to make for the household regarding insurance against
loss of income upon onset of disability or loss of employment, but also
housing �nance, e.g. mortgage �nancing of houses, could be introduced to
the model. Of particular interest we �nd the introduction of more realism
in the modeling of utility, though. This could be through the introduc-
tion of time and/or state dependent risk aversion, recursive utility or habit
formation arising from consumption in the past.
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Figure 3.3: Numerical results in USD 1 000, based on the parameters in

Table 3.5, the utility weights in (3.17)-(3.18) and the mortality intensities

in (3.19). Left: Wealth in state 0 (full line), optimal amount spent on life

annuities in state 0 (that is −S1 and −S2) for each person (dash-dotted

line) and optimal investment in the risky security in state 0 (long-dashed

line). Right: Optimal consumption in state 0 (full-drawn line) and optimal

consumption after death of one of the persons (dash-dotted line).
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Figure 3.4: Numerical results in USD 1 000, based on the parameters in

Table 3.5, the utility weights in (3.17)-(3.18) and the mortality intensi-

ties in (3.19), except for that a0=90 000, a1=30 000 and a2=60 000. Left:

Wealth in state 0 (full line), optimal amount spent on life annuity in state

0 on person A's life (−S1 =dashed line), optimal amount spent on life an-

nuity on person B's life (−S2=dotted line) and optimal investment in the

risky security in state 0 (long-dashed line). Right: Optimal consumption

in state 0 (full-drawn line) and optimal consumption after death of one of

the persons (dash-dotted line).
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Figure 3.5: Numerical results in USD 1 000, based on the parameters in

Table 3.5, the utility weights in (3.20)-(3.22) and the mortality intensities

in (3.19). Left: Wealth in state 0 (full line), optimal amount spend on life

annuity in state 0 on person A's life (−S1=dashed line), optimal amount

spend on life annuity on person B's life (−S2=dotted line) and optimal

investment in the risky security in state 0 (long-dashed line). Right: Op-

timal consumption in state 0 (full-drawn line), optimal consumption after

death of person A (dotted line) and optimal consumption after death of

person B (dashed line).
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Figure 3.6: Numerical results in USD 1 000, based on the parameters in Ta-

ble 3.5, the utility weights in (3.17)-(3.18) and mortality intensities from

(3.23)-(3.25). Left: Total wealth in state 0 (full line), optimal amount

spend on life annuity in state 0 on person A's life (−S1=dashed line), opti-

mal amount spend on life annuity in state 0 on person B's life (−S2=dotted

line) and optimal investment in the risky security in state 0 (long-dashed

line). Right: Optimal consumption in state 0 (full line), optimal initial

consumption for the surviving person upon death of the other (marked

with '+'), optimal consumption after death of person A at time 0 and

time 20 (dotted line) and after death of person B at time 0 and time 20

(dashed line).
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4. Recursive Utility with Utility

Driven Habit Formation

Kenneth Bruhn and Mogens Ste�ensen.

Abstract Literature on optimal investment and consumption in-
cludes forward looking utility functionals (recursive utility) as well
as backward looking functionals (habit formation). In either case,
present utility relates to consumption at other points in time, in gen-
eral leading to more �exible modeling of preferences allowing for a
better �t with observable behavior. Whereas recursive utility relates
present utility to expected future utility, habit formation tradition-
ally relates utility to past consumption.

The contribution of this paper is a continuous-time model that com-
bines forward and backward looking preferences. We choose to model
internal habit formation stemming from past utility of consump-
tion. The model allows for analytical solutions regarding optimal
consumption and investment in a Black-Scholes investment market.

Keywords Stochastic Control; Recursive Utility; Multiplicative

Habit Formation; Utility Driven Habit Formation

4.1 Introduction

Samuelson (1952): "The amount of wine I drank yesterday and will drink

tomorrow can be expected to have e�ects upon my today's indi�erence

slope between wine and milk".

Based on the novel idea that present utility depends on past or expected
future utility, we develop a model for preferences that combines the two.
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The foundation for each element of this modeling is established in great
detail by references to previous related literature.

The strand of literature on habit formation speci�cation starts with Due-
senberry (1949) who proposes that utility from current consumption can be
a�ected by the level of past consumption. The idea was �rst formally de-
veloped by Pollak (1970) and Ryder and Heal (1973). More recent analysis
has shown that habit formation can help explain e.g. the equity-premium
puzzle (see. Abel (1990), Campbell and Cochrane (1999), Constantinides
(1990)) as well as extraordinary saving in high growth scenarios, see Carroll
et al. (2000).

When we refer to continuous-time recursive utility, we have in mind stochas-
tic di�erential utility developed by Du�e and Epstein (1992a,b), which is
a continuous-time limit of the type of recursive utility studied in Kreps
and Porteus (1978) and Epstein and Zin (1989) among others. The mod-
eling allows for disentangling of relative risk aversion (RRA) and elasticity
of intertemporal substitution (EIS) in the utility functional and has been
used for addressing various asset pricing puzzles, e.g. see the list in Kraft
et al. (2012).

Recently, Ste�ensen (2011) developed a new approach that allows for dis-
entangling RRA and EIS. The idea is based on time-consistency in the solu-
tion to a non-linear optimization problem involving the certainty equivalent
of future consumption rates. The modeling in Ste�ensen (2011) introduces
a di�erent method for disentangling of RRA and EIS in continuous-time.
The method allows us a di�erent understanding of the preference struc-
ture in optimal consumption and investment problems. The methodology
is in this paper used for motivating the structure of habit formation arising
from past utility of consumption.

Combining recursive utility and habit formation in preferences is brie�y
discussed in Du�e and Epstein (1992b), who establish foundations for
the existents of a solution to the problem. We build on the existence
in the formulation of a model allowing for the combination of recursive
utility and habit formation in a simple Black-Scholes investment market.
The analytical solution to the optimization problem related to the model
allows for simple comparison with existing related problems and increase
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�exibility in calibration to empirical consumption behavior.

In this paper, we reserve a great amount of space for introduction of the
modeling in existing literature mentioned above. Our motivation for this is,
that the foundation on which we build our model must be well established.
Part of this paper can be considered a small survey on habit formation and
recursive utility literature but is entirely meant for setting the stage for
integrating the two.

The paper proceeds as follows: Section 4.2 presents the investment market
model and Section 4.3 contains the mini-survey on the relevant related
optimization problems brie�y presented in the previous paragraphs. In
Section 4.4 we present the model and solves the optimization problem and
Section 4.5 concludes.

4.2 Investment Market andWealth Dynamics

Throughout the paper we work with a complete Black-Scholes investment
market with bond dynamics

dMt = rMtdt, M0 = m,

and stock dynamics

dSt = St[(r + λ)dt+ σdWt], S0 = s.

The interest rate, r, the excess return, λ, and the volatility, σ, are assumed
constant for simplicity. This particular simple investment market model
is chosen for its simplicity since we are not interested in the interaction
between preferences and investment market structure. For the case of re-
cursive utility with a more complex investment market structure we refer
to Kraft et al. (2012) and Ste�ensen (2011). Utility maximization with
standard power utility and more complex investment markets is investi-
gated in numerous papers, see e.g. Munk et al. (2004) and the references
therein.

We consider a price-taking investor who takes decisions concerning con-
sumption and investment over a �xed time horizon. The wealth of our

93



investor follows the dynamics:

dXt = Xt[(r + πtλ)dt+ πtσdWt]− ctdt, X0 = x0, (4.1)

where πt is the proportion of wealth invested in the stock, and ct is the
total consumption rate at time t.

4.3 Existing Relevant Optimization Problems

In this section we present existing optimization models based on the theory
of time-additive utility maximization, recursive utility and habit formation.
Based on these foundations we propose a new model in Section 4.4.

4.3.1 Merton's Problem

Before we turn to models allowing for recursive utility and habit formation
in preferences, we present the classical/original time-additive continuous-
time utility optimization problem, formulated and solved in Merton (1969,
1971). The optimization problems discussed in the following are all gener-
alizations of this particular model. Merton (1969, 1971) consider a utility
maximizer with time-additive preferences for consumption, considering the
optimization criterion

sup
c,π

E
[∫ n

0
e−δt 1

1−γ c
1−γ
t dt

]
, (4.2)

subject to wealth dynamics (4.1), where δ ≥ 0 is a subjective utility dis-
count rate. The problem comes from considering utility from consumption
based on a power utility function in the form

u(c) = 1
1−γ c

1−γ ,

where γ is relative risk aversion (RRA) and γ−1 is elasticity of intertem-
poral substitution (EIS).
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In order to solve the problem (4.1)-(4.2), it is embedded in a value function
given by

V (t, x) = sup
c,π

Et,x
[∫ n

t
e−δ(s−t) 1

1−γ c
1−γ
s ds

]
, (4.3)

where Et,x is the conditional expectation given that Xt = x. We see that
the value function gives us the indirect utility from wealth at any time
t ∈ [0, n].

The problem is solved by the indirect utility function

V (t, x) = 1
1−γ g(t)γx1−γ ,

with

g(t) =

∫ n

t
e
− 1
γ

∫ s
t

[
δ−(1−γ)

(
r+ λ2

2σ2γ

)]
dτ
ds,

and the optimal controls

c∗t =
Xt

g(t)
,

π∗t =
λ

σ2γ
.

The optimal controls dictate that consumption at time t is proportional
to the wealth at time t. The function g that determine the proportion
consumed has the interpretation of an annuity weighting preferences for
immediate relative to future consumption. The optimal exposure of wealth
to investment risk dictates that a �xed constant proportion of wealth is
invested in the risky asset. The constant is often referred to as Merton's
constant.

4.3.2 Disentangling RRA and EIS

Now, two di�erent approaches has been dealing with the separation of
RRA and EIS in continuous-time optimization problems with time-global
objectives as the one given by (4.2).
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First Approach

The �rst approach is to consider the continuous-time limit of the local
discrete-time objective

V (t, x) = W
(
∆, ct, u

−1(Et,x[V (t+ ∆, Xt+∆)])
)
. (4.4)

HereW is an aggregator, aggregating the utility of time t consumption and
the time t certainty equivalent of having Xt+∆ for consumption from time
t + ∆ and onwards. An important case of this is Epstein-Zin preferences
(introduced in Epstein and Zin (1989) and developed to continuous-time
in Du�e and Epstein (1992a,b). Here, up to a constant not in�uencing
the optimal controls solving the problem,

W (∆, c, v) , ū(∆u(c) + (1− δ∆)u(ū−1(v))),

with u(z) = 1
1−φz

1−φ and ū(z) = 1
1−γ z

1−γ , where again γ measures RRA

and ψ = φ−1 is EIS (also referred to as CES for Constant Elasticity of
intertemporal Substitution). The continuous-time version now stems from
letting ∆→ 0 and this results in the continuous-time aggregator

f(c, v) = θv


 c

((1− γ)v)
− 1

1−γ

1−φ

− δ

 ,
where θ = 1−γ

1−φ . Kraft and Seifried (2010) provide an alternative notion
of di�erentiability compared to Du�e and Epstein (1992a,b) in order to
make the notion of stochastic di�erential utility more general and robust
to e.g. inclusion of non-Brownian markets.

For the problem of Epstein-Zin preferences, an admissible pair of a con-
sumption strategy c = {ct}t∈[0,n] and an investment strategy π = {πt}t∈[0,n]

delivers utility V c
0 over [0, n], with

V c
t = Et,x

[∫ n

t
f(cs, V

c
s )ds

]
,

where V (t,X∗t ) = V ∗t when optimal consumption and portfolio strategies
exists and X∗ = {X∗t }t∈[0,n] and V

∗ = {V ∗t }t∈[0,n]. This particular formu-
lation of the problem and its solution provides a certain motivation in the
modeling in Section 4.4.

96



The Hamilton-Jacobi-Bellman equation for problem of Epstein-Zin prefer-
ences reads

0 = sup
c,π

[
Vt + f(c, V ) + [(r + πλ)x− c]Vx + 1

2π
2σ2x2Vxx

]
,

V (T, x) = 0,

and we provide its solution later in this section.

Second Approach

Recently, Ste�ensen (2011) formalized a somewhat equivalent optimization
problem allowing for separation of RRA and EIS. This problem is based
on the certainty equivalence of expected future consumption rather than
that of expected future wealth used in the �rst approach above.

Ste�ensen (2011) suggests to consider the problem

sup
c,π

(∫ n

0
δe−δt

(
E
[

1
1−γ c

1−γ
t

])1
θ
dt

)θ
, (4.5)

which we embed in the value function

V (t, x) = sup
c,π

(∫ n

t
δe−δ(s−t)

(
Et,x

[
1

1−γ c
1−γ
s

])1
θ
ds

)θ
. (4.6)

The outer power θ as well as the multiplication with δ inside the integral
is taken for mathematical tractability since they do not alter the optimal
controls stemming from the problem. Due to the non-linearity of the op-
timization objective, dynamic programming does not work in this case.
This means in particular that a solution to (4.6) is most likely inconsis-
tent with the problem in (4.5). Ste�ensen (2011) therefore suggest that
we only search for a solution to (4.6) among the time-consistent strategies.
He formalizes that as the control processes that solves a problem with the
similar structure at all points in time, i.e. the optimal control should also
for all s > t realize the supremum in

V (s,Xs) = sup
c,π

(∫ n

s
δe−δ(u−s)

(
Es,Xs

[
1

1−γ c
1−γ
u

])1
θ
du

)θ
.
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Ste�ensen (2011) provide what he call a 'pseudo-Bellman equation' that
characterizes the value function (4.6) and the optimal controls. In the case
of a Black-Scholes investment market as we work with here, the result of
Ste�ensen (2011) reads:

Pseudo-Bellman: De�ne

V (t, x) = sup
c,π

(∫ n

t
δe−δ(s−t)

(
Et,x

[
1

1−γ c
1−γ
s

])1
θ
ds

)θ
.

