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Summary

The principal theme of the thesis is the valuation of derivative securities sensitive
to the volatility-of-volatility; important examples include forward-starting options,
variance derivatives and cliquets. The thesis comprises five research papers and
one short introductory note. All chapters closely follow the research manuscripts,
which have been prepared in a format suitable for publication in international peer-
reviewed journals on quantitative finance and financial mathematics. The chapters,
along with a short description, are presented below.

0. Volatility-of-Volatility: A simple model-free motivation

In this introductory note, we aim to provide a simple, intuitive and model-free
motivation for the importance of volatility-of-volatility in pricing certain kinds of
exotic and structured products.

I. Closed form convexity and cross-convexity adjustments for Heston
prices

We present a new and general technique for obtaining closed form expansions
for prices of options in the Heston model, in terms of Black-Scholes prices and
Black-Scholes greeks up to arbitrary orders. We then apply the technique to solve,
in detail, the cases for the second order and third order expansions. In particular,
such expansions show how the convexity in volatility, measured by the Black-Scholes
volga, and the sensitivity of delta with respect to volatility, measured by the Black-
Scholes vanna, impact option prices in the Heston model. The general method
for obtaining the expansion rests on the construction of a set of new probability
measures, equivalent to the original pricing measure, and which retain the affine
structure of the Heston volatility diffusion. Finally, we extend our method to the
pricing of forward-starting options in the Heston model.

This chapter is based on the research manuscript Drimus (2011a), accepted
for publication in Quantitative Finance.

II. Options on realized variance by transform methods: A non-affine
stochastic volatility model

We study the pricing and hedging of options on realized variance in the 3/2
non-affine stochastic volatility model, by developing efficient transform based pricing
methods. This non-affine model gives prices of options on realized variance which

iv



allow upward sloping implied volatility of variance smiles. Heston’s model, the
benchmark affine stochastic volatility model, leads to downward sloping volatility of
variance smiles — in disagreement with variance markets in practice. Using control
variates, we show a robust method to express the Laplace transform of the variance
call function in terms of the Laplace transform of realized variance. The proposed
method works in any model where the Laplace transform of realized variance is
available in closed form. Additionally, we apply a new numerical Laplace inversion
algorithm which gives fast and accurate prices for options on realized variance,
simultaneously at a sequence of variance strikes. The method is also used to derive
hedge ratios for options on variance with respect to variance swaps.

This chapter is based on the research manuscript Drimus (2011b), accepted
for publication in Quantitative Finance.

III. Options on realized variance in Log-OU models

We consider the pricing of options on realized variance in a general class of
Log-OU stochastic volatility models. The class includes several important models
proposed in the literature. Having as common feature the log-normal law of instan-
taneous variance, the application of standard Fourier-Laplace transform methods is
not feasible. By extending Asian pricing methods, we obtain bounds, in particular,
a very tight lower bound for options on realized variance.

This chapter is based on the research manuscript Drimus (2010b), submitted
and currently under review.

IV. Options on discretely sampled variance: Discretization effect and
Greeks

The valuation of options on discretely sampled variance requires proper ad-
justment for the extra volatility-of-variance induced by discrete sampling. Under
general stochastic volatility dynamics, we provide a detailed theoretical characteri-
zation of the discretization effect. In addition, we analyze several numerical methods
which reduce the dimensionality of the required pricing scheme, while accounting
for most of the discretization effect. The most important of these, named the con-
ditional Black-Scholes scheme, leads to an explicit discretization adjustment term,
easily computable by standard Fourier transform methods in any stochastic volatil-
ity model which admits a closed-form expression for the characteristic function of
continuously sampled variance. In the second part of the chapter, we provide a
practical analysis of the most important risk sensitivities (’greeks ’) of options on
discretely sampled variance.

This chapter is based on the research manuscript Drimus, Farkas (2010), sub-
mitted and currently under review.

v



V. A forward started jump-diffusion model and pricing of cliquet style
exotics

We present an alternative model for pricing exotic options and structured
products with forward-starting components. The pricing of such exotic products
(which consist primarily of different variations of locally / globally, capped / floored,
arithmetic / geometric etc. cliquets) depends critically on the modeling of the
forward-return distributions. Therefore, in our approach, we directly take up the
modeling of forward variances corresponding to the tenor structure of the product
to be priced. We propose a two factor forward variance market model with jumps
in returns and volatility. It allows the model user to directly control the behavior
of future smiles and hence properly price forward smile risk of cliquet-style exotic
products. The key idea, in order to achieve consistency between the dynamics of
forward variance swaps and the underlying stock, is to adopt a forward starting
model for the stock dynamics over each reset period of the tenor structure. We also
present in detail the calibration steps for our proposed model.

This chapter is based on the research manuscript Drimus (2010a), accepted
for publication in Review of Derivatives Research.
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0

Volatility-of-Volatility: A simple
model-free motivation

Gabriel G. Drimus

Abstract

In this introductory note, we aim to provide a simple, intuitive and
model-free motivation for the importance of volatility-of-volatility in
pricing certain kinds of exotic and structured products.

keywords: volatility of volatility, variance derivatives, exotic options, structured
products.

0.1 Introduction

It is intuitively clear that for exotic products that are strongly dependent on the
dynamics of the volatility surface proper modeling of the volatility-of-volatility is
critical. Several authors, including Schoutens et al. (2004), Gatheral (2006) and
Bergomi (2005, 2008), have shown that the same exotic product can have signifi-
cantly different valuations under different stochastic volatility models.

In this short note, we want to illustrate the importance of the volatility-of-
volatility without referring to any of the standard models from the literature. We
compare the pricing of a couple of fundamental payoffs with and without volatility-
of-volatility.

0.2 A model free motivation

Let us begin by recalling the important payoff spanning formula, first observed in
Breeden, Litzenberger (1978). A payoff function H ∈ C2(0,∞) satisfies, for any

1



CHAPTER 0. VOLATILITY-OF-VOLATILITY

x0 > 0:

H(x) = H(x0) +
∂H

∂x
(x0) · (x− x0) +

∫ x0

0

∂2H

∂x2
(K) · (K − x)+ dK

+

∫ ∞
x0

∂2H

∂x2
(K) · (x−K)+ dK (1)

This can be generalized to less smooth payoff functions H in several ways. For
example, if H ∈ C2(0,∞)\{x0}, continuous at x0 with left and right first derivatives
∂H−

∂x
(x0), ∂H+

∂x
(x0), the spanning formula becomes

H(x) = H(x0)− ∂H−

∂x
(x0) · (x0 − x)+ +

∂H+

∂x
(x0) · (x− x0)+

+

∫ x0

0

∂2H

∂x2
(K) · (K − x)+ dK +

∫ ∞
x0

∂2H

∂x2
(K) · (x−K)+ dK (2)

More generally, the spanning formula can be extended to convex H using generalized
derivatives. For our purposes, in this section, statements (1) and (2) will suffice.

In what follows, we fix two future dates 0 < T1 < T2. Suppose we want to
value a contract whose payoff at time T2 is

1

T2 − T1

· log2

(
ST2

ST1

)
where we have denoted by S the price of some underlying asset. We first consider
the value of this contract at the future time T1. From the standpoint of time T1,
this payoff can be spanned into a portfolio of vanilla options. Specifically, if we take

H(x) = 1
T2−T1

· log2
(

x
ST1

)
and use

∂H

∂x
(x) =

2

x · (T2 − T1)
log

(
x

ST1

)
∂2H

∂x2
(x) =

2

x2 · (T2 − T1)

(
1− log

(
x

ST1

))
an application of the spanning formula (1) gives

1

T2 − T1

log2

(
ST2

ST1

)
=

∫ ST1

0

2

K2 · (T2 − T1)

(
1− log

(
K

ST1

))
· (K − x)+ dK

+

∫ ∞
ST1

2

K2 · (T2 − T1)

(
1− log

(
K

ST1

))
· (x−K)+ dK

2



0.2. A MODEL FREE MOTIVATION

Assuming European Put and Call options, of all strikes K > 0, are tradeable in the
market, we obtain that the value of the contract at time T1 is given by

V H
T1

=

∫ ST1

0

2

K2 · (T2 − T1)

(
1− log

(
K

ST1

))
· P (ST1 , K, T2 − T1)dK

+

∫ ∞
ST1

2

K2 · (T2 − T1)

(
1− log

(
K

ST1

))
· C(ST1 , K, T2 − T1)dK

where we assume the market option prices P (ST1 , K, T2−T1) and C(ST1 , K, T2−T1)
are such that the two integrals converge. Making the change of variable K = ST1 · x
and using the Black-Scholes pricing function, we can write

P (ST1 , K, T2 − T1) = ST1 · PBS (1, x; σ̂(x), T2 − T1)

C(ST1 , K, T2 − T1) = ST1 · CBS (1, x; σ̂(x), T2 − T1)

where we denoted by σ̂(x) the Black-Scholes implied volatility for moneyness x =
K
ST1

. We finally obtain the value, at time T1, as

V H
T1

=

∫ 1

0

2

x2 · (T2 − T1)
(1− log (x)) · PBS (1, x; σ̂(x), T2 − T1) dx

+

∫ ∞
1

2

x2 · (T2 − T1)
(1− log (x)) · CBS (1, x; σ̂(x), T2 − T1) dx (3)

Note that, for our contract, its future value at time T1 depends only on the volatility-
by-moneyness curve (i.e. the smile) σ̂(x) (of maturity ∆T = T2−T1) that will prevail
in the market at time T1. Of course, at present, we do not know what ∆T -smile
will prevail in the market at time T1. Therefore, the valuation of this product will
depend entirely on the future smile scenarios assumed possible for time T1.

Today’s ∆T -smile, which is observable in the market, will be denoted by σ̂0(x).
If we make the assumption that the future ∆T -smile, which prevails in the market
at time T1, will be identical to today’s smile (that is the case, for example, in any
pure Levy model), we obtain the present value of the contract as

e−rT1 · V H
T1

(σ̂0(x)) (4)

where we have used today’s ∆T -smile σ̂0(x) in formula (3).

Assume now that we recognize the uncertainty in the future smile and consider
three possible scenarios: the smile moves up to σ̂u(x), stays the same at σ̂0(x) or
moves down to σ̂d(x) – with probabilities pu, p0 and pd respectively. The value of
the contract is now computed as

e−rT1 ·
[
pu · V H

T1
(σ̂u(x)) + p0 · V H

T1
(σ̂0(x)) + pd · V H

T1
(σ̂d(x))

]
. (5)

3
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Figure 1: Comparison of two 3m-smile behaviors: (Left) the future 3m-smile as-
sumed identical to today’s 3m smile, (Right) the future 3m-smile assumed to take
on 3 possible realizations (shifted up by 10 volatility points, remains the same and
shifted down by 10 volatility points) with equal probabilities 1/3.

An interesting question is how the valuation without volatility-of-volatility in (4)
compares to the valuation with volatility-of-volatility in (5).We next consider a
simple numerical example. The left panel of Figure (1) shows the three-months,
∆T = 0.25, S&P500 smile from July 31 2009; assume this is today’s observed smile,
denoted above by σ̂0(x). With volatility-of-volatility, we assume three possible smile
shifts: up by 10 volatility points (σ̂u(x) = σ̂0(x)+0.1), constant and down 10 volatil-
ity points (σ̂d(x) = σ̂0(x)− 0.1) each with equal probability 1

3
. Remaining parame-

ters are taken T1 = 0.25, T2 = T1 + ∆T = 0.5, interest rate r = 0.4% and dividend
yield δ = 1.9%. We obtain the (undiscounted) contract value, without vol-of-vol, at
0.0863 and the value, with vol-of-vol, at 1

3
· (0.1727+0.0863+0.0313) = 0.0968, for a

relative difference of approximately 12.17%. We emphasize that, in both cases, the
expected smile is the same; note that 1

3
· (σ̂u(x) + σ̂0(x) + σ̂d(x)) = σ̂0(x). Therefore,

the significant valuation difference stems entirely from the volatility-of-volatility.
We conclude that, a model which does not properly reflect the stochasticity of the
future smile can severely misprice this product.

Let us now consider the valuation of a slightly more complicated contract,
whose payoff at time T2 is given by(

1

T2 − T1

· log2

(
ST2

ST1

)
− σ2

K

)
+

and which resembles (albeit remotely) an option on realized variance with volatility
strike σK > 0. As before, we begin by determining the value of the contract at time
T1. This payoff can be decomposed as(

1

T2 − T1

· log2

(
ST2

ST1

)
− σ2

K

)
·
(

1
ST2

<ST1
e−σK

√
T2−T1

+ 1
ST2

>ST1
eσK
√
T2−T1

)
4



0.2. A MODEL FREE MOTIVATION

and we let

HL(x) =

(
1

T2 − T1

· log2

(
x

ST1

)
− σ2

K

)
· 1

x<ST1
e−σK

√
T2−T1

HR(x) =

(
1

T2 − T1

· log2

(
x

ST1

)
− σ2

K

)
· 1

x>ST1
eσK
√
T2−T1

.

The function HL(x) is twice differentiable on (0,∞)\{ST1e
−σK

√
T2−T1} with left and

right derivatives at ST1e
−σK

√
T2−T1 given by

∂H−L
∂x

(
ST1e

−σK
√
T2−T1

)
=

−2σK

ST1

√
T2 − T1e−σK

√
T2−T1

∂H+
L

∂x

(
ST1e

−σK
√
T2−T1

)
= 0.

Therefore, by applying to HL(x) the statement (2) of the spanning formula, we
obtain

HL(x) =
2σK

ST1

√
T2 − T1e−σK

√
T2−T1

·
(
ST1e

−σK
√
T2−T1 − x

)
+

+

∫ ST1
e−σK

√
T2−T1

0

2

K2(T2 − T1)

(
1− log

(
K

ST1

))
· (K − x)+ dK.

After proceeding analogously with the function HR(x), we finally obtain that the
value of the contract at the future time T1 will be given by

V H
T1

=
2σK

ST1

√
T2 − T1e−σK

√
T2−T1

· P (ST1 , ST1e
−σK

√
T2−T1 , T2 − T1)

+
2σK

ST1

√
T2 − T1eσK

√
T2−T1

· C(ST1 , ST1e
σK
√
T2−T1 , T2 − T1)

+

∫ ST1
e−σK

√
T2−T1

0

2

K2(T2 − T1)

(
1− log

(
K

ST1

))
· P (ST1 , K, T2 − T1)dK

+

∫ ∞
ST1

eσK
√
T2−T1

2

K2(T2 − T1)

(
1− log

(
K

ST1

))
· C(ST1 , K, T2 − T1)dK.

As before, making the change of variable K = x · ST1 and using the Black-Scholes
implied volatility-by-moneyness smile σ̂(x) prevailing in the market at time T1, we

5



CHAPTER 0. VOLATILITY-OF-VOLATILITY

obtain

V H
T1

=
2σK√

T2 − T1e−σK
√
T2−T1

· PBS
(

1, e−σK
√
T2−T1 ; σ̂

(
e−σK

√
T2−T1

)
, T2 − T1

)
+

2σK√
T2 − T1eσK

√
T2−T1

· CBS
(

1, eσK
√
T2−T1 ; σ̂

(
eσK

√
T2−T1

)
, T2 − T1

)
+

∫ e−σK
√
T2−T1

0

2

x2(T2 − T1)
(1− log (x)) · PBS(1, x; σ̂(x), T2 − T1)dx

+

∫ ∞
eσK
√
T2−T1

2

x2(T2 − T1)
(1− log (x)) · CBS(1, x; σ̂(x), T2 − T1)dx.

Again, we notice that the value of the contract at time T1 depends only on the ∆T -
smile which will prevail in the market at time T1; in particular, note that the value
does not depend on the future stock price ST1 . Similar to our earlier comparison, we
consider the two smile behaviors depicted in Figure (1): (a) the ∆T -smile remains
identical to today’s smile and (b) the smile can shift up/down by 10 volatility points
around today’s smile. The two valuations are then given by formulas (4) and (5)
with V H

T1
as above. Using σ2

K = 0.0968 (the value of the previous contract), we
obtain the (undiscounted) price, without vol-of-vol, at 0.044 and, with vol-of-vol,
at 1

3
(0.1161 + 0.044 + 0.0091) = 0.0564 — for a relative difference of approximately

28.18%! As before, the expected smile is the same in both cases and, therefore, the
pricing difference comes entirely from the volatility-of-volatility.

Both contracts considered so far had a substantially higher value with vol-of-
vol than without vol-of-vol. This is explained by their positive convexity in volatility.
Specifically, in our setting, the value V H

T1
(σ̂(x)) was convex in the level of the smile

σ̂(x) and thus the average computed in equation (5) across the three possible smiles
is larger than the value computed with the expected smile in equation (4). The
importance of vol-of-vol is greater, the more volatility convexity a product has. In
practice, this sensitivity is usually called Volga which, in turn, is just short-hand for
Volatility Gamma.

As expected, different products can have vastly different Volgas. As another
example, let us consider a contract whose payoff at time T2 is(

ST2

ST1

− 1

)
+

i.e. a forward-started at-the-money call. It it straightforward to see that the
value, at time T1, of this contract is CBS(1, 1, σ̂(1), T2 − T1), where σ̂(1) is the at-
the-money implied Black-Scholes volatility of maturity ∆T prevailing in the mar-
ket at time T1. Proceeding as before, we compare the value without vol-of-vol

6
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Figure 2: Volatility Gamma (Volga) of European vanilla options as a function of
strike, for a Black-Scholes volatility of 25% and maturity 3-months.

CBS(1, 1, σ̂0(1), 0.25) = 4.782% and the value with vol-of-vol

1

3
·
(
CBS(1, 1, σ̂u(1), 0.25) + CBS(1, 1, σ̂0(1), 0.25) + CBS(1, 1, σ̂d(1), 0.25)

)
=

1

3
· (6.765% + 4.782% + 2.797%) = 4.781%

and observe that the two valuations are essentially identical. This is explained
by the fact that at-the-money options are almost linear in volatility i.e. have a
Volga close to zero1. Figure (2) shows the Volga of European vanilla options across
strikes. Indeed, we notice that ATM options have little Volga and that Volga peaks
in a region OTM before dying off for far-OTM options. If we consider an OTM
forward-started call with payoff (

ST2

ST1

− 1.25

)
+

by repeating the calculations above, we obtain a price without vol-of-vol of about
2.23 bps whereas the price with vol-of-vol is about 12.95 bps. Unlike the ATM case,
vol-of-vol now has a substantial impact on valuation.

0.3 Conclusion

All the elementary payoffs that we have been considering in this short account
appear, either explicitly or implicitly, in many types of exotic and structured prod-
ucts. Among these, we mention variance derivatives and the different variations of
locally/globally, floored/capped, arithmetic/geometric cliquets. As noted in Eber-
lein, Madan (2009), the market for such products has been on an exponential

1We remark that it can, in fact, be slightly negative depending on the sign of (r − δ)2 − σ4

4 .
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CHAPTER 0. VOLATILITY-OF-VOLATILITY

growth trend. Therefore, for dealers pricing these products proper modeling of
the volatility-of-volatility is of major importance. Bergomi (2005, 2008) proposes a
forward-started modeling approach which allows direct control of the future smiles;
a version which includes jumps is also given in Drimus (2010). In addition to pricing,
the monitoring and risk-management of the Volatility Gamma (or Volga) becomes
critical for an exotics book, as it drives the Profit & Loss of the daily rebalancing
of the Vega. A further discussion of the Volga and Vanna2, in a stochastic volatility
model, can be found in Drimus (2011).

2The change in Delta w.r.t. a change in volatility ∂∆
∂σ .
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I

Closed form convexity and
cross-convexity adjustments for

Heston prices

Gabriel G. Drimus

Abstract

We present a new and general technique for obtaining closed form expan-
sions for prices of options in the Heston model, in terms of Black-Scholes
prices and Black-Scholes greeks up to arbitrary orders. We then apply
the technique to solve, in detail, the cases for the second order and third
order expansions. In particular, such expansions show how the convexity
in volatility, measured by the Black-Scholes volga, and the sensitivity of
delta with respect to volatility, measured by the Black-Scholes vanna,
impact option prices in the Heston model. The general method for ob-
taining the expansion rests on the construction of a set of new probability
measures, equivalent to the original pricing measure, and which retain
the affine structure of the Heston volatility diffusion. Finally, we ex-
tend our method to the pricing of forward-starting options in the Heston
model.

keywords: stochastic volatility, Heston model, price approximation, forward start-
ing options.

1.1 Introduction

In the area of pricing and hedging equity derivatives, an increasing body of litera-
ture has been focused on the problem of stochastic volatility. After the seminal work
of Black, Scholes (1973), a number of alternative models have been proposed and

10



1.1. INTRODUCTION

designed to directly model the stochastic nature of volatility. With the exception
of the special class of local volatility models, among which we mention Cox (1975)
and Dupire (1994), the proposed models introduce a second stochastic factor to de-
scribe volatility movements. The idea of modeling volatility as a separate stochastic
process leads, in turn, to several possible choices for its dynamics. Among the first
contributions in this line of research we mention Scott (1987) and Chesney, Scott
(1989), where the logarithm of the instantaneous volatility is assumed to follow a
mean-reverting Ornstein-Uhlenbeck process, and Hull, White (1987a), where a ge-
ometric Brownian motion is used to model the instantaneous variance. However,
these early models proved to be numerically cumbersome as they do not offer the
possibility of fast valuation algorithms when large numbers of options have to be
priced. As an alternative, came one of the most popular stochastic volatility mod-
els, proposed in Heston (1993), which employed the square root diffusion to model
the evolution of instantaneous variance – dynamics which were first used by Cox,
Ross (1985) in the area of interest rate modeling. Heston (1993) also introduced the
technique of inversion of characteristic functions in order to compute option prices.
This approach was subsequently refined and extended by Carr, Madan (1999) where
the method of fast Fourier transforms, as introduced by Cooley, Tukey (1965), is
employed and showed to provide superior results in terms of both accuracy and
speed.

In this paper, we work under the stochastic volatility dynamics proposed in
Heston (1993). The existence of fast numerical methods for pricing options in the
Heston model, makes it a viable modeling tool in practice. However, these numer-
ical recipes fail to reveal the inner logic and structure of the model by acting as
’black boxes’, able to provide fast prices for the supplied sets of inputs. Specifically,
such methods do not make explicit the connection between the prices obtained in
a stochastic volatility model and the corresponding prices in the classical Black Sc-
holes model. We believe that, for a financial engineer, it is of critical importance to
have a deeper and more concrete understanding of the main features which make
a stochastic volatility price different from the benchmark Black Scholes price. In
this paper, we present a simple and general technique which allows one to expand
the price of options in the Heston model in terms of Black-Scholes prices and higher
order Black-Scholes greeks. In particular, this gives an explicit and exact means
of quantifying the contribution of important features arising in stochastic volatil-
ity modeling, such as the convexity of option prices with respect to volatility (or,
equivalently, the Volatility Gamma, also known in practice as the Volga) or the de-
pendence of the delta hedge ratio on the level of volatility (measured by the Vanna).
The method can also be applied beyond these second order effects, to compute the
contribution of Black-Scholes greeks up to any order. We note that, under geomet-
ric Brownian motion dynamics for the instantaneous variance, Hull, White (1987a)

11



CHAPTER 1. CONVEXITY AND CROSS CONVEXITY

provide a third order approximation to option prices under the assumption of zero
correlation between stock and volatility movements. Our method does not impose
such a restriction on correlation which, as revealed by other studies, for example,
Bakshi et al. (1997), tends to be strongly negative.

Our approach rests on the construction of a set of new probability measures,
equivalent to the original pricing measure, and which retain the affine structure of
the square root diffusion. This enables us to make use, under the new probability
measures, of the same results which have been derived in the literature for affine
square root diffusions, such as the closed-form Laplace transform and the moments
of integrated variance; see, for example, Cox et al. (1985) and Dufresne(2001). The
method is applied to the pricing of European call and put options in the Heston
model and shown that it can be extended to the case of forward starting options.
Our paper is organized as follows. In the next section, we present the general
results which apply to price expansions up to any order. In particular, we show how
to construct the new probability measures which will be used in the rest of the paper
and how the parameters of the square root diffusion change under the newly defined
probability measures. In the subsequent two sections, we apply the general results
to solve, in detail, the important cases of second order and third order expansions.
In section five, we illustrate how our approach can be directly extended to forward
starting options. The last section draws the main conclusions.

1.2 Heston expansions : The general case

In this paper we work under the stochastic volatility framework first proposed in
Heston (1993). Let (Wt, Zt)0≤t≤T be a standard two-dimensional Brownian motion
defined on a filtered probability space (Ω,F ,Ft,Q) satisfying the usual conditions.
We assume that the stock price and its instantaneous variance (St, vt)0≤t≤T satisfy
the following dynamics under the risk neutral measure Q:

dSt
St

= (r − δ)dt+
√
vt

(
ρdWt +

√
1− ρ2dZt

)
dvt = k(θ − vt)dt+ ε

√
vtdWt

where the risk free interest rate and the dividend yield are assumed constant and
denoted by r and δ, respectively. The instantaneous stochastic variance (vt)0≤t≤T
follows a square root diffusion, or Cox-Ingersoll-Ross (CIR) process, with speed
of mean reversion k, long term mean variance θ and volatility of volatility ε. In
the subsequent development of our method, we shall assume that the correlation
parameter ρ is non-positive, i.e. ρ ≤ 0. We note that this assumption on the
correlation parameter is consistent with earlier studies, e.g. Bakshi et al. (1997),
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1.2. HESTON EXPANSIONS : THE GENERAL CASE

which show that the stock and the volatility are negatively correlated. In what
follows, a central role will be played by the total integrated variance, denoted by VT
and defined as:

VT =

∫ T

0

vtdt.

Under CIR dynamics for the instantaneous variance, the Laplace transform of VT is
known in closed form; see, for example, Cox et al. (1985) or Dufresne (2001). In
deriving the expansion terms, we will make repeated use of the transform function
and we therefore recall its form below:

L (s; k, θ, ε) = E
(
e−sVT

)
= A (s; k, θ, ε) e−v0B(s;k,θ,ε)

where

A (s; k, θ, ε) =

(
ekT/2

cosh (P (s)T/2) + k
P (s)

sinh (P (s)T/2)

) 2kθ
ε2

B (s; k, θ, ε) =
s

P (s)

2 sinh (P (s)T/2)

cosh (P (s)T/2) + k
P (s)

sinh (P (s)T/2)

P (s) =
√
k2 + 2ε2s.

In approximating the Heston prices with Black-Scholes prices and greeks, we will
find it convenient to work with the Black-Scholes pricing function written in terms
of the total variance, as opposed to the traditional form which uses the annualized
volatility parameter. Specifically, we will use the following form for the Black-Scholes
pricing function:

CBS (S0, V ; r, δ,K, T ) = S0e
−δTN (d1)−Ke−rTN (d2)

where

d1 =
log S0

K
+ (r − δ)T + V

2√
V

d2 = d1 −
√
V .

Using this definition of the call pricing function, for a Black-Scholes volatility param-
eter σ > 0, we obtain the Black-Scholes call option price by computing CBS(S0, σ

2T ).
We begin by applying Itô’s lemma to log(St), over the interval [0, T ], to obtain for
ST :

ST = S0 exp
[

(r − δ)T − 1− ρ2

2

∫ T

0

vtdt−
ρ2

2

∫ T

0

vtdt+

+
√

1− ρ2

∫ T

0

√
vtdZt + ρ

∫ T

0

√
vtdWt

]
13



CHAPTER 1. CONVEXITY AND CROSS CONVEXITY

or

ST = S0 · ξT · exp
[

(r − δ)T − 1− ρ2

2

∫ T

0

vtdt+
√

1− ρ2

∫ T

0

√
vtdZt

]
(1.1)

where we define the process (ξt)0≤t≤T as the stochastic exponential of
∫ t

0
ρ
√
vudWu:

ξt = E
(∫ t

0

ρ
√
vudWu

)
= exp

(
−ρ

2

2

∫ t

0

vudu+ ρ

∫ t

0

√
vudWu

)
.

Our goal is to obtain an expansion for the Heston call price, of strike K and maturity
T , which, using the pricing measure Q, is given by:

CHES (S0, K, T, v0, k, θ, ε) = e−rTEQ (ST −K)+

Denoting by (FWt )0≤t≤T the filtration generated by the standard Brownian motion
(Wt)0≤t≤T driving the CIR diffusion (vt)0≤t≤T and making use of (1.1), we can write
the Heston call price as an expectation over Black-Scholes prices in the following
way:

CHES (S0, K, T, v0, k, θ, ε) = e−rTEQ (EQ ((ST −K)+

∣∣FWT ))
= EQ

(
CBS

(
S0 · ξT ,

(
1− ρ2

) ∫ T

0

vtdt

))
or, using our notation for the total integrated variance :

CHES (S0, K, T, v0, k, θ, ε) = EQ (CBS
(
S0 · ξT ,

(
1− ρ2

)
VT
))
. (1.2)

In other words, we will make use of the fact that, conditional on a realization
of the instantaneous variance path, the Heston option price becomes a Black-Scholes
option price with initial spot S0 · ξT and total variance (1− ρ2)

∫ T
0
vtdt. It is im-

portant to remark that the conditioning argument leading to representation (1.2)
works in exactly the same way for any European-style option whose payoff depends
only on the final value ST at maturity. The method no longer applies when path-
dependent derivatives, such as barrier or Asian options, are considered. As first
noted in Breeden, Litzenberger (1978), the payoff of any European-style option can
be spanned into a portfolio of European vanilla payoffs. Therefore, we shall focus on
the pricing of European vanilla call options which can be used as the fundamental
building blocks of any European-style option. In a different context, Romano &
Touzi (1997) used a similar representation in their study of market completeness in
stochastic volatility models.
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1.2. HESTON EXPANSIONS : THE GENERAL CASE

In our subsequent development, the key idea is to use ξT to define a set of
new probability measures retaining the affine structure of the variance diffusion.
Specifically, we note that, by Girsanov theorem

ξT = exp

(
−ρ

2

2

∫ T

0

vtdt+ ρ

∫ T

0

√
vtdWt

)
can be used to define a new probability measure Q1 equivalent to Q, with Radon-
Nikodym derivative dQ1

dQ = ξT , provided (ξt)0≤t≤T defines a true Q-martingale. By
Novikov’s sufficient condition (see, for example, Revuz, Yor (1999)), we know that
(ξt)0≤t≤T defines a martingale provided that :

EQ
(

exp

(
1

2
ρ2

∫ T

0

vtdt

))
<∞.

In terms of the Laplace transform of VT this condition reads L(−1
2
ρ2) < ∞. By

inspecting the Laplace transform given earlier, this condition is satisfied if:

ρ2 <
k2

ε2
. (1.3)

In practice, this sufficient condition usually holds and does not impose a severe
limitation on the range of acceptable parameters. To see this, we note that the speed
of mean reversion, k, tends to be higher than 1 while the volatility of volatility, ε,
tends to be less than 1 (e.g. see the study of Bakshi et al. (1997)). In all of
these cases the inequality will be automatically satisfied since the absolute value of
correlation is less than one. Therefore our new probability measure Q1 will be well
defined.

The sufficient condition (1.3) is, however, not necessary in this case. As men-
tioned in Cheridito, Filipovic, Kimmel (2005), under Heston (1993) dynamics, it
can be shown that (ξt)0≤t≤T is a true martingale for any ρ, by applying a ”local”
version of the Novikov condition, as given in Karatzas, Shreve (1991). For later use,
we make a note of this result below.

