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Structure of the dissertation

The dissertation consists of three articles and an introduction. The articles
are, in principle, the essential part of the dissertation, and the purpose of the
introduction is to give an overview of the articles. Nevertheless, readers should
be able to get a fairly good understanding of the content of the articles just by
reading the introduction and using the articles only to look up proofs or additional
information. The notation used in the introduction often differs from the notation
used in the articles.

The three articles are:

I. Esben Bistrup Halvorsen, Diagonalizing the Frobenius, submitted.
II. Anders J. Frankild and Esben Bistrup Halvorsen, Dualities and intersec-

tion multiplicities, manuscript.
III. Hans-Bjørn Foxby and Esben Bistrup Halvorsen, Grothendieck groups

for categories of complexes, submitted.

Page numbering is continuous throughout the entire dissertation but all four
parts of the dissertation (the introduction and the three articles) have their own
independent numbering of theorems, definitions etc. and of the references listed at
the end of each part.

The order of the articles does not reflect the order in which they were produced
or submitted, and it will probably not reflect the order in which they are pub-
lished. Each article may change significantly before final publication; in particular,
Article II may change dramatically even before being submitted.

v





Introduction

1. Overview

This introduction gives an overview of Articles I–III. The main focus is on
Grothendieck spaces, which are introduced in Article I and further developed in
Article II. The construction of Grothendieck spaces is quite similar to that of
Grothendieck groups but targeted primarily at the study of intersection multi-
plicities. In this introduction, Grothendieck spaces are constructed from derived
categories of complexes as done in Article II rather than from usual categories of
complexes as done in Article I. The two constructions reveal the same space, so
the reader should not worry about this.

Section 3 gives a classical introduction to Serre’s intersection multiplicity, the
Euler form and three variants of Dutta multiplicity. Sections 4–6 then present a set-
up with derived categories before Sections 7–12 finally discuss Grothendieck spaces
and their properties. The behavior of elements of Grothendieck spaces resembles
that of local Chern characters, and Section 13 includes a comparison. Finally,
Section 14 gives a few examples.

Article III focuses on Grothendieck groups of categories of complexes, the nat-
ural generalization of Grothendieck groups of categories of modules. Section 15
presents some of the results of Article III and discusses a consequence for Grothen-
dieck spaces.

The construction of Grothendieck groups as well as of Grothendieck spaces
is presented without paying much attention to set theoretical problems such as
whether it is possible to represent the isomorphism classes in a category by a set.
For a discussion of such problems, see Magurn [9, Section 3A].

2. Notation

Throughout this introduction, R denotes a fixed commutative ring. Unless
otherwise stated, all ideals, modules and complexes are assumed to be ideals of R,
R-modules and R-complexes, respectively. Modules are considered to be complexes
concentrated in degree zero.

The spectrum of R, denoted Spec R, is the set of prime ideals of R. It is
equipped with the Zariski topology, in which the closed subsets are the subsets of
the form

V (I) = {p ∈ Spec R | p ⊇ I}
for ideals I of R. A subset X of Spec R is specialization-closed if it has the property

p ∈ X =⇒ V (p) ⊆ X

for prime ideals p. A closed subset is, in particular, specialization-closed.

1



2 ESBEN BISTRUP HALVORSEN

The support of a complex X is the set

Supp X = {p ∈ Spec R | H(Xp) 6= 0}.

A finite complex is a complex with bounded homology and finitely generated ho-
mology modules; the support of such a complex is a closed subset of Spec R.

For a specialization-closed subset X of Spec R, the dimension of X, denoted
dimX, is the usual Krull dimension of X. When dimR is finite, the co-dimension

of X, denoted codimX, is the number dimR − dimX. For a finitely generated
module M , the dimension and co-dimension of M , denoted dimM and codimM ,
are the dimension and co-dimension of the support of M .

3. Intersection multiplicities

Assumption. Throughout this section, R is assumed to be Noetherian and local.

Let M and N be finitely generated modules with length(M ⊗R N) < ∞, and
assume that either pd M <∞ or pdN <∞. The intersection multiplicity defined
by Serre [17] of M and N is given by

χ(M, N) =
∑

i

(−1)i length TorR
i (M, N).

The intersection conjectures, also proposed by Serre, state that

(i) dim M + dimN ≤ dim R;
(ii) χ(M, N) = 0 whenever dimM + dim N < dimR; and
(iii) χ(M, N) > 0 whenever dimM + dim N = dimR.

Conjecture (ii) is known as the vanishing conjecture, and conjecture (iii) is known as
the positivity conjecture. In Serre’s original formulation, R is assumed to be regular,
and under this assumption, only the positivity conjecture remains open, and only
in the case where R is ramified and of mixed characteristic. In the general setting
presented above, however, neither the vanishing nor the positivity conjecture holds.
This was first realized by Dutta, Hochster and McLaughlin [4], who presented a
complete intersection ring of dimension 3 together with finitely generated modules
M and N with dim M = 0, dimN = 2, pdM = 3 and χ(M, N) = −1. On
the positive side, however, Foxby [5] proved that all three conjectures hold if the
module that is not necessarily of finite projective dimension has dimension less than
or equal to one.

A common weakening of the general intersection conjectures is to require both
modules to have finite projective dimension. We shall denote the conjectures under
this assumption the weak intersection conjectures ; in particular, we shall refer to
the weak vanishing conjecture. The weak intersection conjectures are still open.
Roberts [14] and, independently, Gillet and Soulé [6] proved that the weak vanish-
ing conjecture holds when R is a complete intersection ring, and Dutta [3] proved
that it holds when R is a Gorenstein ring of dimension less than or equal to 5.

Assuming instead that either pdM < ∞ or idN < ∞, a natural analog of
Serre’s intersection multiplicity is the Euler form, introduced originally by Mori
and Smith [12] and given by

ξ(M, N) =
∑

i

(−1)i length Exti
R(M, N).
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Chan [1] suggested that the vanishing conjecture is connected with the general
validity of the formula

χ(M, N) = (−1)codimMξ(M, N);

she proved, among other things, that the formula holds when R is a complete
intersection, dimM + dimN ≤ dimR and both M and N have finite projective
dimension. Shortly after, Mori [11] proved other interesting connections between
the above formula and the vanishing conjecture. Proposition 10 of Section 11
contributes to this discussion in the setting of complexes rather than modules.

Assumption. The remainder of this section assumes, in addition, that R is
complete of prime characteristic p and has perfect residue field.

The Frobenius endomorphism f : R → R is given by f(x) = xp. We denote
fR the R-algebra which, as a ring, is R and which, as an R-module, has structure
through f : that is, fR has R-module structure given by

r · x = rpx for r ∈ R and x ∈ fR.

Note that fR under the current assumptions is a finitely generated R-module (see
Roberts [15, Section 7.3]). The Frobenius endofunctor on the category of finitely
generated modules is defined for a finitely generated module M by

F (M) = M ⊗R
fR,

where the tensor product is a finitely generated module with R-structure obtained
from the ring fR = R: that is, with R-structure given by

r · (m⊗ x) = m⊗ rx

for r ∈ R, m ∈M and x ∈ fR. Note that here we also have

(rm)⊗ x = m⊗ (r · x) = m⊗ rpx.

Peskine and Szpiro [13, Théorème (1.7)] have proven that, if M has projective
resolution X , then F (M) has projective resolution F (X); in particular if M has
finite projective dimension, then so does F (M).

Herzog [7] defined an analog of the Frobenius endofunctor. It is also an end-
ofunctor on the category of finitely generated modules and is given for a finitely
generated module N by

G(N) = HomR(fR, N),

which is a finitely generated module with R-structure obtained from the ring fR =
R: that is, with R-structure given by

(r · ϕ)(x) = ϕ(rx)

for r ∈ R, x ∈ fR and ϕ ∈ HomR(fR, N). Note that here we also have

rϕ(x) = ϕ(r · x) = ϕ(rpx).

Herzog [7, Satz 5.2] proved that, if Y is an injective resolution of N , then G(Y ) is
an injective resolution of G(N); in particular, if N has finite injective dimension,
then so does G(N). We refer to the functor G as the analogous Frobenius functor.
For a non-negative integer e, the e-fold composition of F and G is denoted F e and
Ge, respectively.

Dutta [2] introduced another intersection multiplicity that is now referred to
as Dutta multiplicity. Let M and N be finitely generated modules such that
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lengthM ⊗R N < ∞ and dimM + dim ≤ dim R. The Dutta multiplicity of M
and N is defined by

χ∞(M, N) = lim
e→∞

1

pe codim M
χ(F e(M), N) whenever pdM <∞.

This intersection multiplicity does, in fact, satisfy the vanishing conjecture, and
Dutta showed that the general validity of the formula

χ(M, N) = χ∞(M, N)

is equivalent to the vanishing conjecture for the usual intersection multiplicity.
Article II defines two natural analogs of the Dutta multiplicity using the Euler

form instead of Serre’s intersection multiplicity. We let

ξ∞(M, N) = lim
e→∞

1

pe codim N
ξ(M, Ge(N)) whenever idN <∞; and

ξ∞(M, N) = lim
e→∞

1

pe codim M
ξ(F e(M), N) whenever pdM <∞.

As Section 6 shows, the two analogs of Dutta multiplicity can be expressed in terms
of the original Dutta multiplicity.

4. Derived categories

Derived categories form a natural language to describe intersection multiplici-
ties. This section and the following two sections explain how without delving too
much into the theory of derived categories; see Weibel [18] for more details on this
subject.

Assumption. Throughout this section, R is assumed to be Noetherian and local
with maximal ideal m.

The derived category D(R) is obtained from the category of R-complexes by
first equating homotopy-equivalent morphisms of complexes and then inverting
quasi-isomorphisms by formally adjoining inverses (see Weibel [18, Chapter 10]).
The objects of D(R) continue to be the usual R-complexes. We use the symbol ≃
to denote isomorphisms in D(R) and the symbol ∼ to denote isomorphisms up to
a shift.

For a specialization-closed subset X of Spec R, we define the following full
subcategories of D(R).

Df
�

(X) = the full subcategory of D(R) comprising the finite complexes with
support contained in X.

Pf(X) = the full subcategory of Df
�

(X) comprising the complexes that are
isomorphic to a bounded complex of projective modules.

If(X) = the full subcategory of Df
�

(X) comprising the complexes that are
isomorphic to a bounded complex of injective modules.

When X = Spec R, we simply write D
f
�

(R), P
f(R) and I

f(R), and when X = {m},
we write Df

�
(m), Pf(m) and If(m). The objects in Df

�
(R) are precisely the finite

complexes.
The left-derived tensor product −⊗L

R − and the right-derived homomorphism
functor RHomR(−,−) are compositions on D(R) such that, when X and Y are
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specialization-closed subsets of Spec R and X ∈ Df
�

(X) and Y ∈ Df
�

(Y) are com-
plexes, then

X ⊗L

R Y ∈ D
f
�

(X ∩Y) if X ∈ P
f(X) or Y ∈ P

f(Y);

X ⊗L

R Y ∈ P
f(X ∩Y) if X ∈ P

f(X) and Y ∈ P
f(Y);

X ⊗L

R Y ∈ I
f(X ∩Y) if X ∈ P

f(X) and Y ∈ I
f(Y);

X ⊗L

R Y ∈ I
f(X ∩Y) if X ∈ I

f(X) and Y ∈ P
f(Y);

RHomR(X, Y ) ∈ D
f
�

(X ∩Y) if X ∈ P
f(X) or Y ∈ I

f(Y);

RHomR(X, Y ) ∈ I
f(X ∩Y) if X ∈ P

f(X) and Y ∈ I
f(Y);

RHomR(X, Y ) ∈ P
f(X ∩Y) if X ∈ P

f(X) and Y ∈ P
f(Y); and

RHomR(X, Y ) ∈ P
f(X ∩Y) if X ∈ I

f(X) and Y ∈ I
f(Y).

(1)

A dualizing complex for R is a complex D ∈ If(R) such that the homothety

R→ RHomR(D, D)

is an isomorphism. If D and D′ are dualizing complexes, then D ∼ D′. A complex
D ∈ D

f
�

(R) is dualizing if and only if k ∼ RHomR(k, D), and we say that D is
normalized if k ≃ RHomR(k, D). A normalized dualizing complex is unique up to
isomorphism; in fact, such a complex is isomorphic to a complex in the form

0→ Ddim R → · · · → D1 → D0 → 0,

where, for each i,

Di =
⊕

p∈SpecR
dim R/p=i

E(R/p),

in which E(R/p) is the injective envelope of R/p.
If R is Cohen–Macaulay and D is a normalized dualizing complex, then H(D)

is concentrated in degree dimR and Hdim R(D) is the canonical module of R. If R
is Gorenstein, Pf(R) = If(R) and Σdim RR is a normalized dualizing complex. A
ring admits a dualizing complex if it is a homomorphic image of a Gorenstein local
ring; in particular, any complete local ring admits a dualizing complex.

5. Dagger, star, Foxby and Frobenius functors

Assumption. Throughout this section, R is assumed to be Noetherian and local.
Further, it is assumed that R admits a normalized dualizing complex D.

Let X be a specialization-closed subset of Spec R. The dagger duality functor

is the contravariant functor

(−)† = RHomR(−, D),

which gives a duality on Df
�

(X) in the sense that, for all complexes X ∈ Df
�

(X),
there is a natural isomorphism

X†† = RHomR(RHomR(X, D), D)
≃←− X.

According to (1), since D ∈ If(R), dagger duality restricts to a duality between
P

f(X) and I
f(X).
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The Foxby equivalence functors are the covariant functors

D ⊗L

R − and RHomR(D,−).

These give an equivalence between Pf(X) and If(X) in the sense that, for complexes
X ∈ Pf(X) and Y ∈ If(X), there are natural isomorphisms

RHomR(D, D ⊗L

R X)
≃←− X and D ⊗L

R RHomR(D, Y )
≃−→ Y.

The star duality functor is the contravariant functor

(−)∗ = RHomR(−, R),

which gives a duality on Pf(X) in the sense that, for all complexes X ∈ Pf(X), there
is a natural isomorphism

X∗∗ = RHomR(RHomR(X, R), R)
≃←− X.

The star duality functor can also be described as the composition of a dagger and
a Foxby functor. In fact, there are the following isomorphisms of contravariant
endofunctors on Pf(X).

(−)∗ ≃ (D ⊗L

R −)† ≃ RHomR(D,−†).
A natural dual of this picture is to start in the category If(X) and then compose a
dagger and a Foxby functor. And indeed, this is the same as conjugating the star
functor with either the dagger functors or with the Foxby functors, so that there
are the following isomorphisms of contravariant endofunctors on If(X).

(−)†∗† ≃ D ⊗L

R (RHomR(D,−)∗) ≃ D ⊗L

R (−†) ≃ RHomR(D,−)†.

We also refer to this as a star duality functor and we denote it (−)⋆. With these
terms, the dagger, Foxby and star functors on Pf(X) and If(X) always commute
pairwise, and the composition of two of these three kinds of functors always yields
the third kind of functor: for example, the star and dagger functors commute, and
their composition is a Foxby functor, since

(−)∗† ≃ (−)†⋆ ≃ D ⊗L

R − and (−)⋆† ≃ (−)†∗ ≃ RHomR(D,−).

Here, the first pair of isomorphisms are isomorphisms of covariant functors Pf(X)→
If(X), and the second pair of isomorphisms are isomorphisms of covariant functors
If(X)→ Pf(X).

If R is Gorenstein, Pf(X) = If(X) and D ≃ Σdim RR, and hence the Foxby func-
tors are just shifts of ± dimR degrees, whereas (−)† = Σ

dim R(−)∗ = Σ
dim R(−)⋆.

All the functors described above fit into the following diagram.

Df
�

(X)
(−)† //

Df
�

(X)
(−)†

oo

(−)∗
##
Pf(X)

OO

(−)† //

D⊗L

R
−

''
If(X)

OO

(−)†
oo

RHomR(D,−)

gg
(−)⋆

{{

(2)

Here, the corresponding straight horizontal arrows are mutually inverse and form
a duality of categories; the curly horizontal arrows are mutually inverse and form
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an equivalence of categories; the circular arrows are self-inverse and form dualities
of categories; and the vertical arrows are full embeddings of categories.

Assumption. The remainder of this section assumes, in addition, that R is
complete of prime characteristic p and has perfect residue field.

Denote by LF and RG the left- and right-derived functors of F and G, respec-
tively. We can think of these functors as

LF (−) = −⊗L

R
fR and RG(−) = RHomR(fR,−),

where we require the derivation to take place in the blank variable, so that the
resulting R-structure can be obtained from the ring fR = R. For any specialization-
closed subset X of Spec R, the functors LF and RG are covariant endofunctors on
Pf(X) and If(X), respectively. For a non-negative integer e, the e-fold compositions
of LF and RG are denoted LF e and RGe, respectively; these are the same as the
left- and right-derived functors of F e and Ge.

The endofunctor LF on Pf(X) and its analog RG on If(X) commute with the
dagger, star and Foxby functors in the sense that the following isomorphisms of
functors exist (see Article II, Lemma 2.11).

LF (−∗) ≃ LF (−)∗; RG(−⋆) ≃ RG(−)⋆;

RG(−†) ≃ LF (−)†; RG(D ⊗L

R −) ≃ D ⊗L

R LF (−);

LF (−†) ≃ RG(−)†; and LF (RHomR(D,−)) ≃ RHomR(D,RG(−)).

(3)

Here, the isomorphisms in the first row are isomorphisms of contravariant endo-
functors on Pf(X) and If(X), respectively; the isomorphisms in the second row are
isomorphisms of contravariant and covariant functors Pf(X) → If(X), respectively;
and the isomorphisms in the third row are isomorphisms of contravariant and co-
variant functors If(X) → Pf(X), respectively. When R is Gorenstein, the formulas
show that LF = RG.

6. Intersection multiplicities in derived categories

Assumption. Throughout this section, R is assumed to be Noetherian and local
with maximal ideal m. Further, it is assumed that R admits a dualizing complex.

The Euler characteristic of a complex Z ∈ Df
�

(m) is the integer

χ(Z) =
∑

i

(−1)i length Hi(Z).

Let X and Y be complexes in Df
�

(R) and assume that SuppX ∩ SuppY = {m}.
The intersection multiplicity of X and Y is defined by

χ(X, Y ) = χ(X ⊗L

R Y ) whenever X ∈ P
f(R) or Y ∈ P

f(R),

and the Euler form of X and Y is defined by

ξ(X, Y ) = χ(RHomR(X, Y )) whenever X ∈ P
f(R) or Y ∈ I

f(R).
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The following identities hold (see Mori [11, Lemma 4.3(1)–(2)]).

χ(X, Y ) = ξ(X, Y †) whenever X ∈ P
f(R) or Y ∈ P

f(R);

χ(X∗, Y ) = χ(X, Y †) whenever X ∈ P
f(R); and

ξ(X, Y ⋆) = ξ(X†, Y ) whenever Y ∈ I
f(R).

(4)

In the special case where X and Y are modules, the intersection multiplicity and
Euler form defined here are the same as the ones defined in Section 3.

We generalize Serre’s vanishing conjecture to the setting of complexes by saying
that R satisfies vanishing if, in the case where X ∈ Pf(R) or Y ∈ Pf(R),

χ(X, Y ) = 0 whenever dim(SuppX) + dim(Supp Y ) < dimR.

Likewise, we say that R satisfies weak vanishing if the above holds under the re-
striction that both X ∈ Pf(R) and Y ∈ Pf(R).

According to the first formula in (4) and since the dagger duality functor does
not change the support of a complex, R satisfies vanishing if and only if, in the case
where X ∈ Pf(R) or Y ∈ If(R),

ξ(X, Y ) = 0 whenever dim(Supp X) + dim(Supp Y ) < dimR,

and R satisfies weak vanishing if and only if this holds under the restriction that
both X ∈ Pf(R) and Y ∈ If(R).

Assumption. The remainder of this section assumes, in addition, that R is
complete of prime characteristic p and has perfect residue field.

The Dutta multiplicity and its two analogs from Section 3 can also be general-
ized. Let X and Y be complexes in Df

�
(R), and assume that SuppX∩SuppY = {m}

and dim(Supp X) + dim(Supp Y ) ≤ dimR. We define generalizations of the Dutta
multiplicity and its analogs by setting

χ∞(X, Y ) = lim
e→∞

1

pe codim X
χ(LF e(X), Y ) whenever X ∈ P

f(R);

ξ∞(X, Y ) = lim
e→∞

1

pe codim Y
ξ(X,RGe(Y )) whenever Y ∈ I

f(R); and

ξ∞(X, Y ) = lim
e→∞

1

pe codim X
ξ(LF e(X), Y ) whenever X ∈ P

f(R).

The formulas in (3) and (4) show that

ξ∞(X, Y ) = χ∞(Y †, X) and ξ∞(X, Y ) = χ∞(X∗, Y ),

whenever defined. Corollary 5 of Section 10 presents some interesting formulas to
calculate these multiplicities.

7. Grothendieck spaces

This section introduces Grothendieck spaces as topological Q-vector spaces
modelled on the derived categories Pf(X), If(X) and Df

�
(X). This is the con-

struction carried out in Article II. The construction in Article I is modelled on
non-derived categories, but the resulting spaces are the same. The spaces denoted
GP(X) and GC(X) in Article I are denoted GPf(X) and GDf

�
(X), respectively, in

this introduction.
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Assumption. Throughout this section, R is assumed to be Noetherian and local
with maximal ideal m.

For any given specialization-closed subset X of Spec R, a new specialization-
closed subset is defined by

Xc = {p ∈ Spec R | X ∩ V (p) = {m} and dimV (p) ≤ codimX}.
This set is maximal under inclusion among specialization-closed subsets of Spec R
with respect to the properties

X ∩Xc = {m} and dimX + dimXc ≤ dimR.

In fact, when X is closed,

dimX + dimXc = dim R.

Note also that X ⊆ Xcc. (In fact, we always have Xc = Xccc, so the association
X 7→ Xcc is actually a closure operator on Spec R.)

If X is a complex in Pf(R) with support equal to X, then Xc is the maximum
allowed support for a complex Y in Df

�
(R) in the definition of the Dutta multiplicity

χ∞(X, Y ). When dealing with the vanishing conjecture, it suffices to consider
complexes X and Y with supports X and Y, respectively, such that Y ⊆ Xc or,
equivalently, X ⊆ Yc. Note that Serre’s conjecture (i) from Section 3 states that
these inclusions always hold in the special case where X and Y are modules.

Let X be a specialization-closed subset of Spec R. The Grothendieck space

of Pf(X) is the Q-vector space GPf(X) presented by elements [X ], one for each
isomorphism class of a complex X in Pf(X), and relations

[X ] = [X ′] whenever χ(X,−) = χ(X ′,−)

as metafunctions (that is, “functions” from a category to a set) Df
�

(Xc) → Q.

Likewise, the Grothendieck space of If(X) is the Q-vector space GIf(X) presented by
elements [Y ], one for each isomorphism class of a complex Y in I

f(X), and relations

[Y ] = [Y ′] whenever ξ(−, Y ) = ξ(−, Y ′)

as metafunctions Df
�

(Xc) → Q. Finally, the Grothendieck space of Df
�

(X) is the

Q-vector space GDf
�
(X) presented by elements [Z], one for each isomorphism class

of a complex Z in Df
�

(X), and relations

[Z] = [Z ′] whenever χ(−, Z) = χ(−, Z ′)

as metafunctions P
f(Xc) → Q; when R admits a dualizing complex, the identities

in (4) from Section 6 show that these relations are equivalent to the relations

[Z] = [Z ′] whenever ξ(Z,−) = ξ(Z ′,−)

as metafunctions I
f(Xc)→ Q.

Since the intersection multiplicity and the Euler form in either variable are
additive on short exact sequences and zero on exact complexes, the Grothendieck
spaces GP

f(X), GI
f(X) and GD

f
�

(X) are tensor products of Q and a homomorphic

image of the Grothendieck groups of certain non-derived versions of Pf(X), If(X)
and Df

�
(X). This means, for instance, that GPf(X) is the tensor product of Q and a

homomorphic image of K0(C(X)), where K0(C(X)) is the Grothendieck group of the
(non-derived) category C(X) of bounded complexes supported at X and consisting
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of finitely generated projective modules. Section 15 discusses Grothendieck groups
of categories of complexes.

We usually use lowercase Greek letters α, β, γ etc. to denote elements of
Grothendieck spaces. An element of a Grothendieck space can always be writ-
ten in the form r[X ] for a rational number r and a complex X in the corresponding
category (see Article II, Proposition 4.3).

The Grothendieck spaces are equipped with the initial topology of the Q-linear
maps induced by the metafunctions that define the relations in the presentation of
the space: the topology on GPf(X), for instance, is the coarsest topology such that,
for each Y ∈ Df

�
(Xc), the induced Q-linear map

χ(−, Y ) : GP
f(X)→ Q given by χ([X ], Y ) = χ(X, Y )

for X ∈ Pf(X) is continuous. (The fact that the map is well defined follows from
the definition of the Grothendieck space.) In this way, GP

f(X) becomes a topo-
logical Q-vector space, and the same is true for GIf(X) and GDf

�
(X). We always

think of Grothendieck spaces as topological Q-vector spaces, so that such words
as “homomorphism” and “isomorphism” denote maps that preserve topological as
well as Q-vector space structure. Thus, for example, a homomorphism from one
Grothendieck space to another is a continuous, Q-linear map, and an isomorphism
between two Grothendieck spaces is a Q-linear homeomorphism.

The Grothendieck spaces have been constructed as topological Q-vector spaces
through which the intersection multiplicity and the Euler form, respectively, factor
as homomorphisms of topological Q-vector spaces. For example, the Grothendieck
space GPf(X) is a topological Q-vector space with the property that the metafunc-
tion

χ(−, Y ) : P
f(X)→ Q

for all Y ∈ Df
�

(Xc) factors through GPf(X) as a topological Q-vector space homo-
morphism, which we, by abuse of notation, denote likewise:

Pf(X)
χ(−,Y ) //

X 7→[X] ((QQQQQQQQQQQQQ
Q

GPf(X)

χ(−,Y )

77oooooooooooooo

In fact, by definition, GP
f(X) is the Q-vector space with the universal property

that there is a metafunction Pf(X) → GPf(X) that identifies complexes X and
X ′ whenever the intersection multiplicities χ(X,−) and χ(X ′,−) are identical as
metafunctions Df

�
(Xc) → Q. Similar remarks hold for the Grothendieck spaces

GIf(X) and GDf
�

(X).

If R is Gorenstein, Pf(X) = If(X), and hence, a priori, two different Grothen-
dieck spaces are associated with the same category. However, in this situation
(−)† = Σdim R(−)∗, so for all X ∈ Pf(X) = If(X) and all Y ∈ Df

�
(Xc), the formulas

in (4) yield that

χ(X, Y ) = χ(X∗, Y †) = χ(Y †, X∗) = ξ(Y †, X∗†) = (−1)dim Rξ(Y †, X),

and hence the metafunctions defining the Grothendieck spaces GPf(X) and GIf(X)
are the same, which implies that the spaces are identical. If R is regular then, in
addition, P

f(X) = D
f
�

(X), but in this case D
f
�

(Xc) = P
f(Xc), which clearly implies
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that the metafunctions defining the Grothendieck spaces GPf(X) and GDf
�
(X) are

the same.

8. Induced maps of Grothendieck spaces

Assumption. Throughout this section, R is assumed to be Noetherian and local
with maximal ideal m. Further, it is assumed that R admits a normalized dualizing
complex D.

The Euler characteristic χ : Df
�

(m) → Q induces an isomorphism (that is, a
Q-linear homeomorphism)

χ : GD
f
�

(m)→ Q given by χ([Z]) = χ(Z),

for Z ∈ Df
�

(m); see Article I, Proposition 2(vi), for more details.
Let X and Y be specialization-closed subsets of Spec R with X ∩ Y = {m}

and dimX + dimY ≤ dim R. The derived tensor product −⊗L

R − and the derived
homomorphism functor RHomR(−,−) induce a collection of Grothendieck space
bi-homomorphisms (maps that are continuous and Q-linear in each variable)

GP
f(X)×GD

f
�
(Y)→ GD

f
�

(m); GP
f(X)×GD

f
�
(Y)→ GD

f
�

(m);

GD
f
�
(X)×GP

f(Y)→ GD
f
�

(m); GD
f
�

(X)×GI
f(Y)→ GD

f
�

(m);

GP
f(X)×GP

f(Y)→ GP
f(m); GP

f(X)×GI
f(Y)→ GI

f(m);

GP
f(X)×GI

f(Y)→ GI
f(m); GP

f(X)×GP
f(Y)→ GP

f(m);

GI
f(X)×GP

f(Y)→ GI
f(m); and GI

f(X)×GI
f(Y)→ GP

f(m).

The bi-homomorphisms in the first column are induced by the derived tensor prod-
uct; they are all denoted −⊗− and given by

([X ], [Y ]) 7→ [X ]⊗ [Y ]
def
= [X ⊗L

R Y ]

for complexes X and Y in the appropriate categories. The bi-homomorphisms in
the second column are induced by the derived homomorphism functor; they are all
denoted Hom(−,−) and given by

([X ], [Y ]) 7→ Hom([X ], [Y ])
def
= [RHomR(X, Y )]

for complexes X and Y in the appropriate categories. See Article II, Proposition 4.7
for further details.

Let X ⊆ X′ be specialization-closed subsets of Spec R and consider the inclusion
functors pictured in the diagram below.

Pf(X) //

��

Df
�

(X)

��

If(X)oo

��
Pf(X′) // Df

�
(X′) If(X′)oo

These functors induce natural Grothendieck space homomorphisms, all given by
[X ] 7→ [X ], where X is a complex in the appropriate (domain) category and the
first [X ] is an element in the domain of the homomorphism, whereas the second is an
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element in the range of the homomorphism. The result is the following commutative
diagram of homomorphisms of Grothendieck spaces.

GPf(X) //

��

GDf
�
(X)

��

GIf(X)oo

��
GPf(X′) // GDf

�
(X′) GIf(X′)oo

These maps are referred to as inclusion homomorphisms, and they are often denoted
by the symbol (−) so that, for example, if α is an element of GPf(X), then α denotes
the image of α in GPf(X′) under the inclusion homomorphism GPf(X)→ GPf(X′).
If the range of the inclusion homomorphism needs to be emphasized, we write
α ∈ GPf(X′) instead of just α. If a property of an element α ∈ GPf(X) holds after
an application of the inclusion homomorphism GPf(X) → GDf

�
(X), we often say

that the property holds in GDf
�
(X) or that it holds numerically. Similar remarks

hold for elements of GIf(X).
The duality and equivalence functors in (2) of Section 5 naturally induce iso-

morphisms of Grothendieck spaces. By abuse of notation, the maps induced from
the dagger and star duality functors are denoted by the same symbol; the maps
induced by the Foxby equivalence functors are denoted D ⊗ − and Hom(D,−),
respectively. In this way, for example,

[X ]†
def
= [X†], [X ]∗

def
= [X∗] and D ⊗ [X ]

def
= [D ⊗L

R X ]

for a complex X ∈ GPf(X). As with the underlying functors (see Section 5), these
three kinds of isomorphisms commute pairwise, and the composition of two of the
three kinds of isomorphisms gives an isomorphism of the third kind. The situation
looks as follows.

GDf
�
(X)

(−)† //
GDf

�
(X)

(−)†
oo

(−)∗
##
GPf(X)

OO

(−)† //

D⊗−

''
GIf(X)

OO

(−)†
oo

Hom(D,−)

gg
(−)⋆

{{

Here, the corresponding horizontal arrows are mutually inverse isomorphisms; the
circular arrows are self-inverse automorphisms; and the vertical arrows are inclusion
homomorphisms as discussed above. See Article II, Proposition 4.8 for further
details.

Assumption. The remainder of this section assumes, in addition, that R is
complete of prime characteristic p and has perfect residue field.

Let X be a specialization-closed subset of Spec R. The left-derived Frobenius
endofunctor LF on P

f(X) induces an endomorphism on GP
f(X) denoted FX, and the
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right-derived endofunctor RG on If(X) induces an endomorphism on GIf(X) denoted
GX. These endomorphisms are given for complexes X ∈ Pf(X) and Y ∈ If(X) by

FX([X ]) = [LF (X)] and GX([Y ]) = [RG(Y )].

See Article II, Section 4.10 for further details.
Theorems 3 and 4 in Section 10 show that FX and GX are automorphisms. We

define normalized versions of FX and GX by

ΦX = p− codimXFX and ΨX = p− codim XGX.

These play an important role in Section 10 when we discuss decompositions of
elements in Grothendieck spaces. A consequence of Theorems 3 and 4 in Section 10
is that the e-fold compositions Φe

X and Ψe
X converge to endomorphisms lime→∞ Φe

X

and lime→∞ Ψe
X on GPf(X) and GIf(X), respectively. When R is Gorenstein and

GPf(X) is identical to GIf(X), FX = GX and ΦX = ΨX.

9. Intersection multiplicities in Grothendieck spaces

Assumption. Throughout this section, R is assumed to be Noetherian and local
with maximal ideal m. Further, it is assumed that R admits a normalized dualizing
complex D.

The fact that the Euler characteristic induces an isomorphism GD
f
�

(m) → Q

means that the intersection multiplicity and the Euler form can represented by
elements in GDf

�
(m) of the form

δ ⊗ ε and Hom(δ, ε).

For example, if X and Y are finite complexes with X = Supp X and Y = Supp Y
such that X ∩ Y = {m} and dimX + dimY ≤ dimR, then, when X ∈ Pf(R) or
Y ∈ Pf(R), the intersection multiplicity χ(X, Y ) = χ(X ⊗L

R Y ) is the image in Q

under the isomorphism χ : GDf
�

(m) → Q of the element [X ⊗L

R Y ] = [X ] ⊗ [Y ]

in GD
f
�

(m), where [X ] ∈ GP
f(X) and [Y ] ∈ GD

f
�

(Y), or [X ] ∈ GD
f
�

(X) and

[Y ] ∈ GPf(Y).
Being able to discuss the vanishing conjecture, however, requires introduc-

ing the concept of dimension for elements of Grothendieck spaces. Let X be a
specialization-closed subset of R and let α ∈ GP

f(X), β ∈ GI
f(X) and γ ∈ GD

f
�

(X).
The dimensions of α, β and γ are defined as

dimα = inf {dim(Supp X) | α = r[X ] for some r ∈ Q and X ∈ P
f(X)};

dim β = inf {dim(Supp Y ) | β = s[Y ] for some s ∈ Q and Y ∈ I
f(X)}; and

dim γ = inf {dim(Supp Z) | γ = t[Z] for some t ∈ Q and Z ∈ D
f
�

(X)}.
Thus, the dimension of an element in a Grothendieck space is the minimum dimen-
sion of the support of a complex representing that element.

We say that α satisfies vanishing if

α⊗ δ = 0 in GD
f
�

(m) for all δ ∈ GD
f
�
(Xc) with dim δ < codimX.

Further, we say that α satisfies weak vanishing if

α⊗ ε = 0 in GD
f
�
(m) for all ε ∈ GP

f(Xc) with dim ε < codimX.

Similarly, we say that β satisfies vanishing if

Hom(δ, β) = 0 in GD
f
�

(m) for all δ ∈ GD
f
�
(Xc) with dim δ < codimX,
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and we say that β satisfies weak vanishing if

Hom(ε, β) = 0 in GD
f
�

(m) for all ε ∈ GP
f(Xc) with dim ε < codimX.

If α = [X ] for a complex X ∈ Pf(R) with SuppX = X, then α satisfies vanishing
exactly when

χ(X, Y ) = 0 for all Y ∈ D
f
�

(Xc) with dim(Supp X) + dim(Supp Y ) < dimR,

and α satisfies weak vanishing exactly when this is true under the extra assump-
tion that Y ∈ Pf(Xc). This corresponds to the generalization of Serre’s vanishing
and weak vanishing conjectures to the setting of complexes rather than modules
as described in Section 6. In particular, R satisfies vanishing or weak vanishing,
respectively, exactly when α satisfies vanishing or weak vanishing, respectively, for
all specialization-closed subsets X of Spec R and all α ∈ GP

f(X).
Likewise, if β = [Y ] for a complex Y ∈ If(R) with SuppY = X, then β satisfies

vanishing exactly when

ξ(X, Y ) = 0 for all X ∈ D
f
�

(Xc) with dim(SuppX) + dim(SuppY ) < dimR,

and β satisfies weak vanishing exactly when this is true under the extra assump-
tion that X ∈ Pf(Xc). This corresponds to an analog of Serre’s vanishing and weak
vanishing conjectures for complexes, using the Euler form instead of the intersec-
tion multiplicity. In particular, the discussion in Section 6 shows that R satisfies
vanishing or weak vanishing, respectively, exactly when β satisfies vanishing or
weak vanishing, respectively, for all specialization-closed subsets X of Spec R and
all β ∈ GIf(X).

The vanishing dimensions of α ∈ GPf(X) and β ∈ GIf(X) are defined as

vdimα = inf
{

u ∈ Z

∣

∣

∣

α⊗ δ = 0 for all δ ∈ GDf
�
(Xc)

with dim δ < codimX− u

}

; and

vdimβ = inf
{

v ∈ Z

∣

∣

∣

Hom(δ, β) = 0 for all δ ∈ GDf
�
(Xc)

with dim δ < codimX− v

}

.

In particular, vdimα = −∞ if and only if α = 0, and vdimβ = −∞ if and only if
β = 0. Further, vdimα ≤ 0 if and only if α satisfies vanishing, and vdimβ ≤ 0 if
and only if β satisfies vanishing.

If α = [X ] for a complex X ∈ Pf(R) with SuppX = X, then the vanishing
dimension of α measures the extent to which vanishing fails to hold: vdimα is the
infimum among integers u such that

χ(X, Y ) = 0 for all Y ∈ D
f
�

(Xc) with dim(SuppX) + dim(SuppY ) < dimR− u.

Similarly, if β = [Y ] for a complex Y ∈ If(R) with SuppY = X, then the vanishing
dimension of β measures the extent to which vanishing fails to hold: vdimβ is the
infimum among integers v such that

ξ(X, Y ) = 0 for all X ∈ D
f
�

(Xc) with dim(Supp X) + dim(Supp Y ) < dimR− v.

A notable feature of dimension and vanishing dimension is that they are invari-
ant under the dagger, star and Foxby isomorphisms from Section 8. Indeed, for a
specialization-closed subset X of Spec R and elements α ∈ GP

f(X), β ∈ GI
f(X) and
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γ ∈ GDf
�
(X), dim γ = dim γ† and

dimα = dim α† = dim α∗ = dim(D ⊗ α);

dimβ = dimβ† = dim β⋆ = dimHom(D, β);

vdimα = vdimα† = vdimα∗ = vdim(D ⊗ α); and

vdimβ = vdimβ† = vdimβ⋆ = vdimHom(D, β).

See Article II, Remark 5.3 for further details. A consequence of the formulas is that
the definitions of dimension and vanishing dimension are not contradictory when
R is Gorenstein and GPf(X) is identical to GIf(X).

The following two propositions from Article I, Proposition 24 and Article II,
Proposition 5.6 shed additional light on what it means to have a certain vanishing
dimension.