Assume that there exists a regular U such that U(t, x) solves the pseudo-
Bellman equation

0 = sup
c,π

[
Ut + f(c, U) + [(r + πλ)x− c]Ux + 1

2π
2σ2x2Uxx

]
, (4.7)

U(T, x) = 0, (4.8)

where

f(c, U) = δθU


 c

((1− γ)U)
− 1

1−γ

1−φ

− 1

 .
Then

V (t, x) = U(t, x),

and the optimal control is given by (c∗, π∗) realizing the supremum in

(4.7).

It is not hard to see that the two approaches for a problem with disen-
tangled RRA and EIS have the same optimal controls in this case of a
Black-Scholes investment market. Namely the solution to either of the
problems are

c∗t =
Xt

g(t)
,

π∗t =
λ

σ2γ
,
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with

g(t) =

∫ n

t
e
− 1
φ

∫ s
t

[
δ−(1−φ)

(
r+ λ2

2σ2γ

)]
dτ
ds.

Up to a constant, the indirect utility from wealth under both approaches
is

V (t, x) =
1

1− γ
g(t)φθx1−γ .

Especially, the structure of the optimal solution is preserved compared to
classic model of Merton, which in particular illustrates the e�ect of the dis-
entanglement of RRA and EIS. We note that the investment proportion is
again given by Merton's constant. Also consumption is again proportional
to wealth. The consumption-to-wealth ratio di�ers from that found by
Merton, but it is seen that they are based on annuities calculated with
di�erent interest rate levels, though.

4.3.3 Allowing for Habit Formation in Preferences

The modeling of habit formation in preferences varies across existing liter-
ature in several ways. In particular, existing literature deviate in how the
habit level is generated and how the present habit level a�ects utility of
present consumption. In the following we sketch models of relevance for
this work and comment on the strengths of the di�erent models.

A general distinction in the literature is whether the habit level is inter-
nally or externally generated (or in equivalent formulation, endogenously
or exogenously generated). The model of externally generated habit, since
Abel (1990)/Gali (1994) also referred to as catching/keeping up with the
Joneses, is motivated by the idea that the utility you get from a speci�c
consumption good dependens on the good consumed by a reference group
(the utility experienced from driving a Mercedes depends on whether your
neighbor drives a Skoda or a Ferrari). This class of models is also referred
to as reference-utility models. Despite it's motivational tractability, we
omit the external generation of habitual preferences and relate our mod-
eling to internally generated habit formation.
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The internally generated habit level relates utility of present consumption
to a functional of past consumption. The idea behind this modeling is that
consumers get used to a certain standard of living and measure utility from
present consumption by relating it to what they have previously consumed.
In continuous-time models, the internal habit dynamics are most often in
the form

dht
dt

= a1ct − a2ht, h0 > 0, (4.9)

a1, a2 ≥ 0. These habit dynamics dates back to Ryder and Heal (1973).
With these dynamics, the habit level is a discounted average of past con-
sumption rates so that the more recent consumption rates are given higher
weights. The constant a1 is interpreted as a scaling parameter, while a2 is
a persistence parameter, see Munk (2008).

Previous literature proposes several ways of incorporating the habit level
in the modeling of utility from present consumption. The more common
incorporation of habit formation in preferences is in additive form, so that
utility is measured by a utility function given by

u(c, h) = ū(c− h), (4.10)

where c and h represent consumption and habit level and ū is a utility func-
tion taking values in R. The papers Sundaresan (1989) and Constantinides
(1990) include this modeling for a power utility investor and manage to
solve the Equity-premium puzzle. The main reason for their success is that
the inclusion of additive habit formation in a Constant Relative Risk Aver-
sion (CRRA) function changes it to a Decreasing Relative Risk Aversion
(DRRA) function.

Sundaresan (1989) also investigates a model of habit formation in the form
of (4.10) with exponential utility. He shows that the model of exponential
utility with additive habit formation can help explain the smooth con-
sumption puzzle of Hansen and Singleton (1983), i.e. his model provides
more stability over time in consumption.

The literature on multiplicative habit formation is far from as extensive
as is the case with additive habit formation. Abel (1990), Gali (1994)
and Carroll et al. (2000) work under the hypothesis that the inclusion of
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habit formation in the utility measurement from consumption is in the
form

u(c, h) = ū(
c

ha3
),

where ū is again a power utility function and a3 ∈ [0, 1] is the weight on
habit. The habit level, h, is driven by past consumption and the modeling
allows for a di�erent approach to solving the equity premium puzzle. Also
Carroll et al. (2000) provide evidence that this modeling can lead to more
moderate consumption behavior in growth economies, which is consistent
with empirical observations.

In Alpanda and Woglom (2009), a model of multiplicative habit formation
and exponential utility is considered. The strength of modeling exponen-
tial utility is well-known to be that it resolves the smooth consumption and
the risk-premium puzzle. The combined model of Alpanda and Woglom
(2009) allows for a resolution of the risk-free rate puzzle in addition. How-
ever, they do not otherwise substantiate their proposed habit dynamics,
namely

dht
dt

= a4
ht
Xt

(ct − ht), h0 > 0. (4.11)

The dynamics (4.11) allows for an analytical solution to an optimal con-
sumption problem with exponential utility and habit formation, and that
fact serves as their main argument for considering the habit dynamics in
(4.11).

One particular interesting paper modeling internal habit dynamics in a
di�erent form than (4.9) is Toche (2005). The habit dynamics proposed in
that paper is in the form

dht
dt

= a5(U(ct, ht)− ht), h0 ∈ R, (4.12)

where U(c, h) is instant utility from consuming c given that the habit level
is h. The sign for h0 in (4.12) depends on the sign of utility function U . The
habit dynamics in (4.12) results in a habit level driven by past utility of
consumption rather than past consumption as in (4.9). The motivation for
considering the habit dynamics in (4.12) is the �attering idea that people
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do not get used to a certain level of consumption but to a certain level
of utility. In the words of Toche (2005): "According to this alternative

de�nition (the habit dynamics in (4.12)), developing a consumption habit

means that past experienced felicity levels are 'remembered' (consciously

or not) as felicity levels, rather than as consumption levels".

The traditional habit dynamics in (4.9) speci�es that a unit increase in
present consumption raises the habit stock by one unit but raises only in-
tertemporal utility by the value of felicity. In particular, the one millionth
unit of consumption raises habit stock as much as the �rst. Toche (2005)
proposes the habit dynamics (4.12) to allow for diminishing marginal re-
turn with respect to increases in past consumption.

The utility function included in the model in Toche (2005) has the form

U(c, h) = u(c)(−h)−a6 ,

where u is a power utility function and a6 ≥ 0 is the weight on the habit
level. Toche (2005) works with a power utility investor of moderate risk
aversion such that u(c) < 0 (i.e. RRA> 1) and includes the minus in front
of h to ensure the right curvature of the utility function when the habit
stock is negative1. The parameter a6 in�uences the in�nite-horizon EIS
considered in the growth model in Toche (2005). The combined model of
Toche (2005) allows for a further weakened relation between saving and
growth compared to Carroll et al. (2000).

We elaborate further on the idea underlying the habit dynamics in (4.12)
and the correspondence between habit formation and EIS in the model
proposed in the following section.

4.4 The Optimization Criteria and the Model

In this section we present the optimization criteria of our investor and the
related optimization problem. The criteria combines multiplicative habit
of past utility from consumption with recursive utility. The optimization

1The utility function U satisfy that Uc > 0, Ucc < 0, Uh ≤ 0, Uhh ≤ 0, Uch ≥ 0, and
UccUhh − (Uch)

2 ≥ 0.
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criteria is presented in Section 4.4.1 and the problem is presented and
solved in Section 4.4.2.

4.4.1 Optimization criteria with Habit Formation and Re-

cursive Utility

The motivation for the habit dynamics proposed below is somewhat ob-
vious from models with disentangled RRA and EIS that was presented
in Section 4.3.2. For the problem of Epstein-Zin preferences we saw that
an admissible pair of a consumption and investment strategies delivered
utility V c

0 over [0, n], with

V c
t = Et,x

[∫ n

t
f(cs, V

c
s )ds

]
. (4.13)

In the Bellman equations in Section 4.3.2, the functional f 'takes the place
of' the utility function in the classical Merton-problem, and therefore we
can think of f as a utility function that takes expected future utility from
consumption into account.

We are tempted to say, that we maximize time-additive expected future
utility where utility is measured in terms of the functional f (using the
deterministic time discounting factor δθ). This is very much in line with
Bjork and Murgoci (2010), saying that every time-inconsistent problem
(with a solution) has a time-consistent equivalent with a 'modi�ed' ob-
jective functional. In this case the inconsistent problem is (4.6) and the
consistent equivalent is (4.13).

Let us for now separate f so that

f(c, v) = θv


 c

((1− γ)v)
− 1

1−γ

1−φ

− δ


= u(c, v)− δθv,
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with

u(c, v) = θv

 c

((1− γ)v)
− 1

1−γ

1−φ

.

In words we would say that the utility function u measures power utility
of consumption relative to the certainty equivalent of utility from future
consumption, and then multiplied with the indirect utility from future
consumption. Incorporating multiplicative habit now seems natural to do
by considering maximizing utility from u( ch , v), where h is the present habit
level.

Preference driven habit formation means that h is a measure of past utility
rather than past consumption, as proposed by Toche (2005). Inspired by
the form of u we suggest that h follows the dynamics

dht
dt

= 1
1−φhtA

 ct

ht((1− γ)Vt)
− 1

1−γ

1−φ

− 1
1−φBht, h0 = 1, (4.14)

meaning that h has the representation

ht =

(∫ t

0
e−
∫ t
s Bdτ

(
A((1− γ)Vs)

−θ−1
c1−φ
s ds+ dε0(s)

)) 1
1−φ

=

(∫ t

0
e−
∫ t
s Bdτ

(
A
u(cs, Vs)

θVs
ds+ dε0(s)

)) 1
1−φ

.

In line with Munk (2008) we interpret the constant A ∈ (0,∞)/{1} as
a scaling parameter, while B ≥ 0 is a persistence parameter. The outer
transformation, taking everything to the power of 1

1−φ , brings the habit
level back to a monetary unit so that the fraction c/h is 'money'/'money'.
We think of the transformation as a certainty equivalent with respect to
EIS rather than RRA, which somehow seems meaningful when h is a mea-
sure of past utility (the past contains no risk given the present).

In total we arrive at the continuous-time aggregator for the Epstein-Zin
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preferences including multiplicative habit of past utility

f(c, h, v) = θv


 c

h((1− γ)v)
− 1

1−γ

1−φ

− δ


= u( ch , v)− δθv.

When γ = φ, the functional f collapses into well known time-additive
expected utility with multiplicative habit formation.

4.4.2 Model and Solution

The (pseudo-)Hamilton-Jacobi-Bellman equation for the problem of �nd-
ing optimal consumption and investment strategies is found by straight
forward derivation in line with the calculations in Ste�ensen (2011). For
the Black-Scholes investment market that we work with here, see Sec-
tion 4.2, the ultimate solution that we derive coincides for the approaches
in Ste�ensen (2011) and in Du�e and Epstein (1992a,b) and Kraft and
Seifried (2010). We therefore go straight at the Hamilton-Jacobi-Bellman
equation for the investor's indirect utility, assuming that there exist opti-
mal portfolio and consumption strategies π∗ and c∗ for the problem.

0 = sup
c,π

[
Vt + f(c, h, V ) + [(r + πλ)x− c]Vx + 1

2π
2σ2x2Vxx

+

 1
1−φhA

 c

h((1− γ)V )
− 1

1−γ

1−φ

− 1
1−φBh

Vh

]
,

(4.15)

V (T, h, x) = 0. (4.16)
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The �rst order conditions for the supremum in (4.15) are solved by

c∗ =
[
V −1
x ((1− γ)V )1−θ−1

(
h−(1−φ) +Ahφ((1− γ)V )−1Vh

)] 1
φ
,

π∗ = − λVx
σ2xVxx

.

We conjecture that a solution to the Bellman equation (4.15)-(4.16) is in
the form

V (t, h, x) =
1

1− γ
g(t)φθ

(x
h

)1−γ
.