Lemma 1.2.1 Under Heston (1993) Q-dynamics for the instantaneous variance
(vt)0≤t≤T , the local Q-martingale process (ξt)0≤t≤T defined by

ξt = E
(
α ·
∫ t

0

√
vudWu

)
= exp

(
−α

2

2

∫ t

0

vudu+ α

∫ t

0

√
vudWu

)
is a true Q-martingale for any α ∈ R.
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CHAPTER 1. CONVEXITY AND CROSS CONVEXITY

The key observation which enables our subsequent results is that, under the
newly defined probability measure Q1, the instantaneous variance process (vt)0≤t≤T
remains CIR, with a set of new parameters easily computed from the original ones.
Specifically, recall that (vt)0≤t≤T is CIR(k, θ, ε) under Q i.e.

dvt = k(θ − vt)dt+ ε
√
vtdWt

By Girsanov’s theorem, under Q1, W 1
t = Wt −

∫ t
0
ρ
√
vudu is a standard Brownian

motion and hence we obtain:

dvt = k(θ − vt)dt+ ε
√
vt
(
dW 1

t + ρ
√
vtdt

)
or

dvt = (k (θ − vt) + ερvt) dt+ ε
√
vtdW

1
t

= (k − ερ)

(
θ

1− ερ
k

− vt
)
dt+ ε

√
vtdW

1
t

Hence, we recognize that, under Q1, the dynamics of (vt)0≤t≤T become CIR(k −
ερ, θ

1− ερ
k
, ε). It is worth noting that this result relies intimately on the square root

form of the CIR dynamics. In particular, this technique would not work for arbitrary
stochastic volatility models. We will make use of the following straightforward
generalization, which we state below.

Proposition 1.2.2 Under Heston (1993) Q-dynamics for the instantaneous vari-
ance (vt)0≤t≤T , it is possible to define a sequence of equivalent probability measures

Qn , n = 1, 2, 3 . . ., by dQn
dQn−1 = ξ

(n−1)
T where

ξ
(n−1)
T = exp

(
−ρ

2

2

∫ T

0

vtdt+ ρ

∫ T

0

√
vtdW

n−1
t

)
where W n

t = W n−1
t −

∫ T
0
ρ
√
vtdt is a standard Brownian motion under Qn, W 0

t =
Wt and Q0 = Q (the original pricing measure). Moreover, (vt)0≤t≤T is CIR(k −
nερ, θ

1−nερ
k
, ε) under Qn.

Proof The statement follows very easily by mathematical induction. It has already
been shown that, for n = 1, the probability measure Q1 is well defined, by Lemma
(1.2.1), and that (vt)0≤t≤T is CIR(k − ερ, θ

1− ερ
k
, ε) under Q1. Suppose the statement

holds for some n ≥ 1. Firstly, Lemma (1.2.1) ensures that the probability measure

Qn+1, defined by dQn+1

dQn = ξ
(n)
T , is well defined. Next, we check the form of (vt)0≤t≤T

under Qn+1. We have

dvt = (k − nερ)

(
θ

1− nερ
k

− vt
)
dt+ ε

√
vtdW

n
t
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1.2. HESTON EXPANSIONS : THE GENERAL CASE

under Qn. By Girsanov’s theorem, W n+1
t = W n

t −
∫ t

0
ρ
√
vudu and hence we can

write

dvt = (k − nερ)

(
θ

1− nερ
k

− vt
)
dt+ ε

√
vt
(
dW n+1

t + ρ
√
vtdt

)
Upon collecting terms we obtain

dvt = (k − (n+ 1)ερ)

(
θ

1− (n+1)ερ
k

− vt

)
dt+ ε

√
vtdW

n+1
t

from where we conclude that, indeed, (vt)0≤t≤T is CIR(k − (n + 1)ερ, θ

1− (n+1)ερ
k

, ε)

under Qn+1, as desired. �

Remark : We note that the following recursive relationship holds between the
densities ξ

(n)
T , n ≥ 1, defined in Proposition (1.2.2):

ξ
(n)
T = ξ

(n−1)
T e−ρ

2
∫ T
0 vtdt

which follows directly from the definition of ξ
(n)
T and using the fact that dW n

t =
dW n−1

t − ρ√vtdt.

To obtain our approximation to Heston prices by Black-Scholes prices and Black-
Scholes greeks, we proceed from relation (1.2) and use a Taylor expansion around the
point (S0, (1− ρ2)EQ(VT )). Using the fact that EQ(ξT ) = 1, the Taylor polynomial
of order n ≥ 2, will have the form:

C
(nth)
HES = CBS

(
S0,
(
1− ρ2

)
EQ(VT )

)
+

+
n∑
k=2

k∑
l=0

1

l!(k − l)!
∂kCBS

∂Sl∂V k−l

(
S0,
(
1− ρ2

)
EQ(VT )

)
·

·Sl0 ·
(
1− ρ2

)k−l · EQ
(

(ξT − 1)l
(
VT − EQ(VT )

)k−l)
(1.4)

In order to obtain closed form expressions for the terms in the Taylor polynomial
above, we notice that we require a technique to derive general moments of the
form EQ

(
(ξT − 1)n

(
VT − EQ(VT )

)m)
for n and m non-negative integers. As our

subsequent results show, assuming ρ ≤ 0, these moments will be finite for any
n and m non-negative integers; the expansion can thus be constructed up to an
arbitrary order. We remark that, in general, it is not possible to put a bound on the
remainder term associated with the Taylor polynomial (1.4) because some greeks of
our European call may be unbounded; the classical example is that of the Gamma
which becomes unbounded as the total variance V goes to zero, as the call payoff has
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a kink located at the strike. In what follows, we will make use of the new probability
measures Qn and of Proposition (1.2.2). To illustrate our approach, we start with
the simpler case of moments of the form EQ(ξnT ). For n = 2, by the Radon-Nikodym
theorem, we can write:

EQ (ξ2
T

)
= EQ (ξT · ξT ) = EQ1

(ξT ) .

Using that ξT = ξ
(1)
T exp

(
ρ2
∫ T

0
vtdt

)
and dQ2

dQ1 = ξ
(1)
T we obtain:

EQ1

(ξT ) = EQ1
(
ξ

(1)
T eρ

2
∫ T
0 vtdt

)
= EQ2

(
eρ

2
∫ T
0 vtdt

)
= L

(
−ρ2; k − 2ερ,

θ

1− 2ερ
k

, ε

)

where in the last step we use Proposition (1.2.2) by which we know that (vt)0≤t≤T
is CIR(k − 2ερ, θ

1− 2ερ
k

, ε) under Q2. The function L(·) is just the Laplace transform

of the integrated CIR diffusion and is known in closed form, as we have seen earlier.
Applying the same steps, we can generalize and obtain the following result.

Lemma 1.2.3 If ρ ≤ 0 the following holds for any non-negative integer n ≥ 1:

EQ (ξnT ) = L
(
−n(n− 1)

2
ρ2; k − nερ, θ

1− nερ
k

, ε

)
.

Proof Recall the recursive relationship between the densities ξ
(n)
T , n ≥ 1 :

ξ
(n)
T = ξ

(n−1)
T e−ρ

2
∫ T
0 vtdt

which gives that

ξT = ξ
(0)
T = ξ

(n)
T · e

nρ2
∫ T
0 vtdt.

To compute the n-th moment of ξT , EQ(ξnT ), we write

ξnT =
n∏
k=1

ξT =
n∏
k=1

ξ
(k−1)
T · e(k−1)ρ2

∫ T
0 vtdt =

(
n∏
k=1

ξ
(k−1)
T

)
· e

n(n−1)
2

ρ2
∫ T
0 vtdt

Using the fact that dQk
dQk−1 = ξ

(k−1)
T , we obtain

EQ(ξnT ) = EQn
(
e
n(n−1)

2
ρ2

∫ T
0 vtdt

)
= L

(
−n(n− 1)

2
ρ2; k − nερ, θ

1− nερ
k

, ε

)
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where in the last step we have applied Proposition (1.2.2) which states that, under
the probability measure Qn, (vt)0≤t≤T is CIR(k − nερ, θ

1−nερ
k
, ε). Finally, to check

that the moment obtained is finite, we can verify the sufficient condition:

n(n− 1)ρ2 <
(k − nερ)2

ε2

which simplifies to
k2 − 2nkερ

ε2
+ nρ2 > 0.

This condition is clearly satisfied since ρ ≤ 0. �

Finally, in order to be able to compute general moments of the form EQ
(

(ξT − 1)n(
VT − EQ(VT )

)m )
, we can further generalize the previous lemma.

Lemma 1.2.4 If ρ ≤ 0 the following holds for any non-negative integers n ≥ 1 and
m ≥ 1:

EQ (ξnT · V m
T ) = (−1)m

∂m

∂sm
L
(
−n(n− 1)

2
ρ2; k − nερ, θ

1− nερ
k

, ε

)
where VT denotes the total integrated variance VT =

∫ T
0
vtdt.

Proof As in the proof of the previous lemma, we write

ξnT =

(
n∏
k=1

ξ
(k−1)
T

)
· e

n(n−1)
2

ρ2
∫ T
0 vtdt

and move from the original pricing measure Q to Qn:

EQ (ξnT · V m
T ) = EQn

(
e
n(n−1)

2
ρ2VT · V m

T

)
Next, we check that this moment is finite. We recall from the proof of Lemma (1.2.3)
that

n(n− 1)ρ2 <
(k − nερ)2

ε2

and choose any p ∈
(
n(n− 1)ρ2, (k−nερ)2

ε2

)
. We can write

EQn
(
e
n(n−1)

2
ρ2VT · V m

T

)
= EQn

(
e
p
2
VT

V m
T

e(
p
2
−n(n−1)

2
ρ2)VT

)
≤ m!(

p
2
− n(n−1)

2
ρ2
)m · EQn

(
e
p
2
VT
)
<∞
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where we use the fact that

e(
p
2
−n(n−1)

2
ρ2)VT ≥

(
p
2
− n(n−1)

2
ρ2
)m

V m
T

m!
.

Under Qn, (vt)0≤t≤T is CIR
(
k − nερ, θ

1−nερ
k
, ε
)

and hence

EQn(e−sVT ) = L
(
s; k − nερ, θ

1− nερ
k

, ε

)
Taking the m-th derivative of both sides with respect to s and evaluating at s =
−n(n−1)

2
ρ2 yields the desired result. �

We now have the necessary results to derive, in closed form, all the terms in the
Heston price expansion. Next, we apply this framework to work out the concrete
details of the second and third order expansions.

1.3 A second order expansion

In this section we consider the Taylor polynomial (1.4) for the case n = 2 and explic-
itly compute all the convexity and cross-convexity adjustment terms that appear in
the approximation. For brevity, we drop the common argument

(
S0, (1− ρ2)EQ(VT )

)
of the Black-Scholes function CBS and obtain the following second order approxi-
mation to the Heston call price:

C2nd
HES = CBS +

1

2

∂2CBS

∂S2
· S2

0 · EQ (ξT − 1)2 +

+
1

2

∂2CBS

∂V 2
·
(
1− ρ2

)2 · EQ (VT − EQ (VT )
)2

+

+
∂2CBS

∂S∂V
· S0 · (1− ρ2) · E

(
(ξT − 1)(VT − EQ(VT ))

)
.

An important part in our expansions is played by the Black Scholes greeks. Their
role in hedging and risk management is well recognized. The Black-Scholes greeks are
discussed in many standard textbooks on quantitative finance and in a large number
of scientific papers. Among these, we mention Hull, White (1987b) on the effects
and role of vega and gamma hedging, Garman (1992) in which higher order Black
Scholes partial derivatives are introduced and Carr (2000) who shows that the values
of greeks of arbitrary order can be interpreted as the prices of certain contingent
claims. The Black-Scholes greeks which appear in our second order approximation
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1.3. A SECOND ORDER EXPANSION

are:

Gamma =
∂2CBS

∂S2
(S, V ) =

e−δTϕ(d1)

S
√
V

Volga =
∂2CBS

∂V 2
(S, V ) =

e−δTSϕ(d1)

4V 3/2
(d1d2 − 1)

Vanna =
∂2CBS

∂S∂V
(S, V ) = −e

−δTϕ(d1)d2

2V

where ϕ(x) is the standard normal probability density function and d1, d2 as defined
previously.

The moments of the total integrated variance can be computed in closed form
by following the method in Dufresne (2001). In particular, we give below the expec-
tation of total variance :

EQ(VT ) = EQ
(∫ T

0

vtdt

)
= Tθ +

1− e−kT

k
(v0 − θ) .

For subsequent use, we will denote the expression above by D1(v0, k, θ, T ). The
closed form expression for the second central moment of the total integrated variance
is given in the appendix. Applying Lemma (1.2.3) of the previous section we can
compute:

EQ(ξT − 1)2 = EQ(ξ2
T )− 1 = L

(
−ρ2; k − 2ερ,

θ

1− 2ερ
k

, ε

)
− 1.

Finally, applying Proposition (1.2.2) we can also determine the mixed moment be-
low:

EQ (ξT − 1)
(
VT − EQ(VT )

)
= EQ (ξTVT )− EQ (VT ) = EQ1

(VT )− EQ (VT )

= D1

(
v0, k − ερ,

θ

1− ερ
k

, ε, T

)
−D1 (v0, k, θ, T )

where we have used the fact that, under Q1, the short variance process (vt)0≤t≤T
becomes CIR(k − ερ, θ

1− ερ
k
, ε). This concludes the computation of all the terms in

the second order Heston expansion.

We now present numerical tests to compare our second order approximation
to the true Heston prices of plain vanilla options. To obtain the true prices of
call options for a range of strikes and a fixed maturity T , we employ the Fast
Fourier Transform (FFT) technique described by Carr, Madan (1999). In the origi-
nal method of Carr, Madan (1999) a proper choice for the damping parameter must
be made. In our computations, we apply a modification of the method, discussed

21



CHAPTER 1. CONVEXITY AND CROSS CONVEXITY

Parameter set k θ ε v0

Heston (1993) 2 0.01 0.1 0.01
Bakshi et al. (1997) 1.15 0.0348 0.39 0.0348

Table 1.1: Parameter sets used for the CIR diffusion of instantaneous variance.
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Figure 1.1: Comparison between second order expansion and true Heston prices,
using original parameters from Heston (1993). Solid gray: True Heston prices,
Dashed black: second order approximation (Left) Correlation parameter ρ = 0.
(Right) Correlation parameter ρ = −0.5.

in Cont, Tankov (2004), which eliminates the need for choosing a damping param-
eter. Instead of directly inverting the Fourier transform of the (dampened) call
price, one inverts the Fourier transform of the difference between the call price and
a benchmark Black-Scholes price. For numerical illustrations and a discussion of the
advantages of this modification we refer to Cont, Tankov (2004).

We illustrate our results using two different parameter sets for the CIR diffusion
of instantaneous variance. Specifically, our parameter sets will consist of : (1) the
original parameters used in Heston (1993) and (2) the parameters obtained in the
study of Bakshi, Chen, Cao (1997). These parameters have been summarized in
Table 1.1. For the correlation parameter, the study of Bakshi et al. (1997) found a
value of ρ = −0.64; also, in Bakshi et al. (1997) the interest rate is r = 3.4% and
δ = 0 (as the authors work directly with dividend-adjusted asset prices). For the
Heston (1993) parameter set, we use two choices for the correlation parameter, ρ = 0
and ρ = −0.5; in the parameter set of Heston (1993) we have r = δ = 0. The impact
on the approximation results of interest rate and dividend yield assumptions is small.
This is so because the leading Black-Scholes price of the expansion will price-in the
main influence of the assumed interest rate and dividend yield. The Black-Scholes
greeks, which appear in the following terms, are only marginally affected by interest
rate and dividend yield assumptions.
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1.4. A THIRD ORDER EXPANSION
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Figure 1.2: Comparison between second order expansion and true Heston prices,
using parameters from Bakshi et al. (1997). Solid gray: True Heston prices, Dashed
black: second order approximation.

We compare the Black-Scholes implied volatilities of the true Heston prices
and the approximated prices for a maturity of six months, T = 0.5. In Figure
(1.1) we can see the approximation results over a strike range of [80%-120%] using
CIR parameters from the original paper of Heston (1993). In the left panel, for a
correlation ρ = 0, we notice almost perfect agreement between the true prices and
the second order approximation. The approximation holds remarkably well even
for options which are 20% out-of-the money. In the right panel of Figure (1.1), we
keep the same CIR parameters but change the correlation coefficient from ρ = 0 to
ρ = −0.5. The right tail of the implied volatility curve remains well approximated.
We note that for downside strikes, below 90% out-of-the money, the second order
approximation will tend to underestimate the true value of options. In Figure (1.2),
we run the same comparison using the CIR parameters from the study of Bakshi
et al. (1997) and the correlation parameter found in their study, ρ = −0.64. The
mean absolute error between the actual implied volatilities and the approximated
implied volatilities, over the [80%,120%] strike range, was 0.61% (or 61bps).

1.4 A third order expansion

We present the calculations for the third order expansion of Heston prices in terms
of Black-Scholes prices and Black-Scholes greeks. In addition to the terms we had
to compute for the second order polynomial, we now have to consider also the terms
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CHAPTER 1. CONVEXITY AND CROSS CONVEXITY

below:

C3rd
HES = C2nd

HES +
1

3!

∂3CBS

∂S3
· S3

0 · EQ(ξT − 1)3 +

+
1

3!

∂3CBS

∂V 3
· (1− ρ2)3 · EQ(VT − EQ(VT ))3 +

+
1

2

∂3CBS

∂S2∂V
· S2

0 · (1− ρ2) · EQ ((ξT − 1)2(VT − EQ(VT ))
)

+

+
1

2

∂3CBS

∂S∂V 2
· S0 · (1− ρ2)2 · EQ ((ξT − 1)(VT − EQ(VT ))2

)
.

The Black-Scholes greeks which appear in this expansion are:

∂3CBS

∂S3
(S, V ) = −

e−δTϕ(d1)
(
d1 +

√
V
)

V S2

∂3CBS

∂V 3
(S, V ) =

e−δTSϕ(d1)

8V 5/2

(
(d1d2 − 2)2 − d2

1 − d2
2 − 1

)
∂3CBS

∂S2∂V
(S, V ) =

e−δTϕ(d1)

2SV 3/2
(d1d2 − 1)

∂3CBS

∂S∂V 2
(S, V ) =

e−δTϕ(d1)

4V 2
(d1 + d2 − d2(d1d2 − 1)) .

As mentioned in the previous section, the moments of the total integrated variance
can be computed in closed form as in Dufresne (2001). The expressions for the
second and third central moments are provided in the appendix. Similar to the
notation in the previous section, we will denote these moments as follows:

EQ (VT − EQ(VT )
)2

= D2(v0, k, θ, ε, T )

EQ (VT − EQ(VT )
)3

= D3(v0, k, θ, ε, T )

Applying Lemma (1.2.3), we obtain :

EQ(ξT − 1)3 = EQ(ξ3
T )− 3EQ(ξ2

T ) + 2 = L

(
−3ρ2; k − 3ερ,

θ

1− 3ερ
k

, ε

)
−

−3L

(
−ρ2; k − 2ερ,

θ

1− 2ερ
k

, ε

)
+ 2.

By applying Proposition (1.2.2) and Lemma (1.2.4), we next compute the remaining
mixed moments. To determine :

EQ ((ξT − 1)(VT − EQ(VT ))2
)
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1.4. A THIRD ORDER EXPANSION

write it as
EQ (ξT (VT − EQ(VT ))2

)
− EQ ((VT − EQ(VT ))2

)
which, by changing from Q to Q1, gives

EQ1 (
VT − EQ(VT )

)2 − EQ (VT − EQ(VT )
)2

= EQ1
(
VT − EQ1

(VT ) + EQ1

(VT )− EQ(VT )
)2

−D2(v0, k, θ, ε, T )

= D2

(
v0, k − ερ,

θ

1− ερ
k

, ε, T

)
−D2(v0, k, θ, ε, T ) +

+

(
D1

(
v0, k − ερ,

θ

1− ερ
k

, T

)
−D1(v0, k, θ, T )

)2

.

Finally, to compute the last mixed moment :

EQ ((ξT − 1)2(VT − EQ(VT ))
)

multiply inner parentheses to obtain

EQ
(
ξ2
TVT − ξ2

T · EQ (VT )− 2ξTVT + 2ξTE
Q (VT )

)
= − ∂

∂s
L

(
−ρ2; k − 2ερ,

θ

1− 2ερ
k

, ε

)
−

−D1(v0, k, θ, T ) · L

(
−ρ2; k − 2ερ,

θ

1− 2ερ
k

, ε

)
−

−2

(
D1

(
v0, k − ερ,

θ

1− ερ
k

, T

)
−D1(v0, k, θ, T )

)
.

This completes the computation of all the terms which appear in the third order
expansion. Next, we apply our results to the numerical examples considered earlier.

Similar to the previous section, we graph the true implied volatilities against
the implied volatilities calculated from the third order approximation. In Figure
(1.3), we use the original parameters from Heston (1993). In the case of zero corre-
lation, the results are almost indistinguishable from the second order approximation.
This remains true also when we look at the right wing of the implied volatility curve,
with the correlation set to ρ = −0.5. The third order approximation shows some
improvement over the second order case for strikes below 90%. The mean abso-
lute error between the true and the approximated implied volatilities was 0.30%
(or 30bps) for the second order expansion and 0.20% (or 20bps) for the third order
expansion. Figure (1.4) shows the comparison using the Bakshi et al. (1997) pa-
rameters. We notice that, at the money, the third order expansion can be slightly
worse than its second order counterpart.
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Figure 1.3: Comparison between third order expansion and true Heston prices, using
original parameters from Heston (1993). Solid gray: true Heston prices, Dashed
black: third order approximation (Left) Correlation parameter ρ = 0. (Right)
Correlation parameter ρ = −0.5, Dashed gray: second order approximation.
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Figure 1.4: Comparison between second order expansion, third order expansion and
true Heston prices, using parameters from Bakshi et al. (1997). Solid gray: true
Heston prices, Dashed black: third order approximation, Dashed gray: second order
approximation.
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1.5. EXTENSION TO FORWARD STARTING OPTIONS

With regard to the use of higher order expansions, it is important to remark
that it is not a priori guaranteed that they will provide more accurate approxima-
tions, since the Black-Scholes expansions may not converge. This follows by noting
that, as shown in Carr (2000), Black-Scholes expansions in price and variance have a
finite radius of convergence whereas inside the expectation of equation (1.4) we have
to expand the Black-Scholes price over the entire domain (S, V ) ∈ (0,∞)× (0,∞).
This issue, however, is not specific to our expansion. The same situation arises,
for example, in the well-known and popular convexity correction formula used for
volatility swaps, as proposed in Brockhaus, Long (2000). Nevertheless, the second
order convexity correction is widely used by practitioners as a first approximation
for volatility swap prices.

1.5 Extension to forward starting options

In this section, we show how to extend the second order expansion proposed in
section three to the case of forward starting options. To this end, let us consider a
forward starting call option with forward start date T > 0, maturity ∆ > 0, and
relative strike k. By definition, the payoff of this option, which occurs at time T+∆,
will be : (

ST+∆

ST
− k
)

+

.

As in the case of spot started options, we seek to express the Heston price of the
forward started call in terms of an integral over Black-Scholes prices. We have that

ST+∆

ST
= exp

[
(r − δ) ∆− 1− ρ2

2

∫ T+∆

T

vtdt−
ρ2

2

∫ T+∆

T

vtdt+

+
√

1− ρ2

∫ T+∆

T

√
vtdZt + ρ

∫ T+∆

T

√
vtdWt

]
.

It can be seen that this is similar to the case of spot started options except that, we
now integrate the short variance process from its value at time T , vT , which will be
random, as opposed to the known v0. Setting

ξ
(∆)
T = exp

[
− ρ2

2

∫ T+∆

T

vtdt+ ρ

∫ T+∆

T

√
vtdWt

]
we obtain

ST+∆

ST
= ξ

(∆)
T · exp

[
(r − δ) ∆− 1− ρ2

2

∫ T+∆

T

vtdt+
√

1− ρ2

∫ T+∆

T

√
vtdZt

]
.
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By conditioning on the filtration generated by the Brownian motion Wt up to time
T + ∆, we can now write the value of the forward starting option as follows:

e−r(T+∆)EQ
(
ST+∆

ST
− k
)

+

= EQ

(
e−r(T+∆)EQ

[(
ST+∆

ST
− k
)

+

∣∣∣∣∣FWT+∆

])

= EQ
(
CBS

(
ξ

(∆)
T ,

(
1− ρ2

) ∫ T+∆

T

vtdt

))
.

In the case of spot started options an important variable was the total integrated
variance VT . Its counterpart, in the forward starting case, will be the forward total
integrated variance, which we denote as:

V T
∆ =

∫ T+∆

T

vtdt.

Again, we notice that the key difference which arises in the pricing of forward starting
options is that the value of the instantaneous variance at the forward start time T
is not known to us at time zero, when we price the option. To make our approach
similar to that of the previous sections, we will have to proceed by conditioning on
the history of the variance process up to time T . Then, conditional on the value
of vT , the problem becomes identical to that which we have already solved in the
first part of the paper. We will make use of the Laplace transform of vT , whose
expression we recall below (see for example Dufresne (2001) ):

T (s) = EQ (e−svT ) =

(
1

1 + λs

) 2kθ
ε2

exp

(
−s · v0 · e−kT

1 + λs

)
where

λ =
ε2

2

(
1− e−kT

k

)
.

Finally, in order to compute the terms in the expansion of the forward starting
option price, we also need to recall the following two moments of vT (see for example
Andersen (2008) or Dufresne (2001)):

β1(v0, k, θ, T ) = EQ (vT ) = θ + (v0 − θ)e−kT

β2(v0, k, θ, ε, T ) = EQ (vT − EQ(vT )
)2

=
v0ε

2e−kT

k

(
1− e−kT

)
+

+
θε2

2k

(
1− e−kT

)2
.

We expand the forward call price in a Taylor polynomial around the point
(
1, (1− ρ2) ·

EQ(V T
∆ )
)
. Similar to the sections on plain vanilla options, the second order approx-
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imation of the forward-starting call option price will consist of the following terms:

C2nd
FWD = CBS +

1

2

∂2CBS

∂S2
· EQ

(
ξ

(∆)
T − 1

)2

+

+
1

2

∂2CBS

∂V 2
·
(
1− ρ2

)2 · EQ (V T
∆ − EQ (V T

∆

))2
+

+
∂2CBS

∂S∂V
· (1− ρ2) · EQ

(
(ξ

(∆)
T − 1)(V T

∆ − EQ(V T
∆ ))
)
.

The Black-Scholes greeks in this expansion have already been presented earlier. We
proceed to compute the various moments which appear in the expansion and begin
with the moments of the forward integrated variance.

Lemma 1.5.1 The first two moments of the forward integrated variance V T
∆ are

given by:

EQ(V T
∆ ) = D1 (β1(v0, k, θ, T ), k, θ,∆)

EQ (V T
∆ − EQ (V T

∆

))2
= D2(β1(v0, k, θ, T ), k, θ, ε,∆) +

+

(
1− e−k∆

k

)2

· β2(v0, k, θ, ε, T ).

Proof Using the linearity of D1(v0, k, θ,∆) in v0, we obtain for EQ(V T
∆ ):

EQ(V T
∆ ) = EQ (EQ (V T

∆ |FWT
))

= EQ (D1(vT , k, θ,∆))

= D1 (β1(v0, k, θ, T ), k, θ,∆) .

Similarly, using the linearity of D2(v0, k, θ, ε,∆) in v0 we can compute the second
central moment of V T

∆ . For brevity, in the calculation below we only show the first
argument of D1(·), D2(·) and β1(·):

EQ (V T
∆ − EQ (V T

∆

))2
= EQ (V T

∆ −D1(vT ) +D1(vT )−D1(β1(v0))
)2

= EQ (V T
∆ −D1(vT )

)2
+ EQ (D1(vT )−D1(β1(v0))2 .

Recalling that

D1(v0) = ∆θ +
1− e−k∆

k
(v0 − θ)

we obtain

EQ (D1(vT )−D1(β1(v0))2 =

(
1− e−k∆

k

)2

EQ (vT − β1(v0))2

=

(
1− e−k∆

k

)2

· β2(v0).
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Finally, conditioning on the history up to time T , gives:

EQ (V T
∆ −D1(vT )

)2
= EQ

[
EQ
((
V T

∆ −D1(vT )
)2
∣∣∣FWT )

]
= EQ (D2(vT )) = D2 (β1(v0)) .

Therefore, we obtain:

EQ (V T
∆ − EQ (V T

∆

))2
= D2(β1(v0, k, θ, T ), k, θ, ε,∆) +

+

(
1− e−k∆

k

)2

· β2(v0, k, θ, ε, T ).

�

The remaining moments involve the density ξ
(∆)
T . Making use of Lemma (1.2.3)

and the Laplace transform of vT we obtain:

EQ
(
ξ

(∆)
T − 1

)2

= EQ

[
EQ
((

ξ
(∆)
T

)2 ∣∣∣FWT )
]
− 1

= EQ

(
L

(
−ρ2; vT , k − 2ερ,

θ

1− 2ερ
k

, ε,∆

))
− 1

= EQ
(
A(−ρ2)e−vTB(−ρ2)

)
− 1

= A
(
−ρ2

)
T
(
B
(
−ρ2

))
− 1.

where

A
(
−ρ2

)
= A

(
−ρ2; k − 2ερ,

θ

1− 2ερ
k

, ε

)

B
(
−ρ2

)
= B

(
−ρ2; k − 2ερ,

θ

1− 2ερ
k

, ε

)
with A and B as defined in section two. For the last mixed moment, we have to
compute:

EQ
(

(ξ
(∆)
T − 1)(V T

∆ − EQ(V T
∆ ))
)
.

We proceed in two steps. Firstly, rewrite the expectation above as:

EQ
[
(ξ

(∆)
T − 1)(V T

∆ −D1(vT ) +D1(vT )−D1 (β1(v0))
]

and note that
EQ
((
ξ

(∆)
T − 1

)
(D1(vT )−D1 (β1(v0)))

)
= 0
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as can be obtained by conditioning on FWT :

EQ

[[
D1(vT )−D1 (β1(v0))

]
EQ
(
ξ

(∆)
T − 1

∣∣∣FWT )
]

= 0.

We thus have

EQ
(

(ξ
(∆)
T − 1)(V T

∆ − EQ(V T
∆ ))
)

= EQ
((
ξ

(∆)
T − 1

) (
V T

∆ −D1(vT )
))
.

Secondly, recalling the following result derived in section 1.3 :

EQ (ξT − 1)
(
VT − EQ(VT )

)
= D1

(
v0, k − ερ,

θ

1− ερ
k

, ε, T

)
−D1(v0, k, θ, T )

and using the usual trick of conditioning on the history of the variance process up
to time T , we obtain:

EQ
(
ξ

(∆)
T − 1

) (
V T

∆ −D1(vT )
)

= EQ

[
EQ
[ (
ξ

(∆)
T − 1

) (
V T

∆ −D1(vT )
) ∣∣∣FWT ]

]

= EQ

[
D1

(
vT , k − ερ,

θ

1− ερ
k

, ε,∆

)
−D1(vT , k, θ,∆)

]

= D1

(
β1(v0, k, θ, T ), k − ερ, θ

1− ερ
k

, ε,∆

)
−D1(β1(v0, k, θ, T ), k, θ,∆).

