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Preface

The great Russian mathematician Chebychev once asked the following question:

If for some positive function f ,∫ ∞

−∞
xnf(x)dx =

∫ ∞

−∞
xne−x

2
dx, n = 0, 1, . . .

can we then conclude that f(x) = e−x
2
?

With the terminology of today, this is the same as to ask if the normal density is uniquely deter-
mined by its moment sequence and it is well-known that the answer is yes in the sense that
f(x) = e−x

2
almost everywhere with respect to the Lebesgue measure on R.

But what happens if the normal density is replaced with something else? Can we still count on the
same answer?

In general, no. Suppose that X is a random variable which follows a normal distribution N(0, σ2). If
the normal density is replaced by the density of exp(X) or sinh(X), then the answer to Chebychev’s
question is no.

Whereas the distribution of exp(X) – also called the lognormal distribution – is very common in
statistics, the distribution of sinh(X) does not even have a name. But if we pass to the associated
orthogonal polynomials, the picture changes. We enter the q-analogue of the Askey-scheme and
meet the Stieltjes–Wigert polynomials and the continuous q−1-Hermite polynomials.

The above remarks are meant as an appetizer for what to expect of the present thesis. What can
be said when there is no longer uniqueness?

My scientific work as a Ph.D. student has resulted in 5 papers all of which are related to the
indeterminate moment problem:

[1] Jacob S. Christiansen, The moment problem associated with the q-Laguerre polynomials, Con-
str. Approx. 19 (2003) 1–22.

[2] Jacob S. Christiansen, The moment problem associated with the Stieltjes–Wigert polynomials,
J. Math. Anal. Appl. 277 (2003) 218–245.

[3] Jacob S. Christiansen and Mourad E. H. Ismail, A moment problem and a family of integral
evaluations, to appear in Trans. Amer. Math. Soc.



[4] Jacob S. Christiansen, Indeterminate moment problems related to birth and death processes
with quartic rates, to appear in J. Comp. Appl. Math.

[5] B. Malcolm Brown and Jacob S. Christiansen, On the Krein and Friedrichs extension of a
positive Jacobi operator, to appear in Expo. Math.

The first two were written in continuation of my master thesis but they also contain results that I
first discovered as a Ph.D. student.

The third one was started during my stay in Tampa, Florida visiting Professor Mourad Ismail and
completed around half a year later. Among [1]-[5], it is the most extensive paper.

The fourth paper was written in connection with the 7th OPSFA which took place in Copenhagen,
August 2003. It is based on work of Valent and others. The orthogonal polynomials in [4] do not
have a hypergeometric or basic hypergeometric representation; they are closer related to the Jacobi
elliptic functions. For that reason, it was decided not to include the paper [4] in the thesis.

The most recent paper [5], which is joint work with Professor Malcolm Brown from Cardiff, is not
included in the thesis either. This paper is dealing with the moment problem from an operator
point of view and differ in this way from the preceding four papers.

The present thesis is organized as follows. The first chapter, entitled “The moment problem”,
serves as an introduction. Starting from the fundamental work of Stieltjes and Hamburger, it gives
an up-to-date picture of the theory of the moment problem on the real line with special focus on
the indeterminate case.

Before we go into details with the indeterminate moment problems within the Askey-scheme, it is
appropriate to give an introduction to basic hypergeometric series and Darboux’s method. Partly
because all the indeterminate cases appear within the q-analogue of the Askey-scheme and partly
because Darboux’s method is a very important tool in determining the entire functions from the
Krein and Nevanlinna parametrizations.

After the preliminaries, a chapter with the same title as the thesis itself is to follow. The purpose
of this principal chapter is twofold. First of all, it gives a setting for the three enclosed papers.
But it also contains the authors complete knowledge – as of today – about the indeterminate
moment problems within the Askey-scheme. It is not always the intention to go down to the last
computational detail, especially not when everything is well explained in the literature. Then it is
rather the idea to give a survey. On the other hand, we make sure to be careful in explaining new
results, like for instance the Krein parametrization for the q-Meixner moment problem.

First of all, I would also like to thank my supervisor Professor Christian Berg. Not only for being
a superb and inspiring adviser but also for sending me to summer schools and conferences around
the world. It has been of great value to me.

I would also like to thank ”Rejselegat for Matematikere” for giving me the opportunity to spend
one year abroad. I especially express my thanks to Professor Mourad Ismail and Professor Richard
Askey for teaching me a lot about orthogonal polynomials and special functions. I truly benefited
from the year 2002 in the States.

Finally, I would like to thank my family for their faithful support throughout my studies.

Frederiksberg, 2004
Jacob Stordal Christiansen
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The moment problem

Let I ⊆ R be an interval. For a positive measure µ on I the nth moment is defined as
∫
I
xndµ(x) –

provided the integral exists. If we suppose that (sn)n≥0 is a sequence of real numbers, the moment
problem on I consists of solving the following three problems:

(I) Does there exist a positive measure on I with moments (sn)n≥0 ?

In the affirmative,

(II) is this positive measure uniquely determined by the moments (sn)n≥0 ?

If this is not the case,

(III) how can one describe all positive measures on I with moments (sn)n≥0 ?

Without loss of generality we can always assume that s0 = 1. This is just a question of normalizing
the involved measures to be probability measures.

When µ is a positive measure with moments (sn)n≥0, we say that µ is a solution to the mo-
ment problem. If the solution to the moment problem is unique, the moment problem is called
determinate. Otherwise the moment problem is said to be indeterminate.

In this section we shall give an introduction to the classical moment problem on the real line with
special focus on the indeterminate case. For a more detailed discussion the reader is referred to
Akhiezer [1], Berg [3] or Shohat and Tamarkin [23].

There are three essentially different types of (closed) intervals. Either two end-points are finite, one
end-point is finite, or no end-points are finite. In the last case the interval is simply R and in the first
two cases one can think of [0, 1] and [0,∞). For historical reasons the moment problem on [0,∞)
is called the Stieltjes moment problem and the moment problem on R is called the Hamburger
moment problem. Moreover, the moment problem on [0, 1] is referred to as the Hausdorff moment
problem.

It is elementary linear algebra to verify that a positive measure with finite support is uniquely
determined by its moments. Applying the approximation theorem of Weierstrass and the Riesz
representation theorem, one can extend this result to hold for positive measures with compact
support. The Hausdorff moment problem is therefore always determinate. As regards existence,
Hausdorff [13] proved in 1923 that the moment problem has a solution on [0, 1] if and only if the
sequence (sn)n≥0 is completely monotonic.

Stieltjes introduced the moment problem on [0,∞) and solved the problems about existence and
uniqueness in his famous memoir “Recherches sur les fractions continues” from 1894-95, see [24].
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The memoir is devoted to the study of continued fractions of the form

1

m1z +
1

l1 +
1

m2z +
1

l2 + · · ·

(1)

where mn, ln > 0 and z ∈ C. We denote by Tn(z)/Un(z) the nth convergent (or nth approximant)
and observe that Tn(z) and Un(z) are polynomials in z. To be precise, T2n(z) and T2n−1(z) are
polynomials of degree n− 1 whereas U2n(z) and U2n−1(z) are polynomials of degree n. Moreover,

T2n(0) = l1 + . . .+ ln, U2n(0) = T2n−1(0) = 1 and U2n−1(0) = 0.

The moment sequence (sn)n≥0 comes in via the asymptotic expansion

Tn(z)
Un(z)

=
s0
z
− s1
z2

+
s3
z3
− . . .+ (−1)n−1 sn−1

zn
+O

( 1
zn+1

)
, |z| → ∞.

In this way the nth convergent uniquely determines the real numbers s0, s1, . . . , sn−1. The condition
mn, ln > 0 is equivalent to assuming that∣∣∣∣∣∣∣∣∣

s0 s1 . . . sn−1

s1 s2 . . . sn
...

...
...

sn−1 sn . . . s2n−2

∣∣∣∣∣∣∣∣∣ > 0 and

∣∣∣∣∣∣∣∣∣
s1 s2 . . . sn
s2 s3 . . . sn+1

...
...

...
sn sn+1 . . . s2n−1

∣∣∣∣∣∣∣∣∣ > 0,

which is necessary and sufficient for the moment problem to have a solution on [0,∞) with infinite
support.

Stieltjes pointed out that one has to distinguish between two cases:
∞∑
n=1

(
mn + ln

)
<∞ and

∞∑
n=1

(
mn + ln

)
= ∞.

In the first case – the indeterminate case – the continued fraction diverges for all z ∈ C. However,
the even convergents and the odd convergents each have a limit as n → ∞ for z ∈ C \ (−∞, 0].
The limits are different and of the form

lim
n→∞

T2n(z)
U2n(z)

=
∫ ∞

0

dν1(t)
z + t

and lim
n→∞

T2n−1(z)
U2n−1(z)

=
∫ ∞

0

dν2(t)
z + t

,

where ν1 and ν2 are different positive (and discrete) measures on [0,∞) with moments (sn)n≥0. In
fact, the polynomials T2n(z), U2n(z), T2n−1(z), U2n−1(z) converge uniformly on compact subsets
of C as n→∞:

lim
n→∞

T2n(z) = P (z), lim
n→∞

T2n−1(z) = R(z),

lim
n→∞

U2n(z) = Q(z), lim
n→∞

U2n−1(z) = S(z).
(2)

The entire functions P , Q, R, S satisfy the relation

Q(z)R(z)− P (z)S(z) = 1, z ∈ C,

2



and admit only simple zeros which are ≤ 0. As we shall see later on, these four functions play
an important role in the description of the set of solutions to an indeterminate Stieltjes moment
problem.

In the second case – the determinate case – the continued fraction converges uniformly on compact
subsets of C \ (−∞, 0] even though the polynomials Tn(z) and Un(z) diverge as n→∞. The limit
of the nth convergent has the form

lim
n→∞

Tn(z)
Un(z)

=
∫ ∞

0

dν(t)
z + t

,

where ν is a positive measure on [0,∞) with moments (sn)n≥0. In fact, ν is the only positive
measure on [0,∞) with moments (sn)n≥0.

Hamburger continued the work of Stieltjes in the series of papers “Über eine Erweiterung des
Stieltjesschen Momentenproblems” from 1920-21, see [12]. He was the first to treat the moment
problem as a theory of its own and considered more general continued fractions than the one in
(1). The role of [0,∞) in Stieltjes’ work is taken over by the real line in Hamburger’s work. A
key result – often referred to as Hamburger’s theorem – says that (sn)n≥0 is a moment sequence
if and only if it is positive definite. But besides the question about existence, Hamburger was also
interested in the question about uniqueness.

To avoid confusion at this point we emphasize that if (sn)n≥0 is a sequence of Stieltjes moments,
then one has to distinguish between determinacy and indeterminacy in the sense of Stieltjes and
in the sense of Hamburger. Obviously, an indeterminate Stieltjes moment problem is also indeter-
minate in the sense of Hamburger and if the solution to a determinate Hamburger moment problem
is supported within [0,∞), the moment problem is also determinate in the sense of Stieltjes. But
a determinate Stieltjes moment problem can just as well be determinate as indeterminate in the
sense of Hamburger. In the following we let the words determinate and indeterminate refer to the
Hamburger moment problem unless otherwise stated.

It is desirable to be able to tell whether the moment problem is determinate or indeterminate just
by looking at the moment sequence (sn)n≥0. Hamburger came up with a solution to this problem
by pointing out that the moment problem is determinate if and only if

lim
n→∞

∣∣∣∣∣∣∣∣∣
s0 s1 . . . sn−1

s1 s2 . . . sn
...

...
...

sn−1 sn . . . s2n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
s4 s5 . . . sn+1

s5 s6 . . . sn+2

...
...

...
sn+1 sn+2 . . . s2n−2

∣∣∣∣∣∣∣∣∣

= 0.

More recently, Berg, Chen and Ismail [4] have proved that the moment problem is determinate if
and only if the smallest eigenvalue of the Hankel matrix

(
(si+j)0≤i,j≤n

)
tends to 0 as n → ∞. A

simpler criterion, however, was given by Carleman in his treatise of quasi-analytic functions from
1926, see [8]. He proved that if

∞∑
n=1

1
2n
√
s2n

= ∞, (3)
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then the moment problem is determinate. Carleman’s criterion has the disadvantage that it only
gives a sufficient condition for the moment problem to be determinate. There are moment sequences
(sn)n≥0 for which the series in (3) converges although the moment problem is determinate. But
Carleman’s criterion tells us that the moment problem is determinate unless the even moments
tend to infinity quite rapidly. On the other hand, we cannot conclude that the moment problem is
indeterminate just because the moment sequence increases very rapidly.

Given a positive measure µ with moments (sn)n≥0, the orthonormal polynomials (Pn) are charac-
terized by Pn(x) being a polynomial of degree n with positive leading coefficient such that∫

R
Pn(x)Pm(x) dµ(x) = δmn, n,m ≥ 0.

The polynomials (Pn) only depend on the moment sequence (sn)n≥0 and they can be obtained
from the formula

Pn(x) =
1√

Dn−1Dn

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 . . . sn
s1 s2 . . . sn+1

...
...

...
sn−1 sn . . . s2n−1

1 x . . . xn

∣∣∣∣∣∣∣∣∣∣∣
, (4)

where Dn = det
(
(si+j)0≤i,j≤n

)
denotes the Hankel determinant. It is well-known that (Pn) satisfy

a three-term recurrence relation of the form

xPn(x) = bnPn+1(x) + anPn(x) + bn−1Pn−1(x), n ≥ 1, (5)

where an ∈ R and bn > 0. The initial conditions are P0(x) = 1 and P1(x) = 1
b0

(x−a0). Vice versa,
if (Pn) satisfy the above three-term recurrence relation (including the initial conditions) for some
real sequences (an) and (bn) with bn > 0, then it follows by Favard’s theorem that there exists a
positive measure µ on R such that the polynomials (Pn) are orthonormal with respect to µ.

As can be read of from (5), the leading coefficient of Pn(x) is given by (b0b1 · · · bn−1)−1. The
polynomials pn(x) := (b0b1 · · · bn−1)Pn(x) are therefore monic and they satisfy the three-term
recurrence relation

xpn(x) = pn+1(x) + cnpn(x) + λnpn−1(x), n ≥ 1, (6)

where cn = an ∈ R and λn = b2n−1 > 0.

The recurrence coefficients in (5) and (6) contain useful information about the moment problem.
Carleman proved in 1922 that the moment problem is determinate if

∞∑
n=0

1
bn

= ∞. (7)

This condition is clearly satisfied if the sequence (bn) is bounded and if the sequence (an) is bounded
too, the unique solution has compact support. Just like Carleman’s condition (3), the condition
(7) is only sufficient for the moment problem to be determinate. The moment problem may be
determinate even though the series in (7) converges.

In the set-up of Stieltjes the recurrence coefficients from (5) are given by

an =
1

mn+1

( 1
ln

+
1

ln+1

)
and bn =

1
ln+1

√
mn+1mn+2

4



with the convention that a0 = 1
m1

1
l1

. After a few computations we see that the moment problem
is determinate in the sense of Stieltjes if (but not only if)

∞∑
n=0

1√
bn

= ∞.

Using the concept of chain sequences, Chihara proved the following result in [10]. On the assumption
that

cn →∞ and
λn+1

cncn+1
→ L <

1
4

as n→∞,

the moment problem is determinate if

lim inf
n→∞

c1/nn <
1 +

√
1− 4L

1−
√

1− 4L

and indeterminate if the opposite (strict) inequality holds. In particular, if cn has the form

cn = fnq
−n,

where 0 < q < 1 and (fn) is both bounded and bounded away from 0, then the moment problem
is determinate if

L <
q

(1 + q)2

and indeterminate if the opposite (strict) inequality holds.

Just like the orthonormal polynomials (Pn), the polynomials of the second kind (Qn) are generated
by the three-term recurrence relation (5) – but with initial conditions Q0(x) = 0 and Q1(x) = 1/b0.
Consequently, (Pn) and (Qn) are linearly independent solutions to (5) and together they span the
solution space. Notice that Qn(x) is a polynomial of degree n−1 and when µ is a positive measure
with moments (sn)n≥0, we have

Qn(x) =
∫

R

Pn(x)− Pn(y)
x− y

dµ(y).

The orthonormal polynomials (Pn) and the polynomials of the second kind (Qn) play a crucial
role for the moment problem. Hamburger proved that the moment problem is indeterminate if and
only if

∞∑
n=0

(
P 2
n(0) +Q2

n(0)
)
<∞. (8)

Actually, it is necessary and sufficient that there exists an x ∈ R such that (8) is fulfilled with x
instead of 0. It is even necessary and sufficient that there exists a z ∈ C\R such that either (Pn(z))
or (Qn(z)) belong to `2. In any case, when the moment problem is indeterminate the series

∞∑
n=0

|Pn(z)|2 and
∞∑
n=0

|Qn(z)|2

converge uniformly on compact subsets of C.

5



Hamburger pointed out that in the set-up of Stieltjes the condition (8) is equivalent to

∞∑
n=1

mn+1(l1 + . . .+ ln)2 <∞. (9)

This simply follows from the fact that

Pn(z) = (−1)n
√
mn+1/m1U2n(−z)

and
Qn(z) = (−1)n−1√mn+1m1T2n(−z).

The condition (9) enables us to determine whether a determinate Stieltjes moment problem is
determinate or indeterminate in the sense of Hamburger.

Sometimes the natural starting point is not the orthogonal polynomials but a density w(t) with
moments (sn)n≥0. In this situation Krein [14] proved that the moment problem is indeterminate
if

1
π

∫
R

logw(t)
1 + t2

dt > −∞. (10)

Krein’s condition (10) is only sufficient and not necessary for the moment problem to be indeterm-
inate.

We shall now take a closer look at the set of solutions to an indeterminate Hamburger moment
problem. Such a set – which we will denote by VH – is clearly convex and therefore infinite. In
fact, it is infinite dimensional. Equipped with the vague topology, VH is a compact set in which
the subsets of absolutely continuous, discrete and continuous singular solutions each are dense, see
Berg and Christensen [5]. Moreover, Naimark [17] proved that µ is an extreme point in VH if and
only if the polynomials C[x] are dense in L1(R, µ).

The problem about describing VH was solved by Nevanlinna in 1922 using complex function theory,
see [18]. We call a function ϕ a Pick function if it is holomorphic in the upper half-plane Im z > 0
and Imϕ(z) ≥ 0 for Im z > 0. By reflection in the real line any such function can be extended to a
holomorphic function in C \R. Nevanlinna proved that VH can be parametrized by the space P of
Pick functions augmented with the point ∞. The space P inherits the topology of the holomorphic
functions on C \ R and one can think of P ∪ {∞} as a one-point compactification of P. The
parametrization is established via the homeomorphism ϕ 7→ µϕ of P ∪ {∞} onto VH given by∫

R

dµϕ(t)
t− z

= −A(z)ϕ(z)− C(z)
B(z)ϕ(z)−D(z)

, z ∈ C \ R,

where A, B, C, D are certain entire functions defined in terms of the orthonormal polynomials
(Pn) and the polynomials of the second kind (Qn). More precisely, A, B, C, D are the uniform
limits (on compact subsets of C) of the polynomials

An(z) = bn
(
Qn(0)Qn+1(z)−Qn+1(0)Qn(z)

)
,

Bn(z) = bn
(
Qn(0)Pn+1(z)−Qn+1(0)Pn(z)

)
,

Cn(z) = bn
(
Pn(0)Qn+1(z)− Pn+1(0)Qn(z)

)
,

Dn(z) = bn
(
Pn(0)Pn+1(z)− Pn+1(0)Pn(z)

)
,

(11)

6



as n→∞. In a more compact form, we have

A(z) = z
∞∑
n=0

Qk(0)Qk(z), C(z) = 1 + z
∞∑
n=0

Pk(0)Qk(z),

B(z) = −1 + z
∞∑
n=0

Qk(0)Pk(z), D(z) = z
∞∑
n=0

Pk(0)Pk(z),

(12)

and the so-called Nevanlinna matrix
(
A C
B D

)
has determinant one for all z ∈ C.

M. Riesz proved in 1923 that the entire functions A, B, C, D are of minimal exponential type, see
[22]. In particular, their order is ≤ 1 (and if the order is 1, then the type is 0). Berg and Pedersen
[6] have later proved that A, B, C, D have the same order, type and Phragmén–Lindelöf indicator
function.

In some sense, to solve an indeterminate Hamburger moment problem means to find the Nevanlinna
matrix. If one can express A, B, C, D – but in particular B and D – in terms of well-known
functions, it may be possible to obtain solutions to the moment problem in a systematic way. With
A, B, C, D at hand one can use the Stieltjes–Perron inversion formula to find the solution µϕ
corresponding to the Pick function ϕ. In particular, if

ϕ(z) = t, Im z 6= 0

for t ∈ R ∪ {∞}, then µϕ is a discrete measure of the form

µt =
∑
x∈Λt

ρ(x)εx, (13)

where Λt denotes the set of zeros of x 7→ B(x)t−D(x) (or x 7→ B(x) if t = ∞) and ρ : R → (0, 1)
is given by

1
ρ(x)

=
∞∑
n=0

P 2
n(x) = B′(x)D(x)−B(x)D′(x), x ∈ R. (14)

As usual, we denote by εx the unit mass at the point x. Moreover, if we set

ϕ(z) =

{
β + iγ, Im z > 0
β − iγ, Im z < 0

for β ∈ R and γ > 0, then µϕ is absolutely continuous with density

dµβ,γ
dx

=
γ/π(

βB(x)−D(x)
)2 +

(
γB(x)

)2 , x ∈ R. (15)

The solutions in (13) and (15) are interesting in different ways. The discrete measures in (13) are
characterized by M. Riesz [21] to be the only solutions µ for which the polynomials C[x] are dense
in L2(R, µ) or, equivalently, for which the polynomials (Pn) form an orthonormal basis for the
Hilbert space L2(R, µ). They are called N -extremal solutions and are indeed extreme points in VH
– just not the only ones. As regards the densities in (15), the polynomials C[x] are not even dense
in L1(R, µβ,γ). But among all the absolutely continuous measures in VH with density, say w(t),

7



the solution µ0,1 is the one that maximizes the entropy integral in (10). More generally, Gabardo
[11] proved that for fixed λ = x+ iy in the upper half-plane, the integral

1
π

∫
R

y logw(t)
(x− t)2 + y2

dt

obtains its maximum value among all densities in VH when

w(t) =
dµβ,γ
dt

and
D(λ)
B(λ)

= β − iγ.

Since VH is convex, we notice that given ϕ,ψ ∈ P ∪ {∞} and s ∈ [0, 1] there exists a unique
function χ ∈ P ∪ {∞} such that

sµϕ + (1− s)µψ = µχ.

In fact, χ is given by

χ =
ϕψB −

(
sϕ+ (1− s)ψ

)
D(

(1− s)ϕ+ sψ
)
B −D

and this in particular means that

1
2 (µ1 + µ−1) = µB/D and 1

2 (µ0 + µ∞) = µ−D/B .

Therefore, B/D and −D/B are Pick functions.

The solutions in (13) are also called canonical. More generally, a solution µϕ is calledm-canonical or
canonical of order m if the Pick function ϕ is a real rational function of degree m. Such solutions are
discrete measures and if ϕ = P/Q – assuming that P and Q are polynomials with real coefficients
and no common zeros – then µϕ is supported on the zeros of x 7→ B(x)P (x)−D(x)Q(x). For fixed
m0, the subset of canonical solutions of order m ≥ m0 is dense in VH . Moreover, if µ is canonical
of order m ≥ 1 then the polynomials C[x] are dense in Lp(R, µ) for 1 ≤ p < 2 but not for p ≥ 2. In
particular, the m-canonical solutions are extreme points in VH and we see that VH is one of those
special convex sets in which the extreme points are dense.

Buchwalter and Cassier proved in [7] that a solution µ is m-canonical if and only if the closure of
the polynomials C[x] has codimension m in L2(R, µ). In fact, if µ is a discrete solution of the form

µ =
∑
n

mnεxn ,

then the codimension of the closure of C[x] in L2(R, µ) can be computed as the sum of the series∑
n

(
1− mn

ρ(xn)

)
,

where ρ is defined in (14). See Bakan [2] for details. The above series converges if and only if µ is
canonical of some order m ≥ 0. At this point we stress that

µ({x}) ≤ ρ(x), x ∈ R

for all µ ∈ VH and equality only holds when µ = µt is N -extremal and B(x)t−D(x) = 0.
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Suppose now that (sn)n≥0 is a sequence of Stieltjes moments such that the moment problem is
indeterminate in the sense of Hamburger. In order to describe the set VS of solutions to the Stieltjes
moment problem, one can still use the Nevanlinna parametrization and just restrict oneself to
consider only the Pick functions ϕ which have an analytic continuation to C \ [0,∞) such that
α ≤ ϕ(x) ≤ 0 for x < 0, see Pedersen [20]. The quantity α ≤ 0 is defined by

− 1
α

= m1

∞∑
n=1

ln

or as the limit

α = lim
n→∞

Pn(0)
Qn(0)

,

and the moment problem is determinate in the sense of Stieltjes if and only if α = 0.

For the indeterminate Stieltjes moment problem a slightly more elegant way to describe VS is the
Krein parametrization, see Krein [15] or Krein and Nudel’man [16, p. 199]. We denote by S the
subspace of P consisting of those Pick functions σ which have an analytic continuation to C\ [0,∞)
such that σ(x) ≥ 0 for x < 0. In addition to this, S ∪ {∞} is a one-point compactification of S
in the topology inherited from the holomorphic functions on C \ [0,∞). The parametrization is
established via the homeomorphism σ 7→ νσ of S ∪ {∞} onto VS given by∫ ∞

0

dνσ(t)
t− z

=
P (−z) + σ(z)R(−z)
Q(−z) + σ(z)S(−z)

, z ∈ C \ [0,∞),

where P , Q, R, S are the entire functions from (2). In fact,
(
P R
Q S

)
is related to the Nevanlinna

matrix by

P (z) = A(−z)− 1
α
C(−z), R(z) = C(−z),

Q(z) = −
(
B(−z)− 1

α
D(−z)

)
, S(z) = −D(−z),

(16)

and we see that νσ = µϕ exactly when

σ(z) =
ϕ(z)− α

αϕ(z)
.

In particular, this means that
ν0 = µα, ν∞ = µ0

and the only N -extremal solutions supported within [0,∞) are µt with α ≤ t ≤ 0 or νs with
0 ≤ s ≤ ∞.

We end this section by explaining the connection between Stieltjes moment problems and symmetric
Hamburger moment problems. A moment problem is said to be symmetric if all moments of odd
order are 0. In terms of the orthonormal polynomials (Pn) this is equivalent to

Pn(−x) = (−1)nPn(x) for all n ≥ 0

or equivalent to an = 0, where (an) is the sequence from the three-term recurrence relation (5). If
we suppose that (sn)n≥0 is a sequence of Stieltjes moments, then the sequence (s0, 0, s1, 0, s2, . . .)
gives rise to a symmetric Hamburger moment problem which is indeterminate if and only if the
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original Stieltjes moment problem is indeterminate. Notice that Carleman’s criterion (3) thus says
that the Stieltjes moment problem is determinate if

∞∑
n=1

1
2n
√
sn

= ∞.

There is a one-to-one correspondence between solutions to the Stieltjes moment problem and sym-
metric solutions to the corresponding symmetric Hamburger moment problem, cf. [19, Prop. 4.1].
In fact, if the density w(t), t > 0, has moments (sn)n≥0 then the density |t|w(t2), t ∈ R, has mo-
ments (s0, 0, s1, 0, s2, . . .). So the criterion (10) of Krein tells us that the Stieltjes moment problem
is indeterminate if ∫ ∞

0

logw(t)√
t(1 + t)

dt > −∞. (17)

However, as we explain now, an indeterminate symmetric Hamburger moment problem also has
non-symmetric solutions. The set of solutions to an indeterminate Hamburger moment problem is
described via the Nevanlinna parametrization. When the moment problem is symmetric, Pedersen
[19] proved that the solution µϕ is symmetric if and only if the Pick function ϕ is odd (with the
convention that ∞ is odd). Obviously, there are quite a few odd Pick functions but even more
are certainly not odd. In particular, the only symmetric N -extremal solutions are µ0 and µ∞.
Moreover, the absolutely continuous solutions in (15) are symmetric exactly when β = 0.

The Nevanlinna matrix
(
A C
B D

)
for the symmetric Hamburger moment problem can be obtained

from the Nevanlinna matrix for the original Stieltjes moment problem, see Chihara [9]. But A, B,
C, D are closer related to the entire functions P , Q, R, S of Stieltjes which appear in the Krein
parametrization. In fact, we have

A(z) = zP (−z2), C(z) = R(−z2),

B(z) = −Q(−z2), D(z) = −S(−z2)/z,
(18)

and the Stieltjes solution νσ thus corresponds to the symmetric solution µϕ if and only if

ϕ(z) = − 1
zσ(z2)

.

In particular, ν0 corresponds to µ∞ and ν∞ corresponds to µ0 whereas all other N -extremal
Stieltjes solutions correspond to (symmetric) canonical solutions of order 1.
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Preliminaries

The object of this thesis is to study the indeterminate moment problems within the Askey-scheme.
At this point we therefore include a short section on basic hypergeometric series. We also include
a section about Darboux’s method which is a powerful tool to determine the entire functions from
the Krein and Nevanlinna parametrizations.

Basic hypergeometric series

In this section we give a brief introduction to the notation and basic results from the theory of
q-series. For proofs and more details, the reader is referred to the monograph [G&R] of Gasper
and Rahman.

Unless otherwise stated, we will always assume that q denotes a fixed number in the open interval
(0, 1). That is,

0 < q < 1.

The q-shifted factorials are defined by

(a; q)0 = 1, (a; q)n =
n∏
k=1

(1− aqk−1), n ∈ N ∪ {∞}

for a ∈ C and by

(a; q)−n =
1

(aq−n; q)n
, n ∈ N

for a ∈ C\{qk | k ∈ N}. When several q-shifted factorials occur, we shall use the compact notation

(a1, a2, . . . , ak; q)n = (a1; q)n(a2; q)n · · · (ak; q)n, n ∈ Z ∪ {∞}.

The q-binomial coefficient is defined by[
n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
.

In the Appendix I of [G&R] one can find a number of identities involving q-shifted factorials and
q-binomial coefficients which we shall use unhesitatingly.
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The basic hypergeometric series rφs is defined by

rφs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣ q; z) =
∞∑
n=0

(a1, . . . , ar; q)n
(b1, . . . , bs; q)n

[
(−1)nq(

n
2)

]1+s−r zn

(q; q)n
.

It is assumed that none of the denominator factors vanish. If one of the numerator parameters
equals q−k for some k ≥ 0, then the series terminates and represents a polynomial in z. Otherwise
the radius of convergence is ∞ if r < s + 1, or 1 if r = s + 1 and 0 if r > s + 1. The special case
r = s+ 1 is particularly important and reads

s+1φs

(
a1, . . . , as+1

b1, . . . , bs

∣∣∣∣ q; z) =
∞∑
n=0

(a1, . . . , as+1; q)n
(b1, . . . , bs; q)n

zn

(q; q)n
, |z| < 1.

The bilateral basic hypergeometric series rψr is defined by

rψr

(
a1, . . . , ar
b1, . . . , br

∣∣∣∣ q; z) =
∞∑

n=−∞

(a1, . . . , ar; q)n
(b1, . . . , br; q)n

zn.

It is assumed that z and the parameters are such that each term of the series is well-defined. Since
the series can be written as

∞∑
n=0

(a1, . . . , ar; q)n
(b1, . . . , br; q)n

zn +
∞∑
n=1

(q/b1, . . . , q/br; q)n
(q/a1, . . . , q/ar; q)n

(
b1 · · · br
a1 · · · arz

)n
,

the region of convergence is the annulus∣∣∣∣ b1 · · · bra1 · · · ar

∣∣∣∣ < |z| < 1.

The most important summation formula for q-series is the q-binomial theorem,

1φ0

(
a

–

∣∣∣∣ q; z) =
(az; q)∞
(z; q)∞

(a ∈ C, |z| < 1), (i)

which is due to Cauchy and Heine. The two special cases,
∞∑
n=0

zn

(q; q)n
=

1
(z; q)∞

(|z| < 1), (ii)

∞∑
n=0

q(
n
2)

(q; q)n
zn = (−z; q)∞ (z ∈ C), (iii)

go back to Euler. Notice that eq(z) = 1/(z; q)∞ as well as Eq(z) = (−z; q)∞ can be thought of as
q-analogues of the exponential function. A finite version of the q-binomial theorem is

n∑
k=0

[
n

k

]
q

(−1)kq(
k
2)zk = (z; q)n (z ∈ C). (iv)

Jacobi’s triple product identity,
∞∑

n=−∞
(−1)nq(

n
2)zn = (z, q/z, q; q)∞ (z 6= 0), (v)

14



is a special case of Ramanujan’s sum,

1ψ1

(
a

b

∣∣∣∣ q; z) =
(q, b/a, az, q/az; q)∞
(b, q/a, z, b/az; q)∞

(|b/a| < |z| < 1), (vi)

which also contains the q-binomial theorem. Another generalization of the q-binomial theorem is
Heine’s transformation formula,

2φ1

(
a, b

c

∣∣∣∣ q; z) =
(b, az; q)∞
(c, z; q)∞

2φ1

(
c/b, z

az

∣∣∣∣ q; b) (a, c ∈ C, |b| < 1, |z| < 1) (vii)

=
(c/b, bz; q)∞

(c, z; q)∞
2φ1

(
abz/c, b

bz

∣∣∣∣ q; cb
)

(a ∈ C, |c/b| < 1, |z| < 1) (viii)

=
(abz/c; q)∞

(z; q)∞
2φ1

(
c/a, c/b

c

∣∣∣∣ q; abzc
)

(|abz/c| < 1, |z| < 1), (ix)

which leads to the q-Gauss sum,

2φ1

(
a, b

c

∣∣∣∣ q; cab
)

=
(c/a, c/b; q)∞
(c, c/ab; q)∞

(|c/ab| < 1), (x)

and the 1φ1–transformation,

1φ1

(
a

c

∣∣∣∣ q; b) =
(b; q)∞
(c; q)∞

1φ1

(
ab/c

b

∣∣∣∣ q; c) (a, b, c ∈ C). (xi)

A special case of the q-Gauss sum is

1φ1

(
b

c

∣∣∣∣ q; cb
)

=
(c/b; q)∞
(c; q)∞

(b, c ∈ C) (xii)

and a finite version is the q-Chu–Vandermonde formula,

n∑
k=0

[
n

k

]
q

(b; q)k
(c; q)k

(−1)kq(
k
2)

(c
b

)k
=

(c/b; q)n
(c; q)n

(b, c ∈ C). (xiii)

The summation formula

1φ1

(
a

0

∣∣∣∣ q;−q) =
(aq; q2)∞
(q; q2)∞

(a ∈ C) (xiv)

is a special case of the q-Kummer sum,

2φ1

(
a, b

aq/b

∣∣∣∣ q;−qb
)

=
(aq, aq2/b2; q2)∞

(q; q2)∞(−q/b, aq/b; q)∞
(a ∈ C, |b| > q). (xv)

A more complete list of summation formulas can be found in Appendix II of [G&R] and Appendix
III contains a number of transformation formulas.

Finally, we mention the Ramanujan q-beta integral,∫ ∞

0

xc−1 (−ax; q)∞
(−x; q)∞

dx =
(a, q1−c; q)∞
(q, aq−c; q)∞

π

sinπc
(c > 0, |a| < qc), (xvi)
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and the more general Askey–Roy q-beta integral,∫ ∞

0

xc−1 (−ax,−bq/x; q)∞
(−x,−q/x; q)∞

dx =
(ab, qc, q1−c; q)∞
(q, aq−c, bqc; q)∞

π

sinπc
(c > 0, |a| < qc, |b| < q−c). (xvii)

For details on these two integrals, [A&R] and [Ask] are better references than [G&R].

[G&R] George Gasper and Mizan Rahman, Basic hypergeometric series, Encyclopedia of Mathem-
atics and its Applications, vol. 35, Cambridge University Press, Cambridge, 1990.

[Ask] Richard Askey, Ramanujan’s extensions of the gamma and beta functions, Amer. Math.
Monthly 87 (1980), no. 5, 346-359.

[A&R] Richard Askey and Ranjan Roy, More q-beta integrals, Rocky Mountain J. Math. 16 (1986),
no. 2, 365-372.

Darboux’s method

The aim of this section is to shortly present and explain Darboux’s method. For additional infor-
mation the reader is referred to Olver [Olv].

Suppose that f(z) =
∑∞
n=0 anz

n is holomorphic in a neighbourhood of 0. Sometimes it is useful to
know the behaviour of the coefficients an when n→∞. In the chapter to follow, for instance, we are
dealing with generating functions for orthogonal polynomials and are interested in the behaviour
of the n’th polynomial as n→∞. If the radius of convergence for the above power series is <∞,
then the asymptotic behaviour of an when n→∞ is determined by the singularities closest to 0.
Indeed, we have the following result due to Darboux in 1878.

Theorem (Darboux’s method).
Suppose that f(z) =

∑∞
n=0 anz

n is holomorphic in |z| < r for some r ∈ (0,∞) and has a finite
number of singularities on |z| = r. If g(z) =

∑∞
n=0 bnz

n is also holomorphic in |z| < r and f − g is
continuous on |z| = r, then an − bn = o(r−n) for n→∞.

Proof. Since f − g is holomorphic in |z| < r and continuous on |z| = r, Cauchy’s integral formula
tells us that

an − bn =
1

2πi

∫
|z|=r

f(z)− g(z)
zn+1

dz =
1

2πrn

∫ 2π

0

(
f(reiθ)− g(reiθ)

)
e−inθdθ.

According to Riemann–Lebesgue’s lemma,

1
2π

∫ 2π

0

(
f(reiθ)− g(reiθ)

)
e−inθdθ −→ 0 for n→∞

and this proves the theorem.

The point of Darboux’s method is to find an appropriate comparison function g(z) =
∑∞
n=0 bnz

n,
where the asymptotic behaviour of the coefficients bn is known. In concrete examples one can often
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improve the estimate of the error term. In particular, if f−g is m times continuously differentiable
on |z| = r then integration by parts leads to

an − bn = o(n−mr−n) as n→∞.

The simplest situation is the case where all the singularities of f on the circle of convergence are
poles. Then one can let g be the sum of the principal parts at the poles. Suppose for simplicity that
f is holomorphic in |z| < r and only has one simple pole, say z1, on |z| = r with a = Res(f, z1). If
P1 denotes the principal part of f at z1, that is,

P1(z) =
a

z − z1
= −

∞∑
n=0

a

zn+1
1

zn, |z| < r,

then h1 = f −P1 is holomorphic in |z| < r1 for some r1 > r and has a power series expansion, say
h1(z) =

∑∞
n=0 bnz

n in |z| < r1. For each ρ < r1, the series

h1(ρeiθ) =
∞∑
n=0

bnρ
neinθ, θ ∈ R

is the Fourier series of the C∞-function θ 7→ h1(ρeiθ) and therefore bnρn → 0 for n→∞, that is,

bn = o(ρ−n) for n→∞.

All in all we conclude that
an = − a

zn+1
1

+ o(ρ−n) as n→∞

and when ρ > r, the estimate for the error term is better than o(r−n).

In the situation where f again only has one simple pole, say z2, on |z| = r1 with b = Res(f, z2), we
can give an even better estimate for the error term. Let P2 denote the principal part of f at z2.
Then h2 = f − P1 − P2 is holomorphic in |z| < r2 for some r2 > r1 and with h2(z) =

∑∞
n=0 cnz

n

in |z| < r2, we have for each ρ < r2 that

cn = o(ρ−n) for n→∞.

