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Summary

This thesis concerns estimation of the large loss risk of an insurance company. Tra-

ditional large loss models in insurance companies are based on extreme value theory

and the generalized Pareto distribution (GPD), which is the limit distribution of ex-

cesses above a high threshold. In this thesis, we investigate an alternative approach

to the problem based on nonparametric statistics.

In the first part of the thesis, we introduce the basic nonparametric kernel density

estimator in one dimension, which we improve significantly for heavy-tailed data by

applying a Champernowne transformation to the data set. The model is applicable

to heavy-tailed insurance losses, but the method is also a reasonable choice in the

related field of operational risk estimation. We provide an adaptation of the method

to operational risk which takes into account underreporting (i.e., the fact that not all

claims are reported), and demonstrate the stabilizing effect of the method compared

to pure parametric models.

Comparison of the Champernowne transformed kernel density estimator to similar

nonparametric methods demonstrates that the method has superior tail performance

especially for heavy-tailed distributions. However, when focusing solely on the tail

and comparing with an estimated GPD, improvements can be obtained by estimat-

ing the underlying Champernowne distribution in a way that emphasizes the tail.

We propose such a method and show that it obtains comparable or superior tail

performance when compared to the GPD and g-and-h distributions.

In the last two chapters, the focus is on multivariate large loss estimation. The
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Champernowne transformed kernel density estimator is extended to a multivariate

version, and multiplicative bias correction is introduced in order to include prior

knowledge which imposes some structure on the nonparametric estimation problem;

this is desirable for tail estimation in higher dimensions. The improvements gained

by introducing structure by means of multiplicative bias correction are demonstrated

in two bivariate simulation studies, one study which exclusively concerns the pure

multiplicative bias correction, and one which additionally includes the tail-flattening

transformation approach.

In the last chapter, the multivariate density estimation is extended to handle trun-

cated and censored data. The general idea of using nonparametric statistics is re-

tained, but the model is now expressed in terms of survival analysis due to the ability

of the theory to account for exposure. As in the previous chapter, we modify the

model by introducing multiplicative bias correction and tail-flattening transforma-

tion, but now within the framework of survival analysis.



Resumé

Denne afhandling omhandler estimation af storskaderisiko i et forsikringsselskab.

Traditionelle storskademodeller i forsikringsselskaber er baseret p̊a ekstremværdite-

ori og den generaliserede Pareto fordeling (GPD), som er grænsefordelingen for over-

skridelser over en høj tærskelværdi. I denne afhandling undersøger vi en alternativ

tilgang til problemet, som er funderet i ikke-parametrisk statistik.

I første del af afhandlingen introduceres den basale ikke-parametriske kernetæthed-

sestimator i én dimension, som signifikant forbedres, specielt for tunghalede data, ved

at Champernowne-transformere datasættet. Modellen er anvendelig for tunghalede

forsikringsskader, men ogs̊a i det beslægtede omr̊ade, operationel risiko, er modellen

rimelig. En version af metoden tilpasset til operationel risiko, som specielt tager

underrapportering i betragtning (dvs. den kendsgerning, at ikke alle skader rap-

porteres i forbindelse med operationel risiko), optilles, og metodens stabiliserende

effekt sammenlignet med rene parametriske modeller illustreres.

Sammenligning af den Champernowne-transformerede kernetæthedsestimator med

tilsvarende ikke-parametriske metoder viser at metoden fitter halen bedre specielt

for tunghalede fordelinger. Hvis man imidlertid udelukkende fokuserer p̊a halen og

sammenligner med en estimeret GPD, viser der sig forbedringsmuligheder, hvis den

underliggende Champernowne fordeling estimeres med en metode, som lægger særlig

vægt p̊a haleestimationen. En s̊adan metode demonstres, og vi viser at den giver et

sammenligneligt eller bedre halefit end GPD og g-og-h fordelingerne.

I de to sidste kapitler ligger fokus p̊a flerdimensional storskadeestimation. Den
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Champernowne-transformerede kernetæthedsestimator udvides til en flerdimensionel

version, og multiplikativ biaskorrektion introduceres for at kunne inkludere en apriori

tæthed og derved introducere struktur til det ikke-parametriske estimationsproblem,

hvilket er hensigtsmæssigt n̊ar fokus ligger p̊a haleestimation i flere dimensioner.

Forbedringerne som opn̊as ved multiplikativ biaskorrectkon er demonstreret i to to-

dimensionale simulationsstudier, ét studie som udelukkende drejer sig om den rene

multiplikative biaskorrektion, og ét som ogs̊a indeholder den haleudglattende trans-

formationsmetode.

I sidste kapitel udvides den flerdimensionale tæthedsestimator til at kunne h̊andtere

trunkerede og censorerede data. Hovedidéen om at anvende ikke-parametrisk statis-

tik bibeholdes, men modellen baserer sig nu p̊a overlevelsesanalyse, p̊a grund at denne

teoris evne til at tage hensyn til eksponering. Som i det foreg̊aende kapitel modifi-

cerer vi modellen ved introduktion af multiplikativ biaskorrektion og haleudglattende

transformation for tæthedsestimation baseret p̊a overlevelsesanalyse, men nu inden

for rammerne af overlevelsesanalyse.
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Chapter 1

Introduction

This thesis is concerned with the estimation of an insurance company’s exposure to

large loss risk. The insurance company’s earnings and profits are directly determined

by the company’s ability to determine premium rates correctly: too low premiums

are unprofitable, and too high premiums result in the loss of potentially profitable

customers. Large loss risk is a substantial component of the premium rates. Although

large losses are infrequent, they typically constitute more than half of the total claims

expenses in a portfolio, so their impact on the company’s performance is substantial.

The problem of determining the large loss risk is complicated by the fact that large

losses are difficult to predict due to sparse data.

1.1 Estimation of large losses

There are several ways to estimate large losses. Classical extreme value theory stud-

ies the asymptotic behaviour of maxima and excesses above a high threshold. These

results are approximatively correct for high quantiles under certain conditions on the

tail of the underlying distribution. An alternative approach is provided by nonpara-

metric methods which are the statistical foundation of this thesis. Nonparametric
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methods produce density estimators on the entire axis, and can be constructed with

different degrees of emphasis on the tail. In the following, we give an introduction

to the two main approaches to large loss estimation in sections 1.1.1 and 1.1.2.

1.1.1 Extreme value theory

Extreme value theory (EVT) considers the distributional properties of maxima and

exceesses above a high threshold. The theory is described in a vast amount of books

and papers; see e.g. Leadbetter et al. (1983), Embrechts et al. (1997) and Kotz and

Nadarajah (2000). In the following, we give a short and non-exhaustive introduction

to the theory, which is primarily based on Embrechts et al. (1997).

The fundamental Fisher-Tippett theorem describes the limit laws for maxima of iid

stochastic variables Xi, i = 1, 2, ..., and says, that if there exist constants cn > 0 and

dn ∈ R for a sequence of iid random variables (Xn) such that

c−1
n (Mn − dn)

d→ H, n →∞, (1.1)

for some non-degenerate distribution H, where Mn = max(X1, ..., Xn), then H must

be one of the three extreme value distributions:

Fréchet : Φα(x) =

{
0, x ≤ 0,

exp{−x−α}, x > 0,
α > 0.

Weibull : Ψα(x) =

{
exp{−(−x)−α}, x ≤ 0,

1, x > 0,
α > 0.

Gumbel : Λ(x) = exp{exp(−x)}, x ∈ R

The distribution F of Xi is said to be in the maximum domain of attraction of H,

written as F ∈ MDA(H), if (1.1) holds. This property of the sequence of partial

maxima corresponds to the central limit theorem for properly normalized sums which

converge to a normal distribution or infinite variance stable distribution. Notice that

the Fréchet distribution is much more heavy-tailed than the Gumbel distribution.
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By introducing a shape parameter ξ, the type of the three standard extreme value

distributions can be represented by the standard generalized extreme value distribu-

tion (GEV) defined by

Hξ =

{
exp{−(1 + ξx)−1/ξ}, ξ 6= 0,

exp{− exp{−x}}, ξ = 0,
(1.2)

with the condition that 1 + ξx > 0, which corresponds to x > ξ−1 when ξ > 0, to

x < ξ−1 when ξ < 0, and to x ∈ R when ξ = 0. By introducing a location parameter

µ ∈ R and a scale parameter ψ > 0, a three-parameter family is obtained by defining

Hξ,µ,ψ(x) = Hξ((x− µ)/ψ), with a corresponding adjustment of the support.

The limit distribution of excesses above a high threshold, called the generalized

Pareto distribution (GPD), is closely related to the limit distribution of maxima.

The generalized Pareto distribution is defined as

Gξ(x) =

{
1− (1 + ξx)−1/ξ, ξ 6= 0,

1− exp{−x}, ξ = 0,

where x ≥ 0 for ξ ≥ 0, and 0 ≤ x ≤ −1/ξ for ξ < 0. As for the GEV, location and

scale parameters can be introduced.

When using EVT in practice, it is common to assume that the data are iid with a cdf

belonging to the maximum domain of attraction of an extreme value distribution, i.e.

F ∈ MDA(Hξ). There exist various estimators of the shape parameter, including the

Pickands, the Hill and the Deckers-Einmahl-de Haan estimators; see Embrechts et al.

(1997), which all depend on graphically based decisions about the choice of threshold.

The Peaks Over Threshold (POT) method deals with the problem of estimating a

GPD for excesses above a sufficiently high threshold by estimating the parameters,

e.g. by means of maximum likelihood estimation or probability-weighted moments.

However, in all these procedures, it is crucial to determine a suitable threshold,

i.e. to determine from which point in the tail the limit assumption is reasonable.

This problem is a classical bias-variance trade-off: choosing the threshold too low
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means that the assumption about the tail is inappropriate, whereas choosing the

threshold too high means that we have too few data points to reasonably estimate the

parameters of the distribution. This problem is often solved by graphical methods,

e.g. by choosing a threshold from which on the mean excess function is approximately

linear, but automatic approaches also exist, e.g. Dupuis (1999); Cebrián et al. (2003).

EVT is widely used in the literature on insurance loss estimation; see McNeil (1997),

McNeil and Saladin (1997), Cebrián et al. (2003), and Sanders (2005) for applications

of GPD models of excesses; Chavez-Demoulin and Embrechts (2004) and Chavez-

Demoulin and Davison (2005) for time dependent GPD models of excessess by use

of smoothing methods; and Corradin (2002) for applications of GPD models in the

context of reinsurance. A number of papers recommend modelling the full data set

rather than only the tail by using mixture models which combine the GPD distribu-

tion with more light-tailed distributions, e.g. Weibull or lognormal distributions; see

Frigessi et al. (2002), Knecht and Küttel (2003), and Cooray and Ananda (2005).

1.1.2 Kernel smoothing

Classical kernel smoothing is a simple and intuitive method which produces a den-

sity estimator of a data set without any parametric assumptions; see e.g. Silverman

(1986), Wand and Jones (1995), and Härdle et al. (2004) for comprehensive intro-

ductions. For a data set X1, ..., Xn, the univariate kernel density estimator has the

form

f̂b(x) =
1

n

n∑
i=1

Kb (x−Xi) (1.3)

where Kb(u) = b−1K(u/b) is a nonnegative kernel function which satisfies
∫

K(x) dx =

1 and is symmetric about the origin with finite fourth moment, and where b > 0 is

a bandwidth which determines the degree of smoothing. The bias and variance are
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given by

E{f̂b(x)} − f(x) ' 1

2
b2µ2(K)f ′′(x), (1.4)

V{f̂b(x)} ' 1

nb
||K||22f(x), (1.5)

where µ2(K) =
∫

s2K(s) ds is the second moment, and ||K||22 =
∫

K2(s) ds is the

squared L2 norm of K. Notice that the bias is small when b is small, whereas the

variance is small when b is large.

An optimal bandwidth can be obtained by optimizing the mean integrated squared

error, MISE(f̂b) =
∫
E

[
{f̂b(x)− f(x)}2

]
dx, with the approximate formula

AMISE
(
f̂b

)
=

1

nb
||K||22 +

1

4
b4 {µ2(K)}2 ||f ′′||22, (1.6)

which ignores higher order terms. The resulting optimal bandwidth is given by

bopt =

( ||K||22
||f ′′||22{µ2(K)}2n

)1/5

∼ n−1/5. (1.7)

By inserting the optimal bandwidth in (1.6), the optimal rate of convergence can be

obtained by

AMISE
(
f̂bopt

)
=

5

4

(||K||22
)4/5

(µ2(K)||f ′′||2)2/5
n−4/5 ∼ n−4/5.

However, the optimal bandwidth (1.7) cannot be calculated directly because f(x)

is unknown. Various methods of bandwidth selection have been proposed in the

literature. In ”Rule-of-Thumb” methods, f(x) in (1.7) is replaced by a parametric

density estimator, e.g. the normal distribution in Silverman (1986). ”Least squares

cross-validation” methods minimize an approximation to the MISE, defined before,

by use of a ”leave-one-out” density estimator; see e.g. Wand and Jones (1995). More

sophisticated bandwidth selection methods, known as ”second generation” methods

in Jones et al. (1996), seem to be superior with respect to their theoretical and
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practical performance, but are computationally more demanding. One example of a

”second generation” method is the Sheather and Jones bandwidth selection method;

see Sheather and Jones (1991) and Wand and Jones (1995), which is based on a kenel

estimator of ||f ′′||22. This estimator needs a bandwidth as well, and the procedure

can be repeated. A pilot bandwidth is however needed, e.g. estimated by use of a

”Rule-of-Thumb” method.

There are various ways in which the basic kernel density estimator (1.3) can be im-

proved. Wand et al. (1991) proposed to transform the data set with a shifted power

transformation and estimate the kernel density estimator on the transformed data

set. The density of the original data set is then obtained by back-transformation.

Similarly, Bolancé et al. (2003) used the shifted power transformation family in an

insurance context, but with an alternative parameter estimation method that min-

imized an approximation of the mean integrated squared error. Other work in this

area includes Yang and Marron (1999), who proposed the Johnson Family Transfor-

mation, and Clements et al. (2003), who recommeded a Möbius-like mapping.

The transformed kernel density estimator has the form

f̃b(x) =
1

n kT (x)

n∑
i=1

Kb {T (x)− T (Xi)}T ′(x), (1.8)

where T (x) is the transformation function and ku is a boundary correction which

is required if the transformed data belong to a compact interval. The transformed

kernel density estimator resembles a classical kernel density estimator with variable

bandwidth, since a constant bandwidth on the transformed axis corresponds to an

increasing bandwidth on the original axis when the transformation function has

compact support. This is always the case if the transformation function is a cdf;

see Bolancé et al. (2003). If T belongs to a parametric class with a square-root-n

consistent estimator, then the following bias and variance expressions appear; see
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Buch-Larsen et al. (2005):

E{f̃b(x)} − f(x) ' 1

2
b2µ2(K)

[{
f(x)

T ′(x)

}′
1

T ′(x)

]′
, (1.9)

V{f̃b(x)} ' 1

nb
||K||22T ′(x)f(x). (1.10)

By comparing the bias and variance terms of the univariate kernel density estimator

and the transformation kernel density estimator, i.e. by comparing (1.4) with (1.9)

and (1.5) with (1.10), we note that the bias term f ′′(x) in (1.4) is replaced by[{
f(x)
T (x)

}′
1

T ′(x)

]′
in (1.9). This means that the transformation kernel density estimator

(1.8) has a superior bias compared to the univariate kernel density estimator (1.3) if

the transformation function is close to the true cdf. We also note that the variance

in (1.10) is multiplied by T ′(x), which means that the variance is superior to (1.5)

when T ′(x) < 1, which is likely to occur in the tail provided the transformation is

well chosen.

As mentioned above, boundary correction is needed to ensure a consistent kernel

density estimator if the support of the data set is compact. Simple boundary correc-

tions — e.g. renormalization of each kernel such that it integrates to 1, or reflection,

which reinstates the ”missing mass” by reflecting the estimate in the boundary —

ensure a consistent estimator. But the bias is of order O(b) near the boundary, which

means that the rate of convergence is n−2/3 at the boundary compared to n−4/5 else-

where; see Jones (1993). Jones (1993) also describes more sophisticated boundary

corrections with boundary bias of order O(b2). All of these methods are based on

linear combinations of two kernel functions. Of particular interest is the local lin-

ear kernel function, which is a linear combination of K(x) and xK(x), and which

corresponds to local linear fitting in nonparametric regression. One disadvantage

of the O(b2) boundary corrections mentioned in Jones (1993) is the propensity for

taking negative values near the boundary. In Jones and Foster (1996), this draw-

back is removed by introducing an estimator based on a linear combination of a

renormalized kernel density and a local linear kernel density. This modification cre-
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ates a non-negative estimator with a performance that matches the performance of

the much more complicated boundary correction proposed in Marron and Ruppert

(1994). Marron and Ruppert introduced a boundary correction based on a transfor-

mation which ensures that the transformed density has first derivative equal to 0 at

the boundary, combined with a reflection boundary correction. Unfortunately, the

estimator in Jones and Foster (1996) does not necessarily integrate to 1. Zhang et al.

(1999) followed the idea in Marron and Ruppert (1994) and proposed a generalized

reflection technique based on a transformation that depends on a pilot estimator

for the logarithmic derivative of the density at the boundary. This idea was further

improved in recent work of Karunamuni and Zhang (2008) by introducing a different

(smaller) bandwidth of the transformation. Asymmetric kernel functions are another

way to address boundary bias due to compact support of the density function. Chen

(1999) proposed beta kernels which produce non-negative estimates free of boundary

bias. The support of the beta kernels can be matched to the compact support of the

density function, and therefore the estimator has smaller finite-sample variance. In

Chen (2000), the idea is extended to situations, where data are bounded only at one

end. Here, a gamma kernel is proposed to obtain a non-negative estimator free of

boundary bias. Moreover, Scaillet (2004) addresses the problem of estimating den-

sities on the non-negative real line based on inverse Gaussian and reciprocal inverse

Gaussian kernel functions.

Various authors have worked on improving bias without aggravating variance, thereby

improving the rate of convergence. One method is to introduce higher-order kernels;

see Wand and Jones (1995), by relaxing the restriction that the kernel function has

to be a density function. By constructing a kernel function with second moment

equal to zero, µ2(K) = 0, the bias is reduced to order o(h4), and the optimal rate of

convergence is then of order n−8/9. As mentioned in Jones et al. (1995), higher-order

kernels can be interpreted as an additive bias reduction. However, in practice the

improvements that one obtains by using higher-order kernels only appear in very

large data sets. Moreover, since the support of a higher-order kernel function in-

cludes negative values, the resulting density estimate is not necessarily non-negative
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and therefore not a density itself. Multiplicative bias correction is an alternative way

to obtain an improved rate of convergence. A multiplicative bias corrected kernel

density estimator has the form

f̄(x) = g(x)
1

n

n∑
i=1

g(Xi)
−1Kb(x−Xi). (1.11)

The fundamental idea is to let the prior density g(x) capture some of the shape of the

true density and then estimate a nonparametric correction which will be smoother

than the original density, provided g(x) is not too far away from the true density.

The asymptotic properties of the multiplicative bias correction are (see Hjort and

Glad (1995))

E{f̄b(x)} − f(x) ' 1

2
b2µ2(K)g(x)r′′(x), (1.12)

V{f̄b(x)} ' 1

nb
||K||22f(x), (1.13)

where r(x) = f(x)
g(x)

. By comparing the bias and variance terms of the univariate kernel

density estimator and the multiplicative bias corrected kernel density estimator, i.e.

by comparing (1.4) with (1.12) and (1.5) with (1.13), we note that, wheareas the

variances are identical, the bias depends on the curvature of r(x) in (1.12), which

is small when g(x) is close to f(x). Bias improvements are therefore obtained when

the prior knowledge density is close to the true density. Hjort and Glad (1995)

proposed a multiplicative bias corrected estimator based on a parametric start, and

Jones et al. (1995) proposed a multiplicative bias corrected estimator based on a

purely non-parametric start. In Jones et al. (1999), the two methods are combined.

Hagmann and Scaillet (2007) investigate an estimator based on local multiplicative

bias correction and propose an asymmetric gamma kernel in order to address the

bounded support and improve the estimation performance. The approach is extended

in Gustafsson et al. (2009) by transforming the data to [0, 1] in order to address the

heavy-tailedness of the data.

Survival analysis is a topic of interest in the broad literature of nonparametric statis-
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tics and kernel smoothing, but is at a first glance only superficially related to large

loss modelling. However, as demonstrated in the last chapter in this thesis, survival

analysis has turned out to be useful when dealing with truncated and censored data.

The following is a short and informal introduction to survival analysis following Mar-

tinussen and Scheike (2006); see Andersen et al. (1993) and Martinussen and Scheike

(2006) for comprehensive introductions.

Let T ∗ be a survival time and C be a censoring time independent of T ∗. Then the

observed survival time is T = T ∗∧C. The variable D = I(T ∗ ≤ C) indicates whether

censoring has occurred. We define the ”at-risk” indicator as Y (t) = I(t ≤ T ),

which is 1 at time t if neither the event nor the censoring have occured at time

t. Let N(t) = I(T ≤ t) be a counting process which is 0 until t passes T and 1

thereafter. The quantity N(t) can be decomposed into a compensator (model part)

and a martingale (random noise),

N(t) = Λ(t) + M(t).

Assume that T ∗ has a density f , and let S(t) = P (T ∗ > t) be the survival function.

Then the hazard function is defined as

α(t) =
f(t)

S(t)
= lim

h↓0
1

h
P (t ≤ T ∗ < t + h|T ∗ ≥ t).

The hazard function defines the distribution uniquely as

S(t) = exp

{
−

∫ t

0

α(s) ds

}
= exp {−A(t)} .

We assume the compensator can be written in the form

Λ(t) =

∫ t

0

λ(s) ds,

where λ(s) is the intensity process. Let (Ti, Di), i = 1, ..., n be n independent ob-

servations, and Ni(t) = I(Ti ≤ t,Di = 1) and Yi(t) = I(t ≤ Ti) correspond to
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the i’th observation. Moreover, define N(t) =
∑n

i=1 Ni(t), Y (t) =
∑n

i=1 Yi(t) and

M(t) = N(t) − ∫ t

0
Y (s)α(s) ds. In a nonparametric setup, the cumulative hazard

function A(t) can be estimated by means of the Nelson-Aalen estimator

Â(t) =

∫ t

0

J(s)

Y (s)
ds,

where J(s) = I(Y (s) > 0), and the survival function S(t) can be estimated by means

of the Kaplan-Meier estimator

Ŝ(t) =
∏
s≤t

(
1−∆Â(s)

)
=

∏
s≤t

(
1− ∆N(s)

Y (s)

)
.

Estimation of the hazard function in a nonparametric setting has been worked out

both in internal and external versions. Beran (1981) and Dabrowska (1987) studied

the situation in which there is a time independent covariate. McKeague and Utikal

(1990) extended this approach to a model with time dependent covariates, a model

which was further developed by Van Keilegom and Veraverbeke (2001). These hazard

estimators are so-called internal local constant estimators. In a situation where there

are no covariates, they have the form (Ramlau-Hansen (1983))

α̂ =
n∑

i=1

∫
Kb(t− s)

1

Y (s)
dNi(s).

Alternatively, Nielsen and Linton (1995) proposed an external local constant estima-

tor

α̃ =

∑n
i=1

∫
Kb(t− s) dNi(s)∑n

i=1

∫
Kb(t− s)Y (s) ds

.

In Li and Doss (1995) and Nielsen (1998), the local constant estimators are extended

to local linear estimators with superior boundary bias, and in Nielsen and Tanggaard

(2001) further extended with a weight function, which enables the authors to identify

the Ramlau-Hansen estimator as an instance of one particular weighting scheme;

however, the authors argue for an alternative weighting scheme which is less sensitive
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to volatile exposure patterns. Moreover, Nielsen and Tanggaard (2001) consider

multiplicative as well as additive bias correction and argue for additive bias correction

due to its superior theoretical bias and simulation results. In Nielsen et al. (2009), the

corresponding local constant and local linear density estimators for filtered data are

derived. The local constant density estimator with the so-called ”unit” or ”natural”

weighting, which is the recommended weighting in Nielsen et al. (2009), is similar

to the local constant hazard estimator, but with the multiplication of the survival

function in the numerator:

f̂(t) =

∑n
i=1

∫∞
0

Kb(t− s)Yi(s)Ŝ(s)dNi(s)∫∞
0

Kb(t− s)Y (n)(s)ds
.

Nielsen et al. (2009) studied multiplicative and additive bias correction in the context

of filtered data density estimators and compared them in an extensive simulation

study. They showed that the multiplicative bias correction is superior to the additive

one, in contrast with the results for hazard estimation in Nielsen and Tanggaard

(2001).

When the explanatory variables are multidimensional, the purely nonparametric

models suffer from a poor rate of convergence, and therefore it is preferable to as-

sume some stucture, e.g. additive or multiplicative regression models; see Hastie and

Tibshirani (1990). In the two dimensional case, the models have the following form:

f(x, z) = f1(x) + f2(z) f(x, z) = f1(x)f2(z).

Linton and Nielsen (1995) proposed an alternative kernel procedure that can be

used for estimation in both additive and multiplicative regression; the procedure is

based on marginal integration and is extended into higher dimensions in Linton et al.

(2003).
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1.2 Overview and contributions of the thesis

The aim of the thesis is to develop large loss models within the framework of non-

parametric statistics. In chapter 2, we present a one-dimensional density estima-

tor based on a parametric distribution and a nonparametric correction, where the

parametric distribution is estimated by maximum likelihood. This estimator is the

starting point for all the subsequent models presented in the thesis. In chapter 3,

the one-dimensional density estimator is adapted to operational risk and the special

problem of underreporting (i.e., the problem that not all claims are reported). In

chapter 4, we present a case study that suggests that the maximum likelihood esti-

mation procedure for the parametric start might be inappropriate if we are mostly

interested in the tail. In chapter 5, we extend this idea and propose an alterna-

tive parameter estimation procedure which emphasizes the tail. The performance of

our corrected parametric estimator with maximum likelihood and tail emphasizing

parameters is compared with the generalized Pareto distribution and the g-and-h

distribution, which has received special attention in operational risk in recent years;

see e.g. Dutta and Perry (2006). The last part of the thesis concerns multivariate

estimators. In chapter 6, we describe how to extend the one-dimensional method to

two dimensions and introduce bias correction based on prior knowledge. In chapter

7, the multivariate model is extended to truncated and censored data.

The following is a more detailed overview of each paper and its contributions.

Chapter 2: Kernel density estimation for heavy-tailed distributions using the Cham-

pernowne transformation

This chapter is identical to the paper Buch-Larsen et al. (2005). In the paper, we

introduce the Champernowne transformed kernel density estimator

f̂(x) =
1

N kT (x)

N∑
i=1

Kb(T (x)− T (Xi))T
′(x), (1.14)

where Kb(u) = K(u/b)/b is a kernel function, b is a bandwidth, ku is a boundary
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correction, and T (x) is a three parameter modified Champernowne distribution with

cdf

T (x) =
(x + c)α − cα

(x + c)α + (M + c)α − 2cα
∀x ∈ R+,

given by parameters α > 0, M > 0, and c ≥ 0. We investigate the properties of

the Champernowne distribution, most importantly the fact that the Champernowne

distribution converges to a heavy-tailed Pareto distribution in the tail, and describe

how to estimate the parameters by maximum likelihood estimation. We also derive

the asymptotic behaviour of (1.14). The paper includes a simulation study which

compares the Champernowne transformed kernel density estimator to the kernel

density estimators proposed in Clements et al. (2003) and Bolancé et al. (2003). The

comparison shows that the Champernowne transformed kernel density estimator has

desirable performance particularly for heavy-tailed data. Data studies of automobile

claims and employer’s liability demonstrate the method’s usefulness on insurance

data. The overall conclusion is that the method provides an estimator on the entire

axis with desirable tail performance compared to similar methods, and that the

method is therefore useful with respect to density estimation of heavy-tailed data.

The results in this paper are based on Buch-Larsen (2003).

Chapter 3: Nonparametric Estimation of Operational Risk Losses Adjusted for Un-

derreporting

This chapter is identical to the paper Buch-Kromann et al. (2007). In this paper, the

Champernowne transformed kernel density estimator is adapted to operational risk

and the special problem of underreporting by means of expert judgements. Under-

reporting is a major challenge in operational risk, which can be modelled by means

of an underreporting function. The underreporting function encodes the likelihood

that a loss of a particular size is being reported. This likelihood converges to 1 as

the claim size approaches infinity, which means that the reported operational risk

data set appears to be more heavy-tailed than it really is. The model we set up is

the following:

Let (Xi)1≤i≤M with density g be M ∼ Poisson(λ) iid operational risk claims which



1.2 Overview and contributions of the thesis 15

have occurred, and let (I(i))1≤i≤M be an indicator function which encodes whether

the claim is reported or not. Then we let N =
∑M

i=1 I(i) denote the number of

reported claims, and we let (Yj)1≤j≤N denote the reported claims from the opera-

tional risk data set and assume that they are iid with density f . The probability of

observing an operational risk claim is

Pu,g =

∫ ∞

0

g(w)u(w) dw,

where u(w) = P (I(1) = 1|X1 = w) is the underreporting function under the assump-

tion that the likelihood of reporting a claim only depends on the value of the claim.

Under this model, N ∼ Poisson(λPu,g), and the relationship between the density of

reported operational risk claims and all operational risk claims, is

f(y) =
g(y)u(y)

Pu,g

.

We wish to estimate g. Unfortunately, g is the density of all operational risk claims

including the unobserved claims, but we can express g as a function of f and u:

g(x) =
f(x){u(x)}−1

∫∞
0

f(w){u(w)}−1 dw
.

The function f is the density of the observed claims, so it is possible to estimate

f by means of Champernowne transformed kernel density estimation (1.14). The

resulting estimator is denoted by f̂ . Based on f̂ , an obvious estimator of g is:

ĝ(x) =
f̂(x){u(x)}−1

∫∞
0

f̂(w){u(w)}−1 dw
.

In the paper, we derive the asymptotic behaviour of f̂ and ĝ and apply the method

in an operational risk data study with six major business lines based on data from

financial institutions. In the data study, we compare the performance of several

parametric distributions and the effect of underreporting and nonparametric kernel



16 Introduction

smoothing. The conclusion is that it is essential to take underreporting into con-

sideration to obtain reliable estimates. Moreover, the study shows that the choice

of parametric distribution is of crucial importance if one takes a purely parametric

approach. However, a kernel smoothing correction on top of the parametric distri-

bution has a stabilising effect and makes the choice of underlying parametric model

less crucial.

Chapter 4: Estimation of Large Insurance Losses: A Case Study

This chapter is identical to the paper Buch-Kromann (2006). The paper uses the

Champernowne transformed kernel density estimator described in chapter 2, but

proposes a parameter estimation method of the Champernowne distribution which

maximizes tail fit instead of likelihood. The intuition is that the nonparametric

correction estimator is able to correct the center of the distribution where the data

are dense, but not the tail where the data are sparse, and it is therefore essential

to obtain a reliable tail fit in the parametric distribution. The proposed parameter

estimation method is a heuristic method which selects the tail parameter α such that

the 95% quantile of the empirical distribution and the estimated modified Champer-

nowne distribution are equal. The parameter c is then chosen such that the mean of

the estimated modified Champernowne distribution is as close as possible to the em-

pirical mean. This parameter estimation method is called the quantile-mean method

(QM). In a data study of employer’s liability losses, we compare the performances

of our Champernowne estimators in four settings: with ML or QM parameter esti-

mates, and with and without kernel smoothing. Kolmogorov-Smirnov test statistics

of the four methods are computed. The test accepts the Champernowne distribution

based on ML parameter estimation with and without nonparametric correction, as

the ML parameters compute the best overall fit. The test rejects the pure paramet-

ric Champernowne distribution with QM parameters, but after the nonparametric

correction the estimator is accepted as well. This indicates that by using QM pa-

rameters, we get a suboptimal fit of the center of the distribution, even though we

obtain a Champernowne estimator with superior tail fit; but the suboptimal center

estimation is improved by the nonparametric correction. The methods are moreover
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compared with respect to conditional means and the number of claims beyond a

given threshold. The comparison shows that the Champernowne distribution seems

to underestimate the tail with ML parameters, even when a nonparamtric correc-

tion is used, whereas the QM parameters result in a much better tail fit. Finally,

we compare the Champernowne transformed kernel density with QM parameters to

generalized Pareto distribution (GPD). The comparison shows that our QM method

provides a tail fit which is almost comparable to the GPD tail fit, but that the QM

method has some additional advantages: firstly, whereas the GPD estimator is only

defined in the tail, our estimator is defined on the entire axis; secondly, our method is

an automatic procedure, whereas the GPD estimator needs a threshold; and thirdly,

the GPD estimator works well for heavy-tailed data, but often results in estimators

with finite support when estimating moderately light tails, which never happens with

our method.

Chapter 5: Comparison of tail performance of the Champernowne transformed kernel

density estimator, the generalized Pareto distribution and the g-and-h distribution

This chapter is identical to the paper Buch-Kromann (2009). The paper is based

on the idea in Buch-Kromann (2006): maximum likelihood may not be an optimal

parameter estimation criterion when we are mostly interested in the tail of the dis-

tribution. In the paper, we introduce a two-stage conditional maximum likelihood

parameter estimation method for the three Champernowne parameters, which en-

sures a superior tail fit coupled with a reasonable fit in the center. The procedure

is the following. In the first step, set c1 = 0 and choose (α1,M1) by maximizing the

conditional log-likelihood function for all data above a threshold t. As the Champer-

nowne distribution converges to a Pareto distribution, this gives a tail approximation

of the estimated Champernowne distribution of τx−α1+1, where τ = α1M
α1
1 is called

the tail constant. In the second step, we fix α̂ = α1 and keep the tail constant τ

unchanged, but allow c to be non-zero and find ĉ by maximizing an ordinary log-

likelihood function. M can then be computed uniquely from α̂, ĉ and τ . The method

is called the conditional maximum likelihood (CML) method. In a data driven Monte

Carlo simulation study, we compare the Champernowne transformed kernel density
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estimator with CML parameters to the corresponding parametric (non-corrected)

Champernowne distributions and two other distributions, a generalized Pareto dis-

tribution (GPD) and a g-and-h distribution with and without nonparametric correc-

tion. The comparison shows that the corrected CML Champernowne transformed

kernel density estimator outperforms all the benchmark estimators except for the

g-and-h distribution with nonparametric correction. This estimator appears to be

superior to the corrected CML Champernowne estimator for heavy-tailed data sets,

provided the data sets are large; but for small data sets as well as lighter-tailed data

sets, the corrected CML Champernowne estimator is superior.

In the CML estimated Champernowne method as well as the GPD method we need

to choose a threshold, and in the evaluation mentioned above, we used optimal

thresholds for both methods. However, optimal thresholds are obviously not avail-

able in practice, and therefore the method’s sensitivity to the choice of threshold is

important. A study of the sensitivity shows that the CML Champernowne trans-

formed kernel density estimator is substantially less sensitive to suboptimal choices

of threshold than the GPD estimator, which is an important advantage of the CML

method. The conclusion in this paper is therefore that the CML Champernowne

transformed kernel density estimator is a method which in general has a comparable

or superior tail performance compared to the benchmark estimators, while at the

same time providing an acceptable fit of the center, unlike the GPD distribution.

Chapter 6: Multivariate density estimation using dimension reducing information

and tail flattening transformations

This chapter is idential to the paper Buch-Kromann et al. (2009), which concerns

multivariate estimation. The paper presents the transformation approach and mul-

tiplicative bias correction in a multivariate setting, and proposes an estimator which

combines these two improvements. The multivariate kernel density estimator in the

most general form is defined by

f̂(x) =
1

n

n∑
i=1

KH(x−Xi), (1.15)
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where K is a multivariate kernel function and H is a d × d bandwidth matrix so

that KH(x) = K(H−1x)/det(H). For simplicity, we consider the special case where

H = hId.

For a given auxiliary model of X with density g, suppose ĝ is an estimator of g. A

multiplicative corrected estimator of f(x) can be defined by

f̃(x) = ĝ(x)
1

n

n∑
i=1

KH(x−Xi)

ĝ(Xi)
. (1.16)

The transformation kernel density estimator is extended to a multivariate setting.

Let u = T (x, λ) be a transformation function which only depends on parameters λ ∈
Λ ⊆ Rp. Since marginal transformations are convenient, we let uj = Tj(xj, λj), j =

1, ..., d. The multivariate transformation kernel density estimator then reduces to

f̃T (x) = Ĵ(x)
1

nhd

n∑
i=1

K
û(x)− Ûi

h
, (1.17)

where Ûi = Ti(Xi, λ̂) is the transformed data set, and Ĵ =
∏d

j=1

∣∣∣∂Tj(xj ,λ̂)

∂xj

∣∣∣ is the

Jacobian of the empirical transformation.

We combine the multiplicative correction and the transformation approach and ob-

tain the estimator

f̃C(x) = Ĵ(x)f̃U{u(x)}, (1.18)

where f̃U(x) = ĝU(u) 1
nhd

∑n
i=1

K{(u−Ûi)/h}
ĝU (Ûi)

is the multiplicative corrected density es-

timator of U , i.e. the multiplicative corrected density estimator on the transformed

axis, and ĝU(u) = ĝ{T−1(u, λ̂)}{T−1(u, λ̂)}′ is the auxiliary model density on the

transformed axis.