This completes the calculation of the terms in the expansion of the forward-starting
call option price. This expansion will also allow us to explain the following phe-
nomenon: as the forward-start date T increases, the forward smile becomes more
pronounced with both wings of the curve steepening their slopes. The behavior of
forward implied volatilities is particularly relevant in the valuation of exotic options
and structured products (see, for example, Eberlein, Madan (2009)).

In the following numerical calculations, we use an option maturity of six
months (∆ = 0.5) forward-starting in six months (T = 0.5). In addition to the for-
ward implied volatilities, we also show the spot-started implied volatilities (dashed-
gray on the graph) to clearly see the more pronounced forward smile, in agreement
with the effect mentioned earlier. This is particularly apparent in the left panel of
Figure (1.5) where the correlation is set to zero; we notice that the spot-started smile
is shallower than the forward smile. When the correlation is switched to −0.5, the
effect is more pronounced on the right wing. As in the case of spot-started options,
the accuracy of the second order approximation is nearly perfect in the [80%,120%]
strike range when the correlation parameter is zero. For a correlation parameter of
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Figure 1.5: Comparison between second order expansion and true prices of forward-
starting options in Heston model, using original parameters from Heston (1993).
Solid gray: true Heston prices, Dashed black: second order approximation, Dashed
gray: spot-started options. (Left) Correlation parameter ρ = 0. (Right) Correlation
parameter ρ = −0.5. In both cases, T = ∆ = 0.5 years.
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Figure 1.6: Comparison between second order expansion and true prices of forward-
starting options, using parameters from Bakshi et al. (1997). Solid gray: true
Heston prices, Dashed black: second order approximation, Dashed gray: spot-started
options. In both cases, T = ∆ = 0.5 years.
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Figure 1.7: (Left) Black-Scholes Vanna as a function of strike. (Right) Black-Scholes
Volga as a function of strike. In both cases, we have r = δ = 0, T = 0.5, V̄ =
EQ(VT ) = 0.0038 using Heston (1993).

−0.5, the mean absolute error was 0.33% (or 33bps). The same numerical test is
also run for the parameter set of Bakshi et. al (1997) and shown in Figure(1.6).

To understand the forward smile effect, we plot the Black-Scholes greeks vanna
and volga in Figure (1.7). When the correlation parameter is zero, our previous

calculations show that the mixed moment involving ξ
(∆)
T and V T

∆ will vanish and
hence there will be no vanna term in the second order expansion. In this case,
the forward smile effect can be explained by inspecting the shape of the Black-
Scholes volga. Specifically, its two local maxima reached out-of-the-money and its
bottom at-the-money will tend to make the out-of-the-money options more expensive
relative to at-the-money options thus leading to a steepening of both wings of the
forward implied volatility curve. Therefore, we would expect the spot-started smile
to be shallower than the forward-started smile if the variance of VT is less than
the variance of the forward integrated variance V T

∆ . For our numerical example, we
obtain the variance of VT as 2.1 · 10−6 and the variance of V T

∆ as 4.26 · 10−6. When
the correlation parameter is different from zero, the vanna term also contributes to
the forward smile effect and, as its shape from Figure (1.7) shows, it will make the
effect more pronounced at the right wing and less pronounced at the left wing.

1.6 Conclusion

We have presented a new technique to decompose the price of options in the Heston
stochastic volatility model in terms of Black-Scholes prices and Black-Scholes greeks.
The square root form of the short variance dynamics is the key property which
allows us to define a set of new probability measures which retain the affine form of
the Heston dynamics. These structure preserving measure transformations give us
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the possibility to compute, in closed form, the expansion terms by reusing known
results about the integrated variance process. The main role of these expansions is
to make explicit the relation between Heston model prices and higher order risks
which do not arise in the classical Black-Scholes setting, in particular, the convexity
in volatility and the dependence of delta on the level of volatility. From a trading
point of view, we note that for typical Heston parameters in the equity market, such
as the Bakshi et al. (1997) parameter set, the error of the second order expansion in
the [90%, 110%] at-the-money region is usually less than 1 volatility point (as can
be seen in Figure (1.2)), which is about the size of the typical bid-offer spread, even
for liquid equity underlyings. For other markets, such as foreign exchange, where
the correlation parameter is (close to) zero the accuracy of the expansion almost
matches the true model prices.

1.7 Appendix

For completeness, we provide in this appendix the formulas for the second and third
central moments of the total integrated variance; these moments follow directly from
the closed form results given in Dufresne (2001). As in the main paper, suppose the
short variance (vt)t∈[0,T ] satisfies the SDE :

dvt = k(θ − vt)dt+ ε
√
vtdWt

and define the total integrated variance VT as:

VT =

∫ T

0

vtdt.

For the second and third central moments of VT , denoted as follows:

D2(v0, k, θ, ε, T ) = EQ (VT − EQ(VT )
)2

D3(v0, k, θ, ε, T ) = EQ (VT − EQ(VT )
)3

we have the closed form formulas below:

D2(v0, k, θ, ε, T ) =
−5θε2

2k3
+
v0ε

2

k3
+
Tθε2

k2
+

2θε2

k3
e−Tk − v0ε

2

k3
e−2Tk +

θε2

2k3
e−2kT − 2Tv0ε

2

k2
e−Tk +

2Tθε2

k2
e−Tk
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D3(v0, k, θ, ε, T ) =
3v0ε

4

k5
− 11θε4

k5
+

3Tθε4

k4
+

3v0ε
4

2k5
e−Tk +

15θε4

2k5
e−Tk −

3v0ε
4

k5
e−2Tk +

3θε4

k5
e−2Tk − 3v0ε

4

2k5
e−3Tk +

θε4

2k5
e−3Tk −

3Tv0ε
4

k4
e−Tk +

9Tθε4

k4
e−Tk − 3T 2v0ε

4

k3
e−Tk +

3T 2θε4

k3
e−Tk −

6Tv0ε
4

k4
e−2Tk +

3Tθε4

k4
e−2Tk.
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II

Options on realized variance by
transform methods: A non-affine

stochastic volatility model

Gabriel G. Drimus

Abstract

In this paper we study the pricing and hedging of options on realized
variance in the 3/2 non-affine stochastic volatility model, by developing
efficient transform based pricing methods. This non-affine model gives
prices of options on realized variance which allow upward sloping implied
volatility of variance smiles. Heston’s (1993) model, the benchmark affine
stochastic volatility model, leads to downward sloping volatility of vari-
ance smiles — in disagreement with variance markets in practice. Using
control variates, we show a robust method to express the Laplace trans-
form of the variance call function in terms of the Laplace transform of
realized variance. The proposed method works in any model where the
Laplace transform of realized variance is available in closed form. Ad-
ditionally, we apply a new numerical Laplace inversion algorithm which
gives fast and accurate prices for options on realized variance, simultane-
ously at a sequence of variance strikes. The method is also used to derive
hedge ratios for options on variance with respect to variance swaps.

2.1 Introduction

The trading and risk management of variance and volatility derivatives requires
models which both adequately describe the stochastic behavior of volatility as well as
allow for fast and accurate numerical implementations. This is especially important
for variance markets since their underlying asset, namely, variance, displays much
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2.1. INTRODUCTION

more volatility than the corresponding stock or index, in the spot market. It is not
uncommon for the volatility of variance to be several orders of magnitude higher
than the volatility of the underlying stock or index. Many practical aspects relevant
to variance and volatility markets are discussed in Bergomi (2005, 2008), Gatheral
(2006) and Eberlein, Madan (2009).

Simple volatility derivatives, such as variance swaps, corridor variance swaps,
gamma swaps and other similar variations, can be priced and hedged in a model
free way and hence do not require the specification of a stochastic volatility model.
Neuberger (1994) made a first contribution to this area by proposing the use of the
log-contract as an instrument to hedge volatility risk. Due to their role in trading and
hedging volatility, variance swaps have become liquidly traded instruments and have
led to the development of other volatility derivatives. A comprehensive treatment
of model free pricing and hedging of variance contracts can be found in Demeterfi,
Derman, Kamal, Zou (1999), Carr, Madan (2002) and Friz, Gatheral (2005).

More complicated volatility derivatives, particularly, options on realized vari-
ance and volatility, require explicit modeling of the dynamics of volatility. Important
early stochastic volatility models studied in the literature include Scott (1987), Hull,
White (1987) and Chesney, Scott (1989). Since no fast numerical methods are avail-
able to compute large sets of European option prices in these models, calibration
procedures can become difficult. Heston (1993) proposed the use of an affine square
root diffusion process to model the dynamics of instantaneous variance. The model
has become widely popular due to its tractability and existence of a closed form
expression for the characteristic function of log returns. The important result of
Carr, Madan (1999) shows how to apply fast Fourier inversion techniques to price
European options when the characteristic function is available in closed form.

The problem of pricing options on realized variance received increasing at-
tention in the recent literature. Broadie, Jain (2008a) and Sepp (2008) develop
methods for pricing and hedging options on realized variance in the Heston model.
Gatheral (2006) and Carr, Lee (2007) show how to use variance swap and volatility
swap prices to fit a log-normal distribution to realized variance, thus arriving at
Black-Scholes (1973) style formulas for prices and hedge ratios of options on vari-
ance. Several authors have considered the pricing of volatility derivatives in models
with jumps. Carr, Geman, Madan, Yor (2005) price options on realized variance by
assuming the underlying asset follows a pure jump Sato process; Albanese, Lo, Mi-
jatovic (2009) develop spectral methods for models of constant elasticity of variance
(CEV) mixtures and Variance-Gamma (VG) jumps; Sepp (2008) augments the He-
ston dynamics with simultaneous jumps in returns and volatility and also considers
the pricing of options on forward variance.

In this paper we determine and compare the prices and hedge ratios of options
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CHAPTER 2. A NON-AFFINE S.V. MODEL

on realized variance in the 3/2 non-affine stochastic volatility model versus the
Heston (1993) model. The 3/2 model has been used previously by Ahn, Gao (1999)
to model the evolution of short interest rates, by Andreasen (2003) as a default
intensity model in pricing credit derivatives and by Lewis (2000) to price equity
stock options. More recently, Carr, Sun (2007) discuss the 3/2 model in the context
of a new framework in which variance swap prices are modeled instead of the short
variance process. Besides its analytical tractability, the 3/2 diffusion specification
enjoys empirical support in the equity market. Using S&P100 implied volatilities,
studies by Jones (2003) and Bakshi, Ju, Yang (2006) estimate that the variance
exponent should be around 1.3 which favors the 3/2 model over the 1/2 exponent in
the Heston (1993) model. Additionally, as we show in this paper, the 3/2 and Heston
models predict opposite dynamics for the short term equity skew as a function of the
level of short variance and, more importantly, the Heston model wrongly generates
downward sloping volatility of variance smiles, at odds with variance markets in
practice.

We develop robust transform methods, based on control variates, to express
the Laplace transform of the variance call function in terms of the Laplace transform
of realized variance. Our approach works in any model where the Laplace transform
of realized variance is available in closed form. We then apply a fast and accurate
numerical Laplace inversion algorithm, recently proposed by Iseger (2006), which
allows the use of the FFT technique of Cooley, Tukey (1965) to recover the variance
call function at a sequence of strikes simultaneously. Finally, we show how these
tools can be used to obtain hedge ratios for options on variance.

The paper is organized as follows. In section 2, we present general properties of
the 3/2 and Heston models and compare them from the standpoint of short variance
dynamics, equity skew dynamics and fitting to vanilla options. Section 3 is the main
section, where we develop our transform methods and then apply them to pricing
options on realized variance. In section 4, we discuss the derivation of hedge ratios
with respect to variance swaps. Section 5 summarizes the main conclusions. All
proofs not shown in the main text can be found in the appendix.

2.2 Model descriptions and properties

Two parametric stochastic volatility models are considered in this paper. Let
(Bt)t≥0 and (Wt)t≥0 be standard Brownian motions, with correlation ρ, defined on
a filtered probability space (Ω,F ,Ft,Q) satisfying the usual conditions. Under the
well-known Heston (1993) model, we assume the stock price and its instantaneous
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variance (St, vt)t≥0 satisfy the following dynamics under the risk neutral measure Q:

dSt
St

= (r − δ)dt+
√
vtdBt

dvt = k(θ − vt)dt+ ε
√
vtdWt

where r denotes the risk-free rate in the economy and δ the dividend yield. The
parameters of the instantaneous variance diffusion have the usual meaning: k is
the speed of mean reversion, θ is the mean reversion level and ε is the volatility of
volatility. The theoretical results in this paper allow the mean reversion level to
be time dependent, but deterministic. This can be useful if the model user wants
to interpolate the entire term structure of variance swaps. Therefore, we allow the
short variance process to obey the following extended Heston dynamics:

dvt = k(θ(t)− vt)dt+ ε
√
vtdWt (2.1)

where θ(t) is a time-dependent and deterministic function of time. An alternative
model, which forms the main focus of our study, is known in the literature as the
3/2-model. It prescribes the following dynamics under the pricing measure Q:

dSt
St

= (r − δ)dt+
√
vtdBt

dvt = kvt(θ(t)− vt)dt+ εv
3
2
t dWt (2.2)

where, as in the case of the extended Heston model, θ(t) is the time-dependent mean
reversion level. However, it is important to note that the parameters k and ε no
longer have the same interpretation and scaling as in the Heston model. The speed
of mean reversion is now given by the product k · vt, which is a stochastic quantity;
in particular, we see that variance will mean revert more quickly when it is high.
Also, we should expect the parameter k in the 3/2-process to scale as 1/vt relative
to the parameter k in the Heston model; the same scaling applies to the parameter
ε. These scaling considerations are useful when interpreting the parameter values
obtained from model calibration.

We next address a couple of technical conditions needed to have a well de-
fined 3/2-model. An application of Itô’s lemma to the process 1/vt when vt follows
dynamics (2.2) gives:

d

(
1

vt

)
= kθ(t)

(
k + ε2

kθ(t)
− 1

vt

)
dt− ε

√
vt
dWt

which reveals that the reciprocal of the 3/2 short variance process is, in fact, a Heston

process of parameters
(
kθ(t), k+ε2

kθ(t)
,−ε

)
. Using Feller’s boundary conditions, it is
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known that a time-homogeneous Heston process of dynamics (2.1), with θ(t) = θ,
can reach the zero boundary with non-zero probability, unless:

2kθ ≥ ε2.

This result has been extended by Schlögl & Schlögl (2000) to the case of time-
dependent piecewise-constant Heston parameters. We have seen that, if vt is a
3/2-process, then 1/vt is a Heston process. A non-zero probability of reaching zero
for 1/vt would imply a non-zero probability for the short variance process to reach
infinity. For a piecewise constant θ(t), applying the result of Schlögl & Schlögl (2000)
to the dynamics of 1/vt, we obtain the non-explosion condition for the 3/2-process
as:

2kθ(t) · k + ε2

kθ(t)
≥ ε2

or

k ≥ −ε
2

2
. (2.3)

In what follows we assume that k > 0 which will automatically ensure that the
non-explosion condition is satisfied. Another technical condition necessary in the
3/2 model refers to the martingale property of the process St · exp (−(r − δ)t);
Lewis (2000) shows that for this process to be a true martingale, and not just a
local martingale, the non-explosion test for (vt)t≥0 must be satisfied also under the
measure which takes the asset price as numeraire. Applying the results in Lewis
(2000), leads to the additional condition on the 3/2 model parameters:

k − ερ ≥ −ε
2

2
. (2.4)

If we require that the correlation parameter ρ be non-positive, this condition will
be automatically satisfied. In practice, imposing the restriction ρ ≤ 0 does not
raise problems since market behavior of prices and volatility usually displays nega-
tive correlation. To summarize, conditions (2.3) and (2.4) together ensure that we
have a well-behaved 3/2-model. They are both satisfied if we impose the sufficient
conditions k > 0 and ρ ≤ 0.

Of importance to our subsequent analysis will be the joint Fourier-Laplace
transform of the log-price XT = log(ST ) and the annualized variance VT = 1

T

∫ T
0
vtdt.

In both models, it is possible to derive a closed form solution for this joint transform.
In particular, using the characteristic function of XT = log(ST ) it is possible to price
European options by Fourier inversion using the method developed in Carr, Madan
(1999). Also, in the next section, we develop fast transform methods to price options
on realized variance using the Laplace transform of VT . Propositions (2.2.1) and
(2.2.2) below give the expression of the joint transforms in the two models. Below,
we let Xt = log(Ste

(r−δ)(T−t)) denote the log-forward price process.
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Proposition 2.2.1 In the Heston model with time-dependent mean-reversion level,
the joint conditional Fourier-Laplace transform of XT and the de-annualized realized
variance

∫ T
t
vsds is given by:

E
(
eiuXT−λ

∫ T
t vsds

∣∣∣Xt, vt

)
= exp (iuXt + a (t, T )− b (t, T ) vt)

where

a(t, T ) = −
∫ T

t

kθ(s)b(s, T )ds

b(t, T ) =
(iu+ u2 + 2λ)

(
eγ(T−t) − 1

)
(γ + k − iερu) (eγ(T−t) − 1) + 2γ

γ =

√
(k − iερu)2 + ε2 (iu+ u2 + 2λ).

For the case when the mean reversion level θ(t), t ∈ [0, T ], is a piecewise
constant function it is possible to calculate explicitly the integral which defines
a(t, T ) in Proposition (2.2.1). If we let 0 = t0 < t1 < . . . < tN = T be a partition of
[0, T ] such that θ(t) = θj on the interval (tj, tj+1), j ∈ {0, 1, 2, . . . , N − 1}, then the
function a(t, T ) is given by:

a(t, T ) =
N−1∑
j=0

kθj
ε2

[
(k − γ − iερu) (tj+1 − tj)−

−2 log

(
αeγ(T−tj+1) + βe−γ(tj+1−tj)

αeγ(T−tj+1) + β

)]

where

α = γ + k − iερu
β = γ − k + iερu

with γ as defined in Proposition (2.2.1). A similar result which gives the closed form
expression of the joint Fourier-Laplace transform can be obtained in the 3/2-model.
The result is due to Carr, Sun (2007).

Proposition 2.2.2 (Carr, Sun (2007)) In the 3/2-model with time-dependent mean-
reversion level, the joint conditional Fourier-Laplace transform of XT and the de-
annualized realized variance

∫ T
t
vsds is given by:

E
(
eiuXT−λ

∫ T
t vsds

∣∣∣Xt, vt

)
= eiuXt

Γ (γ − α)

Γ (γ)

(
2

ε2y (t, vt)

)α
M

(
α, γ,

−2

ε2y (t, vt)

)
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Figure 2.1: Simultaneous fit of Heston model to 3-months (left) and 6-months (right)
S&P500 implied volatilities on July 31st 2009. Solid: Heston implied volatilities,
Dashed: Market implied volatilities. Heston parameters obtained: v0 = 25.56%2,
k = 3.8, θ = 30.95%2, ε = 92.88% and ρ = −78.29%.

where

y(t, vt) = vt

∫ T

t

e
∫ u
t kθ(s)dsdu

α = −
(

1

2
− p

ε2

)
+

√(
1

2
− p

ε2

)2

+ 2
q

ε2

γ = 2
(
α + 1− p

ε2

)
p = −k + iερu

q = λ+
iu

2
+
u2

2

M(α, γ, z) is the confluent hypergeometric function defined as:

M(α, γ, z) =
∞∑
n=0

(α)n
(γ)n

zn

n!

and
(x)n = x(x+ 1)(x+ 2) · · · (x+ n− 1).

Proof We refer the reader to Carr, Sun (2007). �

Before looking at how the models differ in pricing exotic contracts, such as
options on realized variance, we discuss in the rest of this section the pricing of
European vanilla options. The calibration of the models to vanilla options is impor-
tant because the prices of European options determine the values of variance swaps
which, in turn, are the main hedging instruments for options on realized variance;
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Figure 2.2: Simultaneous fit of 3/2 model to 3-months (left) and 6-months (right)
S&P500 implied volatilities on July 31st 2009. Solid: 3/2 implied volatilities,
Dashed: Market implied volatilities. 3/2 parameters obtained: v0 = 24.50%2,
k = 22.84, θ = 46.69%2, ε = 8.56 and ρ = −99.0%.

for a broad introduction to variance swaps we refer to Carr, Madan (2002). More-
over, vanilla options are also often used to hedge the vega exposure of options on
realized variance.

We begin by fitting both models to market prices of S&P500 European options;
the fit is done simultaneously to two maturities: 3 months (T = 0.25) and 6 months
(T = 0.5) on July 31 20091. In performing the calibration, we employ the FFT
algorithm for European options developed in Carr, Madan (1999). The results
are shown in figures (2.1) and (2.2). The parameters obtained are (v0, k, θ, ε, ρ) :
(25.56%2, 3.8, 30.95%2, 92.88%,−78.29%) in the Heston model and (24.50%2, 22.84,
46.69%2, 8.56,−99.0%) in the 3/2 model.

We remark that, while both models are able to fit the two maturities simul-
taneously, the Heston model parameters violate the non-zero boundary condition.
This usually happens when calibrating the Heston model in the equity markets; the
empirical study of Bakshi, Chao, Chen (1997) also finds Heston parameters which
violate the non-zero boundary condition. This occurs because the Heston model
requires a high volatility-of-volatility parameter ε to fit the steep skews in equity
markets. On the other hand, the 3/2 parameters yield a well-behaved variance pro-
cess which does not reach either zero or infinity. We notice, however, that the 3/2
model requires a more negative correlation parameter (−99.0%) compared to the He-
ston model (−78.29%). We explain this by the much ’wilder’ dynamics (also called
’dynamite dynamics’ by Andreasen (2003)) of short variance in the 3/2 model – as
illustrated in figure (2.3) – which can cause a decorrelation with the spot process.

The modeling viewpoint of the 3/2 model as well as the modeling viewpoint of

1The data were kindly provided to us by an international investment bank.
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Figure 2.3: Instantaneous volatility (i.e.
√
vt) paths in the Heston (left) and 3/2-

model (right) using parameters calibrated to July 31st 2009 implied volatilities.

the Heston (1993) model can be both accommodated in the more general framework:

dvt =
(
α0 + α1vt + α2v

2
t + α3v

−1
t

)
dt+ β2v

β3
t dWt

which was analyzed in the econometric study of Bakshi, Ju, Yang (2006). The
authors use the square of the VIX index, sampled daily over a period of more than
ten years, as a proxy for the instantaneous variance process. Among the results of
their statistical tests, the authors emphasize that ”an overarching conclusion is that
β3 > 1 is needed to match the time-series properties of the VIX index” and find
strong evidence rejecting the null hypothesis β3 ≤ 1. Indeed, the authors estimate a
value of approximately 1.28 for the exponent β3 which lends more support for the 1.5
exponent of the 3/2-model than the 0.5 exponent in the Heston (1993) model. The
estimation for β3 obtained in Bakshi, Ju, Yang (2006) reinforces similar results from
an earlier study by Jones (2003). Additionally, the study of Bakshi et al. (2006)
finds evidence in favor of a non-linear drift for the instantaneous variance diffusion.
In particular, they find that the role of the quadratic term α2 ·v2

t is statistically more
important than the linear term α1 ·vt, thus rejecting a linear drift specification as in
the Heston (1993) model; the authors find a significant α2 < 0 as in the quadratic
drift of the 3/2 process.

Having noted the statistical evidence above, Figure (2.3) also illustrates two
qualitative differences between the evolution of instantaneous variance in the Heston
model versus the 3/2 model : (a) the Heston variance paths spend much more time
around the zero-boundary and (b) the 3/2 model allows for the occurrence of extreme
paths with short-term spikes in instantaneous volatility. From a trading and risk
management perspective, both of these observations favor the 3/2 model. It is hard
to justify a vanishing variance process and the nonexistence of high (or, extreme)
volatility scenarios. In the 3/2-model, as indicated by the reversion speed k · vt, the
process will revert faster towards the mean after short-term spikes in instantaneous
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Figure 2.4: Comparison between true model implied volatilities and the Medvedev,
Scaillet (2007) expansion, for a maturity of one month. Left: Heston model. Right:
3/2 model. Solid : Medvedev, Scaillet (2007) approximation. Dashed : true model
implied volatilities.

variance. The right panel of Figure (2.3) illustrates this behavior graphically. We
remark that short-term market volatility, as reflected for example by CBOE’s VIX
index, exhibits similar short-term spikes during periods of market stress. In the next
section we see that these differences have a major effect on the prices of options on
realized variance.

Another important difference is in the behavior of implied volatility smiles.
Specifically, the steepness of the smile responds in opposite ways to changes in
the level of short variance in the two models. To show this, we make use of the
implied volatility expansion derived in Medvedev, Scailett (2007) for short times
to expiration and near the money options. Letting X = log(K/S0e

(r−δ)T ) denote
the log-forward-moneyness corresponding to a European option with strike K and
maturity T , we apply Proposition 1 in Medvedev, Scaillet (2007) to the case of the
Heston and 3/2 models. One obtains the following expansions for implied volatility
I(X,T ) in a neighborhood of X = T = 0. For the Heston model:

I(X,T ) =
√
v0 +

ρεX

4
√
v0

+

(
1− 5ρ2

2

)
ε2X2

24v
3/2
0

+

+

(
k (θ − v0)

4
√
v0

+
ρε
√
v0

8
+

ρ2ε2

96
√
v0

− ε2

24
√
v0

)
T + . . .

which gives the at-the-money-forward skew

∂I

∂X
(X,T )

∣∣∣
X=0

=
ρε

4
√
v0

, T → 0.
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And for the 3/2 model:

I(X,T ) =
√
v0 +

ρε
√
v0X

4
+

(
1− ρ2

2

)
ε2
√
v0X

2

24
+

+

(
k (θ − v0)

4
+
ρεv0

8
− 7ρ2ε2v0

96
− ε2v0

24

)
√
v0T + ...

which gives the at-the-money-forward skew

∂I

∂X
(X,T )

∣∣∣
X=0

=
ρε
√
v0

4
, T → 0.

In figure (2.4) we see a very good agreement between the Medvedev, Scaillet
(2007) expansion and the true implied volatilities calculated by Fourier inversion.
Since the expansions are valid only for short expirations and close to the money, we
chose a one month maturity and a [90%, 110% ] relative strike range. Therefore,
in the Heston model, the short term skew flattens when the instantaneous variance
increases whereas, in the 3/2 model, the short term skew steepens when the instan-
taneous variance increases. It is important to realize that this implies very different
dynamics for the evolution of the implied volatility surface. The Heston model pre-
dicts that, in periods of market stress, when the instantaneous volatility increases,
the skew will flatten. Under the same scenario, the skew will steepen in the 3/2
model. From a trading and risk management perspective, since the magnitude of
the skew is itself a measure of market stress, the behavior predicted by the 3/2
model appears more credible.

2.3 Transform pricing of options on realized vari-

ance

The main quantity of interest in pricing options on realized variance is the annualized
integrated variance, given by:

VT =
1

T

∫ T

0

vtdt.

We study the prices of call options on realized variance; prices of put options follow
by put-call parity. The payoff of a call option on realized variance with strike K
and maturity T is defined as:(

1

T

∫ T

0

vtdt−K
)

+

= (VT −K)+ .
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In a key result Carr, Madan (1999) showed that, starting from the charac-
teristic function of the log stock price log(ST ), it is possible to derive a closed
form expression for the Fourier transform of the (dampened) call price viewed as a
function of the log strike k = log(K). Once the call price transform is known, fast
inversion algorithms – such as the FFT method developed by Cooley, Tukey (1965)–
can be applied to recover the call prices at a sequence of strikes simultaneously. This
technique is now widely used in the literature to price stock options in non-Black-
Scholes models which have closed form expressions for the characteristic function
of log(ST ). We next develop a similar idea for the problem of pricing options on
realized variance. Specifically, we show that, starting from the Laplace transform
of integrated variance, it is possible to derive in closed form the Laplace transform
of the variance call price viewed as a function of the variance strike. This idea was
first suggested by Carr, Geman, Madan, Yor (2005). After providing a proof, we
propose an important improvement of the result by the use of control variates. Ad-
ditionally, we show the application of a new numerical Laplace inversion algorithm
which gives prices of options on realized variance for a sequence of variance strikes
simultaneously.

Proposition 2.3.1 Let L(·) denote the Laplace transform of the annualized realized
variance over [0, T ]:

L(λ) = E
(
e−λ

1
T

∫ T
0 vtdt

)
.

Then the undiscounted variance call function C : [0,∞)→ R defined by

C(K) = E

(
1

T

∫ T

0

vtdt−K
)

+

has Laplace transform given by

L(λ) =

∫ ∞
0

e−λKC(K)dK =
L(λ)− 1

λ2
+
C(0)

λ
. (2.5)

Proof Let µ(dx) denote the probability law of the annualized realized variance
1
T

∫ T
0
vtdt. We have to compute

L(λ) =

∫ ∞
0

e−λK
∫ ∞
K

(x−K)µ(dx)dK.

Since the integrand in this double integral is non-negative, we can apply Fubini’s
theorem to change the order of integration and we obtain∫ ∞

0

∫ x

0

e−λK (x−K) dKµ(dx).
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The inner integral now follows easily by integration by parts∫ x

0

e−λK (x−K) dK =
e−λx − 1

λ2
+
x

λ
.

Finally, we can compute the Laplace transform as follows

L(λ) =

∫ ∞
0

(
e−λx − 1

λ2
+
x

λ

)
µ(dx) =

L(λ)− 1

λ2
+
C(0)

λ

where we have used that

C(0) = E

(
1

T

∫ T

0

vtdt

)
.

�

Relation (2.5) of Proposition (2.3.1) gives a closed form solution for the Laplace
transform L(λ) of the variance call function C(K) in terms of the Laplace transform

L(λ) of the annualized realized variance VT = 1
T

∫ T
0
vtdt. The closed from expression

for L(λ) is obtained from Proposition (2.2.1) and Proposition (2.2.2) by setting t = 0,
u = 0 and λ = λ

T
.

However, we notice that the following two, polynomially decaying terms, ap-
pear in expression (2.5):

−1

λ2
+
C(0)

λ
.

These vanish slowly as |λ| → ∞ affecting the accuracy of numerical inversion algo-

rithms. The term C(0)
λ

appears because the function has a discontinuity of size C(0)
at 0, while the term −1

λ2 appears because the first derivative has a discontinuity of
size −1 at 0 (as shown next). We propose to eliminate these slowly decaying terms
by applying the idea of control variates. Specifically, we choose a proxy distribution
for the realized variance which allows the calculation of the variance call function
in closed form. Denote this control variate function by C̃(·). If we choose the proxy
distribution such that it has the same mean as the true distribution of realized vari-
ance, we have C(0) = C̃(0). Then, by the linearity of the Laplace transform we
obtain:

LC−C̃(λ) = LC(λ)− LC̃(λ) =
L(λ)− L̃(λ)

λ2
.

Both power terms have been eliminated since the difference C(·) − C̃(·) is now a
function which is both continuous and differentiable at zero. Differentiability comes
from the fact that both functions have a right derivative at 0 equal to −1. This is
seen in the following simple lemma.
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Lemma 2.3.2 Let V be a random variable such that V > 0 a.s. and E(V ) < ∞.
Then the function C : [0,∞)→ R defined by:

C(K) = E(V −K)+

satisfies

lim
K↓0

C(K)− C(0)

K
= −1.

