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Summary

In this thesis we study the comparison of sequences from a finite alphabet and
the theory of excursions for Markov additive processes. The main motivation is
the applications to biological sequence analysis. A central problem is to test if two
sequences violate the hypothesis of being independent random sequences from a
specific model with a test statistic chosen to reflect the specific kind of violation
that we are interested in. Another related problem introduced in this thesis is to
test if one random sequence contains certain structural features. Considering local
violations of the hypothesis when comparing independent sequences of iid variables,
results have been obtained by e.g. Dembo et al. (1994b) based on the behaviour of
positive excursions for a random walk with negative drift.

A central theme of the thesis is to extend results achieved for iid sequences to Markov
chains. For this we need the corresponding theory of positive excursions for Markov
additive processes (random walks controlled by a Markov chain) with negative drift.
Along the way, new results for such processes are derived.

After giving a brief introduction in Chapter 1 to biological sequences and a mo-
tivation for looking at excursions for Markov additive processes, the general the-
ory of such processes and in particular the relevant excursion theory is treated in
Chapter 2. Here we collect and customise all the results needed to treat the com-
parison of Markov chains in later chapters. Without much relation to the motivations
from biological sequence analysis, we give in Chapter 3 an extension of the excur-
sion theory to incorporate heavy tails too. Chapter 4 gives an introduction to the
theory of alignment and structure of sequences. In particular, the focus in this chap-
ter is on the construction of suitable models and test statistics for the problems
mentioned above, e.g. testing if two sequences locally violate the hypothesis of being
independent. We also discuss the formally similar problem of testing whether one
sequence locally possesses ‘more structure’ than expected of a random sequence. In
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Chapter 5 we derive the theoretical results about the local comparison of two in-
dependent Markov chains. These local comparisons result in a family of local scores.
We derive a Poisson approximation of the number of scores exceeding a threshold,
and based on this result we derive a Gumbel approximation of the maximal score. In
Chapter 6 we consider one Markov chain and compare it with itself corresponding
to a specific local structural feature known as a stem-loop. We show that for this
self-comparison, the number of scores exceeding a threshold can again be approxi-
mated by a Poisson distribution, and the maximal score can be approximated by a
Gumbel distribution. Finally, in Chapter 7 we give an example of how to use the
results derived in Chapter 6 when searching large sequence databases for sequences
with specific structures.



Resumé

I denne afhandling studerer vi sammenligning af sekvenser fra et endeligt alfabet
og teorien for ekskursioner for Markov additive processer. Motivationen er primært
anvendelser indenfor biologisk sekvensanalyse. Et hovedproblem er at teste om to
sekvenser afviger fra hypotesen om at være uafhængige stokastiske sekvenser fra en
specifik model, med en teststørrelse der afspejler den specifikke afvigelse fra model-
len, som vi er interesseret i. Et tilsvarende problem, som introduceres i denne afhand-
ling, er, hvorvidt en enkelt sekvens indeholder specifikke strukturelle egenskaber.
For lokale afvigelser fra hypotesen, i det tilfælde hvor vi sammenligner uafhængige
sekvenser af iid variable, er der opn̊aet resultater af f.eks. Dembo et al. (1994b), som
er baseret p̊a, hvordan positive ekskursioner for random walks med negativ drift
opfører sig.

Et af hovedtemaerne i afhandlingen er at udvide resultater opn̊aet for iid sekvenser
til Markovkæder. I den forbindelse f̊ar vi brug for teorien for positive ekskursioner
for Markov additive processer (random walks kontrolleret af en Markovkæde) med
negativ drift. Endvidere udvikles nye resultater for s̊adanne processer.

Efter en kort introduktion til biologisk sekvensanalyse i kapitel 1 og en motiva-
tion for at betragte Markov additive processer, giver vi i kapitel 2 en behandling
af den generelle teori for s̊adanne processer – i særdeleshed den relevante teori for
positive ekskursioner. I dette kapitel samler og tilpasser vi alle de resultater, der
er behov for andetsteds for at sammenligne Markovkæder. Uden nogen synderlig
relation til motivationen fra biologisk sekvensanalyse giver vi i kapitel 3 en ud-
videlse af teorien til ogs̊a at omfatte tunge haler. I kapitel 4 gives en introduktion
til teorien for alignments og strukturer for sekvenser. Vægten er i særdeleshed lagt p̊a
konstruktionen af passende modeller og teststørrelser for den slags problemer, som
blev nævnt ovenfor. F.eks. testning af om to sekvenser lokalt afviger fra hypotesen
om at være uafhængige. Vi diskuterer ogs̊a det formelt tilsvarende problem, om en
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sekvens lokalt har ‘mere struktur’ end man vil forvente for en tilfældig sekvens. I
kapitel 5 udledes de teoretiske resultater for lokal sammenligning af to uafhængige
Markovkæder. Denne lokale sammenligning resulterer i en familie af lokale scoringer.
Vi udleder en Poisson approksimation af antallet af scoringer, der overstiger en given
grænse, og vi benytter dette resultat til at udlede en Gumbel approksimation af den
maksimale score. I kapitel 6 betragter vi istedet en enkelt Markovkæde og sam-
menligner den med sig selv, hvilket svarer til visse strukturelle egenskaber beteg-
net stem-loops. Vi viser, at for denne selv-sammenligning kan antallet af scoringer,
der overstiger en given grænse, igen approksimeres med en Poisson fordeling, og
den maksimale score kan approksimeres med en Gumbel fordeling. Endvidere giver
vi i kapitel 7 et eksempel p̊a hvorledes resultaterne fra kapitel 6 kan anvendes i
forbindelse med søgninger i store sekvensdatabaser efter sekvenser med specifikke
strukturer.
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Conventions and Notation

Notation is usually introduced when first needed. The following reference list may,
however, be useful.

D(X) The distribution of a stochastic variable X.

X
D
= Y Equality in distribution of X and Y .

Xn
D−→ Y Convergence in distribution of Xn to Y .

H(x) = 1 − H(x) The right tail of a distribution function H.
||ν|| = supf :|f |≤1

∫
fdν The total variation norm of the signed measure ν.

||A|| The matrix of total variation norms when A is a
matrix of signed measures.

vt The transposed of a vector v.
� The row vector (1, . . . , 1)t.
1(B) The indicator function for the set B.
E(f(X); B) = E(f(X)1(B)) For a stochastic variable X and a set B.
a(x) ∼ b(x) a(x)/b(x) → 1 for x → ∞.
δx The Dirac measure at x.
� End of proof.
� End of example.

Of course, effort has been put into choosing notation in accordance with common
usage in the literature, and to choose notation consistent throughout the thesis. As
this may lead to contradicting conditions some compromise between common usage
and consistency is necessary. Most notably, Markov chains considered in the first
part of the thesis are usually called (Jn)n≥0, but in the last part, where we often
consider two Markov chains, they are usually called (Xn)n≥1 and (Yn)n≥1. Another
important convention is that for a probability measure on R we do not distinguish
in notation between the distribution function and the measure. Furthermore, we use
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K,K1, K2 etc. to denote constants, whose value is not important and which may
change throughout a proof.



Part I

Markov Controlled Excursions

1
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Introduction

1.1 Comparison of biological sequences

DNA, RNA, and proteins are the fundamental building blocks for any living or-
ganism. The Central Dogma of biology states that DNA is the blueprint of the cell
capable of copying itself, that DNA is transcribed into RNA, and that RNA is trans-
lated into functional proteins. These three ingredients, DNA, RNA, and protein, are
all large molecules. DNA and RNA are made up of smaller parts called nucleotides
or nucleic acids with DeoxyriboNucleic Acids making up DNA and the RiboNucleic
Acids making up RNA. Proteins are made of amino acids. There are four different
nucleic acids of each kind and 20 different amino acids. These molecules are usu-
ally connected in a linear sequence, and by representing each of them by a single
letter, a DNA-, RNA-, or protein-molecule is very conveniently represented as a se-
quence of letters. Such sequences are known as biological sequences. The alphabets
for representing the three different types of molecules are:

DNA a, c, g, t
RNA a, c, g, u

Protein a, r, d, n, c, e, q, g, h, i, l, k, m, f, p, s, t, w, y, v

But even though this provides a compact and useful way of representing the molecules,
the letter sequences are only caricatures of what the molecules look like. The dou-
ble stranded DNA is famous for its formation of the double helix and proteins are
known to form complicated structures of a great variety. Moreover, these structures
are of central importance for the way proteins work. Also RNA forms structures,
and it was precisely the formation of certain RNA-structures that was the primary
inspiration for the results developed in Chapter 6.

3



4 Introduction

As for all good caricatures there is after all some truth contained in the sequence.
The simple sequence representation of the molecules suggests a simple and highly
useful way of comparing the molecules. One can basically try to match two sequences
letter by letter and see how well they pair up. There are several reasons for being
interested in making such comparisons, one being the desire to find evolutionary
relation between species on a molecular level. Another is ‘extrapolation of function
by similarity’, that is, if two sequences are very similar they are generally believed
to have more or less the same function. Whatever the reason is, the methods used
are very similar. Based on some assumptions about how to pair up letters in two
sequences, one can find the so-called optimal alignment of the sequences very rapidly
on a computer (Waterman 1995). These methods are known as sequence alignment
and are by now classical methods in molecular biology. Perhaps the most important
alignment tool developed is the BLAST search tool (Altschul et al. 1990, 1997) for
local alignment. By local alignment we mean alignments that only take fractions of
the sequences into account. This is extremely useful for searching databases con-
taining lots of biological sequences in the hope of finding some sufficiently good
matches.

The local alignment methods implemented in BLAST have also attracted a fair
amount of theoretical interest. We mention Dembo et al. (1994a,b) and Siegmund &
Yakir (2000, 2003) who have developed some of the important probabilistic under-
pinnings of BLAST. The purpose of probability theory is to give an estimate of the
significance of the local alignments found from a sequence comparison. That is, to
give an idea about whether the best local alignments found could just as well have
occurred by chance when searching random sequences. BLAST usually does this by
reporting a so-called E-value, which is the expected number of local alignments in
random sequences with at least the same ‘quality’ as the best one found.

1.2 Random walks and excursions

The basic theoretical framework for discussing alignments is as follows. Given a
set, or alphabet, E, two independent iid sequences (Xn)n≥1 and (Yn)n≥1 of random
variables taking values in E and a so-called score function f : E × E → R, we
introduce the random walk (Sn)n≥1 given by

Sn =
n∑

k=1

f(Xk, Yk).

The variable Sn can be thought of as a comparison of the first n variables from the
X-sequence with the first n variables from the Y -sequence using the function f . The
increment Sm−Sk of the random walk from k+1 to m corresponds to comparing only
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the variables from k+1 to m, and the maximum of these increments for k ≤ m ≤ n is
the largest local comparison score up to n. It is also the largest positive increment of
the random walk up to n, and we will refer to this as the maximal positive excursion
of the random walk up to n. This is in itself an interesting stochastic variable1, but
what makes it even more complicated is that we also want to shift the sequences
alongside each other. That is, in addition to (Sn)n≥1 we also want to introduce the
random walks (ST

n )n≥1 defined by

ST
n =

n∑
k=1

f(Xk, Yk+T )

for T ≥ 1, their corresponding increments and maximal positive excursions. All the
random walks have the same distribution but they are dependent, which makes the
analysis of e.g. the total number of positive excursions exceeding a threshold harder.

Although shifting makes the problem more difficult, it is first of all important to un-
derstand the behaviour of the random walk. Interestingly, this was originally done
with a queueing application in mind (Iglehart 1972). Later, the behaviour of the
maximal positive excursion was reconsidered by Karlin & Dembo (1992) in a molec-
ular comparison context and extended to also deal with Markov controlled random
walks.

1.3 Markov additive processes

One of the new results presented in this thesis is an extension of the theory of local
alignments to deal with aligning independent Markov chains instead. If (Xn)n≥1 and
(Yn)n≥1 are Markov chains instead of iid sequences, the process (Sn)n≥1 is known as
a Markov controlled random walk or a Markov additive process. Such processes can
be dealt with in much the same way as random walks, and one can, in particular,
derive similar results as for random walks about the maximal positive excursions as
done by Karlin & Dembo (1992).

In a Markov setup it may also be reasonable to choose a score function f that not
only compares the sequences letter by letter, but instead compares the sequences
transition by transition. That is, the score function f is instead defined on E2 ×E2

and

Sn =
n−1∑
k=1

f((Xn, Xn+1), (Yn, Yn+1)).

1to make it really interesting the random walk must have negative drift
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Indeed, as we derive in Chapter 4, there is in the Markov setup a natural score
function of this form. Moreover, even if we just want to generalise our score function
to transition scoring as above but want to keep the iid assumption, we are forced into
the realm of Markov additive processes anyway. In our treatment of local alignments
of Markov chains in Chapter 5 we restrict ourself to score functions that compare
letter with letter, but, as discussed in Chapter 5, there is no loss of generality in doing
so since we can always stack the Markov chains. The restriction is done for notational
convenience only. Nevertheless, in the treatment of the positive excursions for the
Markov additive processes presented in Chapter 2 we treat scoring of transitions
in generality. The reason is for instance that certain representations of constants
becomes substantially more complicated if we are forced to stack the Markov chain
before applying the representations. Moreover, without much extra effort we can
and will treat Markov additive processes in general and not ‘just’ sums of functions
of a Markov chain, cf. the definition of a Markov additive process in Chapter 2.

1.4 Integer scoring

The score function f used is often derived by the methods presented in Chapter 4,
for which the function naturally takes values on the real line. The function does,
however, always take a finite number of values, which by the limited precision neces-
sarily are located on a lattice. For the theoretical results it is necessary to take this
lattice phenomenon into account, though it is quite often ignored and most likely
matters very little. To make the lattice phenomenon obvious we choose to assume
that f takes values in Z instead. Moreover, computations with integers are often
faster on computers than floating point computations, so it is also tradition in real
applications to construct integer versions of the score function that one wants to use.
For a given real valued f , simply rounding f to the nearest integer may produce
a very dull function, but if we multiply f by some constant κ ≥ 1 and round to
the nearest integer we can obtain something more interesting. Define the κ-integer
version of f as

Iκ(f) := �κf + 0.5�,

that is, Iκ(f) is the rounding of κf to the nearest integer (rounding 0.5 up). Taking
κ = 10k yields a score function equivalent to f with k digits. It is also obvious that
a multiplication of f just corresponds to scaling the random walk/Markov additive
process. Thus up the scaling factor (and rounding effect) we will obtain the same
results whether we use f or Iκ(f). The larger κ is, the higher the precision will be,
the larger the absolute values of f will be and the less will the lattice effect matter.
Having f take too large absolute values may lead to computational problems for
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some of the algorithms discussed in Chapter 2, which are actually based on the lattice
effect. Therefore we use a very moderate κ in Chapter 7 in a concrete application.
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2

Excursion Theory for Markov
Additive Processes

2.1 Markov additive processes

A Markov additive process is a random walk, whose increments are controlled by a
Markov chain. Thus assume that (Jn)n≥0 is a Markov chain on a finite state space
E with transition probability matrix P = (Pij)i,j∈E, and that (Zn)n≥1 condition-
ally on (Jn)n≥0 is a sequence of independent stochastic variables with values in R.
Furthermore, with (Hij)i,j∈E a matrix of probability measures assume that the con-
ditional distribution of Zn given (Jn)n≥0 is HJn−1Jn . We call (Hij)i,j∈E the increment
distributions. Defining S0 = 0 and Sn =

∑n
k=1 Zk for n ≥ 1, the bivariate process

(Jn, Sn)n≥0 (and sometimes just (Sn)n≥0) is called a Markov additive process – or
a MAP for short. We will use F to denote the matrix of positive measures given
by Fij = HijPij, in which case the transition probabilities for the bivariate Markov
process (Jn, Zn)n≥1 are given by

P(Zn ∈ A, Jn = j | Zn−1, Jn−1 = i) = Fij(A),

for A ∈ B a Borel set. Throughout we use Pν to denote a probability measure under
which the Markov chain has initial distribution ν on E, and in particular when
ν = δi we write Pi instead of Pδi

.

In the statistical literature, the process (Zn)n≥1 is known as a hidden Markov chain,
and the major concern is estimation of parameters given that one observes the Z-
process only. This is, however, not an important issue in this thesis. Rather we
are interested in the behaviour of the process (Sn)n≥0, and especially we focus on

9
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the maximal positive excursions, or maximal positive increments, the process makes
under the assumption that it has an overall negative drift.

This chapter introduces a variety of concepts, tools and results, which are all more
or less well developed in the literature. This will serve a three fold purpose. First of
all the reader will have a reference at hand for later chapters, where we will use the
tools and results. Second, in Chapter 3 new results comparable with some of those
presented in this chapter will be derived, and it may be useful to be able to compare
results and techniques of proof. Third, important constants appearing have some
quite complicated and not entirely intuitive representations, so by giving complete
proofs we can show how the constants appear and give useful – and hopefully in-
sightful – representations. Though the author does not claim any originality for the
main part of results presented in this chapter, it has been decided not to clutter up
the text with references. Instead relevant references can be found in the notes at the
end of the chapter. References are, however, given in the text for those results that
are stated without proof.

Before continuing the general treatment of MAPs, we consider a special case – the
Markov renewal process – which becomes useful several times in the following.

Example 2.1.1 If Hij((0,∞)) = 1 for all i, j ∈ E, the process (Sn)n≥0 is known
as a Markov renewal process. As for ordinary renewal processes, a Blackwell-type
renewal theorem exists for Markov renewal processes. Assume that the matrix P of
transition probabilities for the underlying Markov chain is irreducible. The renewal
process is then either concentrated on a minimal lattice or not, cf. Çinlar (1975),
Section 10.2. Let the invariant probability vector for P be ν, then with

Uij(A) =
∞∑

n=0

Pi(Jn = j, Sn ∈ A)

the Markov renewal kernel and µ =
∑

ij

∫
uFij(du)νi, it holds for t → ∞ that

Uij([t, t + s)) → s
νj

µ
in the non-lattice case,

Uij({t}) → νj

µ
in the lattice case with t on the lattice.

Renewal equations can also be generalised to the Markov renewal setup. Assume
that zi : [0,∞) → R for i ∈ E are a given set of functions. A vector (Zi)i∈E of
functions Zi : [0,∞) → R fulfills a Markov renewal equation (or a system of renewal
equations) if

Zi(t) = zi(t) +
∑
k∈E

∫ t

0

Zk(t − u)Fik(du), i ∈ E.
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If the zi’s are all directly Riemann integrable, the Markov key renewal theorem holds:

Zi(t) → 1

µ

∑
k∈E

νk

∫ ∞

0

zk(u)(du) (2.1)

for t → ∞ – along the lattice if necessary. Both of these results can be found in
Asmussen (2003), Section VII.4. Chapter 10 in Çinlar (1975) is a more classical
reference to this subject. �

We will assume throughout the rest of this chapter that:

1. The Markov chain is irreducible and aperiodic with invariant distribution π.

2. All the measures Hij have first moments and defining

µij :=

∫
xHij(dx)

we assume that

µ :=
∑
i,j

πiPijµij =
∑
i,j

πi

∫
xFij(dx) < 0.

3. There exists a finite sequence j0, . . . , jn−1 satisfying Pjk−1,jk
> 0 for k =

1, . . . , n − 1 and Pjn−1,j0 > 0 such that

Pj0

(
n∑

k=1

Zk > 0 | J1 = j1, . . . , Jn−1 = jn−1, Jn = j0

)
> 0.

Condition 2 above is referred to as the negative drift assumption and Condition
3 as the non-degeneracy condition. Usually a finite sequence j0, . . . , jn−1 satisfying
Pjk−1,jk

> 0 for k = 1, . . . , n−1 and Pjn−1,j0 > 0 is called a cycle w.r.t. the transition
probability matrix P . Thus Condition 3 says that there should exist a cycle w.r.t. P
along which there is positive probability of observing a strictly positive increment
for the MAP. This corresponds to assuming for an ordinary random walk that there
is positive probability for observing a strictly positive increment.

It is easily verified that the process (Jn, Zn)n≥1 is ergodic, so by the negative drift
assumption and the Ergodic Theorem Sn → −∞ a.s. for n → ∞.

The time reversed MAP, which will be useful too, is the MAP where the Markov

chain has transition probabilities
←−
P ,

←−
P ij =

πjPji

πi

,

and the increments have conditional distributions
←−
H ij = Hji. It is thus given

by simply time reversing the Markov chain and reversing the increments. We use

(
←−
J n,

←−
S n)n≥0 to denote a time-reversed MAP.
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2.2 Ladder variables and Wiener-Hopf factorisa-

tion

Define the stopping times

τ− = inf{n > 0 | Sn ≤ 0} and

τ+ = inf{n > 0 | Sn > 0},
which are known respectively as the first descending ladder time and the first
(strict) ascending ladder time. The distribution of (Jτ− , Sτ−) and the distribution
of (Jτ+ , Sτ+) (on (τ− < ∞) and (τ+ < ∞) respectively) are given by two matrices
G− and G+ of positive measures;

G−,ij(A) = Pi(Jτ− = j, Sτ− ∈ A, τ− < ∞) and

G+,ij(A) = Pi(Jτ+ = j, Sτ+ ∈ A, τ+ < ∞)

with A ∈ B a Borel subset of R. The matrix G− is the matrix of descending ladder
height distributions and G+ is the matrix of ascending ladder height distributions.
Under our general assumptions, τ− < ∞ a.s. due to the negative drift condition but
Pi(τ+ = ∞) > 0 may occur.

Often the sequences (τ−(n))n≥0 and (τ+(n))n≥0 of stopping times defined by

τ−(n) = inf{k > τ−(n − 1) | Sk ≤ Sτ−(n−1)}, τ−(0) = 0

τ+(n) = inf{k > τ+(n − 1) | Sk > Sτ+(n−1)}, τ+(0) = 0

are useful. We have that τ−(1) = τ− and τ+(1) = τ+ and the sequences are known as
the descending and ascending ladder epochs. Due to the negative drift, τ−(n) < ∞
a.s. for all n and τ+(n) = ∞ eventually a.s.

The matrices G− and G+ are elements in a convolution algebra of matrices of signed
measures on R. For two matrices A and B of signed measures, the convolution
product of A and B is simply

(A ∗ B)ij =
∑

k

Aik ∗ Bkj.

Note that the convolution product of matrix measures is non-commutative. Note
also that the matrix I = diag{δ0, . . . , δ0}, being the diagonal matrix with Dirac
measures at zero in the diagonal, serves as the identity under convolution. For any
matrix A of signed measures we use the notation ||A|| to denote the matrix of total
variation norms of the measures in A. For a matrix, A, of positive measures, ||A||
is then the matrix of total masses. With this notation ||G−|| is recognised as the
matrix of transition probabilities for the Markov chain (Jτ−(n))n≥0.
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For the time reversed MAP we can likewise define the ladder times and matrices of
ladder height distributions, which we naturally denote

←−
G− and

←−
G+.

Theorem 2.2.1 With #G+ = (#G+,ij)i,j∈E defined by

#G+,ij(A) =
πj
←−
G+,ji(A)

πi

and #G− defined similarly, the Wiener-Hopf factorisation identity

I − F = (I − #G+) ∗ (I − G−) = (I − #G−) ∗ (I − G+) (2.2)

holds.

The proof is in fact quite easy but is skipped, cf. Theorem XI.2.12 in Asmussen
(2003). By evaluating these matrix measures on R, the Wiener-Hopf identity amounts
to the ordinary matrix equation

I − P = I − ||F || = (I − ||#G+||)(I − ||G−||) = (I − ||#G−||)(I − ||G+||) (2.3)

with I = diag(1, . . . , 1) also denoting the ordinary identity matrix.

The Wiener-Hopf identity has many useful consequences as the following sections as
well as Chapter 3 will show. As an immediate but nevertheless non-trivial observa-
tion, it follows from (2.3) that the stochastic matrix ||G−|| has only one communica-
tion class – and maybe some transient states. Indeed if it was reducible, i.e. had two
disjoint communication classes, it would have a right eigenvector with eigenvalue 1
differing from � = (1, . . . , 1)t and hence so would P contradicting the irreducibility
of P . Thus the Markov chain (Jτ−(n))n≥0 may have some transient states, but there
is only one irreducibility class. In particular, there exists a state i0 to which the
Markov chain returns infinitely often independent of the initial distribution. The
Markov chain is thus Harris recurrent.

2.3 Exponential change of measure

Define the matrix Φ(θ) for θ ∈ R by

Φ(θ)ij =

∫
exp(θx)Fij(dx) = Pij

∫
exp(θx)Hij(dx) = Ei(exp(θZ1); J1 = j).

We will assume for the rest of this chapter that Φ(θ)ij < ∞ for all i, j ∈ E and all
θ ∈ R. It may seem unnecessarily restrictive to assume Φ(θ)ij < ∞ for all θ ∈ R
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instead of just for some θ > 0. The main application in mind is the case with Hij all
having compact – indeed finite – support, in which case Φ(θ)ij is clearly finite for
all θ ∈ R. All results derived in this chapter hold if just Φ(θ)ij < ∞ for some θ > 0
with a few obvious modifications.

The matrix Φ(θ) is a matrix with positive entries, which is irreducible due to the
irreducibility of P . Perron-Frobenius theory tells us that the spectral radius of Φ(θ)
is a simple eigenvalue with unique (up to scaling) left and right eigenvectors. For a
matrix A we denote the spectral radius of A by spr(A). Define the function ϕ : R → R

by
ϕ(θ) = spr(Φ(θ)). (2.4)

The function ϕ serves in this setup the same purpose as the Laplace transform of the
increments of a random walk usually does, and we put ψ(θ) = log ϕ(θ) corresponding
to the cumulant generating function. It is a strictly convex C∞ function.