In the paper, we derive the asymptotic theory of the estimators. In a simulation

study and a data study, we compare the effects of the proposed improvements with

the baseline. In the simulation study, the performance of the pure multiplicative bias

correction without tail flattening transformation is investigated both in additive and
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multiplicative designs. The additive design is the ”home turf” case, which means

that the auxiliary model in the multiplicative bias correction is specified correctly,

whereas the multiplicative case is specified incorrectly. The performance of the pure

nonparametric kernel density estimator and the multiplicatively corrected estimator

are measured by means of integrated squared error. The comparison between the two

estimators shows that improvements by using multiplicative correction are obtained

even in very small sample sizes, in both additive and multiplicative designs.

The data study is based on a heavy-tailed commercial fire insurance data set, where

we apply the proposed transformation technique. We use the transformation kernel

density estimator with and without multiplicative correction, and compare their per-

formance in a data-driven simulation study, which confirms the conclusion from the

simulation study of the pure multiplicative correction. The data study shows that the

multiplicative correction of the transformed kernel density estimator improves the

estimation performance significantly compared to the transformation kernel density

estimator without multiplicative correction. Compared to the auxiliary model, im-

provements of the multiplicative corrected estimator are obtained when the auxiliary

model is incorrectly specified, without aggrevating the performance of the auxiliary

model when the auxiliary model is correctly specified.

Chapter 7: Multivariate density estimation using dimension reducing information

and tail flattening transformations for truncated or censored data

This chapter is identical to the paper Buch-Kromann and Nielsen (2009). The pa-

per extends the multivariate estimators introduced in the previous chapter to the

situation where the data are truncated and censored – in the following referred to

”filtering”. The extension uses survival analysis to control the exposure. Our data

set is (Xi, Ỹi, Di, Ti)i=1,...,n where Xi is a covariate, Ỹi = Yi ∧ Ci is a claim subjected

to censoring Ci, Di = I(Yi ≤ Ci) indicates whether right censoring has occurred, and

Ti is the left-tuncation time, which means that Ỹi is only observed when Ỹi ≥ Ti.
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The non-parametric filtered data density estimator has the form

f̂ (d,b)
x (t) =

∑n
i=1

∫
Kd1(t− s)Kd2(x−Xi)Ŝ

(b)
Xi,(i)

(s) dNi(s)∑n
i=1

∫
Kd1(t− s)Kd2(x−Xi)Ri(s)ds

(1.19)

where Ŝ
(b)
Xi,(i)

(s) = exp
{
− ∫ s

0
α̂

(b)
Xi,(i)

(u) du
}

is the leave-one-out estimator of the sur-

vival function, and

α̂
(b)
Xi,(i)

(t) =

∑
j 6=i

∫
Kb1(t− s)Kb2(x−Xj) dNj(s)∑

j 6=i

∫
Kb1(t− s)Kb2(x−Xj)Rj(s) ds

is the leave-one-out hazard estimator. The density estimator (1.19) is a fully nonpara-

metric multivariate density estimator taking filtering into account, which corresponds

to (1.15) in the non-filtering case.

The transformation approach is based on the same underlying idea as in the previous

papers. Let Ψ : [0,∞) → [0, 1) be a tail-flattening transformation function, compute

the transformed data by means of this transformation, compute the non-parametric

filtered data density estimator (1.19) on the transformed data, and back-transform

to obtain an estimator on the original axis. The resulting estimator is

f̂
(d,b)
Ψ,x (t) = ψ(t) · k̂(d,b)

Ψ,x {Ψ(t)}, (1.20)

where

k̂
(d,b)
Ψ,x (v) =

∑n
i=1

∫ 1

0
Kd1(v − s)Kd2(x−Xi)Ŝ

(b)
Ψ,Xi,(i)

(s) dÑi(s)∑n
i=1

∫ 1

0
Kd1(v − s)Kd2(x−Xi)Ri{Ψ−1(s)} ds

is the non-parametric estimator (1.19) on the transformed axis,

Ŝ
(b)
Ψ,Xi,(i)

(s) = exp

{
−

∫ s

0

α̂
(b)
Ψ,Xi,(i)

(u) du

}

is the estimator of the survival function on the transformed axis, Ri{Ψ−1(s)} is the
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”at-risk” indicator on the transformed axis, and

α̂
(b)
Ψ,Xi,(i)

(t) =

∑
j 6=i

∫ 1

0
Kb1(t− s)Kb2(x−Xj) dÑj(s)∑

j 6=i

∫ 1

0
Kb1(u− s)Kb2(x−Xj)Rj{Ψ−1(s)} ds

is the hazard estimator on the transformed axis. The transformation estimator (1.20)

with filtering corresponds to (1.17) in the non-filtering case.

Multiplicative bias correction is introduced in a similarly way as well. Let hx be

a prior knowledge density corresponding to what we previously called the auxiliary

density. The multiplicative bias corrected density estimator is

ĝ(d,b)
x (t) = hx(t)ĉ

(d,b)
x (t), (1.21)

where

ĉ(d,b)
x (t) =

∑n
i=1

∫
Kd1(t− s)Kd2(x−Xi)Ŝ

(b)
Xi,(i)

(s) {hXi
(s)}−1 dNi(s)∑n

i=1

∫
Kd1(t− s)Kd2(x−Xi)Ri(s) ds

is the multiplicative bias correction. The multiplicative bias corrected estimator

(1.21) corresponds to (1.16) in the non-filtering case.

We combine the two techniques to obtain an estimator which benefits particularly

from transformation when the data are heavy-tailed, and which incorporates prior

knowledge by means of multiplicative correction. This estimator has the form

f̃
(d,b)
Ψ,x (t) = ψ(t)k̃

(d,b)
Ψ,x {Ψ(t)}, (1.22)

where k̃
(d,b)
Ψ,x (v) = hx{Ψ−1(v)}c̃(d,b)

Ψ,x (v) is the density estimator on the transformed

axis, and

c̃
(d,b)
Ψ,x (v) =

∑n
i=1

∫ 1

0
Kd1(v − s)Kd2(x−Xi)Ŝ

(b)
Ψ,Xi,(i)

(s)[hXi
{Ψ−1(s)}]−1 dÑi(s)∑n

i=1

∫ 1

0
Kd1(v − s)Kd2(x−Xi)Ri{Ψ−1(s)} ds

is the multiplicative bias correction on the transformed axis. The combined estimator
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(1.22) corresponds to (1.18) in the no-filtering case.

We derive the asymptotic properties of the estimators. In a simulation study, we

compare the performance of the estimators for different amounts of filtering. The

results resemble the results in the previous paper. The multiplicative bias correction

improves the nonparametric estimation significantly, and it also improves the prior

knowledge estimator when the density is not correctly specified, without worsening it

if the prior knowledge is correctly specified. Moreover, the estimators are compared

to the estimators in the previous paper. When filtering is not present, the simple

estimators in the previous paper outperform the filtering estimators. However, with

just small amounts of filtering, the filtering estimators have a significant advantage.
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Chapter 2

Kernel density estimation for

heavy-tailed distributions using

the Champernowne transformation

This chapter is an adapted version of Buch-Larsen et al. (2005).

When estimating loss distributions in insurance, large and small losses are usually

split because it is difficult to find a simple parametric model that fits all claim

sizes. This approach involves determining the threshold level between large and

small losses. In this article a unified approach to the estimation of loss distributions

is presented. We propose an estimator obtained by transforming the data set with

a modification of the Champernowne cdf and then estimating the density of the

transformed data by use of the classical kernel density estimator. We investigate

the asymptotic bias and variance of the proposed estimator. In a simulation study,

the proposed method shows a good performance. We also present two applications

dealing with claims costs in insurance.
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2.1 Introduction

In finance and nonlife insurance, estimation of loss distributions is a fundamental

part of the business. In most situations, losses are small, and extreme losses are

rarely observed, but the number and the size of extreme losses can have a substantial

influence on the profit of the company. Standard statistical methodology, such as

integrated error and likelihood, does not weigh small and big losses differently in the

evaluation of an estimator. These evaluation methods do not, therefore, emphasize

an important part of the error: the error in the tail.

Practitioners often decide to analyze large and small losses separately, because no

single, classical parametric model fits all claim sizes. This approach leaves some

important challenges: choosing the appropriate parametric model, identifying the

best way of estimating the parameters and determining the threshold level between

large and small losses.

This work presents a systematic approach to the estimation of loss distributions

which is suitable for heavy tailed situations. The proposed estimator is obtained by

transforming the data set with a parametric estimator and afterwards estimating the

density of the transformed data set using the classical kernel density estimator, see

Wand and Jones (1995); Silverman (1986)

f̂(y) =
1

Nb

N∑
i=1

K

(
y − Yi

b

)
,

where K is the kernel function, b is the bandwidth and Yi, i = {1, ..., N} is the

transformed data set. The estimator of the original density is obtained by back-

transformation of f̂(y). We will call this method a semiparametric estimation pro-

cedure because a parametrized transformation family is used. We propose to use a

transformation based on the little-known Champernowne cdf, because it produces

good results in all the studied situations and it is straightforward to apply.

The semiparametric estimator with shifted power transformation was introduced in
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Wand et al. (1991). They showed that the classical kernel density estimator was im-

proved substantially by applying a transformation and suggested the shifted power

transformation family. Bolancé et al. (2003) improved the shifted power transfor-

mation for highly skewed data by proposing an alternative parameter selection al-

gorithm. The semiparametric estimator with the Johnson family transformation

function was studied by Yang and Marron (1999). Hjort and Glad (1995) advocated

a semiparametric estimator with a parametric start, which is closely related to the

bias reduction method described in Jones et al. (1995). The Möbius-like transfor-

mation was introduced in Clements et al. (2003). In contrast to the shifted power

transformation, which transforms (0,∞) into (−∞,∞), the Möbius-like transforma-

tion transforms (0,∞) into (−1, 1) and the parameter estimation method is designed

to avoid boundary problems. Scaillet (2004) has recently studied nonparametric esti-

mators for probability density function which have support on the non-negative real

line using alternative kernels.

The original Champernowne distribution has density, Johnson et al. (1994)

f(x) =
c

x
(

1
2

(
x
M

)−α
+ λ + 1

2

(
x
M

)α
) x ≥ 0, (2.1)

where c is a normalizing constant and α, λ and M are parameters. The distribution

was mentioned for the first time in 1936 by D.G. Champernowne when he spoke

on “The Theory of Income Distribution” at the Oxford Meeting of the Econometric

Society Brown (1937). Later, he gave more details about the distribution and its

application to economics, Champernowne (1952). When λ equals 1 and the normal-

izing constant c equals 1
2
α, the density of the original distribution is simply called

the Champernowne distribution

f(x) =
αMαxα−1

(xα + Mα)2
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with cdf

F (x) =
xα

xα + Mα
. (2.2)

The Champernowne distribution converges to a Pareto distribution in the tail, while

looking more like a lognormal distribution near 0 when α > 1. Its density is either

0 or infinity at 0 (unless α = 1).

In the transformation kernel density estimation method, if we transform the data

with the Champernowne cdf, the inflexible shape near 0 results in boundary prob-

lems. We argue that a modification of the Champernowne with an additional pa-

rameter can solve this inconvenience.

We did not choose to work with classical extensions of the Pareto distribution such

as the generalised Pareto distribution (GPD), see i.e. Coles (2001). The reason for

doing so is that the GPD often estimates distributions of infinite support to have

finite support and hence it cannot be used as a transformation. We carried out a

small simulation study of a standard log normal distribution; more than half the

time the GPD suggested a distribution with finite support. Furthermore, the GPD

needs a (hard to pick) threshold from where the distribution starts; such that the

transformation methodology meets problems also in the beginning of the distribution.

In this paper we study the transformation kernel density estimation method. The

conclusion of the simulation study is that the new approach based on the modified

Champernowne distribution is the preferable method, because it is the only estima-

tor which has a good performance in most of the investigated situations. Section

2.2 describes the transformation family and explains the parameter estimation pro-

cedure. Section 2.3 presents the semiparametric kernel density estimator and its

properties. In section 2.4, the simulation study is presented and section 2.5 shows

two applications. Finally, the section 2.6 outlines the main conclusions.
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2.2 The modified Champernowne distribution func-

tion

We generalize the Champernowne distribution with a new parameter c. This pa-

rameter ensures the possibility of a positive finite value of the density at 0 for all

α.

Definition 2.1. The modified Champernowne cdf is defined for x ≥ 0 and has the

form

Tα,M,c(x) =
(x + c)α − cα

(x + c)α + (M + c)α − 2cα
∀x ∈ R+ (2.3)

with parameters α > 0, M > 0 and c ≥ 0 and density

tα,M,c(x) =
α(x + c)α−1((M + c)α − cα)

((x + c)α + (M + c)α − 2cα)2
∀x ∈ R+.

Corresponding to the Champernowne distribution, the modified Champernowne dis-

tribution converges to a Pareto distribution in the tail:

tα,M,c(x) →
α

(
((M + c)α − cα)

1
α

)α

xα+1
as x →∞.

The effect of the additional parameter c is different for α > 1 and for α < 1. The

parameter c has some “scale parameter properties”: when α < 1, the derivative of

the cdf becomes larger for increasing c, and conversely, when α > 1, the derivative

of the cdf becomes smaller for increasing c. When α 6= 1, the choice of c affects

the density in three ways. First, c changes the density in the tail. When α < 1,

positive cs result in lighter tails, and the opposite when α > 1. Secondly, c changes

the density in 0. A positive c provides a positive finite density in 0:

0 < tα,M,c(0) =
αcα−1

(M + c)α − cα
< ∞ when c > 0.
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Thirdly, c moves the mode. When α > 1, the density has a mode, and positive cs

shift the mode to the left. We therefore see that the parameter c also has a shift

parameter effect. When α = 1, the choice of c has no effect.

Figure 2.1 illustrates the role of c: the two graphs on the top show the cdfs and the

densities for the modified Champernowne distribution for fixed α < 1 and M = 3. In

the cdf plot, we see that increasing c results in lower values of the cdf in the interval

[0,M) and higher values of the cdf in the interval [M,∞). In the density plot, we see

that increasing c results in a lighter tail and a finite density at 0. In the two graphs

in the middle, we have fixed α = 1 and M = 3. We see that changing c has no effect.

The two graphs at the bottom illustrate the effect of increasing c when α > 1, for

M = 3. Notice that the values of the cdf become higher in the interval [0,M) and

lower in the interval [M,∞). The density plot shows that positive cs move the mode

to the left and produce a heavier tail.

From a computational point of view, it is simpler to estimate M and then pro-

ceed to the other parameters. In the Champernowne distribution, we notice that

Tα,M,0(M) = 0.5. The same holds for the modified Champernowne distribution:

Tα,M,c(M) = 0.5. This suggests that M can be estimated as the empirical median

of the data set. The empirical median is a robust estimator, especially for heavy-

tailed distributions, as shown in Lehmann (1991). He studied the properties of the

median and the mean as an estimator of location for the normal distribution and the

Cauchy distribution, and showed that whereas the mean works well as an estimator

of location for the normal distribution, it works poorly for the Cauchy distribution

due to its heavy tail. Tukey (1960) reached the same conclusion when he studied

the efficiency of the median and the mean. He showed that the median efficiency

increases as the tail becomes heavier. Corresponding models have also been studied

for heavy-tailed distributions, see Stigler (1973); Newcomb (1882, 1886). A similar

type of discussion for the variance estimation was done by Huber (1981). As we are

especially concerned about heavy tails, we consider the robustness of the median to

be important.
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Figure 2.1: Different shapes of the modified Champernowne distribution with different
choices of α, as well as the effect of the parameter c. In all plots c = 0 dashed line and
c = 2 solid line.
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After parameter M has been estimated as described above, the next step is to esti-

mate the pair (α, c) which maximizes the log likelihood function:

l (α, c) = N log α + N log ((M + c)α − cα) + (α− 1)
N∑

i=1

log(Xi + c)

−2
N∑

i=1

log ((Xi + c)α + (M + c)α − 2cα) . (2.4)

For a fixed M , this likelihood function is concave and has a maximum.

2.3 The semiparametric transformation kernel den-

sity estimator

In this section we will make a detailed derivation of the estimator based on the mod-

ified Champernowne distribution, which we will call KMCE. The resulting estimator

is obtained by computing a nonparametric classical kernel density estimator for the

transformed data set and, finally, the result is back-transformed.

2.3.1 Transformation with the modified Champernowne dis-

tributions

Let Xi, i = 1, ..., N, be positive stochastic variables with an unknown cdf F and

density f . The following describes in detail the transformation kernel density es-

timator of f , and Figure 2.2 illustrates the four steps of the estimation procedure

for a data set with 1000 observations generated from a Weibull distribution. The

resulting transformation kernel density estimator of f based on the Champernowne

distribution is denoted by KMCE.

(i) Calculate the parameters
(
α̂, M̂ , ĉ

)
of the modified Champernowne distribution
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as described in section 2.2 to obtain the transformation function. In the first

plot in Figure 2.2, we see the estimated transformation function and the true

Weibull distribution. Notice that the modified Chapernowne density has a

larger mode and that the tail is too heavy.

(ii) Transform the data set Xi, i = 1, ..., N, with the transformation function, T :

Yi = Tα̂,M̂,ĉ(Xi), i = 1, ..., N.

The transformation function transforms data into the interval (0, 1), and the

parameter estimation is designed to make the transformed data as close to a

uniform distribution as possible. The transformed data are illustrated in the

second plot in Figure 2.2.

(iii) Calculate the classical kernel density estimator on the transformed data, Yi, i =

1, ..., N :

f̂trans(y) =
1

N ky

N∑
i=1

Kb(y − Yi),

where Kb(·) = (1/b)K(·) and K(·) is the kernel function. The boundary cor-

rection, ky, is required because the Yi are in the interval (0, 1) so that we need

to divide by the integral of the part of the kernel function that lies in this

interval. The boundary correction ky is defined as

ky =

min(1,(1−y)/b)∫

max(−1,−y/b)

K(u) du.

The classical kernel density estimator of the transformed data set is illustrated

in the third plot in Figure 2.2.

(iv) The classical kernel density estimator of the transformed data set results in

the KMCE estimator on the transformed scale. Therefore the estimator of the
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density of the original data set, Xi, i = 1, ..., N is :

f̂(x) =
f̂trans

(
Tα̂,M̂,ĉ(x)

)
∣∣∣∣
(
T−1

α̂,M̂,ĉ

)′ (
Tα̂,M̂,ĉ(x)

)∣∣∣∣
.

The KMCE results for the Weibull data set is seen in the last plot in Figure

2.2.

The expression of the KMCE is:

f̂(x) =
1

N kT
â,M̂,ĉ

(x)

N∑
i=1

Kb(Tα̂,M̂,ĉ(x)− Tα̂,M̂ ,ĉ(Xi))T
′
α̂,M̂,ĉ

(x). (2.5)

2.3.2 Asymptotic theory for the transformation kernel den-

sity estimator

In this section, we investigate the asymptotic theory of the transformation kernel

density estimator in general. We derive its asymptotic bias and variance.

Theorem 2.1. Let X1, ..., XN be independent identically distributed variables with

density f . Let f̂(x) be the transformation kernel density estimator of f(x)

f̂(x) =
1

N

N∑
i=1

Kb(T (x)− T (Xi))T
′(x),

where T (·) is the transformation function.
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Then the bias and the variance of f̂(x) are given by

E
[
f̂(x)

]
− f(x) =

1

2
µ2(K)b2

((
f(x)

T ′(x)

)′
1

T ′(x)

)′
+ o(b2),

V
[
f̂(x)

]
=

1

Nb
R(K)T ′(x)f(x) + o

(
1

Nb

)

as N →∞, where µ2(K) =
∫

u2K(u) du and R(K) =
∫

K2(u) du.
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Figure 2.2: Four steps of the KMCE estimator. a) The estimated transformation function
(solid line) and the true density (dashed line). b) The histogram of the transformed data
set. c) The estimated classical kernel density estimator of the transformed data set. d)
The final KMCE estimator (solid line) and the true density (dashed line).
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Proof. We assume that X1, ..., XN are independent identically distributed variables

with density f . Let f̂(x) be the transformation kernel density estimator of f(x) :

f̂(x) =
1

N

N∑
i=1

Kb(T (x)− T (Xi))T
′(x),

where T (·) is the transformation function. Let the transformed variable have distri-

bution g:

Yi = T (Xi) ∼ g(y) =
f(T−1(y))

T ′(T−1(y))

and let ĝ(y) be the classical kernel density estimator of g(y):

ĝ(y) =
1

N

N∑
i=1

Kb(y − Yi).

The mean and variance of the classical kernel density estimator is:

E [ĝ(y)] = g(y) +
1

2
b2µ2(K)g′′(y) + o(b2), (2.6)

V [ĝ(y)] =
1

Nb
R(K)g(y) + o

(
1

Nb

)
. (2.7)

The transformation kernel density estimator can be expressed by the standard kernel

density estimator:

f̂(x) = T ′(x)ĝ(T (x))

implying

E
[
f̂(x)

]
= T ′(x)E [ĝ(T (x))]

= T ′(x)

(
g(T (x)) +

1

2
b2µ2(K)

∂2g(T (x))

∂(T (x))2
+ o(b2)

)
. (2.8)
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Note that

g(T (x)) =
f(x)

T ′(x)
,

∂g(T (x))

∂T (x)
=

(
f(x)

T ′(x)

)′
1

T ′(x)
,

and
∂2g(T (x))

∂(T (x))2
=

((
f(x)

T ′(x)

)′
1

T ′(x)

)′
1

T ′(x)

which are used to find the mean of the transformation kernel density estimator

E
[
f̂(x)

]
= f(x) +

1

2
b2µ2(K)

((
f(x)

T ′(x)

)′
1

T ′(x)

)′
+ o(b2). (2.9)

The variance is calculated in a similar way

V
[
f̂(x)

]
= (T ′(x))2V [ĝ(T (x))]

= (T ′(x))2

(
1

Nb
R(K)g(T (x)) + o

(
1

Nb

))

=
1

Nb
R(K)T ′(x)f(x) + o

(
1

Nb

)
. (2.10)

It is known, Yang (2000) that the classical kernel density estimator follows a nornal

distribution asymptotically:

√
Nb (ĝ(y)− E [ĝ(y)]) ∼ N

(
0,

1

Nb
R(K)g(y)

)
.

Then, since f̂(x) = T ′(x)ĝ(y) with y = T (x) , then

√
Nb

(
f̂(x)− E

[
f̂(x)

])
∼ N

(
0,

1

Nb
R(K)T ′(x)f(x)

)
.

For a parametric transformation T (x) = Tθ(x), if we assume that θ̂ is a square-root-

n consistent estimator of θ, then it follows that the asymptotic distribution of f̂(x)

with parametric estimated transformation Tθ̂(x), equals the asymptotic distribution
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of f̂(x) with parametric transformation Tθ(x).

2.4 Simulation study

This section presents a comparison of our semiparametric method based on the modi-

fied Champernowne distributions with two benchmark estimators. We simulate data

from four distributions with different tails and different shapes near 0. We measure

the error between the estimated density and the true density by using four differ-

ent error measures. In subsection 2.4.3, we evaluate the performance of the KMCE

estimators compared to the estimator described in Clements et al. (2003), in the

following called CHL, and the estimator described in Bolancé et al. (2003), in the

following called BGN.

2.4.1 The distributions

We have simulated four distributions with different characteristics: lognormal, lognor-

mal-Pareto, Weibull and truncated logistic. The lognormal distribution has a mod-

erately light tail, and when we mix the lognormal distribution with the Pareto distri-

bution, which is a heavy-tailed distribution, the resulting distribution is also heavy-

tailed. The Weibull distribution is a light-tailed distribution that starts at 0 and has

a mode. The truncated logistic is a light-tailed distribution that has a positive finite

density at 0. The distributions and the chosen parameters are listed in Table 2.1 and

Figure 2.3 plots the densities to show the diversity of shapes.

2.4.2 Measuring the error

We measure the performance of the estimators by the error measures L1, L2, WISE

and E. Let f̂(x) be the estimated density and f(x) be the true density. The L1 norm

measures the distance between the estimated density and the true density on the
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Distribution Density for x > 0 Parameters

Lognormal(µ, σ2) f(x) = 1√
2πσ2x

e−
(log x−µ)2

2σ2 (µ, σ2) = (0, .5)

Mixture of
p lognormal(µ, σ)

(1− p) Pareto(λ, ρ, c)

f(x) = p 1√
2πσ2x

e−
(log x−µ)2

2σ2 +

(1− p)(x− c)−(ρ+1)ρλρ

(p, µ, σ, λ, ρ, c)
= (.7, 0, 1, 1, 1,−1)
= (.3, 0, 1, 1, 1,−1)

Weibull(γ) f(x) = γx(γ−1)e−xγ
γ = 1.5

Truncated
logistic(s)

f(x) = 2
s
e

x
s

(
1 + e

x
s

)−2
s = 1

Table 2.1: Distributions used in the simulation study.
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Figure 2.3: Shape of the different distributions used in the simulation study. In plot b)
30% Pareto (solid line) and 70% Pareto (dashed line).
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whole support.

L1 =

∞∫

0

∣∣∣f̂(x)− f(x)
∣∣∣ dx.

We also calculate the L2 norm between the two distributions.

L2 =




∞∫

0

(
f̂(x)− f(x)

)2

dx




1/2

.

Both L1 and L2 weigh errors of the estimator near 0 and in the tail equally, although

the consequences for some real-world situations of a poor estimation in the tail are

much more critical than the consequences of a poor estimation near 0.

WISE weighs the distance between the estimated and the true distribution with the

squared value of x. This results in an error measure that emphasizes the tail of the

distribution, which is very relevant in practice when dealing with income or cost

data.

WISE =




∞∫

0

(
f̂(x)− f(x)

)2

x2 dx




1/2

.

The last error measure, E, calculates the distance between the estimated mean excess

function and the true mean excess function. It emphasizes the error in the tail as

well.

E =




∞∫

0

(ê(x)− e(x))2 f(x) dx




1/2

(2.11)

=




∞∫

0

(∫ ∞

x

u
(
f(u) − f̂(u)

)
du

)2

f(x) dx




1/2

, (2.12)

To calulate the error measures, we used the change of variable y = (x−M)/(x+M)

proposed by Clements et al. (2003).
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2.4.3 Comparison of the estimation methods

We compare the performance of the KMCE, the CHL and the BGN estimators.

The comparison is based on data simulated from the four distributions described in

Table 2.1, and four sample sizes: N = 50, N = 100, N = 500 and N = 1000. Each

combination of distribution and sample size is replicated 2000 times. In Table 2.2

and Table 2.3 we show the means of the error measures for the 2000 samples. We

show the results obtained when using the rule of thumb method, Silverman (1986)

for bandwidth selection. We also investigated bandwidth selection method described

in Sheather and Jones (1991) and the conclusions do not change.

For the moderately light-tailed lognormal, all three estimators exhibit good perfor-

mance in general. The KMCE and CHL estimators show the best performance. The

CHL estimator outperforms the KMCE estimator for all N, but it seems to outper-

form the KMCE estimator near 0 rather than in the tail, as seen by the fact that the

improvement obtained on L1 and L2 is greater than the improvement obtained on

WISE and E. The BGN estimator also performs well in this case. The performance

of this estimator is only 3-4% worse than the performance of the KMCE estimator.

For the heavy-tailed distributions, the KMCE estimator shows a significantly better

performance than the CHL and the BGN estimators. The performance of the CHL

estimator is poor compared to the KMCE estimator. For the 70% lognormal-30%

Pareto, the KMCE estimator outperforms the CHL estimator by about 15-20%,

and the performance gap seems to become larger when N increases. The largest

performance gap occurs with WISE and E, which indicates that the performance

gap is mainly in the tail. The BGN estimator is also outperformed by the KMCE

estimator: the error measures are about 10% better for the KMCE estimator than

the BGN estimator for the 70% lognormal-30% Pareto, but the improvement seems

to go down when N increases.

The results for the 30% lognormal-70% Pareto are similar to the previous ones. The

KMCE estimator still outperforms the CHL and BGN estimators. This indicates that

when the tail becomes heavier, the benefits of using the KMCE estimator instead
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Log-normal Log-Pareto Weibull Tr. Logist.
p=.7 p=.3

N = 50 L1 KMCE .1821 .1713 .1664 .1855 .1732
CHL .1811 .1815 .1860 .1955 .2009
BGN .1927 .1860 .1895 .1852 .1892

L2 KMCE .1402 .1130 .1099 .1420 .1065
CHL .1326 .1311 .1617 .1338 .1183
BGN .1456 .1151 .1267 .1391 .1257

WISE KMCE .1391 .1139 .1299 .1178 .1281
CHL .1316 .1385 .1693 .1288 .1546
BGN .1431 .1347 .1588 .1217 .1403

E KMCE .0373 .0760 .1474 .0313 .0480
CHL .0388 .1109 .2295 .0359 .0574
BGN .0402 .0974 .2024 .0338 .0523

N = 100 L1 KMCE .1363 .1287 .1236 .1393 .1294
CHL .1381 .1412 .1423 .1533 .1468
BGN .1451 .1383 .1413 .1426 .1578

L2 KMCE .1047 .0862 .0837 .1084 .0786
CHL .1018 .1021 .1244 .1044 .1000
BGN .1100 .0855 .0972 .1079 .0924

WISE KMCE .1039 .0859 .0958 .0886 .0977
CHL .1018 .1068 .1276 .1029 .1078
BGN .1093 .1004 .1191 .0939 .1241

E KMCE .0268 .0572 .1073 .0224 .0344
CHL .0289 .0816 .1677 .0277 .0391
BGN .0297 .0716 .1572 .0255 .0443

Table 2.2: The estimated error measures for sample size 50 and 100 based on 2000 repeti-
tions.

of the CHL and the BGN estimators become greater. For the lognormal-Pareto

distribution, the parameter c in the KMCE estimator tends to 0 when N increases.

Comparing the estimated αs for the KMCE estimator, we observe that the αs are

around 1.4-1.8 for the 70% lognormal-30% Pareto distribution, whereas they are

around 1.2-1.3 for the 30% lognormal-70% Pareto distribution. This is due to the

fact that the 30% lognormal-70% Pareto distribution has a heavier tail than the 70%

lognormal-30% Pareto distribution.

For the light-tailed Weibull distribution, we can see that the KMCE, the CHL and the
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Log-normal Log-Pareto Weibull Tr. Logist.
p=.7 p=.3

N = 500 L1 KMCE .0786 .0676 .0646 .0831 .0745
CHL .070 .0786 .0786 .0869 .0915
BGN .0761 .0703 .0761 .0763 .0791

L2 KMCE .0585 .0480 .0470 .0676 .0437
CHL .0560 .0581 .0685 .0594 .0591
BGN .0590 .0454 .0601 .0588 .0574

WISE KMCE .0585 .0471 .0517 .0530 .0598
CHL .0555 .0587 .0685 .0604 .0718
BGN .0579 .0507 .0686 .0510 .0585

E KMCE .0125 .0306 .0591 .0111 .0171
CHL .0143 .0405 .0808 .0149 .0235
BGN .0145 .0342 .0974 .0129 .0120

N = 1000 L1 KMCE .0659 .0530 .0507 .0700 .0598
CHL .0572 .0606 .0609 .0688 .0730
BGN .0684 .0541 .0584 .0583 .0587

L2 KMCE .0481 .0389 .0393 .0582 .0339
CHL .0435 .0450 .0528 .0476 .0521
BGN .0454 .0360 .0509 .0453 .0434

WISE KMCE .0481 .0384 .0417 .0450 .0501
CHL .0434 .0453 .0524 .0478 .0561
BGN .0448 .0390 .0539 .0394 .0437

E KMCE .0094 .0251 .0492 .0084 .0126
CHL .0107 .0295 .0588 .0113 .0178
BGN .0108 .0255 .0780 .0096 .0143

Table 2.3: The estimated error measures for sample size 500 and 1000 based on 2000
repetitions.

BGN estimators show good performance. The KMCE estimator is 5-20% worse on L2

compared to the CHL estimator, and about 10% better with respect to WISE. This

means that the KMCE estimator near 0 is worse than the CHL estimator, whereas

the KMCE estimator is better than the CHL estimator in the tail. As compared to

the BGN estimator, the KMCE estimator also gives a similar performance.

For the truncated logistic distribution, the KMCE and the BGN estimators show

good performance. The bad performance of the CHL estimator is due to the fact

that the transformation functions in this case always starts at 0 when α > 1. The
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estimator therefore transforms the true distribution, which has a positive value at

0, with a function that is 0 at 0, and this gives a positive value divided by 0, which

results in a bad fit near 0. We see that the CHL estimator underestimates the true

distribution around 0 for all values of N. The KMCE estimator also underestimates

the true density around 0, but when N increases, the error around 0 decreases. We

have also seen that the KMCE estimator overestimates the tail, which is because the

transformation function has a heavy Pareto tail.

The main conclusion of our simulation study is that the KMCE estimator is recom-

mended for heavy tailed situations.

We have designed the simulation study to be comparable to the simulation study

in Clements et al. (2003). They compared their estimator to the transformation

kernel density estimator with the modified-power transformation function porposed

by Wand et al. (1991), which we call WMR, and the transformation kernel density

estimator with the iterated transformation function suggested by Yang and Marron

(1999), which we called YM. We can therefore use their simulation study to compare

our estimator and the BGN estimator with the WMR and the YM estimators, even

though the CHL simulation study only compares the L1 and the L2 error measures,

and not error measures that emphasize the tail.

The CHL simulation study in Clements et al. (2003) shows that the CHL estimator

performs well in general compared to WMR and YM. But for some distributions, the

CHL estimator is outperformed by one of the other estimators. For the heavy-tailed

70% lognormal-30% Pareto distribution, the CHL estimator is outperformed with

respect to L2 by the YM estimator, but the performance of the KMCE estimator in

our simulation study is even better than that of the YM estimator in the heavy-tail

situation. For the Weibull distribution, the WMR estimator still gives very good

performance compared to both the CHL and KMCE estimators. On the other hand,

we are also able to make a comparison between the BGN estimator and the WMR

and the YM estimators: the BGN estimator outperforms the WMR and the YM

estimator in all situations investigated in the CHL simulation study.
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2.5 Data study

In this section, we will apply our semiparametric estimation method to two data sets.

The first data set contains automobile claims from a Spanish insurance company, and

the second data set is about employer’s liability from an Irish insurance company.

The first data set was analyzed in detail in Bolancé et al. (2003). It is a typical

insurance claims amount data set: it contains a lot of observations and it seems to

be heavy-tailed. Unlike the automobile insurance, the liability data set from Ireland

is rather light-tailed. The reason is that claims are undeveloped, i.e., large claims

are underrepresented in this data set because they take longer to process.

2.5.1 Automobile claims

We study bodily injury payments from automobile accidents occuring in Spain in

1997. The data are divided into two age groups: claims from policyholders who

are less than 30 years old, and claims from policyholders who are 30 years old or

older. The first group of the data set consists of 1061 observations in the interval

[1; 126000] with mean value 402.7. The second group consists of 4061 observations

in the interval [1; 17000] with mean value 243.1. Estimation of the parameters in

the modified Champernowne distribution function is, for young drivers α̂1 = 1.116,

M̂1 = 66, ĉ1 = 0.000, and for older drivers α̂2 = 1.145, M̂2 = 68, ĉ2 = 0.000,

respectively. The bandwidths are b1 = 0.172 and b2 = 0.134. Figure 2.4 presents the

classical kernel density estimator of the transformed data separated in the two age

groups. We notice that α1 < α2, which indicates that the data set for young drivers

has a heavier tail than the data set for older drivers.

Figure 2.5 shows the resulting KMCE estimator for the two groups of policyhold-

ers. The claims have been split into three categories: Small claims in the interval

(0; 2000), moderately sized claims in the interval [2000; 14000), and extreme claims

in the interval [14000;∞). The figure illustrates that the tail in the estimated den-

sity of young policyholders is heavier than the tail of the estimated density of older
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Figure 2.4: Classical kernel density estimator of the transformed automobile claims sepa-
rated into policyholders < 30 years old and > 30 years old from an insurance company.

policyholders. This can be taken as evidence that young drivers are more likely to

claim a large amount so that they should pay a higher premium than older drivers.

Therefore the method is useful to identify high risk groups, i.e. those having more

extreme claims. The usefulness of the methodology is specially interesting in this

point. It alows to plot the estimated density in regions where data are scarce. If risk

groups (such as young drivers or type of vehicles) are plotted separately, the density

estimates inform about the risk orderings (i.e., which type of customers are likely to

claim an extreme cost).

2.5.2 Employer’s liability

In this section, we will apply our semiparametric estimation method to the costs of

employer’s liability from an Irish insurance company. The data set consists of 2522

claims. Here we want to see the effect of not including the additional c parameter

in the transformation. The estimation of the parameters in the modified Champer-

nowne distribution is α̂ = 1.955, M̂ = 32379.307, ĉ = 64758.614 and bandwidth

b = 0.147. When c is assumed equal to 0, then α̂ = 0.954 while M̂ is the same

because it corresponds to the sample median. Figure 2.6 presents the classical kernel

density estimator of the transformed data, using two different values of c.
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Figure 2.5: KMCE estimator of automobile claims from an insurance company, claims are
separated into policyholders < 30 years old and > 30 years old, split into three groups.
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Figure 2.6: Classical kernel density estimation of the EL data transformed with estimated
Champernowne (c = 0) distribution (dashed line) and modified Champernowne (c > 0)
distribution (solid line).