In summary, by making use of a control variate we can achieve smooth pasting
at 0. In choosing the proxy distribution for realized variance, one appealing choice
is the log-normal distribution. This would give Black-Scholes style formulas for
the control variate function C̃(·). However, this choice does not work because the
Laplace transform of the log-normal distribution is not available in closed form.
Instead, we choose the Gamma distribution as our proxy distribution. The Laplace
transform is known in closed form and the following lemma shows how to compute
the control variate function C̃(·).

Lemma 2.3.3 Let the (annualized) realized variance over [0, T ] follow a Gamma
distribution of parameters (α, β). Specifically, assume the density of realized variance
is:

1

Γ(α)βα
xα−1e−

x
β , x > 0.

Then the control variate function C̃(·) is given by

C̃(K) = αβ (1− F (K;α + 1, β))−K (1− F (K;α, β))

where F (x;α, β) is the Gamma cumulative distribution function of parameters (α, β).

To ensure that C̃(0) = C(0), the only necessary condition on α and β is that
the mean of the Gamma distribution matches C(0):

αβ = C(0).

Since we have two parameters, from a theoretical standpoint, we can choose one of
them freely. Optionally, the extra parameter could be used to fix the second moment
of the proxy distribution. For example, we can match the second moment of the
model realized variance:

αβ2 + (αβ)2 = E

(
1

T

∫ T

0

vtdt

)2

=
∂2L
∂λ2

(λ)

∣∣∣∣∣
λ=0
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where L(·) is the Laplace transform of realized variance. In the Heston model, the
second moment of realized variance is available in closed form; see Dufresne (2001).
In the 3/2 model, however, we do not have a closed form formula for the second
moment of realized variance; as shown later, even the calculation of the first moment
requires the development of some additional results. In this case, the second moment
could be approximated by using a finite difference for the second derivative of L(·)
at zero. Alternatively, an easier approach to choose a reasonable second moment
for the control variate distribution is to match the second moment of a log-normal
distribution of the form:

C(0)eσ
√
TN(0,1)−σ

2T
2

where N(0, 1) is a standard normal random variable and σ is a parameter of our
choice – a sensible pick would have an order of magnitude that is representative for
the implied volatility of variance. As the subsequent numerical results reveal, any
choice for σ in the range, say, [50%, 150%] would be reasonable. The second moment
condition on α and β reads:

αβ2 + (αβ)2 = C(0)2eσ
2T

We obtain that a possible choice for the parameters of the proxy distribution is:

α =
C(0)

β

β = C(0)(eσ
2T − 1).

To implement the above calculations one needs to be able to determine

E

(∫ T

0

vtdt

)
in both models – Heston and 3/2. The computation is straightforward in the Heston
model but is more complicated in the 3/2 model. We first show the calculation for
the Heston model with a piecewise constant mean reversion level θ(t), t ∈ [0, T ]. If
we let θ(t) = θi on (ti, ti+1), i ∈ {0, 1, 2, . . . , N − 1} we can write

E

(∫ T

0

vtdt

)
=

N−1∑
i=0

E

(∫ ti+1

ti

vtdt

)
where

E

(∫ ti+1

ti

vtdt

)
=

e−kti − e−kti+1

k
·

(
v0 +

i−1∑
j=0

θj
(
ektj+1 − ektj

))
+

+
θi
k

(
e−k(ti+1−ti) − 1 + k (ti+1 − ti)

)
.
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In the case of the 3/2 model, Carr, Sun (2007) (see Theorem 4 therein) show that

E

(∫ T

0

vtdt

)
= h

(
v0

∫ T

0

ek
∫ t
0 θ(s)dsdt

)
where

h(y) =

∫ y

0

e−
2
ε2z · z

2k
ε2 ·
∫ ∞
z

2

ε2
e

2
ε2uu

−2k

ε2
−2dudz. (2.6)

The integral appearing in the argument to the function h(·) is straightforward to
compute for a piecewise constant θ(t):∫ T

0

ek
∫ t
0 θ(s)dsdt =

N−1∑
i=0

∫ ti+1

ti

ek
∫ t
0 θ(s)dsdt

where ∫ ti+1

ti

ek
∫ t
0 θ(s)dsdt =

ekθi(ti+1−ti) − 1

kθi
· exp

(
k
i−1∑
j=0

θj(tj+1 − tj)

)
.

However, the integral representation (2.6) of the function h(·) is hard to use for fast
and accurate numerical implementations. We prove an alternative representation,
based on a uniformly convergent series whose terms are easy to calculate and the
total error can be controlled a priori. The result is formulated in Proposition (2.3.4)
and Lemma (2.3.5).

Proposition 2.3.4 The function h(·) admits the following uniformly convergent
series representation

h(y) = α ·

E
(
α
y

)
1− β

+
∞∑
n=1

Fα
y

(n)

n (n− β + 1)


where

E(x) =

∫ ∞
x

e−t · t−1dt, x > 0

Fν(n) = P (Z ≤ n) , Z ∼ Poisson(ν)

α =
2

ε2

β =
−2k

ε2
.
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In Proposition (2.3.4) we recognize the special function E(x) as the exponential
integral which is readily accessible in any numerical package. The terms appearing in
the infinite series are very fast and easy to compute. Moreover, as shown in Lemma
(2.3.5) next, the total error arising from truncating the series can be controlled a
priori.

Lemma 2.3.5 The infinite series of Proposition (2.3.4) has a remainder term

Rk =
∞∑
n=k

Fα
y

(n)

n (n− β + 1)

which is positive and satisfies the following bounds

Fα
y

(k)

m+ 1

(
1

k
+

1

k + 1
+ . . .+

1

k +m

)
< Rk <

1

k

where m = d−βe. If we let R̄ the mid-point between the two bounds i.e.

R̄ =
1

2

(
1

k
+
Fα
y

(k)

m+ 1

(
1

k
+

1

k + 1
+ . . .+

1

k +m

))
.

then we also have ∣∣Rk − R̄
∣∣ < m+ α

y

4k2
. (2.7)

The application of Lemma (2.3.5) proceeds as follows. To compute h(y), for
a given y, use bound (2.7) to determine the number of terms needed to achieve the
desired precision and then set

h(y) ≈ α ·

E
(
α
y

)
1− β

+
k−1∑
n=1

Fα
y

(n)

n (n− β + 1)
+ R̄

 .

Having completed our discussion about the determination of the Laplace trans-
form of the variance call function, we now turn to the problem of choosing a fast and
accurate Laplace inversion algorithm. Many numerical Laplace inversion algorithms
have been proposed in the literature; some important early contributions in this
area include Weeks (1966), Dubner, Abate (1968), Stehfest (1970), Talbot (1979)
and Abate, Whitt (1992). In what follows, we apply the very efficient algorithm
recently proposed by Iseger (2006). Extensive analysis and numerical tests indicate
that this algorithm is faster and more accurate than the other methods available.
For a detailed treatment of the numerical and mathematical properties of this new
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method we refer the reader to Iseger (2006). We next outline the main steps of the
method.

Suppose we want to recover the difference between the variance call functions
C− C̃ at a sequence of variance strikes k∆, k = 0, 1, . . . ,M −1; let g(k) = C(k∆)−
C̃(k∆) and ĝ the Laplace transform of g. The starting point of the method is
the Poisson summation formula which states that, for any v ∈ [0, 1), the following
identity holds for the function g:

∞∑
k=−∞

ĝ (a+ 2πi(k + v)) =
∞∑
k=0

e−ake−2πikvg(k) (2.8)

where a is a positive damping factor. The Poisson summation formula applies to
functions of bounded variation and in L1[0,∞). To check these conditions for the
function g, we derive the simple Lemma (2.3.6).

Lemma 2.3.6 Let V be a random variable such that V > 0 a.s. and E(V 2) < ∞.
Then the function C : [0,∞)→ R defined by:

C(K) = E(V −K)+

belongs to L1[0,∞) and is of bounded variation.

In both the Heston and the 3/2 model, the Laplace transform of integrated
variance exists in a neighborhood of zero, which implies that all moments of in-
tegrated variance are finite. The same is true for our control variate distribution,
Gamma. Applying Lemma (2.3.6), we conclude that functions C(·) and C̃(·) are in
L1[0,∞) and of bounded variation. It follows that the function g satisfies the same
conditions.

Equation (2.8) relates an infinite sum of Laplace transform values (the LHS)
to a dampened series of function values (the RHS). This result also forms the basis
of the method developed by Abate, Whitt (1992). The series of Laplace transform
values usually converges slowly and Abate, Whitt (1992) proposed a technique,
known as Euler summation, to increase the rate of convergence for this series. Iseger
(2006) proposes a completely different idea for handling the infinite series of Laplace
transform values. It constructs a Gaussian quadrature rule for the series on the LHS
of (2.8). Specifically, the infinite sum is approximated with a finite sum of the form

n∑
k=1

βk · ĝ(a+ iλk + 2πiv)

where βk are the quadrature weights and λk are the quadrature points. The exact
numbers βk and λk can be found in Iseger (2006) (see Appendix A therein) for various
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values of n. It is found that a number of n = 16 quadrature points is sufficient for
results attaining machine precision.

Having developed a fast and accurate approximation for the LHS of (2.8),
we next turn to the dampened series of function values on the RHS. This series is
much easier to handle. As shown in Iseger (2006) it is possible to choose the damping
parameter a and a truncation rank M2 to attain any desired level of truncation error.
For double precision, the authors recommend truncating the series after M2 = 8M
terms and using a dampening factor a = 44/M2. Finally, applying the identity (2.8)
repeatedly for all v ∈ {0, 1

M2
, 2
M2
, . . . , M2−1

M2
}, we can recover each function value g(k)

by inverting the discrete Fourier series on the RHS as follows:

eak

M2

·
M2−1∑
j=0

[
e

2πik j
M2

n∑
l=1

βl · ĝ
(
a+ iλl + 2πi

j

M2

)]
. (2.9)

An important advantage of this method is that these sums can all be calculated
simultaneously for all k ∈ {0, 1, 2, . . . ,M2 − 1} using the FFT algorithm of Cooley,
Tukey (1965). In the end, we retain the first M values in which we are interested.
For the FFT algorithm it is recommended that M be a power of 2. In the rest of
the paper, we shall refer to the Iseger (2006) numerical inversion algorithm as the
Gaussian-Quadrature-FFT algorithm or GQ-FFT, for short.

As an application of the tools developed so far, we now price options on real-
ized variance in the Heston and 3/2 models. Similar to options on stocks, market
practitioners express the prices of realized variance options in terms of Black-Scholes
implied volatilities. Specifically, the undiscounted variance call price obtained from
the model – Heston or 3/2, in our case – is matched to a Black-Scholes formula with
zero rate and zero dividend yield:

C(K) = C(0)N(d1)−KN(d2)

where C(0) = E
(

1
T

∫ T
0
vtdt

)
is the fair variance as seen at time 0, and

d1 =
log
(
C(0)
K

)
+ ξ2T

2

ξ
√
T

d2 = d1 − ξ
√
T .

are the usual Black-Scholes terms. The parameter ξ, ensuring the equality between
the model price and the Black-Scholes price, will be called the implied volatility of
variance, corresponding to strike K.

As a simple first numerical example, we take a standard choice for the Heston
parameters from the existing literature; in an empirical investigation Bakshi, Cao,
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Figure 2.5: Left: Variance call prices as a function of variance strike, using Heston
parameters from Bakshi et al. (1997) and a maturity of 6 months. Right: Implied
volatility of variance as a function of volatility strike.

Chen (1997) estimated the following parameter set for the Heston model : v0 =
0.0348, k = 1.15, θ = 0.0348, and ε = 0.39. Gatheral (2006) also uses the parameter
set of Bakshi et al. (1997) to analyze prices of options on realized variance 2.
Here we apply our previous Laplace transform techniques to determine the prices of
call options on 6-months realized variance. The left part of Figure (2.5) shows the
(undiscounted) variance call function recovered over a wide strike range, from K = 0
to K = 0.482; the call prices have been scaled by a notional of 10, 000. A single run
of the GQ-FFT algorithm computes the variance call prices for the entire sequence
of strikes considered. As mentioned earlier, it is natural to convert these absolute
prices to implied volatilities of variance. The right part of Figure (2.5) shows the
implied volatilities of variance as a function of strike expressed as a volatility.

Compared to the spot market, we see that volatilities of variance can be sev-
eral orders of magnitude higher than the volatility of the underlying stock or index.
Depending on the volatility strike and maturity, it is common to see volatilities of
variance in the range [50%, 150%]. For short maturities, the implied volatilities of
variance increase very quickly; this makes trading sense, since, the shorter the pe-
riod, the more uncertainty about the future realized variance. We refer the reader
to Bergomi (2005, 2008) where many practical aspects of volatility markets are dis-
cussed. Figure (2.5) also reveals the main drawback of pricing volatility derivatives
in the Heston model. We obtain a downward sloping smile for the volatility of vari-
ance whereas the slope is strongly positive in practice; see, for example, Bergomi
(2008). From a trading and risk management perspective, it is clear that upside
calls on variance should be more expensive, since, during periods of market stress
when the volatility is high, the volatility of volatility is also very high. This behavior
cannot be captured by the Heston model.

2Note that Gatheral (2006) use slightly modified values for v0 and θ.
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Figure 2.6: Implied volatility of variance as a function of volatility strike. Left:
Heston model. Right: 3/2 model. Maturities of 3 months (higher curve) and 6
months (lower curve).

In Figure (2.6), we see the implied volatilities of variance in the Heston versus
the 3/2 model, with the parameters calibrated in the previous section. We price
3-months and 6-months options on realized variance. Notice that, in both models,
the volatilities are higher for 3-months variance than for 6-month variance; this is
in line with our expectation. Most importantly, Figure (2.6) shows that, unlike the
Heston model, the 3/2 model generates upward sloping volatility of variance smiles,
thus capturing an important feature of the volatility derivatives market.

To further investigate the differences between the Heston and 3/2 model, we
compare the densities of realized variance. Since the GQ-FFT algorithm gives us
the variance call function for a sequence of strikes simultaneously, we can apply the
well-known Breeden, Litzenberger (1978) formula to obtain the density of realized
variance as follows:

φRV (K) =
∂2

∂K2
C(K).

Applying this formula, we obtain in the left part of figure (2.7) the densities
of the 3-months realized variance in the Heston and 3/2 models. We see that the
well behaved and accurate prices obtained by our Laplace methods, allow us to
get a smooth and positive density for a wide range of variance values (in this case,
from K = 0 to K = 55%2). We notice that the 3/2 density is much more peaked
and puts less weight for variance near zero. In the equity markets, the Heston fits
often violate the zero boundary test, thus assigning significant probabilities to low
variance scenarios. To better explain the downward / upward sloping volatility of
variance smiles, we plot, in the right panel of figure (2.7), the density of the log
realized variance return:

log

(
1
T

∫ T
0
vtdt

C(0)

)

58



2.3. TRANSFORM PRICING OF O.R.V.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15

20

Realized Variance

D
en

si
ty

 o
f R

ea
liz

ed
 V

ar
ia

nc
e

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

Log Variance Return

D
en

si
ty

 o
f L

og
 V

ar
ia

nc
e 

R
et

ur
n

Figure 2.7: Left: Densities of 3 months realized variance. Right: Densities of 3
month log realized variance return. Solid : 3/2 model, Dashed : Heston model.

which we obtain from the density of the realized variance 1
T

∫ T
0
vtdt as follows:

φLogRV (k) = C(0) · ek · φRV (C(0)ek).

We notice in the right panel of figure (2.7) that in the Heston model the variance
log return is skewed to the left, while in the 3/2 model the variance log return is
skewed to the right. This explains why the variance smile is downward sloping in
the Heston model and upward sloping in the 3/2 model.

We conclude this section with a detailed explanation of the key advantages of
our pricing method for options on realized variance, compared to a direct applica-
tion of the standard Fourier methods from the literature. As seen next, recovering
the variance call function C(K) can, indeed, be easily written in terms of Fourier
inversion. Specifically, since in both models — Heston (1993) and 3/2 — the Laplace
transform L(λ) of the variance call function C(K) is well defined in the entire half-
plane, for any a ≥ 0 fixed, we can write:

L (a+ iu) =

∫ ∞
0

e−iuK · e−aKC(K)dK = F
{
e−aK · 1K≥0 · C(K)

}
(u)

where u ∈ R and F {·} denotes the Fourier transform. Applying Fourier inversion,
we can recover the variance call function at any strike K ≥ 0 by

C(K) =
eaK

2π

∫ ∞
−∞

eiuKL(a+ iu)du.

As in Carr, Madan (1999), since the function C(K) is real, this can be written
equivalently as

C(K) =
eaK

π
Re

{∫ ∞
0

eiuKL(a+ iu)du

}
. (2.10)
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Figure 2.8: Real part of Fourier integrand without control variates (dashed gray)
and with control variates (solid black) in the 3/2 model. Left: 6M maturity. Right:
3M maturity.

Hence, from a mathematical standpoint, the problem becomes identical to that
of European vanilla options as treated in Carr, Madan (1999). The next step in
the standard Fourier method is the truncation and then the discretization of the
integral in (2.10). However, a key difference arising in our case is the singularity
of the call function C(K) at zero, which will cause the oscillations in the integrand
eiuKL(a+iu) to decay slowly as u→∞ thus making the truncation of the integral a
highly heuristic and unstable exercise. This singularity problem is circumvented in
the case of European vanilla options by changing the variable from absolute strikes
K to log-strikes k = logK and thus ’pushing’ the singularity to −∞. Suppose we
tried to follow the same idea for variance call options and define:

c(k) = E

(
1

T

∫ T

0

vtdt− ek
)

+

as in the standard method for European vanilla options. Taking a ≥ 0 such that
eakc(k) is integrable on R, the main result in Carr, Madan (1999) would give us
a closed-form relation between the Fourier transform of eakc(k) and the Fourier

transform of log-realized variance log
(

1
T

∫ T
0
vtdt

)
. However, in both the Heston

(1993) model and the 3/2 model, the Fourier transform of log-realized variance
is not available in closed-form. We have closed-form expressions for the Fourier
transform of realized variance, but not for the log-realized variance. Therefore a
direct application of the standard Fourier methods of Carr, Madan (1999) will not
be possible for options on realized variance.

If we, nevertheless, proceed by truncating the integral in (2.10), the truncation
problem can be significantly alleviated by applying the idea of control variates.
As can be seen in figure (2.8), the integrand will decay much faster making the
truncation more stable. In our opinion, for options on realized variance, it is not
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Figure 2.9: Left: 3M options on realized variance by GQ-FFT (solid black) and
by standard Fourier inversion with Gamma control variates (gray dots) in the 3/2
model. Right: Same for 1M maturity.

possible to robustly truncate the integral in (2.10) without control variates. The
idea of control variates, for European vanilla options, was first proposed in Andersen,
Andreasen (2002) and further discussed in Cont, Tankov (2004). However, even with
the help of control variates, the truncation bound for (2.10) will still retain some
sensitivity to other factors such as the maturity of the option. Specifically, choosing
a truncation bound which works well for a certain maturity will not be appropriate
for another maturity; figure (2.9) illustrates this phenomenon. The sensitivity of
the truncation bound is particularly severe for short maturities.

Similar to the seminal article of Abate, Whitt (1992), the new Laplace inversion
algorithm in Iseger (2006) is a Fourier based inversion method. As seen on the LHS
of equation (2.8), it involves Laplace transform values on the fixed line a + iu,
u ∈ R; as mentioned above, this is the same as looking at the Fourier transform of
the dampened call price e−aK · 1K≥0 · C(K). However, the key advantage over the
standard Fourier methods is that it completely eliminates the need to perform any
(semi-heuristic) truncations. It achieves this by the simple, but powerful, idea of
constructing a Gaussian quadrature for the series of Laplace transform (or Fourier
transform) values. Numerical tests for an extensive list of functions can be found
in Iseger (2006). It provides conclusive evidence that the new algorithm is faster
and more accurate than previously developed methods. In the calculations reported
in this section, we considered both the rather mild (at least, for equity markets)
parameter set of Bakshi, Cao, Chen (1997) (with a volatility-of-volatility ε = 0.39)
as well as the more extreme parameter set (with a volatility-of-volatility ε = 0.9288)
fitted to the July, 31st, 2009 volatility smile. For all maturities and both models,
we considered very wide ranges of volatility strikes from 50% to 200% of the ATM
volatility. Moreover, the well behaved numerical results allowed us to differentiate
twice the variance call prices, to yield the full smooth density of realized variance in
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both models. In all cases, we found the new pricing method based on the Gaussian
Quadrature - Fast Fourier Transform (GQ-FFT) to be accurate and stable.

2.4 Hedge ratios for options on realized variance

The Laplace transform method developed in the previous section can also be applied
to compute hedge ratios for options on realized variance. The natural hedging
instruments for options on realized variance are their underlying variance swaps.
Similar to options on stocks, we need to determine a delta, here with respect to
variance swaps. As shown in Broadie, Jain (2008), one can derive that the correct
amount of delta, for a variance call of strike K, is given by:

∆V S =
∂
∂v0
C(K)

∂
∂v0
C(0)

where v0 is the current value of the short variance process and C(0) = E
(

1
T

∫ T
0
vtdt

)
is the current fair variance swap rate for maturity T . The formula is intuitively clear:
to hedge against the randomness in the short variance process, one needs to look at
the ratio of the sensitivities of the two instruments — option on variance and variance
swap — with respect to the value of short variance. From the inversion equation
(2.9) of the previous section, it can be seen that in order to derive ∂

∂v0
C(K), we

need to have the expressions for ∂
∂v0
L(λ) in both models, where L(λ) is the Laplace

transform of annualized realized variance. From section (2), L(λ) is obtained from
Propositions (2.2.1) and (2.2.2) by setting t = 0, u = 0 and λ = λ

T
.

From Proposition (2.2.1), we obtain for the Heston model :

∂

∂v0

L(λ) = −b(0, T ) · exp (a (0, T )− b (0, T ) v0)

with a(0, T ) and b(0, T ) as defined in Proposition (2.2.1). Similarly, using Proposi-
tion (2.2.2) and the property of the confluent hypergeometric function

∂

∂z
M(α, γ, z) =

α

γ
M(α + 1, γ + 1, z)

we obtain for the 3/2-model :

∂

∂v0

L(λ) = −αz
α

v0

Γ (γ − α)

Γ (γ)

[
M (α, γ,−z)− z

γ
M (α + 1, γ + 1,−z)

]
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Figure 2.10: Variance swap delta for call options on realized variance with six months
(left) and one week (right) to expiry, as a function of strike expressed as a volatility;
Solid : 3/2 model, Dashed : Heston model.

with α, γ as defined in Proposition (2.2.2) and

z =
2

ε2y(0, T )
.

Using these results, we can apply the inversion tools developed previously to
obtain the variance swap deltas for call options on realized variance at a sequence of
strikes simultaneously. In Figure (2.10) we show the results for the Heston and 3/2
models, calibrated in section 2.2. As expected, we notice a behavior of the variance
swap delta similar to the delta of vanilla stock options. As we move from deep in
the money calls to deep out of the money calls, the variance swap delta smoothly
decreases from 1 to 0. Besides the six months maturity, we also show, in the right
panel of Figure (2.10), a short maturity of one week and notice that delta approaches
the expected digital behavior near expiry.

2.5 Conclusion

We have developed a fast and robust method for determining prices and hedge ratios
for options on realized variance applicable in any model where the Laplace transform
of realized variance is available in closed form. The method was used to price options
on realized variance in the 3/2 stochastic volatility model and in the Heston (1993)
model. It has been shown that the 3/2 model offers several advantages for trading
and risk managing volatility derivatives. Unlike the 3/2 model, the Heston model
assigns significant weight to very low and vanishing volatility scenarios and is unable
to produce extreme paths with very high volatility of volatility. Most importantly,
the 3/2 model generates upward sloping implied volatility of variance smiles — in
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agreement with the way variance options are traded in practice. Finally, we have
shown that the transform methods can be efficiently used to obtain hedge ratios for
options on realized variance.

2.6 Appendix

Proof of Proposition (2.2.1) We are in a special case of the general multi-
factor affine framework introduced by Duffie, Pan, Singleton (2000). With Xt =
log
(
Ste

(r−δ)(T−t)) denoting the log forward process, we have:

dXt = −vt
2
dt+

√
vtdBt

dvt = k (θ(t)− vt) dt+ ε
√
vtdWt.

The state vector (Xt, vt) is a two-dimensional affine process as defined in Duffie et.
al (2000). Let

ψ (Xt, vt, t) = E
(
eiuXT−λ

∫ T
t vsds

∣∣∣Xt, vt

)
denote the joint Fourier-Laplace transform of XT and the de-annualized integrated
variance

∫ T
t
vsds. Observing that the process

e−λ
∫ t
0 vsds · ψ (Xt, vt, t) = E

(
eiuXT−λ

∫ T
0 vsds

∣∣∣Xt, vt

)
is a martingale, an application of Ito’s Lemma gives the following partial differential
equation for ψ(x, v, t):

1

2
ε2vψvv + k (θ(t)− v)ψv + ερvψxv −

1

2
vψx +

1

2
vψxx − λvψ + ψt = 0

with terminal condition

ψ(x, v, T ) = eiux.

Looking for a solution of the form

ψ(x, v, t) = exp (iux+ a(t, T )− b(t, T )v)

leads to the ODEs for a(·, T ) and b(·, T ):

b
′

=
1

2
ε2b2 + (k − iερu) b−

(
1

2
iu+

1

2
u2 + λ

)
a
′

= kθ(t)b
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with terminal condition a(T, T ) = b(T, T ) = 0, and a
′
, b
′

denoting derivatives with
respect to t. The complex valued ODE for b(·, T ) can be solved in closed form; see
Cox et. al (1985) or Heston (1993). In our case, the solution for b(·, T ) is

b(t, T ) =
(iu+ u2 + 2λ)

(
eγ(T−t) − 1

)
(γ + k − iερu) (eγ(T−t) − 1) + 2γ

with

γ =

√
(k − iερu)2 + ε2 (iu+ u2 + 2λ).

Once the function b(·, T ) is known, the ODE for a(·, T ) gives:

a(t, T ) = −
∫ T

t

kθ(s)b(s, T )ds.

�

Proof of Lemma (2.3.2) Rewrite the limit as

lim
K↓0

C(K)− C(0)

K
= lim

K↓0

E(V −K)+ − E(V )

K
= lim

K↓0
E

(
(V −K)+ − V

K

)
Since V > 0 a.s. we have

lim
K↓0

(V −K)+ − V
K

= lim
K↓0

V −K − V
K

= −1 a.s.

Using the obvious bound ∣∣∣∣(V −K)+ − V
K

∣∣∣∣ ≤ 1

we can apply the dominated convergence theorem to interchange the order of limit
and expectation

lim
K↓0

E

(
(V −K)+ − V

K

)
= E

(
lim
K↓0

(V −K)+ − V
K

)
= E(−1) = −1.

�

Proof of Lemma (2.3.3) This result follows easily by direct integration. For
V ∼ Gamma(α, β), we have

C̃(K) = E(V −K)+ =

∫ ∞
K

(x−K)
1

Γ(α)βα
xα−1e−

x
β dx

Computing separately the integral corresponding to each term in the parentheses,
we obtain∫ ∞

K

1

Γ(α)βα
xαe−

x
β dx =

∫ ∞
K

αβ

Γ(α + 1)βα+1
xαe−

x
β dx = αβ (1− F (K;α + 1, β))
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and ∫ ∞
K

K

Γ(α)βα
xα−1e−

x
β dx = K (1− F (K;α, β))

where F (·, α, β) is the CDF of the Gamma(α, β) distribution. �
Proof of Proposition (2.3.4) In

h(y) =

∫ y

0

e−
2
ε2z · z

2k
ε2 ·
∫ ∞
z

2

ε2
· e

2
ε2u · u

−2k

ε2
−2dudz.

denote α = 2
ε2
> 0, β = −2k

ε2
< 0 and rewrite the integral as

α

∫ y

0

e−
α
z z−β

∫ ∞
z

e
α
uuβ−2dudz = α

∫ y

0

e−
α
z

∫ ∞
z

e
α
u

(z
u

)−β
u−2dudz.

In the inner integral, making the change of variable z
u

= t we obtain∫ ∞
z

e
α
u

(z
u

)−β
u−2du =

1

z

∫ 1

0

e
αt
z t−βdt.

Expanding e
αt
z in a series gives

1

z

∫ 1

0

∞∑
n=0

1

n!

(α
z

)n
tn−βdt =

∞∑
n=0

1

n!

αn

zn+1

1

n− β + 1

where we interchanged integration and summation as all terms are non-negative.

h(y) = α

∫ y

0

e−
α
z

∞∑
n=0

1

n!

αn

zn+1

1

n− β + 1
dz = α

∞∑
n=0

1

n!(n− β + 1)

∫ y

0

αne−
α
z

zn+1
dz

Making the change of variable α
z

= t we obtain∫ y

0

αne−
α
z

zn+1
dz =

∫ ∞
α
y

e−t · tn−1dt.

For n = 0 we recognize the exponential integral function

E

(
α

y

)
=

∫ ∞
α
y

e−t · t−1dt

and for n ≥ 1 we obtain the upper incomplete Gamma function which satisfies

∫ ∞
α
y

e−t · tn−1dt = (n− 1)! · e−
α
y ·

n∑
k=0

(
α
y

)k
k!

= (n− 1)! · Fα
y
(n)
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where Fν(·) is the CDF of a Poisson random variable of parameter ν. Collecting the
previous results we obtain

h(y) = α ·

E
(
α
y

)
1− β

+
∞∑
n=1

Fα
y

(n)

n (n− β + 1)


Uniform convergence follows from the bound

∞∑
n=k

Fα
y

(n)

n (n− β + 1)
<

∞∑
n=k

1

n (n− β + 1)
<

∞∑
n=k

1

n (n+ 1)
=

1

k
.

�

Proof of Lemma (2.3.5) The upper bound has been derived in the proof of
Proposition (2.3.4). If we let m = d−βe (i.e. the smallest integer greater than or
equal to −β ), we can write

Rk =
∞∑
n=k

Fα
y

(n)

n (n− β + 1)
> Fα

y
(k)

∞∑
n=k

1

n (n− β + 1)

≥
Fα
y

(k)

m+ 1

∞∑
n=k

m+ 1

n (n+m+ 1)

=
Fα
y

(k)

m+ 1

(
1

k
+

1

k + 1
+ . . .+

1

k +m

)
.

Let R̄ denote the mid-point between the two bounds i.e.

R̄ =
1

2

(
1

k
+
Fα
y

(k)

m+ 1

(
1

k
+

1

k + 1
+ . . .+

1

k +m

))
.

and let p = Fα
y

(k). We then have that |Rk − R̄| must be less than or equal to half
the difference between the two bounds i.e.

|Rk − R̄| ≤
1

2

(
1

k
− p

m+ 1

(
1

k
+

1

k + 1
+ . . .+

1

k +m

))
=

1

2(m+ 1)

m∑
j=0

j + (1− p)k
k(k + j)

<
1

2k2(m+ 1)

(
m(m+ 1)

2
+ (1− p)k(m+ 1)

)
=

m

4k2
+

1− p
2k

.
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Observing that

1− p = e−
α
y ·

∞∑
n=k+1

(
α
y

)n
n!

= e−
α
y ·

∞∑
n=k+1

α
y

(
α
y

)n−1

n · (n− 1)!

<

α
y

k
e−

α
y ·

∞∑
n=k

(
α
y

)n
n!

<

α
y

k

we finally obtain

|Rk − R̄| <
m+ 2α

y

4k2
.