Inserting everything into the HJB-equation gives:

0 = V φθgtg
−1 + θV

(
(1− γ) 1

1−γ g
φθ
(x
h

)1−γ
)−θ−1

h−(1−φ)

×
[
g
−φθφθ x(1−A)

1
φ

]1−φ

− δθV

+ x

(
r +

λ2

σ2γ

)
V (1− γ)x−1 − (1−A)

1
φ g
−φθφθ xV (1− γ)x−1

+ 1
2

(
λ

σ2γ

)2

σ2x2V (1− γ)(−γ)x−2

+

(
A

1− φ
hφ
(

(1− γ) 1
1−γ g

φθ
(x
h

)1−γ
)−θ−1 (

(1−A)
1
φ g
−φθφθ x

)1−φ

− B

1− φ
h

)
(−V (1− γ)h−1)

⇒

0 = φθgtg
−1 + θ(1−A)

1
φ−1

g−1 − δθ

+ r(1− γ) + 1
2

λ2

σ2

1− γ
γ
− (1− γ)(1−A)

1
φ g−1

− θA(1−A)
1
φ−1

+ θB,

g(T ) = 0.
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Since we can seperate of state and time variables for the conjectured solu-
tion, we �nd that the ODE for g is:

gt =
1

φ

[
δ −B − (1− φ)

(
r +

λ2

2σ2γ

)]
g − (1−A)

1
φ ,

g(T ) = 0,

with solution

g(t) = (1−A)
1
φ g̃(t)

where

g̃(t) =

∫ T

t
e
− 1
φ

∫ s
t

[
δ−B−(1−φ)

(
r+ λ2

2σ2γ

)]
dτ
ds.

The optimal controls solving our proposed model are

c∗t =
Xt

g̃(t)
,

π∗t =
λ

σ2γ
.

The controls are similar to the controls from the recursive utility model in
Section 4.3.2, except for the habit persistence parameter B. We see that
present consumption increases in B, which is only natural since increasing
B decreases persistence. The consumption-to-wealth ratio is again calcu-
lated based on an annuity but with a di�erent interest rate level.

Remarkably we �nd that none of the controls involve the habit level h.
We see that there is somehow an o�set in the modeling! The o�set is even
more evident from the fact that the parameter A (scaling the weight of
habit in utility from present consumption) from the habit dynamics is not
present in the controls.

4.5 Conclusion

In this paper we have proposed a model that includes forward and back-
ward looking preferences. In either direction, we modeled that present util-
ity from consumption took into account a certainty equivalent of past or
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present utility from consumption; the forward looking certainty equivalent
was calculated including the risk aversion coe�cient, the backward looking
was calculated with the coe�cient for elasticity of intertemporal substitu-
tion. Remarkably we found that forward utility functional proposed merely
o�set the e�ect of modeling backward looking preferences.

As is the case in classical time-additive utility optimization as well as re-
cursive utility optimization, the consumption-to-wealth ratio is here calcu-
lated based on an annuity. The similar structure makes comparison simple
and e�ects of di�erent model elements are easy recognizable.
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5. Optimal Smooth Consumption

and Annuity Design

Kenneth Bruhn and Mogens Ste�ensen, to appear in Journal of Banking

and Finance.

Abstract We propose an optimization criterion that yields ex-
traordinary consumption smoothing compared to the well known re-
sults of the life-cycle model. Under this criterion we solve the related
consumption and investment optimization problem faced by individ-
uals with preferences for intertemporal stability in consumption. We
�nd that the consumption and investment patterns demanded under
the optimization criterion is in general o�ered as annuity bene�ts
from products in the class of 'Formula Based Smoothed Investment-
Linked Annuities'.

Keywords Stochastic Control; Quadratic optimization; Linear

Regulation; Consumption Smoothing; Formula Based Smoothed In-

vestment-Linked Annuities

5.1 Introduction

This paper illustrates that preferences for smooth consumption streams
can be explained by constrained marginal consumption and an associated
quadratic optimization criterion. The optimal consumption stream derived
under the preferences just mentioned, shows remarkably conformity with
the bene�t stream of a particular annuity product from the product class
'Formula Based Smoothed Investment-linked Annuities'.

We were puzzled: Why are smooth-bene�t and �xed annuities so much
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more popular than Unit-Link annuities with unsmoothed bene�ts?1

A wage earner's life can be divided in to two phases; an accumulation
and a decumulation phase. During the accumulation phase, the person
consumes part of his earnings while saving the remainder for retirement.
After the person has left the labor market, consumption is �nanced by
decumulation of savings, typically through an annuity. The annuity is
either bought in the accumulation period as a deferred annuity or at the
date of retirement as an immediate annuity. Several types of annuities
exists, e.g. �xed, with-pro�t, participating life, formula based smoothed
investment-linked, Variable, Unit-Link annuity etc. They di�er in the
stability over time in the bene�ts provided, ranging from a �xed annuity
with a constant bene�t stream to a pure Unit-link annuity where bene�ts
vary perfectly with investment returns. In this paper we address the task
of matching the preference structure of an individual to the consumption
structure stemming from realized bene�ts of an annuity. Especially, we are
interested in which preferences relate to the annuities providing the more
smooth bene�ts.

The widely accepted �Life-Cycle Hypothesis� (LCH) of Modigliani & Broom-
berg and �Permanent Income Hypothesis� (PIH) of Friedman suggest that
a person's consumption is proportional to his/her total wealth (the sum
of �nancial and human wealth). In post-retirement, total wealth consists
mainly of �nancial wealth (human wealth is zero unless we account for pub-
lic pension as part of human wealth). Consumption proportional to income
thereby means that consumption in post-retirement varies perfectly with
�nancial wealth, yielding that decumulation of savings is preferably done
via a pure Unit-link annuity.

The fact that people do not decumulate via Unit-Link annuities is partly
formulated in �The Consumption Smoothing Puzzle�, which dates back
to Hansen and Singleton (1983). They present evidence that observed

1Insurance Information Institute (www.iii.org) reports $7.6 billions of individual im-
mediate �xed annuities sales and $0.1 billions of variable annuities in 2010 in the US.
The Association of British Insurers Research Department reports that new sales vol-
umes in UK in 2007 consists of 89% conventional annuities (level/�xed and escalating)
and 4% Unit Linked/With pro�t annuities, the rest being Enhanced/Impaired Life (see
Gunawardena et al. (2008)).
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consumption is much smoother than predicted by the life cycle models.
Various solutions to the puzzle have been proposed, most of these modify-
ing the market assumption underlying the model in Hansen and Singleton
(1983), see e.g. Zeldes (1989) for stochastic income, Black (1990) for mean
reverting returns or Fleming and Hernández-Hernández (2003) for stochas-
tic volatility of returns.

Also preference modi�cations have been proposed in order to solve the
puzzle. One preference modi�cation that is of special interest here, is the
introduction of endogenous habit formation, see e.g. Sundaresan (1989),
Constantinides (1990) and Abel (1990). Furthermore, Munk (2008) solves
the optimal investment and consumption problem with stochastic varia-
tions in investment opportunities and habit formation, thereby modifying
both the underlying market and preferences. The key concept in habit
forming preferences is intertemporal dependence in preferences in the sense
that utility of present consumption depends on past consumption. Under
these preferences, in comparison with the LCH and PIH, consumption is
somewhat smoothed even for low or no human wealth.

This paper contributes to the understanding of the dependence structure in
preferences that implies increased consumption smoothing. The optimiza-
tion criterion proposed in this paper, though, does not include intertempo-
rally dependent preferences but instead explicitly intertemporally depen-
dent consumption. This is modeled by allowing for only limited control of
consumption, in the sense that only the rate of change in the consumption
rate is controllable.

In the object function of our proposed model we punish quadratic distance
between the consumption rate derivative and a prespeci�ed target and be-
tween terminal wealth and a target consumption ratio. The quadratic cri-
terion is a classic in pension fund control where numerous papers examine
the connection between the classical linear regulator and optimal pension
funding. We refer the reader to the review article by Cairns (2000) and
references therein. A main di�erence to our paper is that our criterion con-
cerns the consumption rate derivative rather than the consumption rate
itself. This adds a technical dimension through an additional state variable
and changes the interpretation of the problem formulation and its solution.
Also, we �nd that it makes sense to interpret the problem, not only as that
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of a pension fund controlling portfolio level contributions, but more as that
of an individual decision maker, who expresses his preferences through a
consumption growth rate target.

We �nd that the consumption patterns solving our proposed problem for-
mulation shows remarkably conformity with the characteristics of annu-
ity products from a particular class of products, namely �Formula Based
Smoothed Investment-Linked Annuities�. The conformity is established by
direct comparison with one particular product from that product-class2.

The structure of the remainder of the paper is: Section 5.2 contains the
classical results on optimal consumption and investment problems. In
Section 5.3 we present and motivate our problem of optimal smooth con-
sumption and we solve it in Section 5.4. Section 5.5 contains a formaliza-
tion of the product �Tidspension� from the product-class �Formula Based
Smoothed Investment-Linked Annuities�. In Section 5.6 we compare the
problem solution with the product characteristics of Tidspension.

5.2 Classical Results on Consumption and Invest-
ment

In this section we present the classical power utility continuous-time op-
timal investment and consumption problem and the related problem with
habit persistence in preferences.

Academic literature on dynamic consumption and investment decisions in
continuous-time starts with Merton (1969) and Samuelson (1969). The
investment market in which the investor can invest consists of a bond with
constant interest rate r and a stock with constant excess-return λ and
volatility σ. Thereby, the investor faces the wealth dynamics

dXt = (r + πtλ)Xtdt+ πtXtσdWt − ctdt, X0 > 0, (5.1)

where W is a standard Brownian motion, π is the proportion of wealth
invested in the stock and c is the consumption rate. The optimal strate-
gies are derived for a time-additive power utility maximizer with constant

2For a description of the product-class see Jørgensen and Linnemann (2012).
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relative risk aversion γ and time-preference coe�cient ρ, facing the prob-
lem

sup
c,π

E
(∫ T

0
e−ρs

[
1

1−γ c
1−γ
s ds+ 1

1−γX
1−γ
s dεT (s)

] )
, (5.2)

where εT (·) = 1{T≤·}.

The optimal solution for consumption (c∗) and investment proportion (π∗)
is

c∗t =
Xt

f1(t)
,

π∗t =
λ

σ2γ
,

for a deterministic function f1, see Merton (1969, 1971). The optimal
consumption is proportional to savings which is very much in line with the
LCH and the PIH. The investment proportion is constant and non-zero
and we easily �nd that

dc∗t = c∗t (A1(t)dt+
λ

σ2γ
σdWt), c

∗
0 = X0/f(0),

for a deterministic function A1. The point here is that consumption possess
short term volatility in the sense that stock market �uctuations (through
σdW ) has an immediate e�ect on present consumption.

The related problem with additive endogenous habit formation in prefer-
ences consists of solving

sup
c,π

E
(∫ T

0
e−ρs

[
1

1−γ (cs − hs)1−γds+ 1
1−γ (Xs − ξhs)1−γdεT (s)

] )
,

subject to the wealth dynamics (5.1) and habit dynamics

dht = (ϕ1ct − ϕ2ht)dt, h0 > 0, (5.3)

for ξ ≥ 0 and ϕ1, ϕ2 > 0, see e.g. Munk (2008). With additive habit forma-
tion in preferences, utility from consuming ct at time point t ∈ [0, T ] comes
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from the part of the consumption that exceeds a minimum consumption
requirement given by the habit level ht.

The optimal consumption and investment proportion for this problem
is

c∗t = ht + (1 + ϕ1f3(t))
− 1
γ
Xt − f3(t)ht

f2(t)
,

π∗t =
λ

σ2γ

Xt − f3(t)ht
Xt

,

for deterministic functions f2 and f3, with

f3(t) =

∫ T

t
e−(r+ϕ2−ϕ1)(s−t)ds.

We note that optimal consumption at time t is given by the sum of the
minimum consumption, ht, and a proportion of the present capital in excess
of the capital value of future minimum consumption, Xt − f3(t)ht

3. The
consumption is a�ne in capital, leading to a smoother consumption pattern
than under time-additive power utility without habit formation. We now
�nd

d(c∗t − h∗t ) = (c∗t − h∗t )(A2(t)dt+
λ

σ2γ
σdWt),

c∗0 − h∗0 = (1 + ϕ1f3(0))
− 1
γ
x0 − f3(0)h0

f2(0)
,

for a deterministic function A2. The point of the above dynamics is,
that consumption under additive habit formation still possesses short term
volatility. Compared to the case without habit formation, the short term
volatility is dampened since only consumption in excess of present habit
level is volatile. We note that the proportionality constant of the market
�uctuations e�ect on the consumption dynamics, λ

σ2γ
, is the same in both

cases with and without habit formation.

3Note, that if cs = hs for all s ≥ t, then the future habit levels will be given
by hs = e−(ϕ2−ϕ1)(s−t)ht, and we can interpret f3(t)ht as the capital value of future
minimum consumption (see Munk (2008)).
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The short term volatility of consumption under time-additive power utility
with and without additive habit formation comes from the fact that stock
market �uctuations immediately and di�usively in�uence consumption. A
similar characterization holds for a pure Unit-link annuity, where invest-
ment returns are immediately converted into bene�ts, leading to short
term volatility of bene�ts. On the other hand, the smooth-bene�t annuity
is characterized by investment returns that are smoothed over time, so that
bene�ts do not reveal short term volatility. Put di�erently, if an investor
has preferences as assumed in one of the formulations above, he would de-
cumulate savings via a pure Unit-link annuity rather than a smooth-bene�t
annuity.

As noted in Section 6, the short term volatility in the optimal consump-
tion streams under power utility somehow contradicts observed annuity
demands of retirees. We therefore now propose another model for deter-
mining optimal consumption in retirement.

5.3 Consumption Smoothing and the Quadratic
Criterion

In this section we present the model of smooth consumption. The model
is based on an alternative formulation of habit formation and a quadratic
optimization criterion.

