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Abstract

It is well-known that two modular forms on the same congruence subgroup and

of the same weight, with coefficients in the integer ring of a number field, are

congruent modulo a prime ideal in this integer ring, if the first B coefficients of

the forms are congruent modulo this prime ideal, where B is an effective bound

depending only on the congruence subgroup and the weight of the forms.

In this thesis, we generalize this result to congruences modulo powers of prime

ideals and to modular forms of distinct weights. We also determine necessary

conditions on the weights for there to be congruences between cusp forms modulo

powers of prime ideals, with special emphasis on congruences between eigenforms

because of their connection to Galois representations.

Additionally, we investigate the maximal congruences between newforms on

Γ0(N), and also between newforms in case of level-lowering from Γ0(Np) to

Γ0(N). This investigation leads to a very interesting set of conjectures, and

we include all computed numerical evidence supporting these conjectures.

Resumé

Det er velkendt, at to modulformer p̊a samme kongruensundergruppe og med

samme vægt, og begge med koefficienter i heltalsringen for et tallegeme, er kon-

gruente modulo et primideal i denne heltalsring, hvis de første B koefficienter for

formerne er kongruente modulo dette primideal, hvor B er en effektiv grænse,

der kun afhænger af kongruensundergruppen og formernes vægte.

I denne afhandling generaliserer vi dette resultat til kongruenser modulo po-

tenser af primidealer og til modulformer med forskellige vægte. Vi bestemmer

ogs̊a nødvendige betingelser p̊a vægtene for at der findes kongruenser mellem

spidsformer modulo potenser af primidealer, med speciel fokus p̊a kongruenser

mellem egenformer p̊a grund af deres forbindelse til Galoisrepræsentationer.

Derudover undersøger vi maksimale kongruenser mellem nyformer p̊a Γ0(N),

og ogs̊a mellem nyformer i forbindelse med niveausænkning fra Γ0(Np) til Γ0(N).

Dette fører til en meget interessant samling af formodninger, og vi inkluderer al

beregnet numerisk data der understøtter disse formodninger.
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Introduction

One can say that algebraic number theory is the study of the arithmetic properties

of finite extensions of Q, and this leads one to study the algebraic closure Q of Q,

as well as the absolute Galois group Gal(Q/Q). Representations of this group,

i.e., (continuous) homomorphisms Gal(Q/Q) → GLn(R) for positive integers n

and commutative rings R, are called Galois representations.

When n = 1 and R = C, these representations lead to class field theory,

and in case of general n, Langlands has given results and put forth conjectures

concerning certain systems of n-dimensional p-adic Galois representations, and

this is known as Langlands’ program. This can be seen as an attempt to find a

theory that generalizes class field theory to non-abelian extensions.

In this thesis, we consider the situation where n = 2 and R is of the form

O/pm, where O is the ring of integers of a number field, p is a prime ideal herein,

and m is a positive integer. When m > 1, the ring O/pm is no longer a field,

and even contains zero-divisors and nilpotent elements (just consider the case of

R = Z/pmZ for a prime p).

A way to generate such Galois representations is by a construction of Deligne,

cf. Section 1.5, which to an eigenform (a cuspidal modular form that is an

eigenvector for almost all Hecke operators) and a prime p gives representations

Gal(Q/Q)→ GL2(O/pm) for all prime ideals p over p in the integer ring O of a

number field containing the Fourier coefficients of the eigenform.

Suppose that we are given two such Galois representations, and we know the

eigenforms from which they are constructed. How can we determine if they are

isomorphic?

Let us consider a fixed positive integer N and a fixed prime p, and suppose

that we are given two (normalized) cusp forms f1 and f2 on Γ1(N) of weights k1

and k2, with coefficients in the integer ring O of a number field.

We say that f1 and f2 are eigenforms outside Np if they are eigenvectors for

all Hecke operators T` for primes ` - Np. The corresponding eigenvalues for such

T` acting on fi are then exactly the coefficients a`(fi).

ix



x Introduction

Let p be a prime ideal of O over p and let m be a positive integer. If fi is

an eigenform outside Np, we use the above-mentioned construction to obtain a

Galois representation

ρfi,pm : Gal(Q/Q)→ GL2(O/pm).

This representation is unramified outside Np, and we have

tr ρfi,pm(Frob`) = (a`(fi) mod pm)

for all primes ` - Np. If we additionally suppose that the mod p representation

ρfi,p
is absolutely irreducible, ρfi,pm is determined (up to isomorphism) by this

trace property.

As is obvious from the above, the key to determine whether ρf1,pm and ρf2,pm

are isomorphic is to obtain a computationally decidable criterion for when we

have a`(f1) ≡ a`(f2) (mod pm) for all primes ` - Np.

Now, for the case m = 1, and if the weights k1 and k2 are equal, there is a well-

known theorem of Sturm that gives a necessary and sufficient condition for the

forms to be congruent modulo p, in the sense that all their Fourier coefficients are

congruent modulo p. It turns out to be very easy to generalize Sturm’s theorem

to the cases m > 1, provided that we still have k1 = k2. Then, still under the

assumption that the weights are equal, a simple twisting argument allows us to

discuss the case of eigenforms outside Np (or outside any finite set of primes

containing the primes dividing Np).

In studying the case of distinct weights, we use two different approaches,

and under favorable circumstances these approaches both result in computable

necessary and sufficient conditions for the forms to be ‘congruent modulo pm

outside Np’ in the above sense.

The first approach is to generalize a theorem of Katz-Serre on p-adic modular

forms, cf. Theorem 2.4, which – under certain restrictions on the levels of the

forms – gives a necessary congruence between the weights for the forms to be

congruent modulo pm. In Theorem 2.4, one needs to assume that p is unramified

over p, and we are able to generalize this to cases where p is ramified over p.

Under certain technical restrictions, in particular that the ramification index

relative to p of the Galois closure of the field of coefficients is not divisible by p,

and that p is odd, Theorem 2.16 results in the desired computable necessary and

sufficient conditions.

The second approach is via a study of the determinants of the attached mod

pm representations. Again under certain technical restrictions, here notably a
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restriction on the characters of the forms, Theorem 2.20 leads to the desired

computable necessary and sufficient conditions.

Even though we here only describe the results for eigenforms, many of the

obtained results hold for general (cuspidal) modular forms on Γ1(N), and in some

cases for modular forms on an arbitrary congruence subgroup (most notably the

generalization of Sturm’s theorem).

Consider the case where f1 and f2 are both newforms on Γ0(N) (still of weights

k1 and k2 with coefficients in O). Given a prime p, one can compute the maximal

congruence between f1 and f2 modulo powers of prime ideals p in O over p,

where ‘maximal congruence’ means the highest power pm such that there is a

congruence between a`(f1) ≡ a`(f2) (mod pm) for all primes ` - Np, taking into

account the ramification of p over p.

The results described above give upper bounds for such maximal congruences

(depending on N , p and the weights k1 and k2), and in Section 2.6 we investigate

whether these upper bounds are actually attained, cf. Conjecture 2.22.

We also consider these maximal congruences in case of level-lowering, i.e., we

investigate maximal congruences between newforms on Γ0(Np) and Γ0(N). In

this case two very different things seem to occur according to whether or not

p2 | N , cf. Conjecture 2.23 and Conjecture 2.24. Most notably, when p2 | N ,

the upper bound for the maximal congruences appears to be independent of the

weights.

All computational evidence supporting these conjectures are included in the

appendices.

To even be able to consider such conjectures, we have to be able to compute

spaces of modular forms. The standard way of doing this is via modular symbols,

but another way of computing modular forms is via a cohomological approach,

based on the Eichler-Shimura isomorphism (this approach is essentially the same

as the modular symbols approach over the rationals).

In the final chapter, we describe an explicit implementation of an algorithm

using this cohomological approach to compute spaces of cusp forms, and we

determine its complexity.





Chapter 1

Modular forms

In this chapter we give a brief introduction to modular forms.

Most results are given without references since they are standard results that

can be found in any textbook on modular forms, such as [DS05], [Lan95], [Miy06]

or [Shi94]. For the more special results we give specific references.

1.1 Congruence subgroups and cusps

Let N be a positive integer. The subgroup of SL2(Z) defined by

Γ(N) =

{
γ ∈ SL2(Z)

∣∣∣∣ γ ≡ (1 0
0 1

)
(mod N)

}
is called the principal congruence subgroup of level N . Any subgroup Γ of SL2(Z)

containing such a subgroup is called a congruence subgroup, and the smallest N

for which Γ(N) is contained in Γ is called the level of Γ.

An example of a subgroup of level N is

ΓH(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod N), a ∈ H
}
,

for any subgroup H of (Z/NZ)∗. We have ΓH(N) ⊆ ΓH(M) if M | N .

The two trivial subgroups of (Z/NZ)∗ give the most important congruence

subgroups. In the case of H = (Z/NZ)∗ we get

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod N)

}
,

while we for H = {1} get

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod N), a ≡ d ≡ 1 (mod N)

}
.

1



2 Chapter 1

Let Γ be a congruence subgroup. Γ acts on the set of cusps, P1(Q) = Q∪{∞},
by fractional linear transformations(

a b
c d

)
.s =

{
as+b
cs+d

, s 6=∞,
a
c
, s =∞,

and this action divides the cusps into finitely many cusp equivalence classes,

C(Γ), which we also call (abusing notation) the set of cusps.

We have C
(

SL2(Z)
)

= {∞}, i.e., for any s ∈ P1(Q), we have a γ ∈ SL2(Z)

such that γ.∞ = s.

The width of a cusp s of Γ is the smallest positive integer h such that(
1 h
0 1

)
∈ γ−1Γγ,

for any γ ∈ SL2(Z) satisfying γ.∞ = s. We see that∞ has width 1 for the groups

ΓH(N), while it has width N for Γ(N).

1.2 Modular forms

We denote by

h =
{
z ∈ C | Im z > 0

}
the upper half-plane.

Let k be a positive integer and let Γ be a congruence subgroup. A modular

form of weight k on Γ is a holomorphic function f : h → C satisfying the

transformation property

f(z) = (cz + d)−kf

(
az + b

cz + d

)
, z ∈ h,

(
a b
c d

)
∈ Γ,

and which is holomorphic at the cusps of Γ. Furthermore, f is called a cusp form

if f vanishes at every cusp of Γ (see the references given above for what is meant

by holomorphy and vanishing at the cusps).

The set of modular forms (resp. cusp forms) of weight k on Γ form a complex

vector space Mk(Γ) (resp. Sk(Γ)), and this space is always finite-dimensional.

The modular forms that are not cusp forms are called Eisenstein series, and

these form a subspace of Mk(Γ), denoted Ek(Γ), so that

Mk(Γ) = Sk(Γ)⊕ Ek(Γ).
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At every cusp s (of width h) of Γ, the modular form f has a Fourier series

expansion

f(z) =
∞∑
n=0

an(f)qnh , qh = e2πiz/h,

and we just write q for q1. We call this Fourier series the q-expansion of f at s.

If s =∞, we just call this the q-expansion of f .

If f is a cusp form, we have a0(f) = 0 (at every cusp).

For any subring R of C, we denote by Mk(Γ;R) (resp. Sk(Γ;R)) the modular

forms (resp. cusp forms) in Mk(Γ) (resp. Sk(Γ)) whose q-expansions (at ∞) have

coefficients which all lie in R.

In keeping with the notation established above, we have Mk(Γ) = Mk(Γ; C)

and Sk(Γ) = Sk(Γ; C).

1.3 The Hecke algebra

In this section we work with the congruence subgroup Γ1(N), and we write Mk(N)

(resp. Sk(N)) for the space of modular forms (resp. cusp forms) of weight k on

Γ1(N).

Since Γ1(N) is the kernel of the surjetive homomorphism

Γ0(N)→ (Z/NZ)∗

given by (
a b
c d

)
7→ (d mod N),

we get an isomorphism Γ0(N)/Γ1(N) ∼= (Z/NZ)∗. This gives rise to a set of

operators on Mk(N), called the diamond operators, and the subspace Sk(N) is

stable under the action of these operators. For d ∈ (Z/NZ)∗, the diamond

operator 〈d〉 is given by

(f |〈d〉)(z) = (cz + d′)−kf

(
az + b

cz + d

)
, z ∈ h,

(
a b
c d′

)
∈ Γ0(N), d ≡ d′ (mod N),

When χ runs through the Dirichlet characters (Z/NZ)∗ → C∗ satisfying

χ(−1) = (−1)k (otherwise Mk(N,χ) is trivial), the diamond operators decompose

Mk(N) into χ-eigenspaces

Mk(N,χ) =
{
f ∈Mk(N) | f |〈d〉 = χ(d)f for all d ∈ (Z/NZ)∗

}
,

and similarly for Sk(N).



4 Chapter 1

We note that if χ0 is the trivial character, we have Mk(N,χ0) = Mk(Γ0(N))

(and similarly for cusp forms).

There is another family of commuting operators on Mk(N) (resp. Sk(N))

called the Hecke operators. If the q-expansion of f ∈Mk(N,χ) is

f(z) =
∞∑
n=0

an(f)qn,

then the m’th Hecke operator Tm acts on the q-expansion of f as

(Tmf)(z) =
∞∑
n=0

cnq
n,

where

cn =
∑

d|gcd(m,n)

χ(d)dk−1amn/d2(f),

with χ(d) = 0 if gcd(d,N) > 1. Note that a1(Tmf) = am(f).

The subspace Mk(N,χ) (resp. Sk(N,χ)) is stable under the Hecke action.

Since our main focus is cusp forms, we now restrict to Sk(N) (resp. Sk(N,χ)).

The Hecke algebra of Sk(N) (resp. Sk(N,χ)) is defined as

T = Z[T1, T2, . . .],

and from the context it will be clear if we are talking about T as a subalgebra of

EndSk(N) or EndSk(N,χ). We denote by T′ the subalgebra of T generated by

the Hecke operators Tn with gcd(n,N) = 1.

T is finitely generated, contains the diamond operators, and for any commu-

tative ring R we put

TR = T⊗R = R[T1, T2, . . .],

and similarly we put T′R = T′ ⊗R.

It can be shown that the Hecke operators Tn on Sk(N) (resp. Sk(N,χ)) for

gcd(n,N) = 1 are diagonizable, and hence are simultaneously diagonizable (since

they commute). A non-zero form f ∈ Sk(N) (resp. Sk(N,χ)) satisfying

Tnf = λnf, λn ∈ C,

for all positive integers n with gcd(n,N) = 1 is called an eigenform. If Tnf = λnf

for all positive integers n, we call f a true eigenform.

If f is normalized, i.e., has a1(f) = 1, then the Fourier coefficients an(f) are

precisely the eigenvalues λn. Throughout we always assume eigenforms to be

normalized.

If f is an eigenform, the Fourier coefficients an(f) are algebraic integers, and

the field of coefficients of f is a number field of degree at most the rank of T.
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1.4 Newforms

Let M be a positive divisor of N . For each positive divisor t | N/M , there is an

injection ϕM,t : Sk(M) → Sk(N) given by f(z) 7→ f(tz), and if f(z) is a (true)

eigenform of Sk(M), then f(tz) is a (true) eigenform of Sk(N), with the same

eigenvalues. There are also maps ψM,t in the other direction.

The subspace of Sk(N) generated by the image of all the ϕM,t (with M a

proper divisor of N) is called the old part of Sk(N), and is denoted Sk(N)old.

The intersection of the kernel of all the ψM,t (with M a proper divisor of N) is

called the new part of Sk(N), and is denoted Sk(N)new.

By results of Atkin-Lehner [AL70] and Li [Li75], we have a decomposition

Sk(N,χ) =
⊕
M |N

⊕
t|N/M

ϕM,t

(
Sk(M)new

)
,

where each Sk(M)new is a direct sum of non-isomorphic simple T′C-modules.

Sk(N)new could also be defined as the orthogoal complement of Sk(N)old in

Sk(N) with respect to the Petersson inner product. This point of view gives that

Sk(N) = Sk(N)old ⊕ Sk(N)new,

and both Sk(N)old and Sk(N)new are stable under the action of the Hecke algebra

T. If f ∈ Sk(N) is an eigenform, we call f an oldform if f ∈ Sk(N)old, and a

newform if f ∈ Sk(N)new. It is an important result about Sk(N)new that the

ring of Hecke operators on Sk(N)new is generated by the Hecke operators Tn with

gcd(n,N) = 1, i.e., a newform is a true eigenform.

The results of this section also hold if we restrict to Sk(N,χ) (as long as we

require that the conductor of χ divides M where necessary such that the spaces

Sk(M,χ) makes sense).

1.5 Galois representations

Assume k ≥ 2 and let f ∈ Sk(N,χ) be an eigenform. Let K be a number field

containing the Fourier coefficients of f , and denote by O the ring of integers of

K. We assume all representations to be continuous (where we equip Gal(Q/Q)

with the Krull topology, any p-adic field with the usual topology, and any finite

set with the discrete topology).

By a theorem of Deligne, cf. [Del71], there is for every prime p exactly one

Galois representation (up to isomorphism) ρf,p : Gal(Q/Q) → GL2(K ⊗ Qp)



6 Chapter 1

which is unramified at every prime ` - Np, and such that ρf,p(Frob`) has the

characteristic polynomial

X2 − a`(f)X + `k−1χ(`)

for all primes ` - Np, where Frob` is an arithmetic Frobenius element for ` in

Gal(Q/Q).

That the characteristic polynomial has this form is equivalent to the following

statement about the trace and determinant:

tr ρf,p(Frob`) = a`(f),

det ρf,p(Frob`) = χ̃k−1
p (`)χ(`).

Here, χ̃p : Gal(Q/Q) → Z∗p is the p-adic cyclotomic character, and we in fact

have det ρf,p = χ̃k−1
p χ.

The representation ρf,p is called the p-adic Galois representation associated

to f .

Let p be a prime ideal of K over the rational prime p. The canonical homomor-

phism K⊗Qp → Kp gives rise to the representation ρf,p : Gal(Q/Q)→ GL2(Kp),

called the p-adic Galois representation associated to f . It can be shown that ρf,p
is always irreducible, and is characterized (up to isomorphism) by ρf,p(Frob`)

having the characteristic polynomial

X2 − a`(f)X + `k−1χ(`)

for all primes ` - Np.
Let Op be the p-adic ring of integers of Kp. From the characteristic polyno-

mial, we see that both the trace tr ρf,p(Frob`) and the determinant det ρf,p(Frob`)

are in Op for almost all primes ` (since a`(f) is an algebraic integer and χ(`) is

a root of unity). Thus, we always can (and will) assume that ρf,p takes values in

GL2(Op).

Let π be a uniformizer of Kp. We obtain the mod p reduction of ρf,p by first re-

ducing ρf,p modulo π, then taking its semisimplification, and finally using the iso-

morphism O/p ∼= Op/(π) to get a representation ρf,p : Gal(Q/Q) → GL2(O/p).

Since O/p is a finite extension of Fp, we often call such a representation a mod p

Galois representation. Note that ρf,p is not necessarily irreducible, but is semisim-

ple by construction.

Similarly, we obtain the mod pm reduction of ρf,p by reducing ρf,p modulo

πm, and we again end up with a representation ρf,pm : Gal(Q/Q)→ GL2(O/pm)

(note that O/pm is not a field for m > 1!), which is unramified at every prime

` - Np. If we assume that the mod p representation ρf,p is absolutely irreducible,
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[Car94, Thm. 1] shows that ρf,pm is uniquely determined (up to isomorphism) by

ρf,pm(Frob`) having the characteristic polynomial

X2 − (a`(f) mod pm)X + (`k−1χ(`) mod pm)

for all primes ` - Np.
A Galois representation ρ is called modular (of level N , weight k and character

χ) if it is isomorphic to one of the Galois representations considered in this section,

that is if ρ is isomorphic to ρf,p, ρf,p or ρf,pm for an eigenform f ∈ Sk(N,χ).

Any modular Galois representation ρ is odd, i.e., det ρ(c) = −1 for a complex

conjugation c ∈ Gal(Q/Q). This follows because

det ρf,p(c) = χ̃k−1
p (c)χ(c) = (−1)k−1χ(−1) = (−1)2k−1 = −1,

since c acts as inversion on roots of unity and χ(−1) = (−1)k.

Serre’s conjecture, cf. [Ser87, §3], states that the necessary condition of a mod

p Galois representation ρ being odd, is also sufficient for ρ to be modular if it

is irreducible (the reducible Galois representations can be seen as coming from

Eisenstein series).

Theorem 1.1 ([KW06a, Thm. 1.2], [Kis07, Cor. 0.2]). Any odd, irreducible mod

p Galois representation is modular.

Serre also specifies an optimal level N , weight k and character χ such that

the eigenform giving rise to the Galois representation is in Sk(N,χ).

Theorem 1.1 was proven for odd p and odd conductor by Khare and Win-

tenberger in [KW06a] (modulo two theorems which are proved in [KW06b]), in

which they also reduce the general case to a modularity statement about 2-adic

lifts of modular mod 2 representations (see also [KW09]). This statement was

then proven by Kisin in [Kis07].





Chapter 2

Higher congruences between
modular forms

The first two sections of this chapter list some well-known results about congru-

ences between modular forms and construction of Eisenstein series with certain

congruence properties. The next three sections are based mainly on the paper

[CKR08], but with some slight generalizations as well as additional results. The

subsequent section discusses conjectures regarding maximal congruences between

newforms, and the final section of this chapter describes some of the computa-

tional difficulties in actually determining whether higher congruences exist be-

tween given modular forms.

2.1 Congruence results

Let N and k be positive integers. The following result is a very useful computa-

tional criterion in determining when two modular forms are congruent modulo a

prime ideal.

Theorem 2.1 ([Stu87, Thm. 1]). Let f1 and f2 be modular forms of weight k on

a congruence subgroup Γ of level N and index µ = [SL2(Z) : Γ]. Assume that f1

and f2 have coefficients in the ring of integers of a number field, and let p be a

prime ideal herein. If an(f1) ≡ an(f2) (mod p) for all non-negative integers

n ≤

{
kµ/12− (µ− 1)/N, f1 − f2 ∈ Sk(Γ),

kµ/12, otherwise,

then f1 ≡ f2 (mod p).

The integer bkµ/12c is known as the Sturm bound for Mk(Γ), and we will

refer to bkµ/12− (µ− 1)/Nc as the Sturm bound for Sk(Γ).

9
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That one can improve the Sturm bound for cusp forms is mentioned in the

proof of [Stu87, Thm. 1], and a proof that the bound given above works can be

found in [Ste07, Sec. 9.4].

Theorem 2.1 only deals with the case where the forms have the same weight

and where the power of the prime ideal is one. We will later generalize this result

to distinct weights and powers of prime ideals, cf. Section 2.3.

It should be noted that by applying Theorem 2.1 to every prime ideal of the

integer ringO of the field of coefficients, we obtain the fact that any f ∈Mk(Γ;O)

is uniquely determined by its first B Fourier coefficients a1(f), . . . , aB(f) (where

B is the Sturm bound).