�

Proof of Lemma (2.3.6) Bounded variation follows immediately by observing that
C(K) = E(V −K)+ is a monotone decreasing function of K. Next we check that
C(K) ∈ L1[0,∞) i.e.∫ ∞

0

C(K)dK =

∫ ∞
0

E(V −K)+dK <∞.

Since the integrand is positive, we can apply Fubini to change the order of integration
and expectation: ∫ ∞

0

E(V −K)+dK = E

(∫ ∞
0

(V −K)+dK

)
= E

(∫ V

0

V −KdK
)

= E

(
V 2

2

)
<∞.

�
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III

Options on realized variance in
Log-OU models

Gabriel G. Drimus

Abstract

We consider the pricing of options on realized variance in a general class
of Log-OU stochastic volatility models. The class includes several im-
portant models proposed in the literature. Having as common feature
the log-normal law of instantaneous variance, the application of stan-
dard Fourier-Laplace transform methods is not feasible. By extending
Asian pricing methods, we obtain bounds, in particular, a very tight
lower bound for options on realized variance, similar to an idea first
introduced in Rogers, Shi (1995).

3.1 Introduction

We introduce a general class of Log-OU stochastic volatility models and study
the pricing of options on realized variance under such models. This framework
includes, for example, Scott’s (1987) model and the continuous version of Bergomi’s
(2005) model. A desirable property of this class of models is that the distribution of
realized variance will be approximately log-normal. Many authors including Ahmad,
Wilmott (2005), Bergomi (2005) and Gatheral (2006) have found that, in practice,
the distribution of realized variance is close to log-normal.

Despite its numerical tractability, the popular Heston (1993) model has the
drawback that it generates a downward sloping volatility-of-volatility skew, a fea-
ture which is at odds with variance markets in practice. The class of Log-OU models
discussed in this paper will generate an approximately flat, in fact mildly upward
sloping, volatility-of-volatility skew thus providing an improvement over the tradi-
tional Heston (1993) model.
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CHAPTER 3. A CLASS OF LOG-OU MODELS

The class of models considered have the common property that the marginal
distribution of instantaneous variance is log-normal. By the well-known fact that
a sum of log-normal variables does not remain log-normal, the realized variance
— defined as an integral over the instantaneous variances — will not be exactly
log-normal and, more importantly, will not have a moment generating function (or
Laplace transform) in closed-form. Therefore familiar Fourier-Laplace transform
methods cannot be applied to value options on realized variance. Motivated by
the similarities between options on realized variance and Asian options, we extend
the classical Asian bounds of Rogers, Shi (1995) and Thompson (1999) to Log-OU
processes. In particular, we obtain a very tight lower bound, which can essentially
be used as the true price.

The remaining of this paper is organized as follows. In the next section we
introduce the class of Log-OU models and discuss some of their general properties.
Section three is the main section, which develops the bounds for options on realized
variance and illustrates their numerical performance. The final section summarizes
the conclusions.

3.2 A class of Log-OU Models

We start by specifying the Log-OU stochastic volatility dynamics considered
throughout the paper. Let (Bt,Wt)t≥0 be a standard two-dimensional Brownian
motion defined on a filtered probability space (Ω,F ,Ft,Q) satisfying the usual con-
ditions. We assume that the stock price and its instantaneous variance (St, vt)t≥0

satisfy the following dynamics under the risk neutral measure Q:

dSt
St

= (r − δ)dt+
√
vt

(
ρdWt +

√
1− ρ2dBt

)
(3.1)

d log(vt) =
[
k (log(θ(t))− log(vt)) + χ(t)

]
dt+ εdWt (3.2)

where θ(t) and χ(t) are arbitrary deterministic functions. The risk free interest rate,
dividend yield and correlation parameters are denoted r, δ and ρ respectively. We
recognize that the logarithm of the instantaneous variance yt = log(vt) follows a
Gaussian Ornstein-Ühlenbeck process with extra drift term χ(t).

The simplest special case of (3.2) is obtained for θ(t) = θ (a constant) and
χ(t) = 0, which yields the classical model of Scott (1987). More recently, we find in
Bergomi (2005) an interesting variation where one starts by specifying the dynamics
of the instantaneous forward variances ξTt = EQ (vT |Ft), similar to HJM forward
interest rate modeling, as follows:

dξTt = ε · ξTt · e−k(T−t)dWt (3.3)
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3.2. A CLASS OF LOG-OU MODELS

along with an initial instantaneous forward variance curve ξT0 , for all T > 0. We
now show that (3.3) is also a Log-OU model. Assuming the initial forward variance
curve is sufficiently smooth (more precisely, differentiable in T ), we start by defining
the function θ(·) as:

log (θ(T )) = log ξT0 +
1

k
· ∂ log ξT0

∂T
.

A straightforward application of Itô’s lemma to the logarithm of the instantaneous
variance yt = log(ξtt) reveals the dynamics:

dyt =

[
k (log(θ(t))− yt)−

ε2

4
(1 + e−2kt)

]
dt+ εdWt (3.4)

which we recognize as a special case of (3.2) with χ(t) = − ε2

4
(1 + e−2kt). This

parametrization may appear less intuitive, but has the advantage that it provides a
perfect fit to any initial (forward) variance swap curve and it makes the dynamics
of forward variances (3.3) simpler and cleaner.

In what follows, we will find it convenient to write the logarithm of the instan-
taneous variance yt as yt = ȳt +Zt where ȳt is the (time dependent) mean of yt and
Zt is a centered Gaussian-OU process given by

Zt = ε · e−kt ·
∫ t

0

eksdWs. (3.5)

Applying Itô’s lemma to ekt ·yt and using the Log-OU dynamics (3.2) we obtain, for
the deterministic component ȳt:

ȳt = y0e
−kt + ke−kt

∫ t

0

eku log (θ(u)) du+ e−kt
∫ t

0

ekuχ(u)du. (3.6)

For Scott’s (1987) model, the expression (3.6) simplifies to

ȳt = log(θ) + (y0 − log(θ)) e−kt

and for Bergomi’s (2005) model we have

ȳt = y0e
−kt + ke−kt

∫ t

0

eku log (θ(u)) du− ε2

4k

(
1− e−2kt

)
.

In Log-OU stochastic volatility models of the form (3.1)-(3.2), there is no
fast analytical method to compute prices of European vanilla options. Nevertheless,
efficient one-dimensional Monte Carlo pricing can be obtained by using the so-called
”mixing” approach (see Romano, Touzi (1997) or Lewis (2000)). We start with a
simple application of Itô’s lemma to log (St) on the interval [0, T ] to obtain:

75



CHAPTER 3. A CLASS OF LOG-OU MODELS

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

Relative Strike

Im
pl

ie
d 

V
ol

at
ili

ty

Figure 3.1: Fit of Scott (1987) model to 6M implied volatilities of S&P500 index
options on December 14, 2009. Diamond Black : Market implied volatilities. Solid
grey : Scott’s model implied volatility curve. Parameters obtained are: v0 = 19.85%2,
k = 1.786, θ = 26.32%2, ε = 2.19, ρ = −0.84.

ST = S0 · exp

(
−1

2
ρ2

∫ T

0

eytdt+ ρ

∫ T

0

√
eytdWt

)
· exp

(
(r − δ)T − 1

2
(1− ρ2)

∫ T

0

eytdt+
√

1− ρ2

∫ T

0

√
eytdBt

)
.

By conditioning on the path of the Brownian Motion Wt, driving the instan-
taneous variance, we obtain the price of any European option as an expectation
over Black-Scholes prices. If we let CBS (S, σ) denote the Black-Scholes price of a
European vanilla option, for initial spot S and constant volatility σ, we arrive at the
following mixing representation for option prices in our stochastic volatility models:

CSV = EQ

CBS

S0 · ξT ,
√

1− ρ2

√
1

T

∫ T

0

eytdt


where

ξT = exp

(
−1

2
ρ2

∫ T

0

eytdt+ ρ

∫ T

0

√
eytdWt

)
.

To obtain a set of parameter values for our subsequent numerical examples,
we end this section with a simple fit of the Scott (1987) model to market prices
of 6-months S&P500 index options on Dec 14, 2009; figure (3.1) displays the fit.
The parameters obtained are : v0 = 19.85%2, k = 1.786, θ = 26.32%2, ε = 2.19,
ρ = −0.84. We shall use this example parameter set to illustrate the numerical
results in the next section.
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3.3 Options on realized variance in Log-OU mod-

els

We now consider the problem of pricing options on realized variance in the general
class of Log-OU stochastic volatility models (3.1)-(3.2). The payoff of a call option
on realized variance, with strike K and maturity T , is given by:(

1

T

∫ T

0

vtdt−K
)

+

. (3.7)

In stochastic volatility models, such as Heston (1993), where the Fourier-Laplace
transform

EQ
(

exp

(
−s · 1

T

∫ T

0

vtdt

))
with s ∈ C and Re(s) ≥ s∗ ≥ 0 is known in closed form, semi-analytical transform
techniques can be applied to value options on realized variance (see, for example,
Sepp (2008)). In the class of Log-OU models the transform is not available in closed
form.

In what follows, we shall regard the payoff (3.7) as the payoff of an Asian option
written on the instantaneous variance process vt. Of course, a direct valuation
approach is to construct a Monte Carlo scheme. Similar to arithmetic average
Asian stock options in Kemma, Vorst (1990), we can implement a Monte Carlo
approach, enhanced with geometric average control variates. Specifically, recalling
that vt = exp(ȳt + Zt), in order to value

Cvar(K) = e−rTEQ
(

1

T

∫ T

0

eȳt+Ztdt−K
)

+

we can use the control variate

CGeom.
var (K) = e−rTEQ

(
exp

(
1

T

∫ T

0

(ȳt + Zt)dt

)
−K

)
+

.

The latter can be valued with a Black-Scholes style formula as provided in Appendix
A.1.

Subsequently, Rogers, Shi (1995) and then Thompson (1999), developed ele-
gant methods to bound the prices of arithmetic average Asian options. In particular,
they discovered an extremely tight lower bound, which follows from a simple condi-
tioning argument. Throughout the Asian pricing literature, the log-stock price was
assumed in the classical Black-Scholes model:

log(St) = log(S0) +

(
r − δ − σ2

2

)
t+ σZt
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where Zt is a standard Brownian motion. Note that, for our ”Asian” option with
payoff (3.7), log(vt) has a similar form, namely log(vt) = ȳt+Zt, except in this case,
Zt is a mean-reverting Ornstein-Ühlenbeck process. It is not clear that the classical
Asian methods can be extended to this setting.

We next show how to extend the Asian bounds to a mean-reverting process Zt
and obtain, in particular, a very tight lower bound for options on realized variance
in the general class of Log-OU stochastic volatility models (3.1)-(3.2). The lower
bound is so accurate that, in practice, it could be used as a substitute for the true
price.

The basic idea rests on the following straightforward inequalities: for any
measurable event A ∈ FT we have

EQ
(

1

T

∫ T

0

vtdt−K
)

+

≥ EQ

[(
1

T

∫ T

0

vtdt−K
)

+

· 1A

]

≥ EQ

[(
1

T

∫ T

0

vtdt−K
)
· 1A

]

=
1

T

∫ T

0

EQ [(vt −K) · 1A] dt. (3.8)

Next, we take events A ∈ FT of the form A = {Z > ζ} with ζ ∈ R a constant and

Z =

∫ T
0
Ztdt√

Var
∫ T

0
Ztdt

∼ N(0, 1)

where Zt is the zero-mean Gaussian-OU process defined by equation (3.5). To
search for ζ ∈ R which yields the highest lower bound in (3.8), we have to solve the
optimization problem

max
ζ∈R

f(ζ) =
1

T

∫ T

0

EQ
[
(vt −K) · 1{Z>ζ}

]
dt.

Letting g(t, ζ) = EQ
[
(vt−K) ·1{Z>ζ}

]
denote the integrand in the expression of f(·)

above, we begin by noting the identity below, which follows from the law of total
probability:

g(t, ζ) =

∫ ∞
ζ

EQ
(
vt −K

∣∣∣Z = z
)
· φ(z)dz

where φ(·) is the standard normal density. This allows us to easily see that

∂g

∂ζ
(t, ζ) = −EQ

(
vt −K

∣∣∣Z = ζ
)
· φ(ζ).
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It follows that the necessary maximum condition on ζ becomes

f
′
(ζ) =

1

T

∫ T

0

∂g

∂ζ
(t, ζ)dt = −φ(ζ)

T

∫ T

0

EQ
(
vt −K

∣∣∣Z = ζ
)
dt = 0

or, equivalently ∫ T

0

EQ
(
vt

∣∣∣Z = ζ
)
dt = KT (3.9)

where we recall that vt = exp(ȳt+Zt). Next, we want to rewrite equation (3.9) for ζ

in a more explicit way. Computing the conditional expectations EQ
(

exp(ȳt + Zt)
∣∣∣Z = ζ

)
is straightforward using the properties of the Gaussian-OU process Zt. In particu-
lar, we have that, for each t ∈ [0, T ], the pair (Zt, Z) is jointly normally distributed.
Their covariance can be calculated explicitly to give

γ(t) = Cov (Zt, Z) =
ε

2k

(
2− e−k(T−t) + e−k(T+t) − 2e−kt

)√
T − 3−4e−kT+e−2kT

2k

. (3.10)

Denoting the variance of Zt by

ν(t) = Var(Zt) =
ε2

2k

(
1− e−2kt

)
(3.11)

we have that the conditional distribution of Zt given {Z = ζ} is normal, with
parameters

Zt

∣∣∣{Z = ζ} ∼ N
(
γ(t) · ζ, ν(t)− γ(t)2

)
which allows us to write (3.9) more explicitly and arrive at the necessary maximum
condition for ζ as∫ T

0

exp

(
ȳt + γ(t) · ζ +

1

2

(
ν(t)− γ(t)2

))
= KT. (3.12)

Since the left-hand side of (3.12) strictly increases from 0 to ∞ as ζ goes from −∞
to∞, we see that this equation has a unique solution ζ∗ ∈ R. It is easy to check that
f
′′
(ζ) < 0, ζ ∈ R, and thus we conclude that ζ∗ is our desired global maximum; in

practice, the solution ζ∗ is easily determined numerically, for example by applying
Newton’s root search algorithm to (3.12). Finally, to obtain the lower bound we
have to compute the original integral from (3.8)

LB =
e−rT

T

∫ T

0

EQ ((eȳt+Zt −K) · 1Z−ζ∗>0

)
dt.

After carrying out the remaining algebraic calculations (included in Appendix A.2),
we can summarize our lower bound result in the following proposition.
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Proposition 3.3.1 In the general Log-OU stochastic volatility model (3.1)-(3.2), a
call option on realized variance with variance strike K and maturity T satisfies the
lower bound

Cvar(K) ≥ LB =
e−rT

T

[∫ T

0

eȳt+
1
2
ν(t) ·N (−ζ∗ + γ(t)) dt−K ·N (−ζ∗)

]
where ζ∗ is the unique solution to the equation∫ T

0

exp

(
ȳt + γ(t) · ζ +

1

2

(
ν(t)− γ(t)2

))
= KT

with γ(t) and ν(t) as defined in (3.10) and (3.11).

Before illustrating the numerical performance of this lower bound, we turn to the
problem of deriving an upper bound. It will turn out that the upper bound is less
sharp than the lower bound and hence less useful in practice. Nevertheless, the
argument is interesting and we include it in our treatment for completeness.

Let ft be any integrable stochastic process such that
∫ T

0
ftdt = 1. We start

with the following simple inequality:

EQ
(

1

T

∫ T

0

vtdt−K
)

+

=
1

T
EQ
(∫ T

0

(vt −KT · ft) dt
)

+

≤ 1

T

∫ T

0

EQ (vt −KT · ft)+ dt. (3.13)

Next, similar to the idea in Thompson (1999), we take ft to have the particular form

ft = ut + Zt −
1

T

∫ T

0

Ztdt (3.14)

where u ∈ C[0, T ] is a deterministic, continuous function on [0, T ] such that
∫ T

0
utdt =

1 and Zt the zero-mean Gaussian-OU process defined by (3.5). (Note that this choice

of ft clearly satisfies the condition
∫ T

0
ftdt = 1.) To find the deterministic function

u ∈ C[0, T ] which yields the lowest upper bound in (3.13), we want to solve the
problem 

minu∈C[0,T ]
1
T

∫ T
0
EQ (vt −KT · (ut +Xt))+ dt

with
∫ T

0
utdt = 1

(3.15)

where we denoted Xt
4
= Zt − 1

T

∫ T
0
Ztdt. This problem can be formulated and

solved as a simple problem in the calculus of variations. Let us first define ψ(t, x) :
[0, T ]× R→ R as

ψ(t, x) = EQ (vt −KT · (x+Xt))+
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and observe that we have

∂ψ

∂x
(t, x) = −KT · P (vt −KT ·Xt ≥ KT · x) (3.16)

∂2ψ

∂x2
(t, x) ≥ 0.

We now introduce the functional F : C[0, T ] → R associated with our constrained
minimization problem (3.15):

F (u) =
1

T

∫ T

0

EQ (vt −KT · (ut +Xt))+ dt+ λ

(∫ T

0

utdt− 1

)
with λ ∈ R a Lagrange multiplier. It can be written more compactly in terms of
ψ(t, x) defined earlier

F (u) =
1

T

∫ T

0

ψ(t, ut)dt+ λ

(∫ T

0

utdt− 1

)
=

1

T

[∫ T

0

(ψ(t, ut) + λT · ut − λ) dt

]
.

We calculate the first and second variations of the functional F at u to obtain

δF (u)(h) =
1

T

∫ T

0

(
∂ψ

∂x
(t, ut) + λT

)
· htdt

δ2F (u)(h) =
1

T

∫ T

0

∂2ψ

∂x2
(t, ut) · h2

tdt

where h ∈ C[0, T ] is any test function. Noting that the second variation is non-
negative, we set the first variation equal to zero. From δF (u)(h) = 0 for all h ∈
C[0, T ] we obtain the optimality condition, namely, for each t ∈ [0, T ] we must have

∂ψ

∂x
(t, ut) + λT = 0

or, from (3.16)
K · P (vt −KT ·Xt ≥ KT · ut) = λ.

Upon writing out vt and Xt explicitly, this optimality condition reads

K · P
(
eȳt+Zt −KT ·

(
Zt −

1

T

∫ T

0

Ztdt

)
≥ KT · ut

)
= λ.

Because this expression combines log-normal and normal distributions, writing out
an explicit solution for the optimal ut is not possible. Following Thompson (1999),
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Figure 3.2: (Left) Solid black : 6M variance call prices in Scott’s (1987) model (ob-
tained by Monte-Carlo with geometric control variates), Dashed gray : Lower and
Upper bounds from Propositions (3.3.1) and (3.3.2). (Right) Solid black : 6M vari-
ance call prices in Scott’s (1987) model expressed as implied log-normal volatilities
of volatility, Dashed gray : Lower and Upper bounds expressed as log-normal implied
volatilities of volatility.

by replacing eZt with 1+Zt it becomes possible to determine a solution ut explicitly.
Note from inequality (3.13) that this, too, will provide us with an upper bound
for the variance call option, although not the tightest one. Its performance will be
illustrated numerically. The problem for u ∈ C[0, T ] now becomes

K · P
(
eȳt (1 + Zt)−KT ·

(
Zt −

1

T

∫ T

0

Ztdt

)
≥ KT · ut

)
= λ

for all t ∈ [0, T ] and such that
∫ T

0
utdt = 1. Once ut has been determined (and,

hence, also ft in (3.13), (3.14)), the upper bound requires the computation of

UB =
e−rT

T
·
∫ T

0

EQ (vt −KT · ft)+ dt.

Leaving the remaining algebraic calculations for the Appendix A.3, we finally obtain
the upper bound as stated in the following proposition.

Proposition 3.3.2 In the general Log-OU stochastic volatility model (3.1)-(3.2), a
call option on realized variance with variance strike K and maturity T satisfies the
upper bound

Cvar(K) ≤ UB =
e−rT

T

∫ T

0

∫ ∞
−∞

φ(x) ·

[
α
(
t, x
√
ν(t)

)
N

α
(
t, x
√
ν(t)

)
β(t)

+

+β(t)φ

α
(
t, x
√
ν(t)

)
β(t)

]dxdt
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where

ν(t) = Var (Zt) =
ε2

2k

(
1− e−2kt

)
and α(t, x), β(t) as given in Appendix A.3.

Figure (3.2) shows the performance of the lower and upper bounds of Proposi-
tions (3.3.1) and (3.3.2), against the actual variance call prices computed by Monte
Carlo, with geometric control variates. We plot both the absolute prices (in the
left panel) and the corresponding log-normal implied volatilities of volatility (in the
right panel). Across a wide range of volatility strikes (from 0.15 to 0.45), we notice
that, the lower bound remains very sharp. More exactly, the difference between the
implied volatility-of-volatility corresponding to the Monte Carlo price and the one
corresponding to the lower bound is roughly of the order of one volatility-of-volatility
point — which is well within any reasonable bid-offer spread for such volatility prod-
ucts. The upper bound is less sharp and, hence, will be of less practical interest.
Finally, we notice that the implied volatility-of-volatility skew is approximately flat,
or more precisely, mildly upward sloping; the latter is a desirable feature which is
not possessed by, for example, the traditional Heston (1993) model.

3.4 Conclusions

We have introduced a general class of Log-OU stochastic volatility models
which, compared to the traditional Heston (1993) model, have the advantage of
generating a more acceptable implied volatility-of-volatility skew. In this context,
the valuation problem for options on realized variance bears certain analogies to
Asian options. The main difference is that the driving process is now a mean-
reverting OU process, as opposed to a standard Brownian motion. We show how
to extend a couple of effective Asian option methods to the pricing of options on
realized variance and obtain, in particular, a very tight lower bound. In practice, the
error from using the lower bound should be smaller than the usual bid-offer spread
for such volatility products. For completeness, we also derived an upper bound.

3.5 Appendix

A.1. A Black-Scholes style formula is obtained for the geometric control variate of
a call option on realized variance as follows. Specifically, to value

CGeom.
var (K) = e−rTEQ

(
exp

(
1

T

∫ T

0

(ȳt + Zt)dt

)
−K

)
+
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we use that

1

T

∫ T

0

(ȳt + Zt)dt ∼ N

(
1

T

∫ T

0

ȳtdt,
ε2

T 2k2

(
T − 3− 4e−kT + e−2kT

2k

))
.

For example, in Scott’s (1987), and respectively Bergomi’s (2005), models we have

1

T

∫ T

0

ȳtdt = log(θ) + (y0 − log(θ)) · 1− e−kT

kT

1

T

∫ T

0

ȳtdt = y0 ·
1− e−kT

kT
+

1

T

∫ T

0

log (θu) ·
(
1− e−k(T−u)

)
du

− ε
2

4k

(
1− 1− e−2kT

2kT

)
.

Denoting m = 1
T

∫ T
0
ȳtdt and v2 = Var

(
1
T

∫ T
0

(ȳt + Zt)dt
)

we obtain the Black-

Scholes style formula for the control variate

CGeom.
var (K) = e−rT

[
em+ v2

2 ·N(d1)−K ·N(d2)
]

with

d1 =

log

(
em+ v2

2

K

)
+ v2

2

v
d2 = d1 − v.

A.2. To calculate the inner expectation appearing in the expression of the lower
bound

LB =
e−rT

T

∫ T

0

E
((
eȳt+Zt −K

)
· 1Z−ζ∗>0

)
dt

we use the following simple identity given in Thompson (1999):

E
((
eX −K

)
· 1Y >0

)
= eµX+ 1

2
σ2
X ·N

(
µY + σXY

σY

)
−K ·N

(
µY
σY

)
which holds for any bivariate normal vector (X, Y ) with mean (µX , µY ) and covari-
ance matrix (

σ2
X σXY

σXY σ2
Y

)
.

Setting X = ȳt + Zt and Y = Z − ζ∗ we have µX = ȳt, µY = −ζ∗, σ2
X = ν(t) =

ε2

2k

(
1− e−2kt

)
, σ2

Y = 1 and covariance

σXY =
ε

2k

(
2− e−k(T−t) + e−k(T+t) − 2e−kt

)√
T − 3−4e−kT+e−2kT

2k

.
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as was given in the main text and denoted there γ(t). Finally, plugging these terms
in the identity above we obtain

LB =
e−rT

T

∫ T

0

[
eȳt+

1
2
ν(t) ·N (−ζ∗ + γ(t))−K ·N (−ζ∗)

]
dt.

A.3. Recall that we need to determine u ∈ C[0, T ] such that

K · P
(
eȳt (1 + Zt)−KT ·

(
Zt −

1

T

∫ T

0

Ztdt

)
≥ KT · ut

)
= λ

for all t ∈ [0, T ], or equivalently

K · P
(

(eȳt −KT ) · Zt +K

∫ T

0

Ztdt+ eȳt ≥ KT · ut
)

= λ.

Letting

Nt = (eȳt −KT ) · Zt +K

∫ T

0

Ztdt+ eȳt

we first observe that, since
(
Zt,
∫ T

0
Ztdt

)
are jointly normally distributed, it follows

that Nt is also normal with
Nt ∼ N (eȳt , ω(t))

where we denote Var(Nt) = ω(t). Note that

ω(t) = (eȳt −KT )
2 · Var (Zt) +K2 · Var

(∫ T

0

Ztdt

)
+

+2K (eȳt −KT ) · Cov

(
Zt,

∫ T

0

Ztdt

)
with

Var (Zt) =
ε2

2k

(
1− e−2kt

)
(3.17)

Var

(∫ T

0

Ztdt

)
=

ε2

k2

(
T − 3− 4e−kT + e−2kT

2k

)
(3.18)

Cov

(
Zt,

∫ T

0

Ztdt

)
=

ε2

2k2

(
2− e−k(T−t) + e−k(T+t) − 2e−kt

)
. (3.19)

Written in terms of Nt the condition for ut becomes

P (Nt ≥ KT · ut) =
λ

K
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which is equivalent to
KT · ut − eȳt√

ω(t)
= γ

where we denote N−1(1− λ
K

) = γ. Solving for ut gives

ut =
1

KT
·
(
eȳt + γ

√
ω(t)

)
.

To find the constant γ we impose the condition
∫ T

0
utdt = 1 which gives

γ =
KT −

∫ T
0
eȳtdt∫ T

0

√
ω(t)

.

Finally, having determined ut, to calculate the upper bound we must compute

UB =
e−rT

T

∫ T

0

E

(
eȳt+Zt −KT ·

(
ut + Zt −

1

T

∫ T

0

Ztdt

))
+

dt.

For the inner expectation, we proceed by conditioning on Zt and using that

∫ T

0

Ztdt

∣∣∣∣∣{Zt = z} ∼ N

Cov
(
Zt,
∫ T

0
Ztdt

)
Var (Zt)

· z,Var

(∫ T

0

Ztdt
∣∣∣Zt)


where

Var

(∫ T

0

Ztdt
∣∣∣Zt) = Var

∫ T

0

Ztdt−
Cov2

(
Zt,
∫ T

0
Ztdt

)
VarZt

and where the expressions of the variances and covariances are given explicitly in
(3.17),(3.18) and (3.19). Integrating out with respect to the density of Zt, we write
the inner expectation as∫ ∞

−∞

1√
ν(t)

φ

(
z√
ν(t)

)
· E (β(t) ·N(0, 1) + α(t, z))+ dz

where

β(t) = K

√
Var

(∫ T

0

Ztdt
∣∣∣Zt)

α(t, z) = eȳt+z −KT · (ut + z) +K ·
Cov

(
Zt,
∫ T

0
Ztdt

)
VarZt

· z.
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Finally, using the basic identity from Thomson (1999)

E (b ·N(0, 1) + a)+ = a ·N
(a
b

)
+ b · φ

(a
b

)
a ∈ R, b ∈ R, we obtain the expression for the upper bound

e−rT

T

∫ T

0

∫ ∞
−∞

1√
ν(t)

φ

(
z√
ν(t)

)
·

[
α(t, z) ·N

(
α(t, z)

β(t)

)
+ β(t) · φ

(
α(t, z)

β(t)

)]
dzdt.

Making the change of variable z = x ·
√
ν(t) we arrive at the final form

Cvar(K) ≤ UB =
e−rT

T

∫ T

0

∫ ∞
−∞

φ(x) ·

[
α
(
t, x
√
ν(t)

)
N

α
(
t, x
√
ν(t)

)
β(t)

+

+β(t)φ

α
(
t, x
√
ν(t)

)
β(t)

]dxdt
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IV

Options on discretely sampled
variance: Discretization effect and

Greeks

Gabriel G. Drimus Walter Farkas 1

Abstract

The valuation of options on discretely sampled variance requires proper
adjustment for the extra volatility-of-variance induced by discrete sam-
pling. Under general stochastic volatility dynamics, we provide a detailed
theoretical characterization of the discretization effect. In addition, we
analyze several numerical methods which reduce the dimensionality of
the required pricing scheme, while accounting for most of the discretiza-
tion effect. The most important of these, named the conditional Black-
Scholes scheme, leads to an explicit discretization adjustment term, eas-
ily computable by standard Fourier transform methods in any stochastic
volatility model which admits a closed-form expression for the charac-
teristic function of continuously sampled variance. In the second part of
the chapter, we provide a practical analysis of the most important risk
sensitivities (’greeks ’) of options on discretely sampled variance.

4.1 Introduction

Early literature on variance derivatives assumed continuous sampling of the
realized variance. The first contribution belongs to Neuberger (1994) who introduced
the concept of the log-contract and argued that delta hedging this contract leads to
the replication of the continuously sampled variance; the result holds under general
continuous semi-martingale dynamics. Carr, Madan (1998) subsequently extended

1Professor, Institute of Banking and Finance, University of Zürich and Assistant Professor,
Department of Mathematics, ETH Zürich, walter.farkas@bf.uzh.ch
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CHAPTER 4. DISCRETIZATION EFFECT AND GREEKS

the results and showed how variance swaps (as well as corridor variance swaps) can
be replicated by a static position in a continuum of vanilla options, dynamically
delta-hedged with the underlying asset. Broadie, Jain (2008a) consider the problem
of approximating this static portfolio using a finite number of European vanilla
options. The consistent joint-modeling of a term structure of variance swaps and an
underlying spot price is treated in Buehler (2006a, 2006b). For a detailed overview
of the various theoretical developments, we refer the reader to Carr, Lee (2009).
Additionally, important aspects of volatility derivatives in practice are discussed in
Gatheral (2006), Bergomi (2005, 2008) and Overhaus et al. (2007).

In derivative markets, variance contracts are specified with discrete sampling;
in particular, daily sampling is the most common convention. For linear contracts on
realized variance (such as variance swaps), the discretization effect is usually small,
as found in Buehler (2006a) and Broadie, Jain (2008b). The explanation follows
from the fact that linear contracts on variance do not depend on the volatility of
variance. Itkin, Carr (2010) show how to price discrete variance swaps in general
time-changed Lévy models, by the method of forward characteristic functions. Under
the assumption of a stochastic clock independent of the driving Lévy process, section
6 in Carr, Lee and Wu (2011) shows that discrete sampling increases the value of
variance swaps.

For non-linear contracts on variance (such as options on variance) the dis-
cretization effect becomes substantial, especially for shorter maturities. The short-
time limit of the discretization gap, under general semi-martingale dynamics, has
been derived recently in Keller-Ressel, Muhle-Karbe (2011); the authors also de-
velop Fourier pricing methods for options on discrete variance under exponential
Lévy dynamics. In the context of the Heston (1993) model, Sepp (2011) proposes
an approximation by combining the distribution of quadratic variation in the He-
ston (1993) model with that of discrete variance in an independent Black, Scholes
(1973) model. The approach leads to a tractable characteristic function for the
discretely sampled variance, thus allowing the application of the semi-analytical
methods treated in the earlier work Sepp (2008) and provides good accuracy near
the at-the-money region, across maturities.