The Alternative Habit Formation

Instead of allowing consumption to be as rapidly adjusted as in the opti-
mization problems studied in Section 5.2, we propose that the consumption
rate follows the dynamics

dct = adt, c0 > 0. (5.4)

In Longsta� (2001), this idea was implemented for the number of shares
held by the investor facing a Merton-like optimization problem like the one
given by (5.1)-(5.2). Whereas Longsta� (2001) motivates the constrained
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investment dynamics by an illiquid �nancial market, we motivate the con-
strained consumption modeled by (5.4) with friction in consumption ad-
justment. Being used to a certain consumption level, e.g. largely driven
by housing costs, it is hard to adjust it signi�cantly in short time.

In line with the modeling of habit formation in preferences given by (5.3),
the constrained consumption dynamics in (5.4) ties current consumption
to previous consumption. The di�erence is, that habit in preferences states
that you are used to a certain standard of living and therefore only derives
utility from the part of consumption that exceeds your habit level. Habit
in consumption, on the other hand, states that your current consumption
can only be marginally changed in a short time interval, simply because
you are committed to a stable consumption pattern. In the following,
we let a be a control variable for the optimization problem, so that the
household can choose the rate of change in the consumption rate. Thus,
we are controlling not consumption but the acceleration of consumption
over time.

The Quadratic Optimization Criterion

Given that the household is subject to the wealth dynamics in (5.1) and
consumption dynamics in (5.4), we must decide on a optimization criterion
for our model. Choosing the Merton-criterion given by (5.2) would lead to a
bang-bang strategy for the rate of change in the consumption rate. Deriva-
tion of this result is straightforward using the Hamilton-Jacobi-Bellman
methodology (see e.g. Longsta� (2001) who arrives at a bang-bang strat-
egy for the number of shares under a Merton-criterion). The reasoning for
this result is that you control a but measure utility from c such that a is
not directly present in your optimization objective. This way, the control
process a appears as a factor on the optimal value function's derivative
in c only in the related Hamilton-Jacobi-Bellman equation. If we solve
this problem under the condition that a is to be chosen from the interval
[a−, a+], we easily �nd that the �rst order condition for a is

a =

{
a+, V Longstaff

c > 0,

a−, V Longstaff
c < 0,
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where V Longstaff
c is the derivative in c of the related optimal value func-

tion.

The result is intuitively obvious; maximizing utility of consumption in a
time-additive manner is essentially all about equaling marginal utility over
time. Any instantaneous unexpected investment return is therefore used
to adjust the marginal utility at all future time-points and that forces the
person to rapidly adjust current consumption (consumption possesses short
term volatility). Since the purpose of this paper is to discuss preferences for
smooth consumption and the annuity products related to these preferences,
we do not elaborate further on this. Though, an annuity product inspired
by the sketched bang-bang strategy can be designed within the class of
Unit-link products with �nancial guarantees. To the knowledge of the
authors, such a product does not (yet) exist in the market.

Instead of focusing on the actual level of consumption, we propose that
the optimization criterion directly incorporates the rate of change in the
consumption rate. The motivation is, that people are very focused on the
increase in welfare, regardless of their actual present level of consumption
(the pauper and the millionaire are both interested in the same thing,
namely that the next jacket/TV/car etc. is better than the one they bought
last time). We especially bear in mind the situation where the household
is eager for an instantly marginal increase in consumption, which they
cannot �nance by investing their present capital in a riskless asset.

Instead of working with the Merton-criterion for optimization in this model,
we propose a time-additive quadratic criterion. We formalize it for our
model as

inf
a,π

E
(∫ T

0
[`(cs, as)ds+ L(cs, Xs)dεT (s)]

)
, (5.5)

with loss-functions

`(c, a) = 1
2(a− āc)2,

L(c, x) = B
2 (x− ξc)2,

where ā, B ∈ R and ξ ≥ 0 are constants. The controls a and π are the rate
of change in the consumption rate and the proportion of wealth invested
in risky assets, respectively.
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Based on the instantaneous loss-function, `, we say that the household is
only concerned with changes in their consumption rate, a. Their objective
is to minimize the instantaneous quadratic distance to the speci�ed target
ā (ā is thus re�ecting time-preferences in consumption and since a is a
dollar amount, ā has to be in percentage in order for a and āc to be
on the same scale in `). The structure of ` dictates that the household
aims at exponential growth (decay) in consumption when ā is positive
(negative).

The terminal loss-function, L, is re�ecting the bequest motive of the house-
hold. The value of ξ sets the target proportion of the �nal consumption
rate that the household wants to have left at time T , and the quadratic
distance to this target is punished. The punishment is weighted by B in
order to allow for di�erent weights on the two loss-functions in the cri-
terion. A special example is ξ = 0, where the household has no bequest
motive and aims at spending all wealth before time T .

The parameters ā and ξ specify preferences for growth in consumption
and a bequest motive and therefore also indirectly the risk attitude of
the household. When the preferred future consumption pattern and be-
quest amount cannot be �nanced with riskless investments, more risky
positions are taken as a consequence (as we will see below). In a sense,
the parameters proxy for risk aversion in our problem formulation, but
the speci�cation is indirect and not as straightforward as known from e.g.
classical utility optimization.

There is obviously less control of future consumption under the problem
formulation in this section than in the classical models in Section 5.2.
Since the problem still allows for a consumption pattern consistent with
bene�ts from smoothed annuities, we do not see this as a drawback for the
model.
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5.4 The Solution to the Smooth Consumption Prob-
lem

In this section we solve our proposed smooth consumption problem. We
then analyze the derived optimal consumption dynamics and the optimal
investment strategy.

We solve the optimization problem (5.5) by dynamic programming with
wealth and consumption dynamics given in (5.1) and (5.4). The optimiza-
tion problem is therefore embedded in the optimal value function

V (t, c, x) = inf
a,π

Et,c,x
(∫ T

t
[`(cs, as)ds+ L(cs, Xs)dεT (s)]

)
, (5.6)

where Et,c,x is the conditional expectation given that the person consumes
at rate ct = c and holds wealth Xt = x at time t. The Hamilton-Jacobi-
Bellman (HJB) equation for solving this problem is

Vt + inf
a,π

[
1
2(a− āc)2 + [(r + πλ)x− c]Vx + 1

2π
2σ2x2Vxx + aVc

]
= 0,

V (T, c, x) = B
2 (x− ξc)2,

and the �rst order conditions for a and π are solved by

a∗ = āc− Vc,

π∗ = − λ

σ2

Vx
xVxx

.

Plugging these controls into the HJB equation leads to the PDE

Vt − 1
2V

2
c + [rx− c]Vx −

λ2

2σ2

V 2
x

Vxx
+ ācVc = 0, (5.7)

V (T, c, x) = B
2 (x− ξc)2, (5.8)

and we make an ansatz for a solution in the form

V (t, c, x) =
1

2

(x− g(t)c)2

f(t)
.
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Now, (5.7)-(5.8) becomes(
x− g(t)c

f(t)

)[
−1

2f
′(t)− 1

2g(t)2 + (r − λ2

2σ2 )f(t)
]

+c
[
−g′(t) + (r − ā)g(t)− 1

]
= 0,

1

2

(x− g(T )c)2

f(T )
= B

2 (x− ξc)2,

which leads to the following ODEs for f and g

f ′(t) = r̄f(t)− g(t)2, f(T ) = 1
B ,

g′(t) = (r − ā)g(t)− 1, g(T ) = ξ, (5.9)

with

r̄ = 2r − λ2

σ2 .

These ODEs are solved by

f(t) =

∫ T

t
e−r̄(s−t)[g(s)2ds+ 1

BdεT (s)],

g(t) =

∫ T

t
e−(r−ā)(s−t)[ds+ ξdεT (s)]. (5.10)

In order to verify that the optimal controls are indeed solving the in�mum,
note that the second order derivative with respect to consumption gives
a 1, which is indeed positive for all values of (t, c, x) in [0, T ] × R × R.
The second order derivative with respect to the investment amount πx
is σ2f(t)−1 which is also positive such that also the optimal investment
is solving the in�mum4. In total we conclude that the optimal controls
(a∗, π∗) solves the in�mum for all values of (t, c, x) in [0, T ]×R×R.

We see that given the present level of consumption, ct, g(t)ct is the time t
present value of the preferred consumption in the time period [t, T ] and the

4Since the proportion of wealth invested in the risky asset is not well-de�ned when
wealth is 0, the second order condition for the optimal proportion invested is not mean-
ingful to consider for x = 0. Specifying the whole optimization problem in terms of an
optimal proportion or amount invested in the risky asset is equivalent, and we conclude
that the controls solve the in�mum.
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preferred bequest amount. The present value is calculated with a discount
rate equal to the risk free interest rate, r. Preferred means that the rate
of change in the consumption rate equals exactly the target set by the
parameter ā, and therefore also that the targeted bequest amount is met.
As a consequence of this, x = cg minimizes (5.6).

The function f is the present value of a payment stream of g2 from time
t to T and a terminal sum at time T of 1/B, discounted with an interest
rate of r̄. We provide no speci�c interpretation of this quantity which, of
course, balances the preference for consumption growth and bequest.

5.4.1 The optimal control of a

The optimal rate of change in the consumption rate, a∗, is

a∗t = āct +
g(t)

f(t)
(Xt − g(t)ct). (5.11)

The �rst term is exactly the preferred change in the consumption rate at
time t, whereas the second term adjust if present consumption is not set
on target (Xt 6= ctg(t)). In the second term, we say that Xt− g(t)ct is the
consumption bu�er and g(t)/f(t) is the adjustment speed. If the bu�er is
negative, the present capital is lower than the present value of preferred
future consumption and bequest and consequently the rate of change in
the consumption rate is decreased. The decrease is proportional to the
bu�er and the adjustment speed determines the immediate in�uence on
the consumption rate.

We note that the optimal consumption dynamics are a linear combination
of present consumption and the consumption bu�er.

Illustration

In Figure 5.1 we illustrate the evolution of savings, consumption and op-
timal adjustment over a 10 year period. We illustrate here the case where
there is no risky investment (λ = 0⇒ π∗ = 0), just not to blur the picture
with investment market �uctuations.
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In the case presented in Figure 5.1, the initial consumption in combination
with the preferred rate of change in consumption is higher than what can
be �nanced from riskless investment of the capital. The consumption is
under�nanced by 10% corresponding to the negative bu�er. We note, that
due to the inertia in consumption, it is optimal to adjust consumption more
in the beginning of than late in the period. This results in numerically
decreasing adjustments over time.

Comparative statics for a∗

The optimal change in the consumption rate consists of three parts; the
preferred change, āc, the consumption bu�er, x− gc, and the adjustment
speed, g/f . For the �rst two terms, comparative statics are simple, whereas
the fact that f includes the function g complicates analysis of the third
part. As a result of the latter, analytical results are not informative for all
variables and we present a numerical study.

The weight on bequest, B, and the squared sharpe ratio of the risky asset,
S = λ2

σ2 , only in�uences the adjustment speed through the function f . We
�nd that the adjustment speed is increasing in B and decreasing in S, so
that we have

sign{∂a
∗

∂B
} = sign{X∗ − g(t)c∗t },

sign{∂a
∗

∂S
} = −sign{X∗ − g(t)c∗t }.

Since B weights the importance of bequest relative to stable consumption,
it is only natural that increasing B increases the speed of adjustment. For
the squared sharpe ratio, an increase herein means that the investment
market becomes a more e�ective tool for adjusting the future wealth of
the household. As a consequence, less extraordinary adjustment of con-
sumption away from ā is needed (note that a∗ → ā monotonically when
S →∞).

The interest rate, r, and the preferred adjustment speed, ā, in�uence the
value of g and therefore also f . Analytical comparative statics are there-
fore not informative, since the net e�ect on the adjustment speed is in-
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conclusive. For the preferred change in the consumption rate and the
consumption bu�er we easily �nd that

∂

∂r
(āc∗t ) = 0,

∂

∂r
(X∗t − g(t)c∗t ) > 0,

∂

∂ā
(āc∗t ) > 0,

∂

∂ā
(X∗t − g(t)c∗t ) < 0,

whereas numerical studies for the adjustment speed and the overall e�ect
on the optimal change in the consumption rate is presented in Figure
5.2.

An increase in the interest rate, r, increases the consumption bu�er since
the present value of the preferred future consumption stream decreases
when discounting gets harder. As is seen in Figure 5.2, for the parame-
ter values used here, the adjustment speed also increases in r. Here, an
increased market return encourage a stronger motive for numerically low-
ering the consumption bu�er, i.e. keeping the actual consumption closer
to the preferred one.

The initial consumption is 10% too high with the parameter values used
for the numerical analysis. Therefore, an increase in ā brings the initial
consumption even more o� target. The e�ect on the present change in
the consumption rate from increasing ā is negative, which may seem coun-
terintuitive, since āc0 increases. However, increasing ā also decreases the
consumption bu�er (preferred future consumption increases and that in-
creases g) and only modestly decreases the adjustment speed, such that
the overall e�ect is negative for the parameter values used here.