Realizing that when ρ > r1,

− b

zn+1
2

+ o(ρ−n) = O(r−n1 ) as n→∞,

it follows that
an = − a

zn+1
1

+O(r−n1 ) as n→∞.

[Olv] Frank W. J. Olver, Asymptotics and special functions, AKP Classics, A K Peters Ltd., Welles-
ley, MA, 1997, Reprint of 1974 original [Academic Press, New York].
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Indeterminate moment problems
within the Askey-scheme

The very classical orthogonal polynomials of Hermite, Laguerre and Jacobi are characterized by a
number of common properties. For instance they satisfy a second order linear differential equation
of the Sturm–Liouville type, they possess a Rodrigues type formula and they have derivatives which
again are orthogonal polynomials.

Over the years, several attempts have been made to characterize orthogonal polynomials in such a
way that all important families fit into the same scheme. In this chapter the starting point will be
the so-called Askey-scheme which consists of all orthogonal polynomials that can be obtained from
the Askey–Wilson polynomials as limit or special cases. Just as for the very classical orthogonal
polynomials, the polynomials in the Askey-scheme share a number of common properties. But the
underlying operator need no longer be usual differentiation. Difference operators and more or less
complicated q-difference operators also come into play.

A standard reference to the Askey-scheme is the report [26] of Koekoek and Swarttouw. We shall
for short refer to this report as K&S.

In the present chapter we start by classifying the moment problems within the Askey-scheme. The
aim is to single out the indeterminate cases in preparation for a more extensive study. The main
part of the chapter is devoted to the Krein and Nevanlinna parametrizations. In the literature
only the Nevanlinna parametrization seems to be commonly used but we insist on using the Krein
parametrization whenever the moment problem is indeterminate in the sense of Stieltjes.

Once the entire functions from the Krein or Nevanlinna parametrization are computed, we seek to
relate them to already known q-special functions. But more importantly, we use the entire functions
to obtain solutions to the moment problems in a systematic way. In particular, we try to find the
N -extremal solutions or at least to say as much as possible about the zeros of Q and S (or B and
D). When the moment problem is only indeterminate in the sense of Hamburger, we also try to
find absolutely continuous solutions of the form (15).

In the last part of the chapter we give a more elementary approach to the indeterminate moment
problems within the Askey-scheme. The moment sequences are brought into focus and we explain
the role of the q-Pearson equation which appear in connection with the second order q-difference
equation.
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Classification

As is well-known, there are no indeterminate moment problems within the classical Askey-scheme.
Within the q-analogue of the Askey-scheme, on the other hand, there is a mixture of determinate
and indeterminate moment problems. The aim of the present section is to pick out the indeterminate
ones. This is effectively done by considering the three-term recurrence relations.

Though it is explicitly stated in K&S that 0 < q < 1, we shall for some time just think of q as
an arbitrary positive number. The special case q = 1 leads to the classical Askey-scheme and if
0 < q < 1, the situation is described in K&S. If q > 1, it is common to replace q by 1/q and then
again think of q as a number between 0 and 1.

The first observation is the fact that q-Racah, q-Hahn, dual q-Hahn, quantum q-Krawtchouk, q-
Krawtchouk, affine q-Krawtchouk and dual q-Krawtchouk all satisfy a finite orthogonality relation.
It is therefore trivial that the associated moment problems are determinate.

For Askey–Wilson, continuous q-Hahn, big q-Jacobi, continuous q-Jacobi, little q-Jacobi and al-
ternative q-Charlier the recurrence coefficients are rational functions in qn. One easily checks that
the coefficients in question are bounded in n for all q > 0 and therefore the associated moment
problems are determinate. Moreover, the unique solutions have bounded support. As a matter of
form we mention that Askey–Wilson, continuous q-Hahn, big q-Jacobi, continuous q-Jacobi and
little q-Jacobi are invariant under the interchange q ↔ 1/q. That is, the parameters change and
one may have to rescale the variable but we stay inside the same family of polynomials.

For continuous dual q-Hahn, Al-Salam–Chihara, q-Meixner–Pollaczek, big q-Laguerre, continuous
big q-Hermite, continuous q-Laguerre, little q-Laguerre, Al-Salam–Carlitz I, continuous q-Hermite
and discrete q-Hermite I the recurrence coefficients are polynomials in qn. The associated moment
problems can therefore only be indeterminate if q > 1. Similarly, for q-Meixner, q-Laguerre, q-
Charlier, Al-Salam–Carlitz II, Stieltjes–Wigert and discrete q-Hermite II the recurrence coefficients
are polynomials in q−n. Hence, the associated moment problems are determinate unless 0 < q < 1.

Some of the polynomials in the q-analogue of the Askey-scheme are related to other polynomials
within the same scheme via the interchange q ↔ 1/q. For instance big q-Laguerre turns into
q-Meixner when q is replaced by 1/q. The exact connection is

Pn(x; a, b; 1/q) =
1

(q/b; q)n
Mn(xq/a; 1/a,−b; q).

Furthermore, little q-Laguerre is related to q-Laguerre via q ↔ 1/q and the same holds for Al-
Salam–Carlitz I and II as well as discrete q-Hermite I and II.

As a consequence we only need to consider continuous dual q−1-Hahn, Al-Salam–Chihara II, q−1-
Meixner–Pollaczek, q-Meixner, continuous big q−1-Hermite, continuous q−1-Laguerre, q-Laguerre,
q-Charlier, Al-Salam–Carlitz II, continuous q−1-Hermite, Stieltjes–Wigert and discrete q-Hermite
II in order to single out the indeterminate cases. By Al-Salam–Chihara II we mean Al-Salam–
Chihara when q > 1 and q is replaced by 1/q.

The continuous dual q-Hahn polynomials pn(x|q) := pn(x; a, b, c|q) are generated by the three-term
recurrence relation

2xpn(x|q) = pn+1(x|q) +
[
(a+ b+ c)qn + abcqn−1(1− qn − qn+1)

]
pn(x|q)

+ (1− qn)(1− abqn−1)(1− acqn−1)(1− bcqn−1)pn−1(x|q), n ≥ 0
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with initial conditions p−1(x|q) = 0 and p0(x|q) = 1. We define the continuous dual q−1-Hahn
polynomials by

Pn(x|q) := Pn(x; a, b, c|q) = (−i)npn(ix; ia, ib, ic|1/q)

and they satisfy the three-term recurrence relation

2xPn(x|q) = Pn+1(x|q) + q−2n
[
(a+ b+ c)qn + abc(1 + q − qn+1)

]
Pn(x|q)

+ q−4n+3(1− qn)(ab+ qn−1)(ac+ qn−1)(bc+ qn−1)Pn−1(x|q), n ≥ 0.
(1.1)

Notice that a, b, c appear in a symmetric way and the polynomials are orthogonal on the real line
if

a+ b+ c ∈ R and ab, ac, bc ≥ 0.

By the criterion of Chihara mentioned in the introduction, it is easy to see that the associated mo-
ment problem is indeterminate when abc 6= 0. The recurrence coefficients for the monic orthogonal
polynomials are

cn = 1
2q
−2n

[
(a+ b+ c)qn + abc(1 + q − qn+1)

]
and

λn = 1
4q
−4n+3(1− qn)(ab+ qn−1)(ac+ qn−1)(bc+ qn−1).

In particular, cn has the form
cn = fnq

−2n,

where (fn) is both bounded and bounded away from 0 (when abc 6= 0). It is immediately established
that

lim
n→∞

λn+1

cncn+1
=

q

(1 + q)2
<

1
4

and the result follows.

The special case c = 0 leads to the Al-Salam–Chihara polynomials of type II, denoted byQn(x|q) :=
Qn(x; a, b|q). The three-term recurrence relation (1.1) reduces to

2xQn(x|q) = Qn+1(x|q) + q−n(a+ b)Qn(x|q)
+ q−2n+1(1− qn)(ab+ qn−1)Qn−1(x|q), n ≥ 0

(1.2)

and the polynomials are orthogonal on the real line exactly if

a+ b ∈ R and ab ≥ 0.

Since Qn(−x;−a,−b|q) = (−1)nQn(x; a, b|q), we can assume that Re(a),Re(b) ≥ 0. Askey and
Ismail [4] proved that the associated moment problem is indeterminate if and only if

a2 + b2 < (q + 1/q) ab,

which means that either ā = b or q < a/b < 1/q. When ā = b, it is common to replace a+ b and ab
by respectively 2c cos θ and c2 for c ≥ 0 and 0 ≤ θ ≤ π/2. In this way we obtain the q−1-Meixner–
Pollaczek polynomials which are studied by Chihara and Ismail [12]. The special case θ = π/2
corresponds to a = −b and leads to the symmetric Al-Salam–Chihara polynomials of type II, see
[15]. When a = q

α+1
2 and b = q

α
2 for α ∈ R, we are dealing with the continuous q−1-Laguerre

polynomials. Since a/b =
√
q, the associated moment problem is indeterminate.
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The continuous big q−1-Hermite polynomials are obtained by setting b = 0 in (1.2). They are
orthogonal on the real line for all a ∈ R but the associated moment problem is only indeterminate
when a = 0. We thus end up with the continuous q−1-Hermite polynomials studied by Ismail and
Masson [22]. They satisfy the three-term recurrence relation

2xhn(x|q) = hn+1(x|q) + q−n(1− qn)hn−1(x|q), n ≥ 0 (1.3)

and can also be obtained from the continuous q−1-Laguerre polynomials by letting α→∞.

We now return to the continuous dual q−1-Hahn polynomials. When abc 6= 0, it makes sense to
replace x by (abc)x and then Pn

(
(abc)x|q

)
/(abc)n by Rn(x|q). The resulting three-term recurrence

relation is

2xRn(x|q) = Rn+1(x|q) + q−2n
[
(1/ab+ 1/ac+ 1/bc)qn + 1 + q − qn+1

]
Rn(x|q)

+ q−4n+3(1− qn)(1 + qn−1/ab)(1 + qn−1/ac)(1 + qn−1/bc)Rn−1(x|q), n ≥ 0

and we replace 1/ab, 1/ac, 1/bc with a, b, c to get

2xRn(x|q) = Rn+1(x|q) + q−2n
[
(a+ b+ c)qn + 1 + q − qn+1

]
Rn(x|q)

+ q−4n+3(1− qn)(1 + aqn−1)(1 + bqn−1)(1 + cqn−1)Rn−1(x|q), n ≥ 0.
(1.4)

The polynomials generated by (1.4) are orthogonal on the real line if a, b, c > −1. Moreover, if two
of the parameters a, b, c are complex conjugates (and not of the form −q−k for some k ≥ 0) and
the third parameter is > −1, then the polynomials are also orthogonal on R.

Setting a = 0, replacing b by −bq, c by q/c, x by xq/c and then Rn(xq/c|q) by (q/c)nPn(x; q), we
obtain the q-Meixner polynomials satisfying the three-term recurrence relation

2xPn(x; q) = Pn+1(x; q) + cq−2n
[
(1/c− b− 1)qn + 1 + 1/q

]
Pn(x; q)

+ cq−4n+1(1− qn)(1− bqn)(c+ qn)Pn−1(x; q), n ≥ 0.

They are orthogonal on the real line when b < 1/q and c > 0. To follow K&S we consider the
polynomials

Mn(x; q) := Mn(x; b, c; q) =
(−1)nqn

2

cn(bq; q)n
Pn(x/2; q),

which satisfy the three-term recurrence relation

q2n+1(1− x)Mn(x; q) = c(1− bqn+1)Mn+1(x; q) + q(1− qn)(c+ qn)Mn−1(x; q)

−
[
c(1− bqn+1) + q(1− qn)(c+ qn)

]
Mn(x; q), n ≥ 0.

Notice that the polynomials Fn(x) = Mn(x + 1; q) are birth and death polynomials, i.e., they
satisfy a three-term recurrence relation of the form

(λn + µn − x)Fn(x) = λnFn+1(x) + µnFn−1(x), n ≥ 0,

where λn > 0 for n ≥ 0 and µ0 ≥ 0, µn > 0 for n ≥ 1. Such polynomials are known to be orthogonal
on [0,∞), see e.g. Karlin and McGregor [25]. As a matter of fact, the birth and death rates are
related to the coefficients in the continued fraction (1) via

mn = πn−1 and ln =
1

πnµn
,
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where

πn =
λ0 · · ·λn−1

µ1 · · ·µn
.

Without loss of generality we can assume that m1 = π0 = 1 and if µ0 = 0, the associated moment
problem is therefore indeterminate in the sense of Stieltjes if and only if

∞∑
n=1

(
πn +

1
πnµn

)
<∞.

Moreover, the moment problem is indeterminate in the sense of Hamburger exactly if

∞∑
n=1

πn

( n∑
k=0

1
πkµk

)2

<∞.

It is now an easy matter to verify that the Stieltjes moment problem associated with the q-Meixner
polynomials is indeterminate for b < 1/q and c > 0.

The special case b = 0 leads to the q-Charlier polynomials. Usually c is also replaced by a and the
associated Stieltjes moment problem is thus indeterminate for a > 0. If we set b = qα, replace x
by cqαx and let c→∞, we obtain the q-Laguerre polynomials studied by Moak [32]. See also [23]
and [13]. They are orthogonal on [0,∞) for α > −1 and the associated Stieltjes moment problem
is always indeterminate. To obtain the Al-Salam–Carlitz polynomials of type II, set b = −a/c and
let c→ 0. The three-term recurrence relation is

xV (a)
n (x; q) = V

(a)
n+1(x; q) + q−n(a+ 1)V (a)

n (x; q) + aq−2n+1(1− qn)V (a)
n−1(x; q), n ≥ 0 (1.5)

and it is curious that (1.5) almost can be obtained from (1.2). One just needs to replace the factor
(ab + qn−1) with (ab + cqn−1) and then set c = 0 and b = 1. Berg and Valent [8] considered the
birth and death polynomials

Fn(x) =
(−1)nq(

n
2)

an
V (a)
n (x+ 1; q),

which satisfy the three-term recurrence relation

−qnxFn(x) = aFn+1(x)− (a+ 1− qn)Fn(x) + (1− qn)Fn−1(x), n ≥ 0. (1.6)

They are orthogonal on [0,∞) for a > 0 and the associated Stieltjes moment problem is indeter-
minate if and only if 1 < a < 1/q. Furthermore, the moment problem is indeterminate in the sense
of Hamburger when q < a < 1/q.

The Stieltjes–Wigert polynomials are obtained from the q-Laguerre polynomials by replacing x
with q−αx and letting α → ∞. They can also be obtained from the q-Charlier polynomials by
replacing x by ax and letting a → ∞. The associated Stieltjes moment problem is indeterminate
and studied in [11], [14]. The special case a = 1 of the q-Charlier polynomials seems to be interesting
too. We shall refer to these polynomials as the special q-Charlier polynomials. They satisfy the
three-term recurrence relation

−q2n+1xcn(x; q) = cn+1(x; q)− (1 + q)cn(x; q) + q(1− q2n)cn−1(x; q), n ≥ 0
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and can also be obtained from the Al-Salam–Carlitz polynomials of type II by setting a = 1/q
after replacing q with q2.

In general, the Al-Salam–Carlitz polynomials of type II are not orthogonal for a ≤ 0. But when
a = −1, they are orthogonal on the imaginary axis. The polynomials

h̃n(x; q) = (−i)nV (−1)
n (ix; q)

satisfy the three-term recurrence relation

xh̃n(x; q) = h̃n+1(x; q) + q−2n+1(1− qn)h̃n−1(x; q), n ≥ 0

and are known as the discrete q-Hermite polynomials of type II. The associated moment problem
is indeterminate in the sense of Hamburger. One can namely think of it as the symmetric moment
problem corresponding to the q-Laguerre moment problem when α = −1/2 and q is replaced by
q2.

We end this section with a table of the indeterminate moment problems within the Askey-Scheme.

Continuous
dual 1/q-Hahn

xxppppppppppp

&&LLLLLLLLLLLL

1/q-Meixner–
Pollaczek

��

Al-Salam–
Chihara II

oo

�� &&NNNNNN
q-Meixner

xxrrrrrrrrrrrrr

�� %%JJJJJJJJJJJJJ

Symmetric Al-
Salam–Chihara II

��

Continuous
1/q-Laguerre

wwppppppppppp

Al-Salam–
Carlitz II

�� %%LLLLLLLLLL
q-Charlier

�� $$JJJJJJJJJJJ q-Laguerre

ttiiiiiiiiiiiiiiiiiiiiiii

��
Continuous
1/q-Hermite

Discrete
q-Hermite II

Special
q-Charlier

Stieltjes–
Wigert

As will be explained later on, the above table originates from simple transformations of the normal
distribution. To be more precise, if the random variable X follows a normal distribution N(0, σ2)
then the distribution of exp(X) is associated with the Stieltjes–Wigert polynomials whereas the
distribution of sinh(X) is closely related to the continuous q−1-Hermite polynomials.

The Krein and Nevanlinna parametrizations

In some sense, to solve an indeterminate moment problem on the real line R or on the half-line
[0,∞) means to find the four entire functions from the Nevanlinna or Krein parametrization. A
standard technique to compute these entire functions is to use generating functions.

Definition 1.1. By a generating functionG(x, t) for a sequence {Pn(x)} of orthogonal polynomials
we mean a series of the form

G(x, t) =
∑
n

cnPn(x)tn, (1.7)
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where (cn) is a sequence of real (or complex) numbers and t can be thought of as a power series
variable.

The series in (1.7) will only be of interest to us if the radius of convergence (in t) is neither 0 nor ∞.
In this situation one can use Darboux’s method to obtain the large n behaviour of Pn(x). Darboux’s
method is well explained in Olver’s book [33] on asymptotics and special functions but for the sake
of completeness we have included a short description of the method in the preliminaries.

At the very top of the hierarchy presented in the previous section we find the continuous dual q−1-
Hahn polynomials generated by the three-term recurrence relation (1.1). Using the same procedure
as in the proof of Lemma 1.2 below, one can establish the generating function

∞∑
n=0

(−1)nqn(n−1)

(ab)n(−1/ab, q; q)n
Pn(x|q)tn =

(−t/a; q)∞
(ct; q)∞

2φ2

(
ey/a,−e−y/a
−1/ab,−t/a

∣∣∣∣ q;−t/b) , |ct| < 1.

Darboux’s method then leads to

(−1)nqn(n−1)

(abc)n(−1/ab, q; q)n
Pn(x|q) =

(−1/ac; q)∞
(q; q)∞

2φ2

(
ey/a,−e−y/a
−1/ab,−1/ac

∣∣∣∣ q;−1/bc
)

+O(qn)

but the above asymptotics is not suitable for finding an expression for the entire function D from
the Nevanlinna parametrization. As of today, the continuous dual q−1-Hahn moment problem still
seems to be unsolved in the sense of finding the Nevanlinna matrix. A one-parameter family of
solutions to the moment problem is obtained by Koelink and Stokman in [27].

Below continuous dual q−1-Hahn the hierarchy breaks into two parts: The q-Meixner tableau and
the Al-Salam–Chihara II tableau. In the next two sections we shall throw light on either case.

The q-Meixner tableau

The main new result of this section is Theorem 1.3 in which the entire functions from the Krein
parametrization for the q-Meixner moment problem are computed. A number of corollaries is then
to follow. It is briefly explained in the section on classification how to come from the q-Meixner
polynomials to the special or limit cases which are important enough to have a name. We obtain
the entire functions from the Krein or Nevanlinna parametrizations for the associated moment
problems as corollaries.

We denote by {Mn(x; q)} the solution to the three-term recurrence relation

q2n+1(1− x)Mn(x; q) =c(1− bqn+1)Mn+1(x; q) + q(1− qn)(c+ qn)Mn−1(x; q)

−
[
c(1− bqn+1) + q(1− qn)(c+ qn)

]
Mn(x; q)

(1.8)

with initial conditions
M−1(x; q) = 0, M0(x; q) = 1

and by {M∗
n(x; q)} the solution with initial conditions

M∗
0 (x; q) = 0, M∗

1 (x; q) = − q

c(1− bq)
.

The first part of the following lemma is also stated in K&S.
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Lemma 1.2. Suppose that b < 1/q and c > 0. For |t| < 1, we have

∞∑
n=0

(bq; q)n
(−q/c, q; q)n

Mn(x; q)tn =
1

(t; q)∞
1φ1

(
−x/bc
−q/c

∣∣∣∣ q; btq) (1.9)

and
∞∑
n=1

(bq; q)n
(−q/c, q; q)n

M∗
n(x; q)tn =

1
(t; q)∞

∞∑
n=1

(−1)nq(
n+1

2 )tn

(c+ qn)(q; q)n

n−1∑
k=0

(−bcq1−n/x; q)k
(−cq1−n; q)k

xk. (1.10)

Proof. Denote by M(x, t) the formal power series

M(x, t) :=
∞∑
n=0

(bq; q)n
(−q/c, q; q)n

Mn(x; q)tn

and notice that M(x, 0) = 1. Multiply with (bq; q)ntn+1/(−q/c, q; q)n in (1.8) and sum from n = 0
to ∞ to obtain

(1− x)tqM(x, tq2) =cM(x, t) + (1− c)M(x, tq)−M(x, tq2)− ctM(x, t)
+ bctqM(x, tq)− ctqM(x, t)− (1− c)tqM(x, tq)

+ tqM(x, tq2) + ct2qM(x, t)− bct2q2M(x, tq)

or simply the homogeneous equation

c(1− t)(1− tq)M(x, t) + (1− c+ bctq)(1− tq)M(x, tq)− (1− xtq)M(x, tq2) = 0. (1.11)

Hence, the formal expression N(x, t) := (t; q)∞M(x, t) satisfies

cN(x, t) + (1− c+ bctq)N(x, tq)− (1− xtq)N(x, tq2) = 0

and if we suppose that N(x, t) has the form
∑∞
n=0 ant

n, we get a0 = 1 and

can + (1− c)qnan + bcqnan−1 − q2nan + xq2n−1an−1 = 0, n > 0,

that is,
(1 + qn/c)(1− qn)an + bqn(1 + xqn−1/bc)an−1 = 0, n > 0.

It follows recursively that

an = (−1)nq(
n+1

2 ) (−x/bc; q)n
(−q/c, q; q)n

bn

and we have formally established (1.9). To make the proof rigorous notice that the right-hand side
in (1.9), say f(t), is holomorphic in |t| < 1. Therefore, f(t) has a power series expansion around 0,
say

f(t) =
∞∑
n=0

fnt
n, |t| < 1.

Using the command qsumdiffeq in Maple as described by Koepf in [29, Chap. 10], it is easily
obtained that

c(1− t)(1− tq)f(t) + (1− c+ bctq)(1− tq)f(tq)− (1− xtq)f(tq2) = 0.
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Of course, this equation can also be verified by hand. In any case, the coefficients (fn) are given
by f0 = f(0) = 1 and

q(1− x) = (c+ q)(1− q)f1 − c(1− bq),

q2n−1(1− x)fn−1 = (c+ qn)(1− qn)fn + cq(1− bqn−1)fn−2

−
[
c(1− bqn) + q(1− qn−1)(c+ qn−1)

]
fn−1, n ≥ 2.

Since the polynomials

Mn(x) :=
(bq; q)n

(−q/c, q; q)n
Mn(x; q)

satisfy the same three-term recurrence relation and the initial conditions coincide, we conclude
that fn has the desired form.

To establish (1.10) one can repeat the above procedure with only a few modifications. Let M∗(x, t)
denote the formal power series

M∗(x, t) :=
∞∑
n=1

(bq; q)n
(−q/c, q; q)n

M∗
n(x; q)tn

and notice that M∗(x, 0) = 0. Multiply with (bq; q)ntn+1/(−q/c, q; q)n in (1.8) and sum from n = 1
to ∞ to obtain the inhomogeneous equation

c(1− t)(1− tq)M∗(x, t) + (1− c+ bctq)(1− tq)M∗(x, tq)− (1− xtq)M∗(x, tq2) = −tq. (1.12)

Accordingly, the formal expression N∗(x, t) := (t; q)∞M∗(x, t) satisfies

cN∗(x, t) + (1− c+ bctq)N∗(x, tq)− (1− xtq)N∗(x, tq2) = (tq; q)∞ − (tq2; q)∞

and by (iii), we have

(tq; q)∞ − (tq2; q)∞ =
∞∑
n=1

(−1)n
q(

n+1
2 )

(q; q)n−1
tn.

So if N∗(x, t) has the form
∑∞
n=0 a

∗
nt
n, it follows that a∗0 = 0 and

(c+ qn)(1− qn)a∗n + bcqn(1 + xqn−1/bc)a∗n−1 = (−1)n
q(

n+1
2 )

(q; q)n−1
, n > 0.

By recursion we finally get

a∗n =
(−1)nq(

n+1
2 )

(c+ qn)(q; q)n

n−1∑
k=0

(−bcq1−n/x; q)k
(−cq1−n; q)k

xk

and the right-hand side of (1.10) is obtained. We skip the details in making the last part of the
proof rigorous.

The above lemma prepares the way for the following result.
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Theorem 1.3. Suppose that b < 1/q, c > 0 and consider the indeterminate Stieltjes moment
problem associated with the q-Meixner polynomials Mn(z+1; b, c; q). The entire functions from the
Krein parametrization are given by

P (z) = − (−q/c; q)∞
(bq; q)∞

∞∑
n=1

(−1)nq(
n+1

2 )

(c+ qn)(q; q)n

n−1∑
k=0

(− bcq1−n

1−z ; q)k
(−cq1−n; q)k

(1− z)k,

Q(z) = 1φ1

(
1− z

bq

∣∣∣∣ q;−q/c) ,

R(z) = 1− z

(q; q)∞

∞∑
n=1

(−1)nq(
n+1

2 )+n

(c+ qn)(q; q)n

n−1∑
k=0

(− bcq1−n

1−z ; q)k
(−cq1−n; q)k

(1− z)k,

S(z) =
z (bq2; q)∞

(−q/c, q; q)∞
1φ1

(
q(1− z)
bq2

∣∣∣∣ q;−q/c) .

Proof. Observe first of all that the orthonormal polynomials are given by

Pn(z) := (−1)n
√

(bq; q)nqn

(−q/c, q; q)n
Mn(z + 1; q).

They satisfy namely the three-term recurrence relation (5) with

an =
c(1− bqn+1) + q(1− qn)(c+ qn)

q2n+1
and bn =

c
√

(1 + qn+1/c)(1− bqn+1)(1− qn+1)
q2n+3/2

.

The polynomials of the second kind are given by

Qn(z) := (−1)n
√

(bq; q)nqn

(−q/c, q; q)n
M∗
n(z + 1; q).

It follows from the three-term recurrence relation (1.8) that

c(1− bqn+1)
(
Mn+1(1; q)−Mn(1; q)

)
= q(1− qn)(c+ qn)

(
Mn(1; q)−Mn−1(1; q)

)
.

Since M1(1; q) = M0(1; q) = 1, we have Mn(1; q) = 1 for all n ≥ 0 and therefore

Pn(0) = (−1)n
√

(bq; q)nqn

(−q/c, q; q)n
.

Now set t = q in (1.9) as well as (1.10) and combine (12) with (16) to obtain expressions for S and
R. The 1φ1-transformation (xi) leads to the final expression for S.

An application of Darboux’s method tells us that, as n→∞,

(bq; q)n
(−q/c, q; q)n

Mn(z; q) =
1

(q; q)∞
1φ1

(
−z/bc
−q/c

∣∣∣∣ q; bq) +O(qn)

and

(bq; q)n
(−q/c, q; q)n

M∗
n(z; q) =

1
(q; q)∞

∞∑
n=1

(−1)nq(
n+1

2 )

(c+ qn)(q; q)n

n−1∑
k=0

(−bcq1−n/z; q)k
(−cq1−n; q)k

zk +O(qn).
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We thus conclude that

Q(z) = lim
n→∞

Mn(1− z; q) =
(−q/c; q)∞
(bq; q)∞

1φ1

(
− 1−z

bc

−q/c

∣∣∣∣ q; bq)
and in a similar way P can be obtained as the limit

P (z) = − lim
n→∞

M∗
n(1− z; q).

Again, the 1φ1-transformation (xi) leads to the desired expression for Q.

The q-Charlier polynomials are just a special case of the q-Meixner polynomials. An easy con-
sequence of Theorem 1.3 is thus the following result.

Corollary 1.4. Suppose that a > 0 and consider the indeterminate Stieltjes moment problem
associated with the q-Charlier polynomials Cn(z + 1; a; q). The entire functions from the Krein
parametrization are given by

P (z) = −(−q/a; q)∞
∞∑
n=1

(−1)nq(
n+1

2 )

(a+ qn)(q; q)n

n−1∑
k=0

(1− z)k

(−aq1−n; q)k
,

Q(z) = 1φ1

(
1− z

0

∣∣∣∣ q;−q/a) ,

R(z) = 1− z

(q; q)∞

∞∑
n=1

(−1)nq(
n+1

2 )+n

(a+ qn)(q; q)n

n−1∑
k=0

(1− z)k

(−aq1−n; q)k
,

S(z) =
z

(−q/a, q; q)∞
1φ1

(
q(1− z)

0

∣∣∣∣ q;−q/a) .

Proof. Set b = 0 in Theorem 1.3 and replace c with a.

In general, the 1φ1’s in Theorem 1.3 and Corollary 1.4 cannot be summed and it seems very hard
to find a simple closed form for their zeros. However, in the special case a = 1 a remarkable
simplification occurs. Using the special case (xiv) of the q-Kummer sum, we find that

Q(z) =
(q(1− z); q2)∞

(q; q2)∞
, S(z) =

(1− z; q2)∞
(q; q)∞

(1.13)

and as a direct consequence, two of the N -extremal solutions are given by

ν0 = (q; q2)∞
∞∑
n=0

q(
2n+1

2 )

(q; q)2n+1
εq−(2n+1)−1 (1.14)

and

ν∞ = (q; q2)∞
∞∑
n=0

q(
2n
2 )

(q; q)2n
εq−2n−1. (1.15)

We skip the computational details at this point since a more general result (Prop. 1.7) is just
around the corner.
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It is interesting to notice that the zeros of Q and S in (1.13) both are of the form

1−Aq−2n, n ≥ 0

for some constant A > 0. One should not expect the zeros of Q and S from Theorem 1.3 or
Corollary 1.4 to be just as simple but their asymptotic behaviour turns out to be the same. A
general theorem of Bergweiler and Hayman [9] leads to the following result.

Proposition 1.5. Consider the entire function Q (or S) from Theorem 1.3 and let 0 ≥ x1 > . . . >
xn > . . . denote its zeros. There exists a constant A > 0 such that 1 − xn ∼ Aq−2n as n → ∞.
More precisely,

1− xn = Aq−2n
(
1 +O(qn)

)
as n→∞.

Proof. We learn from Maple (using qsumdiffeq) that the function M∞(z) = Q(1− z) satisfies the
equation

cq(z − b)M∞(z) +
[
q(1− c− bc)z + bc(1 + q)

]
M∞(zq)− (1− zq)(bc+ zq)M∞(zq2) = 0.

Clearly, this is a functional equation of the form

2∑
j=0

aj(z)M∞(zqj) = 0,

where the aj ’s are polynomials. Following the notation of [9], we have p0 = p1 = 1, p2 = 2 and
d0 = d1 = 0, d2 = 1. Thus, the Newton–Puiseux diagram only has two vertices, namely (0, 0) and
(2, 1), and the hypothesis of [9, Thm. 2] is satisfied. In our set-up, c is replaced by q, M = 1, N = 2
and ρ =

√
q. The proposed statement follows easily and a similar result for the zeros of S can be

obtained by replacing z with zq and b with bq.

The Al-Salam–Carlitz polynomials of type II are a certain limit case of the q-Meixner polynomials.
The associated moment problem is studied by Berg and Valent in [8] and on the following pages
we go through some of their important results.

Corollary 1.6. Suppose that 1 < a < 1/q and consider the indeterminate Stieltjes moment problem
associated with the Al-Salam–Carlitz II polynomials V (a)

n (z + 1; q). The entire functions from the
Krein parametrization are given by

P (z) =
(q; q)∞
a− 1 2φ1

( 1−z
a , 0
q/a

∣∣∣∣ q; q) , R(z) = 2φ1

(
1− z, 0
aq

∣∣∣∣ q; q) ,

Q(z) =
( 1−z
a ; q)∞

(1/a; q)∞
, S(z) =

(1− z; q)∞
(aq, q; q)∞

.

Proof. The proof is based on Lemma 1.2 rather than Theorem 1.3. When we set b = −a/c and let
c→ 0, the second order q-difference equations (1.11) and (1.12) reduces to the first order equations

(1− t)(1− at)V (x, t)− (1− xt)V (x, tq) = 0, V (x, 0) = 1

and
(1− t)(1− at)V ∗(x, t)− (1− xt)V ∗(x, tq) = −t, V ∗(x, 0) = 0.
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Such a simplification occurs because the recurrence coefficients in (1.6) are linear in qn. When
|t| , |at| < 1, iteration leads to

V (x, t) =
(xt; q)∞

(t, at; q)∞
, V ∗(x, t) = −t

∞∑
n=0

(xt; q)n
(t, at; q)n+1

qn

and the expressions for P , Q, R, S can now be obtained in the same way as in the proof of Theorem
1.3.

Notice that the zeros of Q and S from Corollary 1.6 are respectively

xn = 1− aq−n, n ≥ 0 and yn = 1− q−n, n ≥ 0.

It is a matter of form to prove the following result.

Proposition 1.7. In the set-up of Corollary 1.6, the N -extremal solutions ν0 and ν∞ are given
by

ν0 = (q/a; q)∞
∞∑
n=0

a−nqn
2

(q/a, q; q)n
εaq−n−1. (1.16)

and

ν∞ = (aq; q)∞
∞∑
n=0

anqn
2

(aq, q; q)n
εq−n−1. (1.17)

Proof. We just have to evaluate the function ρ defined by

1/ρ(x) = Q(x)S′(x)−Q′(x)S(x)

at the points xn and yn. Since the derivative of the function x 7→ (x; q)∞ is given by

−(x; q)∞
∞∑
k=0

qk

1− xqk
,

we have

ρ(x) =
(1/a, aq, q; q)∞
(1− x, 1−x

a ; q)∞

( ∞∑
k=0

qk

1− (1− x)qk
−

∞∑
k=0

qk

a− (1− x)qk
)−1

.

Using the fact that

(t; q)∞
∞∑
k=0

qk

1− tqk

∣∣∣
t=q−n

= (q−n; q)n(q; q)∞qn,

we thus get

ρ(xn) = (q/a; q)∞
a−nqn

2

(q/a, q; q)n
, ρ(yn) = (aq; q)∞

anqn
2

(aq, q; q)n
and the proof is completed.

Remark 1.8. As mentioned in the end of the section on classification, the special q-Charlier
polynomials can be obtained from the Al-Salam–Carlitz polynomials of type II by replacing q with
q2 and setting a = 1/q. In this way Proposition 1.7 leads to the solutions (1.14) and (1.15).
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When q < a ≤ 1, the Al-Salam–Carlitz II moment problem is no longer indeterminate in the sense
of Stieltjes but still indeterminate in the sense of Hamburger. The following result is more general
than Corollary 1.6.

Theorem 1.9. Suppose that q < a < 1/q and consider the indeterminate Hamburger moment
problem associated with the Al-Salam–Carlitz II polynomials V (a)

n (z + 1; q). If ξ(a) denotes the
constant

ξ(a) =
(q; q)∞
a− 1 2φ1

(
1/a, 0
q/a

∣∣∣∣ q; q) ,

then the entire functions from the Nevanlinna parametrization are given by

A(z) =
(q; q)∞
a− 1 2φ1

( 1+z
a , 0
q/a

∣∣∣∣ q; q)− ξ(a)2φ1

(
1 + z, 0
aq

∣∣∣∣ q; q) , C(z) = 2φ1

(
1 + z, 0
aq

∣∣∣∣ q; q) ,

B(z) = −
( 1+z
a ; q)∞

(1/a; q)∞
+ ξ(a)

(1 + z; q)∞
(aq, q; q)∞

, D(z) = − (1 + z; q)∞
(aq, q; q)∞

,

where the expressions for A and B have to be interpreted as the limits

A(1)(z) = (q; q)∞
∞∑
n=0

(1 + z; q)n
(q; q)2n

qn
(n−1∑
k=0

(1 + z)qk

1− (1 + z)qk
− 2

n∑
k=1

qk

1− qk
−

∞∑
k=1

qk

(q; q)k(1− qk)

)
and

B(1)(z) = − (1 + z; q)∞
(q; q)∞

( ∞∑
k=0

(1 + z)qk

1− (1 + z)qk
+ 1− 2

∞∑
k=1

qk

1− qk
−

∞∑
k=1

qk

(q; q)k(1− qk)

)
when a = 1.

We shall not give a detailed proof of the above theorem but merely comment on the special case
a = 1. Berg and Valent proved in [8] that the entire functions A, B, C, D from Theorem 1.9
depend continuously on a for q < a < 1/q. Since the recurrence coefficients in (1.6) are continuous
in a (and q), this result can be obtained by proving that

∞∑
n=0

P 2
n(0) and

∞∑
n=0

Q2
n(0)

converge uniformly in compact subsets of {(a, q) | q < a < 1/q}, cf. [8, Prop. 2.4.1 & Rem. 2.4.2].
As usual, (Pn) denote the orthonormal polynomials and (Qn) the polynomials of the second kind.
Recalling that the derivative of (a; q)n is given by

−(a; q)n
n−1∑
k=0

qk

1− aqk

for n ∈ N∪ {∞}, the limits of A(z) and B(z) as a→ 1 can be found using l’Hospital’s rule on the
first terms in the expressions

A(z) =
(q; q)∞
a− 1

∞∑
n=0

qn

(q; q)n

(
( 1+z
a ; q)n

(q/a; q)n
− (1 + z; q)n

(aq; q)n

)

− (q; q)∞
∞∑
k=1

qk

(q; q)k(a− qk)

∞∑
n=0

(1 + z; q)n
(aq, q; q)n

qn
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and

B(z) =
1

a− 1

(
(1 + z; q)∞
(aq; q)∞

− a
( 1+z
a ; q)∞

(q/a; q)∞

)
+

∞∑
k=1

qk

(q; q)k(a− qk)
(1 + z; q)∞
(aq; q)∞

.

The discrete measures in Proposition 1.7 are also N -extremal solutions when q < a ≤ 1. For a = 1
they actually coincide and represent the unique solution on [0,∞). In the case q < a < 1, the
measure (1.17) is still the unique solution on [0,∞) whereas the measure (1.16) has exactly one
negative mass point, namely a− 1.

The solution (1.17) was discovered by Al-Salam and Carlitz [1]. Only some years later, Chihara
[10] pointed out that it is N -extremal and the first example of this kind.

We conclude with the following result also due to Berg and Valent [8]. The counterpart corres-
ponding to a = 1 is stated in [8, Prop. 4.7.2].

Proposition 1.10. Suppose that a 6= 1. In the set-up of Theorem 1.9, we have for each c > 0 an
absolutely continuous solution with density

vc(x) =
|a− 1|
πa/c

(q/a, aq, q; q)∞
(x+1
a ; q)2∞ + c2(x+ 1; q)2∞

, x ∈ R. (1.18)

Proof. Suppose that β lies strictly between 0 and −1/ξ(a) and is related to γ by the equation

γ2 = −β
(
β + 1/ξ(a)

)
.