The aim of this paper is to provide a comprehensive treatment of the dis-
cretization effect, arising in the valuation of variance derivatives, under general
stochastic volatility dynamics. Additionally, we do not restrict attention to partic-
ular strike ranges, such as at-the-money strikes, nor to particular maturity ranges.
We prove that, conditional on the realization of the instantaneous variance pro-
cess, the (properly scaled) residual randomness arising from discrete sampling can
be well approximated with a normally distributed random variable. In the finan-
cial econometrics literature, related results were obtained and used in the analysis of
high frequency data and the estimation of stochastic volatility models; in particular,

90



4.2. OPTIONS ON DISCRETELY SAMPLED VARIANCE

we remark the results in Barndorff-Nielsen, Shephard (2002), and more generally,
in Barndorff-Nielsen et al. (2006). In contrast, we adopt a conditional approach,
which was pioneered in the study of stochastic volatility models by Hull, White
(1987), in the case of zero correlation between volatility and the underlying asset,
and by Romano, Touzi (1997) and Willard (1997) in the case of non-zero correlation.
Additionally, as made precise in the next section, we consider a different limiting
sequence, which accounts for the correlation induced terms in the discrete variance.
In the first step, we reduce the dimensionality of the Monte-Carlo scheme by elim-
inating the need to simulate the path of the log-returns. A further simplification,
makes it possible to (even) avoid the simulation of the instantaneous variance path,
by simulating directly from the distribution of the integrated continuous variance.
Most importantly, a variation on the latter approach, termed hereafter the condi-
tional Black-Scholes scheme, leads to an explicit discretization adjustment term —
which is easily computable by standard Fourier transform methods, in any stochas-
tic volatility model with a closed-form expression for the characteristic function of
continuously sampled variance (e.g. Heston (1993) or the 3/2 model in Lewis (2000)
and Carr, Sun (2007)).

An important area which appears to be lacking in the current literature con-
cerns the risk-sensitivities (also known as greeks) of options on discretely sampled
variance. In the context of continuous sampling and the Heston (1993) model, risk-
sensitivities are discussed in Broadie, Jain (2008a). Unlike the case of continuous
sampling, options on discrete variance display sensitivities with respect to the spot
price process (e.g. Delta, Gamma) in the periods between resets. They also display
cross-sensitivities with respect to spot and volatility. In the second part of the pa-
per, we define and illustrate the behavior of the most important risk sensitivities in
the context of discrete sampling.

The remaining of the paper is divided into two parts. The next section is the
main part which develops the theory underlying our proposed numerical schemes
and then provides several numerical examples. The second part analyzes the greeks
of options on discrete variance, with an emphasis on their practical use and inter-
pretation. Proofs not given in the main text, can be found in the appendix.

4.2 Options on discretely sampled variance

In this section we study the magnitude of the discretization effect in valuing
options on realized variance. We start by setting a general stochastic volatility
framework. Let (Bt,Wt)t≥0 be a standard two-dimensional Brownian motion de-
fined on a filtered probability space (Ω,F , {Ft},Q) satisfying the usual conditions.
Assume that the stock price and its instantaneous variance (St, vt)t≥0 satisfy the
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following risk-neutral dynamics under Q:

dSt
St

= (r − δ)dt+
√
vt

(
ρdWt +

√
1− ρ2dBt

)
(4.1)

dvt = a(vt)dt+ b(vt)dWt (4.2)

where a : R+ → R and b : R+ → R are Borel measurable functions such that
the two-dimensional SDE (4.1), (4.2), admits a unique and non-exploding solution
(St, vt)t≥0. The risk free interest rate, dividend yield and correlation parameters are
denoted by r, δ and ρ respectively. As shown in Buehler (2006a), to ensure that the
discounted, and dividend adjusted, process St ·exp(−(r−δ)t) is a true Q-martingale
(and not just a local martingale) we must also assume that the variance diffusion
vt is non-explosive under the measure which takes the asset St as numeraire. A
large number of stochastic volatility models proposed in the literature belong to
this framework. Important examples include Scott (1987), Heston (1993) and the
3/2 model discussed in Lewis (2000) and Carr, Sun (2007).

Consider a finite maturity T > 0 and let 0 = t0 < t1 < t2 < . . . < tn = T be an
equally spaced partition of [0, T ] with step-size ∆ = T

n
. The (annualized) discretely

sampled variance of log(St) over [0, T ] is defined as

RVn =
1

T
·

n∑
i=1

log2

(
Sti
Sti−1

)
. (4.3)

A standard result in stochastic calculus (see, for example, Revuz, Yor (1999))
establishes that, as n→∞, RVn converges in probability to the continuously sam-
pled variance (or quadratic variation) of log(St). Specifically, in our setup we have

plimn→∞RVn = 1
T

[log(St)]T = 1
T

∫ T
0
vtdt, where plim denotes the limit in probabil-

ity. In practice, variance contracts must be specified by using discrete sampling. For
example, a call option on realized variance with maturity T and volatility strike σK
delivers, at time T , the payoff:

V N ·

(
1

T
·

n∑
i=1

log2

(
Sti
Sti−1

)
− σ2

K

)
+

where V N is a constant known as the variance notional; throughout this section, we
set V N = 1. Our goal here is to compare the prices of options on discretely sampled
variance to those of options on quadratic variation. An application of Itô’s lemma
to log(St) gives

d log(St) = (r − δ − vt
2

)dt+
√
vt

(
ρdWt +

√
1− ρ2dBt

)
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from where, each discrete log-return can be written as

log

(
Sti
Sti−1

)
= (r − δ) · T

n
− 1

2

∫ ti

ti−1

vsds+ ρ

∫ ti

ti−1

√
vsdWs +

√
1− ρ2

∫ ti

ti−1

√
vsdBs

for all i ∈ {1, 2, . . . , n}. In what follows we denote by FWt the filtration generated by
the Brownian motion Wt driving the variance diffusion vt; we recall that the process
vt serves to model the (stochastic) instantaneous variance of the asset price. A key

observation is that, conditional on FWT , the log-returns log
(

Sti
Sti−1

)
, i = {1, 2, . . . , n},

form a sequence of independent normally distributed (but not identically) random
variables with means and variances given by:

log

(
Sti
Sti−1

) ∣∣∣∣∣
FWT

∼ N

(
(r − δ) · T

n
− 1

2

∫ ti

ti−1

vsds+ ρ

∫ ti

ti−1

√
vsdWs,

(1− ρ2)

∫ ti

ti−1

vsds

)
. (4.4)

The result in (4.4) follows immediately from the property that the Brownian
integral of any deterministic, locally-bounded function is a Gaussian process (see,
for example, Revuz , Yor (1999)). We note that, conditional on FWT , the continu-

ously sampled variance 1
T

∫ T
0
vtdt is just a constant, whereas the discretely sampled

variance RVn still has a residual randomness driven by Bt. In practice, for typ-
ical parameter values, this residual randomness is not negligible and can lead to
substantially higher prices for options on discretely sampled variance, especially for
maturities less than one year. It is the properties of this residual randomness that
we investigate next.

In what follows, a key result (formulated in Theorem 4.2.2) shows that the
conditional distribution of RVn is asymptotically normal. To establish this result,
we use a generalized version of the central limit theorem (CLT) for triangular arrays
of unequal components. To see why this is necessary, note that for each n ≥ 1, in
the expression of RVn, we have a different sequence of squared log-returns and the
components of each sequence have different variances. Specifically, we shall use the
Lindeberg-Feller generalized CLT (see, for example, Ferguson (1996)) as formulated
in Theorem 4.2.1.

Theorem 4.2.1 (Generalized CLT: Lindeberg-Feller) Let Zn,i, n = 1, 2, . . .
i = 1, 2, . . . , n be a triangular sequence of random variables such that E (Zn,i) = 0,
E
(
Z2
n,i

)
<∞ and for each fixed n = 1, 2, . . . the random variables Zn,1, Zn,2, . . . , Zn,n
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are independent. If the Lindeberg condition is satisfied i.e. for all ε > 0

lim
n→∞

1

s2
n

n∑
i=1

E
(
|Zn,i|2; |Zn,i| > ε · sn

)
= 0 (4.5)

where s2
n =

∑n
i=1E

(
Z2
n,i

)
, then we have the convergence in distribution

Zn,1 + Zn,2 + . . .+ Zn,n
sn

d→ N(0, 1). (4.6)

To verify the Lindeberg condition (4.5), it is usually easier to check the sufficient
condition of Lyapnupov (see, for example, Petrov (1995)). Specifically, if there exits
δ > 0 such that

lim
n→∞

1

s2+δ
n

n∑
i=1

E
(
|Zn,i|2+δ

)
= 0 (4.7)

then the conclusion of the Lindeberg-Feller theorem (4.6) holds. Before we proceed
to Theorem 4.2.2, we remark that related results were derived in Barndorff-Nielsen,
Shephard (2002), and more generally, in Barndorff et al. (2006). Our results differ in
several ways. Firstly, as noted in the introduction, we adopt a conditional approach
(along the lines of Hull, White (1987) and Romano, Touzi (1997)). Secondly, unlike
our version, the elements of the CLT sequence, in both Barndorff-Nielsen, Shephard
(2002) and Barndorff et al. (2006), do not include the correlation induced terms –
specifically, as in µn,i, σ

2
n,i (and then Mn, Σn) defined below. For further reference,

we denote the conditional means and variances of the log-returns in (4.4) by:

µn,i = (r − δ) · T
n
− 1

2

∫ ti

ti−1

vsds+ ρ

∫ ti

ti−1

√
vsdWs

σ2
n,i = (1− ρ2)

∫ ti

ti−1

vsds.

for all n ≥ 1 and i ∈ {1, 2, . . . , n}.

Theorem 4.2.2 Conditional on FWT , the discretely sampled realized variance

RVn =
1

∆ · n
·

n∑
i=1

log2

(
Sti
Sti−1

)
converges in distribution to a normal random variable. More precisely, as n → ∞,
we have

n ·∆
sn

(
RVn −

∑n
i=1 µ

2
n,i + σ2

n,i

n ·∆

)
d→ N(0, 1) (4.8)
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where

s2
n =

n∑
i=1

2σ4
n,i + 4µ2

n,i · σ2
n,i.

Proof Take any α ∈
(

1
3
, 1

2

)
. By the local properties of Brownian paths (see, for

example, Revuz, Yor (1999)), the function h(t) =
∫ t

0

√
vsdWs is Hölder continuous

with index α on [0, T ]. We conclude that there exists a positive constant K1 > 0,
independent of n, such that∣∣∣∣∣

∫ ti

ti−1

√
vsdWs

∣∣∣∣∣ =
∣∣h (ti)− h (ti−1)

∣∣ ≤ K1 ·
∣∣ti − ti−1

∣∣α = K1 ·
Tα

nα

for all n ≥ 1. Similarly, since the function g(t) =
∫ t

0
vsds is Lipschitz continuous on

[0, T ], there exists a positive constant K2 > 0, independent of n, such that∣∣∣∣∣
∫ ti

ti−1

vsds

∣∣∣∣∣ =
∣∣g (ti)− g (ti−1)

∣∣ ≤ K2 ·
∣∣ti − ti−1

∣∣ = K2 ·
T

n

for all n ≥ 1. From the definition of µn,i, we see that for all positive integers n ≥ T ,
the following bound holds:∣∣µn,i∣∣ ≤ ∣∣r − δ∣∣ · T

n
+

1

2
K2 ·

T

n
+ |ρ|K1 ·

Tα

nα

≤
(∣∣r − δ∣∣+

1

2
K2 + |ρ|K1

)
· T

α

nα
= C1 ·

Tα

nα
. (4.9)

Similarly, for σ2
n,i we obtain

σ2
n,i ≤ (1− ρ2) ·K2 ·

T

n
= C2 ·

T

n
. (4.10)

Define the triangular sequence Yn,i = X2
n,i −

(
µ2
n,i + σ2

n,i

)
, where Xn,i = log

(
Sti
Sti−1

)
is the triangular sequence of log-returns. Making use of the conditional normality
of the log-returns Xn,i we obtain (all expectations are conditional on FWT ):

E
(
Y 2
n,i

)
= 2σ4

n,i + 4µ2
n,i · σ2

n,i

E
(
Y 4
n,i

)
= 60σ8

n,i + 240σ6
n,i · µ2

n,i + 48σ4
n,i · µ4

n,i + 4σ2
n,i · µ6

n,i.

The computation of these two expectations follows by the straightforward (but te-
dious) use of the higher moments of the normal distribution. We seek to apply
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the Lindeberg-Feller Theorem 4.2.1 to the sequence Yn,i by verifying the sufficient
condition of Lyapnupov (4.7) for δ = 2. Specifically, we show that

lim
n→∞

1

s4
n

n∑
i=1

E
(
Y 4
n,i

)
= 0

where

s2
n =

n∑
i=1

E
(
Y 2
n,i

)
=

n∑
i=1

2σ4
n,i + 4µ2

n,i · σ2
n,i.

Using inequalities (4.9), (4.10) we have for all positive integers n ≥ T

E
(
Y 4
n,i

)
≤ 60 · C4

2 ·
T 4

n4
+ 240 · C3

2 · C2
1 ·

T 3+2α

n3+2α
+ 48 · C2

2 · C4
1 ·

T 2+4α

n2+4α
+

4 · C2 · C6
1 ·

T 1+6α

n1+6α
≤ C3 ·

T 1+6α

n1+6α
.

where we have used the fact that 1 + 6α < 2 + 4α < 3 + 2α < 4 and T
n
≤ 1.

By a simple application of the classic Cauchy-Schwarz (or, alternatively, Jensen’s)
inequality, we also obtain:

s2
n ≥ 2

n∑
i=1

σ4
n,i ≥

2

n

(
n∑
i=1

σ2
n,i

)2

=
2

n

(
1− ρ2

)2
(∫ T

0

vtdt

)2

=
C4

n

where C4 > 0 does not depend on n. Finally, this gives

1

s4
n

n∑
i=1

E
(
Y 4
n,i

)
≤

n · C3 · T
1+6α

n1+6α

C2
4

n2

=
C3 · T 1+6α

C2
4

· 1

n6(α− 1
3)
→ 0 as n→∞

where we have used that α > 1
3
. By the Lindeberg-Feller Theorem 4.2.1 we conclude

n ·∆
sn

(
RVn −

∑n
i=1 µ

2
n,i + σ2

n,i

n ·∆

)
=

∑n
i=1 Yn,i
sn

d→ N(0, 1).

�

In practical terms, Theorem 4.2.2 implies that, conditional on the realization
of the instantaneous variance path vt, t ∈ [0, T ], the distribution of the discretely
sampled variance RVn can be approximated with a normal N (Mn,Σ

2
n) where

Mn =

∑n
i=1 µ

2
n,i + σ2

n,i

n ·∆

Σ2
n =

s2
n

n2 ·∆2
.
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Basic properties of normal random variables give that (conditional on the variance
path vt, t ∈ [0, T ]), the (undiscounted) value of the discrete variance call can be
approximated by

Cn (σK) = Σn · φ
(
Mn − σ2

K

Σn

)
+
(
Mn − σ2

k

)
·N
(
Mn − σ2

K

Σn

)
(4.11)

where φ(·) and N(·) denote the density and distribution functions of the standard
normal law. The results derived so far indicate the following method to price options
on discrete variance by eliminating the need to simulate paths of the spot price St:
for each simulated instantaneous variance path, compute the conditional option price
by (4.11) and, finally, average over these conditional prices. Later in the section, we
explore ways to further simplify this conditional scheme by eliminating the need to
compute the quantities µn,i and σ2

n,i for each variance path. The performance of the
simplified schemes will be illustrated numerically.

Before continuing the analysis of the conditional pricing schemes, we remark
that, on the purely theoretical front, it is possible to draw further on the tools of the
generalized CLT to establish bounds on the approximation (4.11). In particular, we
can use the following generalization of the Berry-Essen inequalities due to Bikelis
(1966), and which can also be found in Petrov (2007).

Theorem 4.2.3 (Bikelis) Assume Z1, Z2, . . . , Zn are independent random vari-
ables with mean zero and E (|Zi|3) < ∞. Let s2

n =
∑n

i=1 E (Z2
i ) and Ln = s−3

n ·∑n
i=1E (|Zi|3). If Fn(x) denotes the distribution function defined as

Fn(x) = P

(∑n
i=1 Zi
sn

≤ x

)
then, for any x ∈ R, we have∣∣Fn(x)−N(x)

∣∣ ≤ A · Ln
(1 + |x|)3

where N(·) is the standard normal CDF and A is an absolute positive constant.

By making use of Theorem 4.2.3, we can provide a bound on the difference

between the conditional variance call price C(σK) = E
[

(RVn − σ2
K)+

∣∣FWT ] and the

conditional normal approximation Cn(σK) in (4.11).

Proposition 4.2.4 If σ2
K ≤Mn, then∣∣∣C(σK)− Cn(σK)

∣∣∣ ≤ A · Σn · Ln

2
(

1 +
Mn−σ2

K

Σn

)2 .
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If σ2
K > Mn, then

∣∣∣C(σK)− Cn(σK)
∣∣∣ ≤ A · Σn · Ln ·

1− 1

2
(

1 +
σ2
K−Mn

Σn

)2

 .

where Ln = s−3
n ·

∑n
i=1 E (|Yn,i|3) with Yn,i as in Lemma 5.1 in Appendix.

Proof See Appendix. �

The standard and most basic model which fits in our framework is the Black-
Scholes (1973) model, which will prove useful in our simplified conditional pricing
schemes. In the standard Black-Scholes framework, we set vt = σ2 (a positive
constant) and the log-returns now become i.i.d. normal:

log

(
Sti
Sti−1

)
∼ N

((
r − δ − σ2

2

)
· T
n
, σ2 · T

n

)
which gives that the distribution of RVn satisfies

RVn
d
=
σ2

n
·

n∑
i=1

(
r − δ − σ2

2

σ
·
√
T

n
+ Zi

)2

where Zi, with 1 ≤ i ≤ n, here denotes a sequence of independent standard normal

variables. We obtain that RVn
d
= σ2

n
·χ′ (n, λ) where χ

′
(n, λ) denotes the non-central

chi-square distribution with n degrees of freedom and non-centrality parameter λ
given by:

λ =

(
r − δ − σ2

2

)2

T

σ2
. (4.12)

A well-known result in mathematical statistics (see, for example, the classic treat-
ment in Muirhead (2005)) establishes the following convergence in distribution to a
standard normal:

χ
′
(n, λ)− (n+ λ)√

2 (n+ 2λ)

d→ N(0, 1)

as the number of degrees of freedom n → ∞. Using the value of λ from (4.12),
simple algebraic computations show that the distribution of RVn converges to a
normal with mean and variance given by:

N

σ2 +

(
r − δ − σ2

2

)2

T

n
,
2σ4

n
+

4
(
r − δ − σ2

2

)2

σ2T

n2

 . (4.13)
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This is a special case of our more general result in Theorem 4.2.2 and is obtained

by using that, in the standard Black-Scholes model, we have µn,i =
(
r − δ − σ2

2

)
T
n

and σ2
n,i = σ2 · T

n
which give:

Mn = σ2 +

(
r − δ − σ2

2

)2

T

n

Σn =

√
2σ4

n
+

4
(
r − δ − σ2

2

)2
σ2T

n2
.

In the Black-Scholes model it is possible to derive an exact closed-form formula for
the price of options on discrete variance. We formulate this result in Lemma 4.2.5
and note that it will be used in our conditional Black-Scholes scheme introduced
later.

Lemma 4.2.5 In the Black-Scholes model with constant volatility σ, we have

EQ (RVn − σ2
K

)
+

= σ2 ·
(

1− Fχ′
(
σ2
K · n
σ2

;λ, n+ 2

))
+
σ2 · λ
n
·
(

1− Fχ′
(
σ2
K · n
σ2

;λ, n+ 4

))
−σ2

K ·
(

1− Fχ′
(
σ2
K · n
σ2

;λ, n

))
(4.14)

where Fχ′ (·;λ, n) denotes the non-central chi-square CDF with n degrees of freedom
and non-centrality parameter λ; the value of λ is given by (4.12).

Proof See Appendix. �.

We now return to the general stochastic volatility case and seek to derive fur-
ther simplified versions of the conditional pricing scheme implied by Theorem 4.2.2
and approximation (4.11). We note that, in a separate study, Sepp (2011) explores
a different approach to adjusting for the discretization effect. Specifically, the dis-
cretization effect is treated independently by making the following approximation,
in distribution:

RVn
d' 1

T

∫ T

0

vtdt− EQ
(

1

T

∫ T

0

vtdt

)
+RV BS

n (4.15)

where RV BS
n is the discretely sampled variance in an independent Black-Scholes

model with time-dependent volatility σ(t)2 = EQ(vt). Given that, in a Black-Scholes
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model, the Fourier-Laplace transform of discretely sampled variance is easily ob-
tained in closed-form and using the independence assumption, we can approximate
the transform of RVn:

L(λ) = EQ (e−λ·RVn) ' eλ·M · LQV (λ) · LRV BSn
(λ)

where M = EQ
(

1
T

∫ T
0
vtdt

)
and LQV (λ) is the transform of continuously sampled

variance. As in several stochastic volatility models LQV (λ) is known in closed-form,
this approach is attractive from the standpoint of using semi-analytical transform
techniques and provides good accuracy for near the at-the-money region.

We will propose an alternative, transform-based approach, which does not rely
on an independence assumption. The advantage will be that it leads to improved
accuracy for out-of-the-money options. The magnitude of the discretization effect
depends on the realization of continuously sampled variance; the smaller (larger)
the latter, the smaller (larger) the discretization effect. Ignoring this dependence,
will tend to overprice downside variance puts and underprice upside variance calls.

The following lemma will prove useful in our calculations. It was given in
Barndorff-Nielsen, Shephard (2002), under the assumption of a variance process
of finite variation. This would be unsuitable for our dynamics (4.2) of vt but,
fortunately, the assumption can be removed and, hence, we modify its statement
accordingly.

Lemma 4.2.6 Let (vt)t≥0 be a process which is a.s. locally bounded and has at most
a countable number of discontinuity points on every finite interval. Then, for any
fixed T > 0 and positive integer k ∈ N\{0} we have

nk−1

T k−1
·

n∑
i=1

(∫ iT
n

(i−1)T
n

vtdt

)k

→
∫ T

0

vkt dt a.s.

as n→∞.

Proof The proof is identical to Barndorff-Nielsen, Shephard (2002) except that we
do not require the process (vt)t≥0 to be of locally bounded variation. The argument
only requires that vkt be (a.s.) Riemann integrable on [0, T ], a condition which is
satisfied under our assumptions for Lemma 4.2.6 (by, for example, Theorem 6.10 in
Rudin (1976)).

�

Recall that, by Theorem 4.2.2, the conditional randomness of RVn satisfies
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(
RVn

∣∣FWT −Mn

)
/Σn

d→ N(0, 1) where

Mn =

∑n
i=1 µ

2
n,i + σ2

n,i

n ·∆

Σ2
n =

s2
n

n2 ·∆2
=

∑n
i=1 2σ4

n,i + 4µ2
n,i · σ2

n,i

n2 ·∆2
.

The simplified conditional schemes will set the variance-spot correlation ρ to
zero. It turns out that setting ρ = 0 has little material impact on the prices of
discrete variance options. To see this intuitively, note that, in the limit of continuous
sampling, the correlation parameter plays no role in the price of variance options. In
the numerical examples, we will see that for typical market parameters with strongly
negative correlation, the simplified schemes perform very well.

We next want to apply Lemma 4.2.6 to obtain an approximation for Mn

and Σ2
n. Fix the following notations for real sequences (an)n≥1 and (bn)n≥1: write

an = o(bn) iff limn→∞ |an/bn| = 0 and an = O(bn) iff lim supn→∞ |an/bn| < ∞.
Firstly, observe that our instantaneous variance process (vt)t∈[0,T ], having a.s. con-
tinuous paths, clearly satisfies the assumptions of Lemma 4.2.6. Hence, letting
Ik = 1

T

∫ T
0
vkt dt and recalling that, for ρ = 0, σ2

n,i =
∫ ti
ti−1

vtdt, we obtain by Lemma
4.2.6:

1

T

n∑
i=1

σ4
n,i =

T

n
· I2 + o

(
1

n

)
(4.16)

1

T

n∑
i=1

σ6
n,i =

T 2

n2
· I3 + o

(
1

n2

)
. (4.17)

Also, we note that 1
T

∑n
i=1 σ

2
n,i = I1. Expanding µ2

n,i, we have:

µ2
n,i = (r − δ)2 · T

2

n2
− (r − δ)T

n
·
∫ ti

ti−1

vtdt+
1

4

(∫ ti

ti−1

vtdt

)2

= (r − δ)2 · T
2

n2
− (r − δ)T

n
· σ2

n,i +
1

4
σ4
n,i

and, writing T for n ·∆, we obtain

Mn =
1

T

n∑
i=1

µ2
n,i +

1

T

n∑
i=1

σ2
n,i

= (r − δ)2T

n
− (r − δ)T

n
I1 +

1

4

T

n
I2 + o

(
1

n

)
+ I1

= I1 +O

(
1

n

)
(4.18)
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We next apply a similar approach to Σ2
n. Using again the relations (4.16) , (4.17)

obtained by Lemma 4.2.6, simple algebra gives:

Σ2
n =

2

T 2

n∑
i=1

σ4
n,i +

4

T 2

n∑
i=1

µ2
n,i · σ2

n,i

=
2

n
· I2 + o

(
1

n

)
+ 4

(
(r − δ)2 · T

n2
I1 − (r − δ) T

n2
I2 +

1

4
· T
n2
I3 + o

(
1

n2

))
=

2

n
· I2 + o

(
1

n

)
(4.19)

From (4.18) and (4.19), we have obtained the following result for the conditional
distribution of RVn:

RVn

∣∣∣FWT ∼ N

(
I1 +O

(
1

n

)
,

2

n
· I2 + o

(
1

n

))
(4.20)

The Simplified Conditional Normal Scheme. Keeping the leading order
terms in (4.20), we obtain the approximation, in distribution:

RVn

∣∣∣FWT ∼ N

(
1

T

∫ T

0

vtdt,
2

n
· 1

T

∫ T

0

v2
t dt

)
. (4.21)

By virtue of relation (4.21), we formulate the simplified conditional normal (SCN)
pricing scheme as follows: (a) simulate a variance path vt, t ∈ [0, T ] and compute I1

and I2, (b) price the conditional variance call by setting Mn = I1 and Σn =
√

2
n
· I2

in formula (4.11) and (c) average conditional prices by repeating (a), (b). Note that
this approach, while no longer requiring to compute the quantities µn,i and σ2

n,i, still
requires the simulation of the entire variance path vt on [0, T ] in order to allow us
to extract both I1 and I2.

The Simplified Conditional Black-Scholes Scheme. Next, we present a further
simplification and link it to discrete variance in the Black-Scholes model. By Jensen’s
inequality I2 ≥ I2

1 and hence we expect that by using the approximation

RVn

∣∣∣FWT ∼ N

(
1

T

∫ T

0

vtdt,
2

n

(
1

T

∫ T

0

vtdt

)2
)

(4.22)

may cause some underpricing of options on realized variance (at least, relative to
the SCN scheme). On the other hand, this approximation will make it possible to
simulate just from the law of integrated continuous variance I1 = 1

T

∫ t
0
vtdt, without

the need to generate the entire variance path vt on [0, T ]. We shall observe, in the
numerical examples, that such underpricing is usually small.
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In fact, it can be shown that approximation (4.22) is asymptotically equiva-
lent to assuming that the conditional pricing model is Black-Scholes. Specifically,
conditional on a realization of the integrated continuous variance 1

T

∫ T
0
vtdt, suppose

the model for the underlying price is Black-Scholes with variance parameter:

σ2 =
1

T

∫ T

0

vtdt. (4.23)

We have seen that, in a Black-Scholes model, the discretely sampled variance is
non-central chi-square distributed χ

′
(n, λ). In turn, keeping only the leading order

terms in (4.13), we have that χ
′
(n, λ) is approximately N

(
σ2, 2

n
σ4
)
. Replacing the

value of σ2 from (4.23), we see that the conditional Black-Scholes approach leads,
in fact, to approximation (4.22).

By virtue of relation (4.22), we formulate the simplified conditional Black-
Scholes (SCBS) scheme as follows: (a) simulate from the law of integrated continuous

variance 1
T

∫ T
0
vtdt, (b) price the conditional variance call by setting σ2 = I1 in

the exact Black-Scholes formula of Lemma 4.2.5, (c) average conditional prices by
repeating (a), (b). We note that the SCBS scheme does not require to simulate the
entire path of vt, t ∈ [0, T ].

Pursuing further the SCBS scheme, it is possible to derive a simple discretiza-
tion adjustment requiring no Monte-Carlo simulation. Specifically, under the as-
sumption (4.22) and provided the continuously sampled variance I1 posses a Fourier
transform in closed-form, we next derive a leading-order discretization adjustment
based on a simple Fourier inversion2. In the following, we regard the (undiscounted)
prices of options on realized variance as functions of the variance strike V = σ2

K and
define Cn, C : R→ R≥0 by

Cn
(
V
)

= 1V≥0 · E
(
RVn − V

)
+

C
(
V
)

= 1V≥0 · E
(
I1 − V

)
+

where I1 = 1
T

∫ T
0
vtdt and, under the SCBS scheme (4.22), RVn

∣∣FWT ∼ N
(
I1,

2·I2
1

n

)
.

Assuming E(RV 2
n ) < ∞ and E(I2

1 ) < ∞, we first check that both functions Cn(·)
and C(·) ∈ L1(R), i.e. are integrable on R. For example, we have for Cn(V):∫ ∞

−∞

∣∣Cn (V)
∣∣dV =

∫ ∞
0

E (RVn − V)+ dV

= E
∫ RVn

0

(RVn − V) dV =
1

2
· E
(
RV 2

n

)
<∞

2We are grateful to an anonymous referee for explicitly steering us in this direction.

103



CHAPTER 4. DISCRETIZATION EFFECT AND GREEKS

where we interchanged integration and expectation as the integrand is non-negative;
an identical argument holds for C(V). Therefore, both functions will have well

defined Fourier transforms, hereafter denoted by Ĉn(u) and Ĉ(u), respectively. The
following formula, which first appeared in Carr et al. (2005), can be established for
the Fourier transforms:

Ĉn(u) =

∫ ∞
−∞

eiuV · Cn(V)dV =
1− ϕn(u)

u2
− i · E(RVn)

u

Ĉ(u) =

∫ ∞
−∞

eiuV · C(V)dV =
1− ϕ(u)

u2
− i · E(I1)

u

where ϕn(u) = E
(
eiuRVn

)
and ϕ(u) = E

(
eiuI1

)
denote the Fourier transforms of

RVn and I1, respectively.

The key idea is to now consider the difference between the price of options
on discrete variance and the price of options on continuous variance by defin-
ing the new function Λ (V) = Cn(V) − C(V) ∈ L1 (R). Using that E (RVn) =

E
(
E
(
RVn

∣∣∣FWT )) = E (I1) and by the linearity of the Fourier transform, we obtain

Λ̂(u) =

∫ ∞
−∞

eiuV · Λ(V)dV = Ĉn(u)− Ĉ(u) =
ϕ(u)− ϕn(u)

u2
.