Proposition 1. Let X be a specialization-closed subset of Spec R, let α ∈ GPf(X)
and let u be a non-negative integer. The following are equivalent.

(i) vdim α ≤ u.
(ii) α⊗ δ = 0 for all δ ∈ GDf

�
(Xc) with dim δ < codimX− u.

(iii) α = 0 in GP
f(X′) for any specialization-closed subset X′ of Spec R with

X ⊆ X′ and codimX′ < codimX− u.
(iv) α = 0 in GPf(X′) for any specialization-closed subset X′ of Spec R with

X ⊆ X′ and codimX′ = codimX− u− 1.

Proposition 2. Let X be a specialization-closed subset of Spec R, let β ∈ GIf(X)
and let v be a non-negative integer. The following are equivalent.

(i) vdim β ≤ v.
(ii) Hom(δ, β) = 0 for all δ ∈ GDf

�
(Xc) with dim δ < codimX− v.

(iii) β = 0 in GIf(X′) for any specialization-closed subset X′ of Spec R with
X ⊆ X′ and codimX′ < codimX− v.

(iv) β = 0 in GIf(X′) for any specialization-closed subset X′ of Spec R with
X ⊆ X′ and codimX′ = codimX− v − 1.

Foxby [5] has proven that Serre’s vanishing conjecture holds when the module
that is not necessarily of finite projective dimension has dimension less than or
equal to one. The proof easily extends to complexes, and hence it follows that all
elements of GPf(X) satisfy vanishing as long as codimX ≤ 2. Using Propositions 1
and 2, this implies that

vdimα ≤ max(0, codimX− 2) and vdimβ ≤ max(0, codimX− 2) (5)

for all specialization-closed subsets X of Spec R, all α ∈ GPf(X) and all β ∈ GIf(X).

Assumption. The remainder of this section assumes, in addition, that R is
complete of prime characteristic p and has perfect residue field.

The Dutta multiplicity and its two analogs from Section 6 correspond to limit
points in GDf

�
(m) of the form

lim
e→∞

(Φe
X(α) ⊗ γ), lim

e→∞
Hom(γ, Ψe

X(β)) and lim
e→∞

Hom(Φe
X(α), γ)
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for a specialization-closed subset X of Spec R and elements α ∈ GPf(X), β ∈ GIf(X)
and γ ∈ Df

�
(Xc). For example, if X and Y are finite complexes with X = SuppX

and Y = Supp Y such that X ∩Y = {m} and dimX + dimY ≤ dimR, then, when
X ∈ Pf(R), the Dutta multiplicity

χ∞(X, Y ) = lim
e→∞

1

pe codimX
χ(LF e(X), Y ) = lim

e→∞

1

pe codim X
χ(LF e(X)⊗L

R Y )

is the image in Q under the isomorphism χ : GDf
�
(m)→ Q of the element

lim
e→∞

1

pe codimX
[LF e(X)⊗L

R Y ] = lim
e→∞

(Φe
X([X ])⊗ [Y ])

in GDf
�

(m), where [X ] ∈ GPf(X) and [Y ] ∈ GDf
�

(Y). These limits converge in

GDf
�
(m) since the corresponding sequences in Q converge. In fact, Theorems 3

and 4 of Section 10 show that we can “move the limits inside” and instead write

( lim
e→∞

Φe
X(α))⊗ γ, Hom(γ, lim

e→∞
Ψe

X(β)) and Hom( lim
e→∞

Φe
X(α), γ).

10. Decompositions in Grothendieck spaces

Assumption. Throughout this section, R is assumed to be complete, Noetherian
and local of prime characteristic p with maximal ideal m and perfect residue field.
Further, D denotes a normalized dualizing complex.

The following is the diagonalization theorem for the Frobenius from Article I,
Theorem 19.

Theorem 3. Let X be a specialization-closed subset of Spec R, let α ∈ GPf(X)
and suppose that u is a non-negative integer with u ≥ vdimα. Then

(puΦX − id) ◦ · · · ◦ (pΦX − id) ◦ (ΦX − id)(α) = 0.

Further, there is a unique decomposition

α = α(0) + · · ·+ α(u)

in which each α(i) is either zero or an eigenvector for ΦX with eigenvalue p−i. The
components α(0), . . . , α(u) are recursively defined by

α(0) = lim
e→∞

Φe
X(α) and α(i) = lim

e→∞
pieΦe

X(α− (α(0) + · · ·+ α(i−1))),

and there is a formula







α(0)

...

α(u)






=











1 1 · · · 1
1 p−1 · · · p−u

...
...

. . .
...

1 p−u · · · p−u2











−1









α
ΦX(α)

...
Φu

X(α)











.

The following theorem from Article II, Theorem 6.2 presents a diagonalization
theorem for the analogous Frobenius functor defined by Herzog.

Theorem 4. Let X be a specialization-closed subset of Spec R, let β ∈ GIf(X)
and suppose that v is a non-negative integer with v ≥ vdimβ. Then

(pvΨX − id) ◦ · · · ◦ (pΨX − id) ◦ (ΨX − id)(β) = 0.
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Further, there is a unique decomposition

β = β(0) + · · ·+ β(v)

in which each β(i) is either zero or an eigenvector for ΨX with eigenvalue p−i. The
components β(0), . . . , β(v) are recursively defined by

β(0) = lim
e→∞

Ψe
X(β) and β(i) = lim

e→∞
pieΨe

X(β − (β(0) + · · ·+ β(i−1))),

and there is a formula







β(0)

...
β(v)






=











1 1 · · · 1
1 p−1 · · · p−v

...
...

. . .
...

1 p−v · · · p−v2











−1









β
ΨX(β)

...
Ψv

X(β)











.

The i’th component operation (−)(i) on GPf(X) and GIf(X), respectively, is an
endomorphism of Grothendieck spaces. Let X ⊆ X′ be specialization-closed subsets
of Spec R and set s = codimX − codimX′. For α ∈ GPf(X), β ∈ GIf(X) and all
integers i (see Article I, Remark 20 and Article II, Remark 6.6),

α(i) = α(i−s) in GP
f(X′) and β(i) = β

(i−s)
in GI

f(X′),

where we apply the convention that components of negative degree are zero.
The dagger, star and Foxby isomorphisms between GPf(X) and GIf(X) com-

mute with the i’th component endomorphisms in that (see Article II, Proposi-
tions 6.3 and 7.3)

(α†)(i) = α(i)†; (β†)(i) = β(i)†;

(α∗)(i) = α(i)∗; (β⋆)(i) = β(i)⋆;

(D ⊗ α)(i) = D ⊗ α(i); and Hom(D, β)(i) = Hom(D, β(i)).

The star automorphisms on GPf(X) and GIf(X) can be explicitly described in terms
of i’th components; see Theorem 12 in Section 11.

Let X and Y be specialization-closed subsets of Spec R such that X∩Y = {m}
and dimX + dimY ≤ dim R. Set s = dimR− (dim X + dimY). If (δ, ε) is a pair of
elements from

GP
f(X)×GP

f(Y), GP
f(X)×GI

f(Y) or GI
f(X)×GP

f(Y),

then δ ⊗ ε is a well-defined element of GP
f(m) or GI

f(m), and

(δ ⊗ ε)(i) =
∑

m+n=i+s

δ(m) ⊗ ε(n).

If instead (δ, ε) is a pair of elements from

GP
f(X)×GP

f(Y), GP
f(X)×GI

f(Y) or GI
f(X)×GI

f(Y),

then Hom(δ, ε) is a well-defined element of GPf(m) or GIf(m), and

Hom(δ, ε)(i) =
∑

m+n=i+s

Hom(δ(m), ε(n)).

See Article II, Proposition 6.9 for further details.
Let X be a specialization-closed subset of Spec R and let α ∈ GPf(X), β ∈

GI
f(X) and γ ∈ GD

f
�

(Xc). Using continuity of the maps − ⊗ γ, Hom(γ,−) and
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Hom(−, γ), Theorems 3 and 4 together with previous remarks show that the Dutta
multiplicity and its two analogs can be described by elements in GDf

�
(m) of the

form

lim
e→∞

(Φe
X(α)⊗ γ) = ( lim

e→∞
Φe

X(α)) ⊗ γ = α(0) ⊗ γ;

lim
e→∞

Hom(γ, Ψe
X(β)) = Hom(γ, lim

e→∞
Ψe

X(β)) = Hom(γ, β(0)); and

lim
e→∞

Hom(Φe
X(α), γ) = Hom( lim

e→∞
Φe

X(α), γ) = Hom(α(0), γ).

Translating this back to complexes and exploiting the formulas in Theorems 3
and 4 reveals the following proposition from Article I, Remark 21 and Article II,
Corollary 6.5, showing that the Dutta multiplicity and its analogs can be described
as Q-linear combinations of ordinary intersection multiplicities or Euler forms.

Corollary 5. Let X and Y be finite complexes. Set X = SuppX and Y =
SuppY and assume that X ∩Y = {m} and dimX + dimY ≤ dimR. Further, set
t = codimX and s = codimY. If X ∈ Pf(R) and u is an integer with u ≥ vdim[X ]
for [X ] ∈ GPf(X), then

χ∞(X, Y ) =
(

1 0 · · · 0
)











1 1 · · · 1
pt pt−1 · · · pt−u

...
...

. . .
...

put pu(t−1) · · · pu(t−u)











−1









χ(X, Y )
χ(LF (X), Y )

...
χ(LFu(X), Y )











.

Similarly, under the same assumptions,

ξ∞(X, Y ) =
(

1 0 · · · 0
)











1 1 · · · 1
pt pt−1 · · · pt−u

...
...

. . .
...

put pu(t−1) · · · pu(t−u)











−1









ξ(X, Y )
ξ(LF (X), Y )

...
ξ(LFu(X), Y )











.

If instead Y ∈ If(R) and v is an integer with v ≥ vdim[Y ] for [Y ] ∈ GIf(Y), then

ξ∞(X, Y ) =
(

1 0 · · · 0
)











1 1 · · · 1
ps ps−1 · · · ps−v

...
...

. . .
...

pvs pv(s−1) · · · pv(s−v)











−1









ξ(X, Y )
ξ(X,RG(Y ))

...
ξ(X,RGv(Y ))











.

With the assumption of prime characteristic sustained in this section, Propo-
sitions 1 and 2 of Section 9 can be extended by additional equivalent conditions.
These are contained in Propositions 6 and 7 below from Article I, Propositions 23
and 24 and Article II, Propositions 6.7 and 6.8.

Proposition 6. Let X be a specialization-closed subset of Spec R, let α ∈ GPf(X)
and let u be a non-negative integer. The following are equivalent.

(i) vdim α ≤ 0 (that is, α satisfies vanishing).
(ii) α = α(0).
(iii) α = ΦX(α).
(iv) α = Φe

X(α) for some e ∈ N.
(v) α = lime→∞ Φe

X(α).
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Further, the following are equivalent.

(vi) vdim α ≤ u.
(vii) α = α(0) + · · ·+ α(u).
(viii) (puΦX − id) ◦ · · · ◦ (pΦX − id) ◦ (ΦX − id)(α) = 0.

Proposition 7. Let X be a specialization-closed subset of Spec R, let β ∈ GIf(X)
and let v be a non-negative integer. The following are equivalent.

(i) vdim β ≤ 0 (that is, β satisfies vanishing).
(ii) β = β(0).
(iii) β = ΨX(β).
(iv) β = Ψe

X(β) for some e ∈ N.
(v) β = lime→∞ Ψe

X(β).

Further, the following are equivalent.

(vi) vdim β ≤ v.
(vii) β = β(0) + · · ·+ β(v).
(viii) (pvΨX − id) ◦ · · · ◦ (pΨX − id) ◦ (ΨX − id)(β) = 0.

Let X be a specialization-closed subset of Spec R and let α ∈ GP
f(X) and

β ∈ GIf(X). Propositions 6 and 7 state that α and β satisfy vanishing exactly when
they are equal to their zeroth components; in particular, this implies that the Dutta
multiplicity and its analogs satisfy vanishing.

We say that α satisfies numerical vanishing if α = α(0) in GDf
�
(X), and we say

that β satisfies numerical vanishing if β = β(0) in GDf
�
(X). Further, we say that R

satisfies numerical vanishing if all elements α in GPf(X) for all specialization-closed
subsets X of Spec R satisfy numerical vanishing; this is equivalent to requiring all
elements β in GIf(X) for all specialization-closed subsets X of Spec R to satisfy
numerical vanishing. When R is Gorenstein and we identify GPf(X) and GIf(X),
there are, as always, no contradictions in these definitions.

Proposition 8 below combines Article I, Proposition 31 and Article II, Proposi-
tion 6.12 and sheds a little more light on what it means for R to satisfy numerical
vanishing.

Proposition 8. The following are equivalent.

(i) R satisfies numerical vanishing.
(ii) All elements of GP

f(X) satisfy numerical vanishing for all specialization-
closed subsets X of Spec R.

(iii) All elements of GPf(m) satisfy numerical vanishing.
(iv) All elements of GIf(X) satisfy numerical vanishing for all specialization-

closed subsets X of Spec R.
(v) All elements of GIf(m) satisfy numerical vanishing.
(vi) χ(LF (X)) = pdim Rχ(X) for all complexes X in Pf(m).
(vii) lime→∞ p−e dim Rχ(LF e(X)) = χ(X) for all complexes X in Pf(m).
(viii) χ(RG(Y )) = pdim Rχ(Y ) for all complexes Y in I

f(m).
(ix ) lime→∞ p−e dim Rχ(RGe(Y )) = χ(Y ) for all complexes Y in If(m).

When R is Cohen–Macaulay, GPf(m) and GIf(m) are generated by modules, and
hence the above conditions are equivalent to each of the following conditions.
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(x ) lengthF (M) = pdim R lengthM for all modules M of finite length and
finite projective dimension.

(xi) lime→∞ p−e dim R lengthF e(M) = lengthM for all modules M of finite
length and finite projective dimension.

(xii) lengthG(N) = pdim R lengthN for all modules N of finite length and
finite injective dimension.

(xiii) lime→∞ p−e dim R lengthGe(N) = lengthN for all modules N of finite
length and finite injective dimension.

In particular, if R is a complete intersection or R is Gorenstein of dimension less
than or equal to three, then R satisfies numerical vanishing.

Numerical vanishing is clearly a weaker condition than vanishing, and demon-
strating that numerical vanishing is a stronger condition than weak vanishing is
easy; see Proposition 13 of Section 12.

11. Self-duality

Assumption. Throughout this section, R is assumed to be Noetherian and local
with maximal ideal m.

Let X be a specialization-closed subset of Spec R. If an element α ∈ GPf(X)
satisfies the formula

α = (−1)codim Xα∗,

we say that α is self-dual. If the formula holds after the inclusion homomorphism
GPf(X) → GDf

�
(X) is applied so that α = (−1)codim Xα∗ in GDf

�
(X), we say that

α is numerically self-dual. Similarly, if an element β ∈ GIf(X) satisfies the formula

β = (−1)codim Xβ⋆,

we say that β is self-dual, and if the formula holds after the inclusion homomorphism
GIf(X)→ GDf

�
(X) is applied so that β = (−1)codimXβ⋆ in GDf

�
(X), we say that β

is numerically self-dual.
If all elements α ∈ GP

f(X) for all specialization-closed subsets X of Spec R
are self-dual or numerically self-dual, respectively, we say that R satisfies self-

duality or numerical self-duality, respectively; this is equivalent to requiring the
same conditions for all elements β ∈ GIf(X) for all specialization-closed subsets X

of Spec R. Once again, these definitions are not contradictory when R is Gorenstein
and GPf(X) is identified with GIf(X).

The following theorem from Article II, Proposition 7.4 shows that the condi-
tions of satisfying vanishing, weak vanishing, self-duality and numerical self-duality
are correlated; see also Theorem 13 from Section 12.

Theorem 9. Let X be a specialization-closed subset of Spec R and let α ∈ GPf(X)
and β ∈ GIf(X). If α satisfies vanishing, then α is self-dual, and if β satisfies
vanishing, then β is self-dual. Further, R satisfies vanishing if and only if R satisfies
self-duality, and if R satisfies numerical self-duality, then R satisfies weak vanishing.

Theorem 12 contains a consequence of this theorem in prime characteristic. The
following proposition from Article II, Proposition 7.9 contributes to the discussion
initiated by Chan [1] concerning the connection between the vanishing conjecture
and an equation relating the intersection multiplicity and the Euler form.
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Proposition 10. The ring R satisfies vanishing if and only if

α⊗ γ = (−1)codim X Hom(α, γ)

in GDf
�

(m) for all specialization-closed subsets X of Spec R, all α ∈ GPf(X) and

all γ ∈ GDf
�
(Xc), and R satisfies numerical self-duality if and only if the equality

holds when requiring γ ∈ GPf(Xc) instead. In other words, R satisfies vanishing if
and only if

χ(X, Y ) = (−1)codim(SuppX)ξ(X, Y )

for complexes X ∈ Pf(R) and Y ∈ Df
�

(R) with Supp X ∩ SuppY = {m} and
dim(Supp X) + dim(Supp Y ) ≤ dimR, and R satisfies numerical self-duality if and
only if the equality holds when restricting to complexes Y ∈ Pf(R).

Article II, Proposition 7.11 contains the following result.

Proposition 11. Assume that R is Gorenstein. Then all elements of GP
f(X)

and GIf(X) are numerically self-dual for all specialization-closed subsets X of R
with dim ≤ 2; in particular, all elements of GPf(m) and GIf(m) are numerically
self-dual. If dimR ≤ 5, then R satisfies numerical self-duality.

Assumption. The remainder of this section assumes, in addition, that R is
complete of prime characteristic p and has perfect residue field.

A consequence of Theorem 9 in prime characteristic is the following theorem
from Article II, Theorem 7.5.

Theorem 12. Let X be a specialization-closed subset of Spec R, let α be an
element of GPf(X) with vdimα = u and let β be an element of GIf(X) with vdimβ =
v. Then

(−1)codimXα∗ = α(0) − α(1) + α(2) − · · ·+ (−1)uα(u)

and
(−1)codim Xβ⋆ = β(0) − β(1) + β(2) − · · ·+ (−1)vβ(v).

If α satisfies numerical vanishing, then α is numerically self-dual, and if β satisfies
numerical vanishing, then β is numerically self-dual. In particular, if R satisfies
numerical vanishing, then R satisfies numerical self-duality.

Theorem 12 shows that an element α ∈ GPf(X) is self-dual exactly when α
decomposes as

α = α(0) + α(2) + α(4) + · · · ,
and α is numerically self-dual when the equality above holds numerically: that is,
when

α = α(0) + α(2) + α(4) + · · ·
in GDf

�
(X). Similar remarks hold for elements β ∈ GIf(X).

12. Implications

This section discusses the relationships between well-known ring properties and
the concepts introduced here.

Assumption. Throughout this section, R is assumed to be Noetherian and local
with maximal ideal m.
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The following proposition compiles the results from Proposition 8, Theorem 9,
Proposition 11 and Theorem 12.

Proposition 13. Consider the following implications of properties for the ring R.

self-dualityKS

��
regular +3

��

vanishing

��

dim ≤ 2ks

complete intersection +3

��

numerical vanishing

��

Gorenstein
of dim ≤ 3

ks

Gorenstein

��

numerical self-duality

��

Gorenstein
of dim ≤ 5

ks

Cohen–Macaulay weak vanishing dim ≤ 4ks

_ _ _ _ _ _ _ _ _ _ _ _ _�

�

�

�

�

�

�

�

�

�
_ _ _ _ _ _ _ _ _ _ _ _ _

All implications hold when R is complete of prime characteristic p with perfect
residue field. When this is not the case, the dashed part of the diagram no longer
makes sense and can be removed, and the remaining implications still hold, includ-
ing the implication from “vanishing” and “complete intersection” to “numerical
self-duality”. All implications except for the single bi-implication are strict.

None of the references preceding Proposition 13 actually contain the fact that
the implication from “complete intersection” to “numerical self-duality” holds in
arbitrary characteristic, but it is not hard to prove using local Chern characters; the
proof for modules by Chan [1, Theorem 4] easily extends to complexes. Section 13
briefly discusses, among other things, how to make a decomposition (and hence
how to define the concept of numerical vanishing) in arbitrary characteristic.

Looking at the diagram above, it is tempting to ask whether there is an impli-
cation from “Gorenstein” to “numerical self-duality”. Proposition 11 shows that
an implication from “Gorenstein” to “numerical self-duality” would follow if only
a sufficient condition for numerical self-duality to hold globally is that it holds in
GPf(m) or GIf(m), just as numerical vanishing holds globally if only it holds in
GPf(m) or GIf(m), as seen in Proposition 8.

13. Comparison with local Chern characters

Many of the properties of Grothendieck spaces seem to resemble properties
of local Chern characters. This section briefly describes this relationship without
delving into the theory of local Chern characters; for more details on local Chern
characters, see Roberts [15]. The reader should be warned that this section has no
precise results—the statements here are a matter of opinion rather than based on
proof.
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Assumption. Throughout this section, R is assumed to be complete, Noetherian
and local of prime characteristic p with maximal ideal m and perfect residue field.

Let X be complex in Pf(R) and set SuppX = X and d = dimR. The local

Chern character of X is an object ch(X) (whose definition is not discussed further
here) with a decomposition

ch(X) = chd(X) + · · ·+ ch0(X).

In the same way, we can think of the element [X ] ∈ GPf(X) as an object with a
decomposition

[X ] = [X ](0) + · · ·+ [X ](d).

There seems to be some sort of connection

chcodim X−i(X) oo // [X ](i).

For example, in the case where codim X = 0, ch0(X) 6= 0 if and only if the alter-
nating sum of Betti numbers of X is non-zero (see Roberts [16, pp. 6–7]), which
happens if and only if [X ](0) 6= 0. Likewise, in the case where codim X = d,
chd(X) can be used to describe the asymptotic Euler characteristic of X (see
Roberts [15, Theorem 12.7.1]): that is, chd(X) can be used to describe the num-
ber χ∞(X) = lime→∞ p−edχ(F e(X)), which is simply the usual (induced) Euler
characteristic applied to [X ](0).

The similarities between local Chern characters and elements of Grothendieck
spaces are listed below. Let X , X ′ and X ′′ be complexes in Pf(X) such that there
is a short exact sequence (in the non-derived category)

0→ X ′ → X → X ′′ → 0.

Further, let Y be a complex in Pf(Xc). We then have the following equations of
local Chern characters and elements of Grothendieck spaces.

Local Chern characters Elements of Grothendieck spaces

ch(X) = ch(X ′) + ch(X ′′) [X ] = [X ′] + [X ′′]

ch(X ⊗L

R Y ) = ch(X) ch(Y ) [X ⊗L

R Y ] = [X ]⊗ [Y ]

chi(X) chj(Y ) = chj(X) chi(Y ) [X ](i) ⊗ [Y ](j) = [Y ](j) ⊗ [X ](i)

chi(X
∗) = (−1)i chi(X) [X∗](i) = (−1)i+codim X[X ](i)

An element in the Grothendieck space GPf(X) of the form [X ] for a complex
X ∈ Pf(X) is uniquely determined by the intersection multiplicities χ(X, Y ) of

X with complexes Y ∈ D
f
�

(Xc). The image [X ] in GD
f
�
(X) of [X ] under the

inclusion homomorphism GPf(X)→ GDf
�
(X) is uniquely determined by the inter-

section multiplicities χ(X, Y ) of X with complexes Y ∈ Pf(Xc). Thus, numeri-
cal properties, which are properties that hold after the inclusion homomorphism
GPf(X)→ GDf

�
(X) is applied, are verified by investigating a restricted set of inter-

section multiplicities.
Numerical properties seem to be encoded in the Todd class τ(R) of R, which

is an element on which local Chern characters can operate. In other words, we are
investigating a restricted set of operations of local Chern characters: the operations
of local Chern characters on τ(R). For example, if R is a complete intersection, then
the Todd class τ(R) of R is equal to its component τd(R) in degree d = dim R; this
is reflected in the fact that complete intersection rings satisfy numerical vanishing,
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so that [X ] and [X ](0) are numerically the same. Further, if R is Gorenstein, then
τd−i(R) = 0 if i is odd; this is reflected in the fact that Gorenstein rings satisfy
numerical self-duality for all elements of GP

f(m), so that [X ](i) is numerically zero
if i is odd whenever [X ] ∈ GPf(m).

Of course, Grothendieck spaces with their single built-in application to the
study of intersection multiplicities do not even come close to local Chern charac-
ters, with their many applications to all kinds of questions in commutative algebra.
Even in studying intersection multiplicities, local Chern characters have one clear
advantage over Grothendieck spaces: local Chern characters have nice properties
in any characteristic, whereas the pleasant structure of Grothendieck spaces only
emerges in prime characteristic p. A natural question to ask is whether Grothen-
dieck spaces have an equally pleasant structure in arbitrary characteristic; here we
discuss a special case where such a structure can be obtained.

Let X be a specialization-closed subset of Spec R and let α ∈ GPf(X). The aim
is to find a decomposition of α that also works in arbitrary characteristic. We show
how this can be done when vdimα ≤ 1. In this case, there is a decomposition

α = α(0) + α(1).

From Theorem 12 follows that

α(0) =
1

2
(α + (−1)codimXα∗) and α(1) =

1

2
(α− (−1)codim Xα∗). (6)

The right sides of these formulas make sense in general characteristic too, and
hence we can simply use the above to define a decomposition of α. To demon-
strate that this decomposition is natural, even in general characteristic, let X′ be
a specialization-closed subset of Spec R with X ⊆ X′ and codimX′ = codimX− 1,
and consider the image α of α in GPf(X′). Since the vanishing dimension of α is less
than or equal to one, α satisfies vanishing; this is a consequence of Proposition 1.
In particular, according to Theorem 9, α is self-dual, and hence the image of α(0)

in GPf(X′) is

α(0) =
1

2
(α + (−1)codim Xα∗) =

1

2
(α− (−1)codimX′

α∗) = 0.

According to Proposition 1, this shows that α(0) satisfies vanishing, even in general
characteristic, just as one would expect of a zeroth component.

Further investigation is required to determine whether a decomposition can be
obtained when α has vanishing dimension higher than one.

14. Examples

This section discusses three examples of rings and modules of interest when
discussing intersection multiplicities. These are the example by Dutta, Hochster
and McLaughlin [4] and two examples by Miller and Singh [10]. These examples
are constructed to allow the assumption that the ring in play is complete of prime
characteristic p and has perfect residue field: we can simply choose the residue field
to be perfect of prime characteristic and then consider the completion of the ring,
which does not change intersection multiplicities.

Example 14 (the example by Dutta, Hochster and McLaughlin). In this example,
we have the Noetherian, local ring

R = k[u, v, x, y]m/(ux− vy),
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where k is a field and m is the maximal ideal (u, v, x, y). This ring is a complete
intersection of dimension 3. We also have a module M of length 15 with finite
projective dimension and a module N = R/q of dimension 2, where q is the prime
ideal generated by u and v. The computations performed by Dutta, Hochster and
McLaughlin show that

χ(M, N) = −1.

Since R has dimension 3, all elements of GPf(X) satisfy vanishing except when
codimX = 3, which is when X = {m}. A result for Grothendieck groups by
Levine [8, Theorem 4.2] implies that GPf(m) = Q ⊕ Q; see Article I, Example 35,
for a few more details. When R is complete of prime characteristic p and has perfect
residue field, [M ] ∈ GP

f(m) decomposes as

[M ] = [M ](0) + [M ](1),

where, using the formula in Theorem 3,

[M ](0) =
−1

p− 1
[M ] +

1

p2(p− 1)
[F (M)]; and

[M ](1) =
p

p− 1
[M ]− 1

p2(p− 1)
[F (M)].

Since R is a complete intersection, R satisfies numerical vanishing, so

χ([M ](0)) = χ(M) = lengthM = 15 and χ([M ](1)) = 0.

In particular, [M ](0) is non-zero. Since [M ](0) satisfies vanishing,

χ([M ](0), N) = 0 and χ([M ](1), N) = χ(M, N) = −1,

so [M ](1) must also be non-zero. Thus, [M ](0) and [M ](1) are linearly independent
and generate GPf(m). These formulas imply that

lengthF e(M) = 15p3e and χ(F e(M), N) = −p2e

for all non-negative integers e. Since R is Cohen–Macaulay, the complex Σ3M∗ in
Pf(m) is isomorphic to a module

M∨ = Ext3R(M, R),

and Theorem 12 yields that the element [M∨] ∈ GP
f(m) decomposes as

[M∨] = [M ](0) − [M ](1).

As discussed at the end of Section 13, we can also write

[M ](0) =
1

2
([M ] + [M∨]) and [M ](1) =

1

2
([M ]− [M∨]),

which makes sense in general characteristic too.

Example 15 (the first example by Miller and Singh). In this example, we have
the Noetherian, local ring

R = k[u, v, w, x, y, z]m/(ux + vy + wz),

where k is a field and m is the maximal ideal (u, v, w, x, y, z). This ring is a complete
intersection of dimension 5. We also have a module M of length 55 with finite
projective dimension and a module N = R/q of dimension 3, where q is the prime
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ideal generated by u, v and w. The computations performed by Miller and Singh
show that

χ(M, N) = −2.

Again, the result by Levine [8, Theorem 4.2] implies that GPf(m) = Q⊕Q. When
R is complete of prime characteristic p and has perfect residue field, Article I,
Example 35, shows that [M ] can be decomposed as

[M ] = [M ](0) + [M ](2),

where, using the formula in Theorem 3,

[M ](0) =
1

(p− 1)2(p + 1)
[M ]− 1

p4(p− 1)2
[F (M)] +

1

p7(p− 1)2(p + 1)
[F 2(M)]; and

[M ](2) =
p3

(p− 1)2(p + 1)
[M ]− 1

p2(p− 1)2
[F (M)] +

1

p6(p− 1)2(p + 1)
[F 2(M)].

Using the fact that [M ](1) = 0, it is even possible to obtain

[M ](0) =
−1

p2 − 1
[M ] +

1

p3(p2 − 1)
[F (M)]; and

[M ](2) =
p2

p2 − 1
[M ]− 1

p3(p2 − 1)
[F (M)].

Since R is a complete intersection, R satisfies numerical vanishing, so

χ([M ](0)) = χ(M) = lengthM = 55 and χ([M ](2)) = 0.

In particular, [M ](0) is non-zero. Since [M ](0) satisfies vanishing,

χ([M ](0), N) = 0 and χ([M ](2), N) = χ(M, N) = −2,

so [M ](2) must also be non-zero. Thus, [M ](0) and [M ](2) are linearly independent
and generate GPf(m). These formulas imply that

lengthF e(M) = 55p5e and χ(F e(M), N) = −2p3e

for all non-negative integers e.

Example 16 (the second example by Miller and Singh). Using the ring R from
the previous example in the characteristic 2 case, Miller and Singh construct a
module-finite extension of R by setting

S = R
[√

uyz,
√

vxz,
√

wxy,
√

uvw,
√

uwyz
]

.

This ring is a Gorenstein normal domain of dimension 5. The S-module K = M⊗R

S has length 222 and finite projective dimension, and from Article I, Example 35,
we still have the decomposition

[K] = [K](0) + [K](2)

in GPf(n), where n is the maximal ideal of S. The computations by Miller and
Singh imply that

χ([K](0)]) = 220 and χ([K](2)]) = 2.

Miller and Singh also construct another S-module L of length 218 with finite pro-
jective dimension. This module also decomposes in GPf(n) as

[L] = [L](0) + [L](2),
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and the computations performed by Miller and Singh imply that

χ([L](0)]) = 220 and χ([L](2)]) = −2.

Unlike the two previous examples, this example includes a Dutta multiplicity
that is neither zero nor equal to the usual intersection multiplicity:

χ(K, S) = 222 6= 220 = χ∞(K, S).

Corollary 5 implies that the Dutta multiplicity is always rational, but in this case
it is, apparently, even an integer. There are no known examples where the Dutta
multiplicity is not an integer. In relation to this, it is notable that the decomposition
from (6) in Section 13 shows that the Dutta multiplicity χ∞(X, Y ) of complexes
X ∈ Pf(R) and Y ∈ Df

�
(R) with SuppX ∩ SuppY = {m} and dim(SuppX) +

dim(Supp Y ) ≤ dimR is a number in 1
2Z whenever the element [X ] ∈ GPf(Supp X)

has vanishing dimension at most one.

15. Grothendieck groups

This section presents some of the results from Article III. Although the content
of this article is not directly related to Grothendieck spaces, the section concludes
with an application to Grothendieck spaces.

Let C be a full subcategory of the (non-derived) category of bounded complexes
of finitely generated modules. The Grothendieck group of C is defined as the Abelian
group K0(C) presented by generators [X ], one for each isomorphism class of a
complex X in C, and relations

[X ] = 0 whenever X is exact; and

[X ] = [X ′] + [X ′′] whenever 0→ X ′ → X → X ′′ → 0

is a short exact sequence in C. If C contains only modules (complexes concentrated
in degree zero), then the first requirement is contained in the second one.

Let S = (S1, . . . , Sd) be a family of multiplicative systems of R: that is, multi-
plicatively closed subsets of R containing the unit element. A module M is said to
be S-torsion if S−1

i M = 0 for i = 1, . . . , d, and a complex X is said to be homolog-

ically S-torsion if all its homology modules Hn(X) are S-torsion; in other words, if
S−1

i X is exact for i = 1, . . . , d. We define the following (non-derived) categories.

C(S-tor) = the category of bounded, homologically S-torsion complexes of
finitely generated, projective modules.

Cd(S-tor) = the full subcategory of C(S-tor) comprising the complexes con-
centrated in degrees d, . . . , 0.

M(S-tor) = the category of finitely generated, S-torsion modules of finite
projective dimension.

The inclusion Cd(S-tor) → C(S-tor) of categories naturally induces a homo-
morphism

I : K0(Cd(S-tor))→ K0(C(S-tor)) given by I([X ]) = [X ],

where X is a complex in Cd(S-tor) and the first [X ] is an element of K0(Cd(S-tor)),
whereas the second is an element of K0(C(S-tor)). The following is the Main
Theorem of Article III.
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Theorem 17. Suppose that d is a non-negative integer and that S = (S1, . . . , Sd)
is a family of multiplicative systems of R. Then the homomorphism

I : K0(Cd(S-tor))→ K0(C(S-tor))

is an isomorphism.

This theorem has many interesting consequences, and a few are mentioned here.
For an element x ∈ R, we define a multiplicative system

S(x) = {xn | n ∈ N0},

and if x = (x1, . . . , xd) is a d-tuple of elements of R, we let

S(x) = (S(x1), . . . , S(xd)).

In the case where R is Noetherian and local of dimension d and x = (x1, . . . , xd)
is a system of parameters for R, the category C(S(x)-tor) is simply the category
of bounded complexes of finitely generated projective modules with finite-length
homology. Theorem 17 states that the Grothendieck group of this category is
isomorphic to the Grothendieck group of the full subcategory of complexes concen-
trated in degrees d, . . . , 0 through the homomorphism induced by the inclusion of
categories—an interesting result compared with the new intersection theorem (see
Roberts [15, Theorem 13.4.1]), which states that the complexes concentrated in
degrees d, . . . , 0 in some sense are “minimal” within this category.

Another interesting consequence of Theorem 17 is the interplay between the
Grothendieck groups of the categories Cd(S-tor), C(S-tor) and M(S-tor). When R
is Noetherian, a module in M(S-tor) has a projective resolution in C(S-tor), and
this association induces a homomorphism

R : K0(M(S-tor))→ K0(C(S-tor)) given by R([M ]) = [X ],

where M is a module in M(S-tor) and X is a complex in C(S-tor), which is a
projective resolution of M . Under certain additional assumptions, discussed below,
the homology of complexes in Cd(S-tor) is concentrated in degree zero, meaning
that any complex in Cd(S-tor) is a projective resolution of a module in M(S-tor).
When this is true, taking homology induces a homomorphism

H : K0(Cd(S-tor))→ K0(M(S-tor)) given by H([X ]) = [H(X)],

where X is a complex in Cd(S-tor) and H(X) is its homology complex, which is
concentrated in degree zero and hence is a module.

The following is a list of sufficient conditions for R and H to be defined.

(i) R is Noetherian and local and S = S(x) for a regular sequence x =
(x1, . . . , xd) where d > 0;

(ii) R is Noetherian and local and S is a single multiplicative system con-
taining only non-zerodivisors; and

(iii) R is Noetherian and S is empty: that is, it is trivial to be S-torsion and
d = 0.

The following proposition derives from Article III, Corollaries 8, 9 and 10.
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Proposition 18. Under each of the assumptions (i)–(iii) above, the homomor-
phisms R, H and I are all isomorphisms and fit together in the following commu-
tative diagram.

K0(Cd(S-tor))
I //

H ((QQQQQQQQQQQQ
K0(C(S-tor))

K0(M(S-tor))

R

66mmmmmmmmmmmm

Under each of the assumptions (i)–(iii), any module in M(S-tor) must have
grade at least equal to d, and hence the above diagram shows that the Grothen-
dieck group of C(S-tor) is generated by projective resolutions of perfect modules
of projective dimension d. A consequence of this observation in case (ii) is that
K0(M(S-tor)) is generated by elements of the form [R/x] for a non-zerodivisor x;
Foxby [5] used this to prove Serre’s intersection conjectures when the module that
is not necessarily of finite projective dimension has dimension less than or equal to
one. This introduction concludes by using the observation in case (i) to deduce a
result for Grothendieck spaces.

Assume from now on that R is Noetherian and local, and let x = (x1, . . . , xc) be
a regular sequence in R. Then the Grothendieck group of the category C(S(x)-tor)
is generated by complexes concentrated in degrees c, . . . , 0 that are minimal projec-
tive resolutions of finitely generated perfect modules. Being S(x)-torsion for a finite
complex is the same as having support contained in V (x), so the non-derived cate-
gory C(S(x)-tor) can be used to represent the derived category Pf(V (x)): any com-
plex in Pf(V (x)) is isomorphic (within Pf(V (x))) to a complex from C(S(x)-tor).
Since the relations defining the Grothendieck space GPf(V (x)) include the relations
defining the Grothendieck group K0(C(S(x)-tor), there must be a surjection

Q⊗Z K0(C(S(x)-tor))→ GP
f(V (x)) given by r ⊗ [X ] 7→ r[X ],

where r ∈ Q, X ∈ C(S(x)-tor) and the first [X ] is an element of K0(C(S(x)-tor)),
whereas the second is an element of GPf(V (x)). Thus, GPf(V (x)) is the ten-
sor product of Q and a homomorphic image of K0(C(S(x)-tor), and consequently
GP

f(V (x)) is generated by the same kind of elements as K0(C(S(x)-tor)); in fact,
following the proof of Article III, Corollary 8, and recalling that all elements α in
GPf(V (x)) can be written as α = r[X ] for a rational number r and a complex X
in Pf(V (x)) leads to the following.

Proposition 19. Assume that R is Noetherian and local, and let x = (x1, . . . , xc)
be a regular sequence in R. Then any element α ∈ GPf(V (x)) can be written in
the form

α = r
(

[M ]−m[R/x]
)

for a rational number r, a non-negative integer m and a finitely generated perfect
module M with pdM = c.