A few computations then lead to

(
βB(x)−D(x)

)2 + γ2B2(x) = − β

ξ(a)
(
B(x) + ξ(a)D(x)

)2 + (βξ(a) + 1)D2(x)

and with b = −ξ(a)γ/β, the density (15) has the form

dµβ,γ
dx

=
b/π(

B(x) + ξ(a)D(x)
)2 +

(
bD(x)

)2 , x ∈ R.

Observe that b can take any positive value when β varies between 0 and −1/ξ(a) and replace b
with

ca

|a− 1|
(aq, q; q)∞
(q/a; q)∞

to obtain the density in (1.18).

The q-Laguerre polynomials are yet another limit case of the q-Meixner polynomials. They were
studied by Moak [32] and more recently by Ismail and Rahman [23]. See also [13].

Corollary 1.11. Suppose that α > −1 and consider the indeterminate Stieltjes moment prob-
lem associated with the q-Laguerre polynomials L(α)

n (z; q). The entire functions from the Krein
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parametrization are given by

P (z) = − qα

(qα+1; q)∞

∞∑
n=1

(−1)n
q(

n+1
2 )

(q; q)n

n−1∑
k=0

(zqn−k; q)kqαk,

Q(z) =
∞∑
n=0

qn(n+α)

(qα+1, q; q)n
zn,

R(z) = 1− zqα

(q; q)∞

∞∑
n=1

(−1)n
q(

n+1
2 )+n

(q; q)n

n−1∑
k=0

(zqn−k; q)kqαk,

S(z) =
z(qα+2; q)∞

(q; q)∞

∞∑
n=0

qn(n+α+1)

(qα+2, q; q)n
zn.

Proof. Set b = qα and let c→∞ in the expressions for

cqαP (cqαz + 1), Q(cqαz + 1), R(cqαz + 1), S(cqαz + 1)/cqα

from Theorem 1.3.

The expressions for Q and S are due to Moak [32], but can also be found in [23] and [13]. Moak
pointed out that Q and S are closely related to the second q-Bessel function defined by

J (2)
ν (z; q) =

(qν+1; q)∞
(q; q)∞

(z
2

)ν ∞∑
n=0

(−1)n
qn(n+ν)

(qν+1, q; q)n

(z
2

)2n

.

To be precise, we have

Q(−z) =
(q; q)∞

(qα+1; q)∞
z−

α
2 J (2)

α (2
√
z; q) and S(−z) = −z

1−α
2 J

(2)
α+1(2

√
z; q).

Moreover, Moak proved that the zeros of Q and S are very well separated. That is, if 0 ≥ x1 >
. . . > xn > . . . denote the zeros of Q or S, then

xn+1

xn
> q−2 for n ≥ 1.

The zeros of the second q-Bessel function were first studied by Ismail in [20]. Recently, the results
on their asymptotic behaviour have been improved considerably by Hayman. To begin with, notice
that Q satisfies the functional equation

Q(z)− (1− qα)Q(zq) + qα(1− zq)Q(zq2) = 0.

According to [9, Thm. 2] this means that the zeros of Q behave like

xn = Aq−2n
(
1 +O(qn)

)
as n→∞,

where A < 0 is some constant. But in [19] Hayman establishes the more precise result saying that
there exists a sequence (bk) of real numbers such that for each N ∈ N we have the asymptotic
expansion

xn = −q1−2n

(
1 +

N∑
k=1

bkq
nk +O

(
q(N+1)n

))
as n→∞.
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We shall not go into details on how to determine the real numbers bk but only mention that the
first one is given by b1 = −(1 + qα)(q, q3; q2)∞/(q2; q2)2∞.

The expressions for P and R in Corollary 1.11 differ a little from the ones in [23] and [13]. To make
it clear that we are dealing with different expressions for the same functions, we point out that the
generating function (1.10) reduces to the generating function established in [23, p. 161–162] when
we take the appropriate limit. Moreover, it is verified in [13] that A, B, C, D from [23] and A, B,
C, D from [13] coincide.

The Stieltjes–Wigert polynomials are a limit case of both the q-Laguerre polynomials and the
q-Charlier polynomials.

Corollary 1.12. Consider the indeterminate Stieltjes moment problem associated with the
Stieltjes–Wigert polynomials Sn(z; q). The entire functions from the Krein parametrization are
given by

P (z) =
∞∑
n=1

(−1)n
q(

n
2)

(q; q)n

n∑
k=1

(−1)kqnk−(k
2)zk−1,

Q(z) =
∞∑
n=0

qn
2

(q; q)n
zn,

R(z) = 1 +
1

(q; q)∞

∞∑
n=1

(−1)n
q(

n+1
2 )

(q; q)n

n∑
k=1

(−1)kqnk−(k
2)zk,

S(z) =
z

(q; q)∞

∞∑
n=0

qn(n+1)

(q; q)n
zn.

Proof. As explained in [13], the result follows by letting α→∞ in the expressions for

q−αP (q−αz), Q(q−αz), R(q−αz), qαS(q−αz)

from Corollary 1.11. The result can also be obtained from Corollary 1.4 in a similar way.

The above expressions coincide with the ones in [14, Thm. 3.5]. As regards P and R, one just has
to interchange the order of summation. Notice that the entire functions Q and S can be written
in terms of the function

Φ(z) =
∞∑
n=0

qn
2
zn

(q; q)n
,

also called the entire Rogers–Ramanujan function. This function and its zeros were studied in [14].
It was proved that the zeros, say 0 > x1 > . . . > xn > . . . , are very well separated and obtained
as a corollary that xn+1/xn → q−2 as n→∞. On the way the author used the curious identity

(−zq; q)∞
∞∑
n=0

qn(n+1)zn

(−zq, q2; q2)n
= Φ(z) = (−zq2; q2)∞

∞∑
n=0

qn
2
zn

(−zq2, q2; q2)n

due to Rogers [35], and the fact that Φ satisfies the functional equation

Φ(z)− Φ(zq)− zqΦ(zq2) = 0.
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We mention here that this equation in itself implies the zeros to behave like

xn = Aq−2n
(
1 +O(qn)

)
as n→∞

for some constant A < 0. It was also pointed out in [14] that Φ(−1) and Φ(−q) appear in the
celebrated Rogers–Ramanujan identities

∞∑
n=0

qn
2

(q; q)n
=

1
(q, q4; q5)∞

and
∞∑
n=0

qn(n+1)

(q; q)n
=

1
(q2, q3; q5)∞

.

Recently, Andrews and Berndt have discovered that Φ appears on p. 57 of Ramanujan’s lost
notebook [34] in the remarkable identity

∞∑
n=0

qn
2
zn

(q; q)n
=

∞∏
n=1

(
1 +

zq2n−1

1− qny1 − q2ny2 − q3ny3 − . . .

)
, (1.19)

where

y1 =
1

(1− q)ψ2(q)
, y2 = 0, y4 = y1y3,

y3 =
q + q3

(1− q)(1− q2)(1− q3)ψ2(q)
−

∑∞
n=0

(2n+1)q2n+1

1−q2n+1

(1− q)3ψ6(q)
,

and

ψ(q) =
∞∑
n=0

q(
n+1

2 ) =
(q2; q2)∞
(q; q2)∞

.

As usual, Ramanujan just states this formula without giving a proof. The identity (1.19) is pre-
sumably true for |q| < 1 but Andrews [2] only succeeded in proving it when 0 < q < 1/4. The idea
of his proof is first to show that the zeros of Φ are given exactly by the convergent series

xn = −q1−2n
∞∑
j=0

an,jq
j ,

where the an,j ’s are uniquely determined from

0 =
∞∑
k=0

qk(k+1)−2nk

(q; q)k

(
−

∞∑
j=0

an,jq
j
)k

or 0 =
∞∑

k=−∞

qk(k+1)(qn+k+1; q)∞
(
−

∞∑
j=0

an,jq
j
)k
.

The next step is then to establish the identity

∞∑
j=0

an,jq
j = 1−

∞∑
i=1

yiq
ni,
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from which (1.19) follows. For the record, we mention as Andrews that

x1 =− q−2(1− q + q2 − 2q3 + 4q4 − 8q5 + 16q6 − 33q7 + . . .)

x2 =− q−4(1− q2 + q3 − 2q4 + 4q5 − 7q6 + 11q7 − 18q8 + 33q9 − . . .)

x3 =− q−6(1− q3 + q4 − 2q5 + 4q6 − 7q7 + 11q8 − 17q9 + 27q10

− 43q11 + 68q12 − 112q13 + . . .)

x4 =− q−8(1− q4 + q5 − 2q6 + 4q7 − 7q8 + 11q9 − 17q10 + 27q11

− 42q12 + 62q13 − 91q14 + 138q15 − 213q16 + . . .)

x5 =− q−10(1− q5 + q6 − 2q7 + 4q8 − 7q9 + 11q10 − 17q11 + 27q12

− 42q13 + 62q14 − 90q15 + 132q16 − 192q17 + 275q18 − 398q19 + . . .)

and in the search for patterns we notice that an,j = 0 for j = 1, . . . , n− 1 and an+1,j+1 = an,j for
j = 1, . . . , 2n+ 2 at least when n is small.

The discrete q-Hermite polynomials of type II can be obtained from the q-Laguerre polynomials
in the same way as one can obtain the Hermite polynomials from the Laguerre polynomials. The
relationship is given by

h̃2n(x; q) = (−1)n
(q2; q2)n
qn(2n−1)

L(−1/2)
n (x2; q2)

and

h̃2n+1(x; q) = (−1)n
(q2; q2)n
qn(2n−1)

xL(1/2)
n (x2; q2)

and we arrive at the following result.

Corollary 1.13. Consider the indeterminate Hamburger moment problem associated with the dis-
crete q-Hermite II polynomials h̃n(z; q). The entire functions from the Nevanlinna parametrization
are given by

A(z) = − z

(q; q2)∞

∞∑
n=1

(−1)n
qn(n+1)

(q2; q2)n

n−1∑
k=0

(−z2q2(n−k); q2)k
qk+1

,

B(z) = −
∞∑
n=0

(−1)n
q(

2n
2 )

(q; q)2n
z2n,

C(z) = 1 +
z2

(q2; q2)∞

∞∑
n=1

(−1)n
qn(n+3)

(q2; q2)n

n−1∑
k=0

(−z2q2(n−k); q2)k
qk+1

,

D(z) =
(q; q2)∞
(q2; q2)∞

∞∑
n=0

(−1)n
q(

2n+1
2 )

(q; q)2n+1
z2n+1.

Proof. The result follows from (18) after setting α = −1/2 and replacing q by q2 in Corollary
1.11.

The entire functions B and D are essentially the basic trigonometric functions Cosq, Sinq defined
by

Cosq(z) = 1
2

(
Eq(iz) + Eq(−iz)

)
and Sinq(z) = 1

2i

(
Eq(iz)− Eq(−iz)

)
,
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where Eq is one of the q-analogues of the exponential function, cf. (iii). To be precise, we have

B(z) = −Cosq(z) and D(z) =
(q; q2)∞
(q2; q2)∞

Sinq(z).

By applying the identity

Cos2q(z) + Sin2
q(z) = Eq(iz)Eq(−iz) = (−z2; q2)∞,

Ismail and Rahman [23] observed that when β = 0 and γ = (q; q2)∞/(q2; q2)∞, the density (15)
has the form

dµ0,γ

dx
=

1
π

(q2; q2)∞
(q; q2)∞

1
(−x2; q2)∞

, x ∈ R. (1.20)

This solution was also found by Berg [6], but in a different way. Unlike the zeros of the classical
trigonometric functions, the zeros of Cosq and Sinq are rather complicated. If 0 < x1 < . . . < xn <
. . . denote the positive zeros of Cosq and 0 = y0 < y1 < . . . < yn < . . . the positive zeros of Sinq,
Suslov proved in [37] that

xn = q3/2−2n − c(q) + o(1)

and
yn = q1/2−2n − c(q) + o(1)

as n→∞, where c(q) is the constant given by

c(q) =
√
q

2(1− q)
(q2; q4)∞
(q4; q4)∞

.

We end by noticing that the expressions for B and D lead to a simple expression for the function
ρ defined in (14). It turns out that

ρ(x) =
(q2; q2)∞
(q; q2)∞

1
(−x2; q2)∞

( ∞∑
n=0

qn

1 + x2q2n

)−1

, x ∈ R.

The Al-Salam–Chihara II tableau

In this section we take a closer look at the Al-Salam–Chihara II moment problem. Following the
approach of Askey and Ismail in [4], we start by proving that the moment problem is indeterminate
if and only if ā = b or q < a/b < 1/q. The most general result is then Theorem 1.15 due to
Chihara and Ismail [12]. In this theorem the entire functions from the Nevanlinna parametrization
are computed when ā = b and a 6= b. As corollaries we present the Nevanlinna matrices for
the symmetric Al-Salam–Chihara II moment problem and the continuous q−1-Hermite moment
problem.

We denote by {Qn(x|q)} the solution to the three-term recurrence relation

2xQn(x|q) = Qn+1(x|q) + q−n(a+ b)Qn(x|q) + q−2n+1(1− qn)(ab+ qn−1)Qn−1(x|q)

with initial conditions
Q−1(x|q) = 0, Q0(x|q) = 1
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and by {Q∗n(x|q)} the solution with initial conditions

Q∗0(x|q) = 0, Q∗1(x|q) = 2.

For reasons to be explained later on it is appropriate to write

x = sinh y

and throughout the section we shall assume that x and y are related in this way.

Askey and Ismail [4] considered the polynomials

vn(x) :=
(−1)nq(

n
2)

(q; q)n
Qn(x|q),

which are generated by the three-term recurrence relation

−2xqnvn(x) = (1− qn+1)vn+1(x)− (a+ b)vn(x) + (ab+ qn−1)vn−1(x).

Since the recurrence coefficients are linear in qn, it is an easy matter to establish the following
generating functions.

Lemma 1.14. Suppose that a+ b ∈ R and ab ≥ 0. For |at| , |bt| < 1, we have

∞∑
n=0

(−1)nq(
n
2)

(q; q)n
Qn(x|q)tn =

(eyt,−e−yt; q)∞
(at, bt; q)∞

(1.21)

and
∞∑
n=0

(−1)nq(
n
2)

(q; q)n
Q∗n(x|q)tn = −2t

∞∑
n=0

(eyt,−e−yt; q)n
(at, bt; q)n+1

qn. (1.22)

In order to determine the large n behaviour of Qn(x|q) we have to consider a few different cases.
Notice first that the conditions a+ b ∈ R and ab ≥ 0 imply that ā = b when |a| = |b| and a, b ∈ R
when |a| 6= |b|.

When a = b, the singularity of (1.21) (or (1.22)) closest to zero is a double pole at t = 1/a. So
Darboux’s method leads to

(−1)nq(
n
2)

an(q; q)n
Qn(x|q) = (n+ 1)

(ey/a,−e−y/a; q)∞
(q; q)2∞

+O(qn)

and
(−1)nq(

n
2)

an(q; q)n
Q∗n(x|q) = −2(n+ 1)

a
2φ1

(
ey/a,−e−y/a

q

∣∣∣∣ q; q) +O(qn).

When ā = b and a 6= b, we see that (1.21) (or (1.22)) has two simple poles at t = 1/a and t = 1/ā
as the singularities closest to zero. Darboux’s method therefore tells us that

(−1)nq(
n
2)

(q; q)n
Qn(x|q) = an

(ey/a,−e−y/a; q)∞
(ā/a, q; q)∞

+ ān
(ey/ā,−e−y/ā; q)∞

(a/ā, q; q)∞
+O(|a|n qn)
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and

(−1)nq(
n
2)

(q; q)n
Q∗n(x|q) =− 2an−1

1− ā/a
2φ1

(
ey/a,−e−y/a

āq/a

∣∣∣∣ q; q)
− 2ān−1

1− a/ā
2φ1

(
ey/ā,−e−y/ā

aq/ā

∣∣∣∣ q; q) +O(|a|n qn).

Finally, when |a| 6= |b| the singularity of (1.21) (or (1.22)) closest to zero is a simple pole at either
t = 1/a or t = 1/b. Assuming that a > b, Darboux’s method gives

(−1)nq(
n
2)

(q; q)n
Qn(x|q) = an

(ey/a,−e−y/a; q)∞
(b/a, q; q)∞

+O(pn)

and
(−1)nq(

n
2)

(q; q)n
Q∗n(x|q) = − 2an−1

1− b/a
2φ1

(
ey/a,−e−y/a

bq/a

∣∣∣∣ q; q) +O(pn),

where p denotes the maximum value of |b| and |aq|.
With the asymptotic behaviour of Qn(x|q) at hand, Askey and Ismail [4] determined the values
of a and b for which the Al-Salam–Chihara II moment problem is indeterminate. Notice that the
orthonormal polynomials are given by

Pn(x) :=
qn

2/2√
(ab)n(−1/ab, q; q)n

Qn(x|q)

and satisfy the three-term recurrence relation (5) with

an =
a+ b

2qn
and bn =

√
(ab+ qn)(1− qn+1)

2qn+1/2
.

Similarly, the polynomials of the second kind are given by

Qn(x) :=
qn

2/2√
(ab)n(−1/ab, q; q)n

Q∗n(x|q).

When a = b, we have

|Pn(x)|2 ∼
(n+ 1)2qn

(−1/a2; q)∞(q; q)3∞

∣∣(ey/a,−e−y/a; q)∞∣∣2
and when ā = b and a 6= b, we have

|Pn(x)|2 ∼
qn/ |a|2n

(−1/aā, q; q)∞

∣∣∣∣an (ey/a,−e−y/a; q)∞
(ā/a; q)∞

+ ān
(ey/ā,−e−y/ā; q)∞

(a/ā; q)∞

∣∣∣∣2
≤ qn

(−1/aā, q; q)∞

(
|(ey/a,−e−y/a; q)∞|+ |(ey/ā,−e−y/ā; q)∞|

)2

|(ā/a; q)∞|2
.

Consequently, the moment problem is indeterminate if ā = b. When a > b, we have

|Pn(x)|2 ∼
(aq/b)n

(−1/ab, q; q)∞(b/a; q)2∞

∣∣(ey/a,−e−y/a; q)∞∣∣2
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and since the infinite product (ey/a,−e−y/a; q)∞ never vanishes for y ∈ C\R, the moment problem
is only indeterminate if a/b < 1/q. Similarly, when a < b the moment problem is only indeterminate
if a/b > q. All in all we therefore conclude that the Al-Salam–Chihara II moment problem is
indeterminate if and only if ā = b or q < a/b < 1/q.

We now consider the case ā = b in every detail. Recall that the Al-Salam–Chihara polynomials
of type II reduce to the q−1-Meixner–Pollaczek polynomials in this situation. It is convenient to
write a = ceiθ for c ≥ 0 and 0 ≤ θ ≤ π/2. Moreover, for x ∈ R we define

1
2R(x)eiζ(x) :=

(ey−iθ/c,−e−y−iθ/c; q)∞
(e−2iθ, q; q)∞

(1.23)

and
1
2S(x)eiη(x) := 2φ1

(
ey−iθ/c,−e−y−iθ/c

qe−2iθ

∣∣∣∣ q; q) , (1.24)

where R(x), S(x) > 0 and ζ(x), η(x) ∈ R. The above definitions only make sense when a 6= b (or
c > 0 and 0 < θ ≤ π/2) in case of which

(−1)nq(
n
2)

cn(q; q)n
Qn(x|q) = R(x) cos

(
nθ + ζ(x)

)
+O(qn)

and
(−1)nq(

n
2)

cn(q; q)n
Q∗n(x|q) = −S(x)

sin
(
nθ + η(x)

)
c sin θ

+O(qn).

The following result is due to Chihara and Ismail [12].

Theorem 1.15. Suppose that c > 0, 0 < θ ≤ π/2 and consider the indeterminate Hamburger
moment problem associated with the q−1-Meixner–Pollaczek polynomials Pn(x; c, θ|q). For x ∈ R,
the entire functions from the Nevanlinna parametrization are given by

A(x) =
(q; q)∞

2(−1/c2; q)∞
1

c sin θ
S(0)S(x) sin

(
η(x)− η(0)

)
,

B(x) =
−(q; q)∞

2(−1/c2; q)∞
S(0)R(x) cos

(
ζ(x)− η(0)

)
,

C(x) =
(q; q)∞

2(−1/c2; q)∞
R(0)S(x) cos

(
η(x)− ζ(0)

)
,

D(x) =
(q; q)∞

2(−1/c2; q)∞
c sin θR(0)R(x) sin

(
ζ(x)− ζ(0)

)
,

where R(x), ζ(x) resp. S(x), η(x) are defined in (1.23) and (1.24).

Proof. The result follows from (11) after some computations involving trigonometric functions. For
instance we have

C(x) =
R(0)S(x)

2 sin θ
lim
n→∞

(q; q)n+1

(−1/c2; q)n

×
(
cos

(
nθ + ζ(0)

)
sin

(
(n+ 1)θ + η(x)

)
− cos

(
(n+ 1)θ + ζ(0)

)
sin

(
nθ + η(x)

))
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and the factor in brackets reduces to
1
2 sin

(
θ + η(x)− ζ(0)

)
+ 1

2 sin
(
θ − η(x) + ζ(x)

)
= sin θ cos

(
η(x)− ζ(0)

)
,

which is independent of n.

Remark 1.16. When q < a/b < 1/q, the large n behaviour of Qn(x|q) presented on the previous
pages is not suitable for finding the entire functions from the Nevanlinna parametrization.

The Al-Salam–Chihara polynomials of type II are symmetric exactly when a = −b. The following
result is derived in [15].

Corollary 1.17. Suppose that c > 0 and consider the indeterminate Hamburger moment problem
associated with the symmetric Al-Salam–Chihara II polynomials Qn(x; c|q). For x ∈ R, the entire
functions from the Nevanlinna parametrization are given by

A(x) =
2(q2; q2)∞

c(−1/c2; q2)∞
S(x) sin η(x), C(x) =

(q; q2)∞
(−q/c2; q2)∞

S(x) cos η(x),

B(x) = − (q2; q2)∞
(−1/c2; q2)∞

R(x) cos ζ(x), D(x) =
c(q; q2)∞

2(−q/c2; q2)∞
R(x) sin ζ(x),

where R(x), S(x) > 0 and ζ(x), η(x) ∈ R are defined via

R(x)eiζ(x) =
(−iey/c, ie−y/c; q)∞

(q2; q2)∞
, S(x)eiη(x) = 2φ1

(
−iey/c, ie−y/c

−q

∣∣∣∣ q; q) .

Proof. Set θ = π/2 in Theorem 1.15 and notice that

R(0)eiζ(0) =
(−1/c2; q2)∞

(q2; q2)∞
, S(0)eiη(0) = 1φ0

(
−1/c2

–

∣∣∣∣ q2; q) =
(−q/c2; q2)∞

(q; q2)∞
.

In particular, ζ(0) = η(0) = 0 and the result follows.

A simple computation leads to

R2(x) cos2ζ(x) +R2(x) sin2ζ(x) =
(−e2y/c2,−e−2y/c2; q2)∞

(q2; q2)2∞
so that with β = 0 and

γ =
c

2
(−1/c2, q; q2)∞
(−q/c2, q2; q2)∞

,

the solution (15) has the form

dµ0,γ

dx
=

2
cπ

(q2; q2)∞
(q; q2)∞

(−1/c2; q)∞
(−e2y/c2,−e−2y/c2; q2)∞

, x = sinh y ∈ R. (1.25)

This observation was the starting point of [15] and the solution (1.25) plays a central role through-
out the paper. It is used to construct a family of discrete solutions (in §6) and it also appears in
the first version of the q-Sturm–Liouville equation (in §9).

The continuous q−1-Hermite polynomials are the special case a = b = 0 of the Al-Salam–Chihara
polynomials of type II. But as mentioned in [15], they can also be obtained from the symmetric
Al-Salam–Chihara II polynomials by setting c2 = 1/q and replacing q2 with q. In this way we
arrive at the following result.
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Corollary 1.18. Consider the indeterminate Hamburger moment problem associated with the
continuous q−1-Hermite polynomials. The entire functions from the Nevanlinna parametrization
are given by

A(x) =
4qx
1− q

2φ1

(
q2e2y, q2e−2y

q3

∣∣∣∣ q2; q) , C(x) = 2φ1

(
e2y, e−2y

q

∣∣∣∣ q2; q2) ,

B(x) = − (qe2y, qe−2y; q2)∞
(q; q2)2∞

, D(x) = x
(q2e2y, q2e−2y; q2)∞

(q; q)∞
.

Proof. The proof is based on four identities derived in [22, (5.37), (5.38) & (5.46), (5.47)]. Two of
them have the form

(−i√qey, i√qe−y; q)∞ + (i
√
qey,−i√qe−y; q)∞ = 2

(q2e2y, q2e−2y; q4)∞
(q; q2)∞(q2; q4)∞

and

(−i√qey, i√qe−y; q)∞ − (i
√
qey,−i√qe−y; q)∞ = 4i

√
qx

(q4e2y, q4e−2y; q4)∞
(q; q2)∞(q2; q4)∞

while the other two can be written as

2φ1

(
−i√qey, i√qe−y

−q

∣∣∣∣ q; q) +2φ1

(
i
√
qey,−i√qe−y

−q

∣∣∣∣ q; q)
=

2(q4; q4)∞
(q; q)∞

2φ1

(
e2y, e−2y

q2

∣∣∣∣ q4; q4)
and

2φ1

(
−i√qey, i√qe−y

−q

∣∣∣∣ q; q)−2φ1

(
i
√
qey,−i√qe−y

−q

∣∣∣∣ q; q)
=

4iq
√
qx(q6; q4)∞
(q; q)∞

2φ1

(
q4e2y, q4e−2y

q6

∣∣∣∣ q4; q2)
when Heine’s transformation formula (ix) is applied to the right-hand sides. To obtain the desired
expression for, say D, set c = 1/

√
q in Corollary 1.17 and realize that

(q; q2)∞
4i
√
q(−q2; q2)∞

(
(−i√qey, i√qe−y; q)∞

(q2; q2)∞
−

(i
√
qey,−i√qe−y; q)∞

(q2; q2)∞

)
= x

(q; q2)∞
(q4; q4)∞

(q4e2y, q4e−2y; q4)
(q; q2)∞(q2; q4)∞

= x
(q4e2y, q4e−2y; q4)

(q2; q2)∞
.

Finally, replace q2 with q.

The above result is due to Ismail and Masson [22, §5]. We can apply Heine’s transformation formula
(ix) to the expressions for A and C in [22] to obtain the somewhat simpler expressions presented
here.
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Ismail and Masson pointed out that B and D are closely related to two of the four theta functions
given by

ϑ1(x) = 2q1/4 sinx (q2e2ix, q2e−2ix, q2; q2)∞, ϑ3(x) = (−qe2ix,−qe−2ix, q2; q2)∞,

ϑ2(x) = 2q1/4 cosx (−q2e2ix,−q2e−2ix, q2; q2)∞, ϑ4(x) = (qe2ix, qe−2ix, q2; q2)∞.

To be precise, we have

B(x) = − ϑ4(iy)
(q; q)∞(q; q2)∞

and D(x) =
ϑ1(iy)

2iq1/4(q; q)∞(q2; q2)∞
.

It is remarkable that one can find all of the N -extremal solutions, see [22, §6]. The first step is to
show that

ρ(x) =
1

(−qe2y,−qe−2y, q; q)∞
, x = sinh y ∈ R. (1.26)

Since the orthonormal polynomials are given by

Pn(x) =
qn(n+1)/4√

(q; q)n
hn(x|q),

this follows from the q-Mehler formula

∞∑
n=0

q(
n
2)

(q; q)n
hn(sinh y|q)hn(sinh v|q)tn =

(−tey+v,−te−y−v, tey−v, te−y+v; q)∞
(t2/q; q)∞

, |t| < √
q

established by Ismail and Masson in [22, Thm. 2.1]. The next step is to find the zeros of x 7→
B(x)t−D(x) for fixed t ∈ R ∪ {∞}. It is not hard to see that the zeros of B and D are given by

1
2 (q−n−1/2 − qn+1/2) resp. 1

2 (q−n − qn) for n ∈ Z.

But this only solves the problem for the particular values t = 0 and t = ∞. The trick is to introduce
a reparametrization of t ∈ R ∪ {∞}. Since ρ(x) > 0, the function D/B is strictly decreasing from
0 to −∞ on the interval [

0, 1
2 (q−1/2 − q1/2)

)
and strictly decreasing from ∞ to 0 on the interval(

1
2 (q−1/2 − q1/2), 1

2 (1/q − q)
]
.

For given t ∈ R ∪ {∞}, let w = sinh v denote the unique number in
[
0, 1

2 (1/q − q)
)

such that
t = D(w)/B(w) (assuming that 1/0 = ∞). The problem is now reduced to finding the zeros of
x 7→ B(x)D(w)−D(x)B(w) for fixed w ∈

[
0, 1

2 (1/q − q)
)
. Using the addition formulas

ϑ1(y ± v)ϑ4(y ∓ v)ϑ2ϑ3 = ϑ1(y)ϑ4(y)ϑ2(v)ϑ3(v)± ϑ2(y)ϑ3(y)ϑ1(v)ϑ4(v),

where

ϑ2 := ϑ2(0) = 2q1/4(−q2; q2)2∞(q2; q2)∞, ϑ3 := ϑ3(0) = (−q; q2)2∞(q2; q2)∞, (1.27)
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we see that

B(x)D(w)−D(x)B(w) =
ϑ1(iy)ϑ4(iv)− ϑ1(iv)ϑ4(iy)

2iq1/4(q; q)3∞

=
ϑ2

(
i(y + v)/2

)
ϑ3

(
i(y + v)/2

)
ϑ1

(
i(y − v)/2

)
ϑ4

(
i(y − v)/2

)
2i
√
q(q; q)∞(q2; q2)4∞

and inserting the infinite product representations for the theta functions, we end up with

D(x)B(w)−B(x)D(w) =
ev

2(q; q)∞
(−qey+v,−e−y−v, qe−y+v, ey−v; q)∞ (1.28)

or

D(x)B(w)−B(x)D(w) =
(aey,−ae−y, qe−y/a,−qey/a; q)∞

2a(q; q)∞

if we set a = e−v. For fixed t ∈ R ∪ {∞}, the zeros of x 7→ B(x)t−D(x) are therefore given by

1
2 (q−n/a− qna), n ∈ Z

exactly when

t =
D

(
(1/a− a)/2

)
B

(
(1/a− a)/2

) =
a− 1/a

2
(q2a2, q2/a2, q; q2)∞
(qa2, q/a2, q2; q2)∞

and q < a ≤ 1.

We have the following result.

Proposition 1.19. In the set-up of Corollary 1.18, the N -extremal solutions µt, t ∈ R∪ {∞} are
given by

µt(a) =
1

(−a2,−q/a2, q; q)∞

∞∑
n=−∞

a4nq(
2n
2 )(1 + a2q2n) ε 1

2 (q−n/a−qna),

where

t(a) =
a− 1/a

2
(q2a2, q2/a2, q; q2)∞
(qa2, q/a2, q2; q2)∞

for q < a ≤ 1.

Proof. It is only left to evaluate the function ρ from (1.26) at the zeros of B(x)t−D(x). We get

ρ
(

1
2 (q−n/a− qna)

)
=

1
(−q1−2n/a2,−q1+2na2, q; q)∞

=
(−qa2; q)2n

(−q1−2n/a2; q)2n
1

(−q/a2,−qa2, q; q)∞

=
1 + a2q2n

1 + a2

a4nq(
2n
2 )

(−q/a2,−qa2, q; q)∞

and the desired result follows.

Besides the N -extremal solutions we can also find solutions of the form (15). For given β ∈ R and
γ > 0 the problem is to find an expression for

|B(x)(β + iγ)−D(x)|2 =
(
βB(x)−D(x)

)2 +
(
γB(x)

)2
, x ∈ R.
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Using the relation
−ϑ2

3ϑ
2
1(x) + ϑ2

2ϑ
2
4(x) = ϑ2

4ϑ
2
2(x),

where
ϑ4 := ϑ4(0) = (q; q2)2∞(q2; q2)∞

and ϑ2, ϑ3 are defined in (1.27), we see that

D2(x) + γ2B2(x) =
(q,−q2; q2)2∞(−e2y,−e−2y,−q2e2y,−q2e−2y; q2)∞

4(−q; q)2∞(−q, q2; q2)2∞

exactly when

γ =
(q; q2)∞(−q2; q2)2∞
(q2; q2)∞(−q; q2)2∞

.

In this way we obtain the solution

dµ0,γ

dx
=

4
π

(q2; q2)∞
(q; q2)∞

(−q; q)2∞
(−e2y,−e−2y,−q2e2y,−q2e−2y; q2)∞

, x = sinh y ∈ R.

But many more solutions of the form (15) are derived in [22, §7]. Since −D/B is a Pick function,
we can write

−D(w)
B(w)

= β + iγ, β ∈ R and γ > 0

for every w = sinh v in the upper half-plane Imw > 0. Notice that γ is given by

γ = − 1
2i

(
D(w)
B(w)

− D(w̄)
B(w̄)

)
and the solution (15) therefore takes the form

dµβ,γ
dx

=
1

2πi
B(w)D(w̄)−D(w)B(w̄)
|B(x)D(w) +D(x)B(w)|2

, x ∈ R.

Recalling that B is even and D is odd, we get

B(x)D(w) +D(x)B(w) = D(x)B(−w)−B(x)D(−w)

and (1.28) now leads to

dµβ,γ
dx

=
c

πi

(−cc̄,−q/cc̄, c̄/c, qc/c̄; q)∞
|(cey,−ce−y,−qey/c, qe−y/c; q)∞|2

, x = sinh y ∈ R

if we set c = ev.

Proposition 1.20. In the set-up of Corollary 1.18, we have for each c = reiθ with q < r ≤ 1 and
0 < θ ≤ π/2 an absolutely continuous solution with density

vc(x) =
c

πi

(−cc̄,−q/cc̄, c̄/c, qc/c̄; q)∞
|(cey,−ce−y,−qey/c, qe−y/c; q)∞|2

, x = sinh y ∈ R.
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Proof. The mapping c = ev 7→ sinh v = w is a one-to-one mapping of the set

K = {reiθ | r > 0, 0 < θ < π/2} ∪ {reiθ | 0 < r ≤ 1, θ = π/2}

onto the upper half-plane Imw > 0. Realizing that vcq(x) = vc(x), it suffices to consider c ∈ K
with q < |c| ≤ 1.

Remark 1.21. When θ = π/2, the solutions in Proposition 1.20 can be obtained from (1.25), see
[15, §5] for details.

A number of other solutions are also derived in [22, §7]. But for odd reasons the simplest solution
seems to be missing. We here refer to the density

w(x) =
2q1/8√

2π log q−1
e2

(log(x+
√

x2+1))2

log q , x ∈ R (1.29)

discovered by Atakishiyev, Frank and Wolf in [5].

As the present section illustrates, the Krein and Nevanlinna parametrizations are powerful tools
when dealing with indeterminate moment problems. But sometimes other approaches can be fruitful
as well and this is what the next section is about. For instance, we have not at all considered the
moment sequences and only come across the orthogonal polynomials through their three-term
recurrence relation.

A second approach

In the previous section we started at the highest level of indeterminate moment problems within
the Askey-scheme. The advantage in doing so is the fact that results on a higher level immediately
lead to results on lower levels by taking limits or considering special cases. But one has to be
careful not to overlook things only of interest at the lower levels.

In this section we start at the very bottom of the Askey-scheme and try to work our way up through
the scheme. The main tools will now be the moment sequence (sn)n≥0 and the explicit form of the
orthogonal polynomials. Furthermore, the second order q-difference equation or q-Sturm–Liouville
equation will come into play.

As is well-known, the Hermite polynomials are orthogonal with respect to the normal distribution.
If the random variable X follows a normal distribution N(0, σ2), then exp(X) follows the so-called
lognormal distribution. The density of the lognormal distribution is given by

f(x) =
1√

2πσ2

1
x
e−

(log x)2

2σ2 , x > 0

and the moments are found to be sn = e
1
2n

2σ2
for n ∈ Z. The lognormal distribution is widely used

in statistics, see e.g. [17].

As regards the lognormal moment problem, the criterion (17) of Krein tells us that it is indeterm-
inate in the sense of Stieltjes. The associated orthogonal polynomials were computed by Wigert in

47



[38] directly from the formula (4). They are known as the Stieltjes–Wigert polynomials. To follow
the notation of K&S we set q = e−σ

2
and consider the density

v(x) =
q1/8√

2π log q−1

1√
x
e

1
2

(log x)2

log q , x > 0 (1.30)

which has the moments sn = q−n(n+1)/2 for n ∈ Z. Notice that v(x) =
√
qf(x

√
q) and σ2 > 0

corresponds to 0 < q < 1.

The Stieltjes–Wigert moment problem is studied in [11] and [14]. The observation that v satisfies
the functional equation

xv(x) = v(xq), x > 0 (1.31)

gets things moving. The first result to prove is the fact that any (absolutely continuous) probability
density which satisfies (1.31) has the moments q−n(n+1)/2 for n ∈ Z. Using the Askey–Roy q-beta
integral (xvii), one can thus show that for any c > 0 the density

vc(x) =
sinπc
π

(q; q)∞
(qc, q1−c; q)∞

qc(1−c)xc−1

(−q1−cx,−qc/x; q)∞
, x > 0 (1.32)

is a solution to the Stieltjes–Wigert moment problem. Moreover, it follows that new solutions
can be obtained by multiplying v(x) from (1.30) with positive q-periodic functions, i.e., functions
having the same value at x and xq for x > 0. In fact, Stieltjes [36] pointed out that for λ ∈ [−1, 1]
the densities

ṽλ(x) = v(x)
(
1 + λ sin

(
2π log x

log q

))
, x > 0 (1.33)

all have the same moments.

The next step is to generalize the functional equation (1.31) to an equation for positive measures.
One can prove that any probability measure µ on [0,∞) satisfying the equation

τq−1(µ) = qxdµ(x) (1.34)

has the moments q−n(n+1)/2 for n ∈ Z. Here, τa(µ) denotes the image measure of µ under τa :
x 7→ ax and g(x)dµ(x) denotes the measure with density g with respect to µ. Notice that if µ is
a discrete measure, then (1.34) means that c > 0 is a mass point of µ if and only if cq likewise is
a mass point of µ and µ({cq}) = qcµ({c}). Using the triple product identity (v), we thus see that
for each c > 0 the discrete measure

λc =
1

(−cq,−1/c, q; q)∞

∞∑
n=−∞

cnq(
n+1

2 )εcqn (1.35)

is a solution to the Stieltjes–Wigert moment problem.

One step further is to consider the transformation T defined by

µ
T−→ τq

(
qxdµ(x)

)
.

Whenever µ is a solution to the Stieltjes–Wigert moment problem, it is easily seen that T (µ) is
again a solution. Notice that a positive measure µ is a fixed point of T exactly when µ satisfies
(1.34). The solutions presented so far are therefore all invariant under T . However, the m-canonical
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solutions are not fixed points of T . A major part of [14] is devoted to studying the action of T
on solutions to the moment problem. In Thm. 3.6 the action of T is described at the level of Pick
functions and in Thm. 3.7 it is proved that starting from the N -extremal solution µ0, we have

T (2n+1)(µ0) = µRn
and T (2n+2)(µ0) = µR̃n

for explicitly known real rational functions Rn, R̃n of order ≤ n. In addition to this, it is proved
that

T (2n+1)(µ0) →
(q; q2)∞
(q2; q2)∞

∞∑
n=−∞

q(
2n+2

2 )εq2n+1 (1.36)

and

T (2n+2)(µ0) →
(q; q2)∞
(q2; q2)∞

∞∑
n=−∞

q(
2n+1

2 )εq2n (1.37)

as n → ∞. The solutions in (1.36) and (1.37) were constructed by Berg in [7] to illustrate that
infinitely many solutions to the Stieltjes–Wigert moment problem are supported on the geometric
progression {qn | n ∈ Z}. The highlight of [14] is without doubt Thm. 3.9.