The convexity of functions like ψ (and hence the log-convexity of ϕ) goes back to
Kingman (1961). We will need strict convexity in certain situations, for which we
state the following criterion as a consequence of Theorem 4 in O’Cinneide (2000). If

θ �→ log Φ(θ)ij is strictly convex for some i, j ∈ E (2.5)

then ψ is strictly convex. If (2.5) is not fulfilled, all the distributions Hij are degen-
erate, with, say, Hij = δf(i,j) for some function f : E × E → R. In this case ψ is
strictly convex if there exists a cycle i0, . . . , in−1 w.r.t. P such that

n−1∑
k=1

f(ik−1, ik) �= µ. (2.6)

This holds whether or not Condition 2 and 3, as otherwise assumed, are fulfilled.
But if Condition 2 and 3 are fulfilled we observe that ψ is strictly convex.

Differentiability is a consequence of the Implicit Function Theorem. To be precise,
let lθ = (lθi )i∈E be the left (row) eigenvector for Φ(θ) corresponding to the eigenvalue
ϕ(θ) – normalised so that it sums to 1. Then (lθ, ϕ(θ)) is by Perron-Frobenius theory
the unique solution to the equations

lθΦ(θ) = ϕ(θ)lθ,

lθ� = 1

in the quadrant where ϕ > 0 and li > 0. Likewise there is an up to scaling unique,
right (column) eigenvector, rθ = (rθ

i )i∈E, with strictly positive entries, which we will
choose to normalise by lθrθ = 1. Introducing the map

gθ : (0,∞)|E|+1 → R
|E|+1

(l, ϕ) �→ (l(Φ(θ) − ϕI), l�− 1),
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(lθ, ϕ(θ)) is (the unique) solution to gθ(l, ϕ) = 0. The derivative of gθ is

Dgθ(l, ϕ) =

{
Φ(θ) − ϕI �

−l 0

}
.

Assume that the (column) vector (vt, v0)
t (with v a column vector of length |E|) is

in the kernel of Dgθ(l
θ, ϕ(θ)), then

Φ(θ)v = ϕ(θ)v − v0�,

lθv = 0.

We observe that

0 = ϕ(θ)lθv = lθΦ(θ)v = ϕ(θ)lθv − v0l
θ
� = −v0.

But when v0 = 0 the vector v must be 0 or a right Perron-Frobenius eigenvector with
eigenvalue ϕ(θ), which must hence have strictly positive entries due to irreducibility.
The fact that lθv = 0 contradicts the last possibility and v = 0. By uniqueness of
the solution (lθ, ϕ(θ)) in the open quadrant, the Implicit Function Theorem implies
that ϕ(θ) as well as lθ (and hence also rθ) are C∞ in θ.

Differentiating the equation

ϕ(θ)rθ
i =

∑
j

Φ(θ)ijr
θ
j

gives for θ = 0 that

∂θϕ(0)r0
i + ϕ(0)∂θr

0
i =

∑
j

∂θΦ(0)ijr
0
j + Pij∂θr

0
j .

Since obviously ϕ(0) = 1, l0 = π and r0 = � = (1, . . . , 1)t, multiplication by πi and
summation yield that

∂θϕ(0) (= ∂θψ(0)) =
∑
ij

πiPijµij = µ. (2.7)

This is one reason that ϕ serves as a natural generalisation of the Laplace transform.

We define a process (Lθ
n)n≥0 for θ ≥ 0 by

Lθ
n =

rθ
Jn

ϕ(θ)n rθ
J0

exp(θSn) =
rθ
Jn

rθ
J0

exp(θSn − nψ(θ)).
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With (Fn)n≥0 the filtration of σ-algebras generated by the MAP (Jn, Sn)n≥0, we find
that

Ei(L
θ
n | Fn−1) = Ei

(
rθ
Jn

ϕ(θ)n rθ
J0

exp(θSn)
∣∣∣ (Jn−1, Sn−1)

)
=

exp(θ∗Sn−1)

ϕ(θ)nrθ
i

Ei

(
rθ
Jn

exp(θZn)
∣∣∣ Jn−1

)
=

Lθ
n−1

ϕ(θ) rJn−1

∑
j

EJn−1(exp(θZ1); J1 = j)PJn−1jr
θ
j

= Lθ
n−1

(Φ(θ)r)Jn−1

ϕ(θ) rJn−1

= Lθ
n−1.

Together with Ei(L
θ
0) = 1 and Lθ

n > 0 this shows that (Lθ
n,Fn)n≥0 is a positive

martingale, which thus are the densities for a sequence of probability measures on
the filtration (Fn)n≥0 of σ-algebras. Such a process is sometimes referred to as a
likelihood process. If the processes considered are defined on a suitable space, e.g.
the canonical one EN0 × R

N0 , there exists a unique measure P
θ
i such that

dP
θ
i |Fn

dPi|Fn

= Lθ
n.

The measure P
θ
i is called the exponentially changed or tilted measure.

Since the eigenvector fractions are bounded above and bounded away from 0, the
identity Ei(L

θ
n) = 1 valid for all θ implies that

1

n
log Ei (exp(θSn)) → ψ(θ) (2.8)

for n → ∞. Thus nψ can be viewed as an asymptotic cumulant generating function
for Sn.

The tilted measure defined in the following lemma will be of particular importance.

Lemma 2.3.1 There exists a unique θ∗ > 0 solving the equation ϕ(θ) = 1 (ψ(θ) =
0). For this θ∗ it holds that ∂θϕ(θ∗) > 0.

Proof: Since ϕ(0) = 1 and ∂θϕ(0) = µ < 0 there exists a θ∗ > 0 with ϕ(θ∗) = 1 if
ϕ(θ) → ∞ for θ → ∞. Due to convexity θ∗ is then a unique solution and necessarily
∂θϕ(θ∗) > 0 holds. Hence we just have to show that ϕ(θ) → ∞. But due to the
non-degeneracy condition there exists a sequence j, j1, . . . , jn−1 such that

Φ(θ)n
jj ≥ Ej

(
exp

(
θ

n∑
k=1

Zk

)
;

n∑
k=1

Zk > 0, J1 = j1, . . . , Jn−1 = jn−1, Jn = j

)
→ ∞
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for θ → ∞. In particular, defining A(θ) as the matrix with 0 everywhere except for
A(θ)jj = Φ(θ)n

jj, we have that Φ(θ)n ≥ A(θ) coordinatewise and

ϕ(θ) = spr(Φ(θ)) = spr(Φ(θ)n)1/n ≥ spr(A(θ))1/n =
(
Φ(θ)n

jj

)1/n → ∞.

�
For this particular θ∗ we let P ∗ = P θ∗ , r∗ = rθ∗ , etc. and we will denote the
exponential changed measure by P

∗
i . Expectations w.r.t. to P

∗
i will be denoted E

∗
i .

It is straight forward to verify that under P
θ
i the process (Jn, Sn)n≥0 is still a MAP

(the tilted MAP) with transition probabilities P θ and increment distributions Hθ

given by

P θ
ij =

rθ
j

ϕ(θ) rθ
i

Φ(θ)ij

dHθ
ij

dHij

(x) =
Pij

Φ(θ)ij

exp(θx).

For θ0 ∈ R we can likewise define Φθ0(θ) for the tilted MAP as

Φθ0(θ)ij = P θ0
ij

∫
exp(θx)Hθ0

ij (dx)

and ϕθ0(θ) = spr(Φθ0(θ)). Simple computations reveal that

ϕθ0(θ) =
ϕ(θ + θ0)

ϕ(θ0)
or ψθ0(θ) = ψ(θ + θ0) − ψ(θ0),

and from (2.7) it follows that the tilted MAP has drift ∂θψ(θ0). The tilted MAP
corresponding to θ∗ thus have positive drift ∂θϕ(θ∗) = ∂θψ(θ∗).

A highly fruitful observation is that for any stopping time τ , Lθ
τ is still a likelihood,

i.e. we have that on (τ < ∞)
dP

θ
i |Fτ

dPi|Fτ

= Lθ
τ . (2.9)

As a consequence, for Ei(τ) < ∞, differentiating the equation Ei(L
θ
τ ) = 1, putting

θ = 0 and doing some simple algebra yield the following generalisation of Wald’s
identity.

Theorem 2.3.2 If Ei(τ) < ∞ then

Ei(Sτ ) = µEi(τ) + Ei∂θr
0
Jτ

− ∂θr
0
i

where µ =
∑

ij πiPijµij = ∂θϕ(0).
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Remark 2.3.3 Observe that this generalisation of Wald’s identity contains the slightly
mysterious term Ei∂θr

0
Jτ

− ∂θr
0
i . For a given initial distribution ν we get “classical

Wald”

Eν(Sτ ) = µEν(τ) if and only if Eν∂θr
0
J0

= Eν∂θr
0
Jτ

,

which holds if e.g. J0
D
= Jτ under Pν.

2.4 Reflection, excursions and extremes

For the additive process S0 = 0, Sn =
∑n

k=1 Zk, the reflection at the zero barrier is
defined as the process (Tn)n≥0 given recursively by

Tn = (Tn−1 + Zn)+, T0 = 0,

where x+ = max(0, x). This process can also be represented as

Tn = Sn − min
0≤k≤n

Sk, (2.10)

which is seen by observing that the r.h.s. above fulfills the recursion. A useful con-
sequence of the last representation of (Tn)n≥0 is that

max
0≤k≤m≤n

Sm − Sk = max
0≤m≤n

Tm. (2.11)

Thus the maximum of all partial sums
∑m

r=k+1 Xr for k ≤ m ≤ n equals the max-
imum of Tm for m ≤ n. In Chapter 5 and Chapter 6 we take an interest in the
maximum over such partial sums, in which case (2.11) gives both computational as
well as analytic advantages.

The process (Tn)n≥0 can be decomposed into regenerative cycles. It starts at zero,
and at each descending ladder epoch for the additive process it returns to zero again.
If we fix a state i0 ∈ E such that σ̃ = inf{n > 0 | Jτ−(n) = i0} is finite due to Harris
recurrence of (Jτ−(n))n≥0, then

σ = inf{n ≥ 0 | Tn = 0, Jn = i0} =
σ̃∑

n=1

τ−(n), (2.12)

is finite and a regeneration time for the Markov process (Jn, Tn)n≥0. We define the
cycle maximum as

Mσ = max
1≤n≤σ

Tn



Reflection, excursions and extremes 19

and want to determine the asymptotic behaviour of Pi0(Mσ > u) for u → ∞.
Having established the asymptotic behaviour of the cycle maximum it is rather easy
to derive the asymptotic behaviour of the running maximum

Mn = max
0≤k≤n

Tk,

since this is essentially a maximum over independent cycles.

To determine how Pi0(Mσ > u) behaves we consider first

Mτ− = max
1≤n≤τ−

Sn

and determine the behaviour of Pi(Mτ− > u) for u → ∞.

Define τ(u) = inf{n ≥ 0 | Sn > u} and use the exponential change of measure to
get that

Pi(Mτ− > u) = Pi(τ− > τ(u))

= E
∗
i ((L

∗
τ(u))

−1; τ− > τ(u))

= r∗i exp(−θ∗u)E∗
i

(
1

r∗Jτ(u)

exp
(−θ∗(Sτ(u) − u)

)
; τ− > τ(u)

)
.(2.13)

With K = maxi r
∗
i / minj r∗j , the Lundberg-type inequality

Pi(Mτ− > u) ≤ K exp(−θ∗u) (2.14)

follows, giving that the probability as a function of u must decay at least exponen-
tially fast. To establish the correct asymptotic behaviour we need to control the
expectation on the right hand side in (2.13) for u → ∞. It will be established as a
central result below that under P

∗
i the pair of stochastic variables (Jτ(u), Sτ(u) − u)

converges in distribution to a limit, which can be given explicitly by the ladder height
distributions, and which is asymptotically independent of the events (τ− > τ(u)).

For the purpose of this thesis we will only need to consider the case where Hij are
concentrated on a lattice1. We will assume throughout that this (minimal) lattice is
Z. Any limits will therefore take place in Z.

Theorem 2.4.1 Under P
∗
i we have for u → ∞ that

(Jτ(u), Sτ(u)−u)
D−→ (J∞, B∞).

1in contrast to the usual assumption, which is that Hij is not concentrated on a lattice.
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for some bivariate stochastic variable (J∞, B∞). Furthermore,

Pi(Mτ− > u) ∼ c ci exp(−θ∗u)

with ci = r∗i P
∗
i (τ− = ∞) and

c := E

(
1

r∗J∞
exp(−θ∗B∞)

)
.

Proof: Under P
∗
i the process (Jn, Sn)n≥0 is a MAP with average drift ∂θψ(θ∗) > 0

so Sn → ∞ a.s. by the ergodic theorem. Hence τ+, τ(u) < ∞ almost surely. The key
observation is that for fixed z ∈ N, the probabilities

Aij(u) := P
∗
i (Sτ(u) − u = z, Jτ(u) = j), u ∈ N0,

fulfill for each j ∈ E the Markov renewal equation

Aij(u) = aij(u) +
∑

k

u∑
v=1

Akj(u − v)P∗
i (Sτ+ = v, Jτ+ = k), i ∈ E,

where aij(u) = P
∗
i (Sτ+ = z + u, Jτ+ = j). This is easily seen by dividing according

to whether τ+ = τ(u) or τ+ < τ(u) and in the last case conditioning on the value of
(Jτ+ , Sτ+).

It is seen by the definition that
(
P
∗
i (Sτ+ ∈ ·, Jτ+ = j)

)
i,j∈E

is the matrix of ladder

height distributions under the exponentially changed measure, which we will nat-
urally denote by G∗

+. We observe that aij(u) = G∗
+,ij(z + u). The matrix ||G∗

+||
of transition probabilities is stochastic due to the positive drift, and it has one ir-
reducibility class by the same argument as that following Theorem 2.2.1. We let
ν∗ = (ν∗

i )i∈E denote the (unique) left invariant probability vector of ||G∗
+|| and we

let
µ∗ =

∑
i,j

ν∗
i

∑
u≥1

uG∗
+,ij(u). (2.15)

The Markov key renewal theorem, cf. (2.1) in Example 2.1.1, then gives that

Aij(u) → 1

µ∗
∑

k

ν∗
k

∑
u≥0

akj(u) =
1

µ∗
∑

k

ν∗
k

∑
u≥0

G∗
+,kj(z + u) (2.16)

for u → ∞. Hence we conclude that (Jτ(u), Sτ(u)−u)
D−→ (J∞, B∞), where

P(B∞ = z, J∞ = j) =
1

µ∗
∑

k

ν∗
k

∑
u≥z

G∗
+,kj(u) =

1

µ∗
∑

k

ν∗
kG

∗
+,kj(z − 1),
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using the notation G∗
+,kj(z) =

∑
u>z G∗

+,kj(u) to denote the tail of the distribution
function. Especially

E
∗
i

(
1

r∗Jτ(u)

exp(−θ∗(Sτ(u) − u))

)
→ c =

1

µ∗
∑
z≥1

j,k∈E

ν∗
k

r∗j
exp(−θ∗z)G∗

+,kj(z − 1) (2.17)

for u → ∞.

For the remaining part of the result, let f : E × N → R be any bounded function
and put hi(u) = E

∗
i (f(Jτ(u), Sτ(u)−u)) so that hi(u) → h(∞) for u → ∞ independent

of i ∈ E. Let u′ = �u/2� in which case we get

E
∗
i (f(Jτ(u), Sτ(u)−u) | Fτ(u′)) = hJτ(u′)(u − Sτ(u′))1(Sτ(u′) ≤ u)

+ f(Jτ(u′), Sτ(u′)−u)1(Sτ(u′) > u).

Clearly for u → ∞ we have that 1(Sτ(u′) > u) ≤ 1(Sτ(u′) − u′ > u′)
P
∗
i−→ 0 as

Sτ(u′) − u′ D−→ B∞, and likewise u − Sτ(u′) = u − u′ + (u′ − Sτ(u′))
P
∗
i−→ ∞. Hence

E
∗
i (f(Jτ(u), Sτ(u)−u) | Fτ(u′))

P
∗
i−→ h(∞) = E(f(J∞, B∞)).

Observing that {τ− > τ(u)} ↘ {τ− = ∞} and {τ− > τ(u′)} ↘ {τ− = ∞} a.s. for
u → ∞ yields, using the boundedness of f , that

lim
u→∞

E
∗
i (f(Jτ(u), Sτ(u)−u); τ− > τ(u)) = lim

u→∞
E

∗
i (f(Jτ(u), Sτ(u)−u); τ− > τ(u′))

= lim
u→∞

E
∗
i (E

∗
i (f(Jτ(u), Sτ(u)−u) |Fτ(u′)); τ− > τ(u′))

= E(f(J∞, B∞))P∗
i (τ− = ∞).

By the exponential change of measure (2.13), this completes the proof. �

Remark 2.4.2 The global maximum,

M = max
n

Sn,

is finite due to the negative drift, and it is of some interest in itself. Exactly as in
the proof above, substituting (τ− > τ(u)) with (τ(u) < ∞), we find that

Pi(M > u) ∼ c r∗i exp(−θ∗u) (2.18)

for u → ∞. The interest in M stems for instance from the fact that the invari-
ant distribution of the reflected MAP (Jn, Tn)n≥0 coincides with the distribution of

(
←−
J0,

←−M) where
←−M = maxn

←−
S n and D(

←−
J0) = π, cf. Proposition XI.2.11 in Asmussen

(2003).
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As a consequence of Theorem 2.4.1 we obtain:

Theorem 2.4.3 With ν the left invariant probability vector for ||G−|| and

K∗ =
c

Eν(τ−)
νC =

c

Eν(τ−)

∑
i

νici (2.19)

where c and C = (ci)i∈E are the constants from Theorem 2.4.1 we have that

Pi0(Mσ > u) ∼ Ei0(σ)K∗ exp(−θ∗u) (2.20)

for u → ∞.

For the proof we need the following lemma.

Lemma 2.4.4 Let Γ be the matrix given by

Γij =

{ ||G−||ij if j �= i0
0 if j = i0

,

then I − Γ is invertible and

(I − Γ)−1
i0j = νj

Ei0(σ)

Eν(τ−)
,

where ν = (νj)j∈E is the left invariant probability vector for ||G−||.

Proof: Irreducibility of ||G−|| implies that I − Γ is invertible with

(I − Γ)−1 =
∑
n≥0

Γn.

The value of Γn
ij is the probability that the Markov chain (Jτ−(n))n≥0 jumps from state

i to state j �= i0 in n-steps avoiding state i0, and is known as a taboo probability. It
can be verified that ((I − Γ)−1

i0j)j∈E is in fact an (unnormalised) left invariant vector
for ||G−||, which is hence proportional to ν. Observing that∑

j∈E

Γn
i0j = Pi0(σ̃ > n)

yields that ∑
j∈E

(I − Γ)−1
i0j = Ei0(σ̃) =

Ei0(σ)

Eν(τ−)
,
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where the last equality follows from Wald’s identity as stated in Remark 2.3.3 for
the MAP (

∑n
k=1 τ−(k), Jτ−(n))n≥0. �

Proof of Theorem 2.4.3 Using the strong Markov property for (Jn, Tn)n≥0 at time
τ− and that the processes (Tn)n≥0 and (Sn)n≥0 coincide up to time τ− − 1 we have
that

Pi(Mσ > u) = Pi(Mσ > u,Mτ− > u) +
∑
j �=i0

Pi(Mσ > u,Mτ− ≤ u, Jτ− = j)

= Pi(Mτ− > u) +
∑
j �=i0

Pi(Mτ− ≤ u, Jτ− = j)Pj(Mσ > u).

Put Ai(u) = Pi(Mσ > u), Bi(u) = Pi(Mτ− > u) and Γij(u) = Pi(Mτ− ≤ u, Jτ− =
j) for j �= i0 together with Γii0(u) = 0. Then in vector notation the equations above
can be rewritten as

(I − Γ(u))A(u) = B(u).

Observe that Γ(u) → Γ defined in Lemma 2.4.4. Since the set of invertible matrices
is open, I − Γ(u) is invertible for u large enough and we obtain that

A(u) ∼ (I − Γ)−1B(u)

for u → ∞. Using Lemma 2.4.4 and Theorem 2.4.1 this implies that

Pi0(Mσ > u) ∼
∑

j

(I − Γ)−1
i0jB(u)j ∼ Ei0(σ)K∗ exp(−θ∗u).

�

Remark 2.4.5 By Remark 2.4.2 we have the following explicit expression

Ei0(σ) =
1

πi0Pi0(
←−M = 0)

=
1

πi0

(
1 −∑

j∈E ||←−G+,i0j||
)

for the expected regeneration time appearing above.

Computing K∗ boils down to computing c and the vector C from Theorem 2.4.1
together with Eν(τ−). For this last mean value, Wald’s identity for MAPs, cf. Remark
2.3.3, may again be useful, giving that

Eν(τ−) =
Eν(Sτ−)

µ
=

1

µ

∑
u≤0
ij

νiuG−,ij(u) =
1

µ
ν

(∑
u≤0

uG−(u)

)
�
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It turns out that C and c, and hence K∗, are computable from θ∗, G+ and G−. This
is discussed further in Section 2.5 together with some appropriate algorithms for
computing G+ and G−.

As argued, once the tail behaviour for the distribution of Mσ has been established,
the asymptotic behaviour of Mn for n → ∞ can also be dealt with. The following
lemma will serve as a key lemma for the results derived in Chapter 5 and 6.

Lemma 2.4.6 Suppose that n(u) is a sequence of integers satisfying

u

n(u)
→ 0 and n(u) exp(−θ∗u) → 0 (2.21)

for u → ∞. Then
Pi(Mn(u) > u) ∼ n(u)K∗ exp(−θ∗u) (2.22)

for u → ∞.

Proof: Let G(u) = Pi0(Mσ ≤ u) be the distribution function for Mσ. Introduce
the sequence (σ(m))m≥0 of stopping times by σ(0) = 0 and

σ(m) = inf{k > σ(m − 1) | Tk = 0, Jk = i0}.

Then

Mσ(m) = max
0≤k≤σ(m)

Tk = max
1≤k≤m

max
σ(k−1)≤r≤σ(k)

Tr,

which by regeneration is a max of m iid variables. Thus Pi0(Mσ(m) > u) = 1−G(u)m.

Define, for δ > 0 fixed, the sequences m−(u) = γ−(u)n(u)/Ei0(σ) and m+(u) =
γ+(u)n(u)/Ei0(σ) with γ−(u) ≤ 1 − δ and γ+(u) ≥ 1 + δ chosen maximally and
minimally such that m−(u),m+(u) ∈ N. In particular this implies that γ−(u) → 1−δ
and γ+(u) → 1+δ for u → ∞. Then since (1−G(u)) exp(θ∗u) → Ei0(σ)K∗ we have,
using that n(u) exp(θ∗u) → 0, that

(1 − G(u)m−(u))
exp(θ∗u)

n(u)
→ (1 − δ)K∗ and

(1 − G(u)m+(u))
exp(θ∗u)

n(u)
→ (1 + δ)K∗.

Since Mn is clearly increasing, we have the following inequalities

Pi0(Mσ(m−(u)) > u) − Pi0(σ(m−(u)) > n(u)) ≤ Pi0(Mn(u) > u)

≤ Pi0(Mσ(m+(u)) > u) + Pi0(σ(m+(u)) < n(u)). (2.23)
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The stopping time σ(m) =
∑m

k=1 σ(k) − σ(k − 1) is a sum of iid variables (under
Pi0) with Ei0(exp(λσ)) < ∞ for some λ > 0, and it follows by large deviation theory
that there exists a λ∗ > 0 such that

Pi0(σ(m−(u)) > n(u)) ≤ exp(−λ∗m−(u)).

This implies that

exp(θ∗u)Pi0(σ(m−(u)) > n(u)) → 0

by u/n(u) → 0. And similarly exp(θ∗u)Pi0(σ(m+(u)) > n(u)) → 0, which together
with (2.23) imply that

(1 − δ)K∗ ≤ lim inf
u→∞

Pi0(Mn(u) > u)
exp(θ∗u)

n(u)

≤ lim sup
u→∞

Pi0(Mn(u) > u)
exp(θ∗u)

n(u)
≤ (1 + δ)K∗.

Letting δ → 0 gives (2.22) for i = i0 and otherwise the estimate

Pi(Mσ > u) ≤ K exp(−θu)

ensures that (2.22) also holds for i �= i0. �
By quite similar methods, assuming instead that n(u) ∼ exp(θ∗u), one can derive
the asymptotic distribution of Mn.

Theorem 2.4.7 For z ∈ R it holds that

Pi(θ
∗Mn − log(K∗n) ≤ z) − exp(− exp(−z + zn)) → 0 (2.24)

for n → ∞ where zn ∈ [0, θ∗) is defined by (log(K∗n) + z − zn)/θ∗ ∈ Z.

Basically (2.24) tells us that θ∗Mn − log(K∗n) asymptotically follows an extreme
value distribution of type I – the Gumbel distribution – up to the effect of zn. This zn-
effect comes from the lattice assumption and is a notorious nuisance in formulating
theorems but can often be ignored in practice. From the fact that 0 ≤ zn < θ∗ we
can easily derive upper and lower bounds for Pi(θ

∗Mn−log(K∗n) ≤ z) but for many
purposes one can simply ignore the zn-correction.

We skip a direct proof and refer to Section VI.4 in Asmussen (2003), which contains
an argument proving this theorem together with several related results. We will in
Section 2.6 derive a Poisson approximation of the number of excess events, from
which the theorem is an easy consequence anyway.
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2.5 Computation of constants

To use the asymptotic theory we will need to be able to compute the constants
θ∗ and K∗. Computing θ∗ numerically is quite easy if we can compute Φ(θ)ij =
Ei(exp(θX1); J1 = j), because then we can compute numerically the spectral radius
ϕ(θ), and since ϕ is a convex function the numerical solution of ϕ(θ) = 1 (ψ(θ) = 0)
is easy. The computation of K∗ is more involved, and we need to compute the vector
C and the constant c from Theorem 2.4.1. To this end we show below that, besides
θ∗, we ‘just’ need to compute the matrices G+ and G− . We discuss two approaches
in this section for computing G+ and G−, an iterative approach and a spectral
approach.