In Figure 2.7, we plot the estimators on the original scale. The estimators are

nearly identical for small and moderate claims (low costs), whereas the KMCE with
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c = 0 overestimated the tail. This shows the importance of considering the modified

Champernowne distribution.
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Figure 2.7: KMCE with c = 0 (dashed line) and KMCE with c > 0 (solid line) estimation
of the EL data, separated into three disjoint intervals.

2.6 Conclusion

In this work, we have introduced an alternative method for estimating loss distri-

butions. The method, which we have called a semiparametric transformation kernel

density estimator, is based on a parametric estimator that is subsequently corrected

with a nonparametric estimator. When we have a lot of information, the estimator

is close to a nonparametric estimator, whereas it is close to a parametric estimator

when we have little information.

The Champernowne distribution has an inflexible shape near 0, and we have gener-

alised the distribution to the modified Champernowne distribution, which is heavy-

tailed as well. We have used this modification for the transformation kernel density

estimator.

The KMCE estimator turns out to perform very well compared to existing transfor-

mation kernel density estimators. The estimators were compared on simulated data.

The KMCE estimator is the only estimator that performed well for all distributions.

Therefore, the KMCE estimator is a basis for a unified approach that can be used

for all kinds of data.
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In insurance companies today, many analyses of loss distributions are based on para-

metric estimation. Our results show that our proposed method can overcome many

disadvantages: in parametric estimation, the analyst must decide on a parametric

model and a parameter estimation method. Insurance data sets are often large and

the true distribution of real data rarely follows a simple known parametric distribu-

tion. We claim that there is no need to separate small and large claims. We believe

that the use of our unified method results in an estimation of loss distributions that

is very straightforward and can be usefull in practice.
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Chapter 3

Nonparametric estimation of

operational risk losses adjusted for

underreporting

This chapter is an adapted version of Buch-Kromann et al. (2007).1

Not all claims are reported when a data base for financial operational risk is created.

The probability of reporting increases with the size of the operational risk loss and

converges towards one for big losses. Losses in operational risk have different causes

and usually follow a wide variety of distributional shapes. Therefore, a method for

modelling operational risk based on one or two parametric models is deemed to fail.

In this paper we introduce a semiparametric method for modelling operational risk

that is capable of taking underreporting into account and being guided by prior

knowledge of the distributional shape.

1Winning paper of the Operational Risk & Compliance Achievement Award 2007.
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3.1 Introduction

This paper contributes to Basel II and to the advanced measurement approach that

seems to be part of Solvency II2. In Solvency II, insurance companies are allowed

to lower their solvency requirement if they can provide internal high-quality models

that convincingly show that the standardized methods are overly prudent. Solvency

II is based on three pillars that correspond to the pillars in Basel II. In pillar I,

concerning capital requirements, the Minimum Capital Requirements (MCR) and

Solvency Capital Requirements (SCR)3 are based on the total risks in the insurance

company, which consists of insurance risk, credit risk, market risk and operational

risk. While Solvency II specifies standadized methods for the two capital require-

ments, insurance companies are allowed to reserve capital below the SCR if internal

statistical models show that this is prudent. This provides an incentive for insur-

ance companies to spend money and energy on internal models. In this paper we

combine two recent developments in operational risk, namely a statistical analysis

of the quantitative impact of the failure to report all operational risk claims, and

the recent development of smoothing methods that are capable of estimating non-

parametric distributions with heavy tails. These two devolopments are described in

details below.

When estimating operational risk losses it is a major obstracle that not all losses

are observed. To estimate such an underreporting function from the data itself

is an incredibly complicated mathematical deconvolution problem, and the rate of

convergence of the deconvoluted estimators is often very poor. On top of that, the

deconvoluted estimators often rely too heavily on the underlying assumptions about

the underreporting function. Inspired by Freedman (1991), we therefore decided to

”put our shoes on” (Freedman’s phrase) and go out in the world and collect the crucial

2Solvency II is the European regulation structure that specifies how insurance companies must
manage their risks and reserve prudent solvency margins.

3SCR is the capital requirement of the insurance company. FSA increases its control when
capital gets below SCR. When capital gets below the MCR, FSA can take over the management of
the insurance company and perhaps even stop for new underwriting of business.
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data that we need in order to improve our estimation. After extensive interviews

with experts in Royal&SunAlliance, a major non-life insurance company, and after a

qualitative decision process, we deduced our best guess of an underreporting function.

We will show in this paper that an underreporting function created in this way

simplifies the theoretical problems and yields a solution that is closely related to

what we would have gotten if we had observed all the losses without underreporting.

This empirically based function of the expected severity of underreporting for each

loss level was introduced by Guillen et al. (2007), but in the purely parametric case,

without any non-parametric smoothing. In order to couple the method proposed

by Guillen et al. (2007), we note that Buch-Larsen et al. (2005) provided a new

approach to nonparametric smoothing that was particularly designed to estimate

distributions with heavy tails close to the Pareto type. According to the advanced

measurement approach, institutions must have sound estimates of all quantiles up to

99.9%. The institution must furthermore maintain rigorous procedures for developing

operational risk models and validating the model. Basel II specifies guidelines and

recommendations for the use of external loss data, which underline the importance

of using relevant external data, especially when there is reason to believe that the

institution is exposed to infrequent, yet potentially severe, losses. The guidelines are

first and foremost concerned with documentation of the events that led to the losses.

For example, Basel II requires information on actual loss amounts, on the scale of

business operations where the event occurred, on the causes and circumstances of

the loss events, and other information that could help in assessing the relevance of

the loss event for other institutions; similar demands are made for the treatment of

internal loss data. Another demand in Basel II is that it must be easy to place the

internal data set in the relevant supervisory categories, and that the data set must

be provided to the supervisors upon request.

In this paper we use a nonparametric smoothing technique to estimate the distribu-

tion of operational losses when underreporting is taken into account. The method is

applied to a data base of operational risk from financial institutions with six major

business lines. In the database, there is sufficient data in each business line to avoid
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the credibility approach of Gustafsson et al. (2006a,b). However, it is possible to

combine their credibility technique with our nonparametric smoothing method in or-

der to extend the method to more sparse data sets. We apply our proposed method to

the six lines of operational risk claims and combine an internally estimated frequency

of expected reported claims with an externally estimated distribution of operational

risk losses. The externally available database of operational risk is from financial

institution because there are not yet any reliable data on operational risk in the

insurance industry. Insurance companies are therefore forced to use operational risk

data from other financial institutions. The transformation approach to nonparamet-

ric smoothing, originally proposed by Wand et al. (1991), has recently received a fair

amount of attention in the particular case of estimating actuarial or financial loss

distributions, see Bolancé et al. (2003); Clements et al. (2003); Buch-Larsen et al.

(2005); Buch-Kromann (2006); Hagmann et al. (2005); Hagmann and Scaillet (2007).

3.2 Setting up a model for the sampling of oper-

ational risk claims with underreporting

Underreporting means that not all operational risk claims in the company are re-

ported. An underreporting function encodes the likelihood that a loss of a particular

size is being reported. Because the probability of reporting increases with the size

of the operational risk claim, the density of the observed losses in the reported data

set is more heavy-tailed compared to the density of all operational risk claims. See

Guillen et al. (2007) for further details. In the following we set up a model that first

defines all the operational risk claims that have occurred - even though not all of

them have been reported - and then models the statistical relationship between the

actually reported claims and the total number of claims.

Assume that M independent identically distributed (iid) operational risk claims,

(Xi)1≤i≤M , with density g have occurred where M is a stochastic Poisson(λ)-distributed

variable. Since we do not observe all these M claims, let I(i) be an indicator function
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taking the value 1 if the i’th claim is observed and 0 otherwise, and let (I(i))1≤i≤M

be iid random variables indicating reported and unreported claims. The random

variable N =
∑M

i=1 I(i) is therefore the reported number of claims. Let (Yj)1≤j≤N

be the N reported claims from the operational risk data set and assume that these

N claims given N = n are iid with density f. We assume furthermore that the

underreporting function u only depends on the value of the claim

u(x) = P (I(1) = 1|X1 = x)

Under this model the probability of observing an operational risk claim can be written

as

Pu,g =

∫ ∞

0

g(w)u(w) dw

As a result, the random variable N is Poisson distributed with mean λPu,g. The

relationship between the density of the reported operational risk claims and the

density of all operational risk claims, is

f(y) =
g(y)u(y)

Pu,g

. (3.1)

We model (3.1) with a parametric g as an apriori model to obtain a model corrected

in a nonparametric way. The non-parametric correction is obtained for N = n

by using the fact that if we transform the reported data set (Yj)1≤j≤n with the

cumulative distribution function F (y) =
∫ y

0
f(w) dw we obtain a data set, Zj =

F (Yj), j = 1, ..., n with density h, where h is a uniform density.
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3.3 A transformation approach to tail flattening

accounting for underreporting

We wish to find an appropriate nonparametric smoothing estimator for the density g

of our operational risk claims. By doing so, we will be able to adjust appropriately for

underreporting by means of nonparametric smoothing. Adjusting is always nontrivial

in nonparametric smoothing. In Jones et al. (1994) there is an extensive discussion

of the difference between adjusting for the design internally (inside the integral) or

externally (outside the integral) in the standard nonparametric estimation problem.

There seems to be different methods to adjust for an underreporting function in

a nonparametric way. We have picked the simplest possible method in terms of

implementation and analysis. However, further research might lead to an improved

method for the nonparametric correction for underreporting.

We have observations with density f . Based on (3.1) above we express g as a function

of f and u in the following way:

g(x) =
f(x) {u(x) }−1

∫∞
0

f(w) {u(w) }−1 dw
.

We know from Wand et al. (1991) and Buch-Larsen et al. (2005) that f can be

estimated by

f̂(x) =
1

N

N∑
j=1

Kb,T (x) (T (x)− T (Yj)) T ′(y),

where Kb,T (x) is a kernel function with bandwidth b and boundary correction accord-

ing to the point of estimation T (x). Buch-Larsen et al. (2005) describes the details

behind a standard correction based on the simple boundary correction procedure of

density estimation, see Silverman (1986) or Wand and Jones (1995). An obvious

estimator of g is therefore

ĝ(x) =
f̂(x) {u(x) }−1

∫∞
0

f̂(w) {u(w) }−1 dw
.
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When we consider the asymptotic properties of this estimator, we notice that the

asymptotic distribution of f̂ is well known. From Bolancé et al. (2003) and Buch-

Larsen et al. (2005), we have:

Theorem 3.1. Let the transformation function T be a two times differentiable known

function. Assume that f is also two times differentiable. Then the bias of f̂ is given

by

Ef̂(x)− f(x) = µ2(K)Bxb
2 + o(b2)

with Bx =

[{
f(x)
T ′(x)

}′
1

T ′(x)

]′
and the variance is given by

V
{

f̂(x)
}

= (nb)−1 R(K)T ′(x)f(x) + o

(
1

nb

)
.

where the asymptotics is given for m →∞ and n = Pu,g·m and µ2(K) = 2−1
∫

w2K(w) dw,

R(K) =
∫

K2(w) dw.

We can derive the asymptotic properties of ĝ from the asymptotic properties of f̂ .

Let

A = f(x) {u(x) }−1 ,

Â = f̂(x) {u(x) }−1 ,

B =

∫ ∞

0

f(w) {u(w) }−1 dw,

and

B̂ =

∫ ∞

0

f̂(w) {u(w) }−1 dw.

Then

ĝ(x)− g(x) = ÂB̂−1 − AB−1 = B̂−1
(
Â− A

)
− AB̂−1B−1

(
B̂ −B

)
.
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Therefore ĝ(x)− g(x) is equivalent from an asymptotic point of view to

B−1
(
Â− A

)
− AB−2

(
B̂ −B

)
.

Based on this quick ordering of terms, we can write up the asymptotic theory of

ĝ(x). We omit the proof, which is based on the above theorem and the fact that

the variance of B̂ is of lower order of magnitude due to the integration, while the

integrated bias of B̂ still is of the original order b2. From this theoretical result,

we get two main conclusions for our adjustment for undersmoothing. Firstly, the

bias is affected by the way the adjustment is carried out. Secondly, the standard

deviation of the final estimator is increased by a local element, the square-root of

the underreporting function and by a global element, the square-root of an average

of the underreporting function. One can also verify that in the situation where

the underreporting function is incorrect, the adjustment method simply results in

a biased estimator, where g is different from the function we would like to obtain.

However, the theoretical results below are still valid in that situation.

Theorem 3.2. Let the transformation function T and the underreporting function

u be two times differentiable known functions. Assume that g is also two times

continuously differentiable. Then the bias of ĝ is

Eĝ(x)− g(x) = µ2(K)b2

[
B−1Bx {u(x) }−1 − AB−2

∫
Bw {u(w) }−1 dw

]
+ o(b2)

and the variance is given by

V {ĝ(x)} = {u(x)B}−1 (nb)−1 R(K)T ′(x)g(x) + o
{
(nb)−1} .

3.3.1 The data set

We use a publicly available database with more than 5,000 financial operational

risk events from a range of global organizations. For each operational risk event we

have information on date, location, loss category and a description of the event. The
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Risk Number of Maximum loss Sample median Sample mean Standard Annual
category losses (£M) (£M) (£M) deviation frequency
1 1247 6683.8 1.82 32.24 269.43 10
2 538 910.6 2.14 15.60 69.68 20
3 721 221.9 1.98 7.84 20.04 28
4 45 117.6 5.88 22.46 33.25 11
5 2395 39546.4 2.35 74.91 1192.55 3
6 75 104.6 1.56 7.39 17.72 52

Table 3.1: Number of reported operational risk losses in our external data base.

reported operational risk events are categorized into six different event risk categories:

1. Internal fraud.

2. External fraud.

3. Employment practices and workplace safety.

4. Business disruption.

5. Damage to physical assets.

6. Execution, delivery and process management.

As seen in Table 3.1 the number and the severity of the losses differ considerably

in the six categories: the number of losses range from 45 events to 2,395, and the

loss amounts range from just over £100 million to almost £40 billion. As with most

operational risk data sets, the mean is significantly larger than the median which

indicates that the distribution of operational risk events is right skewed. Since the

external database lacks a reliable estimate of the annual frequency of each event

risk category, these are estimated using scenario analysis and are presented in the

7th column in Table 3.1. The scenario analysis is based on the presumed risk of

Royal&SunAlliance.
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3.4 Estimating the tail flattening transformation

and the underreporting function

We use the six underreporting functions proposed by Guillen et al. (2007) based

on expert judgements, see Figure 3.1. These underreporting functions are based on

parametric modelling and a lot of aggregated experience, and they can therefore

be seen as known functions with respect to our asymptotic theory in the previous

section. In the same way, we assume our parametrically defined transformation

function is known. This type of argument is well known in semiparametric density

estimators like ours, see Hjort and Glad (1995); Hjort and Jones (1996); Buch-Larsen

et al. (2005). We consider the same three parametric models as Guillen et al. (2007)

and estimate them by maximum likelihood. The transformations we use are the

parametric cdfs produced by integrating the parametric densities, shown below, see

Buch-Larsen et al. (2005) for more details.

• The Champernowne distribution, see Brown (1937) and Champernowne (1952),

was generalised in Buch-Larsen et al. (2005). The latter has density

fθi
(x) =

αi (x + ci)
αi−1 ((Mi + ci)

αi − cαi
i )

((x + ci)αi + (Mi + ci)αi − 2cαi
i )2 (3.2)

with θi = {αi,Mi, ci}.

• The lognormal distribution

fηi
(x) =

e
− 1

2

(
log x−µi

σi

)2

xσi

√
2π

(3.3)

with ηi = {µi, σi}.

• The Weibull distribution

fςi(x) =
γi

βi

(
x

βi

)γi−1

e
−

(
x
βi

)γi

(3.4)
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ςi = {γi, βi}.
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Figure 3.1: The estimated underreporting functions for each of the six business lines. The
underreporting functions give the probability of a loss to be reported as a function of the
size of the loss.

3.4.1 Aggregated analysis incorporating all six business lines

We use Monte Carlo-simulation to calculate the 99.5% Value-at-Risk (VaR) and Tail-

Value-at-Risk (TVaR) for our various versions of estimated distributions. The VaR-

measure gives us insight into expected maximal losses for risk tolerance α = 0.995,

and can be defined by:

VaRα (S) = sup {s ∈ R | P (S ≤ s) ≤ α} .
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The TVaR gives us the expectation of the area above the risk tolerance level α and

is defined by:

TVaRα (S) = E[S | S ≥ V aRα (S)].

The VaR measure is a common risk measure. However, in contrast to TVaR, VaR

is not a coherent risk measure (see Artzner et al. (1999) and Artzner (1999) for a

definition of coherent risk measures and a detailed study of VaR and TVaR). That

means that VaR does not always fulfill the important property of subadditivity, which

loosely speaking means that one will never benefit from splitting up a risk.

Our chosen values of α are inspired by Basel II, which specifies standards within the

advanced measurement approach. See Wirch (1999) on VaR and other risk measures.

When simulating, we draw 10, 000 operational claims numbers for each risk category

using the frequencies from our scenario analysis as our Poisson parameters, see Table

3.1.

ri,j ∼ Po (λi) , i = 1, 2, ..., 6 j = 1, 2, ..., 10, 000.

Then for each of the 60, 000 simulated number of operational risk claims, the ri,j´s,

we draw ri,j independent identically distributed random variables by means of our

nonparametric estimators of the distributions of operational risk claims. First we

sample ri,j uniform distributions:

vi,j,k ∼ U (0, 1) , k = 1, 2, ..., ri,j.

We then calculate the simulated aggregated claim amount for the ith risk category

and jth simulation:

xi,j =

ri,j∑

k=1

F̂−1
i (vi,j,k)

where F̂−1
i is the inverse of the nonparametrically estimated cumulative distribution

function F̂i for the ith risk category. Our value of risk is then based on the 10,000
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values of

xi,· =
6∑

j=1

xi,j.

3.5 Results

The differences between the distribution assumption with and without kernel smooth-

ing and with and without underreporting is illustrated in Figure 3.2, where we present

results for the fourth risk category.

The left-hand graph present the four estimators with the generalized Champernowne

distribution as parametric model. By adding the underreporting correction (dashed

line) one obtain a much heavier tail compared to the pure parametric approach (solid

line). A kernel adjustment (dotted line) on the parametric start have more or less

the same appearance in the beginning of the body but demonstrate a lighter tail

then the pure parametric density. The fourth estimator (dot-dash line) incorporate

both the underreporting effect and kernel adjustment on the parametric start. This

estimator present a higher probability that a small loss will occur for this event

risk category then the pure parametric model, and consequently becomes more light

tailed. The middle and the right-hand graph present the same four estimators but

with lognormal- and Weibull distribution as parametric models. These graphs are

interpreted analogously as the left-hand graph.

Table 3.2 presents the corrected frequencies for each risk category. The annual fre-

quencies for Royal&SunAlliance are presented in the first row of the table. The six

following rows give the corrected frequencies, based on different distribution assump-

tions with adjustment for the underreporting effect. The abbreviation Ch.UR is the

generalised Champerknowne distribution adjusted for underreporting, Ch.UR.KS is

the generalised Champerknowne distribution adjusted for underreporting and kernel

smoothing.
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Figure 3.2: The four different estimated models on event risk category 4 with three different
distribution assumptions. The solid line represent the pure parametric density, the dashed
line correspond to the estimator including the underreporting effect, the dotted line is
the semiparametric estimator and the dotdash line incorporates both the underreporting
correction and the kernel adjustment.

Table 3.3 presents the total operational loss of the institution; the mean, median,

standard deviation; and the 99.5% VaR and TVaR based on different underlying

distributions. We consider the three parametric models with and without correction

for underreporting and with and without the nonparametric correction based on

kernel smoothing. We normalise all results by the results one obtains by using the

parametric Weibull distribution without any kind of correction, which seems to be

the most popular model among practitioners at the moment.

From Table 3.3 we see that incorporating underreporting clearly increases both the
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Risk Category
1 2 3 4 5 6

Unadjusted 10 20 28 11 3 52

Ch.UR 14.4 28.2 46.8 17.9 5.7 290.6
Ch.UR.KS 13.7 27.6 44.9 18.2 5.4 270.4

Ln.UR 14.1 28.1 45.3 17.6 5.6 251.7
Ln.UR.KS 14.1 29.1 48.1 22.7 5.3 391.3

We.UR 13.6 28.6 47.9 22.4 5.3 386.6
We.UR.KS 14.2 33.7 49.3 24.7 5.6 400.3

Table 3.2: The reported frequency for each risk category and the adjusted risk frequencies
after adjusting for underreporting with and without the nonparametric correction.

Mean Sd Median VaR-99.5% TVaR-99.5%
We 1 1 1 1 1

We.KS 1.71 2.09 1.71 1.88 1.96
We.UR 2.30 1.56 2.34 1.93 1.90
We.UR.KS 1.92 2.21 1.94 2.02 2.11

Ln 0.98 1.54 0.90 1.35 1.45
Ln.KS 1.64 2.26 1.63 1.83 1.84
Ln.UR 2.28 3.02 2.18 2.84 2.90
Ln.UR.KS 1.87 2.43 1.81 1.99 2.05

Ch 1.12 3.11 0.86 2.51 2.81
Ch.KS 1.56 2.14 1.54 1.75 2.14
Ch.UR 2.50 4.65 2.21 3.85 4.10
Ch.UR.KS 2.12 2.74 2.01 2.11 2.36

Table 3.3: The statistical data for the total loss amount. Normalised by the unadjusted
Weibull distribution.
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mean value, the median value, the standard deviation, the 99.5% quantile and the

99.5% TVaR. This is because more claims are being incorporated into our model

when underreporting is taken into account. However, most of these claims are small,

therefore the 99.5% quantile is less affected by taking underreporting into account

than the other measures in Table 3. When underreporting is not accounted for, kernel

smoothing has a tendency to correct the tail into a heavier tail which increases most

of the considered measures of risk, while kernel smoothing has the opposite effect

when we account for underreporting. It seems that when underreporting is present

a major correction is necessary in order to have a sufficient small claim mass in

the distribution. This correction takes mass from the tail of the distribution and

moves it to the smaller values of the distribution. It is also clear from Table 3.3 that

while different parametric models give very different answers, our kernel-smoothed

correction has a stabilising effect; it is clear that this stabilising effect affects the

quantile estimation as well as the tail value at risk estimation. It does not really

matter very much which of the three parametric models we use for our pilot study

when a stabilising kernel smoothed correction is performed. However, the choice

of parametric model seems to be crucially important, if one decides to stick to a

purely parametric approach. One can for example conclude that one gets estimates

of the exposure to operational risk that are too optemistic if one uses the widely used

parametric Weibull distribution without correcting for underreporting and without a

nonparametric correction based on kernel smoothing. We therefore recommend that

regulators and practitioners start looking for other approaches with more realistic

estimates of the tail behavior of actuarial loss distributions.



Chapter 4

Estimation of large insurance

losses: A case study

This chapter is an adapted version of Buch-Kromann (2006).

This paper demonstrates an approach to analyzing liability data recently developed

by a Danish insurance company. The approach is based on a Champernowne distri-

bution, which is corrected with a nonparametric estimator. The correction estimator

is obtained by transforming the data set with the estimated modified Champernowne

cdf and then estimating the density of the transformed data set by using the classical

kernel density estimator. Our approach is illustrated by applying it to an actual data

set.

4.1 Introduction

This paper demonstrates a unified approach to large loss estimation recently de-

veloped in a Danish insurance company. A unified approach was needed because
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actuaries and statisticians were spending too much time trying to develop paramet-

ric models of losses. Thus they often decided to estimate small and large losses

separately because no single parametric model seemed to fit both small and large

losses. Apart from the usual challenges such as choosing the appropriate parametric

model and identifying the best way of estimating the parameters, a big problem was

in determining the threshold between small and large losses, if they are to be esti-

mated separately. Clearly the solution to this problem is fundamentally important

to the quality of the estimation.

One approach is to use extreme value theory and generalized Pareto distributions,

as described in Embrechts et al. (1997) and Cebrián et al. (2003), to analyze the loss

data. As this approach, however, is mainly concerned with the estimation of large

losses, it maintains the necessity to determine the threshold between small and large

losses.

The approach adopted by the Danish insurance company is based on the work of

Buch-Larsen et al. (2005) who developed a unified method based on a semiparametric

estimator, i.e., a parametric estimator corrected with a nonparametric correction

estimator.1 The semiparametric estimator is obtained by transforming the data set

with the transform function, T (x), which is the cdf of a modified Champernowne

distribution. If X1, ..., XN represent the data set then the transformed data set is

Z1, ..., ZN where Zi = T (Xi), for i = 1, ..., N . The density of the transformed data

set is estimated by means of a classical kernel density estimator (Wand and Jones,

1995, p. 11):

ĝ(z) =
1

Nb

N∑
i=1

K

(
z − Zi

b

)
(4.1)

1Semiparametric estimators were introduced in the statistics literature by Wand et al. (1991)
who demonstrated that the classical kernel density estimator could be improved by transforming
the data set with a shifted power transformation. Since then semiparametric estimators have been
used by other authors including Hjort and Glad (1995); Jones et al. (1995); Yang and Marron
(1999) and Bolancé et al. (2003). Clements et al. (2003) have developed semiparametric estimators
based on a Möbius-like transformation, which is a special case of the Champernowne distribution.
This method was further developed by Buch-Larsen et al. (2005) using a modified Champernowne
distribution for greater flexibility.
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where K is the kernel function, b is the bandwidth. The estimator for the origi-

nal data set is obtained by an inverse transformation of ĝ(z). This results in an

estimator that is close to a parametric estimator for small values of N and ”more”

nonparametric as N increases. The estimator ĝ(z) is flexible in that it provides good

estimates for many different shapes of loss distributions.

In this paper we will provide a detailed outline of the Buch-Larsen et al. (2005)

method, which we have called the corrected modified Champernowne method. In

addition, we will introduce an alternative parameter estimation method, called the

QM method, which provides better estimates of conditional right-tail expected losses

compared to those based on maximum likelihood parameter estimation. Moreover,

we compare the corrected modified Champernowne method to the generalized Pareto

distribution method of Cebrián et al. (2003)

4.2 Estimation of parameters

The modified Champernowne distribution is a generalization of the Champernowne

distribution (Brown (1937); Champernowne (1952)) with an extra parameter c to

ensure that the pdf of the modified Champernowne distribution is positive at 0 for

all α when c > 0 and is zero when c = 0. The modified Champernowne distribution

is defined as:

Tα,M,c(x) =
(x + c)α − cα

(x + c)α + (M + c)α − 2cα
(4.2)

for x ≥ 0, with parameters α > 0,M > 0 and c = 0 and density

dTα,M,c(x)

dx
=

α(x + c)α−1((M + c)α − cα)

((x + c)α + (M + c)α − 2cα)2
(4.3)

The inverse cdf is

T−1
α,M,c(x) =

[
z(M + c)α − (2z − 1)cα

1− z

]1/α

− c (4.4)
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Buch-Larsen et al. (2005) have shown that the modified Champernowne distribution

is a heavy-tailed distribution that converges to a Pareto distribution in the tail.

Two estimation methods are used for the parameters a,M , and c of the modi-

fied Champernowne distribution: the well-known maximum likelihood method and

the quantile-mean method, which selects parameters in a way that emphasizes the

goodness-of-fit in the right tail. As Tα,M,c(M) ≡ 0.5 for all c and α, M is assumed

to be equal to the empirical (sample) median in both of these methods. Although

this gives a sub-optimal estimate of M , Clements et al. (2003) have argued that it is

reasonable to assume that the empirical median is close to the maximum likelihood

estimate of M . The empirical median has a further advantage: it is a robust estima-

tor, especially for heavy tailed distributions Lehmann (1991). After the parameter

M has been estimated, the estimate of (a, c) is found by each of the methods. The

maximum likelihood estimate (MLE) is found by maximizing the log likelihood

function:

l(α, c) = N log α + N log((M + c)α − ca) + (α− 1)
N∑

i=1

log(Xi + c)

−2
N∑

i=1

log(Xi + c)α + (M + c)α − 2ca

The properties of the MLE are well known: it is efficient and ensures the best fit

over the entire range of the distribution.

Because the risk of large losses lies in the tail of the loss distribution, we have

also tested the quantile-mean method, which is a heuristic parameter estimation

method. In this method we first select the parameter α so that the 95 quantile

point of the empirical or sample cdf and of the estimated modified Champernowne

distribution are equal. The parameter c is then chosen so that the mean of the

estimated modified Champernowne distribution is as close as possible to the empirical

mean.

Though there may be better ways of choosing α and c, it is important to choose
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parameters that result in accurate estimates of the number of large losses and the

mean because these statistics are important in determining premiums.

4.3 An illustration of density estimation

The data are losses (claims) from employer’s liability line of business at Royal &

SunAlliance, a British company. The data consist of 34,493 losses ranging from £0

to £4, 213, 057 without truncations or censoring, i.e., before deductibles and policy

limits are applied. The use of untruncated and uncensored loss data is critical to

the application of the proposed method.2 The average loss size is £26,597. The

employers are subdivided into 13 trade groups as shown in Table 4.1. For each trade

group, the problem is to calculate the expected loss size for a deductible of d (left

truncation) and a policy limit (or retention limit) of u (right censoring) where d < u.

The employer’s liability data set is heavy-tailed, which can be seen by the upward

tendency of the empirical mean excess function in Figure 4.1 (left) and the concave

departure of the exponential QQ-plot in Figure 4.1 (right).

Table 4.1 shows the MLE and QM estimates of the parameters for the liability data

set for each trade group. The M -parameters for MLE and QM are equal because

they are estimated in the same way. For the α parameters, no clear tendency is

seen, whereas the c-parameters seem to be larger with the QM-method than with

the MLE-method.

The estimation method proposed by Buch-Larsen et al. (2005), called the corrected

modified Champernowne (CMC) method, is demonstrated by applying it to the

data set. The CMC method is essentially a semiparametric transformation kernel

density estimator, which is computed by transforming the data set with a modified

Champernowne distribution, and applying a nonparametric classical kernel density

estimator to the transformed data set. The kernel smoothing function is a correction

2For an analysis of losses with truncation and censoring see, for example, Cebrián et al. (2003);
Denuit et al. (2006).



72 Estimation of large insurance losses: A case study

Empirical Mean Excess function

0 5 10 15 20 25 30

0
1

2
3

4
5

6
Exponential QQ−plot

0 5 10 15

0
2

4
6

8
10

12

Figure 4.1: Empirical mean excess (left) and exponential QQ-plot (right).

to the parametric modified Champernowne transformation function. Because of the

properties of kernel smoothing, the correction will be weak if there are few data

points and becomes more pronounced as the sample size increases. This means that

the transformed kernel density estimator resembles a parametric estimator for small

sample sizes and a nonparametric estimator for larger sample sizes.

Let X i
1, ..., X

i
Ni

be the data set with sample size Ni for trade group i with an unknown

cdf Fi(x) and density fi(x). We will use a detailed numerical illustration for trade

group 1 only, where N1 = 1668. Figure 4.2 illustrates the four steps of the CMC

estimation with QM parameters of f1.These steps are described in general as follows:

Step 1: Estimate the parameters (α,M, c) of the modified Champernowne distri-

bution as described in Section 4.2 by using either the MLE or QM method.

These estimates are displayed in Table 4.1. Figure 4.2(1) shows a histogram

for the raw data for trade group 1 and the estimated modified Champernowne

distribution with QM-parameters (dotted line).

Step 2: Transform the data set X i
1, ..., X

i
Ni

into Zi
1, ..., Z

i
Ni

using Zi
j = T̂i(X

i
j) for
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Trade Sample MLE Estimates QM Estimates
Group t size Ni α̂MLE M̂MLE ĉMLE α̂QM M̂QM ĉQM

1 1,668 1.610 13,616 6,808 1.400 13,616 27,232
2 597 1.401 12,437 0 1.653 12,437 24,874
3 2,112 1.563 8,532 0 1.563 8,532 4,266
4 537 1.563 8,867 0 1.808 8,867 17,733
5 1,083 1.726 9,596 0 1.774 9,596 4,798
6 2,054 1.888 8,777 4,388 1.913 8,777 17,554
7 707 1.458 9,744 0 1.455 9,744 19,487
8 3,620 2.108 8,858 4,429 1.967 8,858 13,287
9 931 1.481 9,423 0 1.629 9,423 14,135
10 6,297 1.935 9,268 4,634 1.950 9,268 13,902
11 1,022 1.656 11,041 0 1.562 11,041 0
12 5,668 1.865 10,629 5,315 1.934 10,629 21,259
13 8,197 1.574 10,790 5,395 1.493 10,790 21,581

Table 4.1: Estimated modified Champernowne parameters for each trade group

j = 1, ..., Ni where Tα̂i,M̂i,ĉi
(x) ≡ T̂i(x) is given in equation (4.2). Figure 4.2(2)

shows the histogram for the transformed trade group 1 data.

Step 3: If the unknown distribution Fi(x) is a modified Champernowne distribu-

tion, the transformed data set will be uniformly distributed.3 Even if Fi(x)

is not a modified Champernowne distribution, however, the transformed data

set is usually close to a uniform distribution because the modified Champer-

nowne distribution is fitted to the data set. Under the assumption that the

transformed distribution is close to a uniform distribution on (0, 1), we can use

a constant bandwidth when computing the correction estimator by means of a

classical kernel density estimator for Zi
1, ..., Z

i
Ni

:

ĝi(z) =
1

Ni · kbi
(z)

Ni∑
j=1

Kbi
(z − Zi

j) (4.5)

where Kbi
(·) is the Epanechnikov kernel function defined in equation (4.8).

kbi
(z) is the boundary correction, which is needed because the Zi

j’s are con-

3Uniformity can be tested with a chi-square test or Kolmogorov-Smirnov test.
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Figure 4.2: Steps in density estimation using the CMC transformation with QM parameter
estimates for trade group 1. Dashed lines corresponds to the modified Champernowne
distribution with QM parameters, CMQM , and black lines corresponds to the corrected
modified Champernowne distribution with QM parameters, CMCQM.

strained on the interval (0, 1). The boundary correction kbi
(z) is defined as

kb1(z) =

min
(
1, 1−z

b1

)
∫

max
(
−1,− z

b1

)
K(u) du,
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The kernel estimator is illustrated in Figure 4.2(3). Notice that near 0, the

kernel estimator is below 1, which means that the resulting estimator for f1 is

lower than the density of the estimated modified Champernowne distribution

from Step 1. In the interval from 0.25 to 0.6, the kernel estimator is above 1,

which means that the kernel estimator has raised the modified Champernowne

distribution

Step 4: The kernel estimator, ĝi, can be interpreted as the final estimator on the

transformed axis. The estimated density for the original data set X i
1, ..., X

i
Ni

is

obtained by an inverse transform such that

f̂i(x) =
ĝi

(
T̂i(x)

)
∣∣∣dT̂−1

i

dz
|z=T̂i(x)

∣∣∣
(4.6)

The resulting estimator for the data from trade group 1 is shown in Figure

4.2(4). The corrected modified Champernowne estimator (solid line) seems

to provide a better estimate for the data set than the uncorrected modified

Champernowne distribution (dotted line) from Step 2.

These steps can be summarized into the following expression for the final estimator

for fi:

f̂i(x) =
1

N · kb(T̂ (x))

N∑
i=1

Kb(T̂ (x)− T̂ (Xi))T̂
′(x) (4.7)

As mentioned in Step 3, the Epanechnikov kernel function is used in the kernel

estimator. This kernel function is the optimal kernel with respect to efficiency (Wand

and Jones, 1995, page 31), i.e., for a fixed number of observations, the Epanechnikov

kernel function leads to a better kernel estimator than any other kernel function.

The Epanechnikov kernel function has the form

K(x) =

{
3
4
(1− x2) if − 1 < x < 1

0 otherwise
(4.8)
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and for bandwidth b

Kb(x) =
1

b
K

(x

b

)

The choice of bandwidth determines the smoothness of the estimator. The simple

normal scale bandwidth selection is used (Wand and Jones, 1995, page 60)

b =

(
40π

1
2

N

) 1
5

σ̂,

where N is the number of observations and σ̂ is the standard deviation; this is opti-

mal when g is a normal distribution. For fixed σ̂, the bandwidth is decreasing when

N increases, and vice versa. Thus, a small data set results in a large bandwidth and

a great amount of smoothing in the kernel estimator, and hence a small correction.

This ensures that the final estimator f̂(x) is close to the modified Champernowne

distribution from step 1. A large data set results in a small bandwidth, and hence

a potentially stronger correction by the kernel estimator to the modified Champer-

nowne distribution from step 1. The asymptotic behavior of the transformation

kernel density estimator is described in Buch-Larsen et al. (2005).

Table 4.2 shows the values of the Kolmogorov-Smirnov tests for the modified Cham-

pernowne distributions MCMLE and MCQM from step 1 and the corresponding CMC

distributions CMCMLE and CMCQM are stated for each trade group. In almost all

trade groups, the test does not reject the modified Champernowne distribution from

step 1 with MLE parameters, whereas the QM parameters result in a rejection in

more than half of the trade groups, using 0.05 as the rejection threshold. This con-

firms the well-known result that MLE produces the best overall fit. However, the

test neigher rejects the kernel-smoothed CMCMLE estimates with MLE parameters,

nor the CMCQM estimates with QM parameters.