There is a functional equation similar to the one in (1.31) for the q-Laguerre moment problem. As
stated in [13], it reads

qα(1 + x)v(x) = v(xq), x > 0. (1.38)

One easily checks that the function xα/(−x; q)∞ satisfies (1.38) and using the Ramanujan q-beta
integral (xvi), we see that the density

v(α)(x) = − sinπα
π

(q; q)∞
(q−α; q)∞

xα

(−x; q)∞
, x > 0 (1.39)

has the q-Laguerre moments, namely

sn = q−αn−(n+1
2 )(qα+1; q)n.

In the next place, it follows from Ramanujan’s sum (vi) that for every c > 0 the discrete measure

λ(α)
c =

(−q/c, qα+1; q)∞
(−cqα+1,−1/cqα, q; q)∞

∞∑
n=−∞

(−c; q)nqn(α+1)εcqn (1.40)

is a solution to the q-Laguerre moment problem. The solutions in (1.39) and (1.40) were found by
Moak [32] and it is explained in [13] how they lead to the Stieltjes–Wigert solutions (1.32) and
(1.35) by letting α→∞.

The discrete solutions in (1.40) (and (1.35)) are not m-canonical and so the codimension of C[x] in
the Hilbert space L2(λ(α)

c ) is +∞. Nevertheless, Ciccoli, Koelink and Koornwinder [16] were able
to find a sequence (M (α;c)

p )p∈Z of functions (expressed as 1φ1’ s) such that these functions together
with the q-Laguerre polynomials form an orthogonal basis for L2(λ(α)

c ).

A simple computation shows that if v(x) satisfies (1.31), then xα(−q/x; q)∞v(x) satisfies (1.38).
Using an integral of Hardy [18, p. 20-21], we thus see that the density

ṽ(α)(x) =
q(

α+1
2 )+1/8√

2π log q−1
(qα+1,−q/x; q)∞xα−1/2e

1
2

(log x)2

log q , x > 0 (1.41)
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is a solution to the q-Laguerre moment problem. Similarly, the Askey–Roy q-beta integral (xvii)
tells us that for each c > 0 the density

v(α)
c (x) = qc(α+1−c) sinπc

π

(q, qα+1; q)∞
(qc, q1−c; q)∞

(−q/x; q)∞xc−1

(−qα+1−cx,−q−α+c/x; q)∞
, x > 0 (1.42)

is a solutions to the q-Laguerre moment problem.

It is now natural to ask where the functional equations (1.31) and (1.38) come from. The answer is
to be found by considering the q-Sturm–Liouville equation since we are dealing with the q-Pearson
equations for the Stieltjes–Wigert and q-Laguerre polynomials, see e.g. Marcellán and Medem [30].

The next thing to do is then to consider the q-Pearson equations for the other polynomials in the
q-Meixner tableau. Fortunately, it is easy to find these equations since all the preliminary work
has been done by Medem, Álvarez-Nodarse and Marcellán in [31]. Using their results, we see that
the q-Pearson equation for the q-Meixner polynomials is given by

(1− x)(1 + x/bc)v(x) = (1− x/b)v(xq), x > 0 (1.43)

and the q-Pearson equation for the Al-Salam–Carlitz polynomials of type II is given by

(1− x)(1− x/a)v(x) = v(xq), x > 0. (1.44)

Assuming that v is continuous at x = 0 with v(0) = 1, iteration of (1.43) and (1.44) leads to

v(x) =
(x/b; q)∞

(x,−x/bc; q)∞
resp. v(x) =

1
(x, x/a; q)∞

.

Because of the factor (x; q)∞ in the denominator, the above functions are never positive for all
x > 0 (except if a = 1 or b = 1). Apparently, the q-Pearson equation does not lead to solutions to
the q-Meixner and Al-Salam–Carlitz II moment problems.

The q-Pearson equation for the q-Charlier polynomials reads

(1− x)v(x) = −av(xq), x > 0. (1.45)

Setting a = qβ for β ∈ R, we observe that if v(x) satisfies (1.31) then (q/x; q)∞v(x)/xβ satisfies
(1.45). Moreover, we have the following result.

Proposition 1.22. Suppose that f(x) satisfies (1.45) and
∫∞
0
f(x)dx = 1. Then∫ ∞

0

xnf(x)dx = anq−(n+1
2 )(−q/a; q)n, n ≥ 0.

Proof. The proof is by induction. If∫ ∞

0

xnf(x)dx = anq−(n+1
2 )(−q/a; q)n for some n ≥ 0,

then ∫ ∞

0

xn+1f(x)dx =
∫ ∞

0

xn
(
f(x) + af(xq)

)
dx

=
∫ ∞

0

xnf(x)dx+ aq−(n+1)

∫ ∞

0

xnf(x)dx = an+1q−(n+2
2 )(−q/a; q)n+1

and the result follows.

50



The q-Charlier moments are indeed given by

sn = anq−(n+1
2 )(−q/a; q)n.

However, we have to take into account that any function (6≡ 0) satisfying (1.45) changes sign
infinitely often on the interval (0, 1) — and so does the factor (q/x; q)∞. Therefore, it seems as if
the q-Pearson equation does not lead to solutions to the q-Charlier moment problem either.

In any case, we can generalize (1.45) to an equation for signed measures on [0,∞) and get

−aτq−1(µ) = q(1− x)dµ(x). (1.46)

For a discrete measure µ this equation means that −aµ({cq}) = q(1 − c)µ({c}) for all c ≥ 0.
Suppose now that µ(a) satisfies (1.46) and

µ(a)({1}) > 0, µ(a)({c}) = 0 for q < c < 1.

Then

µ(a)({q−n}) =
anq(

n
2)

(q; q)n
µ(a)({1}), n ≥ 0

and µ(a)({c}) = 0 for all other values of c ≥ 0. So µ(a) is a positive measure on [0,∞) and with
µ(a)({1}) = 1/(−a; q)∞, it becomes a probability measure of the form

µ(a) =
1

(−a; q)∞

∞∑
n=0

anq(
n
2)

(q; q)n
εq−n . (1.47)

The above solution to the q-Charlier moment problem is contained in K&S and is derived in a
different way by Koelink [28]. Besides the solution (1.47), Koelink also gives the relation

∞∑
k=0

(−1)kq(
k
2)

(q; q)k
Cn(q−k; a; q)Cm(q−k; 1/a; q) = 0 for all n,m

in [28, Cor. 4.2.]. So when a = 1,

∞∑
k=0

q(
k
2)

(q; q)k
Cn(q−k)Cm(q−k) =

∞∑
k=0

(−1)kq(
k
2)

(q; q)k
Cn(q−k)Cm(q−k) = 0 for n 6= m

or

∞∑
k=0

q(
2k
2 )

(q; q)2k
Cn(q−2k)Cm(q−2k) =

∞∑
k=0

q(
2k+1

2 )

(q; q)2k+1
Cn(q−(2k+1))Cm(q−(2k+1)) = 0 for n 6= m

and we are led to the solutions (1.14) and (1.15). In fact, µ(1) = 1
2 (ν0 + ν∞) when the mass points

of ν1, ν∞ are shifted to the right by 1. This shift of mass points just corresponds to considering
the polynomials Cn(x; a; q) instead of Cn(x+ 1; a; q).

We now derive the solution to the q-Meixner moment problem which is contained in K&S.
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Proposition 1.23. When 0 ≤ b < 1/q and c > 0, the discrete measure

µ(b,c) =
(−bcq; q)∞
(−c; q)∞

∞∑
n=0

(bq; q)n
(−bcq, q; q)n

cnq(
n
2)εq−n

is a solution to the q-Meixner moment problem.

Proof. We start by recalling that the q-Meixner polynomials can be written as

Mn(x; q) = 2φ1

(
q−n, x

bq

∣∣∣∣ q;−qn+1/c

)
, (1.48)

see for example K&S. The identity (xii) tells us that µ(b,c) is a probability measure and therefore
it suffices to prove that ∫ ∞

0

Mn(x; q)xmdµ(b,c)(x) = 0, m < n

or, equivalently, ∫ ∞

0

Mn(x; q)(−x/bc; q)mdµ(b,c)(x) = 0, m < n.

Inserting the expression for Mn(x; q) from (1.48), we get∫ ∞

0

Mn(x; q)(−x/bc; q)mdµ(b,c)(x) =
n∑
k=0

(q−n; q)k
(bq, q; q)k

(−qn+1/c)k
∫ ∞

0

(x; q)k(−x/bc; q)mdµ(b,c)(x)

=
(−bcq; q)∞
(−c; q)∞

n∑
k=0

(q−n; q)k
(bq, q; q)k

(−qn+1/c)k

×
∞∑
j=0

(q−j ; q)k(−q−j/bc; q)m(bq; q)j
(−bcq, q; q)j

cjq(
j
2)

and since (q−j ; q)k = 0 for j < k, the inner sum reduces to

(−1)kq(
k
2)(−1/bc; q)m

∞∑
j=k

(bq; q)j
(q; q)j−k(−bcq1−m; q)j

cjq(
j
2)−j(k+m)

= (−1)k
(bq; q)k

(−bcq1−m; q)k
ckq−k(m+1)(−1/bc; q)m

∞∑
j=0

(bqk+1; q)j
(−bcqk+1−m, q; q)j

cjq(
j
2)−jm.

Once more, we apply (xii) to get
∞∑
j=0

(bqk+1; q)j
(−bcqk+1−m, q; q)j

cjq(
j
2)−jm =

(−cq−m; q)∞
(−bcqk+1−m; q)∞

and the original integral thus simplifies to∫ ∞

0

Mn(x; q)(−x/bc; q)mdµ(b,c)(x) =
(−q/c; q)m

(bq)m

n∑
k=0

(q−n; q)k
(q; q)k

q(n−m)k.

By the q-binomial theorem, the finite sum on the right-hand side reduces to (q−m; q)n and the
desired result follows.
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The above proof is not very constructive but it illustrates how one can use brute force to verify
that that a given positive measure is solution to the moment problem.

We still have left to consider the discrete q-Hermite polynomials of type II. The q-Pearson equation
is given by

(1 + x2)w(x) = w(xq), x ∈ R

and assuming that w is continuous at x = 0 with w(0) = 1, iteration leads to w(x) = 1/(−x2; q2)∞.
In other words, we obtain the solution in (1.20).

The easiest way to obtain other solutions is to recall that the discrete q-Hermite II moment problem
is the symmetrized version of the q-Laguerre moment problem when α = −1/2 and q is replaced
by q2. In particular, if dµ(α)(x) = v(α)(x; q)dx is a q-Laguerre solution then

dµ(x) = |x| v(−1/2)(x2; q2)dx

is a discrete q-Hermite II solution. In this way we get the density

w̃(x) =
(q; q2)∞

2
√
π log q−1

(−q2/x2; q2)∞
|x|

e
(log|x|)2

log q , x 6= 0 (1.49)

and also the densities

wc(x) =
sinπc
π

(q; q)∞
(q2c, q2(1−c); q2)∞

qc(1−2c)(−q2/x2; q2)∞
(−q1−2cx2,−q1+2c/x2; q2)∞

x2c

|x|
, x 6= 0. (1.50)

Since wc+1(x) = wc(x), it suffices to consider the densities in (1.50) for c ∈ (0, 1]. The same remark
applies to the solutions in (1.32) and (1.42). Notice that w1/2(x) coincide with (1.20) and

w1(x) =
1

2 log q−1

(q; q2)∞
(q2; q2)∞

(−q2/x2; q2)∞
(−qx2,−q/x2; q2)∞

1
|x|
, x 6= 0.

It is interesting that the densities in (1.49) and (1.50) all satisfy the q-Pearson equation but only
w1/2(x) is continuous at x = 0.

As regards discrete solutions, we mention that if µ(α) =
∑
nm

(α)(xn; q)εxn is a q-Laguerre solution
then

µ = 1
2

∑
n

m(−1/2)(xn; q2)
(
ε−√xn

+ ε√xn

)
is a discrete q-Hermite II solution. Hence, we get the solutions

κc =
(−q2/c2, q; q2)∞

2(−c2q,−q/c2, q2; q2)∞

∞∑
n=−∞

(−c2; q2)nqn
(
ε−cqn + εcqn

)
. (1.51)

and just as for the solutions in (1.35) and (1.40), it suffices to consider c ∈ (q, 1] because of the
periodicity κcq = κc.

All discrete q-Hermite II solutions that can be obtained from solutions to the q-Laguerre moment
problem are by nature symmetric. Among the many non-symmetric discrete q-Hermite II solutions,
no one seems to be explicitly known. For the continuous q−1-Hermite moment problem, on the
other hand, we have seen examples of symmetric as well as non-symmetric solutions in the previous
section.
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Suppose again that the random variable X follows a normal distribution N(0, σ2). We now consider
the distribution of sinh(X) given by the density

f(x) =
2√

2πσ2

1√
x2 + 1

e−2
(log(x+

√
x2+1))2

σ2 , x ∈ R. (1.52)

This distribution is mentioned in [24, §4.3] but seems to have very little say in statistics and does
not even have a name. We will refer to it as the alternative lognormal distribution. It only becomes
interesting when we realize how closely related it is to the continuous q−1-Hermite polynomials.

Askey was the first to give an orthogonality relation for the continuous q−1-Hermite polynomials.
Using the Askey–Roy q-beta integral (xvii), he proved in [3] that∫

R

hn(sinh y|q)hm(sinh y|q)
(−qe2y,−qe−2y, q; q)∞

dy = log q−1(q; q)nq−(n+1
2 )δn,m.

By the same integral we can compute the continuous q−1-Hermite moments and get

s2n =
(−1)n

22n

n∑
k=−n

(
2n
n+ k

)
(−1)kq−(k+1

2 ), s2n+1 = 0 for n ≥ 0

The odd moments vanish since the moment problem is symmetric.

We now modify the density (1.52) by removing the factor
√
x2 + 1 in the denominator and set

q = e−σ
2
. The new density turns out to be (1.29) and a straightforward computation of the

integrals ∫
R
xnw(x)dx, n ≥ 0

verifies that (1.29) is a solution to the continuous q−1-Hermite moment problem. Whereas the
Stieltjes–Wigert polynomials are orthogonal with respect to the lognormal distribution, the con-
tinuous q−1-Hermite polynomials are orthogonal with respect to a slight variation of the alternative
lognormal distribution. This explains why it is appropriate to set x = sinh y.

Inspired by the Stieltjes–Wigert moment problem, we notice that for λ ∈ [−1, 1] the densities

w̃λ(x) = w(x)
(
1 + λ sin

(
4π log(x+

√
x2+1)

log q

))
, x ∈ R (1.53)

all have the same moments. As the following result shows, this is no coincidence.

Proposition 1.24. Suppose that µ is a positive measure on [0,∞) such that∫ ∞

0

xndµ(x) = q−(n+1
2 ), n ∈ Z.

If µ is absolutely continuous, say dµ(x) = f(x)dx, then∫
R
x2n

(
x+

√
x2 + 1

)
f
(
1 + 2x(x+

√
x2 + 1)

)
dx =

(−1)n

22n+1

n∑
k=−n

(
2n
n+ k

)
(−1)kq−(k+1

2 ), n ≥ 0.
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Proof. Denote by ν the image measure of µ under the map x 7→ 1
2 (
√
x− 1/

√
x). A tedious compu-

tation shows that ∫
R
x2ndν(x) =

1
22n

∫ ∞

0

(√
x− 1/

√
x
)2n

dµ(x)

=
1

22n

2n∑
k=0

(
2n
k

)
(−1)k

∫ ∞

0

xk−ndµ(x)

=
(−1)n

22n

n∑
k=−n

(
2n
n+ k

)
(−1)kq−(k+1

2 ).

If µ has the form dµ(x) = f(x)dx, then

dν(x) = 2
(
x+

√
x2 + 1

)
f
(
1 + 2x(x+

√
x2 + 1)

)(
1 + x/

√
x2 + 1

)
dx

and we therefore see that∫
R
x2ndν(x) = 2

∫
R
x2n

(
x+

√
x2 + 1

)
f
(
1 + 2x(x+

√
x2 + 1)

)
dx.

This completes the proof.

In particular, the above result tells us that if the density

g(x) := 2
(
x+

√
x2 + 1

)
f
(
1 + 2x(x+

√
x2 + 1)

)
, x ∈ R

is an even function, then the absolutely continuous measure dν(x) = g(x)dx is a solution to the
continuous q−1-Hermite moment problem. In this way we are led to the solutions in (1.53) and we
are also led to the densities

wc(x) =
sinπc
π

(q; q)∞
(qc, q1−c; q)∞

2qc(1−c)ey(2c−1)

(−q1−ce2y,−qce−2y; q)∞
, x = sinh y ∈ R. (1.54)

Clearly, wc(x) is only an even function when c = 1/2 or c = 1. To verify that∫
R
x2n+1wc(x)dx = 0, n ≥ 0

for all c ∈ (0, 1], one can use the Askey–Roy q-beta integral (xvii) and the fact that

2n+1∑
k=0

(
2n+ 1
k

)
(−1)k

(
q−(k−n+1/2

2 ) + q−(k−n−1/2
2 )

)
= 0.

But we rather refer to [15, §5], where the solutions in (1.54) are derived in a different way. In short,
the method in [15] is based on the fact that eigenfunctions corresponding to distinct eigenvalues of
a symmetric operator are mutually orthogonal. Following the strategy of [21], it is proved that the
densities in (1.54) satisfy a q-Sturm–Liouville equation for the continuous q−1-Hermite polynomials.
Integration by parts then leads to the orthogonality and it is only left to check that

∫
R wc(x)dx = 1.

There is a counterpart of Proposition 1.24 for discrete measures. Using this result, we see that the
solutions in (1.36) and (1.37) lead to the two symmetric N -extremal solutions µ∞ and µ0.
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The Moment Problem Associated with
the q-Laguerre Polynomials

Jacob Stordal Christiansen

Abstract. We consider the indeterminate Stieltjes moment problem associated with
the q-Laguerre polynomials. A transformation of the set of solutions, which has all the
classical solutions as fixed points, is established and we present a method to construct,
for instance, continuous singular solutions. The connection with the moment problem
associated with the Stieltjes–Wigert polynomials is studied; we show how to come from
q-Laguerre solutions to Stieltjes–Wigert solutions by letting the parameter α → ∞,
and we explain how to lift a Stieltjes–Wigert solution to a q-Laguerre solution at the
level of Pick functions. Based on two generating functions, expressions for the four
entire functions from the Nevanlinna parametrization are obtained.

1. Introduction

In this paper we follow the notation of Gasper and Rahman [14] for basic hypergeometric
series. We will always assume that 0 < q < 1.

Recall from the general theory of the moment problem (see, e.g., Akhiezer [1]) that
the Nevanlinna parametrization gives a one-to-one correspondence between the set of
Pick functions (including ∞) and the set of solutions to an indeterminate Hamburger
moment problem. If µϕ is the solution corresponding to the Pick function ϕ, then the
Stieltjes transform of µϕ is given by∫

R

1

t − x
dµϕ(t) = − A(x)ϕ(x)− C(x)

B(x)ϕ(x)− D(x)
, x ∈ C\R,

where A, B,C, and D are certain entire functions defined in terms of the orthonormal
polynomials (Pn) and (Qn) by

A(x) = x
∞∑

n=0

Qn(0)Qn(x),

B(x) = −1 + x
∞∑

n=0

Qn(0)Pn(x),
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AMS classification: Primary 44A60; Secondary 33D45.
Key words and phrases: Indeterminate moment problems, q-Laguerre polynomials, Stieltjes–Wigert polyno-
mials, Nevanlinna parametrization.
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2 J. S. Christiansen

C(x) = 1 + x
∞∑

n=0

Pn(0)Qn(x),

D(x) = x
∞∑

n=0

Pn(0)Pn(x),

and according to the Stieltjes–Perron inversion formula the measure µϕ is uniquely
determined by its Stieltjes transform.

The q-Laguerre polynomials belong to the Askey-scheme of basic hypergeometric
orthogonal polynomials and, according to Koekoek and Swarttouw [16], they are defined
by

L(α)n (x; q) = (qα+1; q)n
(q; q)n

1ϕ1

(
q−n

qα+1
; q,−qn+α+1x

)
.(1.0.1)

It is easily seen that L(α)n ((1−q)x; q) → L(α)n (x) for q → 1−, where L(α)n (x) denotes the
usual Laguerre polynomials, and this explains the name. The q-Laguerre polynomials
(with x replaced by (1 − q)x) are studied by Moak in [17]. Using Ramanujan’s q-beta
integral [2, p. 513]:∫ ∞

0
xc−1 (−ax; q)∞

(−x; q)∞
dx = (a, q1−c; q)∞

(q, aq−c; q)∞

π

sinπc
(c > 0, |a| < qc),(1.0.2)

and the q-Chu–Vandermonde formula of Heine [14, p. 11]:

n∑
k=0

[n

k

]
q
(−1)k

(a; q)k
(c; q)k

q(
k
2 )
( c

a

)k
= (c/a; q)n

(c; q)n
,(1.0.3)

Moak proved that the q-Laguerre polynomials are orthogonal on (0,∞) with respect
to the weight function xα/(−x; q)∞. The function Eq(x) = (−x; q)∞ is a q-analogue
of the exponential function, so the q-Laguerre polynomials are orthogonal with respect
to a q-analogue of the gamma distribution xαe−x . Since this orthogonality relation only
holds when α > −1, we will always assume that α > −1. Using Ramanujan’s 1ψ1

formula [2, p. 502]:

∞∑
n=−∞

(a; q)n
(b; q)n

xn = (q, b/a, ax, q/ax; q)∞
(b, q/a, x, b/ax; q)∞

(|b/a| < |x | < 1),(1.0.4)

Moak also proved that the q-Laguerre polynomials are orthogonal with respect to the
discrete measures

∞∑
n=−∞

qn(α+1)

(−cqn; q)∞
εcqn (c > 0),

where εx denotes the Dirac measure at the point x . This in particular means that the mo-
ment problem associated with the q-Laguerre polynomials is indeterminate as a Stieltjes
moment problem. See also Askey [4] for the connection between (1.0.2) and (1.0.4).

The weight function xα/(−x; q)∞ satisfies the functional equation

f (qx) = qα(1 + x) f (x) (x > 0),(1.0.5)
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as was pointed out by Chihara in [12]. In Section 2 we will take this functional equation
as a starting point and we prove that any normalized solution of (1.0.5) has the same
moments as xα/(−x; q)∞. The same equation leads to a transformation of the set of
solutions to the moment problem. It turns out that the classical solutions are fixed points
of this transformation and by analyzing the condition for a solution to be a fixed point, we
even find a method to construct continuous singular solutions to the moment problem.

As Askey pointed out in [3] the q-Laguerre polynomials converge to the Stieltjes–
Wigert polynomials for α → ∞, to be precise

L(α)n (q−αx; q) → Sn(x; q) for α → ∞,

where the Stieltjes–Wigert polynomials, according to Koekoek and Swarttouw [16], are
defined by

Sn(x; q) = 1

(q; q)n
1ϕ1

(
q−n

0
; q,−qn+1x

)
.(1.0.6)

In Szegő [19] and Chihara [10] the Stieltjes–Wigert polynomials are normalized in a
slightly different way. In Section 3 we consider the limit α → ∞ at several levels. First
we show how to obtain solutions to the moment problem associated with the Stieltjes–
Wigert polynomials by letting α → ∞ in various orthogonality measures for the q-
Laguerre polynomials. The solution corresponding to the weight function xα/(−x; q)∞
does not have a unique limit for α → ∞, but it turns out to have a family (ωc)0<c≤1

of accumulation points. For each ωc we give a solution ω(α)c to the moment problem
associated with the q-Laguerre polynomials such that ω(α)c converges to ωc for α → ∞.
All the solutions being considered can also be found in Berg [7], [8], but here we focus
on the connection between the two moment problems. In the next place we establish the
connection between the four entire functions from the Nevanlinna parametrizations for
the moment problems, see (3.0.15) below, and with this result available it is possible to
explain the limit α → ∞ at the level of Pick functions. In Theorem 3.1 we show how to
lift a solutionµ to the moment problem associated with the Stieltjes–Wigert polynomials
to a solution µ(α) to the moment problem associated with the q-Laguerre polynomials
(at least for α > 0), and it is made precise how µ(α) converges to µ for α → ∞.

In some sense to solve an indeterminate moment problem means to find the four en-
tire functions from the Nevanlinna parametrization. For the moment problem associated
with the q-Laguerre polynomials this was partly done by Moak in [17], where the entire
functions B(α) and D(α) are expressed in terms of q-Bessel functions. The work was
completed by Ismail and Rahman in [15]. Using Darboux’s method on a certain gener-
ating function they established an asymptotic relation for the q-Laguerre polynomials
L̃(α)n (x; q) of the second kind, and this made it possible to give expressions for A(α) and
C (α). In Section 4 we will present two generating functions, one for the q-Laguerre poly-
nomials and one for the q-Laguerre polynomials of the second kind. The latter seems
to be new. From these generating functions we derive expressions for A(α), B(α), C (α),
and D(α), and we end by clarifying that our expressions coincide with the expressions
of Ismail and Rahman.
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2. A Transformation of the Set of Solutions

As previously mentioned the q-Laguerre polynomials are orthogonal on (0,∞) with
respect to the weight function xα/(−x; q)∞, to be precise

∫ ∞

0
L(α)m (x; q)L(α)n (x; q)

xα

(−x; q)∞
dx = − (q

α+1; q)n
qn(q; q)n

(q−α; q)∞
(q; q)∞

π

sinπα
δmn,(2.0.7)

where the right-hand side has to be interpreted as the limit

log q−1q−
(

k+1
2

)
−n
(qn+1; q)kδmn

when α = k = 0, 1, . . .. Therefore, the absolutely continuous measure

ν(α) = − sinπα

π

(q; q)∞
(q−α; q)∞

xα

(−x; q)∞
dx(2.0.8)

is a probability measure on (0,∞) and by (1.0.2) the moments of ν(α) are

∫ ∞

0
xn dν(α)(x) = q−αn−

(
n+1

2

)
(qα+1; q)n.(2.0.9)

So we consider the moment problem associated with the moment sequence (2.0.9). The
functional equation (1.0.5) becomes useful because of the following result.

Proposition 2.1. Let f be a positive and measurable function defined on the interval
(0,∞). If f satisfies the functional equation f (qx) = qα(1+x) f (x) and

∫∞
0 f (x) dx =

c ∈ (0,∞), then the absolutely continuous measure with density (1/c) f has the moments
(2.0.9).

Proof. Without loss of generality we can assume that
∫∞

0 f (x) dx = 1. If
∫∞

0 xn f (x) dx

= q−αn−
(

n+1
2

)
(qα+1; q)n for some n ≥ 0, then∫ ∞

0
xn+1 f (x) dx =

∫ ∞

0
xn(q−α f (qx)− f (x)) dx

= q−α−n
∫ ∞

0
(qx)n f (qx) dx −

∫ ∞

0
xn f (x) dx

= q−α−n−1
∫ ∞

0
yn f (y) dy −

∫ ∞

0
xn f (x) dx

= (q−α−n−1 − 1)q−αn−
(

n+1
2

)
(qα+1; q)n

= q−α(n+1)−
(

n+2
2

)
(qα+1; q)n+1,

and the assertion follows by induction.
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As a rule, it is easier to verify that the density of an absolutely continuous measure
satisfies the functional equation (1.0.5) than to calculate all the moments, and this is the
advantage of Proposition 2.1. However, the conditions from Proposition 2.1 are only
sufficient and not necessary.

Suppose that f1 and f2 are two functions which satisfy the functional equation (1.0.5).
If f2 is strictly positive, then the quotient f1/ f2 is a well-defined q-periodic func-
tion, i.e., a function on (0,∞) satisfying the very simple functional equation g(qx) =
g(x). So we conclude that every solution of (1.0.5) has the form g(x)xα/(−x; q)∞
for some q-periodic function g, and if g additionally is positive, measurable, and∫∞

0 g(x)xα/(−x; q)∞ dx = c ∈ (0,∞), then the absolutely continuous measure with
density (1/c)g(x)xα/(−x; q)∞ has the moments (2.0.9), see Proposition 2.1.

There is a natural way to construct discrete measures with the moments (2.0.9). These
measures can also be found in [17], but here we emphasize the method. Suppose that
f is a strictly positive function which satisfies the functional equation (1.0.5)—such as
xα/(−x; q)∞—and consider for c > 0 the measure κ(α)c given by

κ(α)c = 1

cf(c)K (α)(c)

∞∑
n=−∞

cqn f (cqn)εcqn ,

where the constant K (α)(c) is chosen such that κ(α)c becomes a probability measure. It is
easily seen by induction that f satisfies the functional equation

f (xqn) = (−x; q)nqαn f (x), x > 0,

for each n ∈ Z, so the measure κ(α)c does not depend on the specific f and is given by

κ(α)c = 1

K (α)(c)

∞∑
n=−∞

(−c; q)nqn(α+1)εcqn .(2.1.1)

By (1.0.4) we have

K (α)(c) = (q,−cqα+1,−1/cqα; q)∞
(−q/c, qα+1; q)∞

,

and the moments of κ(α)c are (2.0.9). Actually κ(α)qc = κ(α)c , so it suffices to consider κ(α)c
for q < c ≤ 1.

For any number a > 0 we let τa denote the map given by τa(x) = ax . For a measure
µ on R the image measure τa(µ) under τa is defined by

τa(µ)(B) = µ(a−1 B)

for any Borel set B ⊂ R. The following result gives rise to a transformation of the set
of solutions to the indeterminate Stieltjes moment problem.

Proposition 2.2. Suppose that µ(α) is a measure on [0,∞) with the moments (2.0.9).
Then the support of υ(α) = τq(qα+1(1 + x) dµ(α)(x)) is contained in [0,∞) and υ(α)

has the moments (2.0.9).
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Proof. The proof is straightforward. The support ofυ(α) is certainly contained in [0,∞)

and∫ ∞

0
xn dυ(α)(x) =

∫ ∞

0
(qx)nqα+1(1 + x) dµ(α)(x)

= qn+α+1

(∫ ∞

0
xn dµ(α)(x)+

∫ ∞

0
xn+1 dµ(α)(x)

)

= qn+α+1

(
q−αn−

(
n+1

2

)
(qα+1; q)n + q−α(n+1)−

(
n+2

2

)
(qα+1; q)n+1

)

= q−αn−
(

n+1
2

)
(qα+1; q)n.

We will denote the transformation by T (α), that is, T (α)(µ(α)) = τq(qα+1(1 + x)
dµ(α)(x)). A probability measure µ(α) is a fixed point of T (α) if and only if µ(α) satisfies
the equation

τq−1(µ(α)) = qα+1(1 + x) dµ(α)(x).(2.2.1)

When µ(α) = f (x) dx this equation corresponds exactly to the functional equation
(1.0.5), and when µ(α) is a discrete measure this equation tells us that c > 0 is a
mass point of µ(α) exactly when qc likewise is a mass point of µ(α) and µ(α)({qc}) =
qα+1(1 + c)µ(α)({c}). The latter property is certainly satisfied by κ(α)c , so the measures
ν(α) and κ(α)c , see (2.0.8) and (2.1.1), are fixed points of T (α).

As a matter of fact we can classify all the absolutely continuous and all the discrete fixed
points of T (α). Whenever g is a positive, measurable, and q-periodic function on (0,∞)

such that
∫∞

0 g(x)xα/(−x; q)∞ dx = 1, the measure µ(α) = g(x)xα/(−x; q)∞ dx is a
fixed point of T (α), and there is no other way to find absolutely continuous fixed points of
T (α). The discrete fixed points of T (α) are precisely the countable convex combinations
of the measures κ(α)c for varying c > 0.

It is worthwhile dwelling somewhat on (2.2.1). Suppose that µ(α) is a finite measure
on (0,∞), which satisfies this equation. Just as in the proof of Proposition 2.1, it follows
thatµ(α) is a solution to the moment problem provided thatµ(α) is a probability measure.
By induction it is easy to see that

τq−n (µ(α)) = qn(α+1)(−x; q)n dµ(α)(x)

for all n ∈ Z, and this means that µ(α) is uniquely determined by its restriction µ(α)|(q,1]

to the interval (q, 1] or any other interval of the form (qn+1, qn], n ∈ Z. For ifµ(α)|(q,1] =
ρ(α), then

µ(α)|(qn+1,qn ] = τqn (qn(α+1)(−x; q)n dρ(α)(x)) for n ∈ Z,

and
⋃∞

n=−∞(q
n+1, qn] = (0,∞). On the other hand, we have the following result.

Proposition 2.3. Suppose that ρ(α) is a finite measure on (q, 1]. Then there is exactly
one way to extend ρ(α) to a finite measure µ(α) on (0,∞) such that µ(α) satisfies (2.2.1).
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Proof. Simply define

µ(α)|(qn+1,qn ] = τqn (qn(α+1)(−x; q)n dρ(α)(x)) for n ∈ Z,

that is,

µ(α)(qn B) = qn(α+1)
∫

B
(−x; q)n dρ(α)(x)

for any Borel set B ⊂ (q, 1]. In this way

τq−1(µ(α)|(qn+1,qn ]) = τqn−1(qn(α+1)(−x; q)n dρ(α)(x))

= qα+1(1 + x) dτqn−1(q(n−1)(α+1)(−x; q)n−1 dρ(α)(x))(x)

= qα+1(1 + x) dµ(α)|(qn ,qn−1](x),

so the measureµ(α) satisfies the desired equation. Note thatµ(α) is a finite measure since

µ(α)((0,∞)) =
∞∑

n=−∞
qn(α+1)

∫
(q,1]

(−x; q)n dρ(α)(x)

≤ ρ(α)((q, 1])

( ∞∑
n=0

(−1; q)nqn(α+1) +
∞∑

n=1

q(
n
2 )−n(α+1)

(−q; q)n

)
< ∞.

Starting from a finite measure ρ(α) on the interval (q, 1] we can thus construct a
solution to the moment problem by, if necessary, normalizing the extension µ(α) from
Proposition 2.3. The solution obtained from ρ(α) is of the same type as ρ(α), so if ρ(α) is
a continuous singular measure we will end up with a continuous singular solution to the
moment problem.

3. The Limit α → ∞ and the Connection with the Moment Problem
Associated with the Stieltjes–Wigert Polynomials

The Stieltjes–Wigert polynomials (1.0.6) are known to be orthogonal polynomials asso-

ciated with the moment sequence (q−
(

n+1
2

)
), see [13].

Suppose that µ(α) is a measure on (0,∞) with the moments (2.0.9). Then τqα (µ
(α))

has the moments∫ ∞

0
xn dτqα (µ

(α))(x) =
∫ ∞

0
(qαx)n dµ(α)(x) = q−

(
n+1

2

)
(qα+1; q)n(3.0.1)

and since (qα+1; q)n → 1 for α → ∞, it follows that any vague accumulation point

of (τqα (µ
(α))) for α → ∞ has the moments q−

(
n+1

2

)
. Furthermore, such accumulation

points always exist (see, e.g., [1, pp. 30–32]).
Let us take a look at the situation when µ(α) = κ

(α)

cq−α and µ(α) = ν(α), respectively.

The discrete measure τqα (κ
(α)

cq−α ) is given by

τqα (κ
(α)

cq−α ) = 1

K (α)(cq−α)

∞∑
n=−∞

(−cq−α; q)n(q
α+1)nεcqn ,
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so independent of α this measure is supported on the set {cqn | n ∈ Z}. Therefore the
question is how the masses behave when α → ∞. Since

(−cq−α; q)n(qα+1)n

K (α)(cq−α)
= cnq

(
n+1

2

)
(−qα+1−n/c; q)n

(−qα+1/c, qα+1; q)∞
(q,−cq,−1/c; q)∞

,

we get, for each n, that

(−cq−α; q)n(qα+1)n

K (α)(cq−α)
→ cnq

(
n+1

2

)
(q,−cq,−1/c; q)∞

for α → ∞.

This means that τqα (κ
(α)

cq−α ) converges to

λc = 1

L(c)

∞∑
n=−∞

cnq
(

n+1
2

)
εcqn(3.0.2)

for α → ∞, where L(c) = (−cq,−1/c, q; q)∞. The measures (λc)c>0—found by
Chihara in [11]—are well-known discrete solutions to the moment problem associated
with the Stieltjes–Wigert polynomials. Since λc/q = λc, it suffices to consider λc for
q < c ≤ 1.

The absolutely continuous measure τqα (ν
(α)) is given by the density

v(α)(x) = − sinπα

π

(q; q)∞
(q−α; q)∞

q−α(α+1) xα

(−q−αx; q)∞
, x > 0.

We cannot, as before, simply let α → ∞ because the limit does not exist. To begin with,
suppose that α = k with k = 0, 1, . . .. Then the density v(α) has the form

v(k)(x) = 1

log q−1

q−
(

k+1
2

)
(q; q)k

xk

(−q−k x; q)∞
, x > 0,

and since

q−
(

k+1
2

)
(q; q)k

xk

(−q−k x; q)∞
= 1

(q,−q/x; q)k

1

(−x; q)∞
,

it follows that

v(k)(x) → 1

log q−1

1

(q,−q/x,−x; q)∞
for k → ∞.

So the measure

ω = 1

log q−1

1

(−x,−q/x, q; q)∞
dx(3.0.3)

is a certain accumulation point of (τqα (ν
(α))) and this was mentioned by Askey in [3].

But there is more to be said. Suppose that α = k + c with k = 0, 1, . . . and 0 < c < 1.
Then the density v(α) can be written as

v(k+c)(x) = − sinπ(k + c)

π

(q; q)∞
(q−k−c; q)∞

q−(k+c)(k+c+1) xk+c

(−q−k−cx; q)∞

= sinπc

π

(q; q)∞
(qc; q)k+1(q1−c; q)∞

qc(1−c) xc−1

(−qc/x; q)k+1(−q1−cx; q)∞
,
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and hence for fixed c it follows that

v(k+c)(x)→qc(1−c) sinπc

π

(q; q)∞
(qc, q1−c; q)∞

xc−1

(−qc/x,−q1−cx; q)∞
for k →∞.

In this way we have obtained the absolutely continuous measures

ωc =qc(1−c) sinπc

π

(q; q)∞
(qc, q1−c; q)∞

xc−1

(−qc/x,−q1−cx; q)∞
dx (0<c<1),(3.0.4)

as accumulation points of (τqα (ν
(α))). Note that ω = ω1 and, due to the fact that ωc+1 =

ωc, it suffices to consider ωc for 0 < c ≤ 1.
The connection between (ν(α)) and (ωc) inspires us to find a family of absolutely

continuous measures with the moments (2.0.9). The moments of ωc can be found by
using the Askey–Roy q-beta integral [2, p. 514], [5], [6]:

∫ ∞

0
xc−1 (−ax,−bq/x; q)∞

(−x,−q/x; q)∞
dx = (ab, qc, q1−c; q)∞

(q, aq−c, bqc; q)∞

π

sinπc
(3.0.5)

(c > 0, |a| < qc, |b| < q−c),

and the idea is that this integral also leads to solutions to the moment problem associated
with the q-Laguerre polynomials.