If R is Cohen–Macaulay, the regular sequence x can be extended by another
regular sequence y = (y1, . . . , yd) so that (x, y) = (x1, . . . , xc, y1, . . . , yd) is a regular
sequence of maximal length c + d = dimR. An element β in GPf(V (y)) can then
be written in the form

β = s
(

[N ]− n[R/y]
)
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for a rational number s, a non-negative integer n and a finitely generated perfect
module N with pdN = d. Computing α ⊗ β is now easy since both α and β are
expressed in terms of perfect modules:

α⊗ β = rs
(

[M ]⊗ [N ]−m[R/x]⊗ [N ]− n[M ]⊗ [R/y] + mn[R/x]⊗ [R/y]
)

= rs
(

[M ⊗R N ]−m[N/xN ]− n[M/yM ] + mn[R/x, y]
)

If dimβ < codimV (x) = c, then [R/x]⊗ β = 0, since [R/x] satisfies vanishing, and
then

α⊗ β = rs
(

[M ⊗R N ]− n[M/yM ]
)

.

Determining whether vanishing holds for α is now a question of determining whether

length(M ⊗R N) = n length(M/yM).
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Article I

Diagonalizing the Frobenius





DIAGONALIZING THE FROBENIUS

ESBEN BISTRUP HALVORSEN

Abstract. This paper explores the interplay between the Frobenius functor
and Serre’s vanishing conjecture over a Noetherian local ring R of prime char-
acteristic p. We show that the Frobenius functor induces a diagonalizable map
on certain Q-vector spaces, which are tensor products of Q with quotients of
Grothendieck groups. This allows us to decompose an element (representing
a bounded complex of finitely generated projective modules) into eigenvectors
for the Frobenius: the component with eigenvalue 1 describes the Dutta mul-
tiplicity of the element, and the remaining components describe the extent to
which Serre’s vanishing conjecture fails to hold. As a consequence, we explic-
itly describe the Dutta multiplicity as a Q-linear combination of finitely many
terms in a sequence of intersection multiplicities; and we show that, over a
Cohen–Macaulay ring, a sufficient condition for the weak version of Serre’s
vanishing conjecture (the one in which both modules are assumed to have fi-
nite projective dimension) to hold is that the Frobenius functor changes the
length of modules of finite projective dimension by a factor pdimR.

1. Introduction

For finitely generated modules M and N over a commutative, Noetherian, local
ring R with pd M < ∞ and ℓ(M ⊗R N) < ∞, the intersection multiplicity defined
by Serre [13] is given by

χR(M, N) =
∑

i

(−1)i ℓ(TorR
i (M, N)).

The intersection conjectures state that

(i) dimM + dimN ≤ dimR;
(ii) χR(M, N) = 0 whenever dimM + dimN < dimR; and
(iii) χR(M, N) > 0 whenever dimM + dimN = dimR.

Serre’s original conjectures require R to be regular, but the conjectures make sense
in the more general setting presented above. Part (ii) is known as the vanishing
conjecture and part (iii) is known as the positivity conjecture. Serre proved that,
when R is regular, (i) holds and that, when R is regular and of equal characteristic
or unramified of mixed characteristic, vanishing and positivity hold. The vanish-
ing conjecture was later proven by Roberts [10] and, independently, by Gillet and
Soulé [5] in the more general setting where the requirement that R be regular is
weakened to the requirement that R be a complete intersection and both modules
have finite projective dimension. Foxby [3] proved that all three conjectures hold
when dim N ≤ 1.

2000 Mathematics Subject Classification. Primary 13A35, 13D22, 13H15, 14F17.
Key words and phrases. Grothendieck space, Frobenius, vanishing, vanishing dimension, in-

tersection multiplicity, Dutta multiplicity.
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However, neither the vanishing nor the positivity conjecture hold in the full
generality presented above. This was shown in the famous counterexample by
Dutta, Hochster and McLaughlin [2]. Subsequently, other counterexamples have
emerged, such as the one by Miller and Singh [8].

For rings with prime characteristic p, a different, and in some sense “better”,
intersection multiplicity was introduced by Dutta [1]. The Dutta multiplicity is
given by

χR
∞(M, N) = lim

e→∞

1

pe codim M
χ(F e

R(M), N),

where FR denotes the Frobenius functor. The Dutta multiplicity satisfies the van-
ishing conjecture and is equal to the usual intersection multiplicity whenever this
satisfies vanishing.

In this paper, we will study the interplay between the vanishing conjecture and
the Frobenius functor and obtain a new way to describe the Dutta multiplicity. The
main result is Theorem 19, which, in a certain sense, describes how to decompose a
bounded complex of finitely generated projective modules into eigenvectors for the
Frobenius functor. It should be noted that the diagonalizability of the Frobenius
functor has been discussed by Kurano [6], but that the approach taken in this paper
is new, at least to the knowledge of this author.

For each specialization-closed subset X ⊆ Spec R we let P(X) denote the the
category of bounded complexes with support in X and consisting of finitely gen-
erated projective modules, and we let C(X) denote the category of homologically
bounded complexes with support in X and with finitely generated homology mod-
ules. We shall introduce the Grothendieck spaces GP(X) and GC(X), which are
tensor products of Q with quotients of the usual Grothendieck groups of the cate-
gories P(X) and C(X), respectively. The Grothendieck spaces GP(X) and GC(X) will
be equipped with a topology, allowing us to discuss properties such as convergence
and continuity, and we shall generalize Serre’s intersection multiplicity to a map
GP(X) ⊗Q GC(Xc) → GC({m} induced by the tensor product of complexes, where
Xc is the maximal subset of Spec R such that X∩Xc = {m} and dimX + dimXc ≤
dimR. Given modules M and N as above with dim M + dimN ≤ dimR, we can
set X = SuppM and represent M and N by elements α ∈ GP(X) and β ∈ GC(Xc),
respectively. The intersection multiplicity χR(M, N) can then be represented by
the element α⊗ β ∈ GC({m}).

In prime characteristic p, the Frobenius functor FR induces an endomorphism
FX on GP(X), and we shall study the endomorphism ΦX defined as p− codim X

times FX. The endomorphism ΦX is continuous, and it turns out that an element
of GP(X) is a fixed point of ΦX if and only if it satisfies vanishing: that is, its
intersection multiplicity with elements in GC(Xc) of dimension smaller than the co-
dimension of X vanishes (Proposition 17). A consequence of this is that ΦX must
be diagonalizable with eigenvalues 1, 1/p, 1/p2, . . . , and hence we can decompose
any element α ∈ GP(X) into eigenvectors for ΦX: that is, we can write α = α(0) +
· · ·+ α(u), where α(i) is an eigenvector for ΦX with eigenvalue 1/pi (Theorem 19).
The number u, which is the largest number such that the component α(u) is non-
zero, will be called the vanishing dimension of α. It measures, in a sense, how far
an element in GP(X) is from satisfying vanishing (Proposition 24). The vanishing
dimension turns out to be bounded by max(0, codimX− 2).
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The decomposition of α into eigenvectors allows for an easy formula to com-
pute Φe

X(α) as a Q-linear combination of α(0), . . . , α(u). However, the formula can

also be reversed, allowing us to describe each α(i) as a Q-linear combination of
α, ΦX(α), . . . , Φu

X(α). In fact, we have the following formula (Theorem 19):




α(0)

...

α(u)


 =




1 1 · · · 1
1 1/p · · · 1/pu

...
...

. . .
...

1 1/pu · · · 1/pu2




−1


α
ΦX(α)

...
Φu

X(α)


 .

We shall also give a different description of the element α(i) as the limit of a certain
sequence; in particular, we shall show that α(0) is the limit of Φe

X(α) as e tends
to infinity. It then follows that the Dutta multiplicity of α and an element from
GC(Xc) can be calculated as the usual intersection multiplicity of α(0) and that
element. From the formula above describing α(0) as a Q-linear combination of
α, ΦX(α), . . . , Φu

X(α), we obtain, in particular, an explicit formula for calculating
the Dutta multiplicity (Remark 21). In fact, for finitely generated modules M and
N with pd M < ∞, ℓ(M ⊗R N) < ∞ and t = codimM ≥ dimN such that the
vanishing dimension of the element represented by a projective resolution of M is
less than or equal to u, we have the general formula

χR
∞(M, N) =

(
1 0 · · · 0

)




1 1 · · · 1
pt pt−1 · · · pt−u

...
...

. . .
...

put pu(t−1) · · · pu(t−u)




−1


χR(M, N)
χR(FR(M), N)

...
χR(Fu

R(M), N)


 .

This can be useful information, for example when using a computer to calculate
Dutta multiplicity.

Finally, we shall introduce the concept of numerical vanishing, a condition which
holds if the vanishing conjecture holds, and which implies a weaker version of the
vanishing conjecture, namely the one in which both modules are required to have
finite projective dimension. A feature of numerical vanishing is that it holds globally
(that is, for all elements of all Grothendieck space) if and only if it holds for all
elements in the Grothendieck space GP({m}). A consequence is that, over a Cohen–
Macaulay ring, a sufficient condition for the weak version of the vanishing conjecture
to hold is that ℓ(FR(M)) = pdim R ℓ(M) for all modules M of finite length and finite
projective dimension (Example 33).

2. Notation

Throughout this paper, R will denote a commutative, Noetherian, local ring
with maximal ideal m and residue field k = R/m. Modules and complexes are,
unless otherwise stated, assumed to be R-modules and R-complexes, respectively.
Modules are considered to be complexes concentrated in degree zero.

The spectrum of R, denoted Spec R, is the set of prime ideals of R. A subset
X ⊆ Spec R is specialization-closed if, for any inclusion p ⊆ q of prime ideals,
p ∈ X implies q ∈ X. A closed subset of Spec R is, in particular, specialization-
closed. Throughout, whenever we deal with subsets of the spectrum of a ring, it is
implicitly assumed that they are non-empty and specialization-closed.
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For every X ⊆ Spec R, the dimension of X, denoted dimX, shall mean the usual
Krull dimension of X, and the co-dimension of X, denoted codimX, shall mean
the number dimR− dimX. The dimension and co-dimension of a complex X (and
hence also of a module) is the dimension and co-dimension of its support: that is,
of the set SuppR X = {p ∈ Spec R | H(Xp) 6= 0}.

3. Grothendieck spaces and vanishing

For every (non-empty, specialization-closed) X ⊆ Spec R, we consider the follow-
ing categories.

P(X) = the category of bounded complexes with support in X and consisting
of finitely generated projective modules.

C(X) = the category of homologically bounded complexes with support in X

and with finitely generated homology modules.

If X = {m}, we shall simply write P(m) and C(m).
The Euler characteristic of a complex X in C(m) is defined as

χR(X) =
∑

i

(−1)i ℓ(Hi(X)).

If M and N are finitely generated modules with pd M < ∞ and ℓ(M ⊗R N) < ∞,
and X is a projective resolution of M , X ⊗R N is a complex in C(m), and the
intersection multiplicity χR(M, N) of M and N is the number χR(X⊗R N). There
is no problem in letting N be a complex rather than just a module, so we can
extend the definition of intersection multiplicity to an even more general setting:
for subsets X, Y ⊆ Spec R with X ∩ Y = {m} and complexes X ∈ P(X) and
Y ∈ C(Y), we define the intersection multiplicity of X and Y by

χR(X, Y ) = χR(X ⊗R Y ) =
∑

i

(−1)i ℓ(Hi(X ⊗R Y )).

We shall shortly construct the “Grothendieck spaces” in which we identify all com-
plexes in P(X) or C(X) whose intersection multiplicity with other complexes are
the same. To describe what “other complexes” we will look at, we define, for each
X ⊆ Spec R, a subset

Xc = {q ∈ Spec R | X ∩ V (q) = {m} and dimV (q) ≤ codimX}.

The set Xc shall play the role of a sort of “complement” of X, and the idea is to
consider only the intersection multiplicity of complexes from P(X) with complexes
from C(Xc) (and, conversely, of complexes from C(X) with complexes from P(Xc)).
Note that Xc is a specialization-closed subset of Spec R and that the set Xc is the
largest subset of Spec R such that X∩Xc = {m} and dim X + dimXc ≤ dim R. (In
fact it is not hard to see that, when X is closed, dim X + dimXc = dimR.) The
latter requirement corresponds to the assumption that dimM + dim N ≤ dim R,
which is necessary in order to define the Dutta multiplicity.

Definition 1. The Grothendieck space of the category P(X) is the Q-vector space
GP(X) presented by elements [X ]P(X), one for each isomorphism class of a complex
X in P(X), and relations

[X ]P(X) = [X̃]P(X) whenever χR(X ⊗R −) = χR(X̃ ⊗R −)
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as functions C(Xc) → Q. Similarly, the Grothendieck space of the category C(X) is
the Q-vector space GC(X) presented by elements [Y ]C(X), one for each isomorphism
class of a complex Y in C(X), and relations

[Y ]C(X) = [Ỹ ]C(X) whenever χR(−⊗R Y ) = χR(− ⊗R Ỹ )

as functions P(Xc) → Q. If X = {m}, we shall simply write GP(m) and GC(m), and

if we need to emphasize what the underlying ring is, we write GP
R(X), GC

R(X),
[X ]R

P(X) and [Y ]R
C(X).

In the construction of Grothendieck spaces, we are, basically, identifying a com-
plex X ∈ P(X) with the map χR(X ⊗R −) : C(Xc) → Q and a complex Y ∈ C(X)
with the map χR(−⊗R Y ) : P(Xc) → Q. Since intersection multiplicity is additive
on short exact sequences and trivial on exact complexes, the Grothendieck spaces
GP(X) and GC(X) can also be regarded as the tensor product of Q with quotients
of the Grothendieck groups K0(P(X)) and K0(C(X)) of the categories P(X) and
C(X). (For more information on Grothendieck groups of categories of complexes,
see [4].) In particular, any equation that holds in one of these Grothendieck groups
also holds in the corresponding Grothendieck space.

The choice of Q as underlying field is not inevitable: any extension of Q, for
example R or C, could have been chosen, but Q will do for our purposes. Note
that the spaces GP(X) and GC(X) in general should not be expected to be finite-
dimensional. However, as we shall see in Proposition 2 below, GC(m) is always
one-dimensional (and, in fact, so is GP(Spec R)).

Proposition 2. Suppose that X, Y ⊆ Spec R.

(i) If 0 → X → Y → Z → 0 is a short exact sequence of complexes in P(X)
(or C(X), respectively), then [Y ]P(X) = [X ]P(X) + [Z]P(X) in GP(X) (or
[Y ]C(X) = [X ]C(X) + [Z]C(X) in GC(X), respectively).

(ii) If ϕ : X → Y is a quasi-isomorphism of complexes in P(X) (or C(X),
respectively), then [X ]P(X) = [Y ]P(X) (or [X ]C(X) = [Y ]C(X), respectively).
In particular, if X is exact, then [X ]P(X) = 0 (or [X ]C(X) = 0, respectively).

(iii) If X is a complex in P(X) (or C(X), respectively), then [ΣnX ]P(X) =
(−1)n[X ]P(X) (or [ΣnX ]C(X) = (−1)n[X ]C(X), respectively). (Here, Σn(−)
denotes the shift functor, taking a complex X to the complex ΣnX defined
by (ΣnX)i = Xi−n and ∂ΣnX

i = (−1)n∂X
i−n.)

(iv) Any element in GP(X) (or GC(X), respectively) can be written in the form
r[X ]P(X) (or r[X ]C(X), respectively) for a rational number r ∈ Q and a
complex X in P(X) (or C(X), respectively).

(v) GC(X) is generated by the elements [R/q]C(X) for prime ideals p ∈ X.

(vi) The Euler characteristic C(m) → Q induces an isomorphism GC(m)
∼=
→ Q

given by [X ]C(m) 7→ χR(X).
(vii) The inclusion P(X) → C(X) of categories induces a Q-linear map GP(X) →

GC(X) given by [X ]P(X) 7→ [X ]C(X).
(viii) If X ⊆ Y, the inclusions P(X) → P(Y) and C(X) → C(Y) of categories

induce Q-linear maps

GP(X) → GP(Y) and GC(X) → GC(Y),

respectively, given by [X ]P(X) 7→ [X ]P(Y) and [Y ]C(X) 7→ [Y ]C(Y), respec-
tively.
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(ix ) The tensor product of complexes induces Q-linear maps

GP(X)⊗Q GC(Xc) → GC(m) and

GP(X)⊗Q GP(Xc) → GP(m),

respectively, given by

[X ]P(X) ⊗ [Y ]C(Xc) 7→ [X ⊗R Y ]C(m) and

[X ]P(X) ⊗ [Y ]P(Xc) 7→ [X ⊗R Y ]P(m),

respectively.

Proof. Properties (i), (ii) and (iii) hold since they hold for the corresponding
Grothendieck groups (see, for example, [4]).

We show that (iv) holds for elements in GP(X); the argument for elements in
GC(X) is identical. Note first that any element in GP(X) can be written as a sum∑

i ri[X
i]P(X) for various complexes X i in P(X). By using (iii), we can assume that

all ri are positive, and by choosing a greatest common divisor, we can write the
element in the form r

∑
i ai[X

i]P(X) for a rational number r and positive integers
ai. Because of (i), a sum of two elements represented by complexes is equal to the
element represented by their direct sum, and hence the sum

∑
i ai[X

i]P(X) can be
replaced by a single element [X ]P(X), where X is the direct sum over i of ai copies

of X i.
Property (v) holds since it holds for the corresponding Grothendieck group. This

is easily seen by using short exact sequences to transform a complex in C(X) first
into a bounded complex, then into the alternating sum of its homology modules,
and finally, by taking filtrations, into a linear combination of modules in the form
R/q for prime ideals q ∈ X.

A consequence of (v) is that GC(m) must be generated by the element [k]C(m),
so that GC(m) necessarily is isomorphic to Q or 0. Since the Euler characteristic
naturally induces a non-trivial map GC(m) → Q, it follows that this map must be
an isomorphism. This proves (vi).

To see (vii) and (viii), it suffices to note that, since C(Xc) contains P(Xc) as well
as C(Yc) whenever X ⊆ Y (because then Yc ⊆ Xc), any relation in GP(X) is also
a relation in GC(X) and GP(Y).

Finally, to see (ix ), note that the first tensor product map is well-defined (in
both variables) because of (vi) and by definition of Grothendieck spaces. (For the
second variable, use (viii) together with the fact that (Xc)c ⊇ X .) To see that the
second tensor product map is well-defined, we restrict attention to the first variable;
by symmetry (and again using (viii) together with the fact that (Xc)

c
⊇ X), the

argument for the second variable is identical. So fix Y ∈ P(Xc) and suppose that

X, X̃ ∈ P(X) are such that [X ]P(X) = [X̃]P(X). Then χR(X ⊗R Z) = χR(X̃ ⊗R Z)

for all complexes Z ∈ GC(Xc), and hence χR(X ⊗R Y ⊗R Z) = χR(X̃ ⊗R Y ⊗R Z)
for all Z ∈ GC({m}

c
) = GC(Spec R) since, in this case, Y ⊗R Z ∈ GC(Xc) Thus,

[X ⊗R Y ]P(m) = [X̃ ⊗R Y ]P(m). �

Using (v) to write an element α ∈ GC(X) as a linear combination of elements
[R/q]C(X) will be called taking a filtration of α. The Q-linear maps in (vii) and
(viii) will be denoted inclusion homomorphisms although they in general are not
injective. By abuse of notation, the image under an inclusion homomorphism of an
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element α is likewise denoted by α. It should be apparent from the context which
Grothendieck space α is considered an element of.

By a slight abuse of notation, we denote the map induced by the Euler charac-
teristic by χR. By more abuse of notation, we denote both of the tensor product
maps by −⊗−, so that, for example, if α ∈ GP(X) can be written as α = r[X ]P(X)

for X ∈ P(X) and r ∈ Q, and β ∈ GC(Xc) can be written as β = s[Y ]C(Xc) for
Y ∈ C(Xc) and s ∈ Q, then α⊗β ∈ GC(m) can be written as α⊗β = rs[X⊗RY ]C(m).

The tensor product also allows us to change rings:

Proposition 3. Suppose that S is another commutative, Noetherian, local ring,
and that R → S is a local ring homomorphism such that S is finitely generated as
an R-module. Let X ⊆ Spec R and Y ⊆ Spec S. Suppose first that the following
conditions are satisfied.

(i) If X ∈ P
R(X) then X ⊗R S ∈ P

S(Y).

(ii) If Y ∈ C
S(Yc) then Y ∈ C

R(Xc).

Then the extension of scalars tensor product −⊗R S induces a Q-linear map

GP
R(X) → GP

S(Y) given by [X ]R
P(X) 7→ [X ⊗R S]S

P(Y).

Suppose instead that the following conditions are satisfied

(iii) If Y ∈ C
S(Y) then Y ∈ C

R(X).

(iv) If X ∈ P
R(Xc) then X ⊗R S ∈ P

S(Yc).

Then the restriction of scalars induces a Q-linear map

GC
S(Y) → GC

R(X) given by [Y ]S
C(Y) 7→ [Y ]R

C(X).

Proof. Since the homomorphism R → S is local and finite, the residue field of S
is a k-vector space of some finite dimension d, and for the Euler characteristic, we
have χR(−) = dχS(−) under the restriction of scalars.

Suppose first that conditions (i) and (ii) hold. Condition (i) ensures that the
extension of scalars functor maps into the right category. To see that the functor

induces a well-defined Q-linear map on Grothendieck spaces, assume that X, X̃ ∈

P
R(X) are such that [X ]P(X) = [X̃ ]P(X) in GP

R(X). Then χR(X⊗R Z) = χR(X̃⊗R

Z) for all Z ∈ C
R(Xc), and hence

χS((X ⊗R S)⊗S Y ) = d−1χR(X ⊗R Y ) = d−1χR(X̃ ⊗R Y ) = χS((X̃ ⊗R S)⊗S Y )

for all Y ∈ C
S(Yc), since such a Y as an R-complex lies in C

R(Xc) by condition (ii).

Thus, [X⊗RS]P(Y) = [X̃⊗RS]P(Y) in GP
S(Y), and the induced map is well-defined.

Suppose instead that conditions (iii) and (iv) hold. Condition (iii) ensures that
the restriction of scalars functor maps into the right category. To see that the
functor induces a well-defined Q-linear map on Grothendieck spaces, assume that

Y, Ỹ ∈ C
S(Y) are such that [Y ]C(Y) = [Ỹ ]C(Y) in GC

S(Y). Then χS(Z ⊗S Y ) =

χS(Z ⊗S Ỹ ) for all Z ∈ P
S(Yc), and hence

χR(X ⊗R Y ) = dχS((X ⊗R S)⊗S Y ) = dχS((X ⊗R S)⊗S Ỹ ) = χR(X ⊗R Ỹ )

for all X ∈ P
R(Xc), since, for such an X , X ⊗R S lies in P

S(Yc) by condition (iv).

Thus, [Y ]C(X) = [Ỹ ]C(X) in GC
R(X), and the induced map is well-defined. �

The map induced by − ⊗R S shall, by abuse of notation, also be denoted by
−⊗R S. An example of a change of rings where the conditions in Proposition 3 are
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satisfied is the quotient map R → R/I for an ideal I of R and the subsets X = {m}
and Y = {m/I}.

Suppose that M and N are finitely generated modules with pdM < ∞ and
ℓ(M ⊗R N) < ∞, such that the intersection multiplicity of M and N is defined.
Suppose further that dimM +dimN ≤ dimR and set X = SuppM . Let X ∈ P(X)
be a projective resolution of M . Then we must have Supp N ⊆ Xc and thereby
N ∈ C(Xc), and hence

χR(M, N) = χR(X ⊗R N) = χR([X ⊗R N ]C(m)) = χR([X ]P(X) ⊗ [N ]C(Xc)),

which is the image in Q of [X ]P(X) ⊗ [N ]C(Xc) under the isomorphism GC(m) ∼= Q

induced by the Euler characteristic. Thus, the intersection multiplicity generalizes
to the Q-linear map GP(X)⊗GC(Xc) → GC(m) induced by the tensor product.

Definition 4. Given X ⊆ Spec R and an element α in GP(X) (or GC(X), respec-
tively), we define the dimension of α to be the number dimα defined as the infimum
over n such that α can be written in GP(X) (or GC(X), respectively) as a Q-linear
combination of complexes of dimension less than or equal to n. In particular,
dimα = −∞ if and only if α = 0.

So, for example, for an element α ∈ GP(X) of dimension t, we can write α as
a sum α =

∑
i ri[X

i]P(X) for rational numbers ri and complexes X i ∈ P(X) of
dimension less than or equal to t, and t is the smallest number such that this is
possible.

Definition 5. Suppose that X ⊆ Spec R and let α ∈ GP(X). We say that α
satisfies vanishing if, for all β in GC(Xc), α⊗β = 0 whenever dimβ < codimX. We
define the vanishing co-dimension of α, denoted by vcodimα, to be largest integer
t such that α satisfies vanishing as an element of GP(Y) (that is, after applying the
inclusion homomorphism GP(X) → GP(Y)) for all Y ⊇ X with codimY ≤ t. We
define the vanishing dimension of α to be the integer vdimα = codimX−vcodimα.
If α = 0 we set vcodimα = ∞ and vdimα = −∞.

To “satisfy vanishing” for an element α generalizes the traditional way of sat-
isfying vanishing for a module of finite projective dimension: if M is finitely gen-
erated and of finite projective dimension, and X is a projective resolution of M ,
then the element [X ]P(X) in GP(X), where X = Supp M , satisfies vanishing exactly

when χR(M, N) = 0 for all finitely generated modules N with ℓ(M ⊗R N) < ∞
and dimM + dimN < dimR (we need only consider modules because of Proposi-
tion 2(v)).

The vanishing co-dimension of an element measures the “co-dimension level”
that we need to move that element to, using an inclusion homomorphism, in order
to be sure that vanishing will hold. The vanishing dimension measures, relatively,
how many co-dimension levels we have to move down from codim X in order for
vanishing to hold. In this sense, the vanishing dimension measures how far an
element is from satisfying vanishing. In particular, the vanishing dimension of a
non-trivial element is zero if and only if the element satisfies vanishing.

Example 6. A result by Foxby [3] shows that vanishing holds for all α ∈ GP(X)
whenever codim X ≤ 2. In particular, for all α ∈ GP(X),

vcodimα ≥ min(2, codimX),

and hence vdimα ≤ max(0, codimX− 2).
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Remark 7. It is not hard to see that an element α ∈ GP(X) satisfies vanishing
if and only if, for all Y ⊇ X with codimY < codimX, the image in GP(Y) of
α under the inclusion map GP(X) → GP(Y) vanishes. For if β ∈ GC(Xc) has
dimβ < codimX, β is generated by complexes with supports of dimension strictly
less than codim X. Letting Z denote the union of these supports and setting Y = Zc,
we must have X ⊆ Y and codimY < codimX. Since Z ⊆ (Zc)

c
= Yc, β is the

image of an element in GC(Yc), and to see whether α⊗ β vanishes for α ∈ GP(X),
it therefore suffices to replace α by its image in GP(Y) under the inclusion map.

Suppose that X ⊆ Y, let α ∈ GP(X) and denote by ᾱ the image in GP(Y) of α
under the inclusion map. Then vcodim ᾱ ≥ vcodimα, and hence

vdim ᾱ ≤ vdimα− (codimX− codimY).

It is always possible to find a Y ⊇ X with any given co-dimension larger than
vcodimα and smaller than codimX such that the above is an equality.

We now introduce a topology on the Grothendieck spaces. The topology will be
induced by a family of semi-norms.

Definition 8. Suppose that X ⊆ Spec R. For each β ∈ GC(Xc), we define a map

‖ − ‖β = |χR(−⊗ β)| : GP(X) → Q,

and for each α ∈ GP(Xc), we define a map

‖ − ‖α = |χR(α⊗−)| : GC(X) → Q.

The fact that the maps ‖− ‖β and ‖ − ‖α are well-defined follows from the defi-
nition of GP(X) and GC(X). The abusive notation should not cause any confusion:
if ‖γ‖δ is defined, then it is equal to χR(γ ⊗ δ) no matter what spaces γ and δ lie
in. If γ is represented by a complex X and δ is represented by a complex Y , we
shall occasionally also denote ‖γ‖δ by ‖X‖δ, ‖γ‖Y or ‖X‖Y . Note that we always
have

‖γ‖δ = ‖δ‖γ = ‖R‖γ⊗δ = ‖γ ⊗ δ‖R.

Proposition 9. Given X ⊆ Spec R and β ∈ GC(Xc), the map ‖ − ‖β satisfies, for
all α, α′ ∈ GP(X) and r ∈ Q,

(i) ‖α‖β ≥ 0;
(ii) ‖rα‖β = |r|‖α‖β;
(iii) ‖α + α′‖β ≤ ‖α‖β + ‖α′‖β; and
(iv) α = 0 in GP(X) if and only if ‖α‖β = 0 for all β ∈ GC(Xc).

In particular, ‖−‖β is a semi-norm on GP(X). Similarly, given α ∈ GP(Xc), ‖−‖α

satisfies, for all β, β′ ∈ GC(X) and r ∈ Q,

(i’) ‖β‖α ≥ 0;
(ii’) ‖rβ‖α = |r|‖β‖α;
(iii’) ‖β + β′‖α ≤ ‖β‖α + ‖β′‖α; and
(iv’) β = 0 in GC(X) if and only if ‖β‖α = 0 for all α ∈ GP(Xc).

In particular, ‖ − ‖α is a semi-norm on GC(X).

Proof. Properties (i)–(iii) and (i’)–(iii’) follow immediately from the correspond-
ing properties for numerical value and from the linearity of the map induced by the
Euler characteristic. Properties (iv) and (iv’) follow from the definition of GP(X)
and GC(X). �
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Note that, for elements γ and γ′ in either GP(X) or GC(X) and r ∈ Q, we also
have

‖ − ‖rγ = |r|‖ − ‖γ and ‖ − ‖γ+γ′ ≤ ‖ − ‖γ + ‖ − ‖γ′ .

We equip GP(X) (and GC(X), respectively) with the initial topology of the fam-
ily (‖ − ‖β)β∈GC(Xc) (or (‖ − ‖α)α∈GP(Xc), respectively) of semi-norms: that is, the
coarsest topology such that each of the maps ‖−‖β (or ‖−‖α, respectively) is con-
tinuous. With the initial topology, continuity of maps to and from Grothendieck
spaces can be verified by a comparison of semi-norms; in fact, any map from a topo-
logical space to a Grothendieck space is continuous exactly when its composition
with each semi-norm is continuous. Using this fact, it is easy to verify continuity
of addition and scalar multiplication on Grothendieck spaces. We can also readily
verify continuity of the other maps that we have introduced so far:

Proposition 10. Suppose that X ⊆ Spec R. Then the tensor product homomor-
phisms GP(X) ⊗Q GC(Xc) → GC(m) and GP(X) ⊗Q GP(Xc) → GP(m) are con-
tinuous in each variable. Furthermore, if X ⊆ Y ⊆ Spec R, then the inclusion
homomorphisms GP(X) → GC(X), GP(X) → GP(Y) and GC(X) → GC(Y) are
continuous.

Proof. Continuity of the tensor product homomorphisms follows since

‖α⊗ β‖γ = ‖α‖β⊗γ = ‖β‖α⊗γ ,

when α ∈ GP(X), β ∈ GC(Xc) and γ ∈ GP({m}
c
) = GP(Spec R) as well as when

α ∈ GP(X), β ∈ GP(Xc) and γ ∈ GC({m}c) = GC(Spec R). Continuity of the
inclusion homomorphisms is immediate, since they all preserve the semi-norms that
are defined for the co-domain of the inclusion. �

4. Frobenius and vanishing dimension

Notation. Throughout this section, R is assumed to be complete of prime char-
acteristic p, and k is assumed to be a perfect field.

Note that, although the assumptions that R be complete and k be perfect may
seem restrictive, they really are not when it comes to dealing with intersection
multiplicities; for more details, see Dutta [1, p. 425].

The Frobenius ring homomorphism f : R → R is given by f(r) = rp; the compo-
sition of e copies of f is the ring homomorphism fe : R → R given by f(r) = rpe

.
We denote by f e

R the bi-R-algebra R having the structure of an R-algebra from the
left by fe and from the right by the identity map: that is, if x ∈ f e

R and r, s ∈ R,
then r · x · s = rpe

xs.

Definition 11. Two functors, f e

(−) and F e
R, are defined on the category of R-

modules by
f e

(−) = f e

R⊗R − and F e
R(−) = −⊗R

f e

R,

where, for a module M , f e

M is viewed through its left structure, whereas F e
R(M) is

viewed through its right structure. The functor FR is called the Frobenius functor.

We now note a few facts about the functors f e

(−) and F e
R.

Proposition 12. The following hold.
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(i) For a module N , f e

N is the module N with R-module structure defined
by restriction of scalars via fe: that is, if n ∈ f e

N and r ∈ R, then
r · n = rpe

n.
(ii) For a homomorphism ϕ : N → N ′, f e

ϕ = ϕ.
(iii) The functor f e

(−) is exact.
(iv) f e

(−) and F e
R are the compositions of e copies of f(−) and FR, respectively.

(v) If X is a complex of finitely generated projective modules, then F e
R(X) is

a complex with the same modules as X and with matrices representing the
differentials given by raising the entries in the corresponding matrices for
X to the peth power.

(vi) If X and Y are bounded complexes of finitely generated projective modules,
then F e

R(X ⊗R Y ) ∼= F e
R(X)⊗R F e

R(Y ).
(vii) The functor F e

R preserves exactness of bounded complexes of finitely gen-
erated projective modules.

(viii) If S is another commutative, Noetherian, local ring of characteristic p,
and R → S is a ring homomorphism, then, for any bounded complex X
of finitely generated projective modules, F e

R(X) ⊗R S ∼= F e
S(X ⊗R S); in

particular, for a prime ideal p, F e
R(X)p

∼= F e
Rp

(Xp).

Proof. All properties are readily verified. For more details, see, for example, Peskine
and Szpiro [9] or Roberts [12]. �

The fact that k is perfect implies that f e

R is finitely generated as a left R-module,
and hence f e

(−) defines a functor C(X) → C(X) for every X ⊆ Spec R. Since f e

(−)
is exact, for any complex Y ∈ C(m),

χR(f
e

Y ) = χR(Y ) ℓ(f
e

k) = χR(Y ),

where the last equation follows since k ∼= f e

k. Now, suppose that X ∈ P(X) and
Y ∈ C(Xc). It is not hard to see that f e

(F e
R(X)⊗R Y ) ∼= X ⊗R

f e

Y , and it follows
that

χR(F e
R(X)⊗R Y ) = χR(X ⊗R

f e

Y ).

It is an immediate consequence of (v), (vii) and (viii) that F e
R defines a functor

P(X) → P(X) for every X ⊆ Spec R. If [X ]P(X) = [X̃]P(X) in GP(X) for complexes

X, X̃ ∈ P(X), then χR(X ⊗R Y ) = χR(X̃ ⊗R Y ) for all Y ∈ C(Xc), and hence

χR(F e
R(X)⊗R Y ) = χR(X ⊗R

f e

Y ) = χR(X̃ ⊗R
f e

Y ) = χR(F e
R(X̃)⊗R Y )

for all Y ∈ C(Xc), and we conclude that [FR(X)]P(X) = [FR(X̃)]P(X). Thus, F e
R

induces an endomorphism on GP(X) given by [X ]P(X) 7→ [FR(X)]P(X).

Definition 13. Given X ⊆ Spec R and e ∈ N0, the endomorphism on GP(X)
induced by F e

R shall be denoted by F e
X. Further, we define

Φe
X =

1

pe codim X
F e

X.

For X = {m} we shall simply write F e
m and Φe

m.

Lemma 14. Suppose that X ⊆ Spec R and let β ∈ GC(Xc). There exist elements
γ1, . . . , γt ∈ GC(Xc) with dim γi ≤ dim β for all i such that

1

pe dim β
‖F e

X(−)‖β ≤
∑

i

‖ − ‖γi
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for all e ∈ N0.

Proof. The proof is by induction on m = dim β. Let α ∈ GP(X). By taking
a filtration of β with elements of dimension less than or equal to dimβ, we can
assume that β = [R/q]C(Xc) for a prime ideal q ∈ Xc with dim R/q = dimβ = m.
Further, we can assume that α = [X ]P(X) for some minimal complex X ∈ P(X). The
case m = 0 is now easy since, in this case, q = m so that β = [k]C(m), and minimality
of X means that FR(X)⊗R k = Fk(X ⊗R k) = X ⊗R k, so that ‖F e

X(α)‖k = ‖α‖k

for all e ∈ N0.
Now, suppose that m > 0 and that the statement holds for smaller values of m.

The ring R/q is a complete domain of dimension m with perfect residue field, so
the torsion-free rank of f(R/q) over R/q is pm (see, for example, Dutta [1, p. 426]).
Thus, we have short exact sequence

0 → (R/q)pm

→ f(R/q) → Q → 0,

where Q is a finitely generated module with dimQ < m. By tensoring with F j
R(X),

we get the short exact sequence

0 → (F j
R(X)⊗R R/q)pm

→ F j+1
R (X)⊗R R/q → F j

R(X)⊗R Q → 0.

It follows that

‖
1

p(j+1)m
F j+1

X (X)−
1

pjm
F j

X(X)‖R/q = ‖
1

p(j+1)m
F j

X(X)‖Q.

Since dimQ < m, the induction hypothesis implies that there exist elements
γ′1, . . . , γ

′
t−1 ∈ GC(Xc) with dim γ′i ≤ dimQ < dimR/q for all i, such that this

is bounded by p−j
∑

i ‖X‖γ′

i
. Thus,

‖
1

pem
F e

X(X)‖R/q ≤ ‖X‖R/q +

e−1∑

j=0

‖
1

p(j+1)m
F j+1

X (X)−
1

pjm
F j

X(X)‖R/q

≤ ‖X‖R/q + (1 +
1

p
+ · · ·+

1

pe−1
)
∑

i

‖X‖γ′

i

and the result now follows by setting γi = (1 − 1/p)−1γ′i for each i = 1, . . . , t − 1
and γt = [R/q]C(Xc). �

The proof of Lemma 14 contains another result which will become useful later
and which we therefore state separately as Lemma 15 below.

Lemma 15. Suppose that X ⊆ Spec R and let β ∈ GC(Xc). Then there exist
elements γ1, . . . , γt ∈ GC(Xc) with dim γi < dimβ for all i such that

‖
1

p(e+1) dim β
F e+1

X (−)−
1

pe dim β
F e

X(−)‖β ≤
1

pe

∑

i

‖ − ‖γi

for all e ∈ N0. �

Proposition 16. For all X ⊆ Spec R, the endomorphism ΦX on GP(X) is contin-
uous.

Proof. This follows immediately from Lemma 14. �

Proposition 17. Suppose that X ⊆ Spec R and let α ∈ GP(X). Then α satisfies
vanishing if and only if α = ΦX(α).
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Proof. If α satisfies vanishing, it follows immediately from Lemma 14 and 15 that,
for β ∈ GC(Xc), ‖α‖β = ‖ΦX(α)‖β = 0 whenever dimβ < codimX and ‖α −
ΦX(α)‖β = 0 whenever dim β = codimX, so that, in any case, ‖α− ΦX(α)‖β = 0,
and hence α = ΦX(α). Conversely, if α = ΦX(α), it follows immediately from
Lemma 14 that, for all β ∈ GC(Xc) with dimβ < codimX, ‖α‖β is bounded by a
sequence converging to 0, so that ‖α‖β = 0 and α satisfies vanishing. �

Definition 18. Suppose that X ⊆ Spec R and let α ∈ GP(X). For i ∈ N0 we define

pi∞Φ∞X (α) = lim
e→∞

pieΦe
X(α)

whenever this converges; in particular, for i = 0, we define Φ∞X (α) = lime→∞ Φe(α).