Lemma 2.5.1 With ν∗ the left invariant probability vector of ||G∗
+|| and µ∗ defined

by (2.15) we have that

c =
1

µ∗(exp(θ∗) − 1)

ν∗

r∗
(I − ||G+||)� (2.25)

with ν∗/r∗ = (ν∗
i /r

∗
i )i∈E. Furthermore,

C = (ci)i∈E = (I −
∑

u

exp(θ∗u)G−(u))r∗. (2.26)

Proof: Using the exponential change of measure

G∗
+,kj(u) = P

∗
k(Sτ+ = u, Jτ+ = j)

=
r∗j
r∗k

exp(θ∗u)Pk(Sτ+ = u, Jτ+ = j, τ+ < ∞)

=
r∗j
r∗k

exp(θ∗u)G+,kj(u). (2.27)

Interchanging the summation order in (2.17), this equality yields∑
z≥1

exp(−θ∗z)G∗
+,kj(z − 1) =

∑
u≥1

G∗
+,kj(u)

u∑
z=1

exp(−θ∗z)

=
r∗j
r∗k

1

exp(θ) − 1

∑
u≥1

(1 − exp(−θ∗u)) exp(θ∗u)G+,kj(u)

=
1

exp(θ) − 1

(
||G∗

+,kj|| −
r∗j
r∗k
||G+,kj||

)
.

Using this, equation (2.17) and the fact that ν∗ is the left invariant probability vector
for ||G∗

+|| give in matrix notation the formula (2.25).
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Regarding the computation of C we have directly from the definition of G∗
− that

P
∗
i (τ− = ∞) = 1 −

∑
j

||G∗
−,ij||.

The analogues change of measure argument as for G+ gives that

||G∗
−,ij|| =

r∗j
r∗i

∑
u

exp(θ∗u)G−,ij(u).

In matrix notation we obtain (2.26). �
Equations (2.25) and (2.26) are convenient and compact ways to represent c and
C in terms of G+ and G−. Note that ν∗ and µ∗ are easily computable once G+ is
known using (2.27).

We will assume throughout the rest of this section that the distributions Hij besides
being concentrated on the integer lattice also have finite support. Hence we will
assume that they are concentrated on {−m, . . . , n}.
Recall that F is the matrix with entries Fij = HijPij and that Fij(u) = Hij(u)Pij. If
we want to compute G+,ij(u) – the probability that the MAP jumps to (j, u) at the
first ascending ladder time given J0 = i – we can decompose the sample path of the
MAP according to the first jump. It can either jump directly to u > 0, which is thus
the ascending ladder height, or it can jump to z ≤ 0 from where it successively has
to make ascending ladder jumps u1, . . . , ur fulfilling that u1 + · · · + ur = u − z and
u1 + · · · + ur−1 ≤ −z. In matrix notation this amounts to the following equation

G+(u) = F (u) + F (0)G+(u) +
−m∑

z=−1

F (z)
∑

u1+...+ur−1≤−z
u1+...+ur=u−z

1≤ui≤n

G+(u1)G+(u2) · · ·G+(ur)

for 1 ≤ u ≤ n.

Introduce the map ρ+ defined by

ρ+(G)(u) = F (u) + F (0)G(u) +
−m∑

z=−1

F (z)
∑

u1+...+ur−1≤−z
u1+...+ur=u−z

1≤ui≤n

G(u1)G(u2) · · ·G(ur).

Then G+ is a fixed point for the map ρ+. This can be employed in an iterative
algorithm for computing G+.

Theorem 2.5.2 The matrix G+ is the coordinatewise minimal fixed point for ρ+,
and taking G(0) = 0 the sequence (G(k))k≥0 defined recursively for k ≥ 1 by

G(k) = ρ+(G(k−1)) (2.28)

converges coordinatewise monotonely to G+.
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Proof: Assume that G is a matrix of positive measures satisfying ρ+(G) = G.
Then G ≥ 0 = G(0) (coordinatewise) and also G(1)(u) = F (u) ≥ 0 = G(0)(u) for
1 ≤ u ≤ n. Hence for k ≥ 1 we get by induction that

G(k+1)(u) − G(k)(u) = F (0)(G(k)(u) − G(k−1)(u))

+
−m∑

z=−1

F (z)
∑

u1+...+ur−1≤−z
u1+...+ur=u−z

1≤ui≤n

G(k)(u1) · · ·G(k)(ur) − G(k−1)(u1) · · ·G(k−1)(ur) ≥ 0,

since matrix multiplication preserves coordinatewise ordering. Likewise by induction

G(u) − G(k)(u) = F (0)(G(u) − G(k−1)(u))

+
−m∑

z=−1

F (z)
∑

u1+...+ur−1≤−z
u1+...+ur=u−z

1≤ui≤n

G(u1) · · ·G(ur) − G(k−1)(u1) · · ·G(k−1)(ur) ≥ 0.

This implies that G(k) ↗ L for some matrix L with L ≤ G and by continuity this
limit must also satisfy ρ+(L) = L. Hence L is the minimal fixed point for ρ+, and
in particular we have that G+ ≥ L.

To show that G+ is indeed equal to the minimal fixed point, introduce the variable

γ =

τ+∑
l=1

1(Zl ≤ 0),

which count the number of descends before the first ascending ladder time τ+. In-
troduce also the matrix

G̃
(n)
ij (u) = Pi(Jτ+ = j, Sτ+ = u, γ ≤ n).

Thus G̃(n) is the matrix of ascending ladder height distributions under the restriction
that up to time τ+ only n descends may occur in total. Dividing according to the
value of Z1 gives

G̃
(n+1)
ij (u) = Fij(u) +

∑
k

Fik(0)G
(n)
kj (u) +

−m∑
z=−1

Pi(Jτ+ = j, Sτ+ = u, γ ≤ n + 1, Z1 = z)

Since Z1 = z < 0 in the last term above, this is one descend and the MAP has
to make ascends from z of total size u − z (with the last ascending ladder height
being at least u) under the restriction that at most n descends happen in-between.
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Clearly this probability is smaller than if we allow n descends to happen between
each successive ascending ladder epoch. Hence

G̃(n+1)(u) ≤ ρ+(G̃(n))(u).

But we can also observe that G̃(0)(u) = F (u) = G(1)(u), hence by induction

G̃(n+1)(u) ≤ ρ+(G̃(n))(u) ≤ ρ+(G(n+1))(u) = G(n+2)(u).

For n → ∞ we clearly have that G̃(n+1)(u) ↗ G+(u) and we obtain that G+ ≤ L.
This proves that G+ is the minimal fixed point. �
Defining

ρ−(G)(u) = F (u) +
n∑

z=1

F (z)
∑

u1+...+ur−1≥−z
u1+...+ur=u−z

−m≤ui≤0

G(u1)G(u2) · · ·G(ur). (2.29)

for −m ≤ u ≤ 0 we obtain the completely analogous result; G− is the minimal fixed
point for ρ− and applying ρ− iteratively starting with G(0) = 0 yields coordinatewise
and monotone convergence towards G−.

The other approach to the computation of G+ and G− relies on the Wiener-Hopf
factorisation identity. Since the matrix measures we will consider are concentrated
on {−m, . . . , n}, the coordinatewise generating functions are well defined on C\{0}.
We let F̂ [s] denote the matrix of generating functions for F evaluated at s.

Theorem 2.5.3 If s1, . . . , sq are the roots with |sk| > 1 of

det(I − F̂ [s]) = 0 (2.30)

and a1, . . . , aq the corresponding right eigenvectors, i.e. ak = F̂ [sk]ak, the matrix G+

fulfills the equations

ak = skG+(1)ak + s2
kG+(2)ak + · · · + sn

kG+(n)ak (2.31)

for k = 1, . . . , q. Similarly, if t1, . . . , tr are the roots of (2.30) with |tk| ≤ 1 and
b1, . . . , br are the corresponding right eigenvectors, then G− fulfills

bk = G−(0)bk + t−1
k G−(−1)bk + · · · + t−m

k G−(−m)bk (2.32)

for k = 1, . . . , r.
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Proof: Let Ĝ−[s] and Ĝ+[s] denote the matrices of generating functions for the

descending and ascending ladder height distributions. Notice that Ĝ−[s] is a matrix

of polynomials in 1/s and Ĝ+[s] a matrix of polynomials in s whereas F̂ [s] contains
mixed terms. The Wiener-Hopf identity (2.2) implies that

(I − F̂ [s]) = (I − #̂G+[s])(I − Ĝ−[s]) = (I − #̂G−[s])(I − Ĝ+[s]).

If |s| > 1 then spr(#̂G−[s]) < 1, hence a right eigenvector for F̂ [s] with eigenvalue

1 must also be a right eigenvector with eigenvalue 1 for Ĝ+[s]. Likewise, for |s| ≤ 1

we have that spr(#̂G+[s]) < 1 (when |s| = 1 this is a result of the negative drift

assumption), in which case a right eigenvector for F̂ [s] with eigenvalue 1 must be a

right eigenvector with eigenvalue 1 for Ĝ−[s]. Taking determinants, this observation
implies that the roots of

det(I − F̂ [s]) = 0

coincides for |s| > 0 with the roots of det(I − Ĝ+[s]) = 0 and for |s| ≤ 1 with the

roots of det(I − Ĝ−[s]) = 0. And the right eigenvectors corresponding to the roots
must also coincide. �
Since we can compute the roots and eigenvectors from F , we can hope that there are
sufficiently many roots so that G+ and G− can be identified uniquely. The matrix
G+ contains n|E|2 unknowns, so without other knowledge we will need at least n|E|
roots to have sufficiently many equations given by (2.31) to solve for G+. Clearly

det(I − Ĝ+[s]) can at most have degree n|E|, hence there can at most be n|E| roots.

But what is the degree of polynomials like det(I − Ĝ+[s]), and hence the number of
roots obtainable? Consider a general matrix polynomial A[s]. Write the polynomial
as

A[s] = A(0) + A(1)s + · · · + A(n)sn

with A(0), . . . , A(n) the coefficient matrices. Letting S denote the set of permuta-
tions on E, the formula

det(A[s]) =
∑
σ∈S

(−1)|σ|
∏
i∈E

A[s]iσ(i)

for computing the determinant implies that the term of degree n|E| have coefficient
det(A(n)), which is thus �= 0 if and only if A(n) is invertible.

An insufficient number of equations may occur for other reasons, also in the random
walk case, namely if some roots have multiplicity > 1. This is most likely only a
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theoretical problem that doesn’t occur in practical applications, but it is nevertheless
noteworthy.

A practical solution to the problem of an insufficient number of equations is to sim-
ply find the roots of det(I − F̂ [s]) = 0, then by other means figuring out which
entries in G+ and G− are equal to 0, and then finally hope that we have a sufficient
number of equations to solve for the remaining entries �= 0. For the practical ap-
plications discussed in this thesis in Chapter 7, the recursive algorithm given above
was implemented for the computation of G+ and G− and hence K∗.

2.6 A Poisson approximation

The last topic of this chapter is a Poisson approximation result for the sum of
possibly dependent Bernoulli variables. We will illustrate the use of this result by
studying the number of exceedances over a threshold for a reflected MAP, but before
doing so, we make a brief digression to certain relations between mixing coefficient.
The application is supposed to be an appetiser of the main results and techniques
of proof in Chapter 5 and Chapter 6.

Assume that I is some (finite) index set and let (Va)a∈I be a collection of Bernoulli
random variables. For each a ∈ I we assume that a subset Ba ⊆ I is given. Further-
more, for a ∈ I let

Fa = σ(Vb | b �∈ Ba)

be the σ-algebra generated by the variables not in Ba.

Rephrasing Theorem 1 in Arratia et al. (1989) gives:

Theorem 2.6.1 With Poi(λ) the Poisson distribution with mean λ for λ > 0, the
inequality ∣∣∣∣∣

∣∣∣∣∣D
(∑

a∈I

Va

)
− Poi

(∑
a∈I

E(Va)

)∣∣∣∣∣
∣∣∣∣∣ ≤ 2β (2.33)

holds with

β =
∑

a∈I,b∈Ba

E(Va)E(Vb) +
∑

a∈I,b∈Ba,b �=a

E(VaVb) +
∑
a∈I

E|E(Va|Fa) − E(Va)|. (2.34)

Note that since ||Poi(λ1) − Poi(λ2)|| ≤ |λ1 − λ2|, we can also obtain a Poisson
approximation using an approximation of the mean value of

∑
a E(Va). This is useful

if we can not compute
∑

a E(Va) but have a sufficiently good approximation.
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The theorem is credited to Arratia et al. (1989), who use the Chen-Stein-method.
In their own words, the essential ingredients for proving Theorem 1 in Arratia et al.
(1989), and hence Theorem 2.6.1 above, are contained in the original paper by Chen
(1975). The theorem holds as stated for all choices of sets Ba, a ∈ I, but it works
best (gives best bounds), if the sets are chosen with some care. In several cases, the
sets can be chosen such that the variables Vb for b �∈ Ba are independent of Va, in
which case the last term in β disappears. In this case it is common to call the set Ba

the neighbourhood of dependence of the variable Va. More generally, they must be
chosen so that there is a suitable tradeoff between the first two terms and the last
term in β. Since E|E(Va|Fa)−E(Va)| measures dependence between the variable Va

and the σ-algebra Fa, and since we want it to be sufficiently small, it is reasonable
in general to call Ba the neighbourhood of strong dependence of Va.

2.6.1 A note on mixing

To apply the theorem above – when the last term in β does not vanish – we need
to somehow bound variables of the form E|E(Va|Fa) − E(Va)|. We discuss in this
section a few useful results for giving bounds on such variables.

For two σ-algebras F and G (with (Ω,H, P) a probability field and F ,G ⊆ H) we
define the α-mixing measure of dependence as

α(F ,G) = sup
A∈F ,B∈G

|P(A ∩ B) − P(A)P(B)|.

The first lemma relates α-mixing measures to mean values of the desired form
E|E(η|F) − E(η)|.

Lemma 2.6.2 Let F and G be σ-algebras and let A ∈ G. With η = 1(A)

E|E(η|F) − E(η)| ≤ 2α(F ,G). (2.35)

Proof: With B = (E(η|F) ≥ E(η)) ∈ F and ξ = 1(B) we see that

E|E(η|F) − E(η)| = E(ξ(E(η|F) − E(η))) − E((1 − ξ)(E(η|F) − E(η)))

= 2(E(ξη) − E(ξ)E(η))

= 2(P(A ∩ B) − P(A)P(B)) ≤ 2α(F ,G).

�
The β-mixing measure of dependence between the σ-algebras F and G is defined as

β(F ,G) = E(sup
A∈F

|P(A|G) − P(A)|).
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Lemma 2.6.3 If F1, F2 and G are σ-algebras it holds, with F1 ∨ F2 denote the
smallest σ-algebra containing F1 and F2, that

α(F1 ∨ F2,G) ≤ α(F2,G) + β(F2 ∨ G,F1) + β(F2,F1). (2.36)

Proof: Introduce the sets

B =

{
n⋃

j=1

A1j ∩ A2j | A1j ∈ F1, A2j ∈ F2, n ≥ 1

}

and, with c = α(F2,G) + β(F2 ∨ G,F1) + β(F2,F1),

A = {A ∈ F1 ∨ F2 | ∀B ∈ G : |P(A ∩ B) − P(A)P(B)| ≤ c}.

We prove that B is an algebra and that A is a monotone class containing B.

We see that indeed ∅, Ω ∈ B and that B is closed under finite unions. If A =
∪n

j=1A1j ∩ A2j we have that

Ac =
n⋂

j=1

Ac
1j ∪ Ac

2j =
⋃
f

n⋂
j=1

Ac
f(j)j,

where the last union is taken over all functions f : {1, . . . , n} → {1, 2}. Observe that

n⋂
j=1

Ac
f(j)j =

⋂
j:f(j)=1

Ac
1j ∩

⋂
j:f(j)=2

Ac
2j,

so defining Ãif = ∩j:f(j)=iA
c
ij ∈ Fi for i = 1, 2 we see that

Ac =
⋃
f

Ã1f ∩ Ã2f ∈ B,

and B is an algebra.

Using continuity of the probability measure P we see that A is a monotone class.

Finally, we show that B ⊆ A . Let A = ∪n
j=1A1j ∩ A2j ∈ B where A1j ∈ F1 and

A2j ∈ F2. We can assume w.l.o.g. that A11, . . . , A1n are disjoint. We get that for
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B ∈ G

|P(A ∩ B) − P(A)P(B)| =

∣∣∣∣∣
n∑

j=1

P(A1j ∩ A2j ∩ B) − P(A1j ∩ A2j)P(B)

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

j=1

P(A1j ∩ A2j ∩ B) − P(A1j)P(A2j ∩ B)

∣∣∣∣∣
+

∣∣∣∣∣
n∑

j=1

P(A1j)P(Aj2 ∩ B) − P(A1j)P(A2j)P(B)

∣∣∣∣∣
+

∣∣∣∣∣
n∑

j=1

P(A1j ∩ A2j)P(B) − P(A1j)P(A2j)P(B)

∣∣∣∣∣ .
For the first term we have that∣∣∣∣∣

n∑
j=1

P(A1j ∩ A2j ∩ B) − P(A1j)P(A2j ∩ B)

∣∣∣∣∣
≤

n∑
j=1

E(1A1j
|P(A2j ∩ B|FI1) − P(A2j ∩ B)|) ≤ β(F2 ∨ G,F1).

For the second term∣∣∣∣∣
n∑

j=1

P(A1j)P(Aj2 ∩ B) − P(A1j)P(A2j)P(B)

∣∣∣∣∣
≤

n∑
j=1

P(A1j) |P(Aj2 ∩ B) − P(A2j)P(B)| ≤ α(F2,G).

And for the last term we have∣∣∣∣∣
n∑

j=1

P(A1j ∩ A2j)P(B) − P(A1j)P(A2j)P(B)

∣∣∣∣∣
≤ P(B)

n∑
j=1

E(1A1j
|P(A2j|FI1) − P(A2j)|) ≤ β(F2,F1).

This proves that A ∈ A and hence B ⊆ A .

Obviously σ(B) = F1 ∨F2 and we conclude that in fact A = F1 ∨F2 (Neveu 1965,
Proposition I.4.2), and (2.36) holds by the definition of the α-mixing measure of
dependence. �
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For a stationary stochastic process (Zn)n∈Z taking values in some set E, and for
a subset I ⊆ Z, we define the corresponding σ-algebra FI = σ(Zn; n ∈ I). The
β-mixing coefficient is defined as

β(n) = β(F[n,∞),F(−∞,0]) = E sup
A∈F[n,∞)

|P(A|F(−∞,0]) − P(A)|, (2.37)

for n ≥ 1 and the process (Zn)n∈Z is called β-mixing, if β(n) → 0 for n → ∞. For
two subsets I, J ⊆ Z, the distance, d(I, J), between the sets is defined as

d(I, J) = inf
n∈I,m∈J

|n − m|.

We call I ⊆ Z an interval if I is either empty, if I = {n, n+1, . . . , m−1,m} for some
n ≤ m ∈ Z, in which case we write I = [n,m], or if I = {. . . , n − 1, n} = (−∞, n]
or I = {n, n + 1, . . . , } = [n,∞). If I, J ⊆ Z are two subsets of integers, we write
I < J if n < m for all n ∈ I and m ∈ J .

Theorem 2.6.4 Assume that I1 < I2 < . . . < Iκ is an increasing sequence of
intervals in Z with κ ≥ 2. With with I = ∪i oddIi and J = ∪i evenIi it holds that

α(FI ,FJ) ≤ (2κ − 3)β(d(I, J)).

Proof: The proof is by induction on κ. For κ = 2, I1 ⊆ (−∞,m] and I2 ⊆ [n,∞)
with d(I1, I2) = d(I, J) = n − m. By stationarity we get that

α(FI ,FJ) ≤ sup
A∈F(−∞,0],B∈F[n−m,∞)

|P(A ∩ B) − P(A)P(B)|

≤ sup
B∈F[n−m,∞)

E(1B sup
A∈F[n−m,∞)

|P(A|F(−∞,0]) − P(A)|)

≤ β(n − m) = β(d(I, J)).

So the result holds for κ = 2. For the induction step, assume that the result holds
for κ− 1 ≥ 2 intervals. With F1 = FI1 , F2 = FI\I1 and G = FJ we get from Lemma
2.6.3 that

α(FI ,FJ) = α(F1 ∨ F2,G) ≤ α(F2,G) + β(F2 ∨ G,F1) + β(F1,F2)

The first term is bounded by (2(κ − 1) − 3)β(d(I, J)) by the induction hypothesis
and both of the two other terms are bounded by β(d(I, J)), and the result follows.

�
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2.6.2 The counting of exceedances for a MAP

We want to use the Poisson approximation in Theorem 2.6.1 to approximate the
number of times the reflected MAP exceeds some level t, but we can not do so
directly, since such excesses occur in clumps. Thus we need a way to declump the
excesses. This is done by decomposing the reflected MAP into clumps and then
count whether or not a clump contains an excursion exceeding t.

The path of the reflected MAP (Tn)n≥0 may, as described in Section 2.4, be decom-
posed into regenerative cycles given by the descending ladder epochs. In between,
the process makes excursions into the positive halfline (0,∞). It seems natural to
divide the process into clumps with each clump corresponding to such an excursion.
We define for n ≥ 1 and k ≥ 0 the stopping time

en(k) = min(τ−(k), n).

For k ≥ 1 and en(k−1) < n, the k’th excursion before time n occur from en(k−1) =
τ−(k− 1) to en(k). Note that the last excursion before time n may not be complete.
The maximum of the k’th excursion when en(k − 1) < n is defined as

Mk = max
en(k−1)≤m<en(k)

Tm.

For t > 0 a given threshold we define for en(k − 1) < n

Uk(t) = 1
(Mk > t

)
,

which count whether the excursion occurring between time en(k − 1) and en(k)
exceeds level t. We note that with these definitions

(Mn ≤ t) =

 ∑
k:en(k−1)<n

Uk(t) = 0


for all n ≥ 1 and t > 0.

Theorem 2.6.5 Let z ∈ R be given, put

tn =
1

θ∗
(log(K∗n) + z),

and define zn ∈ [0, θ∗) by zn = θ∗(tn − �tn�). Then∣∣∣∣∣∣
∣∣∣∣∣∣D
 ∑

k:en(k−1)<n

Uk(tn)

− Poi (exp(−z + zn))

∣∣∣∣∣∣
∣∣∣∣∣∣→ 0.
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In particular,

Pi(Mn ≤ tn) − exp(− exp(−z + zn)) → 0

for n → ∞.

Remark 2.6.6 One particularly nice feature about the Poisson approximation given
in Theorem 2.6.5 is that the events we count – the number of excursions exceed-
ing level tn – can be found without knowledge of the underlying controlling Markov
chain (Jn)n≥0. Thus everything is defined completely in terms of the reflected process
(Tn)n≥0.

We need the following lemma in the proof. It gives a probability estimate for the
event that some arbitrary index k is contained in an excursion exceeding t.

Lemma 2.6.7 There exist constants K1 and K2 such that for any k ≤ n and t > 0

Pi

(
max

0≤δ<k≤δ+∆≤n

∆∑
r=1

Zδ+r > t

)
≤ K1(log n)2 exp(−θ∗t) + K2n

−2

Proof: Fix any θ ∈ (0, θ∗) so that ψ(θ) < 0. By an exponential change of measure

Pi

(
∆∑

r=1

Zδ+r > t

)
≤ E

θ
i

(
rθ
i

rθ
J∆

exp(−θS∆ + ∆ψ(θ)); S∆ ≥ 0

)
≤ K2 exp(∆ψ(θ)).

With κ = −4/ψ(θ) > 0 this implies that

Pi

(
max

0≤δ<k≤δ+∆≤n
∆>κ log n

∆∑
r=1

Zδ+r > t

)
≤ K2n

−2.

When ∆ ≤ κ log n there are at most (κ log n)2 possible choices of δ and ∆ and using
the Lundberg-type inequality (2.14) we get that

Pi

(
max

0≤δ<k≤δ+∆≤n
∆≤κ log n

∆∑
r=1

Zδ+r > t

)
≤ K1(log n)2 exp(−θ∗t),

and the result follows. �
Proof of Theorem 2.6.5: We assume that we work under the measure Pπ so that
the Markov chain (Jn)n≥0 is stationary. One can either with a little more work extend
the proof to be valid also in the non-stationary case.
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Let l = ln ∼ (log n)3 be a sequence of integers, and let I = {0, l, 2l, . . . , �n/l� l} be
the index set. Define the variables

Vk = 1

(
max

k<δ≤∆≤k+l

∆∑
r=δ

Zr > tn

)

for k ∈ I. We will show, using Theorem 2.6.1, that
∑

k∈I Vk asymptotically as
n → ∞ has a Poisson distribution, and that it is a sufficiently good approximation
of
∑

k:en(k−1)<n Uk(tn).

With Bk = {k − l, k, k + l} ∩ I for all k ∈ I, we will show that β defined by (2.34)
in Theorem 2.6.1 tends to 0 for n → ∞. Lemma 2.4.6 implies that Pi(Vk = 1) ≤
Kl exp(−θ∗tn) for some constant K, so

Ei(Vk)Ei(Vk′) ≤
(

K exp(−z)

K∗

)2

l2n−2 = K̃l2n−2,

hence ∑
k∈I,k′∈Bk

Ei(Vk)Ei(Vk′) ≤ 3K̃|I|l2n−2 ∼ K̃ln−1 → 0

for n → ∞. For k′ = k + l it follows by the Markov property that

Pi(Vk = 1, Vk′ = 1) =
∑
j∈E

Pi(Vk = 1, Jk′ = j)Pj(V1 = 1).