Next we demonstrate the calculation of conditional means. To avoid numerical prob-

lems,4 all calculations are performed on the transformed axis. We first estimate the

4Problems often arise in numerical integration over the interval 0 to ∞ (we assume the integral is
convergent). Some (but not all) of these problems can eliminated by an appropriate transformation
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Trade Group i MCMLE MCQM CMCMLE CMCQM

1 0.005 0.009 0.481 0.550
2 0.248 0.010 0.620 0.336
3 0.417 0.065 0.535 0.531
4 0.484 0.159 0.559 0.487
5 0.519 0.176 0.408 0.582
6 0.085 0.018 0.597 0.516
7 0.279 0.090 0.354 0.413
8 0.087 0.038 0.519 0.495
9 0.619 0.184 0.600 0.475

10 0.073 0.000 0.437 0.430
11 0.403 0.253 0.526 0.592
12 0.103 0.013 0.383 0.632
13 0.066 0.002 0.548 0.599

Table 4.2: Kolmogorov-Smirnov tests for corrected (CMC) and uncorrected modified
Champernowne (MC)

conditional densities of losses from group i given that they are larger than the de-

ductible. Let Fj(x|X i
j > d) = P

[
X i

j ≤ x|X i
j > d

]
. It follows that

F̂j(x|X i
j > d) =

∫ x

d
f̂i(y) dy∫∞

d
f̂i(y) dy

=

∫ T̂i(x)

T̂i(d)
ĝi(z) dz

∫ 1

T̂i(d)
ĝi(z) dz

(4.9)

where ĝi(z) is the classical kernel density estimator given in equation (4.5) and f̂i(x)

is defined in equation (4.6). Let X i
j(d, u) denote the insurer’s actual loss paid by the

insurer that results from the loss X i
j given a deductible d and a policy limit u, then

E
[
X i

j(d, u)
]

=

∫ u

d
(x− d)f̂i(x) dx + (u− d)

∫∞
u

f̂i(x) dx∫∞
u

f̂i(x) dx
(4.10)

=

∫ T̂ (u)

T̂ (d)
T̂−1(z)ĝi(z) dz + u

∫ 1

T̂ (u)
ĝi(z) dz

∫ 1

T̂ (d)
ĝi(z) dz

− d (4.11)

In order to test the goodness-of-fit, we will now compute Ri(d, u) and Si(d, u), which

so that the integration is done over the interval 0 to 1. For more on numerical integration see, for
example, (Ralston and Rabinowitz, 1978, Chapter 4).
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Tr.grp 0 25,000 50,000 100,000 250,000 500,000 1,000,000 2,500,000
1 46,395 103,932 158,935 247,935 476,618 783,787 1,207,821 1,519,513
2 32,272 69,969 109,668 175,914 357,761 619,579 1,013,470 1,399,530
3 20,165 59,234 97,517 170,610 370,772 651,681 1,062,555 1,435,935
4 19,717 55,965 87,462 143,640 302,572 539,661 913,017 1,331,167
5 18,350 44,742 73,808 132,056 298,340 542,768 924,039 1,342,388
6 18,469 53,439 79,196 128,825 274,763 496,533 855,227 1,288,418
7 27,659 82,559 132,448 217,471 439,452 737,475 1,157,059 1,490,929
8 17,954 44,303 69,050 117,155 257,922 472,998 825,105 1,266,293
9 21,805 62,074 101,939 169,801 357,251 623,971 1,023,078 1,408,028
10 18,882 47,763 72,662 120,355 262,505 479,694 833,971 1,273,022
11 22,930 49,061 88,242 163,350 365,036 647,448 1,060,089 1,435,471
12 23,759 54,219 81,856 130,384 273,758 492,010 846,952 1,281,096
13 32,430 88,206 138,624 216,229 425,908 714,913 1,128,817 1,473,290

Table 4.3: Conditional expected claims sizes estimated with CMCQM for each trade group
and deductible

are ratios of estimated and observed expected conditionals for each trade group, i.e.,

Rt(d) =
E

[
X i

j(d, u)
]

X
i

j(d, u)
, St(d) =

E
[
N i

j(d)
]

N
i

j(d)
(4.12)

where, for trade group i with deductible d and policy limit u, X
i

j(d, u) is the observed

conditional expected loss, N i
j(d) is the number of losses in excess of d, and N

i

j(d) is

the observed number of losses in excess of d. Figure 4.3 shows plots of R1(d, u) and

S1(d) for various values of d and u = 5, 000, 000. The parameters are estimated by

means of the MLE-method in the two upper plots and by means of the QM-method

in the two lower plots.

The plots of St(d) show that both the MLE and QM parameters result in reasonable

estimates of the number of observations. However, the plots of Rt(d) show that the

MLE parameters lead to underestimation of the expected loss in all trade groups,

whereas the QM parameters are slightly better in this respect. This may be because

MLE estimation assigns equal weight to small and large losses, whereas QM estima-

tion places more emphasis on the tail, which has the biggest effect on the estimated

loss. Thus, insurers would be wise to choose estimation methods that put greater
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Tr.grp 0 25,000 50,000 100,000 250,000 500,000 1,000,000 2,500,000
1 44,435 99,421 150,588 208,369 364,572 660,494 744,944 242,939
2 35,084 80,771 124,326 207,293 279,611 359,043 180,221 0
3 21,469 66,863 102,769 147,010 168,918 267,415 0 0
4 20,515 62,918 79,133 116,311 89,598 0 0 0
5 20,145 55,599 91,734 114,229 124,775 358,410 0 0
6 21,268 73,225 103,454 150,448 196,683 198,835 0 0
7 28,320 86,489 148,584 172,529 193,729 191,193 0 0
8 19,554 54,378 88,113 107,760 152,140 154,640 33,850 0
9 26,281 92,743 153,164 213,622 224,949 351,758 533,632 0
10 20,813 59,815 94,689 156,765 190,388 209,242 200,246 0
11 32,765 97,685 202,911 389,410 1,699,379 2,124,883 3,022,845 6,792,342
12 24,865 60,025 92,774 133,077 209,587 850,056 803,610 464,448
13 34,128 97,010 152,635 220,197 441,802 835,375 1,592,551 4,550,394

Table 4.4: Observed conditional expected claim sizes for each trade group and deductible

emphasis on the tail losses. Notice that the bottom half of Figure 4.3 shows that

the underestimation of the conditional mean is less distinct for the CMCQM. The

CMCQM estimators are therefore used to estimate the conditional expected loss for

each trade group and for various deductibles; they are shown in Table 4.3 while the

actual observed average losses are in Table 4.4. For a general insurance company,

these statistics can be used to estimate the rates within each trade group. To continue

this illustration, let us compare the corrected modified Champernowne estimation

procedure with the generalized Pareto distribution approach (GPD) as exemplified

by Cebrián et al. (2003). A loss from trade group i is said to follow a generalized

Pareto distribution if its cdf is given by

Fi(x) =

{
1− (1 + ξix)

− 1
ξi if ξi 6= 0

1− e−x if ξi = 0
(4.13)

for ξi, x > 0.

According to Cebrián et al. (2003), we must find the threshold u separating small and

large losses by means of one or more graphical tools: (i) an empirical mean excess

function plot, (ii) a GPD index plot, or (iii) a Gertensgarbe plot. In the empirical

mean excess function plot, the empirical mean excess function is approximately linear
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Figure 4.3: Comparing ratios R1(d, u) (left plots) and S1(d) (right plots) using MLE and
QM methods vs. quantiles.

for x ≥ u. In the GPD index plot, we compute the maximum likelihood estimator

for increasing thresholds, and identify u as the point from which the MLE estimator

becomes approximately constant. The Gertensgarbe plot is based on the assumption

that the extreme threshold can be found as a change point in the ordered series

of claims, and that the change point can be identified by means of a sequential
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version of the Mann-Kendall test as the intersection point between a normalized

progressive and retrograde rank statistics. The progressive and retrograde curve in

the Gertensgarbe plot, however, do not in all cases produce an intersection point:

in particular, our data set did not lead to an intersection point, and our choice

of thresholds is therefore based on the first two methods. Figure 4.4 shows the

GPD index plot and the empirical mean excess plot for trade group 1. In the GPD

index plot the chosen threshold corresponds to the 85% quantile where there are 251

observations exceeding the threshold. In the empirical mean excess plot the chosen

threshold is 53,571. Table 4.5 shows the chosen thresholds in quantile terms (uquan),

in absolute terms (uvalue), and in number of observations exceeding the threshold

(uexc), as well as the estimated GPD parameters, and the Kolmogorov-Smirnov test

probabilities. Table 4.5 shows that the estimated GPD’s are not rejected by the

Kolmogorov-Smirnov tests in any trade group.
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Figure 4.4: GPD index plot (left) and empirical mean excess plot (right) for Trade Group
1.

Table 4.6 displays the conditional means for various deductibles using the estimated

GPD parameters. If we compare the conditional expected losses estimated by means

of GPD and CMCQM in Tables 4.6 and 4.3, respectively, with the observed conditional

expected losses in Table 4.4, we notice that the GPD estimates are closer to the
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Trade Threshold Parameters K-S
Group i uquan uvalue uexc ξ̂ β̂ Test

1 85.0% 53,571 251 0.576 72,494 0,696
2 56.0% 14,621 263 0.876 15,348 0,629
3 90.5% 39,040 201 0.537 48,625 0,769
4 88.0% 28,840 65 0.309 50,974 0,810
5 95.3% 68,107 51 0.149 91,930 0,760
6 90.5% 38,897 196 0.525 49,691 0,570
7 91.0% 48,315 64 0.318 102,541 0,642
8 94.0% 54,866 218 0.257 68,954 0,567
9 95.5% 96,062 42 0.21 164,404 0,770
10 88.0% 31,888 755 0.612 32,577 0,434
11 84.0% 28,339 164 0.787 22,821 0,645
12 95.0% 87,678 284 0.372 75,536 0,490
13 90.0% 57,966 820 0.538 73,313 0,612

Table 4.5: The thresholds, the estimated parameters and the Kolmogorov-Smirnov tests
for GPD.

observed means in approximately half of the trade groups, the CMCQM estimates

are closer in three others, and the GPD and CMCQM estimates are similar in the

others. GPD estimation, however, has some obvious disadvantages:

• It cannot be used to estimate conditional means when the deductible is smaller

than the threshold. In such cases the distribution for small losses must be

estimated separately;

• No automatic procedure exists for finding the optimal threshold; and

• The GPD only works for heavy-tailed data. For moderately light tails (like the

lognormal distribution), GPD estimation will often result in an estimator with

finite support Buch-Larsen et al. (2005).

The final phase of the illustration is the validation phase. Whereas a goodness-of-fit

test measures how well the estimation fits claims in the data set, a validation study

measures how well the method predicts future claims. Therefore, to get a better

comparison of the CMC and GPD methods, the data set is randomly partitioned
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Tr.grp 0 25,000 50,000 100,000 250,000 500,000 1,000,000 2,500,000
1 < u1 < u1 < u1 275,744 435,556 668,774 1,027,518 1,386,478
2 < u2 147,621 217,969 342,505 642,293 1,005,860 1,453,782 1,654,455
3 < u3 < u3 155,549 207,875 356,409 577,695 929,360 1,326,089
4 < u4 < u4 96,106 118,417 185,071 294,617 502,810 920,995
5 < u5 < u5 < u5 125,509 151,751 195,476 282,747 526,584
6 < u6 < u6 153,549 203,988 347,741 563,296 909,159 1,310,492
7 < u7 < u7 172,940 195,924 264,350 375,953 584,624 977,379
8 < u8 < u8 < u8 127,276 178,946 264,538 431,202 808,021
9 < u9 < u9 < u9 234,495 274,149 339,849 468,285 768,983
10 < u10 < u10 149,165 215,580 398,335 658,551 1,047,326 1,415,323
11 < u11 < u11 197,056 299,797 559,587 892,057 1,327,369 1,586,321
12 < u12 < u12 < u12 178,230 264,357 402,829 653,364 1,072,024
13 < u13 < u13 < u13 255,703 401,255 617,947 961,323 1,338,851

Table 4.6: Conditional expected losses for GPD with polity limit u = 5, 000, 000 and various
deductibles. Notes: < ui denotes the deductible is smaller than the threshold.

into two parts: one for estimating model parameters and the other for validation. In

other words, the first data set is used to estimate the CMCQM and GPD parameters.

These estimated parameters are then used to calculate conditional expected losses

under the CMCQM and GPD methods, which are then compared to the observed

conditional expected losses contained in the second data set. The validation study

shows that in terms of prediction, which is essential for a general insurance company,

the CMCQM performs as well as the GPD method.

4.4 Summary and closing comments

When dealing with heavy-tailed loss distribution data, maximum likelihood estima-

tion of parameters tends to lead to an underestimation of conditional expected losses.

For this reason, an alternative, called the quantile-mean method (QM) of parameter

estimation, was introduced. Buch-Larsen et al. (2005) corrected modified Cham-

pernowne method (CMC) is combined with the QM method to produce decent re-

sults. Comparing the CMC method with the generalized Pareto distribution (GPD)

method shows that the GPD performs better than the CMC in terms of goodness-
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of-fit, whereas our validation study shows that the two methods are comparable in

terms of predicting future claims. The CMC method also has some advantages that

makes it an attractive alternative compared to GPD: The CMC method estimates

the density of the whole range of losses, whereas in GPD estimation, we need to

estimate small and large losses separately, which involves finding a threshold from

where the data set is GPD. This is normally done by graphical methods, which are

difficult to automatize. Finally, the GPD can only be used for heavy-tailed distribu-

tions, whereas the CMC also works for lighter-tailed distributions because it always

has infinite support. One area for further research is in improving the parameter

estimation method and including more sophisticated boundary correction methods.

For example, one can combine our work with the methods proposed by Chen (1999,

2000) and Scaillet (2004). We also hope to integrate insights from recent develop-

ments in density estimation, such as Hagmann and Scaillet (2007), and to extend

our estimation method to handle covariates.



Chapter 5

Comparison of tail performance of

the Champernowne transformed

kernel density estimator, the

generalized Pareto distribution

and the g-and-h distribution

This chapter is an adapted version of Buch-Kromann (2009).

Several papers have recommended the Champernowne distribution to describe oper-

ational risk losses. This paper compares the tail performance of the Champernowne

transformed kernel density estimator, the generalized Pareto distribution (gpd) and

the g-and-h distribution. We introduce a new tail-dependent parameter estimation

method for the Champernowne distribution, computed by conditional maximum like-

lihood, and show that, by using this new method, we obtain an estimator that in

general outperforms the benchmark estimators with respect to tail performance. At
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the same time the new estimator provides a density estimate on the entire axis su-

perior to the g-and-h distribution, and unlike the gpd estimator, which provides a

density estimate only above the threshold. The estimators performance are investi-

gated in a Monte Carlo simulation study, and their application to operational risk is

illustrated.

5.1 Introduction

Large loss estimation is a central problem in general insurance and occurs both in

ordinary insurance portfolios as well as in operational risk estimation.

Regarding operational risk, Basel II provides three schemes for calculating reserves

for operational risk ranging: the Basic Approach, the Standardized Approach and

the Advanced Measurement Approach. The Advanced Measurement Approach pro-

vides the opportunity to use internal statistical models. An important model in this

concern is the Loss Distribution Approach (LDA), see McNeil et al. (2005). The

model describes the aggregated loss distribution and consists of a severity and a

frequency distribution. Various papers deals with this model. In Moscadelli (2004)

the underlying severity estimation is based on extreme value theory, whereas Dutta

and Perry (2006) recommend the flexible parametric g-and-h distribtuion, which is

further studied in Degen et al. (2007) and Degen and Embrechts (2008). Peters

and Sisson (2006) takes its starting point in estimating operational risk with LDA

as well, but in a Baysian approach, where the severity distribution is assumed to

be either the g-and-h distribution or the GB2 distribution. The papers Gustafsson

(2006), Gustafsson et al. (2006a), Gustafsson et al. (2006b), Buch-Kromann et al.

(2007), Guillen et al. (2007) and Gustafsson and Nielsen (2008) all deal with estimat-

ing operational risk by use of the Champernowne distribution with a nonparametric

correction.

The classical approach of large loss estimation is extreme value theory, as described

in, for example, Embrechts et al. (1997). This theory is based on the fundamental
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Fisher-Tippett theorem for maxima, which corresponds to the central limit theorem

for sums. The Fisher-Tippett theorem shows that if there exists a limit distribution

of maxima of random variables, suitably centered and normalized, then the limit

distribution belongs to one of the three types of extreme value distributions. There

is a close connection between the extreme value distributions and the generalized

Pareto distribution (gpd), which describes the limit distribution of excesses over a

high threshold: gpd estimation is the classical way of estimating large losses and the

theory is widely used in insurance, see, for example, McNeil and Saladin (1997) and

Cebrián et al. (2003).

In spite of the beautiful theoretical properties of extreme value theory, some prob-

lems appear, when using the theory in practical large loss estimation. The gpd is

the limit distribution of excesses over a high threshold. Therefore, we have to choose

from which threshold this assumption is reasonable. This is often done by graph-

ical methods, which are inappropriate in some situations. Moreover, the gpd only

describes the distribution of excesses over the threshold, and therefore it does not

provide a distribution estimate of losses on the entire axis.

Buch-Larsen et al. (2005) introduced an alternative large loss estimation approach

based on nonparametric statistics. They recommended an estimator based on the

classical kernel density estimator

f̄(x) =
1

n

n∑
i=1

Kb(x−Xi)

where X1, ..., Xn is the data set, whose density we want to estimate, and Kb(u) =

K(u/b)/b is a kernel function with bandwidth b. They showed that, when introducing

a tail flattening transformation, inspired by the work of Wand et al. (1991), for

example, the Champernowne cdf with maximum likelihood estimated parameters

(ml), this estimator has promising tail performance at the same time as being an

estimator on the entire axis. When the transformation function is an estimated

cumulative distribution function, this estimator corresponds to a purly parametric

estimated distribution with a non-parametric correction, as described in Buch-Larsen
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et al. (2005).

However, when focusing only on tail performance and large loss estimation, the es-

timator presented in Buch-Larsen et al. (2005) is not always as good as the gpd.

Buch-Kromann (2006) illustrated some of the problems of the Champernowne trans-

formed kernel density estimator with maximum likelihood parameters in a case study

of an insurance liability data set, and the paper also introduced a heuristic parameter

estimation method of the Champernowne distribution, which indicated that improve-

ments in the tail fitting seem to be obtainable, when using a parameter estimation

method, which emphasizes the tail.

In this paper we use the Champernowne transformed kernel density estimator in-

troduced in Buch-Larsen et al. (2005) and introduce a more formalized parameter

estimation method of the Champernowne distribution than the one introduced in

Buch-Kromann (2006). We show that the tail performance of the Champernowne

transformed kernel density estimator with conditional maximum likelihood (cml) pa-

rameters, in general outperforms the tail performance of the gpd estimator in the

presented simulation study, whereas the Champernowne transformed kernel density

estimator with maximum likelihood estimator does not. This means that the Cham-

pernowne transformed kernel density estimator with cml estimator seems to be a

better estimator for large loss modeling than the gpd estimator and at the same

time provides an estimator on the entire axis.

We benchmark our new Champernowne transformed kernel density estimator against

the corresponding parametric (non-corrected) Champernowne distribution and against

the estimated g-and-h distribution which has become popular in operational risk as

a very flexible distribution with the ability to fit both the center and the tail of the

distribution, see, for example, Dutta and Perry (2006). Moreover, we combine the

transformation kernel density approach with the g-and-h distribution and compute

the g-and-h transformed kernel density estimator. This estimator appears to be supe-

rior to the new Champernowne transformed kernel density estimator for large sample

sizes, whereas the new Champernowne transformed kernel density estimator is supe-
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rior for small sample sizes and for lighter tailed data sets (also large sample sizes).

When focusing on the tail very far from the center, the Champernowne transformed

kernel density estimator however seems to be superior in almost all situations.

In the simulation study we furthermore compare the estimators performance on the

entire axis, called the from-ground-up (FGU) performance. The results show that

the Champernowne transformed kernel density estimator with cml parameters has

a superior FGU performance compared to the g-and-h distribution both with and

without non-parametric correction. The estimator with the best FGU performance is

the Champernowne transformed kernel density estimator with maximum likelihood

parameters, but this estimator was the estimator with the worst tail performance,

which makes this estimator less usable for operational risk, where the focus is on

tail estimation. This means, that you pay a price on the FGU performance when

using the cml parameters compared to the maximum likelihood parameters due to its

special focus on tail performance. In return you get an estimator with a considerably

better tail performance.

In the last part of the paper we illustrate the applications of the proposed estimators

in a study of aggregated operational risk losses (LDA) and compare their estimated

Value-at-risk (VaR) and Tail-value-at-risk (TVaR). We observe that VaR and TVaR

of the estimated g-and-h distribution is considerably smaller than the VaR and TVaR

of both the Champernowne transformed kernel density estimators and the gpd esti-

mator. Comparison with the results from the simulation study, which showed that

the tail performance very far from the center of the Champernowne transformed

kernel density estimator with cml parameters was superior to the tail performance

of the g-and-h distribution, causes us to doubt that the g-and-h distribution in this

case gives us a prudent estimate of the operational risk.

The paper is organized as follows. The first three sections describes how to estimate

large losses. In section 5.2, we introduce the transformation kernel density estimator.

In section 5.3 we recall the properties of the Champernowne distribution, present the

maximum likelihood parameter estimation method from Buch-Larsen et al. (2005)
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and introduce the new approach of parameter estimation, the conditional maximum

likelihood parameter estimation method, which specially focuses on better tail esti-

mation. In the end of the section, we briefly mention the g-and-h distribution. In

section 5.4, we recall the generalized Pareto distribution and some of its properties.

Section 5.5 presents a simulation study based on a fire insurance data set which illus-

trates the performance of the proposed estimators, and section 5.6 is an application

til operational risk comparing the proposed estimators. Section 5.7 is the conclusion.

5.2 Transformation kernel density estimators

Inspired by Wand et al. (1991), Buch-Larsen et al. (2005) showed that the tail per-

formance of the kernel density estimator could be significantly improved by using a

tail flattening transformation. The resulting transformation kernel density estimator

has the form:

f̂(x) =
1

n

n∑
i=1

Kb {T (x)− T (Xi)}T ′(x)

where X1, ..., Xn is the data set, whose density we want to estimate, Kb(u) =

K(u/b)/b is a kernel function with bandwidth b, for example, the Epanechnikov

kernel function as we have used in the simulation study in section 5.5, and T (x) is

the transformation function.

When the transformation function returns values on a compact interval, for example,

if this is a cdf, it is neccesary to have a boundary correction to ensure that the

transformation kernel density estimator is a consistent estimator at the boundary.

In this paper we use a simple renormalization method, as described in Jones (1993)

which ensures that each kernel function integrates to 1. With the notation from Chen

(1999) the transformation kernel density estimator with the renormalizing boundary

correction is:

f̂(x) =
1

n a01{T (x), b}
n∑

i=1

Kb{T (x)− T (Xi)}T ′(x) (5.1)
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where:

asm(x, b) =

{ ∫ x/b

−1
tsKm(t) dt, x ∈ [0, 1− b]∫ 1

−(1−x)/b
tsKm(t) dt, x ∈ [1− b, 1].

(5.2)

When the transformation function T (x) is a cdf of a parametric distribution esti-

mated to the data set under investigation, then the kernel density approach can be

interpreted as a non-parametric correction to this estimated parametric distribution.

Which parametric distribution to use, and how to estimate it, is of crucial impor-

tance and depends on the kind of estimation problem you have. In the following,

some appropriate parametric distributions will be introduced.

5.3 Parametric distributions

This section introduces the Champernowne distribution which is a heavy-tailed,

quite flexible three-parameter distribution. We outline both the maximum likeli-

hood parameter estimation method, as studied in Buch-Larsen et al. (2005) and a

new tail-dependent method, called the conditional maximum likelihood parameter

estimation method. In the second part, we briefly introduce the g-and-h distribution

which belongs to the class of extremely flexible parametric distribution. The g-and-h

distribution is a four-parameter distribution and appears as a transformation of the

standard normal distribution, see Dutta and Babbel (2002) and Dutta and Perry

(2006).

5.3.1 The Champernowne distribution

In Buch-Larsen et al. (2005) the Champernowne distribution is proposed as trans-

formation function. The Champernowne cdf has the form:

FChamp(x) =
(x + c)α − cα

(x + c)α + (M + c)α − 2cα
, x ≥ 0
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with parameters (α,M, c), and the density function is:

fChamp(x) =
α(x + c)α−1{(M + c)α − cα}
{(x + c)α + (M + c)α − 2cα}2

The Champernowne distribution is a heavy-tailed distribution converging to a Pareto

distribution:
fChamp(x)

fPar(x)
→ 1 as x →∞ (5.3)

where fPar(x) =
kxk

0

(x−ζ)k+1 , x ≥ x0 with parameters k = α, x0 = {(M + c)α − cα}1/α

and ζ = 0.

A crucial step when using the Champernowne distribution is the choice of parameter

estimators. As described in Buch-Larsen et al. (2005), a natural way is to recognize

that FChamp(M) = 0.5 and therefore estimate the parameter M as the empirical

median, and then estimate (α, c) by maximizing the loglikelihood function. The

choice of M as the empirical median gives a stable estimator, especially for heavy-

tailed distributions, and the maximum likelihood estimate of (α, c) ensures the best

overall fit of the distribution. As mentioned in Clements et al. (2003), choosing M

as the empirical median instead of choosing M by maximum likelihood estimation

only makes a marginal difference and simplifies the parameter estimation procedure

significantly. We will call the parameters obtained by this estimation method the

maximum likelihood parameters, even though the method is only an approximation

to the maximum likelihood procedure due to the way of estimating M . The Cham-

pernowne distribution with maximum likelihood parameters is a purely parametric

estimator, and in the following it is called h̃0(x). When the modifed Champernowne

distribution with maximum likelihood parameters is used as transformation function

in (5.1), or in other words when we estimate a non-parametric correction to h̃0(x),

we will denote the resulting estimator by ĥ0(x).

However, parameters estimated by the maximum likelihood method might not be

optimal, especially when one is interested in the estimation of the tail. Maximum

likelihood parameters give the best overall fit to the data set. However, in the
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tail, which we focus on, there are few data and therefore the maximum likelihood

estimated Champernowne distribution might differ significantly from the true distri-

bution. Even though the resulting transformation kernel density estimator corrects

some of the deviations between the estimated Champernowne density and the true

density, the kernel density estimator does not sufficiently correct the tail estimate,

due to sparse data in the tail. Therefore it is crucial to choose a Champernowne dis-

tribution with a well fitted tail, even though the fit in the center of the distribution

is poor compared to the maximum likelihood estimated Champernowne distribution.

In this paper, we use a cml estimation method. The procedure is the following: First,

set c1 = 0 and choose (α1,M1) by maximizing the conditional loglikelihood function,

log Lt(θ) = nt log α + (α− 1)
nt∑

j=1

log(x̃j + c)

−2
nt∑

j=1

log [(x̃j + c)α + (M + c)α − 2cα]

+nt log [(t + c)α + (M + c)α − 2cα] (5.4)

for a given threshold t, c = c1, and where x̃1, ..., x̃nt are the nt largest observations

above the threshold t. From (5.3) we know that the Champernowne density converges

to a Pareto density. This means that the Champernowne density with parameters

(α1,M1, 0) is approximated by τx−(α1+1), where τ = α1M
α1
1 , as x tends to infinity. In

the following, we will call τ the tail constant. Now, we keep α̂ = α1, and we also keep

the tail constant τ unchanged, but now we allow c to be different from 0 and choose

ĉ by maximizing the one-dimensional global loglikelihood function, corresponding to

(5.4) with threshold t = 0, α = α̂ and M =
{
τ/α̂ + cα̂

}1/α̂ − c, which ensures an

unchanged tail constant. At last, we determine M̂ =
{
τ/α̂ + ĉα̂

}1/α̂ − ĉ.

The intuition for this estimation procedure is that we obtain a triple of parameters,

(α̂, M̂ , ĉ), where α̂ and M̂ ensure a good tail fit and ĉ afterwards ensures a good fit

in the center of the distribution, but without destroying the tail estimate ensured by

unchanged α and tail contant. This estimation procedure provides an estimate on
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the entire axis, but unfortunately needs a threshold, t, just like the gpd estimator,

see section 5.4. But as we will see in the simulation study in section 5.5 the choice of

threshold is less important than the threshold for the gpd estimator. The parametric

Champernowne distribution with cml parameters and threshold t, is denoted by

h̃t(x), and with a non-parametric correction, it is denonted by ĥt(x). Notice, that

the conditional maximum likelihood estimator with threshold t = 0 corresponds to

the ordinary maximum likelihood estimator.

5.3.2 The g-and-h distribution

In recent years, two four-parameter distributions, the Generalized Beta Distribution

of Second Kind (GB2) and the g-and-h distribution have become very popular in

the area of operational risk estimation, see Degen et al. (2007); Dutta and Perry

(2006). In this paper we solely focus on the g-and-h distribution as the GB2 is

extremely sensitive to small changes in the parameters as mentioned in Dutta and

Babbel (2002) and this property makes the distribution less attractive when it comes

to tail estimation. Moreover, as showed in both Dutta and Babbel (2002) and Dutta

and Perry (2006) the g-and-h distribution provided superior performance compared

to the GB2.

The g-and-h distribution is a very flexible distribution with a wide variety of tail

behavior, and it covers a lot of known distributions including the normal and the

lognormal distribution, see Martinez and Iglewicz (1984) and Dutta and Babbel

(2002). As illustrated in Dutta and Perry (2006) the g-and-h distribution spans a

much wider area in skewness-kurtosis than many well-known distributions including

the GB2, and it seems to be a reasonable model as a single distribution which is

able to fith both the center and the tail of an operational risk severity distribution.

As showed in Degen and Embrechts (2008) and Degen et al. (2007), the g-and-h

distribution converges extremely slowly to the EVT, which make results of EVT

methods inaccurate for g-and-h distribution-like data.
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The g-and-h distribution has four parameters and is a strictly increasing transfor-

mation of the standard normal distribution:

Y = a + b {exp(gX)− 1} exp(hX2/2)

g
x ∈ R (5.5)

The parameters g and h control the skewness and the kurtosis, respectively, whereas

the parameters a and b are location and scale parameters, respectively.

The parameters can be estimated in various ways including the maximum likeli-

hood method and the moment method. In this paper we follow the quantile-based

approach described in Dutta and Babbel (2002) and Dutta and Perry (2006) with

constant g and h parameters. We denote the g-and-h density estimator by h̃gh(x).

Correspondingly to the Champernowne distribution mentioned above, we can use the

cumulative distribution function corresponding to the estimated g-and-h distribution

as transformation function in (5.1) to obtain a non-parametricly corrected g-and-h

estimator, denoted by ĥgh(x).

5.4 Generalized Pareto distributions

From the fundamental Fisher-Tippett theorem in classical extreme value theory, (see

e.g. Embrechts et al. (1997)), we know that, if there exist centering and normaliz-

ing constants cn > 0 and dn ∈ R so that c−1
n (Mn − dn) → H as n → ∞, where

Mn = max(X1, ..., Xn) for some non-degenerate distribution H, then H must be of

one of the three types of extreme value distributions: Fréchet, Weibull or Gumbel

distribution.

The extreme value distributions are closely related to the generalized Pareto distri-

bution, which describe the limit distribution of excesses over a high threshold. The



96 Kernel density estimation, GPD, and g-and-h

generalized Pareto cumulative distribution function (gpd) has the form

Fgpd(x) =





1−
(
1 + ξ x

β

)−1/ξ

, ξ 6= 0

1− exp
(
−x

β

)
, ξ = 0

with parameters (ξ, β), where x ≥ 0 if ξ ≥ 0 and 0 ≥ x ≥ −1/ξ if ξ < 0, see

(Embrechts et al., 1997, Definition 3.4.9).

Correspondingly to the Champernowne distribution, the gpd is connected to the

Pareto distribution, as the gpd for ξ ≥ 0 can be rewritten as a Pareto cdf with

k = 1/ξ, x0 = β/ξ and ζ = −β/ξ

Fgpd(x) = 1−
(

1 + ξ
x

β

)−1/ξ

= 1−
(

β/ξ

x− (−β/ξ)

)1/ξ

.

When using the gpd in practice for large loss modeling, one crucial step is the choice

of threshold from where the data set is assumed to follow a gpd. The choice of

threshold is a classical bias–variance trade-off: choosing the threshold too low, means

that assuming the limiting gpd is not appropriate, whereas choosing the threshold

to high, means that we have too few data points to estimate the gpd parameters.

Often graphical methods are used in the choice of threshold. As described in Em-

brechts et al. (1997), one way is to look at the empirical mean excess function and

choose a threshold v, such that the empirical mean excess function is approximately

linear for x ≥ v. Another way is to look at a plot of the estimated gpd shape param-

eter as a function of v. Then choose v so that the estimated gpd shape parameter is

approximately constant for x ≥ v.

One approach when using the gpd distribution to fit the tail, is the Peaks Over

Threshold (POT) method, see (Embrechts et al., 1997, section 6.5). When a thresh-

old, v is chosen, the estimated gpd parameters (ξ̂, β̂) are found by the maximum
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likelihood method based on data above v. This provide an estimator of the condi-

tional distribution of exceeding above v,

F̂|v(y) = F̂gpd(y), y > 0 (5.6)

The unconditional distribution is obtained by a three-parameter gpd with corrected

parameters:

F̂ (x) = 1−
(

1 + ξ̂
x− v − µ̂

β̂′

)−1/ξ̂

, x > v (5.7)

where µ̂ = β̂/ξ̂
(
(nv/n)ξ̂ − 1

)
and β̂′ = β̂ (nv/n)ξ̂. We denote the resulting density

estimator by ĝv(x), defined for x > v.

5.5 Monte Carlo simulation study

In the following section we illustrate and compare the presented estimators in a Monte

Carlo simulation study. The simulation study is based on a typical heavy-tailed loss

data set. Operational risk data sets are usually left-truncated and disturbed by

under-reporting, Buch-Kromann et al. (2007). To avoid these additional challenges

we have used a heavy-tailed fire insurance data set. The characteristics of this data

set are similar to a typical operational risk data set, but this data set does not suffer

from truncation and under-reporting. Moreover, the data quality is higher compared

to most operational risk data sets.

The fire insurance data set originates from the Danish general insurance company,

Codan Insurance. The data consist of 2,810 commercial fire claims reported from

1995-2004. The data set is heavy-tailed, with claim sizes ranging from 19 to almost

6 million Dkr. and with an average claim size at 56,220 Dkr. Further details about

the data set can be found in Buch-Kromann et al. (2009).

The true distribution of the data is obviously unknown. However, to get simulated

test data with realistic claim sizes and known distribution, we estimate a Weibull
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and a lognormal distribution by use of the maximum likelihood estimation method

to the fire insurance data set:

fθ(x) =

(
α

β

) (
x

β

)(α−1)

exp

{
−

(
x

β

)α}

fξ(x) =
1√

2πσx
exp

{
−(log x− µ)2

2σ2
.

}

The estimated parameters for the Weibull distribution are θ = (α, β) = (0.507, /, 20, 382)

and for the lognormal distribution ξ = (µ, σ) = (9.049, 1.83).

Moreover, we generate a more heavy-tailed distribution by considering a mixture of

the lognormal with a Pareto distribution:

fψ(x) = p
1√

2πσx
exp

{
−(log x− µ)2

2σ2

}
+ (1− p)k

xk
0

(x− ζ)k+1

with parameters ψ = (p, µ, σ, x0, k, ζ) = (0.7, 9.049, 1.83, 5, 000, 1, −5000). At

last, we estimate a g-and-h distribution as defined in (5.5) by use of the quantile based

estimation method and obtain the parameters (a, b, g, h) = (6, 527, 12, 264, 2.5, 0.07).

Notice that the g-and-h distribution can take negative values even though fire claims

are never negative. We follow Dutta and Perry (2006) and use a rejection sampling

method to avoid this problem. Based on the four test distributions we simulate

S = 100 repetitions and measure the error in density estimation by:

WISEδ
q(f̂) =

∫ ∞

xq

{
f(x)− f̂(x)

}2

xδ dx (5.8)

where f(x) is the true density at x and f̂(x) is the density estimator under investiga-

tion. The lower limit, xq, in the integral in (5.8) is the claim size value corresponding

to the q’s empirical quantile. In the paper, we use q = 0.8, ie. the 80% quantile,

when measuring tail performance of an estimator, and q = 0 when measuring FGU

performance. The parameter δ = {0, 1, 2} in (5.8) decides the weight in the error

measure: the bigger δ, the more weight is put into the tail deviation between the true
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and the estimated density. The performance of each density estimator is measured by

the average WISE obtained from the S = 100 repetitions and is called AWISEδ
q(f̂).

The purpose of the simulation study is to compare the performance – primarily the

tail performance – of the gpd estimator, ĝv(x) and the Champernowne transformed

kernel density estimator with cml parameters, ĥt(x) and with maximum likelihood

parameters, ĥ0(x). We benchmark the performance against the parametric Cham-

pernowne distribution with cml parameters, h̃t(x), the Champernowne distribution

with maximum likelihood parameters, h̃0(x) and against the estimated g-and-h dis-

tribution, both with non-parametric correction, ĥgh(x), and without non-parametric

correction, h̃gh(x).