5.4.2 The optimal control of π

The optimal proportion of capital invested in the risky asset is

π∗t =
λ

σ2

g(t)ct −Xt

Xt
. (5.12)

We note that there is some similarity with the optimal investment strate-
gies in the utility maximization problems presented in Section 5.2. The
optimal amount invested in the risky asset is in all cases proportional to a
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functional of wealth, where all proportions are calculated as the sharpe ra-
tio divided by the volatility of the stock. In the utility maximization prob-
lems, the proportions also involve the coe�cient of risk aversion, γ.

In the utility maximization problems in Section 5.2, the investment in risky
assets is either proportional to capital or capital in excess of the capital
value of future minimum consumption (in the case of habit in preferences).
In this case, where we model habit formation directly in the consumption
dynamics, the risky investments are proportional to minus the consump-
tion bu�er. This result in positive risky investments when the bu�er is
negative and preferred future consumption cannot be �nanced without
risk-taking in investments.

Another consequence of the optimal investment strategy in (5.12) is that
risky investments tends to zero when the consumption bu�er tends to zero.
In particular we have, that given the initial optimal risky investment (at
time 0) is positive, the optimal risky investment stay positive (a.s.) for the
entire time period of interest, [0, T ].

5.4.3 From Optimal Consumption to Annuity Design

The optimal consumption pattern derived for the control problem in this
section possesses no short term volatility, as is the case for the classical
problems in Section 5.2. We already know that the optimal consumption
patterns in the classical problems can be mimicked by bene�ts of Unit-
link annuities. Now, we wish to characterize and �nd, in the market, the
annuity product that provides bene�ts consistent with the consumption
pattern derived here in Section 5.4. The consumption dynamics and the
investment pro�le are both mathematically well-de�ned and it is therefore
only natural to search within the product class �Formula Based Smoothed
Investment-Linked Annuities�.
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5.5 Tidspension - a Formula Based Smoothed In-
vestment-Linked Annuity

Tidspension is a Danish pension product from the class �Formula Based
Smoothed Investment-Linked Annuities�. The product was introduced in
the Danish pension market in 2002 as an alternative to the existing tradi-
tional with-pro�ts/participating life products and the ongoing introduction
of Unit Link-inspired products. A two-account construction with a Per-
sonal Bene�t Account (PBA) and an Individual Smoothing Account (ISA)
provides the foundation for the product design. The product is inspired
by the Unit Link product in its fully transparent transition of individual
investment returns to the policyholders' savings, whereas the with-pro�t
products' smoothing of returns inspired the ISA of Tidspension. The prod-
uct is described and analyzed in great detail in Guillen et al. (2006) and
Jørgensen and Linnemann (2012), as well as in a good many Danish papers
(see the list in Linnemann et al. (2011)).

Annuities in Tidspension

In the following we only illustrate Tidspension for an immediate annuity
in the hypothetical case where bene�ts are adjusted continuously5. As for
the optimization problems considered above, an underlying Black-Scholes
investment market is assumed. Parameters are again r, λ and σ for the
interest rate, excess return on the stock and volatility of stock return.

In this setting, the PBA earns a deterministic return equal to the riskless
rate, r. Bene�ts are continuously paid out of the account and smoothed
investment returns are accrued from the ISA. Now, the PBA, P , follows
the dynamics

dPt = rPtdt+ αUtdt− btdt, P0 = p0,

where U is the ISA and α > 0 is the smoothing constant (determining the
speed at which actual investment returns are transferred from the ISA to
the PBA).

5The actual sold annuity product has yearly adjustments of bene�ts.
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The bene�ts are continuously determined such that the net present value
of a constant future bene�t stream equals the PBA. The net present value
(often referred to as the annuity factor) is based on the interest rate r∗.
This construction ensures that if the total return on the PBA for the
remainder of the annuitization period corresponds to r∗, then the PBA
can �nance exactly the bene�t level determined by the interest rate, r∗. In
mathematical terms, the bene�t payment, b, is continuously determined
as P/q, where q is the annuity factor given by

q(t) =

∫ T

t
e−
∫ s
t r
∗dτds. (5.13)

The investment return in Tidspension goes into the ISA, from where it is
transfered to the PBA (smoothed over time). Thereby, the ISA follows the
dynamics

dUt = rUtdt+ πλ(Pt + Ut)dt+ πσ(Pt + Ut)dWt

− αUtdt− q(t)−1Utdt,
(5.14)

U0 = u0. (5.15)

The last term in the dynamics in (5.14) speci�es the risk sharing of the
contract. The company numerically reduces the ISA by the proportion
b/P = q−1 when bene�ts are paid out from the PBA. The reduction is
made regardless of whether the ISA is positive or negative and is �nancially
fair in the sense that no arbitrage is possible.

In (5.14), π denotes the allocation of the underlying investments to stocks.
Due to the risk sharing and the smoothing of investment returns, the actual
investment risk borne by the annuitant is actually less than speci�ed by
π. Furthermore, it systematically decreases towards termination of the
contract. This is related to the ownership of the ISA which is shared
by the annuitant and the company, since the smoothing and risk sharing
implies that not all of the ISA will be transferred to the PBA (and paid
out as bene�ts) before time T .

In total, we note that the sum of the PBA, P , and the ISA, U , follows the
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dynamics

d(Pt + Ut) = (Pt + Ut)((r + πλ− q(t)−1)dt+ πσdWt),

P0 + U0 = p0 + u0.

Market Value of Annuity

We take the modern valuation approach, and de�ne the market value of
the contract as the arbitrage-free price of discounted expected future cash-
�ow, see e.g. Ste�ensen (2006). With this approach, we easily �nd that
the market value of the annuity is Pt + κ(t)Ut, with

κ(t) = α

∫ T

t
e−
∫ s
t α−q(τ)−1dτds. (5.16)

The function κ is a measure of the proportion of the ISA that will be
transferred to the PBA before termination of the contract. We refer to κU
as the part of the ISA owned by the customer.

Bene�t Dynamics

Since we assume that bene�ts are continuously adjusted, we easily arrive
at the bene�t dynamics

dbt = d

(
Pt
q(t)

)
= (r − r∗)btdt+

α

q(t)κ(t)
κ(t)Utdt.

We note that the dynamics has linear terms in the present bene�t level, b,
and the part of the ISA owned by the customer, κU .

In Tidspension, bene�ts are extraordinarily changed if the value of the
ISA is di�erent from zero. This is the case if there are investment returns
that have not been transferred to the PBA. Relating the bene�t dynamics
of Tidspension to the optimal consumption dynamics of the optimization
problem, we say that (r − r∗)b is the preferred change of the consump-
tion rate, α/(κq) is the speed of adjustment and κU is the consumption
bu�er.
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5.6 Comparison of Optimization Solution and Tids-
pension

In this section we perform an analysis of similarities and di�erences be-
tween the solution to the optimization problem and the annuity in Tid-
spension. We focus on the optimal consumption stream of the optimization
problem and the bene�t dynamics of Tidspension. We only consider the
case of ξ = 0 for the optimization problem, in words this means that there
is no bequest motive and the household aim at leaving no money at time
T .

The main question we want to answer is:

�Under which conditions are the consumption stream in the optimization

problem equal to the bene�t stream in Tidspension?�

Given the optimal consumption dynamics derived in Section 5.4 and the
bene�t dynamics for Tidspension found in Section 5.5, we see that a more
natural question is:

�Given that the initial consumption in Section 5.4 equals the initial bene�t

in Section 5.5, under which conditions are the consumption dynamics equal

to the bene�t dynamics in Tidspension?�

In order to answer this question, we remind ourselves that the optimal
consumption follows the dynamics

dc∗t
dt

= a∗t = āct +
g(t)

f(t)
(Xt − g(t)ct), c

∗
0 = c0, (5.17)

whereas the bene�ts in Tidspension follows the dynamics

dbt
dt

= (r − r∗)bt +
α

q(t)κ(t)
κ(t)Ut, b0 = b0. (5.18)

Barring these dynamics in mind, we take as given an investment market
and set of preferences (r, ā) leading to the above optimal consumption
dynamics and the optimal investment strategy given in (5.12). For the
given (r, ā) we search for a parameterization (r∗, α, π) in Tidspension so
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that the bene�t dynamics in this product equals the optimal consumption
dynamics.

We start with an analysis of the case without investment risk.

5.6.1 The Case Without Investment Risk

For the optimization problem in Section 5.4, no investment risk follows
from assuming λ = 0, whereas for Tidspension we just put π = 0. Now,
relaxing the constraint that α is a constant in Tidspension, we �nd that if
ā = r − r∗ and

α(t) =
g(t)q(t)κ(t)

f(t)
, (5.19)

the dynamics in (5.17) and (5.18) equals if Xt−g(t)ct = κ(t)Ut. The latter
is exactly the case under the assumption ā = r − r∗ if risky investments
are zero, see 5.A.

The interpretation of the above is the following: ā = r−r∗ means that the
optimal change in the consumption rate, ā, equals the bene�t drift rate of
Tidspension, r − r∗. When α solves (5.19), the adjustment speeds of the
optimization problem and Tidspension equals, and Xt − g(t)ct = κ(t)Ut
ensures that the consumption bu�ers of the optimization problem and
Tidspension coincide. Note also that ā = r − r∗ ensures that g = q (when
ξ = 0).

For the actual sold product Tidspension, α is a constant factor. The con-
sequence of this, in accordance with the above analysis, is that neither
the adjustment speed nor the consumption bu�er is identical in the op-
timization problem and Tidspension. The latter is a consequence of the
�rst.

Figure 5.3 contains a plot of the adjustment speed from the optimization
problem, g/f , and Tidspension, α/(κgT ), for the case ā = r−r∗. The value
of α corresponds to an annual smoothing of 20% of the ISA, which is used
in the actual sold product. A result of this value is that the adjustment
speed of Tidspension is relative higher in the beginning and smaller to-
wards the end. An initial relative higher adjustment speed means that the
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consumption bu�er numerically decreases faster in the beginning. Note,
that there is a crossover around t = 4, though. Therefore this particular
choice of parameters results in essentially equivalent bu�ers towards the
end of the time interval.

5.6.2 The Case With Investment Risk

In Section 5.6.1 we saw that the consumption dynamics and bene�t dynam-
ics are not equal when ā = r− r∗ and π 6= 0. In order for the consumption
and bene�t dynamics to coincide, we must therefore also relax the assump-
tion for Tidspension that r∗ is constant and furthermore also determine
the investment strategy of Tidspension.

As in the case without investment risk, we let α be given by (5.19) so that
the adjustment speeds in the consumption dynamics and bene�t dynamics
coincide. Furthermore, we let r∗ be a deterministic function of time that
solves

r − ā = α(t) + r∗(t). (5.20)

With this particular choice of r∗, we have that g(t) = (1 − κ(t))q(t), see
5.A. Now, the consumption dynamics (5.17) can be rewritten as

dc∗t
dt

= (r − α(t)− r∗(t))ct +
g(t)

f(t)
(Xt − (1− κ(t))q(t)ct)

= (r − r∗(t))ct +
g(t)

f(t)
(Xt − q(t)ct), c∗0 = c0.

Comparing this with the bene�t dynamics in (5.18), we immediately see
that drift rate and adjustment speed coincides. The consumption bu�er
in the optimization problem is now written in terms of q. Again, the
bene�t dynamics in Tidspension equals the consumption dynamics in the
optimization problem if the consumption bu�ers equals. This equality is
shown in 5.A when the investment strategy in Tidspension is speci�ed
by

π = − λ

σ2
.
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Under this investment strategy we �nd that the exposure to investment
risk coincides for the optimization problem and Tidspension:

π∗tXt =
λ

σ2
(g(t)ct −Xt)

= − π((1− κ(t))q(t)ct − q(t)ct − κ(t)Ut)

= − π(−κ(t)q(t)ct − κ(t)Ut)

= πκ(t)(Pt + Ut).

5.6.3 Reverse Engineering

In sections 5.6.1 and 5.6.2 we have been concerned with the question of
�nding an annuity product that suited the preferences for stability in con-
sumption that we found in Section 5.4. A similar task would be to take as
given the annuity in Tidspension and search for a set of market parame-
ters and preferences that would suit this particular product. Based on the
above �ndings, it seems intuitively clear that we can rig the investment
market and preferences in such a way that a set (r, ā) lead to optimal con-
sumption dynamics that coincide with bene�t dynamics of Tidspension.
We leave this task to the interested reader.

131



Figure 5.1: Left graph: Capital X (dashed line), consumption c (full line)
and bu�er X − gc (dotted line). Right graph: Relative change in the
optimal consumption rate a∗/c. Parameters are X0 = 10, c0 = 1.36,
r = 4%, λ = 0%, ā = 0%, T = 10, B = 5 and ξ = 0.
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Figure 5.2: Top left graph: Optimal initial adjustment speed for various
values of r. Top right graph: Optimal initial relative change in the opti-
mal consumption rate for various values of r. Bottom left graph: Optimal
initial adjustment speed for various values of ā. Bottom right graph: Op-
timal initial relative change in the optimal consumption rate for various
values of ā. Parameters are x0 = 10, c0 = 1.36, r = 4%, λ = 3%, σ = 20%,
ā = 0%, T = 10, B = 5 and ξ = 0.
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Figure 5.3: Adjustment speed for the optimization problem and for Tid-
spension. Parameters are r = 4%, λ = 0%, ā = 0%, T = 10, B = 5, ξ = 0,
r∗ = 4% and α = − ln(1 − 20%). Full line is α/(κq) and dashed line is
g/f .
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5.A Appendix

Dynamics of customers part of ISA (consumption bu�er in Tidspension):

d(κ(t)Ut) = Utdκ(t) + κ(t)dUt

= Ut(κ(t)(α+ q(t)−1)− α)dt+ κ(t)(rUtdt+ πλ(Pt + Ut)dt

+ πσ(Pt + Ut)dWt − αUtdt− q(t)−1Utdt)

= rκ(t)Utdt+ πλκ(t)(Pt + Ut)dt+ πσκ(t)(Pt + Ut)dWt − αUtdt,
κ(0)U0 = κ(0)u0.