We are now ready to prove the main theorem of this paper.

Theorem 19. Suppose that X ⊆ Spec R, let α ∈ GP(X) and suppose that u is a
non-negative integer with u ≥ vdimα. Then

(puΦX − id) ◦ · · · ◦ (pΦX − id) ◦ (ΦX − id)(α) = 0. (1)

Further, there exists a decomposition α = α(0)+· · ·+α(u) in which each α(i) is either
zero or an eigenvector for ΦX with eigenvalue 1/pi. The elements α(0), . . . , α(u) can
be recursively defined by

α(0) = Φ∞X (α) and α(i) = pi∞Φ∞X (α − (α(0) + · · ·+ α(i−1))),

and there is a formula




α(0)

...

α(u)


 =




1 1 · · · 1
1 1/p · · · 1/pu

...
...

. . .
...

1 1/pu · · · 1/pu2




−1


α
ΦX(α)

...
Φu

X(α)


 . (2)

Proof. We prove (1) by induction on u. The case u = 0 is trivial since Proposition 17
in this situation yields that (ΦX − id)(α) = 0. Now, suppose that u > 0 and that
the formula holds for smaller values of u. By Proposition 17 and commutativity of
the involved maps, equation (1) holds if and only if vanishing holds for the element

β = (puΦX − id) ◦ · · · ◦ (pΦX − id)(α).

Now, satisfying vanishing is equivalent to being in the kernel of any inclusion ho-
momorphism GP(X) → GP(Y), where Y ⊇ X has codimY = codimX − 1. But
since, in GP(Y) for such a Y, ΦX(α) = p−1ΦY(ᾱ), where ᾱ denotes the image of α
in GP(Y), we get that, in GP(Y),

β = (pu−1ΦY − id) ◦ · · · ◦ (pΦY − id) ◦ (ΦY − id)(ᾱ) = 0,

where the last equation follows by induction, since vdim ᾱ ≤ u − 1 by Remark 7.
This proves (1).

By applying Φe−u
X to (1), we get a recursive formula to calculate Φe+1

X (α) from

Φe
X(α), . . . , Φe−u

X (α). The characteristic polynomial for the recursion is

(pux− 1) · · · (px− 1)(x− 1),

which has u + 1 distinct roots, 1, 1/p, . . . , 1/pu. Thus, there is a general formula

Φe
X(α) = α(0) +

1

pe
α(1) + · · ·+

1

pue
α(u) (3)



48 ESBEN BISTRUP HALVORSEN

for suitable α(0), . . . , α(u) ∈ GP(X), where each α(i) satisfies

Φe
X(α(i)) =

1

pei
α(i) (4)

and hence is an eigenvector for ΦX with eigenvalue 1/pi.
We obtain the recursive definition of α(i) by induction on i. The case i = 0

follows immediately from (3) by letting e go to infinity. Suppose now that i > 0
and that the result holds for smaller values of i. From (4) we then get

pieΦe(α− (α(0) + · · ·+ α(i−1))) = pieΦe(α(i) + · · ·+ α(u))

= α(i) +
1

pe
α(i+1) + · · ·+

1

pe(u−i)
α(u),

and letting e go to infinity, we obtain the desired formula.
From (3) we know that α(0), . . . , α(u) solve the following system of equations

with rational coefficients.

α(0) + α(1) + · · · + α(u) = α

α(0) +
1

p
α(1) + · · · +

1

pu
α(u) = ΦX(α)

...
...

. . .
...

...

α(0) +
1

pu
α(1) + · · · +

1

pu2
α(u) = Φu

X(α)

Formula (2) now follows. (The matrix is the Vandermonde matrix of the elements
1, 1/p, . . . , 1/pu with determinant

∏
0≤i<j≤u(1/pj − 1/pi) 6= 0.) �

Remark 20. Since GP(X) splits up into a direct sum of eigenspaces of ΦX, it is
clear that the decomposition of an element into eigenvectors for ΦX is unique. We
also clearly have that

(rα)(i) = rα(i) and (α + β)(i) = α(i) + β(i)

for all i ∈ N0, r ∈ Q and α, β ∈ GP(X). We obviously have (Φe
X(α))(i) = p−ieα(i).

It is also easy to see that, for α ∈ GP(X) and β ∈ GP(Xc),

(α ⊗ β)(t) =
∑

i+j=t

α(i) ⊗ β(j)

in GP(m). In particular, (α ⊗ β)(0) = α(0) ⊗ β(0).
Suppose now that X ⊆ Y ⊆ Spec R and let s = codimX − codimY. Let ᾱ

denote the image of α in GP(Y) under the inclusion homomorphism GP(X) →
GP(Y). Since the image of ΦX(α) in GP(Y) is equal to p−sΦY(ᾱ), it follows from

Theorem 19 that the image of α(i) in GP(Y) is ᾱ(i−s) whenever i ≥ s and zero
whenever i < s.

Remark 21. From Theorem 19 we see that the general formula for Φe
X(α) is

Φe
X(α) =

(
1 1/pe · · · 1/peu

)




1 1 · · · 1
1 1/p · · · 1/pu

...
...

. . .
...

1 1/pu · · · 1/pu2




−1


α
ΦX(α)

...
Φu

X(α)



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and, in particular, that

Φ∞X (α) =
(
1 0 · · · 0

)




1 1 · · · 1
1 1/p · · · 1/pu

...
...

. . .
...

1 1/pu · · · 1/pu2




−1


α
ΦX(α)

...
Φu

X(α)


 .

The Dutta multiplicity of an element α and arbitrary elements from GC(Xc) is
given by application of the function

χR
∞(α,−) = lim

e→∞
χR(Φe

X(α) ⊗−) = χR(Φ∞X (α) ⊗−).

Thus, the Dutta multiplicity is a rational number and we need not find a limit
to calculate it. This is valuable knowledge, for instance, when using a computer
to calculate Dutta multiplicity. Translating this into the usual setup with finitely
generated modules M and N with pdM < ∞, ℓ(M⊗RN) < ∞ and t = codimM ≥
dimN , we get the general formula

χR
∞(M, N) =

(
1 0 · · · 0

)




1 1 · · · 1
1 1/p · · · 1/pu

...
...

. . .
...

1 1/pu · · · 1/pu2




−1


χR(M, N)
p−tχR(FR(M), N)

...
p−utχR(Fu

R(M), N)




=
(
1 0 · · · 0

)




1 1 · · · 1
pt pt−1 · · · pt−u

...
...

. . .
...

put pu(t−1) · · · pu(t−u)




−1


χR(M, N)
χR(FR(M), N)

...
χR(Fu

R(M), N)


 .

For example, the case vdim α ≤ 1 yields

Φ∞X (α) =
1

p− 1
(pΦX(α) − α) ,

so that

χR
∞(α,−) =

1

p− 1

(
pχR(ΦX(α)⊗−)− χR(α⊗−)

)
.

In other words, for M and N as above,

χR
∞(M, N) =

1

p− 1

(
1

pt−1
χR(FR(M), N)− χR(M, N)

)
.

In the case vdim α ≤ 2, we get

Φ∞X (α) =
1

p3 − p2 − p + 1

(
p3Φ2

X(α)− p(p + 1)ΦX(α) + α
)
,

so that

χR
∞(α,−) =

1

p3 − p2 − p + 1

(
p3χR(Φ2

X(α) ⊗−)

− p(p + 1)χR(ΦX(α)⊗−) + χR(α⊗−)
)
.
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In other words, for M and N as above,

χR
∞(M, N) =

1

p3 − p2 − p + 1

( 1

p2t−3
χR(F 2

R(M), N)

−
p + 1

pt−1
χR(FR(M), N) + χR(M, N)

)
.

The fact that Dutta multiplicity satisfies vanishing is also immediate:

Corollary 22. Suppose that X ⊆ Spec R and let α ∈ GP(X). Then Φ∞X (α) satisfies
vanishing.

Proof. By continuity, ΦX(Φ∞X (α)) = Φ∞X (α), and Proposition 17 yields that Φ∞X (α)
satisfies vanishing. �

With Theorem 19 in hand, we can now in multiple ways describe what it means
to have a certain vanishing dimension. We first look at the vanishing dimension
zero case.

Proposition 23. Suppose that X ⊆ Spec R and let α ∈ GP(X). The following are
equivalent.

(i) α satisfies vanishing.
(ii) α⊗ β = 0 for all β ∈ GC(Xc) with dimβ < codimX.
(iii) α = α(0).
(iv) α = ΦX(α).
(v) α = Φe

X(α) for some e ∈ N.
(vi) α = Φ∞X (α).
(vii) α = 0 as an element of GP(Y) for any Y ⊇ X with codimY < codimX.
(viii) α = 0 as an element of GP(Y) for any Y ⊇ X with codimY = codimX−1.
(ix ) vdimα ≤ 0.

Proof. (i) is equivalent to (ii) by definition; (i) is equivalent to (iv) by Proposi-
tion 17; (iv) is equivalent to (iii) and (vi) by Theorem 19; (iv) implies (v) im-
plies (vi), so these must all be equivalent; (i) is equivalent to (vii) and (viii) by
Remark 7; and (i) is equivalent to (ix ) by definition of vanishing dimension. �

We can also establish equivalent conditions in the general case for having a
certain vanishing dimension:

Proposition 24. Suppose that X ⊆ Spec R, let α ∈ GP(X) and let u ∈ N0. The
following are equivalent.

(i) α⊗ β = 0 for all β ∈ GC(Xc) with dimβ < codimX− u.
(ii) α = α(0) + · · ·+ α(u).
(iii) (puΦX − id) ◦ · · · ◦ (pΦX − id) ◦ (ΦX − id)(α) = 0.
(iv) α = 0 as an element of GP(Y) for any Y ⊇ X with codimY < codimX−u.
(v) α = 0 as an element of GP(Y) for any Y ⊇ X with codimY = codimX−

u− 1.
(vi) vdimα ≤ u.

Proof. The proof of Theorem 19 shows how (vi) implies (iii) which again im-
plies (ii); (vi) is equivalent to (i) by definition of vanishing dimension; (i) is clearly
equivalent to (iv) and (v); and (ii) implies (v) by Remark 20. �
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Having vanishing dimension exactly equal to u > 0 of course means that the
above conditions are satisfied and that the same conditions fail to hold if u is
replaced by u − 1. In particular, if vdimα = u, then α(u) 6= 0 and there exists a
β ∈ GC(Xc) with dimβ = codimX−u such that α⊗β = α(u)⊗β 6= 0. Consequently,
if the term α(i) is non-zero, then it has vanishing dimension i and can be regarded
as “the part of α that allows a counterexample to vanishing where the difference of
co-dimension and dimension is equal to i”.

We conclude this section by examining how the decomposition into eigenvectors
behaves under extension of scalars.

Proposition 25. Suppose that S is a another commutative, complete, Noetherian
local ring of characteristic p and with perfect residue field and that R → S is a
local ring homomorphism, such that S is finitely generated as an R-module. Let
X ⊆ Spec R and Y ⊆ Spec S be such that conditions (i) and (ii) of Proposition 3

are satisfied, so that the extension of scalars map − ⊗R S : GP
R(X) → GP

S(Y)
is defined. Let α ∈ GP(X) and set t = codimX − codimY. Then α(i) ⊗R S =
(α⊗R S)(i−t).

Proof. Within GP
S(Y) we have that

ΦY(α(i) ⊗R S) =
1

pcodimY
FY(α(i) ⊗R S)

=
1

pcodimY
FX(α(i))⊗R S

=
1

p−t
ΦX(α(i))⊗R S

=
1

pi−t
α(i) ⊗R S.

This proves that α(i) ⊗R S in GP
S(Y) is an eigenvector for ΦY with eigenvalue

1/pi−t, and since α =
∑

i α(i), it follows that α ⊗R S =
∑

i α(i) ⊗R S, and hence

that α(i) ⊗R S = (α⊗R S)(i−t). �

5. Numerical vanishing

Notation. Throughout this section, we continue to assume that R is complete of
prime characteristic p > 0, and that k is a perfect field.

Although the relation α = Φ∞X (α) might not hold in GP(X), there is still a chance
that it holds after an application of the inclusion homomorphism GP(X) → GC(X),
and this situation has interesting consequences as well.

Definition 26. Suppose that X ⊆ Spec R and let α ∈ GP(X). We shall say
that α satisfies numerical vanishing if α = Φ∞X (α) in GC(X). We shall say that
α satisfies weak vanishing if, for all β ∈ GP(Xc), α ⊗ β = 0 in GC(m) whenever
dimβ < codimX.

The reason for the word “numerical” is that numerical vanishing can be verified
“numerically” for elements of GP(m) (see Remark 28), and that numerical van-
ishing of all elements of all Grothendieck groups can be verified in this way (see
Remark 32).

The concept of “weak vanishing” corresponds to a weaker version of Serre’s
vanishing conjecture in which both modules are assumed to have finite projective
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dimension—in fact, weak vanishing is a little stronger: if M is finitely generated
and of finite projective dimension, and X is a projective resolution of M , then the
element [X ]P(X) in GP(X), where X = SuppM , satisfies weak vanishing only if

χR(M, N) = 0 for all finitely generated modules N of finite projective dimension
with ℓ(M ⊗R N) < ∞ and dimM + dimN < dimR. (To get an “if and only if”
statement, we would have to replace N by an arbitrary bounded complex of finitely
generated projective modules.)

Proposition 27. Suppose that X ⊆ Spec R and let α ∈ GP(X). For the following
conditions, each condition implies the next.

(i) α satisfies vanishing.
(ii) α satisfies numerical vanishing
(iii) α satisfies weak vanishing

Proof. It is clear that vanishing implies numerical vanishing. Suppose that α satis-
fies numerical vanishing and let β ∈ GP(Xc) be such that dimβ < codimX. When
calculating α ⊗ β in GC(m), we are allowed to consider α an element of GC(X).
But then α⊗β = Φ∞X (α)⊗β = 0, since Φ∞X (α) satisfies vanishing, and we conclude
that α satisfies weak vanishing. �

As Example 33 will show, the implications in Proposition 27 are strict.

Remark 28. If X is a complex in P(m), then [X ]P(m) satisfies numerical vanishing
if and only if

lim
e→∞

1

pe dim R
χR(F e

R(X)) = χR(X).

In particular, if X is a projective resolution of a module M , then [X ]P(m) satisfies
numerical vanishing if and only if

lim
e→∞

1

pe dim R
ℓ(F e

R(M)) = ℓ(M); (5)

this follows easily from the fact that the Euler characteristic is an isomorphism on
GC(m) together with the result by Peskine and Szpiro [9, Theorem 1.7] that F e

R(X)
is a projective resolution of F e

R(M) for all e ∈ N0. As we shall see in Proposition 29
below, for (5) to hold, it suffices (but need not be necessary) to verify that the
equation

ℓ(F e
R(M)) = pe dim R ℓ(M)

holds for vdim([X ]P(m)) distinct values of e > 0.

Proposition 29. Suppose that X ⊆ Spec R and let α ∈ GP(X). A sufficient
condition for α to satisfy numerical vanishing is that α = Φe

X(α) holds in GC(X)
for vdim(α) distinct values of e > 0.

Proof. Let u = vdim(α). The difference α−Φe
X(α) in GC(X) is obtained by inserting

x = 1/pe in the polynomial

(α(0) − α) + xα(1) + · · ·+ xuα(u).

The polynomial always has the root x = 1. If there are u additional roots, it must be
the zero-polynomial, so that α = Φe

X(α) for all e ∈ N0, and hence α = Φ∞X (α). �

Definition 30. We shall say that R satisfies vanishing (or numerical vanishing
or weak vanishing, respectively) if all elements of all Grothendieck spaces over R
satisfy vanishing (or numerical vanishing or weak vanishing, respectively).
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A nice property of numerical vanishing, and one of the reasons that we have
even bothered to introduce the concept, is that, in order to verify that numerical
vanishing holds for all elements of all Grothendieck spaces, it suffices to restrict
attention to the elements in GP(m):

Proposition 31. The following are equivalent.

(i) R satisfies numerical vanishing.
(ii) α = ΦX(α) in GC(X) for all X ⊆ Spec R and α ∈ GP(X).
(iii) α = Φm(α) in GC(m) for all α ∈ GP(m).
(iv) α = Φ∞X (α) in GC(X) for all X ⊆ Spec R and α ∈ GP(X).
(v) α = Φ∞m (α) in GC(m) for all α ∈ GP(m).

Proof. By definition, (i) is equivalent to (iv). It is clear that (ii) implies (iii) and
that (iv) implies (v). It is also clear that (ii) implies (iv) and that (iii) implies
(v). Thus, it only remains to prove that (v) implies (ii). So assume (v) and let
X ⊆ Spec R and α ∈ GP(X). To conclude that α − ΦX(α) vanishes in GC(X), we
simply note that, for arbitrary β ∈ GP(Xc),

‖α− ΦX(α)‖β = ‖(α− ΦX(α)) ⊗ β‖R

= ‖
(
(α− ΦX(α)) ⊗ β

)(0)
‖R (by the assumption)

= ‖(α− ΦX(α))(0) ⊗ β(0)‖R (by Remark 20)

= ‖(α(0) − α(0))⊗ β(0)‖R (also by Remark 20)

= 0. �

Remark 32. Comparing Remark 28 with Proposition 31, we see that, if GP(m) is
generated by acyclic complexes, a necessary and sufficient condition for R to satisfy
numerical vanishing is that

ℓ(FR(M) = pdim R ℓ(M) (6)

for all modules M of finite length and finite projective dimension.

Example 33. If R is Cohen–Macaulay, GP(m) is generated by acyclic complexes:
GP(m) is the tensor product of Q with a quotient of the Grothendieck group of
the category P(m), and this Grothendieck group is generated by acyclic complexes
(see [4]). So if R is Cohen–Macaulay, numerical vanishing holds if and only if
condition (6) holds, and condition (6) implies the weak version of Serre’s vanishing
conjecture.

Dutta [1] has proven that condition (6) holds when R is Gorenstein of dimension
(at most) 3 or a complete intersection (of any dimension). Since the ring in these
situations is Cohen–Macaulay, numerical (and hence weak) vanishing must hold.
The rings in the counterexamples by Dutta, Hochster and McLaughlin [2] and
Miller and Singh [8] are complete intersections (which can easily be transformed
into complete rings of characteristic p with perfect residue fields), and hence they
satisfy numerical vanishing without satisfying vanishing.

Any ring of dimension at most 4 will satisfy weak vanishing; this follows from
Example 6. Roberts [11] has shown the existence of a Cohen–Macaulay ring of
dimension 3 (which can also be transformed into a complete ring of characteristic
p with perfect residue field) such that condition (6) does not hold. Thus, this ring
satisfies weak vanishing without satisfying numerical vanishing.
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Proposition 34. Suppose that X ⊆ Spec R and let α ∈ GP(X). Suppose that I is
an ideal such that R/I has support in Xc and as a ring satisfies numerical vanishing.
Set t = codimX− dimR/I. Then α⊗ [R/I]C(Xc) = α(t) ⊗ [R/I]C(Xc).

Proof. Consider the local ring homomorphism R → R/I and note that the subsets
X ⊆ Spec R and {m/I} ⊆ Spec R/I satisfy conditions (i) and (ii) of Proposition 3
and that the subsets {m/I} ⊆ Spec R/I and {m} ⊆ Spec R satisfy conditions (iii)

and (iv) of Proposition 3. The element α ⊗ [R/I]C(Xc) in GC
R(m) is the image of

α under the composition

GP
R(X)

−⊗RR/I
−→ GP

R/I(m/I) −→ GC
R/I(m/I) −→ GC

R(m),

in which the first homomorphism is the extension of scalars, which is well-defined
by Proposition 3, the second homomorphism is the inclusion homomorphism, and
the third homomorphism is the restriction of scalars, which is well-defined also by
Proposition 3. Since R/I satisfies numerical vanishing, the inclusion homomor-
phism maps α ⊗R R/I to (α ⊗R R/I)(0), and according to Proposition 25, this is
equal to α(t) ⊗R R/I. �

Example 35. We will now investigate the counterexamples by Dutta, Hochster
and McLaughlin [2] and Miller and Singh [8]. We start by recalling the setup in
these examples.

In the counterexample by Dutta, Hochster and McLaughlin, we have the fol-
lowing: the ring R = k[u, v, x, y]m/(ux − vy) of dimension three, where m is the
maximal ideal (u, v, x, y); a module M of finite length and finite projective dimen-
sion; and the module R/q of dimension two, where q is the prime ideal generated
by u and v. We have that χR(M, R/q) = −1.

In the counterexample by Miller and Singh, we have the following: the ring
R = k[u, v, w, x, y, z]m/(ux + vy + wz) of dimension five, where m is the maximal
ideal (u, v, w, x, y, z); a module M of finite length and finite projective dimension;
and the module R/q of dimension three, where q is the prime ideal generated by u,
v and w. We have that χR(M, R/q) = −2.

A result by Levine [7] shows that, in both of these examples, the Grothendieck
space GP(m) is generated by Koszul complexes and one additional element. Thus,
in both examples, the quotient of GP(m) with the subspace of fixed points for Φm

has dimension one. This leaves room for one more eigenspace of dimension one;
the corresponding eigenvalue is 1/pi for some i > 0. We will now find i in the two
examples.

In the counterexample by Dutta, Hochster and McLaughlin, the dimension of
the ring is three, and hence, by Example 6, vdim(α) ≤ 1 for all α ∈ GP(m), so we
must have i = 1 in this case.

In the counterexample by Miller and Singh, we first note that R/q ∼= k[x, y, z] is a
regular ring and hence satisfies numerical vanishing. Letting X denote a projective
resolution of the module M , Proposition 34 now yields that

0 6= [X ]P(m) ⊗ [R/q]C(Spec R) = [X ]
(2)
P(m) ⊗ [R/q]C(Spec R),

and it follows that [X ]
(2)
P(m) 6= 0 and hence that i = 2.

In the characteristic 2 case, Miller and Singh also present a Gorenstein normal
domain R̄ of dimension 5, which is a module-finite extension of R, such that the
element [X̄ ]P(m̄) ∈ GP(m̄), where X̄ = X ⊗R R̄ is a projective resolution of the
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R̄-module M̄ = M ⊗R R̄, does not satisfy numerical vanishing. In fact, their

calculations show that χR̄([X̄ ]
(0)
P(m̄)) = 220 and χR̄([X̄ ]

(2)
P(m̄)) = 2. Miller and Singh

also construct a module N of finite length and finite projective dimension such
that, if Y is a projective resolution of N , then the element [Ȳ ]P(m̄) ∈ GP(m̄), where

Ȳ = Y ⊗R R̄ is a projective resolution of the R̄-module N̄ = N ⊗R R̄, satisfies

that χR̄([Ȳ ]
(0)
P(m̄)) = 220 and χR̄([Ȳ ]

(2)
P(m̄)) = −2. Of course, the fact that [X̄]P(m̄)

and [Ȳ ]P(m̄) do not satisfy numerical vanishing implies, according to Proposition 27,
that they do not satisfy vanishing either.
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DUALITIES AND INTERSECTION MULTIPLICITIES

ANDERS J. FRANKILD AND ESBEN BISTRUP HALVORSEN

Abstract. Let R be a commutative, noetherian, local ring. Topological Q–
vector spaces modelled on full subcategories of the derived category of R are
constructed in order to study intersection multiplicities.

1. Introduction

Let R be a commutative, noetherian, local ring and let X and Y be homolog-
ically bounded complexes over R with finitely generated homology and supports
intersecting at the maximal ideal. When the projective dimension of X or Y is
finite, their intersection multiplicity is defined as

χ(X, Y ) = χ(X ⊗L

R Y ),

where χ(−) denotes the Euler characteristic defined as the alternating sum of the
lengths of the homology modules. When X and Y are modules, this definition
agrees with the intersection multiplicity defined by Serre [22].

The ring R is said to satisfy vanishing when

χ(X, Y ) = 0 provided dim(Supp X) + dim(Supp Y ) < dimR.

If the above holds under the restriction that both complexes have finite projective
dimension, R is said to satisfy weak vanishing.

Assume, in addition, that dim(SuppX) + dim(Supp Y ) 6 dim R and that R has
prime characteristic p. The Dutta multiplicity of X and Y is defined when X has
finite projective dimension as the limit

χ∞(X, Y ) = lim
e→∞

1

pe codim(SuppX)
χ(LF e(X), Y ),

where LF e denotes the e-fold composition of the left-derived Frobenius functor; the
Frobenius functor F was systematically used in the classical work by Peskine and
Szpiro [18]. When X and Y are modules, χ∞(X, Y ) is the usual Dutta multiplicity;
see Dutta [6].

Let X be a specialization-closed subset of Spec R and let D
f
�

(X) denote the full
subcategory of the derived category of R comprising the homologically bounded
complexes with finitely generated homology and support contained in X. The
symbols Pf(X) and If(X) denote the full subcategories of Df

�
(X) comprising the

complexes that are isomorphic to a complex of projective or injective modules,
respectively. The Grothendieck spaces GDf

�
(X), GPf(X) and GIf(X) are topolog-

ical Q–vector spaces modelled on these categories. The first two of these spaces
were introduced in [11] but were there modelled on ordinary non-derived cate-
gories of complexes. The construction of Grothendieck spaces is similar to that of
Grothendieck groups but targeted at the study of intersection multiplicities.

Preliminary version, May 1, 2007.
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The main result of [11] is a diagonalization theorem in prime characteristic p for
the automorphism on GPf(X) induced by the Frobenius functor. A consequence of
this theorem is that every element α ∈ GPf(X) can be decomposed as

α = α(0) + α(1) + · · ·+ α(u),

where the component of degree zero describes the Dutta multiplicity, whereas the
components of higher degree describe the extent to which vanishing fails to hold for
the the intersection multiplicity. This paper presents (see Theorem 6.2) a similar
diagonalization theorem for a functor that is analogous to the Frobenius functor and
has been studied by Herzog [13]. A consequence is that every element β ∈ GI

f(X)
can be decomposed as

β = β(0) + β(1) + · · ·+ β(v),

where the component of degree zero describes an analog of the Dutta multiplicity,
whereas the components of higher degree describe the extent to which vanishing
fails to hold for the Euler form, introduced by Mori and Smith [16]. Another
consequence (see Theorem 6.12) is that R satisfies weak vanishing if only the Eu-
ler characteristic of homologically bounded complexes with finite-length homology
changes by a factor pdim R when the analogous Frobenius functor is applied.

The star duality endofunctor (−)∗ = RHomR(−, R) on Pf(X) induces an auto-
morphism on GPf(X) which in prime characteristic p is given by (see Theorem 7.5)

(−1)codim Xα∗ = α(0) − α(1) + · · ·+ (−1)uα(u).

Even in arbitrary characteristic, R satisfies vanishing if and only if all elements
α ∈ GP

f(X) are self-dual in the sense that α = (−1)codimXα∗; and R satisfies
weak vanishing if all elements α ∈ GPf(X) are numerically self-dual, meaning that
α−(−1)codimXα∗ is in the kernel of the homomorphism GPf(X)→ GDf

�
(X) induced

by the inclusion of the underlying categories (see Theorem 7.4). Rings for which
all elements of the Grothendieck spaces GPf(X) are numerically self-dual include
Gorenstein rings of dimension less than or equal to five (see Proposition 7.11) and
complete intersections (see Proposition 7.7 together with [11, Example 33]).

Notation

Throughout, R denotes a commutative, noetherian, local ring with unique max-
imal ideal m and residue field k = R/m. Unless otherwise stated, modules and
complexes are assumed to be R–modules and R–complexes, respectively.

2. Derived categories and functors

In this section we review notation and results from the theory of derived cate-
gories, and we introduce a new star duality and derived versions of the Frobenius
functor and its natural analog. For details on the derived category and derived
functors, consult [9, 12, 23].

2.1. Derived categories. A complex X is a sequence (Xi)i∈Z of modules equipped
with a differential (∂X

i )i∈Z lowering the homological degree by one. The homology
complex H(X) of X is the complex whose modules are

H(X)i = Hi(X) = Ker∂X
i / Im ∂i+1

and whose differentials are trivial.
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A morphism of complexes σ : X → Y is a family (σi)i∈Z of homomorphisms
commuting with the differentials in X and Y . The morphism of complexes σ is
a quasi-isomorphism if the induced map on homology Hi(σ) : Hi(X) → Hi(Y ) is
an isomorphism in every degree. Two morphisms of complexes σ, ρ : X → Y are
homotopic if there exists a family (si)i∈Z of maps si : Xi → Yi+1 such that

σi − ρi = ∂Y
i+1si + si−1∂

X
i .

Homotopy yields an equivalence relation in the group HomR(X, Y ) of morphisms
of complexes, and the homotopy category K(R) is obtained from the category of
complexes C(R) by declaring

HomK(R)(X, Y ) = HomC(R)(X, Y )/ homotopy.

The collection S of quasi-isomorphisms in the triangulated category K(R) form
a multiplicative system of morphisms. The derived category D(R) is obtained by
(categorically) localizing K(R) with respect to S. Thus, quasi-isomorphisms become
isomorphisms in D(R); in the sequel, they are denoted ≃.

Let n be an integer. The symbol ΣnX denotes the complex X shifted (or trans-
lated or suspended) n degrees to the left; that is, against the direction of the
differential. The modules in ΣnX are given by (ΣnX)i = Xi−n, and the differen-
tials are ∂Σ

nX
i = (−1)n∂X

i−n. The symbol ∼ denotes isomorphisms up to a shift in
the derived category.

The full subcategory of D(R) consisting of complexes with bounded, finitely
generated homology is denoted Df

�
(R). Complexes from Df

�
(R) are called finite

complexes. The symbols Pf(R) and If(R) denote the full subcategories of Df
�

(R)
consisting of complexes that are isomorphic in the derived category to a bounded
complex of projective modules and isomorphic to a bounded complex of injective
modules, respectively. Note that Pf(R) coincides with the full subcategory Ff(R)
of Df

�
(R) consisting of complexes isomorphic to a complex of flat modules.

2.2. Support. The spectrum of R, denoted Spec R, is the set of prime ideals of R.
A subset X of Spec R is specialization-closed if it has the property

p ∈ X and p ⊆ q =⇒ q ∈ X

for all prime ideals p and q. A subset that is closed in the Zariski topology is, in
particular, specialization-closed.

The support of a complex X is the set

SuppX =
{

p ∈ Spec R
∣∣∣ H(Xp) 6= 0

}
.

A finite complex is a complex with bounded homology and finitely generated ho-
mology modules; the support of such a complex is a closed and hence specialization-
closed subset of Spec R.

For a specialization-closed subset X of Spec R, the dimension of X, denoted
dimX, is the usual Krull dimension of X. When dimR is finite, the co-dimension

of X, denoted codimX, is the number dimR − dimX. For a finitely generated
module M , the dimension and co-dimension of M , denoted dimM and codimM ,
are the dimension and co-dimension of the support of M .
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For a specialization-closed subset X of Spec R, the symbols Df
�

(X), Pf(X), and

If(X) denote the full subcategories of Df
�

(R), Pf(R), and If(R), respectively, con-
sisting of complexes whose support is contained in X. In the case where X equals
{m}, we simply write D

f
�

(m), P
f(m) and I

f(m), respectively.

2.3. Derived functors. A complex P is said to be semi-projective if the functor
HomR(P,−) sends surjective quasi-isomorphisms to surjective quasi-isomorphisms.
If a complex is bounded to the right and consists of projective modules, it is semi-
projective. A semi-projective resolution of M is a quasi-isomorphism π : P → X
where P is semi-projective.

Dually, a complex I is said to be semi-injective if the functor HomR(−, I) sends
injective quasi-isomorphisms to surjective quasi-isomorphisms. If a complex is
bounded to the left and consists of injective modules, it is semi-injective. A semi-
injective resolution of Y is a quasi-isomorphism ι : Y → I where I is semi-injective.
For existence of semi-projective and semi-injective resolutions see [2].

Let X and Y be complexes. The left-derived tensor product X ⊗L

R Y in D(R) of
X and Y is defined by

P ⊗R Y ≃ X ⊗L

R Y ≃ X ⊗R Q,

where P
≃
−→ X is a semi-projective resolution of X and Q

≃
−→ Y is a semi-projective

resolution of Y . The right-derived homomorphism complex RHomR(X, Y ) in D(R)
of X and Y is defined by

HomR(P, Y ) ≃ RHomR(X, Y ) ≃ HomR(X, I),

where P
≃
−→ X is a semi-projective resolution of X and Y

≃
−→ I is a semi-injective

resolution of Y . When M and N are modules,

Hn(M ⊗L

R N) ∼= TorR
n (M, N) and H−n(RHomR(M, N)) ∼= Extn

R(M, N)

for all integers n.

2.4. Stability. Let X and Y be specialization-closed subsets of Spec R and let X
be a complex in Df

�
(X) and Y be a complex in Df

�
(Y). Then

X ⊗L

R Y ∈ D
f
�

(X ∩Y) if X ∈ P
f(X) or Y ∈ P

f(Y),

X ⊗L

R Y ∈ P
f(X ∩Y) if X ∈ P

f(X) and Y ∈ P
f(Y),

X ⊗L

R Y ∈ I
f(X ∩Y) if X ∈ P

f(X) and Y ∈ I
f(Y),

X ⊗L

R Y ∈ I
f(X ∩Y) if X ∈ I

f(X) and Y ∈ P
f(Y),

RHomR(X, Y ) ∈ D
f
�

(X ∩Y) if X ∈ P
f(X) or Y ∈ I

f(Y),

RHomR(X, Y ) ∈ P
f(X ∩Y) if X ∈ P

f(X) and Y ∈ P
f(Y),

RHomR(X, Y ) ∈ I
f(X ∩Y) if X ∈ P

f(X) and Y ∈ I
f(Y) and

RHomR(X, Y ) ∈ P
f(X ∩Y) if X ∈ I

f(X) and Y ∈ I
f(Y).

(2.4.1)

2.5. Functorial isomorphisms. Throughout, we will make use of the functorial
isomorphisms stated below. As we will not need them in the most general setting,
the reader should bear in mind that not all the boundedness conditions imposed
on the complexes are strictly necessary. For details the reader is referred e.g., to [5,
A.4] and the references therein.
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Let S be another commutative, noetherian, local ring. Let K, L, M ∈ D(R), let
P ∈ D(S) and let N ∈ D(R, S), the derived category of R–S–bi-modules. There
are the next functorial isomorphisms in D(R, S).

M ⊗L

R N
≃
−→ N ⊗L

R M.(Comm)

(M ⊗L

R N)⊗L

S P
≃
−→M ⊗L

R (N ⊗L

S P ).(Assoc)

RHomS(M ⊗L

R N, P )
≃
−→ RHomR(M,RHomS(N, P )).(Adjoint)

RHomR(M,RHomS(P, N))
≃
−→ RHomS(P,RHomR(M, N)).(Swap)

Moreover, there are the following evaluation morphisms.

σKLP : RHomR(K, L)⊗L

S P → RHomR(K, L⊗L

S P ).(Tensor-eval)

ρPLM : P ⊗L

S RHomR(L, M)→ RHomS(RHomR(P, L), M).(Hom-eval)

In addition,

• the morphism σKLP is invertible if K is finite, H(L) is bounded, and either
P ∈ P(S) or K ∈ P(R); and
• the morphism ρPLM is invertible if P is finite, H(L) is bounded, and either

P ∈ P(R) or M ∈ I(R).

2.6. Dualizing complexes. A finite complex D is a dualizing complex for R if

D ∈ I
f(R) and R

≃
−→ RHomR(D, D).

Dualizing complexes are essentially unique: if D and D′ are dualizing complexes
for R, then D ∼ D′. To check whether a finite complex D is dualizing is equivalent
to checking whether

k ∼ RHomR(k, D).

A dualizing complex D is said to be normalized when k ≃ RHomR(k, D). If R is
a Cohen–Macaulay ring of dimension d and D is a normalized dualizing complex,
then H(D) is concentrated in degree d, and the module Hd(D) is the (so-called)
canonical module; see [3, Chapter 3]. Observe that SuppD = Spec R.

If D is a normalized dualizing complex for R, then it is isomorphic to a complex

0→ Ddim R → Ddim R−1 → · · · → D1 → D0 → 0

consisting of injective modules, where

Di =
⊕

dim R/p=i

ER(R/p)

and ER(R/p) is the injective hull (or envelope) of R/p for a prime ideal p; in
particular, it follows that D0 = ER(k).

When R is a homomorphic image of a local Gorenstein ring Q, then the R–
complex Σn RHomQ(R, Q), where n = dimQ − dim R, is a normalized dualizing
complex over R. In particular, it follows from Cohen’s structure theorem for com-
plete local rings that any complete ring admits a dualizing complex. Conversely, if
a local ring admits a dualizing complex, then it must be a homomorphic image of a
Gorenstein ring; this follows from Kawasaki’s proof of Sharp’s conjecture; see [14].
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2.7. Dagger duality. Assume that R admits a normalized dualizing complex D
and consider the duality morphism of functors

idD(R) → RHomR(RHomR(−, D), D).

It follows essentially from (Hom-eval) that the contravariant functor

(−)† = RHomR(−, D)

provides a duality on the category Df
�

(R) which restricts to a duality between

Pf(R) and If(R). This duality is sometimes referred to as dagger duality. According
to (2.4.1), if X is a specialization-closed subset of Spec R, then dagger duality gives a
duality on Df

�
(X) which restricts to a duality between Pf(X) and If(X) as described

by the following commutative diagram.

Df
�

(X)
(−)† //

Df
�

(X)
(−)†

oo

Pf(X)
(−)† //

OO

If(X).
(−)†

oo

OO

Here the vertical arrows are full embeddings of categories. For more details on
dagger duality, see [12].

2.8. Foxby equivalence. Assume that R admits a normalized dualizing complex
D and consider the two contravariant adjoint functors

D ⊗L

R − and RHomR(D,−),

which come naturally equipped the unit and co-unit morphisms

η : idD(R) → RHomR(D, D ⊗L

R −) and ε : D ⊗L

R RHomR(D,−)→ idD(R) .

It follows essentially from an application of (Tensor-eval) and (Hom-eval) that the
categories P(R) and I(R) are naturally equivalent via the above two functors. This
equivalence is usually known as Foxby equivalence and was introduced in [1], to
which the reader is referred for further details.

According to (2.4.1), for a specialization-closed subset X of Spec R, Foxby equiv-
alence restricts to an equivalence between Pf(X) and If(X) as described by the
following diagram.

Pf(X)
D⊗L

R− //
If(X).

RHomR(D,−)
oo

2.9. Star duality. Consider the duality morphism of functors

idD(R) → RHomR(RHomR(−, R), R).