To calculate ĝv(x) and ĥt(x) we need to choose thresholds. This is not possible by

using graphical methods due to the large number of data sets. Instead we calculate

the global optimal threshold

uδ
opt = arg min

u
AWISEδ

0.8(f̂u), (5.9)

where f̂u is either ĝv(x) or ĥt(x). The global optimal gpd and cml thresholds, vδ
opt and

tδopt, are listed in the last two columns in Tables 5.1-5.3. Comparing them, we see that

both vδ
opt and tδopt fluctuates and are far from constant. Moreover, there seems to be

a tendency of higher thresholds for larger δ which is resonable because AWISE with

higher δ gives more weight to the tail. Figures 5.1-5.3 show the thresholds influence

on the tail performance for ĝv(x) and ĥt(x) for selected values of n, and these plots

give a more in-depth understanding of the global thresholds. By studying the figures

we recognize, that the curves for tail performance of ĥt(x), generally speaking, are

flatter around the global minimum point than the curves for ĝv(x). That means,

that the choice of threshold is less crucial for tail performance of ĥt(x) than for

ĝv(x), which is an advantage for ĥt(x). This characteristic is caused by the fact

that ĝv(x) is based exclusively on the observations above the threshold, whereas

ĥt(x) is based on all observations including the observations below the threshold.
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ĥ0
opt ĥ0 ĥgh ĝ0

opt h̃0
opt h̃0 h̃gh v0

opt t0opt

Weibull
n = 50 1.37e-08 2.20e-08 2.66e-08 1.76e-08 1.23e-08 2.63e-08 4.40e-08 0.66 0.43
n = 100 6.80e-09 1.23e-08 9.69e-09 8.63e-09 7.39e-09 1.61e-08 1.89e-08 0.36 0.45
n = 500 2.77e-09 7.26e-09 4.04e-09 2.87e-09 3.73e-09 1.39e-08 8.31e-09 0.69 0.77
n = 1000 1.38e-09 3.94e-09 1.93e-09 1.57e-09 2.93e-09 1.18e-08 3.11e-09 0.74 0.56
n = 2000 7.60e-10 2.95e-09 1.40e-09 7.90e-10 2.51e-09 1.22e-08 5.21e-09 0.76 0.67
n = 5000 4.63e-10 1.57e-09 7.72e-10 5.36e-10 2.40e-09 1.17e-08 3.90e-09 0.77 0.77
lognormal

n = 50 1.20e-08 1.54e-08 2.47e-08 1.68e-08 2.70e-08 1.93e-08 3.92e-08 0.23 0.22
n = 100 5.73e-09 6.07e-09 7.51e-09 7.16e-09 2.74e-08 7.32e-09 2.06e-08 0.30 0.30
n = 500 2.14e-09 2.56e-09 2.30e-09 2.56e-09 2.19e-08 4.48e-09 7.28e-09 0.39 0.36
n = 1000 9.54e-10 1.07e-09 8.02e-10 1.24e-09 2.18e-08 2.85e-09 2.01e-09 0.38 0.32
n = 2000 4.82e-10 7.52e-10 3.91e-10 7.06e-10 2.13e-08 2.92e-09 1.68e-09 0.74 0.38
n = 5000 3.00e-10 4.53e-10 2.13e-10 4.46e-10 2.12e-08 2.50e-09 1.21e-09 0.76 0.32
lognormal-Pareto

n = 50 1.39e-08 1.74e-08 2.42e-08 1.70e-08 3.57e-08 2.09e-08 3.62e-08 0.15 0.20
n = 100 6.65e-09 6.58e-09 8.56e-09 7.51e-09 3.67e-08 7.45e-09 1.47e-08 0.15 0.27
n = 500 2.55e-09 2.61e-09 2.34e-09 2.86e-09 3.37e-08 3.76e-09 5.16e-09 0.30 0.33
n = 1000 1.16e-09 1.04e-09 9.76e-10 1.32e-09 3.42e-08 2.27e-09 5.11e-09 0.41 0.29
n = 2000 5.99e-10 6.64e-10 4.13e-10 7.74e-10 3.37e-08 2.01e-09 2.14e-09 0.72 0.33
n = 5000 3.53e-10 4.08e-10 2.43e-10 5.42e-10 3.32e-08 1.76e-09 1.44e-09 0.75 0.29
g-and-h

n = 50 7.51e-09 9.90e-09 1.31e-08 1.09e-08 4.77e-08 1.42e-08 2.07e-08 0.11 0.10
n = 100 4.03e-09 3.80e-09 3.84e-09 4.52e-09 4.27e-08 5.24e-09 8.15e-09 0.44 0.10
n = 500 1.38e-09 1.51e-09 1.15e-09 1.71e-09 3.75e-08 4.19e-09 1.89e-09 0.48 0.10
n = 1000 6.81e-10 7.23e-10 4.45e-10 8.68e-10 3.30e-08 3.36e-09 4.78e-10 0.49 0.10
n = 2000 3.33e-10 4.88e-10 1.98e-10 5.04e-10 3.36e-08 3.55e-09 2.77e-10 0.76 0.10
n = 5000 2.01e-10 3.14e-10 1.17e-10 3.56e-10 3.34e-08 3.31e-09 1.45e-10 0.77 0.10

Table 5.1: Tail performance. AWISE with δ = 0 corresponding to the Champernowne
transformed kernel density estimator with cml parameters ĥ0

opt, with maximum likelihood
parameters ĥ0, the g-and-h transformed kernel density estimator ĥgh, the corresponding
parametric distributions h̃0

opt, h̃0 and h̃gh together with the gpd estimator ĝ0
opt for the four

test distributions. The last two colums are the optimal thresholds for the gpd, (v0
opt) and

the cml (t0opt) estimators.

The threshold for ĥt(x) only determines the point from where the tail estimation

is made. Special focus on Figures 5.3 shows that ĝv(x) has a very poor estimation

of the far tail of the g-and-h distributed data set, whereas ĥt(x) has a considerably

better tail performance for this type of data. This consideration corresponds to the
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ĥ1
opt ĥ0 ĥgh ĝ1

opt h̃1
opt h̃0 h̃gh v1

opt t1opt

Weibull
n = 50 1.33e-03 2.22e-03 2.48e-03 1.80e-03 1.35e-03 2.674e-03 3.329e-03 0.68 0.43
n = 100 6.95e-04 1.44e-03 1.15e-03 8.55e-04 8.33e-04 1.946e-03 1.760e-03 0.36 0.46
n = 500 2.96e-04 9.54e-04 5.35e-04 3.10e-04 4.31e-04 1.806e-03 6.727e-04 0.69 0.78
n = 1000 1.55e-04 6.51e-04 3.34e-04 1.64e-04 3.68e-04 1.704e-03 3.310e-04 0.74 0.76
n = 2000 9.18e-05 5.08e-04 2.59e-04 8.18e-05 3.05e-04 1.690e-03 4.183e-04 0.76 0.76
n = 5000 6.00e-05 3.11e-04 1.68e-04 5.54e-05 2.92e-04 1.675e-03 2.910e-04 0.77 0.87
lognormal

n = 50 8.93e-04 1.09e-03 1.70e-03 1.15e-03 1.99e-03 1.28e-03 2.236e-03 0.13 0.21
n = 100 4.26e-04 4.77e-04 6.73e-04 5.32e-04 1.82e-03 5.66e-04 1.339e-03 0.30 0.30
n = 500 1.74e-04 2.26e-04 2.04e-04 2.21e-04 1.31e-03 3.61e-04 4.493e-04 0.45 0.28
n = 1000 7.98e-05 1.15e-04 7.74e-05 1.10e-04 1.33e-03 2.43e-04 1.442e-04 0.49 0.32
n = 2000 4.40e-05 8.83e-05 3.65e-05 5.71e-05 1.25e-03 2.42e-04 1.126e-04 0.76 0.37
n = 5000 2.87e-05 6.23e-05 1.85e-05 3.62e-05 1.24e-03 2.11e-04 7.618e-05 0.77 0.39
lognormal-Pareto

n = 50 8.83e-04 1.04e-03 1.45e-03 9.92e-04 2.22e-03 1.18e-03 1.803e-03 0.11 0.20
n = 100 4.09e-04 4.30e-04 6.00e-04 4.71e-04 2.04e-03 4.83e-04 8.123e-04 0.15 0.25
n = 500 1.71e-04 1.95e-04 1.73e-04 2.08e-04 1.68e-03 2.69e-04 2.929e-04 0.42 0.27
n = 1000 7.53e-05 8.77e-05 7.89e-05 9.61e-05 1.74e-03 1.68e-04 2.763e-04 0.59 0.29
n = 2000 4.04e-05 6.22e-05 2.98e-05 5.29e-05 1.66e-03 1.52e-04 1.123e-04 0.74 0.29
n = 5000 2.46e-05 4.28e-05 1.67e-05 3.48e-05 1.64e-03 1.35e-04 7.688e-05 0.76 0.30
g-and-h

n = 50 7.05e-04 9.22e-04 1.07e-03 8.75e-04 2.91e-03 1.25e-03 1.334e-03 0.23 0.10
n = 100 3.47e-04 4.01e-04 4.14e-04 4.02e-04 2.86e-03 6.12e-04 6.826e-04 0.44 0.10
n = 500 1.39e-04 2.00e-04 1.31e-04 1.87e-04 2.38e-03 5.58e-04 1.675e-04 0.69 0.10
n = 1000 6.75e-05 1.03e-04 5.17e-05 1.02e-04 2.21e-03 4.75e-04 4.983e-05 0.58 0.10
n = 2000 3.51e-05 8.04e-05 2.19e-05 5.27e-05 2.18e-03 5.05e-04 2.786e-05 0.76 0.10
n = 5000 2.19e-05 5.44e-05 1.19e-05 3.79e-05 2.19e-03 4.81e-04 1.430e-05 0.77 0.61

Table 5.2: Tail performance. AWISE with δ = 1 corresponding to the Champernowne
transformed kernel density estimator with cml parameters ĥ1

opt, with maximum likelihood
parameters ĥ0, the g-and-h transformed kernel density estimator ĥgh, the corresponding
parametric distributions h̃1

opt, h̃0 and h̃gh together with the gpd estimator ĝ1
opt for the four

test distributions. The last two colums are the optimal thresholds for the gpd, (v1
opt) and

the cml (t1opt) estimators.

conclusion in Degen et al. (2007) which is that the gpd estimator has a poor tail

performance especially for g-and-h parameter values with a large ratio g/h. This is

exactly the characteristic for this data set (g = 2.5, h = 0.07).

The tail performance of ĝv(x) and ĥt(x) with optimal thresholds, vδ
opt and tδopt (called



102 Kernel density estimation, GPD, and g-and-h

ĥ2
opt ĥ0 ĥgh ĝ2

opt h̃2
opt h̃0 h̃gh v2

opt t2opt

Weibull
n = 50 269.60 1624.00 1190.00 279.40 484.300 2285.00 863.30 0.37 0.63
n = 100 128.90 1213.00 528.40 130.80 311.400 2043.00 490.90 0.71 0.85
n = 500 56.43 710.70 231.00 49.10 187.000 1679.00 149.00 0.69 0.82
n = 1000 30.58 588.30 194.60 24.17 192.200 1740.00 117.30 0.74 0.91
n = 2000 22.00 439.70 155.30 12.84 169.700 1630.00 76.07 0.76 0.90
n = 5000 15.65 283.70 112.50 8.51 164.800 1670.00 52.81 0.79 0.92
lognormal

n = 50 189.80 339.00 703.90 248.70 362.600 312.70 481.00 0.39 0.46
n = 100 86.95 184.30 261.60 111.30 242.900 183.10 223.90 0.43 0.41
n = 500 33.60 90.10 53.59 37.34 129.200 96.78 76.08 0.68 0.70
n = 1000 17.44 81.18 26.01 17.81 132.100 86.18 34.02 0.67 0.84
n = 2000 10.29 67.52 12.54 9.71 113.300 77.10 20.41 0.76 0.93
n = 5000 6.18 60.36 5.11 6.11 109.800 74.86 10.76 0.77 0.91
lognormal-Pareto

n = 50 159.90 278.10 876.40 231.100 323.00 253.00 276.80 0.47 0.51
n = 100 68.78 135.80 312.80 97.360 214.40 132.80 187.90 0.46 0.35
n = 500 25.52 57.40 64.52 33.320 124.20 59.98 53.07 0.64 0.33
n = 1000 13.98 47.46 36.43 14.360 128.00 48.47 35.61 0.69 0.39
n = 2000 7.99 37.56 9.48 8.047 112.60 41.62 12.80 0.77 0.87
n = 5000 4.62 33.71 2.72 4.748 109.70 39.64 8.16 0.79 0.88
g-and-h

n = 50 410.60 2021.00 2173.00 725.20 672.00 1458.00 1642.00 0.80 0.19
n = 100 156.80 1827.00 670.50 496.80 377.20 1629.00 426.60 0.71 0.29
n = 500 73.65 427.90 114.70 124.10 228.10 363.20 120.40 0.74 0.21
n = 1000 43.70 370.50 51.12 53.86 218.80 299.50 55.88 0.79 0.29
n = 2000 29.96 311.40 24.47 32.11 195.70 278.00 29.52 0.80 0.25
n = 5000 18.95 266.50 9.68 25.86 193.90 249.50 12.81 0.78 0.95

Table 5.3: Tail performance. AWISE with δ = 2 corresponding to the Champernowne
transformed kernel density estimator with cml parameters ĥ2

opt, with maximum likelihood
parameters ĥ0, the g-and-h transformed kernel density estimator ĥgh, the corresponding
parametric distributions h̃2

opt, h̃0 and h̃gh together with the gpd estimator ĝ2
opt for the four

test distributions. The last two colums are the optimal thresholds for the gpd, (v2
opt) and

the cml (t2opt) estimators.

ĝδ
opt and ĥδ

opt, respectively) is listed in Tables 5.1-5.3 together with the tail perfor-

mance of ĥ0(x) and ĥgh and the parametric estimators, h̃δ
opt(x), h̃0(x) and h̃gh(x).

Comparing ĝδ
opt and ĥδ

opt, we recognize that ĥδ
opt outperforms ĝδ

opt by 30% on average

for δ = 0 and δ = 1, and by 20% for δ = 2. However, especially for δ = 2 this
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AWISE for ĝt, δ=0, n=5000
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AWISE for ĥt, δ=0, n=5000
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Figure 5.1: The thresholds influence on tail performance with δ = 0 for the gpd estimator,
ĝt (left plots) and the Champernowne transformed kernel density estimator with cml pa-
rameters, ĥt (right plots). Black dashed lines correspond to the Weibull data, black solid
lines corresponds to lognormal data, black thick lines correspond to lognormal-Pareto data
and gray lines corresponds to g-and-h data. The points on the plots corresponds to the
optimal thresholds. The upper plots corresponds to a sample size of n = 100 and the lower
plots corresponds to a sample size of n = 5000.

average procentage hides significant differences, where ĝ2
opt seems to outperform ĥ2

opt

for large- and lighter-tailed data sets, whereas the ĥ2
opt outperforms ĝ2

opt on small-

and heavier-tailed data sets. Generally holds, for all the selected values of δ that the

superior tail performance of ĥδ
opt is most pronounced for heavy-tailed data and partic-

ularly the g-and-h distributed data. Comparing ĥδ
opt with the parametric benchmark

estimators h̃δ
opt, h̃0 and h̃gh shows that ĥδ

opt significantly outperforms the parametric

estimators; this effect increases with the size of the data set. The only exception

is h̃gh on g-and-h distributed data sets. In this situation ĥδ
opt only outperforms h̃gh
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AWISE for ĝt, δ=1, n=100
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0 0.2 0.4 0.6 0.8 1
0.00000

0.00005

0.00010

0.00015

0.00020

Figure 5.2: The thresholds influence on tail performance with δ = 1 for the gpd estimator,
ĝt (left plots) and the Champernowne transformed kernel density estimator with cml pa-
rameters, ĥt (right plots). Black dashed lines correspond to the Weibull data, black solid
lines corresponds to lognormal data, black thick lines correspond to lognormal-Pareto data
and gray lines corresponds to g-and-h data. The points on the plots corresponds to the
optimal thresholds. The upper plots corresponds to a sample size of n = 100 and the lower
plots corresponds to a sample size of n = 5000.

for small sizes of data sets. As expected, the most efficient estimator is the true

parametric estimator.

Finally, we compare the tail performance of ĥδ
opt and ĥgh, the non-parametric cor-

rected g-and-h distribution. This estimator appears to be superior to ĥδ
opt for large

data sets with heavy tails, whereas the tail performance of ĥδ
opt is superior for smaller

sample sizes and lighter-tailed data sets of all sample sizes. For δ = 2, the tail per-

formance of ĥ2
opt is superior to ĥgh in almost all situations.
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Figure 5.3: The thresholds influence on tail performance with δ = 2 for the gpd estimator,
ĝt (left plots) and the Champernowne transformed kernel density estimator with cml pa-
rameters, ĥt (right plots). Black dashed lines correspond to the Weibull data, black solid
lines corresponds to lognormal data, black thick lines correspond to lognormal-Pareto data
and gray lines corresponds to g-and-h data. The points on the plots corresponds to the
optimal thresholds. The upper plots corresponds to a sample size of n = 100 and the lower
plots corresponds to a sample size of n = 5000.

Comparing ĥδ
opt and ĥ0 in Tables 5.1-5.3, we see that ĥδ

opt has a significantly better

tail performance than ĥ0 for all the chosen values of δ, but most pronounced for large

values of δ and n. However, when it comes to FGU performance, the picture changes.

In Tables 5.4-5.6 we have computed AWISEδ
0 for ĥδ

opt, ĥ0, ĥgh and the parametric

estimators h̃δ
opt, h̃0 and h̃gh. Notice, that a comparison with ĝδ

opt on the entire axis is

not possible, because the gpd estimator is not defined below its threshold. We recog-

nize that ĥ0 has a significantly better FGU performance than ĥδ
opt for both δ = 0 and

δ = 1 where the FGU performance deviation is the larger the lighter the tail. Only for
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ĥ0
opt ĥ0 ĥgh h̃0

opt h̃0 h̃gh

Weibull
n = 50 1.91e-05 1.25e-05 2.76e-05 2.75e-05 1.43e-05 4.99e-05
n = 100 2.20e-05 1.34e-05 2.79e-05 3.42e-05 1.63e-05 5.46e-05
n = 500 2.57e-05 1.84e-05 2.69e-05 3.94e-05 2.58e-05 6.62e-05
n = 1000 2.52e-05 1.92e-05 2.57e-05 3.97e-05 2.80e-05 7.54e-05
n = 2000 2.41e-05 1.95e-05 2.45e-05 3.97e-05 2.97e-05 8.26e-05
n = 5000 2.23e-05 1.80e-05 2.28e-05 3.97e-05 3.02e-05 6.68e-05
lognormal
n = 50 2.31e-06 2.11e-06 9.60e-06 5.21e-06 2.16e-06 1.49e-05
n = 100 1.54e-06 1.17e-06 5.18e-06 5.99e-06 1.23e-06 1.11e-05
n = 500 7.68e-07 5.22e-07 1.69e-06 5.78e-06 6.95e-07 5.51e-06
n = 1000 6.35e-07 4.71e-07 1.16e-06 6.04e-06 6.13e-07 3.73e-06
n = 2000 5.23e-07 4.10e-07 7.25e-07 5.87e-06 5.79e-07 2.81e-06
n = 5000 4.46e-07 4.08e-07 3.64e-07 5.91e-06 6.10e-07 1.71e-06
lognormal-Pareto
n = 50 2.39e-06 2.395e-06 8.53e-06 5.31e-06 2.46e-06 1.51e-05
n = 100 1.35e-06 1.348e-06 5.21e-06 5.96e-06 1.30e-06 1.05e-05
n = 500 6.03e-07 4.995e-07 1.80e-06 5.92e-06 5.03e-07 4.80e-06
n = 1000 4.74e-07 4.162e-07 1.21e-06 6.22e-06 4.58e-07 4.37e-06
n = 2000 3.58e-07 3.158e-07 9.68e-07 6.07e-06 3.79e-07 3.33e-06
n = 5000 2.81e-07 2.809e-07 5.68e-07 6.08e-06 3.78e-07 2.10e-06
g-and-h
n = 50 1.06e-05 7.97e-06 1.91e-05 1.72e-05 1.11e-05 3.12e-05
n = 100 1.06e-05 7.26e-06 1.51e-05 1.79e-05 1.20e-05 1.94e-05
n = 500 1.05e-05 4.69e-06 4.86e-06 1.86e-05 1.63e-05 7.90e-06
n = 1000 9.61e-06 3.45e-06 4.07e-06 1.92e-05 1.79e-05 4.64e-06
n = 2000 7.75e-06 2.26e-06 2.84e-06 1.95e-05 1.93e-05 4.88e-06
n = 5000 5.27e-06 1.36e-06 1.67e-06 1.98e-05 2.00e-05 2.37e-06

Table 5.4: FGU performance. AWISE with δ = 0 corresponding to the Champernowne
transformed kernel density estimator with cml parameters ĥ0

opt, with maximum likelihood
parameters ĥ0, the g-and-h transformed kernel density estimator ĥgh and the corresponding
parametric distributions h̃0

opt, h̃0 and h̃gh for the four test distributions.

δ = 2 is enough weight is put into the tail of the error measure, so that ĥ2
opt outper-

forms ĥ0. That means, that we pay a price on FGU performance, when we choose a

parameter estimation method of the transformation function, which specially focuses

on fitting the tail, but we obtain obviously a superior tail performance. Comparing

the parametric distributions h̃δ
opt, h̃0 and h̃gh with the corresponding non-parametric

corrected estimatores ĥδ
opt, ĥ0 and ĥgh, respectively, shows that the non-parametric



5.5 Monte Carlo simulation study 107

ĥ1
opt ĥ0 ĥgh h̃1

opt h̃0 h̃gh

Weibull
n = 50 6.84e-03 6.50e-03 1.68e-02 9.90e-03 8.88e-03 4.17e-02
n = 100 4.33e-03 3.79e-03 9.08e-03 9.13e-03 6.20e-03 2.72e-02
n = 500 2.48e-03 1.70e-03 4.13e-03 7.80e-03 3.93e-03 1.27e-02
n = 1000 1.82e-03 1.12e-03 3.18e-03 7.62e-03 3.47e-03 6.23e-03
n = 2000 1.45e-03 7.96e-04 2.69e-03 7.44e-03 3.44e-03 8.92e-03
n = 5000 1.08e-03 4.91e-04 2.21e-03 7.49e-03 3.35e-03 6.29e-03
lognormal
n = 50 5.20e-03 5.20e-03 2.04e-02 1.16e-02 5.11e-03 4.05e-02
n = 100 2.30e-03 2.63e-03 8.60e-03 1.20e-02 2.77e-03 2.46e-02
n = 500 1.24e-03 9.73e-04 1.79e-03 1.07e-02 1.46e-03 8.07e-03
n = 1000 7.83e-04 5.85e-04 1.03e-04 1.10e-02 1.03e-03 3.88e-03
n = 2000 4.86e-04 3.45e-04 6.21e-04 1.06e-02 9.23e-04 2.76e-03
n = 5000 2.91e-04 2.11e-04 2.34e-04 1.07e-02 8.32e-04 1.50e-03
lognormal-Pareto
n = 50 5.02e-03 5.19e-03 1.63e-02 1.17e-02 4.88 3.55e-02
n = 100 2.75e-03 2.59e-03 7.29e-03 1.15e-02 2.38e-03 1.81e-02
n = 500 1.05e-03 8.86e-04 1.89e-03 1.07e-02 9.49e-04 5.29e-03
n = 1000 6.54e-04 5.27e-04 1.09e-03 1.11e-02 6.63e-04 4.68e-03
n = 2000 3.84e-04 2.94e-04 6.84e-04 1.08e-02 5.19e-04 2.84e-03
n = 5000 2.15e-04 1.70e-04 2.93e-04 1.08e-02 4.53e-04 1.54e-03
g-and-h
n = 50 2.05e-02 1.56e-02 4.68e-02 4.20e-02 2.04e-02 8.01e-02
n = 100 1.83e-02 1.23e-02 3.02e-02 4.29e-02 1.95e-02 5.53e-02
n = 500 1.35e-02 6.59e-03 9.19e-03 4.15e-02 1.98e-02 1.51e-02
n = 1000 1.15e-02 4.76e-03 6.87e-03 4.16e-02 2.00e-02 9.45e-03
n = 2000 9.07e-03 3.20e-03 5.24e-03 4.13e-02 2.01e-02 7.52e-03
n = 5000 6.31e-03 2.00e-03 3.06e-03 4.16e-02 2.02e-02 4.10e-03

Table 5.5: FGU performance. AWISE with δ = 1 corresponding to the Champernowne
transformed kernel density estimator with cml parameters ĥ1

opt, with maximum likelihood
parameters ĥ0, the g-and-h transformed kernel density estimator ĥgh and the corresponding
parametric distributions h̃1

opt, h̃0 and h̃gh for the four test distributions.

correction in almost all situations improves the estimators significantly. Moreover,

we observe that the FGU performance of ĥδ
opt is superior compare to ĥgh.

From a theoretical point of view, all four test distributions, Weibull, lognormal,

lognormal-Pareto and g-and-h, tend to a gpd distribution in the tail, and therefore

one might expect, that ĝδ
opt has a better tail estimation than ĥδ

opt above a certain

point in the tail. However, when working with large loss estimation in practice, it is
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ĥ2
opt ĥ0 ĥgh h̃2

opt h̃0 h̃gh

Weibull
n = 50 338.80 1678.00 1159.00 657.20 2365.00 1207.00
n = 100 201.10 1243.00 596.70 490.40 2104.00 769.00
n = 500 98.54 718.10 243.70 352.70 1713.00 300.10
n = 1000 67.27 592.80 203.80 354.80 1773.00 168.00
n = 2000 50.57 441.80 161.00 328.20 1661.00 181.80
n = 5000 36.26 285.00 116.30 324.20 1701.00 115.40
lognormal
n = 50 230.40 377.20 561.00 477.60 350.50 789.70
n = 100 111.20 205.60 298.90 355.10 205.40 482.80
n = 500 44.05 97.02 90.81 227.10 105.50 134.00
n = 1000 27.22 85.44 50.87 233.30 92.22 55.64
n = 2000 16.93 69.54 20.29 209.80 81.96 36.72
n = 5000 10.91 61.62 7.47 207.90 79.15 21.59
lognormal-Pareto
n = 50 197.10 311.30 724.50 424.30 284.50 456.80
n = 100 89.12 154.10 236.30 304.60 149.60 253.60
n = 500 32.45 63.04 88.80 207.40 64.88 78.65
n = 1000 18.53 51.05 49.05 214.20 52.13 61.57
n = 2000 10.93 39.28 8.99 195.80 44.09 26.27
n = 5000 7.78 34.76 5.19 193.50 41.75 16.00
g-and-h
n = 50 546.90 3209.00 3361.00 874.40 1653.00 1821.00
n = 100 270.40 3784.00 731.20 643.90 2021.00 658.60
n = 500 135.00 615.10 215.10 437.50 434.50 162.30
n = 1000 66.29 497.60 77.89 426.00 363.00 64.66
n = 2000 43.99 383.40 24.22 406.40 324.20 43.13
n = 5000 30.24 296.70 6.83 405.50 290.00 21.16

Table 5.6: FGU performance. AWISE with δ = 2 corresponding to the Champernowne
transformed kernel density estimator with cml parameters ĥ2

opt, with maximum likelihood
parameters ĥ0, the g-and-h transformed kernel density estimator ĥgh and the corresponding
parametric distributions h̃2

opt, h̃0 and h̃gh for the four test distributions.

relevant to know from which point this possibly happens in the tail. Therefore, for

given δ, define:

x̃i = inf{x|∀y ≥ x : |ĝi,δ
opt − f(x)| < |ĥi,δ

opt − f(x)|} (5.10)
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that is the minimum point (if it exists) from which ĝi,δ
opt is closer to the true density

f than ĥi,δ
opt for a given repetition i.

Simulation studies not presented in the paper show that x̃i exists and is around the

99% quantile for almost all repetitions when the distribution is light-tailed and the

sample sizes are reasonable large, whereas x̃i rarely exists for heavy-tailed distribu-

tions and small sample sizes. That means that ĝδ
opt fits the very high quantiles above

99% of the light-tailed Weibull distribution more accurately than ĥδ
opt and that ĝδ

opt

also fits very high quantiles of the lognormal distribution more exactly than ĥδ
opt

when the sample sizes are large. However, when it comes to the lognormal distri-

bution with small sample sizes, the heavy-tailed lognormal-Pareto distribution and

the g-and-h distribution, then ĥδ
opt mostly seems to fit the high quantiles better than

ĝδ
opt.

The general conclusion of the Monte Carlo study is that the Champernowne trans-

formed kernel density estimator with cml parameters on the whole seems to be a

better tail estimator than the gpd estimator at the same time as being an estimator

on the entire axis. The Champernowne transformed kernel density estimator with

maximum likelihood parameters has a superior FGU performance, but this estima-

tor has a substantially poorer tail performance which makes it less attractive as an

estimator for operational risk. Compared to the parametric g-and-h distribution

the Champernowne transformed kernel density estimator with cml parameters has a

superior tail as well as FGU performance. The g-and-h distribution is significantly

improved by use of non-parametric correction, and this estimator seems to be supe-

rior to the Champernowne transformed kernel density estimator with cml parameters

in some situations when the sample sizes are very large. For small sample sizes and

lighter tails and for the tail performance with δ = 2 the Champernowne transformed

kernel density estimator with cml parameters are superior to the g-and-h transformed

kernel density estimator, and therefore the Champernowne transformed kernel den-

sity estimator with cml parameters is our final recommendation for operational risk

estimation.
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5.6 An application to operational risk

In this section we demonstrate the proposed methods on an operational risk data

set. The data set consists of 5,021 financial operational risk events with the corre-

sponding information of risk event category defined equivalent to the categories in

Basel II. Descriptive statistics for the data set can be found in Table 5.7. The data

set corresponds to the data set applied in Buch-Kromann et al. (2007) and more

information about the data set can be found there.

Risk Number of Max loss Median Mean Standard Annual
category losses (£M) (£M) (£M) deviation frequency
Internal fraud 1247 6683.8 1.82 32.24 269.43 10
External fraud 538 910.6 2.14 15.60 69.68 20
Employment practices

and workplace safety
721 221.9 1.98 7.84 20.04 28

Business disruption 45 117.6 5.88 22.46 33.25 11
Damage to physical assets 2395 39546.4 2.35 74.91 1192.55 3
Execution, delivery and

process management
75 104.6 1.56 7.39 17.72 52

Table 5.7: Descriptive statistics for the operational risk data set.

As mentioned in the introduction, LDA is an important model in operational risk

modeling. The LDA consists of a severity and a frequency distribution and describes

the aggregated loss distribution,

Yj =

Nj∑
i=1

Xij.

To each of the six operational risk event risk groups, we estimate the Champernowne

transformed kernel density estimator with cml parameters. For this data set it is

not possible to choose optimal thresholds as the true distribution of the data set

is unknown just like it always is in practice. Instead we choose a threshold which
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optimize the goodness-of-fit:

tgof = arg min
t

n∑
i=1

{Femp(Xi)− F̂t(Xi)}2, (5.11)

where Femp is the empirical cdf. To avoid outlying values, particularly when the

sample size is small, it seems preferable to choose the goodness-of-fit optimizing

threshold between 60% and 80%. This approach provides a threshold based on the

empirical and not the true distribution. The estimator based on the goodness-of-fit

optimized threshold is called ĥgof .

Furthermore, we estimate a gpd distribution with a fixed threshold at u1 = 0.85

for all the six event risk groups, and combine the gpd estimator with the empirical

distribution in such a way that everything below u2 = 0.95 is fitted by the empirical

distribution, and everything above u2 = 0.95 is fitted by the gpd distribution. This

estimator (estimated to each single operational risk event risk group) is called ĝ0.85.

In addition, we estimate the Champernowne transformed kernel density estimator

with maximum likelihood parameters, ĥ0, the g-and-h transformed kernel density

estimator, ĥgh and the parametric estimators, h̃gof , h̃0 and h̃gh together with the

purely empirical distribution, called pemp.

We compute a simulation study to calculate the 99.9% VaR and the 99.9% TVaR

for our various versions of estimated severity distributions. The risk tolerance value

99.9% is chosen according to the Basel II standards for operational risk.

The simulation setup follows the setup in Buch-Kromann et al. (2007) and is the

following. We draw 10,000 operational risk claims numbers for each risk category

using a Poisson distribution (the Poisson parameters are stated in the last column

in Table 5.7).

rij ∼ Poisson(λi), i = 1, ..., 6, j = 1, ..., 10, 000
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For each of the simulated number of operational risk claims, we draw rij iid uniformly

distributed random variables

uijk ∼ U(0, 1), k = 1, ..., rij

and based on these, we calculate the simulated operational risk claims by means of

our estimated severity distributions

xijk = F̂−1
i (uijk)

where F̂−1
i (x) is the inverse cumulative distribution function corresponding to one of

the eight estimated severity distributions ĥgof , ĥ0, ĥgh, ĝ0.85, h̃gof , h̃0, h̃gh and pemp.

This simulation study give us the aggregated losses according to each of the eight

severity distributions in 10,000 years. According to these data sets we find the

mean, standard deviation, median, VaR-99.9% and TVaR-99.9%. This is repeated

200 times and the averages are stated in Table 5.8. The numbers in parentheses and

italics in Table 5.8 are the standard deviation of the estimates. We recognize that the

mean is significantly larger than the median, which indicates that the distribution of

each operational risk events group is right skewed. Focusing on the VaR-99.9% and

TVaR-99.9% in Table 5.8 illustrates the significant disparities between the estimators.

The empirical distribution estimates significantly lower VaR-99.9% and TVaR-99.9%

than the other estimators, but also the g-and-h estimators with and without non-

parametric correction are substantially lower than the Champernowne estimators

and the gpd estimator. The VaR and TVaR for various values of quantiles are

illustrated in Figure 5.4 for some selected estimators. The plots indicate that ĥ0

substantially overestimates the operational risk as regards VaR as well as TVaR, and,

compared with the results in the Monte Carlo simulation study, we conclude that this

estimator presumably overestimate the risk. On the other hand h̃gh is substatially

lower than both ĥgof(x) and ĝ0.85(x) and this indicates that this estimator might
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produce imprudent estimates for this data set.

Mean SD Median VaR-99.9% TVaR-99.9%

ĥgof 3,744(6,269) 131,146(623,800) 1,390(7) 133,780(41,932) 1,666,230(6,261,244)

ĥ0 44,171(80,835) 3,084,456(7,758,720) 1,594(12) 1,658,766(695,492) 37,990,347(80,780,170)

ĥgh 2,518(159) 10,208(12,263) 1,655(11) 65,253(15,188) 198,421 (151,049)
ĝ0.85 6,082(9,966) 304,488(977,792) 1,294(6) 258,669(103,758) 3,865,910(9,941,709)

h̃gof 7,099(14,700) 296,669(1,463,434) 2,151(10) 264,527(85,689) 3,699,343(14,683,800)

h̃0 40,176(71,558) 2,809,963(6,847,125) 1,396(11) 1,520,906(634,974) 34,618,228(71,517,690)

h̃gh 2,907(163) 10,656(12,435) 1,911(13) 71,220(16,528) 207,439(154,093)
pemp 1,597(19) 1,971(128) 1,247(5) 33,364(2,502) 37,522(1,524)

Table 5.8: The performance of the various versions of severity estimators in the operational
risk application. The values in parentheses and italics are the standard deviation of the
estimates. The severity estimators are the Champernowne transformed kernel density
estimator with gof optimized cml parameters, ĥgof , the Champernowne transformed kernel
density estimator with maximum likelihood parameters, ĥ0, the g-and-h transformed kernel
density estimator, ĥgh, the gpd estimator, ĝ0.85, the parametric Champernowne distribution
with gof optimized cml parameters, h̃gof , the Champernowne distribution with maximum
likelihood parameters, h̃0, the g-and-h distribution, h̃gh, and the empirical distribution,
pemp.
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Figure 5.4: VaR (left) and TVaR (right) of the operational risk data set as a function of
quantiles for some selected estimators. Black thick lines corresponds to the Champernowne
transformed kernel density estimator with maximum likelihood parameters ĥ0, gray lines
corresponds to the gpd estimator ĝ0.85, black dashed lines corresponds to the Champer-
nowne transformed kernel density estimator with cml parameters ĥgof , and black solid lines
corresponds to the g-and-h distribution, h̃gh.
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5.7 Conclusion

In this paper we introduce a new tail-dependent parameter estimation method (the

cml method) of the Champernowne distribution which substantially improves the

performance of the Champernowne transformed kernel density estimator compared

to the Champernowne transformed kernel density estimator with maximum likeli-

hood parameters as described in Buch-Larsen et al. (2005). As benchmark estima-

tors we use the generalized Pareto distribution and the g-and-h distribution which

has become popular in operational risk as a flexible distribution with the ability to

fit both the center and the tail. Comparing these estimator shows that the Cham-

pernowne transformed kernel density estimator with cml parameters is superior as

regard tail performance and performance on the entire axis.

Furthermore we combine the transformation kernel density approach and the g-and-h

distribution and introduce the g-and-h transformed kernel density estimator. This es-

timator outperforms the Champernowne transformed kernel density estimator with

cml parameters for very large data sets with a moderately heavy tail, most likely

because the g-and-h distribution has an extra parameter compared to the Champer-

nowne distribution, which yield an additional flexibility which is an advantage for

large data sets. Focusing on the very far tail (AWISE with δ = 2) shows that the

Champernowne transformed kernel density estimator with cml parameters seems to

be superior. Comparing the two estimators’ performance as estimators on the entire

axis shows that the Champernowne transformed kernel density estimator with cml

parameters is superior to the g-and-h transformed kernel density estimator.