Using that

ϕn(u) = E
(
eiuRVn

)
= E

(
E
(
eiuRVn

∣∣FWT )) = E
(
eiuI1−

u2I21
n

)
we obtain

Λ̂(u) = E

eiuI1 · 1− e−
u2I21
n

u2

 .

Expanding the second term of the product under the expectation and keeping the
term of order O

(
1
n

)
, we can write

Λ̂(u) = E
(
eiuI1 · I

2
1

n

)
+O

(
1

n2

)
:= Λ̂1(u) +O

(
1

n2

)
. (4.24)

Making use again of the assumption E(I2
1 ) <∞, we have that ϕ(u), the characteristic

function of I1, is twice continuously differentiable with respect to u and ∂2ϕ(u)
∂u2 =

−E
(
eiuI1 · I2

1

)
. This gives that the leading term Λ̂1(u) in (4.24) can be written as

Λ̂1(u) = − 1

n
· ∂

2ϕ(u)

∂u2
.
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4.2. OPTIONS ON DISCRETELY SAMPLED VARIANCE

We now proceed to determine the discretization adjustment term that results from
considering only the term Λ̂1(u) in the expansion (4.24). More precisely, we compute

Λ1(V) :=
1

2π

∫ ∞
−∞

e−iuV · Λ̂1(u)du =
−1

2π

∫ ∞
−∞

e−iuV · 1

n
· ∂

2ϕ(u)

∂u2
du

=
−1

2πn
·

[
e−iuV · ∂ϕ(u)

∂u

∣∣∣∣∣
∞

−∞

+

∫ ∞
−∞

iV · e−iuV · ∂ϕ(u)

∂u
du

]

=
−1

2πn
·

[
e−iuV · ∂ϕ(u)

∂u

∣∣∣∣∣
∞

−∞

+ iV · e−iuV · ϕ(u)

∣∣∣∣∣
∞

−∞

−
∫ ∞
−∞
V2 · e−iuV · ϕ(u)du

]

=
V2

n
· 1

2π

∫ ∞
−∞

e−iuV · ϕ(u)du

where both boundary terms, resulting from the integration by parts, will vanish by
a simple application of the classical Riemann-Lebesgue lemma (see, for example,
Feller (1991)). In conclusion, we have obtained

Λ1(V) =
V2

n
· 1

2π

∫ ∞
−∞

e−iuV · ϕ(u)du. (4.25)

We notice that the computation of the discretization adjustment term Λ1(V) involves
a simple Fourier inversion of ϕ(u). Alternatively, the discretization adjustment can
be written more compactly as

Λ1(V) =
V2

n
· q (V) ≥ 0 (4.26)

where q (V) denotes the density of the continuously sampled variance I1 = 1
T

∫ T
0
vtdt.

Both representations (4.25) and (4.26) provide a remarkably simple formula for the
leading order discretization adjustment term.

We note that, as expected, the discretization adjustment is non-negative re-
flecting that options on discrete variance are more expensive than options on contin-
uous variance. Therefore, if we work in a stochastic volatility model which admits
a closed-form solution for ϕ(u) (e.g. Heston (1993) or the 3/2 model in Carr, Sun
(2007)), we first price options on continuously sampled variance using standard
Fourier methods from the literature (e.g. Sepp (2008)) and then add the positive
adjustment term (4.25), which is also computable by simple Fourier inversion.

In the following numerical examples, we consider a standard Heston (1993)
parameter set from the literature, namely, the one estimated in the study of Bakshi,
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CHAPTER 4. DISCRETIZATION EFFECT AND GREEKS

Cao, Chen (1997) for the S&P500 index. The same set is also used in Gatheral (2006)
in pricing options on realized variance. The estimated parameters are (v0, k, θ, ε, ρ) =
(18.65%2, 1.15, 18.65%2, 0.39,−0.64).
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Figure 4.1: Comparison of the independent composition approach (solid gray) and
the simple Fourier adjustment (4.25) (solid black) for discrete variance options with
3 months (top) and 6 months (bottom) time to maturity. Bakshi, Cao, Chen (1997)
Heston parameters (v0, k, θ, ε, ρ) = (18.65%2, 1.15, 18.65%2, 0.39,−0.64).

In all the figures of this section, the prices of options on variance are expressed
as implied volatilities-of-variance (VoV) across a wide range of volatility strikes and
the following conventions apply: (1) the dashed-gray curve depicts the prices cor-
responding to continuous sampling, computed by semi-analytical transform meth-
ods (see Carr, Madan (1999), Lee (2004) and Sepp (2008)), (2) the dashed-black
curve depicts the prices corresponding to (daily) discrete sampling, computed by
full Monte-Carlo simulation of the SDE (4.1), (4.2) by the technique in Andersen
(2008); the simulation technique in Andersen (2008) combines the exact simulation
scheme of Broadie, Kaya (2006) with a numerically efficient local moment-matching
method, and (3) the solid curves depict the various approximations developed in
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Figure 4.2: Comparison of the conditional Black-Scholes (solid gray) and simplified
conditional normal (solid black) methods for discrete variance options with 3 months
(top) and 6 months (bottom) time to maturity. Bakshi, Cao, Chen (1997) Heston
parameters (v0, k, θ, ε, ρ) = (18.65%2, 1.15, 18.65%2, 0.39,−0.64).

the paper.

Figure (4.1) compares two Fourier based methods, namely, the independent
composition (IC) method (4.15) (solid gray) and the simple Fourier adjustment
method given by (4.25). The top panel of Figure (4.1) shows the results for a
maturity of 3 months. The average difference between the discrete and continuous
VoV smiles, across the strike range, was 7.4%. As expected, we observe that the
independence assumption, on which the IC method is based, performs well in the
at-the-money region but will tend to overprice downside puts and underprice upside
calls. The alternative Fourier method, derived in the previous section, behaves well
across a wide strike range, with an average error of 1.34% . A similar pattern can
be observed for the 6 months maturity (bottom panel).
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Next, we compare the simplified conditional normal (SCN) and conditional
Black-Scholes (SCBS) methods. The results are shown in Figure (4.2), where the
solid black curves depict the SCN method and the solid gray curves depict the SCBS
method. As anticipated in the main text, the conditional Black-Scholes method will
tend to provide lower prices of discrete variance options than the SCN scheme.
Indeed, the SCBS volatility-of-variance smile was an average of 1.8% points below
the actual discrete variance smile; this compares well to the average error of 1.6%
of the SCN method. We observe a similar behavior also for the 6-months maturity,
shown in the bottom panel of Figure (4.2).

4.3 Greeks of options on realized variance

We found that present literature provides limited treatment of the risk manage-
ment sensitivities, commonly known as ’greeks ’, for options on realized variance, in
general, and options on discrete variance, in particular. In this section, we aim to
identify and define the relevant greeks for options on variance, with a focus on their
practical use and interpretation. We begin with the more familiar (and simpler)
case of continuous sampling. A contract on continuously sampled variance with ar-

bitrary, integrable payoff Ψ
(∫ T

0
vudu

)
at time T , has value at time t ∈ [0, T ] given

by

V

(
t, vt,

∫ t

0

vudu

)
= e−r(T−t) · EQ

(
Ψ

(∫ T

0

vudu

) ∣∣∣Ft)
where the value function V (t, v, q) satisfies the PDE

Vt + a(v) · Vv + v · Vq +
1

2
b2(v) · Vvv − r · V = 0 (4.27)

with terminal condition

V (T, v, q) = Ψ (q) . (4.28)

We note that, with continuous sampling, the value of any variance derivative depends
only on the dynamics of vt and has no connection to St. Therefore, hedging such
a contract requires to hedge only against movements in the instantaneous variance
vt. However, the process vt is not the price of a traded instrument and hence the
hedging of, say, an option on variance would be accomplished by trading another,
simpler, variance contract such as a variance swap. Let the value function of the
chosen hedge instrument be denoted V h.
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4.3. GREEKS OF OPTIONS ON REALIZED VARIANCE

To understand the relevant greeks from a practical risk-management perspec-
tive, let us assume the true (and unknown) dynamics of vt, under the real-world
measure P, are given by

dvt = αtdt+ βtdW
P
t

where αt, βt are unknown, integrable processes and W P
t is a standard P-Brownian

motion. Consider a portfolio Π consisting of 1 unit of V and −∆ units of V h. Using
Itô’s lemma and the PDE (4.27) satisfied by both V and V h, we obtain:

dΠ = dV −∆ · dV h = r
(
V −∆ · V h

)
dt+

1

2

(
β2
t − b2(vt)

)
·
(
Vvv −∆ · V h

vv

)
dt

+
(
Vv −∆ · V h

v

)
· (dvt − a(vt)dt) .

To make the portfolio Π instantaneously risk-free, we observe that the correct hedge
ratio ∆h is

∆h =
Vv

(
t, vt,

∫ t
0
vudu

)
V h
v

(
t, vt,

∫ t
0
vudu

) (4.29)

as was obtained also by Broadie, Jain (2008a); for a more general version, see Buehler
(2006). To the extent that the actual volatility of variance βt differs from the model
b(vt), we see that the portfolio Π will also experience the so-called ’bleed’ term:

1

2

(
β2
t − b2(vt)

)
·
(
Vvv −∆h · V h

vv

)
dt.

Therefore, the dealer hedging a position in variance options must also monitor the
variance gamma Vvv, known in practice as the Volga3.

From a practical perspective, expressing the greeks with respect to instanta-
neous variance is unnatural, since vt is not a traded quantity. In our opinion, a
better alternative is to report greeks with respect to the square root of fair variance.
Specifically, let K2(t, vt;T ) denote the fair variance of maturity T :

K2(t, vt;T ) =
1

T − t
EQ
(∫ T

t

vudu
∣∣∣Ft) .

The major advantage of K(t, vt;T ) is that, at any time t, it is an observable
model-free quantity, computable from the prices of vanilla options. In what fol-
lows, we call K(t, vt;T ) the fair volatility (although it should not be mistaken for

3 The name is a shorthand from ’Volatility Gamma’, measuring the second order sensitivity
w.r.t. volatility.
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1
T−tE

Q
(√∫ T

t
vudu

∣∣∣Ft), which is a model-dependent quantity). For any variance

contract V in the maturity bucket T , we propose to define Vega as:

Vega
d
=
Vv

(
t, vt,

∫ t
0
vudu

)
Kv(t, vt)

. (4.30)

This has the intuitive interpretation as the change in the value of the contract per
unit change in fair volatility. A dealer looking to hedge with instrument V h, simply
takes the ratio of the two contracts’ Vegas, in order to arrive at the correct hedge
ratio:

∆h =
Vega

Vegah
=
Vv

(
t, vt,

∫ t
0
vudu

)
V h
v

(
t, vt,

∫ t
0
vudu

)
as obtained in (4.29). Similarly, we propose the definition of Volga as

Volga
d
=

Vegav

(
t, vt,

∫ t
0
vudu

)
Kv(t, vt)

(4.31)

which will measure the change in Vega per unit change in fair volatility of maturity
T .

In the case of contracts on discretely sampled variance, in addition to Vega
and Volga, intra-fixing4 sensitivities with respect to spot price St arise. Let the
current time t ∈ [tk, tk+1) with k = 0, 1, . . . , n − 1. The realized variance RVn can
be decomposed as:

RVn =
1

∆ · n
·

n∑
i=1

log2

(
Sti
Sti−1

)
=
k

n
· 1

∆ · k
·

k∑
i=1

log2

(
Sti
Sti−1

)
+

1

∆ · n
·
(

log

(
St
Stk

)
+ log

(
Stk+1

St

))2

+
n− k − 1

n
· 1

∆ · (n− k − 1)
·

n∑
i=k+2

log2

(
Sti
Sti−1

)
.

If we let RVk denote the variance realized up to, and including, fixing k :

RVk =
1

∆ · k
·

k∑
i=1

log2

(
Sti
Sti−1

)
4In practice, the discrete price observations are usually referred to as resets or fixings.

110



4.3. GREEKS OF OPTIONS ON REALIZED VARIANCE

and, similarly, FVk+1 the future realized variance over [tk+1, tn] :

FVk+1 =
1

∆ · (n− k − 1)
·

n∑
i=k+2

log2

(
Sti
Sti−1

)

we can rewrite the realized variance RVn as

RVn =
k

n
· RVk +

1

∆ · n
·
(

log

(
St
Stk

)
+ log

(
Stk+1

St

))2

+
n− k − 1

n
· FVk+1.

We note the presence of the intra-fixing term

1

∆ · n
·
(

log

(
St
Stk

)
+ log

(
Stk+1

St

))2

which will give rise to intra-fixing Delta and Gamma with respect to St. To see
this, consider a contract on realized variance, with integrable payoff Ψ (RVn), whose
value function on [tk, tk+1) will be denoted by Vk:

Vk(t, vt, St) = e−r(T−t) · EQ

[
Ψ

(
k

n
· RVk +

1

∆ · n
·
(

log

(
St
Stk

)
+ log

(
Stk+1

St

))2

+
n− k − 1

n
· FVk+1

)∣∣∣∣∣Ft
]
.

Note that, in our stochastic volatility framework (4.1)-(4.2), the distributions of

log
(
Stk+1

St

)
and FVk+1 do not depend on the current spot price St. Their distribution

depends only on the current value of the pair (t, vt). The variable St arises in the

function Vk only through the presence of the term log
(
St
Stk

)
inside Ψ(·). Hence,

unlike the case of continuously sampled variance, the dealer will have an explicit
Delta and Gamma exposure with respect to St during each intra-fixing period.

A simple, but illuminating, example is that of a variance swap. Without loss
of generality, consider a zero-strike variance swap contract which pays RVn at time
T , hence Ψ(RVn) = RVn. Its value function at time t ∈ [tk, tk+1) is

Vk(t, vt, St) = e−r(T−t) · EQ

[
k

n
· RVk +

1

∆ · n
·
(

log

(
St
Stk

)
+ log

(
Stk+1

St

))2

+
n− k − 1

n
· FVk+1

∣∣∣∣∣Ft
]

111



CHAPTER 4. DISCRETIZATION EFFECT AND GREEKS

or

Vk(t, vt, St) = e−r(T−t) ·

[
k

n
· RVk +

1

∆ · n
· log2

(
St
Stk

)
+

+
2

∆ · n
· log

(
St
Stk

)
·

(r − δ)(tk+1 − t)−
EQ
(∫ tk+1

t
vudu

∣∣∣Ft)
2

+

+
1

∆ · n
· EQ

(
log2

(
Stk+1

St

) ∣∣∣Ft)+
n− k − 1

n
· EQ

(
FVk+1

∣∣∣Ft)].
Recalling that in our stochastic volatility framework (4.1)-(4.2), the distributions of

log
(
Stk+1

St

)
and FVk+1 do not depend on the current spot price St, we have

∂Vk
∂S

(t, vt, St) = e−r(T−t) ·

[
2

∆ · n
· log

(
St
Stk

)
· 1

St
+ (4.32)

+
2

∆ · n
· 1

St
·

(r − δ)(tk+1 − t)−
EQ
(∫ tk+1

t
vudu

∣∣∣Ft)
2

]

and

∂2Vk
∂S2

(t, vt, St) = e−r(T−t) ·

[
2

∆ · n
·
(

1

S2
t

− 1

S2
t

· log

(
St
Sk

))
− (4.33)

− 2

∆ · n
· 1

S2
t

·

(r − δ)(tk+1 − t)−
EQ
(∫ tk+1

t
vudu

∣∣∣Ft)
2

].
Finally, before proceeding to the numerical examples, we note that in the case

of discrete sampling, a cross-sensitivity with respect to spot and volatility arises.
The Vega of the product will change as the spot price St changes, a sensitivity
known as Vanna. Specifically, the Vanna will be defined as:

Vanna =
∂Vega

∂S
(t, vt, St) (4.34)

measuring the change in Vega per unit change in spot price.

We next illustrate how the greeks behave for an option on discrete variance
and for a variance swap. Specifically, we consider a 3-months at-the-money call on
variance, with daily sampling (∆ = 1

252
), and its corresponding variance swap. The
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Figure 4.3: Value of 3-months call option on discrete variance with volatility strike
σK = 18.65% as a function of spot price St and 3-months fair volatility K(t, vt;T ).
Black-dot : Value of the option of 2.04% at spot St = 1 and fair volatility 18.65%.

stochastic volatility model used is Heston (1993) with Bakshi, Cao, Chen (1997)
parameters (v0, k, θ, ε, ρ) = (18.65%2, 1.15, 18.65%2, 0.39,−0.64). We denote the
initial fixing S0 = St0 = 1 and set the current time t = ∆

2
i.e the middle of the

first intra-fixing period. The fair variance for the maturity T = 0.25 is 18.65%2 and
our volatility strike is σK = 18.65%. To aid in the interpretation of the numerical
results, we take a vega notional V = 1 which is equivalent to taking the variance
notional V N = 1

2·18.65%
= 2.68.

As a first step, we plot in Figure (4.3) the value function for our call on variance
as a function of current spot and current fair volatility. For a spot price St = 1 and
fair volatility 18.65%, the value of the option is 2.04% (black dot). We notice that,
indeed, the value of the option depends both on spot and fair volatility and that it
is convex in both variables. In fact, the shape and behavior of most of the following
greeks can be easily traced back to the value function plot in Figure (4.3).

Figure (4.4) plots the spot-price sensitivities (Delta and Gamma) of the vari-
ance call and its underlying variance swap. It is very important to carefully focus
on the logic of the results shown in Figure (4.4). As intuitively expected, when the
current spot St is at the value of the previous fixing St0 = 1, the Delta of both
the variance call and the swap should be (close to) zero, as seen in the top panel
of Figure (4.4). We remark that, while Delta is indeed very close to zero, it is not
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Figure 4.4: (Top) : Delta of variance call (solid black) and variance swap (dashed
gray). (Bottom): Gamma of variance call (solid black) and variance swap (dashed
gray).

necessarily exactly zero. To see this, recall the earlier example of the variance swap
with Delta given by (4.32). The main term in the delta, namely

e−r(T−t) · 2

∆ · n
· log

(
St
Stk

)
· 1

St

will be exactly zero, for St = St0 (k = 0, in our case) but, strictly mathematically,
there is also the (usually very small) non-zero residual

e−r(T−t) · 2

∆ · n
· 1

St
·

(r − δ)(tk+1 − t)−
EQ
(∫ tk+1

t
vudu

∣∣∣Ft)
2

 .

Note that the delta of both instruments is positive when St > St0 and negative when
St < St0 . This agrees with intuition : if spot has moved higher from the previous
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fixing, both contracts gain if spot increases still higher and, if spot has moved lower
from the previous fixing, both contracts gain if spot decreases further. The Delta
of the call changes more slowly than that of the swap near St0 but, if the move in
spot is large enough, it will converge to the delta of the swap. This occurs because,
with a large enough move in spot, the variance call becomes likely to finish in the
money and, hence, it must resemble its underlying variance swap.

We can see, in the bottom panel of Figure (4.4), the Gamma of the swap
decreasing with the level of spot, reflecting the fact that, the higher the spot price
St, the same absolute move in St generates a smaller (in absolute value) log-return
and hence less Gamma profits for the swap. In fact, in the neighborhood around
St0 , the Gamma of the swap will decrease like 1

S2
t

as can be seen from the main term

in (4.33), with k = 0:

e−r(T−t) · 2

∆ · n
· 1

S2
t

·
(

1− log

(
St
St0

))
.

Close to the previous fixing, the Gamma of the variance call is below that of its
underlying variance swap. In our case, with the call at-the-money, its Gamma is
just below half of that of the swap. It would be still lower if the option was out-
of-the-money, and closer to that of the swap if in-the-money. As in the case of the
Delta, we notice that, if the spot price St makes a large swing from the previous
fixing St0 , the Gamma of the call will approach that of the swap. Interestingly, in
the interim, the Gamma of the call will spike above that of the swap, as the Delta
of the call (see top panel of Figure (4.4)) catches up to that of the swap.

Figure (4.5) plots the Vega and Volatility Gamma (Volga) of the variance call
and its underlying variance swap. As expected, the Vega of the swap is initially at
1 (by choice of the Vega notional) and is (approximately) linear in fair volatility.
To see the latter point, recall that the value of the swap is driven by the square of
fair volatility (and, hence, upon differentiation we obtain a Vega linear in volatility).
Also, we note that the Vega of the call resembles the familiar S-shape of the Delta
of vanilla stock options. This is not surprising given that Vega can be interpreted
as a Delta with respect to fair volatility. The current Vega of our variance call is
0.54, hence, a dealer looking to hedge a long position in this variance call would
have to sell about 0.54 units of its underlying variance swap. We now see the
benefit of having defined Vega as in (4.30) (as opposed to the derivative w.r.t.
’instantaneous variance’); it allows interpretations similar to the case of vanilla stock
options. Finally, if volatility were to increase substantially (making the call very
likely to finish in the money) the Vega of the call will converge to that of the swap.

In, the bottom panel of Figure (4.5), we see the Volga of the swap is (approx-
imately) constant at about 5.3 5. A quick sanity check of the swap Volga of 5.3,

5 It would be perfectly constant if the variance swap had continuous sampling; our swap has
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Figure 4.5: (Top) : Vega of variance call (solid black) and variance swap (dashed
gray). (Bottom): Volatility Gamma (Volga) of variance call (solid black) and vari-
ance swap (dashed gray).

follows by observing that it should approximately equal 2 · V N · T−t
T

or, in our case,
roughly 2 · 2.68. Reassuringly, we notice that the Volatility Gamma of the variance
call retains the bell-shape familiar from vanilla stock options Gamma. One notable
difference is that its right tail no longer goes to zero but rather to the flat Volga of
the underlying swap.

Finally, to illustrate the cross-sensitivity with respect to spot price and fair
volatility, Figure (4.6) plots the Vanna of the variance call for different values of
the spot price St and with fair volatility set at the current value of 18.65%. We
recall that Vanna measures the sensitivity of Vega with respect to spot price. To
understand the behavior of Vanna, note that, for a call on realized variance, whether
spot has moved up or down from the previous fixing its Vega will increase if spot

discrete sampling.
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Figure 4.6: Vanna of variance call as a function of spot price St with fair volatility
fixed at current value.

continues to move in the same direction; this is seen most easily in Figure (4.3).
This observation helps to explain why, in Figure (4.6), Vanna is positive on the
upside and negative on the downside.

Note that Figure (4.6) does not report the Vanna of the variance swap, as it
is approximately zero. To see this, recall that the main term in the variance swap
delta (4.32) does not depend on fair volatility. Note that, strictly mathematically,
the second term in (4.32) is a cross spot-volatility term, but its contribution is very
small. This can also be confirmed from Figure (4.6) where we see that, for a large
enough move in spot, the Vanna of the variance call will go to zero, as it resembles
its underlying variance swap.

We end the section with a plot of the value function of the combined Vega
hedged position, consisting of long 1 unit of our variance call and short 0.54 units
of the underlying variance swap. The interested reader can draw many interesting
conclusions from Figure (4.7). Of particular importance is to notice that the Vega
hedged position will be : (a) long Volatility Gamma (Volga) and (b) short spot
Gamma. To see (a), note that keeping spot fixed at St = 1 the value of the combined
position increases whether fair volatility moves up or down. Similarly, to see (b),
note that keeping volatility fixed at 18.65% the value of the combined position
decreases whether spot moves up or down.

4.4 Conclusions

Discrete sampling has significant impact on the valuation of options on realized
variance. Conditional on a realization of the instantaneous variance process, while
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Figure 4.7: Value of Vega hedged 3-months call option on discrete variance with
volatility strike σK = 18.65% as a function of spot price St and 3-months fair
volatility K(t, vt;T ). Vega hedged position: 1 x Variance call - 0.54 x Variance
Swap.

the continuously sampled variance is simply a constant, the discretely sampled vari-
ance retains substantial randomness. We start by providing a characterization of
this additional randomness, in Theorem 4.2.2, under general stochastic volatility dy-
namics and then construct several methods for pricing options on discrete variance
without the need to simulate the paths of the log-returns.

Most importantly, we remark among the various methods, the conditional
Black-Scholes scheme which leads to a remarkably simple and tractable leading-
order discretization adjustment term, as obtained in equation (4.25). The result
can be implemented in any stochastic volatility model which admits a closed-form
expression for the Fourier transform of continuously sampled variance; important ex-
amples of models where our result is directly applicable include both affine stochastic
volatility models (e.g. Heston (1993)) as well as tractable non-affine models, such
as the 3/2 model in Lewis (2000) and Carr, Sun (2007).

118



4.5. APPENDIX

4.5 Appendix

Proof of Proposition 4.2.4 Integration by parts shows that for any random vari-
able X with E|X| <∞ and distribution function F (x) we have

E
(
X − σ2

K

)
+

= E(X)− σ2
K +

∫ σ2
K

−∞
F (x)dx. (4.35)

For a fixed n ≥ 1, we consider the sequence of independent random variables
Yn,1, Yn,2, . . . , Yn,n defined in the proof of Theorem 4.2.2. We have E (Yn,i) = 0
and E (|Yn,i|3) <∞; the exact formula for E (|Yn,i|3) can be found in Lemma 4.5.1.
Using that ∑n

i=1 Yn,i
sn

=
1

Σn

(
RVn −

∑n
i=0 µ

2
n,i + σ2

n,i

n ·∆

)
the Theorem 4.2.3 of Bikelis implies∣∣∣∣∣FRVn (Σn · x+Mn)−N(x)

∣∣∣∣∣ ≤ A · Ln
(1 + |x|)3

or, equivalently ∣∣∣∣∣FRVn(x)−N
(
x−Mn

Σn

) ∣∣∣∣∣ ≤ A · Ln(
1 +

∣∣∣x−Mn

Σn

∣∣∣)3 (4.36)

where FRVn denotes the conditional distribution of the discretely sampled variance
and Ln = s−3

n ·
∑n

i=1E (|Yn,i|3). By (4.35) and (4.36) we have∣∣∣C(σK)− Cn(σK)
∣∣∣ ≤ ∫ σ2

K

−∞

∣∣∣FRVn(x)−N
(
x−Mn

Σn

) ∣∣∣dx =

∫ σ2
K

−∞

A · Ln(
1 +

∣∣∣x−Mn

Σn

∣∣∣)3dx.

Making the change of variable x−Mn

Σn
= y the remaining calculations are straightfor-

ward. For example, in the case σ2
K ≤Mn the integral becomes∫ σ2

K−Mn
Σn

−∞

A · Σn · Ln
(1− y)3 dy =

A · Σn · Ln

2
(

1 +
Mn−σ2

K

Σn

)2 .

The case σ2
K > Mn is solved similarly. �

Proof of Lemma 4.2.5 In the main text, we showed that, in the Black-Scholes

model, RVn
d
= σ2

n
· χ′ (n, λ) where

λ =

(
r − δ − σ2

2

)2

T

σ2
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and χ
′
(n, λ) denotes the non-central chi-square distribution with n degrees of free-

dom and non-centrality parameter λ. We recall the density of a χ
′
(n, λ) random

variable:

fχ′ (x;λ, n) =
∞∑
i=0

e−
λ
2 ·
(
λ
2

)i
i!

· fχ (x;n+ 2i)

where fχ (x;n) denotes the PDF of a chi-square random variable with n degrees of
freedom :

fχ (x;n) =
1

2n/2Γ(n/2)
xn/2−1e−x/2 · 1x>0.

It is straightforward to show that x ·fχ (x;n) = n ·fχ (x;n+ 2), which in turn allows
us to write

x · fχ′ (x;λ, n) =
∞∑
i=0

e−
λ
2 ·
(
λ
2

)i
i!

· (n+ 2i) · fχ (x;n+ 2 + 2i)

= n · fχ′ (x;λ, n+ 2) + λ · fχ′ (x;λ, n+ 4) . (4.37)

The expectation to compute becomes

EQ
(
σ2

n
· χ′ (n, λ)− σ2

K

)
+

=

∫ ∞
σ2
K
·n

σ2

(
σ2

n
· x− σ2

K

)
· fχ′ (x;λ, n) dx

Using property (4.37) derived above, the result follows immediately. �

Lemma 4.5.1 If we let

Yn,i = log2

(
Sti
Sti−1

)
−
(
µ2
n,i + σ2

n,i

)
we have

E
∣∣Yn,i∣∣3 = σ6

n,i ·
(

Ψ(d+) · φ(d+)−Ψ(d−) · φ(d−) + (48α2 + 16) · (N(d−)−N(d+)) +

24α2 + 9
)

where

d± =
−µn,i ±

√
µ2
n,i + σ2

n,i

σn,i
.

and

Ψ(d) = 2d5 + 12αd4 + (24α2 + 4)d3 + (16α3 + 24α)d2 + (48α2 + 18)d+ 32α3 + 60α

with α =
µn,i
σn,i

.
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Proof To simplify notation we drop the subscripts and let µn,i = µ and σn,i = σ.
We note that

Yn,i
d
= (µ+ σ ·N(0, 1))2 − µ2 − σ2

where N(0, 1) denotes a standard normal variable. We thus have to compute∫ ∞
−∞

∣∣∣(µ+ σ · x)2 − µ2 − σ2
∣∣∣3 · φ(x)dx

where φ(x) denotes the standard normal density. By solving

(µ+ σ · x)2 − µ2 − σ2 = 0⇔
σ2 · x2 + 2µσ · x− σ2 = 0

we obtain the roots

d± =
−µ±

√
µ2 + σ2

σ
.

Separating the positive and negative regions of the modulus, the integration becomes

σ6 ·

[∫ d−

−∞

(
x2 + 2α · x− 1

)3 · φ(x)dx−
∫ d+

d−

(
x2 + 2α · x− 1

)3 · φ(x)dx

+

∫ ∞
d+

(
x2 + 2α · x− 1

)3 · φ(x)dx

]

where we put α = µ
σ
. To compute these integrals, we note that by letting un(x) =∫

xn · φ(x)dx and making use of the relationship

un(x) = −xn−1 · φ(x) + (n− 1) · un−2(x)

with u0(x) = N(x) and u1(x) = −φ(x), we obtain

u2(x) = −xφ(x) +N(x)

u3(x) = −(x2 + 2) · φ(x)

u4(x) = −(x3 + 3x) · φ(x) + 3 ·N(x)

u5(x) = −(x4 + 4x2 + 8) · φ(x)

u6(x) = −(x5 + 5x3 + 15x) · φ(x) + 15 ·N(x).

Finally, the remaining steps involve only algebraic calculations to arrive at the result
stated in the lemma. �
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V

A forward started jump-diffusion
model and pricing of cliquet style

exotics

Gabriel G. Drimus

Abstract

We present an alternative model for pricing exotic options and struc-
tured products with forward-starting components. As presented in the
recent study by Eberlein, Madan (2009), the pricing of such exotic prod-
ucts (which consist primarily of different variations of locally / globally,
capped / floored, arithmetic / geometric etc. cliquets) depends critically
on the modeling of the forward-return distributions. Therefore, in our
approach, we directly take up the modeling of forward variances corre-
sponding to the tenor structure of the product to be priced. We propose
a two factor forward variance market model with jumps in returns and
volatility. It allows the model user to directly control the behavior of
future smiles and hence properly price forward smile risk of cliquet-style
exotic products. The key idea, in order to achieve consistency between
the dynamics of forward variance swaps and the underlying stock, is to
adopt a forward starting model for the stock dynamics over each reset
period of the tenor structure. We also present in detail the calibration
steps for our proposed model.