In the case of newforms of squarefree level we have the following improved

bound.

Theorem 2.2 ([Stu87, Thm. 2]). Let f1 and f2 be newforms in Sk(N,χ) with

coefficients in the ring of integers of a number field, and let p be a prime ideal

herein. Assume that N is squarefree, let B be the Sturm bound, and let S be a

subset of the prime divisors of N .

If a`(f1) = a`(f2) for all ` ∈ S and there is a congruence

a`(f1) ≡ a`(f2) (mod p)

for all primes ` ≤ B/2#S, then f1 ≡ f2 (mod p).

There is a similar result about congruences between eigenforms in case of

general level.

Theorem 2.3 ([BS02, Cor. 1.7]). Let f1 and f2 be eigenforms in Sk(N,χ) with

coefficients in the ring of integers of a number field, and let p be a prime ideal

herein. Assume that N ≥ 5, let B be the Sturm bound, and let S be the set of

prime divisors of N not dividing N/ cond(χ).

If there is a congruence

a`(f1) ≡ a`(f2) (mod p)

for all primes ` ∈ S and all primes ` ≤ B/2#S, then f1 ≡ f2 (mod p).

In the case of the prime p being unramified in the field of coefficients, the

following theorem of Katz (and Serre) gives a necessary condition on the weights

for the forms to be congruent modulo (powers of) p (see also [Kat73, Thm. 3.2]).

We first introduce some notation. Let p be a prime and let β(n) denote the

maximal element order in (Z/pnZ)∗ if n is a positive integer, and put β(n) = 1
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otherwise. We define the function α : Z→ N0 by putting α(n) = ordp β(n). We

see that, for odd p, we have

α(n) = max{0, n− 1},

while we for p = 2 have

α(n) =


0, n ≤ 1,

1, n = 2,

n− 2, n ≥ 3.

Theorem 2.4 ([Kat73, Cor. 4.4.2]). Assume that N ≥ 3 and let p be a prime not

dividing N . Let f1 and f2 be cusp forms on Γ1(N) ∩ Γ0(p) of weights k1 and k2

with coefficients (when embedded into the p-adic completion of field of coefficients)

in the ring of Witt vectors W (Fpf ). Assume that not both q-expansions of f1 and

f2 vanish modulo p.

If f1 ≡ f2 (mod pm), then we have the congruence

k1 ≡ k2 (mod pα(m)(p− 1))

between the weights, where α is as above.

This theorem is one of the few results on higher congruences between modular

forms, and we will later generalize this, cf. Theorem 2.16.

2.2 Construction of Eisenstein series

One of the ways of changing the weight of a modular form, while still keeping a

congruence modulo (a power of) a prime ideal, is by multiplying the form with

powers of certain Eisenstein series with nice congruence properties. In this section

we give two well-known results on construction of such Eisenstein series.

Lemma 2.5. Let p be a prime and let N be a positive integer satisfying p | N if

p is odd and either 3 | N or 4 | N if p = 2.

Then, for any prime ideal p over p in the (p − 1)’st cyclotomic field there is

an Eisenstein series E on Γ1(N) of weight 1 such that E ≡ 1 (mod p).

The forms we construct will be on Γ1(p) for odd p, and on either Γ1(3) or

Γ1(4) for p = 2.

Proof. We first consider the case of odd p.
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Let ζ be a (p − 1)’st root of unity and let O denote the ring of integers of

Q(ζ).

Let ψ : (Z/pZ)∗ → O∗ be a Dirichlet character satisfying ψ(−1) = −1. Using

[DS05, Chap. 4.8], we get an Eisenstein series E1,ψ of weight 1 on Γ1(p) with

q-expansion

E1,ψ = 1− 2

B1,ψ

∞∑
n=1

(∑
d|n

ψ(d)

)
qn,

where B1,ψ is the first Bernoulli number of ψ, and where the k’th Bernoulli

number of ψ is defined by the equality of formal power series

p−1∑
a=1

ψ(a)xeax

epx − 1
=
∞∑
k=0

Bk,ψ
xk

k!
.

Using generating functions of Bernoulli polynomials, cf. [Was97, Prop. 4.1],

one finds that

B1,ψ =

p−1∑
a=1

ψ(a)
(a
p
− 1

2

)
=

1

p

p−1∑
a=1

ψ(a)a,

where the last equality follows because ψ is non-trivial. We note that pB1,ψ ∈ O.

Let p be a prime ideal of O over p. For an integer a not divisible by p, we

define χ(a) to be the (p− 1)’st root of unity such that

χ(a)a ≡ 1 (mod p).

This defines a Dirichlet character χ : (Z/pZ)∗ → O∗, since 1, ζ, . . . , ζp−2 are all

distinct modulo p and (O/p)∗ ∼= (Z/pZ)∗, and we also have χ(−1) = −1.

The construction described above now gives an Eisenstein series E1,χ of weight

1 on Γ1(p) ⊇ Γ1(N) with q-expansion

E1,χ = 1− 2

B1,χ

∞∑
n=1

(∑
d|n

χ(d)

)
qn.

By using the definition of χ, we find that

pB1,χ =

p−1∑
a=1

χ(a)a 6≡ 0 (mod p),

so that E1,χ has coefficients in O and E1,χ ≡ 1 (mod p).

We now turn to the case of p = 2, and consider the primitive Dirichlet char-

acter χ : (Z/4Z)∗ → {±1}. We find that B1,χ = −1
2
, so that the corresponding

Eisenstein series E1,χ on Γ1(4) has coefficients in Z and satisfies E1,χ ≡ 1 (mod 4).
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Similarly, we consider the primitive Dirichlet character χ : (Z/3Z)∗ → {±1}.
We find that B1,χ = −1

3
, so that the Eisenstein series E1,χ on Γ1(3) in this case

also has coefficients in Z and satisfies E1,χ ≡ 1 (mod 6), especially we have a

congruence modulo 2.

We will later use the fact that we for p = 2 have a congruence modulo 4 (and

not just modulo 2) when 4 | N .

Lemma 2.6. Let p be a prime and let N be a positive integer satisfying 2 | N if

p = 3 and either 3 | N or 4 | N if p = 2.

Then, there is an Eisenstein series E on Γ1(N) of weight p− 1 and a congru-

ence E ≡ 1 (mod p).

Proof. For even integers k ≥ 4, there is a unique normalized Eisentein series Ek
(by normalized we mean that the constant term is 1) of weight k on SL2(Z), and

[Ser73, Chap. VII, Prop. 4.8] gives the q-expansion of Ek as

Ek = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn,

where Bk is the k’th Bernoulli number defined by the equality of formal power

series
x

ex − 1
=
∞∑
k=0

Bk
xk

k!
,

and where we for any non-negative integer r let σr(n) denote the sum of the

r-powers of the positive divisors of n.

When p ≥ 5, we conclude from [Lan95, Chap. X, Thm. 2.1] that E = Ep−1

has coefficients in Zp and satisfies E ≡ 1 (mod p).

If p = 3, there is a unique normalized Eisenstein series E of weight 2 on

Γ1(2) ⊇ Γ1(N), and the q-expansion of this Eisenstein series is

E = 1− 24
∞∑
n=1

σ1(n)qn,

which clearly has coefficients in Z and reduces to 1 modulo 3.

Finally, if p = 2, we let E be the Eisenstein series E1,χ from the proof of

Lemma 2.5, with χ the primitive Dirichlet character of conductor 3 (resp. 4).

Then, E is of weight 1 on Γ1(3) ⊇ Γ1(N) (resp. Γ1(4) ⊇ Γ1(N)), has coefficients

in Z, and reduces to 1 modulo 2.
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2.3 Higher congruences

For a positive integer a, a commutative ring R, and a formal power series

h =
∞∑
n=0

cnq
n ∈ RJqK,

we define, for a prime ideal λ of R,

ordλa h = inf
{
n ∈ N0 | λa - (cn)

}
,

with the convention that ordλa h =∞ if λa | (cn) for all n.

We say that formal powers series h1 and h2 in RJqK are congruent modulo λa

if ordλa(h1 − h2) =∞, and we denote this by h1 ≡ h2 (mod λa).

We consider a fixed integer ring O of a number field as well as a fixed prime

ideal p of O. Let p be the rational prime under p, and put e = e(p/p). We also

consider a fixed positive integer m.

We have the following generalization of Theorem 2.1.

Proposition 2.7. Let f1 and f2 be modular forms in Mk(Γ;O) where Γ is a

congruence subgroup of level N and index µ = [SL2(Z) : Γ].

If there is a congruence

an(f1) ≡ an(f2) (mod pm)

for all non-negative integers n ≤ B, then f1 ≡ f2 (mod pm).

Here, B is the Sturm bound, cf. Section 2.1, that is B = bkµ/12− (µ−1)/Nc
if f1 − f2 ∈ Sk(Γ), and B = bkµ/12c otherwise.

Proof. We prove this by induction on m. It will be convenient to prove a slightly

more general statement, namely that the proposition holds for forms with co-

efficients in Op, the localization of O with respect to p. If h is such a form,

we can define ordpm h in the same manner as above, and the claim is then that

ordpm h > B implies ordpm h =∞ (where B is the appropriate Sturm bound).

This statement, for m = 1, follows immediately from Theorem 2.1: If h is a

form on Γ of weight k with coefficients in Op, then there is a number t ∈ O \ p

such that th has coefficients in O; this follows from the ‘bounded denominators’

property for modular forms. Then, if ordpm h > B, we have ordpm(th) > B, and

by Theorem 2.1 this implies ordpm(th) =∞, and hence also ordpm h =∞.

Assume now that m > 1, and that the proposition in the above slightly more

general form is true for powers pa of p with a < m. Consider then forms f1
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and f2 on Γ of weight k with coefficients in Op such that ordpm(f1 − f2) > B.

Let ϕ = f1 − f2. By assumption, we have ordpm ϕ > B, and therefore also

ordpm−1 ϕ > B, and hence the induction hypothesis gives ordpm−1 ϕ = ∞. Let π

be a uniformizer for p, i.e., an element π ∈ p \ p2.

We see that the form

ψ =
1

πm−1
ϕ

is a form on Γ of weight k with coefficients in Op.

Since ordpm ϕ > B, we must have ordp ψ > B, so that ordp ψ = ∞ by the

induction hypothesis for m = 1. From this we conclude that ordpm ϕ = ∞, as

desired.

We now give a result in case of the forms having distinct weights (the m = 1

case is [Koh04, Thm. 1]).

Proposition 2.8. Let f1 and f2 be modular forms of weights k1 and k2 on a

congruence subgroup Γ of level N with coefficients in O, and put k = max{k1, k2}
and

µ̃ =

{
[SL2(Z) : Γ ∩ Γ1(p)], p odd,

min{[SL2(Z) : Γ ∩ Γ1(3)], [SL2(Z) : Γ ∩ Γ1(4)]}, p = 2.

Assume that k1 ≡ k2 (mod psκ) for a non-negative integer s and a positive

integer κ.

If an(f1) ≡ an(f2) (mod pm) for all non-negative integers

n ≤ B̃ =

{
kµ̃
12
− µ̃−1

N
, fi ∈ Ski

(Γ), i = 1, 2,
kµ̃
12
, otherwise,

then f1 ≡ f2 (mod pmin{e(s+1),m}).

Additionally, we obtain the congruence f1 ≡ f2 (mod pmin{2e(s+1),m}) if p = 2

and µ̃ = max{[SL2(Z) : Γ ∩ Γ1(3)], [SL2(Z) : Γ ∩ Γ1(4)]}.

Proof. Assume without loss of generality that k2 ≥ k1. Our hypotheses imply

that we can then write

k2 = k1 + tpsκ,

where t is a non-negative integer.

Let p′ be a prime ideal over p in the (p−1)’st cyclotomic field. By Lemma 2.5,

there is an Eisenstein series of weight 1 on Γ1(p) if p is odd (resp. on Γ1(3) or

Γ1(4) if p = 2) which reduces to 1 modulo p′, and we let E be the κ’th power of

this Eisenstein series, so that E is of weight κ.

Now, view E as having coefficients in the compositum of the field of coefficients

and the (p − 1)’st cyclotomic field, and consider a prime ideal p1 herein over p
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and p′. Then, the ramification index of p1 relative to p (and to p′) is e, since

e(p′/p) = 1, and so the congruence E ≡ 1 (mod p′) becomes E ≡ 1 (mod pe1).

By induction on j, we see that Epj ≡ 1 (mod p
e(j+1)
1 ) for all non-negative

integers j, and hence also

Etps ≡ 1 (mod p
e(s+1)
1 ).

Consequently, the form

f̃ = Etps · f1

satisfies f̃ ≡ f1 (mod p
e(s+1)
1 ). We now have that

an(f̃) ≡ an(f1) (mod p
e(s+1)
1 ),

and thus

an(f̃) ≡ an(f2) (mod p
min{e(s+1),m}
1 )

for all non-negative integers n ≤ B̃, because of our hypothesis on f1 and f2.

Now, f̃ and f2 are both forms of weight k = k2 on Γ ∩ Γ1(p) if p is odd, and

on Γ ∩ Γ1(3) or Γ ∩ Γ1(4) if p = 2. Thus, Proposition 2.7 implies that

an(f̃) ≡ an(f2) (mod p
min{e(s+1),m}
1 ),

and hence also

an(f1) ≡ an(f2) (mod p
min{e(s+1),m}
1 )

for all non-negative integers n.

Since both f1 and f2 have coefficients in O and e(p1/p) = 1, we conclude that

an(f1) ≡ an(f2) (mod pmin{e(s+1),m})

for all non-negative integers n.

If p = 2 and µ̃ = max
{

[SL2(Z) : Γ ∩ Γ1(3)], [SL2(Z) : Γ ∩ Γ1(4)]
}

, we use

the Eisenstein series on Γ1(4), which according to the proof of Lemma 2.5 is

congruent to 1 modulo 4, so that we get an(f̃) ≡ an(f1) (mod p
2e(s+1)
1 ) for all

non-negative integers n ≤ B̃. We finish the remaining part of the proof in the

same way as above.

Since one of our main objectives in working with modular forms is to obtain

results about Galois representations, we are especially interested in results on

higher congruences involving eigenforms and newforms. In the formulation of

Theorem 2.2 and Theorem 2.3 we used that it is sufficient to check coefficients

indexed by primes when working with eigenforms and newforms. In the case of

distinct weights the situation is more complicated.

We first give a useful lemma.
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Lemma 2.9. Let L/K be a finite extension of number fields. Let p be a prime

ideal of K and let P be a prime ideal of L over p of ramification index e.

For every positive integer b we then have

Pb ∩K = pd
b
e
e.

Proof. There is a non-negative integer a such that ae < b ≤ (a + 1)e, and then

we have

P(a+1)e ⊆ Pb ⊆ Pae.

From this we get that

pa+1 = P(a+1)e ∩K ⊆ Pb ∩K ⊆ Pae ∩K = pa,

and so Pb ∩K is either pa or pa+1.

Assume that Pb ∩K = pa. Then pa ⊆ Pb, i.e., Pae ⊆ Pb, and so ae ≥ b, a

contradiction. We conclude that Pb ∩ K = pa+1, and since a + 1 = d b
e
e by the

definition of a, we are done.

Proposition 2.10. Let f1 and f2 be eigenforms of weights k1 and k2 on Γ1(N)

with character χ and with coefficients in O. Let ` be a prime and assume that

k1 and k2 are congruent modulo the order of ` in (Z/pdm
e
eZ)∗ if ` - Np, and that

dm
e
e < min{k1, k2} if ` = p.

Then, if a`(f1) ≡ a`(f2) (mod pm), we have a`n(f1) ≡ a`n(f2) (mod pm) for

all positive integers n.

If we require k1 ≡ k2 (mod pα(dm
e
e)(p − 1)) (where α is the function defined

on p. 11), then we automatically have the congruence in the hypothesis satisfied

for all ` - Np.

Proof. We prove this by induction on n. The n = 1 case holds because of our

hypotheses, and we now consider the case of n = 2. We have

a`2(fi) = a`(fi)
2 − χ(`)`ki−1,

and so the claim is clearly true if ` | N since χ(`) = 0 in this case.

Now assume that ` - N , so that χ(`) /∈ p. Then, a`2(f1) ≡ a`2(f2) (mod pm)

if and only if

χ(`)`k1−1 ≡ χ(`)`k2−1 (mod pm),

since a`(f1)2 ≡ a`(f2)2 (mod pm), and thus, if and only if

`k1−1 ≡ `k2−1 (mod pd
m
e
e),
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by Lemma 2.9. Assuming without loss of generality that k2 ≥ k1, we can rewrite

this as

`k1−1
(
1− `k2−k1

)
≡ 0 (mod pd

m
e
e).

By our hypotheses, we in all cases have this congruence satisfied, which com-

pletes the case of n = 2.

Finally, assume that n > 2, and that the proposition holds for all positive

integers less than n. Using the identity

a`n(fi) = a`(fi)a`n−1(fi)− χ(`)`ki−1a`n−2(fi)

as well as the induction hypothesis, we conclude the desired.

The following example shows that it is in general not sufficient to require

congruences involving coefficients indexed by primes for newforms in order to

conclude that there are congruences for all coefficients.

Example 2.11. Let f1 be the newform in S6

(
Γ0(3)

)
with q-expansion

f1 = q − 6q2 + 9q3 + 4q4 + · · ·

and let f2 be the newform in S20

(
Γ0(3)

)
with q-expansion

f2 = q + θq2 − 19683q3 + (702θ + 139840)q4 + · · · ,

where θ is a root of the polynomial x2 − 702x− 664128.

In the ring of integers O of Q(θ), we have 5O = pp2, and one finds that

a2(f1) ≡ a2(f2) (mod p).

However, a4(f1) 6≡ a4(f2) (mod p).

As mentioned previously, we work with modular forms in order to get results

about Galois representations, and with this in mind it is too restrictive to work

only with modular forms where we require congruences modulo pm for all non-

negative integers n; we wish to be able to exclude indices divisible by a certain

finite set of primes.

With this in mind, we consider a fixed finite set S of primes containing all

prime divisors of Np. We define

N ′ = N
∏
`|N

`
∏
`∈S
`-N

`2,

and note that ordp(N
′) = 1 + ordp(N) if p | N , and that ordp(N

′) = 2 if p - N .

We denote by B′ the Sturm bound for Mk(N
′).
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Proposition 2.12. Let f1 and f2 be modular forms in Mk(N ;O), and assume

that there is a congruence

a`(f1) ≡ a`(f2) (mod pm)

for all primes ` ≤ B′ with ` /∈ S.

Then this congruence holds for all primes ` /∈ S.

Proof. We first apply [Miy06, Lem. 4.6.5]: By that lemma, we obtain from the

fi, forms f ′i in Mk(N
′), by putting

f ′i =
∑
`-n
`∈S

an(fi)q
n.

Also, if the fi are cusp forms, so are the f ′i .

The f ′i obviously still have coefficients in O, and all Fourier coefficients, at

any index n divisible by a prime in S, vanish. By our hypothesis, we can thus

conclude that

an(f ′1) ≡ an(f ′2) (mod pm)

for all non-negative integers n ≤ B′.

From Proposition 2.7, we then get that f ′1 ≡ f ′2 (mod pm), and from this it

follows that

a`(f1) ≡ a`(f2) (mod pm)

for all primes ` /∈ S.

That the increase of the bound is really necessary when we exclude a finite

set of primes can be seen from the following example.

Example 2.13. Let f1 and f2 be the two newforms in S14

(
Γ0(2)

)
. Both f1 and

f2 have q-expansions with integral coefficients.

We have N = 2 and k = 14, so that B = 2 (using the improved bound we

get for cusp forms). Let p be any prime and m any positive integer. Putting

S = {2, p}, we automatically have that a`(f1) ≡ a`(f2) (mod pm) for all primes

` ≤ B with ` /∈ S, but clearly this is not true for all primes ` /∈ S.

If p is odd, we have N ′ = 4p2, and so µ′ = 6p(p + 1), giving a B′ of roughly

7p(p+ 1), which for just p = 3 means at least 20 additional primes would need to

be checked in order to conclude that such congruences exist for all primes ` /∈ S.

It would be very useful to obtain a better bound than the B′ used here, since

this bound is very big compared to the original bound B.

Let us note that we do have certain congruences between f1 and f2. In fact,

a`(f1) ≡ a`(f2) (mod 210 · 3) for all primes ` 6= 2. There are no congruences for

all primes ` /∈ {2, p} for any other prime p.
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We have the following application of Lemma 2.12 to Proposition 2.8.

Corollary 2.14. Let f1 and f2 be modular forms of weights k1 and k2 on Γ1(N)

with coefficients in O, and assume that k1 ≡ k2 (mod psκ) for a non-negative

integer s and a positive integer κ. Assume additionally that either 3 | N or 4 | N
if p = 2, and let B′ be the Sturm bound for Mk(N

′), where k = max{k1, k2}.
If a`(f1) ≡ a`(f2) (mod pm) for all primes ` ≤ B′ with ` /∈ S, then

a`(f1) ≡ a`(f2) (mod pmin{e(s+1),m})

for all primes ` /∈ S.

Additionally, a`(f1) ≡ a`(f2) (mod pmin{2e(s+1),m}) if p = 2 and 4 | N .

Proof. Observe first the following (which we use in the case of odd p): If p - N ,

then upon replacing N by Np, and re-calculating N ′, we end up with the same

number N ′ as had we calculated it from N , since p ∈ S, cf. p. 18, and so the

Sturm bound B′ remains unchanged. And of course our forms on Γ1(N) are also

forms on Γ1(Np).

This means that we may well assume that N is divisible by p; our hypotheses

remain unchanged when N is replaced by Np if N is not divisible by p. We

therefore have that Γ1(N) is contained in Γ1(p) for odd p and in either Γ1(3) or

Γ1(4) for p = 2.

Following the proof of Proposition 2.8, we assume that k2 ≥ k1, then look at

the same Eisenstein series E of weight κ (which is now on Γ1(N)) and the same

form f̃ = Etps · f1, so that we have

a`(f̃) ≡ a`(f1) (mod p
e(s+1)
1 )

for all primes ` ≤ B′ with ` /∈ S (recall that p1 is a prime ideal over p in the

compositum of the field of coefficients and the (p− 1)’st cyclotomic field).

From this we get that

a`(f̃) ≡ a`(f2) (mod p
min{e(s+1),m}
1 )

for all primes ` ≤ B′ with ` /∈ S.

Now, f̃ and f2 are both forms of weight k = k2 on Γ1(N) because of our

hypothesis on N . Thus, Lemma 2.12 implies that

a`(f̃) ≡ a`(f2) (mod p
min{e(s+1),m}
1 ),

and hence also

a`(f1) ≡ a`(f2) (mod p
min{e(s+1),m}
1 )

for all primes ` /∈ S.

We finish the proof in the same way as for Proposition 2.8
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We note the following result, which says that the Sturm bounds for modular

forms on Γ1(N) with character are the same as the Sturm bounds for Γ0(N).