Let ω(α)c denote the absolutely continuous measure with density

w(α)c (x) = qc(α+1−c) sinπc

π

(q, qα+1,−q/x; q)∞
(qc, q1−c,−qα+1−cx,−q−α+c/x; q)∞

xc−1,(3.0.6)

(x > 0).

It is straightforward to see that τqα (ω
(α)
c ) converges to ωc for α → ∞ and by (3.0.5) we

have∫ ∞

0
xc−1 (−q/x; q)∞

(−qα+1−cx,−q−α+c/x; q)∞
dx = q−c(α+1−c)

∫ ∞

0
yc−1 (−qα+2−c/y; q)∞

(−y,−q/y; q)∞
dy

= q−c(α+1−c) (q
c, q1−c; q)∞

(q, qα+1; q)∞

π

sinπc
.

So ω(α)c is a probability measure on (0,∞) and since

(−1/x; q)∞
(−qα+2−cx,−q−α−1+c/x; q)∞

(qx)c−1 = qα(1+ x)
(−q/x; q)∞

(−qα+1−cx,−q−α+c/x; q)∞
xc−1,

it follows from Proposition 2.1 that ω(α)c has the moments (2.0.9).
Note that ν(α) = ω

(α)
α+1 and the measure ω(α) = ω

(α)
1 has the form

ω(α) = qα

log q−1

(qα+1,−q/x; q)∞
(q,−qαx,−q−α+1/x; q)∞

dx.(3.0.7)
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After having studied the situation when α → ∞ at the level of weight functions,
we will now consider the situation at the level of Pick functions. Of course not every
Pick function ϕ gives rise to a measure µϕ supported on [0,∞). In this connection the
quantity β ≤ 0 given by

β = lim
n→∞

Pn(0)

Qn(0)

plays an important part. As Pedersen proved in [18, Théorème 1], the measure µϕ
corresponding to the Pick function ϕ is supported on [0,∞) precisely if ϕ has an analytic
continuation to C\[0,∞) and β ≤ ϕ(x) ≤ 0 for x < 0.

The q-Laguerre polynomials of the second kind are defined by

L̃(α)n (x; q) =
∫ ∞

0

L(α)n (x; q)− L(α)n (y; q)

x − y
dµ(α)(y),

where µ(α) is any measure on [0,∞) with the moments (2.0.9). Explicitly, we have

L(α)n (x; q) = (qα+1; q)n
(q; q)n

n∑
k=0

[n

k

]
q
(−1)k

qαk+k2

(qα+1; q)k
xk(3.0.8)

and

L̃(α)n (x; q) = (qα+1; q)n
(q; q)n

(3.0.9)

×
n−1∑
m=0

( n∑
k=m+1

[n

k

]
q
(−1)k

qαk+k2

(qα+1; q)k
q−α(k−m−1)−( k−m

2 )

× (qα+1; q)k−m−1

)
xm

= (qα+1; q)n
(q; q)n

n−1∑
m=0

qα(m+1)−
(

m+1
2

)
(qα−m; q)m+1

×
( n∑

k=m+1

[n

k

]
q
(−1)k

(qα−m; q)k
(qα+1; q)k

q(
k
2 )+(m+1)k

)
xm .

The inner sum
∑n

k=m+1

[ n
k

]
q
(−1)k[(qα−m; q)k/(qα+1; q)k]q(

k
2 )+(m+1)k is the tail in the

q-Chu–Vandermonde formula (1.0.3) and can also be written as

(qm+1; q)n
(qα+1; q)n

−
m∑

k=0

[n

k

]
q
(−1)k

(qα−m; q)k
(qα+1; q)k

q(
k
2 )+(m+1)k .

From (2.0.7) we see that the orthonormal polynomials (P (α)
n ) and (Q(α)

n ) associated
with the moment sequence (2.0.9) have the form

P (α)
n (x) =

√
qn (q; q)n
(qα+1; q)n

L(α)n (x; q)(3.0.10)
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and

Q(α)
n (x) =

√
qn (q; q)n
(qα+1; q)n

L̃(α)n (x; q).

In particular, we have

P (α)
n (0) =

√
qn (q

α+1; q)n
(q; q)n

(3.0.11)

and

Q(α)
n (0) = qα

1 − qα

(
(q; q)n
(qα+1; q)n

− 1

)
P (α)

n (0) for α �= 0.

The expression for Q(α)
n (0) has a singularity at α = 0. Seeing that the function (xq; q)n

is differentiable with derivative −(xq; q)n
∑n

k=1 qk/(1 − xqk), it follows that

qα

1 − qα

(
(q; q)n
(qα+1; q)n

− 1

)
= qα

(qα+1; q)n

(q; q)n − (qα+1; q)n
1 − qα

→ −
n∑

k=1

qk

1 − qk
for α → 0.

So the singularity at α = 0 is removable and Q(0)
n (0) = −∑n

k=1[qk/(1 − qk)]P (0)
n (0).

Since we are interested in the situation when α → ∞, usually we will not be interested
in the special case α = 0. Whenever Q(α)

n (0) plays a part, we will assume that α �= 0.
The quantity β(α) = limn→∞ P (α)

n (0)/Q(α)
n (0) is given by

β(α) = lim
n→∞

1 − qα

qα

(
(q; q)n
(qα+1; q)n

− 1

)−1

(3.0.12)

= 1 − qα

qα

(
(q; q)∞
(qα+1; q)∞

− 1

)−1

,

and it is noteworthy that

(
(q; q)∞
(qα+1; q)∞

− 1

)−1

≤ 1

(q; q)∞ − 1
for α > 0.(3.0.13)

For if (Pn) and (Qn) are the orthonormal polynomials associated with the moment

sequence (q−
(

n+1
2

)
), then (see, e.g., [13]):

lim
n→∞

Pn(0)

Qn(0)
= 1

(q; q)∞ − 1
.(3.0.14)

There is a close connection between the moment problems associated with the moment
sequences (2.0.9) and (3.0.1). The orthonormal polynomials (P̃ (α)

n ) associated with the
moment sequence (3.0.1) are given by P̃ (α)

n (x) = P (α)
n (q−αx), and the orthonormal poly-

nomials (Q̃(α)
n ) of the second kind are given by Q̃(α)

n (x) = q−αQ(α)
n (q−αx). Therefore
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the four entire functions Ã(α), B̃(α), C̃ (α), and D̃(α) from the Nevanlinna parametrization
can be written as

Ã(α)(x) = x
∞∑

n=0

Q̃(α)
n (0)Q̃(α)

n (x) = q−2αx
∞∑

n=0

Q(α)
n (0)Q(α)

n (q−αx) = q−αA(α)(q−αx),

B̃(α)(x) = −1 + x
∞∑

n=0

Q̃(α)
n (0)P̃ (α)

n (x) = −1 + q−αx
∞∑

n=0

Q(α)
n (0)P (α)

n (q−αx)

= B(α)(q−αx),

C̃ (α)(x) = 1 + x
∞∑

n=0

P̃ (α)
n (0)Q̃(α)

n (x) = 1 + q−αx
∞∑

n=0

P (α)
n (0)Q(α)

n (q−αx)

= C (α)(q−αx),

D̃(α)(x) = x
∞∑

n=0

P̃ (α)
n (0)P̃ (α)

n (x) = x
∞∑

n=0

P (α)
n (0)P (α)

n (q−αx) = qαD(α)(q−αx).

Let (−1,∞] denote the set (−1,∞)∪ {∞}. We can think of (−1,∞] as a (metrizable)
topological space by defining a basis of neighborhoods at ∞ as (r,∞) ∪ {∞}. In this
way [r,∞] clearly becomes a compact set for each r > −1, and a function f defined
on the interval (−1,∞) has a unique continuous extension to (−1,∞] provided that
limx→∞ f (x) exists. Simply define f (∞) as limx→∞ f (x).

In this setup, since (qα+1; q)n → 1 for α → ∞, the moments (3.0.1) are continuous
as a function of α for α ∈ (−1,∞]. Recall that

P̃ (α)
n (0) = P (α)

n (0) =
√

qn (q
α+1; q)n
(q; q)n

,

Q̃(α)
n (0) = q−αQ(α)

n (0) = 1

1 − qα

(
(q; q)n
(qα+1; q)n

− 1

)
P (α)

n (0)

and note that

P̃ (α)
n (0) −→

α→∞

√
qn

(q; q)n

and

Q̃(α)
n (0) −→

α→∞((q; q)n − 1)

√
qn

(q; q)n
.

Hence the series
∞∑

n=0

P̃ (α)
n (0)2 and

∞∑
n=0

Q̃(α)
n (0)2

are uniformly convergent forα ∈ [1,∞], since they are both dominated by some constant
times the convergent series

∑∞
n=0 qn/(q; q)n for α ∈ [1,∞).

In [9, Proposition 2.4.1] Berg and Valent consider the situation where the moment
problem depends on a parameter in a metric space. In our case the metric space is [1,∞]
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and it follows that Ã(α), B̃(α), C̃ (α), and D̃(α) are continuous for (x, α) ∈ C × [1,∞].

Since q−
(

n+1
2

)
(qα+1; q)n → q−

(
n+1

2

)
for α → ∞, this in particular means that

q−αA(α)(q−αx) = Ã(α)(x) → A(x),(3.0.15)

B(α)(q−αx) = B̃(α)(x) → B(x),

C (α)(q−αx) = C̃ (α)(x) → C(x),

qαD(α)(q−αx) = D̃(α)(x) → D(x),

for α → ∞, where A, B, C , and D are the four entire functions from the Nevanlinna
parametrization for the moment problem associated with the Stieltjes–Wigert polynomi-
als. Due to the fact that a continuous function on a compact set is uniformly continuous,
the above convergence is uniform on compact subsets of C.

We are now ready to present the connection between the moment problems associated

with the moment sequences (q−
(

n+1
2

)
) and (2.0.9) at the level of Pick functions.

Theorem 3.1. Suppose that µϕ is a measure on [0,∞) with the moments q−
(

n+1
2

)
.

Here ϕ denotes the corresponding Pick function. For each α > 0 the functionψ(α) given
by

ψ(α)(x) = 1 − qα

qα
ϕ(qαx)

is a Pick function corresponding to a measure µ(α)
ψ(α)

on [0,∞) with the moments (2.0.9)
and

τqα (µ
(α)

ψ(α)
) → µϕ for α → ∞.

Proof. Clearly ψ(α) is a Pick function for α > 0. Recall that ϕ has an analytic contin-
uation to C\[0,∞) such that

1

(q; q)∞ − 1
≤ ϕ(x) ≤ 0 for x < 0,

see (3.0.14). This means that ψ(α) has an analytic continuation to C\[0,∞) too, and
in order to prove that ψ(α) corresponds to a measure on [0,∞) with the prescribed
moments, we have to verify that

β(α) ≤ ψ(α)(x) ≤ 0 for x < 0,

where

β(α) = 1 − qα

qα

(
(q; q)∞
(qα+1; q)∞

− 1

)−1

.

This is an immediate consequence of (3.0.13). The Stieltjes transform of τqα (µ
(α)

ψ(α)
) is

given by∫ ∞

0

1

t − x
dτqα (µ

(α)

ψ(α)
)(t) =

∫ ∞

0

1

qαt − x
dµ(α)

ψ(α)
(t)
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= 1

qα

∫ ∞

0

1

t − q−αx
dµ(α)

ψ(α)
(t)

= − 1

qα
A(α)(q−αx)ψ(α)(q−αx)− C (α)(q−αx)

B(α)(q−αx)ψ(α)(q−αx)− D(α)(q−αx)

= − A(α)(q−αx)[(1 − qα)/qα]ϕ(x)− C (α)(q−αx)

B(α)(q−αx)(1 − qα)ϕ(x)− qαD(α)(q−αx)
,

so it follows from (3.0.15) that∫ ∞

0

1

t − x
dτqα (µ

(α)

ψ(α)
)(t) → − A(x)ϕ(x)− C(x)

B(x)ϕ(x)− D(x)

=
∫ ∞

0

1

t − x
dµϕ(t) for α → ∞.

Since a finite measure is uniquely determined by its Stieltjes transform, we have thus
proved that

τqα (µ
(α)

ψ(α)
) → µϕ for α → ∞.

4. The Nevanlinna Parametrization

In this section we will present some explicit expressions for the four entire functions
A(α), B(α), C (α), and D(α) from the Nevanlinna parametrization. This was done by Moak
in [17], but only for D(α) and B(α), and by Ismail and Rahman in [15]. However, the
expressions for C (α) and A(α) given by Ismail and Rahman are rather complicated, and it
is not easy to explain what happens when α → ∞. Furthermore, the present method only
depends on two generating functions and appears to be more direct. The first generating
function can also be found in Koekoek and Swarttouw [16].

Proposition 4.1. For γ ∈ C and |t | < 1, we have

∞∑
n=0

(γ ; q)n
(qα+1; q)n

tn L(α)n (x; q) = (γ t; q)∞
(t; q)∞

∞∑
n=0

(γ ; q)n
(γ t, qα+1, q; q)n

qαn+n2
(−t x)n,

∞∑
n=0

(γ ; q)n
(qα+1; q)n

tn L̃(α)n (x; q) = (γ t; q)∞
(t; q)∞

∞∑
n=0

qα(n+1)−
(

n+1
2

)
(qα−n; q)n+1

×
( ∞∑

k=n+1

(γ, qα−n; q)k
(γ t, qα+1, q; q)k

q(
k
2 )+(n+1)k(−t)k

)
xn.

In particular, with γ = qα+1 and t = q, we have

∞∑
n=0

qn L(α)n (x; q) = (qα+2; q)∞
(q; q)∞

∞∑
n=0

(−1)n
qαn+n(n+1)

(qα+2, q; q)n
xn,
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∞∑
n=0

qn L̃(α)n (x; q) = (qα+2; q)∞
(q; q)∞

∞∑
n=0

qα(n+1)−
(

n+1
2

)
(qα−n; q)n+1

×
( ∞∑

k=n+1

(−1)k
(qα−n; q)k
(qα+2, q; q)k

q(
k
2 )+(n+2)k

)
xn,

and with γ = t = q , we have

∞∑
n=0

(q; q)n
(qα+1; q)n

qn L(α)n (x; q) =
∞∑

n=0

(−1)n
qαn+n(n+1)

(qα+1; q)n(q; q)n+1
xn,

∞∑
n=0

(q; q)n
(qα+1; q)n

qn L̃(α)n (x; q) =
∞∑

n=0

qα(n+1)−
(

n+1
2

)
(qα−n; q)n+1

×
( ∞∑

k=n+1

(−1)k
(qα−n; q)k

(qα+1; q)k(q; q)k+1
q(

k
2 )+(n+2)k

)
xn.

Proof. The point of this proof is to interchange the order of summation. We are certainly
allowed to do so because of absolute convergence. Hence

∞∑
n=0

(γ ; q)n
(qα+1; q)n

tn L(α)n (x; q) =
∞∑

n=0

(γ ; q)ntn
n∑

k=0

(−1)k
qαk+k2

(qα+1, q; q)k(q; q)n−k
xk

=
∞∑

k=0

(−1)k
qαk+k2

(qα+1, q; q)k
xk

∞∑
n=k

(γ ; q)n
(q; q)n−k

tn

=
∞∑

k=0

(−1)k
(γ ; q)k

(qα+1, q; q)k
qαk+k2

t k xk
∞∑

n=0

(γ qk; q)n
(q; q)n

tn

and, similarly,

∞∑
n=0

(γ ; q)n
(qα+1; q)n

tn L̃(α)n (x; q)

=
∞∑

n=0

(γ ; q)ntn
n−1∑
m=0

qα(m+1)−
(

m+1
2

)
(qα−m; q)m+1

×
(

n∑
k=m+1

(−1)k
(qα−m; q)k

(qα+1, q; q)k(q; q)n−k
q(

k
2 )+(m+1)k

)
xm

=
∞∑

m=0

qα(m+1)−
(

m+1
2

)
(qα−m; q)m+1

×
( ∞∑

n=m+1

(γ ; q)ntn
n∑

k=m+1

(−1)k
(qα−m; q)k

(qα+1, q; q)k(q; q)n−k
q(

k
2 )+(m+1)k

)
xm
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=
∞∑

m=0

qα(m+1)−
(

m+1
2

)
(qα−m; q)m+1

( ∞∑
k=m+1

(−1)k
(qα−m; q)k
(qα+1, q; q)k

q(
k
2 )+(m+1)k

∞∑
n=k

(γ ; q)n
(q; q)n−k

tn

)
xm

=
∞∑

m=0

qα(m+1)−
(

m+1
2

)
(qα−m; q)m+1

×
( ∞∑

k=m+1

(−1)k
(γ, qα−m; q)k
(qα+1, q; q)k

q(
k
2 )+(m+1)k tk

∞∑
n=0

(γ qk; q)n
(q; q)n

tn

)
xm .

By the q-binomial theorem, we have

∞∑
n=0

(γ qk; q)n
(q; q)n

tn = (γ tqk; q)∞
(t; q)∞

,

so, consequently,

∞∑
n=0

(γ ; q)n
(qα+1; q)n

tn L(α)n (x; q) = (γ t; q)∞
(t; q)∞

∞∑
k=0

(γ ; q)k
(γ t, qα+1, q; q)k

qαk+k2
(−t x)k

and

∞∑
n=0

(γ ; q)n
(qα+1; q)n

tn L̃(α)n (x; q) = (γ t; q)∞
(t; q)∞

∞∑
m=0

qα(m+1)−
(

m+1
2

)
(qα−m; q)m+1

×
( ∞∑

k=m+1

(γ, qα−m; q)k
(γ t, qα+1, q; q)k

q(
k
2 )+(m+1)k(−t)k

)
xm .

Remark 4.2. The inner sum
∑∞

k=n+1(−1)k[(qα−n; q)k/(qα+2, q; q)k]q(
k
2 )+(n+2)k is

the tail in the following special version of the q-Gauss sum

∞∑
n=0

(−1)n
(a; q)n
(c, q; q)n

q(
n
2 )
( c

a

)n
= (c/a; q)∞

(c; q)∞
.(4.2.1)

Thus we may write this inner sum as

(qn+2; q)∞
(qα+2; q)∞

−
n∑

k=0

(−1)k
(qα−n; q)k
(qα+2, q; q)k

q(
k
2 )+(n+2)k .

Almost the same can be said about the inner sum
∑∞

k=n+1(−1)k[(qα−n; q)k/(qα+1; q)k
(q; q)k+1]q(

k
2 )+(n+2)k .

Theorem 4.3. The four entire functions from the Nevanlinna parametrization are given
by

A(α)(x) = −
∞∑

n=0

qα(n+1)−
(

n+1
2

)
(qα−n; q)n+1

( ∞∑
k=n+1

(−1)k
(qα−n; q)k
(qα, q; q)k

q(
k
2 )+nk

)
xn



The Moment Problem Associated with the q-Laguerre Polynomials 17

− qα

1 − qα
(qα+2; q)∞
(q; q)∞

∞∑
n=0

qαn−( n
2 )

(qα−n+1; q)n

×
( ∞∑

k=n

(−1)k
(qα−n+1; q)k
(qα+2, q; q)k

q(
k
2 )+(n+1)k

)
xn,

B(α)(x) = −
∞∑

n=0

(−1)n
qαn+n(n−1)

(qα, q; q)n
xn − qα

1 − qα
x
(qα+2; q)∞
(q; q)∞

∞∑
n=0

(−1)n
qαn+n(n+1)

(qα+2, q; q)n
xn,

C (α)(x) = (qα+2; q)∞
(q; q)∞

∞∑
n=0

qαn−( n
2 )

(qα−n+1; q)n

( ∞∑
k=n

(−1)k
(qα−n+1; q)k
(qα+2, q; q)k

q(
k
2 )+(n+1)k

)
xn,

D(α)(x) = x
(qα+2; q)∞
(q; q)∞

∞∑
n=0

(−1)n
qαn+n(n+1)

(qα+2, q; q)n
xn.

Proof. Start by recalling from (3.0.10) that

P (α)
n (x)=

√
qn

(q; q)n
(qα+1; q)n

L(α)n (x; q) and Q(α)
n (x)=

√
qn

(q; q)n
(qα+1; q)n

L̃(α)n (x; q),

and recall from (3.0.11) that

P (α)
n (0) =

√
qn
(qα+1; q)n
(q; q)n

and Q(α)
n (0) = qα

1 − qα

(
(q; q)n
(qα+1; q)n

− 1

)
P (α)

n (0).

According to Proposition 4.1 we thus have

D(α)(x) = x
∞∑

n=0

P (α)
n (0)P (α)

n (x)

= x
∞∑

n=0

qn L(α)n (x; q)

= x
(qα+2; q)∞
(q; q)∞

∞∑
n=0

(−1)n
qαn+n(n+1)

(qα+2, q; q)n
xn,

B(α)(x) = −1 + x
∞∑

n=0

Q(α)
n (0)P (α)

n (x)

= −1 + x
qα

1 − qα

∞∑
n=0

(
(q; q)n
(qα+1; q)n

− 1

)
qn L(α)n (x; q)

= −1 +
∞∑

n=0

(−1)n
qα(n+1)+n(n+1)

(qα, q; q)n+1
xn+1 − qα

1 − qα
D(α)(x)

= −
∞∑

n=0

(−1)n
qαn+n(n−1)

(qα, q; q)n
xn − qα

1 − qα
D(α)(x),
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C (α)(x) = 1 + x
∞∑

n=0

P (α)
n (0)Q(α)

n (x)

= 1 + x
∞∑

n=0

qn L̃(α)n (x; q)

= 1 + (qα+2; q)∞
(q; q)∞

∞∑
n=0

qα(n+1)−
(

n+1
2

)
(qα−n; q)n+1

×
( ∞∑

k=n+1

(−1)k
(qα−n; q)k
(qα+2, q; q)k

q(
k
2 )+(n+2)k

)
xn+1

= (qα+2; q)∞
(q; q)∞

∞∑
n=0

qαn−( n
2 )

(qα−n+1; q)n

( ∞∑
k=n

(−1)k
(qα−n+1; q)k
(qα+2, q; q)k

q(
k
2 )+(n+1)k

)
xn,

A(α)(x) = x
∞∑

n=0

Q(α)
n (0)Q(α)

n (x)

= x
qα

1 − qα

∞∑
n=0

(
(q; q)n
(qα+1; q)n

− 1

)
qn L̃(α)n (x; q)

= qα

1 − qα
+

∞∑
n=0

qα(n+2)−
(

n+1
2

)
(qα−n; q)n+1

( ∞∑
k=n+1

(−1)k
(qα−n; q)k
(qα, q; q)k+1

q(
k
2 )+(n+2)k

)
xn+1

− qα

1 − qα
C (α)(x)

= −
∞∑

n=0

qα(n+1)−
(

n+1
2

)
(qα−n; q)n+1

( ∞∑
k=n+1

(−1)k
(qα−n; q)k
(qα, q; q)k

q(
k
2 )+nk

)
xn

− qα

1 − qα
C (α)(x).

In the computations of C (α) and A(α) we have used (4.2.1) in the last steps.

Since the expressions for A(α) and B(α) look complicated, we point out that

B(α)(x)+ qα

1 − qα
D(α)(x) = −

∞∑
n=0

(−1)n
qαn+n(n−1)

(qα, q; q)n
xn,

A(α)(x)+ qα

1 − qα
C (α)(x) = −

∞∑
n=0

qα(n+1)−
(

n+1
2

)
(qα−n; q)n+1

×
( ∞∑

k=n+1

(−1)k
(qα−n; q)k
(qα, q; q)k

q(
k
2 )+nk

)
xn.

Theorem 4.3 gives the power series expansion of the four entire functions A(α) +
[qα/(1 − qα)]C (α), B(α) + [qα/(1 − qα)]D(α), C (α), and D(α).
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It is easy to see that the expressions for D(α) and B(α) from Theorem 4.3 agree with the
expressions found by Moak in [17] and by Ismail and Rahman in [15]. But it is not obvious
that the present expressions for C (α) and A(α) coincide with the expressions from [15].
Here Ismail and Rahman also find a generating function for the q-Laguerre polynomials
of the second kind. With c = −qα+1 in [15, (2.14)] we have pn(x) = L̃(α)n (x; q) and
[15, (2.15)] becomes

P(x, t) =
∞∑

n=0

tn L̃(α)n (x; q).

In the Appendix in [15, (2.24)] it is proved that (t; q)∞ P(x, t) can be written as

−
∞∑

n=0

(tqn+1; q)∞(−x)n

(q−α; q)n+1
+ (tqα+1,−x; q)∞(4.3.1)

×
∞∑

n=0

(−x)n

(q−α; q)n+1

∞∑
m=0

(−x)m

(tqα+1, q; q)m

and with this result available, Ismail and Rahman establish an asymptotic relation for
L̃(α)n (x; q) by using Darboux’s method. Subsequently, it is possible to give expressions
for C (α) and A(α).

We will end this paper by showing that (4.3.1) can be obtained from Proposition 4.1.
The first step is to rewrite the inner sum using the q-Gauss sum. Next we apply Cauchy
multiplication and compare the coefficients. It turns out that the situation reduces to a
certain version of the q-Chu–Vandermonde formula.

With γ = qα+1 in Proposition 4.1 we find that (t; q)∞
∑∞

n=0 tn L̃(α)n (x; q) has the form

(tqα+1; q)∞
∞∑

n=0

qα(n+1)−
(

n+1
2

)
(qα−n; q)n+1

( ∞∑
k=n+1

(qα−n; q)k
(tqα+1, q; q)k

q(
k
2 )+(n+1)k(−t)k

)
xn.(4.3.2)

According to (4.2.1) the inner sum can be written as

(tqn+1; q)∞
(tqα+1; q)∞

−
n∑

k=0

(qα−n; q)k
(tqα+1, q; q)k

q(
k
2 )+(n+1)k(−t)k

and since

qα(n+1)−
(

n+1
2

)
(qα−n; q)n+1

= − (−1)n

(q−α; q)n+1
,

the expression in (4.3.2) is equal to

−
∞∑

n=0

(tqn+1; q)∞(−x)n

(q−α; q)n+1
+ (tqα+1; q)∞

×
∞∑

n=0

(−x)n

(q−α; q)n+1

n∑
k=0

(qα−n; q)k
(tqα+1, q; q)k

q(
k
2 )+(n+1)k(−t)k .
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So we have to realize that

(−x; q)∞
∞∑

n=0

(−x)n

(q−α; q)n+1

∞∑
m=0

(−x)m

(tqα+1, q; q)m

=
∞∑

n=0

(−x)n

(q−α; q)n+1

n∑
k=0

(qα−n; q)k
(tqα+1, q; q)k

q(
k
2 )+(n+1)k(−t)k

or, equivalently,
∞∑

n=0

(−x)n

(q1−α; q)n

∞∑
m=0

(−x)m

(tqα+1, q; q)m
= 1

(−x; q)∞

∞∑
n=0

(−x)n

(q1−α; q)n
(4.3.3)

×
n∑

k=0

(qα−n; q)k
(tqα+1, q; q)k

q(
k
2 )+(n+1)k(−t)k .

Using Euler’s power series expansion of 1/(x; q)∞ we get, by Cauchy multiplication,
that (4.3.3) has the form

∞∑
n=0

(
n∑

k=0

(−1)k

(q1−α; q)k

(−1)n−k

(tqα+1, q; q)n−k

)
xn

=
∞∑

n=0

(
n∑

k=0

(−1)k

(q1−α; q)k

(
k∑

m=0

(qα−k; q)m
(tqα+1, q; q)m

q(
m
2 )+(k+1)m(−t)m

)
(−1)n−k

(q; q)n−k

)
xn

and therefore it suffices to prove that
n∑

k=0

1

(q1−α; q)k(tqα+1, q; q)n−k
=

n∑
k=0

1

(q1−α; q)k(q; q)n−k
(4.3.4)

×
k∑

m=0

(qα−k; q)m
(tqα+1, q; q)m

q(
m
2 )+(k+1)m(−t)m .

Unfortunately we do not have

1

(tqα+1; q)n−k
=

k∑
m=0

(qα−k; q)m
(tqα+1, q; q)m

q(
m
2 )+(k+1)m(−t)m .

Since (4.3.4) is an identity between rational functions in t , we multiply with (tqα+1;
q)n in order to get an identity between polynomials in t . Using that

qm(k−α) (q
α−k; q)m

(q1−α; q)k
= (−1)m

q(
m
2 )

(q1−α; q)k−m

we obtain
n∑

k=0

(tqα+1+n−k; q)k
(q1−α; q)k(q; q)n−k

=
n∑

k=0

1

(q; q)n−k
(4.3.5)

×
k∑

m=0

(tqα+1+m; q)n−m

(q1−α; q)k−m(q; q)m
qm2+mαtm .
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By the finite version of the q-binomial theorem, the left-hand side in (4.3.5) is

n∑
k=0

1

(q1−α; q)k(q; q)n−k

k∑
l=0

[
k

l

]
q

(−1)lq(
l
2 )(tqα+1+n−k)l

=
n∑

l=0

(−1)lq(
l
2 )+l(α+1)

(
n∑

k=l

[
k

l

]
q

ql(n−k)

(q1−α; q)k(q; q)n−k

)
t l

and the right-hand side in (4.3.5) is

n∑
k=0

1

(q; q)n−k

k∑
m=0

qm2+mα

(q1−α; q)k−m(q; q)m
tm

n−m∑
l=0

[
n − m

l

]
q

(−1)lq(
l
2 )(tqα+1+m)l

=
n∑

m=0

qm2+mα

(q; q)m

n∑
k=m

1

(q1−α; q)k−m(q; q)n−k

n∑
l=m

[
n−m

l−m

]
q

(−1)l−mq(
l−m

2 )+(l−m)(α+1+m)t l

=
n∑

l=0

(−1)lq(
l
2 )+l(α+1)

(
l∑

m=0

[
n−m

l−m

]
q

(−1)m
q(

m
2 )

(q; q)m

n∑
k=m

1

(q1−α; q)k−m(q; q)n−k

)
t l .

Thus we have to prove that

n∑
k=l

[
k

l

]
q

ql(n−k)

(q1−α; q)k(q; q)n−k
=

l∑
m=0

[
n−m

l−m

]
q

(−1)m
q(

m
2 )

(q; q)m

n∑
k=m

1

(q1−α; q)k−m(q; q)n−k

or

n∑
k=0

[
k

l

]
q

ql(n−k)

(q1−α; q)k(q; q)n−k
=

n∑
m=0

[
n−m

l−m

]
q

(−1)m
q(

m
2 )

(q; q)m

n∑
k=m

1

(q1−α; q)k−m(q; q)n−k

since

[
k

l

]
q

= 0 for k < l and

[
n − m

l − m

]
q

= 0 for m > l. Here the right-hand side is

n∑
m=0

[
n − m

l − m

]
q

(−1)m
q(

m
2 )

(q; q)m

n−m∑
k=0

1

(q1−α; q)k(q; q)n−k−m

=
n∑

k=0

1

(q1−α; q)k(q; q)n−k

n−k∑
m=0

[
n − m

l − m

]
q

[
n − k

m

]
q

(−1)mq(
m
2 )

and since [
n − m

l − m

]
q

=
[

n

l

]
q

(q−l; q)m
(q−n; q)m

qm(l−n),

it follows from (1.0.3) that

n−k∑
m=0

[
n − m

l − m

]
q

[
n − k

m

]
q

(−1)mq(
m
2 ) =

[
n

l

]
q

(ql−n; q)n−k

(q−n; q)n−k
=
[

k

l

]
q

ql(n−k).

This establishes the desired identity.
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Abstract

We consider the indeterminate Stieltjes moment problem associated with the Stieltjes–Wigert
polynomials. After a presentation of the well-known solutions, we study a transformationT of the
set of solutions. All the classical solutions turn out to be fixed under this transformation but this is
not the case for the so-called canonical solutions. Based on generating functions for the Stieltjes–
Wigert polynomials, expressions for the entire functionsA, B, C, and D from the Nevanlinna
parametrization are obtained. We describeT (n)(µ) for n ∈ N whenµ = µ0 is a particularN-extremal
solution and explain in detail what happens whenn → ∞.
 2002 Elsevier Science (USA). All rights reserved.

Keywords:Indeterminate moment problems; Stieltjes–Wigert polynomials; Nevanlinna parametrization

1. Introduction

T.J. Stieltjes was the first to give examples of indeterminate moment problems. In [18]
he pointed out that iff is an odd function satisfyingf (u+ 1/2)= ±f (u), then

∞∫
0

unu− loguf (logu) du= 0
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for all n ∈ Z. In particular,

∞∫
0

unu− logu sin(2π logu) du= 0, n ∈ Z,

so independent ofλ we have

∞∫
0

1√
π
unu− logu(1+ λsin(2π logu)

)
du = 1√

π

∞∫
0

unu− logu du = e(n+1)2/4.

In other words, forλ ∈ [−1,1] the densities

wλ(u) = 1√
π
u− logu(1+ λsin(2π logu)

)
, u > 0,

have the same moments.
More generally, one could consider the weight function1

w(x) = 1√
π
kx−k2 logx, x > 0, (1.1)

which has the moments

sn =
∞∫

0

xnw(x) dx = e(n+1)2/4k2
. (1.2)

Herek > 0 is a constant (andk = 1 corresponds to Stieltjes’ example). This was done by
Wigert in [20]. He succeeded in finding the orthonormal polynomials(Pn) corresponding
to w(x) using the general formula

Pn(x) = 1√
Dn−1Dn

∣∣∣∣∣∣∣∣∣∣

s0 s1 . . . sn
s1 s2 . . . sn+1
...

...
...

sn−1 sn . . . s2n−1
1 x . . . xn

∣∣∣∣∣∣∣∣∣∣
, n � 1, (1.3)

where(sn) denotes the moment sequence andDn = det((si+j )0�i,j�n) denotes the Hankel

determinant. If we setq = e−1/2k2
, the moment sequence (1.2) has the formsn =

q−(n+1)2/2 and it is readily seen that all the determinants in (1.3) are of the Vandermonde
type. Following the notation of Gasper and Rahman [13] for basic hypergeometric series,
Wigert’s expressions are

Pn(x) = (−1)n
qn/2+1/4

√
(q;q)n

n∑
k=0

[
n

k

]
q

(−1)kqk2+k/2xk, (1.4)

1 Note thatw(x)/x is the density of the log-normal distribution with parameterσ2 = 1/2k2 > 0.
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cf. Szegö [19] and Chihara [9], where these polynomials are called the Stieltjes–Wigert
polynomials. Wigert also considered the behaviour ofPn(x) whenn → ∞ and proved that

(−1)nq−n/2Pn(x) → q1/4

√
(q;q)∞

∞∑
k=0

(−1)k
qk2+k/2

(q;q)k x
k for n → ∞. (1.5)

The convergence is uniform on compact subsets ofC.
Later, Chihara [10] pointed out that the weight functionw(x) satisfies the functional

equation

w(xq) = √
qxw(x), x > 0, (1.6)

and this observation led to the discovery of a family of discrete measures with the same
moments asw(x). The discrete version of the functional equation (1.6) is the following.
Suppose thatµ is a discrete measure. Thenc > 0 is a mass point ofµ exactly ifcq likewise
is a mass point ofµ andµ({cq})= cq

√
qµ({c}). This property is certainly satisfied by the

measures

µc = 1√
qM(c)

∞∑
n=−∞

cnqn+n2/2εcqn, c > 0, (1.7)

whereM(c) is some constant depending onc and εx denotes the Dirac measure at the
pointx. SettingM(c)= (−cq

√
q,−1/c

√
q, q;q)∞, it follows by the Jacobi triple product

identity [2, p. 497]

∞∑
n=−∞

(−1)nq(
n
2)xn = (x, q/x, q;q)∞, x �= 0, (1.8)

and the translation invariance of
∑∞

−∞ that eachµc has the momentsq−(n+1)2/2.
In [5] Askey and Roy presented a symmetricq-analogue of the usual beta integral.

With a andb instead ofqa+c andqb−c, their formula reads

∞∫
0

tc−1 (−at,−bq/t;q)∞
(−t,−q/t;q)∞ dt = (ab, qc, q1−c;q)∞

(q, aq−c, bqc;q)∞
π

sinπc
,

c > 0, |a|< qc, |b|< q−c. (1.9)

Whena = b = 0, (1.9) simplifies to

∞∫
0

tc−1

(−t,−q/t;q)∞ dt = (qc, q1−c;q)∞
(q;q)∞

π

sinπc
, c > 0,

and we have
∞∫

0

tn
tc−1

(−t,−q/t;q)∞ dt = q−cn−(n2) (q
c, q1−c;q)∞
(q;q)∞

π

sinπc
, c > 0.

(1.10)



J.S. Christiansen / J. Math. Anal. Appl. 277 (2003) 218–245 221

Settingc = 3/2, the right-hand side in (1.10) becomes

q−n−n2/2 (q
3/2, q−1/2;q)∞

(q;q)∞ (−π) = q−(n+1)2/2π(
√
q;q)2∞

(q;q)∞
so the weight function

w̃(x)= (q;q)∞
π(

√
q;q)2∞

√
x

(−x,−q/x;q)∞ , x > 0, (1.11)

has the momentsq−(n+1)2/2. This observation was made by Askey in [4] and introduces a
new weight function for the polynomials (1.4).

As a basic knowledge of the theory of the moment problem we shall refer to Akhiezer
[1]. Recall that the Nevanlinna parametrization gives a one-to-one correspondence between
the set of Pick functions (including∞) and the set of solutions to an indeterminate
Hamburger moment problem. Ifµϕ is the solution corresponding to the Pick functionϕ,
then the Stieltjes transform ofµϕ is given by∫

R

1

t − x
dµϕ(t) = −A(x)ϕ(x)−C(x)

B(x)ϕ(x)−D(x)
, x ∈ C \ R, (1.12)

whereA, B, C, andD are certain entire functions defined in terms of the orthonormal
polynomials(Pn) and(Qn) by

A(x)= x

∞∑
n=0

Qn(0)Qn(x), C(x) = 1+ x

∞∑
n=0

Pn(0)Qn(x),

B(x) = −1+ x

∞∑
n=0

Qn(0)Pn(x), D(x) = x

∞∑
n=0

Pn(0)Pn(x).

According to the Stieltjes–Perron inversion formula, the measureµϕ is uniquely deter-
mined by its Stieltjes transform.

The solutions corresponding to the Pick function being a real constant (or∞) are
called N -extremal and the solutions corresponding to the Pick function being a real
rational function are called canonical. To be precise, the solutions are calledn-canonical
or canonical of ordern if the Pick function is a real rational function of degreen.
Thus, canonical of order 0 is the same asN -extremal. It is well-known that canonical
solutions are discrete. Ifϕ = P/Q (assuming thatP andQ are polynomials with real
coefficients and no common zeros), thenµϕ is supported on the zeros of the entire function
B(x)P (x)−D(x)Q(x). In particular, theN -extremal solutionµt is supported on the zeros
of B(x)t −D(x) (or B(x) whent = ∞).

Considering a Stieltjes moment problem, of course not every Pick function gives rise to
a Stieltjes solution. In this connection the quantityα � 0 defined by

α = lim
n→∞

Pn(0)

Qn(0)
(1.13)

plays an important part. As Pedersen proved in [17], the measureµϕ corresponding to the
Pick functionϕ is supported within[0,∞) precisely ifϕ has an analytic continuation to
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C \ [0,∞) such thatα � ϕ(x) � 0 for x < 0. In particular, the onlyN -extremal Stieltjes
solutions areµt with α � t � 0. Furthermore, it is well-known that the moment problem
is determinate in the sense of Stieltjes exactly ifα = 0.