5.1 Introduction

A critical component of trading and hedging exotic equity products is represented
by the vega hedging costs. Among the more standard exotics, such as plain barrier
options, vega hedging is concentrated primarily at time zero, or at trade inception,
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without major rebalancing required during the life of the trade, as such products tend
to have small exposure to the volatility of volatility. This fact is intimately related to
the success of static hedging approaches that have been proposed in the literature
for such products; we refer the reader to Carr, Ellis, Gupta (1998) and Poulsen
(2006). Therefore, the hedger is primarily exposed to the value of options today and
requires a model that adequately reprices today’s implied volatility surface. Several
models have been proposed in the literature which are capable of fitting the volatility
surface both across strikes and maturities. To achieve this flexibility such models
typically combine stochastic volatility with jumps in the underlying. We note two
main approaches that have been developed and proposed in the literature: diffusion
based stochastic volatility models with Poisson arrival process for the jumps (Bates
(1996), Bakshi, Cao, Chen (1997)) and general Levy processes run on a stochastic
clock (Carr, Geman, Madan, Yor (2003)). A comprehensive survey which shows the
calibration capabilities of these models is provided by Schoutens et. al (2004).

However, as soon as we consider the more sophisticated equity structured
products which are now popular in the market1, in particular, the many variations
of cliquet-style products including Napoleons, accumulators, swing cliquets, reverse
cliquets2 etc. we face a difficult choice among the classical models. Such products,
due to their forward starting components, require the trader to renew the vega
hedge at the beginning of each reset period. It is thus very important that the
chosen model prices-in dynamics for the future smiles which are consistent with the
observed dynamics of volatility smiles in reality. Bergomi (2004) shows how the
standard models developed in the literature impose constraints on the dynamics
of forward skew and do not allow the model user to control this critical feature
of the model. In a subsequent paper, Bergomi (2005) proposes a forward starting
constant-elasticity of variance (or CEV) model for the asset, along with consistent
log-normal two-factor dynamics for the forward variances term structure; the model
enables its user to directly control the forward skew and the volatility of volatility
term structure.

In this paper we propose an extension of the Bergomi (2005) model to include
jumps in the asset return and in the dynamics of forward variances. Additionally,
we replace the forward-starting CEV model with a forward starting Merton jump
diffusion model for the asset. The advantages are threefold. Firstly, the cliquet-
style products in question, normally, have reset periods of 1 to 6 months in length
and, at such short expiries, the market implied volatilities are best matched with a
model which incorporates jumps. Secondly, it is common to observe in the market
that downward jumps in the asset price lead to almost instantaneous upward jumps

1see Eberlein, Madan (2009) for how the market volumes of equity structured products have
been increasing in the United States and Europe.

2examples of payoffs of such products will be provided subsequently in the paper.

126



5.1. INTRODUCTION

in implied volatilities, a phenomenon which directly impacts vega rehedging costs.
In our model the forward variances term structure is allowed to experience upward
jumps when the asset price jumps. Thirdly, the Merton jump diffusion model is
easier to handle for Monte Carlo simulations and also allows us to derive closed
form solutions for the forward-starting parameters in terms of the realization of fair
variances.

The literature has provided substantial evidence on the phenomenon of volatil-
ity jumps. Using both options market data and historical return data, studies by
Bakshi, Cao, Chen (1997) and Bates (2000) analyze the performance of stochastic
volatility models with jumps in the underlying asset returns. The authors indicate
that, while such models improve significantly over the misspecification of the stan-
dard Black-Scholes model (1973), they still require very high volatility-of-volatility
and correlation parameters to match the pronounced negative skewness and excess
kurtosis observed in the market. It is suggested that an additional improvement
could be obtained from allowing random jumps in the volatility process. This sug-
gestion is then formulated in the double-jump model of Duffie, Pan, Singleton (2000),
in the context of the general affine-jump diffusion class. They analyze the impact of
volatility jumps on the shape of the volatility smile, in the case of simultaneous jumps
in log-returns and volatility. By calibrating their double-jump model to S&P500
options market data, they find evidence that, indeed, the volatility-of-volatility pa-
rameter is substantially reduced when allowing for jumps in the volatility process;
this confirms the observation made in Bakshi et al. (1997) and Bates (2000). Simi-
lar to the case considered by Duffie et al. (2000), our model assumes that jumps in
the underlying are contemporaneous with the jumps in volatility. Barndorff-Nielsen,
Shephard (2001) propose a Levy-driven positive Ornstein-Uhlenbeck process for the
short variance with simultaneous jumps in the log-return process. The use of Levy
processes to construct general classes of stochastic volatility models is studied in
Carr, Geman, Madan, Yor (2003). Our modeling approach remains different from
that of the previously cited works, in that we directly model the evolution of the
entire term structure of forward variances.

Other authors have also acknowledged the importance of constructing alter-
native models for the pricing of forward starting exotic options. Eberlein, Madan
(2009) note that there is a need to build models in which the forward-return dis-
tributions do not depart too much from spot-return distributions. They propose
the use of Sato processes to address this need. Overhaus et al. (2007) discuss the
importance of skew propagation in models for pricing cliquet style exotics and they
propose the use of a forward started Heston model. In our approach, in addition
to providing direct control over the forward skew, we model the term structure of
forward variance swaps which now become natural calibration and hedging instru-
ments.
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The paper is organized as follows. In section two, we introduce the model
dynamics for forward variances and the stock. In particular, we show the consistency
and smile behavior conditions that must be satisfied by the forward-starting model
parameters. Unlike in the CEV-based model proposed by Bergomi (2005), we are
able to derive closed form solutions for the forward-starting parameters. In section
three, we give a detailed step-by-step description of the model calibration. We also
price three different exotic contracts with the parameters calibrated to actual market
data. The last section provides the main conclusions.

5.2 Model description

To motivate the subsequent development of our model, we begin with a defi-
nition of the types of exotic products which form the focus of this study. Cliquets
form a broad class of exotic options whose payoff is defined in terms of a sequence
of forward-started returns, with a given reset-period frequency. Specifically, if we
consider the equally spaced tenor structure 0 = T0 < T1 < T2 < . . . < TN and let
Ri = S(Ti+1)

S(Ti)
− 1 denote the asset return corresponding to the reset period [Ti, Ti+1]

then, in the general case, the payoff of a cliquet option can be written as:

Payoff = h

(
N−1∑
i=0

g (Ri)

)
where g(·) is a local function applied to each forward-return and h(·) is a global
function applied to the accumulated (transformed) returns. All the cliquet products
considered in this paper can be accommodated in this definition. For example, the
payoff of an ”accumulator” is obtained by setting g(x) = max(min(x,C), F ) and
h(x) = max(x, 0), where F and C denote return floor and cap levels specified in
the contract. The basic building blocks of a cliquet product are a series of forward
starting options. Therefore, as shown in Eberlein, Madan (2009), the forward re-
turn distribution plays the key role in pricing these products; in particular, in our
approach we model directly the forward variance term structure and the behavior
of future implied volatility skews.

We start by specifying the model for the forward variances. Similar to the idea
of LIBOR market models, we will not model the instantaneous forward variances
but rather a finite set of discrete forward variances corresponding to a given tenor
structure. Let us consider the equally spaced tenor structure 0 = T0 < T1 < T2 <
. . . < TN where Ti+1 − Ti = ∆ for all i = 0, 1, . . . , N − 1. We assume that variance
swaps of maturities Ti are tradable in the market (for a comprehensive introduction
to variance swaps we refer the interested reader to Carr, Madan (2002)). Without
loss of generality, we will work with zero-strike variance swaps. The forward variance
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over the interval [Ti, Ti+1], as seen at time t ∈ [T0, Ti], will be denoted by ξit. It is
straightforward to show that the forward variance swap rate ξit is given by the future
value of a simple portfolio consisting of variance swaps of maturities Ti and Ti+1.
Specifically:

ξit =
er(Ti+1−t)

∆

(
Ti+1V

i+1
t − Tie−r∆V i

t

)
where r is the assumed risk-free rate in the economy, V i

t and V i+1
t denote the values

at time t of the variance swaps of maturities Ti and Ti+1 respectively. To see that ξit
is indeed the fair price to pay at time Ti+1 for the variance realized over the interval
[Ti, Ti+1], we note that Ti+1V

i+1
t is the fair price to pay now at time t to receive,

at time Ti+1, the deannualized realized variance over [T0, Ti+1]; similarly, Tie
−r∆V i

t

is the fair price now of the variance realized over [T0, Ti] and received at time Ti+1

(notice that, in this case, we have the payoff of V i
t delayed until Ti+1 i.e. ∆ units of

time) . Finally, multiplying by the future value factor will give the fair price to be
paid at time Ti+1; ∆ annualizes the result.

Since ξit is given by the future value of a tradable portfolio, by no arbitrage,
is must be driftless under the pricing measure. In what follows, we propose the
following driftless jump-diffusion dynamics:

dξit
ξit−

= ω
(
e−k1(Ti−t)dW1(t) + θe−k2(Ti−t)dW2(t) + e−kj(Ti−t) (dZ(t)−mdt)

)
(5.1)

whereW1(t), W2(t) are standard Brownian motions with correlation ρ, i.e. dW1(t)dW2(t) =
ρdt, Zt =

∑Nt
l=1 J

ξ
l is an independent compound Poisson process with intensity λ, Jξl

independent and identically distributed non-negative random variables which model
the jump sizes for variance and m = E(Z(1)). In this paper, we will take Jξl to
be exponentially distributed with parameter 1/η, hence m = λη, although other
assumptions for the distribution of variance jumps can be easily incorporated in our
framework. By applying Ito’s lemma for jump-diffusions to the process log(ξit) over
an interval [0, t] with t ≤ Ti, we obtain the following expression for ξit :

ξit = ξi0 exp

[
ω

(∫ t

0

e−k1(Ti−s)dW1(s) + θ

∫ t

0

e−k2(Ti−s)dW2(s)

)
−

−ω
2

2

(∫ t

0

e−2k1(Ti−s)ds+ θ2

∫ t

0

e−2k2(Ti−s)ds+ 2ρθ

∫ t

0

e−(k1+k2)(Ti−s)ds
)

−mω
∫ t

0

e−kj(Ti−s)ds

]
·

∏
∆Zs 6=0,s∈[0,t]

(
1 + ωe−kj(Ti−s)∆Zs

)
(5.2)

Similar to Bergomi (2005) , we introduce (Xt) and (Yt) Gaussian Ornstein-Uhlenbeck
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processes satisfying:

dX(t) = −k1X(t)dt+ dW1(t), X(0) = 0

dY (t) = −k2Y (t)dt+ dW2(t), Y (0) = 0

or, in integrated form:

X(t) =

∫ t

0

e−k1(t−s)dW1(s)

Y (t) =

∫ t

0

e−k2(t−s)dW2(s).

Using Xt and Yt, we rewrite the equation for ξit to obtain the final form:

ξit = ξi0 exp

[
ω
(
e−k1(Ti−t)Xt + θe−k2(Ti−t)Yt

)
− ω2

2

(
e−2k1(Ti−t)Var(Xt)

+θ2e−2k2(Ti−t)Var(Yt) + 2θe−(k1+k2)(Ti−t)Cov(Xt, Yt)
)

−mωe−kj(Ti−t) 1− e−kjt

kj

]
·

∏
∆Zs 6=0,s∈[0,t]

(
1 + ωe−kj(Ti−s)∆Zs

)
(5.3)

where

Var(Xt) =
1− e−2k1t

2k1

Var(Yt) =
1− e−2k2t

2k2

Cov(Xt, Yt) = ρ
1− e−(k1+k2)t

k1 + k2

.

The parameters of the dynamics of forward variances will be calibrated to an
input term structure of volatility of volatility. Specifically, we have to consider the
pricing of options on forward variances of different maturities. A call option on the
[T1, Tn+1], n ≤ N − 1, forward variance with expiry T1 will have payoff:(∑n

i=1 ξ
i
T1

n
−K

)
+

(5.4)

For K = (
∑n

i=1 ξ
i
0)/n, the Black Scholes implied volatility of this option gives us the

at-the-money (ATM) volatility of a forward variance swap of maturity n∆ starting
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5.2. MODEL DESCRIPTION

at T1. Since, in practice, it is more common to speak of volatilities of volatility,
in what follows we work with the volatilities of variance divided by two 3. As we
vary n from 1 to N − 1, we obtain the term structure of volatility of volatility4 for
expiry T1 = ∆. Under the dynamics (5.1), we do not have a closed form formula
for options on forward variances (we note that this is the case even without jumps).
Nevertheless, it is not difficult to price options of the form (5.4) by Monte Carlo.
We notice that conditional on the realization of the jumps, all variables ξiT1

are log-
normal. Similar to Kemma, Vorst (1990), in order to price options on (

∑n
i=1 ξ

i
T1

)/n
by Monte Carlo, we can use the options on the geometric average, with payoff:( n∏

i=1

ξiT1

)1/n

−K


+

as control variates; they can be priced with a Black-Scholes formula. Alternatively,
the conditional moments of (

∑n
i=1 ξ

i
T1

)/n can be obtained in closed form and moment
matching techniques can be applied. Such techniques for sums of log-normal random
variables have been discussed widely in the literature; see, for example, Milevsky et
al. (1998) or Mehta et al. (2006). In the last step, we only have to integrate over
the jumps. For the calculations in this paper, we use the Monte Carlo approach
with geometric control variates.

To illustrate the workings of the forward variance dynamics in (5.1) we show
in figure (5.1) the effects of the main parameters on the term structure of Black
ATM volatilities of volatility. For clarity, we take the particular case of θ = 0 and
λ = 0. We notice that the ratio ω/k1 controls the long-term level of vol-of-vol, while
k1 controls the steepness of the term structure. Already with just two parameters,
namely ω and k1, we obtain a flexible vol-of-vol curve. When allowing for a second
factor (i.e. θ 6= 0) with k2 < k1, we gain more control over the long end part of the
curve and thus an even richer set of term structure shapes become possible.

The stock will follow a series of forward starting Merton (1976) Jump Di-
fussion (MJD) models. Specifically, over each reset period [Ti, Ti+1], with i ∈
{0, 1, 2, . . . , N − 1}, the stock will follow dynamics:

dSit
Sit−

= (r − δ − γi) dt+ σidBt +
(
eJ

Si − 1
)
dNt (5.5)

where SiTi = Si−1
Ti

for i ≥ 1, S0
T0

= S0, r is the risk free rate, δ is the dividend yield,
dB(t)dW1(t) = ρSXdt and dB(t)dW2(t) = ρSY dt are correlations between stock and

3Note that if X is a r.v. with B-S volatility σ, i.e. X = X0e
−σ22 T+σ

√
TZ where Z ∼ N(0, 1),

then X2 will have B-S volatility 2σ, since X2 = X2
0e
σ2

e−
(2σ)2

2 T+2σ
√
TZ .

4for brevity, we will sometimes use the abbreviation vol-of-vol.
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Figure 5.1: Term structures of Black ATM volatilities of volatility. (Left) Dashed:
ω = 2, k1 = 3, Solid: ω = 1, k1 = 3. (Right) Dashed: ω = 2, k1 = 3, Solid : ω = 2/3
, k1 = 1. Notice that in this case we keep ω/k1 = 2/3. We see that k1 controls the
speed of the decay of the vol-of-vol term structure and the ratio ω/k1 controls the
overall level of the curve.

the short-end (and long-end respectively) of the term structure of variance; (Nt) is
the independent Poisson process which is also driving the variance dynamics, JSi ∼
N (ai, b

2) and γi is the MJD drift compensator γi = λ(exp(ai + b2/2)− 1). We note
that the correlations ρSX , ρSY and ρ between B(t), W1(t) and W2(t) cannot be cho-
sen arbitrarily as the correlation matrix has to be positive semidefinite; we adopt the
parametrisation from Bergomi (2005) and use: ρSY = ρSXρ + χ

√
1− ρ2

SX

√
1− ρ2

with χ ∈ [−1, 1].

The key idea of the proposed model is now the following: both ai and the
diffusive volatility σi are determined at time Ti to achieve (a) consistency between
the dynamics of variance and stock and (b) the desired behavior of future smiles.
Note that the parameters b and λ are kept the same over all reset periods.

In our setting, consistency means that the expected quadratic variation of log
returns over the interval [Ti, Ti+1], as seen at time Ti, must agree with the realization
of the fair variance ξiTi . This leads to the following consistency condition on the pair
(ai, σi); we note that, below, [·] denotes the quadratic variation process:

ETi

([
logSi

]
Ti+1
−
[
logSi

]
Ti

)
= ETi

σ2
i (Ti+1 − Ti) +

NTi+1
−NTi∑

k=1

(
JSik
)2

 = ξiTi∆

or, after simplification and using ETi
(
(JSik )2

)
= a2

i + b2, we obtain:

σ2
i + λ(a2

i + b2) = ξiTi (5.6)

The second condition we propose on the pair (ai, σi) is designed to give the model
user control over the behavior of forward skew. We recall here that the distribution
skew of the log-return at some time horizon ∆ in an MJD model of parameters
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(σi, λ, ai, b) is given by (see Cont & Tankov (2004)):

(3b2 + a2
i )aiλ

(σ2
i + λ(a2

i + b2))
3/2

1√
∆
.

As the shape of the implied volatility skew is directly related to the distribution
skew (Backus et al. (2004)5 show that the at-the-money implied volatility skew is
proportional to the distribution skew of the log return divided by the square root of
time), we formulate the smile behavior condition as:

(3b2 + a2
i )aiλ

(σ2
i + λ(a2

i + b2))
3/2

1√
∆

= α
√

∆ (5.7)

where α is a parameter chosen by the trader or model user; we will call this the
future smile shape parameter. As we show in the next section, α can also depend
on ξiTi , in which case the trader can choose future smile shapes which depend on the
level of fair variance. Together, conditions (5.6) and (5.7) give the following simple
system of two equations for the pair (ai, σi):{

σ2
i + λa2

i = ξiTi − λb
2

3b2ai + a3
i =

α∆(ξiTi
)3/2

λ

(5.8)

To address the nonlinear equation in ai we make the substitution ai = b(Qi− 1/Qi)
which reduces the cubic equation to a solvable quadratic equation. Retaining the
solution which makes ai ≤ 0 (i.e. downward sloping skew in MJD) we obtain in the
end:

ai = b

(
Qi −

1

Qi

)
(5.9)

Qi =
3

√√√√ Ri
b3

+

√
R2
i

b6
+ 4

2

Ri =
α∆(ξiTi)

3/2

λ
.

Once the mean-jump parameter ai has been calculated by equation (5.9), we get the
diffusive volatility parameter as:

σi =
√
ξiTi − λb2 − λa2

i . (5.10)

5unpublished paper Backus, D., Foresi, S., Wu, L., Accounting for Biases in Black-
Scholes(August 31, 2004). Available at SSRN: http://ssrn.com/abstract=585623.
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In figure (5.2) we show how the mean jump size ai and the diffusive volatility σi
depend on the level of fair variance ξiTi . In line with intuition, we notice that
the higher the level of fair variance observed at the beginning of the reset period,
the higher will be (in absolute value) the mean size of the jump and the diffusive
volatility.
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Figure 5.2: (Left) Mean-jump parameter ai as a function of the fair variance ξ (
here expressed in volatility terms i.e.

√
ξ). The higher the fair volatility, the higher

(in absolute value) the expected downward jump in the stock. (Right) Same for
diffusive volatility parameter σi as a function of the fair volatility.

We now summarize the main components of the proposed model. Firstly,
given a fixed tenor structure, we start by specifying the dynamics of discrete for-
ward variances using two Gaussian Ornstein-Uhlenbeck processes and exponentially
distributed jumps with Poisson arrivals, according to SDE (5.1). As explained, in
this setup it is possible to develop fast Monte Carlo pricing for options on forward
variances; this will be important in the next section when parameters are calibrated
to match a given term structure of implied volatilities of volatility. Secondly, the
stock follows forward-starting Merton jump-diffusion dynamics over each reset pe-
riod, according to SDE (5.5). Specifically, at the beginning of each period [Ti, Ti+1]
two of the MJD parameters – namely, the mean jump size (denoted by ai) and the
diffusive volatility parameter (denoted by σi) – are recalculated to achieve consis-
tency with the realization of fair variance (equation (5.6)) and to match the desired
skew for the forward-return distribution (equation (5.7)). The two conditions yield
closed form solutions for the mean-jump and diffusive volatility parameters; they
are given in equations (5.9) and (5.10).

5.3 Model implementation, pricing and numerical

examples

In this section we present the steps for model calibration using actual market
data. We then use the model to price cliquet-style exotic products. Indeed, in
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practice one can encounter many variations of such products. For many examples of
products relevant in the market at present, we refer the reader to Eberlein, Madan
(2009) and Bergomi (2004, 2005). In this paper, we will focus on the following three
types of exotics: (a) swing cliquet, (b) accumulator and (c) reverse cliquet. Their
payoffs are given below:

Swing Cliquet

SC(ω) = min

(
N−1∑
i=0

max

(∣∣∣∣STi+1

STi
− 1

∣∣∣∣−K, 0) , C
)

Accumulator

AC(ω) = max

(
N−1∑
i=0

max

(
min

(
STi+1

STi
− 1, C

)
, F

)
, 0

)

Reverse Cliquet

RC(ω) = max

(
C +

N−1∑
i=0

min

(
STi+1

STi
− 1, 0

)
, 0

)

where C, F , K are contract specifications that we will choose subsequently.

Before we examine the calibration procedure in detail, we list the three main
steps of the process:

[1] Calibrate the initial MJD parameters (σ0, a0, b, λ) to the market values of
vanilla options with expiry T1 = ∆.

[2] Calibrate forward variance dynamics parameters to match a given input vol-
of-vol curve.

[3] Calibrate the correlations between stock and forward variances to match skew
term structure observed in the vanilla market at time T0.

In the calibration procedure, the first reset period [T0, T1] plays an important
role. This is because over this reset period the stock follows usual spot-started MJD
dynamics, as opposed to forward-started MJD dynamics for the rest of the reset
periods. We start by calibrating the MJD parameters (σ0, a0, b, λ) to the market
value of options of expiry T1. It is important to note that the parameters (b, λ) will
remain fixed for the rest of the reset periods. Only (σi, ai) will change according
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to the evolution of forward variances and the desired future smile behavior. In this
section we use S&P500 options market data6 from June 26th 2008 to illustrate the
calculations. We use a quarterly tenor structure with total length of 3 years, i.e.
∆ = 0.25 and N = 12. Figure (5.3) shows the MJD fit on 06.26.08 for expiry T1 =
0.25. We obtain the parameters (σ0, a0, b, λ) = (10.35%,−12.27%, 0.06052, 2.6).
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Figure 5.3: (Left) Dashed: MJD fit, Solid: 3-month market implied
volatility curve on 06.26.08. Resulting parameters are (σ0, a0, b, λ) =
(10.35%,−12.27%, 0.06052, 2.6). (Right) The S&P500 implied volatility surface on
06.26.08.

We illustrate next the key feature of our forward-starting MJD model, namely
the possibility to control the behavior and shape of the future smile through the use
of the parameter α. As noted also in Bergomi (2005), one can consider at least two
fundamental types of smile movement: one in which the smile preserves its shape
but can float upwards or downwards depending on the size of the fair variance and
one in which the smile also steepens for higher values of fair variance. Both of these
behaviors can be obtained in our model by using the following two prescriptions for
the parameter α:

parallel shift regime:
α = α0

or, proportional volatility skew regime:

α
(
ξiTi
)

= α0 ·

q + (1− q)

√
ξiTi√
ξ0


where

α0 =
1

∆

(3b2 + a2
0)a0λ

(σ2
0 + λ(a2

0 + b2))
3/2

and
ξ0 = σ2

0 + λ(a2
0 + b2)

6The data were kindly provided to us by an international investment bank.
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are the smile shape factor and fair variance corresponding to the first reset period;
q ∈ [0, 1] is a blending factor between a parallel-shift regime and a proportional-
skew regime. Figure (5.4) illustrates the shapes of future smiles obtained under the
two regimes for values of fair variance in the interval [0.22, 0.32] and q = 0.5; the
fair variance for the first reset period is ξ0 = 0.24352 and the smile shape factor
α0 = −2.2973. We notice in figure (4) that, indeed, the smile displays the desired
behavior.
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Figure 5.4: (Left) Future smile shapes for parallel shift regime α = −2.2973. (Right)
Future smile shapes for proportional skew regime with q = 0.5. In both cases the
fair variance takes values in the interval [0.22, 0.32].

With regard to the forward variance term structure, we first determine the
variance swap rates, denoted by V R(Ti) with i ∈ {1, 2, . . . , N}, from the S&P500
volatility surface, using the well known variance swap pricing formula; we refer the
reader to Carr, Madan (2002) for a comprehensive presentation of variance swap
pricing as well as the pricing of other contracts on realized variance. We then
obtain the forward variances ξi0 as follows7:

ξi0 =
Ti+1 · V R (Ti+1)− Ti · V R (Ti)

Ti+1 − Ti

The next step is to price options on forward variances in order to match an input
Black ATM vol-of-vol term structure. If liquid market quotes for options on forward
variance swaps of various maturities are available, the trader can use these to get
the input vol-of-vol curve. Alternatively, the trader can rely on historic estimates for
the volatility of variances and apply an appropriate risk premium. For our example,
we take the input vol-of-vol curve of figure (5.5) which is obtained for the choice of
parameters ω = 4, k1 = 4 , k2 = 0.25, kj = 3, θ = 0.3, η = 0.25 and ρ = 0. We
recall that λ = 2.6. The figure also includes the variance rate curve calculated on
06.26.08.

7We note that, in section two, we denoted by V it the value of a variance swap of maturity Ti;
the relationship to the variance swap rate, at time zero, is V R(Ti) = V i0 e

rTi .
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Figure 5.5: (Left) Input volatility of volatility term structure for parameters ω = 4,
k1 = 4 , k2 = 0.25, kj = 3, θ = 0.3, η = 0.25 and ρ = 0. (Right) Fair variance swap
rates calculated from S&P500 option market data on 06.26.08.

Finally, we are left with two more parameters: ρSX and ρSY , the correlations
between the stock and the short-end / long-end of the forward variance curve. Pro-
ceeding as in Bergomi (2005), we fit these parameters to the 95%-105% skew8 term
structure observed in the vanilla market on the date of the model calibration. The
motivation behind this approach is that the higher the correlation between the stock
returns and the stochastic forward variances, the more persistent the term structure
of skew at long maturities. We illustrate this on the right side of figure (5.6) where
we see that, when the forward variances are held fixed, the skew falls off very quickly
compared to the skew observed in the market. On the other hand, even without
skew at the horizon ∆, i.e. using a forward started Black-Scholes model, when the
forward variances are allowed to evolve stochastically, the model generates long term
skew due to the correlation between the forward variances and the log returns. For
S&P500 options data from 06.26.08, we found that ρSX = −0.7 and ρSY = −0.4
leads to very good agreement between market skew and model skew; see left side of
figure (5.6).

Having calibrated all parameters of our model, we now turn to the pricing
of the exotic products introduced at the beginning of this section. Similar to the
approach in Bergomi (2005), we carry out four types of pricings: (1) Black Scholes:
we use the Black Scholes model with deterministic time dependent volatility fitted
to the original forward variance curve on the date of calibration, (2) deterministic
forward skew : the stock follows MJD over each reset period but forward variances
are held fixed at their starting values, (3) vol-of-vol, no skew: forward variances
allowed to evolve stochastically but forward starting MJD is now replaced with
forward starting Black-Scholes over each reset period (4) full model: both stochastic
variances and future smiles as described in section two.

8By this we mean the difference between the Black-Scholes implied volatilities corresponding to
a relative strike of 95%, and 105% respectively.
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Figure 5.6: (Left) Dashed: model generated 95%-105% skew term structure, Solid:
market 95%-105% skew term structure on 06.26.08. (Right) Dashed: model gener-
ated skew in two cases (a) forward variances held fixed: notice how quickly the skew
decays compared to market observed skew, (b) no ∆-skew, i.e. we use a forward
started Black-Scholes model; even though we start with no skew at horizon T1, the
model generates skew for maturities Ti, i ≥ 2, due to correlation between stock
returns and the variance term structure.

Model Swing Cliquet Acummulator Rev. Cliquet
Black-Scholes 0.18% 1.96% 1.45%
Det. Fwd Skew 1.47% 4.41% 2.63%
VoV, No Skew 34.37% 1.83% 3.17%
Full model 32.45% 3.51% 3.47%

Table 5.1: Exotic option prices corresponding to the full MJD-Forward-Variance-
Model and three additional variations. See text for details.

For the exotic options introduced earlier we choose the following specifications:
(a) swing cliquet: K = 0.4 , C = 1, (b) accumulator: F = −0.02, C = 0.02 and
(c) reverse cliquet: C = 0.4. The prices are shown in table 5.1. We notice some
marked differences between the full model price and its three variations across the
products. These are best explained by considering the basic building blocks of each
exotic. For example, the swing cliquet is a sequence of 3-months forward starting
60%-140% strangles on the underlying index. In line with intuition, the price table
shows that this product is primarily a vol-of-vol product and, when the stochastic
movement of variances is switched off, its value almost vanishes. In addition, we
notice that the introduction of skew can even decrease its value. At the opposite end,
we have the accumulator. This product is a sequence of 3-months forward starting
98%-102% call spreads and hence, unlike the swing cliquet, will be primarily a skew
product. In fact, in our example we see that vol-of-vol can hurt its value; table 5.1
shows that, for the model calibrated on 06.26.08, the highest price is reached when
vol-of-vol is turned off. Finally, the building blocks of the reverse cliquet are forward
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starting at-the-money puts and we see that vol-of-vol accounts for the most part of
the value of this product.

We end this section with a review of the main insights of our numerical im-
plementations. Firstly, we have seen – in detail – that our proposed model can
be naturally calibrated to a vanilla options surface and a term structure of im-
plied volatilities of volatility. Additionally, we have illustrated the key feature of
the model, namely, the ability of the user to specify the desired behavior of fu-
ture smiles; figure (5.4) displays two possible future smile behaviors: parallel smile
shifts and steepening smiles. Secondly, after completing the calibration steps, the
examination of the prices of different cliquet structures revealed that exotic options
with forward started components draw most of their value from two sources: the
volatility of volatility and the forward skew. Depending on the product, if either of
these features is switched off the product can be grossly mis-priced. Some products
(for example, the swing cliquet and the reverse cliquet) are primarily ”vol-of-vol
products” while others (for example, the accumulator) are primarily ”skew prod-
ucts”. Therefore, the key is to identify those risks which are relevant to each type
of product and then carry out the pricing in a model which gives its user (i.e. the
trader) direct access to those risks.

5.4 Conclusion

The paper shows that the key idea of forward-starting a classical model is a
flexible and powerful tool to build a new class of models which allow the model user
to directly control the behavior of future smiles. We model the term structure of
forward variances consistently with the dynamics of the underlying asset by forward
starting the asset dynamics at the beginning of each reset period. Our choice, of a
forward started Merton jump diffusion process, provides good fits for market implied
volatilities at short time horizons and allows us to derive closed form expressions
for the forward starting parameters. The model incorporates positive jumps in the
term structure of forward variance swaps thus capturing an important feature of the
dynamics of volatility. We have shown that our framework is particularly important
for products with high volatility-of-volatility and forward-skew sensitivity such as
cliquets and their variations.
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