Corollary 2.15 (Buzzard). Let f1 and f2 be modular forms in Mk(N,χ;O) and

let B and B′ be the Sturm bounds corresponding to weight-k modular forms on

Γ0(N) and Γ0(N ′).

(i) If there is a congruence

an(f1) ≡ an(f2) (mod pm)

for all non-negative integers n ≤ B, then f1 ≡ f2 (mod pm).

(ii) If there is a congruence

a`(f1) ≡ a`(f2) (mod pm)

for all primes ` ≤ B′ with ` /∈ S, then this congruence holds for all primes ` /∈ S.

Corollary 2.15 is in its original form only stated and proved for m = 1 and

congruences for all indices n, but because of Proposition 2.7 it is easily general-

ized.

Proof. Let ϕ = f1− f2, and let d be the order of the Dirichlet character χ. Then

ϕd is a modular form on Γ0(N) of weight dk, and

d ordpm ϕ = ordpm(ϕd) > dB,

showing that ordpm ϕ > B, so that ordpm ϕ =∞ by Proposition 2.7, as desired.

Part (ii) follows from (i) by replacing the forms fi on Γ1(N) with the forms

f ′i on Γ1(N ′), as in the proof of Lemma 2.12.

2.4 Distinct weights via Katz-Serre

We again consider a fixed integer ring O of a number field K, as well as a prime

ideal p of O over the prime p with ramification index e = e(p/p). Let L denote

the Galois closure of K, and let P be a prime ideal of L over p. We write e(L, p)

for the ramification index e(P/p), and put r = ordp e(L, p).

Let f1 and f2 be normalized cusp forms of weights k1 and k2 with coefficients

in O, and put k = max{k1, k2}. If f1 and f2 are forms on Γ1(N), we let B and

B′ be the Sturm bounds for Sk(N) and Sk(N
′), and we let S be a finite set of

primes containing the prime divisors of Np.

Recall the function α : Z → N0 introduced on p. 11, which can be seen as

being defined by

α(n) = max{0, n− 1},
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for odd p, and

α(n) =


0, n ≤ 1,

1, n = 2,

n− 2, n ≥ 3.

for p = 2.

Theorem 2.16. (i) Assume that N ≥ 3 is not divisible by p, and that f1 and f2

are forms on Γ1(N) ∩ Γ0(p).

If f1 ≡ f2 (mod pm), then we have the congruence

k1 ≡ k2 (mod pα(dm
e
e−r)(p− 1))

between the weights.

(ii) Let N be arbitrary, and assume that f1 and f2 are forms on Γ1(N).

Assume additionally that either 3 | N or 4 | N if p = 2.

Suppose that k1 ≡ k2 (mod ps(p− 1)) for a non-negative integer s.

If a`(f1) ≡ a`(f2) (mod pm) for all primes ` ≤ B′ with ` /∈ S, then we have

a`(f1) ≡ a`(f2) (mod pmin{e(s+1),m})

for all primes ` /∈ S, and additionally a`(f1) ≡ a`(f2) (mod pmin{2e(s+1),m}) for

all primes ` /∈ S if p = 2 and 4 | N .

In particular, if s = α(dm
e
e − r), we have the congruence

a`(f1) ≡ a`(f2) (mod pm)

for all primes ` /∈ S if m ≤ e or (p is odd and r = 0) or (p = 2, 4 | N and r = 0)

or (p = 2, 3 | N , r = 0 and m ≤ 2e).

Part (i) of Theorem 2.16 can be seen as a generalization of Theorem 2.4, and

this theorem is also the main point of the proof. Theorem 2.4 takes care of the

unramified case, and the strategy of the proof of (i) is to reduce the general case

to the unramified case, and then apply the theorem.

Proof. Part (i): Let L0 be the subfield of L corresponding to the inertia group

I(P/p). Let p0 be the prime ideal of L0 under P.

We let σ ∈ I(P/p) act on the fi by acting on their Fourier coefficients. Since

f1 ≡ f2 (mod pm), we have σ(f1) ≡ σ(f2) (mod Pme(P/p)) for all σ ∈ I(P/p).

Letting

F1 =
∑
σ

σ(f1) and F2 =
∑
σ

σ(f2),
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with the sums taken over all σ ∈ I(P/p), we therefore obtain

F1 ≡ F2 (mod Pme(P/p)).

Since F1 and F2 are invariant under the action of I(P/p), they actually have

coefficients in L0, and we therefore have

F1 ≡ F2 (mod p
dm

e
e

0 ),

since Pb ∩ L0 = p
d b

e(L,p)
e

0 for non-negative integers b, cf. Lemma 2.9, and because

e(L, p) = e(p/p)e(P/p) = e · e(P/p).

Now, the extension (L0)p0/Qp of local fields is unramified, and so (L0)p0 is

the field of fractions of the ring W = W (Fpf ) of Witt vectors over Fpf , for some

positive integer f . Since the Fi have integral coefficients in L0, we can view them

as having coefficients in W .

Let a be the largest non-negative integer such that all Fourier coefficients of

F1 and F2 are divisible by pa. Then the forms p−aF1 and p−aF2 are cusp forms on

Γ1(N) ∩ Γ0(p) of weights k1 and k2, respectively, and with coefficients in W . At

least one of these forms has a q-expansion that does not reduce to 0 identically

modulo p. Their q-expansions are congruent modulo

p
max{0,dm

e
e−a}

0 ,

and hence also modulo

p
max{0,dm

e
e−r}

0 ,

since certainly a ≤ r, because the coefficient of q for each Fi equals #I(P/p),

which is just e(L, p).

By Theorem 2.4, and also [Kat73, Thm. 3.2], we then deduce that

k1 ≡ k2 (mod pα(dm
e
e−r)(p− 1)),

where α is the function given before the theorem. Notice that we need our

hypothesis N ≥ 3 because of this reference to [Kat73].

Part (ii): That we get a congruence

a`(f1) ≡ a`(f2) (mod pmin{e(s+1),m})

for all primes ` /∈ S, follows directly from Corollary 2.14 with κ = p− 1.

Now, assume that s = α(dm
e
e − r). We will show that m ≤ e(s + 1) (resp.

m ≤ 2e(s+ 1)) in the cases mentioned in the theorem.
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If m ≤ e, we clearly always have m ≤ e(s+ 1).

If p is odd and r = 0, we have s = dm
e
e − 1, and so

e(s+ 1) = edm
e
e ≥ m.

Next, assume that p = 2, r = 0 and either 3 | N or 4 | N . The case m ≤ e

is already taken care of, so assume that e < m ≤ 2e. Then s = 1, and so

e(s+ 1) = 2e ≥ m.

Finally, assume that p = 2, r = 0 and 4 | N . Write dm
e
e = n for an integer

n ≥ 3 (we already considered n ≤ 2). Then s = n− 2 and we get

2e(s+ 1) = 2e(n− 1) > en ≥ m,

since 2(n− 1) > n because n ≥ 3.

In each case, we thus conclude that there is a congruence

a`(f1) ≡ a`(f2) (mod pm)

for all primes ` /∈ S.

We have the following corollary to Theorem 2.16 (in the case of odd p with

p - e(L, p)).

Corollary 2.17. Retain the setup and notation of Theorem 2.16, and assume

that p is odd, r = 0, that N ≥ 3 is not divisible by p and 2 | N if p = 3, and that

f1 and f2 are forms on Γ1(N).

Then f1 ≡ f2 (mod pm) if and only if an(f1) ≡ an(f2) (mod pm) for all

positive integers n ≤ B and we have the congruence

k1 ≡ k2 (mod pd
m
e
e−1(p− 1))

between the weights.

Proof. That the congruence f1 ≡ f2 (mod pm) implies the congruence between

the first B coefficients, as well as between the weights, is a direct consequence of

Theorem 2.16.

To prove the converse, we use the same type of argument as in the proof of

Proposition 2.8, just with some other Eisenstein series.

We can assume that k2 ≥ k1, and we write

k2 = k1 + tpd
m
e
e−1(p− 1),

where t is a non-negative integer.
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Letting E be the Eisenstein series of weight p− 1 on Γ1(N) from Lemma 2.6

satisfying E ≡ 1 (mod p), we define

f̃ = Etpd
m
e e−1

· f1.

Then, f̃ has weight k2 and is congruent to f1 modulo pd
m
e
e, which we write as

f̃ ≡ f1 (mod pm),

using that m ≤ edm
e
e.

Consequently, we get that

an(f̃) ≡ an(f2) (mod pm)

for all positive integers n ≤ B, and we conclude from Proposition 2.7 that we

have f̃ ≡ f2 (mod pm), and hence also f1 ≡ f2 (mod pm).

Theorem 2.16 gives a necessary condition on the weights when one is looking

for congruences modulo pm. We apply this condition and use the mathematics

software program Magma, cf. [BCP97], to give some examples of higher congru-

ences between newforms where p is ramified in the field of coefficients.

Example 2.18. Consider the (normalized) cusp form f1 on Γ0(9) of weight 4

with q-expansion

f1 = q − 8q4 + 20q7 + · · · .

We try to find congruences of the coefficients of f1 and f2 modulo powers of a

prime ideal above 5, for a form f2 of weight k2 satisfying k2 ≡ 4 (mod 20). We

let S = {3, 5}.
The smallest possible choice of weight for f2 is k2 = 24, i.e., s = 1. There is a

newform f2 on Γ0(9) of weight 24 with coefficients in the number field K = Q(θ),

with θ a root of x4 − 29258x2 + 97377280. The prime 5 is ramified in K and has

the decomposition 5O = p2p2, where O is the ring of integers of K.

We have k = 24, N = 9, N ′ = 675 and µ′ = 1080, from which we get the

Sturm bound B′ = 2040. We find that

a`(f1) ≡ a`(f2) (mod p3)

for all primes ` ≤ B′ with ` 6= 3, 5.

Since [K : Q] = 4, the Galois closure L of K satisfies [L : K] | 24 (in fact

[L : K] = 8 in this case). This shows that 5 - e(L, 5), so that r = 0. Combined

with the fact that 5 is odd, we conclude from Theorem 2.16 that

a`(f1) ≡ a`(f2) (mod p3)

for all primes ` 6= 3, 5.
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Next we do an example where the weights are congruent modulo a higher

power of p.

Example 2.19. We again start with the cusp form

f1 = q − 8q4 + 20q7 + · · ·

on Γ0(9) of weight 4. Another possible choice of weight for f2 is k2 = 104, so that

k1 ≡ k2 (mod 52). There is a newform f2 on Γ0(9) of weight 104 with coefficients

in a number field K of degree 18. We do not give the defining polynomial for

K here, since the coefficients are huge (the constant term for instance has 279

digits). The prime 5 is ramified in K and has the decomposition

5O = p2p2p3p
2
4p

2
5p

2
6p

2
7p

2
8p

2
9,

where O is the ring of integers of K.

As N is the same is in the previous example, we again have µ′ = 1080, which

for k = 104 gives the Sturm bound B′ = 9240. We find that

a`(f1) ≡ a`(f2) (mod p5)

for all primes ` ≤ B′ with ` 6= 3, 5.

We can compute that the degree of the Galois closure L of K is 216 · 34 · 5 · 7,

which means that r is either 0 or 1. Since s = 2, e = e(p/5) = 2 and m = 5, we

find that min{e(s+ 1),m} = 5, so that we from Theorem 2.16 can conclude that

a`(f1) ≡ a`(f2) (mod p5)

for all primes ` ≤ B′ with ` 6= 3, 5.

The last example took over 9 hours to compute at the fastest server available

at the Department of Mathematical Sciences at the University of Copenhagen.

By far the most time-consuming part was computing the newforms on Γ0(9) of

weight 104 (there are four). In Section 2.7, we discuss in more detail how we are

able to compute prime decompositions in number fields of large degree.

2.5 Distinct weights via Galois representations

We still consider the fixed integer ring O of a number field, as well as a prime

ideal p of O over the prime p with ramification index e = e(p/p).

Let f1 and f2 now be (normalized) cusp forms in Sk1(N,χ1) and Sk2(N,χ2)

with coefficients in O, and put k = max{k1, k2}. As before, we let B and B′ be



Higher congruences between modular forms 27

the Sturm bounds for Sk(N) and Sk(N
′), and we again let S be a finite set of

primes containing the prime divisors of Np.

We say that f1 and f2 are eigenforms outside S if they are eigenforms for all

Hecke operators T` for primes ` /∈ S. The corresponding eigenvalue for such a T`
acting on fi is then exactly the coefficient a`(fi).

We now give a result in the vein of Theorem 2.16, but where the strategy of the

proof is to work with determinant characters of mod pm Galois representations

associated to eigenforms outside S, cf. Section 1.5. Note that we allow p to divide

N in this approach.

Theorem 2.20. (i) Assume that f1 and f2 are eigenforms outside S, and that at

least one of the mod p Galois representations ρf1,p or ρf2,p is absolutely irreducible.

View the characters χ1 and χ2 as finite order characters on Gal(Q/Q), and

let the order of the character (
χ2χ

−1
1 mod pm

)
|Ip ,

where Ip is an inertia group at p, be pδd with d a positive divisor of p− 1.

If we have a`(f1) ≡ a`(f2) (mod pm) for all primes ` /∈ S, then we have

δ ≤ α(dm
e
e) and the congruence

k1 ≡ k2 (mod pα(dm
e
e)−δ · (p− 1)/d),

between the weights.

(ii) Let d be a positive divisor of p − 1 and let s be a non-negative integer.

Assume that there is a congruence

k1 ≡ k2 (mod ps · (p− 1)/d)

between the weights, and assume additionally that either 3 | N or 4 | N if p = 2.

If a`(f1) ≡ a`(f2) (mod pm) for all primes ` ≤ B′ with ` /∈ S, then we have

a`(f1) ≡ a`(f2) (mod pmin{e(s+1),m})

for all primes ` /∈ S, and additionally a`(f1) ≡ a`(f2) (mod pmin{2e(s+1),m}) for

all primes ` /∈ S if p = 2 and 4 | N .

In particular, if s = α(dm
e
e), we have the congruence

a`(f1) ≡ a`(f2) (mod pm)

for all primes ` /∈ S if p is odd or (p = 2 and 4 | N) or (p = 2, 3 | N and

m ≤ 2e).
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Proof. Part (i): Consider the associated mod pm Galois representations ρf1,pm

and ρf2,pm of f1 and f2.

Since a`(f1) ≡ a`(f2) (mod pm) for all primes ` /∈ S, we can conclude by

Chebotarev’s density theorem that the representations ρf1,pm and ρf2,pm have the

same traces. As at least one of the mod p representations is assumed abso-

lutely irreducible, the mod pm representations ρf1,pm and ρf2,pm are isomorphic,

cf. [Car94, Thm. 1]. Hence, the determinants of these representations are also

isomorphic. These determinants are

det ρfi,pm =
(
χiχ̃

ki−1 mod pm
)
,

where χ̃ denotes the p-adic cyclotomic character χ̃ : Gal(Q/Q) → Z∗p, and the

characters χi are now seen as finite order characters on Gal(Q/Q). Observe that

the characters χi take values in O, so that it makes sense to reduce them modulo

pm. Also, reducing χ̃ modulo pm is to be taken in the obvious sense.

We can now deduce that(
χ2χ

−1
1 mod pm

)
|Ip =

(
χ̃ mod pm

)k1−k2|Ip .
Now let us view, via local class field theory, the character

(
χ̃ mod pm

)
|Ip as a

character on Z∗p. As such it factors through (Z/pdm
e
eZ)∗ and has order

pα(dm
e
e)(p− 1),

cf. Lemma 2.9. By definition, the character
(
χ2χ

−1
1 mod pm

)
|Ip has order pδd,

with d a divisor of p − 1. Hence, we see that pδd is a divisor of pα(dm
e
e)(p − 1),

which implies that δ ≤ α(dm
e
e). We conclude from this, that k1 − k2 is divisible

by pα(dm
e
e)−δ · (p− 1)/d, as desired.

Part (ii): That we get a congruence

a`(f1) ≡ a`(f2) (mod pmin{e(s+1),m})

for all primes ` /∈ S, follows directly from Corollary 2.14 with κ = (p− 1)/d.

The remaining statement involving the case s = α(dm
e
e) is shown just as in

the proof of Theorem 2.16.

The following corollary follows immediately from Theorem 2.20.

Corollary 2.21. Retain the setup and notation of Theorem 2.20, and assume

that δ = 0 and p is odd.

Then, a`(f1) ≡ a`(f2) (mod pm) for all primes ` /∈ S if and only if this

congruence holds for all primes ` ≤ B′ with ` /∈ S and we have the congruence

k1 ≡ k2 (mod pd
m
e
e−1 · (p− 1)/d)

between the weights.
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2.6 Maximal congruences between newforms

Assume that f1 and f2 are newforms on Γ0(N) of distinct weights k1 and k2, and

let s be the largest non-negative integer such that k1 ≡ k2 (mod ps(p− 1)). Let

p be a prime ideal over the prime p in the integer ring of the field of coefficients

of f1 and f2, and let m be a positive integer such that there is a congruence

a`(f1) ≡ a`(f2) (mod pm)

for all primes ` - Np.
Then it follows from Theorem 2.20 that d m

e(p/p)
e ≤ s+ 1 if p is odd, and that

d m
e(p/p)

e ≤ s + 2 if p = 2 (supposing the additional hypotheses of Theorem 2.20

to be satisfied).

It is interesting to ask whether these upper bounds for d m
e(p/p)

e are attained if

we allow f1 and f2 to run through all newforms of Sk1
(
Γ0(N)

)
and Sk2

(
Γ0(N)

)
,

as well as letting p run through all prime ideals over p in the field of coefficients.

During work on the results proven in the previous sections, we omputed many

examples with newforms of various levels and weights. Based on these numerical

examples it seems reasonable to conjecture the following.

Conjecture 2.22. Let N be a positive integer and let p be a prime. Let k1 and

k2 be distinct positive integers such that there are newforms on Γ0(N) of weights

k1 and k2, and assume that k1 ≡ k2 (mod ps(p−1)) with the non-negative integer

s as big as possible.

Then there exist newforms f1 and f2 on Γ0(N) of weights k1 and k2, a prime

ideal p over p in the integer ring of a number field containing the coefficients of

f1 and f2, and a positive integer m satisfying s ≤ d m
e(p/p)

e ≤ s+ 2, such that

a`(f1) ≡ a`(f2) (mod pm)

for all primes ` - Np.

Note that the conjecture does not say that such a ‘maximal congruence’ exists

for any specific pair of newforms in Sk1
(
Γ0(N)

)
and Sk2

(
Γ0(N)

)
, just that such

a pair of newforms exist.

We denote by L
(N,p)
k1,k2

the maximally attained value for d m
e(p/p)

e between new-

forms on Γ0(N) of weights k1 and k2, and we write simply Lk1,k2 if N and p are

clear from the context.

When p is odd, we in our computations in general get Lk1,k2 = s + 1, but

there are sporadic cases where we only get Lk1,k2 = s. When p = 2, the evidence

suggests that we get only Lk1,k2 = s + 2 when 5 - N (except for a few sporadic
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cases where Lk1,k2 = s), and that we get both Lk1,k2 = s + 1 and Lk1,k2 = s + 2

when 5 | N (plus a few sporadic cases with Lk1,k2 = s). These phenomena could

very well be due to the limited nature of the numerical data, and these limitations

obviously also necessitate a caveat in connection with Conjecture 2.22.

In Appendix A, we give some computational evidence for Conjecture 2.22.

These results show that the conjecture holds for all levels N < 10 and primes

p = 2, 3, 5, with the weights k1 and k2 satisfying 2 ≤ k1 < k2 ≤ k1 + 64 and

k1 ≤ k(N), with the following choices of k(N): k(1) = 22, k(2) = 24, k(3) = 12,

k(4) = 14, k(5) = 6, k(6) = 22, k(7) = 22, k(8) = 10 and k(9) = 6.

We have also verified the conjecture for the levels N = 10, 12, 15, 16, 18, 20, 24,

25, 27 and primes p = 2, 3, 5, with k1 and k2 satisfying 2 ≤ k1 < k2 ≤ k1 + 32 and

k1 ≤ k(N), with the following choices of k(N): k(10) = 10, k(12) = 14, k(15) = 6,

k(16) = 10, k(18) = 16, k(20) = 6, k(24) = 8, k(25) = 4 and k(27) = 2.

When looking at the tables in Appendix A for fixed N and p, it is seen that

when we fix k1 and let k2 vary, there is a distinct pattern in the values of Lk1,k2 ,

and this pattern seems to depend only on s: When increasing k2, we get (except

for the sporadic cases) higher values for Lk1,k2 exactly when we get higher values

for s. The sporadic cases (which primarily occur when the weights are small and

close to each other) are italicized in the tables of Appendix A.

We include as much numerical data as possible in Appendix A, since this is

essentially all we have to support Conjecture 2.22 at this point. Hopefully, it can

also serve as inspiration, or at least save time, for anyone interested in working

with these questions.

We have also tested for maximal congruences when lowering the level from

Γ0(Np) to Γ0(N), and the information gathered through these examples gives

rise to a pair of conjectures (two distinct things happen according to whether or

not p2 | N).

Conjecture 2.23. Let N be a positive integer and let p be a prime such that

p2 - N . Let k1 and k2 be distinct positive integers such that there are newforms

in Sk1
(
Γ0(Np)

)
and Sk2

(
Γ0(N)

)
, and assume that k1 ≡ k2 (mod ps(p− 1)) with

the non-negative integer s as big as possible.

Then there exist newforms f1 ∈ Sk1
(
Γ0(Np)

)
and f2 ∈ Sk2

(
Γ0(N)

)
, a prime

ideal p over p in the integer ring of a number field containing the coefficients of

f1 and f2, and a positive integer m satisfying s ≤ d m
e(p/p)

e ≤ s+ 2, such that

a`(f1) ≡ a`(f2) (mod pm)

for all primes ` - Np.
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We denote by M
(N,p)
k1,k2

the maximally attained value for d m
e(p/p)

e between new-

forms in Sk1
(
Γ0(Np)

)
and Sk2

(
Γ0(N)

)
, and we write simply Mk1,k2 if N and p

are clear from the context.

We note that the conclusions of Conjecture 2.23 and those of Conjecture 2.22

are essentially identical.

The evidence suggests that we always get Mk1,k2 = s + 1 when p is odd, and

that we generally get Mk1,k2 = s + 1 or Mk1,k2 = s + 2 when p = 2 (plus a few

sporadic cases with Mk1,k2 = s). For p = 2, it appears that we get Mk1,k2 = s+ 2

when 5 - N (except for the sporadic cases), and that both Mk1,k2 = s + 1 and

Mk1,k2 = s+ 2 can occur when 5 | N . We again note that these phenomena could

be due to the limited size of the numerical data.

In Appendix B, we give some computational evidence for Conjecture 2.23.