So we have a similar estimate Ei(VkVk′) ≤ K̃l2n−2 as above, and the second term in
β tends to 0 too for n → ∞.

For the last term, note that the bivariate Markov process (Jn, Zn)n≥1 under Pπ can
be viewed as part of doubly infinite, stationary Markov process (Jn, Zn)n∈Z. We use
the Markov property of this process to get for A ∈ F[n,∞) that

|P(A | F(−∞,0]) − Pπ(A)| = |PJ0(A) − Pπ(A)|

=

∣∣∣∣∣∑
j∈E

(P n
J0j − πj)Pj(A)

∣∣∣∣∣ ≤∑
j∈E

|P n
J0j − πj|.

By the exponentially fast convergence of P n
ij → πj for n → ∞, we get exponentially

fast β-mixing, i.e. for some K, γ > 0

β(n) ≤ K exp(−γn).

With I1 = (−∞, k − l], I2 = [k + 1, k + l], and I3 = [k + 2l + 1,∞) we see that
Fk ⊆ FI1∪I3 and Vk is measurable w.r.t. FI2 . From Theorem 2.6.4 we have that
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α(FI1∪I3 ,FI2) ≤ 3β(l), and since trivially α(Fk,FI2) ≤ α(FI1∪I3 ,FI2) we obtain
from Lemma 2.6.2 that

Eπ(|E(Vk | Fk) − Eπ(Vk)|) ≤ 6β(l) ≤ K exp(−γl) = o(n).

Hence the third term in β tends to zero for n → ∞.

This implies that
∑

k∈I Vk can be approximated asymptotically by a Poisson distri-
bution. By stationarity Eπ(Vk) = Pπ(V1 = 1) and

Pπ(V1 = 1) = Pπ

(
max

k<δ≤∆≤k+l

∆∑
r=δ

Zr > tn

)

= Pπ

(
max

k<δ≤∆≤k+l

∆∑
r=δ

Zr > tn − zn

θ∗
= �tn�

)
,

since Zn ∈ Z for all n. The mean of
∑

k∈I Vk can therefore be approximated by∑
k∈I

Eπ(Vk) ∼ |I|lK∗ exp(−θ∗tn + zn) → exp(−z + zn),

which follows from Lemma 2.4.6 – using that tn − zn/θ∗ = �tn� ∈ Z.

To prove that
∑

k:en(k−1)<n Uk(tn) also follows a Poisson law asymptotically with

mean exp(−z + zn), we prove that

Pi

 ∑
k:en(k−1)<n

Uk(tn) �=
∑
k∈I

Vk

→ 0

and the result then follows from the coupling inequality. If (i) the start and end
of any excursion exceeding tn before time n fall within an interval of the form
{k + 1, . . . , k + l} for some k ∈ I and (ii) no two excursions exceeding tn start and
end within the same such interval, then each excursion is clearly counted exactly once
by

∑
k∈I Vk and the two counting variables are equal. We show that the probability

of (i) and (ii) tends to 1 as n → ∞. The probability that some index in I is contained
within an excursion exceeding level tn is by Lemma 2.6.7 smaller than

|I| (K1(log n)2 exp(−θ∗tn) + K2n
−1
) ≤ K̃(|I|(log n)2n−1 + |I|n−2) → 0.

The probability that two excursions exceeding tn both occur within an interval
{k + 1, . . . , k + l} for some k ∈ I is smaller than

|I|l2K2 exp(−2θ∗tn) ≤ K̃|I|l2n−2 → 0.

Finally, the probability that an excursion exceeding tn occurs in the last interval
{�n/l� l + 1, . . . , n} is smaller than K̃ln−1 → 0. This completes the proof. �
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Notes

As mentioned, one can find most of the material presented here in the literature. An
excellent reference is Asmussen (2003), which contains most of the general theory
about Markov additive processes. The proof of Theorem 2.4.1 is just a spelled out
version of the (sketchy) proof of Theorem XIII.8.3. in Asmussen (2003). The result
was first proved in Karlin & Dembo (1992) based on the asymptotic behaviour of
the solution to a defective Markov renewal equation, and though their proof employs
many of the same ingredients as the proof by exponential change of measure, the
present proof seems more direct and slightly smoother. Studying Markov modulated
queues, essentially the same result was obtained independently by Asmussen & Perry
(1992). The obvious way to establish (2.24) through regenerative methods is by estab-
lishing a result like (2.20) in Theorem 2.4.3. Proposition 10.1 in Asmussen & Perry
(1992) has a similar content but a different proof, and Karlin & Dembo (1992) use
another approach to establish (2.24). For the ordinary random walk, Theorem 2.4.1
and (2.24) go back to Iglehart (1972). Lemma 2.4.6 is probably new in the frame-
work of MAPs but the lemma and its proof are essentially identical to Lemma 1 by
Dembo et al. (1994b), who consider only random walks. The recursive algorithm for
computing the constant K∗ stated in Theorem 2.5.2 was given by Karlin & Dembo
(1992), although a proof that it works correctly was not included in the paper. The
spectral method given by Theorem 2.5.2 is a straight forward extension of results
from random walk theory going back to Wald (1947), cf. also Section VIII.5a in As-
mussen (2003). In the MAP setup some complications arise as demonstrated, which
make the use of the spectral method somewhat more complicated in practice. The
mixing result in Theorem 2.6.4 for κ = 3 is identical to Theorem 3.1 in Takahata
(1981). A general version similar to Theorem 2.6.4 was stated as Theorem 1.3.3. in
Doukhan (1994). Finally, the approach taken to prove Theorem 2.6.5 is most likely
new, but the result is not really new and the proof is not likely to be neither the
easiest nor the best available. The approach presented was chosen solely to introduce
a result and some arguments similar to those that will appear in Chapter 5 and 6.
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Heavy Tailed Excursions

3.1 Introduction

The results obtained in Chapter 2 about the cycle maximum for a reflected MAP
are all proved under the assumption that the Φ(θ)-matrix is finite. Thus the in-
crements must have sufficiently light tails. An obvious question is how important
this assumption is. If the increments are instead heavy tailed – where heavy tailed
has a technical meaning to be defined below – we show Theorem 3.2.1 below as an
analogue of Theorem 2.4.3. It turns out that in the heavy tailed case, results as
well as techniques of proof come out rather differently than in the light tailed case.
The consequence of Theorem 3.2.1 for the asymptotic distribution of the running
maximum of the reflected MAP can, however, be derived in the same way as in the
light tailed case.

To finish this chapter we discuss in Section 3.3 a different class of reflected processes
– the so-called fluid models – in discrete as well as in continuous time. We give a
few examples showing that the results obtained for heavy tailed Markov additive
processes are useful for understanding the behaviour of fluid models with long range
dependence.

3.2 Heavy tailed MAPs

Using the notation and setup from Chapter 2, we want to study the positive excur-
sions for Markov additive processes when the Hij’s are heavy tailed. The class of
subexponential distributions is a common choice of distributions with heavy tails. A

41
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probability measure H on [0,∞) (with tail H(x) = 1 − H(x)) is subexponential if

lim
x→∞

H ∗ H(x)

H(x)
= lim

x→∞

∫ x

0

H(x − y)

H(x)
H(dy) = 2.

A consequence of being subexponential is that limx→∞ H(x + y)/H(x) = 1 for all y.
Also

∫
exp(θx)H(dx) = ∞ for all θ > 0. Both properties are reasonable for what we

would expect of a heavy tailed distribution. Distributions with the former property
are often called long-tailed, and this property has the important interpretation that
the conditional distribution of the overshoot of x, conditionally on getting something
> x, tends to ∞ in law as x → ∞.

We let S denote the set of subexponential distributions on [0,∞). For many pur-
poses a sufficient regularity condition when studying extreme value theory is that
the distribution H considered belongs to S and/or that the integrated tail, H1,
defined by

Ĥ(x) =

∫ x

0

H(y)dy and H1(x) =
1∫

yH(dy)
Ĥ(x),

belongs to S . We will restrict our attention to another, slightly smaller class S ∗ of
distributions, H, on [0,∞) having finite expectation and with the property that

lim
x→∞

∫ x

0

H(x − y)

H(x)
H(y)dy = 2

∫ ∞

0

H(y)dy,

see Klüppelberg (1988). Most notably, Theorem 3 in Klüppelberg (1988) shows that
if H ∈ S ∗ then H ∈ S and H1 ∈ S , but we will explicitly need other properties
of S ∗. Klüppelberg (1988) also identifies several classes of long-tailed distributions
contained in S ∗. For instance the class of distributions with regularly varying tails.

Assume for the rest of this chapter that there exists H ∈ S ∗ such that with F ij(x) =
H ij(x)Pij it holds for all i, j ∈ E that

lim
x→∞

F ij(x)

H(x)
= γij (3.1)

for some γij ≥ 0 and at least one γij > 0. Let Γ denote the matrix (γij)i,j∈E. For
future reference, it is useful to note that the convergence

H(x + y)

H(x)
→ 1 (3.2)

is uniform for y in a compact set (Embrechts et al. 1997, Lemma 1.3.5). Thus we
get that

lim
x→∞

F ij(x + y)

H(x)
= γij (3.3)
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uniformly for y in a compact set.

Recall that if µ < 0 there exists a i0 ∈ E such that

σ = inf{n ≥ 1 | Tn = 0, Jn = i0} (3.4)

under Pi0 is an a.s. finite regeneration time for the reflected MAP (Jn, Tn)n≥0, and
that

Mσ = max
0≤n≤σ

Tn (3.5)

denotes the cycle maximum.

Theorem 3.2.1 Under the assumption (3.1) with H ∈ S ∗ and µ < 0

Pi0(Mσ > x) ∼ H(x)Ei0(σ) πΓ� (3.6)

for x → ∞.

Remark 3.2.2 As discussed in Remark 2.4.2, the global maximum M = maxn Sn

my also be of interest. In contrast to the light tailed case, the behaviour of the global
maximum in the heavy tailed case is somewhat different from the behaviour of the
cycle maximum. From Theorem 4 in Jelenković & Lazar (1998) we get that if µ < 0,
if H is long-tailed (in particular if H ∈ S ) and if the integrated tail H1 ∈ S , then

Pi(M > x) ∼ 1

|µ|Ĥ(x)πΓ� (3.7)

for x → ∞. If H ∈ S ∗ then as discussed H is long-tailed and H1 ∈ S in which
case (3.7) holds.

The proof of Theorem 3.2.1 is given in the next section. As argued in Section 2.4,
the asymptotic distribution of the running maximum Mn = max0≤k≤n Tn follows
as an easy consequence of the regenerative structure of (Jn, Tn)n≥0 and Theorem
3.2.1. We give a few examples, referring to Asmussen (2003), Proposition 4.7, and
Embrechts et al. (1997), Section 3.3, for further details. In particular Proposition
3.3.7 and Proposition 3.3.25 in Embrechts et al. (1997) are useful for identifying the
normalisation constants.

Example 3.2.3 If H has regularly varying tail at infinity with exponent −α, i.e.

lim
x→∞

H(yx)

H(x)
= y−α
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for all y > 0, then for any i ∈ E

Pi

(Mn

bn

≤ x

)
→ exp(−x−α), n → ∞ (3.8)

with bn satisfying

nH(bn) → 1

πΓ�
, n → ∞.

One can choose bn = H← (1 − 1/(nπΓ�)) with H← the generalised inverse of H
defined as H←(t) = inf{x ∈ R | H(x) ≥ t}. If H is tail equivalent to the power law
with exponent α, i.e.

lim
x→∞

H(x)xα = c,

we can choose bn = (ncπΓ�)1/α. �

Regularly varying distributions are ‘the most heavy tailed’ subexponential distribu-
tions. They give rise to the Fréchet limit distribution – the extreme value distribution
of type II. Other subexponential distributions with moderately heavy tails give rise
to the Gumbel distribution as limiting distribution but with different normalisation
compared to the light tailed case.

Example 3.2.4 If H belongs to S ∗ and in addition is tail equivalent to a Weibull
distribution with parameters α > 0 and β ∈ (0, 1), i.e.

lim
x→∞

H(x) exp(αxβ) = c

for some c > 0, then for any i ∈ E

Pi

(Mn − an

bn

≤ x

)
→ exp(− exp(−x)), n → ∞ (3.9)

with an and bn chosen as

an =
1

α1/β
(log n)1/β

(
1 + β

log(cπΓ�)

log n

)
and bn =

1

βα1/β
(log n)1/β−1.

Note that in the limit β → 1, we obtain the normalisation corresponding to the
light tailed case, where Pi(Mσ > x) ∼ exp(−θ∗x)Ei0(σ)K∗, but the constant K∗

compared to cπΓ� arises in quite a different way, and also the techniques of proof
differ a lot. �
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3.2.1 Proofs

The proof of Theorem 3.2.1 is divided into a number of lemmas. The idea in the
proof is to use the ‘one big jump’ heuristic for subexponential distributions, thus
an extreme value for the reflected MAP occurs due to one extreme increment. We
split the extreme event (Mσ > x) into the event where the jump to a level above
x happens from an intermediate level in [x0, x], x0 < x, and the event where the
jump happens form a level below x0. Then we show that the probability of the
first event is asymptotically negligible and that the probability of the last event has
the desired asymptotic behaviour. To deal with the former we use some non-trivial
downcrossing results due to Asmussen (1998) in the random walk setup – see also
Foss & Zachary (2003). This argument is developed in Lemma 3.2.5 to 3.2.7. In
Lemma 3.2.8 we derive the asymptotic behaviour when jumps occur from a level
below some x0 and Lemma 3.2.9 shows, using the downcrossing results, that the
other probability vanishes asymptotically.

Let R be the matrix of occupation measures for the MAP, i.e. let

Rij(D) =
∞∑

n=0

Pi(Jn = j, Sn ∈ D).

By the definition of convolution of matrix measures, the occupation measure can be
written as R =

∑∞
n=0 F ∗n.

For the matrices G− and #G+ we define the corresponding renewal measures by

U− =
∞∑

n=0

G∗n
− and #U+ =

∞∑
n=0

(
#G+

)∗n
.

And we define the occupation measure up to time τ− as

R−,ij(D) = Ei

τ−−1∑
n=0

1(Jn = j, Sn ∈ D)

A few algebraic manipulations like those in Proposition XI.2.13 in Asmussen (2003)
show that #U+ = R−, thus #U+ is in particular a matrix of finite measures.

The Wiener-Hopf factorisation, Theorem 2.2.1, for MAPs implies the equation

R(D) = U− ∗ #U+(D) (3.10)

for the occupation measure, valid for D ⊆ R a bounded set.

The following lemma is a useful renewal theorem for MAPs.
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Lemma 3.2.5 If µ < 0, it holds (in the non-lattice case) that

Rij ((z, z + y]) → y
πj

|µ| , z → −∞,

for all y > 0.

Proof: One recalls that ||G−|| is the transition probabilities for the Harris recurrent
Markov chain (Jτ−(n))n≥0. Let ν be the (unique) left invariant probability vector for
||G−||. The Blackwell-type renewal theorem (in the non-lattice case, cf. Example
2.1.1) gives that

U−,ij ((z, z + y]) → y
νj

|µ−| , z → −∞,

where µ− =
∑

i,j∈E νi

∫
t G−,ij(dt). Observing that U−,ij is finite on compact intervals

and 0 on [0,∞) we get that there exist constants α1, α2 > 0 such that for all i, j ∈ E,
y > 0 and z ∈ R

U−,ij ((z, z + y]) ≤ α1 + α2y. (3.11)

The Wiener-Hopf identity (3.10) together with dominated convergence imply that

Rij ((z, z + y]) =
∑
k∈E

U−,ik ∗ #U+,kj ((z, z + y]) (3.12)

=
∑
k∈E

#U+,kj ∗ U−,ik ((z, z + y])

→ y

|µ−|
∑
k∈E

νk||#U+||kj, z → −∞.

From the Wiener-Hopf identity

I − P = I − ||F || = (I − ||#G+||)(I − ||G−||)

it follows by multiplying with π from the left that ν ∝ π(I − ||#G+||) �= 0 or

π ∝ ν||#U+||.

Using that #U+ = R− where
∑

j∈E ||R−,ij|| = Ei(τ−), the constant of proportionality

is seen to be
∑

i∈E νiEi(τ−) = Eν(τ−), hence
∑

k∈E νk||#U+||kj = Eν(τ−)πj. The
result now follows from the Wald identity Eν(τ−)µ = µ−. �
Of course a similar result holds in the lattice case. We skip the details.

For x > 0 let

Nσ(x) =
σ−1∑
n=0

1(Tn > x, Tn+1 ≤ x)
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be the number of downcrossings of level x before time σ. Let

ρ(x) = inf{n ≥ 1 | Sn ≤ −x}

be the time of the first downcrossing for the MAP of level −x, and if also y > 0
denote by

N(x, y) =

ρ(x+y)−1∑
n=0

1(Sn > −x, Sn+1 ≤ −x)

the number of downcrossings of level −x before a level below −(x + y) is reached.
Note that

N(x, y) ↗ N(x) =
∞∑

n=0

1(Sn > −x, Sn+1 ≤ −x)

for y → ∞, where N(x) is the total number of downcrossings of level −x. Let in the
following m− be the matrix (m−,ij)i,j∈E given by

m−,ij =

∫ ∞

0

Fij(−z)dz.

Lemma 3.2.6 When µ < 0 it holds for all i ∈ E that

EiN(x) → πm−�
|µ| , x → ∞,

and the convergence
EiN(x, y) ↗ EiN(x), y → ∞

is uniform in x.

Proof: By conditioning on the value of (Jn, Sn) for n ≥ 0 we get using Lemma
3.2.5 that for all i ∈ E

EiN(x) =
∑

j,k∈E

∫ ∞

−x

Fjk(−(x + y))Rij(dy)

=
∑

j,k∈E

∫ ∞

0

Fjk(−z)Rij(dz − x) (3.13)

→
∑

j,k∈E

πj

|µ|
∫ ∞

0

Fjk(−z)dz, x → ∞

=
πm−�
|µ| .
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To prove the uniform convergence, use (3.11) combined with (3.12) to find an α such
that Rjk([z, z + 1)) ≤ α for all z, then using (3.13) above,

EiN(x) ≤
∑

j,k∈E

∞∑
n=0

Fjk(−n)Rij([n − x, n − x + 1))

≤ α
∑

j,k∈E

∞∑
n=0

Fjk(−n) < ∞.

The right hand side is finite due to Hij having finite mean and it is independent of
x. With M = maxn≥0 Sn and using the strong Markov property we obtain

0 ≤ EiN(x) − EiN(x, y)

= Ei

∞∑
n=ρ(x+y)

1(Sn>−x,Sn+1≤−x)

≤ max
j

Pj(M > y) sup
z

Ej(N(z)) → 0

uniformly in x since M < ∞ almost surely. �

Lemma 3.2.7 Under the assumption (3.1) and µ < 0

lim
x→∞

Ei0Nσ(x)

H(x)
=

Ei0(σ)

|µ| πΓ�πm−�.

Proof: By the regeneration property of (Jn, Tn)n≥0 the invariant distribution, λ, for
the reflected MAP can be represented as

λ(i, A) =
1

Ei0(σ)
Ei0

(
σ−1∑
k=0

1(Jk = i, Tk ∈ A)

)
,

for A ∈ B, which gives that

Ei0Nσ(x) = Ei0(σ)
∑
i,j∈E

∫ ∞

x

Fij(x − y)λ(i, dy). (3.14)

By Remark 2.4.2, cf. also Remark 3.2.2, the invariant distribution λ coincides with

the distribution of (
←−
J0,

←−M) if
←−
J0 has distribution π. Since

lim
x→∞

←−
P ij(1 −←−

H ij(x))

H(x)
= lim

x→∞
πjF ji(x)/πi

H(x)
=

πjγji

πi

.
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we obtain from (3.7) in Remark 3.2.2 that

λ(i, (x,∞))

Ĥ(x)
=

Pπ(
←−
J0 = i,

←−M > x)

Ĥ(x)
→ πi

|µ|πΓ�, x → ∞.

The right tail of λ(i, ·) is thus asymptotically equivalent to a measure proportional
to H(x)dx, cf. the definition of Ĥ(x). Since Fij(x) =

∫ x

−∞ Fij(dz), we get by inter-
changing the order of integration that∫ ∞

x

Fij(x − y)H(y)dy =

∫ 0

−∞

∫ x−z

x

H(y)dyFij(dz)

∼ H(x)

∫ 0

−∞
−zFij(dz) = H(x)

∫ −∞

0

Fij(−z)dz

for x → ∞. Here we use that
∫ x−z

x
H(y)dy ∼ −zH(x) by (3.2). Thus if we can just

substitute λ(i, ·) in the limit with the tail equivalent measure, we get that for all
i, j ∈ E. ∫∞

x
Fij(x − y)λ(i, dy)

H(x)
→ πΓ�

|µ| πi

∫ ∞

0

Fij(−z)dz, x → ∞. (3.15)

To formalise the argument, Corollary 1 in Asmussen et al. (2002) implies that the
substitution of λ(i, ·) is indeed valid – provided as assumed that H ∈ S ∗.

Using (3.14), we conclude by summing over i, j in (3.15) that

Ei0Nσ(x)

H(x)
→ Ei0(σ)

|µ| πΓ�πm−�, x → ∞.

�
Let

τ(x) = inf{n ≥ 1 | Tn > x}
so that (Mσ > x) = (τ(x) < σ), and let for x0 < x, y0 ≥ 0

A(x, x0, y0) = (τ(x) < σ, Tτ(x) > x + y0, Tτ(x)−1 < x0).

That is, A(x, x0, y0) is the event that the T -process will exceed x before time σ, and
when doing so the process jumps from a value below x0 to a value above x + y0.

Lemma 3.2.8 Under the assumption (3.1) and µ < 0,

lim
x0→∞

lim
x→∞

Pi0(A(x, x0, y0))

H(x)
= Ei0(σ) πΓ� (3.16)

for all y0 ≥ 0.
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Proof: Put σ(x) = σ ∧ τ(x). Then

Pi0(A(x, x0, y0)) =
∞∑

n=1

Pi0(Tn > x + y0, Tn−1 < x0, σ(x) ≥ n)

=
∑
i,j∈E

∞∑
n=1

Pi0(Tn > x + y0, Tn−1 < x0, Jn−1 = i, Jn = j, σ(x) ≥ n)

=
∑
i,j∈E

∞∑
n=1

∫ x0

0

F ij(x + y0 − y)Pi0(Tn−1 ∈ dy, Jn−1 = i, σ(x) ≥ n).

Using that the convergence in (3.3) is uniform for y ∈ [0, x0] and that σ(x) ↗ σ for
x → ∞ we get that

Pi0(A(x, x0, y0))

H(x)
→

∑
i,j∈E

∞∑
n=1

γijPi0(Tn−1 < x0, Jn−1 = i, σ ≥ n).

Letting x0 → ∞, the result follows by using that

∞∑
n=1

Pi0(Jn−1 = i, σ ≥ n) =
σ−1∑
n=0

Pi0(Jn = i) = πiEi0(σ).

�
For x0 < x let A(x, x0) = A(x, x0, 0) = (τ(x) < σ, Tτ(x)−1 < x0) and let B(x, x0) =
(τ(x) < σ, Tτ(x)−1 ≥ x0).

Lemma 3.2.9 Under the assumption (3.1) and µ < 0,

lim
x0→∞

lim sup
x→∞

Pi0(B(x, x0))

H(x)
= 0. (3.17)

Proof: With κ = πm−�/|µ| and for ε > 0 be given, choose x and y0 large enough
such that according to Lemma 3.2.6

Ej(N(y − x, x)) ≥ κ − ε

for y ≥ x+y0 and all j ∈ E. On the event (τ(x) < σ), the number of times Tn crosses
level x from above after time τ(x) and before time σ is larger than the number of
times Tn crosses level x from above after time τ(x) and before hitting zero. Hence
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the strong Markov property of (Jn, Tn)n≥0 gives

Ei0(Nσ(x); A(x, x0)) ≥ Ei0(EJτ(x)
(N(Tτ(x) − x, x)); A(x, x0))

=
∑
j∈E

∫ ∞

x

Ej(N(y − x, x))Pi0(Tτ(x) ∈ dy, Jτ(x) = j, A(x, x0))

≥
∑
j∈E

∫ ∞

x+y0

Ej(N(y − x, x))Pi0(Tτ(x) ∈ dy, Jτ(x) = j, A(x, x0))

≥ (κ − ε)Pi0(A(x, x0, y0)).

Using Lemma 3.2.8

lim
x0→∞

lim inf
x→∞

Ei0(Nσ(x); A(x, x0))

H(x)
≥ Ei0(σ)(κ − ε) πΓ�

Since ε > 0 was arbitrary and

1(B(x, x0)) ≤ Nσ(x)1(B(x, x0)) = Nσ(x) − Nσ(x)1(A(x, x0))

we get from Lemma 3.2.7 that

lim
x0→∞

lim sup
x→∞

Pi0(B(x, x0))

H(x)
≤ Ei0(σ) πΓ�

(
πm−�
|µ| − κ

)
= 0.

�
Proof of Theorem 3.2.1 From the identity

Pi0(Mσ > x) = Pi0(A(x, x0)) + Pi0(B(x, x0)).

the result (3.6) follows immediately from Lemma 3.2.8 and 3.2.9. �

3.3 Fluid models

We will consider a different class of models where the same kind of heavy tailed
behaviour can occur, but instead of occurring directly as a consequence of one big
jump the heavy tails occur due to an aggregation of (smaller) increments over a very
long periods. We will consider discrete as well as continuous time processes, and we
choose not to distinguish between them in notation. Thus t ≥ 0 means either t ∈ N0

or t ∈ [0,∞). In continuous time we always assume that the processes are cadlag.
For a real-valued process (St)t≥0 with S0 = 0 we define its reflection, (Tt)t≥0, at the
zero barrier by

Tt = St − inf
0≤s≤t

Ss. (3.18)



52 Heavy Tailed Excursions

This definition coincides by (2.10) with the definition of the reflection of a discrete
time MAP. To relate general continuous time processes to the results of the previous
section, we need the following definition.