As most operational risk data sets in practice are very small, and as the very far tail

is of particular interest in operational risk, our overall conclusion is to recommend

the Champernowne transformed kernel density estimator with cml parameters.

In the last part of the paper, we illustrate the proposed methods in a study of

the aggregated loss distribution. This study indicates that the g-and-h distribution

underestimate the very far tail and thereby not produce prudent operational risk
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estimates for this data set as required in Basel II.
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Chapter 6

Multivariate density estimation

using dimension reducing

information and tail flattening

transformations

This chapter is an adapted version of Buch-Kromann et al. (2007).

We propose a nonparametric multiplicative bias corrected transformation estimator

designed for heavy tailed data. The multiplicative correction is based on prior knowl-

edge and has a dimension reducing effect at the same time as the original dimension

of the estimation problem is retained. Adding a tail-flattening transformation im-

proves the estimation significantly – particularly in the tail – and provides significant

graphical advantages by allowing the density estimation to be visualized in a simple

way. The combined method is demonstrated on a fire insurance data set and provides

excellent performance in a data-driven simulation study.
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6.1 Introduction

We study a two-dimensional nonparametric density estimation problem that arises

in the estimation of right-skewed distributions. One particular application that we

have in mind is density estimation of insurance claims distributions. In this pa-

per we suggest a nonparametric multidimensional density estimator based on prior

knowledge, which has a dimension reducing effect.

The interest on multivariate analysis of risks has recently grown enormously, but

most authors work in the framework of parametric models. For instance, Brodin

and Rootzén (2009) applied a bivariate distribution to modelling wind storm and

hurricane risks. Genest et al. (2009) note that modeling and measurement of mul-

tivariate risk in insurance and finance is an extremely challenging and important

area of research. Recent contributions based on the parametric approach include

the ones by Valdez et al. (2009), Li and Peng (2009), Hashorva (2008), Gebizlioglu

and Yagci (2008) or Kallenberg (2008). Simultaneously, only few authors suggest a

nonparametric analysis (see, Koekemoer and Swanepoel (2008a), Vilar et al. (2009),

Cao et al. (2009) or Bolancé et al. (2008b)).

We have realized that the multidimensional nature of a problem can provide new

insights, i.e., using information on risk scores can help to predict insurance claims

severity by estimating the conditional density. However, compared to the majority

of other authors, we are specially concerned about tail estimation in the challenging

situation of right-skewed data. A major issue for multivariate density estimation is

the curse of dimensionality whereby the optimal rate of convergence declines rapidly

with dimensions, Stone (1980), and in practice this problem is even more pronounced

when focusing on tail estimation. Moreover, as shown in Silverman (1986) the finite

sample performance of standard nonparametric estimators is poor even when the

dimension is quite small. One approach to this problem is working with restricted

models that reduce the dimensionality. In many cases though it may be felt too

unrealistic to rely so much on a restrictive model. When the model is not true the

proposed estimators are not consistent and may be badly biased leading to misleading
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inferences. Therefore we shall retain the high dimensional model assumption and seek

to improve the performance of standard kernel estimation.

Nonparametric kernel density estimation has received considerable attention in the

literature, see Wand and Jones (1995); Scott (1992) for useful introductions, and the

standard kernel density estimator has been improved in several ways. One impor-

tant contribution is Hjort and Glad (1995) which introduced a multiplicative bias

correction based on a parametric distribution which improved the performance of

the kernel density estimator substantially. In one dimension a parametric start is

necessary to obtain an improvement in the rate of convergence, however in many di-

mensions it is sufficient to have a dimension reducing model. We therefore extend the

idea in Hjort and Glad (1995) and propose a method based on prior knowledge. Our

method is based on a structured auxiliary model which is multiplicatively bias cor-

rected in a nonparametric way. The multiplicative correction is obtained after a tail

flattening transformation, e.g. the Champernowne c.d.f. which has shown desirable

properties especially when dealing with heavy-tailed distributions, see Buch-Larsen

et al. (2005). That means that the structured auxiliary model and the tail flat-

tening transformation is our prior knowledge which is nonparametrically corrected.

We show that this approach improves the performance of the nonparametric kernel

density estimator substantially if the prior knowledge is correct or almost correct.

The paper also includes a Monte Carlo study and an application. The Monte Carlo

study is designed only to test the performance of the multiplicative bias correction.

We have simulated from both an additive and a multiplicative model based on iid

uniform variables and standard normal distributed error terms. This study shows

that our proposed multiplicative bias correction brings improvements even in very

small sample sizes. The application is based on a fire insurance data set, which

consists of claim sizes and the corresponding explanatory variable: the estimated

maximum loss. This is a heavy tailed data set, which makes tail flattening trans-

formation essential. First, we apply the proposed methods on the fire data set and

demonstrate the graphical advantage of working on transformed scales. Thereafter,

we perform a simulation study based on the fire insurance data set, which gives us
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a kind of bootstrapped evidence of the performance of our proposed density esti-

mators. As this is the first paper focusing on the special problems that arise when

focusing on heavy tails in multidimensional kernel density estimation, we will use the

experience from corresponding work in one dimension and keep it as simple and clear

as possible. Likewise, we stick to a data-driven simulation study in two dimensions

corresponding to the dimension of the original data. The simulation study compares

the performance of the proposed transformation kernel density estimator with and

without multiplicative correction both when the auxiliary model is correct and when

it is not correct. We conclude that when the auxiliary model is not correct we obtain

a substantial improvement by using the multiplicative bias corrected transformation

kernel density estimator compared to both the transformation kernel density esti-

mator without multiplicative bias correction and the auxiliary model. When the

auxiliary model is true, the multiplicative corrected estimator performs as well as

the auxiliary.

In the simpler one-dimensional case, there has recently been a lot of activity to

understand optimal transformation methods and optimal nonparametric smoothing

methodology in our context. Some early papers in this direction was Bolancé et al.

(2003) and Buch-Larsen et al. (2005) that updated the well known transformation

method of Wand et al. (1991) to actuarial loss distributions. Simultaneously and

independently, Clements et al. (2003) suggested the Mobius transformation. Buch-

Larsen et al. (2005) noticed that the Mobius transformation turns out to be a special

case of the well known Champernowne distribution that has a long history as a use-

ful distribution for long tail estimation, see Brown (1937); Champernowne (1952).

Based on an extensive simulation study Buch-Larsen et al. (2005) suggests to combine

a modified version of the Champernowne distribution with a simple local constant

kernel density estimator when estimating heavy tail distributions. This approach

proved to be an improvement to the earlier studies quoted above. In the context

of operational risk, Buch-Kromann et al. (2007) concluded that the transformation

approach worked very well and led to a robustifying property when combined with

alternative prior assumptions of parametric distributions. Also, Gustafsson et al.



6.1 Introduction 121

(2006b), Guillen et al. (2007) and Gustafsson and Nielsen (2008) took advantage of

the transformation approach defined in Buch-Larsen et al. (2005). However, Bolancé

et al. (2008a) and Gustafsson et al. (2009) replicated the above simulations and

showed that the more complicated approach of local beta density estimators and a

beta distribution transformation approach proved to be a genuine improvement to

the local constant estimator that had proved so hard to beat. However, the improve-

ment was relatively modest compared to the increased level of complexity introduced

by this new less known class of density estimators. When generalising the method to

multidimensions as we do in this first paper on the topic, we have chosen to stick to

the simple local constant kernel estimator that clearly is the benchmark to which all

other approaches should be compared to. In Buch-Kromann et al. (2009) the Cham-

pernowne transformed kernel density estimator with different parameter estimation

methods is compared as regards tail performance as well as performance on the entire

axis to the generalized Pareto distribution and the g-and-h distribution which has

become popular particularly in operational risk as a very flexible distribution with

the ability to fit both the center and the tail of the distribution, see Dutta and Perry

(2006), Degen et al. (2007) and Degen and Embrechts (2008). This comparison is

generally in favour of the Champernowne transformed kernel density estimation.

In section 6.2 we describe the statistical setup for the multiplicative bias reduction

method for joint and conditional densities. In section 6.3 we describe the multivariate

transformation approach. In section 6.4 we combine the multiplicative bias reduc-

tion from section 6.2 with the transformation approach from section 6.3 to obtain a

final estimator which benefits from both approaches. In section 6.5 we present the

asymptotic theory of the described estimators. Section 6.6 presents a Monte Carlo

study of the pure multiplicative bias correction and section 6.7 is an application on

a heavy tailed fire insurance data set, where we demonstrate the performance of the

proposed density estimator including tail flattening transformation. Section 6.7 also

includes a data-driven simulation study of the presented estimators. Section 6.8 is

the conclusion.
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6.2 Multiplicative bias correction by structured

nonparametric model

Suppose that X = (X1, . . . , Xd) is a d-dimensional absolutely continuous random

vector and we are interested in estimating the density function f based on a random

sample of vectors X1, . . . , Xn. We are primarily concerned with the case where the

support is unbounded in at least some directions. We are also interested in the con-

ditional density of X1 given X2, . . . , Xd, and functionals thereof like the conditional

expectation and conditional median. A commonly employed estimator of f(x) is the

kernel estimator

f̂(x) =
1

n

n∑
i=1

KH (x−Xi) , (6.1)

where K is a multivariate kernel function and H is a d × d bandwidth matrix so

that KH(x) = K(H−1x)/ det(H). For pedagogic simplicity we consider the spe-

cial case where H = hId. In practice one needs to make scale adjustments when

the components of X have different marginals but we shall avoid this for nota-

tional simplicity. The conditional density f(x1|x2, . . . , xd) can be estimated by

f̂(x1|x2, . . . , xd) = f̂(x)/f̂(x2, . . . , xd), where f̂(x2, . . . , xd) is the corresponding esti-

mator of the density of (X2, . . . , Xd). See Chen et al. (2001) for a recent discussion

of bandwidth issues in conditional density estimation.

Suppose that there is an auxiliary model for X with density denoted by g. The

sort of model we have in mind is semiparametric: it depends in a known fashion on

parameters θ ∈ Θ ⊆ Rp and on unknown one-dimensional functions m1, . . . , mR for

some R. We can capture this with the general notation g(.) = G(.; θ, m1, . . . ,mR).

The function mj is defined on the domain of a one-dimensional random variable

Zj, where Zj = ψj(X) for some known measurable function ψj. It is natural to

assume that R ≤ d here. For example, g might be the product density or g might

be elliptically symmetric. Other examples include partially linear partially additive

regression models among components of X. We consider a specific example in the

application below.
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Suppose that we can estimate the parameter θ and the functions m1, . . . , mR by

estimates θ̂ and m̂1, . . . , m̂R, so that we can write ĝ(.) = G(.; θ̂, m̂1, . . . , m̂R), which

is our estimate of the function g. We then estimate f(x) by the multiplicative

correction estimator

f̃(x) = ĝ(x)
1

n

n∑
i=1

KH (x−Xi)

ĝ(Xi)
. (6.2)

For computation of the estimate f̃(x) at point x we need to compute ĝ(Xi) for all

Xi in a neighbourhood of x determined by the bandwidth H.

In the case of conditional density f(x1|x2, . . . , xd) = f(x)/f(x2, . . . , xd), it is natural

to start with an auxiliary model for the conditional density g(x1|x2, . . . , xd), and

suppose that one has an estimate ĝ(x1|x2, . . . , xd). Then define

f̃(x1|x2, . . . , xd) =
ĝ(x1|x2, . . . , xd)

f̂(x2, . . . , xd)

1

nhd

n∑
i=1

K
(

x−Xi

hd

)

ĝ(X1
i |X2

i , . . . , Xd
i )

, (6.3)

where f̂(x2, . . . , xd) is an estimate of the density f(x2, . . . , xd). This allows one to

avoid specifying an auxiliary model for f(x2, . . . , xd). An alternative estimator is

f̃(x)/f̃(x2, . . . , xd), which requires an auxiliary model for the full joint density. Pro-

vided the kernels are positive and the auxiliary density estimators ĝ are positive, the

resulting estimators (6.2) and (6.3) are positive. One may make further adjustments

to f̃(x) and f̃(x1|x2, . . . , xd) in order to make them integrate to one, see Glad et al.

(2003).

This is a generalization of the principles involved in Hjort and Glad (1995) where

the model g is fully parametric. In this paper g is a structured model containing

some parametric components and some one-dimensional nonparametric components.

The advantage of this is that such models might be more realistic and closer to the

functional form of f, thereby producing better statistical performance. The basic

motivation of the estimators (6.2) and (6.3) is that of prewhitening. The advantage

of our approach over the parametric pilot approach is in terms of the bias: since our

auxiliary model is in some sense larger, we expect to achieve smaller biases.
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6.3 The multivariate transformation approach

In this section we propose a multivariate version of the univariate transformation

approach from Buch-Larsen et al. (2005). An advantage of the ‘transformation’

method, evident from the theoretical analysis, is that it works well in the tail by

effectively increasing the bandwidth there, and indeed has been interpreted as a

form of variable bandwidth method, Yang and Marron (1999) and Bolancé et al.

(2003).

Consider the invertible transformations u = T (x; λ) depending only on parameters

λ ∈ Λ ⊆ Rp and known functions T. Usually it is convenient to take just marginal

transformations so that uj = Tj(xj; λj), j = 1, . . . , d. It follows by the transformation

theorem that

f(x) = J(x)fU{u(x)}, (6.4)

where fU is the density of U = (U1, . . . , Ud) = (T1(X1; λ1), . . . , Td(Xd; λd)), while J

is the Jacobian of the transformation, in this case J(x) =
d∏

j=1

|∂Tj(xj; λj)/∂xj|. Then

suppose that there exists an estimator λ̂ of λ computed from the data and let

f̃T (x) = Ĵ(x)
1

nhd

n∑
i=1

K

(
û(x)− Ûi

h

)
, (6.5)

where Ûi = Ti(Xi; λ̂), while Ĵ is the Jacobian of the empirical transformation

Ĵ(x) =
d∏

j=1

∣∣∣∣∣
∂Tj(xj; λ̂)

∂xj

∣∣∣∣∣ .

In general the transformed variable U can have the same support as X or differ-

ent support, for example the unit cube. Examples of transformations include the

Champernowne transformation, Buch-Larsen et al. (2005). This has a Pareto-like

tail but with some extra flexibility. The heavy tail is useful in some applications.

Note that when Tj is actually the marginal c.d.f. of Xj, Uj is uniformly distributed
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on [0, 1] and the Jacobian is just the product of the densities of Xj. In this case, the

most natural way of estimating the parameters λ is by (quasi) maximum likelihood

since T (x; λ) can be interpreted as a model for the multivariate c.d.f. of the data.

The transformation ensures better tail behaviour, as discussed in Buch-Larsen et al.

(2005).

6.4 Multiplicatively corrected transformation ap-

proach

In the following we propose to combine the transformation approach from section

6.3 with the multiplicative bias reduction method from section 6.2. The advantage

of this is that we are doing our density estimation and our primary multiplicative

bias correction on a scale of our choosing, for example on the unit cube. If the

transformation is particularly good one has almost equally spaced data on the unit

cube and bandwidth choice can be less crucial. The full algorithm is given below.

1. Estimate the auxiliary model density ĝ(x) using appropriate techniques.

2. Transform the data to Ûi = T (Xi; λ̂) and the implied auxiliary model density

to ĝU(u), where ĝU(u) = ĝ{T−1(u; λ̂)}{T−1(u; λ̂)}′.

3. Estimate the density of U by the multiplicative correction estimator

f̃U(u) = ĝU(u)
1

nhd

n∑
i=1

K
(

u−Ûi

h

)

ĝU(Ûi)
(6.6)

4. Transform back from U to X to obtain a density estimator of X on the original

axis

f̃C(x) = Ĵ(x)f̃U{u(x)}. (6.7)
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This algorithm benefits from transforming into the unit cube because this means

that the issue of different scaling of the variables is handled automatically.

6.5 Distribution theory

6.5.1 Full model case

In this section we derive the distribution theory for our procedures in a general

setting. The main insight is that although there are nonparametric components

in the auxiliary model g, they are of lower dimension than f and so the estimation

error in ĝ is of smaller order and can be ignored under the general model assumption.

Define g(x) as the limiting value of ĝ(x). We assume that this is well-defined. It may

depend on the method used to compute ĝ. Define also

β(x) =
1

2
µ2(k)g(x)∇2r(x) ; v(x) = ||K||22f(x),

where r(x) = f(x)/g(x) and ∇2g(x) =
∑d

j=1 ∂2g(x)/∂x2
j is the trace Hessian opera-

tor, while µ2(k) =
∫

k(t)t2dt and ||K||22 =
∫

K(u)2du. In the appendix we show

Theorem 1. Suppose that assumptions A in Appendix A are satisfied. Then as

n →∞, √
nhd{f̃(x)− f(x)− h2β(x)} =⇒ N(0, v(x)).

Proof See Appendix B.

When h = O(n−1/(d+4)) one obtains convergence in distribution at rate n−2/(d+4),

which is the optimal rate under our smoothness conditions. The limiting variance is

the same as that of the standard kernel estimator but the bias is different. It depends

on the curvature of r rather than f : when r(x) is flat (i.e., g is close to f near x)

then the bias is small. In the extreme case when the model is true, i.e., g(x) = f(x),

the bias constant is zero, and the rate of convergence can potentially be increased
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by taking a larger bandwidth; we discuss this in section 6.5.2.

We next present the distribution theory for the transformation estimator. Define

βT (x) =
1

2
µ2(k)J(x)∇2fU{u(x)} ; vT (x) = ||K||22J(x)f(x).

Theorem 2. Suppose that assumptions A and B in Appendix A are satisfied. Then

as n →∞, √
nhd{f̃T (x)− f(x)− h2βT (x)} =⇒ N(0, vT (x)).

Proof See Appendix C.

In this case, both the bias and the variance are different from the standard kernel

estimator. The bias depends on the curvature of the density of the transformed

variable, so that when U is actually uniform (i.e., the transform T (x; λ0) is the c.d.f.

of X) the bias constant is zero. The variance can be smaller in the tails due to

the Jacobian term, i.e., when J(x) < 1, vT (x) < v(x); this condition is likely to be

met out in the tails provided the transformation is well chosen. For example, when

Tj is the c.d.f. of Xj, then J(x) =
∏d

j=1 fj(xj) → 0 as xj → ∞. In this case, the

transformation estimator has finite relative error in the tail, in the sense that

lim
x→∞

avar

{√
nhd

f̃T (x)

f(x)

}
< ∞. (6.8)

By comparison, the relative error of f̂(x) (and hence of f̃(x)) in the tail becomes

infinite.

Finally, we provide the theory for the combination estimator. Define rU(u) =

fU(u)/gU(u) and

βC(x) =
1

2
µ2(k)J(x)gU{u(x)}∇2rU{u(x)} ; vC(x) = ||K||22J(x)f(x).
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Theorem 3. Suppose that assumptions A and B in Appendix A are satisfied. Then

as n →∞, √
nhd{f̃C(x)− f(x)− h2βC(x)} =⇒ N(0, vC(x)).

Proof See Appendix D.

The variance is the same as the variance of the transformation estimator, while the

bias is slightly different. Specifically, the magnitude of the bias depends on the

curvature of rU(u) = fU(u)/gU(u) in u-space. If the auxiliary model g is ‘good’,

i.e., gU is close to uniform, and if the transformation T is ‘good’, i.e., fU is close

to uniform, then the ratio fU(u)/gU(u) is also close to uniform. However, it can be

that fU(u)/gU(u) is approximately constant even when the two functions fU(u) and

gU(u) are not constant, and in such cases one will have small bias. Note that when

r(x) = 1 for all x, then rU(u) = 1 also.

Finally, we present the theory for the conditional density estimator (6.3). This theory

parallels the theory for the joint density estimators and so we omit the results for

the transformation estimator and the combined estimator. Define:

β(x1|x2, . . . , xd) = β1(x
1|x2, . . . , xd) + β2(x

1|x2, . . . , xd)

β1(x
1|x2, . . . , xd) =

1

2
µ2(k)

g(x1|x2, . . . , xd)

f(x2, . . . , xd)

d∑
j=1

∂2{r(x1|x2, . . . , xd)f(x2, . . . , xd)}
∂(xj)2

β2(x
1|x2, . . . , xd) = −1

2
µ2(k)

f(x1|x2, . . . , xd)

f(x2, . . . , xd)

d∑
j=2

∂2f(x2, . . . , xd)

∂(xj)2

v(x1|x2, . . . , xd) = ||K||22
f(x1|x2, . . . , xd)

f(x2, . . . , xd)
,

where r(x1|x2, . . . , xd) = f(x1|x2, . . . , xd)/g(x1|x2, . . . , xd).

Theorem 4. Suppose that assumption A in Appendix A are satisfied. Then as
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n →∞,

√
nhd{f̃(x1|x2, . . . , xd)− f(x1|x2, . . . , xd)− h2β(x1|x2, . . . , xd)}

=⇒ N(0, v(x1|x2, . . . , xd)).

Proof See Appendix E.

The asymptotic variance is the same as that of f̂(x1|x2, . . . , xd). The bias de-

pends on the curvature of r(x1|x2, . . . , xd)f(x2, . . . , xd); for comparison the bias of

f̂(x1|x2, . . . , xd) depends on the curvature of f(x) and f(x2, . . . , xd), see Chen et al.

(2001).

6.5.2 Home turf case

We now consider what happens under the ‘home turf’ assumption; for brevity we

just consider the case of Theorem 1. We suppose therefore that the auxiliary model

is true, i.e., g(x) = f(x) for all x. We shall also suppose that ĝ(·) behaves like a

one-dimensional smoother in the sense that it has an expansion of the form

ĝ(x′)− g(x′) = h2
gβg(x

′) +
1√
nhg

ω1/2(x′)Zn(x′) +Rn(x′) (6.9)

for x′ in a neighborhood of x, where βg(·) and ω1/2(·) are bounded continuous de-

terministic functions, Zn(·) is a sum of independent random variables satisfying

Zn(x′) =⇒ N(0, 1) for each x′, and Rn(·) is a remainder term that is of smaller

order in probability than the first two terms. The quantity hg is a bandwidth se-

quence that we shall suppose is of order n−1/5.We have the following corollary

Corollary 1. Suppose that assumptions A1,A2, and C1,C2 in Appendix A are

satisfied. Then as n →∞,

√
nhg{f̃(x)− f(x)} =⇒ N(0, ω(x)).



130 Multivariate kernel density estimation

Proof See Appendix F.

This shows that under the home turf case one obtains the faster rate of convergence

provided bandwidth is chosen correctly. Furthermore, one also achieves a bias cor-

rection – the asymptotic distribution is centered at zero. Compare this with the

result in (Hjort and Glad, 1995, section 8.3). They establish root-n consistency of

their density estimator under a fixed bandwidth assumption but their estimator is

not as efficient as the parametric start itself.

6.5.3 Bandwidth choice

The issue of bandwidth choice is very important but notoriously difficult to resolve.

Our procedures for f̃ and f̃C involve smoothing to compute ĝ and then further

smoothing to compute f̃ or f̃C . One approach would be to use a least squares cross

validation procedure as defined in Wand and Jones (1995) to jointly select the band-

widths but this can be quite computationally demanding. Instead we recommend

using a rule of thumb plug-in method based on the asymptotic mean squared error

expansions given above. Studies of corresponding estimators in one dimension show

that improvements can be obtained by using more sophisticated bandwidth choices,

however, the gain is small compared to the computational complexity which are intro-

duced by more complicated procedures, see Buch-Larsen et al. (2005) and Gustafsson

(2006) for the one dimensional case. Due to the well-chosen transformation function,

the transformed data has a much more homogeneous structure compared to the orig-

inal data set, and the fact that the bandwidths are used on the transformed data,

means that simple bandwidth selection methods work fairly well for our estimators.

Regarding the bandwidth for the auxiliary models, we recommend to use procedures

developed specially for those models.
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6.6 Monte Carlo study

In this Monte Carlo study we investigate the performance of the pure multiplicative

bias correction without tail flattening transformation. We investigate the following

additive and multiplicative designs:

Yi = Xi + εi (6.10)

Yi = Xiεi, (6.11)

where in each case εi are i.i.d standard normal and Xi are i.i.d. uniform on [1, 2].

We compute the standard kernel density estimates, corresponding to (6.1), f̂(y, x)

and f̂(x) with bandwidths 2 × s × n−1/6, where s is the standard deviation of the

variable, and the estimates

ĝ(y, x) = f̂ε(y − x)f̂(x) and ĝ(y|x) = f̂ε(y − x)

with bandwidths 2× s× n−1/5, which assumes the additive model prevails. In each

case a Gaussian kernel is used. Actually, since we compute the estimates at the

sample points, the following simple matrix definitions are used

f̃ = ĝ. ∗ (W ∗ (1./ĝ) and f̃|x = (ĝ|x./f̂x). ∗ (W ∗ (1./ĝ|x),

where W is the n×n matrix with elements k((Yi−Yj)/hy)k((Xi−Xj)/hx)/nhxhy, ĝ

is the n× 1 vector with typical element ĝ(Yi, Xi), ĝ|x is the n× 1 vector with typical

element ĝ(Yi|Xi), and f̂x is the n×1 vector with typical element f̂(Xi). f̃ corresponds

to a two dimensional multiplicative correction density estimator (6.2) and f̃|x is the

corresponding conditional estimator.

For an estimator f̂ , define the performance measure

ISE(f̂) =
1

n

n∑
i=1

[
f̂(Xi)− f(Xi)

]2

(6.12)
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for each sample. We averaged over 1000 samples to produce the mean integrated

squared error (MISE). We compare the performance in Table 6.1 and Table 6.2.

The additive design belongs to the ”home turf” case, but the multiplicative is not

correctly specified. Our method brings improvements even in very small sample sizes

and for both unconditional and conditional density estimation and in both additive

and multiplicative designs.

n MISE(f̂) MISE(f̃) MISE(f̂|x) MISE(f̃|x)
10 0.01207 0.01007 0.02388 0.02235
20 0.00997 0.00680 0.02131 0.01857
50 0.00744 0.00383 0.01800 0.01484
100 0.00581 0.00235 0.01509 0.01211
200 0.00435 0.00133 0.01253 0.00996

Table 6.1: Comparison of integrated squared error: Additive case.

n MISE(f̂) MISE(f̃) MISE(f̂|x) MISE(f̃|x)
10 0.00712 0.00612 0.01305 0.01247
20 0.00608 0.00460 0.01207 0.01109
50 0.00483 0.00311 0.01049 0.00926
100 0.00381 0.00220 0.00892 0.00783
200 0.00289 0.00150 0.00743 0.00654

Table 6.2: Comparison of integrated squared error: Multiplicative case.

6.7 Application

The application is based on a real commercial fire insurance data set from the Danish

general insurance company Codan Insurance that contains claims reported from 1995

to 2004. The data set specifies two characteristics, for each individual claim, the

claims amount Y , and the risk score that is provided by the expected maximum loss

(EML), here called X. Our application corresponds to the two-dimensional case,

d = 2. We will estimate the joint density of (Y , X) and the conditional density of

(Y |X). In this situation, the tail flattening transformation approach can be used

to visualizing the dependence structure between the two variables. Moreover, since
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the fire insurance data set is heavy-tailed, the estimation will benefit from the tail

properties of the transformation approach, as described in section 6.3. In the last

part of the section, a data-driven simulation study based on the same fire insurance

data set compares the proposed estimators. The study shows that the transformation

approach can be improved by using the multiplicative correction, without losing the

visualization properties and the tail estimation properties from the transformation

approach.

6.7.1 Analysis of the fire insurance data set

Data are taken from fire policies, which normally consist of three types of coverage:

buildings, contents and loss of production. The analysis presented here only covers

the fire claims on buildings. The data set consists of 2810 fire claims from a main

trade group covering residences. This main trade group constitutes approximately

30% of the total claims cost of the fire building claims in the firm and it is therefore

an important group of risk.

The claims are uncensored with claims from 19 Danish Krone (Dkr.) to about 6

million Dkr. and an average claim size at 56,220 Dkr. The claims are right-skewed

with a skewness at 2.3 ·1017, and therefore we use a log-scale plot in the histogram of

the claim sizes in Figure 6.1 (left). Even on a log-scale, the claims are right-skewed.

For each claim size in the data set, the corresponding EML is observed. The average

EML is 47,417,302 Dkr. and EML is right-skewed as well. The histogram for the

EML is shown in Figure 6.1 (right) on a log-scale. We expect that large claims sizes

arise from policies with a large EML. This is confirmed in Figure 6.2 (left), which

shows a plot of (log(X), log(Y )).

In the first estimation step we estimate the transformation kernel density for (Y, X),

f̂T (y, x), by use of (6.5) in two dimensions. The bandwidth is chosen different for

each component by use of Silverman’s normal scale bandwidth, Silverman (1986). We

have taken marginal transformations uj = Tj(x
j; λj). The univariate transformation
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Figure 6.1: Histograms on logarithmic-axes of the claims and the EML’s.
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Figure 6.2: The fire claims data set on logarithmic- and Champernowne transformed axes.
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function used in this application for each component is the modified Champernowne

distribution, see Buch-Larsen et al. (2005), and parameter estimates are obtained by

maximum likelihood for each component. The c.d.f. of the modified Champernowne

distribution depends on three parameters and is equal to:

Tj(x
j; λj) =

(xj + c)α − cα

(xj + c)α + (M + c)α − 2cα
(6.13)

The transformed data (Û1
i , Û2

i ) are presented in Figure 6.2 (right). We observe that

the data are almost uniformly distributed. The conditional density of Y given X is

obtained from the joint and the marginal density and is denoted f̂T (y|x). In the left

plot in Figure 6.3 the estimated joint density of (U1, U2), f̂U(u1, u2) is shown. In the

right plot in Figure 6.3 the conditional density of U1 given U2, f̂U(u1|u2), is shown.

The hills in the bottom left corner and the upper right corner confirm the expectation

that small policies (small EML’s) have lower expected claim sizes than large policies

(large EML’s). The advantage of looking at the density plots on the transformed

scale is that we can illustrate the density of the whole domain in one plot. It is a well

known empirical fact that density estimates of heavy tailed insurance claims data

presented in the original scale consist of an enormous concentration of small costs

and several large costs far off in the tail. As a consequence, unless the domain is

split in parts, the scale imposed by the size of the tail masks the behaviour near zero.

Indeed, it is very difficult to compare two estimated densities in the whole domain

when dealing with insurance claims data, because only the tails seem to matter. This

is the reason why the results on the transformed scale are so useful, because this is

a good way to compare the joint occurrence on the same scale.

The estimation approach described so far has treated the multivariate (bivariate)

aspects of the estimation problem and also addressed the skewness by using the

transformation approach. However, as argued in section 6.6, we expect that mul-

tiplicative correction will improve the results substantially, and therefore we define

a median regression model as our auxiliary model. The median regression model is
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Figure 6.3: The nonparametric unconditional and conditional densities of EML and fire
claims on transformed axes.

given by

Y = m(X)ε

where ε is lognormal distributed with median one for identification. The model is

estimated with local polynomials and bandwidth bx. To simplify the bandwidth se-

lection problem, we use U2 instead of X as explanatory variable and use a constant

bandwidth of two times the Silverman’s normal scale bandwidth which is approxi-

mately bu = 0.28 for this data set. We did try more complicated bandwidth selection

methods. However, simulations showed that the simple Silverman’s normal scale

bandwidth did better. The auxiliary model is therefore Y = m(U2)εu.

From the auxiliary model we obtain the conditional density of Y given X, ĝ(y|x),

and the corresponding conditional density on the transformed axes, ĝU(u1|u2). By

use of the estimated marginal density of X, we obtain the joint densities of (Y, X)

and (U1, U2), called ĝ(y, x) and ĝU(u1, u2), respectively. The densities ĝU(u1, u2) and

ĝU(u1|u2) are shown in Figure 6.4. The tendencies in the densities correspond to

the nonparametric densities in Figure 6.3, however, the auxiliary model introduces

structure into the model which results in a more smooth density function.

Finally, the multiplicative corrected estimator of the joint density is obtained on
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Figure 6.4: The unconditional and conditional densities of EML and fire claims on trans-
formed axes under the auxiliary model.

the transformed axes, f̃U(u1, u2), as in (6.6) where the same Silverman’s normal

scale bandwidth is used for each component. By back transformation (6.7) the

multiplicative corrected estimator f̃C(y, x) appears on the original axes.

The conditional densities on the transformed and the original axes, f̃U(u1|u2) and

f̃C(y|x) are found by means of the marginal densities. In Figure 6.5 the multiplicative

corrected estimate of the joint density of (U1, U2), f̃U(u1, u2), and the conditional

density of U1 given U2, f̃U(u1|u2), are shown. The tendencies of hills in the bottom

left and the upper right corner, meaning that large policies generate larger claims

on average, is significant for the multiplicative corrected estimator as well. However,

the smooth structure which was obtained in the auxiliary model is now corrected

nonparametrically.

6.7.2 Data-driven simulation study

In section 6.6 we showed that the pure multiplicative correction seemed to improve

estimation significantly. In this section we want to extend the investigation to a

situation where a tail flattening transformation is applied. To investigate the per-
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Figure 6.5: The unconditional and conditional densities of EML and fire claims on trans-
formed axes under the multiplicative corrected model.

formance of the multiplicative correction in this situation, we perform a data-driven

Monte Carlo experiment. In the design of the Monte Carlo study we want the simu-

lated data to be as close to the ”real-world” data as possible, to test the performance

of our model in a real-world setup. The simulation study shows that the multiplica-

tive corrected transformation estimator improves the performance compared to the

estimator without multiplicative correction, and that the multiplicative corrected

transformation estimator also improve the auxiliary model when this model is not

quite correct without making it worse when the auxiliary model is correct (the home

turf case).

We base the Monte Carlo simulation on the same data set as described in section

6.7.1 and describe the relationship between EML and claims in the data set by two

multiplicative models

Y = αXβε1 (6.14)

Y = αXβε2(X) (6.15)

This approach ensures that we have simulated data sets of realistic order with a

known distribution function.
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We estimate the parameters in (6.14) by the least square method and obtain the pa-

rameters: α̂ = 182.37, β̂ = 0.32, Moreover, we assume the residuals in (6.14) are i.i.d.

and lognormal distributed, ε1 ∼ log N(−1.62; 1.8). In (6.15) we let the parameters in

the lognormal distribution of the residuals depends on x, ε2 ∼ log N(µx, σx), with a

linear dependence on the Champernowne transformed axis, σx = 1.5 + 0.5T (x) and

µx = −0.5σx. The estimated parameters α̂ and β̂ from (6.14) is maintained.

To simulate data of ”real-world” amounts, we first sample n values from X, (the

EML’s in the data set) and call the data set X∗. Corresponding to X∗ we thereafter,

simulate n random variables, called Y ∗
1 , from the estimated multiplicative model

(6.14) and n random variables, called Y ∗
2 , from the estimated multiplicative model

(6.15).

Moreover, for each sample we define the performance measure, ISE, for an estimator

f̂

ISE(f̂) =
1

n

n∑
i=1

{
f̂(Xi)− f(Xi)

}2

(6.16)

We compute 100 samples for each n, and estimate for each sample, (X∗, Y ∗
1 ), the

nonparametric density estimator, f̂1,T (y|X∗ = x), the auxiliary density estimator,

ĝ1,T (y|X∗ = x), the multiplicative corrected density estimator, f̃1,C(y|X∗ = x), and

the performance measure ISE, for each of the estimators. Thereafter, we average over

the ISE for each estimator to produce the mean integrated squared error (MISE) for

each estimator. Likewise for each sample, (X∗, Y ∗
2 ), we calculate f̂2,T (y|X∗ = x),

ĝ2,T (y|X∗ = x), f̃2,C(y|X∗ = x) and the average performance measure, MISE, for

each estimator. The results are collected in Table 6.3.

The performance of MISE{f̃1,C(y|x)} is comparable to MISE{ĝ1,T (y|x)}. This means

that when the auxiliary model is the correct model of the data set as it is in model

(6.14), the multiplicative correction makes as good results as the (correct) auxiliary

model. However, MISE{f̃2,C(y|x)} is smaller than MISE{ĝ2,T (y|x)} for all n in the

Monte Carlo experiment, which means that, in the much more realistic case, where

the auxiliary model is not the correct model of the data set, the multiplicative cor-
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rection of the auxiliary model improves the performance of the auxiliary model. The

multiplicative corrected transformation estimator is therefore as good as the aux-

iliary models in the home turf case, whereas it improves the estimation when the

auxiliary model is not correct.

n=100 n=500 n=1000
Model, m m=1 m=2 m=1 m=2 m=1 m=2

MISE{f̂m,T (y|x)} 0.06755 0.06071 0.02980 0.02791 0.02064 0.01888
MISE{ĝm,T (y|x)} 0.05607 0.06244 0.02057 0.02882 0.01459 0.02300
MISE{f̃m,C(y|x)} 0.05429 0.05774 0.02110 0.02514 0.01493 0.01882

Table 6.3: Monte Carlo experiment with 100 samples and n observations in each sample.

6.8 Conclusion

This paper introduces an estimator which combines a multiplicative bias correction

approach with the transformation approach in two dimensions. The estimator both

benefits from the multiplicative correction through the dimension reducing informa-

tion from the auxiliary model, and from the tail flattening transformation approach

which moreover improves the visualization when transforming to the unit cube.