These results show that the conjecture holds for all base levels N < 10 and

primes p = 2, 3, 5 (the case N = 7 and p = 5 has not been computed), with

the weights k1 and k2 satisfying 2 ≤ k1 < k2 ≤ k1 + 64 and k1 ≤ k(N,p), with

the following choices of k(N,p): k(1,2) = 24, k(1,3) = 12, k(1,5) = 6, k(2,2) = 16,

k(2,3) = 22, k(2,5) = 10, k(3,2) = 22, k(3,3) = 6, k(3,5) = 6, k(4,3) = 14, k(4,5) = 6,

k(5,2) = 10, k(5,3) = 6, k(5,5) = 4, k(6,2) = 14, k(6,3) = 16, k(6,5) = 12, k(7,2) = 6,

k(7,3) = 2, k(8,2) = 10, k(8,3) = 8, k(8,5) = 4, k(9,2) = 16, k(9,3) = 2 and k(9,5) = 4.

We have also verified the conjecture for the base levels N = 10, 12, 15, 16, 18,

20, 24 and primes p = 2, 3, 5, with k1 and k2 satisfying 2 ≤ k1 < k2 ≤ k1 + 32

and k1 ≤ k(N,p), with the following choices of k(N,p): k(10,2) = 6, k(10,3) = 12,

k(10,5) = 6, k(12,2) = 8, k(12,3) = 8, k(12,5) = 8, k(15,2) = 12, k(15,3) = 4, k(15,5) = 2,

k(16,2) = 4, k(16,3) = 8, k(16,5) = 4, k(18,2) = 8, k(18,3) = 6, k(18,5) = 6, k(20,2) = 4,

k(20,3) = 8, k(20,5) = 2, k(24,2) = 8, k(24,3) = 6 and k(24,5) = 4.

When looking at the tables in Appendix B with p2 - N , we see the same

patterns as in the tables of Appendix A (as before we have italicized the sporadic

cases).

An interesting thing occurs when p2 | N . The computational evidence sug-

gests the following.

Conjecture 2.24. Let N be a positive integer and let p be a prime with p2 | N .

There exists a positive integer M such that for all newforms f1 ∈ Sk1
(
Γ0(Np)

)
and f2 ∈ Sk2

(
Γ0(N)

)
with k1 and k2 distinct positive integers, and all prime ideals

p over p in a number field containing the coefficients of f1 and f2 the following

holds: If there is a positive integer m and a congruence

a`(f1) ≡ a`(f2) (mod pm)

for all primes ` - Np, then d m
e(p/p)

e ≤M .
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In other words, Conjecture 2.24 says that there is an upper bound for M
(N,p)
k1,k2

,

which is independent of the weights k1 and k2, i.e., depending only on N and p,

when p2 | N . This is in stark contrast to the conjecture in the case of p2 - N ,

where we can attain arbitrarily high values by just increasing the weight, since

we only need to increase s in the weight congruence k1 ≡ k2 (mod ps(p− 1)).

We have not included all of the computed tables regarding Conjecture 2.24 in

Appendix B, only those with base level N < 25, since these tables illustrate what

happens in the case of p2 | N . We have computed a few more examples with

base level N > 25, and the tables below summarize all results in case of p = 2

and p = 3 (where we for each choice of k1 have computed for all k2 satisfying

k1 < k2 ≤ k1 + 32, and also for k2 ≤ k1 + 64 when N < 10):

p = 2
N k1 Mk1,k2

4 4, 6, 8, 10 3, 4, 5
8 4, 6, 8, 10 3
12 2, 4, 6, 8 3, 4, 5
16 2, 4 2
20 2, 4 1, 2, 3, 4, 5
24 2, 4, 6, 8 3
32 2, 4 2

p = 3
N k1 Mk1,k2

9 2 1
18 2, 4, 6 1, 2
36 2 1, 2

For the sake of clarity, we should mention that when we for (say) N = 8

and p = 2 state that the only value of Mk1,k2 that occurs is 3, we mean that

for each pair of weights k1 and k2, there exist newforms f1 ∈ Sk1
(
Γ0(16)

)
and

f2 ∈ Sk2
(
Γ0(8)

)
, as well as a prime ideal p over p in the integer ring of the field

of coefficients of f1 and f2, such that there is a congruence

a`(f1) ≡ a`(f2) (mod pm)

for all primes ` 6= 2 with d m
e(p/p)

e = 3 (and no such congruence with d m
e(p/p)

e > 3).

By looking at the above two tables, one naturally starts to consider if the

bound M is actually independent of N , and only depends on p (with M = 5 if

p = 2, and M = 2 if p = 3). In our computations, we have not encountered any

congruences where these upper bounds were not correct, but there is a severe

lack of examples due to the very time-consuming process of computing newforms

when the level and/or weight increases, and so we have not chosen to include this

in the formulation of Conjecture 2.24.

Another interesting question that immediately arises is if one can formulate

similar conjectures for Γ1(N) (and Γ1(Np)). In light of Theorem 2.20, one would
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need to adjust the attainable values to reflect the possible ramification of the

characters involved.

One could also consider the case of level-lowering from Γ0(Nq) to Γ0(N) (or

Γ1(Nq) to Γ1(N)) modulo powers of p, where p and q are distinct primes.

Since work on these conjectures began only a few months before the due date

of this thesis, we have not had the time to look much into either of these questions,

but both would be very interesting to investigate.

2.7 Computational issues

Several computational problems arise when the level N (or Np) and weight

k = max{k1, k2} become ‘large’. The first complication is the computation of

newforms, which takes a very long time for just something like S100

(
Γ0(6)

)
, and

this limits how large N and k we can effectively test for. Note: It seems as if the

command Newforms(CuspidalSubspace(ModularForms(N,k))) of the modular

forms package of Magma is significantly faster than its modular symbols counter-

part SortDecomposition(NewformDecomposition(NewSubspace(CuspidalSub-

space(ModularSymbols(N,k))))) used with the SystemOfEigenvalues func-

tion. We use the SortDecomposition function as our way of numbering newforms

of any given level and weight.

Another issue entirely is determining the decomposition of the prime p in the

ring of integers O of the field of coefficients. The natural way to do this is to

let Magma compute O via IntegerRing and then use Decomposition(O,p).

The first step in determining O this way, is to compute the prime divisors of

the discriminant of the number field, but this quickly turns into a very difficult

problem since the discriminant becomes huge for relatively small N and k, and

also contains very large prime divisors. Even for level N = 1 we cannot compute

O for newforms of weight k > 74. This weight bound quickly decreases as the

level increases, and for N = 10 we cannot go higher than k = 26.

There are other ways that one can compute the decomposition of p in O, but

what we need is the p-adic valuation of a`(f1) − a`(f2) for certain primes ` and

a prime ideal p of O above p. This requires much more information about p,

such as its generators expressed in terms of a primitive element of the field of

coefficient.

This was a major concern, until we discovered the Montes package for Magma

(available online since the summer of 2009, see also [GMN08a], [GMN08b] and

[GMN08c]), which uses Newton polygons of higher order to compute many things

related to integer rings of number fields. The authors of this package were kind
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enough to modify their existing package to include a function to compute exactly

what we need:

First, given a rational prime p, compute the prime ideals ofO over p (including

the corresponding ramification indices, residue class degrees and generators, if so

desired). Then, for an element θ of O and a prime ideal p over p, return the

p-adic valuation of θ.

The computation of prime ideals is extremely fast, even in cases where the

degree of the field of coefficients is very large. Even though the computation

of the p-adic valuation of a`(f1) − a`(f2) is also fast, it can take a long time to

compute this for all necessary primes `, since B′ becomes very big compared to

B.

As an example, let us consider the case of Sk
(
Γ0(12)

)
and p = 5. We find

N ′ = 1800 and µ′ = 4320, giving a Sturm bound of B′ = 360k − 361, which is

almost 180 times bigger than the original bound B = 2k − 2. If k = 100, this

means that 3748 additional primes need to be checked.
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Complexity of computing cusp
forms

This chapter is based on the paper [Ras09].

As we saw in the last part of the previous chapter, it is often extremely

useful to be able to work explicitly with spaces of modular forms, for instance,

in working with elliptic curves, testing conjectures, etc. The standard way of

doing this is via modular symbols, and to our knowledge every available software

package uses this approach to compute bases of spaces of modular forms. A good

reference for the computational aspects of this is [Ste07].

Another way of computing modular forms is via a cohomological approach,

based on the Eichler-Shimura isomorphism, as done by Wang in [Wan94]. This

approach is essentially the same as the modular symbols approach over the ratio-

nals, due to the isomorphism (as Hecke modules) between modular symbols and

certain comohology groups over Q (a detailed look into this is done in [Wie09]).

In this chapter we describe an explicit implementation of the algorithm sug-

gested by Wang, and then analyze its complexity.

The main result of this complexity analysis is the following.

Theorem 3.1. An upper bound on the theoretical complexity of determining a

basis for Sk(N,χ) via the cohomological approach described below is

O
(
N3+εk2+ε(N + k4)

)
,

for ε > 0.

Finally, we give two examples, where we work through the main steps of the

algorithm. The first of these examples is the easier case of trivial character, while

the second example with non-trivial character showcases some other aspects of

the algorithm.

35
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3.1 Wang’s work

In this section we sketch the theory behind Wang’s approach (without proofs

since these can be found in [Wan94]). Also, we introduce much of the notation

of this chapter.

3.1.1 The Eichler-Shimura isomorphism and the Shapiro
lemma

Let ∆ denote all 2× 2 matrices with coefficients in Z, and let Γ = SL2(Z) be the

matrices herein with determinant 1. We also define

∆0(N) =

{(
a b
c d

)
∈ ∆

∣∣∣∣ c ≡ 0 mod N

}
,

Γ0(N) =

{(
a b
c d

)
∈ Γ

∣∣∣∣ c ≡ 0 mod N

}
.

We denote by µ the index of Γ0(N) in Γ, and let γ1, . . . , γµ denote the coset

representatives of Γ0(N) (in Section 3.2.1 we describe the computation of these).

We have an operation of ∆ on

M =

{
k−2∑
j=0

ajx
jyk−2−j

∣∣∣∣ a0, . . . , ak−2 ∈ Z

}

given by (
a b
c d

)
xjyk−2−j = (ax+ by)j(cx+ dy)k−2−j,

(
a b
c d

)
∈ ∆,

and we get an action of ∆0(N) on Mχ = M ⊗ R, where R = Z[1
6
, χ], by setting

δ0.m = χ(δ0)(δ0m).

We wish to determine a basis for the space Sk(N,χ) of cusp forms of weight

k ≥ 2 with character χ satisfying χ(−1) = (−1)k.

By the Eichler-Shimura isomorphism, we have a canonical exact sequence (of

complex vector spaces)

0 −→ Sk(N,χ)⊕ Sk(N,χ) −→ H1(Γ0(N),M ⊗ C)

−→
⊕

s∈C(Γ0(N))

H1(Γ0(N)s,M ⊗ C),

where Γ0(N)s = {γ ∈ Γ0(N) | γ.s = s} = 〈Ts〉 is an infinite cyclic group, cf.

[Hab83, p. 284].
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The dimension of

H1(Γ0(N)s,M ⊗ C) ∼= (M ⊗ C)/(1− Ts)(M ⊗ C)

is 1, so that the dimension of H1(Γ0(N),M⊗C) is ν∞ = #C
(
Γ0(N)

)
, the number

of inequivalent cusps of Γ0(N). In the case of s =∞, we put T = T∞ =
(

1 1
0 1

)
.

We work with the coinduced module Wχ of Mχ on Γ, that is

Wχ =
{
w : Γ→Mχ | w(γ0γ) = γ0.w(γ) for γ0 ∈ Γ0(N)

}
,

and we get an action of δ ∈ ∆ on w ∈ Wχ by setting

(δ.w)(γ) =

{
0, γδ /∈ ∆0(N)Γ,

δ0.w(γ′), γδ = δ0γ
′, δ0 ∈ ∆0(N), γ′ ∈ Γ,

for γ ∈ Γ.

For a matrix δ ∈ ∆, we denote by W δ
χ the submodule of Wχ invariant under

the action of δ.

The Shapiro lemma gives a canonical isomorphism

H1(Γ,Wχ) ∼= H1(Γ0(N),Mχ)

as modules under the Hecke algebra, and we therefore study the cohomology of

Γ with coefficients in Wχ.

3.1.2 A long exact sequence

Letting Hn
c (G,Wχ) denote the n’th cohomology of G with compact support, we

obtain a long exact sequence

0 −→ H0(Γ,Wχ) −→ H0(〈T 〉,Wχ) −→ H1
c (Γ,Wχ)

−→ H1(Γ,Wχ) −→ H1(〈T 〉,Wχ) −→ H2
c (Γ,Wχ) −→ 0,

(∗)

and by using the cup product along with a certain non-degenerate Hermitian

pairing on Wχ, cf. [Wan94, pp. 97–99], we find that

dimH1
c (Γ,Wχ) = dimH1(Γ,Wχ),

dimH1(〈T 〉,Wχ) = dimH0(〈T 〉,Wχ),

dimH2
c (Γ,Wχ) = dimH0(Γ,Wχ),

as Q(χ)-vector spaces.

We denote by S and Q the following matrices:

S =

(
0 −1
1 0

)
and Q =

(
0 −1
1 1

)
.
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Lemma 3.2 ([Wan94, Lem. 1 and Lem. 2]). Letting χ0 denote the trivial char-

acter, we have

H0(Γ,Wχ) ∼=

{
R, (k, χ) = (2, χ0),

0, otherwise,

and there is an isomorphism

H1(Γ,Wχ) ∼= Wχ/(W
S
χ +WQ

χ ).

Additionally we have H0(〈T 〉,Wχ) = W T
χ and H1(〈T 〉,Wχ) ∼= Wχ/(1−T )Wχ,

since 〈T 〉 is an infinite cyclic group.

3.1.3 The connection to Manin symbols

We now describe the connection between Wχ and Manin symbols. Since Γ0(N)

has finite index in Γ, the induced and coninduced modules of Mχ are isomorphic,

so that

Wχ
∼= Mχ ⊗Γ0(N) Γ,

where the operation of Γ on Mχ ⊗Γ0(N) Γ is given by γ.(m⊗ γ′) = m⊗ γ′γ−1.

By [Wan94, Lem. 3], we have an isomorphism

HomΓ0(N)(Γ,Mχ)
∼=−→Mχ ⊗Γ0(N) Γ

given by

f 7→
µ∑
i=1

(f(γi)⊗ γi).

We let P1
χ(Z/NZ) denote{

(c, d) ∈ Z/NZ× Z/NZ | gcd(c, d,N) = 1
}

modulo the relation

(λc, λd) ∼ χ(λ)(c, d), λ ∈ (Z/NZ)∗,

and we see that P1
χ(Z/NZ) is just P1(Z/NZ) if χ is the trivial character.

For γ =
(
a b
c d

)
∈ Γ, we put

γ = (c mod N, d mod N) ∈ P1
χ(Z/NZ),

and it is easily checked that γ0γ = χ(γ0)γ for γ0 ∈ Γ0(N) and γ ∈ Γ.

For δ0 =
(
a b
c d

)
∈ ∆0(N), we define χ(δ0) = χ(d).
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Lemma 3.3 ([Wan94, Lem. 4]). There is an isomorphism

HomΓ0(N)(Γ,Mχ)
∼=−→M ⊗R P1

χ(Z/NZ)

given by

f 7→
µ∑
i=1

(γ−1
i .f(γi)⊗ γi).

3.1.4 An involution

The matrix

ε =

(
−1 0
0 1

)
induces an involution on the cohomology groups Hn(G,Wχ) (resp. Hn

c (G,Wχ))

by (ε.ω)(γ) = ε.ω(ε−1γε).

Letting Hn(G,Wχ)± = {ω ∈ Hn(G,Wχ) | ε.ω = ±ω} (and similarly for

Hn
c (G,Wχ)), we get from (∗), long exact sequences

0 −→ H0(Γ,Wχ)± −→ H0(〈T 〉,Wχ)± −→ H1
c (Γ,Wχ)±

−→ H1(Γ,Wχ)±
r∗±−→ H1(〈T 〉,Wχ)± −→ H2

c (Γ,Wχ)± −→ 0,

and a variant of the Eichler-Shimura isomorphism along with [Wan94, Lem. 5]

now gives an exact sequence (of complex vector spaces)

0 −→ Sk(N,χ) −→ H1(Γ,Wχ ⊗ C)+

r∗+−→ H1(〈T 〉,Wχ ⊗ C)+ −→ 0.

We note that we from this exact sequence get

dimSk(N,χ) = dimH1(Γ,Wχ ⊗ C)+ − dimH1(〈T 〉,Wχ ⊗ C)+.

We have already seen that H1(〈T 〉,Wχ) ∼= Wχ/(1− T )Wχ has dimension ν∞,

and that Wχ
∼= M ⊗R P1

χ(Z/NZ). Using these facts, it is shown in [Wan94,

Lem. 6], that there is an isomorphism (of Q-vector spaces)

H1(〈T 〉,Wχ ⊗Q) ∼=
⊕

s∈C(Γ0(N))

Q,

induced by the map

M ⊗R P1
χ(Z/NZ)→

⊕
s∈C(Γ0(N))

Q

given by

m⊗ (c, d) 7→ m(0, 1){γ−1.∞} = m(0, 1)
{
− d

c

}
, γ = (c, d).
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The action of ε on
⊕

s∈C(Γ0(N)) Q is shown to be given by

ε.{s} = −χ(δ0){s′}, γjε = δ0γi, s = γ−1
i ∞, s′ = γ−1

j ∞,

with i, j ∈ {1, . . . , µ}, and using this, cf. Section 3.2.3, one can determine the

dimension of H1(〈T 〉,Wχ ⊗ C)+.

Since ε is an involution, we get from Lemma 3.2 that

H1(Γ,Wχ)+
∼= Wχ/(W

S
χ +WQ

χ +W ε
χ).

3.1.5 Hecke action and basis computation

As shown in [Wan94, pp. 105–106], the action of the Hecke operator Tn on the

space H1(Γ,Wχ) ∼= Wχ/(W
S
χ +WQ

χ ), is given by

Tnx =
∑
A∈Xn

cAA.x, cA ∈ R,

where Xn is a set of matrices in ∆ of determinant n (see also [Mer94]). We

determine these matrices in Section 3.3.4.

Let ϕ be any C-linear map Sk(N,χ)→ C and let f ∈ Sk(N,χ). By [Wan94,

Lem. 7], we get that the formal power series

∞∑
n=1

ϕ(Tnf)qn,

actually is the q-expansion of a form in Sk(N,χ).

This way we can generate q-expansions, and it is a central point of the algo-

rithm (suggested by Merel), which can be summarized as follows:

(1) Compute a basis B for H1(Γ,Wχ)+
∼= Wχ/(W

S
χ +WQ

χ +W ε
χ).

(2) Compute the dimension of Sk(N,χ), i.e., #B − dimH1(〈T 〉,Wχ ⊗ C)+.

(3) Choose an element x ∈ ker r∗+, and compute Tnx =
∑

b∈B λn(b)b for all

positive integers n up to at least the Sturm bound bkµ
12
− µ−1

N
c.

(4) Compute the dimension of the vector space generated by the q-expansions∑
λn(b)qn for all b ∈ B, and if this dimension is less than the dimension of

Sk(N,χ), try (3) again with another x.

3.2 Implementation of the algorithm

In this section we work through the algorithm point by point, in each case deter-

mining how to explicitly compute the desired objects.
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3.2.1 Coset representatives

We start out by getting coset representatives for Γ0(N) in Γ. Besides the N

representatives
(

0 −1
1 0

)
, . . . ,

(
0 −1
1 N−1

)
, we also have

(
1 0
0 1

)
(if N is prime, these are

all of them).

By [Cre97, Prop. 2.2.2], there is a bijection between coset representatives(
a b
c d

)
of Γ0(N) in Γ and elements (c, d) ∈ P1(Z/NZ). To get the remaining

representatives, we simply take the remaining elements (c, d) of P1(Z/NZ), and

lift these to matrices
(
a b
c d

)
in Γ via the Euclidean algorithm.

It is described in [Cre97, Sec. 2.2] how to efficiently determine P1(Z/NZ).

One starts out with the obvious elements (0, 1), (1, 0), . . . (1, N − 1), and then

look at elements (c, d), where c | N and d = 1, . . . , N − 1, adding (c, d) to the

list if it is not equivalent to an element already on the list (one uses that two

elements (c1, d1) and (c2, d2) are equivalent if and only if c1d2 ≡ c2d1 (mod N)).

See also [Ste07, Sec. 8.7].

Recall that we denote the coset representatives by γ1, . . . , γµ.

3.2.2 Action of ∆ on Wχ and relations matrix

We want to determine a basis for H1(Γ,Wχ)+
∼= Wχ/(W

S
χ +WQ

χ +W ε
χ), which is

Wχ modulo the relations

w + S.w = w +Q.w +Q2.w = w + ε.w = 0.

Therefore we need to be able to determine a matrix representation of the

action of a matrix in ∆ on Wχ.

An element of Wχ is determined by its values on the µ coset representatives,

and since Mχ is generated by the k− 1 homogeneous monomials of degree k− 2,

the space Wχ has µ(k − 1) generators.

As a basis for Wχ, we thus have the elements

wij :

{
γr 7→ xjyk−2−j, r = i,

γr 7→ 0, r 6= i,

with i = 1, . . . , µ and j = 0, . . . , k − 2.

To determine the action of δ ∈ ∆ on Wχ, we only need the action of δ.wij on

the coset representatives. If γrδ /∈ ∆0(N)Γ, the action is 0, so we now assume

that we can write γrδ = δ0γ for some δ0 ∈ ∆0(N) and γ ∈ Γ. Since we have

γ = γ0γs for some γ0 ∈ Γ0(N) and a coset representative γs, we replace δ0 with

δ0γ0 ∈ ∆0(N), so that the action is given by

δ0.wij(γs) =

{
δ0.x

jyk−2−j, s = i,

0, s 6= i.



42 Chapter 3

To get the action of δ on wij, we need to run through the coset representatives

γr, get the corresponding δ0 ∈ ∆0(N) such that γrδ = δ0γs, and then compute

the coefficients a0, . . . , ak−2 of the polynomial

δ0.x
jyk−2−j =

k−2∑
t=0

atx
tyk−2−t,

for j = 0, . . . , k− 2. These coefficients are then placed in the (s+ jµ)’th row and

the (i+ tµ)’th columns (t = 0, . . . , k − 2) of a µ(k − 1)× µ(k − 1)-matrix.

This way, we obtain matrix representations of the actions of I+S, I+Q+Q2

and I + ε on Wχ (here I is the identity matrix), and Wχ/(W
S
χ + WQ

χ + W ε
χ) is

then the nullspace of the resulting relations matrix (the relations matrix is the

above three matrix representations stacked on top of one another).

3.2.3 Dimension

To determine the dimension of Sk(N,χ), we need to compute the dimension of

H1(〈T 〉,Wχ ⊗ C)+.