From an application of (Hom-eval) it is readily seen that the functor

(−)∗ = RHomR(−, R)
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provides a duality on the category Pf(R). According to (2.4.1), for a specialization-
closed subset X of Spec R, star duality restricts to a duality on Pf(X) as described
by following diagram.

Pf(X)
(−)∗ //

Pf(X).
(−)∗

oo

When R admits a dualizing complex D, the star functor can also be described in
terms of the dagger and Foxby functors. Indeed, it is straightforward to show that
the following three contravariant endofunctors on Pf(R) are isomorphic.

(−)∗, RHomR(D,−†), and (D ⊗L

R −)†.

It is equally straightforward to show that the following four contravariant endo-
functors on If(R) are isomorphic.

(−)† ∗ †, RHomR(D,−)†, D ⊗L

R (RHomR(D,−)∗) and D ⊗L

R (−)†.

They provide a duality on If(R). In the sequel, the four isomorphic functors are
denoted (−)⋆. According to (2.4.1), for a specialization-closed subset X of Spec R,
this new kind of star duality restricts to a duality on If(X) as described by the
following diagram.

If(X)
(−)⋆

//
If(X).

(−)⋆
oo

The dagger duality, Foxby equivalence and star duality functors fit together in
the following diagram.

Df
�

(X)
(−)† //

Df
�

(X)
(−)†

oo

(−)∗
##
Pf(X)

OO

(−)† //

D⊗L

R−

))
If(X)

OO

(−)†
oo

RHomR(D,−)

ii (−)⋆
{{

(2.9.1)

In the lower part of the diagram, the three types of functors, dagger, Foxby and
star, always commute pairwise, and the composition of two of the three types yields
a functor of the third type. For example, star duality and dagger duality always
commute and compose to give Foxby equivalence, since we have

(−)∗† ≃ (−)†⋆ ≃ D ⊗L

R − and (−)⋆† ≃ (−)†∗ ≃ RHomR(D,−).

2.10. Frobenius endofunctors. Assume that R is complete of prime character-
istic p and with perfect residue field k. The endomorphism

f : R→ R defined by f(r) = rp

for r ∈ R is called the Frobenius endomorphism on R. The n-fold composition of
f , denoted fn, operates on a generic element r ∈ R by fn(r) = rpn

. We let f n

R
denote the R–algebra which, as a ring, is identical to R but, as a module, is viewed
through fn. Thus, the R–module structure on f n

R is given by

r · x = rpn

x for r ∈ R and x ∈ f n

R.



66 ANDERS J. FRANKILD AND ESBEN BISTRUP HALVORSEN

Under the present assumptions on R, the R–module f n

R is finitely generated (see,
for example, Roberts [21, Section 7.3]).

We define two functors from the category of R–modules to the category of f n

R–
modules by

Fn(−) = −⊗R
f n

R and Gn(−) = HomR(f
n

R,−),

where the resulting modules are finitely generated modules with R–structure ob-
tained from the ring f n

R = R. The functor Fn is called the Frobenius functor and
has been studied by Peskine and Szpiro [18]. The functor Gn has been studied by
Herzog [13] and is analogous to Fn in a sense that will be described below. We call
this the analogous Frobenius functor. The R–structure on Fn(M) is given by

r · (m⊗ x) = m⊗ rx

for r ∈ R, m ∈M and x ∈ f n

R, and the R–structure on Gn(N) is given by

(r · ϕ)(x) = ϕ(rx)

for r ∈ R, ϕ ∈ HomR(f
n

R, N) and x ∈ f n

R. Note that here we also have

(rm)⊗ x = m⊗ (r · x) = m⊗ rpx and rϕ(x) = ϕ(r · x) = ϕ(rpx).

Peskine and Szpiro [18, Théorème (1.7)] have proven that, if M has finite projective
dimension, then so does F (M), and Herzog [13, Satz 5.2] has proven that, if N has
finite injective dimension, then so does G(N).

It follows by definition that the functor Fn is right-exact while the functor Gn

is left-exact. We denote by LFn(−) the left-derived of Fn(−) and by RGn(−) the
right-derived of Gn(−). When X and Y are R–complexes with semi-projective and
semi-injective resolutions

P
≃
−→ X and Y

≃
−→ I,

respectively, these derived functors are obtained as

LFn(X) = P ⊗R
f n

R and RGn(Y ) = HomR(f
n

R, I),

where the resulting complexes are viewed through their f n

R–structure, which makes
them R–complexes since f n

R as a ring is just R. Observe that we may identify these
functors with

LFn(X) = X ⊗L

R
f n

R and RGn(Y ) = RHomR(f
n

R, Y ).

2.11. Lemma. Let R be a complete ring of prime characteristic and with perfect

residue field, and let X be a specialization-closed subset of Spec R. Then the Frobe-

nius functors commute with dagger and star duality in the sense that

LFn(−)† ≃ RGn(−†), RGn(−)† ≃ LFn(−†),

LFn(−)∗ ≃ LFn(−∗) and RGn(−)⋆ ≃ RGn(−⋆).

Here the first row contains isomorphisms of functors between Pf(X) and If(X), while

the second row contains isomorphisms of endofunctors on Pf(X) and If(X), respec-

tively. Finally, the Frobenius functors commute with Foxby equivalence in the sense

that

D ⊗L

R LFn(−) ≃ RGn(D ⊗L

R −) and

RHomR(D,RGn(−)) ≃ LFn(RHomR(D,−))

as functors from Pf(X) to If(X) and from If(X) to Pf(X), respectively.
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Proof. Let ϕ : R→ S be a local homomorphism making S into a finitely generated
R–module, and let DR denote a normalized dualizing complex for R. Then DS =
RHomR(S, DR) is a normalized dualizing complex for S. Pick an R–complex X
and consider the next string of natural isomorphisms.

RHomS(X ⊗L

R S, DS) = RHomS(X ⊗L

R S,RHomR(S, DR))

≃
←− RHomR(X ⊗L

R S, DR)

≃
−→ RHomR(S,RHomR(X, DR)).

Here, the two isomorphism follow from (Adjoint). The computation shows that

(− ⊗L

R S)†S ≃ RHomR(S,−†R)

in D(S). A similar computation using the natural isomorphisms (Adjoint) and
(Hom-eval) shows that

(−)†R ⊗L

R S ≃ RHomR(S,−)†S .

Under the present assumptions, the n-fold composition of the Frobenius endomor-
phism fn : R → R is module-finite map. Therefore, the above isomorphisms of
functors yield

LFn(−)† ≃ RGn(−†) and LFn(−†) ≃ RGn(−)†.

Similar considerations establish the remaining isomorphisms of functors. �

2.12. Corollary. Let R be a complete ring of prime characteristic and with per-

fect residue field, and let X be a specialization-closed subset of Spec R. Then the

Frobenius functor RGn is an endofunctor on I
f(X).

Proof. From the above lemma, we learn that

RGn(−) ≃ (−)† ◦ LFn ◦ (−)†

and since LFn is an endofunctor on Pf(X) the conclusion is immediate. �

2.13. Lemma. Let R be a complete ring of prime characteristic and with perfect

residue field. For complexes X, X ′ ∈ Pf(R) and Y, Y ′ ∈ If(R) there are isomor-

phisms

LFn(X ⊗L

R X ′) ≃ LFn(X)⊗L

R LFn(X ′),

RGn(X ⊗L

R Y ) ≃ LFn(X)⊗L

R RGn(Y ),

RGn(RHomR(X, Y )) ≃ RHomR(LFn(X),RGn(Y ))

LFn(RHomR(X, X ′)) ≃ RHomR(LFn(X),LFn(X ′)) and

LFn(RHomR(Y, Y ′)) ≃ RHomR(RGn(Y ),RGn(Y ′)).

Proof. We prove the first and the third isomorphism. The rest are obtained in a
similar manner using Lemma 2.11 and the functorial isomorphisms.

Let F
≃
−→ X and F ′ ≃

−→ X ′ be finite free resolutions. Then it follows

LFn(X ⊗L

R X ′) ≃ Fn(F ⊗R F ′)

≃ Fn(F )⊗R Fn(F ′)

≃ LFn(X)⊗L

R LFn(X ′).
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Here the first isomorphism follows as F ⊗R F ′ is isomorphic to X ⊗L

R X ′; second
isomorphism follows from e.g., [11, Proposition 12(vi)].

From Corollary 2.12 we learn that

RGn(Y ) ≃ (LFn(Y †))†,

and therefore we may compute as follows.

RHomR(LFn(X),RGn(Y )) ≃ RHomR(LFn(X), (LFn(Y †))†)

≃ RHomR(LFn(X)⊗L

R LFn(Y †), D)

≃ RHomR(LFn(X ⊗L

R Y †), D)

≃ LFn(X ⊗L

R Y †)†

≃ (LFn(RHomR(X, Y )†)†

≃ RGn(RHomR(X, Y )).

Here the second isomorphism follows by (Adjoint); the third from the first statement
in the Lemma; the fourth from definition; the fifth isomorphism follows from (Hom-
eval); and the last isomorphism follows from Corollary 2.12. �

2.14. Remark. Any complex in Pf(R) is isomorphic to a bounded complex of
finitely generated, free modules, and it is well-known that the Frobenius functor
acts on such a complex by simply raising the entries in the matrices representing
the differentials to the pn’th power. To be precise, if X is a complex in the form

X = · · · −→ Rm (aij)
−→ Rn −→ · · · −→ 0,

then LFn(X) = Fn(X) is a complex in the form

LFn(X) = · · · −→ Rm
(apn

ij )
−→ Rn −→ · · · −→ 0.

If R is Cohen–Macaulay with canonical module ω, then it follows from dagger
duality that any complex in If(R) is isomorphic to a complex Y in the form

Y = 0 −→ · · · −→ ωn (aji)
−→ ωm −→ · · · ,

and RGn acts on Y by raising the entries in the matrices representing the differ-
entials to the pn’th power, so that RGn(Y ) = Gn(Y ) is a complex in the form

RGn(Y ) = 0 −→ · · · −→ ωn
(apn

ji )
−→ ωm −→ · · · .

3. Intersection multiplicities

3.1. Serre’s intersection multiplicity. If Z is a complex in D
f
�

(m), then its
finitely many homology modules all have finite length, and the Euler characteristic

of Z is defined by

χ(Z) =
∑

i

(−1)i length Hi(Z).

Let X and Y be finite complexes with SuppX ∩ SuppY = {m}. The intersection

multiplicity of X and Y is defined by

χ(X, Y ) = χ(X ⊗L

R Y ) when either X ∈ P
f(R) or Y ∈ P

f(R).
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In the case where X and Y are finitely generated modules, χ(X, Y ) coincides with
Serre’s intersection multiplicity; see [22].

Serre’s vanishing conjecture can be generalized to the statement that

(3.1.1) χ(X, Y ) = 0 if dim(Supp X) + dim(Supp Y ) < dim R

when either X ∈ Pf(R) or Y ∈ Pf(R). We will say that R satisfies vanishing when
the above holds; note that this, in general, is a stronger condition than Serre’s
vanishing conjecture for modules. It is known that R satisfies vanishing in certain
cases, for example when R is regular. However, it does not hold in general, as
demonstrated by Dutta, Hochster and McLaughlin [8].

If we require that both X ∈ Pf(R) and Y ∈ Pf(R), condition (3.1.1) becomes
weaker. When this weaker condition is satisfies, we say that R satisfies weak van-

ishing. It is known that R satisfies weak vanishing in many cases, for example if R
is a complete intersection; see Roberts [19] or Gillet and Soulé [10]. There are, so
far, no counterexamples preventing it from holding in full generality.

3.2. Euler form. Let X and Y be finite complexes with Supp X ∩SuppY = {m}.
The Euler form of X and Y is defined by

ξ(X, Y ) = χ(RHomR(X, Y )) when either X ∈ P
f(R) or Y ∈ I

f(R).

In the case where X and Y are finitely generated modules, χ(X, Y ) coincides with
the Euler form introduced by Mori and Smith [16].

If R admits a dualizing complex, then from Mori [17, Lemma 4.3(1) and (2)] and
the definition of (−)⋆, we obtain

ξ(X, Y ) = χ(X, Y †) whenever X ∈ P
f(R) or Y ∈ I

f(R),

χ(X∗, Y ) = χ(X, Y †) whenever X ∈ P
f(R), and

ξ(X, Y ⋆) = ξ(X†, Y ) whenever Y ∈ I
f(R).

(3.2.1)

Since the dagger functor does not change supports of complexes, the first formula
in (3.2.1) shows that R satisfies vanishing exactly when

(3.2.2) ξ(X, Y ) = 0 if dim(Supp X) + dim(Supp Y ) < dimR

when either X ∈ Pf(R) or Y ∈ If(R), and that R satisfies weak vanishing exactly
when (3.2.2) holds when we require both X ∈ Pf(R) and Y ∈ If(R).

3.3. Dutta multiplicity. Assume that R is complete of prime characteristic p and
with perfect residue field. Let X and Y be finite complexes with

Supp X ∩ SuppY = {m} and dim(SuppX) + dim(SuppY ) 6 dimR.

The Dutta multiplicity of X and Y is defined by

χ∞(X, Y ) = lim
e→∞

1

pe codim(SuppX)
χ(LF e(X), Y ) when X ∈ P

f(R).

When X and Y are finitely generated modules, χ∞(X, Y ) coincides with the Dutta
multiplicity defined in [6].
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The Euler form prompts to two natural analogs of the Dutta multiplicity. We
define

ξ∞(X, Y ) = lim
e→∞

1

pe codim(SuppY )
ξ(X,RGe(Y )) when Y ∈ I

f(R), and

ξ∞(X, Y ) = lim
e→∞

1

pe codim(SuppX)
ξ(LF e(X), Y ) when X ∈ P

f(R).

We immediately note, using (3.2.1) together with Lemma 2.11, that

ξ∞(X, Y ) = χ∞(Y †, X) whenever Y ∈ I
f(Y), and

ξ∞(X, Y ) = χ∞(X∗, Y ) whenever X ∈ P
f(X).

4. Grothendieck spaces

In this section we present the definition and basic properties of Grothendieck
spaces. We will introduce three types of Grothendieck spaces, two of which were
introduced in [11]. The constructions in loc. cit. are different from the ones here
but yield the same spaces.

4.1. Complement. For any specialization-closed subset X of Spec R, a new subset
is defined by

Xc =
{

p ∈ Spec R
∣∣∣ X ∩ V (p) = {m} and dimV (p) 6 codimX

}
.

This set is engineered to be the largest subset of Spec R such that

X ∩ Xc = {m} and dim X + dimXc 6 dimR.

In fact, when X is closed,

dimX + dimXc = dim R.

Note that Xc is specialization-closed and that X ⊆ Xcc.

4.2. Grothendieck space. Let X be a specialization-closed subset of Spec R. The
Grothendieck space of the category P

f(X) is the Q–vector space GP
f(X) presented

by elements [X ]Pf (X), one for each isomorphism class of a complex X ∈ Pf(X), and
relations

[X ]Pf (X) = [X̃]Pf (X) whenever χ(X,−) = χ(X̃,−)

as metafunctions (“functions” from a category to a set) Df
�

(Xc)→ Q.

Similarly, the Grothendieck space of the category If(X) is the Q–vector space
GIf(X) presented by elements [Y ]If (X), one for each isomorphism class of a complex

Y ∈ If(X), and relations

[Y ]If (X) = [Ỹ ]If (X) whenever ξ(−, Y ) = ξ(−, Ỹ )

as metafunctions D
f
�

(Xc)→ Q.

Finally, the Grothendieck space of the category Df
�

(X) is the Q–vector space

GDf
�
(X) presented by elements [Z]Df

�
(X), one for each isomorphism class of a com-

plex Z ∈ Df
�

(X), and relations

[Z]Df

�
(X) = [Z̃]Df

�
(X) whenever χ(−, Z) = χ(−, Z̃)
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as metafunctions Pf(Xc) → Q. Because of (3.2.1), these relations are exactly the
same as the relations

[Z]Df

�
(X) = [Z̃]Df

�
(X) whenever ξ(Z,−) = ξ(Z̃,−)

as metafunctions If(Xc)→ Q.
By definition of the Grothendieck space GPf(X) there is, for each complex Z in

Df
�

(Xc), a well-defined Q–linear map

χ(−, Z) : GP
f(X)→ Q given by [X ]Pf (X) 7→ χ(X, Z).

We equip GPf(X) with the initial topology induced by the family of maps in the
above form. This topology is the coarsest topology on GPf(X) making the above
map continuous for all Z in Df

�
(Xc). Likewise, for each complex Z in Df

�
(Xc), there

is a well-defined Q–linear map

ξ(Z,−) : GI
f(X)→ Q given by [Y ]If (X) 7→ ξ(Z, Y ),

and we equip GIf(X) with the initial topology induced by the family of maps in the
above form. Finally, for each complex X in Pf(Xc), there is a well-defined Q–linear
map

χ(X,−) : GD
f
�
(X)→ Q given by [Z]Df

�
(X) 7→ χ(X, Z),

and we equip GD
f
�

(X) with the initial topology induced by the family of maps in
the above form. By (3.2.1), this topology is the same as the initial topology induced
by the family of (well-defined, Q–linear) maps in the form

ξ(−, Y ) : GD
f
�

(X)→ Q given by [Z]Df

�
(X) 7→ ξ(Z, Y ),

for complexes Y in If(Xc).
It is straightforward to see that addition and scalar multiplication are continuous

operations on Grothendieck spaces, making GPf(X), GDf
�
(X) and GIf(X) topolog-

ical Q–vector spaces. We shall always consider Grothendieck spaces as topological
Q–vector spaces, so that, for example, a “homomorphism” between Grothendieck
spaces means a homomorphism of topological Q–vector spaces: that is, a continu-
ous, Q–linear map.

The following proposition is an improved version of [11, Proposition 2(iv) and (v)].

4.3. Proposition. Let X be a specialization-closed subset of Spec R.

(i) Any element in GPf(X) can be written in the form r[X ]Pf (X) for some

r ∈ Q and some X ∈ Pf(X), any element in GIf(X) can be written in the

form s[Y ]If (X) for some s ∈ Q and some Y ∈ If(X), and any element in

GD
f
�
(X) can be written in the form t[Z]Df

�
(X) for some t ∈ Q and some

Z ∈ Df
�

(X). Moreover, X, Y and Z may be chosen so that

codim(Supp X) = codim(Supp Y ) = codim(Supp Z) = codimX.

(ii) For any complex Z ∈ Df
�

(X), we have the identity

[Z]Df

�
(X) = [H(Z)]Df

�
(X).

In particular, the Q–vector space GDf
�

(X) is generated by elements in the

form [R/p]Df

�
(X) for prime ideals p in X.
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Proof. (i) By construction, any element α in GPf(X) is a Q–linear combination

α = r1[X
1]Pf (X) + · · ·+ rn[Xn]Pf (X)

where ri ∈ Q and X i ∈ Pf(X). Since a shift of a complex changes the sign of the
corresponding element in the Grothendieck space, we can assume that ri > 0 for
all i. Choosing a greatest common denominator for the ri’s, we can find r ∈ Q such
that

α = r(m1[X
1]Pf (X) + · · ·+ mn[Xn]Pf (X)) = r[X ]Pf (X),

where the mi’s are natural numbers and X is the direct sum over i of mi copies of
X i.

In order to prove the last statement of (i), choose a prime ideal p = (a1, . . . , at)
in X which is first in a chain p = p0 ( p1 ( · · · ( pt = m of prime ideals in X of
maximal length t = codimX. Note that X ⊇ V (p) and that the Koszul complex
K = K(a1, . . . , at) has support exactly equal to V (p). It follows that

α = α + 0 = r[X ]Pf (X) + r[K]Pf (X) − r[K]Pf (X) = r[X ⊕K ⊕ ΣK]Pf (X),

where codim(Supp(X ⊕ K ⊕ ΣK)) = codimX. The same argument applies to
elements of GIf(X) and GDf

�
(X).

(ii) Any complex in Df
�

(X) is isomorphic to a bounded complex. After an

appropriate shift, we may assume that Z is a complex in Df
�

(X) in the form

0→ Zn → · · · → Z1 → Z0 → 0

for some natural number n. Since Hn(Z) is the kernel of the map Zn → Zn−1, we
can construct a short exact sequence of complexes

0→ Σ
n Hn(Z)→ Z → Z ′ → 0,

where Z ′ is a complex in Df
�

(X) concentrated in the same degrees as Z. The
complex Z ′ is exact in degree n, and Hi(Z

′) = Hi(Z) for i = n − 1, . . . , 0. In the
Grothendieck space GDf

�
(X), we then have

[Z]Df

�
(X) = [Σn Hn(Z)]Df

�
(X) + [Z ′]Df

�
(X).

Again, Z ′ is isomorphic to a complex concentrated in degree n − 1, · · · , 0, so we
can repeat the process a finite number of times and achieve that

[Z]Df

�
(X) = [Σn Hn(Z)]Df

�
(X) + · · ·+ [Σ H1(Z)]Df

�
(X) + [H0(Z)]Df

�
(X)

= [Σn Hn(Z)⊕ · · · ⊕ Σ H1(Z)⊕H0(Z)]Df

�
(X)

= [H(Z)]Df

�
(X).

The above analysis shows that any element of GDf
�
(X) can be written in the form

r[Z]Df

�
(X) = r

∑

i

(−1)i[Hi(Z)]Df

�
(X),

which means that GDf
�
(X) is generated by modules. Taking a filtration of a module

establishes that GDf
�
(X) must be generated by elements of the form [R/p]Df

�
(X) for

prime ideals p in X. �
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4.4. Induced Euler characteristic. The Euler characteristic χ : Df
�

(m) → Q

induces an isomorphism1

(4.4.1) GD
f
�

(m)
∼=
−→ Q given by [Z]Df

�
(m) 7→ χ(Z).

See [11] for more details. We also denote this isomorphism by χ. The isomorphism
means that we can identify the intersection multiplicity χ(X, Y ) and the Euler form
ξ(X, Y ) of complexes X and Y with elements in GDf

�
(m) of the form

[X ⊗L

R Y ]Df

�
(m) and [RHomR(X, Y )]Df

�
(m),

respectively.

4.5. Induced inclusion. Let X be a specialization-closed subset of Spec R. It is
straightforward to verify that the full embeddings of Pf(X) and If(X) into Df

�
(X)

induce homomorphisms2

GP
f(X)→ GD

f
�
(X) given by [X ]Pf (X) 7→ [X ]Df

�
(X), and

GI
f(X)→ GD

f
�
(X) given by [Y ]If (X) 7→ [Y ]Df

�
(X).

If X and X′ are specialization-closed subsets of Spec R such that that X ⊆ X′, then
it is straightforward to verify that the full embeddings of Pf(X) into Pf(X′), If(X)
into If(X′) and Df

�
(X) into Df

�
(X′) induce homomorphisms

GP
f(X)→ GP

f(X′) given by [X ]Pf (X) 7→ [X ]Pf(X′),

GI
f(X)→ GI

f(X′) given by [Y ]If (X) 7→ [Y ]If (X′), and

GD
f
�

(X)→ GD
f
�

(X′) given by [Z]Df

�
(X) 7→ [Z]Df

�
(X′).

The maps obtained in this way are called inclusion homomorphisms, and we shall
often denote them by an overline: if σ is an element in a Grothendieck space, then
σ denotes the image of σ after an application of an inclusion homomorphisms.

4.6. Induced tensor product and Hom. Proposition 4.7 below shows that the
left-derived tensor product functor and the right-derived Hom-functor induce bi-
homomorphisms3 on Grothendieck spaces. To clarify the contents of the proposi-
tion, let X and Y be specialization-closed subsets of Spec R such that X∩Y = {m}
and dimX + dimY 6 dimR. Proposition 4.7 states, for example, that the right-
derived Hom-functor induces a bi-homomorphism

Hom: GP
f(X)×GI

f(Y)→ GI
f(m).

Given elements σ ∈ GP
f(X) and τ ∈ GI

f(Y), we can, by Proposition 4.3, write

σ = r[X ]Pf (X) and τ = s[Y ]If (Y),

where r and s are rational numbers, X is a complex in Pf(X) and Y is a complex
in If(Y). The bi-homomorphism above is then given by

(4.6.1) (σ, τ) 7→ Hom(σ, τ) = rs[RHomR(X, Y )]Df

�
(m).

We shall use the symbol “⊗” to denote any bi-homomorphism on Grothendieck
spaces induced by the left-derived tensor product and the symbol “Hom” to denote
any bi-homomorphism induced by right-derived Hom-functor. Together with the

1That is, a Q–linear homeomorphism.
2That is, continuous, Q–linear maps.
3That is, maps that are continuous and Q–linear in each variable.
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isomorphism in (4.4.1) it follows that the intersection multiplicity χ(X, Y ) and
Euler form ξ(X, Y ) can be identified with elements in GDf

�
(m) of the form

[X ]Pf (X) ⊗ [Y ]Df

�
(Y), [X ]Df

�
(X) ⊗ [Y ]Pf (Y),

Hom([X ]Df

�
(X), [Y ]If (Y)) and Hom([X ]Pf (X), [Y ]Df

�
(Y)).

4.7. Proposition. Let X and Y be specialization-closed subsets of Spec R such that

X∩Y = {m} and dimX + dim Y 6 dim R. The left-derived tensor product induces

bi-homomorphisms as in the first column below, and the right-derived Hom-functor

induces bi-homomorphisms as in the second column below.

GP
f(X)×GD

f
�

(Y)→ GD
f
�
(m), GP

f(X)×GD
f
�

(Y)→ GD
f
�
(m),

GD
f
�
(X)×GP

f(Y)→ GD
f
�
(m), GD

f
�

(X)×GI
f(Y)→ GD

f
�
(m),

GP
f(X)×GP

f(Y)→ GP
f(m), GP

f(X)×GI
f(Y)→ GI

f(m),

GP
f(X)×GI

f(Y)→ GI
f(m), GP

f(X)×GP
f(Y)→ GP

f(m),

GI
f(X)×GP

f(Y)→ GI
f(m) and GI

f(X)×GI
f(Y)→ GP

f(m).

Proof. We verify that the map

Hom: GP
f(X)×GI

f(Y)→ GI
f(m)

given as in (4.6.1) is a well-defined bi-homomorphism, leaving the same verifications
for the remaining maps as an easy exercise for the reader.

Therefore, assume that X and X̃ are complexes from Pf(X) and that Y and Ỹ
are complexes from If(Y) such that

σ = [X ]Pf (X) = [X̃ ]Pf (X) and τ = [Y ]If (Y) = [Ỹ ]If (Y).

In order to show that the map is a well-defined Q–bi-linear map, we are required
to demonstrate that

[RHomR(X, Y )]If (m) = [RHomR(X̃, Ỹ )]If (m).

To this end, let Z be an arbitrary complex in Df
�

({m}c) = Df
�

(R). We want to
show that

ξ(Z,RHomR(X, Y )) = ξ(Z,RHomR(X̃, Ỹ )).

Without loss of generality, we may assume that R is complete; in particular, we
may assume that R admits a normalized dualizing complex. Observe that

Z ⊗R X ∈ D
f
�

(X) ⊆ D
f
�

(Yc) and Z ⊗L

R Y † ∈ D
f
�

(Y) ⊆ D
f
�

(Xc).

Applying (3.2.1), (Hom-eval) and (Assoc), we learn that

ξ(Z,RHomR(X, Y )) = χ(Z,RHomR(X, Y )†)

= χ(Z, X ⊗L

R Y †)

= χ(X, Z ⊗L

R Y †).

(4.7.1)

A similar computation shows that ξ(Z,RHomR(X̃, Y )) = χ(X̃, Z⊗L

RY †), and since

[X ]Pf(X) = [X̃]Pf (X), we conclude that

ξ(Z,RHomR(X, Y )) = ξ(Z,RHomR(X̃, Y )).

An application of (Adjoint) yields that

ξ(Z,RHomR(X̃, Y )) = ξ(Z ⊗L

R X̃, Y ),
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and similarly ξ(Z,RHomR(X̃, Ỹ )) = ξ(Z ⊗L

R X̃, Ỹ ). Since [Y ]If (Y) = [Ỹ ]If (Y), we
conclude that

ξ(Z,RHomR(X̃, Y )) = ξ(Z,RHomR(X̃, Ỹ )).

Thus, we have that

ξ(Z,RHomR(X, Y )) = ξ(Z,RHomR(X̃, Ỹ )),

which establishes well-definedness.
By definition, the induced Hom-map is Q–linear. To establish that it is con-

tinuous in, say, the first variable it suffices for fixed τ ∈ GIf(Y) to show that, to
every ε > 0 and every complex Z ∈ D

f
�

({m}
c
) = D

f
�

(R), there exists a δ > 0 and

a complex Z ′ ∈ Df
�

(Xc) such that

|χ(σ, Z ′)| < δ =⇒ |ξ(Z, Hom(σ, τ))| < ε.

We can write τ = r[Y ]If (Y) for an Y ∈ If(Y) and a rational number r > 0. According

to (4.7.1), the implication above is then achieved with Z ′ = Z ⊗L

R Y † and δ = ε/r.
Continuity in the second variable is shown by similar arguments. �

In Proposition 4.8 below, we will show that the dagger, Foxby and star functors
from diagram (2.9.1) induce isomorphisms of Grothendieck spaces. We shall denote
the isomorphisms induced by the star and dagger duality functors by the same
symbol as the original functor, whereas the isomorphisms induced by the Foxby
functors will be denoted according to Proposition 4.7 by D ⊗ − and Hom(D,−).
In this way, for example,

[X ]†
Pf (X)

= [X†]If (X), [X ]∗
Pf (X) = [X∗]Pf (X) and D ⊗ [X ]Pf (X) = [D ⊗L

R X ]If(X).

4.8. Proposition. Let X be a specialization-closed subset of Spec R, and assume

that R admits a dualizing complex. The functors from diagram (2.9.1) induce iso-

morphisms of Grothendieck spaces as described by the horizontal and circular arrows

in the following commutative diagram.

GDf
�

(X)
(−)† //

GDf
�
(X)

(−)†
oo

(−)∗
##
GPf(X)

OO

(−)† //

D⊗L

R−

))
GIf(X)

OO

(−)†
oo

RHomR(D,−)

ii
(−)⋆

{{

Proof. The fact that the dagger, star and Foxby functors induce homomorphisms
on Grothendieck spaces follows immediately from Proposition 4.7. The fact that
the induced homomorphisms are isomorphisms follows immediately from 2.7, 2.8
and 2.9, since the underlying functors define dualities or equivalences of categories.

�

4.9. Proposition. Let X be a specialization-closed subset of Spec R and consider

the following elements of Grothendieck spaces.

α ∈ GP
f(X), β ∈ GI

f(X), γ ∈ GD
f
�
(Xc) and σ ∈ GD

f
�

(m).
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Then σ† = σ holds in GDf
�
(m), and so do the following identities.

α⊗ γ = Hom(γ, α†) = Hom(α, γ†) = Hom(α∗, γ)

Hom(α, γ) = α⊗ γ† = Hom(γ, D ⊗ α) = α∗ ⊗ γ

Hom(γ, β) = β† ⊗ γ = Hom(Hom(D, β), γ)

Hom(β†, γ) = Hom(γ†, β) = Hom(D, β)⊗ γ = Hom(γ, β⋆)

Proof. Recall from 2.9 that the Foxby functors can be written as the composition of
a star and a dagger functor. All identities follow from the formulas in (3.2.1). The
formula for σ is a consequence of the first formula in (3.2.1) in the case X = R. �

4.10. Frobenius endomorphism. Assume that R is complete of prime charac-
teristic p and with perfect residue field. Let X be a specialization-closed subset of
Spec R, and let n be a non-negative integer. The derived Frobenius endofunctor
LFn on Pf(X) induces an endomorphism4 on GPf(X), which will be denoted Fn

X ;
see [11] for further details. It is given for a complex X ∈ Pf(X) by

Fn
X([X ]Pf (X)) = [LFn(X)]Pf (X).

Let

Φn
X =

1

pn codim X
Fn

X : GP
f(X)→ GP

f(X).

According to [11, Theorem 19], the endomorphism Φn
X is diagonalizable.

In Lemma 2.11, we established that the functor RGn is an endofunctor on If(X)
which can be written as

RGn(−) = (−)† ◦ LFn ◦ (−)†.

Thus, RGn is composed of functors that induce homomorphisms on Grothendieck
spaces, and hence it too induces a homomorphism GIf(X) → GIf(X). We denote
this endomorphism on GIf(X) by Gn

X. It is given for a complex Y ∈ If(X) by

Gn
X([Y ]If (X)) = [RGn(Y )]If (X).

Let

Ψn
X =

1

pn codim X
Gn

X : GI
f(X)→ GI

f(X).

Theorem 6.2 shows that Ψn
X also is a diagonalizable automorphism.

For complexes X ∈ Pf(X) and Y ∈ If(X) we shall write Φn
X(X) and Ψn

X(Y )
instead of Φn

X([X ]Pf (X)) and Ψn
X([Y ]If (X)), respectively. The isomorphism in (4.4.1)

together with Proposition 4.7 shows that the Dutta multiplicity χ∞(X, Y ) and
its two analogs ξ∞(X, Y ) and ξ∞(X, Y ) from Section 3.3 can be identified with
elements in GDf

�
(m) of the form

lim
e→∞

(Φe
X(X)⊗ [Y ]Df

�
(Y)), lim

e→∞
Hom([X ]Df

�
(X), Ψ

e
Y(Y )) and

lim
e→∞

Hom(Φe
X(X), [Y ]Df

�
(Y)).

4That is, a continuous, Q–linear operator.
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5. Vanishing

5.1. Vanishing. Let X be a specialization-closed subset of Spec R and consider an
element α in GPf(X), an element β in GIf(X) and an element γ in GDf

�
(X). The

dimensions of α, β and γ are defined as

dim α = inf
{

dim(Supp X)
∣∣∣α = r[X ]Pf (X) for some r ∈ Q and X ∈ P

f(X)
}

,

dim β = inf
{

dim(Supp Y )
∣∣∣ α = s[Y ]Pf (X) for some s ∈ Q and Y ∈ I

f(X)
}

and

dim γ = inf
{

dim(Supp Z)
∣∣∣ γ = t[Z]Df

�
(X) for some t ∈ Q and Z ∈ D

f
�

(X)
}
.

In particular, the dimension of an element in a Grothendieck space is −∞ if and
only if the element is trivial. We say that α satisfies vanishing if

α⊗ σ = 0 in GD
f
�

(m) for all σ ∈ GD
f
�
(Xc) with dimσ < codimX,

and that α satisfies weak vanishing if

α⊗ τ = 0 in GD
f
�

(m) for all τ ∈ GP
f(Xc) with dim τ < codimX.

Similarly, we say that β satisfies vanishing if

Hom(σ, β) = 0 in GD
f
�

(m) for all σ ∈ GD
f
�

(Xc) with dim σ < codimX,

and that β satisfies weak vanishing if

Hom(τ, β) = 0 in GD
f
�

(m) for all τ ∈ GP
f(Xc) with dim τ < codimX.

The vanishing dimension of α and β is defined as the numbers

vdimα = inf
{

u ∈ Z
∣∣∣ α⊗ σ = 0 for all σ ∈ GDf

�
(Xc)

with dimσ < codimX− u

}
and

vdimβ = inf
{

v ∈ Z
∣∣∣ Hom(σ, β) = 0 for all σ ∈ GDf

�
(Xc)

with dimσ < codimX− v

}
.

In particular, the vanishing dimension of an element in a Grothendieck space is
−∞ if and only if the element is trivial, and the vanishing dimension is less than
or equal to 0 if and only if the element satisfies vanishing.

5.2. Remark. If X is a complex in Pf(R) with X = SuppX , then the element
α = [X ]Pf (X) in GPf(X) satisfies vanishing exactly when

χ(X, Y ) = 0 for all complexes Y ∈ D
f
�

(Xc) with dim(Supp Y ) < codimX,

and α satisfies weak vanishing exactly when

χ(X, Y ) = 0 for all complexes Y ∈ P
f(Xc) with dim(SuppY ) < codimX.

The vanishing dimension of α measures the extent to which vanishing fails to hold:
the vanishing dimension of α is the infimum of integers u such that

χ(X, Y ) = 0 for all complexes Y ∈ D
f
�

(Xc) with dim(SuppY ) < codimX− u.

It follows that the ring R satisfies vanishing (or weak vanishing, respectively) as
defined in 3.1, if and only if all elements of GPf(X) for all specialization-closed
subsets X of Spec R satisfy vanishing (or weak vanishing, respectively).

If Y is a complex in If(R) with X = Supp Y , then the element β = [Y ]If (X) in

GIf(X) satisfies vanishing exactly when

ξ(X, Y ) = 0 for all complexes X ∈ D
f
�

(Xc) with dim(Supp X) < codimX.
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and β satisfies weak vanishing exactly when

ξ(X, Y ) = 0 for all complexes X ∈ P
f(Xc) with dim(SuppX) < codimX.

The vanishing dimension of β measures the extent to which vanishing of the Euler
form fails to hold: the vanishing dimension of β is the infimum of integers v such
that

ξ(X, Y ) = 0 for all complexes X ∈ D
f
�

(Xc) with dim(Supp X) < codimX− v.

Because of the formulas in (3.2.1), it follows that the ring R satisfies vanishing (or
weak vanishing, respectively) if and only all elements of GIf(X) for all specialization-
closed subsets X of Spec R satisfy vanishing (or weak vanishing, respectively).

5.3. Remark. For a specialization closed subset X of Spec R and elements α ∈
GPf(X), β ∈ GIf(X) and γ ∈ GDf

�
(X), we have the following formulas for dimension.

dim γ = dim γ†,

dimα = dim α† = dim α∗ = dim(D ⊗ α) and

dimβ = dimβ† = dim β⋆ = dimHom(D, β).

These follow immediately from the fact that the dagger, star and Foxby functors
do not change supports of complexes. Further, we have the following formulas for
vanishing dimension.

vdimα = vdimα† = vdimα∗ = vdim(D ⊗ α) and

vdimβ = vdimβ† = vdimβ⋆ = vdimHom(D, β).

These follow immediately from the above together with (3.2.1).

5.4. Proposition. Let X be a specialization-closed subset of Spec R, let α ∈ GPf(X)
and let β ∈ GIf(X). Then the following hold.

(i) If codimX 6 2 then vanishing holds for all elements in GPf(X) and GIf(X).
In particular, we always have

vdimα, vdimβ 6 max(0, codimX− 2).

(ii) Let X′ be a specialization-closed subset of Spec R with X ⊆ X′. Then

vdimα 6 vdimα− (codimX− codimX′) and

for α ∈ GPf(X′). For any given s in the range 0 6 s 6 vdimα, we

can always find an X′ with s = codimX − codimX′ such that the above

inequality becomes an equality. Likewise,

vdimβ 6 vdimβ − (codimX− codimX′)

for β ∈ GIf(X′), and for any given s in the range 0 6 s 6 vdimβ, we

can always find an X′ with s = codimX − codimX′ such that the above

inequality becomes an equality.

(iii) The element α satisfies weak vanishing if and only if, for all specialization-

closed subsets X′ with X ⊆ X′ and codimX′ = codimX− 1,

α = 0 as an element of GD
f
�

(X′).