This paper is organized as follows. In Section 2 we start by adjusting the normalization
in order to follow the normalization in Koekoek and Swarttouw [14]. Then we present
the well-known solutions to the moment problem and explain how to obtain them.
These solutions can also be found in Berg [6,7]. The functional equationf (xq) =
xf (x) is of great importance both in connection with absolutely continuous and discrete
solutions. A transformationT of the set of solutions is established and we classify
the absolutely continuous and discrete fixed points. These include all the well-known
absolutely continuous solutions and a wide class of the well-known discrete solutions.
However, some of the well-known discrete solutions are only fixed underT (2). A method
to construct continuous singular solutions to the moment problem concludes the section.
In Section 3 we introduce the Stieltjes–Wigert polynomials. These polynomials are
proportional to the orthonormal polynomials and converge uniformly on compact subsets
of C whenn → ∞. We show that the zeros of the Stieltjes–Wigert polynomials are very
well separated, that is, the ratio between two consecutive zeros is strictly greater thanq−2.
Based on generating functions for the Stieltjes–Wigert polynomials, expressions for the
four entire functions from the Nevanlinna parametrization are obtained in terms of their
power series expansions. Concerning the canonical solutions to the moment problem an
entire functionΦ becomes important. The zeros ofΦ turn out to be closely related to the
supports of certainN -extremal and canonical solutions. However, the zeros ofΦ cannot be
found explicitly but sinceΦ is proportional to the limit of the Stieltjes–Wigert polynomials
whenn → ∞, these zeros are very well separated. Moreover, in the end of the section we
get as a corollary that the ratio between two consecutive zeros ofΦ actually converges
to q−2. The canonical solutions are not fixed points of the transformationT defined in
Section 2. We describeT at the level of Pick functions and show thatT maps a canonical
solution into another canonical solution. For the particularN -extremal solutionµ0 we are
able to describeT (n)(µ0) for eachn ∈ N. There is a difference betweenn odd andn even.
We show that the limits ofT (2n+1)(µ0) andT (2n+2)(µ0) exist whenn → ∞ and coincide
with already known solutions to the moment problem.

2. The classical solutions

Let us start by adjusting the normalization in order to follow the standard reference,
Koekoek and Swarttouw [14]. So instead ofw(x) we consider the weight function

v(x) = w(x
√
q )

x
, x > 0,

that is, explicitly we have

v(x) = q1/8√
2π logq−1

1√
x
e

1
2
(logx)2

logq , x > 0. (2.1)
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Note thatv satisfies the functional equation

v(xq) = xv(x), x > 0 (2.2)

and is the density of a probability measurev on (0,∞) with the moments
∞∫

0

xnv(x) dx = q−(n+1
2 ). (2.3)

Using the same procedure as Wigert in [20], we find that the orthonormal polynomials(Pn)

associated with the moment sequence (2.3) are given by

Pn(x) = (−1)n
√

qn

(q;q)n
n∑

k=0

[
n

k

]
q

(−1)kqk2
xk, n � 0. (2.4)

We stress that

Pn(x) = (−1)n
√
qn(q;q)nSn(x;q),

whereSn(x;q) denotes the Stieltjes–Wigert polynomials given by

Sn(x;q)= 1

(q;q)n 1ϕ1

(
q−n

0
;q,−qn+1x

)
, n � 0,

see Koekoek and Swarttouw [14].
The functional equation (2.2) is important due to the following observation which is

also contained in Chihara’s paper [11].

Proposition 2.1. Let f be a positive measurable function defined on the interval(0,∞).
If f satisfies the functional equationf (xq)= xf (x) and

∞∫
0

f (x) dx = c ∈ (0,∞),

then the absolutely continuous measure with density1
c
f has the momentsq−(n+1

2 ).

Remark 2.2. The conditions in Proposition 2.1 are sufficient but not necessary.

Proof. Without loss of generality we can assume that
∫∞

0 f (x) dx = 1. For if this is
not the case, one can simply replacef by 1

c
f . If f satisfies the functional equation

xf (x) = f (xq), it is seen by induction thatf satisfies the functional equation

q(
n
2)xnf (x) = f

(
xqn

)
(2.5)

for eachn ∈ Z and, consequently,
∞∫

0

xnf (x) dx = q−(n2)
∞∫

0

f
(
xqn

)
dx = q−(n2)q−n

∞∫
0

f (x) dx = q−(n+1
2 ).

✷
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So the question is whether we know of any positive and integrable functions on(0,∞),
which satisfy the functional equation (2.2)—besidesv of course. At this point the functions
fc given by

fc(x) = xc−1

(−q1−cx,−qc/x;q)∞ , x > 0,

become relevant. They certainly satisfy the functional equation (2.2) and by the Askey–
Royq-beta integral (1.9), we have

∞∫
0

fc(x) dx = qc(c−1) (q
c, q1−c;q)∞
(q;q)∞

π

sinπc
.

Therefore, by Proposition 2.1 the absolutely continuous measuresvc with densities

vc(x) = qc(1−c) sinπc

π

(q;q)∞
(qc, q1−c;q)∞

xc−1

(−q1−cx,−qc/x;q)∞ , x > 0,

(2.6)

have the moments (2.3). Sincevc+1 = vc, it suffices to considervc for c ∈ (0,1].
As Askey stated in [3] (but only forc = 1), the densitiesvc(x) appear to be certain

(normalized) accumulation points of the weight function

v(α)(x)= xα

(−x;q)∞ , x > 0,

for the q-Laguerre polynomials whenα → ∞. It is well known, see [14], that the
q-Laguerre polynomials given by

L(α)
n (x;q)= (qα+1;q)n

(q;q)n 1ϕ1

(
q−n

qα+1;q,−qn+α+1x
)
, n � 0,

in a suitable way converge to the Stieltjes–Wigert polynomials whenα → ∞ and results
on convergence at the level of orthogonality measures can be worked out as well. For the
precise statements and computations, the reader is referred to [12].

If one should be tempted to look at the graphs of the densitiesv andvc for some fixed
value ofq , sayq = 1/2, the variation turns out to be surprisingly small. For a minute one
might be afraid that the measures are not different at all. However, the measures cannot
coincide becausevc can be considered as a meromorphic function inC \ {iβ | β � 0} with
simple poles at−qc+n for n ∈ Z, whereasv can be considered as a holomorphic function
in C \ {iβ | β � 0}.

Let us now return to the functional equation (2.2) and suppose thatf1 andf2 are two
functions satisfying this equation. Iff2 is strictly positive, then the quotientg = f1/f2 is
well defined and it satisfies the simple functional equation

g(x) = g(xq), x > 0.

So the two functions differ at the most by a factor which in a certain sense is periodic—
what we shall callq-periodic. In other words, if we know one strictly positive solution
to the functional equation (2.2), we can get all the others by multiplying withq-periodic
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functions. Therefore, wheneverg is a positive, measurable andq-periodic function such
that

∞∫
0

v(x)g(x) dx = c ∈ (0,∞),

the absolutely continuous measure with density1
c
v(x)g(x), x > 0, has the moments (2.3).

This is exactly Stieltjes’ observation in full generality—he only considered the case
q = 1/2. Since the sine function is periodic with period 2π , it can be madeq-periodic
by changing the argument to 2π logx/logq. In order to get a positive function, just add
the constant 1 and obviously the function remains positive andq-periodic if the sine term
is multiplied by any constantλ between−1 and 1. It is easily verified that

∞∫
0

v(x)sin

(
2π

logx

logq

)
dx = 0

so forλ ∈ [−1,1], the densities

ṽλ(x) = v(x)

(
1+ λsin

(
2π

logx

logq

))
, x > 0, (2.7)

have the same moments. Note that eachṽλ(x) is a convex combination of the end points
ṽ−1(x) andṽ1(x), to be precise

ṽλ(x) = 1− λ

2
ṽ−1(x)+ 1+ λ

2
ṽ1(x).

After this, let us turn the attention to discrete solutions to the moment problem. Suppose
thatf is a strictly positive function satisfying the functional equation (2.2) and consider
for c > 0 the discrete measureλc supported on{cqn | n ∈ Z} and given by

λc
({
cqn

})= 1

f (c)L(c)
qnf

(
cqn

)
, n ∈ Z.

HereL(c) is a constant which ensures thatλc is a probability measure. Recall from (2.5)
that

f
(
cqn

)= q(
n
2)cnf (c), n ∈ Z,

so independent off , the measureλc is given by

λc = 1

L(c)

∞∑
n=−∞

(cq)nq(
n
2)εcqn . (2.8)

According to the Jacobi triple product identity (1.8), we haveL(c) = (−cq,−1/c, q;q)∞
and using the translation invariance of

∑∞
−∞, we see that

∞∫
0

xn dλc(x)= q−(n+1
2 ).
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Sinceλc/q = λc, it suffices to considerλc for c ∈ (q,1] and this perfectly agrees with the
fact that a function satisfying the functional equation (2.2) is uniquely determined by its
values on the interval(q,1].

The particular solutionλ1 is supported on the geometric progression{qn | n ∈ Z} and
one could ask if this is the only solution supported within this special set. The answer is in
the negative, see [6], where Berg pointed out that fors ∈ [−1,1], the measures

κs = 1

L(1)

∞∑
n=−∞

q(
n+1

2 )
(
1+ s(−1)n

)
εqn (2.9)

have the same moments. To justify this, one has to realize that

∞∑
n=−∞

(
qn
)k
q(

n+1
2 )(−1)n = 0

which is a consequence of the Jacobi triple product identity (1.8). The end pointsκ−1 and
κ1 are supported on{q2n+1 | n ∈ Z} and{q2n | n ∈ Z}, respectively, and we stress that each
κs can be thought of as a convex combination ofκ−1 andκ1, to be precise

κs = 1− s

2
κ−1 + 1+ s

2
κ1.

On the previous pages we have given a survey of the well-known solutions to the moment
problem. To learn even more about the structure of these solutions and to obtain further
insight, we shall now introduce a transformation of the setV of solutions. But first some
notation. Fora > 0, let τa denote the map given byτa(x) = ax and recall that the image
measureτa(µ) of a measureµ on [0,∞) underτa is defined by

τa(µ)(B) = µ
(
a−1B

)
for all Borel setsB ⊂ [0,∞).

Proposition 2.3. Suppose thatµ is a measure on[0,∞) with momentsq−(n+1
2 ). Then the

support ofν = τq(qx dµ(x)) is contained in[0,∞) andν has the momentsq−(n+1
2 ).

Proof. The proof is straightforward. The support ofν is certainly contained in[0,∞) and

∞∫
0

xn dν(x) =
∞∫

0

(qx)nqx dµ(x)= qn+1

∞∫
0

xn+1dµ(x)= q−(n+1
2 ).

✷
The above proposition gives rise to the following definition.

Definition 2.4. We denote byT :V �→ V the map given byT (µ) = τq(qx dµ(x)).

A probability measureµ is a fixed point ofT if and only if it satisfies the equation

τq−1(µ) = qx dµ(x). (2.10)
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Whenµ is absolutely continuous with density, sayf (x), this equation exactly corresponds
to the functional equationf (xq) = xf (x), x > 0 and whenµ is a discrete measure, the
equation tells us thatc > 0 is a mass point ofµ exactly whencq likewise is a mass point
of µ andµ({cq})= qcµ({c}). The latter property is satisfied by the measuresλc in (2.8).

As a matter of fact, we can classify all the absolutely continuous and all the discrete
fixed points ofT . Wheneverg is a positive, measurable andq-periodic function on(0,∞)

such that
∞∫

0

v(x)g(x) dx = 1,

the absolutely continuous measure with densityv(x)g(x), x > 0 is a fixed point ofT and
every absolutely continuous fixed point ofT has this form (for someg). The discrete fixed
points ofT are precisely the countable convex combinations of the measuresλc .

So nearly all the solutions presented till now are fixed points ofT . The only exception
is the measuresκs in (2.9) whens �= 0. For−1< s < 1, the support ofκs is the geometric
progression{qn | n ∈ Z} andT has at most one fixed point with this support. However, we
know thatκ0 = λ1 is a fixed point ofT . In general, it turns out thatT (κs) = κ−s so all the
measuresκs are fixed points ofT (2).

It is worth while dwelling somewhat on Eq. (2.10) since this is the full generalization of
the functional equation (2.2). Suppose thatµ is a finite measure on(0,∞) which satisfies
this equation or, equivalently,

µ(qB) = q

∫
B

x dµ(x)

for all Borel setsB ⊂ (0,∞). By induction, we have

τq−n(µ) = q(
n+1

2 )xn dµ(x), n ∈ Z,

and this means that
∞∫

0

xn dµ(x)= q−(n+1
2 )

∞∫
0

dτq−n(µ)(x).

So if µ is a probability measure, it surely has the moments (2.3). But furthermore, we see
thatµ is uniquely determined by its restrictionµ|(q,1] to the interval(q,1] or any other
interval of the form(qn+1, qn] for somen ∈ Z. For if µ|(q,1] = ν, then

µ|(qn+1,qn] = τqn

(
q(

n+1
2 )xn dν(x)

)
for eachn ∈ Z and

⋃∞
n=−∞(qn+1, qn] = (0,∞).

On the other hand, suppose thatν is any finite measure on(q,1]. Then there is exactly
one way to extendν to a finite measureµ on(0,∞) such thatµ satisfies Eq. (2.10). Simply
define

µ|(qn+1,qn] = τqn

(
q(

n+1
2 )xn dν(x)

)
, n ∈ Z,
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that is,

µ
(
qnB

)= q(
n+1

2 )
∫
B

xn dν(x)

for all Borel setsB ⊂ (q,1]. In this way,

τq−1(µ|(qn+1,qn]) = qx dµ|(qn,qn−1](x), n ∈ Z,

so the measureµ satisfies the desired equation and it is a finite measure since

µ
(
(0,∞)

)=
∞∑

n=−∞
q(

n+1
2 )

∫
(q,1]

xn dν(x)

� ν
(
(q,1])

(
1/q

∞∑
n=0

q(
n
2) +

∞∑
n=0

q(
n+1

2 )

)
< ∞.

Starting from a finite measureν on the interval(q,1], we can thus construct a solution to
the moment problem by, if necessary, normalizing the extensionµ. The solution obtained
from ν is of the same type asν. So if ν is a continuous singular measure, we end up with
a continuous singular solution to the moment problem.

Similar observations was made by Pakes in [15]. Using a slightly different notation, he
proved that a measureµ is solution to (2.10) if and only ifµ has the form

µ = K

∞∑
n=−∞

τqn

(
q(

n+1
2 )xn dν(x)

)
,

whereK is some constant andν is a finite measure supported within the interval(q,1].

3. The N -extremal solutions and canonical solutions

The orthonormal polynomials(Pn) associated with the moment sequence (2.3) are given
explicitly in (2.4). Recall that the polynomials(Qn) of the second kind are defined by

Qn(x) =
∫

Pn(x)− Pn(y)

x − y
dµ(y), n � 0,

where µ is any measure with the momentssn ( = q−(n+1
2 ) in our case). Obviously,

Q0(x) = 0 and whenPn(x) =∑n
k=0 ckx

k , we have

Qn(x) =
n−1∑
m=0

(
n∑

k=m+1

cksk−m−1

)
xm, n � 1.

Consequently, the polynomials(Qn) of the second kind associated with the moment
sequence (2.3) are given by

Qn(x) = (−1)n
√

qn

(q;q)n
n−1∑
m=0

q−(m+1
2 )

(
n∑

k=m+1

[
n

k

]
q

(−1)kq(
k
2)+(m+1)k

)
xm,

n � 1. (3.1)
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Remark 3.1. The inner sum
∑n

k=m+1

[
n
k

]
q
(−1)kq(

k
2)+(m+1)k is the tail in the finite version

of theq-binomial theorem [2, p. 490]
n∑

k=0

[
n

k

]
q

(−1)kq(
k
2)xk = (x;q)n. (3.2)

Therefore, we could also write this sum as

(
qm+1;q)

n
−

m∑
k=0

[
n

k

]
q

(−1)kq(
k
2)+(m+1)k.

From time to time we shall be dealing with the Stieltjes–Wigert polynomials of the first
and second kind given by

Sn(x;q)= 1

(q;q)n
n∑

k=0

[
n

k

]
q

(−1)kqk2
xk, n � 0,

and

S̃n(x;q)= 1

(q;q)n
n−1∑
m=0

q−(m+1
2 )

(
n∑

k=m+1

[
n

k

]
q

(−1)kq(
k
2)+(m+1)k

)
xm,

n � 1,

that is,Pn(x) = (−1)n
√
qn(q;q)nSn(x;q) andQn(x)= (−1)n

√
qn(q;q)n S̃n(x;q).

It is essential thatSn(x;q) and S̃n(x;q) converge uniformly on compact subsets of
C whenn → ∞. In fact, Sn(x;q) → Φ(x)/(q;q)∞ and S̃n(x;q) → Ψ (x)/(q;q)∞ for
n → ∞, whereΦ andΨ denote the entire functions

Φ(x) =
∞∑
k=0

(−1)k
qk2

(q;q)k x
k (3.3)

and

Ψ (x) =
∞∑

m=0

q−(m+1
2 )

( ∞∑
k=m+1

(−1)k
q(

k
2)+(m+1)k

(q;q)k

)
xm. (3.4)

From the general theory of orthogonal polynomials it is well known thatSn(x;q) hasn
simple positive zeros and that the polynomialsSn−1(x;q) andSn(x;q) have no common
zeros. Moreover, the zeros ofSn−1(x;q) andSn(x;q) interlace, that is,Sn−1(x;q) has
exactly one zero between two consecutive zeros ofSn(x;q).

Since the Stieltjes–Wigert polynomials are orthogonal with respect to the discrete
measuresλc in (2.8), it follows thatSn(x;q) has at most one zero in the open interval
(cq, c) for eachc > 0. In other words, then zeros ofSn(x;q), say 0< xn,1 < · · · < xn,n,
are separated and this was mentioned by Chihara in [10]. Using the identity

Sn−1(x;q)= (
1− qn

)
Sn(x;q)+ xqnSn−1(xq;q), (3.5)

which can be verified by direct computations, Chihara proved in [11] that

xn,m < xn−1,m < qxn,m+1.
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So in a sense, themth zero ofSn−1(x;q) lies in the first part of the interval from themth
to the(m+ 1)th zero ofSn(x;q) and we have

xn,m+1

xn,m
> q−1. (3.6)

Referring to (3.6), we say that the zeros ofSn(x;q) are well separated. Using the identity

Sn(x;q)= (
1+ xqn+1)Sn(xq;q)− qxSn

(
xq2;q), (3.7)

which can also be verified by direct computations, we shall give a refinement of the
separation property (3.6). Assume thatSn(x;q) > 0 for xn,m < x < xn,m+1. The case
Sn(x;q)< 0 can be handled in a completely similar way. Sincexn,m < qxn,m+1 < xn,m+1,
this in particular means thatSn(qxn,m+1;q) > 0. The open interval(qxn,m, xn,m) contains
no zero ofSn(x;q) and, consequently,Sn(x;q) < 0 for qxn,m < x < xn,m. Suppose now
thatq2xn,m+1 � xn,m. Sinceqxn,m < q2xn,m+1, this results inSn(q2xn,m+1;q)� 0 which
clearly contradicts the identity (3.7). Therefore, we haveq2xn,m+1 > xn,m or, equivalently,

xn,m+1

xn,m
> q−2 (3.8)

and we say that the zeros ofSn(x;q) are very well separated.

Remark 3.2. One should not expect to find a stronger separation property than (3.8) after
looking at the zeros ofS2(x;q). For instance,x2,2/x2,1 < q−3 whenq = 1/2.

In some sense, to solve an indeterminate moment problem means to find the four entire
functionsA, B, C, andD from the Nevanlinna parametrization. Based on generating
functions for the Stieltjes–Wigert polynomials, we shall give expressions for these
functions. The generating function forSn(x;q) is also stated in Koekoek and Swarttouw
[14].

Proposition 3.3. For γ ∈ C and|t| < 1, we have

∞∑
n=0

(γ ;q)ntnSn(x;q)= (γ t;q)∞
(t;q)∞

∞∑
n=0

(−1)n
(γ ;q)n

(γ t, q;q)n q
n2
(xt)n,

∞∑
n=0

(γ ;q)ntnS̃n(x;q)= (γ t;q)∞
(t;q)∞

∞∑
n=0

q−(n+1
2 )

×
( ∞∑

k=n+1

(−1)k
(γ ;q)k

(γ t, q;q)k q
(k2)+(n+1)ktk

)
xn.

In particular, withγ = 0 andt = q we have

∞∑
n=0

qnSn(x;q)= 1

(q;q)∞
∞∑
n=0

(−1)n
qn(n+1)

(q;q)n x
n,

∞∑
n=0

qnS̃n(x;q)= 1

(q;q)∞
∞∑
n=0

q−(n+1
2 )

( ∞∑
k=n+1

(−1)k
q(

k
2)+(n+2)k

(q;q)k

)
xn,
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and withγ = t = q we have

∞∑
n=0

(q;q)nqnSn(x;q)=
∞∑
n=0

(−1)n
qn(n+1)

(q;q)n+1
xn,

∞∑
n=0

(q;q)nqnS̃n(x;q)=
∞∑
n=0

q−(n+1
2 )

( ∞∑
k=n+1

(−1)k
q(

k
2)+(n+2)k

(q;q)k+1

)
xn.

Remark 3.4. The inner sum
∑∞

k=n+1(−1)kq(
k
2)+(n+2)k/(q;q)k is the tail in Euler’s

formula [2, p. 490]

∞∑
n=0

(−1)n
q(

n
2)

(q;q)n x
n = (x;q)∞. (3.9)

So this sum can also be written as

(
qn+2;q)∞ −

n∑
k=0

(−1)k
q(

k
2)+(n+2)k

(q;q)k .

Concerning the inner sum
∑∞

k=n+1(−1)kq(
k
2)+(n+2)k/(q;q)k+1, we can say almost the

same.

Proof. The point of the proof is to interchange the order of summation and use theq-
binomial theorem [2, p. 488]

∞∑
n=0

(a;q)n
(q;q)n x

n = (ax;q)∞
(x;q)∞ , |x|< 1. (3.10)

Absolute convergence assures that we can change the summation. Hence

∞∑
n=0

(γ ;q)ntnSn(x;q)=
∞∑
n=0

(γ ;q)ntn
n∑

k=0

(−1)k
qk2

(q;q)k(q;q)n−k

xk

=
∞∑
k=0

(−1)k
qk2

(q;q)k x
k

∞∑
n=k

(γ ;q)n
(q;q)n−k

tn

=
∞∑
k=0

(−1)k
(γ ;q)k
(q;q)k q

k2
tkxk

∞∑
n=0

(γ qk;q)n
(q;q)n tn

and similarly

∞∑
n=0

(γ ;q)ntnS̃n(x;q)

=
∞∑
n=0

(γ ;q)ntn
n−1∑
m=0

q−(m+1
2 )

(
n∑

k=m+1

(−1)k
q(

k
2)+(m+1)k

(q;q)k(q;q)n−k

)
xm
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=
∞∑

m=0

q−(m+1
2 )

( ∞∑
n=m+1

(γ ;q)ntn
n∑

k=m+1

(−1)k
q(

k
2)+(m+1)k

(q;q)k(q;q)n−k

)
xm

=
∞∑

m=0

q−(m+1
2 )

( ∞∑
k=m+1

(−1)k
q(

k
2)+(m+1)k

(q;q)k
∞∑
n=k

(γ ;q)n
(q;q)n−k

tn

)
xm

=
∞∑

m=0

q−(m+1
2 )

( ∞∑
k=m+1

(−1)k
(γ ;q)k
(q;q)k q

(k2)+(m+1)ktk
∞∑
n=0

(γ qk;q)n
(q;q)n tn

)
xm.

By theq-binomial theorem (3.10), we have
∞∑
n=0

(γ qk;q)n
(q;q)n tn = (γ tqk;q)∞

(t;q)∞
so it follows that

∞∑
n=0

(γ ;q)ntnSn(x;q)= (γ t;q)∞
(t;q)∞

∞∑
k=0

(−1)k
(γ ;q)k

(γ t, q;q)k q
k2
(xt)k

and
∞∑
n=0

(γ ;q)ntnS̃n(x;q)= (γ t;q)∞
(t;q)∞

∞∑
m=0

q−(m+1
2 )

×
( ∞∑

k=m+1

(−1)k
(γ ;q)k

(γ t, q;q)k q
(k2)+(m+1)ktk

)
xm.

✷
The special cases from Proposition 3.3 leads to the following result.

Theorem 3.5. The four entire functionsA, B, C, andD from the Nevanlinna parametriza-
tion are given by

A(x) = −
∞∑
n=0

q−(n+1
2 )

( ∞∑
k=n+1

(−1)k
q(

k
2)+nk

(q;q)k

)
xn

− 1

(q;q)∞
∞∑
n=0

q−(n2)
( ∞∑

k=n

(−1)k
q(

k
2)+(n+1)k

(q;q)k

)
xn,

B(x) = −
∞∑
n=0

(−1)n
qn(n−1)

(q;q)n x
n − x

(q;q)∞
∞∑
n=0

(−1)n
qn(n+1)

(q;q)n x
n,

C(x) = 1

(q;q)∞
∞∑
n=0

q−(n2)
( ∞∑

k=n

(−1)k
q(

k
2)+(n+1)k

(q;q)k

)
xn,

D(x) = x

(q;q)∞
∞∑
n=0

(−1)n
qn(n+1)

(q;q)n x
n.
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Proof. From (2.4) we see that

Pn(0) = (−1)n
√

qn

(q;q)n (3.11)

and using the finite version of theq-binomial theorem (3.2), we get from (3.1) that

Qn(0) = (
(q;q)n − 1

)
Pn(0). (3.12)

Recalling thatPn(x) = (−1)n
√
qn(q;q)nSn(x;q) and Qn(x) = (−1)n

√
qn(q;q)n ×

S̃n(x;q), we thus obtain

D(x) = x

∞∑
n=0

Pn(0)Pn(x)= x

∞∑
n=0

qnSn(x;q)

= x

(q;q)∞
∞∑
n=0

(−1)n
qn(n+1)

(q;q)n x
n,

B(x) = −1+ x

∞∑
n=0

Qn(0)Pn(x) = −1+ x

∞∑
n=0

(
(q;q)n − 1

)
qnSn(x;q)

= −1−
∞∑
n=0

(−1)n+1 qn(n+1)

(q;q)n+1
xn+1 −D(x)

= −
∞∑
n=0

(−1)n
qn(n−1)

(q;q)n x
n −D(x),

C(x) = 1+ x

∞∑
n=0

Pn(0)Qn(x) = 1+ x

∞∑
n=0

qnS̃n(x;q)

= 1+ x

(q;q)∞
∞∑
n=0

q−(n+1
2 )

( ∞∑
k=n+1

(−1)k
q(

k
2)+(n+2)k

(q;q)k

)
xn

= 1

(q;q)∞
∞∑
n=0

q−(n2)
( ∞∑

k=n

(−1)k
q(

k
2)+(n+1)k

(q;q)k

)
xn,

A(x) = x

∞∑
n=0

Qn(0)Qn(x)= x

∞∑
n=0

(
(q;q)n − 1

)
qnS̃n(x;q)

= 1+
∞∑
n=0

q−(n+1
2 )

( ∞∑
k=n+1

(−1)k
q(

k
2)+(n+2)k

(q;q)k+1

)
xn+1 −C(x)

= −
∞∑
n=0

q−(n+1
2 )

( ∞∑
k=n+1

(−1)k
q(

k
2)+nk

(q;q)k

)
xn −C(x).

In the computations ofC andA, we have used Euler’s formula (3.9) in the last steps.✷
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The expressions forA andB are more complicated than the expressions forC andD.
However, we obviously have

B(x) +D(x) = −
∞∑
n=0

(−1)n
qn(n−1)

(q;q)n x
n

and

A(x)+C(x) = −
∞∑
n=0

q−(n+1
2 )

( ∞∑
k=n+1

(−1)k
q(

k
2)+nk

(q;q)k

)
xn.

The quantityα in (1.13) is explicitly given by

α = lim
n→∞

1

(q;q)n − 1
= 1

(q;q)∞ − 1
(3.13)

sinceQn(0) = ((q;q)n − 1)Pn(0), see (3.12). Due to the fact that 0< (q;q)∞ < 1, this in
particular means thatα < −1. Realizing that−1/α = 1 − (q;q)∞, simple computations
give that

B(x) − 1

α
D(x) = −

∞∑
n=0

(−1)n
qn2

(q;q)n x
n

and

A(x)− 1

α
C(x) = −

∞∑
n=0

q−(n+1
2 )

( ∞∑
k=n+1

(−1)k
q(

k
2)+(n+1)k

(q;q)k

)
xn.

In the light of Theorem 3.5, we have thus established the power series expansions of the
entire functionsC, D, A+C, B +D, A − 1

α
C, andB − 1

α
D. One should note that

D(x) = x

(q;q)∞Φ(xq), B(x)+D(x) = −Φ(x/q) and

B(x) − 1

α
D(x) = −Φ(x),

whereas

A(x)− 1

α
C(x) = −Ψ (x),

cf. (3.3) and (3.4). In particular, we have

lim
n→∞

S̃n(x;q)
Sn(x;q) = Ψ (x)

Φ(x)
= A(x)− 1

α
C(x)

B(x)− 1
α
D(x)

= A(x)α −C(x)

B(x)α −D(x)

for x ∈ C \ [0,∞). (3.14)

We will now focus on the canonical solutions to the moment problem and especially on
theN -extremal solutions. Since a canonical solution is discrete and supported on the zeros
of an entire function, these solutions cannot be convex combinations of the measuresλc
in (2.8). For 0 is an accumulation point of the set{cqn | n ∈ Z} and the zeros of an entire
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function cannot have an accumulation point without the function being identically zero.
Compare with [10], where Chihara made it clear that the measuresλc are notN -extremal.
Consequently, the canonical solutions are not fixed points of the transformationT in
Definition 2.4.

Recall that the onlyN -extremal solutions supported within[0,∞) areµt whenα �
t � 0. In our case, three of these solutions are leaping to the eye, namelyµt when
t ∈ {0,−1, α}. In order to find these solutions explicitly, one needs to know the zeros ofΦ

sinceµ0 is supported on the zeros ofΦ(xq) (plus 0),µα is supported on the zeros ofΦ(x)

andµ−1 is supported on the zeros ofΦ(x/q). However, the zeros ofΦ cannot be found
explicitly.

Since the zeros ofSn(x;q) in a certain sense converge to the zeros ofΦ, we are able to
show that the zeros ofΦ are very well separated. For eachm ∈ N, the sequence(xn,m) is
decreasing inn and thus convergent, sayxn,m → xm for n → ∞. SinceSn(x;q) converge
uniformly to Φ(x)/(q;q)∞ on compact subsets ofC, the limit pointsxm are zeros of
Φ and sinceΦ(0) = 1, we havex1 > 0. Recalling that the zeros ofSn(x;q) are very well
separated, the pointsxm are surely well separated, at the worstxm+1/xm � q−2. According
to Rouché’s theorem, the pointsxm are the only zeros ofΦ. For if xm < y < xm+1, then
the closed ball with center aty and radiusr < min(y − xm,xm+1 − y) contains no zero of
Sn(x;q) for n sufficiently large. Due to the uniform convergence, this is also the case for
Φ and, in particular,y is not a zero ofΦ. It is easy to see from (3.7) by lettingn → ∞ that

Φ(x) = Φ(xq)− qxΦ
(
xq2) (3.15)

and with a similar argumentation as forSn(x;q), it therefore follows that the zeros ofΦ
are very well separated, that is,xm+1/xm > q−2.

It is straightforward to see thatΦ is a q-analogue of the exponential function and an
entire function of order 0. The latter implies thatA, B, C, andD from Theorem 3.5 also
are entire functions of order 0 since these functions are known to have the same order, see
[8].

To underline the fact thatΦ is a very interesting and complicated function, we point out
that

Φ(−1) =
∞∑
n=0

qn2

(q;q)n =
∞∏
n=0

(
1− q5n+1)−1(1− q5n+4)−1

and

Φ(−q) =
∞∑
n=0

qn(n+1)

(q;q)n =
∞∏
n=0

(
1− q5n+2)−1(

1− q5n+3)−1
.

These are the famous Rogers–Ramanujan identities, cf. [2, p. 565].
We shall now make the preparations for describing the transformationT at the level

of Pick functions. Ifµ is a measure on[0,∞) with moments (2.3), then the moments of
µ̃ = qx dµ(x) are

∞∫
0

xn dµ̃(x) = q

∞∫
0

xn+1dµ(x)= q−(n+1
2 )−n. (3.16)
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The key is to look at the connection between the moment problems associated with the
moment sequences (2.3) and (3.16). Suppose thatµ is a probability measure on(0,∞)

satisfying Eq. (2.10). Sinceµ has the moments (2.3), we know that

∞∫
0

Pm(x)Pn(x) dµ(x)= δmn

and, equivalently,

∞∫
0

Pm(xq)Pn(xq) dτq−1(µ)(x) = δmn.

This means that the orthonormal polynomials(P̃n) associated with the moment sequence
(3.16) are given bỹPn(x) = Pn(xq). Moreover, the polynomials(Q̃n) of the second kind
are given byQ̃n(x)= qQn(xq) since

∞∫
0

P̃n(x)− P̃n(y)

x − y
dτq−1(µ)(y)=

∞∫
0

Pn(xq)− Pn(y)

x − y/q
dµ(y)

= q

∞∫
0

Pn(xq)− Pn(y)

xq − y
dµ(y).

In this way, we see that the entire functions from the Nevanlinna parametrization for the
two moment problems are related by

Ã(x) = x

∞∑
n=0

Q̃n(0)Q̃n(x)= q2x

∞∑
n=0

Qn(0)Qn(xq)= qA(xq),

B̃(x) = −1+ x

∞∑
n=0

Q̃n(0)P̃n(x) = −1+ qx

∞∑
n=0

Qn(0)Pn(xq)= B(xq),

C̃(x) = 1+ x

∞∑
n=0

P̃n(0)Q̃n(x) = 1+ qx

∞∑
n=0

Pn(0)Qn(xq)= C(xq),

D̃(x)= x

∞∑
n=0

P̃n(0)P̃n(x)= x

∞∑
n=0

Pn(0)Pn(xq)= D(xq)/q.

On the other hand, a general result given by Pedersen in [16, Proposition 6.3] tells us that


Ã(x)

B̃(x)

C̃(x)

D̃(x)


= M(x)




A(x)

B(x)

C(x)

D(x)


 ,
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whereM(x) denotes the matrix


qx(1−D′(0)) −q(1−D′(0)) − qx
α
(1−D′(0))− q

q
α
(1−D′(0))+ q

x

0 1−D′(0) 0 − 1
α
(1−D′(0))− 1

x

xD′(0) −D′(0) − x
α
D′(0)+ 1 1

α
D′(0)− 1

x

0 1
q
D′(0) 0 − 1

qα
D′(0)+ 1

qx




and sinceD′(0)= 1/(q;q)∞, we have




A(xq)

B(xq)

C(xq)

D(xq)


=




x((q;q)∞−1)
(q;q)∞ −1+ 1

(q;q)∞ − x((q;q)∞−1)
α(q;q)∞ − 1 ((q;q)∞−1)

α(q;q)∞ + 1
x

0 1− 1
(q;q)∞ 0 − ((q;q)∞−1)

α(q;q)∞ − 1
x

x
(q;q)∞ − 1

(q;q)∞ − x
α(q;q)∞ + 1 1

α(q;q)∞ − 1
x

0 1
(q;q)∞ 0 − 1

α(q;q)∞ + 1
x




×



A(x)

B(x)

C(x)

D(x)


 .

This can also be written as


A(xq)+B(xq)

B(xq)

C(xq)+D(xq)

D(xq)




=




x((q;q)∞−1)
(q;q)∞ 0 − x((q;q)∞−1)

α(q;q)∞ − 1 0

0 1− 1
(q;q)∞ 0 − ((q;q)∞−1)

α(q;q)∞ − 1
x

x
(q;q)∞ 0 − x

α(q;q)∞ + 1 0

0 1
(q;q)∞ 0 − 1

α(q;q)∞ + 1
x






A(x)

B(x)

C(x)

D(x)




or 


A(xq)+C(xq)

B(xq)+D(xq)

C(xq)

D(xq)




=




x −1 − x
α

1
α

0 1 0 − 1
α

x
(q;q)∞ − 1

(q;q)∞ − x
α(q;q)∞ + 1 1

α(q;q)∞ − 1
x

0 1
(q;q)∞ 0 − 1

α(q;q)∞ + 1
x






A(x)

B(x)

C(x)

D(x)




or even


A(xq)+B(xq)+C(xq)+D(xq)

B(xq)+D(xq)

C(xq)+D(xq)

D(xq)




=




x 0 − x
α

0
0 1 0 − 1

α
x

(q;q)∞ 0 − x
α(q;q)∞ + 1 0

0 1
(q;q)∞ 0 − 1

α(q;q)∞ + 1
x






A(x)

B(x)

C(x)

D(x)


 .
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The last expression is equivalent to(
B(xq)+D(xq)

D(xq)

)
=
(

1 − 1
α

1
(q;q)∞ − 1

α(q;q)∞ + 1
x

)(
B(x)

D(x)

)
(3.17)

and (
A(xq)+B(xq)+C(xq)+D(xq)

C(xq)+D(xq)

)

= x

(
1 − 1

α
1

(q;q)∞ − 1
α(q;q)∞ + 1

x

)(
A(x)

C(x)

)
. (3.18)

We are now ready to describe the transformationT at the level of Pick functions.

Theorem 3.6. Suppose thatµ ∈ V and letϕ be the Pick function corresponding toµ. Then
ν = τq(qx dµ(x)) ∈ V and the Pick functionψ corresponding toν is given by

ψ(x) =
x

(q;q)∞
(
1− ϕ(x/q)

α

)+ qϕ(x/q)

x
(q;q)∞ ((q;q)∞ − 1)

(
1− ϕ(x/q)

α

)− qϕ(x/q)
.

Proof. The conclusion of Proposition 2.3 is thatν ∈ V . Since

∞∫
0

1

qx − t
dν(t) =

∞∫
0

1

qx − qt
qt dµ(t) =

∞∫
0

t

x − t
dµ(t)

= −1+ x

∞∫
0

1

x − t
dµ(t),

we have to show that

A(xq)ψ(xq)−C(xq)

B(xq)ψ(xq)−D(xq)
= −1+ x

A(x)ϕ(x)−C(x)

B(x)ϕ(x)−D(x)

and this is done by direct computations. With

ζ(x) = x

(q;q)∞
(

1− ϕ(x)

α

)
+ ϕ(x) and η(x) = x

(
1− ϕ(x)

α

)
,

we have

A(xq)ψ(xq)−C(xq)

B(xq)ψ(xq)−D(xq)
= ζ(x)A(xq)+ (ζ(x)− η(x))C(xq)

ζ(x)B(xq)+ (ζ(x)− η(x))D(xq)

and by (3.18) and (3.17), it follows that

ζ(x)(A(xq)+C(xq))− η(x)C(xq)

ζ(x)(B(xq)+D(xq))− η(x)D(xq)

= −1+
ζ(x)x

(
A(x)− 1

α
C(x)

)− η(x)x
( 1
(q;q)∞A(x)+ ( 1

x
− 1

α(q;q)∞
)
C(x)

)
ζ(x)(B(xq)+D(xq))− η(x)D(xq)
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= −1+ ζ(x)x
(
A(x)− 1

α
C(x)

)− η(x)x
( 1
(q;q)∞A(x)+ ( 1

x
− 1

α(q;q)∞
)
C(x)

)
ζ(x)

(
B(x) − 1

α
D(x)

)− η(x)
( 1
(q;q)∞B(x) + ( 1

x
− 1

α(q;q)∞
)
D(x)

)
= −1+ xϕ(x)A(x)− (

x
ϕ(x)
α

+ x
(
1− ϕ(x)

α

))
C(x)

ϕ(x)B(x)− (ϕ(x)
α

+ (
1− ϕ(x)

α

))
D(x)

= −1+ x
A(x)ϕ(x)−C(x)

B(x)ϕ(x)−D(x)
.