As we have already seen, there is an isomorphism (of Q-vector spaces)

H1(〈T 〉,Wχ ⊗Q) ∼=
⊕

s∈C(Γ0(N))

Q,

and the action of ε on
⊕

s∈C(Γ0(N)) Q is shown to be given by

ε.{s} = −χ(δ0){s′}, γjε = δ0γi, s = γ−1
i ∞, s′ = γ−1

j ∞,

with i, j ∈ {1, . . . , µ}.
Let us write ε.{s} = c{s′}. Since ε is an involution, we have ε.{s′} = c−1{s}.

If {s} = {s′}, we have ε.{s} = ±{s}, showing that {s} is in the corresponding

±-space. If {s} 6= {s′}, we have {s} ± c{s′} in the corresponding ±-space.

Thus, if {s} 6= {s′}, we get elements of both ±-spaces, but when {s} = {s′},
we get an element of only one of these spaces – the space corresponding to the

sign of −χ(δ0), i.e., we get an element of the +-space if and only if χ(δ0) = −1,

when {s} = {s′}.
We therefore need to determine when two cusps {γ−1

m ∞} and {γ−1
n ∞} are

equivalent, and this happens exactly when γmT
u = γ0γn for some γ0 ∈ Γ0(N)

and u ∈ Z. This groups the coset representatives into ν∞ classes (one for each

cusp equivalence class).

Thus, ε maps a cusp {s} to ±{s} (with s = γ−1
i ∞) if and only if the coset

representatives γi and γj, satisfying γjε = δ0γi, are in the same equivalence class,

which is exactly when γiT
u = γ0γj for some γ0 ∈ Γ0(N) and some u ∈ Z.
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Since we only need one representative for each equivalence class, we choose for

a given γi, the unique representative γj satisfying γiT = γ0γj for some γ0 ∈ Γ0(N),

and write γjε = δ0γi, checking the sign of χ(δ0).

This way, we find the part of the ±-spaces coming from the case where ε maps

{s} to ±{s}. When this does not happen, we get elements of both ±-spaces, and

since the sum of the dimensions is ν∞, we get the dimension of the +-space.

The dimension of Sk(N,χ) is the difference between the dimension of the

nullspace of the relations matrix and the dimension just found.

3.2.4 Hecke action and basis

Since Sk(N,χ) is the kernel of the homomorphism

r∗+ : H1(Γ,Wχ)+ → H1(〈T 〉,Wχ)+,

we take elements in the kernel of this map, and compute the corresponding q-

expansions, until we have enough forms to generate Sk(N,χ).

It is described in [Wan94, pp.107–108] how to choose elements in the kernel,

and we will briefly recount this here.

Using that Wχ is isomorphic to Mχ⊗Γ0(N) Γ, we get from Lemma 3.3 that r∗+
becomes a homomorphism

Wχ/(W
S
χ +WQ

χ )→
⊕

s∈C(Γ0(N))

Q,

and with the above isomorphisms, this map is on Wχ
∼= M ⊗P1

χ(Z/NZ) given by

m⊗ (c, d) 7→ m(0, 1)
{
− d

c

}
−m(1, 0)

{
c
d

}
. (†)

For m⊗ (c, d) to be in the kernel, we can use any (c, d) ∈ P1
χ(Z/NZ) with m

any (non-empty) linear combination of the monomials xyk−3, . . . , yxk−3 if k > 2,

and m = 1 if k = 2 (in the weight-2 case we have to have χ(c) = χ(d) as well).

Since elements (c, d) ∈ P1(Z/NZ) correspond bijectively to coset representa-

tives
(
a b
c d

)
of Γ0(N) in Γ, we can therefore represent elements of the kernel as

m⊗ γr with r = 1, . . . , µ and m as above.

We use the Heilbronn-Merel matrices (cf. [Mer94, Prop. 20])

Hn =

{(
a b
c d

)
∈ ∆

∣∣∣∣ ad− bc = n, a > b ≥ 0, d > c ≥ 0

}
,

to determine the action of the Hecke operator Tn on the elements of the kernel

found above.
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The action of the Hecke operator Tn on Wχ/(W
S
χ +WQ

χ ) is given by

Tnx =
∑
A∈Hn

A.x.

Translating this through the isomorphisms above, the action on a kernel ele-

ment m⊗ γr is

Tn(m⊗ γr) =
∑
A∈Hn

χ(δ0,A)(A.m)⊗ γrA ,

where we for each A ∈ Hn write γrA = δ0,AγrA with δ0,A ∈ ∆0(N) (terms where

it is not possible to write γrA in this way are ignored).

The coefficients of the polynomial χ(δ0,A)(A.m) are then saved in a vector tn,

where the coefficient of xjyk−2−j is added to the rA(k− 1)− (k− 2− j)’th entry,

as A runs through Hn.

If we wish to compute the basis up to exponent qM , we compute tn for all

n = 1, . . . ,M , where we require that M ≥ bkµ/12 − (µ − 1)/Nc (the Sturm

bound), and we let t be the matrix whose n’th column is tn.

We then multiply the nullspace matrix of the relations matrix found earlier

with the matrix t, and denote the resulting matrix by B. If B has rank equal to

the dimension of Sk(N,χ), we have found a basis (the leading rows of B).

If B has rank less than the dimension, we choose another element m⊗ γr in

the kernel, compute the Hecke action t1, . . . , tM on this, multiply the nullspace

matrix of the relations matrix with the resulting matrix, and get a matrix whose

rows are concatenated to B, and we again compute the rank of B. This procedure

continues until we get as many linearly independent rows in B as the dimension

of Sk(N,χ).

Experimentation indicates that if we choose m = xyk−3 + · · · + xk−3y (for

k > 2), this procedure is likely to give a basis using just the first few γr’s.

3.2.5 Determining the kernel

In the implementation described, we choose certain kernel elements, and generate

Fourier coefficients from these, until we have enough forms to generate the space

of cusp forms.

However, there is no certainty that this will work, i.e., there is no guarantee

that this approach will give enough linearly independent forms (even though we

have yet to see an example of this).

Another approach (which is certain to work every time) is the following. From

the nullspace of the relations matrix, we get a basis for Wχ/(W
S
χ + WQ

χ + W ε
χ).

By using the isomorphism Wχ
∼= M ⊗R P1

χ(Z/NZ), we can get the image of this
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basis on a quotient of M ⊗R P1
χ(Z/NZ), expressed in terms of the standard basis

of M ⊗ P1
χ(Z/NZ).

We use this basis to write up a matrix representation of the map (†) on

this quotient, and determine its nullspace (which has dimension equal to the

dimension of Sk(N,χ)). From the nullspace matrix we read off a basis, and

we then write the kernel elements as linear combinations of the m⊗ γr. We now

compute the Hecke action on these elements, which we know will generate enough

forms to give a basis for Sk(N,χ).

3.3 Complexity of implementation

We always assume that the level is given via its prime factorization, i.e., no work

is needed to find the divisors of N .

We also use that a Dirichlet character on (Z/NZ)∗ is defined via a lookup

table, which takes O(N) to create, but we do not then need to worry about the

cost of evaluating the character.

3.3.1 Coset representatives

The number of coset representatives is

µ = N
∏
p|N

(
1 + 1

p

)
.

Let n be the number of prime divisors of N , and let p1, . . . , pn be the first n

primes. By using [Lan99, p. 139], we find that

∏
p|N

(
1 + 1

p

)
≤
∏
p|N

(
1 + 1

p
+ 1

p2
+ · · ·

)
=
∏
p|N

(
1− 1

p

)−1 ≤
n∏
i=1

(
1− 1

pi

)−1

= O(log pn) = O(log n) = O(log logN),

since N ≥ 2n. We therefore have µ = O(N log logN).

We determine the coset representatives by looking at elements (c, d), where

c | N and d = 1, . . . , N − 1. By [HW79, Thm. 315], the number of divisors of N

is O(N δ) for δ > 0, and we therefore look at O(N1+δ) elements (c, d).

Every time we look at an element, we check if it is equivalent to something

already found, and this takes O(log2N) each time. Whenever we find a new

element, we lift it to a matrix in Γ via the Euclidean algorithm, which also takes

O(log2N). This gives a total complexity of O(N1+δ log2N).
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3.3.2 Action of ∆ on Wχ and relations matrix

All it takes to get γrδ on the form δ0γs, is to compute some greatest common

divisors, and run through the coset representatives to see which one works. All

in all the complexity for this is O(µ log2N).

The hardest part of computing the action of a matrix on a polynomial, is the

binomial coefficients that show up when computing polynomial coefficients. The

cost of computing
(
n
m

)
is O(m2 log2 n), and so a rough estimate for computing the

action of δ0 on the k−1 monomials xjyk−2−j isO(k4 log2 k). This needs to be done

for every γr, i.e., µ times, giving a total complexity of O(µ2 log2N + µk4 log2 k)

for determining the matrix representation of δ on Wχ.

We note that if we work over the finite field Fp instead of the integers, one

can use a congruence first proved by Lucas [Luc78] to obtain the complexity

O(p2 log2 p log k) for the binomial coefficient computations. A more modern ref-

erence for the Lucas congruence is [Sta97, p. 44].

The relations matrix consists of the matrix representations of the actions of

I + S, I + Q + Q2 and I + ε, and so is a matrix of size 3µ(k − 1) × µ(k − 1).

To compute the nullspace therefore takes O(µ3k3), and this is really the time-

consuming function of this part.

3.3.3 Dimension

We first build an array whose i’th entry is the index j of the coset representative

satisfying γiT = γ0γj, as well as a similar array giving the index j of the coset

representative satisfying γiε = δ0γj. Doing this takes O(µ2 log2N).

Next, we determine to which cusp equivalence class each coset representative

belongs, computing ν∞ along the way. The work needed is already done in the

first array we created.

We then choose a representative γi of a cusp equivalence class, and use the

second array to find an equivalent representative γj satisfying γjε = δ0γi for some

δ0 ∈ ∆0(N). We then compute χ(δ0) and add 1 to the count of the corresponding

±-variable d±.

The dimension of the +-space is then d++(ν∞−d+−d−)/2, and the dimension

of Sk(N,χ) is the difference between the dimension of the nullspace of the relations

matrix and the dimension of the +-space.

The work in creating the arrays is by far the most work in this, so the com-

plexity of this algorithm is O(µ2 log2N).
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3.3.4 Hecke action and basis

Even though we use the Heilbronn-Merel matrices in the implementation, we

turn to [Mer94] for the complexity analysis, since this paper gives another class

of matrices, which can be used instead of the Heilbronn-Merel matrices, and we

have estimates on the size of these classes.

In [Mer94, Sec. 3], Merel defines a set Sn, where a matrix
(
a b
c d

)
∈ ∆ is in Sn

if it has determinant n and at least one of the following conditions is satisfied:

• a > |b|, d > |c|, bc > 0,

• b = 0, |c| < d/2,

• c = 0, |b| < a/2.

Merel also defines a set S ′n, where
(
a b
c d

)
∈ ∆ is in S ′n if it has determinant n

and one of the two following conditions is satisfied:

• b = 0, |c| = d/2,

• c = 0, |b| = a/2.

It is easily seen that an upper bound for |S ′n| is 2σ1(n), where σ1(n) is the

sum of the positive divisors of n, and from [Mer94, p. 85], we have, as n→∞,

|Sn| ∼
12 log 2

π2
σ1(n) log n.

By [HW79, Thm. 322], we have σ1(n) = O(n1+δ) for δ > 0, so that we have

|Sn ∪ S ′n| = O(n1+δ log n) = O(n1+ε),

for ε > 0, since log n = O(nδ
′
) for δ′ > 0.

We need to compute Sn and S ′n for n = 1, . . . , bkµ/12− (µ− 1)/Nc (or more

n if we want higher precision), so O(µ2+εk2+ε) matrices are needed to compute

the Hecke action.

We want to compute the action of Tn on m⊗γr, with m a linear combination

of the monomials xyk−3, . . . , xk−3y if k > 2, and m = 1 if k = 2. To do this we

write, for each A ∈ Sn ∪ S ′n, γrA = δ0,AγrA , with δ0,A ∈ ∆0(N), and this can be

done in O(µ log2N) for each A. We then have

Tn(m⊗ γr) =
∑
A∈Sn

χ(δ0,A)(A.m)⊗ γrA +
1

2

∑
A∈S′n

χ(δ0,A)(A.m)⊗ γrA ,
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and as mentioned earlier, the complexity of determining the action of A on a

linear combination of all possible monomials is O(k4 log2 k).

The coefficients of χ(δ0,A)(A.m) are added for each A, and saved in a vector tn,

with indices depending on the monomial xjyk−2−j and the index rA. Determining

all necessary tn are done in O(µ2+εk2+ε(µ log2N + k4 log2 k)).

Multiplying the nullspace matrix of the relations matrix with the matrix whose

n’th column is tn, takes O(µ3k3), which is less than the complexity of determining

the Hecke action.

The resulting matrix is the basis matrix, if it has rank equal to the dimension

of Sk(N,χ). We therefore do Gaussian elimination, and compute the rank to

see if we are done. If not, we choose another coset representative γr, get the

resulting tn’s of the Hecke action on m ⊗ γr, multiply the nullspace matrix of

the relations matrix with the resulting matrix, and get a matrix whose rows are

concatenated to B. We again do Gaussian elimination and compute the rank,

and this is repeated until we get the right rank. If we run through all the coset

representatives without getting the right rank, we can try with another m.

Gaussian elimination is done in O(µ3k3), and is therefore insignificant com-

pared to the computation of the Hecke action.

For a givenm, this procedure is repeated at most µ times, but experimentation

indicates that it is likely to finish much sooner if m is chosen to be the sum of

all possible monomials (in the case of k > 2). We see that the computation of

the Hecke action is by far the hardest part of this basis determination, and we

therefore get a total theoretical complexity of O
(
µ3+εk2+ε(µ log2N + k4 log2 k)

)
.

Since µ = O(N log logN) and log logN = O(N ε′) for an ε′ > 0, we have

µε = O(N ε+εε′) for ε > 0, and we find that

O
(
µ3+εk2+ε(µ log2N + k4 log2 k)

)
= O

(
µ4+εk2+ε log2N + µ3+εk6+ε log2 k

)
= O

(
µ4+ε+ε′′k2+ε + µ3+εk6+ε+ε′′

)
= O

(
N3+ε+εε′+ε′′k2+ε+ε′′(N + k4)

)
,

using that log2 α = O(αε
′′
) for ε′′ > 0 (and α either N or k), and this is Theo-

rem 3.1, after replacing ε+ εε′ + ε′′ with ε.

3.4 Examples

We use this implementation to determine bases for two spaces of cusp forms, one

with trivial character and one with non-trivial character.

The first example gives more detail, while the second highlights an aspect

which only occurs in the case of non-trivial character.
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3.4.1 S4
(
Γ0(25)

)
We start out by getting the coset representatives, and we do this by determining

P1(Z/25Z) in the way we described earlier. Thus, we get the 30 elements

(1, 0), . . . , (1, 24), (0, 1), (5, 1), (5, 2), (5, 3), (5, 4),

and these are lifted to matrices in Γ via the Euclidean algorithm:(
0 −1
1 0

)
, . . . ,

(
0 −1
1 24

)
,

(
1 0
0 1

)
,(

1 0
5 1

)
,

(
−2 −1
5 2

)
,

(
2 1
5 3

)
,

(
−1 −1
5 4

)
.

We denote these representatives by γ1, . . . , γ30, so that, for instance, γ26 = I.

Next, we determine the nullspace of the relations matrix. Since the matrix

representations of I + S, I + Q + Q2 and I + ε all are 90 × 90-matrices, we do

not write these up here. After bringing the matrix on echelon form and deleting

zero rows, the nullspace matrix of the relations matrix is a 7× 90-matrix.

Next, we compute the dimension of the +-space. We therefore build an array

whose i’th entry is the index j of the coset representative γj satisfying γiT = γ0γj
for some γ0 ∈ Γ0(25). This becomes:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
j 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
j 17 18 19 20 21 22 23 24 25 1 26 27 28 29 30

This array shows that γ1, . . . , γ25 are all in the same cusp equivalence class,

and the rest are each in their own class. All in all, we see that Γ0(25) has 6 cusps,

represented by γ1, γ26, γ27, γ28, γ29 and γ30.

We also build an array whose i’th entry is the index j of the coset represen-

tative γj satisfying γjε = δ0γi for some δ0 ∈ ∆0(N). This becomes:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
j 1 25 24 23 22 21 20 19 18 17 16 15 14 13 12

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
j 11 10 9 8 7 6 5 4 3 2 26 30 29 28 27

We now take each of the 6 representatives γi, match them with the corre-

sponding γj from this table (checking that γj is in the same equivalence class).
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We do not need to compute the δ0’s, since we have trivial character, and therefore

always will get elements of the −-space.

From the table, we see that only γ1 and γ26 give rise to γj’s in the same cusp

equivalence class, and we therefore get 2 elements of the −-space.

Since there are 6 cusps, this means that the remaining 4 are split evenly

between the +- and −-spaces, giving that the dimension of the +-space is 2.

From this we get that the dimension of S4

(
Γ0(25)

)
is 7 − 2 = 5 (nullspace

dimension minus +-space dimension).

Finally, we compute the Hecke action t1, . . . , tM , with M = b4·30
12
− 29

25
c = 8.

Each coset representative γr gives rise to a kernel element xy ⊗ γr, and to

compute tn for xy ⊗ γr, we compute A.xy for all A ∈ Hn, keeping track of the

index rA of γrA = δ0,AγrA .

In the case of n = 3 we have

H3 =

{(
1 0
0 3

)
,

(
1 0
1 3

)
,

(
1 0
2 3

)
,

(
2 1
1 2

)
,

(
3 0
0 1

)
,

(
3 1
0 1

)
,

(
3 2
0 1

)}
,

and we denote these A1, . . . , A7.

We need to compute up to r = 4, since the forms generated by using only

r ≤ 3 only spans a 4-dimensional space. As a matter of fact, the forms generated

by using just xy ⊗ γ4 span the whole space, and we write a table of indices rAi

with respect to γ4, as well as the action of Ai on xy:

i 1 2 3 4

rAi
10 22 13 28

Ai.xy 3xy 3xy + x2 3xy + 2x2 2y2 + 5xy + 2x2

i 5 6 7

rAi
2 19 11

Ai.xy 3xy y2 + 3xy 2y2 + 3xy

Thus, we get that

T3(xy ⊗ γ4) =
7∑
i=1

Ai.xy ⊗ γrAi
,

and we put the coefficients into a vector t3, where (t3)3(rAi
−1)+j is the coefficient

of xjy2−j in Ai.xy.
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We do this for all n = 1, . . . , 8, and build a matrix with the tn as columns.

We then multiply the nullspace matrix with this matrix, and get (after removing

zero rows and bringing the matrix on echelon form)
1 0 0 0 0 0 0 0
0 1 0 0 0 0 −1 −1
0 0 1 0 0 0 1 −2
0 0 0 1 0 −1 0 0
0 0 0 0 1 0 0 0

 ,

which has rank 5, and the rows therefore form a basis for S4

(
Γ0(25)

)
. Thus, the

standard basis (up to q8) of this space is

q, q2 − q7 − q8, q3 + q7 − 2q8, q4 − q6, q5.

We note that Schoen has described a basis for this space in [Sch86], in terms

of the η-function:

f0 = η(z)4η(5z)4,

f1 = η(z)3η(5z)4η(25z),

f2 = η(z)2η(5z)4η(25z)2,

f3 = η(z)η(5z)4η(25z)3,

f4 = η(5z)4η(25z)4.

We can compute this (up to q8) as

f0 = q − 4q2 + 2q3 + 8q4 − 5q5 − 8q6 + 6q7,

f1 = q2 − 3q3 + 5q5 − 4q7 + 5q8,

f2 = q3 − 2q4 − q5 + 2q6 + q7 − 2q8,

f3 = q4 − q5 − q6,

f4 = q5,

and since we can write

q = f0 + 4f1 + 10f2 + 12f3 + 7f4,

q2 − q7 − q8 = f1 + 3f2 + 6f3 + 4f4,

q3 + q7 − 2q8 = f2 + 2f3 + 3f4,

q4 − q6 = f3 + f4,

q5 = f4,

both sets of forms span the same space, namely S4

(
Γ0(25)

)
.
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3.4.2 S5
(
12, ( ·

12)
)

We start out by getting the coset representatives, and we again do this by deter-

mining P1(Z/12Z). We get the 24 elements

(1, 0), . . . , (1, 11), (0, 1), (2, 1), (2, 3), (2, 5), (3, 1),

(3, 2), (3, 4), (3, 7), (4, 1), (4, 3), (4, 5), (6, 1),

and these are lifted to matrices in Γ via the Euclidean algorithm:(
0 −1
1 0

)
, . . . ,

(
0 −1
1 11

)
,

(
1 0
0 1

)
,

(
1 0
2 1

)
,

(
1 1
2 3

)
,

(
1 2
2 5

)
,

(
1 0
3 1

)
,(

−1 −1
3 2

)
,

(
1 1
3 4

)
,

(
1 2
3 7

)
,

(
1 0
4 1

)
,

(
−1 −1
4 3

)
,

(
1 1
4 5

)
,

(
1 0
6 1

)
.

We denote these representatives by γ1, . . . , γ24.

We again determine the relations matrix (of size 184× 96) and its nullspace,

which in this case has dimension 8.

Just as in the last example, we choose a coset representative from each cusp

equivalence class, and we get 6 cusps, represented by γ1, γ13, γ14, γ17, γ21 and

γ24.

We now take each of these γi, match them with the corresponding γj satisfying

γjε = δ0γi (checking that γj is in the same equivalence class as γi, which they

all are in this case), and compute χ(δ0) to see to which of the ±-spaces they

correspond. We summarize the results in the following table:

i 1 13 14 17 21 24

j 1 13 16 20 23 24

δ0

(
1 0
0 −1

) (
−1 0
0 1

) ( −5 2
−12 5

) ( −7 2
−24 7

) ( −5 1
−24 5

) ( −1 0
−12 1

)
χ(δ0) −1 1 −1 1 −1 1

Space + − + − + −

From this we get that the dimension of S5

(
12, ( ·

12
)
)

is 8 − 3 = 5 (nullspace

dimension minus +-space dimension).

As before, we compute the Hecke action t1, . . . , tM , with M = b5·24
12
− 23

12
c = 8,

and in this case it is enough to use the kernel element (xy2 +xy2)⊗γ1 to generate

a basis.

The matrix we get, after multiplying the nullspace matrix with the matrix

having the tn as columns (and removing zero rows and bringing it on echelon
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form) is 
1 0 0 0 0 0 −4 0
0 1 0 0 0 −3 0 −8
0 0 1 0 0 0 −10 0
0 0 0 1 0 −3 0 0
0 0 0 0 1 0 −5 0

 .

Thus, the standard basis (up to q8) of S5

(
12, ( ·

12
)
)

is

q − 4q7, q2 − 3q6 − 8q8, q3 − 10q7, q4 − 3q6, q5 − 5q7.





Appendix A

Computational evidence for
Conjecture 2.22

The tables in this appendix are computational results supporting Conjecture 2.22.