Similarly, the element β satisfies weak vanishing if and only if, for all

specialization-closed subsets X′ with X ⊆ X′ and codimX′ = codimX− 1,

β = 0 as an element of GD
f
�

(X′).
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Proof. Because of Proposition 4.9 and the formulas in Remark 5.3, it suffices to
consider the statements for α and GPf(X). But the in this case, (i) and (ii) are
already contained in [11, Example 6 and Remark 7], and (iii) follows by consider-
ations similar to those proving (ii) in [11, Remark 7]. �

The following two propositions present conditions that are equivalent to hav-
ing a certain vanishing dimension for elements of the Grothendieck space GIf(X).
There are similar results for elements of the Grothendieck space GPf(X); see [11,
Proposition 23 and 24].

5.5. Proposition. Let X be a specialization-closed subset of Spec R, and let β ∈
GIf(X). Then the following conditions are equivalent.

(i) vdimβ 6 0.
(ii) Hom(γ, β) = 0 for all γ ∈ GDf

�
(Xc) with dim γ < codimX.

(iii) β = 0 in GIf(X′) for any specialization-closed subset X′ of Spec R with

X ⊆ X′ and codimX′ < codimX.

(iv) β = 0 in GIf(X′) for any specialization-closed subset X′ of Spec R with

X ⊆ X′ and codimX′ = codimX− 1.

Proof. By definition (i) is equivalent to (ii), and Proposition 4.3 in conjunction
with Remark 5.2 shows that (i) implies (iii). Clearly (iii) is stronger than (iv),
and (iv) in conjunction with Proposition 5.4 implies (ii). �

5.6. Proposition. Let X be a specialization-closed subset of Spec R, let β ∈ GIf(X),
and let u be a non-negative integer. Then the following conditions are equivalent.

(i) vdimβ 6 v.
(ii) Hom(γ, β) = 0 for all γ ∈ GDf

�
(Xc) with dim γ < codimX− v.

(iii) β = 0 in of GIf(X′) for any specialization-closed subset X′ of Spec R with

X ⊆ X′ and codimX′ < codimX− u.

(iv) β = 0 in GIf(X′) for any specialization-closed subset X′ of Spec R with

X ⊆ X′ and codimX′ = codimX− v − 1.

Proof. The structure of the proof is similar to that of Proposition (5.5). �

6. Grothendieck spaces in prime characteristic

According to [11, Theorem 19] the endomorphism ΦX on GPf(X) is diagonaliz-
able; the precise statement is recalled in the next theorem. This section establishes
that the endomorphism ΨX on GIf(X) is also diagonalizable; the precise statement
is Theorem 6.2 below.

6.1. Theorem. Assume that R is complete of prime characteristic p and with per-

fect residue field, and let X be a specialization-closed subset of Spec R. If α is an

element in GPf(X) and u is a non-negative integer with u > vdimα, then

(puΦX − id) ◦ · · · ◦ (pΦX − id) ◦ (ΦX − id)(α) = 0,

and there exists a unique decomposition

α = α(0) + · · ·+ α(u)
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in which each α(i) is either zero or an eigenvector for ΦX with eigenvalue p−i. The

elements α(i) can be computed according to the formula




α(0)

...

α(u)


 =




1 1 · · · 1
1 p−1 · · · p−u

...
...

. . .
...

1 p−u · · · p−u2




−1


α
ΦX(α)

...

Φu
X(α)


 ,

and may also be recursively obtained as

α(0) = lim
e→∞

Φe
X(α) and α(i) = lim

e→∞
pieΦe

X(α− (α(0) + · · ·+ α(i−1))).

6.2. Theorem. Assume that R is complete of prime characteristic p and with per-

fect residue field, and let X be a specialization-closed subset of Spec R. If β is an

element in GIf(X) and v is a non-negative integer with v > vdimβ, then

(pvΨX − id) ◦ · · · ◦ (pΨX − id) ◦ (ΨX − id)(β) = 0,

and there exists a unique decomposition

β = β(0) + · · ·+ β(v),

in which each β(i) is either zero or an eigenvector for ΨX with eigenvalue p−i. The

elements β(i) can be computed according to the formula

(6.2.1)




β(0)

...

β(u)


 =




1 1 · · · 1
1 p−1 · · · p−v

...
...

. . .
...

1 p−v · · · p−v2




−1


β
ΨX(β)

...

Ψv
X(β)


 ,

and may also be recursively obtained as

β(0) = lim
e→∞

Ψe
X(β) and β(i) = lim

e→∞
pieΨe

X(β − (β(0) + · · ·+ β(i−1))).

Proof. On the injective Grothendieck space GIf(X), the identities described in
Lemma 2.11 imply that we have the following commutative diagram.

GPf(X)
Φn

X

∼=
//

(−)† ∼=

��

GPf(X)
OO

(−)†∼=

GIf(X)
Ψn

X // GIf(X)

In particular,

ΨX(−) = (−)† ◦ ΦX ◦ (−)†.

By Remark 5.3, we have v > vdimβ = vdimβ†, so Theorem 6.1 and the above
identity yields that

(pvΨX − id) ◦ · · · ◦ (pΨX − id) ◦ (ΨX − id)(β) = 0.(6.2.2)

Applying Ψe−v
X to (6.2.2) results in a recursive formula to compute Ψe+1

X (β) from

Ψe
X(β), . . . , Ψe−v

X (β). The characteristic polynomial for the recursion is

(pvx− 1) · · · (px− 1)(x− 1),



DUALITIES AND INTERSECTION MULTIPLICITIES 81

which has v + 1 distinct roots 1, p−1, . . . , p−v. Consequently, there exist elements
β(0), . . . , β(v) such that

Ψe
X(β) = β(0) + p−eβ(1) + · · ·+ p−veβ(v),

where each β(i) is an eigenvector for ΨX with eigenvalue p−i. Setting e = 0 ob-
tains the decomposition β = β(0) + · · · + β(v), and solving the system of linear
equations obtained by setting e = 0, . . . , v shows (6.2.1); observe that the matrix is
the Vandermonde matrix on 1, p−1, . . . , p−v, which is invertible. The formula also
immediately shows that lime→∞ Ψe(β) = β(0) and that

lim
e→∞

pieΨe
X(β − (β(0) + · · ·+ β(i−1))) = lim

e→∞
pieΨe

X(β(i) + · · ·+ β(v))

= lim
e→∞

(β(i) + · · ·+ p−(v−i)eβ(v))

= β(i).

This concludes the argument. �

6.3. Proposition. Assume that R is a complete ring of prime characteristic p
and with perfect residue field, and let X be a specialization-closed subset of Spec R.

Consider the following diagram.

ΦX

##
GPf(X)

(−)† //

D⊗−

))
GIf(X)

(−)†
oo

Hom(D,−)

ii
ΨX

{{

For the Grothendieck space GIf(X), we have the following identities.

ΨX(−) = ΦX(−†)† = D ⊗ ΦX(Hom(D,−)).

(−)(i) = (−)†(i)† = D ⊗ (Hom(D,−)(i)).

Proof. The formulas in the first line are an immediate consequence of Lemma 2.11.
Let β be an element in GIf(X). Using the decomposition in GPf(X) from Theo-
rem 6.1, we can write

β = β†† = β†(0)† + · · ·+ β†(v)†,

and since

ΨX(β†(i)†) = ΦX(β†(i))† = p−iβ†(i)†,

we learn from the uniqueness of the decomposition that β(i) = β†(i)†. This proves
the first equality in the second line. The last equality follows by similar considera-
tions. �

6.4. Remark. In [11, Remark 21] it is established that the Dutta multiplicity is
computable. Employing Theorems 6.1 and 6.2 together with the fact from Proposi-
tion 4.7 that the induced Hom-homomorphism on Grothendieck spaces is continuous
in both variables, it follows, as will be shown below, that the two analogs of Dutta
multiplicity are also computable.

Let X and Y be finite complexes. Set X = SuppX and Y = Supp Y , and assume
that X ∩Y = {m} and dim X + dim Y 6 dimR. Then, in the case where Y is in
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If(R), the multiplicity ξ∞(X, Y ) can be identified via (4.4.1) with the element

lim
e→∞

Hom([X ]Df

�
(Yc), Ψ

e
Y(Y )) = Hom([X ]Df

�
(Yc), lim

e→∞
Ψe

Y(Y ))

= Hom([X ]Df

�
(Yc), [Y ]

(0)

If (Y)
),

whereas, in the case where X is in Pf(R), the multiplicity ξ∞(X, Y ) can be identified
via (4.4.1) with the element

lim
e→∞

Hom(Φe
X(X), [Y ]Df

�
(Xc)) = Hom( lim

e→∞
Φe

X(X), [Y ]Df

�
(Xc))

= Hom([X ]
(0)

Pf (X)
, [Y ]Df

�
(Xc)).

The formulas in Theorems 6.1 and 6.2 now yield formulas for ξ∞(X, Y ) and ξ∞(X, Y )
as presented in the corollary below.

6.5. Corollary. Assume that R is a complete ring of prime characteristic p and

with perfect residue field. Let X and Y be finite complexes with

SuppX ∩ Supp Y = {m} and dim(Supp X) + dim(Supp Y ) 6 dimR.

When Y ∈ I
f(R), letting v denote the vanishing dimension of [Y ]If (SuppY ) and

setting t = codim(SuppY ), we have

ξ∞(X, Y ) =
(
1 0 · · · 0

)




1 1 · · · 1
pt pt−1 · · · pt−v

...
...

. . .
...

pvt pv(t−1) · · · pv(t−v)




−1


ξ(X, Y )
ξ(X,RG(Y ))

...

ξ(X,RGv(Y ))


 ,

and when X ∈ Pf(R), letting u denote the vanishing dimension of [X ]Pf (SuppX) and

setting s = codim(SuppX), we have

ξ∞(X, Y ) =
(
1 0 · · · 0

)




1 1 · · · 1
ps ps−1 · · · ps−u

...
...

. . .
...

pus pu(s−1) · · · pu(s−u)




−1


ξ(X, Y )
ξ(LF (X), Y )

...

ξ(LFu(X), Y )


 .

Thus, it is possible to calculate ξ∞(X, Y ) and ξ∞(X, Y ) as Q–linear combinations

of ordinary Euler forms; in particular, they are rational numbers.

Note that the above corollary also can be obtained directly from [11, Remark 21]
by employing Lemma 2.11 and the formulas in (3.2.1).

6.6. Remark. Let X and X′ be specialization-closed subsets of Spec R such that
X ⊆ X′. Set s = codimX− codimX′ and consider the inclusion homomorphism

(−) : GI
f(X)→ GI

f(X′).

Pick an element β ∈ GIf(X), and apply the convention that β(t) = 0 for all negative
integers t. It follows immediately that

ΨX′(β) = psΨX(β),
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and employing Theorem 6.2 we obtain the identity β(i) = β
(i−s)

. The situation
may be visualized as follows

GIf(X) ∋ β

��

= β(0) + · · · + β(s)

xxqq
q
q
q
q
q
q
q
q
q
q

+ β(s+1)

xxpp
p
p
p
p
p
p
p
p
p
p

+ · · · + β(v)

xxqq
q
q
q
q
q
q
q
q
q

GI
f(X′) ∋ β = β

(0) + β
(1) + · · · + β

(v−s)
.

There are similar results for elements α ∈ GP
f(X); see [11, Remark 20].

The following two propositions characterize vanishing dimension for elements
of the Grothendieck space GIf(X). They should be read in parallel with Propo-
sitions 5.5 and 5.6. There are similar results for the Grothendieck space GPf(X);
see [11, Proposition 23 and 24].

6.7. Proposition. Assume that R is complete of prime characteristic p and with

perfect residue field. Let X be a specialization-closed subset of Spec R and let β ∈
GIf(X). The following are equivalent.

(i) β satisfies vanishing.

(ii) vdimβ 6 0.
(iii) β = β(0).

(iv) β = ΨX(β).
(v) β = Ψe

X(β) for some e ∈ N.

(vi) β = lime→∞ Ψe
X(β).

Proof. By definition (i) and (ii) are equivalent, and from Theorem 6.2 it follows
that (ii) implies (iii). Moreover, Theorem 6.2 shows that the four conditions (iii)–
(vi) are equivalent. Finally, condition (iii) implies condition (i) through a reference
to Remark 6.6 and Proposition 5.5. �

6.8. Proposition. Assume that R is complete of prime characteristic p and with

perfect residue field. Let X be a specialization-closed subset of Spec R, let β ∈ GIf(X)
and let v be a non-negative integer. The following are equivalent.

(i) vdimβ 6 v.
(ii) β = β(0) + · · ·+ β(v).

(iii) (pvΨX − id) ◦ · · · ◦ (pΨX − id) ◦ (ΨX − id)(β) = 0.

Proof. From Theorem 6.2 it follows that (i) implies (ii) which is equivalent to (iii).
Since β(i) 6= 0 implies vdimβ(i) = i by Remark 6.6 and Proposition 5.6, it follows
that (ii) implies (i). �

6.9. Proposition. Assume that R is complete of prime characteristic p and with

perfect residue field. Let X and Y be specialization-closed subsets of Spec R such

that X∩Y = {m} and dimX+dimY 6 dimR, and set e = dimR−(dim X+dimY).
If (σ, τ) is a pair of elements from

GP
f(X)×GP

f(Y), GP
f(X)×GI

f(Y) or GI
f(X)×GP

f(Y),

so that σ ⊗ τ is a well-defined element of GPf(m) or GIf(m), then

(6.9.1) (σ ⊗ τ)(i) =
∑

m+n=i+e

σ(m) ⊗ τ (n).
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If instead (σ, τ) is a pair of elements from

GP
f(X)×GP

f(Y), GP
f(X)×GI

f(Y) or GI
f(X)×GI

f(Y),

so that Hom(σ, τ) is a well-defined element of GPf(m) or GIf(m), then

Hom(σ, τ)(i) =
∑

m+n=i+e

Hom(σ(m), τ (n)).

Proof. We will verify that (6.9.1) holds in the case where (σ, τ) is pair of elements
from GPf(X)×GPf(Y). The verification of the remaining statements is similar.

It suffices to argue that the element

α =
∑

m+n=i+e

σ(m) ⊗ τ (n) ∈ GP
f(m)

is an eigenvector for Φm = ΦX∩Y with eigenvalue p−i. We compute

Φm(α) =
∑

m+n=i+e

p− dim RFm(σ(m) ⊗ τ (n))

= p− dim R
∑

m+n=i+e

FX(σ(m))⊗ FY(τ (n))

= p− dim R
∑

m+n=i+e

pcodimXΦX(σ(m))⊗ pcodim YΦY(τ (n))

= p−i
∑

m+n=i+e

σ(m) ⊗ τ (n) = p−iα.

Here, all equalities but the second are propelled only by definitions. The second
equality follows from Proposition 2.13. �

In [11], the concept of “numerical vanishing” is introduced for elements α of
the Grothendieck space GPf(X). We here repeat the definition and extend it to
elements β in the Grothendieck space GIf(X).

6.10. Definition. Assume that R is complete of prime characteristic p and with
perfect residue field, and let X be a specialization-closed subset of Spec R. An ele-
ment α ∈ GPf(X) is said to satisfy numerical vanishing if the images in GDf

�
(m) of

α and α(0) coincide. An element β ∈ GIf(X) is said to satisfy numerical vanishing if
the images in GDf

�
(m) of β and β(0) coincide. The ring R is said to satisfy numer-

ical vanishing if all elements of the Grothendieck space GPf(X) satisfy numerical
vanishing for all specialization-closed subsets X of Spec R.

6.11. Remark. R satisfies numerical vanishing precisely when all elements of the
Grothendieck space GI

f(X) satisfy numerical vanishing for all specialization-closed
subsets X of Spec R. To see this, simply note that, by Proposition 6.3, the element
β in GIf(X) satisfies numerical vanishing if and only if the corresponding element β†

in GPf(X) does. This observation allows us in the following proposition to present
an injective version of [11, Remark 28].

6.12. Proposition. Assume that R is complete of prime characteristic p and with

perfect residue field. A necessary and sufficient condition for R to satisfy numerical

vanishing is that all element of GIf(m) satisfy numerical vanishing: that is, that

χ(RG(Y )) = pdim Rχ(Y )
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for all complexes Y ∈ If(m). If R is Cohen–Macaulay, GIf(m) is generated by

modules, and hence a necessary and sufficient condition for R to satisfy numerical

vanishing is that

lengthG(N) = pdim R lengthN

for all modules N with finite length and finite injective dimension.

Proof. The proposition follows immediately from [11, Remark 28] by applying the
dagger duality isomorphism between GPf(m) and GIf(m) and by noting that (−)†

takes a module in Pf(m) to a module in If(m) and vice versa. �

7. Self-duality

Let X be a specialization-closed subset of Spec R, and let K be a Koszul complex
in Pf(X) on codimX elements. It is a well-know fact that Koszul complexes are “self-
dual” in the sense that K ≃ Σcodim XK∗. In particular, for the element α = [K]Pf (X)

in GPf(X), we have

α = [Σcodim XK∗]Pf (X) = (−1)codimX[K∗]Pf (X) = (−1)codim Xα∗.

Proposition 7.4 below shows that this feature is displayed for all elements that
satisfy vanishing.

7.1. Definition. Let X be a specialization-closed subset of Spec R and consider an
element α ∈ GPf(X) and an element β ∈ GIf(X). If

α = (−1)codim Xα∗,

we say that α is self-dual, and if all elements in GPf(X) for all specialization-closed
subsets X of Spec R are self-dual, we say that R satisfies self-duality. Moreover,
if the above equality holds after an application of the inclusion homomorphism
GPf(X)→ GDf

�
(X) so that

α = (−1)codimXα∗

in GDf
�

(X), we say that α is numerically self-dual, and if all elements in GPf(X)
for all specialization-closed subsets X of Spec R are numerically self-dual, we say
that R satisfies numerical self-duality.

Similarly, if

β = (−1)codim Xβ⋆,

we say that β is self-dual, and if the above equality holds after an application of
the inclusion homomorphism GIf(X)→ GDf

�
(X) so that

β = (−1)codimXβ⋆

in GDf
�

(X), we say that β is numerically self-dual.

7.2. Remark. The commutativity of the star and dagger functors shows that an
element β ∈ GIf(X) is self-dual if and only if the corresponding element β† ∈ GPf(X)
is self-dual. Thus, R satisfies self-duality if and only if all elements in GIf(X) for
all specialization-closed subsets X of Spec R are self-dual. A similar remark holds
for numerical self-duality.

7.3. Proposition. Let X be a specialization-closed subset of Spec R, let α ∈ GPf(X)
and let β ∈ GIf(X). Then,

vdimα∗ = vdimα and vdimβ⋆ = vdimβ.
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If, in addition, R is complete of prime characteristic p and with perfect residue

field, we have

ΦX(α∗) = ΦX(α)∗ and ΨX(β⋆) = ΨX(β)⋆.

In particular, for all integers i, we have

(α∗)(i) = (α(i))∗ and (β⋆)(i) = (β(i))⋆.

Proof. The formulas for vanishing dimension follow from (3.2.1), since the dagger
functor does not change the dimension of a complex. The second pair of formulas
follow immediately from the commutativity of the star and Frobenius functors;
see 2.10. Thus, it follows that

ΦX(α(i)∗) = ΦX(α(i))∗ = p−iα(i)∗.

That is to say, α(i)∗ is an eigenvector for ΦX with eigenvalue p−i. Setting u =
vdimα, the decomposition

α∗ = (α(0) + · · ·+ α(u))∗ = α(0)∗ + · · ·+ α(u)∗

now shows that α∗(i) = α(i)∗. A similar argument applies for β. �

7.4. Proposition. Let X be a specialization-closed subset of Spec R. If an element

α ∈ GPf(X) satisfies vanishing, then α is self-dual, and if an element β ∈ GIf(X)
satisfies vanishing, then β is self-dual. Moreover, R satisfies vanishing if and only

if R satisfies self-duality, and if R satisfies numerical self-duality, then R satisfies

weak vanishing.

Proof. We shall prove that, if α satisfies vanishing, then α is self-dual. The corre-
sponding statement for β follows from dagger duality, since β is self-dual exactly
when β† is and satisfies vanishing exactly when β† does.

By Proposition 4.3, it suffices to assume that α = [X ]Pf(X) for a complex X from

Pf(X). We are required to establish the identity

(7.4.1) χ(X∗ ⊗L

R −) = (−1)codimXχ(X ⊗L

R −)

viewed as metafunctions on D
f
�

(Xc). First, we translate this question into showing
that, if R is a domain and X equals m, then

χ(X∗) = (−1)dim Rχ(X)

for all complexes X in Pf(m) such that [X ]Pf (m) satisfies vanishing.

1◦ By assumption, α satisfies vanishing, and Proposition 7.3 implies that so does
α∗. From Proposition 4.3 we see that, in order to show (7.4.1), it suffices to test
with modules of the form R/p for prime ideals p from Xc with dimR/p = codimX.
Consider the following computation.

X∗ ⊗L

R R/p = RHomR(X, R)⊗L

R R/p

≃ RHomR(X, R/p)

≃ RHomR(X,RHomR/p(R/p, R/p))

≃ RHomR/p(X ⊗
L

R R/p, R/p).

Here, the first isomorphism follows from (Tensor-eval); the second is trivial; and
the third is due to (Adjoint). To keep notation simple, let

(−)∗R/p = RHomR/p(−, R/p).
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We are required to demonstrate that

χ(X∗ ⊗L

R R/p) = (−1)dim R/pχ(X ⊗L

R R/p),

and since the Euler characteristics χR and χR/p are identical on all finite R/p–
complexes with finite length homology, the computations above imply that we need
to demonstrate that

χR/p((X ⊗L

R R/p)∗R/p) = (−1)dim R/pχR/p(X ⊗L

R R/p).

Having changed rings from R to the domain R/p, we need to verify that the element
[X⊗L

RR/p]Pf (m/p) in the Grothendieck space GP
f(m/p) over R/p satisfies vanishing.

But this follows from the fact that α = [X ]Pf (X) satisfies vanishing, since

χR/p((X ⊗L

R R/p)⊗L

R/p R/a) = χR(X ⊗L

R R/a) = 0.

for all ideals a ∈ V (p) with dimR/a < dim R/p = codimX. Thus, it suffices to
show that

χ(X∗) = (−1)dim Rχ(X)

when R is a domain, X equals {m} and [X ]Pf (m) satisfies vanishing.

2◦ Without loss of generality, we may assume that R is complete; in particular,
we may assume that R admits a normalized dualizing complex D. Letting Y = R
in (3.2.1) and applying Proposition 4.3, it follows that

χ(X∗) = χ(X∗, R) = χ(X, D) = χ(X, H(D)).

According to 2.6 we may assume that the modules in the dualizing complex D have
the form

(7.4.2) Di =
⊕

dimR/p=i

ER(R/p).

Let d = dimR and observe that, since [X ]Pf (m) satisfies vanishing and

dim Hi(D) 6 dimDi < d for all i < d,

it follows that

χR(X∗) = χR(X, Σd Hd(D)) = (−1)dχR(X, Hd(D)).

Since Hd(D) is a submodule of Dd, there is a short exact sequence

(7.4.3) 0→ Hd(D)→ Dd → Q→ 0,

where Q is a submodule of Dd−1, so that dim Q 6 dimDd−1 6 d − 1, where the
last inequality follows from (7.4.2). Since R is assumed to be a domain,

Dd = E(R) = R(0),

so localizing the short exact sequence (7.4.3) at the prime ideal (0), we obtain an
isomorphism

Hd(D)(0)
∼=
−→ R(0).

This lifts to an R–homomorphism, producing an exact sequence of finitely generated
R–modules

0→ K → Hd(D)→ R→ C → 0,



88 ANDERS J. FRANKILD AND ESBEN BISTRUP HALVORSEN

where K and C are not supported at the prime ideal (0). Thus, dimK and dimC
are strictly smaller than dimR. Consequently, since [X ]Pf (X) satisfies vanishing and
the intersection multiplicity is additive on short exact sequences,

χ(X∗) = (−1)dχ(X, Hd(D))

= (−1)d(χ(X, K) + χ(X, R)− χ(X, C))

= (−1)dχ(X),

which concludes the argument.

3◦ We have now shown that, if R satisfies vanishing, then R satisfies self-duality.
To see the other implication, assume that R satisfies self-duality and let α be
an element of GPf(X) for some specialization-closed subset X of Spec R. For any
specialization-closed subset X′ of Spec R with X ⊆ X′ and codimX′ = codimX− 1,
we now have, for the image α of α in GP

f(X′), that

(−1)codim X′

α∗ = α = (−1)codim Xα∗ = (−1)codimXα∗,

which means that α = 0. Thus, by Proposition 5.5, α satisfies vanishing, and since
α was arbitrary, R must satisfy vanishing. Considering instead the image α of α
in GDf

�
(X′) and applying Proposition 5.4, the same argument shows that, if α is

numerically self-dual, then α satisfies weak vanishing. Thus, if R satisfies numerical
self-duality, then R satisfies weak vanishing. �

7.5. Theorem. Assume that R is complete of prime characteristic p and with per-

fect residue field. Let X be a specialization-closed subset of Spec R, let α ∈ GPf(X)
and let β ∈ GIf(X). Then, for all non-negative integers i

(7.5.1) (α∗)(i) = (−1)i+codim Xα(i) and (β⋆)(i) = (−1)i+codim Xβ(i).

Consequently, if u is the vanishing dimension of α, then

(−1)codim Xα∗ = α(0) − α(1) + α(2) − · · ·+ (−1)uα(u),

and if v is the vanishing dimension of β, then

(−1)codim Xβ⋆ = β(0) − β(1) + β(2) − · · ·+ (−1)vβ(v).

Proof. The last two statements of the proposition are immediate consequences
of (7.5.1). We shall prove the formula for α in (7.5.1); the proof of the formula for
β is similar.

The proof is by induction on i. For i = 0, since α(0) satisfies vanishing, the
statement follows from Propositions 7.3 and 7.4, since

(α∗)(0) = (α(0))∗ = (−1)codimXα(0).

Next, assume that i > 0 and that the statement holds for smaller values of i.
Choose an arbitrary specialization-closed subset X′ of Spec R such that X ⊆ X′ and
codimX′ = codimX− 1, and consider the element

σ = (α∗)(i) − (−1)codim X+iα(i).

We want to show that σ = 0. Applying the automorphism ΦX, we get by Proposi-
tion 7.3 that

ΦX(σ) = ΦX((α∗)(i))− (−1)codim X+iΦX(α(i))

= p−i((α∗)(i) − (−1)codimX+iα(i)) = p−iσ,
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showing that σ is an eigenvector for ΦX with eigenvalue p−i; in particular, we have
σ = σ(i). Denote by σ̄ the image of σ in GPf(X′). Then, by [11, Remark 20] (which
corresponds to Remark 6.6 but for elements of G(X)) and the induction hypothesis
we obtain

σ = (α∗)(i) − (−1)codimX+iα(i)

= α∗(i−1) − (−1)codim X′+(i−1)α(i−1) = 0.

Consequently, by [11, Proposition 23] (which corresponds to Proposition 5.5 but
for elements of GPf(X)), σ must satisfy vanishing: that is, σ = σ(0). But then
σ(i) = σ = σ(0) forcing σ = 0. �

7.6. Remark. Assume that R is complete of prime characteristic p and with perfect
residue field. Let X be a specialization-closed subset of Spec R and consider an
element α ∈ GPf(X). In view of Theorem 6.1 we may decompose α into eigenvectors

α = α(0) + α(1) + α(2) + · · ·+ α(u)

where u is the vanishing dimension of α. Comparing it with the decomposition of
α∗ from Theorem 7.5

(−1)codimXα∗ = α(0) − α(1) + α(2) − · · ·+ (−1)uα(u)

shows that α is self-dual if and only if α(i) = 0 in GPf(X) for all odd i: that is, if
and only if

α = α(0) + α(2) + · · ·

in GPf(X). Similarly, α is numerically self-dual if and only if α(i) = 0 in GDf
�
(X)

for all odd i: that is, if and only if

α = α(0) + α(2) + · · ·

in GDf
�

(X). Similar considerations apply for elements β ∈ GIf(X).

In Proposition 7.4, we proved that vanishing and self-duality are equivalent for
R and that numerical self-duality implies weak vanishing. The following propo-
sition shows that, in characteristic p, numerical vanishing logically lies between
self-duality and numerical self-duality.

7.7. Proposition. Assume that R is complete of prime characteristic p and with

perfect residue field. For the following conditions, each condition implies the next.

In fact, (i) and (ii) are equivalent.

(i) R satisfies vanishing.

(ii) R satisfies self-duality.

(iii) R satisfies numerical vanishing.

(iv) R satisfies numerical self-duality.

(v) R satisfies weak vanishing.

Proof. The equivalence of (i) and (ii) and the fact that (iv) implies (v) is contained
in Proposition 7.4. The fact that (i) implies (iii) is contained in [11, Proposition 27],
and Remark 7.6 makes it clear that (iii) implies (iv). �

7.8. Remark. The constructions by Miller and Singh [15] shows that there can
exist elements satisfying self-duality but not vanishing as well as elements satis-
fying numerical self-duality but not numerical vanishing; see [11, Example 35] for
further details on this example. Roberts [20] has shown the existence of a ring
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satisfying weak vanishing but not numerical self-duality; see [11, Example 32] for
further details. Thus, all the implications except the equivalence in the preceding
proposition are strict.

7.9. Proposition. R satisfies vanishing precisely when

(7.9.1) α⊗ γ = (−1)codim X Hom(α, γ)

in GDf
�
(m) for all specialization-closed subsets X of Spec R, all α ∈ GPf(X) and all

γ ∈ GD
f
�
(Xc), and R satisfies numerical self-duality precisely when (7.9.1) holds in

GDf
�
(m) when requiring γ ∈ GPf(Xc) instead. In other words, R satisfies vanishing

precisely when the intersection multiplicity and the Euler form satisfy the identity

(7.9.2) χ(X, Y ) = (−1)codim(SuppX)ξ(X, Y )

for all complexes X ∈ Pf(R) and Y ∈ Df
�

(R) with

SuppX ∩ Supp Y = {m} and dim(Supp X) + dim(Supp Y ) 6 dimR,

and R satisfies numerical self-duality precisely when (7.9.2) holds when restricting

to complexes Y ∈ P
f(R).

Proof. Employing Proposition 4.9 it is readily verified that (7.9.1) is equivalent to

α⊗ γ = (−1)codim Xα∗ ⊗ γ.

However, this identity is satisfied for all γ ∈ GDf
�

(Xc) precisely when α is self-dual.
From Proposition 7.4 it follows that R satisfies vanishing if and only if (7.9.1)
holds for all specialization-closed subsets X of Spec R, all α ∈ GPf(X) and all
γ ∈ GD

f
�
(Xc).

On the other hand, applying the above argument to the case where γ ∈ GPf(Xc)
shows that R satisfies numerical self-duality presily when (7.9.1) is satisfied for all
specialization-closed subsets X of Spec R, all α ∈ GPf(X) and all γ ∈ GPf(Xc).

Assume next that (7.9.1) holds in GD
f
�

(m) for all specialization-closed subsets

X of Spec R, all α ∈ GPf(X) and all γ ∈ GDf
�
(Xc). If X ∈ Pf(R) and Y ∈ Df

�
(R)

are complexes such that

(7.9.3) SuppX ∩ SuppY = {m} and dim(Supp X) + dim(Supp Y ) 6 dim R,

the identity (7.9.2) follows by setting

X = SuppX, α = [X ]Pf (X) and γ = [Y ]Df

�
(Xc)

in (7.9.1). Conversely, if (7.9.2) holds for all complexes X ∈ Pf(R) and Y ∈ Df
�

(R)
such that (7.9.3) is satisfied, then (7.9.1) follows for all specialization-closed subsets
X of Spec R, all α ∈ GPf(X) and all γ ∈ GDf

�
(Xc), since we by Proposition 4.3, α =

r[X ]Pf (X) for an r ∈ Q and a complex X ∈ Pf(X) with codim(Supp X) = codimX.

Applying the same argument to elements γ ∈ GP
f(Xc) and complexes Y ∈ P

f(R)
proves the last part of the proposition. �

7.10. Remark. Proposition 7.9 confirms Chan’s supposition in [4], in the setting
of complexes rather than modules, that the formula in (7.9.2) is equivalent to
the vanishing conjecture. Note that, when restricting attention to complexes Y
in Pf(R), formula (7.9.2) is equivalent to numerical self-duality, which implies the
weak vanishing conjecture but need not be equivalent to it. This negatively answers
the question of whether the restriction of the formula in (7.9.2) to complexes Y in
P

f(R) is equivalent to the weak vanishing conjecture.
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We already know that, if R is regular, then R satisfies vanishing, whereas, if
R is a complete intersection (which is complete of prime characteristic p and with
perfect residue field), then R satisfies numerical vanishing; see [11, Example 33].
The authors believe that this line of implications can be continued, at least in the
characteristic p case, with the claim that, if R is Gorenstein, R satisfies numerical
self-duality, so that we have the following implications of properties of R in the case
where R is complete of prime characteristic p and with perfect residue field.

regular +3

��

vanishing

��

self-duality+3ks

complete intersection +3

��

numerical vanishing

��
Gorenstein +3_____

_____ numerical self-duality

This supposition complies with the following proposition.

7.11. Proposition. Assume that R is Gorenstein and let X be a specialization-

closed subset of Spec R. If dimX 6 2, then all elements of GPf(X) are numerically

self-dual. In particular, if dimR 6 5, then R satisfies numerical self-duality.

Proof. Let X be a specialization-closed subset of Spec R with dimX 6 2 and con-
sider elements α in GPf(X) and β in GPf(Xc). Then codimXc 6 2, and therefore
β satisfies vanishing by Proposition 5.4; in particular,

β∗ = (−1)codim Xc

β = (−1)dim R−codim Xβ.

When R is Gorenstein, the complex D = Σ
dim RR is a normalized dualizing complex

for R forcing (−)† = Σdim R(−)∗. Thus, applying Proposition 4.9 the identity

α∗ ⊗ β = α⊗ β† = (−1)dim Rα⊗ β∗ = (−1)codim Xα⊗ β

holds in GDf
�
(m). This proves that α∗ = (−1)codimXα so that α is numerically

self-dual.
If dimR 6 5 then any specialization-closed subset X of Spec R must either

satisfy codimX 6 2, in which case vanishing holds in GPf(X) by Proposition 5.4,
or dim X 6 2. In either case, all elements of GPf(X) are numerically self-dual. �

Since numerical self-duality implies weak vanishing, the preceding proposition
shows that weak vanishing holds for any Gorenstein ring of dimension at most 5.
Dutta [7] has already proven this fact.
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GROTHENDIECK GROUPS FOR CATEGORIES OF COMPLEXES

HANS-BJØRN FOXBY AND ESBEN BISTRUP HALVORSEN

Abstract. The new intersection theorem states that, over a Noetherian local
ring R, for any non-exact complex concentrated in degrees n, . . . , 0 in the cat-
egory P(length) of bounded complexes of finitely generated projective modules
with finite-length homology, we must have n ≥ d = dimR.

One of the results in this paper is that the Grothendieck group of P(length)
in fact is generated by complexes concentrated in the minimal number of de-
grees: if Pd(length) denotes the full subcategory of P(length) consisting of com-
plexes concentrated in degrees d, . . . , 0, the inclusion Pd(length) → P(length)
induces an isomorphism of Grothendieck groups. When R is Cohen–Macaulay,
the Grothendieck groups of Pd(length) and P(length) are naturally isomor-
phic to the Grothendieck group of the category M(length) of finitely generated
modules of finite length and finite projective dimension. This and a family of
similar results are established in this paper.

1. Introduction

In this paper, we will prove the existence of isomorphisms between Grothendieck
groups of various related categories of complexes. The paper presents a family of
results that can all be formulated in a similar way. This introduction discusses only
one of the results (as did the abstract); the remaining results can be obtained by
replacing the property of “having finite length” with other properties of modules—
see the next section for further details.

Let R be a commutative, Noetherian, local ring of dimension d. Let P(length) de-
note the category of bounded complexes of finitely generated projective R-modules
and with finite-length homology, and let Pd(length) denote the full subcategory
of complexes concentrated in degrees d, . . . , 0. We shall denote the Grothendieck
groups of these two categories by K0P(length) and K0Pd(length), respectively. The
inclusion of categories Pd(length) → P(length) naturally induces a homomorphism

Id : K0Pd(length) → K0P(length),

given by Id([X ]) = [X ] for a complex X ∈ Pd(length); here, the two [X ]’s are
different, since one is an element of K0Pd(length) and the other is an element of
K0P(length). One of the results of this paper (Corollary 6) is that the above is
an isomorphism. This is particularly interesting when comparing with the new
intersection theorem (cf. [6, Theorem 13.4.1]), which states that, if a complex in
P(length) is non-exact and concentrated in degrees n, . . . , 0, then n ≥ d. Thus,
the Grothendieck group K0P(length) is generated by complexes concentrated in the
smallest possible number of degrees.

Next let M(length) denote the category of R-modules of finite length and fi-
nite projective dimension. We denote the Grothendieck group of M(length) by
K0M(length). Any module in M(length) has a projective resolution in P(length),
and there is a natural homomorphism

R : K0M(length) → K0P(length),
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given by R([M ]) = [X ] for a module M ∈ M(length) with projective resolution
X ∈ P(length).

Now, suppose further that R is Cohen-Macaulay. The acyclicity lemma by Pesk-
ine and Szpiro (see [6, Theorem 4.3.2]) implies that the complexes in Pd(length) are
acyclic: that is, they are projective resolutions of their zeroth homology module.
Taking the homology of a complex induces a natural homomorphism

Hd : K0Pd(length) → K0M(length),

given by Hd([X ]) = [H0(X)] for a complex X ∈ Pd(length).
The three homomorphisms that we have introduced so far fit together in a com-

mutative diagram:

K0Pe(length)
Id //

Hd ))

K0P(length)

K0M(length)

R

55llllllllllllll

Here, Hd is dotted to emphasize the fact that it required an extra assumption to be
defined. The fact that Id is an isomorphism yields that so are R and Hd, whenever
defined (Corollary 11).

When replacing the property of “having finite length” with other module prop-
erties, the same picture will emerge. The next section presents all the results of this
paper in a general way—including the results mentioned in this introduction.

Historical note: This paper builds on the first author’s incomplete preprint [2]
whose results have been generalized and completely proven by the second author.
The paper will become part of the second author’s Ph.D. thesis. The results are
generalizations of a result by Roberts and Srinivas [7, Proposition 2]

2. Grothendieck groups for categories of complexes

Notation. Throughout this paper, R denotes a non-trivial, unitary, commutative
ring. All modules are, unless otherwise stated, assumed to be R-modules, and all
complexes are, unless otherwise stated, assumed to be complexes of R-modules.
Modules are considered to be complexes concentrated in degree zero.

Let d be a non-negative integer and let S = (S1, . . . , Sd) be a family of multi-
plicative systems of R. A module M is said to be Si-torsion if S−1

i M = 0, and M
is said to be S-torsion if it is Si-torsion for i = 1, . . . , d. The grade of M is the
number

gradeRM = inf{n ∈ N0 |ExtnR(M,R) 6= 0}.

If M = 0, we set gradeRM = ∞. When R is Noetherian and M is non-trivial
and finitely generated, gradeRM is the maximal length of a regular sequence in
AnnRM . M is said to be d-perfect if M = 0 or gradeRM = d = pdRM .