In the multivariate case there are many alternative bias reduction methods for den-

sity estimation. Our proposal has involved the use of semiparametric and structured

nonparametric models that can be quite good approximations to unconstrained den-

sities in certain aspects without being completely correct. These models have been

the subject of quite a lot of recent work, and the estimation technology and distri-

bution theory has provided a firm foundation for their use in applications. We also

believe that they can greatly assist in the estimation of unconstrained multivariate

densities and our theoretical and empirical work supports this.

In the last part of the paper we performed a Monte Carlo study of the pure multiplica-

tive correction without tail flattening transformation, which shows that multiplicative

correction seems to improve the results. Moreover, we made an application of the
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estimation method to a heavy tailed fire insurance data set and investigated the per-

formance of the transformation estimator with and without multiplicative correction

in a data-driven simulation study. This study showed that the multiplicative cor-

rection significantly improves the performance of the transformation estimator when

the auxiliary model is not perfectly correct, without aggravating the performance of

the auxiliary model in the home turf case.

6.9 Appendix

6.9.1 Appendix A

Here we state the regularity conditions.

Assumption A.

1. Suppose that f is twice continuously differentiable on its support X ⊂ Rd, and

strictly positive at the interior point x.

2. Suppose that K(u) =
d∏

j=1

k(uj), where k is a continuous density function sym-

metric about zero (a second order kernel) with compact support.

3. Suppose that nhd →∞ and lim supn nhd+4 < ∞.

4. The function g is well defined and twice continuously differentiable at x. For

some ε > 0,

sup
|x−x′|≤ε

|ĝ(x′)− g(x′)| = op(n
−1/2h−d/2). (6.17)

Assumption A4 is satisfied under a variety of conditions for many estimators in struc-

tured nonparametric and semiparametric models, it just requires that ĝ converges

to some limit g faster than f̂ . Typically, one can obtain one-dimensional uniform
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convergence rates for ĝ(x), i.e.,

sup|x−x′|≤ε |ĝ(x′)− g(x′)| = Op((log n/n)−2/5), which would imply (6.17).

Assumption B.

1. There exists a λ0 ∈ Λ ⊆ Rp such that
√

n(λ̂− λ0) = Op(1).

2. The transformation T : Rd 7−→ Rd is invertible and twice continuously dif-

ferentiable in λ. Furthermore, there exists a non-negative function d(.) with

Ed(X) < ∞ such that for some sequence δn → 0,

max
1≤j≤d

sup
λ:
√

n‖λ−λ0‖≤δn

∥∥∥∥
∂2Tj

∂λ∂λ>
(x; λ)

∥∥∥∥ ≤ d(x).

3. The kernel k is twice continuously differentiable.

Assumption C.

1. The bandwidth h satisfies hn1/5d →∞

2. For some ε > 0, the expansion (6.9) holds with

sup
x′:|x−x′|≤ε

|Zn(x′)| = Op

(√
log nn−1/2h−1/2

g

)
;

sup
x′:|x−x′|≤ε

|Rn(x′)| = op(n
−1/2h−1/2

g ).

In the sequel for sequences An, Bn, let An ' Bn mean that An/Bn → 1.

6.9.2 Appendix B

Proof of Theorem 1. We show that f̃(x) is equivalent to

f(x) = g(x)
1

nhd

n∑
i=1

K
(

x−Xi

h

)

g(Xi)
, (6.18)
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in the sense that f̃(x)− f(x) = op(n
−1/2h−d/2).

Write 1/ĝ(Xi)− 1/g(Xi) = −{ĝ(Xi)− g(Xi)}/ĝ(Xi)g(Xi) for all i. Then,

f̃(x)− f(x) = {ĝ(x)− g(x)} 1

nhd

n∑
i=1

K
(

x−Xi

h

)

g(Xi)

− g(x)
1

nhd

n∑
i=1

K
(

x−Xi

h

)

g(Xi)

{ĝ(Xi)− g(Xi)}
ĝ(Xi)

− {ĝ(x)− g(x)} 1

nhd

n∑
i=1

K
(

x−Xi

h

)

g(Xi)

{ĝ(Xi)− g(Xi)}
ĝ(Xi)

≡ R1 + R2 + R3. (6.19)

Firstly, note that
1

nhd

n∑
i=1

K
(

x−Xi

h

)

g(Xi)
= Op(1)

by the Markov inequality because by a change of variables and dominated conver-

gence

E

{
1

hd

|K (
x−Xi

h

) |
g(Xi)

}
=

1

hd

∫
|K

(
x−X

h

)
|f(X)

g(X)
dX

=

∫
|K (s) |f(x− sh)

g(x− sh)
ds → f(x)

g(x)

∫
|K (s) |ds < ∞.

Therefore, R1 = op(n
−1/2h−d/2). For large enough n, {x′ : K

(
x−x′

h

) 6= 0} ⊂ {x′ :

|x− x′| ≤ ε}, since K has compact support, and so

∣∣∣∣∣
1

nhd

n∑
i=1

K
(

x−Xi

h

)

g(Xi)

{ĝ(Xi)− g(Xi)}
ĝ(Xi)

∣∣∣∣∣ ≤
1

nhd

n∑
i=1

∣∣K (
x−Xi

h

)∣∣
g(Xi)

×sup|x−x′|≤ε |ĝ(x′)− g(x′)|
inf |x−x′|≤ε ĝ(x′)

.

By the triangle inequality: inf |x−x′|≤ε ĝ(x′) ≥ inf |x−x′|≤ε g(x′)−sup|x−x′|≤ε |ĝ(x′)− g(x′)| =
inf |x−x′|≤ε g(x′) − op(1). By continuity and positivity of g at x, inf |x−x′|≤ε g(x′) > 0.
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It follows from Assumption 4 that

|R2| ≤ op(n
−1/2h−d/2)

1

nhd

n∑
i=1

∣∣K (
x−Xi

h

)∣∣
g(Xi)

= op(n
−1/2h−d/2).

Finally, R3 = op(n
−1/2h−d/2) by the same arguments. Therefore, f̃(x) − f(x) =

op(n
−1/2h−d/2).

Furthermore, √
nhd

{
f(x)− f(x)− h2β(x)

}
=⇒ N(0, v(x)), (6.20)

by the CLT for kernel smoothers. Specifically,

E{f(x)} = g(x)
1

hd

∫
K

(
x−X

h

)
f(X)

g(X)
dX

= g(x)

∫
K (s) r(x− sh)ds

= f(x) + h2β(x) + o(h2)

by a change of variable and Taylor expansion. Furthermore,

var{f(x)} = g(x)2 1

nh2d
var

{
K

(
x−X

h

)

g(X)

}

= g(x)2 1

nh2d

{∫
K2

(
x−X

h

)
f(X)

g2(X)
dX −

{∫
K

(
x−X

h

)
f(X)

g(X)
dX

}2
}

= g2(x)
1

nh2d

{
hd

∫
K2 (s)

f(x− sh)

g2(x− sh)
ds−

{
hd

∫
K (s) r(x− sh)ds

}2
}

= g2(x)
1

nhd

∫
K2 (s)

f(x− sh)

g2(x− sh)
ds + O(n−1)

= f(x)||K||22
1

nhd
+ o(n−1h−d).

The Lindeberg central limit theorem (6.20) follows because the kernel is of bounded

support. 2
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6.9.3 Appendix C

Proof of Theorem 2. Let

f̃T (x) = J(x)
1

nhd

n∑
i=1

K

(
u(x)− Ui

h

)
, (6.21)

where Ui = T (Xi; λ0) and u(x) = T (x; λ0). Then

E{f̃T (x)} = J(x)
1

hd

∫
K

(
u(x)− U

h

)
fU(U)dU

= J(x)

∫
K (t) fU{u(x)− th}dt

' J(x)fU{u(x)}+
h2

2
J(x)∇2fU{u(x)}µ2(k)

= f(x) +
h2

2
J(x)∇2fU{u(x)}µ2(k)

by (6.4), where ∇2fU(u) =
∑d

j=1 ∂2fU(u)/∂u2
j . Furthermore, by change of variable

and dominated convergence arguments, and by (6.4)

var{f̃T (x)} = J2(x)
1

nh2d

[
E

{
K

(
u(x)− Ui

h

)2
}
− E2

{
K

(
u(x)− Ui

h

)}]

= J2(x)
1

nhd

1

hd

∫
K

(
u(x)− U

h

)2

fU(U)dU + O(n−1)

= J2(x)
1

nhd

∫
K (t)2 fU{u(x)− th}dt + O(n−1)

' 1

nhd
J2(x)fU{u(x)}||K||22 =

1

nhd
J(x)f(x)||K||22.

By Taylor series expansion, for j = 1, . . . , d,

Ûji−Uji = Tj(Xi; λ̂)−Tj(Xi; λ0) =
∂Tj

∂λ
(Xi; λ0)(λ̂−λ0)+

1

2
(λ̂−λ0)

> ∂2Tj

∂λ∂λ>
(Xi; λj)(λ̂−λ0),
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where λj is an intermediate point. Therefore,

1

nhd

n∑
i=1

K

(
u(x)− Ûi

h

)
− 1

nhd

n∑
i=1

K

(
u(x)− Ui

h

)

=
−1

nhd+1

d∑
j=1

n∑
i=1

∂K

∂uj

(
u(x)− Ui

h

)
(Ûji − Uji)+

+
1

2nhd+2

d∑

j,j′=1

n∑
i=1

∂2K

∂uj∂uj′

(
u(x)− U

j

i

h

)
(Ûji − Uji)(Ûj′i − Uj′i)

≡ Ln + Qn,

where U
j

i are intermediate points. Since λ̂ is root-n consistent, there exists a sequence

δn → 0 such that Pr[
√

n||λ̂−λ0|| ≥ δn] → 0. Then, for some Op(1) random variables:

|Qn| ≤ 1

h2

∥∥∥λ̂− λ0

∥∥∥
2

×Op(1) = Op(n
−1h−2),

|Ln| ≤
∥∥∥λ̂− λ0

∥∥∥×Op(1).

It follows that f̂T (x)− f̃T (x) = Op(n
−1/2) + Op(n

−1h−2) = op(n
−1/2h−d/2). 2

6.9.4 Appendix D

Proof of Theorem 3. Let fC(x) = J(x)fU{u(x)}, where

fU(u) = gU(u)
1

nhd

n∑
i=1

K
(

u−Ui

h

)

gU(Ui)
.
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We have

E{fC(x)} = J(x)E[fU{u(x)}]

= J(x)gU{u(x)} 1

hd

∫
K

(
u(x)− U

h

)
fU(U)

gU(U)
dU

= J(x)gU{u(x)}
∫

K(t)rU{u(x)− th}dt

' J(x)fU{u(x)}+
h2

2
J(x)gU{u(x)}∇2rU{u(x)}

∫
k(t)t2dt.

var{fC(x)} ' J(x)2 1

nhd
fU{u(x)}||K||22 =

1

nhd
J(x)f(x)||K||22.

One shows that f̃C(x)− fC(x) = op(n
−1/2h−d/2) by similar arguments to Theorem 1.

2
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6.9.5 Appendix E

Proof of Theorem 4. Let

f(x1|x2, . . . , xd) =
g(x1|x2, . . . , xd)

f̂(x2, . . . , xd)

1

nhd

n∑
i=1

K
(

x−Xi

h

)

g(X1
i |X2

i , . . . , Xd
i )

. (6.22)

We claim that f̃(x1|x2, . . . , xd) is well approximated by f(x1|x2, . . . , xd). This follows

by the same arguments in Theorem 1. Then write

f(x1|x2, . . . , xd) = Tn1 + Tn2 + Rn,

Tn1 =
g(x1|x2, . . . , xd)

f(x2, . . . , xd)

1

nhd

n∑
i=1

K
(

x−Xi

h

)

g(X1
i |X2

i , . . . , Xd
i )

Tn2 = −g(x1|x2, . . . , xd)

f(x2, . . . , xd)

1

nhd

n∑
i=1

K
(

x−Xi

h

)

g(X1
i |X2

i , . . . , Xd
i )

f̂(x2, . . . , xd)− f(x2, . . . , xd)

f(x2, . . . , xd)

Rn =
g(x1|x2, . . . , xd)

2f(x2, . . . , xd)

1

nhd

n∑
i=1

K
(

x−Xi

h

)

g(X1
i |X2

i , . . . , Xd
i )

{
f̂(x2, . . . , xd)− f(x2, . . . , xd)

}2

f(x2, . . . , xd)f̂(x2, . . . , xd)

We have

E[Tn1] =
g(x1|x2, . . . , xd)

f(x2, . . . , xd)

1

hd

∫
k

(
x1 −X1

h

)
f(X1|X2, . . . , Xd)

g(X1|X2, . . . , Xd)
dX1

d∏
j=2

k

(
xj −Xj

h

)

× f(X2, . . . , Xd)dX2 . . . dXd

' g(x1|x2, . . . , xd)

f(x2, . . . , xd)

∫ {
r(x1|X2, . . . , Xd) +

h2

2

∂2r(x1|X2, . . . , Xd)

∂(x1)2

∫
k(t)t2dt

}

× 1

hd−1

d∏
j=2

k

(
xj −Xj

h

)
f(X2, . . . , Xd)dX2 . . . dXd
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' g(x1|x2, . . . , xd)

f(x2, . . . , xd)

{
r(x1|x2)f(x2, . . . , xd)

+
h2

2

∂2r(x1|x2, . . . , xd)

∂(x1)2
f(x2, . . . , xd)µ2(k)

}

+
h2

2

d∑
j=2

∂2{r(x1|x2, . . . , xd)f(x2, . . . , xd)}
∂(xj)2

µ2(k)

' f(x1|x2, . . . , xd) +
h2

2

∂2r(x1|x2, . . . , xd)

∂(x1)2
g(x1|x2, . . . , xd)µ2(k)

+
h2

2

g(x1|x2, . . . , xd)

f(x2, . . . , xd)

d∑
j=2

∂2{r(x1|x2, . . . , xd)f(x2, . . . , xd)}
∂(xj)2

µ2(k).

var[Tn1] '
{

g(x1|x2, . . . , xd)

f(x2, . . . , xd)

}2
1

nhd

∫
K(t)2dt

f(x1|x2, . . . , xd)

g(x1|x2, . . . , xd)2
f(x2, . . . , xd)

=
1

nhd

∫
K(t)2dt× f(x1|x2, . . . , xd)

f(x2, . . . , xd)
.

Furthermore

Tn2 = −{
f(x1|x2, . . . , xd) + Op(h

2) + Op(n
−1/2h−d/2)

} f̂(x2, . . . , xd)− f(x2, . . . , xd)

f(x2, . . . , xd)
,

where

f̂(x2, . . . , xd)−f(x2, . . . , xd) =
h2

2
µ2(k)

d∑
j=2

∂2f(x2, . . . , xd)

∂(xj)2
+Op(n

−1/2h−(d−1)/2)+op(h
2).

The result now follows. 2
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6.9.6 Appendix F

Proof of Corollary 1. When g(x) = f(x), we have

Ef(x) = f(x)
1

hd

∫
K

(
x−X

h

)

f(X)
f(X)dX = f(x)

1

hd

∫
K

(
x−X

h

)
dX = f(x).

Furthermore, var{f(x)} = f(x){||K||22/nhd−O(1/n)}. By C1 it follows that f(x) =

f(x) + op(n
−1/2h

−1/2
g ).

Continuing (6.19) we obtain

f̃(x)− f(x) = {ĝ(x)− g(x)} 1

nhd

n∑
i=1

K
(

x−Xi

h

)

g(Xi)

−g(x)
1

nhd

n∑
i=1

K
(

x−Xi

h

)

g2(Xi)
{ĝ(Xi)− g(Xi)}+ R4, (6.23)

where R4 is of smaller order using C2. Substituting the bias terms of (6.9) into the

expansion (6.23) we obtain

h2
g

{
βg(x)− f(x)

1

nhd

n∑
i=1

K
(

x−Xi

h

)

f(Xi)2
βg(Xi)

}
= op(h

2
g), (6.24)

because

E

{
1

nhd

n∑
i=1

K
(

x−Xi

h

)

f(Xi)2
βg(Xi)

}
=

∫
1

hd

K
(

x−X
h

)

f(X)
βg(X)dX

=

∫
K (u)

βg(x + uh)

f(x + uh)
du

=
βg(x)

f(x)
+ o(1).

The variance of (6.24) is o(h4
g) using the same arguments. Regarding the stochastic
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terms in (6.23). Note that the stochastic part of

1

nhd

n∑
i=1

K
(

x−Xi

h

)

g2(Xi)
{ĝ(Xi)− g(Xi)}

is an average of the stochastic part of a one-dimensional kernel smoother over a lot of

terms (a consequence of the large bandwidth assumption), and therefore is of smaller

order. Therefore,

f̃(x)− f(x) =
1√
nhg

ω1/2(x)Zn(x) + op(n
−2/5)

and the result follows.

2
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Chapter 7

Multivariate density estimation

using dimension reducing

information and tail flattening

transformations for truncated or

censored data

This chapter is an adapted version of Buch-Kromann and Nielsen (2009).

This paper introduces a multivariate density estimator for truncated and censored

data with special emphasis on extreme values based on survival analysis. A local

constant density estimator is considered. We extend this estimator by means of tail

flattening transformation, dimension reducing prior knowledge and a combination of

both. The asymptotic theory is derived for the proposed estimators. It shows that

the extensions might improve the performance of the density estimator when the
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transformation and the prior knowledge is not too far away from the true distribu-

tion. A simulation study shows that the density estimator based on tail flattening

transformation and prior knowledge substantially outperforms the one without prior

knowledge, and therefore confirms the asymptotic results. The proposed estimators

are illustrated and compared in a data study of fire insurance claims.

7.1 Introduction

Let (X1, Y1), . . . , (Xn, Yn) be n independent identically distributed stochastic vari-

ables. We wish to estimate various functionals of the conditional distribution of Y1

given X1. In particular we are concerned about functionals emphasizing the impor-

tance of extreme high values of the dependent variable, and we want to profit by some

complexity reducing structure or prior knowledge on a useful parametric model.

However, Y is subject to truncation and censoring – in the following filtering is an

abbreviation for data that might have been truncated or censored. One prominent

example where this statistical problem arises is in general insurance. The censoring

applies when there is some upper limit on the insurance policy. This happens either

as part of the actual contract or as a consequence of poor data collection where only

the actual expense of the company is recorded disregarding amounts paid by the rein-

surance company. Typically, an insurance company holds an excess of loss contract

where the reinsurance company covers amounts above some threshold value exactly

corresponding to the right censoring mechanism described above. Left truncation

exactly corresponds to the widely used deductibles. A loss below the deductible

value is covered by the individual policy holder without even noticing the insurance

company.

Even in the simple one-dimensional case without any filtering our estimation problem

is non-trivial and has given rise to an enormous amount of theory on the extreme

value behaviour of distributions and its estimation; the so called extreme value theory

(EVT), see Embrechts et al. (1997) for a prominent textbook on this. However,
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most of this literature is based on the asymptotic behaviour of the right tail of the

distribution, and in practise most EVT methods are based on personal judgements.

Also, there are surprisingly few simulation studies spelling out the actual benefits

of EVT methods. This led Bolancé et al. (2003) and Buch-Larsen et al. (2005) to

view this one-dimensional problem as a standard estimation problem attempting

to improve estimation considering the classical trade off between variance and bias

present in all problems of statistical inference. The extreme tail was accounted for

by transformation methods inspired by the pioneering paper of Wand et al. (1991).

In the working paper version of Bolancé et al. (2003), a simulation study was carried

out where it was shown that classical EVT models did not work very well for any of

the distributions considered in the study. Moreover, see Buch-Kromann (2009) for a

comparison of the transformation kernel density estimator and classical EVT.

In this paper, we follow Buch-Kromann et al. (2009) and generalize it to the filtered

data case. Buch-Kromann et al. (2009) extended the approach of Buch-Larsen et al.

(2005) to a multivariate setting where the loss distribution is allowed to depend on

covariates. This led to various methods of multivariate density estimation and its

adjustment guided by structured models.

When dealing with filtered data, extensive use of counting process theory, see ie. Mar-

tinussen and Scheike (2006), and the pioneering work of internal hazard estimators

in Beran (1981), Dabrowska (1987), McKeague and Utikal (1990) and Van Keilegom

and Veraverbeke (2001) and the alternative external hazard estimator introduced

in Nielsen and Linton (1995) are neccesary. All these papers deal with locally con-

stant estimators. They are extended to locally linear versions in Li and Doss (1995)

and Nielsen (1998) with superior boundary bias of order O(b2) compared to the

local constant boundary bias of order O(b),where b is the bandwidth. The paper

Van Keilegom and Akritas (1999) proposed a new estimator of the conditional cu-

mulative density function based on a fully nonparametric heteroscedastic regression

model, which improved the estimator significantly, when the censoring in the tail

is ”heavy”. The conditional density and hazard functions under this model are

studied in Van Keilegom and Veraverbeke (2002). Consistent nonparametric estima-
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tors of the location function of the heteroscedastic regression model are studied in

Heuchenne and Keilegom (2007a) and a parametric version is studied in Heuchenne

and Keilegom (2007b). When dealing with multivariate estimation problems, the

rate of convergence of the standard estimators is poor, see Stone (1980), and the

interpretation might be difficult. One way to solve these problems is to make as-

sumptions about the structure of the problem, eg. additive or multiplicative models,

as studied in Hastie and Tibshirani (1990), Linton and Nielsen (1995) and Linton

et al. (2003).

In this paper, we restrict ourself to the locally constant estimator for reasons of

notation and presentation. The widely available methodology of regression is not

appropriate for this type of problems where we need a full model specification and

not just mean functions or quantiles. We extend the approach of the study in Buch-

Kromann et al. (2009) to the more complicated setting where filtering is present, and

we use counting process theory for this task. The authors in Nielsen et al. (2009)

note that nonparametric smoothing of densities can be generalised in such a way

that in a filtered data context it corresponds to local polynomial hazard estimation

weighted with the classical Kaplan-Meier estimator. Without filtering, this locally

constant estimator simply collapses to the standard kernel density estimator. It is

also noticed in Nielsen et al. (2009) that they do not recommend this estimator in

general for filtered data. The reason is what they call exposure robustness indicat-

ing that another weighting, the so called natural weighting combined with a smooth

version of the Kaplan-Meier estimator, works just as well as standard kernel density

estimation when there is no filtering or when filtering is happening in a smooth and

nonsurprising way. However, when lack of robustness is present in the exposure pat-

tern, the method with natural weighting and a smoothed Kaplan-Meier estimator

significantly outperform the other method. Therefore, Nielsen et al. (2009) suggested

always to use the latter approach since there was no pain, only gain, see also Nielsen

and Tanggaard (2001) for a study about weighting functions in kernel hazard es-

timation. We generalise this latter approach to the multivariate setting. First we

define a smoothed conditional Kaplan-Meier estimator as a simple functional of the
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multivariate kernel hazard estimator of Nielsen and Linton (1995). Then we define

our nonparametric conditional density estimator as a weighted version of this very

same local constant multivariate kernel hazard estimator, where the weight is the

smoothed conditional Kaplan-Meier estimator. Once a conditional density estimator

is available, we can approximate this density to our complexity reducing structure.

Finally, we apply this structured density to guide a bias correction leading to our

final smooth nonparametric density estimator. In this way, we add some structure

to our estimation problem caused by the curse of dimensionality as described in

Linton and Nielsen (1995) and Linton et al. (2003). However, we allow a nonpara-

metric correction of this structure in the final multiplicative correction step of our

procedure.

The paper is organized as follows. In section 7.2, we define the general model and

in section 7.3, we define the estimators of the conditional density. In section 7.4,

the asymptotic properties of the estimators are presented, and section 7.5 contains

an application and a Monte Carlo study which compares the performance of the

conditional density estimators. Section 7.6 is the conclusion.

7.2 The model

We would like to analyse (X,Y ), but Y is not always observed. What we do observe

is (X, Ỹ , D, T ), where X is a one-dimensional covariate, Ỹ = Y ∧ C is Y subject

to right censoring, D = I(Y ≤ C) is an indicator of right censoring has occurred

and T is the truncation time, which means that Ỹ is only observed when Ỹ ≥ T .

Suppose that Y and C are conditionally independent given X. Let N(s) = I(Ỹ ≤
s,D = 1) be a counting process with stochastic intensity λ with respect to its natural

filtration Fy = σ {X, T, D, N(s), s < y}, see Jacobsen (1982), Andersen et al. (1993)

and Martinussen and Scheike (2006) for solid introductions to the formulation of this

type of models. Hence N has a compensator Λ that equals the integrated stochastic

intensity and M = N − Λ is a martingale. We assume that the stochastic intensity
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function λ can be written as λ(s) = αX(s)R(s), where αX(s) is the conditional hazard

of the distribution of Y given X and R(s) = I(T < s < Ỹ ) is the ”at-risk” indicator,

indicating whether the counting process is able to jump at time s. Then SX(s) =

exp
{− ∫ s

0
αX(u) du

}
is the conditional survival function and fX(s) = αX(s)SX(s) is

the conditional density.

Our final notational definition in this section concerns our actually observed stochas-

tic variables. We assume that we observe independent and identically distributed

variabels (X1, Ỹ1, D1, T1), . . . , (Xn, Ỹn, Dn, Tn). The resulting counting processes N1,...,Nn

have stochastic intensities λ1, . . . , λn and compensators Λ1, . . . , Λn with correspond-

ing martingales M1, . . . , Mn. Our aim is to estimate the conditional density fx(s)

given X = x, possibly guided by prior knowledge and structured models.

7.3 Estimating the conditional density

In this section we introduce estimators for the conditional density of filtered data.

We first introduce a non-parametric filetered data density estimator which takes

filering into consideration by means of counting proces theory. This estimator is

the fundamental estimator on which all the following density estimators are build,

even though its usefullness is limited especially for heavy-tailed data. Subsequently,

we introduce two extensions of the non-parametric filtered data density estimator,

namely tail flattening transformations and multiplicative correction guided by prior

knowledge. Tail flattening transformations improve performance of non-parametric

estimators considerable and multiplicative correction guided by prior knowledge al-

low us to ”remove” the simple and rough trends in data and thereby improve the

non-parametric estimation. At last we combine tail flattening transformations and

multiplicative correction in our recommended density estimator for filtered data.
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7.3.1 The non-parametric filtered data density estimator

In the simple case where we have a homogeneous Poisson process, it is well known

that the maximum likelihood estimator of the hazard of the process equals observed

occurrences divided by the total exposure time of the process. Now let us consider a

local version of this: we take all observed occurrences localized around some covariate

or time and divide by the total exposure in this neighbourhood. This gives us a local

hazard estimator which depends on the covariate or time. One can even become

slightly more sophisticated and weigh these occurrences or exposure times according

to how far away they are from the covariate or time value that we want to know the

intensity of. This latter case is exactly the local kernel hazard estimator of Nielsen

and Linton (1995) that we will use in the following. Let K be some mean zero

probability density with finite variance and finite support and let Kb(u) = 1
b
K

(
u
b

)
,

where b is a bandwidth. Moreover, let α̂
(b)
x (t) = Ot

Et
, where Ot =

∑n
i=1

∫
Kb1(t −

s)Kb2(x − Xi) dNi(s), is the total localised and smoothed number of occurrences,

and b = (b1, b2) are bandwidths corresponding to the time and the covariate X,

respectively. Et =
∑n

i=1

∫
Kb1(t − s)Kb2(x − Xi)Ri(s) ds, is the total localised and

smoothed exposure; Ri(s) = I(Ti < s < Ỹi). This gives an obvious candidate for our

smoothed conditional survival function Ŝ
(b)
x (s) = exp

{
− ∫ s

0
α̂

(b)
x (u) du

}
.

We have two obvious candidates for the conditional density. One follows from the

fact that the density is just a function of the hazard and the suvival function, so

that one can plug it in to the estimated conditional hazard and survival function.

However, we prefer a more direct estimator that is the natural generalisation of the

estimator of Nielsen et al. (2009). They show that if the counting process in their

case is replaced by the integral of the estimated survival function with respect to the

counting process, then local polynomial density estimators can be written as direct

minimization of a natural least squared loss criteria. In our case, this corresponds

to replacing dNi(s) by ŜXi
(s)dNi(s) in the kernel hazard estimator above. However,

instead of ŜXi
(s)dNi(s), we replace dNi(s) with ŜXi,(i)(s)dNi(s), where ŜXi,(i)(s) is
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a leave-one-out estimator:

Ŝ
(b)
Xi,(i)

(s) = exp

{
−

∫ s

0

α̂
(b)
Xi,(i)

(u) du

}
(7.1)

where α̂
(b)
Xi,(i)

(t) =
∑

j 6=i

∫
Kb1

(t−s)Kb2
(x−Xj) dNj(s)∑

j 6=i

∫
Kb1

(t−s)Kb2
(x−Xj)Rj(s) ds

. This is a well-known trick from Mam-

men and Nielsen (2007) to simplify the predicability issues in the proofs of the asymp-

totic results, see appendix 7.7.1, and which moreover often improves the performance

of the estimators.

Under the assumption that something is observed after filtration, we arrive at the

non-parametric fitered data density estimator:

f̂ (d,b)
x (t) =

∑n
i=1

∫
Kd1(t− s)Kd2(x−Xi)Ŝ

(b)
Xi,(i)

(s) dNi(s)∑n
i=1

∫
Kd1(t− s)Kd2(x−Xi)Ri(s)ds

. (7.2)

The bandwidths b = (b1, b2) and d = (d1, d2) in (7.2) allow us to undersmooth the

conditional survival function that we use as an auxiliary variable while estimating the

conditional density. The consequence of this undersmoothing is that the conditional

survival function can be seen as known from the point of view of asymptotic theory.

Otherwise, bias from Ŝ
(b)
Xi,(i)

(s) would disturb the results.

7.3.2 The transformed filtered data density estimator

When dealing with heavy tail distributions, tail flattening transformations, as in-

troduced in Wand et al. (1991), have shown to improve the estimation results sig-

nificantly, see Bolancé et al. (2003) and Buch-Larsen et al. (2005) for simulation

studies in one dimension and Buch-Kromann et al. (2009) in the multivariate case.

Moreover, tail flattening transformations have shown robustifying properties when

combined with alternative prior assumptions of parametric distributions, see Buch-

Kromann et al. (2007).

Let Ψ : [0,∞) → [0, 1) be a candidate of a tail flattening transformation, where Ψ is a
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cdf. Let ψ be the density corresponding to Ψ that we assume to be differentiable, and

let Ψ−1(t) be the inverse of the cdf Ψ(t). Ψ could be the Champernowne cdf, see Buch-

Larsen et al. (2005), as this is a flexible and widely useable transformation function,

e.g. in operational risk, see Bolancé et al. (2008a); Guillen et al. (2007); Gustafsson

(2006); Gustafsson and Nielsen (2008); Gustafsson et al. (2006a,b). However other

transformation functions could be i.e. transformations to normality, see Koekemoer

and Swanepoel (2008a,b), the Mobius-like transformation, see Clements et al. (2003)

or the Johnson families, see Yang and Marron (1999).

We transform our data with Ψ and obtain the transformed counting process Ñi =

Ni ◦ Ψ. Now we calculate the non-parametric filtered data density estimator (7.2)

on the transformed data set and obtain what we will call the the transformed filtered

data density estimator on the Ψ-transformed axis :

k̂
(d,b)
Ψ,x (v) =

∑n
i=1

∫ 1

0
Kd1(v − s)Kd2(x−Xi)Ŝ

(b)
Ψ,Xi,(i)

(s) dÑi(s)∑n
i=1

∫ 1

0
Kd1(v − s)Kd2(x−Xi)Ri{Ψ−1(s)} ds

(7.3)

where Ŝ
(b)
Ψ,Xi,(i)

(s) = exp
{
− ∫ s

0
α̂

(b)
Ψ,Xi,(i)

(u) du
}

is the leave-one-out estimator of the

survival function on the Ψ-transformed axis, Ri{Ψ−1(s)} is the ”at-risk” indicator

on the transformed axis, and the leave-one-out hazard estimator on the transformed

axis is given by:

α̂
(b)
Ψ,Xi,(i)

(t) =

∑
j 6=i

∫ 1

0
Kb1(t− s)Kb2(x−Xj) dÑj(s)∑

j 6=i

∫ 1

0
Kb1(u− s)Kb2(x−Xj)Rj{Ψ−1(s)} ds

.

We backtransform (7.3) to obtain an estimator of fx(s), called the transformed filtered

data density estimator on the original axis

f̂
(d,b)
Ψ,x (t) = ψ(t) · k̂(d,b)

Ψ,x {Ψ(t)}. (7.4)

In addition to being a density estimator on the Ψ-transformed axis, k̂
(d,b)
Ψ,x can be
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interpreted as a correction estimator of ψ, the density corresponding to the transfor-

mation function, Ψ.

7.3.3 The filtered data density estimator guided by prior

knowledge

Assume we have a prior knowledge indicating that hx(s) is close to fx(s). By intro-

ducing a multiplicative bias correction (7.5) based on the prior knowledge hx, where

hx could be some appropriate parametric model, we reduce the complexity of the es-

timation problem, see Nielsen et al. (2009); Mammen and Nielsen (2007); Nielsen and

Tanggaard (2001). Even though Nielsen and Tanggaard (2001) show that additive

bias correction often is better than multiplicative correction, we choose multiplica-

tive correction to ensure that the resulting estimator is positive. The multiplicative

bias correction based on hx is

ĉ(d,b)
x (t) =

∑n
i=1

∫
Kd1(t− s)Kd2(x−Xi)Ŝ

(b)
Xi,(i)

(s) {hXi
(s)}−1 dNi(s)∑n

i=1

∫
Kd1(t− s)Kd2(x−Xi)Ri(s) ds

(7.5)

and the final multiplicatively bias corrected estimator of fx(s), called the filtered data

density estmator guided by prior knowledge, is

ĝ(d,b)
x (t) = hx(t)ĉ

(d,b)
x (t). (7.6)

Notice, that even though hx is a parametric model then ĝ
(d,b)
x (t) is a fully nonpara-

metric estimator of fx(s).
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7.3.4 The transformed filtered data density estimator guided

by prior knowledge

Until now we have introduced a transformation approach that improves the per-

formance especially for heavy tailed distributions, and we have also discussed how

to incorporate prior knowledge by multiplicative correction. Now we combine the

tail flattening transformation approach (7.4) with the multiplicative bias correction

from (7.6) to obtain a multiplicative corrected transformation estimator. On the

Ψ-transformed axis the multiplicative bias correction based on hx is

c̃
(d,b)
Ψ,x (v) =

∑n
i=1

∫ 1

0
Kd1(v − s)Kd2(x−Xi)Ŝ

(b)
Ψ,Xi,(i)

(s)[hXi
{Ψ−1(s)}]−1 dÑi(s)∑n

i=1

∫ 1

0
Kd1(v − s)Kd2(x−Xi)Ri{Ψ−1(s)} ds

(7.7)

and the density estimator on the Ψ-transformed axis is therefore

k̃
(d,b)
Ψ,x (v) = hx{Ψ−1(v)}c̃(d,b)

Ψ,x (v) (7.8)

in the following called the transformed filtered data density estimator guided by prior

knowledge on transformed axis.

After back transformation we obtain an estimator of fx(s) on the original axis

f̃
(d,b)
Ψ,x (t) = ψ(t)k̃

(d,b)
Ψ,x {Ψ(t)} (7.9)

called the transformed filtered data density estimator guided by prior knowledge on

original axis.

7.4 Asymptotic properties

The intuition behind the proof of the asymptotic theory is similar to what is known

from the theory of multivariate hazard estimation. In the proof of asymptotic the-
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ory of the multivariate hazard estimator in Nielsen and Linton (1995) a counting

process is spilt into a martingale and its compensator: N(s) = M(s) + Λ(s), giving

dN(s) = dM(s)+dΛ(s) = dM(s)+λ(s)ds = dM(s)+α(s)R(s)ds. In our proof, we

replace dN(s) with SX(s)dN(s) = fX(s)R(s)ds + SX(s)dM(s) and show that this

is equivalent to replace dN(s) with ŜX(s)dN(s). This implies that the results ob-

tained about hazard estimation from smoothing dN(s) can be transferred to density

estimation by smoothing ŜX(s)dN(s) as in Nielsen et al. (2009).

To simplify the notation, we assume in the following that the scale of time t and

covariate X is the same, and therefore we let b = b1 = b2 and d = d1 = d2.

Let Z(x, s) = Pr(X ≤ x | R(s) = 1) be the differentiable conditional distribution of

the covariate X given that the counting proces can jump at time s and let z(x, s) =

∂Z(x, s)/∂s be the corresponding density of Z with respect to the two-dimensional

Lesbesque-measure. Also let φx(s) = z(x, s)r(s), where r(s) = E{R(s)} as defined

in section 7.2. Let f be the functional mapping (x, t) into fx(t) and let φ be the

functional mapping (x, t) into φx(t). Both are mappings from R× R+ into R+.

Assumption A .

1. Suppose that f is twice continuously differentiable and strictly positive at the

interior point (x, t) of R× R+.

2. Suppose that the two dimensional functional φ is twice continuously differen-

tiable and strictly positive at the interior point (x, t) of R× R+.