Dynamics of consumption bu�er in terms of g:

d(X∗t − g(t)c∗t ) = dX∗t − g(t)dc∗t − c∗tdg(t)

= rX∗t dt−
λ2

σ2
(X∗t − g(t)c∗t )dt−

λ

σ
(X∗t − g(t)c∗t )dWt − c∗tdt

− g(t)(āc∗t +
g(t)

f(t)
(X∗t − g(t)c∗t ))dt− c∗t ((r − ā)g(t)− 1)dt

= r(X∗t − g(t)c∗t )dt−
λ2

σ2
(X∗t − g(t)c∗t )dt

− λ

σ
(X∗t − g(t)c∗t )dWt −

g(t)2

f(t)
(X∗t − g(t)c∗t )dt,

X∗0 − g(0)c∗0 = X0 − g(0)c0.

Dynamics of consumption bu�er in terms of q:

d(X∗t − q(t)c∗t ) = dX∗t − q(t)dc∗t − c∗tdq(t)

= rX∗t dt−
λ2

σ2
(X∗t − g(t)c∗t )dt−

λ

σ
(X∗t − g(t)c∗t )dWt − c∗tdt

− q(t)((r − r∗(t))ct +
g(t)

f(t)
(X∗t − q(t)ct))dt− c∗t (r∗g(t)− 1)dt

= r(X∗t − q(t)c∗t )dt+
λ2

σ2
(q(t)c∗t +X∗t − κ(t)q(t)c∗t )dt

+
λ

σ
(q(t)c∗t +X∗t − κ(t)q(t)c∗t )dWt −

g(t)q(t)

f(t)
(X∗t − q(t)c∗t )dt,

X∗0 − q(0)c∗0 = X0 − q(0)c0.
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Proof that g(t) = (1− κ(t))q(t), when ξ = 0 and r∗ solves (5.20):

If we write q from (5.13) and κ from (5.16) in di�erential form, we have

d

dt
q(t) = r∗(t)q(t)− 1, q(T ) = 0,

d

dt
κ(t) = (α(t)− q(t)−1)κ(t)− 1, κ(T ) = 0.

Now, straight forward di�erentiation shows that

d

dt
(1− κ(t))q(t) = − ((α(t)− q(t)−1)κ(t)− 1)q(t) + (1− κ(t))(r∗(t)q(t)− 1)

= (r∗(t) + α(t))(1− κ(t))q(t)− 1,

(1− κ(T ))q(T ) = 0,

and we see that when ξ = 0 and r∗ solves (5.20), this is exactly the
dynamics of g given in (5.9).
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6. A Comparison of Modern

Investment-Linked Pension Savings

Products

Per Linnemann, Kenneth Bruhn and Mogens Ste�ensen, submitted.

Abstract This paper contributes with insight and transparency
in the pension area. We analyse and compare three modern pension
products; two di�erent life-cycle products and one product falling
within a new product category. By means of simulation of the in-
vestment market, we explore the determinants of annuity bene�ts
within the three products. The results show that not only investment
pro�les de�ne the stability of annuity bene�ts provided over time.
Also more fundamental elements of the product design are impor-
tant. Especially, a mathematical de�ned return-smoothing mecha-
nism provides substantial stability in bene�ts, even for an aggressive
investment pro�le. The perspective on product design and devel-
opment is Danish, but two of the compared products are generic
life-cycle products that exist in equivalent forms in most countries.
Similarly, the third product with a return-smoothing mechanism is
also an alternative product design in international perspective.

Keywords Comparison of modern retirement products; Stochas-

tic �nancial analysis; Life-cycle; Formula based smoothed investment-

linked; Payout phase; Stabilisation of retirement income payments

Introduction

Many pension savers know little or nothing about the type of old-age pen-
sion that is going to provide their regular income in retirement. At this
stage of life, your �nancial conditions typically depend substantially on
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how your pension scheme works during the decumulation period. It is
therefore important to focus on the following factors: What income pro�le
can you expect in retirement? Will your pension scheme provide a stable
or �uctuating retirement income from one year to the next? How will your
retirement income be a�ected in case of sharp price falls in the �nancial
markets?

We address these questions in relation to two di�erent life-cycle products in
comparison to the product TimePension, which belongs to the new product
class we call "smoothed investment-linked annuities".

It is demonstrated in this paper that TimePension has particularly at-
tractive return-risk properties, also seen in relation to life-cycle products.
This is because of the unique product design of TimePension, which allows
risky investment throughout the decumulation period with high expected
returns and high expected pension bene�ts, along with great stability in
retirement income payments and the underlying returns accrued in the
pension bene�t account.

A life-cycle product also provides an opportunity for risky investment and
the achievement of high expected returns, but this results in substantial
�uctuations in pension bene�ts. Conversely, these �uctuations can be re-
duced by less riskier investments. Such a step would also imply a reduction
in expected returns and expected pension bene�ts. Our �ndings show that
a life-cycle product investing exclusively in short-term (2.5-year) bonds
throughout the decumulation period is able to o�er stability in retirement
income payments in line with the stability achieved with TimePension. On
the other hand, the expected returns generated by such a life-cycle product
are signi�cantly lower than the returns achieved with TimePension.

Up until now, it has been widely accepted that the life-cycle products are
going to succeed the traditional with pro�ts/participating pension prod-
ucts. Contrary to this belief, our research shows that products of the
type smoothed investment-linked annuities are serious alternatives that
can deliver the next generation of pension products. Danish design may
give many retirees - also on the international scene - an opportunity to
combine "the best of two worlds".1

1We thank Per Klitgård and Frank Pedersen of SEB Pension for inspiring discussions
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Traditional with pro�ts/participating and investment-
linked pension products

We start by providing an overview of developments in pension products
in Denmark. This shows a transition from traditional with pro�ts pension
products to investment-linked products, including life-cycle products and
the new product class, smoothed investment-linked annuities.

Traditional with pro�ts schemes typically have a relatively conservative
investment strategy with a relatively limited allocation to equities in the
portfolio. It is necessary to build up and maintain collective bonus reserves
as a bu�er against price �uctuations. Sharp price falls in the �nancial mar-
kets result, everything else being equal, in a reduction in bonus reserves
and, consequently, in a limited scope of investment opportunities. Reduc-
ing the technical interest rate partly solves this problem but may not be
what the pension saver wants either.

The media are conveying the impression that "Traditional with pro�ts
pension savings have no future", see Andersen (2010). Henrik Ramlau-
Hansen, former CEO of Danica Pension, has described it as follows: "If
you want a higher interest rate, you have to switch to investment-linked
products. To be quite honest, I think that bonus reserves will never come
back to their previous level", see Dengsøe (2009a). In the longer term,
it could therefore be di�cult to achieve satisfactory returns for pension
savers in the traditional with pro�ts product segment.

The traditional with pro�ts pension product is also found to be di�cult to
understand, see for instance (Grosen, 2005a, p. 333-334): "Contracts in-
volving bonus entitlement are complex, not to say non-transparent". This
also appears from the report entitled "Det fordelingsmæssige Kontribu-
tionsprincip. Om fordeling og omfordeling" (The principle of contribution
for distribution purposes. On distribution and redistribution.), see Danish
Society of Actuaries (2008).

By contrast, the typical investment-linked products are characterised by
a higher level of transparency. Here the individual customers achieve an-

in connection with the paper.
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nual returns on their savings that correspond to the market returns on
the underlying investments. There are no undistributed reserves or non-
transparent redistributions between customers, and funds are distributed
on the individual customers' savings.

Moreover, investment-linked products present an opportunity to formulate
an investment strategy for the purpose of o�ering higher expected returns
than with traditional with pro�ts pension products. This is due to the pos-
sibility of selecting investment pro�les with larger proportions of savings
invested in equities and other so-called high-risk assets. This may provide
a platform for achieving higher retirement incomes, since experience shows
that equities have generated higher returns in the long run, see for instance
(Møller and Nielsen, 2009, p. 172-173).

There is also "a well-founded theory supporting the assumption that prices
of equities and bonds will develop in such a way that equities must be
assumed to generate higher returns than bonds" in the long term, see
(Møller and Nielsen, 2009, p. 168). They add that "Equity prices must
develop in such a way that the expected additional returns on equities
compared with bonds completely outweigh the higher risk".

Equities are associated with higher risk and wider �uctuations in invest-
ment returns. In a typical investment-linked product, the size of retirement
income payments is determined on the basis of the market value of pension
savings. This means that the annual adjustment of or change in pension
funds becomes directly dependent on annual market returns.

As market returns �uctuate from one year to the next, the bene�ts paid
under an investment-linked pension product �uctuate as well. This trend
is illustrated in Jørgensen and Linnemann (2012). In case of sharp price
falls in the �nancial markets, pension payments may be reduced signi�-
cantly. Such circumstances make it di�cult to forecast your opportunities
of consumption in retirement.
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Why life-cycle products?

Life-cycle products are investment-linked products adjusting investments
to suit the customer's speci�c age and expected time of retirement. Sav-
ings are invested more cautiously as the customer approaches the retire-
ment age. The lower investment risk reduces �uctuations in returns and,
therefore, in retirement income payments.

In this paper, we compare two di�erent life-cycle products and look at the
impact of di�erent investment pro�les on stability in retirement income
payments.

The fundamental idea behind the life-cycle products is for instance men-
tioned in Grosen and Nielsen (2006). Young people's aggregate net assets
are primarily made up of their future labour income - known as human cap-
ital. For most savers, this capital resembles more an investment in bonds
than in equities. "Conventional portfolio theory is therefore in favour of a
high allocation to equities in the young years and a lower allocation later on
when the remaining labour income is moderate". In addition, "By work-
ing more hours per year or postponing retirement, the investor can insure
against poor returns in for instance the equity market." see (Engsted et al.,
2011, p. 27). These conditions may therefore support investment in a high
equity allocation in the young years and a lower allocation later on when
the remaining labour income is moderate.

Life-cycle products have gained ground over the last decade in Denmark.
This development was seen in many countries, with some variation in the
timing of and demand for life-cycle product development and with some
variation in the design of the products introduced. Grosen (2005b) pro-
vides an overview of the introduction of life-cycle products in Denmark.
It appears that the �rst life-cycle product, "Markedspension", was intro-
duced in Denmark by SEB Pension (formerly Codan Pension), see Nielsen
and Nielsen (2004). Next in line were ATP with "atpValg", see Preisel
et al. (2005), Nordea Liv og Pension with "Vækstpension", see Endersen
and Bork (2005) and Danica Pension with "Danica Balance", see Jør-
gensen (2005). See also Faurdal (2006a,b) for a description of product
development within investment-linked products in Denmark.
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As late as 2010, Nykredit introduced a life-cycle product called "Livslang
Pension", see Linder (2010). Other life-cycle products are available in the
market, but here we refer exclusively to products described in published
papers.

Svendsen (2010) states that about 50% of all new pension customers choose
to invest their savings in life-cycle products and that "One of the product-
related disadvantages of life-cycle products is that senior citizens and old-
age pensioners have di�culty maintaining both a high expected return
and a reasonable investment risk". Svendsen adds that SEB Pension has
addressed this challenge with the product TimePension.

It is therefore also interesting to include a product type like TimePension in
a comparison with life-cycle products. Also, in an international context,
TimePension is a new product type, which we describe in more detail
below.

Smoothed investment-linked annuities

Life-cycle products were introduced in the United States as early as at
the beginning of the 1990s. The �rst life-cycle product was, as already
mentioned, launched in Denmark in 2004 by SEB Pension. On the other
hand, the new product class, smoothed investment-linked annuities, was
invented in Denmark. This took place as early as 2002, where the pension
product TimePension was launched.

It is noteworthy that TimePension has been analysed by researchers in sev-
eral published papers, see Nielsen and Jørgensen (2002), Grosen and Jør-
gensen (2002), Jakobsen (2003), Guillen et al. (2006), J÷rgensen (2007),
Ste�ensen and Waldstrøm (2009) and Jørgensen and Linnemann (2012).
TimePension is a product comprising a high allocation to equities and
equity-like assets - also after retirement. This engenders expectations of
high returns and high expected pension bene�ts. The new and noteworthy
aspect is that the product design ensures the concurrent achievement of
great stability in retirement income payments, see Jørgensen and Linne-
mann (2012).
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The fundamental idea behind TimePension and the product class smoothed
investment-linked annuities is to combine the best properties of traditional
with pro�ts pension schemes involving bonus entitlement with those of
modern investment-linked products. This is achieved through:

1. The smoothing of investment returns and stability in retirement in-
come payments from the traditional with pro�ts product class (avoid-
ing, however, a conservative investment strategy, inter-customer re-
distribution and the lack of transparency usually associated with
traditional with pro�ts pension products).