Definition 3.3.1 An increasing sequence of stopping times (ρn)n≥0 with ρ0 = 0 is
called a sequence of Markov additive sampling times if there exists a Markov chain
(Jn)n≥0 with finite state space E such that the process (Sρn , Jn)n≥0 is a MAP.

By the definition (3.18), the reflection of a sampled process is always less than sam-
pling the reflection of the original process. That is, if (T ρ

n)n≥0 denotes the reflection
of (Sρn)n≥0 for an increasing sequence of stopping times ρ = (ρn)n≥0, it holds for all
ρ that

Tρn ≥ T ρ
n for all n ≥ 0. (3.19)

Thus if there is a sequence of Markov additive sampling times, we immediately get a
lower bound on the cycle maximum of the original reflected process in terms of the
cycle maximum for the reflected Markov additive process. We claim that in some
cases this bound is sharp, and we give examples for which the bound is always an
equality. For these examples the most difficult problem is to verify that relevant
properties of the distributions of the increments Sρn − Sρn−1 hold for the sampled
MAP.

A suitable framework for examples is that of fluid models controlled by an underlying
process (Jt)t≥0, which we call the state process, taking values in a finite set E. We
will be able to find a sequence of Markov sampling times for such fluid models if the
state process is a semi-Markov chain and if the fluid rates (to be defined below) are
conditionally independent given the state process. Defining the jump times, (ρn)n≥0,
for the state process by ρ0 = 0 and

ρn = inf{t > ρn−1 | Jt �= Jρn−1}, n ≥ 1,

the state process (Jt)t≥0 is a semi-Markov chain if (Jρn , ρn)n≥0 is a Markov renewal

process. In other words, if (J̃n, ρn)n≥0 denotes a Markov renewal process, there is a
corresponding semi-Markov chain (Jt)t≥0 defined by

Jt = J̃n for ρn ≤ t < ρn+1.

We usually call ρn+1−ρn the duration that the semi-Markov chain stays in the state
Jρn , and the conditional distributions of ρn+1 − ρn given Jρn and Jρn+1 are called
the duration distributions. We assume in the following that (Jt)t≥0 is a semi-Markov
chain such that the sampled Markov chain (Jρn)n≥0 has transition probabilities given
by P , which is irreducible and aperiodic with invariant probability measure π. The
fluid rates are assumed to be given by a sequence of processes X̃n = (X̃n

s )0≤s<ρn+1−ρn
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for n = 0, 1, . . ., which are conditionally independent given (Jρn)n≥0 and such that

the conditional distribution of X̃n depends on Jρn only. Thus the fluid rates consist
of a sequence of stochastic real valued functions defined on the stochastic intervals
[0, ρn+1 − ρn). The fluid rate process (Xt)t≥0 is then defined as

Xt = X̃n
t−ρn

if ρn ≤ t < ρn+1

and we define (St)t≥0 by

St =

∫ t

0

Xtdt (3.20)

with summation substituting integration in discrete time. The reflection, (Tt)t≥0, of
(St)t≥0 at the zero-barrier is then called the fluid model controlled by (Jt)t≥0 with
fluid rate (Xt)t≥0. The interpretation is that of a container where the fluid flow is
given by (Xt)t≥0, which is controlled by the underlying process (Jt)t≥0. Whenever the
container becomes empty, nothing flows out and it remains empty until something
flows in again, hence the reflection at zero.

Due to irreducibility there is an i0 such that

σ = inf{n ≥ 1 | Jρn = i0, T
ρ
n = 0}

is a regeneration time for the reflection of the sampled MAP (Jρn , T ρ
n)n≥0. Defining

σ̃ = inf{t > 0 | Jt = i0, Jt− �= i0, Tt = 0}
we have σ̃ ≥ ρσ and σ̃ is a regeneration time for (Jt, Tt)t≥0 if σ̃ < ∞ a.s. Introduce
also

Mρ
σ := max

0≤n≤σ
T ρ

n

and if σ̃ < ∞ a.s.

Mσ̃ := max
0≤t≤σ̃

Tt,

for which we in general have Mσ̃ ≥ Mρ
σ.

Lemma 3.3.2 If the fluid rate process has constant sign in between jumps, i.e. if
for all n ≥ 0 either

X̃n
s ≥ 0 for all s ∈ [0, ρn+1 − ρn) or

X̃n
s ≤ 0 for all s ∈ [0, ρn+1 − ρn)

we have that
σ̃ = ρσ and Mσ̃ = Mρ

σ. (3.21)
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Proof: By the constant sign condition imposed, the process (St)t≥0 (as well as
its reflection) is monotone in between the jumps of the underlying semi-Markov
process, hence the infimum up to a jump time ρn must occur at another jump time
ρk, k ∈ {0, . . . , ρn}. This implies that T ρ

n = Tρn for all n ≥ 0. Therefore, since σ̃
necessarily is a jump time, it equals ρσ. Finally, again by monotonicity, the reflected
process takes its maximum Mσ̃ over the time interval [0, σ̃] at a jump time, hence
the maximum equals Mρ

σ. �
This lemma gives a class of fluid models for which the asymptotic behaviour of the
cycle maximum can be treated very easily by e.g. Theorem 3.2.1, if we can verify
the necessary conditions for the increment distributions for the sampled MAP. In
general the increment distributions, (Hij)i,j∈E, for the sampled MAP are given by

Hij(x) = Pi

(∫ ρ1

0

Xsds ≤ x | J1 = j

)
.

Example 3.3.3 The simplest case is when the rates are constant in between jumps.
That is, assume that X̃n

s = X̃n
0 for all s ∈ [0, ρn+1−ρn). Assume that the conditional

distribution of X̃n
0 given Jn = i is Ki with mean ζi, and that the conditional distri-

bution of ρn+1 − ρn given Jn = i and Jn+1 = j is Lij with mean ξij. The increment
distribution Hij then has mean

µij = ζiξij,

for i, j ∈ E. Therefore the invariant mean drift for the sampled MAP is

µ =
∑
i,j

πiPijζiξij.

We assume that µ < 0 and assume, furthermore, that there exists a distribution
function L with regularly varying tail with index −α such that

Lij(x)

L(x)
→ δij,

with δij ∈ [0,∞) and at least one δij > 0. Clearly

H ij(x) =

∫ ∞

0

Lij

(
x

y

)
Ki(dy),

hence if the limit Lij(x/y)/L(x) → δijy
α for x → ∞ has an integrable majorant (or

the limit and integration can be interchanged by other means), we obtain that

H ij(x)

L(x)
→ δij

∫ ∞

0

yαKi(dy).
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With ζi,α =
∫∞

0
yαKi(dy) < ∞, Theorem 3.2.1 holds for the reflection of the sampled

MAP with H = L and γij = δijζi,α, hence by the equalities σ̃ = ρσ and Mσ̃ = Mρ
σ

we obtain

lim
x→∞

Pi0(Mσ̃ > x)

L(x)
= Ei0(σ̃)

∑
i,j πiδijζi,α∑
i πiPijξij

.

Here we used Walds identity for MAPs to identify Ei0(σ̃) = Ei0(σ)
∑

i∈E πiPijξij. �

One can generalise in many directions. We will give one generalisation which allows
for a finite (stochastic) number of changes in the flow rate in between jumps. To
deal with this slightly more complicated situation we make a digression to a general
result on the summation of a stochastic heavy tailed number of positive stochastic
variables.

Suppose that K is a distribution on (0,∞) and G a distribution on N. Define

H(A) =
∞∑

k=1

K∗n(A)G(n).

If ρ is a random variable with distribution G independent of a sequence of iid vari-
ables (Zn)n≥1 each with distribution K, then

H(A) = P

(
ρ∑

k=1

Zn ∈ A

)
.

Let (Nx)x≥0 denote the counting process corresponding to the renewal process given
by (Zn)n≥1. That is, with Sn =

∑n
k=1 Zk we define (Nx)x≥0 by

Nx =
∞∑

n=1

1(Sn≤x),

so that Nx ≤ n if and only if Sn+1 > x. We observe that the tail of H can be written
as

H(x) = P

(
ρ∑

k=1

Zn > x

)
= P(Nx < ρ) = E(G(Nx)).

Lemma 3.3.4 If G is regularly varying at infinity with exponent −α, K has mean
value ζ, and for all ε > 0

P

(∣∣∣∣Nx

x
− 1

ζ

∣∣∣∣ > ε

)
= o(G(x)) (3.22)

for x → ∞, then
H(x) ∼ ζαG(x)

and H is regularly varying at infinity with exponent −α.
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Proof: For ε > 0 given we decompose

E(G(Nx)) = E

(
G(Nx);

∣∣∣∣Nx

x
− 1

ζ

∣∣∣∣ ≤ ε

)
+ E

(
G(Nx);

∣∣∣∣Nx

x
− 1

ζ

∣∣∣∣ > ε

)
.

Using that G(Nx) ≤ 1, the last term divided by G(x) tends to zero for x → ∞ by
(3.22). For the other term observe that G(x(1/ζ + ε)) ≤ G(Nx) ≤ G(x(1/ζ − ε)) on∣∣∣Nx

x
− 1

ζ

∣∣∣ ≤ ε, hence by regular variation of G(
1

ζ
+ ε

)−α

≤ lim inf
x→∞

E(G(Nx))

G(x)
≤ lim sup

x→∞

E(G(Nx))

G(x)
≤
(

1

ζ
− ε

)−α

.

Letting ε → 0 the result follows. �
A useful sufficient criteria for condition (3.22) is the following moment condition.

Lemma 3.3.5 Condition (3.22) of the previous lemma is fulfilled if∫
x2α+δK(dx) < ∞ (3.23)

for some δ > 0 with 2α + δ ≥ 2.

Proof: The condition (3.22) is a restriction on the large deviations of Nx from xζ.
Letting nx = �x(1/ζ + ε)� and mx = �x(1/ζ − ε)�, we see that

P

(∣∣∣∣Nx

x
− 1

ζ

∣∣∣∣ > ε

)
= P

(
Nx > x

(
1

ζ
+ ε

))
+ P

(
Nx < x

(
1

ζ
− ε

))
≤ P (Snx ≤ x) + P (Smx ≥ x)

≤ P (|Snx − nxζ| ≥ xεζ) + P (|Smx − mxζ| ≥ (xε − 1)ζ) ,

Assuming p’th moments for some p ≥ 1 and using Markov’s inequality, we find that

P (|Snx − nxζ| ≥ xεζ) ≤ E(|Snx − nxζ|p)
(xεζ)p

.

With X1, . . . , Xn iid variables with mean 0 and p’th moment for p ≥ 2 the inequality

E

(∣∣∣∣∣
n∑

k=1

Xk

∣∣∣∣∣
p)

≤ C(p)np/2
E|X1|p

holds for some constant C(p) depending only on p (Petrov 1995, Theorem 2.10).
Hence

P (|Snx − nxζ| ≥ xεζ) ≤ C(p)n
p/2
x E|Z1 − ζ|p
(xεζ)p

≤ C(p, ε)x−p/2,



Fluid models 57

valid for x large enough and some constant C(p, ε) not depending on x. A similar
estimate holds for P (|Smx − mxζ| ≥ (xε − 1)ζ). Therefore, if

EZ2α+δ
1 =

∫
x2α+δK(dx) < ∞

for some δ > 0 and 2α + δ ≥ 2,

P

(∣∣∣∣Nx

x
− 1

ζ

∣∣∣∣ > ε

)
≤ O(x−α−δ/2) = o(G(x))

if G(x) is regularly varying at infinity with exponent −α. �

Example 3.3.6 Suppose that (Gij)i,j∈E are distributions on N with mean ξij, that
(Ri)i∈E are distributions on [0,∞) with mean λi and that (Ki)i∈E are distributions
on R with mean ζi. Given Jn = i and Jn+1 = j we define the conditional distribution
of ρn+1−ρn and X̃n as follows. Let η have distribution Gij, let (κk)

η
k=1 be a sequence

of iid stochastic variables (independent of η) with distribution Ri and let (Zk)
η
k=1 be

a sequence of iid stochastic variables (independent of η) with distribution Ki. Then
let

ρn+1 =

η∑
k=1

κk + ρn

and define X̃n by

X̃s
n = Zk if

k−1∑
l=1

κn ≤ s <
k∑

l=1

κn.

Thus the duration distributions (Lij)i,j∈E are given by

Lij(A) =
∞∑

k=1

R∗n
i (A)Gij(n),

and the increment distributions (Hij)i,j∈E are given by

Hij(A) =
∞∑

k=1

K̃∗n
i (A)Gij(n), K̃i(x) =

∫
Ki

(
x

y

)
Ri(dy).

The interpretation is as follows. In between jumps, a conditionally independent
renewal process given by the κ’s marks the times at which the fluid rate changes,
each time the change is drawn independently from Ki. The stochastic variable η is the



58 Heavy Tailed Excursions

number of renewals encountered before a jump, and jumps take place immediately
after renewal number η. We observe that

µij = ζiλiξij

so the invariant mean for the sampled MAP is

µ =
∑
i,j

πiPijζiλiξij,

which we assume to be < 0. To stay within the framework of Lemma 3.3.2 we need
some further assumptions on the distributions Ki for i ∈ E. We will assume that
E = E+ ∪E− is a partition of the state space E into two disjoint subsets such that

Ki((0,∞)) = 1 for i ∈ E+

Ki((−∞, 0]) = 1 for i ∈ E−.

In this case the fluid rates have constant sign in between jumps and Lemma 3.3.2
holds. Assume that there is distribution function G with regularly varying tail with
exponent −α such that

lim
x→∞

Gij(x)

G(x)
= δij (3.24)

for all i, j ∈ E, δij ∈ [0,∞) and at least one δij > 0 for i ∈ E+. Assume also that
the moment condition (3.23) is satisfied for Ki and Ri for all i ∈ E+, in which case

it holds for K̃i for i ∈ E+ also. Hence by Lemma 3.3.4

lim
x→∞

H ij(x)

G(x)
= δijζ

α
i λα

i ,

so Theorem 3.2.1 holds with H = G and γij = δijζ
α
i λα

i . We get that

lim
x→∞

Pi0(Mσ̃ > x)

G(x)
= Ei0(σ̃)

∑
i,j πiδijζ

α
i λα

i∑
i πiPijλiξij

,

again using Walds identity for MAPs to obtain Ei0(σ̃) = Ei0(σ)
∑

i∈E λiπiPijξij. �

In the context of this thesis it is worth discussing a special case of the previous
example.

Example 3.3.7 Assume that (Jn)n≥0 is a discrete time semi-Markov chain on E
with duration distributions (Gij)i,j and that f : E → R is some function. Then
consider the additive process S0 = 0 and

Sn =
n∑

k=1

f(Jk), n ≥ 1
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and its reflection, (Tn)n≥0. This corresponds, in the notation of the previous example,
to let Ri = δ1 and Ki = δf(i) – the Dirac measure at one and f(i) respectively – in
which case Lij = Gij. We get from Example 3.3.6 that if the duration distributions
Gij for which f(i) > 0 fulfill (3.24) then

lim
x→∞

Pi0(Mσ̃ > x)

G(x)
= Ei0(σ̃)

∑
i,j πiδijf(i)α∑

i πiPijξij

.

Thinking of e.g. E = {a,c,g,t} × {a,c,g,t} and f some score function, such
a semi-Markov model is a (probably highly unrealistic) model of DNA-sequences,
for which the local similarity score can accumulate and result in a different kind of
extreme value behaviour than in the iid case. The important message is that even
with a finite state space E and a score function f taking only a finite number of
different values, we can still produce a process, for which the excursions show a
heavy tailed behaviour. �

3.4 Discussion

The assumption that H ∈ S ∗ for Theorem 3.2.1 to hold may seem as a rather
technical requirement, which just serves to make the proofs work. However, results
achieved by Foss & Zachary (2003) for the random walk with heavy tails suggest
that the assumption is also necessary.

Clearly in Example 3.3.3 and Example 3.3.7 we could apply Theorem 2.4.3 if the
Hij-distributions are all light tailed to obtain light tailed results for fluid models
controlled by a Markov chain. We have chosen to focus on the heavy tailed case. We
have also chosen to state just the asymptotic tail behaviour over a regenerative cycle,
since the derivation of the asymptotic extreme value distribution for the running
maximum of the reflected process is then an easy consequence.

Example 3.3.7 clearly lacks some generality in the sense that we need the Ki’s
concentrated either on (−∞, 0] or on (0,∞). It is expected that the same result as
derived in the example holds if just ζi ≤ 0 on E− and ζi > 0 on E+ – still under the
same moment condition imposed on Ki and Ri. To prove this we need to generalise
Lemma 3.3.4, in which case we obtain from the general theory the lower bound on
Pi0(Mσ̃ > x), and we need to establish a corresponding upper bound.

Finally, we could ask for more general reflected processes controlled by a semi-
Markov chain. For instance, we could allow the ‘rates’ to be general stochastic mea-
sures on the intervals [0, ρn+1−ρn), instead of what we essentially assume, that they
are stochastic measures that are absolutely continuous w.r.t. the Lebesgue measure.
This would e.g. allow for processes with jumps to be analysed. Most notably such a
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generalisation includes processes modelling the residual waiting time in queueing sys-
tems with costumer arrivals being controlled by an underlying semi-Markov process.
The queueing models fall outside the scope of Lemma 3.3.2, and more sophisticated
tools must be developed to handle these models completely.

Notes

The results of this chapter are new – except Lemma 3.2.5, which can be found in
e.g. Alsmeyer (1994) in an even more general version. The results were developed
by this author together with Anders Tolver Jensen, and most of them can also be
found in Hansen & Jensen (2003). The main inspiration for the proof of Theorem
3.2.1 is Asmussen (1998), who deals with heavy tailed random walks. The examples
discussed in Section 3.3 are inspired by for instance Heath et al. (1997), who deal
with corresponding models without the controlling semi-Markov chain. Regarding the
two auxiliary lemmas, Lemma 3.3.4 and Lemma 3.3.5, this author is not convinced
that they are actually new results. Even if they are not new, the proofs – especially
of Lemma 3.3.4 – are probabilistic of nature and not based on analytic transform
results, which may be of independent interest.
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4

A Brief Survey of Sequence
Alignment and Structure

4.1 Introduction

We give in this chapter a survey of some biological sequence models. The models are
simple and the approach is not an attempt to build completely realistic models of bi-
ological sequences. What we attempt is to give a framework for discussing alignments
and structures with an emphasis on models rather than methods and algorithms.
Within this framework we can derive natural test statistics for two sequences to be
related or for one sequence to contain a certain structure. The main purpose is to
clarify what kind of hypotheses we think of as producing ‘random’ sequences and
what kind of alternatives we consider as producing ‘non-random’ sequences.

4.2 Similarity of sequences

Consider two sequences1 x = x1 . . . xn and y = y1 . . . ym from a finite set E. We call
E the alphabet and elements in E are called letters. We ask if the sequences x and y
are somehow similar? How do we determine that? We will in this chapter discuss a
statistical method to measure similarity and the major topic of the following chapters

1The word ‘sequence’ is the common word in probability theory, but one could argue that the
computer science word ‘string’ is more appropriate. If not for other reasons then because we will be
particularly interested in substrings, which are contiguous parts of a string, whereas a subsequence
is not a contiguous part of a sequence. We will stick to sequences and use the phrase ‘part of a
sequence’ to denote a contiguous subsequence.
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1 98765432

1 98765432 1110

Figure 4.1: The bipartite graph representing an alignment of two sequences of length
n = 9 and m = 11.

is to determine whether some measured similarity is significant. To define similarity
we need to introduce the concept of an alignment.

Definition 4.2.1 For n and m given integers we define an alignment of sequences
of length n and m as a set

A ⊆ {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
of pairs such that for (i, j), (i′, j′) ∈ A then i < i′ if and only if j < j′. For given
sequences x and y of length n and m and an alignment A, the pairs (xi, yj)(i,j)∈A are
called the aligned pairs and the rest of the letters are called unaligned. Furthermore,
for A an alignment,

A1 = {i | ∃j : (i, j) ∈ A}
denotes the ‘projection’ onto the first coordinate and similarly A2 denotes the ‘pro-
jection’ onto the second coordinate. Finally, let A denote the set of all alignments of
sequences of length n and m.

It may be useful to write an alignment as A = {(i1, j1), . . . , (jl, il)} with l ≤
min(n,m), i1 < . . . < il and j1 < . . . < jl. Figure 4.1 shows a graphical repre-
sentation of an alignment as a bipartite graph.

To define the quality of an alignment we take a statistical point of view. Assume
that a null hypothesis is given by a probability measure λ0 on the set En × Em,
and assume, for each alignment A ∈ A, that an alternative hypothesis is given by
a probability measure νA on En × Em. Then we will score a given alignment, A, of
x and y by the log likelihood ratio log νA(x,y) − log λ0(x,y) subject to a penalty
G(A) with G : A → [0,∞] some function. Thus the score of an alignment A ∈ A is

s(A) = log
νA(x,y)

λ0(x,y)
− G(A). (4.1)
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We call this score the penalised log likelihood score – given the alignment A. Typ-
ically one searches for the alignment producing the maximal score. Several optimal
alignments with maximal score may exist. We will talk about the optimal alignment
as if it was unique anyway, indicating that it is not the actual alignment with maxi-
mal score, but the maximal score itself that will attract our interest. Fast algorithms
for finding the maximal score and optimal alignment(s) are of course essential for
practical applications, but they will play a minor role in this thesis. We refer to
Waterman (1995) for further details on algorithms.

4.2.1 Models for sequences

We will study two classes of models that provide convenient candidates for λ0 and
νA. We refer to these models as the independence or iid model and the Markov
model respectively.

The independence or iid model is the most common choice of model. The null
hypothesis is given by two probability measures λ1 and λ2 on E, and we define

λ0(x,y) =
n∏

i=1

λ1(xi)
m∏

j=1

λ2(yj).

The alternative hypotheses are all given by a probability measure ν on E × E, and
we define, given an alignment A, the alternative as

νA(x,y) =
∏

(i,j)∈A

ν(xi, yj)
∏
i�∈A1

λ1(xi)
∏
j �∈A2

λ2(yj).

Given A the log likelihood ratio is easily seen to be

QA(x,y) = log

∏
(i,j)∈A ν(xi, yj)∏

(i,j)∈A λ1(xi)λ2(yj)
=

∑
(i,j)∈A

log
ν(xi, yj)

λ1(xi)λ2(yj)
. (4.2)

The Markov model provides an alternative to the independence model, which
plays an important role in this thesis. To specify the null hypothesis let two E × E
matrices of transition probabilities, P and Q, be given. Let x0 and y0 be two auxiliary
letters from E and let λ0 conditionally on (x0, y0) be

λ0(x,y|x0, y0) =
n∏

i=1

P (xi−1, xi)
m∏

j=1

Q(yj−1, yj).

Thus the null hypothesis is just the hypothesis that the two sequences are indepen-
dent Markov chains. Conditioning on (x0, y0) is done for notational convenience. To
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specify the alternatives, let R be an E2 ×E2 matrix of transition probabilities. The
alternative hypothesis νA, given the alignment A, is then defined as

νA(x,y|x0, y0) =
∏

(i,j)∈A

R ((xi−1, yj−1) , (xi, yj))
∏
i�∈A1

P (xi−1, xi)
∏
j �∈A2

Q(yj−1, yj).

The conditional log likelihood ratio given A is seen to be

QA(x,y|x0, y0) =
∑

(i,j)∈A

log
R ((xi−1, yj−1) , (xi, yj))

P (xi−1, xi)Q(yj−1, yj)
.

One observes that even though we use a conditional log likelihood – conditional on
(x0, y0) – QA does in fact not depend on (x0, y0) unless i1 = 1 and/or j1 = 1, with
(i1, j1) the first aligned pair in A. We will usually always assume that P and Q as
well as R are irreducible and aperiodic.

Both models fit into the scoring schemes described in Chapter 1. For the indepen-
dence model we have f : E × E → R given by

f(x, y) = log
ν(x, y)

λ1(x)λ2(y)
,

and for the Markov model we have f : E2 × E2 → R given by

f((x1, y1), (x2, y2)) = log
R ((x1, y1) , (x2, y2))

P (x1, x2)Q(y1, y2)
.

There is no particular claim here that the Markov model (or the iid model for that
matter) represents evolutionary events in a reasonable way. Instead, we think of the
model as a pair of glasses through which we see certain features of real alignments.
Given an alignment, the model provides a probability distribution on the letters in
the sequences in agreement with the alignment. In that way we can, for a given
dataset consisting of a number of already aligned sequences, fit a Markov model to
the data and use this model to distinguish alignable sequences from non-alignable.
Thus we choose to focus on features that can be captured by the Markov model,
which may not be adequate in all respects, but it is a compromise between what we
can analyse and implement in practice and what is a desirable trustworthy model
of evolution. One argument for being interested in a Markov model versus the iid
model – besides the fact that it is just more general – is that it makes it possible
to model local (nearest neighbour) compensating mutations. That is, the change of
two (or more) neighbour amino acids in a protein may be more (or less) probable
than the change of one amino acid at the time. Note that this kind of modelling is
not capable of capturing long range compensating mutations that occur to preserve
the structure of proteins, say.
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4.2.2 The penalty function – global and local alignment

Let an alignment A = {(i1, j1), . . . , (jl, il)} ∈ A be given. The internal gaps of
the alignment are defined as the distances ik−1 − ik − 1 and jk−1 − jk − 1 between
consecutive positions in the alignment. We define

γI(A) = {ik − ik−1 − 1 | ik − ik−1 > 1, 2 ≤ k ≤ l}
∪ {jk − jk−1 − 1 | jk − jk−1 > 1, 2 ≤ k ≤ l}

as the set of internal gaps. The set of external gaps γE(A) consists of

{i1 − 1 | i1 > 1} ∪ {n − il | n > il} ∪ {j1 − 1 | j1 > 1} ∪ {m − jl | m > jl}.