✷
Let us list some consequences of Theorem 3.6. First of all, we see thatT maps aN -
extremal solution into anotherN -extremal solution or into a canonical solution of order 1.
In general,T maps a canonical solution of ordern into another canonical solution of order
� n+ 1.

It is straightforward to verify thatT (µ0) = µα andT (µα) = µ−1. Actually, we can
describeT (n)(µ0) for eachn ∈ N.

Theorem 3.7. Let T : V �→ V denote the map given byT (µ) = τq(qx dµ(x)). For
n = 0,1, . . . , we have

T (2n+1)(µ0) = µRn and T (2n+2)(µ0) = µR̃n
,

whereRn andR̃n are real rational functions of order� n given by

Rn(x) =
∑n

k=0(−1)n−k
[2n−k

k

]
q
q(n−k)2xk∑n

k=0(−1)n−k
(
(q;q)∞

[2n−k−1
k−1

]
q
q(n−k+1)2−1 − [2n−k

k

]
q
q(n−k)2

)
xk

and

R̃n(x)=
(

n∑
k=0

(−1)n−k

[
2n− k + 1

k

]
q

q(n−k)(n−k+1)xk

)
/(

n∑
k=0

(−1)n−k

(
(q;q)∞

[
2n− k

k − 1

]
q

q(n−k+1)(n−k+2)−1

−
[

2n− k + 1

k

]
q

q(n−k)(n−k+1)
)
xk

)
.

Proof. The proof is by induction. Start by noting thatR0(x) = α and R̃0(x) = −1.
Suppose next thatT (2n+1)(µ0) = µRn for somen > 0 and letT (2n+2)(µ0) = T (µRn) =
µψ , whereψ is a certain Pick function. The real rational functionRn has the form

Rn(x) = Sn(x)

(q;q)∞Tn(x)− Sn(x)

with

Sn(x) =
n∑

k=0

(−1)n−k

[
2n− k

k

]
q

q(n−k)2xk
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and

Tn(x)=
n∑

k=0

(−1)n−k

[
2n− k − 1

k − 1

]
q

q(n−k+1)2−1xk.

So according to Theorem 3.6, we have

ψ(x) =
x

(q;q)∞
(
1− Rn(x/q)

α

)+ qRn(x/q)

x
(q;q)∞ ((q;q)∞ − 1)

(
1− Rn(x/q)

α

)− qRn(x/q)

= x(Tn(x/q)− Sn(x/q))+ qSn(x/q)

x((q;q)∞ − 1)(Tn(x/q)− Sn(x/q))− qSn(x/q)

= Un(x)

(q;q)∞Vn(x)−Un(x)
,

where

Vn(x) = Un(x)− qSn(x/q)= x
(
Tn(x/q)− Sn(x/q)

)
.

By collecting the terms, it follows that

Vn(x)=
n∑

k=0

(−1)n−k

([
2n− k − 1

k − 1

]
q

q(n−k+1)2−1

−
[

2n− k

k

]
q

q(n−k)2
)
q−kxk+1

=
n−1∑
k=0

(−1)n−k

[
2n− k − 1

k

]
q

q(n−k)2−k

×
(
q2(n−k) 1− qk

1− q2(n−k)
− 1− q2n−k

1− q2(n−k)

)
xk+1

=
n−1∑
k=0

(−1)n−k+1
[

2n− k − 1

k

]
q

q(n−k)2−kxk+1

=
n∑

k=1

(−1)n−k

[
2n− k

k − 1

]
q

q(n−k+1)2−k+1xk

and

Un(x)=
n∑

k=0

(−1)n−k

([
2n− k

k − 1

]
q

q(n−k+1)2 +
[

2n− k

k

]
q

q(n−k)2
)
q−k+1xk

=
n∑

k=0

(−1)n−k

[
2n− k + 1

k

]
q

q(n−k)(n−k+1)
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×
(
qn−2k+2 1− qk

1− q2n−k+1 + q−n+1 1− q2(n−k)+1

1− q2n−k+1

)
xk

= q−n+1
n∑

k=0

(−1)n−k

[
2n− k + 1

k

]
q

q(n−k)(n−k+1)xk.

Hence

ψ(x) = qn−1Un(x)

qn−1(q;q)∞Vn(x)− qn−1Un(x)
= R̃n(x)

and this means thatT (µRn) = µR̃n
. In a similar way, one can prove thatT (µR̃n

) = µRn+1

and this completes the proof.✷
An interesting question is what may happen whenn → ∞. In the light of Theorem 3.7, one
should not expectT (n)(µ0) to converge. More likelyT (2n+1)(µ0) andT (2n+2)(µ0) would
converge and if so, the limit points would be fixed points ofT (2) and possibly fit into the
measuresκs from (2.9). Since

Sn(x) =
n∑

k=0

(−1)n−k

[
2n− k

k

]
q

q(n−k)2xk =
n∑

j=0

(−1)j
[
n + j

n − j

]
q

qj2
xn−j

and

Tn(x)=
n∑

k=0

(−1)n−k

[
2n− k − 1

k − 1

]
q

q(n−k+1)2−1xk

=
n∑

j=0

(−1)j
[
n+ j − 1

n− j − 1

]
q

q(j+1)2−1xn−j ,

we see thatx−nSn(x)→ S(x) andx−nTn(x) → T (x) for n → ∞, where

S(x) =
∞∑
j=0

(−1)j
qj2

(q;q)2j (1/x)
j and

T (x) =
∞∑
j=0

(−1)j
q(j+1)2−1

(q;q)2j (1/x)j .

Seeing thatT (x) = S(x/q2), we thus find that

Rn(x) → R∞(x) = S(x)

(q;q)∞S(x/q2)− S(x)
for n → ∞

and similarly

R̃n(x) → R̃∞(x) = S̃(x)

q(q;q)∞S̃(x/q2)− S̃(x)
for n → ∞,

where

S̃(x)=
∞∑
j=0

(−1)j
qj (j+1)

(q;q)2j+1
(1/x)j .
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Since the above convergence is uniform on compact subsets ofC \ {0}, it follows thatR∞
andR̃∞ are Pick functions corresponding to solutions to the moment problem. In order to
find the solutionsµR∞ andµR̃∞ explicitly, we need the following result containing useful
information about the supports of the measuresT (n)(µ0).

Theorem 3.8. Let T : V �→ V denote the map given byT (µ) = τq(qx dµ(x)). For each
n ∈ N, the canonical solutionT (n)(µ0) is supported on the zeros ofΦ(x/qn−1).

Proof. The proof is by induction. Start by noting thatT (µ0) = µα and recall thatµα is
supported on the zeros ofΦ(x). As a matter of fact, by (3.14) we have

∞∫
0

1

x − t
dµα(t) = Ψ (x)

Φ(x)
.

Suppose next that
∞∫

0

1

x − t
dT (n)(µ0)(t) = Ψn(x)

Φ(x/qn−1)

for some entire functionΨn(x) having no common zeros withΦ(x/qn−1). With σ =
T (n)(µ0), we then have

∞∫
0

1

x − t
dT (n+1)(µ0)(t) =

∞∫
0

1

x − t
dT (σ )(t) =

∞∫
0

1

x − qt
qt dσ (t)

= −1+ x

q

∞∫
0

1

x/q − t
dσ (t) = −1+ x

q

Ψn(x/q)

Φ(x/qn)

=
x
q
Ψn(x/q)−Φ(x/qn)

Φ(x/qn)
.

SinceΦ(x/qn−1) andΨn(x) are without common zeros, neitherΦ(x/qn) and

Ψn+1(x) = x

q
Ψn

(
x

q

)
−Φ

(
x

qn

)
have common zeros. For ifΨn+1(y) = Φ(y/qn) = 0 for somey > 0, thenΨn(z) =
Φ(z/qn−1) = 0 with z = y/q . Consequently,T (n+1)(µ0) is supported on the zeros of
Φ(x/qn) and this proves the assertion.✷
SinceR∞ andR̃∞ are meromorphic functions inC \ {0}, the solutionsµR∞ andµR̃∞ are
discrete and supported on the zeros of

B(x)R∞(x)−D(x) and B(x)R̃∞(x)−D(x),

respectively. Being a discrete fixed point ofT (2) means thatc > 0 is a mass point of, say
µ, exactly ifcq2 likewise is a mass point ofµ andµ({cq2}) = q3c2µ({c}). Recalling that
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the zeros ofΦ are very well separated, Theorem 3.7 implies that ifc andc′ belong to the
support ofµR∞ (or µR̃∞ ) andc > c′, thenc/c′ � q−2. Consequently, the supports ofµR∞
andµR̃∞ have the form{

cq2n | n ∈ Z
}

and
{
c̃q2n | n ∈ Z

}
for somec, c̃ > 0. It is a natural conclusion that there may be a connection with the
measuresκ−1 andκ1. To show thatc = q , it suffices to prove that

B(q)R∞(q)−D(q) = 0 (3.19)

and multiplying withS(q)− (q;q)∞S(1/q) �= 0, it comes to prove that

0= D(q)
(
(q;q)∞S(1/q)− S(q)

)−B(q)S(q)

= qΦ
(
q2)S(1/q)−D(q)S(q)+ (

Φ(1)+D(q)
)
S(q)

= Φ(1)S(q)+ qΦ
(
q2)S(1/q).

At this point, the identity

(−aq;q2)
∞

∞∑
n=0

qn(n+1)

(−aq, q2;q2)n
an = (−aq2;q2)

∞
∞∑
n=0

qn2

(−aq2, q2;q2)n
an

=
∞∑
n=0

qn2

(q;q)n a
n (3.20)

due to Rogers [19] becomes useful. See also [2]. Witha = −1 anda = −1/q in (3.20), we
get

Φ(1) = (
q;q2)

∞S(1/q) and Φ(1/q) = (
q;q2)

∞S(q)

which means that

Φ(1)S(q)+ qΦ
(
q2)S(1/q)= S(1/q)

((
q;q2)

∞S(q)+ qΦ
(
q2))

= S(1/q)
(
Φ(1/q)+ qΦ

(
q2)).

According to (3.15), we have

Φ(1/q)+ qΦ
(
q2)= Φ(1/q)+Φ(q)−Φ(1) = 0

and this proves (3.19). Consequently,µR∞ is supported on{q2n+1 | n ∈ Z} and being a
fixed point ofT (2), it must coincide withκ−1. In a similar way, we can prove that

B(1)R̃∞(1)−D(1) = 0 (3.21)

which implies thatc̃ = 1 andµR̃∞ = κ1. To sum up, we have established the following
result.

Theorem 3.9. LetR∞ andR̃∞ denote the Pick functions

R∞(x) =
∑∞

j=0(−1)j qj2

(q;q)2j (1/x)
j

(q;q)∞∑∞
j=0(−1)j qj(j+2)

(q;q)2j (1/x)
j −∑∞

j=0(−1)j qj2

(q;q)2j (1/x)
j
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and

R̃∞(x) =
∑∞

j=0(−1)j qj(j+1)

(q;q)2j+1
(1/x)j

q(q;q)∞∑∞
j=0(−1)j qj(j+3)

(q;q)2j+1
(1/x)j −∑∞

j=0(−1)j qj(j+1)

(q;q)2j+1
(1/x)j

.

The measuresµR∞ andµR̃∞ are explicitly given by

µR∞ = (q;q2)∞
(q2;q2)∞

∞∑
n=−∞

q(
2n+2

2 )εq2n+1

and

µR̃∞ = (q;q2)∞
(q2;q2)∞

∞∑
n=−∞

q(
2n+1

2 )εq2n .

Theorem 3.9 really brings the Nevanlinna parametrization into focus. As we have seen,
finding theN -extremal solutions explicitly is out of reach and it is hardly possible to find
the Pick functions corresponding to, for instance, the solutionsvc in (2.6). But forκ−1 and
κ1 we can determine the corresponding Pick function explicitly.

As a corollary, we can say somewhat about the asymptotic behaviour of the very well
separated zeros ofΦ.

Corollary 3.10. Let0< x1 < · · · < xm < xm+1 < · · · denote the zeros ofΦ. Whenm → ∞,
we havexm+1/xm → q−2.
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Abstract. We study the Al-Salam-Chihara polynomials when q > 1. Several

solutions of the associated moment problem are found and the orthogonality
relations lead to explicit evaluations of several integrals. The polynomials are

shown to have raising and lowering operators and a second order operator

equation of Sturm-Liouville type whose eigenvalues are found explicitly. We
also derive new measures with respect to which the Ismail-Masson system

of rational functions is biorthogonal. An integral representation of the right

inverse of a divided difference operator is obtained.

1. Introduction

In this work we shall follow the notation of Gasper and Rahman [10] or Andrews,
Askey, and Roy [3] for basic hypergeometric series and use the theory of the moment
problem as described in Akhiezer [1]. Other useful references are [19] and [21]. A
modern treatment is in the interesting article by Simon [20].

The best example of an indeterminate moment problem on the real line is the
moment problem studied by Ismail and Masson in [13]. The corresponding ortho-
gonal polynomials, usually denoted hn(x|q), are called the q−1-Hermite polynomials
and satisfy the three-term recurrence relation

(1.1) 2xhn(x|q) = hn+1(x|q) + q−n (1− qn)hn−1(x|q), n ≥ 0

with initial conditions h−1 = 0 and h0 = 1.
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2 JACOB S. CHRISTIANSEN AND MOURAD E. H. ISMAIL

Askey [2] was the first to give an explicit weight function for the polynomials
hn(x|q). Using the Askey–Roy q-beta integral [5]:

∞∫
0

tc−1 (−at,−bq/t; q)∞
(−t,−q/t; q)∞

dt =

(
ab, qc, q1−c; q

)
∞

(q, aq−c, bqc; q)∞

π

sinπc
,(1.2)

(
c > 0, |a| < qc, |b| < q−c

)
he proved that

(1.3)

∞∫
−∞

hm(sinh y|q)hn(sinh y|q)
(−qe2y,−qe−2y; q)∞

dy = log q−1(q; q)∞(q; q)nq
−(n+1

2 )δm,n.

Whenever y occurs we shall always assume that

x = sinh y.

In 1994 Ismail and Masson [13] considered the q−1-Hermite polynomials in de-
tails. They established the generating function

(1.4)
∞∑

n=0

q(
n
2)

(q; q)n
hn(x|q)tn =

(
−tey, te−y; q

)
∞ , t ∈ C

as well as the the Poisson kernel
∞∑

n=0

q(
n
2)

(q; q)n
hn(x|q)hn (x′|q) tn(1.5)

=

(
−tey+y′ ,−te−y−y′ , tey−y′ , te−y+y′ ; q

)
∞

(t2/q; q)∞
, |t| < √

q.

Moreover they proved that
∞∫

−∞

4∏
j=1

(
−tjey, tje

−y; q
)
∞ dψ(x) =

∏
1≤j<k≤4 (−tjtk/q; q)∞

(t1t2t3t4/q3; q)∞
,(1.6)

|t1t3|, |t2t4| < q3/2

whenever ψ is a solution to the moment problem. Since the integrand is the product
of four generating functions for {hn(x|q)}, the integral in (1.6) now plays the role
played by the Askey–Wilson integral in the study of the continuous q-Hermite
polynomials.

The Nevanlinna matrix was also computed in [13] and it is remarkable that all
the N -extremal solutions were found explicitly. They have the form

(1.7) νa =
1

(−a2,−q/a2, q; q)∞

∞∑
n=−∞

a4n
(
1 + a2q2n

)
qn(2n−1)εxn(a), q < a ≤ 1

where

xn(a) =
1
2

(
1
aqn

− aqn

)
and εx denotes the measure having only a unit mass at the point x. In addition,
the absolutely continuous solutions with densities

(1.8) w(x; a) =
a

πi

(−aa,−q/aa, a/a, qa/a, q; q)∞
|(aey,−ae−y,−qey/a, qe−y/a; q)∞|2

, x = sinh y ∈ R
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were derived along with more complicated solutions. To begin with, the parameter
a in (1.8) belongs to the set

{reiθ | r > 0, 0 < θ < π/2} ∪ {reiθ | 0 < r ≤ 1, θ = π/2}

but since w(x; aq) = w(x; a), it suffices to consider

a ∈ {reiθ | q < r ≤ 1, 0 < θ ≤ π/2}.

We stress that no value of a gives the Askey weight function appearing in (1.3).
In the Nevanlinna parametrization, which gives a one-to-one correspondence

between the set of Pick functions (including ∞) and the set of solutions to an inde-
terminate moment problem on the real line, the N -extremal solutions correspond
to the Pick function being a real constant (or ∞). When the Pick function is a
complex constant (in the open upper half-plane), the corresponding solutions are
known to be absolutely continuous, see [6] and [13]. The solutions in (1.8) are
exactly of that kind.

The continuous q-Hermite polynomials belong to the Askey-scheme as a special
case of the Askey–Wilson polynomials when all four parameters are zero, see [17].
Halfway between Askey–Wilson and continuous q-Hermite we find the Al-Salam–
Chihara polynomials with two free parameters. These polynomials are studied in [4]
and when q > 1, the associated moment problem is determinate or indeterminate
depending on the parameters. In the indeterminate case the Nevanlinna matrix
was computed in [9] but no explicit solutions are derived. In this paper we restrict
ourselves to consider the symmetric case of the Al-Salam–Chihara polynomials
when q > 1. The analysis in the symmetric case simplifies a great deal and a simple
weight function for the polynomials can be found directly from the Nevanlinna
matrix.

The paper is organized as follows. In Section 2 we present the Al-Salam–Chihara
polynomials and consider the symmetric case when q > 1. For convenience, we set
p = 1/q and besides p there is only one parameter left. This parameter will be
called β and we point out how two special values, namely β = 0 and β = 1/p, lead
to the polynomials {hn(x|q)}. In Section 3 we give an explicit expression for the
Nevanlinna matrix based on the results in [9]. On one hand the Nevanlinna matrix
remains too complicated to give us the N -extremal solutions as will be explained
in Section 4. On the other hand, the Nevanlinna matrix is simple enough to lead
to an explicit weight function, the function v(x;β) in (5.1), and the corresponding
orthogonality relation is given in Section 5. In the same section we derive a new
family of absolutely continuous solutions to the q−1-Hermite moment problem.

For x ∈ R, we use the parameterization x = sinh y. When f is a function defined
on R, one can think of f(x) as a function of ey. We denote by f̆ the function

f̆(ey) = f(x)

and the divided difference operator Dq given by

(1.9) (Dqf)(x) =
f̆(q1/2ey)− f̆(q−1/2ey)
(q1/2 − q−1/2) cosh y

was introduced by Ismail in [11]. Notice that if we set e(x) = x then the denomin-
ator can also be written as

ĕ(q1/2ey)− ĕ(q−1/2ey).
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It was proved in [11] that Dq is a lowering operator for the q−1-Hermite polynomials.
We find a family of weight functions that lead to the same raising and lowering

operators for the polynomials {hn(x|q)}. Combining the lowering and raising op-
erators one can obtain a q-Sturm–Liouville equation from which the orthogonality
follows using Ismail’s q-analogue of integration by parts [11]. Besides the Askey
weight function (in (1.3)), the family also contains the special case β = 1/p of the
weight function v(x;β).

In Section 6 we construct a family of discrete solutions from the weight function
v(x;β). These solutions are not N -extremal though they are supported on the same
p-quadratic grid as the N -extremal solutions to the q−1-Hermite moment problem.
A possible way to verify this is through the Poisson kernel which we shall derive
from a bilinear generating function established in Section 7.

One way of reaching the Al-Salam–Chihara polynomials when q > 1 is to start
out with the q−1-Hermite polynomials and use a simple procedure of attaching
generating functions to measures. This procedure is explained in [7] and the next
step takes us to the biorthogonal rational functions with four parameters studied
by Ismail and Masson in [13]. In Section 8 we show how solutions to the moment
problem lead to biorthogonality relations for the rational functions when certain
restrictions on the last to parameters are fulfilled.

In Section 9 we obtain a p-Sturm–Liouville equation from lowering and raising
operators. The weight function v(x;β) appears in the raising operator but the
p-Sturm–Liouville equation can be written in a form independent of v(x;β). We
use this form to derive a system of n nonlinear equations satisfied by the zeros
of the polynomials. This is a typical example of Bethe Ansatz equations, see the
Bethe Ansatz for the XXZ model in [18] and [12]. In Section 10 we consider the
divided difference operator Dq as a bounded operator on the L2-spaces of the N -
extremal solutions. The right inverse D−1

q is identified as an integral operator and
we find the kernel explicitly. This is the q > 1 version of a result in [8]. The kernel
for the inverse of the Askey-Wilson operator over the L2-space weighted by the
Askey-Wilson weight function is in [14].

2. The Al-Salam–Chihara polynomials

The Al-Salam–Chihara polynomials Qn(x) := Qn(x; a, b|q) are defined by the
three-term recurrence relation

2xQn(x) = Qn+1(x) + (a+ b)qnQn(x) + (1− qn)
(
1− abqn−1

)
Qn−1(x), n ≥ 0

with initial conditionsQ−1 = 0 andQ0 = 1, see for example [17]. These polynomials
are orthogonal with respect to a positive measure (with bounded support) on R if
a+ b ∈ R, ab < 1 and 0 < q < 1. In the case q > 1, the polynomials are orthogonal
on the imaginary axis (for suitable values of a and b) so we replace x by ix in order
to obtain orthogonality on the real line. Indeed, with p = 1/q, the polynomials

(2.1) Q̃n(x) =
inp(

n
2)

(p; p)n
Qn(ix/2; a, b|p)

satisfy the three-term recurrence relation(
1− pn+1

)
Q̃n+1(x) = (−i(a+ b)− xpn) Q̃n(x)−

(
−ab+ pn−1

)
Q̃n−1(x)

and are therefore orthogonal with respect to a positive measure on R when a+ b ∈
iR, ab ≤ 0 and 0 < p < 1. The polynomials in (2.1) are a special case of the
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polynomials vn(x) studied in [4] and [9]. The parametrization, however, is slightly
different and we have to identify a and b from [4] and [9] with −i(a+ b) and −ab,
respectively. The parameter c is set to be −1 here.

In this paper we will study the special situation where a = −b =
√
β for some

β ≥ 0. The motivation is simply to obtain symmetry. It is convenient to replace x
by −2x so our starting point is the polynomials Qn(x;β) generated by the three-
term recurrence relation

(2.2) 2xpnQn(x;β) =
(
1− pn+1

)
Qn+1(x;β) +

(
β + pn−1

)
Qn−1(x;β), n ≥ 0

with initial conditions Q−1 = 0 and Q0 = 1. In accordance with [7] (set t1 = −t2 =
iq
√
β and replace q by p), the polynomials Qn(x;β) are explicitly given by

Qn(x;β) =

(
−ie−y/

√
β; p
)
n

(p; p)n

(
i
√
β
)n

2φ1

(
p−n,−iey/

√
β

i
√
βey/pn−1

∣∣∣∣ p,−ip√βey

)
=

(−1/β; p)n

(p; p)n

(
i
√
β
)n n∑

k=0

(−1)k

[
n

k

]
p

(
ie−y/

√
β,−iey/

√
β; p
)
k

(−1/β; p)k
,

where x = sinh y. Since the polynomials

hn(x;β) =
(p; p)n

p(
n
2)

Qn(x;β)

satisfy the three-term recurrence relation

2xhn(x;β) = hn+1(x;β) +
(
p−2n+1β + p−n

)
(1− pn)hn−1(x;β),

we immediately see that the special case β = 0 of our polynomials is {hn(x|p)}.
Furthermore, we observe that the special case β = 1/p corresponds to the polyno-
mials

{
hn(x|p2)

}
. Throughout the paper we shall always try to have these special

cases in mind. Certainly, this will throw more light on the q−1-Hermite polynomials
as well.

3. The Nevanlinna matrix

According to Theorem 3.2 in [4], the moment problem associated with the poly-
nomials Qn(x;β) is indeterminate for β ≥ 0. The entire functions from the Nevan-
linna matrix were computed in [9]. The first step in the computation was to estab-
lish the generating functions

(3.1)
∞∑

n=0

Qn(x;β)tn =
(te−y,−tey; p)∞

(−t2β; p2)∞
, |t| < 1/

√
β

and
∞∑

n=0

Q∗n(x;β)tn =
2pt

1 + t2β
3φ2

(
te−y,−tey, p

ipt
√
β,−ipt

√
β

∣∣∣∣ p, p)(3.2)

= 2t
∞∑

n=0

(te−y,−tey; p)n

(−t2β; p2)n+1

pn+1, |t| < 1/
√
β,

where Q∗n(x;β) denotes the numerator polynomials, that is, the polynomials gen-
erated by the three-term recurrence relation (2.2) with initial conditions Q∗0 = 0
and Q∗1 = 2p/(1 − p). Darboux’s method was then applied to find the asymptotic
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behavior of Qn and Q∗n as n → ∞. In our case, the expressions for the functions
A, B, C, and D reduce to

A(x;β) = − 2√
β

(p; p)∞
(−1/β; p)∞

S(0)S(x) sin (η(x)− η(0)) ,

B(x;β) = − (p; p)∞
(−1/β; p)∞

S(0)R(x) cos (ζ(x)− η(0)) ,

C(x;β) =
(p; p)∞

(−1/β; p)∞
R(0)S(x) cos (η(x)− ζ(0)) ,

D(x;β) = −
√
β

2
(p; p)∞

(−1/β; p)∞
R(0)R(x) sin (ζ(x)− ζ(0)) ,

where

R(x)eiζ(x) =

(
ie−y/

√
β,−iey/

√
β; p
)
∞

(p2; p2)∞
and

S(x)eiη(x) = 2φ1

(
ie−y/

√
β,−iey/

√
β

−p

∣∣∣∣ p, p)
=

∞∑
n=0

(
ie−y/

√
β,−iey/

√
β; p
)
n

(p2; p2)n
pn

for x ∈ R. It is assumed that ζ(x), η(x) ∈ R and R(x), S(x) > 0. In particular, we
have

R(0) =
(−1/β; p2)∞

(p2; p2)∞
, S(0) =

∞∑
n=0

(
−1/β; p2

)
n

(p2; p2)n

pn =

(
−p/β; p2

)
∞

(p; p2)∞

and
ζ(0) = η(0) = 0.

So the expressions reduce further to the more convenient forms

A(x;β) = − 2√
β

(p2; p2)∞
(−1/β; p2)∞

S(x) sin(η(x)),

B(x;β) = − (p2; p2)∞
(−1/β; p2)∞

R(x) cos(ζ(x)),

C(x;β) =
(p; p2)∞

(−p/β; p2)∞
S(x) cos(η(x)),

D(x;β) = −
√
β

2
(p; p2)∞

(−p/β; p2)∞
R(x) sin(ζ(x)).

Hence, the Stieltjes transform of the solution µϕ corresponding to the Pick function
ϕ in the Nevanlinna parametrization is given by∫

R

1
t− x

dµϕ(t)(3.3)

=
S(x)
R(x)

4
(
−p/β, p2; p2

)
∞ sin(η(x))ϕ(x) + 2

√
β
(
−1/β, p; p2

)
∞ cos(η(x))

β (−1/β, p; p2)∞ sin(ζ(x))− 2
√
β (−p/β, p2; p2)∞ cos(ζ(x))ϕ(x)

.
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4. N-extremal solutions

In the search for the N -extremal solutions µ(β)
t , t ∈ R ∪ {∞} it is convenient to

write the parameter t as

t =
D(u;β)
B(u;β)

for u belonging to, say, the interval (−x1, x1], where x1 is the smallest positive zero
of B. With this parametrization, the Stieltjes transform in (3.3) takes the form∫

R

1
t− x

dν(β)
u (t) =

2√
β

S(x)
R(x)

sin(η(x)) sin(ζ(u)) + cos(η(x)) cos(ζ(u))
sin(ζ(x)) cos(ζ(u)) + cos(ζ(x)) sin(ζ(u))

=
2√
β

S(x)
R(x)

cos (η(x)− ζ(u))
sin (ζ(x) + ζ(u))

so the N -extremal solution ν(β)
u is supported on the set of real x’s for which

ζ(x) + ζ(u) ∈ πZ.

In other words, if we set u = sinh v then x = sinh y belongs to the support of ν(β)
u

if and only if (
ie−y/

√
β, ie−v/

√
β,−iey/

√
β,−iev/

√
β; p
)
∞
∈ R.

However, it seems impossible to solve the above equations explicitly. In the special
case u = 0, for instance, we have to know exactly when(

ie−y/
√
β,−iey/

√
β; p
)
∞
∈ R

and even for β = 1, this comes to find the values of t ∈ iR+ for which

Im ((t, 1/t; p)∞) = 0.

5. Absolutely continuous solutions

For one particular Pick function we are able to find the corresponding solution
explicitly. Observe that

R2(x) =

(
−e2y/β,−e−2y/β; p2

)
∞

(p2; p2)2∞
so that B2 and D2 can be written as

B2(x;β) =
1

(−1/β; p2)2∞

(
−e2y/β,−e−2y/β; p2

)
∞ cos2(ζ(x)).

and

D2(x;β) =
β

4

(
p; p2

)2
∞

(−p/β, p2; p2)2∞

(
−e2y/β,−e−2y/β; p2

)
∞ sin2(ζ(x)).

For the particular choice

γ =
√
β

2

(
−1/β, p; p2

)
∞

(−p/β, p2; p2)∞
,

the absolutely continuous solution µiγ with density

γ/π

D(x;β)2 + γ2B(x;β)2
, x ∈ R



8 JACOB S. CHRISTIANSEN AND MOURAD E. H. ISMAIL

has the form dµiγ = v(x;β) dx, where

(5.1) v(x;β) =
(p2; p2)∞
(p; p2)∞

(−1/β; p)∞
π
√
β

2
(−e2y/β,−e−2y/β; p2)∞

.

We state this result as a theorem.

Theorem 5.1. The polynomials Qn(x;β) are orthogonal with respect to the weight
function

1
(−e2y/β,−e−2y/β; p2)∞

, x = sinh y ∈ R

and the orthogonality relation is

2
∫
R

Qn(sinh y;β)Qm(sinh y;β)
(−e2y/β,−e−2y/β; p2)∞

cosh y dy

=
π
√
β

(−1/β; p)∞
(p; p2)∞
(p2; p2)∞

βn(−1/β; p)n

pn(p; p)n
δn,m.

Proof. We only have to check that the orthogonality relation is correct. It follows
from the three-term recurrence relation (2.2) that the polynomials

(5.2) Pn(x;β) =

√
pn(p; p)n

βn(−1/β; p)n
Qn(x;β)

are orthonormal. As a matter of fact, they satisfy the three-term recurrence relation

xPn(x;β) =

√
(1− pn+1) (β + pn)

2pn+1/2
Pn+1(x;β) +

√
(1− pn) (β + pn−1)

2pn−1/2
Pn−1(x;β)

with initial conditions

P0(x;β) = 1 and P1(x;β) =
2x
√
p√

(1− p)(1 + β)
.

Therefore, we have the orthogonality relation∫
R

Pn(x;β)Pm(x;β)v(x;β) dx = δnm

or, equivalently,∫
R

Qn(x;β)Qm(x;β)v(x;β) dx =
βn(−1/β; p)n

pn(p; p)n
δnm

and the result follows immediately. �

The special case β = 1/p of (5.1) leads directly to an absolutely continuous
solution to the q−1-Hermite moment problem. Replace p2 by q to obtain the density

(5.3) w(x) = q1/4 1
π

(q; q)∞
(
√
q; q)2∞

2(
−√qe2y,−√qe−2y; q

)
∞
.

Moreover, if we set β = cp2n for fixed c ∈ (0, 1] and let n → ∞, we obtain the
densities

(5.4) wc(x) =
1

π
√
c

(
q2; q2

)
∞

(q; q2)∞

2(−1/c,−cq; q)∞
(−e2y/c,−ce2yq2,−e−2y/c,−ce−2yq2; q2)∞
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after replacing p by q. To see this, notice that

1√
cp2n

(−1/cp2n; p)∞
(−e2y/cp2n,−e−2y/cp2n; p2)∞

=
1√
c

(−1/c; p)∞
(−e2y/c,−e−2y/c; p2)∞

(
−1/cp2n; p

)
2n

pn (−e2y/cp2n,−e−2y/cp2n; p2)n

=
1√
c

(−1/c; p)∞
(−e2y/c,−e−2y/c; p2)∞

(−cp; p)2n

(−ce2yp2,−ce−2yp2; p2)n

→ 1√
c

(−1/c,−cp; p)∞
(−e2y/c,−e−2y/c,−ce2yp2,−ce−2yp2; p2)∞

as n → ∞. By construction, we have wcq2(x) = wc(x) (or wcq(x) = wc/q(x)) and
since

a(−1/a,−aq; q)∞ = (−a,−q/a; q)∞ for a 6= 0,
we also have w1/c(x) = wc(x). Therefore, it suffices to consider the case q ≤ c ≤ 1.
Note that wc(x) reduces to w(x) when c =

√
q (or 1/

√
q).

The probability densities wc(x) are not new solutions. They are special cases of
the densities w(x; a) in (1.8). Set a = iq1/4 to obtain the density w(x) and note
that the densities wc(x) exactly correspond to w(x; a) when a = iγ with q < γ ≤ 1.

The orthogonality relation in (1.3) contains the probability density

(5.5) w̃(x) =
1

log q−1(q; q)∞
2ey

(−e2y,−qe−2y; q)∞
and the similarity to w(x) in (5.3) is striking. It turns out that

(5.6) hn+1(x|q) = − 1− q

2q1+n/2f(x)
Dq (f(x)hn(x|q)) , n ≥ 0

for f = w as well as f = w̃, cf. Theorem 5.2. So both w(x) and w̃(x) give rise
to a raising operator for the q−1-Hermite polynomials. With respect to the inner
product

〈f, g〉 =
∫
R

f(x)g(x)
dx√

1 + x2

on L2
(
R, 1/

√
1 + x2

)
, the following rule for integration by parts applies

(5.7) 〈Dqf, g〉 = −
〈
f,
√

1 + x2Dq

(
g(x)/

√
1 + x2

)〉
,

see [11] for details. Combining the raising operator in (5.6) with the lowering
operator

(5.8) Dqhn(x|q) = 2q(1−n)/2 1− qn

1− q
hn−1(x|q), n ≥ 0,

which can be obtained from the generating function in (1.4), we are led to the
q-Sturm–Liouville equation

(5.9) Dq (f(x)Dqhn(x|q)) + 4q
1− qn

(1− q)2
f(x)hn(x|q) = 0, n ≥ 0.

Again, f = w or f = w̃. The eigenvalues 4q(1 − qn)/(1 − q)2 are distinct. This
indicates that the operator T defined by

Tφ(x) = − 1
f(x)

Dq (f(x)Dqφ(x)) ,
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is positive on the weighted Hilbert space L2(R, f(x)). Indeed this follows from
(5.7).

The fact that the q−1-Hermite polynomials are orthogonal with respect to w̃(x)
and w(x) can now be obtained from (5.9) just by using integration by parts as
described in (5.7). For more details, the reader is referred to the proof of Theorem
2.4 in [11].

We shall now describe a more general set up.

Theorem 5.2. Let fc denote the function given by

fc(x) =
ey(2c−1)

(−q1−ce2y,−qce−2y; q)∞
, x = sinh y ∈ R.

For each c ∈ R, we have the following raising operator for the q−1-Hermite polyno-
mials

hn+1(x|q) = − 1− q

2q1+n/2fc(x)
Dq (fc(x)hn(x|q)) , n ≥ 0.

Proof. We have to prove that (5.6) remains valid when f is replaced by fc. This is
more or less a repetition of the proof of Theorem 2.1 in [11]. From the generating
function in (1.4) a straightforward computation gives

1
fc(x)

∞∑
n=0

q(
n
2)

(q; q)n
tnDq (fc(x)hn(x|q))

=
2q3/2

t(1− q)
{(
−tey√q, te−y√q; q

)
∞ −

(
−tey/

√
q, te−y/

√
q; q
)
∞

}
or

1
fc(x)

∞∑
n=0

q(
n
2)

(q; q)n
tn+1Dq (fc(x)hn(x|q))

=
2q3/2

1− q

∞∑
n=0

q(
n
2)

(q; q)n
hn(x|q)tn

(
qn/2 − q−n/2

)
= −2q3/2

1− q

∞∑
n=1

qn2/2−n

(q; q)n−1
hn(x|q)tn

= − 2q
1− q

∞∑
n=0

qn2/2

(q; q)n
hn+1(x|q)tn+1.

Equating the coefficients of tn+1 now leads to the desired raising operator. �

Corollary 5.3. The absolutely continuous measure with density

vc(x) = qc(1−c) sinπc
π

(q; q)∞
(qc, q1−c; q)∞

2ey(2c−1)

(−q1−ce2y,−qce−2y; q)∞
is solution to the q−1-Hermite moment problem.

Proof. Since vc satisfies the q-Sturm–Liouville equation (5.9), it is only left to verify
that ∫

R

vc(x)dx = 1.
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By the Askey–Roy q-beta integral (1.2), we have∫
R

2ey(2c−1)

(−q1−ce2y,−qce−2y; q)∞
dx =

∫
R

e2yc + e2y(c−1)

(−q1−ce2y,−qce−2y; q)∞
dy

=
1
2

∞∫
0

tc−1 + tc−2

(−q1−ct,−qc/t; q)∞
dt

= qc(c−1) π

sinπc

(
qc, q1−c; q

)
∞

(q; q)∞

because the integral
∞∫
0

tc−2

(−q1−ct,−qc/t; q)∞
dt =

∞∫
0

s−c

(−q1−c/s,−qcs; q)∞
ds

is symmetric in c and 1−c. So vc is indeed the density of a probability measure. �

Since vc+1 = vc, it suffices to consider vc for 0 < c ≤ 1. Besides the special
cases c = 1 and c = 1/2, which lead to w̃(x) and w(x), the solutions presented in
Corollary 5.3 are new. We notice that the integral in (1.6) takes the form∫

R

e2cy + e2(c−1)y

(−q1−ce2y,−qce−2y; q)∞

4∏
j=1

(
−tjey, tje

−y; q
)
∞ dy(5.10)

= qc(c−1) π

sinπc

(
qc, q1−c; q

)
∞

(q; q)∞

∏
1≤j<k≤4 (−tjtk/q; q)∞

(t1t2t3t4/q3; q)∞

when dψ = vc(x)dx.
It is known that the Pick function being equal to the constant

i

√
c

2

(
−1/c,−cq2, q; q2

)
∞

(−q/c,−cq, q2; q2)∞
in the open upper half-plane corresponds to the solution with density (5.4) in the
Nevanlinna parametrization. Therefore, the Pick function corresponding to the
density w(x) equals the constant

i
3

2
√

2

(
−2q2,−q2/2, q; q2

)
∞

(−2q,−q/2, q2; q2)∞
in the open upper half-plane. It seems to be hard to determine the Pick functions
corresponding to solutions from Corollary 5.3 when c 6= 1/2.