We denote by fN,k,i the i’th newform in Sk
(
Γ0(N)

)
, with the ordering used

by SortDecomposition in Magma. If Sk
(
Γ0(N)

)
contains only one newform, we

simply denote this by fN,k.

Looking at all newforms on Γ0(N) of weights k1 and k2, the tables give the

maximal positive integer L = d m
e(p/p)

e such that

a`(fN,k1,j) ≡ a`(fN,k2,i) (mod pm)

for all ` ≤ B′ (the largest of the extended Sturm bounds for Ski

(
Γ0(N)

)
) with

` - Np, where p runs through all prime ideals over p in the coefficient field of

fN,k1,j and fN,k2,i. If L is attained for several i’s or j’s, these are all listed. The

tables also list the maximal integer s such that k1 ≡ k2 (mod ps(p − 1)). The

rows written in bold indicates the lowest weight k2 for which there is an increase

in L compared to the lower weights.

We call Sk1
(
Γ0(N)

)
the initial space, and for most of the computations we

have tried to choose initial spaces where there is only one newform (with integral

coefficients), since this means less congruences to be checked, and we omit the

index j if this is the case. We list only one table for each level, since the tables

for the initial spaces Sk1
(
Γ0(N)

)
and Sk1+n

(
Γ0(N)

)
(for an even positive integer

n) are very similar.

For levels N < 10 and initial weight k1, we compute congruences for newforms

on Γ0(N) of weights k2 satisfying k1 < k2 ≤ k1 + 64, and for N ≥ 10 we compute

for newforms of weights k2 satisfying k1 < k2 ≤ k1 + 32.

55



56 Appendix A

Level 1

The space S12

(
Γ0(1)

)
contains the single newform

f1,12 = q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 − 16744q7 + 84480q8 + · · · ,

and we get the following table (we omit the index i since there is at most one

newform on Γ0(1) of any weight):

p = 2
k2 L s

16 4 2
18 3 1
20 5 3
22 3 1
24 4 2
26 3 1
28 6 4
30 3 1
32 4 2
34 3 1
36 5 3
38 3 1
40 4 2
42 3 1
44 7 5
46 3 1
48 4 2
50 3 1
52 5 3
54 3 1
56 4 2
58 3 1
60 6 4
62 3 1
64 4 2
66 3 1
68 5 3
70 3 1
72 4 2
74 3 1
76 8 6

p = 3
k2 L s

16 1 0
18 2 1
20 1 0
22 1 0
24 2 1
26 1 0
28 1 0
30 3 2
32 1 0
34 1 0
36 2 1
38 1 0
40 1 0
42 2 1
44 1 0
46 1 0
48 3 2
50 1 0
52 1 0
54 2 1
56 1 0
58 1 0
60 2 1
62 1 0
64 1 0
66 4 3
68 1 0
70 1 0
72 2 1
74 1 0
76 1 0

p = 5
k2 L s

16 1 0

20 1 0

24 1 0

28 1 0

32 2 1

36 1 0

40 1 0

44 1 0

48 1 0

52 2 1

56 1 0

60 1 0

64 1 0

68 1 0

72 2 1

76 1 0

Table A.1: N = 1, k1 = 12, p = 2, 3, 5 and 14 ≤ k2 ≤ 76.

We have computed similar tables for all k1 ≤ 22 (and k2 ≤ 308).
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Level 2

The space S8

(
Γ0(2)

)
contains the single newform

f2,8 = q − 8q2 + 12q3 + 64q4 − 210q5 − 96q6 + 1016q7 − 512q8 − 2043q9 + · · · ,

and we get the following table:

p = 2
k2 i L s

10 1 3 1
14 1, 2 3 1
16 1 5 3
18 1 3 1
20 1, 2 4 2
22 1, 2 3 1
24 1 6 4
26 1, 2 3 1
28 1, 2 4 2
30 1, 2 3 1
32 1, 2 5 3
34 1, 2 3 1
36 1, 2 4 2
38 1, 2 3 1
40 1, 2 7 5
42 1, 2 3 1
44 1, 2 4 2
46 1, 2 3 1
48 1, 2 5 3
50 1, 2 3 1
52 1, 2 4 2
54 1, 2 3 1
56 1, 2 6 4
58 1, 2 3 1
60 1, 2 4 2
62 1, 2 3 1
64 1, 2 5 3
66 1, 2 3 1
68 1, 2 4 2
70 1, 2 3 1
72 1, 2 8 6

p = 3
k2 i L s

10 1 1 0
14 1, 2 2 1
16 1 1 0
18 1 1 0
20 2 2 1
22 1, 2 1 0
24 1 1 0
26 2 3 2
28 1, 2 1 0
30 1, 2 1 0
32 2 2 1
34 1, 2 1 0
36 1, 2 1 0
38 1 2 1
40 1, 2 1 0
42 1, 2 1 0
44 2 3 2
46 1, 2 1 0
48 1, 2 1 0
50 2 2 1
52 1, 2 1 0
54 1, 2 1 0
56 2 2 1
58 1, 2 1 0
60 1, 2 1 0
62 1 4 3
64 1, 2 1 0
66 1, 2 1 0
68 2 2 1
70 1, 2 1 0
72 1, 2 1 0

p = 5
k2 i L s

16 1 1 0

20 1 1 0

24 1 1 0

28 1 2 1

32 2 1 0

36 1 1 0

40 2 1 0

44 1 1 0

48 2 2 1

52 1 1 0

56 2 1 0

60 1 1 0

64 2 1 0

68 1 2 1

72 2 1 0

Table A.2: N = 2, k1 = 8, p = 2, 3, 5 and 10 ≤ k2 ≤ 72.

We have computed similar tables for all k1 ≤ 24 (and k2 ≤ 176).
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Level 3

The space S6

(
Γ0(3)

)
contains the single newform

f3,6 = q − 6q2 + 9q3 + 4q4 + 6q5 − 54q6 − 40q7 + 168q8 + 81q9 · · · ,

and we get the following table:

p = 2
k2 i L s

8 1 3 1
10 1 4 2
12 1 3 1
14 2 5 3
16 1, 2 3 1
18 2 4 2
20 1, 2 3 1
22 3 6 4
24 1, 2 3 1
26 2 4 2
28 1, 2 3 1
30 2 5 3
32 1, 2 3 1
34 1 4 2
36 1, 2 3 1
38 2 7 5
40 1, 2 3 1
42 2 4 2
44 1, 2 3 1
46 1 5 3
48 1, 2 3 1
50 2 4 2
52 1, 2 3 1
54 2 6 4
56 1, 2 3 1
58 2 4 2
60 1, 2 3 1
62 2 5 3
64 1, 2 3 1
66 2 4 2
68 1, 2 3 1
70 2 8 6

p = 3
k2 i L s

8 1 1 0
10 1, 2 1 0
12 1 1 1
14 1, 2 1 0
16 1, 2 1 0
18 2 2 1
20 1, 2 1 0
22 1–3 1 0
24 1, 2 3 2
26 1, 2 1 0
28 1, 2 1 0
30 1, 2 2 1
32 1, 2 1 0
34 1, 2 1 0
36 1, 2 2 1
38 1, 2 1 0
40 1, 2 1 0
42 1, 2 3 2
44 1, 2 1 0
46 1, 2 1 0
48 1, 2 2 1
50 1, 2 1 0
52 1, 2 1 0
54 1, 2 2 1
56 1, 2 1 0
58 1, 2 1 0
60 1, 2 4 3
62 1, 2 1 0
64 1, 2 1 0
66 1, 2 2 1
68 1, 2 1 0
70 1, 2 1 0

p = 5
k2 i L s

10 2 1 0

14 2 1 0

18 1 1 0

22 3 1 0

26 1 2 1

30 2 1 0

34 2 1 0

38 2 1 0

42 1 1 0

46 1 2 1

50 1 1 0

54 2 1 0

58 1 1 0

62 2 1 0

66 1 2 1

70 2 1 0

Table A.3: N = 3, k1 = 6, p = 2, 3, 5 and 8 ≤ k2 ≤ 70.

We have computed similar tables for all k1 ≤ 12 (and k2 ≤ 132).
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Level 4

The space S6

(
Γ0(4)

)
contains the single newform

f4,6 = q − 12q3 + 54q5 − 88q7 − 99q9 + · · · ,

and we get the following table (we can again omit the index i):

p = 2
k2 L s

10 4 2
12 3 1
14 5 3
16 3 1
18 4 2
20 3 1
22 6 4
24 3 1
26 4 2
28 3 1
30 5 3
32 3 1
34 4 2
36 3 1
38 7 5
40 3 1
42 4 2
44 3 1
46 5 3
48 3 1
50 4 2
52 3 1
54 6 4
56 3 1
58 4 2
60 3 1
62 5 3
64 3 1
66 4 2
68 3 1
70 8 6

p = 3
k2 L s

10 1 0
12 2 1
14 1 0
16 1 0
18 2 1
20 1 0
22 1 0
24 3 2
26 1 0
28 1 0
30 2 1
32 1 0
34 1 0
36 2 1
38 1 0
40 1 0
42 3 2
44 1 0
46 1 0
48 2 1
50 1 0
52 1 0
54 2 1
56 1 0
58 1 0
60 4 3
62 1 0
64 1 0
66 2 1
68 1 0
70 1 0

p = 5
k2 L s

10 1 0

14 1 0

18 1 0

22 1 0

26 2 1

30 1 0

34 1 0

38 1 0

42 1 0

46 2 1

50 1 0

54 1 0

58 1 0

62 1 0

66 2 1

70 1 0

Table A.4: N = 4, k1 = 6, p = 2, 3, 5 and 8 ≤ k2 ≤ 70.

We have computed similar tables for all k1 ≤ 16.
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Level 5

The space S4

(
Γ0(5)

)
contains the single newform

f5,4 = q − 4q2 + 2q3 + 8q4 − 5q5 − 8q6 + 6q7 − 23q9 + · · · ,

and we get the following table:

p = 2
k2 i L s

6 1 1 1
8 2 3 2
10 1 2 1
12 2 4 3
14 1 2 1
16 2 3 2
18 1 2 1
20 2 5 4
22 1 2 1
24 2 3 2
26 1 2 1
28 2 5 3
30 1 2 1
32 2 3 2
34 1 2 1
36 2 6 5
38 1 2 1
40 2 3 2
42 1 2 1
44 2 5 3
46 1 2 1
48 2 3 2
50 1 2 1
52 2 6 4
54 1 2 1
56 2 3 2
58 1 2 1
60 2 5 3
62 1 2 1
64 2 3 2
66 1 2 1
68 2 7 6

p = 3
k2 i L s

6 1 1 0
8 2 1 0
10 2 2 1
12 2 1 0
14 2 1 0
16 2 2 1
18 2 1 0
20 2 1 0
22 2 3 2
24 2 1 0
26 2 1 0
28 2 2 1
30 2 1 0
32 2 1 0
34 2 2 1
36 2 1 0
38 2 1 0
40 2 3 2
42 2 1 0
44 2 1 0
46 2 2 1
48 2 1 0
50 2 1 0
52 2 2 1
54 2 1 0
56 2 1 0
58 2 4 3
60 2 1 0
62 2 1 0
64 2 2 1
66 2 1 0
68 2 1 0

p = 5
k2 i L s

8 1, 2 1 0

12 2 1 0

16 1, 2 1 0

20 1, 2 1 0

24 1, 2 1 1

28 1, 2 1 0

32 1, 2 1 0

36 1, 2 1 0

40 1, 2 1 0

44 2 2 1

48 1, 2 1 0

52 1, 2 1 0

56 1, 2 1 0

60 1, 2 1 0

64 1, 2 2 1

68 1, 2 1 0

Table A.5: N = 5, k1 = 4, p = 2, 3, 5 and 6 ≤ k2 ≤ 68.

We have computed a similar table for k1 = 6.
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Level 6

The space S4

(
Γ0(6)

)
contains the single newform

f6,4 = q − 2q2 − 3q3 + 4q4 + 6q5 + 6q6 − 16q7 − 8q8 + 9q9 + · · · ,

and we get the following table:

p = 2
k2 i L s

6 1 3 1
8 1 3 2
10 1 3 1
12 3 5 3
14 1 3 1
16 2, 3 4 2
18 1–3 3 1
20 3 6 4
22 1–3 3 1
24 1, 3 4 2
26 1–3 3 1
28 2, 4 5 3
30 1–4 3 1
32 1, 3 4 2
34 1–4 3 1
36 1, 4 7 5
38 1–4 3 1
40 3, 4 4 2
42 1–4 3 1
44 1, 4 5 3
46 1–4 3 1
48 1, 3 4 2
50 1–4 3 1
52 2, 4 6 4
54 1–4 3 1
56 1, 3 4 2
58 1–4 3 1
60 1, 4 5 3
62 1–4 3 1
64 3, 4 4 2
66 1–4 3 1
68 1, 4 8 6

p = 3
k2 i L s

6 1 1 0
8 1 1 0
10 1 1 1
12 1–3 1 0
14 1 1 0
16 3 2 1
18 1–3 1 0
20 1–3 1 0
22 1, 2 3 2
24 1–4 1 0
26 1–3 1 0
28 3, 4 2 1
30 1–4 1 0
32 1–4 1 0
34 1, 2 2 1
36 1–4 1 0
38 1–4 1 0
40 1, 4 3 2
42 1–4 1 0
44 1–4 1 0
46 2, 3 2 1
48 1–4 1 0
50 1–4 1 0
52 3, 4 2 1
54 1–4 1 0
56 1–4 1 0
58 1, 2 4 3
60 1–4 1 0
62 1–4 1 0
64 1, 4 2 1
66 1–4 1 0
68 1–4 1 0

p = 5
k2 i L s

8 1 1 0

12 3 1 0

16 1 1 0

20 3 1 0

24 4 2 1

28 4 1 0

32 4 1 0

36 4 1 0

40 2 1 0

44 4 2 1

48 4 1 0

52 4 1 0

56 4 1 0

60 4 1 0

64 2 2 1

68 4 1 0

Table A.6: N = 6, k1 = 4, p = 2, 3, 5 and 6 ≤ k2 ≤ 68.

We have computed similar tables for all k1 ≤ 22.
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Level 7

The space S4

(
Γ0(7)

)
contains the single newform

f7,4 = q − q2 − 2q3 − 7q4 + 16q5 + 2q6 − 7q7 + 15q8 − 23q9 + · · · ,

and we get the following table:

p = 2
k2 i L s

6 2 3 1
8 2 4 2
10 2 3 1
12 2 5 3
14 2 3 1
16 2 4 2
18 2 3 1
20 2 6 4
22 2 3 1
24 2 4 2
26 2 3 1
28 2 5 3
30 2 3 1
32 2 4 2
34 2 3 1
36 2 7 5
38 2 3 1
40 2 4 2
42 2 3 1
44 2 5 3
46 2 3 1
48 2 4 2
50 2 3 1
52 2 6 4
54 2 3 1
56 2 4 2
58 2 3 1
60 2 5 3
62 2 3 1
64 2 4 2
66 2 3 1
68 2 8 6

p = 3
k2 i L s

6 1 1 0
8 2 1 0
10 1 2 1
12 2 1 0
14 1 1 0
16 2 2 1
18 1 1 0
20 2 1 0
22 1 3 2
24 2 1 0
26 1 1 0
28 2 2 1
30 1 1 0
32 2 1 0
34 1 2 1
36 2 1 0
38 1 1 0
40 2 3 2
42 1 1 0
44 2 1 0
46 1 2 1
48 2 1 0
50 1 1 0
52 2 2 1
54 1 1 0
56 2 1 0
58 1 4 3
60 2 1 0
62 1 1 0
64 2 2 1
66 1 1 0
68 2 1 0

p = 5
k2 i L s

8 1 1 0

12 2 1 0

16 1 1 0

20 2 1 0

24 1 2 1

28 2 1 0

32 1 1 0

36 2 1 0

40 1 1 0

44 2 2 1

48 1 1 0

52 2 1 0

56 1 1 0

60 2 1 0

64 1 2 1

68 2 1 0

Table A.7: N = 7, k1 = 4, p = 2, 3, 5 and 6 ≤ k2 ≤ 68.
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Level 8

The space S4

(
Γ0(8)

)
contains the single newform

f8,4 = q − 4q3 − 2q5 + 24q7 − 11q9 + · · · ,

and we get the following table:

p = 2
k2 i L s

6 1 3 1
8 1, 2 4 2
10 1, 2 3 1
12 1, 2 5 3
14 1, 2 3 1
16 1–3 4 2
18 1, 2 3 1
20 1, 2 6 4
22 1, 2 3 1
24 1, 2 4 2
26 1, 2 3 1
28 1, 2 5 3
30 1, 2 3 1
32 1, 2 4 2
34 1, 2 3 1
36 1, 2 7 5
38 1, 2 3 1
40 1, 2 4 2
42 1, 2 3 1
44 1, 2 5 3
46 1, 2 3 1
48 1, 2 4 2
50 1, 2 3 1
52 1, 2 6 4
54 1, 2 3 1
56 1, 2 4 2
58 1, 2 3 1
60 1, 2 5 3
62 1, 2 3 1
64 1, 2 4 2
66 1, 2 3 1
68 2 8 6

p = 3
k2 i L s

6 1 1 0
8 1 1 0
10 2 2 1
12 2 1 0
14 2 1 0
16 3 2 1
18 1 1 0
20 2 1 0
22 2 3 2
24 1 1 0
26 2 1 0
28 2 2 1
30 2 1 0
32 1 1 0
34 2 2 1
36 2 1 0
38 2 1 0
40 1 3 2
42 1 1 0
44 2 1 0
46 2 2 1
48 1 1 0
50 1 1 0
52 2 2 1
54 2 1 0
56 1 1 0
58 1 4 3
60 2 1 0
62 2 1 0
64 2 2 1
66 2 1 0
68 2 1 0

p = 5
k2 i L s

8 2 1 0

12 2 1 0

16 2 1 0

20 2 1 0

24 2 2 1

28 2 1 0

32 2 1 0

36 2 1 0

40 2 1 0

44 2 2 1

48 2 1 0

52 2 1 0

56 2 1 0

60 2 1 0

64 1 2 1

68 2 1 0

Table A.8: N = 8, k1 = 4, p = 2, 3, 5 and 6 ≤ k2 ≤ 68.

We have computed similar tables for all k1 ≤ 8.
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Level 9

The space S4

(
Γ0(9)

)
contains the single newform

f9,4 = q − 8q4 + 20q7 + · · · ,

and we get the following table:

p = 2
k2 i L s

6 1 1 1
8 2 4 2
10 1 3 1
12 3 5 3
14 2 3 1
16 1, 5 4 2
18 3 3 1
20 4 6 4
22 1, 5 3 1
24 4 4 2
26 4 3 1
28 1, 5 5 3
30 4 3 1
32 4 4 2
34 1, 5 3 1
36 4 7 5
38 4 3 1
40 1, 5 4 2
42 4 3 1
44 4 5 3
46 1, 5 3 1
48 4 4 2
50 4 3 1
52 1, 5 6 4
54 4 3 1
56 4 4 2
58 1, 5 3 1
60 4 5 3
62 4 3 1
64 1, 5 4 2
66 4 3 1
68 4 8 6

p = 3
k2 i L s

6 1 1 0
8 1, 2 1 0
10 1–3 2 1
12 1–3 1 0
14 1–3 1 0
16 1–5 2 1
18 1–4 1 0
20 1–4 1 0
22 1, 3, 6 3 2
24 1–4 1 0
26 1–4 1 0
28 1–5 2 1
30 1–4 1 0
32 1–4 1 0
34 1–5 2 1
36 1–4 1 0
38 1–4 1 0
40 1–5 3 2
42 1–4 1 0
44 1–4 1 0
46 1–5 2 1
48 1–4 1 0
50 1–4 1 0
52 1–5 2 1
54 1–4 1 0
56 1–4 1 0
58 1, 3, 4 4 3
60 1–4 1 0
62 1–4 1 0
64 1–5 2 1
66 1–4 1 0
68 1–4 1 0

p = 5
k2 i L s

8 2 1 0

12 3 1 0

16 1, 5 1 0

20 4 1 0

24 4 2 1

28 1, 5 1 0

32 4 1 0

36 4 1 0

40 1, 5 1 0

44 4 2 1

48 4 1 0

52 1, 5 1 0

56 4 1 0

60 4 1 0

64 5 2 1

68 4 1 0

Table A.9: N = 9, k1 = 4, p = 2, 3, 5 and 6 ≤ k2 ≤ 68.

We have computed a similar table for k1 = 6.
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Level 10

The space S4

(
Γ0(10)

)
contains the single newform

f10,4 = q + 2q2 − 8q3 + 4q4 + 5q5 − 16q6 − 4q7 + 8q8 + 37q9 + · · · ,

and we get the following table:

p = 2
k2 i L s
6 2 3 1
8 1 2 2
10 3 2 1
12 4 4 3
14 3 3 1
16 3, 4 3 2
18 1, 3 3 1
20 4 5 4
22 3 3 1
24 2, 4 3 2
26 1, 3 3 1
28 3, 4 4 3
30 1, 4 3 1
32 2, 4 3 2
34 1, 4 3 1
36 3, 4 6 5

p = 3
k2 i L s
6 1–3 1 0
8 1 1 0

10 2 2 1
12 1–4 1 0
14 1–3 1 0
16 4 2 1
18 1–4 1 0
20 1–4 1 0
22 4 3 2
24 1–4 1 0
26 1–4 1 0
28 4 2 1
30 1–4 1 0
32 1–4 1 0
34 3 2 1
36 1–4 1 0

p = 5
k2 i L s

12 1, 4 1 0

16 2, 3 1 0

20 1, 4 1 0

24 2, 3 1 1

28 1, 4 1 0

32 2, 3 1 0

36 1, 4 1 0

Table A.10: N = 10, k1 = 4, p = 2, 3, 5 and 6 ≤ k2 ≤ 36.

We have computed similar tables for all k1 ≤ 10.
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Level 12

The space S4

(
Γ0(12)

)
contains the single newform

f12,4 = q + 3q3 − 18q5 + 8q7 + 9q9 + · · · ,

and we get the following table:

p = 2
k2 i L s
8 1 4 2
10 1 3 1
12 1 5 3
14 1, 2 3 1
16 2 4 2
18 1, 2 3 1
20 1 6 4
22 1, 2 3 1
24 1 4 2
26 1, 2 3 1
28 2 5 3
30 1, 2 3 1
32 1 4 2
34 1, 2 3 1
36 1 7 5

p = 3
k2 i L s
8 1, 2 1 0
10 1 2 1
12 1, 2 1 0
14 1, 2 1 0
16 1, 2 2 1
18 1, 2 1 0
20 1, 2 1 0
22 1, 2 3 2
24 1, 2 1 0
26 1, 2 1 0
28 1, 2 2 1
30 1, 2 1 0
32 1, 2 1 0
34 1, 2 2 1
36 1, 2 1 0

p = 5
k2 i L s
8 2 1 0

12 1 1 0

16 1 1 0

20 1 1 0

24 2 2 1

28 2 1 0

32 2 1 0

36 1 1 0

Table A.11: N = 12, k1 = 4, p = 2, 3, 5 and 6 ≤ k2 ≤ 36.