We shall use the following abbreviations for properties of modules.

S-tor: being S-torsion;
length: having finite length;
gr ≥ d: having grade larger than or equal to d; and
d-perf: being d-perfect.

Let e be a non-negative integer, and let the symbol # denote any of the module
properties above. We define the following categories.
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M: the category of finitely generated modules of finite projective dimension;
P: the category of bounded complexes of finitely generated projective mod-

ules;
Pe: the full subcategory of P consisting of complexes concentrated in degrees

e, . . . , 0;
M(#): the full subcategory of M consisting of modules satisfying #;
P(#): the full subcategory of P consisting of complexes whose homology mod-

ules satisfy #;
Pe(#): the intersection of Pe and P(#).

So, for example, Pe(S-tor) denotes the category of complexes concentrated in
degrees e, . . . , 0 with finitely generated projective modules and S-torsion homology
modules. We will allow the symbol # to be “empty” so that M(#), P(#) and Pe(#)
also can denote M, P and Pe, respectively. Similarly, we shall occasionally write
P⋆(#), where the symbol ⋆ either denotes a non-negative integer e or is “empty”,
in which case we are back with the category P(#).

The isomorphism classes of any of the categories M(#) and P⋆(#) form a set.
We shall occasionally abuse notation and use M(#) and P⋆(#) to denote the sets
of isomorphism classes of the corresponding categories.

Definition 1. The Grothendieck group of a category M(#) is the Abelian group
K0M(#) presented by generators [M ], one for each isomorphism class in M(#), and
relations

[M ] = [L] + [N ] whenever 0 → L→M → N → 0

is a short exact sequence in M(#).
The Grothendieck group of a category P⋆(#) is the Abelian group K0P⋆(#)

presented by generators [X ], one for each isomorphism class in P⋆(#), and relations

[X ] = 0 whenever X is exact,

and
[Y ] = [X ] + [Z] whenever 0 → X → Y → Z → 0

is a short exact sequence in P⋆(#).

So, for example, K0Pe(S-tor) denotes the Grothendieck group of the category
Pe(S-tor), whereas the usual zeroth algebraic K-group of R is the group K0(R) =
K0P0: that is, the Grothendieck group of the category of P0.

In the following three propositions, we list some useful properties of Grothendieck
groups, which will be used throughout this paper. The properties can easily be
verified and are stated without proof; for more details, the reader is referred to [4,
pp. 8–10].

Proposition 2. Any element in K0M(#) can be written in the form [M ]− [M ′] for
modules M,M ′ ∈ M(#), and any element in K0P⋆(#) can be written in the form
[X ]− [X ′] for complexes X,X ′ ∈ P⋆(#). �

If X is a complex, it can be shifted n degrees to the left, thereby yielding the
complex ΣnX with modules (ΣnX)ℓ = Xℓ−n and differentials ∂ΣnX

ℓ = (−1)n∂Xℓ−n.

In the case that n = 1, the operator Σ1(−) is simply denoted by Σ(−).

Proposition 3. Suppose that X is a complex in P⋆(#) such that ΣnX is in P⋆(#).
Then [ΣnX ] = (−1)n[X ] in K0P⋆(#). �

Proposition 4. Suppose that φ : X → Y is a quasi-isomorphism in P⋆(#) such
that ΣX is in P⋆(#). Then [X ] = [Y ] in K0P⋆(#). �

Note that, since quasi-isomorphisms become identities in the Grothendieck group,
we might as well have modelled the Grothendieck groups on derived categories rather
than usual categories.
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Since Pe(#) is a subcategory of P(#), the inclusion of categories induces a natural
group homomorphism

Ie : K0Pe(#) → K0P(#)

given by Ie([X ]) = [X ] whereX ∈ Pe(#). Note that the two [X ]’s here are different:
one is an element of K0Pe(#), whereas the other is an element of K0P(#). Note
also that the fact that Ie is induced by an inclusion of the underlying categories
does not mean that Ie is injective—it only ensures that Ie is well defined.

When R is Noetherian, a module in M(#) always has a projective resolution in
P(#). It follows from Proposition 4 that different projective resolutions of the same
module always represent the same element in the Grothendieck group K0P(#).
Thus, we can, to each module M ∈ M(#) with projective resolution X ∈ P(#),
associate the element [X ] in K0P(#). Since the modules in a short exact sequences
have projective resolutions that fit together in a short exact sequence, this associa-
tion induces a group homomorphism

R : K0M(#) → K0P(#)

given by R([M ]) = [X ] where X ∈ P(#) is a projective resolution of M ∈ M(#).
As we shall see in the next section, certain additional assumptions on the ring

together with a sufficiently small choice of e can force the homology of complexes
in Pe(#) to be concentrated in degree zero and hence be modules in M(#). Thus,
in this case, we can, to every complex X ∈ Pe(#), associate the element [H(X)]
in K0M(#), where H denotes the homology functor. Since this association clearly
preserves the relations in K0Pe(#), it induces a group homomorphism

He : K0Pe(#) → K0M(#)

given by He([X ]) = [H(X)] where X ∈ Pe(#).
The homomorphisms Ie, He and R are connected in a commutative diagram as

shown below.

K0Pe(#)
Ie //

He ))

K0P(#)

K0M(#)

R

66lllllllllllll

He is here dotted to underline the fact that it required an extra assumption to be
defined. The homomorphism R always requires R to be Noetherian in order to be
defined.

Let x = (x1, . . . , xd) denote a regular sequence, and let S(x) denote the family
(S(x1), . . . , S(xd)) of multiplicative systems S(xi) = {xni | n ∈ N0}. Further, let
T denote a (single) multiplicative system such that T ∩ ZdR = ∅. In the next
section we shall prove that the homomorphisms He and R are defined under the
assumptions on e and R described in the table below.

# e assumption on R
S(x)-tor d Noetherian, local
T -tor 1 Noetherian, local
− 0 Noetherian

length dimR Noetherian, local, Cohen–Macaulay
gr ≥ d d Noetherian, local
d-perf d Noetherian, local

In this paper we will show that Ie, He and R in all but the last of the above
situations are isomorphisms and that, in the last situation, Ie and R are monomor-
phism and He is an isomorphism. These results will be derived as corollaries to the
theorem below, which shall henceforth be referred to as the “Main Theorem”. As
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the proof of the Main Theorem will show, the Grothendieck group K0Pe(#), where
# is any but the last of the properties in the table above, is, in fact, isomorphic
to K0P(#) whenever e is larger than or equal to the corresponding number in the
table and trivial otherwise.

Main Theorem. Suppose that d is a non-negative integer and that S = (S1, . . . , Sd)
is a d-tuple of multiplicative systems of R. Then the homomorphism

Id : K0Pd(S-tor) → K0P(S-tor)

given by Id([X ]) = [X ] is an isomorphism.

Note that, in the setting of the Main Theorem, there are no additional require-
ments on R, and the homomorphismsHd andR is not necessarily defined. However,
when Hd and R are defined, we can immediately infer that Hd is injective and that
R is surjective, and as it is not hard to see that Hd is surjective, it follows that all
three homomorphisms are isomorphisms.

The Main Theorem says that any element of K0P(S-tor) can be represented by
a linear combination of complexes concentrated in degrees d, . . . , 0. As we shall see,
the inverse map I−1

d : K0P(S-tor) → K0Pd(S-tor) is basically constructed from a
procedure describing how to “make complexes smaller”. When Hd is defined, the
complexes become so small that they are forced to be resolutions of modules with
projective dimension at most d.

When R is Noetherian and local, d = 1 and the multiplicative set T contains no
zero-divisors, H1 : K0P1(T -tor) → K0M(T -tor) is, as we shall see, defined and all of
I1, H1 and R are isomorphisms. So in this case, the elements of K0M(T -tor) can be
represented by elements in the form [Rn/AR], where A is an injective n×n-matrix.
Using the localization sequence

K1(R) → K1(T
−1R) → K0M(T -tor) → K0(R) → K0(T

−1R)

of algebraic K-groups, it is not hard to see that [Rn/ARn] = [R/(detA)R] in
K0M(T -tor). Thus, K0P1(T -tor) (and hence K0P(T -tor)) is in fact generated by
Koszul complexes. This property was fundamental in the proof in [3] of Serre’s
intersection conjectures in the case where the module that is not necessarily of
finite projective dimension has dimension less than or equal to one.

The rather tedious proof of the Main Theorem is postponed until Section 4. For
now, we will assume that it has been established and use it to derive all the other
results.

3. Isomorphisms between Grothendieck groups

Definition 5. If x is an element of R, S(x) denotes the multiplicative system
{xn |n ∈ N0}, and if x = (x1, . . . , xd) is a d-tuple of elements from R, S(x) denotes
the d-tuple (S(x1), . . . , S(xd)) of multiplicative systems.

We begin our collection of corollaries to the Main Theorem with the result dis-
cussed in the abstract and the introduction.

Corollary 6. If R is Noetherian and local with dimR = d, then the group homo-
morphism Id : K0Pd(length) → K0P(length) given by Id([X ]) = [X ] is an isomor-
phism.

Proof. Let x = (x1, . . . , xd) be a system of parameters, and notice that a finitely
generated module has finite length if and only if it is S(x)-torsion. Consequently,
K0P(length) = K0P(S(x)-tor) and K0Pd(length) = K0Pd(S(x)-tor), and the result
follows from the Main Theorem �
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Lemma 7. Suppose that R is Noetherian and let x = (x1, . . . , xd) be a regular se-
quence of length d > 0. Then any complex X in Pd(S(x)-tor) satisfies the condition
that its homology complex H(X) is concentrated in degree 0: that is, H(X) is a
module in M(S(x)-tor).

Proof. Let X be a non-exact complex in Pd(S(x)-tor) and let t denote the largest
integer such that Ht(X) 6= 0; this exists since H(X) 6= 0 and X is bounded. We
already know that t ≥ 0, so let us assume that t > 0 and try to reach a contradiction.

Let p be an associated prime of Ht(X). Since H(X) is S(x)-torsion, we can

find N1, . . . , Nd ∈ N such that xN1
1 , . . . , xNd

d ∈ AnnR Ht(X) ⊆ p. Consequently,
(x1/1, . . . , xd/1) is an Rp-sequence in pp, so depthRp ≥ d ≥ 1.

Now, the projective resolution

0 → (Xd)p → · · · → (Xt+1)p → (im ∂Xt+1)p → 0

of (im ∂Xt+1)p as an Rp-module shows that pdRp
(im ∂Xt+1)p ≤ d − (t + 1). From

the Auslander–Buchsbaum formula (see, for example, [1, Theorem 1.3.3]), it now
follows that

depthRp
(im ∂Xt+1)p = depthRp − pdRp

(im ∂Xt+1)p ≥ t+ 1 ≥ 2.

Since (ker ∂Xt )p is a submodule of the non-trivial free Rp-module (Xt)p which has
depthRp

(Xt)p = depthRp ≥ d ≥ 1, we must also have depthRp
(ker ∂Xt )p ≥ 1. From

the short exact sequence

0 → (im ∂Xt+1)p → (ker ∂Xt )p → (Ht(X))p → 0,

it now follows that depthRp
(Ht(X))p ≥ 1 (see, for example, [1, Proposition 1.2.9]).

This is a contradiction, however, because depthRp
(Ht(X))p = 0, since p is associated

to Ht(X). Thus, t = 0 as desired. �

Corollary 8. If R is Noetherian and local, and x = (x1, . . . , xd) is a regular se-
quence of length d > 0, then there is a commutative diagram

K0Pd(S(x)-tor)
Id //

Hd ))SSSSSSSSSSSSSS
K0P(S(x)-tor)

K0M(S(x)-tor)

R

55kkkkkkkkkkkkkk

in which Id, Hd and R are isomorphisms.

Proof. Lemma 7 shows that Id, Hd and R are well-defined homomorphisms, and
the Main Theorem states that Id is an isomorphism. Thus, we already know that
Hd is injective and R is surjective.

Now, let M be a module in M(S(x)-tor), and let us show by induction on p =
pdRM that [M ] ∈ imHd. If p ≤ d, it is clear that [M ] ∈ imH, since M in this case
has a projective resolution in Pd(S(x)-tor). So assume that p > d, and choose a
finitely generated free module F and a surjective homomorphism f : F →M . Next,
using the fact that M is S(x)-torsion, choose N1, . . . , Nd ∈ N so that xN1

1 , . . . , xNd

d ∈

AnnRM , and let F = F/(xN1
1 , . . . , xNd

d )F . The surjection f induces a surjection

f : F →M . Letting K denote the kernel of f , we then have an exact sequence

0 → K → F →M → 0,

and since pdR F = d < p = pdRM , it follows that pdRK = d−1. By construction,
F and K are S(x)-torsion, so F and K are modules in M(S(x)-tor), and the induc-
tion hypothesis yields [M ] = [F ]− [K] ∈ imHd. Consequently Hd is surjective, and
it follows that Hd as well as R are isomorphisms. �
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Corollary 8 also holds in the case d = 0, where the requirement of being S(x)-
torsion drops out, even without the assumption that R is local. We state this as a
separate corollary and leave the straightforward proof to the reader.

Corollary 9. If R is Noetherian, then there is a commutative diagram

K0(R) =K0P0
I0 //

H0
))RRRRRRRRRRRRRRRR

K0P

K0M

R

66llllllllllllllll

in which I0, H0 and R are isomorphisms. �

When R in addition is local, the Grothendieck groups in Corollary 9 are all
isomorphic to Z through the rank on K0P0. As the proof of the Main Theorem
(Theorem 42) will show, the isomorphism K0P → Z is given by taking an element
[X ] ∈ K0P to the integer

∑
ℓ∈Z

(−1)ℓ rankRXℓ, whereas the isomorphism K0M → Z
is given by taking and element [M ] ∈ K0M to the Euler characteristic χR(M),
defined as the alternating sum of the ranks in a finite free resolution of M .

The proofs of Lemma 7 and Corollary 8 in the case d = 1 clearly show that the
multiplicative system S(x) = S(x1) = {xn1 |n ∈ N0} can be replaced by any mul-
tiplicative system S containing only non-zerodivisors. This is because any element
of such a multiplicative system in itself constitutes a regular sequence of length 1.
We state this as a separate corollary.

Corollary 10. If R is Noetherian and T is a multiplicative system with T ∩ZdR =
∅, then there is a commutative diagram

K0P1(T -tor)
I1 //

H1 ))SSSSSSSSSSSSSS
K0P(T -tor)

K0M(T -tor)

R

55kkkkkkkkkkkkkk

in which I1, H1 and R are isomorphisms. �

Another special case of Corollary 8 that we would like to point out is the case
d = dimR, which is only possible when R is Cohen–Macaulay. In this case, the
property of being S-torsion is identical to the property of having finite length. The
result in this case was discussed in the abstract and the introduction, and we also
state it as a separate corollary.

Corollary 11. If R is a Noetherian, local Cohen-Macaulay ring of dimension d,
then there is a commutative diagram

K0Pd(length)
Id //

Hd ))SSSSSSSSSSSSSS
K0P(length)

K0M(length)

R

55llllllllllllll

in which Id, Hd and R are isomorphisms. �

As we shall see in Corollary 12 below, Corollary 8 can also be used to derive
results concerning the property of having grader larger than or equal to d.
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Corollary 12. If R is Noetherian and local, and d is a positive integer, then there
is a commutative diagram

K0Pd(gr ≥ d)
Id //

Hd ))TTTTTTTTTTTTTTT
K0P(gr ≥ d)

K0M(gr ≥ d)

R

55jjjjjjjjjjjjjjj

in which Id, Hd and R are isomorphisms.

Proof. If d is so large that there are no regular sequences in R of length d, then
the involved Grothendieck groups are all trivial and the theorem holds. We can
therefore assume that regular sequences of length d do exist.

If X is a complex in Pd(gr ≥ d), we can find a regular sequence x = (x1, . . . , xd)
of length d contained in the annihilator of all the homology modules of X . Then X
will be homologically S(x)-torsion, and it follows from Lemma 7 that the homology
of X is concentrated in degree 0. Consequently, Id, Hd and R are well-defined
homomorphisms.

We define an equivalence relation on the set of regular sequences, letting a regular
sequence x = (x1, . . . , xd) be equivalent to a regular sequence x′ = (x′1, . . . , x

′
d)

whenever

RadR(x1, . . . , xd) = RadR(x′1, . . . , x
′
d),

where the radical RadR I of an ideal I is the intersection of all prime ideals con-
taining I. It is clear that this, indeed, is an equivalence relation. Denote the set
of equivalence classes by E, and partially order E by reversed inclusion of radical
ideals: that is,

x 4 x′
def
⇐⇒ RadR(x1, . . . , xd) ⊇ RadR(x′1, . . . , x

′
d)

for x, x′ ∈ E. (It is of course the equivalence classes of x and x′ that belong to E,
but this unimportant technicality will be ignored here.) E = (E,4) is a directed
set, for if x and x′ are regular sequences of length d, then we can find a regular
sequence x′′ of length d contained in (x) ∩ (x′) and hence satisfying the condition
that x, x′ 4 x′′.

Now, the category M(S(x)-tor) is uniquely determined by the equivalence class
of x in E, since, for any finitely generated module M ,

M is S(x)-torsion ⇐⇒ ∀ν ∈ {1, . . . , d}∃Nν ∈ N0 : xNν
ν ∈ AnnRM

⇐⇒ (x1, . . . , xd) ⊆ RadR(AnnRM)

⇐⇒ RadR(x1, . . . , xd) ⊆ RadR(AnnRM).

Thus, we can consider the family of Grothendieck groupsK0M(S(x)-tor) indexed by
the equivalence classes in E. Given x, x′ ∈ E with x 4 x′, there is a homomorphism

Ix,x′ : K0M(S(x)-tor) → K0M(S(x′)-tor)

given by Ix,x′([M ]) = [M ] where M ∈ M(S(x)-tor); this is well defined, since it is
induced by an inclusion of categories as seen from the bi-implications above. Con-
sequently, (K0M(S(x)-tor), Ix,x′)x4x′ is a direct system, and it is straightforward
to see that the Grothendieck group K0M(gr ≥ d) together with the natural ho-
momorphisms τx : K0M(S(x)-tor) → K0M(gr ≥ d) induced by the inclusion of the
underlying categories and given by τx([M ]) = [M ], x ∈ E, satisfy the universal
property required by a direct limit of this system.

We have now shown that K0M(gr ≥ d) is the direct limit of the direct system
(K0M(S(x)-tor), Ix,x′)x4x′ . By the same methods one can show that K0Pd(gr ≥ d)
and K0P(gr ≥ d) are the direct limits of the direct systems

(K0Pd(S(x)-tor), Ix,x′)x4x′ and (K0P(S(x)-tor), Ix,x′)x4x′ ,
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respectively, where the homomorphisms Ix,x′ now are given by Ix,x′([X ]) = [X ] for
complexes X in Pd(S(x)-tor) and P(S(x)-tor), respectively. Now, we already know
from Corollary 8 that there is a commutative diagram of isomorphisms

K0Pd(S(x)-tor)
Id //

Hd ))TTTTTTTTTTTTTTT
K0P(S(x)-tor)

K0M(S(x)-tor)

R

55kkkkkkkkkkkkkkk

for all x ∈ E, and hence there must also be a commutative diagram of isomorphisms

K0Pd(gr ≥ d)
Id //

Hd ))SSSSSSSSSSSSSS
K0P(gr ≥ d)

K0M(gr ≥ d)

R

55kkkkkkkkkkkkkk

involving the direct limits. �

Because of Lemma 7, the homology of any complex in Pd(gr ≥ d) must be a
d-perfect module. Thus, Pd(gr ≥ d) = Pd(d-perf), and hence K0Pd(gr ≥ d) =
K0Pd(d-perf). It follows that the isomorphisms Hd : K0Pd(gr ≥ d) → K0M(gr ≥ d)
and Id : K0Pd(gr ≥ d) → K0P(gr ≥ d) from Corollary 12 must factor through
K0M(d-perf) and K0P(d-perf), respectively. This is discussed in Corollary 13 below,
which extends Corollary 12, and where we let τ : K0M(d-perf) → K0M(gr ≥ d) and
τ : K0P(d-perf) → K0P(gr ≥ d) denote the natural homomorphisms induced by the
inclusion of the underlying categories and given by τ([M ]) = [M ] for M ∈ M(d-perf)
and τ ([X ]) = [X ] for X ∈ P(d-perf).

Corollary 13. If R is Noetherian and local and d is a positive integer, then there
is a commutative diagram

K0M(d-perf)

R
′

))RRRRRRRRRRRRRR

τ

��

K0Pd(d-perf)

H
′

d

55kkkkkkkkkkkkkk
I
′

d // K0P(d-perf)

τ

��
K0Pd(gr ≥ d)

Id //

Hd ))SSSSSSSSSSSSSS
K0P(gr ≥ d)

K0M(gr ≥ d)

R

55llllllllllllll

in which Id, Hd, R, H′

d and τ are isomorphisms, I ′d and R′ are monomorphisms
and τ is an epimorphism.

Proof. Commutativity of the diagram is clear, and we have already seen in Corol-
lary 12 that Id, Hd and R are isomorphisms. From this it follows that I ′d and H′

d

are injective, and that τ and τ are surjective. However, H′

d is clearly also surjec-
tive, since any finitely generated d-perfect module has a resolution in Pd(d-perf),
and hence H′

d and τ are isomorphisms. �

Note that Corollary 13 (and hence Corollary 12) actually holds when d = 0, but
that including this case is unnecessary, as it is already stated in Corollary 9.



104 HANS-BJØRN FOXBY AND ESBEN BISTRUP HALVORSEN

4. Proving the Main Theorem

Establishing the Main Theorem is a cumbersome task. We will construct an in-
verse to Id : K0Pd(S-tor) → K0P(S-tor) as follows. Given a complex Y ∈ P(S-tor),
we choose n ∈ Z so that the shifted complex ΣnY is in Pe(S-tor) for some e > d.
To this complex we associate an element we(Σ

nY ) ∈ K0Pe−1(S-tor); this is the cru-
cial step, in which we “make a complex smaller”, starting with the complex ΣnY
of amplitude (at most) e and ending up with the element we(Σ

nY ), which, as we
shall see, is represented by the difference of two complexes of amplitude (at most)
e− 1. Repeating this process a finite number of times, we end up with an element
wd+1 · · ·we(ΣnY ) in K0Pd(S-tor). This is the image of [Y ] under the inverse of Id.

4.1. Contractions.

Notation. Throughout Section 4.1, d denotes a non-negative integer and S =
(S1, . . . , Sd) denotes a d-tuple of multiplicative systems of R.

Definition 14. Let X be a complex. A d-tuple α = (α1, . . . , αd) of families αν =
(ανℓ )ℓ∈Z of homomorphisms ανℓ : Xℓ → Xℓ+1 is an S-contraction of X with weight
s = (s1, . . . , sd) ∈ S1 × · · · × Sd if

∂Xℓ+1α
ν
ℓ + ανℓ−1∂

X
ℓ = sν idXℓ

for all ℓ ∈ Z and ν = 1, . . . , d.

In the case that d = 0, the concept of S-contractions is meaningless, and the
property of having an S-contraction is trivially satisfied. In any case, the existence
of an S-contraction of X with weight s = (s1, . . . , sd) is equivalent to the condition
that the morphisms sν idX : X → X for ν = 1, . . . , d are null-homotopic.

Proposition 15. Each complex X ∈ P(S-tor) has an S-contraction.

Proof. For each ν the S−1
ν R-complex S−1

ν X is exact, bounded and consists of
finitely generated projective S−1

ν R-modules, so the identity morphism idS−1
ν X on

S−1
ν X is null-homotopic (see, for example, [5, Theorem IV.4.1]). Thus, we can find
S−1
ν R-homomorphisms bνℓ : S−1

ν Xℓ → S−1
ν Xℓ+1 such that

∂
S−1

ν X
ℓ+1 bνℓ + bνℓ−1∂

S−1
ν X

ℓ = idS−1
ν Xℓ

for all ℓ ∈ Z. Writing each bνℓ in the form βνℓ /tν for an R-homomorphism βνℓ : Xℓ →
Xℓ+1 and some common denominator tν ∈ Sν , we now have in S−1

ν Xℓ that, for any
x ∈ Xℓ,

(∂Xℓ+1β
ν
ℓ + βνℓ−1∂

X
ℓ )(x)/tν = x/1.

Consequently, we can find uν,x ∈ Sν depending on x so that in Xℓ,

uν,x(∂
X
ℓ+1β

ν
ℓ + βνℓ−1∂

X
ℓ )(x) = uν,xtνx.

Since X is bounded and consists of finitely generated modules, by multiplying a
finite number of uν,x’s, we can obtain an element uν ∈ Sν , independent of x and of
ℓ, such that uν(∂

X
ℓ+1β

ν
ℓ + βνℓ−1∂

X
ℓ )(x) = uνtνx for all ℓ ∈ Z and all x ∈ Xℓ. Setting

ανℓ = uνβ
ν
ℓ and sν = uνtν , we see that α = (α1, . . . , αd), where αν = (ανℓ )ℓ∈Z, is an

S-contraction of X with weight s = (s1, . . . , sd). �

Definition 16. Let X and Y be complexes in P with S-contractions α and β,
respectively, and let φ : X → Y be a morphism of complexes. Then α and β are
said to be compatible with φ if they have the same weight and φℓ+1α

ν
ℓ = βνℓ φℓ for

all ℓ ∈ Z and ν = 1, . . . , d.
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Theorem 17 below provides an example of a situation where an S-contraction of
a complex induces an S-contraction of another complex. Although the hypotheses
of the theorem are very specific, the theorem turns out to be applicable in several
situations.

Theorem 17. Let X be a complex in Pe, where e > 1, and suppose that α is an

S-contraction of X with weight s. Let X̃ be another complex in Pe, and suppose that

the complex X̃ is identical to X except for the modules and differentials in degrees

e and e − 1. Suppose further that X̃e = 0 and that a morphism φ : X → X̃ exists
such that φℓ = idXℓ

for ℓ = 0, . . . , e− 2 and such that φe−1 is surjective. Then the

S-contraction α on X induces an S-contraction α̃ on X̃ with weight s such that α
and α̃ are compatible with the morphism φ; for ν = 1, . . . , d, α̃ν is defined by setting
α̃νe−2 = φe−1α

ν
e−2 and α̃νℓ = ανℓ for ℓ = 0, . . . , e− 3.

0 // Xe

0

��

∂X
e // Xe−1

φe−1

��

∂X
e−1

//
αν

e−1

oo Xe−2

idXe−2

��

∂X
e−2

//
αν

e−2

oo · · · //
αν

e−3

oo X1

idX1

��

∂X
1 //oo X0

idX0

��

αX
0

oo // 0

0 // 0
0 //

X̃e−1
0

oo
∂
fX
e−1

// Xe−2

∂X
e−2

//
φe−1α

ν
e−2

oo · · · //
αν

e−3

oo X1

∂X
1 //oo X0

//
αν

0

oo 0

Proof. By inspection. �

Given an S-contraction α of X with weight s = (s1, . . . , sd) and a d-tuple t =
(t1, . . . , td) ∈ S1 × · · · × Sd, we can construct an S-contraction tα of X with weight
st = (s1t1, . . . , sdtd) by setting tα = (t1α

1, . . . , tdα
d) where tνα

ν = (tνα
ν
ℓ )ℓ∈Z. We

can also shift α n degrees to the left for some n ∈ Z to form an S-contraction
Σnα of ΣnX with weight s by setting Σnα = (Σnα1, . . . ,Σnαd), where Σnαν =
((Σnαν)ℓ)ℓ∈Z = ((−1)nανℓ−n)ℓ∈Z.

The following theorem shows how to construct a natural S-contraction of the
mapping cone of a morphism between two complexes that both have S-contractions.
Recall that the mapping cone of a morphism φ : X → Y is the complex C(φ) defined
by C(φ)ℓ = Yℓ ⊕Xℓ−1 = (Y ⊕ ΣX)ℓ and

∂
C(φ)
ℓ =



∂Yℓ φℓ−1

0 −∂Xℓ−1


 :

Yℓ
⊕

Xℓ−1

→
Yℓ−1

⊕
Xℓ−2

for all ℓ ∈ Z. The (degreewise) inclusion Y →֒ Cφ and the (degreewise) projection
C(φ) ։ ΣX are both morphisms of complexes, and together they form the canonical
short exact sequence

0 → Y → C(φ) → ΣX → 0.

Theorem 18. Let φ : X → Y be a morphism of complexes and let α and β be
S-contractions of X and Y , respectively, with weights s and t, respectively. Define
for ν = 1, . . . , d and ℓ ∈ Z the homomorphism

(β ∗ α)νℓ =




sνβ

ν
ℓ βνℓ φℓα

ν
ℓ−1

0 −tνανℓ−1



 : C(φ)ℓ =
Yℓ
⊕

Xℓ−1

→
Yℓ+1

⊕
Xℓ

= C(φ)ℓ+1.

Then (β ∗ α) = ((β ∗ α)1, . . . , (β ∗ α)d), where (β ∗ α)ν = ((β ∗ α)νℓ )ℓ∈Z, is an S-
contraction of the mapping cone C(φ) of φ with weight st = (s1t1, . . . , sdtd), and
the S-contractions sβ, (β ∗ α) and Σtα are compatible with the morphisms in the
canonical exact sequence

0 → Y → C(φ) → ΣX → 0.

Proof. By inspection. �
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4.2. The idea behind the proof of the Main Theorem.

Notation. Throughout Section 4.2, d denotes a non-negative integer and S =
(S1, . . . , Sd) denotes a d-tuple of multiplicative systems of R. Furthermore, X
denotes a fixed complex in Pe(S-tor) for some integer e > d, and α denotes an
S-contraction of X with weight s = (s1, . . . , sd) ∈ S1 × · · · × Sd.

Proving the Main Theorem involves the introduction of a complex ∆e(X, s).
More specifically, ∆e(X, s) is the complex Σe−dK(s,Xe): that is, the Koszul com-
plex of the sequence s = (s1, . . . , sd) with coefficients in Xe and shifted e−d degrees
to the left. For convenience we will now present an explicit description of ∆e(X, s).

For any ℓ ∈ Z, let Υ(ℓ) denote the set of ℓ-element subsets of {1, . . . , d}: that
is, the set of subsets in the form i = {i1, . . . , iℓ} where 1 ≤ i1 < · · · < iℓ ≤ d. In
particular, Υ(0) = {∅}, Υ(d) = {{1, . . . , d}} and Υ(ℓ) = ∅ for all ℓ /∈ {0, . . . , d}.
Thus, in any case, Υ(ℓ) contains

(
d
ℓ

)
elements. An object i ∈ Υ(ℓ) is called a multi-

index and its elements are always denoted by i1, . . . , iℓ in increasing order, so that
i = {i1, . . . , iℓ}, where 1 ≤ i1 < · · · < iℓ ≤ d.

Definition 19. ∆e(X, s) denotes the complex whose ℓ’th module is given by

∆e(X, s)ℓ =
∐

i∈Υ(e−ℓ)

∆e(X, s)
i
ℓ, where ∆e(X, s)

i
ℓ = Xe,

and whose ℓ’th differential ∂
∆e(X,s)
ℓ : ∆e(X, s)ℓ → ∆e(X, s)ℓ−1 is given by the fact

that its (j, i)-entry (∂
∆e(X,s)
ℓ )j,i : ∆e(X, s)

i
ℓ → ∆e(X, s)

j
ℓ−1 for i ∈ Υ(e − ℓ) and

j ∈ Υ(e− ℓ+ 1) is

(∂
∆e(X,s)
ℓ )j,i =

{
(−1)u+1sju idXe

, if j\i = {ju}
0, if j + i

So ∆e(X, s) is a complex whose ℓ’th module ∆e(X, s)ℓ consists of
(
d
e−ℓ

)
copies

of Xe and whose ℓ’th differential as a map from the i’th copy of Xe in ∆e(X, s)ℓ
to the j’th copy of Xe in ∆e(X, s)ℓ+1 is non-zero only when i ⊆ j, in which case
it is multiplication by (−1)u+1sju for the unique ju which is in j and not in i. In
particular, if d = 0 the sequence s is empty and ∆e(X, s) is the complex concentrated
in degree e with ∆e(X, s)e = Xe.

Proposition 20. The complex ∆e(X, s) is in P(S-tor) and is concentrated in de-
grees e, . . . , e− d.

Proof. The definition clearly implies that ∆e(X, s) is concentrated in degrees
e, . . . , e− d and consists of finitely generated projective modules. Since ∆e(X, s) is
the Koszul complex of the sequence s1, . . . , sd, the homology modules of ∆e(X, s)
are annihilated by the ideal (s1, . . . , sd) (see, for example, [1, Proposition 1.6.5]); in
particular, the homology modules must be Sν-torsion for ν = 1, . . . , d. �

The complex ∆e(X, s) comes naturally equipped with an S-contraction.

Theorem 21. For each ℓ ∈ Z and each ν = 1, . . . , d, let the homomorphism
δe(X, s)

ν
ℓ : ∆e(X, s)ℓ → ∆e(X, s)ℓ+1 be given by the fact that its (j, i)-entry for

i ∈ Υ(e− ℓ) and j ∈ Υ(e− ℓ− 1) is

(δe(X, s)
ν
ℓ )j,i =

{
(−1)w+1 idXe

, if i\j = {iw} = {ν},
0, if i + j.

Then δe(X, s) = (δe(X, s)
1, . . . , δe(X, s)

d), where δe(X, s)
ν = (δe(X, s)

ν
ℓ )ℓ∈Z, is an

S-contraction of ∆e(X, s) with weight s
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Proof. This is a matter of verification. For each ν ∈ {1, . . . , d}, ℓ ∈ Z and i, i′ ∈

Υ(d− ℓ), the (i′, i)-entry of ∂
∆e(X,s)
ℓ+1 δe(X, s)

ν
ℓ is

sν idXe
, if i = i′ and ν ∈ i,

(−1)u+wsi′u idXe
, if i\i′ = {iw} = {ν} and i′\i = {i′u}, and

0, otherwise,

whereas the (i′, i)-entry of δe(X, s)
ν
ℓ−1∂

∆e(X,s)
ℓ is

sν idXe
, if i = i′ and ν /∈ i,

(−1)u+w+1si′u idXe
, if i\i′ = {iw} = {ν} and i′\i = {i′u}, and

0, otherwise.

Overall, we see that the (i′, i)-entry of ∂
∆e(X,s)
ℓ+1 δe(X, s)

ν
ℓ + δe(X, s)

ν
ℓ−1∂

∆e(X,s)
ℓ is

sν idXe
if i = i′ and 0 otherwise. This is what we wanted to show. �

Definition 22. Let φe(X,α) denote the family (φe(X,α)ℓ)ℓ∈Z of homomorphisms
φe(X,α)ℓ : Xℓ → ∆e(X, s)ℓ =

∐
i∈Υ(e−ℓ)Xe given by the fact that their i’th entries

for i ∈ Υ(e− ℓ) are

φe(X,α)iℓ = α
ie−ℓ

e−1α
ie−ℓ−1

e−2 · · ·αi1ℓ .

For ℓ = e, this means that φe(X,α)e = idXe
, and for ℓ /∈ {e, . . . , e − d}, it means

that φe(X,α)ℓ = 0.

Proposition 23. φe(X,α) : X → ∆e(X, s) is a morphism of complexes.

Proof. Let ∆
def
= ∆e(X, s) and φ

def
= φe(X,α). To prove that φ is a morphism, we

need to show that φℓ−1∂
X
ℓ = ∂∆

ℓ φℓ for all ℓ ∈ Z: that is, we need to verify that

the j’th entry, α
je−ℓ+1

e−1 · · ·αj1ℓ−1∂
X
ℓ , of the left side equals the j’th entry of ∂∆

ℓ φℓ for

each j ∈ Υ(e− ℓ+ 1). Since the (j, i)-entry of ∂∆
ℓ is (−1)u+1sju idXe

whenever i is
a subset of j with j\i = {ju}, that is, whenever i = {j1, . . . , ju−1, ju+1, . . . , je−ℓ+1}
for some u ∈ {1, . . . , e− ℓ+ 1}, we see that the j’th coordinate of ∂∆

ℓ φℓ must be

e−ℓ+1∑

u=1

(−1)u+1sjuα
je−ℓ+1

e−1 · · ·α
ju+1

ℓ+u−1α
ju−1

ℓ+u−2 · · ·α
j1
ℓ .

So overall, we need to show that

e−ℓ+1∑

u=1

(−1)u+1sjuα
je−ℓ+1

e−1 · · ·α
ju+1

ℓ+u−1α
ju−1

ℓ+u−2 · · ·α
j1
ℓ = α

je−ℓ+1

e−1 · · ·αj1ℓ−1∂
X
ℓ (1)

for all j ∈ Υ(e− ℓ+ 1). We do this by descending induction on ℓ.
When ℓ > e, the equation clearly holds since both sides are trivial, and in the

case that ℓ = e, (1) states that sj1 idXe
= αj1e−1∂

X
e , which is satisfied since α is an

S-contraction of X with weight s. Suppose now that ℓ < e is arbitrarily chosen and
that (1) holds for larger values of ℓ. We then have

α
je−ℓ+1

e−1 · · ·αj1ℓ−1∂
X
ℓ = α

je−ℓ+1

e−1 · · ·αj2ℓ (sj1 idXℓ
−∂Xℓ+1α

j1
ℓ )

= sj1α
je−ℓ+1

e−1 · · ·αj2ℓ

− (

e−ℓ+1∑

u=2

(−1)usjuα
je−ℓ+1

e−1 · · ·α
ju+1

ℓ+u−1α
ju−1

ℓ+u−2 · · ·α
j2
ℓ+1)α

j1
ℓ

=

e−ℓ+1∑

u=1

(−1)u+1sjuα
je−ℓ+1

e−1 · · ·α
ju+1

ℓ+u−1α
ju−1

ℓ+u−2 · · ·α
j1
ℓ .

Here the second equality follows from the induction hypothesis. This proves (1) by
induction, so φ is a morphism of complexes. �
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Definition 24. The mapping cone of φe(X,α) is denoted by Ce(X,α).

Letting ∆
def
= ∆e(X, s) and φ

def
= φe(X,α), Ce(X,α) is the complex

0 // Xe

„
φe

−∂X
e

«

//
∆e

⊕
Xe−1

 
∂∆

e φe−1

0 −∂X
e−1

!

//
∆e−1

⊕
Xe−2

// · · ·

· · · //
∆e−d

⊕
Xe−d−1

( 0 −∂X
e−d−1 )

// Xe−d−2

−∂X
e−d−2

// · · · // X0
// 0

concentrated in degrees e+ 1, . . . , 1.
Since X and ∆e(X, s) are equipped with S-contractions, Theorem 18 provides

an S-contraction of Ce(X,α).

Definition 25. The S-contraction δe(X, s) ∗α of Ce(X,α) is denoted by µe(X,α).

Letting ∆
def
= ∆e(X, s), φ

def
= φe(X,α) and δ

def
= δe(X, s), µe(X,α) is given by

µe(X,α)νℓ =




sνδ

ν
ℓ δνℓ φℓα

ν
ℓ−1

0 −sνανℓ−1



 :
∆ℓ

⊕
Xℓ−1

→
∆ℓ+1

⊕
Xℓ

for each ℓ ∈ Z and ν ∈ {1, . . . , d}. The weight of µe(X,α) is s2 = (s21, . . . , s
2
d).