With gE, gI : N → [0,∞] so-called gap penalty functions,

G(A) =
∑

k∈γE(A)

gE(k) +
∑

k∈γI(A)

gI(k)

is a common choice of alignment penalty. It depends on the alignment only through
the lengths of the gaps between aligned letters. Usually either gE = gI or gE ≡ 0,
and typically

gI(n) = αn or gI(n) = αn + β

for α, β > 0 some parameters. We allow for gap penalty functions to attain the value
∞, which in practice corresponds to ruling out certain alignments from considera-
tion.

We distinguish between penalising only internal gaps (gE ≡ 0) as opposed to pe-
nalising internal as well as external gaps. We refer to the former situation as local
alignment and the latter as global alignment. The consequence of penalising only in-
ternal gaps is often huge when we search for the optimal alignment. And if we choose
the gap penalty function properly, the local alignments will have a truly local na-
ture, i.e. only small parts of the two sequences are aligned and the unaligned letters
at the ends of the sequences are ignored. If we don’t penalise the gaps sufficiently,
this argument breaks down. Gaps can then be inserted in random sequences in such
ways that the score will increase linearly with the length of the sequences making
even the local optimal alignment close to being actually globally optimal. In fact,
for random sequences there is a phase-transition behaviour in the ‘penalty function
space’ between those penalty functions producing truly local alignments and those
producing actually global alignments (Arratia & Waterman 1994).

In this thesis only local alignments will be considered, i.e. we will penalise only
internal gaps. In fact, most of the theory will be developed in a limiting case for
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local alignments with gI ≡ ∞. For local alignments with gE ≡ 0, gI ≡ ∞ simply
means that internal gaps are prohibited, and finding the optimal local alignment of x
and y boils down to finding the best matching parts of x and y using the likelihood
ratio score. This is the subject of analysis in Chapter 5 under the Markov model of
the previous section.

4.3 Structure of sequences

As discussed in the introduction of the thesis, biological sequences are in fact compli-
cated molecules with a three-dimensional structure of paramount importance for the
function of the molecule. Predicting protein structure from the sequence of amino
acids is a holy grail and is not possible in general with present days technology. Of a
simpler nature is the so-called secondary structure of RNA, and several algorithms
and fast implementations are available today, which can predict this structure di-
rectly from sequence, cf. Zuker (2003). Of course some assumptions are imposed
and some limitations are still present, but the problem is nevertheless much simpler.
First we need to define what we mean by a secondary structure of a sequence x of
length n from a finite alphabet E.

Definition 4.3.1 Given an integer n, a secondary structure, or just a structure, of
a sequence of length n is a set

S ⊆ {(i, j) | 1 ≤ i < j ≤ n}
of pairs such that for (i, j), (i′, j′) ∈ S then i = i′ implies j = j′ and i < i′ implies
that either j < i′ or j′ < j. Let S denote the set of all structures of sequences of
length n

One should think of a structure S as representing a two-dimensional arrangement
of the sequence such that pairs in S constitute the connected or at least physically
opposing letters present in the arrangement. The restriction on the pairs in a struc-
ture S implies first of all that no letter can enter two structural pairs (no triple or
higher order interaction), and, secondly, two pairs are either nested, i < i′ < j′ < j,
or separated, i < j < i′ < j′. Overlapping pairs, i < i′ < j < j′, which correspond to
structural features known as pseudoknots, are not allowed. These restrictions imply
that the structure can be represented as planar circular graph as shown in Figure
4.3.

The usual interpretation of a structure is chemical/physical. The RNA-molecule
possesses ‘unbreakable’ (covalent) bonds between the consecutive letters in the se-
quence forming the so-called backbone, whereas the pairs in S correspond to weaker
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12 Figure 4.2: The planar circular
graph representing the structure
{(1, 11), (2, 6), (3, 5), (7, 10), (8, 9)}
of a sequence of length n = 12. The
dotted line represents the backbone
of the structure.

hydrogen bonds. Typically, hydrogen bonds are formed in RNA between a and u
and between c and g, which are the so-called Watson-Crick pairs. Hydrogen bonds
are energetically favourable but since RNA is a dynamic molecule subject to the
forces of the surrounding molecules (e.g. water), there may not be a unique struc-
ture. Many closely related structures may be almost equally favourable and even in
some cases unrelated structures may show up to be equally favourable. We will not
go into a deep discussion of structures and dynamics of large molecules in a solvent,
which is far from a trivial subject. Our goal will also be quite different from actually
trying to predict a structure from the sequence. Rather, we are interested in locat-
ing a part of a long sequence containing a letter composition suitable for forming
specific kinds of structure. In fact, from this point of view it may not be beneficial
to think of pairs in a structure as only the hydrogen bonded pairs. Instead, we may
think of the pairs as the letters that are simply physically opposing each other in
the structure. We continue this discussion in Chapter 7.

As for alignments we will measure the quality of a structure from a statistical point
of view. Thus we will assume a null hypothesis given by a probability measure λ0 on
En, and for each structure S ∈ S an alternative hypothesis given by a probability
measure νS on En. For a sequence x, the score of a given structure S is then the
log-likelihood ratio

s(S) = log
λ0(x)

νS(x)
− G(S)

subject to the penalty given by G : S → [0,∞].



70 A Brief Survey of Sequence Alignment and Structure

4.3.1 Special structures, models and penalties

A structure is often described using various names for substructural parts. We will
not go into a detailed discussion of a classification of substructures, but restrict our
attention completely to a central substructure – the so-called stems or stem-loops.
In that case structures become formally very similar to alignments. As mentioned,
stems are central substructural parts of all structures, and examples are considered
in Chapter 7 where stem structures occur with interesting and important properties.

Definition 4.3.2 A stem is a structure S = {(i1, j1), . . . , (il, jl)} for which

i1 < . . . < il < jl < . . . < j1.

A stem may contain loops of various types often classified according to the following
scheme:

• The set il + 1, . . . , jl − 1 is called the hairpin loop of the stem.

• The coordinates < i1 and > jl are sometimes called the exterior or external
loop.

• In case ik − ik−1 > 1 and jk−1 − jk > 1 this is called an internal loop.

• In case ik − ik−1 > 1 or jk−1 − jk > 1 but not both this is called a bulge.

For later use, introduce for the structure S the sets

S1 = {i1, i2, . . . , il}
S2 = {jl, jl+1, . . . , j1}
H = {il + 1, . . . , jl − 1}

consisting of those coordinates that enter the structure in the first coordinate, the
second coordinate, and in the hairpin-loop respectively.

Often a stem is called a stem-loop referring to the hairpin loop of the stem structure.
Figure 4.3 shows a graph of a stem with one internal loop, one bulge and a hairpin
loop containing four coordinates. In most real applications, a lower bound, usually
3, on the size of hairpin loops is employed, as it is difficult for the backbone to fold in
a very sharp U-turn. We assume – mostly for notational reasons – that the hairpin
loop size is ≥ 1, but otherwise ignore the problem.
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Figure 4.3: The graph representing an stem secondary structure of a sequence of
length n = 18. The dotted line represents the backbone. The stem has a hairpin
loop consisting of 8, 9, 10, and 11, one internal loop consisting of 6 and 13 and one
bulge consisting of 15. The external loop consists of 1. Note the formal relation with
the graph of an alignment.

The independence or iid model for stems is given by a probability measure λ
on E specifying the null hypothesis by

λ0(x) =
n∏

i=1

λ(xi),

and a probability measure ν on E2 specifying the alternative, for S ∈ S a given
alignment, by

νS(x) =
∏

i�∈S1∪S2

λ(xi)
∏

(i,j)∈S

ν(xj, xi).

The log likelihood ratio for given S is seen to be

QS(x) = log

∏
(i,j)∈S ν(xj, xi)∏

(i,j)∈S λ(xj)λ(xi)
=

∑
(i,j)∈S

log
ν(xj, xi)

λ(xj)λ(xi)
.

There is a deliberate interchange of the letters in (xi, xj) under the alternative
hypothesis. This is done for comparability reasons with the Markov model introduced
below, where it is most natural to consider the structure from the hairpin-loop side
under the alternative hypotheses. It corresponds in some sense to a 180 degrees
rotation of the stem-loop in Figure 4.3.

The Markov model for stems is defined as follows. The null hypothesis is given by
an irreducible, aperiodic E × E matrix P of transition probabilities with invariant
measure πP , such that

λ0(x) = π(x1)
n∏

i=2

P (xi−1, xi).
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Thus under the null hypothesis, the sequence is a stationary Markov chain. Before
introducing the alternative, it is beneficial to mentally rotate the structure 180 de-
grees. That is, think of the hairpin loop xil+1, . . . , xjl−1 as given. Then conditionally
on xil+1, . . . , xjl−1 the sequences xjl

, xjl+1, . . . , xn and xil , xil−1, . . . , x1 form under
the null hypothesis two independent Markov chains with transition probabilities P

and
←−
P respectively. Recall the definition of the time reversed transition probabilities

←−
P x,y =

πyPy,x

πx

.

Thus we can rewrite λ0(x) as

λ0(x) = πP (xil+1)

jl−1∏
i=il+2

P (xi−1, xi)
n∏

j=jl

P (xj−1, xj)
1∏

i=il

←−
P (xi+1, xi)

The alternative is then given by an E2 × E2 matrix R of transition probabilities,
such that for a given structure S

νS(x) = πP (xil+1)

jl−1∏
i=il+2

P (xi−1, xi)
∏

(i,j)∈S

R((xj−1, xi+1), (xj, xi))

×
∏

i�∈S1∪H

←−
P (xi+1, xi)

∏
j �∈S2∪H

P (xj−1, xj)

Under the alternative, the letters in the structure arise from Markov chain transi-
tions with bivariate transition probabilities given by R. The letters the hairpin-loop,
bulges, internal loops and the external loop are conditionally independent given the
other letters with the same Markov chain transition probabilities as under the null
hypothesis. The log likelihood ratio given S is then

QS(x) =
∑

(i,j)∈S

log
R((xj−1, xi+1), (xj, xi))

P (xj−1, xj)
←−
P (xi+1, xi)

As for alignments, this fits into the type of scoring schemes described in Chapter 1
with f : E2 × E2 → R given by

f((x1, y1), (x2, y2)) = log
R((x1, y1), (x2, y2))

P (x1, x2)
←−
P (y1, y2)

.

One can again discuss the rationale behind the Markov model. The reasoning is much
the same as for alignments. We view the model as mostly being a suitable family
of probability distributions on the sequence of letters present in a given stem-loop
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structure. Note that the stem-loop Markov model can capture long range as well
as nearest neighbour interactions in the sequence that occur due to the presence of
structure.

In this structural setup we can define three different sets of gaps; the hairpin-loop,
γH , the set of exterior gaps, γE, and the set of internal loops and bulges, γI :

γH = {jl − il − 1},
γE = {i1 − 1 | i1 > 1} ∪ {n − j1 | n > j1} and

γI = {ik − ik−1 − 1 | ik − ik−1 > 1, 2 ≤ k ≤ l}
∪ {jk − jk−1 − 1 | jk − jk−1 > 1, 2 ≤ k ≤ l}.

External, internal and hairpin-loop penalty functions gE, gI and gH can then be
chosen. As for alignments we distinguish between local stem-loops for which gE ≡ 0
and global stem-loops otherwise. We will by theoretical methods be able to analyse
local stem-loops under the Markov model in Chapter 6 in the limiting case gI ≡ ∞
and gH ≡ 0.

4.4 Test and classification procedures

By the formal introduction of models and hypotheses we get a very clear picture of
what we test if we test the null hypothesis against the alternatives. We have discussed
two different but formally very similar problems. Given two sequences do they share
some similarity, i.e. does there exist a suitable alignment of the sequences. And
given one sequence does it contain a structure, i.e. does there exist a suitable stem-
loop structure within the sequence. Both problems are dealt with by introducing a
null hypothesis and a family of alternatives – each alternative specifying a specific
probability measure on the sequence(s) for a given alignment or structure. And
we score each alternative using the penalised likelihood ratio. Given an optimal
alignment (structure) with score s, say, the probability

α(s) = Pλ0(max
A∈A

s(A) > s)
(
α(s) = Pλ0(max

S∈S
s(S) > s)

)
is the probability under the null hypothesis of obtaining an alignment (structure)
with a score > s, i.e. it is the test probability of testing the null hypothesis against
the alternatives using the test statistic maxA s(A) (or maxS s(S)).

Basically we can regard the test as a classification problem. Do the sequences show
similarity or not? Does the sequence contain a stem-loop structure or not? Choosing
a significance level α we can thus classify according to whether α(s) ≥ α or α(s) < α.
If we compute s0 such that α(s0) = α (or as close to as possible), and if the optimal
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alignment scores > s0 it is classified as being a true, non-random alignment, whereas
if it scores ≤ s0 it is classified as being due to chance only. Using a classification
terminology we can regard non-random optimal alignments as ‘positives’ and random
optimal alignments as ‘negatives’, and we thus control the probability of predicting
false positives to be α. Some might prefer to say that we control the specificity of
the classification procedure to be 1−α. As the alternative is composite, the control
of the probability of predicting false negatives is more subtle, and we need to study
the power function

β(A, s0) = PνA
(max

A∈A
s(A) > s0)

of the test. In the classification terminology β(A, s0) is the sensitivity of the classi-
fication procedure under the specific alternative A. Given a probability measure, κ,
on the set of alignments A, we can take a Bayes approach and integrate out over A
to get the Bayes sensitivity

βκ(s0) =
∑
A∈A

β(A, s0)κ(A) =
∑

ν

Pν(max
A∈A

s(A) > s0)t(κ)(ν).

Here t is the transformation A �→ t(A) = νA from the set of alignments to the set
of probability measures on the two sequences. Thus rather than thinking of κ as a
probability on the alignments, one can think of t(κ) a model of the typical distribu-
tion of the sequences under the alternative. In practice, having a dataset consisting
of alignable sequences with corresponding maximal scores over all alignments being
s1, . . . , sk we can define the empirical sensitivity by

βε(s0) =
1

k

k∑
i=1

1(si > s0).

This is the fraction of alignments we would recognise using the threshold s0. We
observe that this corresponds to letting t(κ) be the empirical measure for the se-
quences contained in the dataset, and βε(s0) is thus the empirical Bayes sensitivity.
We discuss in further details in Chapter 7 what the empirical sensitivity function,
defined by s0 �→ β(s0), can be used for.

However, the point of view of a simple classification problem is a (quite deliberate)
over simplification of what we actually want to do. First of all, in the local alignment
setup, we want not only to know that two sequences scoring > s are classified
as having an alignment, but we also want to identify the correct local alignment.
Moreover, there may be several (truly different) local alignments that all reach a
score > s, and we may want to consider each of these local alignments individually
and not just the optimal local alignment. Thus another point of view is that for each
alignment A ∈ A we classify A as either being a true local alignment or not according
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to whether s(A) > s or not for some s. From this point of view, making α(s) too
small may not be desirable as this may result in many false negative predictions.
Rather, it may be desirable just to control the number of false positive predictions
to be moderate to reach a higher sensitivity. As it turns out, computing α(s) and
giving a Poisson approximation of the number of (truly different) local alignments
scoring > s are closely related problems that can be dealt with in a unified way.
Moreover, the asymptotic mean of the Poisson approximation for a threshold s0 is
given as ξ(s0) = − log(1 − α(s0)), so that for α(s0) close to zero, ξ(s0) � α(s0),
whereas for large α(s0) there is actually very little information in the specificity and
ξ(s0) is much more interesting.

The computation of α(s) and the related Poisson approximation are the subjects
of the following two chapters of this thesis. It is a difficult problem and in general
unsolved. The reason that computing α(s) is difficult is that we need to understand
the distribution of the maximum of a huge number of dependent stochastic variables.
And even under the simplest independence model, the optimisation messes up the
simplicity, making the problem difficult. All we can hope for are asymptotic results
about α(s) for n,m, s → ∞. In this thesis we deal with the direct asymptotic
behaviour of α(sn,m) choosing sn,m such that α(sn,m) stays away from 0. In the realm
of large deviation theory, where α(sn,m) → 0, a logarithmic asymptotic behaviour
of α(sn,m) may be derived in greater generality. That is, one can obtain expressions
like

lim
n,m→∞

1

nm
log α(sn,m) = −γ

for some constant γ > 0. Considering the direct asymptotic behaviour of α(s) un-
der the independence model and using an affine internal gap penalty function with
parameters depending on n and m, results have recently been derived with and with-
out a large deviation assumption (Siegmund & Yakir 2000, 2003). Direct asymptotic
behaviour with a fixed affine internal gap penalty function is still out of reach with
analytic methods, but a logarithmic asymptotic result was given by Yakir & Gross-
mann (2001). All results so far seem to have been proved under the independence
model only. We will present results using the Markov models discussed, and since this
will lead to enough difficulties even for a degenerate gap penalty function gI ≡ ∞
(together with gH ≡ ∞ in the structure setup), we will not try to give extensions
allowing for gaps.

Notes

The material presented in this chapter can to some extend be found in the litera-
ture, see e.g. (Waterman 1995) and the references therein. However, the emphasis
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on the models and the derivation of the score function from the models are rarely as
explicit as presented here. Instead, a score function is introduced so that the compu-
tation of the maximal score becomes convenient. Secondly, the issue of significance
is treated by introducing the null hypothesis of independent sequences of iid letters
and arguing that the log likelihood ratio is an appropriate score function. It seems
more appropriate from this authors point of view to set up the model first, derive
an appropriate scoring scheme, treat the statistical issues and finally discuss algo-
rithms and practical implementations. A reference more closely related to this point
of view is Ewens & Grant (2001). Moreover, the modelling of stem-loop structures
presented here in an analogous way as the modelling of alignments seems to be new.
Secondary structure modelling has been given a lot of attention over the years (Zuker
2003), but the focus seems to be exclusively on the prediction of structure given the
sequence. The point of view taken here is the complete opposite. We want to model
the sequence given the structure, which can then be used to detect whether certain
structural features are present in a sequence.



5

Local Alignment of Markov Chains

5.1 Introduction

In Chapter 4 we introduced the concept of a local alignment between two sequences
using different gap penalty functions, and in this chapter we will study the distri-
bution of the maximal, gapless (gI ≡ ∞), local alignment score of two independent
Markov chains. The approach is based on the theory for MAPs and the Poisson
approximation presented in Chapter 2. We obtain a Poisson approximation of the
number of essentially different local alignments with a score exceeding a level t, and
from this we derive a Gumbel approximation of the maximal local alignment score.
These results extend earlier results obtained by Dembo et al. (1994b) for independent
sequences of iid variables.

5.2 Local gapless alignment

Let (Xk)k≥1 and (Yk)k≥1 be two sequences of random variables taking values in the
set E. We compare parts of one sequence with parts of the other using a score
function f : E × E → Z, and we define the random variables

S∆
i,j =

∆∑
k=1

f(Xi+k, Yj+k),

for i, j, ∆ ≥ 0. The variable S∆
i,j is the local score of comparing the sequence

Xi+1 . . . Xi+∆ with the sequence Yj+1 . . . Yj+∆.

77
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Remark 5.2.1 The score function f will be regarded as an E2 column vector. Prob-
ability measures on E2 will be regarded as E2 row vectors, and for ν such an E2

probability measure we use the functional analytic notation

ν(f) =
∑
x,y

f(x, y)ν(x, y)

to denote the mean of f under ν.

For n ≥ 1 put

Hn = {(i, j, ∆) | 0 ≤ i ≤ i + ∆ ≤ n, 0 ≤ j ≤ j + ∆ ≤ n}

and call (i, j, ∆) ∈ Hn an alignment. Note the one-to-one correspondence between
elements in Hn and alignments in the notation of Chapter 4 of the form

{(i + 1, j + 1), (i + 2, j + 2), . . . , (i + ∆, j + ∆)},

which justifies calling elements in Hn alignments.

We want to understand the distribution of the collection(
S∆

i,j

)
(i,j,∆)∈Hn

of local scores over all alignments. We will in particular be interested in the distribu-
tion of Mn = max(i,j,∆)∈Hn S∆

i,j – the maximal local score over the set of alignments.
We will also study the number, C(t), say, of essentially different variables S∆

i,j ex-
ceeding some threshold t ≥ 0. We will define essentially different precisely below,
but just like counting excursions for a MAP we need to declump the excesses over t
in some way.

The family of local scores are efficiently summarised in the matrix (Ti,j)0≤i,j≤n de-
fined as follows. For i = 0 or j = 0 let Ti,j = 0 and otherwise recursively define

Ti,j = (Ti−1,j−1 + f(Xi, Yj))
+ . (5.1)

Thus the T -matrix correspond to the reflection of an additive process along each
diagonal. Often the matrix (Tij) is called the score matrix, and to see why it captures
the relevant information about local scores, we observe using (2.11) that

Mn = max
i,j

Ti,j. (5.2)

This fact is closely related to the idea in the celebrated Smith-Waterman algorithm
for computing the maximal local alignment score (Waterman 1995).
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Definition 5.2.2 An alignment (i, j, ∆) ∈ Hn is called an excursion if

Ti,j = 0, Sδ
i,j > 0 for 0 < δ < ∆

and either S∆
i,j = 0, i + ∆ = n or j + ∆ = n

Let En denote the set of all excursions.

Note that En is a stochastic subset of Hn. It follows from the definition of the score
matrix (Ti,j) and the definition of an excursion that if (i, j, ∆) ∈ En and 0 < δ < ∆
then

Ti+δ,j+δ = Sδ
i,j.

An excursion thus corresponds to a diagonal strip in the score matrix, for which the
score starts at zero and then stays strictly positive along the diagonal until it either
becomes zero again or it reaches the boundary of the score matrix.

The maximum over an excursion e = (i, j, ∆) ∈ En is defined as

Me = max
0<δ≤∆

Sδ
i,j = max

0<δ≤∆
Ti+δ,j+δ. (5.3)

Definition 5.2.3 The number of essentially different excesses over t is defined as

C(t) =
∑
e∈En

1(Me > t). (5.4)

From (5.2) it follows that (C(t) = 0) = (Mn ≤ t).

5.3 Alignment of independent Markov chains

Assume that the stochastic processes (Xk)k≥1 and (Yk)k≥1 are independent Markov
chains with transition probabilities P and Q respectively. Assume that P and Q are
irreducible and aperiodic matrices with invariant left probability vectors πP and πQ

respectively. Let π = πP ⊗ πQ. Assume that the following non-degeneracy condition
of f w.r.t. P ⊗ Q is fulfilled; for any T ≥ 1 there exists a cycle (x1, . . . , xn) (w.r.t.
P ) and a cycle (y1, . . . , yn) (w.r.t. Q) such that

n∑
k=1

f(xi, yi) �=
n∑

k=1

f(xi, yi+T (mod n)). (5.5)
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In addition, the non-degeneracy condition from Section 2.1 must also be satisfied,
i.e. there must exist cycles (x1, . . . , xn) and (y1, . . . , yn) such that

n∑
k=1

f(xk, yk) > 0. (5.6)

These non-degeneracy conditions don’t look particularly nice in general, but are
usually satisfied by quite trivial arguments in practice. In particular (5.5) looks
nasty as it must hold for all T ≥ 1. On the other hand, if we can just find x1, x2 and
y1, y2 satisfying

f(x1, y1) + f(x2, y2) �= f(x1, y2) + f(x2, y1), (5.7)

then trivially (5.5) is fulfilled for all odd T ≥ 1 if P (x1, x2), P (x2, x1) > 0 and
Q(y1, y2), Q(y2, y1) > 0. This is, if x1, x2 and y1, y2 are two-cycles. If, in addition,
P (x1, x1), Q(y1, y1) > 0 we can construct cycles of the form x1, x2, . . . , x1, x2, x1 and
y1, y2, . . . , y1, y2, y1 such that (5.5) holds for all even T ≥ 1 if just (5.7) holds. In
particular, if P and Q contains only strictly positive entries, (5.7) is sufficient for
(5.6) to hold. Compare with (A.2) and (A.3) in Appendix A.

For convenience we will also assume that both Markov chains are stationary, though
this doesn’t affect the results obtained. In this chapter, we denote by P the probabil-
ity measure Pπ under which (Xn, Yn)n≥1 is a stationary Markov chain with transition
probabilities P ⊗ Q. For notational convenience, we will also assume the existence
of an auxiliary pair (X0, Y0) of stochastic variables, which is an initial state of the
bivariate Markov chain.

In the framework of Chapter 2, the process (Sn)n≥1 defined by Sn =
∑n

k=1 f(Xk, Yk)
is a MAP with

H(x0,y0),(x1,y1) = δf(x1,y1),

and the underlying Markov chain having state space E2 and transition probabilities
P ⊗ Q. Under the assumption that the mean drift is negative,

µ = π(f) =
∑

x,y∈E

f(x, y)πP (x)πQ(y) < 0, (5.8)

there exists according to Lemma 2.3.1 a unique solution θ∗ > 0 to ϕ(θ) = 1 where
ϕ(θ) is the spectral radius of Φ(θ);

Φ(θ)(x0,y0),(x1,y1) := exp(θf(x1, y1))Px0,x1Qy0,y1 .