6. Discrete solutions

Recall from the proof of Theorem 5.1 that the orthogonality relation has the
form ∫

R

Qn(x;β)Qm(x;β)v(x;β)dx =
βn(−1/β; p)n

pn(p; p)n
δnm.
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According to Proposition 1.1 in [7] and the q-binomial theorem [10, II. 3], we thus
have ∫

R

∞∑
n=0

Qn(x;β)tn1
∞∑

m=0

Qm(x;β)tm2 v(x;β) dx =
∞∑

n=0

(−1/β; p)n

(p; p)n
(t1t2β/p)

n(6.1)

=
(−t1t2/p; p)∞
(t1t2β/p; p)∞

,

whenever |t1|, |t2| <
√
p/β. In view of (3.1) and since the right-hand side of (6.1)

only depends on t1t2, a positive measure µ is solution to the moment problem if
and only if ∫

R

(
t1e

−y,−t1ey, t2e
−y,−t2ey; p

)
∞ dµ(x)

=
(−t1t2/p; p)∞
(t1t2β/p; p)∞

(
−t21β,−t22β; p2

)
∞ , |t1t2β/p| < 1.

(6.2)

For a > 0 consider the discrete measure λ(β)
a supported on {xn(a) | n ∈ Z} and

defined by

λ(β)
a ({xn(a)}) =

√
1 + x2

n(a)
L(a)

ṽ(xn(a);β), n ∈ Z,

where

xn(a) := xn(a; p) =
1
2

(
1
apn

− apn

)
, n ∈ Z,

ṽ(x;β) =
1

(−e2y/β,−e−2y/β; p2)∞
, x = sinh y ∈ R

and L(a) is a certain constant so that λ(β)
a becomes a probability measure. As we

shall see below, these measures turn out to be discrete solutions to the moment
problem. It is remarkable that they are constructed in the same way as one can
obtain the N -extremal solutions to the q−1-Hermite moment problem from the
weight function in (1.3) or any other function from Theorem 5.2.

Direct computations lead to∫
R

(
t1e

−y,−t1ey, t2e
−y,−t2ey; p

)
∞ dλ(β)

a (x)

=
1

L(a)

∞∑
n=−∞

1
2

(
1
apn

+ apn

)
(t1apn,−t1/apn, t2ap

n,−t2/apn; p)∞
(−1/a2p2nβ,−a2p2n/β; p2)∞

=
1

2L(a)
(t1a,−t1/a, t2a,−t2/a; p)∞

(−1/a2β,−a2/β; p2)∞

×
∞∑

n=−∞

(
1 + a2p2n

) (
−a2/β; p2

)
n

(−1/a2p2nβ; p2)n

(−t1/apn,−t2/apn; p)n

(t1a, t2a; p)n

1
apn
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and due to Bailey’s 6ψ6 sum [10, II. 33], we have
∞∑

n=−∞
(1 + a2p2n)

(
−a2/β; p2

)
n

(−1/a2p2nβ; p2)n

(−t1/apn,−t2/apn; p)n

(t1a, t2a; p)n

1
apn

=
1 + a2

a

∞∑
n=−∞

(
−a2p2,−a2/β; p2

)
n

(−a2,−a2p2β; p2)n

(−ap/t1,−ap/t2; p)n

(t1a, t2a; p)n

(t1t2β/p)
n

=
1 + a2

a

(
−a2p,−p/a2,−pβ,−t1t2/p, p; p

)
∞

(t1a,−t1/a, t2a,−t2/a, t1t2β/p; p)∞

(
−t21β,−t22β; p2

)
∞

(−a2p2β,−p2β/a2; p2)∞
for |t1t2β/p| < 1. Consequently,∫

R

(
t1e

−y,−t1ey, t2e
−y,−t2ey; p

)
∞ dλ(β)

a (x)

=
1 + a2

2aL(a)

(
−a2p,−p/a2,−pβ, p; p

)
∞

(−a2/β,−1/a2β,−a2p2β,−p2β/a2; p2)∞

×
(−t1t2/β; p)∞
(t1t2β/p; p)∞

(
−t21β,−t22β; p2

)
∞

and with

L(a) =
1 + a2

2a

(
a2p,−p/a2,−pβ, p; p

)
∞

(−a2/β,−1/a2β,−a2p2β,−p2β/a2; p2)∞
,

the following result is obtained.

Theorem 6.1. The discrete measures

λ(β)
a =

(
−a2p2β,−p2β/a2; p2

)
∞

(−a2,−p/a2,−pβ, p; p)∞

∞∑
n=−∞

(
−a2/β; p2

)
n

(−a2p2β; p2)n

a2nβn
(
1 + a2p2n

)
pn2

εxn(a)

are solutions to the moment problem

Since λ(β)
ap = λ

(β)
a , it suffices to consider p < a ≤ 1. In the special case β = 0,

the measures in Theorem 6.1 reduce to

(6.3) νa =
1

(−a2,−q/a2, q; q)∞

∞∑
n=−∞

a4n
(
1 + a2q2n

)
qn(2n−1)εxn(a;q)

if we replace p by q. That is, we obtain the N -extremal solutions to the q−1-
Hermite moment problem. So for a moment one may believe that the solutions
λ

(β)
a are N -extremal. However, the special case β = 1/p reads

(6.4) ν̃a =
1

2 (−a2,−p2/a2, p2; p2)∞

∞∑
n=−∞

a2n
(
1 + a2p2n

)
pn2−nεxn(a;p)

and since
∞∑

n=−∞
a2n

(
1 + a2p2n

)
pn2−nεxn(a;p) =

∞∑
n=−∞

a4n
(
1 + a2p4n

)
p4n2−2nεxn(a;p2)

+
∞∑

n=−∞
a4n+2

(
1 + a2p4n+2

)
p4n2+2nεxn(ap;p2),
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we see after replacing p2 with q that

ν̃a =
1
2
(
νa + νa

√
q

)
,

where νa is defined in (6.3) (or (1.7)). It is plausible that the supports of the
N -extremal solutions in some way should depend on β.

7. A bilinear generating function

In this section we shall derive a bilinear generating function for the polynomials
Qn(x;β). In particular, an expression for the Poisson kernel will be obtained. We
follow more or less the same procedure as Ismail and Stanton in [15] and [16]. Unless
otherwise stated, it is assumed that β > 0.

Lemma 7.1. The polynomials Qn(x;β) have the p-integral representation

(−1)npn (p; p)n

(−1/β; p)n
Qn(x;β) =

(
−e2y/β,−e−2y/β; p2

)
∞

2ip
√
β(−1/β; p)∞

(
p; p2

)
∞

(p2; p2)∞

× 1
1− p

ip
√

β∫
−ip

√
β

tn
(
it/
√
β,−it/

√
β; p
)
∞

(tey/pβ,−te−y/pβ; p)∞
dpt.

Proof. By definition of the p-integral, we have

1
1− p

ip
√

β∫
−ip

√
β

tn
(
it/
√
β,−it/

√
β; p
)
∞

(tey/pβ,−te−y/pβ; p)∞
dpt

=
(
ip
√
β
)n+1 ∞∑

k=0

(
−pk+1, pk+1; p

)
∞(

ipkey/
√
β,−ipke−y/

√
β; p
)
∞

(
pn+1

)k
−
(
−ip

√
β
)n+1 ∞∑

k=0

(
pk+1,−pk+1; p

)
∞(

−ipkey/
√
β, ipke−y/

√
β; p
)
∞

(
pn+1

)k
=
(
ip
√
β
)n+1

{ (
p2; p2

)
∞(

iey/
√
β,−ie−y/

√
β; p
)
∞

2φ1

(
iey/

√
β,−ie−y/

√
β

−p

∣∣∣∣ p, pn+1

)
+ (−1)n

(
p2; p2

)
∞(

−iey/
√
β, ie−y/

√
β; p
)
∞

2φ1

(
−iey/

√
β, ie−y/

√
β

−p

∣∣∣∣ p, pn+1

)}

= (−1)n

(
ip
√
β
)n+1 (

p2; p2
)
∞(

−iey/
√
β, ie−y/

√
β; p
)
∞

{
2φ1

(
ie−y/

√
β,−iey/

√
β

−p

∣∣∣∣ p, pn+1

)
+ (−1)n

(
−iey/

√
β, ie−y/

√
β; p
)
∞(

iey/
√
β,−ie−y/

√
β; p
)
∞

2φ1

(
−ie−y/

√
β, iey/

√
β

−p

∣∣∣∣ p, pn+1

)}
.
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According to [10, III. 31], the combination of 2φ1’s in the brackets reduces to

(−pn/β,−1; p)∞(
−ipne−y/

√
β,−ipey

√
β; p
)
∞

2φ1

(
ipey

√
β,−p1−nβ

ieyp1−n
√
β

∣∣∣∣ p, iey/
√
β

)
=

2(−1/β,−p; p)∞(
−ie−y/

√
β,−ipey

√
β; p
)
∞

(
−ie−y/

√
β; p
)
n

(−1/β; p)n

×2φ1

(
ipey

√
β,−p1−nβ

ieyp1−n
√
β

∣∣∣∣ p, iey/
√
β

)
and by Heine’s transformation formula [10, III. 3], the above 2φ1 can be written as(

−ipey
√
β; p
)
∞(

iey/
√
β; p
)
∞

2φ1

(
p−n,−iey/

√
β

ieyp1−n

√
β

∣∣∣∣ p,−ipey
√
β

)
.

Recalling the explicit form of the polynomials Qn(x;β), the representation follows
easily. �

Theorem 7.2. For |z| < 1, the polynomials Qn(x;β) satisfy the bilinear generating
function

∞∑
n=0

(p; p)n

(−1/β; p)n
Qn(x;β)Qn (x′;β) (z/β)n

=

(
−iey/

√
β, ie−y/

√
β, izey′/

√
β,−ize−y′/

√
β; p
)
∞

2(−1/β; p)∞

×
(
p; p2

)
∞

(z2; p2)∞
4φ3

(
iey/

√
β,−ie−y/

√
β, z,−z

izey′/
√
β,−ize−y′/

√
β,−p

∣∣∣∣ p, p)
+ a similar term with y replaced by −y and y′ replaced by −y′.

Proof. By the previous lemma, we have
∞∑

n=0

(p; p)n

(−1/β; p)n
Qn(x;β)Qn (x′;β) (z/β)n

=

(
−e2y/β,−e−2y/β; p2

)
∞

2ip
√
β(−1/β; p)∞

(
p; p2

)
∞

(p2; p2)∞

∞∑
n=0

Qn (x′;β) (−z/pβ)n

× 1
1− p

ip
√

β∫
−ip

√
β

tn
(
it/
√
β,−it/

√
β; p
)
∞

(tey/pβ,−te−y/pβ; p)∞
dpt.

Interchanging the order of summation and integration, the above sum reduces to

1
1− p

ip
√

β∫
−ip

√
β

(
it/
√
β,−it/

√
β; p
)
∞

(tey/pβ,−te−y/pβ; p)∞

∞∑
n=0

Qn (x′;β) (−zt/pβ)ndpt

=
1

1− p

ip
√

β∫
−ip

√
β

(
it/
√
β,−it/

√
β, ztey′/pβ,−zte−y′/pβ; p

)
∞(

tey/pβ,−te−y/pβ, izt/p
√
β,−izt/p

√
β; p
)
∞
dpt
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for |zt/p| <
√
β. Here the p-integral can be written as

ip
√
β

∞∑
n=0

(
−pn+1, pn+1, izpney′/

√
β,−izpne−y′/

√
β; p
)
∞(

ipney/
√
β,−ipne−y/

√
β,−zpn, zpn; p

)
∞

pn

+ip
√
β

∞∑
n=0

(
pn+1,−pn+1,−izpney′/

√
β, izpne−y′/

√
β; p
)
∞(

−ipney/
√
β, ipne−y/

√
β, zpn,−zpn; p

)
∞

pn

= ip
√
β

(
p2; p2

)
∞

(z2; p2)∞

(
izey′/

√
β,−ize−y′/

√
β; p
)
∞(

iey/
√
β,−ie−y/

√
β; p
)
∞

×4φ3

(
iey/

√
β,−ie−y/

√
β, z,−z

izey′/
√
β,−ize−y′/

√
β,−p

∣∣∣∣ p, p)
+a similar term with y replaced by −y and y′ replaced by −y′

and the theorem is proved. �

Corollary 7.3. For |z| < 1/p, the Poisson kernel is given by

∞∑
n=0

Pn(x;β)Pn (x′;β) zn =

(
−iey/

√
β, ie−y/

√
β, izpey′/

√
β,−izpe−y′/

√
β; p
)
∞

2(−1/β; p)∞

× (p; p2)∞
(z2p2; p2)∞

4φ3

(
iey/

√
β,−ie−y/

√
β, zp,−zp

izpey′/
√
β,−izpe−y′/

√
β,−p

; p, p
)

+ a similar term with y and y′ replaced by −y and −y′.
In particular, we have

∞∑
n=0

P 2
n(x;β) =

(−e2y/β,−e−2y/β; p2)∞
(−1/β; p)∞

(p; p2)∞
(p2; p2)∞

×
∞∑

n=0

1 + p2n/β

(1 + p2ne2y/β)(1 + p2ne−2y/β)
pn.

Proof. The first part follows immediately from (5.2). With z = 1 and x′ = x, the
Poisson kernel reduces to

(−e2y/β,−e−2y/β; p2)∞
2(−1/β; p)∞

(p; p2)∞
(p2; p2)∞

×
∞∑

n=0

{
pn

(1− ipney/
√
β)(1 + ipne−y/

√
β)

+
pn

(1 + ipney/
√
β)(1− ipne−y/

√
β)

}

=
(−e2y/β,−e−2y/β; p2)∞

(−1/β; p)∞
(p; p2)∞
(p2; p2)∞

∞∑
n=0

1 + p2n/β

(1 + p2ne2y/β)(1 + p2ne−2y/β)
pn

and this proves the second part. �

With an explicit expression for the Poisson kernel at hand one should be able to
explain that the discrete solutions λ(β)

a in Theorem 6.1 are not N -extremal. Recall
that the masses of the N -extremal solutions are given by the function

ρ(x;β) =

( ∞∑
n=0

P 2
n(x;β)

)−1

, x ∈ R.
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When x = 0, the value is

ρ(0;β) =
(p2; p2)∞
(p; p2)∞

(−p/β; p2)∞
(−1/β; p2)∞

( ∞∑
n=0

pn

1 + p2n/β

)−1

and hence
1

ρ(0;β)
+

1
ρ(0; 1/β)

=
(p; p2)∞
(p2; p2)∞

(
(−1/β; p2)∞
(−p/β; p2)∞

∞∑
n=0

pn

1 + p2n/β
+

(−β; p2)∞
(−pβ; p2)∞

∞∑
n=0

pn

1 + p2nβ

)
.

By Ramanujan’s 1ψ1 sum [10, II. 29], we have

(7.1)
∞∑

n=−∞

(−1/β; p2)n

(−p2/β; p2)n
pn =

(p2; p2)2∞
(p; p2)2∞

(−p/β,−pβ; p2)∞
(−p2/β,−p2β; p2)∞

and thus
(−p/β; p2)∞
(−p2/β; p2)∞

1
ρ(0;β)

+
(−pβ; p2)∞
(−p2β; p2)∞

1
ρ(0; 1/β)

(7.2)

=
(p; p2)∞
(p2; p2)∞

(
1 +

(p2; p2)2∞
(p; p2)2∞

(−p/β,−pβ; p2)∞
(−p2/β,−p2β; p2)∞

)
=

(p; p2)∞
(p2; p2)∞

+
(p2; p2)∞
(p; p2)∞

(−p/β,−pβ; p2)∞
(−p2/β,−p2β; p2)∞

.

On the other hand,

λ
(β)
1 ({0}) =

(p; p2)∞
(p2; p2)∞

(−p2β; p2)∞
(−pβ; p2)∞

so that
(−p/β; p2)∞
(−p2/β; p2)∞

1

λ
(β)
1 ({0})

+
(−pβ; p2)∞
(−p2β; p2)∞

1

λ
(1/β)
1 ({0})

(7.3)

= 2
(p2; p2)∞
(p; p2)∞

(−p/β,−pβ; p2)∞
(−p2/β,−p2β; p2)∞

.

Since
∞∑

n=−∞

(−1/β; p2)n

(−p2/β; p2)n
pn > 1,

we get from (7.1) that

(−p/β,−pβ; p2)∞
(−p2/β,−p2β; p2)∞

>
(p; p2)2∞
(p2; p2)2∞

and as a consequence, the expression in (7.2) is > the expression in (7.3). So for
each β > 0, we either have

ρ(0;β) > λ
(β)
1 ({0})

or
ρ(0; 1/β) > λ

(1/β)
1 ({0}).

In particular, this means that ρ(0; 1) > λ
(1)
1 ({0}) and at least when β = 1, the

solution λ(β)
1 is not N -extremal.
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8. Some biorthogonal rational functions

In [7] Berg and Ismail have shown how to systematically build the classical q-
orthogonal polynomials from the q-Hermite polynomials using a simple procedure
of attaching generating functions to measures. As an example, the attachment
procedure for the q−1-Hermite polynomials leads to the polynomials

(8.1) un(x; t1, t2) =
(−qe−y/t2; q)n

(q; q)n
(−t2/q)n

2φ1

(
q−n, qey/t1
−t2ey/qn

∣∣∣∣ q,−t1ey

)
which are special cases of the Al-Salam–Chihara polynomials vn(x) (corresponding
to q > 1) from [4]. If we set t1 = −t2 = iq

√
β for some β ≥ 0 and replace q by p,

the polynomials in (8.1) reduce to Qn(x;β). At the second stage, the attachment
procedure is applied to {un} and leads to the biorthogonal rational functions

(8.2) ϕn(x; t1, t2, t3, t4) = 4φ3

(
q−n,−t1t2qn−2,−t1t3/q,−t1t4/q

−t1ey, t1e−y, t1t2t3t4/q3

∣∣∣∣ q, q)
studied by Ismail and Masson in [13].

It is known that the rational functions ϕn(x; t1, t2, t3, t4) are biorthogonal with
respect to any measure µ of the form

(8.3) dµ(x) =
4∏

j=1

(tje−y,−tjey; q)∞dψ(x),

where ψ is a solution to the q−1-Hermite moment problem. In this section we show
how solutions to the moment problem associated with the polynomialsQn(x;β) lead
to biorthogonality relations for the special case t3 = −t4 = iq

√
β of the rational

functions in (8.2).

Theorem 8.1. Suppose that ν is a positive measure such that∫
R

Qn(x;β)Qm(x;β)dν(x) =
βn(−1/β; p)n

pn(p; p)n
δnm.

Then the rational functions

ϕn(x; t1, t2, β) = 4φ3

(
p−n, it1

√
β,−it1

√
β,−t1t2pn

−t1ey, t1e−y, t1t2β/p

∣∣∣∣ p, p)
are biorthogonal with respect to the measure µ given by

dµ(x) =
2∏

j=1

(tje−y,−tjey; q)∞dν(x)

and the biorthogonality relation is∫
R

ϕn(x; t1, t2, β)ϕm(x; t2, t1, β)dµ(x) =
1 + t1t2p

n−2

1 + t1t2p2n−2

(−1/β, p; p)n(t1t2β/p)n

(t1t2β/p; p)n

× (−t1t2pn−1; p)∞(−t21β,−t22β; p2)∞
(t1t2β/p; p)∞

δnm.

Proof. To show the biorthogonality, it is sufficient to prove that∫
R

ϕn(x; t1, t2, β)
(t2e−y,−t2ey; p)m

dµ(x) = 0 for 0 ≤ m < n.
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According to (6.2), we have∫
R

(t1pke−y,−t1pkey, t2p
me−y,−t2pmey; p)∞dν(x)

=
(−t1t2pk+m−1; p)∞
(t1t2βpk+m−1; p)∞

(−t21βp2k,−t22βp2m; p2)∞

and thus∫
R

ϕn(x; t1, t2, β)
(t2e−y,−t2ey; p)m

dµ(x) =
n∑

k=0

(p−n, it1
√
β,−it1

√
β,−t1t2pn−2; p)k

(t1t2β/p, p; p)k
pk

×
∫
R

(t1pke−y,−t1pkey, t2p
me−y,−t2pmey; p)∞dν(x)

=
(−t1t2pm−1; p)∞
(t1t2βpm−1; p)∞

(−t21β,−t22βp2m; p2)∞

×
n∑

k=0

(p−n,−t1t2pn−2, t1t2βp
m−1; p)k

(t1t2β/p,−t1t2pm−1, p; p)k
pk.

By the q-Saalschütz sum [10, II. 12], the above sum is equal to

(pm−n+1,−1/β; p)n

(−t1t2pm−1, p2−n/t1t2β; p)n

and
(pm−n+1; p)n = 0 for 0 ≤ m < n.

The case m = n reads∫
R

ϕn(x; t1, t2, β)
(t2e−y,−t2ey; p)n

dµ(x) =
(p,−1/β; p)n

(−t1t2pn−1, p2−n/t1t2β; p)n

× (−t1t2pn−1; p)∞
(t1t2βpn−1; p)∞

(−t21β,−t22βp2n; p2)∞

and the biorthogonality relation is established after multiplication by

(p−n, it2
√
β,−it2

√
β,−t1t2pn−2; p)n

(t1t2β/p, p; p)n
pn.

�

The special cases dν = v(x;β)dx and ν = λ
(β)
a are not leading to new measures

of biorthogonality for the rational functions ϕn(x; t1, t2, t3, t4). In the first case, µ
is of the form (8.3) with dψ = wβ(x)dx, see (5.4), and in the second case, a more
general result without the restrictions on t3 and t4 is contained in Theorem 4.2 in
[13].

9. A p-Sturm–Liouville equation

The main result in this section is the p-Sturm–Liouville equation in Theorem 9.3.
As an application, we give an easy proof of the fact that the polynomials Qn(x;β)
are orthogonal with respect to the weight function

ṽ(x;β) =
1

(−e2y/β,−e−2y/β; p2)∞
, x = sinh y ∈ R
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and the discrete measures

λ̃(β)
a =

∞∑
n=−∞

ṽ(xn(a);β)
√

1 + x2
n(a) εxn(a),

where

xn(a) =
1
2

( 1
apn

− apn
)
.

But we also use the p-Sturm–Liouville equation to derive a Bethe Ansatz type
relation satisfied by the zeros of Qn(x;β).

The first step is to establish a lowering operator.

Lemma 9.1. A lowering operator for Qn(x;β) is given by

(9.1) DpQn+1(x;β) =
2pn/2

1− p
Qn(x;β/p), n ≥ 0.

Proof. Apply Dp to both sides of the generating function in (3.1) to get
∞∑

n=0

DpQn+1(x;β)tn+1 =
2

1− p

∞∑
n=0

Qn(x;β/p)pn/2tn+1.

Equating the coefficients of tn+1 now leads to (9.1). �

The next step is to find an appropriate raising operator.

Lemma 9.2. A raising operator for Qn(x;β) is given by

(9.2)
1

ṽ(x;βp)
Dp

(
ṽ(x;β)Qn−1(x;β)

)
=

2(pn/2 − p−n/2)
β(1− p)

Qn(x;βp), n ≥ 1.

Proof. A direct computation using the generating function in (3.1) shows that
∞∑

n=1

Dp

(
ṽ(x;β)Qn−1(x;β)

)
tn−1

=
2

β(1− p)
ṽ(x;βp)

∞∑
n=1

Qn(x;βp)(pn/2 − p−n/2)tn−1

and (9.2) follows by equating the coefficients of tn−1. �

Combining the lowering and raising operators in Lemma 9.1 and Lemma 9.2, we
get the following result.

Theorem 9.3. The polynomials Qn(x;β) satisfy the p-Sturm–Liouville equation

(9.3) Dp

(
ṽ(x;β/p)DpQn(x;β)

)
+

4
√
p(1− pn)

β(1− p)2
ṽ(x;β)Qn(x;β) = 0, n ≥ 0.

An alternative proof of the first statement in Theorem 5.1 now goes as follows.
Set

(9.4) hn = −
4
√
p

β

1− pn

(1− p)2
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and note that this sequence is strictly decreasing in n. According to (9.3), we have

(hn − hm)
∫
R

Qn(x;β)Qm(x;β)ṽ(x;β)dx

=
∫
R

Dp

(
ṽ(x;β/p)DpQn(x;β)

)
Qm(x;β)dx

−
∫
R

Dp

(
ṽ(x;β/p)DpQm(x;β)

)
Qn(x;β)dx

=
〈
Dp

(
ṽ(x;β/p)DpQn(x;β)

)
,
√

1 + x2Qm(x;β)
〉

−
〈
Dp

(
ṽ(x;β/p)DpQm(x;β)

)
,
√

1 + x2Qn(x;β)
〉

and using integration by parts as described in (5.7), this expression reduces to

−
〈
ṽ(x;β/p)DpQn(x;β),

√
1 + x2DpQm(x;β)

〉
+
〈
ṽ(x;β/p)DpQm(x;β),

√
1 + x2DpQn(x;β)

〉
=
∫
R

DpQn(x;β)DpQm(x;β)ṽ(x;β/p)dx

−
∫
R

DpQm(x;β)DpQn(x;β)ṽ(x;β/p)dx = 0.

Since hn 6= hm for n 6= m, it is proved that Qn(x;β) are orthogonal with respect
to ṽ(x;β).

Let Za denote the set {xk(a) | k ∈ Z}. Since Zap = Za, we only consider the
case p < a ≤ 1. With respect to the inner product

〈f, g〉a =
∞∑

k=−∞

f
(
xk(a)

)
g
(
xk(a)

)√
1 + x2

k(a)

on `2(Za,
√

1 + x2), integration by parts can be carried out by following the rule

〈Dpf, g〉a = −〈f,Dpg〉a√p .

Hence, the p-Sturm–Liouville equation (9.3) leads to

(hn − hm)
∞∑

k=−∞

Qn(xk(a);β)Qm(xk(a);β)ṽ(xk(a);β)
√

1 + x2
k(a)

=
〈
Dp

(
ṽ(x;β/p)DpQn(x;β)

)
, Qm(x;β)

〉
a

−
〈
Dp

(
ṽ(x;β/p)DpQm(x;β)

)
, Qn(x;β)

〉
a

= −
〈
ṽ(x;β/p)DpQn(x;β),DpQm(x;β)

〉
a
√

p

+
〈
ṽ(x;β/p)DpQm(x;β),DpQn(x;β)

〉
a
√

p
= 0
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and we have proved that Qn(x;β) are orthogonal with respect to λ̃(β)
a . Exactly the

same method can be used to prove that the polynomials hn(x|q) are orthogonal
with respect to the discrete measures in (1.7).

The essence of Theorem 9.3 is the fact that the polynomials Qn(x;β) are ei-
genfunctions of the second order divided difference operator T defined to act on
functions in L2(R, v(x;β)) by

T f(x) = − 1
ṽ(x;β)

Dp

(
ṽ(x;β/p)Dpf(x)

)
.

The corresponding eigenvalues are given in (9.4). The operator T is clearly positive
since

(T f(x), f(x))v = −
∫
R

Dp

(
ṽ(x;β/p)Dpf(x)

)
f(x)dx

= −
〈
Dp

(
ṽ(x;β/p)Dpf(x)

)
,
√

1 + x2f(x)
〉

=
〈
ṽ(x;β/p)Dpf(x),

√
1 + x2Dpf(x)

〉
=
∫
R

|Dpf(x)|2ṽ(x;β/p)dx ≥ 0.

However, the polynomials Qn(x;β) are not dense in L2(R, v(x;β)) because the
absolutely continuous solution with density v(x;β) is not N -extremal. Therefore,
we do not have an explicit orthonormal basis for the Hilbert space L2(R, v(x;β)).

The average operator Ap is defined to act on functions on R by

Apf(x) =
1
2

(
f̆(p1/2ey) + f̆(p−1/2ey)

)
,

where again f̆(ey) = f(x). The reason for introducing Ap is to obtain the p-Leibniz
rule

Dpfg = DpfApg +ApfDpg,

which follows from the fact that

(a+ b)(c− d) + (a− b)(c+ d) = 2(ac− bd) for a, b, c, d ∈ R.

It is straightforward to see that

Dpṽ(x;β) = − 4x
β
√
p(1− p)

ṽ(x; pβ)

and

Apṽ(x;β) =
(2x2 + 1

pβ
+ 1
)
ṽ(x; pβ)

so the p-Sturm–Liouville equation (9.3) can be written as

(9.5) (2x2 +1+β)D2
pQn(x;β)−

4x
√
p

1− p
ApDpQn(x;β)+

4
√
p(1− pn)

(1− p)2
Qn(x;β) = 0.

Note that the weight function ṽ(x;β) has disappeared completely and, as such, Eq.
(9.5) is more general than Eq. (9.3).

We are now in a position to derive Bethe Ansatz equations satisfied by the zeros
of Qn(x;β), cf. [18].
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Theorem 9.4. Let x1 = sinh y1, . . . , xn = sinh yn denote the n simple zeros of
Qn(x;β). If we set p = e2η and β = e2γ , then the following n equations are
satisfied

n∏
i=1
i 6=j

sinh
(yj−yi

2 + η
)
cosh

(yj+yi

2 + η
)

sinh
(yj−yi

2 − η
)
cosh

(yj+yi

2 − η
) = e−2yj

cosh(yj + γ)
cosh(yj − γ)

, j = 1, . . . , n.

Proof. Let cn denote the leading coefficient of Qn(x;β) and define

f(x) :=
1
cn
Qn(x;β) =

n∏
i=1

(x− xi).

A tiresome computation shows that

D2
pf(x)|x=xj

=
2(√

p− 1/
√
p
)2
(∏

i

( eyj p−e−yj /p
2 − xi

)
eyj
√
p− e−yj/

√
p

+
∏

i

( eyj /p−e−yj p
2 − xi

)
eyj/

√
p− e−yj

√
p

)
2

eyj + e−yj

and similarly

ApDpf(x)|x=xj

=
1

√
p− 1/

√
p

(∏
i

( eyj p−e−yj /p
2 − xi

)
eyj
√
p− e−yj/

√
p

−
∏

i

( eyj /p−e−yj p
2 − xi

)
eyj/

√
p− e−yj

√
p

)
.

According to (9.5), we thus have

(2x2
j + 1 + β)

2(√
p− 1/

√
p
)2

×

(∏
i

( eyj p−e−yj /p
2 − xi

)
eyj
√
p− e−yj/

√
p

+
∏

i

( eyj /p−e−yj p
2 − xi

)
eyj/

√
p− e−yj

√
p

)
2

eyj + e−yj

=
4xj

√
p

1− p

1
√
p− 1/

√
p

(∏
i

( eyj p−e−yj /p
2 − xi

)
eyj
√
p− e−yj/

√
p

−
∏

i

( eyj /p−e−yj p
2 − xi

)
eyj/

√
p− e−yj

√
p

)
or (e2yj + e−2yj

2
+ β

)(∏
i

( eyj p−e−yj /p
2 − xi

)
eyj
√
p− e−yj/

√
p

+
∏

i

( eyj /p−e−yj p
2 − xi

)
eyj/

√
p− e−yj

√
p

)

=
e2yj − e−2yj

2

(∏
i

( eyj p−e−yj /p
2 − xi

)
eyj
√
p− e−yj/

√
p

−
∏

i

( eyj /p−e−yj p
2 − xi

)
eyj/

√
p− e−yj

√
p

)
Hence,

(e2yj + β)
(
eyj/

√
p+ e−yj

√
p
) n∏

i=1

(eyjp− e−yj/p

2
− xi

)
= −(e−2yj + β)

(
eyj
√
p+ e−yj/

√
p
) n∏

i=1

(eyj/p− e−yjp

2
− xi

)
,
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that is,
n∏

i=1

(
eyjp− e−yj/p

)
/2− xi(

eyj/p− e−yjp
)
/2− xi

= −
(e−2yj + β)

(
eyj
√
p+ e−yj/

√
p
)

(e2yj + β)
(
eyj/

√
p+ e−yj

√
p
) .

With p = e2η and β = e2γ , the above expression can be written as
n∏

i=1

sinh
(yj−yi

2 + η
)
cosh

(yj+yi

2 + η
)

sinh
(yj−yi

2 − η
)
cosh

(yj+yi

2 − η
) = −e−2yj

cosh(yj + γ) cosh(yj + η)
cosh(yj − γ) cosh(yj − η)

and the theorem is proved once we remove the factor corresponding to i = j. �

For more information about the connection between q-Sturm–Liouville problems
and Bethe Ansatz equations, the reader is referred to [12].

10. A right inverse to the divided difference operator Dp

In Section 5 and Section 9 we have seen that the divided difference operator Dq

(or Dp) is a lowering operator for the polynomials hn(x|q) and Qn(x;β). In this
section we establish a right inverse D−1

q (or D−1
p ) on appropriate L2-spaces.

For an indeterminate moment problem on the real line it is well-known that the
polynomials are dense in L2(R, µ) if and only if the measure µ is N -extremal. So
in the case of the q−1-Hermite moment problem, the polynomials

Pn(x) =
qn(n+1)/4√

(q; q)n

hn(x|q)

form an orthonormal basis for L2(R, νa) exactly when νa has the form (1.7) (which
we shall assume). Any function f ∈ L2(R, νa) can thus be written as

(10.1) f(x) ∼
∞∑

n=0

fnPn(x)

for some sequence (fn) ∈ `2 and since

DqPn(x) = − 2
√

1− qn

√
q − 1/

√
q
Pn−1(x),

we see that

Dqf(x) ∼ −2
√
q − 1/

√
q

∞∑
n=0

fn+1

√
1− qn+1Pn(x).

In other words, we can think of Dq as a bounded operator on L2(R, νa). It is readily
seen that Dq is onto for if g ∈ L2(R, νa) has the form

(10.2) g(x) ∼
∞∑

n=0

gnPn(x),

then Dqf(x) = g(x) with f as in (10.1) and

fn = −
√
q − 1/

√
q

2
gn−1√
1− qn

.

But Dq is clearly not one-to-one. So we can only have hope of finding a right inverse
to Dq, that is, an operator D−1

q on L2(R, νa) so that

DqD−1
q = I.
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It is straightforward how to define D−1
q . With g as in (10.2), the operator D−1

q is
given by

D−1
q g(x) ∼−

√
q − 1/

√
q

2

∞∑
n=1

gn−1√
1− qn

Pn(x)

=−
√
q − 1/

√
q

2

∞∑
n=1

∫
R g(x

′)Pn−1(x′)dνa(x′)
√

1− qn
Pn(x)

=−
√
q − 1/

√
q

2

∫
R

g(x′)
∞∑

n=1

Pn−1(x′)Pn(x)√
1− qn

dνa(x′)

and this means that D−1
q is an integral operator with kernel

(10.3) K(x, x′) =
∞∑

n=1

Pn(x)Pn−1(x′)√
1− qn

=
∞∑

n=1

qn2/2

(q; q)n
hn(x|q)hn−1(x′|q).

Since
(
Pn(x)

)
∈ `2 for all x ∈ C, the kernel in (10.3) is convergent in L2(R, νa) as

a function of x′. The change of summation and integration can therefore easily be
justified.

Theorem 10.1. The kernel in (10.3) is explicitly given by
∞∑

n=1

qn2/2

(q; q)n
hn(x|q)hn−1(x′|q)

=
2(−√qey+y′ ,−√qe−y−y′ ,

√
qey−y′ ,

√
qe−y+y′ ; q)∞

(q; q)∞

×
∞∑

n=0

(q; q)2n(sinh y − qn+1/2 sinh y′)qn+1/2

(−√qey+y′ ,−√qe−y−y′ ,
√
qey−y′ ,

√
qe−y+y′ ; q)n+1

.

Proof. The idea of the proof is to apply Dq with respect to x′ to the Poisson kernel.
Applying Dq (wrt. x′) to the left-hand side in (1.5) leads to

−2
√
q − 1/

√
q

∞∑
n=1

qn2/2−n

(q; q)n−1
hn(x|q)hn−1(x′|q)tn

or
−2

√
q − 1/

√
q

{
H(x, x′; t/q)−H(x, x′; t)

}
if we set

H(x, x′; t) =
∞∑

n=1

qn2/2

(q; q)n
hn(x|q)hn−1(x′|q)tn.

Applying Dq (wrt. x′) to the right-hand side gives after some computations

−2
√
q − 1/

√
q

2t
√
q

(
sinh y − t

√
q

sinh y′
)

×
(−t√qey+y′ ,−t√qe−y−y′ , t

√
qey−y′ , t

√
qe−y+y′ ; q)∞

(t2/q; q)∞
.
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In other words,

H(x, x′; t/q)−H(x, x′; t)

=
2t
√
q

(
sinh y − t

√
q

sinh y′
) (−t√qey+y′ ,−t√qe−y−y′ , t

√
qey−y′ , t

√
qe−y+y′ ; q)∞

(t2/q; q)∞

and since H(x, x′; 0) = 0, we have

H(x, x′; t) =
∞∑

n=1

{
H(x, x′; tqn−1)−H(x, x′; tqn)

}
= 2

∞∑
n=1

(sinh y − tqn−1/2 sinh y′)tqn−1/2

× (−tqn+1/2ey+y′ ,−tqn+1/2e−y−y′ , tqn+1/2ey−y′ , tqn+1/2e−y+y′ ; q)∞
(t2q2n−1; q)∞

=
2(−t√qey+y′ ,−t√qe−y−y′ , t

√
qey−y′ , t

√
qe−y+y′ ; q)∞

(t2q; q)∞

×
∞∑

n=1

(t2q; q)2n−2(sinh y − tqn−1/2 sinh y′)tqn−1/2

(−t√qey+y′ ,−t√qe−y−y′ , t
√
qey−y′ , t

√
qe−y+y′ ; q)n

.

It is only left to set t = 1 and shift the summation. �

For the moment problem associated with the polynomials Qn(x;β), the situation
is almost the same. However, since

DpPn(x;β) =
2
√
p

1− p

√
1− pn

β + 1
Pn−1(x;β/p),

the operator Dp maps L2(R, ν(β)
a ) into L2(R, ν(β/p)

a ) and the right inverse D−1
p is

defined on L2(R, ν(β/p)
a ) as the integral operator with kernel

(10.4) K(x, x′;β) =
∞∑

n=1

Pn(x;β)Pn−1(x′;β/p)√
1− pn

.

Theorem 10.2. The kernel in (10.4) is explicitly given by
∞∑

n=1

Pn(x;β)Pn−1(x′;β/p)√
1− pn

= −
i
√
p

2
(−iey/

√
β, ie−y/

√
β, i

√
pey′/

√
β,−i√pe−y′/

√
β)∞

(−p/β; p)∞
√

1 + 1/β
(p; p2)∞
(p2; p2)∞

×
∞∑

n=0

(p2; p2)n

(i
√
pey′/

√
β,−i√pe−y′/

√
β)n

pn
n∑

k=0

(iey/
√
β,−ie−y/

√
β; p)k

(p2; p2)k
pk

+ a similar term with y replaced by −y and y′ replaced by −y′.

Proof. The same procedure as in the proof of Theorem 10.1 can be carried out.
The details are left to the reader. �

If we compare Dq (or Dp) with differentiation d/dx, it is remarkable that Dq

is bounded on L2(R, νa) whereas d/dx is unbounded. Also, the Askey–Wilson
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operator is known to be unbounded on the L2-space weighted by the weight function
for the Askey–Wilson polynomials.

Since Dq is a q-analogue of differentiation, we can think of D−1
q as a q-analogue

of integration. Thus, for f ∈ L2(R, νa) we have the following q-analogue of the
definite integral

b∫
a

f(x)d̆qx = −
√
q − 1/

√
q

2

∫
R

f(x)
(
K(b, x)−K(a, x)

)
dνa(x),

where the kernel K is computed in Theorem 10.3.
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