We have computed similar tables for all k1 ≤ 14.
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Level 15

The space S2

(
Γ0(15)

)
contains the single newform

f15,2 = q − q2 − q3 − q4 + q5 + q6 + 3q8 + q9 + · · · ,

and we get the following table:

p = 2
k2 i L s
4 1 3 1
6 3 4 2
8 3 3 1

10 4 5 3
12 1, 4 3 1
14 4 4 2
16 2, 4 3 1
18 4 6 4
20 1, 4 3 1
22 5 4 2
24 1, 4 3 1
26 4 5 3
28 1, 3 3 1
30 4 4 2
32 1, 4 3 1
34 4 7 5

p = 3
k2 i L s

6 3 1 0
8 1, 2 1 1
10 1, 4 1 0
12 2, 3 1 0
14 4 2 1
16 1, 3 1 0
18 1, 4 1 0
20 2, 3 3 2
22 4, 5 1 0
24 2, 3 1 0
26 1, 4 2 1
28 2, 4 1 0
30 1, 4 1 0
32 2, 3 2 1
34 2, 4 1 0

p = 5
k2 i L s

10 4 1 0

14 1, 3 1 0

18 4, 4 1 0

22 1, 3, 4 1 1

26 2, 4 1 0

30 1, 2 1 0

34 1, 4 1 0

Table A.12: N = 15, k1 = 2, p = 2, 3, 5 and 4 ≤ k2 ≤ 34.

We have computed a similar table for k1 = 4.
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Level 16

The space S4

(
Γ0(16)

)
contains the single newform

f16,4 = q + 4q3 − 2q5 − 24q7 − 11q9 + · · · ,

and we get the following table:

p = 2
k2 i L s
6 1, 2 3 1
8 1–3 4 2
10 1–4 3 1
12 1–4 5 3
14 1–5 3 1
16 1–5 4 2
18 1–5 3 1
20 5–6 6 4
22 1–6 3 1
24 1–5 4 2
26 1–6 3 1
28 1–6 5 3
30 1–6 3 1
32 1–6 4 2
34 1–6 3 1
36 5–6 7 5

p = 3
k2 i L s
6 2 1 0
8 2 1 0

10 2 2 1
12 4 1 0
14 5 1 0
16 6 2 1
18 3 1 0
20 6 1 0
22 6 3 2
24 4 1 0
26 6 1 0
28 6 2 1
30 6 1 0
32 5 1 0
34 6 2 1
36 6 1 0

p = 5
k2 i L s

8 3 1 0

12 4 1 0

16 4 1 0

20 6 1 0

24 5 2 1

28 6 1 0

32 6 1 0

36 6 1 0

Table A.13: N = 16, k1 = 4, p = 2, 3, 5 and 6 ≤ k2 ≤ 36.

We have computed similar tables for all k1 ≤ 10.



Computational evidence for Conjecture 2.22 69

Level 18

The space S4

(
Γ0(18)

)
contains the single newform

f18,4 = q + 2q2 + 4q4 − 6q5 − 16q7 + 8q8 + · · · ,

and we get the following table:

p = 2
k2 i L s
6 2 3 1
8 1, 2 3 2
10 2, 4 3 1
12 2 5 3
14 1, 4, 5 3 1
16 3, 5 4 2
18 1–4 3 1
20 2 6 4
22 1–5 3 1
24 3, 4 4 2
26 1–4, 7 3 1
28 4, 6 5 3
30 1–6 3 1
32 1, 3 4 2
34 1–6 3 1
36 2, 5 7 5

p = 3
k2 i L s
6 1–3 1 0
8 1, 2 1 0

10 3, 4 2 1
12 1–5 1 0
14 1–5 1 0
16 1–3 2 1
18 1–6 1 0
20 1–7 1 0
22 3–5, 7 3 2
24 1–7 1 0
26 1–7 1 0
28 1, 2, 6, 7 2 1
30 1–8 1 0
32 1–8 1 0
34 3, 4, 6, 8 2 1
36 1–8 1 0

p = 5
k2 i L s

8 2 1 0

12 2 1 0

16 4 1 0

20 2 1 0

24 6 2 1

28 2, 6 1 0

32 4, 7 1 0

36 1, 5 1 0

Table A.14: N = 18, k1 = 4, p = 2, 3, 5 and 6 ≤ k2 ≤ 36.

We have computed similar tables for all k1 ≤ 16.
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Level 20

The space S2

(
Γ0(20)

)
contains the single newform

f20,2 = q − 2q3 − q5 + 2q7 + q9 + · · · ,

and we get the following table:

p = 2
k2 i L s
4 1 1 1
6 1 3 2
8 1 2 1

10 2 4 3
12 1 2 1
14 2 3 2
16 1 2 1
18 2 5 4
20 1 2 1
22 2 3 2
24 1 2 1
26 2 4 3
28 1 2 1
30 2 3 2
32 1 2 1
34 2 7 5

p = 3
k2 i L s
4 1 1 0
6 1 1 0
8 2 2 1
10 1,2 1 0
12 1,2 1 0
14 2 2 1
16 1,2 1 0
18 1,2 1 0
20 2 3 2
22 1,2 1 0
24 1,2 1 0
26 2 2 1
28 1,2 1 0
30 1,2 1 0
32 2 2 1
34 1,2 1 0

p = 5
k2 i L s

10 2 1 0

14 1,2 1 0

18 1,2 1 0

22 1,2 1 1

26 1,2 1 0

30 1,2 1 0

34 1,2 1 0

Table A.15: N = 20, k1 = 2, p = 2, 3, 5 and 4 ≤ k2 ≤ 34.

We have computed similar tables for all k1 ≤ 6.
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Level 24

The space S2

(
Γ0(24)

)
contains the single newform

f24,2 = q − q3 − 2q5 + q9 + · · · ,

and we get the following table:

p = 2
k2 i L s
4 1 3 1
6 2, 3 4 2
8 1–3 3 1

10 3, 4 5 3
12 1–4 3 1
14 3, 4 4 2
16 1–4 3 1
18 3, 4 6 4
20 1–4 3 1
22 3, 4 4 2
24 1–4 3 1
26 3, 4 5 3
28 1–4 3 1
30 3, 4 4 2
32 1–4 3 1
34 3, 4 7 5
36 1–4 3 1

p = 3
k2 i L s

6 3 1 0
8 2, 3 1 1
10 2, 4 1 0
12 1, 3 1 0
14 4 2 1
16 2, 4 1 0
18 2, 4 1 0
20 1, 3 3 2
22 1, 4 1 0
24 3, 4 1 0
26 2, 4 2 1
28 1, 2 1 0
30 1, 3 1 0
32 3, 4 2 1
34 1, 4 1 0
36 1, 2 1 0

p = 5
k2 i L s

6 1 1 0

10 4 1 0

14 2 1 0

18 4 1 0

22 2 2 1

26 4 1 0

30 2 1 0

34 4 1 0

Table A.16: N = 24, k1 = 2, p = 2, 3, 5 and 4 ≤ k2 ≤ 34.

We have computed similar tables for all k1 ≤ 8.

Level 25

The space S4

(
Γ0(25)

)
contains the three newforms

f25,4,1 = q + q2 + 7q3 − 7q4 + 7q6 + 6q7 − 15q8 + 22q9 + · · · ,
f25,4,2 = q − q2 − 7q3 − 7q4 + 7q6 − 6q7 + 15q8 + 22q9 + · · · ,
f25,4,3 = q + 4q2 − 2q3 + 8q4 − 8q6 − 6q7 − 23q9 + · · · ,

and we get the following table:
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p = 2
k2 i j L s

6 3 2 3 1
6 4 1 3 1
8 3 1 4 2
8 4 2 4 2
10 3 2 3 1
10 4 1 3 1

12 5 1 5 3
12 6 2 5 3
14 3 2 3 1
14 4 1 3 1
16 4 1 4 2
16 5 2 4 2

18 4 1 3 1
18 5 2 3 1
20 4 1 6 4
20 5 2 6 4
22 4 2 3 1
22 5 1 3 1

24 4 1 4 2
24 5 2 4 2
26 4 2 3 1
26 5 1 3 1
28 3 3 5 3
28 4 1 5 3
28 5 2 5 3
30 4 2 3 1
30 5 1 3 1
32 4 1 4 2
32 5 2 4 2
34 4 2 3 1
34 5 1 3 1

36 4 2 7 5
36 5 1 7 5

p = 3
k2 i j L s

6 1, 4 1, 3 1 0
6 3 2 1 0
8 3, 5 1, 3 1 0
8 4 2 1 0
10 2 3 2 1
10 3 2 2 1
10 4 1 2 1
12 3, 5 1, 3 1 0
12 6 2 1 0
14 2, 4 1, 3 1 0
14 3 2 1 0
16 3 3 2 1
16 4 1 2 1
16 5 2 2 1
18 3, 4 1, 3 1 0
18 5 2 1 0
20 3, 4 1, 3 1 0
20 5 2 1 0
22 3 3 3 2
22 4 2 3 2
22 5 1 3 2
24 3, 4 1, 3 1 0
24 5 2 1 0
26 3, 5 1, 3 1 0
26 4 2 1 0
28 3 3 2 1
28 4 1 2 1
28 5 2 2 1
30 3, 5 1, 3 1 0
30 4 2 1 0
32 3, 4 1, 3 1 0
32 5 2 1 0
34 3 3 2 1
34 4 2 2 1
34 5 1 2 1
36 3, 5 1, 3 1 0
36 4 2 1 0

p = 5
k2 i j L s

8 1 2, 3 1 0
8 2–5 1–3 1 0

12 1 2, 3 1 0
12 2 1 1 0
12 3–6 1–3 1 0

16 1 2, 3 1 0
16 2–6 1–3 1 0

20 1 2, 3 1 0
20 2–6 1–3 1 0

24 1 3 2 1
24 2, 3 1, 2 2 1
24 4–6 1–3 2 1

28 1–6 1–3 1 0

32 1–6 1–3 1 0

36 1–6 1–3 1 0

Table A.17: N = 25, k1 = 4, p = 2, 3, 5 and 6 ≤ k2 ≤ 36.
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Level 27

The space S2

(
Γ0(27)

)
contains the single newform

f27,2 = q − 2q4 − q7 + · · · ,

and we get the following table:

p = 2
k2 i L s
4 3 2 1
6 1 1 2
6 2 3 2
10 4 4 3
12 3 2 1
14 1, 3 3 2
16 4 2 1
18 3 5 4
20 1, 3 2 1
22 4 3 2
24 3 2 1
26 1, 3 4 3
28 4 2 1
30 3 3 2
32 1, 3 2 1
34 4 6 5

p = 3
k2 i L s
4 1–3 1 0
6 1–4 1 0
8 1–3 2 1
10 1–4 1 0
12 1–5 1 0
14 1–3 2 1
16 1–4 1 0
18 1–5 1 0
20 1 3 2
22 1–4 1 0
24 1–5 1 0
26 1–3 2 1
28 1–4 1 0
30 1–5 1 0
32 1–3 2 1
34 1–4 1 0

p = 5
k2 i L s

6 1 1 0

10 4 1 0

14 2 1 0

18 3 1 0

22 1 2 1

26 1, 3 1 0

30 1, 2 1 0

34 4 1 0

Table A.18: N = 27, k1 = 2, p = 2, 3, 5 and 4 ≤ k2 ≤ 34.





Appendix B

Computational evidence for
Conjectures 2.23 and 2.24

The tables in this appendix are computational results supporting Conjecture 2.23

and Conjecture 2.24.

We denote by fN,k,i the i’th newform in Sk
(
Γ0(N)

)
, with the ordering used

by SortDecomposition in Magma. If Sk
(
Γ0(N)

)
contains only one newform, we

simply denote this by fN,k.

Looking at all newforms in Sk1
(
Γ0(Np)

)
and Sk2

(
Γ0(N)

)
, the tables give the

maximal positive integer M = d m
e(p/p)

e such that

a`(fNp,k1,j) ≡ a`(fN,k2,i) (mod pm)

for all ` ≤ B′ (the largest of the extended Sturm bounds for Ski

(
Γ0(Np)

)
) with

` - Np, where p runs through all prime ideals over p in the coefficient field of

fNp,k1,j and fN,k2,i. If M is attained for several i’s or j’s, these are all listed. The

tables also list the maximal integer s such that k1 ≡ k2 (mod ps(p − 1)). The

rows written in bold indicates the lowest weight k2 for which there is an increase

in M compared to the lower weights.

We call Sk1
(
Γ0(Np)

)
the initial space, and for most of the computations we

have tried to choose initial spaces where there is only one newform (with integral

coefficients), since this means less congruences to be checked, and we omit the

index j if this is the case. We list only one table for each base level, since the

tables for the initial spaces Sk1
(
Γ0(Np)

)
and Sk1+n

(
Γ0(Np)

)
(for an even positive

integer n) are very similar.

For base levels N < 10 and initial weight k
(p)
1 , we compute congruences for

newforms on Γ0(N) of weights k2 satisfying k
(p)
1 < k2 ≤ k

(p)
1 + 64, and for N ≥ 10

we compute for newforms of weights k2 satisfying k
(p)
1 < k2 ≤ k

(p)
1 + 32.

75
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Base level 1

Each of the spaces S8

(
Γ0(2)

)
, S6

(
Γ0(3)

)
and S4

(
Γ0(5)

)
contains a single newform,

and we get the following table (we omit the index i since there is at most one

newform on Γ0(1) of any weight):

p = 2
k2 M s

12 4 2
16 5 3
18 3 1
20 4 2
22 3 1
24 6 4
26 3 1
28 4 2
30 3 1
32 5 3
34 3 1
36 4 2
38 3 1
40 7 5
42 3 1
44 4 2
46 3 1
48 5 3
50 3 1
52 4 2
54 3 1
56 6 4
58 3 1
60 4 2
62 3 1
64 5 3
66 3 1
68 4 2
70 3 1
72 8 6

p = 3
k2 M s

12 2 1
16 1 0
18 2 1
20 1 0
22 1 0
24 3 2
26 1 0
28 1 0
30 2 1
32 1 0
34 1 0
36 2 1
38 1 0
40 1 0
42 3 2
44 1 0
46 1 0
48 2 1
50 1 0
52 1 0
54 2 1
56 1 0
58 1 0
60 4 3
62 1 0
64 1 0
66 2 1
68 1 0
70 1 0
72 2 1

p = 5
k2 M s

12 1 0
16 1 0

20 1 0

24 2 1

28 1 0

32 1 0

36 1 0

40 1 0

44 2 1

48 1 0

52 1 0

56 1 0

60 1 0

64 2 1

68 1 0

72 1 0

Table B.1: N = 1, p = 2, 3, 5, k
(2)
1 = 8, k

(3)
1 = 6, k

(5)
1 = 4 and k2 ≤ 72.

We have computed similar tables for all k
(2)
1 ≤ 24, k

(3)
1 ≤ 12 and k

(5)
1 ≤ 6.
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Base level 2

Each of the spaces S6

(
Γ0(4)

)
, S4

(
Γ0(6)

)
and S4

(
Γ0(10)

)
contains a single new-

form, and we get the following table:

p = 2
k2 i M s

8 1 3 1
10 1 4 2
14 1, 2 5 3
16 1 3 1
18 1 4 2
20 1, 2 3 1
22 1, 2 6 4
24 1 3 1
26 1, 2 4 2
28 1, 2 3 1
30 1, 2 5 3
32 1, 2 3 1
34 1, 2 4 2
36 1, 2 3 1
38 1, 2 7 5
40 1, 2 3 1
42 1, 2 4 2
44 1, 2 3 1
46 1, 2 5 3
48 1, 2 3 1
50 1, 2 4 2
52 1, 2 3 1
54 1, 2 6 4
56 1, 2 3 1
58 1, 2 4 2
60 1, 2 3 1
62 1, 2 5 3
64 1, 2 3 1
66 1, 2 4 2
68 1, 2 3 1
70 1, 2 8 6

p = 3
k2 i M s

8 1 1 0
10 1 2 1
14 1,2 1 0
16 1 2 1
18 1 1 0
20 1,2 1 0
22 1 3 2
24 1 1 0
26 1,2 1 0
28 1,2 2 1
30 1,2 1 0
32 1,2 1 0
34 2 2 1
36 1,2 1 0
38 1,2 1 0
40 2 3 2
42 1,2 1 0
44 1,2 1 0
46 1 2 1
48 1,2 1 0
50 1,2 1 0
52 2 2 1
54 1,2 1 0
56 1,2 1 0
58 2 4 3
60 1,2 1 0
62 1,2 1 0
64 2 2 1
66 1,2 1 0
68 1,2 1 0
70 1 2 1

p = 5
k2 i M s

8 1 1 0

16 1 1 0

20 1 1 0

24 1 2 1

28 1 1 0

32 2 1 0

36 1 1 0

40 2 1 0

44 1 2 1

48 2 1 0

52 1 1 0

56 2 1 0

60 1 1 0

64 2 2 1

68 1 1 0

Table B.2: N = 2, p = 2, 3, 5, k
(2)
1 = 6, k

(3)
1 = 4, k

(5)
1 = 4 and k2 ≤ 70.

We have computed similar tables for all k
(2)
1 ≤ 16, k

(3)
1 ≤ 22 and k

(5)
1 ≤ 10.
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Base level 3

Each of the spaces S4

(
Γ0(6)

)
, S4

(
Γ0(9)

)
and S2

(
Γ0(15)

)
contains a single new-

form, and we get the following table:

p = 2
k2 i M s

6 1 3 1
8 1 4 2
10 1, 2 3 1
12 1 5 3
14 1, 2 3 1
16 2 4 2
18 1, 2 3 1
20 2 6 4
22 1–3 3 1
24 2 4 2
26 1, 2 3 1
28 2 5 3
30 1, 2 3 1
32 2 4 2
34 1, 2 3 1
36 2 7 5
38 1, 2 3 1
40 1 4 2
42 1, 2 3 1
44 2 5 3
46 1, 2 3 1
48 2 4 2
50 1, 2 3 1
52 2 6 4
54 1, 2 3 1
56 2 4 2
58 1, 2 3 1
60 2 5 3
62 1, 2 3 1
64 1 4 2
66 1, 2 3 1
68 2 8 6

p = 3
k2 i M s

6 1 1 0
8 1 1 0
10 1, 2 2 1
12 1 1 0
14 1, 2 1 0
16 1, 2 2 1
18 1, 2 1 0
20 1, 2 1 0
22 1, 3 3 2
24 1, 2 1 0
26 1, 2 1 0
28 1, 2 2 1
30 1, 2 1 0
32 1, 2 1 0
34 1, 2 2 1
36 1, 2 1 0
38 1, 2 1 0
40 1, 2 3 2
42 1, 2 1 0
44 1, 2 1 0
46 1, 2 2 1
48 1, 2 1 0
50 1, 2 1 0
52 1, 2 2 1
54 1, 2 1 0
56 1, 2 1 0
58 1, 2 4 3
60 1, 2 1 0
62 1, 2 1 0
64 1, 2 2 1
66 1, 2 1 0
68 1, 2 1 0

p = 5
k2 i M s

6 1 1 0

10 2 1 0

14 2 1 0

18 1 1 0

22 3 2 1

26 1 1 0

30 2 1 0

34 2 1 0

38 2 1 0

42 1 2 1

46 1 1 0

50 1 1 0

54 2 1 0

58 1 1 0

62 2 2 1

66 1 1 0

Table B.3: N = 3, p = 2, 3, 5, k
(2)
1 = 4, k

(3)
1 = 4, k

(5)
1 = 2 and k2 ≤ 68.

We have computed similar tables for all k
(2)
1 ≤ 22, k

(3)
1 ≤ 6 and k

(5)
1 ≤ 4.
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Base level 4

Each of the spaces S4

(
Γ0(8)

)
, S4

(
Γ0(12)

)
and S2

(
Γ0(20)

)
contains a single new-

form, and we get the following table (we can again omit the index i):

p = 2
k2 M s

6 3 1
10 3 1
12 5 3
14 3 1
16 4 2
18 3 1
20 5 4
22 3 1
24 4 2
26 3 1
28 5 3
30 3 1
32 4 2
34 3 1
36 5 5
38 3 1
40 4 2
42 3 1
44 5 3
46 3 1
48 4 2
50 3 1
52 5 4
54 3 1
56 4 2
58 3 1
60 5 3
62 3 1
64 4 2
66 3 1
68 5 6

p = 3
k2 M s

6 1 0
10 2 1
12 1 0
14 1 0
16 2 1
18 1 0
20 1 0
22 3 2
24 1 0
26 1 0
28 2 1
30 1 0
32 1 0
34 2 1
36 1 0
38 1 0
40 3 2
42 1 0
44 1 0
46 2 1
48 1 0
50 1 0
52 2 1
54 1 0
56 1 0
58 4 3
60 1 0
62 1 0
64 2 1
66 1 0
68 1 0

p = 5
k2 M s

6 1 0
10 1 0

14 1 0

18 1 0

22 2 1

26 1 0

30 1 0

34 1 0

38 1 0

42 2 1

46 1 0

50 1 0

54 1 0

58 1 0

62 2 1

66 1 0

Table B.4: N = 4, p = 2, 3, 5, k
(2)
1 = 4, k

(3)
1 = 4, k

(5)
1 = 2 and k2 ≤ 68.

We have computed similar tables for all k
(2)
1 ≤ 10, k

(3)
1 ≤ 14 and k

(5)
1 ≤ 6.
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Base level 5

Each of the spaces S4

(
Γ0(10)

)
and S2

(
Γ0(15)

)
contains a single newform, while

S4

(
Γ0(25)

)
contains three, and we get the following table:

p = 2
k2 i M s

6 1 2 1
8 1 3 2
10 2 3 1
12 1 4 3
14 2 3 1
16 1 3 2
18 2 3 1
20 1 5 4
22 2 3 1
24 1 3 2
26 2 3 1
28 1 4 3
30 2 3 1
32 1 3 2
34 2 3 1
36 1 6 5
38 2 3 1
40 1 3 2
42 2 3 1
44 1 4 3
46 2 3 1
48 1 3 2
50 2 3 1
52 1 5 4
54 2 3 1
56 1 3 2
58 2 3 1
60 1 4 3
62 2 3 1
64 1 3 2
66 2 3 1
68 1 7 6

p = 3
k2 i M s

4 1 1 0
6 1 1 0
8 2 2 1
10 2 1 0
12 2 1 0
14 2 2 1
16 2 1 0
18 2 1 0
20 2 3 2
22 2 1 0
24 2 1 0
26 2 2 1
28 2 1 0
30 2 1 0
32 2 2 1
34 2 1 0
36 2 1 0
38 2 3 2
40 2 1 0
42 2 1 0
44 2 2 1
46 2 1 0
48 2 1 0
50 2 2 1
52 2 1 0
54 2 1 0
56 2 4 3
58 2 1 0
60 2 1 0
62 2 2 1
64 2 1 0
66 2 1 0
68 2 1 0

p = 5
k2 i j M s

8 1 1 1 0
8 2 1–3 1 0
12 1 2, 3 1 0
12 2 1–3 1 0
16 1, 2 1–3 1 0

20 1, 2 1–3 1 0

24 1 1,2 2 1
24 2 1–3 2 1
28 1, 2 1–3 1 0

32 1, 2 1–3 1 0

36 1, 2 1–3 1 0

40 1, 2 1–3 1 0

44 1, 2 1–3 2 1

48 1, 2 1–3 1 0

52 1, 2 1–3 1 0

56 1, 2 1–3 1 0

60 1, 2 1–3 1 0

64 1, 2 1–3 2 1

68 1, 2 1–3 1 0

Table B.5: N = 5, p = 2, 3, 5, k
(2)
1 = 4, k

(3)
1 = 2, k

(5)
1 = 4 and k2 ≤ 68.