Proposition 26. Ce(X,α) is an object of Pe+1(S-tor) concentrated in degrees e+
1, . . . , 1.

Proof. Ce(X,α) is clearly concentrated in degrees e + 1, . . . , 1 and composed of
finitely generated projective modules. To see that Ce(X,α) is homologically S-
torsion, recall that the canonical short exact sequence

0 → ∆e(X, s) → Ce(X,α) → ΣX → 0 (2)

induces the long exact sequence

· · · → Hℓ(∆e(X, s)) → Hℓ(Ce(X,α)) → Hℓ(ΣX) → · · ·

on homology. By localizing at Sν for ν = 1, . . . , d it follows that, since ∆e(X, s) as
well as ΣX are homologically S-torsion, Ce(X,α) must be homologically S-torsion
as well. �

Definition 27. Let ∂De−1 denote the homomorphism

∂De−1 =



−φe(X,α)e−1

∂Xe−1


 : Xe−1 −→

∆e(X, s)e−1

⊕
Xe−2

= Ce(X,α)e−1,

and let De(X,α) denote the complex

0 // Xe−1

∂D
e−1

// Ce(X,α)e−1

−∂
Ce(X,α)
e−1

// Ce(X,α)e−2

−∂
Ce(X,α)
e−2

// · · · // Ce(X,α)1 // 0

concentrated in degrees e− 1, . . . , 0.

(One verifies easily that De(X,α) indeed is a complex. It is identical to the
shifted mapping cone Σ−1Ce(X,α) except in degrees e+ 1 and e.)

Proposition 28. De(X,α) is an object of Pe−1(S-tor).

Proof. De(X,α) is clearly composed of finitely generated projective modules. The
fact that De(X,α) is homologically S-torsion is a consequence of Theorem 29 below,
from which it follows that De(X,α) is quasi-isomorphic to Σ−1Ce(X,α). �
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Theorem 29. Let B denote the exact complex 0 → Xe
id
→ Xe → 0 concentrated in

degrees e and e− 1. There is then an exact sequence

0 → B → Σ−1Ce(X,α) → De(X,α) → 0.

Proof. Let ∆
def
= ∆e(X, s) and φ

def
= φe(X,α), and recall that ∆e = Xe and φe =

idXe
. The situation is as follows.

0 // B // Σ−1Ce(X,α) // De(X,α) // 0

‖ ‖ ‖

degree 0

��

0

��

0

��
e 0 // Xe

− idXe //

idXe

��

Xe
„
−φe

∂X
e

«

��

// 0 //

��

0

e−1 0 // Xe

„
idXe

−∂X
e

«

//

��

∆e

⊕
Xe−1

 
−∂∆

e −φe−1

0 ∂X
e−1

!

��

( ∂X
e idXe−1 )

// Xe−1
//

„
−φe−1

∂X
e−1

«

��

0

e−2 0 // 0

��

//
∆e−1

⊕
Xe−2

��

id //
∆e−1

⊕
Xe−2

��

// 0

...
...

...
...

It is straightforward to verify that the diagram commutes and that all the rows are
exact. �

The morphism Σ−1Ce(X,α) → De(X,α) from Theorem 29 is clearly in the form
described in Theorem 17, so we are able to induce an S-contraction of De(X,α)
with weight s2 from the S-contraction Σ−1µe(X,α) on Σ−1Ce(X,α).

Definition 30. The S-contraction of De(X,α) induced in the sense of Theorem 17
from Σ−1µe(X,α) through the morphism Σ−1Ce(X,α) → De(X,α) from The-
orem 29 is denoted by ηe(X,α).

Letting ∆
def
= ∆e(X, s), φ

def
= φe(X,α) and δ

def
= δe(X, s), ηe(X,α) from the above

definition is given by

ηe(X,α)νℓ =




−sνδνℓ+1 −δℓ+1φℓ+1α

ν
ℓ

0 sνα
ν
ℓ



 :
∆ℓ+1

⊕
Xℓ

→
∆ℓ+2

⊕
Xℓ+1

whenever ℓ = e− 3, . . . , 0, and, as verified by a small calculation, by

ηe(X,α)νe−2 =
(
−sν∂Xe δ

ν
e−1 ανe−2∂

X
e−1α

ν
e−2

)
:
∆e−1

⊕
Xe−2

→ Xe−1

whenever ℓ = e− 2.
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From Theorem 29 and (2) in Proposition 26 it follows that

[X ] = [Σ−1Ce(X,α)]− [Σ−1∆e(X, s)] = [De(X,α)]− [Σ−1∆e(X, s)]

in K0Pe(S-tor). The complexes involved in the right end are both concentrated in
degrees e − 1, . . . , 0. This gives us the idea of how to construct the inverse of the
homomorphism Id from the Main Theorem.

Definition 31. By we(X,α) we denote the element

we(X,α) = [De(X,α)]− [Σ−1∆e(X, s)]

in K0Pe−1(S-tor).

The next section is devoted to showing that we(X,α) is independent of the
choice of α such that we can simply write we(X); that the map we : Pe(S-tor) →
K0Pe−1(S-tor) induces a homomorphism We : K0Pe(S-tor) → K0Pe−1(S-tor); and
that the We’s for different e’s can be combined to form an inverse of Id.

4.3. Proving the Main Theorem.

Notation. Throughout Section 4.3, d denotes a non-negative integer and S =
(S1, . . . , Sd) denotes a d-tuple of multiplicative systems of R. Furthermore, X
denotes a fixed complex in Pe(S-tor) for some integer e > d, and α denotes an
S-contraction of X with weight s = (s1, . . . , sd) ∈ S1 × · · · × Sd.

We begin with a collection of useful lemmas.

Lemma 32. If

0 −→ Y
ψ
−→ Y

ψ
−→ Ỹ −→ 0

is an exact sequence in Pe(S-tor), and if β, β and β̃ are S-contractions of Y , Y

and Ỹ , respectively, compatible with the morphisms in the above exact sequence (and
thereby all having the same weight t), then there are exact sequences

0 → ∆e(Y , t) → ∆e(Y, t) → ∆e(Ỹ , t) → 0, (3)

0 → Ce(Y , β) → Ce(Y, β) → Ce(Ỹ , β̃) → 0 and (4)

0 → De(Y , β) → De(Y, β) → De(Ỹ , β̃) → 0, (5)

proving that we(Y, β) = we(Y , β) + we(Ỹ , β̃) in K0Pe−1(S-tor). Furthermore, the

S-contractions δe(Y , t), δe(Y, t) and δe(Ỹ , t) are compatible with the morphisms in

(3); the S-contractions µe(Y , β), µe(Y, β) and µe(Ỹ , β̃) are compatible with the mor-

phisms in (4); and the S-contractions ηe(Y , β), ηe(Y, β) and ηe(Ỹ , β̃) are compatible
with the morphisms in (5).

Proof. According to the assumption, there is an exact sequence of modules

0 −→ Y e
ψe−→ Ye

ψe
−→ Ỹe −→ 0,

which immediately induces the exact sequence in (3), because ψe and ψe clearly

commute with each entry of the differentials in ∆e(Y , t), ∆e(Y, t) and ∆e(Ỹ , t).

Since ψe and ψe also commute with each entry of the the S-contractions δe(Y , t),

δe(Y, t) and δe(Ỹ , t), these must be compatible with the morphisms in the sequence.

In addition, the compatibility of the S-contractions β, β and β̃ with the morphisms

ψ and ψ means that ψeφe(Y , β)iℓ = φe(Y, β)iℓψℓ and ψeφe(Y, β)iℓ = φe(Ỹ , β̃)iℓψℓ for
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each ℓ ∈ Z and i ∈ Υ(e− ℓ), and hence that there is a commutative diagram with
exact rows:

0 // Y //

φe(Y ,β)

��

Y //

φe(Y,β)

��

Ỹ //

φe(eY ,eβ)

��

0

0 // ∆e(Y , s) // ∆e(Y, s) // ∆e(Ỹ , s)
// 0

(6)

From this we induce the exact sequence of the mapping cones in (4). Straightforward

calculation easily verifies that the compatibility of the S-contractions β, β and

β̃ with the morphisms ψ and ψ, the compatibility of the S-contractions δe(Y , t),

δe(Y, t) and δe(Ỹ , t) with the morphisms in (3) and the commutativity of diagram (6)

imply that the S-contractions µe(Y , β), µe(Y, β) and µe(Ỹ , β̃) are compatible with
the morphisms in (4).

We now claim that the exact sequence in (4) induces the exact sequence in (5).

To see this, let B, B and B̃ denote the exact complexes 0 → Y e → Y e → 0,

0 → Ye → Ye → 0 and 0 → Ỹe → Ỹe → 0 from Theorem 29, concentrated in degrees
e and e − 1. These three complexes come together in a short exact sequence 0 →
B → B → B̃ → 0, induced by the short exact sequence 0 → Y e → Ye → Ỹe → 0.
We claim that there is a commutative diagram

0

��

0

��

0

��
0 // B

��

// B

��

// B̃

��

// 0

0 // Σ−1Ce(Y , β)

��

// Σ−1Ce(Y, β)

��

// Σ−1Ce(Ỹ , β̃)

��

// 0

0 // De(Y , β)

��

// De(Y, β)

��

// De(Ỹ , β̃)

��

// 0

0 0 0

The columns are exact according to Theorem 29 and the top rectangles are readily
verified to be commutative. A little diagram chase now shows that we can use the
morphisms in the middle row to induce the morphisms in the bottom row, making
the entire diagram commutative by construction. As we have seen, the two top rows
are exact, so the exactness of the bottom row follows from the 9-lemma applied in
each degree. This establishes the exact sequence in (5). Once again, straightforward

calculation demonstrates that the S-contractions ηe(Y , β), ηe(Y, β) and ηe(Ỹ , β̃) are
compatible with the morphisms in (5).

From (3) and (5), we now obtain that

we(Y, β) = [De(Y, β)]− [Σ−1∆e(Y, t)]

= [De(Y , β)] + [De(Ỹ , β̃)]− [Σ−1∆e(Y , t)]− [Σ−1∆e(Ỹ , t)]

= we(Y , β) + we(Ỹ , β̃),

and the proof is complete. �

Lemma 33. If X is exact, then we(X,α) = 0 in K0Pe−1(S-tor).
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Proof. Let ∂̃e−1 denote the inclusion map im ∂Xe−1 →֒ Xe−2, and let X̃ denote the
complex

0 −→ im ∂Xe−1

e∂e−1
−→ Xe−2

∂X
e−2
−→ Xe−3 −→ · · · −→ X1

∂X
1−→ X0 −→ 0

concentrated in degrees e−1, . . . 0. Since X is exact, X̃ is exact, and it follows that

im ∂Xe−1 is projective, and hence that X̃ is a complex in Pe−1(S-tor).

Letting B denote the exact complex 0 → Xe
id
→ Xe → 0 from Theorem 29, there

is an exact sequence

0 // B // X // X̃ // 0

‖ ‖ ‖

degree 0

��

0

��

0

��
e 0 // Xe

idXe //

idXe

��

Xe
//

∂X
e

��

0 //

��

0

e−1 0 // Xe

∂X
e−1

//

��

Xe−1

∂X
e−1

//

∂X
e−1

��

im ∂Xe−1
//

e∂e−1

��

0

e−2 0 // 0 //

��

Xe−2

idXe−2
//

��

Xe−2
//

��

0

...
...

...
...

and we claim that there is a commutative diagram

0

��

0

��

0

��
0 // 0 //

��

B //

��

B //

��

0

0 // Σ−1∆e(X, s) //

��

Σ−1Ce(X,α) //

��

X //

��

0

0 // Σ−1∆e(X, s) //

��

De(X,α) //

��

X̃ //

��

0

0 0 0

The columns are exact (the middle one according to Theorem 29), and the top
rectangles are readily verified to be commutative. A little diagram chase shows
that we can use the morphisms in the middle row to induce the morphisms in the
bottom row, so that the entire diagram is commutative by construction. Now, the
two top rows are exact, so the exactness of the bottom row follows from the 9-lemma
applied in each degree. Thus, we have constructed an exact sequence

0 → Σ−1∆e(X, s) → De(X,α) → X̃ → 0 (7)
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of complexes in Pe−1(S-tor). Since X̃ is exact, it follows that

we(X,α) = [De(X,α)]− [Σ−1∆e(X, s)] = [X̃] = 0

in K0Pe−1(S-tor) as desired. �

In the next lemma and the theorem that follows, we shall work with a number
of similar Koszul complexes. We therefore introduce some convenient notation.

Definition 34. For r ∈ S1, let ∆(r)
def
= ∆e(X, (r, s2, . . . , sd)); hence, in particular,

∆(s1) = ∆e(X, s).

Lemma 35. Suppose r, r′ ∈ S1, and define homomorphisms

π(r, r′)ℓ : ∆(rr′)ℓ → ∆(r)ℓ and ξ(r, r′) : ∆(r)ℓ → ∆(rr′)ℓ

for each ℓ ∈ Z by the fact that their (i′, i)-entries for i, i′ ∈ Υ(e− ℓ) are

(π(r, r′)ℓ)i′,i =






0, if i 6= i′,
idXe

, if i = i′ and 1 ∈ i,
r′ idXe

, if i = i′ and 1 /∈ i,

and

(ξ(r, r′)ℓ)i′,i =






0, if i 6= i′,
r′ idXe

, if i = i′ and 1 ∈ i,
idXe

, if i = i′ and 1 /∈ i.

Then π(r, r′) = (π(r, r′)ℓ)ℓ∈Z is a morphism of complexes ∆(rr′) → ∆(r) and
ξ(r, r′) = (ξ(r, r′)ℓ)ℓ∈Z is a morphism of complexes ∆(r) → ∆(rr′).

Proof. Assume that i ∈ Υ(e − ℓ) and j ∈ Υ(e − ℓ + 1). A direct calculation then

shows that the (j, i)-entries of ∂
∆(r)
ℓ π(r, r′)ℓ and π(r, r′)ℓ−1∂

∆(rr′)
ℓ are both given

by

0, if j + i,
(−1)u+1sju idXe

, if j\i = {ju} and 1 ∈ i,
(−1)u+1sjur

′ idXe
, if j\i = {ju} 6= {1} and 1 /∈ i, and

rr′ idXe
, if j\i = {ju} = {1} and 1 /∈ i.

This proves that π(r, r′) is a morphism of complexes.

Similarly, a direct calculation shows that the (j, i)-entries of ∂
∆(rr′)
ℓ ξ(r, r′)ℓ and

ξ(r, r′)ℓ−1∂
∆(r)
ℓ are both given by

0, if j + i,
(−1)u+1sjur

′ idXe
, if j\i = {ju} and 1 ∈ i,

(−1)u+1sju idXe
, if j\i = {ju} 6= {1} and 1 /∈ i, and

rr′ idXe
, if j\i = {ju} = {1} and 1 /∈ i.

This proves that ξ(r, r′) is a morphism of complexes. �

We are now ready to take the first step in proving that we(X,α) is independent
of the S-contraction α.

Theorem 36. Suppose that t = (t1, . . . , td) ∈ S1 × · · · × Sd and consider the S-
contraction tα = (t1α

1, . . . , tdα
d) of X with weight st = (s1t1, . . . , sdtd). Then

we(X, tα) = we(X,α) in K0Pe−1(S-tor).

Proof. If only we can show the equation in the case where tν = 1 for all but one of
the ν’s, then the equation follows since

tα = (t1, . . . , td)α = (t1, 1 . . . , 1) · · · (1, . . . , 1, td)α.

We will therefore assume that t = (t1, 1, . . . , 1); the other cases follow similarly
(since we can permute the Sν ’s).
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To show the desired equation, it suffices to prove that the following equations
hold in K0Pe−1(S-tor).

[Σ−1∆(s1t1)] = [Σ−1∆(s1)] + [Σ−1∆(t1)]. (8)

[De(X, tα)] = [De(X,α)] + [Σ−1∆(t1)]. (9)

Since ∆(1) is exact (being the Koszul complex of a sequence involving a unit), the
first equation follows if we can show that there is an exact sequence

0 // ∆(s1)

„
π(1,s1)
ξ(s1,t1)

«

//
∆(1)
⊕

∆(s1t1)

(−ξ(1,t1) π(t1,s1) )
// ∆(t1) // 0.

The two matrices clearly define morphisms of complexes, since π(r, r′) and ξ(r, r′)
are morphisms of complexes for r, r′ ∈ S1 according to Lemma 35. Exactness
at ∆(s1) and ∆(t1) is clear since there is always one identity map involved in
either of π(r, r′) and ξ(r, r′) for r, r′ ∈ S1. Furthermore, ξ(1, t1)π(1, s1) as well
as π(t1, s1)ξ(s1, t1) are defined in degree ℓ by the fact that their (i, i′)-entries for
i, i′ ∈ Υ(e− ℓ) are

0, if i 6= i′,
t1 idXe

, if i = i′ and 1 ∈ i, and
s1 idXe

, if i = i′ and 1 /∈ i.

To show the exactness of the sequence above, it therefore only remains to show
that, for each ℓ ∈ Z, the kernel in degree ℓ of the second morphism is contained in
the image in degree ℓ of the first. Since all (i, i′)-entries of the maps involved are
trivial except when i = i′, it suffices to consider an element (x, y) in the i-entry
∆(1)iℓ ⊕ ∆(s1t1)

i
ℓ of the ℓ’th module of ∆(1) ⊕ ∆(s1t1). So suppose that such an

element is in the kernel of the map in degree ℓ of the second morphism. If 1 ∈ i,
this means that t1x = y, and in this case (x, y) is the image of x under the map
in degree ℓ of the first morphism. If 1 /∈ i, it means that x = s1y, and in this case
(x, y) is the image of y under the map in degree ℓ of the first morphism. In either
case, (x, y) is in the image of the map in degree ℓ of the first morphism, and hence
the sequence is exact and equation (8) has been proven.

Moving on to equation (9), we first define for each ℓ ∈ Z a homomorphism
γℓ−1 : Xℓ−1 → ∆(1)ℓ by letting its i’th entry for i ∈ Υ(e− ℓ) be

γiℓ−1 =

{
0, if 1 ∈ i,

α
ie−ℓ

e−1 · · ·α
i1
ℓ α

1
ℓ−1, if 1 /∈ i.

Another way of writing this is

γℓ−1 =
∐

i∈Υ(e−ℓ)
1/∈i

α
ie−ℓ

e−1 · · ·α
i1
ℓ α

1
ℓ−1.

We now claim that there are morphisms

Φ: Ce(X,α) −→
∆(1)
⊕

Ce(X, tα)
and Ψ:

∆(1)
⊕

Ce(X, tα)
−→ ∆(t1)

given in degree ℓ by

Φℓ =




π(1, s1)ℓ γℓ−1

ξ(s1, t1)ℓ 0

0 idXℓ−1




:
∆(s1)ℓ
⊕

Xℓ−1

−→

∆(1)ℓ
⊕

∆(s1t1)ℓ
⊕

Xℓ−1
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and

Ψℓ =
(
−ξ(1, t1)ℓ π(t1, s1)ℓ ξ(1, t1)ℓγℓ−1

)
:

∆(1)ℓ
⊕

∆(s1t1)ℓ
⊕

Xℓ−1

−→ ∆(t1)ℓ.

Proving that Φ and Ψ indeed are morphisms of complexes means proving that


∂

∆(1)
ℓ+1 0 0

0 ∂
∆(s1t1)
ℓ+1 φe(X, tα)ℓ

0 0 −∂Xℓ


 Φℓ+1 = Φℓ

(
∂

∆(s1)
ℓ+1 φe(X,α)ℓ
0 −∂Xℓ

)

and

∂
∆(t1)
ℓ+1 Ψℓ+1 = Ψℓ



∂

∆(1)
ℓ+1 0 0

0 ∂
∆(s1t1)
ℓ+1 φe(X, tα)ℓ

0 0 −∂Xℓ




for all ℓ ∈ Z. Since we already know from Lemma 35 that π(r, u) and ξ(r, u) are
morphisms for r, u ∈ S1, proving the above equations comes down to showing that
the following hold for all ℓ ∈ Z:

π(1, s1)ℓφe(X,α)ℓ = ∂
∆(1)
ℓ+1 γℓ + γℓ−1∂

X
ℓ ; (10)

φe(X, tα)ℓ = ξ(s1, t1)ℓφe(X,α)ℓ; and (11)

π(t1, s1)ℓφe(X, tα)ℓ = ξ(1, t1)ℓγℓ−1∂
X
ℓ + ∂

∆(t1)
ℓ+1 ξ(1, t1)ℓ+1γℓ. (12)

We verify (10) by brute force, calculating on the right hand side of the equation:

∂
∆(1)
ℓ+1 γℓ + γℓ−1∂

X
ℓ = ∂

∆(1)
ℓ+1

∐

j∈Υ(e−ℓ−1)
1/∈j

α
je−ℓ−1

e−1 · · ·αj1ℓ+1α
1
ℓ

+
∐

i∈Υ(e−ℓ)
1/∈i

α
ie−ℓ

e−1 · · ·α
i1
ℓ α

1
ℓ−1∂

X
ℓ

=
∐

i∈Υ(e−ℓ)
1∈i

α
ie−ℓ

e−1 · · ·α
i2
ℓ+1α

1
ℓ

+
∐

i∈Υ(e−ℓ)
1/∈i

(

e−ℓ∑

u=1

(−1)u+1siuα
ie−ℓ

e−1 · · ·α
iu+1

ℓ+u α
iu−1

ℓ+u−1 · · ·α
i1
ℓ+1α

1
ℓ)

+
∐

i∈Υ(e−ℓ)
1/∈i

α
ie−ℓ

e−1 · · ·α
i1
ℓ α

1
ℓ−1∂

X
ℓ

=
∐

i∈Υ(e−ℓ)
1∈i

α
ie−ℓ

e−1 · · ·α
i1
ℓ

+
∐

i∈Υ(e−ℓ)
1/∈i

α
ie−ℓ

e−1 · · ·α
i1
ℓ (∂Xℓ+1α

1
ℓ + α1

ℓ−1∂
X
ℓ )

=
∐

i∈Υ(e−ℓ)
1∈i

α
ie−ℓ

e−1 · · ·α
i1
ℓ +

∐

i∈Υ(e−ℓ)
1/∈i

s1α
ie−ℓ

e−1 · · ·α
i1
ℓ

= π(1, s1)ℓφe(X,α)ℓ.
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Here, the third equality follows from (1) in Proposition 23. This proves the equation
in (10). The equation in (11) is clear, since

ξ(s1, t1)ℓφe(X,α)ℓ =
∐

i∈Υ(e−ℓ)
1∈i

t1φe(X,α)iℓ +
∐

i∈Υ(e−ℓ)
1/∈i

φe(X,α)iℓ = φe(X, tα).

To prove that the equation in (12) holds, we apply (10) to the right side of (12):

ξ(1, t1)ℓγℓ−1∂
X
ℓ + ∂

∆(t1)
ℓ+1 ξ(1, t1)ℓ+1γℓ

= ξ(1, t1)ℓ(γℓ−1∂
X
ℓ + ∂

∆(1)
ℓ+1 γℓ)

= ξ(1, t1)ℓπ(1, s1)ℓφe(X,α)ℓ.

In contrast, applying (11) to the left side of (12) yields

π(t1, s1)ℓφe(X, tα)ℓ = π(t1, s1)ℓξ(s1, t1)ℓφe(X,α)ℓ,

so proving equation (12) merely requires showing that

ξ(1, t1)ℓπ(1, s1)ℓ = π(t1, s1)ℓξ(s1, t1)ℓ. (13)

This, however, follows since, for i, i′ ∈ Υ(e−ℓ), both sides of (13) have (i, i′)-entries
given by

0, if i 6= i′,
s1 idXe

, if i = i′ and 1 /∈ i, and
t1 idXe

, if i = i′ and 1 ∈ i.

Thus, we have verified equation (12), and we conclude that Φ and Ψ are morphisms
of complexes.

We now claim that there is a short exact sequence

0 −→ Ce(X,α)
Φ
−→

∆(1)
⊕

Ce(X, tα)

Ψ
−→ ∆(t1) −→ 0. (14)

To see that the sequence is exact at Ce(X,α), suppose that, for some ℓ ∈ Z, the
element (x, y) ∈ ∆(s1)ℓ ⊕Xℓ−1 = Ce(X,α)ℓ maps to 0 under Φℓ: that is,

0 =



π(1, s1)ℓ γℓ−1

ξ(s1, t1)ℓ 0
0 idXℓ−1




(
x
y

)
=



π(1, s1)ℓ(x) + γℓ−1(y)

ξ(s1, t1)ℓ(x)
y


 .

It immediately follows that y = 0, and we are left with the equations π(1, s1)ℓ(x) =
ξ(s1, t1)ℓ(x) = 0 which imply that x = 0. Thus, Φℓ is injective and (14) is exact at
Ce(X,α).

To see that the sequence is exact at ∆(t1), suppose that x ∈ ∆(t1)
i
ℓ for some

ℓ ∈ Z and i ∈ Υ(e− ℓ). Then, if 1 ∈ i,

(
−ξ(1, t1)ℓ π(t1, s1)ℓ ξ(1, t1)ℓγℓ−1

)



0
x
0


 = x,

and if 1 /∈ i,

(
−ξ(1, t1)ℓ π(t1, s1)ℓ ξ(1, t1)ℓγℓ−1

)


−x
0
0


 = x.

In either case, x is in the image of Ψℓ, and we conclude that Ψℓ is surjective and
that (14) is exact at ∆(t1).

Equation (13) clearly shows that ΨΦ = 0, so to show the exactness of (14), it
only remains verify that the kernel of Ψℓ is contained in the image of Φℓ for all
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ℓ ∈ Z. So suppose that (x, y, z) ∈ ∆(1)ℓ ⊕∆(s1t1)ℓ ⊕Xℓ−1 = (∆(1) ⊕ Ce(X, tα))ℓ
maps to 0 under Ψℓ: that is,

−ξ(1, t1)ℓ(x) + π(t1, s1)ℓ(y) + ξ(1, t1)ℓγℓ−1(z) = 0.

Here x = (xi)i∈Υ(e−ℓ) and y = (yi)i∈Υ(e−ℓ) are Υ(e−ℓ)-tuples, so the above equation
states that, for i ∈ Υ(e− ℓ),

−t1xi + yi = 0, when 1 ∈ i, and

−xi + s1yi + γiℓ−1(z) = 0, when 1 /∈ i.

Now let w = (wi)i∈Υ(e−ℓ) ∈ ∆(s1)ℓ be defined by wi = xi whenever 1 ∈ i and
wi = yi whenever 1 /∈ i. Then



π(1, s1)ℓ γℓ−1

ξ(s1, t1)ℓ 0
0 idXℓ−1




(
w
z

)
=



π(1, s1)ℓ(w) + γℓ−1(z)

ξ(s1, t1)ℓ(w)
z




=




∑

i∈Υ(e−ℓ)
1∈i

xi +
∑

i∈Υ(e−ℓ)
1/∈i

(s1yi + γiℓ−1(z))

∑

i∈Υ(e−ℓ)
1∈i

t1xi +
∑

i∈Υ(e−ℓ)
1/∈i

yi

z




=



x
y
z


 .

This proves that (x, y, z) is in the image of Φℓ. We have now proved that (14) is
exact.

Denoting by B the exact complex 0 → Xe
id
→ Xe → 0, we now claim that there

is a commutative diagram

0

��

0

��

0

��
0 // B //

��

B //

��

0 //

��

0

0 // Σ−1Ce(X,α) //

��

Σ−1∆(1)
⊕

Σ−1Ce(X, tα)

//

��

Σ−1∆(t1) //

��

0

0 // De(X,α) //

��

Σ−1∆(1)
⊕

De(X, tα)

//

��

Σ−1∆(t1) //

��

0

0 0 0

The columns are exact according to Theorem 29 and the top rectangles are readily
verified to be commutative. A little diagram chase shows that we can use the
morphisms in the middle row to induce the morphisms in the bottom row, so that
the entire diagram is commutative by construction. Now, the top row is clearly
exact, and we have just seen that the middle row is exact, so the exactness of
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the bottom row follows from the 9-lemma applied in each degree. Thus, we have
constructed an exact sequence

0 −→ De(X,α) −→
Σ−1∆(1)

⊕
De(X, tα)

−→ Σ−1∆(t1) −→ 0

in K0Pe−1(S-tor), and since ∆(1) is exact, equation (9) follows. This proves the
theorem. �

We are almost ready to take the final step in proving that we(X,α) is independent
of the choice of α. But first a lemma.

Lemma 37. If Y is an exact complex in Pe+1(S-tor) and β is an S-contraction of
Y with weight t, then we(De+1(Y, β), ηe+1(Y, β)) ∈ K0Pe−1(S-tor) does not depend
on the choice of β (but still depends on the weight t).

Proof. Let us consider the complex Ỹ ∈ Pe(S-tor), constructed from Y in the way

X̃ was constructed from X in Lemma 33, and equip Ỹ with the S-contraction β̃
induced from β in the sense of Theorem 17:

0 // im ∂Ye
∂
eY

e // Ye−1

∂Y
e−1

//

∂Y
e β

ν
e−1

oo · · · //
βν

e−2

oo Y1

∂Y
1 //oo Y0

//
βν
0

oo 0.

Recall that there is an S-contraction δe+1(Y, t) of ∆e+1(Y, t) with weight t and an
S-contraction µe+1(Y, β) of Ce+1(Y, β) with weight t2. According to Theorem 18,
the S-contractions Σ−1tδe+1(Y, t), Σ−1µe+1(Y, β) and tβ are compatible with the
morphisms in the short exact sequence

0 → Σ−1∆e+1(Y, t) → Σ−1Ce+1(Y, β) → Y → 0. (15)

Now, the S-contraction ηe+1(Y, β) on De+1(Y, β) is induced in the sense of The-
orem 17 by the S-contraction Σ−1µe+1(Y, β) on Σ−1Ce+1(Y, β) through the mor-
phism Σ−1Ce+1(Y, β) → De+1(Y, β). Similarly, as described above, the S-contraction

β̃ on Ỹ is induced in the sense of Theorem 17 by the S-contraction β on Y

through the morphism Y → Ỹ . We claim that this implies that the S-contractions

Σ−1tδe+1(Y, t), ηe+1(Y, β) and tβ̃ are compatible with the morphisms in the exact
sequence

0 → Σ−1∆e+1(Y, t) → De+1(Y, β) → Ỹ → 0

from (7) in Lemma 33. This is easy: let ∆
def
= ∆e+1(Y, t), C

def
= Ce+1(Y, β), D

def
=

De+1(Y, β), δ
def
= δe+1(Y, t), µ

def
= µe+1(Y, β) and η

def
= ηe+1(Y, β). Proving, for

example, that Σ−1tδ and η are compatible with the morphism Σ−1∆ → D means
proving the commutativity of the bottom rectangle of the following diagram for all
ℓ ∈ Z and ν = 1, . . . , d.

Cℓ+1

��

Cℓ

��

−µℓoo

∆ℓ+1

;;wwwwwwww

id

��

∆ℓ

<<
z

z
z

z
z

zz
z

id

��

−tδℓoo

Dℓ Dℓ−1
ηℓ−1

oo

∆ℓ+1

;;wwwwwwwww

∆ℓ

<<
zz

zzzzz
z

−tδℓoo
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The top rectangle is commutative since Σ−1tδ and Σ−1µ are compatible with the
first morphism in (15), and the back rectangle is commutative since η is induced from
Σ−1µ in the sense of Theorem 17. We have constructed the morphism Σ−1∆ → D
by inducing it from Σ−1∆ → Σ−1C via the morphism Σ−1C → D, so the rectangles
on the left and right side must also be commutative. Thus all rectangles except
possibly the bottom one are commutative. Since the vertical maps are all surjective,
the bottom rectangle now lifts to the top rectangle, and it follows that the bottom

rectangle must be commutative. A similar argument shows that η and tβ̃ are

compatible with the morphism D → Ỹ .

Recalling from Lemma 33 that the exactness of Y implies the exactness of Ỹ , we
now get, using Lemmas 32 and 33, that

we(D, η) = we(Σ
−1∆,Σ−1tδ) + we(Ỹ , tβ̃)

= we+1(Σ
−1∆,Σ−1tδ),

which does not depend on β (but apparently still depends on t). �

Theorem 38. The element we(X,α) ∈ K0Pe−1(S-tor) does not depend on the
choice of α (nor on the weight s): that is, if β is an S-contraction of X with weight
t, then we(X,α) = we(X,β).

Proof. We can assume that the weight s of α equals the weight t of β: for if this is
not the case, we consider instead the S-contractions tα and sβ whose weights are
both st, and we know from Theorem 36 that we(X,α) = we(X, tα) and we(X, sβ) =
we(X,β).

Consider the mapping cone C(idX) of the identity morphism idX : X → X and
the canonical short exact sequence

0 → X → C(idX) → ΣX → 0.

According to Theorem 18, the S-contractions sβ, β ∗α and Σsα all have weight s2

and are compatible with the morphisms in the above sequence.
Now, the above sequence, which is a sequence in Pe+1(S-tor), induces by (5)

from Lemma 32 the following exact sequence in Pe(S-tor):

0 → De+1(X, sβ) → De+1(C(idX), β ∗ α) → De+1(ΣX,Σsα) → 0.

According to the same lemma, the S-contractions ηe+1(X, sβ), ηe+1(C(idX), β ∗α)
and ηe+1(ΣX,Σsα), which all have weight s4, are compatible with the morphisms
in the above sequence.

In the construction of De+1(X, sβ) we have considered X as a complex concen-
trated in degrees e + 1, . . . , 0. Since Xe+1 is the zero module, ∆e+1(X, s

2) is the
zero complex and De+1(X, sβ) = X . Furthermore, it is straightforward to see that
ηe+1(X, sβ) is the same as s3β considered as an S-contraction of X . It now follows
from Theorem 36 and Lemma 32 that

we(X,β) = we(X, s
3β)

= we(De+1(X, sβ), ηe+1(X, sβ))

= we(De+1(C(idX), β ∗ α), ηe+1(C(idX), β ∗ α))

− we(De+1(ΣX,Σsα), ηe+1(ΣX,Σsα)).

Since C(idX) is exact, Lemma 37 implies that the first term in the above difference
does not depend on β∗α and thereby not on β. The second term does not depend on
β either, so it follows that the difference depends only on α. Replacing β by α, we
therefore find that we(X,α) is equal to the same difference, and hence we(X,α) =
we(X,β) as desired. �
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Definition 39. In the light of Theorem 38, we shall write we(X) to mean we(X,α)
for any choice of S-contraction α of X .

We have now accomplished the first and hardest task in constructing an inverse
to the homomorphism Id from the Main Theorem. Our second task is achieved in
the theorem below.

Theorem 40. The map we : Pe(S-tor) → K0Pe−1(S-tor) induces a group homo-
morphism We : K0Pe(S-tor) → K0Pe−1(S-tor) defined by We([X ]) = we(X) for
X ∈ Pe(S-tor).

Proof. The only thing we need to show is that the relations in K0Pe(S-tor) are
preserved under the map we.

If X is exact, we already know from Lemma 33 that we(X) = 0. Thus, it only
remains to show that, if

0 −→ X
ψ
−→ X

ψ
−→ X̃ → 0 (16)

is an exact sequence in Pe(S-tor), then we(X) = we(X)+we(X̃). In this case there

exists a morphism ρ : Σ−1X̃ → X with the property that its mapping cone C(ρ) is

isomorphic to X . Now choose S-contractions α and α̃ for X and X̃ , respectively,
and let s and s̃ denote the weights of α and α̃, respectively. Recall that α ∗ Σ−1α̃
is an S-contraction of C(ρ) with weight ss̃. We now have

we(X) = we(C(ρ))

= we(C(ρ), α ∗ Σ−1α̃)

= we(X, s̃α) + we(X̃, sα̃)

= we(X) + we(X̃),

where the third equality follows from Theorem 18 and Lemma 32. This proves the
theorem. �

We are immediately able to show that our homomorphism We in fact is an
isomorphism.

Theorem 41. The group homomorphism

I ′e−1 : K0Pe−1(S-tor) → K0Pe(S-tor)

given by I ′e−1([X ]) = [X ] is an isomorphism; in fact, the inverse of I ′e−1 is We.

Proof. If we shift the canonical exact sequence of the mapping cone Ce(X,α) one
degree to the right, we get the exact sequence

0 → Σ−1∆e(X, s) → Σ−1Ce(X,α) → X → 0 (17)

in Pe(S-tor). Theorem 29 showed that there is an exact sequence

0 → B → Σ−1Ce(X,α) → De(X,α) → 0 (18)

in Pe(S-tor), where B is the exact complex 0 → Xe
id
→ Xe → 0 concentrated in

degrees e and e− 1. From the exact sequences in (17) and (18) it now follows that
the following holds in K0Pe(S-tor).

[X ] = [Σ−1Ce(X,α)]− [Σ−1∆e(X, s)]

= [De(X,α)]− [Σ−1∆e(X, s)]

= I ′e−1We([X ]).
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Conversely, suppose that Y is a complex in Pe−1(S-tor) and that β is an S-
contraction of Y with weight t. Then, considering Y as a complex in Pe(S-tor),
∆e(Y, t) = 0 and De(Y, β) = Y , and therefore

[Y ] = [De(Y, β)]− [Σ−1∆e(Y, t)]

= We I
′

e−1([Y ]).

Thus, I ′e−1 and We are mutually inverse, and the theorem is proved. �

Theorem 42 (Main Theorem). The group homomorphism

Id : K0Pd(S-tor) → K0P(S-tor)

given by Id([X ]) = [X ] is an isomorphism.

Proof. The sequence

K0Pd(S-tor)
I
′

d−→ K0Pd+1(S-tor)
I
′

d+1
−→ · · ·

of Abelian groupsK0Pf (S-tor) and homomorphisms I ′f for f ≥ d is a direct system,
and it is straightforward to see that the Grothendieck group K0P(S-tor) together
with the maps

If : K0Pf (S-tor) → K0P(S-tor) for f ≥ d

satisfies the universal property required by a direct limit of this system (since
K0P(S-tor) is generated by complexes concentrated in non-negative degrees). In
contrast, since all the homomorphisms I ′f are isomorphisms according to The-
orem 41, the direct limit must be isomorphic to each of the groups K0Pf (S-tor)
and If must be an isomorphism for each f ≥ d. �

Exploiting the property of a direct limit, we see that the inverse of Id must be
the homomorphism I−1

d making the following diagram commutative.

K0Pf (S-tor)

I
′

f

��

If

&&MMMMMMMMMMMMMM Wd+1···Wf

**
K0P(S-tor)

I
−1
d //_________ K0Pd(S-tor)

K0Pf+1(S-tor)

If+1

88qqqqqqqqqqqqqq Wd+1···Wf+1

44

It follows that I−1
d is given for Y ∈ P(S-tor) by

I−1
d ([Y ]) = (−1)nWd+1 · · ·Wf ([Σ

nY ])

for n and f chosen sufficiently large that ΣnY ∈ Pf (S-tor).
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