2. The possibility of maintaining a high allocation to equities - also in
the decumulation phase - thereby making best use of the investment-
linked product potential for higher returns (avoiding, however, the
�uctuating and volatile retirement income payments that, everything
else being equal, are associated with such products).

As mentioned in Nielsen and Jørgensen (2002), it further applies "that the
path of returns, from they are generated by market investments until they
are irrevocably paid out to the customer as a pension bene�t, is controlled
by an accurately speci�ed mathematical mechanism".

The fundamental mechanism behind TimePension is unique and simple.
The product works on the basis of two accounts:

1. The individual pension bene�t account that is used for calculating
the smoothed income payments. The pension bene�t account balance
does not �uctuate with realized investment returns.

2. The individual smoothing account that serves as an investment bu�er
to smoothen out investment returns. The account balance �uctuates
with realized �nancial returns and can be negative.

In addition, the company bears some of the investment risk that can be
hedged away, though. In the decumulation period, mathematically speci-
�ed risk sharing is applied between the individual retiree and the company,
see Nielsen and Jørgensen (2002).2

2The company is assumed to be able to �nance its own risk sharing. This means
that we disregard the risk of bankruptcy.
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Market investment returns on the underlying assets are added to the in-
dividual smoothing account on a monthly basis. Smoothed investment
returns are paid into the pension bene�t account and �nanced from the
individual smoothing account also on a monthly basis.

In this manner, the pension bene�t account grows with the addition of
returns where, however, investment returns are smoothed and a certain
loss-restraining e�ect is incorporated. As mentioned in Jørgensen and Lin-
nemann (2012), movements in the pension bene�t account are stabilised
and smoothed by the structure of the TimePension product. The individ-
ual smoothing account makes up the "bu�er" between the market value of
investments and the balance of the pension bene�t account. Movements
in the two above-mentioned accounts and the market value of the under-
lying cash �ow are illustrated in Figure 1c in Jørgensen and Linnemann
(2012).

It is the stability in the TimePension pension bene�t account that gener-
ates the high level of stability in retirement income payments. In life-cycle
and other investment-linked products, retirement income payments �uctu-
ate with annual market returns, and the customer bears the full investment
risk.3

In other words, there is a di�erence between life-cycle products and TimePen-
sion, and the question is, therefore, how various life-cycle products and
TimePension perform against each other. We analyse this issue below.

Presentation of the three pension products

We aim at providing insight and transparency in the pension area. We
therefore compare the di�erent pension products as seen from the con-
sumer's point of view. In this connection, it is vital to take a look at the
bene�ts in the form of the retirement income that the customer can expect
to receive under the di�erent pension schemes.

3Investment risk can be reduced by means of various accumulation and bene�t guar-
antees.
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We compare pension conditions for "senior citizens" who have another
10 years to reach the expected retirement age of 65 and where pension
bene�ts are payable over a 20 year period. For the sake of simplicity,
this paper focuses exclusively on annuity pension schemes that provide
periodic bene�ts for the speci�ed period and where calculations include no
mortality assumptions.

It is assumed that the investment pro�les in the three selected pension
products can be represented by two main classes of assets; equities/equity-
like assets and bonds. In the following, we refer to these investments as
"equities" and "bonds", respectively.

The investment pro�les for the two life-cycle products and TimePension is
shown in Figure 6. For the two life-cycle products, the investment pro�les
are inspired by pro�les of actually sold Danish products. Especially, for
LifeCycle1, the investment pro�le is determined by a method taking into
account the size of the human capital. According to Jørgensen (2005),
this is set as the net present value of future premium contributions. The
method "is based on the fact that most pension schemes involve periodic
premium contributions, which, as far as most of the schemes are concerned,
are associated with relatively small �uctuations." Note that the two life-
cycle products re�ect two di�erent views on what is the 'natural' shape of
the investment pro�le. For LifeCycle1 the pro�le is concave whereas for
LifeCycle2 the pro�le is convex as a function of age. This is a key property
that seperates these two products.

In TimePension, we model a constant equity allocation of 60% (and 40%
bonds) during both the accumulation and decumulation periods as shown
in Figure 6. It should be emphasised that when we talk about the equity
allocation here and below in connection with TimePension, it means the
allocation to equities in the underlying investments (the sum of the pension
bene�t and individual smoothing accounts). Due to the smoothing mecha-
nism, this allocation re�ects only partially the customer's real exposure to
equity risk. This is contrary to the life-cycle products where real exposure
is precisely determined by the equity allocation of invested funds.

In the following, we assume that investments correspond to the investment
pro�les in Figure 6 for the three products. Thus, we assume that the paid
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Figure 6.1: Investment pro�les - allocation to equities for the three prod-
ucts.

premiums are continuously invested in equities according to the allocations
speci�ed in Figure 6, while the rest is invested in bonds. Furthermore,
we model that the investment portfolio is rebalanced at the beginning of
each quarter of the year during both the accumulation and decumulation
periods.

Determining the amount of retirement income

The retirement income is determined annually under the assumption that
the net present value of future retirement income payments of the same
size equals the pension savings at the time of calculation. The net present
value is calculated by means of an annuity factor (equalling the capital
value of a pension bene�t of DKK 1 per annum paid during the remainder
of the decumulation period).

146



The annuity factor is calculated under the assumption that future yearly
returns, equals what is known as the assumed interest rate. This means
that when future returns on pension savings precisely correspond to the
amount derived from the assumed interest rate, pension savings can �nance
exactly the size of the retirement income, determined on the basis of the
assumed interest rate, for the remainder of the decumulation period.

As far as the two life-cycle products are concerned, the value of pension sav-
ings included in the determination of retirement income payments equals
the market value of savings. When it comes to TimePension, it is the size
of the pension bene�t account that is used for calculating the amount of
retirement income.

The �nancial model

In this paper, we address the questions mentioned in the introduction in
connection with a comparison of the three pension products. We do this
by simulating the underlying investments over the accumulation and decu-
mulation periods 50,000 times for the three pension schemes. This gives an
opportunity to compare the return and risk pro�les of the products.

For the investment market simulation, we employ the model used in Jør-
gensen and Linnemann (2012). The model is based on Wachter (2002),
Munk and Vinther (2004) and Vasicek (1977). Moreover, parameters for
the model have been identi�ed with inspiration from Jørgensen and Linne-
mann (2012) and in a manner ensuring compliance with the economic
assumptions for pension projections for 2011, prepared by the Danish
Bankers Association and the Danish Insurance Association, see e.g. Dan-
ish Insurance Association (2010). Parameter values are speci�ed in the
Technical Appendix.

Basis of comparison

As previously mentioned, we want to compare the three annuity pension
products for "senior citizens" who have another 10 years left until retire-
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ment at age 65 and where pension bene�ts are payable over a period of 20
years. Persons who are 55 years old typically have a certain level of pen-
sion savings. In our calculations, we include these savings as a lump-sum
payment (contribution) to the pension scheme. In addition, we expect
periodic contributions to be made throughout the accumulation period.
Hence, at age 55 it is assumed that a person has savings of DKK 2,500
(approximately 330 Euro). The amounts can be thought of in thousands
in order to obtain realistic �gures. The annual contribution during the
accumulation period has been set at DKK 100 (approximately 15 Euro)
in the �rst accumulation year4 and is subsequently adjusted for in�ation
by 2% per annum. The amounts can be thought of in thousands in or-
der to obtain realistic �gures. The in�ation rate is in compliance with
the economic assumptions for pension projections, see Danish Insurance
Association (2010).

We expect both the periodic contributions and the retirement income de-
cumulations to be made on a monthly basis and to be prepaid (i.e. at
the beginning of each month). The amount of retirement income is ad-
justed (i.e. modi�ed) once a year. This is in contrast to the discretization
of investments that are rebalanced quartely, as explained above. Pension
investment returns are subject to 15% tax, corresponding to the e�ective
tax rate under the Danish Taxation of Pension Investment Returns Act.5

We have not taken costs and expenses into account. In other words, we
analyse the basic structure of the products.

4We could multiply the two amounts by a given factor. This would merely mean
that the size of the calculated pension bene�ts would be scaled by the same given factor.
The result of our comparisons would still apply.

5In compliance with the current Danish Taxation of Pension Investment Returns
Act, negative pension investment returns tax is o�set against positive returns tax for
a calendar year, whereas negative returns tax that is not eligible for o�setting in the
statement for a given calendar year is carried forward to the following years (positive
returns are o�set against negative returns generated over the preceding �ve years).
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Account returns

Initially, we compare the account returns achieved in connection with the
three pension products. This is an easy and simple way of gaining fun-
damental insight into both the return performance and risk levels of the
respective products. As mentioned above, account returns are thought of
as the interest or returns credited to the account that is used for determin-
ing annual retirement income payments. The level of account returns then,
essentially, re�ects how much the annually determined retirement income
is adjusted.

For the two life-cycle products, the account returns are given as the ac-
tual market returns achieved on the underlying investments at the age in
question. For TimePension, the account returns are given as the returns
accrued in the pension bene�t account. As in Jørgensen and Linnemann
(2012), we assume that account returns in TimePension are determined on
the basis of a �ve-year zero-coupon rate in the �nancial model.6 In addi-
tion, the monthly smoothing amount is taken into account, corresponding
to 20% per annum of the individual smoothing account balance, whether
positive or negative.

For each pension product, we have carried out 50,000 simulations of the
full 10-year accumulation and 20-year decumulation phases. Against this
background, we have calculated average (i.e. expected) full-year account
returns and standard deviations in these for the respective ages. Here the
standard deviation is the usual (risk) measure for the size of the dispersion
of or variation in the 50,000 cases of simulated account returns. The more
the account returns vary, the greater is the standard deviation.

In Table 6.1 we show average account returns and standard deviations,
for a few selected ages in the decumulation period for the three products.
As far as the two life-cycle products are concerned, it is the allocation to
equities (see the investment pro�les in Figure 6) that solely determine the
percentages in Table 6.1. A higher allocation to equities generates higher

6In practice, the e�ective interest rate in a speci�ed bond index (EFFAS index with
a duration of 5-7 years) is used. The approximation we carry out is of no relevance to
subsequent results.
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Age LifeCycle1 LifeCycle2 Tidspension

Avg. Std.dev. Avg. Std.dev. Avg. Std.dev.

65 5.0% 5.9% 5.1% 5.9% 5.2% 2.8%

69 4.9% 5.4% 5.0% 5.7% 5.4% 2.9%

74 4.7% 4.8% 5.0% 5.4% 5.5% 2.9%

79 4.5% 4.4% 4.9% 5.4% 5.5% 2.9%

Table 6.1: Average (i.e. expected) pre-tax annual account returns (before
pension investment returns tax) and standard deviations for the distribu-
tion of annual account returns for the ages speci�ed below in the three
pension products.

average account returns (i.e. investment returns) and standard deviations
(i.e. risk) in the distribution of annual account returns.

It further appears from Table 6.1 that average account returns for TimePen-
sion exceed the corresponding account returns for the two life-cycle prod-
ucts. It is noteworthy that this result is achieved while the standard de-
viation in the distribution of account returns is smaller in TimePension
than in the two life-cycle products. This is the consequence of the unique
product design in the new product category, smoothed investment-linked
annuities, of which TimePension forms part.

Note, that a life-cycle product investing exclusively in 2.5-year zero-coupon
bonds throughout the decumulation period achieves a standard deviation
in the distribution of annual account returns that equals 2.9%. This o�ers
stability on level with TimePension, but expected returns are on the other
hand substantially lower, at a mere 3.6% per annum, compared to the
5.2-5.5% per annum achieved with TimePension.

Below we analyze the extent to which the three pension products are able
to provide year-over-year stability in retirement income payments. Be-
fore carrying out this analysis, however, we clarify the importance of the
three pension products' di�erent assumed interest rates for determining
retirement income payments. This proves to be of vital importance for the
associated retirement income pro�les.
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Expected retirement income pro�les

The assumed interest rates are not identical in the di�erent products. For
example, we use an assumed interest rate equal to 1.5% for LifeCycle1,
whereas the assumed interest rate for LifeCycle2 is equal to 0%. Both rates
are taken from the actual sold products inspiring the lifecycle products
analysed here. TimePension currently o�ers an assumed interest rate equal
to 3.5%. The question is which retirement income pro�les we can expect
with the three products, given the di�erence in their assumed interest
rates.

Figure 6 shows - for each of the products - the average (expected) adjusted
retirement income for each year of the decumulation period based on the
50,000 simulations of the �nancial market. The retirement income is spec-
i�ed in percent of the amount of �rst-year expected retirement income for
TimePension.

It appears from the �gure that the LifeCycle1 product provides higher
average retirement income than the LifeCycle2 product up to and including
age 71. TimePension provides higher average retirement income up to and
including age 73 compared with the LifeCycle2 product and up to and
including age 76 compared with the LifeCycle1 product.

For many retirees, the need is typically greatest in the �rst years after re-
tirement. This is the stage where the retirement income pro�le of TimePen-
sion o�ers the highest expected pension bene�ts.