We have computed similar tables for all k
(2)
1 ≤ 10 and k

(3)
1 ≤ 6.
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Base level 6

Each of the spaces S4

(
Γ0(12)

)
, S4

(
Γ0(18)

)
and S2

(
Γ0(30)

)
contains a single new-

form, and we get the following table:

p = 2
k2 i M s

6 1 3 1
8 1 4 2
10 1 3 1
12 1, 2 5 3
14 1 3 1
16 1 4 2
18 1–3 3 1
20 1, 2 6 4
22 1–3 3 1
24 2, 4 4 2
26 1–3 3 1
28 1, 3 5 3
30 1–4 3 1
32 2, 4 4 2
34 1–4 3 1
36 2, 3 7 5
38 1–4 3 1
40 1, 2 4 2
42 1–4 3 1
44 2, 3 5 3
46 1–4 3 1
48 2, 4 4 2
50 1–4 3 1
52 1, 3 6 4
54 1–4 3 1
56 2, 4 4 2
58 4–4 3 1
60 2, 3 5 3
62 1–4 3 1
64 1, 2 4 2
66 1–4 3 1
68 2, 3 8 6

p = 3
k2 i M s

6 1 1 0
8 1 1 0
10 1 2 1
12 1–3 1 0
14 1 1 0
16 1, 2 2 1
18 1–3 1 0
20 1–3 1 0
22 3 3 2
24 1–4 1 0
26 1–3 1 0
28 1, 2 2 1
30 1–4 1 0
32 1–4 1 0
34 3–4 2 1
36 1–4 1 0
38 1–4 1 0
40 2, 3 3 2
42 1–4 1 0
44 1–4 1 0
46 1, 4 2 1
48 1–4 1 0
50 1–4 1 0
52 1, 2 2 1
54 1–4 1 0
56 1–4 1 0
58 3, 4 4 3
60 1–4 1 0
62 1–4 1 0
64 2, 3 2 1
66 1–4 1 0
68 1–4 1 0

p = 5
k2 i M s

6 1 1 0

10 1 1 0

14 1 1 0

18 2 1 0

22 2 2 1

26 2 1 0

30 4 1 0

34 4 1 0

38 4 1 0

42 3 2 1

46 3 1 0

50 3 1 0

54 4 1 0

58 4 1 0

62 4 2 1

66 3 1 0

Table B.6: N = 6, p = 2, 3, 5, k
(2)
1 = 4, k

(3)
1 = 4, k

(5)
1 = 2 and 6 ≤ k2 ≤ 68.

We have computed similar tables for all k
(2)
1 ≤ 14, k

(3)
1 ≤ 16 and k

(5)
1 ≤ 12.
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Base level 7

Each of the spaces S2

(
Γ0(14)

)
and S2

(
Γ0(21)

)
contains a single newform, and we

get the following table:

p = 2
k2 i M s

4 1 3 1
6 2 4 2
8 2 3 1
10 2 5 3
12 2 3 1
14 2 4 2
16 2 3 1
18 2 6 4
20 2 3 1
22 2 4 2
24 2 3 1
26 2 5 3
28 2 3 1
30 2 4 2
32 2 3 1
34 2 7 5
36 2 3 1
38 2 4 2
40 2 3 1
42 2 5 3
44 2 3 1
46 2 4 2
48 2 3 1
50 2 6 4
52 2 3 1
54 2 4 2
56 2 3 1
58 2 5 3
60 2 3 1
62 2 4 2
64 2 3 1
66 2 8 6

p = 3
k2 i M s

4 1 1 0
6 1 1 0
8 2 2 1
10 1 1 0
12 2 1 0
14 1 2 1
16 2 1 0
18 1 1 0
20 2 3 2
22 1 1 0
24 2 1 0
26 1 2 1
28 2 1 0
30 1 1 0
32 2 2 1
34 1 1 0
36 2 1 0
38 1 3 2
40 2 1 0
42 1 1 0
44 2 2 1
46 1 1 0
48 2 1 0
50 1 2 1
52 2 1 0
54 1 1 0
56 2 4 3
58 1 1 0
60 2 1 0
62 1 2 1
64 2 1 0
66 1 1 0

Table B.7: N = 7, p = 2, 3, k
(2)
1 = 2, k

(3)
1 = 2 and 4 ≤ k2 ≤ 66.

We have computed similar tables for all k
(2)
1 ≤ 6.
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Base level 8

Each of the spaces S4

(
Γ0(16)

)
, S2

(
Γ0(24)

)
and S2

(
Γ0(40)

)
contains a single new-

form, and we get the following table:

p = 2
k2 i M s

6 1 3 1
8 1, 2 3 2
10 1, 2 3 1
12 1, 2 3 3
14 1, 2 3 1
16 1–3 3 2
18 1, 2 3 1
20 1, 2 3 4
22 1, 2 3 1
24 1, 2 3 2
26 1, 2 3 1
28 1, 2 3 3
30 1, 2 3 1
32 1, 2 3 2
34 1, 2 3 1
36 1, 2 3 5
38 1, 2 3 1
40 1, 2 3 2
42 1, 2 3 1
44 1, 2 3 3
46 1, 2 3 1
48 1, 2 3 2
50 1, 2 3 1
52 1, 2 3 4
54 1, 2 3 1
56 1, 2 3 2
58 1, 2 3 1
60 1, 2 3 3
62 1, 2 3 1
64 1, 2 3 2
66 1, 2 3 1
68 1, 2 3 6

p = 3
k2 i M s

4 1 1 0
6 1 1 0
8 1 2 1
10 2 1 0
12 2 1 0
14 2 2 1
16 3 1 0
18 1 1 0
20 2 3 2
22 2 1 0
24 1 1 0
26 2 2 1
28 2 1 0
30 2 1 0
32 1 2 1
34 2 1 0
36 2 1 0
38 2 3 2
40 1 1 0
42 1 1 0
44 2 2 1
46 2 1 0
48 1 1 0
50 1 2 1
52 2 1 0
54 2 1 0
56 1 4 3
58 1 1 0
60 2 1 0
62 2 2 1
64 2 1 0
66 2 1 0
68 2 2 1

p = 5
k2 i M s

6 1 1 0

10 1 1 0

14 2 1 0

18 2 1 0

22 2 2 1

26 1 1 0

30 2 1 0

34 1 1 0

38 2 1 0

42 2 2 1

46 2 1 0

50 2 1 0

54 2 1 0

58 2 1 0

62 2 2 1

66 1 1 0

Table B.8: N = 8, p = 2, 3, 5, k
(2)
1 = 4, k

(3)
1 = 2, k

(5)
1 = 2 and k2 ≤ 68.

We have computed similar tables for all k
(2)
1 ≤ 10, k

(3)
1 ≤ 8 and k

(5)
1 ≤ 4.
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Base level 9

Each of the spaces S4

(
Γ0(18)

)
, S2

(
Γ0(27)

)
and S2

(
Γ0(45)

)
contains a single new-

form, and we get the following table:

p = 2
k2 i M s

6 1 3 1
8 1 4 2
10 2, 3 3 1
12 2 5 3
14 1, 3 3 1
16 4 4 2
18 1, 2, 4 3 1
20 3 6 4
22 2–4, 6 3 1
24 3 4 2
26 1–3 3 1
28 4 5 3
30 1–3 3 1
32 3 4 2
34 2–4 3 1
36 2 7 5
38 1–3 3 1
40 2 4 2
42 1–3 3 1
44 3 5 3
46 2–4 3 1
48 3 4 2
50 1–3 3 1
52 3 6 4
54 1–3 3 1
56 3 4 2
58 2–4 3 1
60 3 5 3
62 1–3 3 1
64 2 4 2
66 1–3 3 1
68 3 8 6

p = 3
k2 i M s

4 1 1 0
6 1 1 0
8 1, 2 1 1
10 1–3 1 0
12 1–3 1 0
14 1–3 1 1
16 1–5 1 0
18 1–4 1 0
20 1–4 1 2
22 1–6 1 0
24 1–4 1 0
26 1–4 1 1
28 1–5 1 0
30 1–4 1 0
32 1–4 1 1
34 1–5 1 0
36 1–4 1 0
38 1–4 1 2
40 1–5 1 0
42 1–4 1 0
44 1–4 1 1
46 1–5 1 0
48 1–4 1 0
50 1–4 1 1
52 1–5 1 0
54 1–4 1 0
56 1–4 1 3
58 1–5 1 0
60 1–4 1 0
62 1–4 1 1
64 1–5 1 0
66 1–4 1 0
68 1–4 1 1

p = 5
k2 i M s

6 1 1 0

10 3 1 0

14 3 1 0

18 1 1 0

22 6 2 1

26 2 1 0

30 3 1 0

34 4 1 0

38 3 1 0

42 1 2 1

46 3 1 0

50 2 1 0

54 3 1 0

58 3 1 0

62 3 2 1

66 1 1 0

Table B.9: N = 9, p = 2, 3, 5, k
(2)
1 = 4, k

(3)
1 = 2, k

(5)
1 = 2 and k2 ≤ 68.

We have computed similar tables for all k
(2)
1 ≤ 16 and k

(5)
1 ≤ 4.
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Base level 10

Each of the spaces S2

(
Γ0(20)

)
and S2

(
Γ0(30)

)
contains a single newform, while

S2

(
Γ0(50)

)
contains two, and we get the following table:

p = 2
k2 i M s
4 1 1 1
6 1, 3 3 2
8 1 1 1
10 1, 2 4 3
12 1, 3 2 1
14 1, 2 3 2
16 1, 2 2 1
18 2, 4 5 4
20 1, 2 2 1
22 2, 4 3 2
24 1, 3 2 1
26 2, 4 4 3
28 1, 2 2 1
30 2, 3 3 2
32 1, 3 2 1
34 2, 3 6 5

p = 3
k2 i M s
4 1 1 0
6 1–3 1 0
8 1 2 1
10 1–3 1 0
12 1–4 1 0
14 2 2 1
16 1–4 1 0
18 1–4 1 0
20 4 3 2
22 1–4 1 0
24 1–4 1 0
26 4 2 1
28 1–4 1 0
30 1–4 1 0
32 4 2 1
34 1–4 1 0

p = 5
k2 i j M s

6 1 1 1 0
6 2, 3 2 1 0
10 1 2 1 0
10 2, 3 1 1 0
14 1 1 1 0
14 2, 3 2 1 0
18 1, 2 2 1 0
18 3, 4 1 1 0
22 1, 2 1 2 1
22 3, 4 2 2 1
26 1, 2 2 1 0
26 3, 4 1 1 0
30 1, 2 1 1 0
30 3, 4 2 1 0
34 1, 2 2 1 0
34 3, 4 1 1 0

Table B.10: N = 10, p = 2, 3, 5, k
(2)
1 = 2, k

(3)
1 = 2, k

(5)
1 = 2 and k2 ≤ 34.

We have computed similar tables for all k
(2)
1 ≤ 6, k

(3)
1 ≤ 12 and k

(5)
1 ≤ 6.
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Base level 12

Each of the spaces S2

(
Γ0(24)

)
and S2

(
Γ0(36)

)
contains a single newform, while

S4

(
Γ0(60)

)
contains two, and we get the following table:

p = 2
k2 i M s
4 1 3 1
8 1, 2 3 1

10 1 5 3
12 1, 2 3 1
14 2 4 2
16 1, 2 3 1
18 2 5 4
20 1, 2 3 1
22 2 4 2
24 1, 2 3 1
26 2 5 3
28 1, 2 3 1
30 2 4 2
32 1, 2 3 1
34 2 5 5
36 1, 2 3 1

p = 3
k2 i M s
4 1 1 0
8 1, 2 2 1
10 1 1 0
12 1, 2 1 0
14 1, 2 2 1
16 1, 2 1 0
18 1, 2 1 0
20 1, 2 3 2
22 1, 2 1 0
24 1, 2 1 0
26 1, 2 2 1
28 1, 2 1 0
30 1, 2 1 0
32 1, 2 2 1
34 1, 2 1 0
36 1, 2 1 0

p = 5
k2 i j M s

8 1 1, 2 1 0

12 2 1, 2 1 0

16 2 1, 2 1 0

20 2 1, 2 1 0

24 1 1, 2 2 1

28 1 1, 2 1 0

32 1 1, 2 1 0

36 2 1, 2 1 0

Table B.11: N = 12, p = 2, 3, 5, k
(2)
1 = 2, k

(3)
1 = 2, k

(5)
1 = 4 and k2 ≤ 36.

We have computed similar tables for all k
(2)
1 ≤ 8, k

(3)
1 ≤ 8 and k

(5)
1 ≤ 8.
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Base level 15

Each of the spaces S2

(
Γ0(30)

)
and S2

(
Γ0(45)

)
contains a single newform, while

S2

(
Γ0(75)

)
contains three, and we get the following table:

p = 2
k2 i M s
4 2 3 1
6 2 4 2

8 1, 2 3 1
10 3 5 3

12 2, 3 3 1
14 3 4 2
16 1, 3 3 1
18 2 6 4
20 2, 3 3 1
22 1, 3 4 2

24 2, 3 3 1
26 3 5 3
28 2, 4 3 1
30 2 4 2
32 2, 3 3 1
34 3 7 5

p = 3
k2 i M s
4 1 1 0
6 1, 2 1 0

8 3 2 1
10 2, 3 1 0

12 1, 4 1 0
14 2, 3 2 1
16 2, 4 1 0
18 2, 3 1 0
20 4 3 2
22 1–3 1 0

24 1, 4 1 0
26 2, 3 2 1
28 1, 3 1 0
30 2, 3 1 0
32 1, 4 2 1
34 1, 3 1 0

p = 5
k2 i j M s

6 1 3 1 0
6 2 1 1 0
6 3 2–3 1 0

10 1 2 1 0
10 2, 4 1 1 0
10 3 2, 3 1 0
14 2, 4 2, 3 1 0
14 3 1 1 0
18 1, 2 2, 3 1 0
18 3, 4 1 1 0
22 2 3 2 1
22 3, 4 1 2 1
22 5 2, 3 2 1
26 1, 3 2, 3 1 0
26 2, 4 1 1 0
30 1, 2 1 1 0
30 3, 4 2, 3 1 0
34 1, 4 1 1 0
34 2, 3 2, 3 1 0

Table B.12: N = 15, p = 2, 3, 5, k
(2)
1 = 2, k

(3)
1 = 2, k

(5)
1 = 2 and k2 ≤ 34.

We have computed similar tables for all k
(2)
1 ≤ 12 and k

(3)
1 ≤ 4.
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Base level 16

Each of the spaces S2

(
Γ0(32)

)
and S2

(
Γ0(48)

)
contains a single newform, while

S2

(
Γ0(80)

)
contains two, and we get the following table:

p = 2
k2 i M s
4 1 2 1
6 1, 2 2 2
8 1–3 2 1
10 1–4 2 3
12 1–4 2 1
14 1–5 2 2
16 1–6 2 1
18 1–5 2 4
20 1–6 2 1
22 1–6 2 2
24 1–5 2 1
26 1–6 2 3
28 1–6 2 1
30 1–6 2 2
32 1–6 2 1
34 1–6 2 5

p = 3
k2 i M s
4 1 1 0
6 2 1 0
8 2 2 1
10 2 1 0
12 4 1 0
14 5 2 1
16 6 1 0
18 3 1 0
20 6 3 2
22 6 1 0
24 4 1 0
26 6 2 1
28 6 1 0
30 6 1 0
32 5 2 1
34 6 1 0

p = 5
k2 i j M s

6 1 2 1 0
6 2 1 1 0
10 1 1 1 0
10 4 2 1 0
14 2 2 1 0
14 5 1 1 0
18 4 2 1 0
18 5 1 1 0
22 4 2 2 1
22 6 1 2 1
26 4 2 1 0
26 5 1 1 0
30 4 2 1 0
30 6 1 1 0
34 4 2 1 0
34 5 1 1 0

Table B.13: N = 16, p = 2, 3, 5, k
(2)
1 = 2, k

(3)
1 = 2, k

(5)
1 = 2 and k2 ≤ 34.

We have computed similar tables for all k
(2)
1 ≤ 4, k

(3)
1 ≤ 8 and k

(5)
1 ≤ 4.
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Base level 18

The space S2

(
Γ0(36)

)
contains a single newform, S2

(
Γ0(54)

)
contains two, while

S2

(
Γ0(90)

)
contains three, and we get the following table:

p = 2
k2 i M s
4 1 1 1
6 1, 3 4 2
8 1, 2 1 1

10 1, 3 5 3

12 1, 5 3 1
14 2, 3 4 2

16 2, 6 3 1
18 5, 6 6 4
20 1, 5 3 1

22 6, 7 4 2

24 5, 7 3 1
26 5, 6 5 3

28 7, 8 3 1
30 7, 8 4 2
32 6, 8 3 1

34 7, 8 7 5

p = 3
k2 i j M s
4 1 1, 2 1 0
6 1–3 1, 2 1 0
8 1 1 2 1
8 2 2 2 1
10 1–4 1, 2 1 0

12 1–5 1, 2 1 0
14 1, 2 2 2 1
14 3–5 1 2 1
16 1–6 1, 2 1 0
18 1–6 1, 2 1 0
20 1–4 1 2 2
20 5–7 2 2 2
22 1–7 1, 2 1 0

24 1–7 1, 2 1 0
26 1–3, 5 2 2 1
26 4, 6, 7 1 2 1
28 1–8 1, 2 1 0
30 1–8 1, 2 1 0
32 1, 2, 5, 6 1 2 1
32 3, 4, 7, 8 2 2 1
34 1–8 1, 2 1 0

p = 5
k2 i j M s

6 1 1 1 0
6 2 3 1 0
6 3 2 1 0
10 1 2 1 0
10 2 3 1 0
10 3 1 1 0
14 2 1 1 0
14 3 2 1 0
14 4 3 1 0
18 1 3 1 0
18 5 2 1 0
18 6 1 1 0
22 4 3 2 1
22 6 1 2 1
22 7 2 2 1
26 3 3 1 0
26 5 2 1 0
26 6 1 1 0
30 6 3 1 0
30 7 1 1 0
30 8 2 1 0
34 5 3 1 0
34 7 2 1 0
34 8 1 1 0

Table B.14: N = 18, p = 2, 3, 5, k
(2)
1 = 2, k

(3)
1 = 2, k

(5)
1 = 2 and k2 ≤ 34.

We have computed similar tables for all k
(2)
1 ≤ 8, k

(3)
1 ≤ 6 and k

(5)
1 ≤ 6.
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Base level 20

Each of the spaces S2

(
Γ0(40)

)
and S2

(
Γ0(100)

)
contains a single newform, while

S2

(
Γ0(60)

)
contains two, and we get the following table:

p = 2
k2 i M s
4 1 2 1
6 1 1 2
8 2 3 1
10 1 4 3

12 2 3 1
14 1 3 2
16 2 3 1

18 1 5 4
20 2 3 1
22 1 3 2

24 2 3 1
26 1 4 3
28 2 3 1

30 1 3 2
32 2 3 1
34 1 5 5

36 2 3 1

p = 3
k2 i j M s

6 1 1, 2 1 0
8 1, 2 1, 2 1 0

10 1 2 2 1
10 2 1 2 1
12 1, 2 1, 2 1 0
14 1, 2 1, 2 1 0
16 1 2 2 1
16 2 1 2 1
18 1, 2 1, 2 1 0
20 1, 2 1, 2 1 0
22 1 2 3 2
22 2 1 3 2
24 1, 2 1, 2 1 0
26 1, 2 1, 2 1 0
28 1 2 2 1
28 2 1 2 1
30 1, 2 1, 2 1 0
32 1, 2 1, 2 1 0
34 1 2 2 1
34 2 1 2 1
36 1, 2 1, 2 1 0

p = 5
k2 i M s

6 1 1 0

10 1, 2 1 0

14 1, 2 1 0

18 1, 2 1 0

22 2 2 1

26 1, 2 1 0

30 1, 2 1 0

34 1, 2 1 0

Table B.15: N = 20, p = 2, 3, 5, k
(2)
1 = 2, k

(3)
1 = 4, k

(5)
1 = 2 and k2 ≤ 36.

We have computed similar tables for all k
(2)
1 ≤ 4 and k

(3)
1 ≤ 8..
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Base level 24

Each of the spaces S2

(
Γ0(48)

)
and S2

(
Γ0(72)

)
contains a single newform, while

S2

(
Γ0(120)

)
contains two, and we get the following table:

p = 2
k2 i M s
4 1 3 1
6 1–3 3 2
8 1–3 3 1
10 1–4 3 3
12 1–4 3 1
14 1–4 3 2
16 1–4 3 1
18 1–4 3 4
20 1–4 3 1
22 1–4 3 2
24 1–4 3 1
26 1–4 3 3
28 1–4 3 1
30 1–4 3 2
32 1–4 3 1
34 1–4 3 5

p = 3
k2 i M s
4 1 1 0
6 1, 2 1 0
8 1 2 1
10 1, 3 1 0
12 2, 4 1 0
14 2, 3 2 1
16 1, 3 1 0
18 1, 3 1 0
20 4 3 2
22 2, 3 1 0
24 1, 2 1 0
26 1, 3 2 1
28 3, 4 1 0
30 2, 4 1 0
32 1, 2 2 1
34 2, 3 1 0

p = 5
k2 i j M s

6 2 2 1 0
6 3 1 1 0
10 1 1 1 0
10 2 2 1 0
14 3 2 1 0
14 4 1 1 0
18 1 1 1 0
18 2 2 1 0
22 3 2 2 1
22 4 1 2 1
26 1 1 1 0
26 2 2 1 0
30 3 1 1 0
30 4 2 1 0
34 1 2 1 0
34 2 1 1 0

Table B.16: N = 24, p = 2, 3, 5, k
(2)
1 = 2, k

(3)
1 = 2, k

(5)
1 = 2 and k2 ≤ 34.

We have computed similar tables for all k
(2)
1 ≤ 8, k

(3)
1 ≤ 6 and k

(5)
1 ≤ 4.
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