Likewise, we let K∗ be the constant defined for this MAP by (2.19) in Theorem
2.4.3.
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Furthermore, consider the two MAPs with the Markov chain having state space E3

and transition probabilities P ⊗ Q ⊗ Q and P ⊗ P ⊗ Q respectively, and where

H(x0,y0,z0),(x1,y1,z1) = δf(x1,y1)+f(x1,z1) and H(x0,w0,y0),(x1,w1,y1) = δf(x1,y1)+f(w1,y1).

These two MAPs give rise to the matrices Φi(θ) for i = 1, 2 defined by

Φ1(θ)(x0,y0,z0),(x1,y1,z1) = exp(θf(x1, y1) + θf(x1, z1))Px0,x1Qy0,y1Qz0,z1

Φ2(θ)(x0,w0,y0),(x1,w1,y1) = exp(θf(x1, y1) + θf(w1, y1))Px0,x1Pw0,w1Qy0,y1 ,

and the corresponding Perron-Frobenious eigenvalues ϕi(θ), i = 1, 2.

Theorem 5.3.1 Assume that µ < 0 and that θ∗ and K∗ are chosen as described
above. Assume, furthermore, that

ϕ1

(
3

4
θ∗
)

< 1 and ϕ2

(
3

4
θ∗
)

< 1. (5.9)

Then if we for x ∈ R define

tn =
log K∗ + log n2 + x

θ∗
(5.10)

and xn ∈ [0, θ∗) by xn = θ∗(tn − �tn�), it holds that

||D(C(tn)) − Poi(exp(−x + xn))|| → 0 (5.11)

for n → ∞. In particular

P(Mn ≤ tn) − exp(− exp(−x + xn)) → 0 (5.12)

for n → ∞.

Remark 5.3.2 The choice of xn = θ∗(tn−�tn�) assures that tn−xn/θ∗ = �tn� ∈ Z.
Due to the lattice effect arising from f taking values in Z, it follows that

(C(tn) = m) = (C(tn − xn/θ
∗) = m)

as well as

(Mn ≤ tn) = (Mn ≤ tn − xn/θ∗),

and this is the reason that we need to correct by xn is the asymptotic formulas.
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Figure 5.1: Using the score
function f(0, 0) = f(1, 1) = 1
and f(1, 0) = f(0, 1) = −2,
we see, as a function of
(π1(0), π2(0)), the following
picture: White area; µ ≥ 0.
Light gray; only µ < 0. Darker
gray; in addition to µ < 0,
condition (5.13) is fulfilled.
Darkest gray; all three condi-
tions, µ < 0, (5.13) and (5.9)
are fulfilled.

The proof of Theorem 5.3.1 is not straight forward. First of all, the counting variable
C(tn) is not suitable for a direct proof of the Poisson approximation. Hence we
have to take a detour around another counting variable to be defined in Section
5.4. Second, to control the dependencies arising we need to establish several large
deviation results, which are not all trivial, and for which we need Condition (5.9).
One can show that for i = 1, 2 we have ϕi(θ) ≤ 1 for 0 ≤ θ ≤ θ∗/2 but this
does not extend to θ > θ∗/2 in general. Thus (5.9) is really a condition. To put some
intuition into this condition, observe that ϕ1 and ϕ2 arise from MAPs corresponding
to comparing two independent Markov chains with a third, one by one, using the
same score function f . Basically, condition (5.9) ensures that it is sufficiently unlikely
to obtain a high score for both comparisons at the same time. This would not be
the case if f was e.g. grossly asymmetric depending almost entirely on one of the
sequences, cf. also Appendix A. Annoyingly, it has not been possible to find any
simple and sufficient set of conditions implying (5.9), but since ϕi(3/4θ

∗) can be
computed routinely in practice when computing θ∗ anyway, the condition can easily
be verified.

Example 5.3.3 The Poisson approximation given in Theorem 5.3.1 in the frame-
work of independent sequences of iid variables was proved by Dembo et al. (1994b).
When comparing their result with the present theorem – and especially the different
conditions imposed – some simplification of the setup in Theorem 5.3.1 is useful.
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Figure 5.2: Similar to Fig-
ure 5.1 but using the
asymmetric score func-
tion f(0, 0) = f(1, 1) = 1,,
f(1, 0) = 0, and f(0, 1) = −4.
White area; µ ≥ 0. Light
gray; only µ < 0. Darker gray;
µ < 0 and (5.13) are fulfilled.
Darkest gray; µ < 0, (5.13)
and (5.9) are fulfilled.

Assume in this example that (Xn)n≥1 and (Yn)n≥1 are independent sequences of iid
variables with the X’s having distribution π1 and the Y ’s having distribution π2.
Then

ϕ(θ) = E(exp(θf(X1, Y1)))

is the Laplace transform of π = π1 ⊗ π2, and the exponentially changed measure is
given by π∗(x, y) = exp(θ∗f(x, y))π1(x)π2(y) with θ∗ > 0 and ϕ(θ∗) = 1. Also

ϕ1(θ) = E(exp(θf(X1, Y1) + θf(X1, Y2))) and

ϕ2(θ) = E(exp(θf(X1, Y1) + θf(X2, Y1)))

are Laplace transforms. The Dembo et al. (1994b) condition (E ′) for the Poisson
approximation to hold can be written as

π∗(f) > 2 max{π∗
1(f1), π

∗
2(f2)} (5.13)

where π∗
1 and π∗

2 are the marginals of π∗,

f1(x) =
1

θ∗
log

∑
y

exp(θ∗f(x, y))π2(y) and

f2(y) =
1

θ∗
log

∑
y

exp(θ∗f(x, y))π1(x).
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This condition is in fact a condition on certain relative entropies, and it relates
to some large deviation properties needed in Dembo et al. (1994b). Our condition
also relates to large deviation properties needed in the proof of Theorem 5.3.1. It is
unfortunately not clear how condition (5.13) relates directly to condition (5.9). As
a simple example consider E = {0, 1},

f(0, 0) = f(1, 1) = 1 and

f(1, 0) = f(0, 1) = −2.

For this score function Figure 5.1 shows the set of (π1, π2) for which condition (5.9)
as well as (5.13) are fulfilled. The figure shows that (5.9) is stronger than (5.13). We
can also read of from the figure which (π1, π2)’s that imply µ < 0 for the given score
function f . A non-symmetric example is

f(0, 0) = f(1, 1) = 1,

f(1, 0) = 0, and f(0, 1) = −4.

still with E = {0, 1}. Figure 5.2 shows the set of (π1, π2) fulfilling µ < 0, (5.13) and
(5.9) respectively. In the light of Dembo et al. (1994a), stating that

Mn

log n2

a.s.−→ 1

θ∗

if and only if (5.13) is fulfilled (with ≥), condition (5.13) must be very close to
optimal. Hence our condition must be stronger. The two examples above confirm
that, but a direct proof of this has not been found. Moreover, Dembo et al. (1994b)
find the simple and in practice relevant condition, that if π1 = π2 and f is symmetric,
(5.13) is fulfilled if and only if f(x, y) does not equal f1(x) + f2(y) for all x, y ∈ E.
This is unfortunately not sufficient for (5.9). �

5.4 The counting construction

We want C(t) to be approximately Poisson distributed, but to prove that directly
does not seem feasible. The size and ‘shape’ of En depend on the concrete realisation
of the underlying stochastic variables, and the dependencies between the indicators
1(Me > t) seem quite complicated. The route taken is to restrict our attention to
a smaller set of excursions to be defined below1, show that the sum over this set is
approximately Poisson distributed, and that the difference between that sum and
C(t) is asymptotically negligible.

1strictly speaking we will consider something slightly more complicated than just a subset of
excursions
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(2,l)

(k,2l)
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X1
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Xn

Figure 5.3: The index set is
divided into vertical strips of
width l – on the figure l = 3.
Along diagonals in each strip
we look for local scores ex-
ceeding the threshold. On the
figure two of these diagonals-
within-a-strip at position (2, l)
and (k, 2l) respectively are
shown.

We define for l > 0 an index set

I :=
{

(k, r) = (k, ql) | k ∈ {0, . . . , n}, q ∈ {0, . . . ,
⌊n

l

⌋
}
}

.

One should think of this as a division of the score matrix into vertical strips of width
l with I as an indexation of diagonals-within-a-strip, i.e. an index a = (k, r) ∈ I
represents the diagonal (k + 1, r + 1), . . . , (k + l, r + l), cf. Figure 5.3.

We will approximate the number of excursions exceeding t by the number of diagonals-
within-a-strip containing excursions exceeding t. To be precise, we will consider, for
a = (k, r) ∈ I and t > 0, the variable

Va = Va(t) = 1

(
max

1≤δ≤∆≤l

∆∑
h=δ

f(Xk+h, Yr+h) > t

)
.

Thus if an excursion exceeding t is contained completely within the diagonal-within-
a-strip given by a then certainly Va = 1. The sum

∑
a∈I Va does not exactly equal

the number of excursions exceeding t, though it will turn out to be a sufficiently
good approximation with

P

(∑
a∈I

Va(tn) �= C(tn)

)
→ 0 (5.14)
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when n → ∞ in all cases of interest.

For generality, we formulate the following result for a subset I0 ⊆ I of the index set
I. This will be used in Chapter 6, cf. also the discussion at the end of this chapter.
In the setup for Theorem 2.6.1, we assume for all a ∈ I0 a subset Ba ⊆ I0 given.
This Ba is the neighbourhood of strong dependence of Va, which may take various
shapes in practice. Furthermore, for a ∈ I0 let

Fa = σ(Vb | b �∈ Ba)

be the σ-algebra generated by those variables Vb not in the neighbourhood of strong
dependence of Va. Theorem 2.6.1 can be rephrased as:

Theorem 5.4.1 Suppose that l = ln and t = tn chosen such that for some sequence
(λn)n≥1 ∑

a∈I0

E(Va) − λn −→ 0, (5.15)

for n → ∞, and suppose that ∑
a∈I0,b∈Ba

E(Va)E(Vb) −→ 0, (5.16)∑
a∈I0,b∈Ba,b �=a

E(VaVb) −→ 0, (5.17)∑
a∈I0

E|E(Va|Fa) − E(Va)| −→ 0, (5.18)

for n → ∞, then ∣∣∣∣∣
∣∣∣∣∣D
(∑

a∈I0

Va

)
− Poi(λn)

∣∣∣∣∣
∣∣∣∣∣→ 0. (5.19)

In fact, the total variation norm in (5.19) is bounded by 2 times the sum of the four
left hand side terms above.

In a concrete situation we need to define the Ba sets, define the sequences l and t
suitably and verify condition (5.15) through (5.18). Finally we need to verify that
also (5.14) is fulfilled, in which case:

Corollary 5.4.2 If (5.19) holds and (5.14) is fulfilled too, then

||D (C(tn)) − Poi(λn)|| → 0 (5.20)

and
P(Mn ≤ tn) − exp(−λn) → 0. (5.21)
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5.5 Proofs

The proof of Theorem 5.3.1 is divided into a number of lemmas. We need to verify
the conditions in Theorem 5.4.1, and to this end we need bounds on the expectations
E(VaVb) = P(Va = 1, Vb = 1) for a �= b. This is the subject of the following subsec-
tions and clearly the most difficult part of the proof. Then we collect the bounds
obtained to prove that the conditions of Theorem 5.4.1 are fulfilled when aligning
independent Markov chains under the assumptions given in Theorem 5.3.1. Finally
we prove that (5.14) holds and the Poisson approximation of

∑
a∈I Va(tn) can be

translated into a Poisson approximation of C(tn).

For a = (k, r), b = (i, j) ∈ I we always have that

E(VaVb) = P( max
1≤δ≤∆≤l

∆∑
h=δ

f(Xk+h, Yr+h) > t, max
1≤δ≤∆≤l

∆∑
h=δ

f(Xi+h, Yj+h) > t)

≤ l4 max
δ1,δ2,∆1,∆2

P(

∆1∑
h=δ1

f(Xk+h, Yr+h) > t,

∆2∑
h=δ2

f(Xi+h, Yj+h) > t). (5.22)

To bound E(VaVb) we thus need to bound the probability on the right hand side
above. The same X- and/or Y - variables may enter both of the sums above in two
essentially different ways. Either there are shared variables from only one of the
sequences or there are shared variables from both. We will not give an exhaustive
treatment of every possible ways that such a sharing of variables can take place.
Rather, we treat the two essentially different cases for a specific arrangement of the
sharing in sufficient details for the reader to be able to convince himself that all
other arrangements can be treated similarly.

5.5.1 Positive functionals of a Markov chain

We make a useful and general observation about bounding the expectation of positive
functionals, e.g. probabilities, of a Markov chain. It allows us to assume parts of
the same Markov chain to be independent, stationary versions at the expense of
a multiplicative constant. We call it the decoupling argument and state it as the
following lemma:

Lemma 5.5.1 Let Z = (Zk)k≥0 be an irreducible Markov chain on a finite state
space E and let 0 = k1 < · · · < kN < ∞ be given. Then there exists a constant ρN

such that if (Zi
k)

ki+1

k=ki
for i = 1, . . . , N (kN+1 = ∞) are N independent stationary

Markov chains with the same transition probabilities as Z, and Z̃ = (Z̃k)k≥0 is given
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by Z̃k = Zi
k if ki ≤ k < ki+1 then for a positive functional

Λ : EN0 → [0,∞)

it holds that

E(Λ(Z)) ≤ ρNE(Λ(Z̃)). (5.23)

The constant ρN does not depend on the actual initial distribution of Z nor on the
functional Λ.

Proof: Assume N = 2. The general result follows by induction. Assume first that Z
is stationary and that (Z1

k)k2
k=0 and (Z2

k)k≥k2 are independent and stationary. Then

Z has the same distribution as Z̃ conditionally on Z1
k2

= Z2
k2

, hence using that Λ is
a positive functional

E(Λ(Z)) =
E(Λ(Z̃); Z1

k2
= Z2

k2
)

P(Z1
k2

= Z2
k2

)

≤ ρE(Λ(Z̃)).

with ρ =
(∑

x∈E π2
x

)−1
, where π is the invariant distribution.

If Z is non-stationary with initial distribution ν, say, we have that

Eν(Λ(Z)) =
∑
x∈E

νx

πx

πxEx(Λ(Z))

≤ 1

minx πx

Eπ(Λ(Z)).

So ρ2 = ρ/ minx πx will do. In general ρN = ρN−1/ minx πx can be used. �

5.5.2 Variables shared in one sequence

Recall the definition of Φ, θ∗ and Φi for i = 1, 2 from Section 5.3. For θ > 0 denote
by rθ = (rθ(x, y)) and rθ

i = (rθ
i (x, y, z)) the right Perron-Frobenious eigenvector of

Φ(θ) and Φi(θ) for i = 1, 2 respectively. Due to irreducibility all coordinates of these
vectors are strictly positive. In this section we derive a result corresponding to an
overlap in the X-sequence, cf. Figure 5.4, and we thus work exclusively with the Φ1

matrix. Similar derivations for an overlap in the Y -sequence using Φ2 are possible.

Assume in this section that (Zn)n≥1 is a stationary Markov chain with transition
probabilities Q independent of (Xn, Yn)n≥1.
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X

Y

j i+l

i+T

i

i+T+lj0

0

Figure 5.4: A schematic figure of how two overlapping parts of the X-sequence are
compared with non-overlapping parts of the Y -sequence.

Let i ≤ j and l ≥ 1 be given and define

S1((xk)k, (yk)k) =
i∑

k=1

f(xk, yk)

S2((xk)k, (yk)k, (zk)k) =

j∑
k=i+1

f(xk, yk) + f(xk, zk)

S3((xk)k, (zk)k) =
i+l∑

k=j+1

f(xk, zk)

together with S = S1 + S2 + S3.

For θ > 0 define

γθ =
rθ(xi, yi)r

θ
1(xj, yj, zj)r

θ(xi+l, zi+l)

rθ(x0, y0)rθ
1(xi, yi, zi)rθ(xj, zj)

exp(−iψ(θ) − (j − i)ψ1(θ) − lψ(θ))

and

Lθ = γθ exp(θS).

Note that γθ : EN0 → [0,∞) and S : EN0 → R and hence Lθ : EN0 → [0,∞) are all
functionals defined on the product space EN0 .

Lemma 5.5.2 It holds for all θ > 0 that Lθ((Xk)k, (Yk)k, (Zk)k) is a likelihood, i.e.

E(Lθ((Xk)k, (Yk)k, (Zk)k)) = 1, (5.24)

and, furthermore, for T + i ≥ j

E(Lθ((Xk)k, (Yk)k, (Yk)T+k)) ≤ ρ (5.25)

for some ρ.
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Proof: The first part of the lemma follows by the same arguments as those presented
in Section 2.3. The only difference is that we make three different, successive expo-
nential changes of measures. The second claim follows by the decoupling argument
in Lemma 5.5.1. �
We restrict our attention to the case where T + i ≥ j, so that there is no overlap in
the Y -sequence. With abuse of notation, let S2 denote a stochastic variable too;

S2 =

j∑
k=i+1

f(Xk, Yk) + f(Xk, YT+k).

Similarly, let S1 and S3 denote stochastic variables;

S1 =
i∑

k=1

f(Xk, Yk),

S3 =
i+l∑

k=j+1

f(Xk, YT+k),

and also S = S1 + S2 + S3.

Lemma 5.5.3 If θ ∈ (0, θ∗] and ϕ1(θ) ≤ 1 there exists a constant K such that

P (S > s) ≤ K exp (−θs) . (5.26)

Proof: We have that

P (S > s) = E

(Lθ((Xk)k, (Yk)k, (Yk)T+k)

Lθ((Xk)k, (Yk)k, (Yk)T+k)
; S > s

)
.

The γθ-factor in Lθ can be bounded below uniformly by b, say, since all the entries
in the eigenvectors are strictly positive and since ψ(θ) ≤ 0 by definition of θ∗ to-
gether with ψ1(θ) ≤ 0 by assumption. Since we integrate over the set (S > s), the
exponential factor in Lθ can be bounded below by exp(θs). Hence the denominator
is bounded below by b exp(θs). Using (5.25) in Lemma 5.5.2 we get that

P (S > s) ≤ ρb−1 exp(−θs).

�
For variables shared in one sequence, the result in Lemma 5.5.3 is the prototypical
large deviation result we can obtain using a Markov chain exponential change of
measure. Of course, Lemma 5.5.3 holds for those θ ∈ (0, θ∗] satisfying ϕ2(θ) ≤ 1 if
the overlap is in the Y sequence instead.
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5.5.3 A uniform large deviation result

To handle the case with variables shared from both sequences we need a special large
deviation result for Markov chains that we will derive in this section. We first state
the useful Azuma-Hoeffding inequality for martingales with bounded increments, cf.
Lemma 11.2 in (Waterman 1995) or Lemma 1.5 in (Ledoux & Talagrand 1991).

Lemma 5.5.4 If (Zm,Fm)m≥0 is a mean zero martingale with Z0 = 0 such that for
all m ≥ 1

|Zm − Zm−1| ≤ cm

for some sequence (cm)m≥1, then

P(Zm ≥ λ) ≤ exp

(
− λ2

2
∑m

k=1 c2
k

)
.

Fix j ≥ 1 and let in this section (Xk, Yk)
j
k=1 be a stationary, irreducible Markov

chain with transition probabilities given by R and invariant distribution πR. Let
(Yk)k≥j+1 be an independent, stationary and irreducible Markov chain with transi-
tion probabilities given by Q and invariant distribution πQ. For an E2 × E2-matrix
G define the norm of the matrix as

||G||∞ := max
(x,y)

∑
(z,w)

|G(x,y),(z,w)|.

Since the convergence of Rk to �πR is geometrically fast we have that

∞∑
k=0

||Rk − �πR||∞ < ∞.

For an E2 vector f we let ||f ||∞ = max(x,y) |f(x, y)| denote the max-norm. Then
clearly for any E2×E2 matrix G, with G(f) the matrix product of G with the vector
f , ||G(f)||∞ ≤ ||f ||∞ ||G||∞, and especially

||Rk(f) − �πR(f)||∞ ≤ ||f ||∞ ||Rk − �πR||∞.

For T ≥ 1 a fixed constant, we want to give an exponential bound of the probability

P

(
j∑

k=1

f(Xk, Yk+T ) ≥
j∑

k=1

f(Xk, Yk)

)
(5.27)
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if E(f(Xk, Yk+T )) < E(f(Xk, Yk)) all k. This is achieved by introducing a relevant
martingale and then apply the Azuma-Hoeffding inequality.

Let Fm = σ(X1, Y1, . . . , Xm, Ym) (F0 = {∅, Ω}),

Sj,T =

j∑
k=1

f(Xk, Yk+T ) − f(Xk, Yk) (S0,T = 0),

and with ξj,T = E(Sj,T ) let

Zm = E(Sj,T − ξj,T |Fm). (5.28)

Then (Zm,Fm)j
m=0 is a mean zero martingale with Z0 = 0 (depending on T , though

we have suppressed this in the notation). Notice that Zj = Sj,T − ξj,T . If we can
bound the martingale differences

|Zm − Zm−1| = |E(Sj,T |Fm) − E(Sj,T |Fm−1)|
with a constant, we can get the desired bound on (5.27) from the Azuma-Hoeffding
inequality.

Lemma 5.5.5 There exists a constant η independent of j and T such that

|Zm − Zm−1| ≤ η. (5.29)

Here η can be chosen as

η = 6||f ||∞
∞∑

k=0

||Rk − �πR||∞. (5.30)

Proof: The Markov property gives that for m ≤ k ≤ j

E(f(Xk, Yk)|Fm) = Rk−m(f)(Xm, Ym),

and with f(x) =
∑

z f(x, z)πQ(z) and fT (x, y) = RT (f(x, ·))(x, y)

E(f(Xk, Yk+T )|Fm) =


Rk−m(fT )(Xm, Ym) k ∈ C1

Rk−m(f)(Xm, Ym) k ∈ C2

Rk+T−m(f(Xk, ·))(Xm, Ym) k ∈ C3

f(Xk) k ∈ C4

,

where

C1 = {k | m ≤ k < k + T ≤ j},
C2 = {k | m ≤ k ≤ j < k + T},
C3 = {k | m − T ≤ k < m ≤ k + T ≤ j},
C4 = {k | m − T ≤ k < m < j < k + T}.
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Observing that

E(Sj,T |Fm) =

j∑
k=1

E (f(Xk, Yk+T )|Fm) −
j∑

k=1

E (f(Xk, Yk)|Fm)

and subtracting E(Sj,T |Fm−1) from this, the martingale difference Zm−Zm−1 is seen
to be a sum of the following two terms

t1 =

j∑
k=m−T

E (f(Xk, Yk+T )|Fm) − E (f(Xk, Yk+T )|Fm−1)

t2 =

j∑
k=m

E (f(Xk, Yk)|Fm−1) − E (f(Xk, Yk)|Fm)

Since

|E (f(Xk, Yk)|Fm) − πR(f)| = |Rk−m(f)(Xm, Ym) − πR(f)|
≤ ||f ||∞ ||Rk−m − �πR||∞,

the term t2 is controlled by the following inequality

|t2| ≤ 2||f ||∞
j∑

k=m

||Rk−m − �πR||∞ ≤ 2||f ||∞
∞∑

k=0

||Rk − �πR||∞. (5.31)

Noting that ||fT ||∞, ||f ||∞, ||f(x, ·)||∞ ≤ ||f ||∞ we observe that for k ∈ C1

|E (f(Xk, Yk+T )|Fm) − πR(fT )| ≤ ||f ||∞ ||Rk−m − �πR||∞,

for k ∈ C2

|E (f(Xk, Yk+T )|Fm) − πR(f)| ≤ ||f ||∞ ||Rk−m − �πR||∞,

and for k ∈ C3

|E (f(Xk, Yk+T )|Fm) − πR(f(Xk, ·))| ≤ ||f ||∞ ||Rk+T−m − �πR||∞.

Since the three inequalities above also hold when conditioning on Fm−1, we obtain∑
k∈C1∪C2∪C3

|E (f(Xk, Yk+T )|Fm) − E (f(Xk, Yk+T )|Fm−1)|

≤ 2||f ||∞
∑

k∈C1∪C2

||Rk−m − �πR||∞ + 2||f ||∞
∑
k∈C3

||Rk+T−m − �πR||∞

≤ 4||f ||∞
∞∑

k=0

||Rk − �πR||∞. (5.32)
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Obviously E (f(Xk, Yk+T )|Fm) = E (f(Xk, Yk+T )|Fm−1) for k ∈ C4, hence

|t1| ≤ 4||f ||∞
∞∑

k=0

||Rk − �πR||∞,

which together with (5.31) gives (5.29) with η chosen as (5.30). �

Theorem 5.5.6 If ξj,T < 0 it holds that

P(Sj,T ≥ 0) = P(Sj,T − ξj,T ≥ −ξj,T ) ≤ exp(− ξ2
j,T

2jη2
) (5.33)

with η chosen as in Lemma 5.5.5.

Proof: This follows directly from the Azuma-Hoeffding inequality for the mean zero
martingale (Zm,Fm)j

m=1, since it has increments uniformly bounded by η. �

5.5.4 Mean value inequalities

We will apply the result in the previous section by considering the Markov chain
(Xk, Yk)

j
k=1 under the exponentially tilted measure P

∗
π∗ and (Yk)k≥j+1 under Pπ. To

do so, we will need to establish inequalities relating the mean of f(Xk, Yk) to the
mean of f(Xk, Yk+T ) (or f(Xk+T , Yk)). Let in the following µ∗ = E

∗
π∗(f(Xk, Yk)) be

the stationary mean of f(Xk, Yk) under the exponentially tilted measure and let
µ∗

T = E
∗
π∗(f(Xk, Yk+T )) be the stationary mean when shifting the Y -sequence T

positions.

Lemma 5.5.7 It holds that π∗
1 ⊗ πQ(f) < µ∗ as well as πP ⊗ π∗

2(f) < µ∗.