If we sum up (without adding interest on) average retirement income pay-
ments for the individual product over the years of the decumulation pe-
riod, it turns out that TimePension provides higher accumulated expected
pension bene�ts than the LifeCycle2 product up to and including age 81,
whereas TimePension outperforms the LifeCycle1 product at all ages. Fi-
nally, the LifeCycle1 product outperforms the LifeCycle2 product up to
and including age 77.7

7We have found inspiration for these calculations in the publication from the British
Financial Services Authority (FSA), "Just the facts about your retirement options",
published in November 2007 as part of the "Money Made Clear" guides.
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Figure 6.2: Average (i.e. expected) annually adjusted monthly retirement
income payments for the three products, speci�ed in percent of the amount
of �rst-year expected retirement income for TimePension.

It also appears from Figure 6 that a product based on a lower assumed in-
terest rate provides lower expected initial retirement income and a higher
rate of increase in the following expected pension bene�ts than does a prod-
uct based on a higher assumed interest rate. Generally, a higher assumed
interest rate will, all else being equal, result in higher expected retirement
income payments during the the beginning of the decumulation phase but
lower rate of increase for expected pension bene�ts.

The results described above demonstrate the importance of paying atten-
tion to the retirement income pro�le associated with your pension scheme.
Another important factor is whether and to what extent retirement income
payments �uctuate from one year to the next. This issue is addressed in
the next section.
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Age LifeCycle1 LifeCycle2 Tidspension

Avg. Std.dev. Avg. Std.dev. Avg. Std.dev.

65 2.8% 5.3% 4.4% 5.4% 0.9% 2.4%

69 2.7% 4.9% 4.4% 5.2% 1.1% 2.5%

74 2.6% 4.4% 4.4% 5.0% 1.2% 2.5%

79 2.5% 4.2% 4.5% 5.2% 1.2% 2.6%

Table 6.2: Average (expected) percentage change and standard deviation
in the annually adjustment of retirement income and standard deviation in
the distribution of the percentage change in annually adjusted retirement
income at the end of the speci�ed ages for the three pension products.

Are retirement income payments stable or vari-
able?

As mentioned earlier, the idea underlying the life-cycle products is to re-
duce the investment risk associated with the �nancial portfolio, as a func-
tion of age, by decreasing the allocation to equities, see Figure 1. The
question is to what extent this provides stability in retirement income
payments.

We therefore analyze how retirement income varies from one year to the
next within the two di�erent life-cycle products, LifeCycle1 and LifeCy-
cle2. Moreover, we compare the results with the corresponding results
for TimePension, which has a di�erent investment pro�le and product de-
sign.

To illustrate the retirement income variation, for each of the 50,000 simu-
lated accumulation and decumulation phases we calculate the percentage
change in retirement income for each year in the decumulation period, i.e.
from one given age to the next. This presents an opportunity to calcu-
late the expectation and the standard deviation in the distribution for the
percentage change in retirement income at the end of each year in the de-
cumulation period. Table 6.2 shows the results for selected ages for the
three products.
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It comes as no surprise that the average change in annually adjusted retire-
ment income is smaller for the LifeCycle1 product (at an assumed interest
rate of 1.5%) than for the LifeCycle2 product (at an assumed interest rate
of 0%) and that TimePension (at an assumed interest rate of 3.5%) has
the smallest expected percentage changes in annually adjusted retirement
income. This matches the results in Figure 6.

There is a link between account returns and percentage changes in annually
adjusted retirement income payments (paid out monthly). This is due
to the fact that the percentage change in annually adjusted retirement
income is practically equal to account returns after tax less applied interest.
As account returns are credited monthly whereas retirement income is
adjusted annually, the above-mentioned link is not exact.

The variation in account returns is therefore signi�cant to how much retire-
ment income varies from one year to the next. A smaller standard deviation
in the distribution of annual account returns is associated with a smaller
variation and, hence, greater stability in retirement income payments from
one year to the next. The standard deviations in the distribution of an-
nual account returns in Table 1 correspond to the respective standard
deviations for the percentage changes in annually adjusted retirement in-
come payments in Table 6.2. The di�erence in values primarily emerges
because account returns are calculated before pension investment returns
tax whereas a minor di�erence also emerges because account returns are
credited monthly and retirement income annually.8

It appears from Table 6.2 that TimePension has the smallest standard de-
viation in the distribution for the percentage change in annually adjusted
retirement income. This means that TimePension o�ers the greatest sta-
bility in actual retirement income payments, which is achieved in spite
of the fact that the equity allocation is substantially higher in TimePen-
sion throughout the decumulation phase than it is in the two other prod-
ucts.

The smoothing mechanism of TimePension is designed to o�er stable re-

8It should be noted that the level of the assumed interest rate has only a marginal
e�ect on the respective standard deviations in the distribution of the percentage changes
in annually adjusted retirement income payments in Table 6.2.
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turns on the pension bene�t account and, accordingly, stability in retire-
ment income payments. On the other hand, life-cycle products transfer
the full variation in annual returns to variation in annual pension bene-
�ts.

We have also illustrated this in Figure 6 by showing the annual pension
bene�t for a simulation of one and the same �nancial scenario for each of
the three products. The pension bene�ts are speci�ed in percent of the
amount of �rst-year retirement income for TimePension. It is evident that
the variability (over time) in retirement income payments is greater for the
two life-cycle products than for TimePension. It appears that TimePension
provides great stability in retirement income throughout the decumulation
period. This corresponds to the analysis in Jørgensen and Linnemann
(2012), where the conclusion is that TimePension provides stability in
retirement income payments in line with traditional withpro�ts pension
products.

It is also interesting to compare the overall performance of the three prod-
ucts. Here it is necessary to decide how to measure performance over time
on products characterised by widely di�erent withdrawal pro�les. We have
chosen to compare the amounts of aggregate retirement income payments
for the three products. To increase comparability, we have set an assumed
interest rate of 3.5% for all three products. Furthermore, pension bene�ts
are assumed to generate no returns after they have been paid out. This
method is also employed by Jørgensen and Linnemann (2012).

For each of the 50,000 simulated accumulation and decumulation phases,
we have thus calculated the amount of aggregate retirement income that
is realised over the 20 years of decumulation. When considering aggregate
retirement income payments, the TimePension and LifeCycle2 products
are at the same level in terms of expected value and standard devia-
tion, whereas LifeCycle1 is lower on both counts. This means that the
choice between the di�erent products, when considering aggregate retire-
ment income payments, corresponds to a classic balancing of return and
risk. In addition, however, the customer may have preferences for stability
in the paid-out pension bene�ts, and this is achieved only with TimePen-
sion.
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Figure 6.3: Annually adjusted monthly retirement income payments from
the three products, speci�ed in percent of the amount of �rst-year retire-
ment income for TimePension.
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Age LifeCycle1 LifeCycle2 Tidspension

65 -15.5% -17.7% -1.0%

66 -15.6% -15.8% -1.0%

75 -10.4% -13.6% -1.0%

80 -7.6% -13.4% -1.0%

Table 6.3: Percentage change in average (i.e. expected) annual retirement
income (paid monthly) at the beginning of the speci�ed ages in case of a
45% fall in equity prices (relative to expected retirement income with no
price fall). The price fall is assumed to occur in the last quarter of the
year before the person attains the speci�ed age.

Major price falls in the �nancial markets

Experience from recent years and from the beginning of the millennium has
demonstrated the importance of paying attention to how pension products
function in the event of �nancial crises, see also the chapter "Pensions and
�nancial crises" in Dengsøe (2009b) and Mowbray (2010).

We thus compare how the average retirement income payment is a�ected by
a major price fall of 45% for equities9 and 10% for bonds10, respectively.
We calculate the percentage change in annual retirement income (paid
monthly) in the �rst year (i.e. initial retirement income), second year,
eleventh year and sixteenth year, respectively, on the assumption that the
above-mentioned price falls occur in the last quarter of the year before
pension payments for the year in question start. Table 6.3 presents the
numbers for the 45% fall in equity prices and Table 6.4 for the 10% fall in
bond prices.

When comparing the two life-cycle products, the drops in expected annual
retirement income in Table 6.3 and Table 6.4 correspond to the allocation
invested in equities and bonds, respectively, see Figure 6. TimePension, in
contrast, has a loss-restraining property in connection with price falls in the

9In connection with the �nancial crisis in late 2008 and early 2009, we have seen
price falls of this magnitude.

10This level has been set with inspiration from the Solvency II stress scenarios.
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Age LifeCycle1 LifeCycle2 Tidspension

65 -6.4% -5.9% 0.0%

66 -6.4% -6.4% 0.0%

75 -7.7% -6.9% 0.0%

80 -8.4% -7.1% 0.0%

Table 6.4: Percentage change in average (i.e. expected) annual retirement
income (paid monthly) at the beginning of the speci�ed ages in case of
a 10% fall in bond prices. The price fall is assumed to occur in the last
quarter of the year before the person attains the speci�ed age.

�nancial markets. Although the equity allocation is 60% in TimePension,
the percentage change in expected annual retirement income is only -1% in
case of a 45% fall in equity prices. The change in expected annual retire-
ment income is limited by the smoothing mechanism. As mentioned above,
for the results in Table 6.3, we assume that the price fall happens during
the last quarter of the year before the pension bene�t is determined at the
beginning of the following year. Returns are smoothed on a monthly basis
at 1.84% (corresponding to 20% per annum) of the individual smoothing
account balance.11

Note, that in case of a stock market rebound, TimePension smooth out the
e�ect of these downward and upward movements in the �nancial markets.
Contrary to this, retirement income payments vary with the annual mar-
ket returns actually realised in the life-cycle products. Hence, we conclude
that TimePension, also in relation to sharp price changes in the �nancial
markets, o�ers stability in the determination of retirement income pay-

11For the sake of simplicity, we also look at the case where the equity price fall of -45%
occurs in early December with the e�ect that smoothing for only one month is included
in the calculations. It is assumed that the invested funds have a 60% equity allocation.
The impact of the equity price fall is therefore, seen in isolation, 60%x(-45%) = -27%.
After smoothing, the impact on pension bene�t account returns is 1.84%x(-27%) =
-0.4968%-point. This is almost equal to -0.5%, which is the percentage change in ex-
pected retirement income payments because of the equity price fall relative to expected
retirement income with no price fall (calculated by means of 50,000 simulations).
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ments.

Conclusion

Schopenhauer invoked the idea that innovations tend to pass through three
distinct phases: "In the �rst stage, the new idea is ridiculed; in the sec-
ond stage, it is severely opposed; and in the third stage, having become
accepted, it is considered as being self-evident".

Jakobsen (2003) concludes that "TimePension represents a group of pen-
sion products which will undoubtedly be capable of capturing a large mar-
ket share in the years ahead". Indeed, the Danish life and pension insur-
ance company selling the product experienced that 20% of its new business
in 2010 was accounted for by the TimePension products.12 With time, it
is expected that it becomes commonly known - also outside the pensions
industry and academic circles - what qualities and advantages retirees and
pension savers can achieve with the products in the product class smoothed
investment-linked annuities. This is because of the unique opportunity for
obtaining high expected retirement income concurrently with great stabil-
ity in bene�ts provided in the decumulation phase. Added to this, there is
an accurately speci�ed mathematical mechanism that connects returns on
investments with adjustments of retirement income payments. TimePen-
sion is in this manner a transparent product.

We also mention, that TimePension, as the only modern Danish pension
product, has been analysed by researchers in several papers published in
international scienti�c journals. This contributes to insight and trans-
parency in the pensions area.

Many indications are that the type smoothed investment-linked annuities
is a serious alternative to traditional life-cycle products - also on the inter-
national scene. The product class was internationally recognised in 2009
when the business magazine Life and Pensions awarded the "Innovation of
the Year" prize to the product "TimePension with guaranty", see Carver

12TimePension, launched in 2002, and TimePension med Garanti, launched in 2009.
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(2009). Earlier years' winners of this innovation prize had been the interna-
tional life and pension insurance groups etc. in the form of AXA with over
200,000 employees and Aegon with more than 30,000 employees.

It is astounding to note that, while we in Denmark have been inspired by
the United States to introduce the life-cycle products, it will come as no
surprise to us if the Americans �nd inspiration for introducing products
that are similar to TimePension and the new product class, smoothed
investment-linked annuities. In other words, a Danish product design is
a serious challenger to traditional life-cycle products in future product
development.
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Technical Appendix

Parameters for the model have been identi�ed with inspiration from Jør-
gensen and Linnemann (2012) and in a manner ensuring compliance with
the economic assumptions for pension projections for 2011, prepared by
the Danish Bankers Association and the Danish Insurance Association, see
e.g. Danish Insurance Association (2010).13 The stock, the risk premium
process and the interest rate follows the dynamics

dSt = (xt + rt)Stdt+ σsStdW
1(t), S0 = s0,

dxt = α(x̄− xt)dt− σxdW 1(t), x0 = x0,

drt = κ(θ − rt)dt+ σrdW
2(t), r0 = r0.

We have applied an equity volatility, σS , of 14% and an equilibrium risk
premium for the equity relative to the short-term interest rate, x̄, of 3.91%.
The other parameters in the risk premium process, x0, α and σx, are set
at 3.91%, 10% and 0.5%. For the interest rate process, the parameters r0,
θ, κ and σr have been set at 2.86%, 2.86%, 25% and 1.5%, respectively.
Moreover, the market price for interest rate risk is -25%, which is employed
to determine the price of the bond portfolio, and the correlation between
interest rate changes and equity returns, ρ, has been set at 0%.

13It is assumed that return on equities is 7% per annum and that return on bonds is
4% per annum.
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