3. Suppose that nd2 →∞, d → 0, b/d → 0 and d2/b → 0.

4. Suppose that for a constant δ > 0, it holds that

∑

0≤s≤t+δ

∣∣∣∣
R(s)

n
− ζ(s)

∣∣∣∣ → oP (1)

where ζ : [0, t + δ] → R+ is a continuous strictly positive function.
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Now we are able to write up the asymptotic theory of our non-parametric filtered

data density estimator (7.2). From a theoretical point of view, the theory of this

estimator is close to the theory of the non-parametric locally constant kernel hazard

estimators considered in Nielsen and Linton (1995) and Nielsen (1998).

Theorem 7.1. (Non-parametric filtered data density estimator)

Suppose that assumption A is satisfied. Define the kernel moments ||K||22 =
∫

K2(u) du

and µ2(K) =
∫

K(u)u2 du, where the kernel function K is a density function with

finite support, mean zero and finite variance. Then the following hold:

√
nd

{
f̂ (d,b)

x (t)− fx(t)− d2β1(x, t)
}

=⇒ N {0, γ(x, t)} ,

where

β1(x, t) = µ2(K){B1(f, φ)(x, t) + B2(f, φ)(x, t)} (7.10)

γ(x, t) = {||K||22}2fx(t)Sx(t)

φx(t)
.

The two functionals in (7.10), B1 and B2, both mappings from R+×R+ into R+, are

defined by

B1(f, φ)(x, t) =
(∂fx(t)/∂t)(∂φx(t)/∂t)

φx(t)
+

∂2fx(t)/∂t2

2
, (7.11)

B2(f, φ)(x, t) =
(∂fx(t)/∂x)(∂φx(t)/∂x)

φx(t)
+

∂2fx(t)/∂x2

2
. (7.12)

Proof. See appendix 7.7.1.

Now we are ready to state the asymptotic theory of the above density estimator when

prior knowledge, represented by hx(t), is used to bias correct the original estimator,

i.e. the filtered data density estimator guided by prior knowledge (7.6). The resulting

asymptotic theory is very similar to the asymptotic theory without bias correction.

However, the bias expression is changed such that it is the curvature of the true
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density divided by the prior knowledge that enters our bias expression. Therefore,

this approach improves performance when our prior knowledge is sufficiently precise

to capture essential properties of the curvature of the problem. If the prior knowledge

does not have this quality, it will not be helpful in our estimation process.

Theorem 7.2. (Filtered data density estimator guided by prior knowledge)

Suppose that assumption A is satisfied. Moreover, suppose that the functional h :

R×R+ → R+ mapping (x, t) into hx(t) is two times continuously differentiable, and

that c : R× R+ → R+ maps (x, t) into cx(t) = fx(t) {hx(t)}−1, then

√
nd

[
ĝ(d,b)

x (t)− fx(t)− d2β2(x, t)
]

=⇒ N {0, γ(x, t)}

where

β2(x, t) = hx(t)µ2(K) {B1(c, φ)(x, t) + B2(c, φ)(x, t)} (7.13)

and γ(x, t), µ2(K),B1 and B2 are defined in Theorem 7.1.

Proof. See appendix 7.7.2.

Now we state the asymptotic theory of the density estimator when a transforma-

tion approach is used in our estimation process, i.e. (7.4). The asymptotic theory

is similar to the asymptotic theory with multiplicative bias correction guided by

prior knowledge. The bias expression is changed such that it is the curvature of the

transformed density that enters our bias expression. Therefore, the transformation

approach improves performance when the transformation captures essential proper-

ties of the curvature of the problem. In the transformation approach, the variance

is also affected since it is multiplied by the density of the transformation. This

is because the transformation approach acts similarly to a nearest neighbour type

of approach compressing the data through the transformation. The variance is af-

fected in a similar fashion as with nearest neighborhood methods accounting for the

changed amount of information present in a bandwidth distance. Let fψ−1 ◦Ψ−1 be

the functional mapping (x, t) into fx {Ψ−1(t)} [ψ {Ψ−1(t)}]−1
. The map, fψ−1 ◦Ψ−1
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is the conditional density of the latent variable Y after the transformation has taken

place. Since we carry out the nonparametric density estimation on this transformed

axis, it is not surprising that the main term in the bias of this approach is the bias

of the density estimator on this axis.

Theorem 7.3. (Transformed filtered data density estimator)

Suppose that assumption A is satisfied and suppose that the functional Ψ is two times

continuously differentiable, then

√
nd

[
f̂

(d,b)
Ψ,x (t)− fx(t)− d2β3(x, t)

]
=⇒ N {0, ψ(t)γ(x, t)}

where

β3(x, t) = ψ(t)µ2(K)
[B1(fψ−1 ◦Ψ−1, φ) {x, Ψ(t)}+ B2(fψ−1 ◦Ψ−1, φ) {x, Ψ(t)}]

and γ(x, t), µ2(K),B1 and B2 defined in Theorem 7.1.

Proof. See appendix 7.7.3.

Let cψ−1 ◦Ψ−1 be the same functional as fψ−1 ◦Ψ−1, but with c replacing f . Then

we can state the asymptotic theory of the transformed filtered data density estimator

guided by prior knowledge (7.9). From this approach we both get the advantage of

the nearest neighbour type of quality of the transformation and the bias reducing

advantage of our prior knowledge. The practical advantages of this approach are

seen in the numerical results in the next section.

Theorem 7.4. (Transformed filtered data density estimator guided by prior knowl-

edge)

Suppose that assumption A is satisfied and suppose that the functionals h and Ψ are
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two times continuously differentiable, then

√
nd

[
f̃

(d,b)
Ψ,x (t)− fx(t)− d2β4(x, t)

]
=⇒ N {0, ψ(t)γ(x, t)}

where

β4(x, t) = ψ(t)hx(t)µ2(K)
[B1(cψ

−1 ◦Ψ−1, φ) {x, Ψ(t)}+ B2(cψ
−1 ◦Ψ−1, φ) {x, Ψ(t)}]

and γ(x, t), µ2(K),B1 and B2 defined in Theorem 7.1.

Proof. See appendix 7.7.4.

7.5 Numerical results

In this section, we analyse a data set that originates from the Danish general in-

surance company, Codan Insurance, and contains commercial fire claims reported

from 1995 to 2004. The data set consists of 2810 claims Y , and for each claim

the corresponding estimated maximum loss (EML) X, is reported. The data set is

heavy-tailed with claim sizes ranging from 19 to almost 6 million DKK. with average

claim size at 56,220 DKK.

This section contains an application study and a Monte Carlo simulation study. In

the application study, we compute the transformed filtered data density estimator

both without and with prior knowledge and illustrate the estimators ability of taking

filtering into account. In the Monte Carlo study we compare the performance of the

same two estimators and benchmark against the prior knowledge estimator both

when the prior knowledge is true and when the prior knowledge is roughly and not

exactly true. Moreover, we compare the results with the performance of the standard

two-dimensional transformation kernel density estimator studied in Buch-Kromann

et al. (2009).
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The transformation approach both improves the estimation performance and the

visualization properties. When dealing with heavy-tailed data as commercial fire

claims, a classical kernel density estimator without transformation and with constant

bandwidths as defined in (7.2) has a very bad performance and therefore it is omitted

in this study. We transform the claims as well as the EMLs with the three parameter

Champernowne cdf

T (x) =
(x + c)α − cα

(x + c)α + (M + c)α − 2cα
(7.14)

with parameters (α,M, c) estimated by a maximum likelihood procedure taking fil-

tering into account, see appendix 7.7.5.

First, define the transformed filtered data density estimator (7.3), where the trans-

formation function Ψ is the Champernowne cdf (7.14) with maximum likelihood pa-

rameters as described above. The choice of the Champernowne cdf as transformation

function is due to ist ability to capture different distribution shapes and its special

utility for heavy-tailed data, see Buch-Larsen et al. (2005) and Buch-Kromann et al.

(2009) for further details about the Champernowne cdf. Notice that the explanatory

variable, X in (7.3) is the Champernowne-transformed EMLs, which lie between 0

and 1. The choice of Champernowne transformation of both claims and EMLs en-

sures that the two variables are of the same scale, and therefore the simplification

d = d1 = d2 and b = b1 = b2 is reasonable. The estimator is called k̂1 and is defined

from (7.3)

k̄1(v) =

∑n
i=1

∫ 1

0
Kd(v − s)Kd(x−Xi)Ŝ

(b)
T,Xi,(i)

(s) dÑi(s)∑n
i=1

∫ 1

0
Kd(v − s)Kd(x−Xi)Ri{T−1(s)} ds

(7.15)

where Ñi = Ni ◦ T . The bandwidth d is a simple Silverman-rule-of-thumb, see

Silverman (1986), and b = d/2 to ensure the undersmoothing of the conditional

survival function as mentioned in section 7.3 at page 158. As mentioned, T is the

Champernowne cdf, defined in (7.14).

Thereafter, we define the prior knowledge. For that purpose, we set up a median
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regression model corresponding to the model described in Linton et al. (2007) given

by

Y = m(X)ε.

where ε and X is independent, and where the estimator of m is based on the density

estimator (7.15), but with doubled bandwidths to ensure a smooth shape. The choice

of this model is motivated by its ability to capture the shape of the distribution in a

crude and smooth way. The density estimator of ε is a one-dimensional version of the

transformation filtering data density estimator (7.4), which takes the corresponding

filtering on ε into account. The filtering on ε follows directly from the filtering on

Y , ie. if (Y,X, T, C) is a claim Y , with corresponding EML X, truncation T and

censoring C, then (T̃ , C̃), where T̃ = T/m(X) and C̃ = C/m(X) is the corresponding

filtering on ε under the median regression model. However, the estimation procedure

in this paper is slightly more complicated, due to the possible filtering on ε that needs

to be taken into consideration. Let ĥx(y) be the resulting prior knowledge density on

original axis estimated as if it was known, see Buch-Kromann et al. (2009), and then

let k̄2 be prior knowledge density on the Champernowne-transformed axis, defined

as

k̄2(v) =
ĥx(T

−1(v))

T ′(T−1(v))
(7.16)

At last, we define the transformed filtered data density estimator on transformed axes

guided by the prior knowledge ĥx defined above. The resulting estimator corresponds

to (7.8) based on the Champernowne transformation.

k̄3(v) =
ĥx{T−1(s)}∑n

i=1

∫ 1

0
Kd(v − s)Kd(x−Xi)Ŝ

(b)
T,Xi,(i)

(s)[ĥXi
{T−1(s)}]−1 dÑi(s)∑n

i=1

∫ 1

0
Kd(v − s)Kd(x−Xi)Ri{T−1(s)} ds

(7.17)

where d is equal to a double Silverman-rule-of-thumb bandwidth and b = d/2.

To illustrate the estimator’s ability to handle filtering data, we set up a filtering

scheme. We simulate truncation for 25% randomly chosen claims and choose the



7.5 Numerical results 171

truncation levels for these claims uniformly on 0 to 10,000 DKK., which corresponds

to the 0% and 58% empirical quantiles, respectively. Analogously, we simulate cen-

soring for 25% randomly chosen claims and choose the censoring levels uniformly on

100,000 to 6,000,000 DKK., corresponding to the 89% and 100% empirical quantiles.

We will refer to this filtering scheme as the 25% filtering scheme. Analogously, we

compute a 50% filtering scheme, where filtering is simulated on 50% of the claims.

Figure 7.1 illustrates how the exposure of the fire claims data set is affected by the

two filtering schemes compared to the no filtering scheme. We plot the smoothed

exposures for the two filtering schemes relative to the exposure without filtering.

The smoothed exposures correspond to the denominator of (7.15). In Figure 7.1

the truncation can be recognized clearly in both the 25% and the 50% filtering

scheme, whereas the censoring is much less clear on the relative exposure plots for

both filtering schemes. This is due to the chosen values of truncation and censoring

levels, which are based on realistic filtering levels for the underlying commercial

fire insurance data set. In the 25% filtering scheme, 283 claims are influenced by

left-truncation and only 6 claims are influenced by right-censoring, whereas in the

50% filtering scheme the corresponding claims numbers are 561 claims and 5 claims,

respectively.

7.5.1 Application

In the application study, we compute the transformed filtered data density estimator

both without and with prior knowledge, i.e. (7.15) and (7.17), and plot them on the

transformed axes together with the prior knowledge density (7.16) in the three data

filtering schemes.

The transformed filtered data density estimator (7.15) of the fire claims data set

is illustrated in Figure 7.2 in the three filtering schemes. The three plots are very

similar. This means, that the dependence structure between X and Y is almost

identical even though we have made a systematic reduction in the exposure in the
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Exposure: 25% filtering relative to no filtering
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Figure 7.1: Smoothed exposure of no filtering scheme relative to smoothed exposure of
respectively 25% (left) and 50% (right) filtering scheme.

25% and the 50% filtering schemes, as illustrated in Figure 7.1. Also the marginal

distributions of X and Y are similar due to the maximum likelihood procedure’s

ability to take filtering into account: The estimated parameters of the Champernowne

transformation function (7.14) θj,φ = (αj,φ,Mj,φ, cj,φ), where j = {X,Y } indicates

whether the parameters correspond to either X or Y , and φ = {0, 25, 50} indicates

the chosen filtering scheme, are

θx,0 = (1.66, 2.56 · 107, 6.06 · 10−5), θy,0 = (0.82, 7.54 · 103, 3.44 · 103)

θx,25 = (1.67, 2.60 · 107, 6.22 · 10−5), θy,25 = (0.82, 7.47 · 103, 2.84 · 103)

θx,50 = (1.65, 2.78 · 107, 6.80 · 10−5), θy,50 = (0.82, 7.67 · 103, 2.17 · 103)

The fact that both the dependence structure and the marginal distributions seem to

be similar, indicates the transformed filtered data density estimator’s ability to take

filtering into consideration.

The prior knowledge density on transformed axes (7.16) in the no filtering, the 25%

and the 50% filtering schemes are illustrated in Figure 7.3. As in Figure 7.2 we
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Figure 7.2: The transformed filtered data density estimator (7.15) computed on the fire
claim data set without filtering (left), with the 25% (middle) and the 50% (right) filtering
scheme. We recognize that the density estimates are almost identical which illustrates the
density estimators ability to take filtering into account.

recognize that the shapes in the three plots illustrating the dependence structures

are almost identical due to the method’s ability to take filtering into account. We

mention that the prior knowledge estimator puts perhaps to much structure into

the density estimator. However, if it is not too wrong, then the multiplicative bias

correction will correct is and benefit from it in the final estimator.
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Prior knowlegde, 50% filtering
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Figure 7.3: The prior knowledge density (7.16) computed on the fire claim data set without
filtering (left), with the 25% (middle) and the 50% (right) filtering scheme. We recognize
that the density estimates are almost identical which illustrates the density estimators
ability to take filtering into account.

At last we illustrate the transformed filtered data density estimator guided by prior



174 Multivariate kernel density estimation for filtered data

knowledge (7.17) in the three filtering schemes on Champernowne transformed axes

in Figure 7.4. Compared to Figure 7.3, some structure from the median regression

density estimator (prior knowledge) is inherited. This is because we have a good

prior knowledge. However, the multiplicative bias corrected density estimator has

the opportunity to correct the density estimator in regions where the prior knowl-

edge seems to be wrong. We also recognize the similarities between the dependence

structures of the density estimators in the three filtering schemes in Figure 7.4.
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Multip. cor. density, 50% filtering
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Figure 7.4: The transformed filtered data density estimator guided by prior knowledge
(7.17) computed on the fire claim data set without filtering (left), with the 25% (middle)
and the 50% (right) filtering scheme. We recognize that the density estimates are almost
identical which illustrates the density estimators ability to take filtering into account.

7.5.2 Monte Carlo study

In the Monte Carlo study, we want to compare the performance of the three estima-

tors defined in section 7.5 and illustrated in the application study. The simulation is

based on the commercial fire insurance data set we have descibed above. We compute

a multiplicative model with iid lognormal residuals independent of X

Y = αXβε1
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to the data set and obtain the following estimates

α = 182.37 β = 0.32 ε1 ∼ log N(−1.62, 1.8)

We will refer to this model as model 1.

Thereafter, we define model 2 based on model 1, but now we assume that the pa-

rameters in the lognormal distribution of the residuals depend on x:

Y = αXβε2(x)

where ε2(x) ∼ log N(µx; σx). We choose the residual parameter’s dependence of x so

that the dependence is linear on the Champernowne transformed axis

σx = 1.5 + 0.5Tθ(x) µx = −0.5σx

where Tθ(x) is the Champernowne cdf defined in (7.14) with parameters θ = (1.66, 2.56·
107, 6.06 · 10−5). In model 2, we use the same values of α and β as in model 1.

Now, we simulate S = 100 data sets with sample size n = {100, 500, 1000} from

model 1 and model 2 and with the X’s bootstrapped from the original EML values

in the commercial fire insurance data set. Moreover, we simulate a 25% and a 50%

filtering scheme to each data set.

We mention that data simulated from model 1 corresponds to estimation with a true

prior knowledge, whereas data simulated from model 2 corresponds to estimation

with a roughly and not exactly true prior knowledge.

To each of the simulated data sets, we compute the transformed filtered data density

estimator (7.15), the prior knowledge in the form of the median regression density

estimator (7.16), and the transformed filtered data density estimator guided by prior

knowledge (7.17). We call the density estimators k̄i,φ(x), where i = {1, 2, 3} is the

type of estimator defined analogously to section 7.5, and where φ = {0, 25, 50} is

the filtering scheme, and compare them to the true density on the Champernowne
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transformed axis, called k(x), from either model 1 or model 2, with the following

performance measure

ISE(k̄i,φ) =
1

n

n∑
i=1

{k̄i,φ(Xi)− k(Xi)}2

where (Xi)i=1,...,n are the bootstrapped X’s in the sample.

n=100 n=500 n=1000
model 1 model 2 model 1 model 2 model 1 model 2

MISE(k̄1,0) 0.08147 0.07545 0.03556 0.03384 0.02516 0.02311
MISE(k̄2,0) 0.07129 0.06554 0.03475 0.03152 0.02966 0.02520
MISE(k̄3,0) 0.06515 0.06273 0.03770 0.03184 0.03346 0.02397

MISE(k̄1,25) 0.09621 0.08348 0.04102 0.03649 0.02827 0.02440
MISE(k̄2,25) 0.08581 0.07047 0.03702 0.03329 0.02762 0.02632
MISE(k̄3,25) 0.07943 0.06700 0.03655 0.03169 0.02897 0.02322

MISE(k̄1,50) 0.14757 0.11873 0.05607 0.04275 0.03981 0.02994
MISE(k̄1,50) 0.14600 0.10957 0.05813 0.04396 0.04021 0.03509
MISE(k̄1,50) 0.12855 0.10120 0.04835 0.03844 0.03331 0.02943

Table 7.1: Monte Carlo simulation comparing the performance of the estimators. For k̄i,φ

i = {1, 2, 3} corresponds to the type of estimator: i = 1 is the transformed filtered data
density estimator, i = 2 is the prior knowledge density and i = 3 is the transformed filtered
data density estimator guided by prior knowledge. φ = {0, 25, 50} indicating the filtering
scheme.

In Table 7.1 at page 176, the average of the ISE errors are presented for each esti-

mator, each n and each model. First, we notice that k̄3,φ outperforms k̄1,φ almost

everywhere, even when the prior knowledge k̄2,φ has a poorer performance than k̄1,φ.

It seems that k̄3,φ’s outperformance of k̄1,φ increases the more filtering we have. Fur-

thermore, we observe that the performance gets worse when we increase the filtering.

This is expected since we remove some information. The performance gap between

the no filtering scheme and 25% filtering scheme is on average about 5% whereas the

performance gap between the no filtering scheme and 50% filtering scheme is on av-

erage about 30%. Moreover, we notice that the performance gap between no filtering

and filtering seems to decrease when the number of observations increases. Compar-
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ing k̄1,φ and k̄2,φ we notice that the performance of k̄2,φ is always better when then the

number of observations in the data set is small, whereas k̄1,φ is more competitive to

k̄2,φ, when the number of observations increases, especially when the prior knowledge

(model 2) is not true. Comparing k̄3,φ and k̄2,φ, we recognize that k̄3,φ almost always

improves the performance of the prior knowledge when prior knowledge is not true

(model 2), without aggravating the performance when the prior knowledge is true

(model 1). Particulaly, when a large amount of filtering is present, k̄3,φ seems to be

a desirable estimator.

At last, we compare the Monte Carlo results with the results from Buch-Kromann

et al. (2009). If we compare the results without filtering, we recognize that the

method described in this paper is about 20% worse than the corresponding estimates

in the study. This means that if we have a data set without filtering, we should

always use a standard multidimensional kernel density estimator. However, standard

multidimensional kernel density estimators can not take filtering into consideration,

and therefore the performance of these methods is very bad for filtered data. A small

comparison, not presented in this paper shows that the performance gap between

a standard multidimensional kernel density method and the filtering data density

estimators described in this paper is about 20% in the 25% filtering scheme, and

115% in the 50% filtering scheme, and that the gap increases with the number of

observations. This means that even for small amounts of filtering, it seems neccesary

to use a method which is capable of taking filtering into account.

7.6 Conclusion

This paper presents a method for multivariate density estimation of truncated or

censored data that pays special attention to extreme values. The estimation is based

on a local constant estimator extended with dimension reducing prior knowledge and

a tail flattening transformation. The asymptotic theory shows that these extensions

will improve the performance of the estimator when the prior knowledge and the
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transformation are not too different from the true distribution. A simulation study

supports the asymptotic theory and shows substantial improvements in performance

when using multiplicative bias correction.

7.7 Appendix

7.7.1 Proof of theorem 7.1

The proof of Theorem 7.1 is divided into two parts: First we analyse f̂
(d,b)
x , where

the leave-one-out estimator Ŝ
(b)
Xi,(i)

defined in (7.1) has been replaced by SXi
. In the

second part, we show that from an asymptotic point of view, we really can replace

Ŝ
(b)
Xi,(i)

by SXi
.

When analysing (7.2)

f̂ (d,b)
x (t) =

∑n
i=1

∫
Kd(t− s)Kd(x−Xi)Ŝ

(b)
Xi,(i)

dNi(s)∑n
i=1

∫
Kd(t− s)Kd(x−Xi)Ri(s) ds

we first notice that f̂
(d,b)
x (t) has the same structure as the local constant hazard

estimator

α̂(d)
x (t) =

Ot

Et

=

∑n
i=1

∫
Kd(t− s)Kd(x−Xi) dNi(s)∑n

i=1

∫
Kd(t− s)Kd(x−Xi)Ri(s) ds

. (7.18)

The only difference is the conditional survival function Ŝ
(b)
Xi,(i)

that enters the expres-

sion of f̂
(d,b)
x but not α̂

(d)
x .

When analysing α̂
(d)
x , Nielsen and Linton (1995) divided the error of the hazard

estimator into a variable part Vx(t) converging in distribution and describing the

asymptotic variance, and a stable part Bx(t) converging in probability and describing

the asymptotic bias. We have

α̂(d)
x (t)− αx(t) = Vx(t) + Bx(t),
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where

Vx(t) =

∑n
i=1

∫
Kd(t− s)Kd(x−Xi) dMi(s)∑n

i=1

∫
Kd(t− s)Kd(x−Xi)Ri(s) ds

and

Bx(t) =

∑n
i=1

∫
Kd(t− s)Kd(x−Xi){αXi

(s)− αx(t)}Ri(s) ds∑n
i=1

∫
Kd(t− s)Kd(x−Xi)Ri(s) ds

.

Now define

f
(d)

x (t) =

∑n
i=1

∫
Kd(t− s)Kd(x−Xi)SXi

(s) dNi(s)∑n
i=1

∫
Kd(t− s)Kd(x−Xi)Ri(s) ds

,

where the only difference from f̂
(d,b)
x is that we have replaced Ŝ

(b)
Xi,(i)

by SXi
.

When analysing f
(d)

x (t), we divide the error into its variable part V x(t) and its stable

part Bx(t) similarly to what is done for α̂
(d)
x (t) in Nielsen and Linton (1995):

f
(d)

x (t)− fx(t) = V x(t) + Bx(t).

where

V x(t) =

∑n
i=1

∫
Kd(t− s)Kd(x−Xi)SXi

(s) dMi(s)∑n
i=1

∫
Kd(t− s)Kd(x−Xi)Ri(s) ds

and

Bx(t) =

∑n
i=1

∫
Kd(t− s)Kd(x−Xi){fXi

(s)− fx(t)}Ri(s) ds∑n
i=1

∫
Kd(t− s)Kd(x−Xi)Ri(s) ds

We first notice that Bx(t) is exactly the same functional of the density fx(s) as Bx(t)

is of the functional αx(s). Therefore the asymptotic expression of Bx(t) is found by

taking the asymptotic expression of Bx(t) and then replacing the conditional hazard

of this latter expression with our conditional density. From Theorem 1(b) in Nielsen

and Linton (1995), we get that

d−2 Bx(t)
P→ µ2(K){B1(f, φ)(x, t) + B2(f, φ)(x, t)}

where B1(f, φ)(x, t) and B2(f, φ)(x, t) is defined in (7.11) and (7.12), respectively.

We can interpret V x(t) by relating it to the corresponding expression for the hazard
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Vx(t). The only difference between these two expressions is that SXi
(s) enters in

front of dMi(s) in the marginal integral of V x(t), but not in Vx(t). We therefore see

that the asymptotic variance of V x(t) is identical to the asymptotic variance of Vx(t),

but with the component S2
x(t) entering the compensator in the variance calculation,

cf. Theorem 1(a) in Nielsen and Linton (1995):

√
ndV x(t) ⇒ N {0, γ1(x, t)}

where

γ1(x, t) = {||K||22}2αx(t)S
2
x(t)

φx(t)

= {||K||22}2fx(t)Sx(t)

φx(t)

In the second part of the proof, we show that f̂
(d,b)
x (t) and f

(d)

x (t) are equivalent from

an asymptotic point of view. First note that

∣∣∣f̂ (d,b)
x (t)− f

(d)

x (t)
∣∣∣

=

∣∣∣∣∣∣

∑n
i=1

∫
Kd(t− s)Kd(x−Xi)

(
Ŝ

(b)
Xi,(i)

(s)− SXi
(s)

)
dNi(s)∑n

i=1

∫
Kd(t− s)Kd(x−Xi)Ri(s) ds

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∑n
i=1 Kd(x−Xi)

∫
Kd(t− s)

(
Ŝ

(b)
Xi,(i)

(s)− SXi
(s)

)
dNi(s)∑n

i=1

∫
Kd(t− s)Kd(x−Xi)Ri(s) ds

∣∣∣∣∣∣

=

∣∣∣∣∣
∑n

i=1 Kd(x−Xi)hi∑n
j=1 Kd(x−Xj)

∑n
j=1 Kd(x−Xj)∑n

i=1

∫
Kd(t− s)Kd(x−Xi)Ri(s) ds

∣∣∣∣∣

≤ |Θ(x)|
∣∣∣∣∣

n∑
i=1

ai(x)hi

∣∣∣∣∣

where hi =
∫

Kd(t− s)
(
Ŝ

(b)
Xi,(i)

(s)− SXi
(s)

)
dNi(s),

Θ(x) =
∣∣∣ n−1

∑n
j=1 Kd(x−Xj)

n−1
∑n

i=1

∫
Kd(t−s)Kd(x−Xi)Ri(s) ds

∣∣∣ and ai(x) = Kd(x−Xi)∑n
j=1 Kd(x−Xj)

.
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The numerator of Θ(x) is a kernel density estimator, and therefore it converges to

a constant. Moreover, from the proof of Theorem 1 in Nielsen and Linton (1995),

we know that the denominator of Θ(x) converges in probability. Therefore |Θ(x)| =
OP (1) can be neglected.

It now remains to be shown that

Ξ(x) =
n∑

i=1

ai(x)hi

= oP

(
d2 + n−1/2d−1

)

We know that S̈
(b)
Xi,(i)

(s) = Ŝ
(b)
Xi,(i)

(s) with probability 1, where

S̈
(b)
Xi,(i)

(s) = exp

{
−

∫ s

0

α̈
(b)
Xi,(i)

(u) du

}
,

and the hazard estimator, α̈
(b)
Xi,(i)

(u) =
∑

j 6=i

∫
Kb(t−s)Kb(x−Xj) dNj(s)

max{∑
j 6=i

∫
Kb(t−s)Kb(x−Xj)Rj(s) ds ,

nζ(u)
2 } is a

leave-one-out hazard estimator with smoothed exposure bounded from below, which

follows from Assumption A, p. 164. Therefore it is sufficient to show that

Ξ̈(x) =
n∑

i=1

ai(x)ḧi

= oP

(
d2 + n−1/2d−1

)

where

ḧi =

∫
Kd(t− s)

(
S̈

(b)
Xi,(i)

(s)− SXi
(s)

)
dNi(s)

=

∫
K(u)

(
S̈

(b)
Xi,(i)

(t− du)− SXi
(t− du)

)
dNi(t− du).

The boundedness of the smoothed exposure from below in the hazard estimator

α̈
(b)
Xi,(i)

(u) ensures that the second moment of ḧi exists. This is essentially the same

trick as used in Mammen and Nielsen (2007), p. 886. From algebra we know that
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(
∑n

i=1 ai(x)ḧi)
2 ≤ ∑n

i=1 ai(x)ḧ2
i since

∑n
i=1 ai(x) = 1. Therefore

Ξ̈2(x) ≤
n∑

i=1

ai(x)ḧ2
i .

Taking the conditional expectation given Xi, we get

E[Ξ̈2(x)|Xi] =
n∑

j=1

ai(x)E
[
ḧ2

i |Xi

]
.

For the survival function estimator with artificial exposure, S̈
(b)
(Xi),(i)

(s), the proof and

result from Theorem 1 in Linton et al. (2003) holds for the second moment and we

therefore get

E[ḧ2
i |Xi] = E

[{∫
K(u)

(
S̈

(b)
Xi,(i)

(t− du)− SXi
(t− du)

)
dNi(t− du)

}2
∣∣∣∣∣ Xi

]

= E
[∫

K2(u)
(
S̈

(b)
Xi,(i)

(t− du)− SXi
(t− du)

)2

dNi(t− du)

∣∣∣∣ Xi

]

= E
[∫

K2(u)
(
S̈

(b)
Xi,(i)

(t− du)− SXi
(t− du)

)2

dΛi(t− du)

∣∣∣∣ Xi

]

=

∫
K2(u)E

[(
S̈

(b)
Xi,(i)

(t− du)− SXi
(t− du)

)2
∣∣∣∣ Xi

]
dΛi(t− du)

=

∫
K2(u)E

[(
S̈

(b)
Xi,(i)

(t− du)− SXi
(t− du)

)2
∣∣∣∣ Xi

]
αXi

(t− du)Ri(t− du) du

= g1(Xi)b
4 + g2(Xi)n

−1b−1

where the third equality holds because S̈
(b)
Xi,(i)

is a leave-one-out estimator and hence

predictable. Moreover, the main components in S̈
(b)
Xi,(i)

(v) and S
(b)
Xi,(i)

(v) are
∫ v

0
α̈

(b)
y (u) du

and
∫ v

0
α

(b)
y (u) du; exactly the marginally integrated hazards considered in Linton

et al. (2003). The last equality therefore follows from Theorem 1 in Linton et al.

(2003), where the functions g1 corresponding to the bias and g2 corresponding to the
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variance are continuous functions, and Xi belongs to a bounded interval. Therefore

E[Ξ̈2(x)|Xi] ≤
n∑

i=1

ai(x)
(
g1(Xi)b

4 + g2(Xi)n
−1b−1

)

= OP

(
b4 + n−1b−1

)

which gives

E[Ξ̈2(x)] = E
[
E[Ξ̈2(x)|Xi]

]

= OP

(
b4 + n−1b−1

)

and hence

∣∣∣f̂ (b1,b2)
x (t)− f

(b1)

x (t)
∣∣∣ = OP

(
b2 + n−1/2b−1/2

)

= oP

(
d2 + n−1/2d−1

)

where the last equality holds when d > b and d2 < b.

7.7.2 Proof of theorem 7.2

The proof of Theorem 7.2 is analogous to the proof of Theorem 7.1 in appendix 7.7.1.

We define

g(d)
x (t) = hx(t)

∑n
i=1

∫
Kd(t− s)Kd(x−Xi)SXi

(s){hXi
(s)}−1 dNi(s)∑n

i=1

∫
Kd(t− s)Kd(x−Xi)Ri(s) ds

,

and divide the error of g(d)
x (t) into its variable part V̂ (t) and its stable part B̂(t):

g(d,b)
x (t)− fx(t) = V̂ (t) + B̂(t)
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where

V̂x(t) =

∑n
i=1

∫
Kd(t− s)Kd(x−Xi)SXi

(s)hx(t){hXi
(s)}−1 dMi(s)∑n

i=1

∫
Kd(t− s)Kd(x−Xi)Ri(s) ds

and

B̂x(t) =
hx(t)

∑n
i=1

∫
Kd(t− s)Kd(x−Xi)

[
SXi

(s){hXi
(s)}−1αXi

(s)− fx(t)
hx(t)

]
Ri(s) ds

∑n
i=1

∫
Kd(t− s)Kd(x−Xi)Ri(s) ds

= hx(t)B
∗(t)

where B∗(t) =
∑n

i=1

∫
Kd(t−s)Kd(x−Xi){cXi

(s)−cx(t)}Ri(s) ds∑n
i=1

∫
Kd(t−s)Kd(x−Xi)Ri(s) ds

The variable part V̂x(t) corresponds to V x(t) in the proof of Theorem 7.1 in appendix

7.7.1, but with an extra term hx(t) {hXi
(s)}−1 that enters in front of dMi(s). But

hx(t) {hXi
(s)}−1 is asymptotically equivalent to 1, and the asymptotics of the variable

part of ĝ
(d,b)
x (t) is therefore identical to the asymptotics of the variable part of f̂

(d,b)
x (t).

When it comes to the stable part B̂x(t), we note that B∗
x(t) corresponds to Bx(t)

in the proof of Theorem 7.1 in appendix 7.7.1, but with c instead of f . The final

asymptotics of B̂x(t) is therefore identical to the asymptotics of Bx(t), but with c

replacing f . We therefore have:

d−2 B̂x(t)
P→ µ2(K)hx(t){B1(c, φ)(x, t) + B2(c, φ)(x, t)}

The second part of the proof, where we have to show that ĝ
(d,b)
x (t) and g(d)

x (t) are

equvalent from an asymptotic point of view, corresponds to the proof of Theorem

7.1 in appendix 7.7.1.
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7.7.3 Proof of theorem 7.3

The proof of Theorem 7.3 is based on a combination of the proof of Theorem 7.1 above

and the technique used in the proof of the multivariate transformation approach

without filtering in Theorem 2 in Buch-Larsen et al. (2005). Like in this latter

paper, we argue that we can simply consider the pointwise asymptotic theory of the

kernel density estimator on the transformed axes. That is, we can use the result from

Theorem 1 on the transformed axes where the kernel density estimation is carried

out. The conditional density on the transformed axes is fx {Ψ−1(v)} [ψ {Ψ−1(v)}]−1
.

We get the bias expression of Theorem 7.3 after we have back-transformed and

multiplied by ψ(t) as part of this process.

When it comes to the variance, we follow Buch-Larsen et al. (2005) in showing that

the variance equals the variance calculated on the transformed axes – where a division

of ψ comes from the expression of the density on the transformed axes – and then

during the backtransformation we get a multiplication by ψ2. The final result is that

the variance is multiplied by ψ compared to the variance in Theorem 7.3.

7.7.4 Proof of theorem 7.4

The proof of Theorem 7.4 is based on a straight-forward combination of the proof of

Theorem 7.2 and the proof of Theorem 7.3 and we leave it out.

7.7.5 Maximum likelihood parameters for the Champernowne

distribution

The following describes the procedure for estimating the parameters of the Champer-

nowne distribution (7.14) by a maximum likelihood procedure taking filtering into

account.

Let (Ỹi, Xi, Ti, Di)i=1,...,n be the data set to which we want to estimate a Champer-
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nowne distribution, where Ỹi = Yi ∧ Ci is the Yi’s subjected to right censoring, Xi

is the covariate, Ti is the truncation and Di = I(Yi ≤ Ci) is the ”at-risk” indicator.

Let Ni(s) = I(Ỹi, D = 1) be the corresponding counting process with intensities

λi(s), and let Ri(s) = I(Ti < s < Ỹi) be the ”at-risk” indicator. We can estimate

a Champernowne distribution to this data set by assuming the following parametric

model

λi(t, θ) = α(t, θ)Ri(t)

where α(t, θ) = α(t+c)α−1

(t+c)α+(M+c)α−2cα is the parametric hazard function for the Cham-

pernowne distribution and θ = (α,M, c) is the parameters in the Champernowne

distribution.

Then it follows from Andersen et al. (1993) that the likelihood function is

L(θ) =

( ∏
0<t≤∞

α(tθ)dN.(t)

)
exp

(∫ τ

0

α(u, θ)R.(u) du

)

where N.(s) =
∑n

i=1 Ni(s) and R.(s) =
∑n

i=1 Ri(s).

We therefore determine the parameters of the Champernowne distribution by maxi-

mizing the log likelihood function with respect to θ

log L(θ) =
n∑

i=1

log{α(Ỹi, θ)}Di −
∫ ∞

0

α(u, θ)Ri(u) du
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C. Bolancé, M. Guillén, and J. P. Nielsen. Inverse beta transformation in kernel

density estimation. Statistics and Probability Letters, 78(13):1757–1764, 2008a.
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