Proof: We consider (Xk, Yk)k≥1 under the tilted measure and an independent sta-
tionary Markov chain (Zk)k≥1 with transition probabilities Q, thus (Zk)k≥1 has the
same distribution as (Yk)k≥1 does under the original measure. Then

(Xk, Yk, Zk)k≥1

is a Markov chain, and we consider the MAP given by

n∑
k=1

f(Xk, Zk) − f(Xk, Yk).
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The Markov chain has transition probabilities

R∗
(x0,y0,z0),(x1,y1,z1) =

r∗(x1, y1)

r∗(x0, y0)
exp(θ∗f(x1, y1))Px0,x1Qy0,y1Qz0,z1 ,

and we introduce the Φ̃∗(θ)-matrix

Φ̃∗(θ)(x0,y0,z0),(x1,y1,z1) = exp(θ(f(x1, z1) − f(x1, y1)))R
∗
(x0,y0,z0),(x1,y1,z1).

Clearly, with ϕ̃∗(θ) = spr(Φ̃(θ)) we have that ϕ̃∗(0) = ϕ̃∗(θ∗) = 1 (Φ̃∗(0) is stochastic
and Φ̃∗(θ∗) has right eigenvector r∗(x1, z1)/r

∗(x1, y1)). Moreover, (5.5) together with
(2.6) assures that ϕ̃∗ is strictly convex, and since

∂θϕ̃
∗(0) = π∗

1 ⊗ πQ(f) − µ∗

by (2.7), it follows that π∗
1 ⊗πQ(f) < µ∗. The second inequality follows similarly. �

Lemma 5.5.8 The sequence (µ∗
T )T≥1 is convergent and with

µ∗
∞ = lim

T→∞
µ∗

T

it holds that µ∗
∞ < µ∗.

Proof: We first observe that

µ∗
T = E

∗
π∗(f(X1, Y1+T )) → π∗

1 ⊗ π∗
2(f)

for T → ∞, where π∗
1 and π∗

2 are the marginals of π∗.

We consider (Xk, Yk)k≥1 under the tilted measure and let (Wk, Zk)k≥1 be an inde-
pendent copy with the same distribution. Then

(Xk,Wk, Yk, Zk)k≥1

is a Markov chain and we will consider the MAP given by

n∑
k=1

f(Xk, Zk) + f(Wk, Yk) − f(Xk, Yk) − f(Wk, Zk).

Introducing the corresponding Φ∗
∞(θ) matrix and its spectral radius ϕ∗

∞ we derive,
by similar arguments as in the previous lemma, that ϕ∗

∞(0) = ϕ∗
∞(θ∗) = 1, that

ϕ∗
∞(θ) is strictly convex, and that ∂θϕ

∗
∞(0) = 2µ∗

∞ − 2µ∗. Hence µ∗
∞ < µ∗. �

Interestingly, the inequality in previous lemma does not only hold in the limit but
actually for all T .
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Lemma 5.5.9 For all T ≥ 1 we have that

µ∗
T < µ∗. (5.34)

Proof: With ST
n =

∑n
k=1 f(Xk, Yk+T ) and Sn =

∑n
k=1 f(Xk, Yk) we observe that

Sn
D
= ST

n , since under P = Pπ the X- and Y -sequence are independent, stationary
Markov chains. We then obtain by (2.8) for θ > 0 that

1

n
log E(exp(θST

n )) =
1

n
log E(exp(θSn)) → ψ(θ) (5.35)

for n → ∞.

Consider first the case T = 1 and the stacked Markov chain

(Xk, Xk+1, Yk, Yk+1)k≥1,

which under the tilted measure has transition probabilities

R∗
(x0,w0,y0,z0),(x1,w1,y1,z1) =

r∗(w1, z1)

r∗(w0, z0)
exp(θ∗f(w1, z1))Pw0,w1Qz0,z1δw0,x1δz0,y1 .

Introduce the matrix

Φ∗
1(θ)(x0,w0,y0,z0),(x1,w1,y1,z1) = exp(θ(f(x1, z1) − f(w1, z1)))R

∗
(x0,w0,y0,z0),(x1,w1,y1,z1)

and its spectral radius ϕ∗
1(θ) = spr(Φ∗

1(θ)). Clearly, ϕ∗
1(0) = 1 and we observe that

Φ∗
1(θ

∗)(x0,w0,y0,z0),(x1,w1,y1,z1) =
r∗(w1, z1)

r∗(w0, z0)
exp(θ∗f(x1, z1))Pw0,w1Qz0,z1δw0,x1δz0,y1 .

The matrix Φ∗
1(θ

∗) has the same spectral radius if we remove the eigenvector fraction,
and by (2.8) together with (5.35) we obtain that

ψ∗
1(θ

∗) = log ϕ∗
1(θ

∗) = lim
n→∞

1

n
log E(exp(θ∗S1

n)) = ψ(θ∗) = 0,

thus ϕ∗
1(θ

∗) = 1.

Furthermore, by (2.7) ∂θϕ
∗
1(0) = µ∗

1−µ∗. Using (5.5) (for T = 1) together with (2.6)
we get that ϕ1 is strictly convex, hence

µ∗
1 < µ∗.

A similar argument for general T is possible by introducing the stacked Markov
chain

(Xk, . . . , Xk+T , Yk, . . . , Yk+T )k≥1
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Figure 5.5: This figure shows the case with overlap in both sequence.

on ET × ET and the MAP given by

n∑
k=1

f(Xk, Yk+T ) − f(Xk+T , Yk+T ).

The spectral radius ϕ∗
T (θ) of the corresponding matrix Φ∗

T (θ) for this MAP fulfills
that ϕ∗

T (0) = ϕ∗
T (θ∗) = 1, ∂θϕ

∗
T (0) = µ∗

T − µ∗ and it is strictly convex by (5.5) and
(2.6). Thus µ∗

T < µ∗. �
A similar result is possible when shifting the X-sequence instead. The interpretation
is rather pleasing. Under the tilted measure, the distribution of the Markov chain
(Xn, Yn)n≥1 is designed so that the pairs (Xn, Yn) ‘match’ well – using the score
function f . If we shift one of the sequences this matching is somehow destroyed, and
the lemma assures us that we can not under the tilted measure obtain an average
matching by shifting that is as good as if we don’t shift.

5.5.5 Variables shared in both sequences

We define for i, j, l, T ≥ 1 with i ≤ j

S1 =
i∑

k=1

f(Xk, Yk), S2 =

j∑
k=i+1

f(Xk, Yk)

S̃2 =

j∑
k=i+1

f(Xk, Yk+T ), S3 =
i+l∑

k=j+1

f(Xk, Yk+T ),

cf. Figure 5.5.

Theorem 5.5.10 There exists an ε > 0 and some K (both independent of T ) such
that

P(S1 + S2 > t, S̃2 + S3 > t) ≤ K exp(−θ∗(1 + ε)t) (5.36)

for t ≥ 0.
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Proof: Assume first that the number of variables j − i in the overlapping part is
small, less than t(4||f ||∞)−1, say, in which case we obtain the estimate

P(S1 + S2 > t, S̃2 + S3 > t) ≤ P(S1 > 3/4t, S3 > 3/4t)

≤ ρP(S1 > 3/4t)P(S3 > 3/4t)

≤ K exp(−3/2θ∗t),

using the decoupling argument for the second inequality and then a standard expo-
nential change of measure argument. This implies (5.36) with ε = 1/2.

If instead j − i ≥ t(4||f ||∞)−1 we observe that

P(S1 + S2 > t, S̃2 + S3 > t)

≤ P(S1 + S2 > t, S̃2 ≥ S2) + P(S̃2 + S3 > t, S2 ≥ S̃2). (5.37)

With Lθ∗
j = r(Xj, Yj)/r(X0, Y0) exp(θ∗(S1 + S2)) we obtain

Pπ(S1 + S2 > t, S̃2 ≥ S2) = Pπ

(
Lθ∗

j

Lθ∗
j

; S1 + S2 > t, S̃2 ≥ S2

)
≤ b−1 exp(−θ∗t)P∗

π,j(S̃2 ≥ S2)

where P
∗
π,j denotes the tilted measure up to index j. Using the decoupling argument

from Lemma 5.5.1, we can, at the expense of a factor ρ, assume that the sequence
(Xk, Yk)

j
k=i is a stationary Markov chain under the tilted measure and that (Yk)k≥j+1

is independent and stationary under the original measure. Under this assumption it
follows that the mean of S̃2−S2 equals (j−T − i)µ∗

T +Tπ∗
1⊗πQ(f)−(j− i)µ∗. Using

Lemma 5.5.7, Lemma 5.5.8, and Lemma 5.5.9 we can find a ζ > 0, independent of
T , such that

(j − T − i)µ∗
T + Tπ∗

1 ⊗ πQ(f) − (j − i)µ∗ < −(j − i)ζ.

Hence Theorem 5.5.6 gives that

P
∗
π,j(S̃2 ≥ S2) ≤ ρ exp(−ζ2(j − i)

2η2
) ≤ ρ exp(− ζ2t

8||f ||∞η2
)

or, with ε = ζ2(θ∗8||f ||∞η2)−1,

P(S1 + S2 ≥ t, S̃2 ≥ S2) ≤ ρb−1 exp(−θ∗(1 + ε)t)

and (5.36) follows. Of course, a similar argument takes care of the second term in
(5.37). �
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X1

Yn

Xn

Y1

a=(k,r)

Figure 5.6: For each diagonal-
within-a-strip given by a we
define a neighbourhood of
strong dependence. This fig-
ure shows the neighbourhood
for some a = (k, r). The
‘arms’ of this cross correspond
to diagonals-within-a-strip, b,
sharing variables with a from
either the X- or Y -Markov
chain but not both. In the in-
tersection, b can share vari-
ables with a from both the
sequences. The dashed lines
mark the strips into which the
matrix is divided.

5.5.6 Proof of the Poisson approximation

Returning to the alignment of Markov chains considered in this chapter, we define
the neighbourhood of strong dependence Ba, for a = (k, r) ∈ I, by

B1
a = {k − l, . . . , k + 2l} × {0, l, 2l, . . . ,

⌊n

l

⌋
l}

B2
a = {0, . . . , n} × {r − l, r, r + l}

and then Ba = B1
a ∪ B2

a. Note that maxa |Ba| = O(n). The set B1
a is a horizontal

strip of strong dependence and B2
a is a vertical strip of strong dependence. Of course,

the set should be properly modified close to the boundaries of the index set, and we
could chose to always consider Ba ∩ I. This boundary modification is insignificant
and will be ignored throughout.

Lemma 5.5.11 If we, for some x ∈ R, let

l = ln ∼ (log n2)3 and t = tn =
log K∗ + log n2 + x

θ∗
(5.38)

and define xn ∈ [0, θ∗) by xn = θ∗(tn−�tn�), then under the assumptions in Theorem
5.3.1, the conditions in Theorem 5.4.1 are fulfilled with

λn = exp(−x + xn).
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That is ∣∣∣∣∣
∣∣∣∣∣D
(∑

a∈I

Va

)
− Poi(exp(−x + xn))

∣∣∣∣∣
∣∣∣∣∣→ 0.

Proof: According to Lemma 2.4.6

P(V(0,0) = 1) = P

(
max

1≤δ≤∆≤l

∆∑
k=δ

f(Xk, Yk) > t − xn/θ
∗
)

∼ ln−2 exp(−x+xn) (5.39)

for n → ∞. Since |I| ∼ n2l−1 and, due to stationarity, all the events (Va = 1) for
a ∈ I are equally probable, it follows from (5.39) that

∑
a∈I

E(Va) = |I|P
(

max
1≤δ≤∆≤l

∆∑
k=δ

f(Xk, Yk) > t − xn/θ
∗
)

∼ exp(−x + xn),

or, since exp(−x + xn) is bounded,∣∣∣∣∣∑
a∈I

E(Va) − exp(−x + xn)

∣∣∣∣∣→ 0

for n → ∞.

Furthermore, we observe that |I|E(V(0,0)) is bounded and that maxa |Ba| = o(|I|) for
n → ∞, so condition (5.16) is fulfilled by∑

a∈I,b∈Ba

E(Va)E(Vb) ≤ |I| × max
a

|Ba| × E(V(0,0))
2 = O

(
maxa |Ba|

|I|
)

→ 0.

We prove that (5.17) is fulfilled by splitting the set Ba into three disjoint sets and,
depending on the set, give a bound of E(VaVb) for b in each of these sets. For a ∈ I
let

Ba = Ca ∪ D1
a ∪ D2

a

with Ca, D1
a and D2

a being the disjoint sets

Ca = B1
a ∩ B2

a, D1
a = B1

a\Ca and D2
a = B2

a\Ca

We see that Ca is the centre of the set Ba, and D1
a and D2

a are the remaining
horisontal and vertical parts.

Consider the case b ∈ Ca and b �= a. Using (5.22) together with Lemma 5.5.10 we
can find an ε > 0 such that

E(VaVb) ≤ Kl4 exp(−θ∗(1 + ε)t).
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Hence, observing that
∑

a∈I |Ca| ≤ 9|I|l ≤ 9n2,∑
a∈I,b∈Ca,b �=a

E(VaVb) ≤ Kl4n−2(1+ε)
∑
a∈I

|Ca| → 0

for n → ∞.

For b ∈ Di
a, Lemma 5.5.3 with θ = 3/4θ∗(1 + ε) for some ε > 0 applies due to (5.9),

and together with (5.22) we obtain that

E(VaVb) ≤ Kl4 exp(−3/2θ∗(1 + ε)t),

in which case ∑
a∈I,b∈Di

a

E(VaVb) ≤ Kl4n−3(1+ε)
∑
a∈I

|Di
a|

≤ Kl4n−3(1+ε)8n3 → 0.

The two-dimensional process (Xk, Yk)k≥1 is a stationary, irreducible Markov chain
on a finite state space, hence we can extend it to a doubly infinite, stationary process
(Xk, Yk)k∈Z, which is exponentially β-mixing. The β-mixing coefficients thus satisfy

β(k) ≤ K1 exp(−K2k)

for some constants K1, K2 > 0. For a = (r, r) ∈ I we define I1 = (−∞, r − l],
I2 = [r + 1, r + l], and I3 = [r + 2l + 1,∞), for which d(I1 ∪ I3, I2) = l + 1. Then
clearly with I = I1 ∪ I3 and J = I2, Fa ⊆ FI = σ(Xn, Yn | n ∈ I1 ∪ I3) and Va is
measurable w.r.t. FJ = σ(Xn, Yn | n ∈ I2}. So Lemma 2.6.2 together with Theorem
2.6.4 imply that

E|E(Va|Fa) − E(Va)| ≤ 2α(FI ,FJ) ≤ 2β(l + 1) ≤ K exp(−K2l).

For any non-diagonal a = (k, r) ∈ I we can shift the X-process by stationarity to
reduce the problem to the previous one and thus to obtain the same bound. This
bound implies that∑

a∈I

E|E(Va|Fa) − E(Va)| ≤ Kn2 exp(−K2(log n2)3) → 0

for n → ∞. �
Proof of Theorem 5.3.1: We prove that

P

(∑
a∈I

Va(tn) �= C(tn)

)
→ 0. (5.40)
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We first show that the probability of (i) the existence of an excursion in En exceed-
ing t and crossing a boundary between two diagonals-within-a-strip and (ii) two
exceedances fall within the same diagonal-within-a-strip tends to zero. For a ∈ I we
introduce the excursion containing a

ea = (i, j, ∆) if a ∈ {(i + 1, j + 1), . . . , (i + ∆, j + ∆)},

and then using Lemma 2.6.7

P(∃a ∈ I : Mea > t) ≤ K(|I|(log n)2 exp(−θ∗t) + |I|n−2)

≤ K1((log n)−1 + (log n)−3) → 0.

The other way around, let Ea
n be the set of excursions contained in the diagonal-

within-a-strip a = (k, r) ∈ I, that is, with A = {(k + 1, r + 1), . . . , (k + l, r + l)}

e = (i, j, ∆) ∈ Ea
n if (i + 1, j + 1), (i + ∆, j + ∆) ∈ A.

Then for a given a ∈ I we get, using (2.22) and a decoupling argument, that

P(∃e, e′ ∈ Ea
n : Me > t,Me′ > t) ≤ Kl3 exp(−2θ∗t).

Hence the probability that two excursions exceeding t occur within the same diagonal-
within-a-strip is

P(∃a ∈ I ∃e, e′ ∈ Ea
n : Me′ > t,Me′ > t) ≤ Kl2n−2 → 0

for n → ∞.

Finally, there can be some problems close to the boundary of the score matrix.
Introduce the set Ẽn ⊆ En+l with (i, j, ∆) ∈ Ẽn if

(i, j, ∆) ∈ En+l and either i ≤ l, i ≥ n − l, or j ≥ n − l.

Thus Ẽn consists of those excursions that occur close to the boundary – in the
enlarged n+ l×n+ l score matrix, cf. the definition of I, which allows for diagonals-
within-a-strip to extend a little beyond the boundary of the score matrix. Clearly,

P(∃e ∈ Ẽ : Me > t) ≤ Knl exp(−θ∗t) ≤ K1ln
−1 → 0.

One then just have to observe that the event (
∑

a∈I Va(tn) �= C(tn)) is contained in
the union of the three events treated above, hence (5.40) holds. �



Discussion 103

5.6 Discussion

For notational convenience it was chosen to state and prove the results in this chap-
ter using a score function f that compares the sequences letter by letter. There is
actually no loss of generality in doing so, since if we want to consider more compli-
cated score functions depending on more letters, we can always stack the Markov
chain. In particular, the use of a score function like the one derived for the Markov
model in Chapter 4 is also covered by Theorem 5.3.1. In fact, Theorem 5.3.1 is
substantiable more general than it looks at first. By staking the process, it follows
from the theorem that when comparing independent sequences of n’th order Markov
chains, say, using a score function f : Ew → Ew → Z with a window of size w, one
can derive the same asymptotic theory for the maximal, local (gapless) alignment
score as derived by Dembo et al. (1994b) for the iid case. Even in the framework of
iid sequences the theorem provides a generalisation to score functions that compare
more than one letter at the time. Of course, the conditions imposed for the theorem
to hold, especially (5.9), puts some restrictions on the generality, but it is neverthe-
less noteworthy that the same kind of extreme value theory extend to a vary large
class of processes and score functions.

It is unfortunate that we haven’t been able to identify sufficient conditions for The-
orem 5.3.1 that are equivalent with the condition (E ′) in Dembo et al. (1994b) in
the iid setup. Attempts of improvements should quite clearly be targeted at Lemma
5.5.3, which is the reason for assuming (5.9). Referring to Appendix A, this result
has be optimised as much as possible using the straight forward exponential change
of measure. Thus to achieve improvements one much invent another approach.

One can also allow for the sequences that are compared to have different lengths m
and n, say. In this case a similar result is valid for n,m → ∞ with

tm,n =
log K∗ + log(mn) + x

θ∗
.

This can be derived using I0 ⊆ I given by

I0 =
{

(k, r) = (k, ql) | k ∈ {0, . . . ,m}, q ∈ {0, . . . ,
⌊n

l

⌋
}
}

,

and then apply Theorem 5.4.1. Some restrictions on the simultaneous growth of
m and n must be made in order for this to work. It is certainly sufficient that
0 < lim inf m/n ≤ lim sup m/n < ∞ but weaker assumptions will do. From a prac-
tical point of view, one should just keep in mind that when m and n are of vastly
different size there could be problems with the Poisson and the Gumbel approx-
imations. Simulation studies can then be helpful in revealing to what extend the
approximations hold anyway. We refer to Chapter 7 for a simulation study explor-
ing a similar problem in the context of local structures as presented in Chapter
6.
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Notes

The results in this chapter are new. The general idea of using the Poisson approx-
imation by Arratia et al. (1989) for proving a result like Theorem 5.3.1 is, on the
other hand, not. A very similar technique of proof was used by Dembo et al. (1994b).
Indeed, Arratia et al. (1989) themselves apply the Poisson approximation to a simi-
lar sequence comparison problem. But even though Dembo et al. (1994b) was a great
inspiration for the results and proofs presented here, almost all of the details have
been changed. The counting construction presented here to approximate C(tn) seems,
in this authors opinion, to be more closely related to C(tn) and easier to work with
than the corresponding counting construction presented by Dembo et al. (1994b).
Moreover, they use to a great extend inequalities based on large deviation theory to
derive relevant estimates of probabilities, whereas the the method of choice in this
chapter is exponential change of measure. Furthermore, several new problems arise
due to the Markov dependence in the sequences. Most notably, the result correspond-
ing to Theorem 5.5.10 was derived in the iid setup by a very smart permutation
argument, which essentially employs exchangeability of iid-variables. The alterna-
tive route presented here, which works for Markov chains, is an application of the
Asuma-Hoeffding inequality for martingales.



6

Local Folding of Markov Chains

6.1 Introduction

In Chapter 4 we discussed structures and the scoring of especially stem-loops. This
chapter contains an analysis of the maximal, gapless (gI ≡ ∞) score of local stem-
loop structures, allowing in principle an arbitrarily large hairpin loop (gH ≡ 0).
For the sequence being a Markov chain, we obtain a Poisson approximation of the
number of essentially different stem-loop structures with a score exceeding some level
t, and from this we derive a Gumbel approximation of the maximal local stem-loop
score.

6.2 Local folding structures

Let (Xk)k≥1 be a sequence of stochastic variables taking values in a finite set E, and
let, for n ≥ 1 given, Yk = Xn−k+1, k = 1, . . . , n. Thus (Yk)1≤k≤n is the time reversion
of (Xk)1≤k≤n. Introduce the set

Hn = {(i, j, ∆) | 0 ≤ j ≤ j + ∆ ≤ n, n − j + 1 ≤ i ≤ i + ∆ ≤ n},
which we in this chapter call the set of structures. As for alignments, there is a
one-to-one correspondence between the elements (i, j, ∆) ∈ Hn and structures of
the form

{(n − j − ∆ + 1, i + ∆), (n − j − ∆ + 2, i + ∆ − 1), . . . , (n − j, i + 1)}.
The structures given by Hn are closely related to the alignments defined in Chapter
5, and the only difference is the restriction n + 1 ≤ i + j. This reflects the physical
restriction of folding a sequence back onto itself to form a stem-loop.

105
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We assume a score function f : E × E → Z given and define for (i, j, ∆) ∈ Hn

S∆
i,j =

∆∑
k=1

f(Xk+i, Yk+j) =
∆∑

k=1

f(Xk+i, Xn−k−j+1)

as the score of the structure (i, j, ∆). The score S∆
i,j is thus in the terminology of

Chapter 4 the local stem-loop score of the structure given by (i, j, ∆) using gH ≡ 0.

We can summarise the scores by the score matrix (Ti,j) – still reflecting the con-
straints imposed by Hn – defined by Ti,j = 0 for i + j ≤ n + 1 and recursively

Ti,j = (Ti−1,j−1 + f(Xi, Yj))
+ (6.1)

for i + j > n + 1. Note that the score matrix is only non-zero below the ‘anti’-
diagonal, that is, below the diagonal going from the lower left corner to the upper
right corner. In is quite common in the literature on secondary structures to rotate
the score matrix 90 degrees counter clockwise, so that it becomes an upper triangular
matrix. We keep it this way to make it directly comparable with the alignment score
matrix from the previous chapter.

We want to count the essentially different excesses above a threshold in the score
matrix, but we will further impose a window of size w, 2 ≤ w ≤ n, to which we
will restrict our attention. One observes as for alignments that the maximum of S∆

i,j

where (i, j, ∆) ∈ Hn is restricted by the window to satisfy i + j + 2∆ ≤ n + w can
be obtained as the maximum over Ti,j with (i, j) satisfying i + j ≤ n + w, i.e.

Mn,w = max
(i,j,∆)∈Hn

i+j+2∆≤n+w

S∆
i,j = max

(i,j)

i+j≤n+w

Ti,j. (6.2)

Definition 6.2.1 Given a window size w, a structure (i, j, ∆) ∈ Hn,w with i + j +
2∆ ≤ n + w is called an excursion if

Ti,j = 0, Sδ
i,j > 0 for 0 < δ < ∆

and either S∆
i,j = 0, i + ∆ = n, j + ∆ = n

or i + j + 2∆ = n + w

Let En,w be the set of all excursions with window w.

For e = (i, j, ∆) ∈ En,w an excursion

Me = max
0<δ≤∆

Sδ
i,j = max

0<δ≤∆
Ti+δ,j+δ

is the maximum over an excursion, and we can introduce the counting of excesses.
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Definition 6.2.2 The essentially different excesses over t is defined as

Cn,w(t) =
∑

e∈En,w

1(Me > t), (6.3)

hence from (6.2) we get (Cn,w(t) = 0) = (Mn,w ≤ t).

6.3 Stem-loops in a Markov chain

We assume that the process (Xk)k≥1 is a stationary, irreducible and aperiodic Markov
chain with transition probabilities P and invariant measure π. It plays a role in
this chapter that the Markov chain is assumed stationary since the time reversion
(Yk)1≤k≤n is then also a time-homogeneous Markov chain. In fact, it is a stationary,
irreducible and aperiodic Markov chain too with transition probabilities

←−
P x0,x1 =

πx1Px1,x0

πx0

.

Assume for all T ≥ 1 that there exists a cycle x1, . . . , xn (w.r.t. P ) and a cycle

y1, . . . , yn (w.r.t. to
←−
P ) such that

n∑
k=1

f(xk, yk) �=
n∑

k=1

f(xk, yk+T (mod n)).

Furthermore, assume that there exists a cycle (x1, . . . , xn) (w.r.t. P ) and a cycle

(y1, . . . , yn) (w.r.t. to
←−
P ) such that

n∑
k=1

f(xk, yk) > 0.

Considering (Xk)k≥1 as part of a doubly infinite sequence (Xk)k∈Z, we observe that

(Yk)
n
k=1

D
= (Xk)

−n
k=−1.

The process (Sn)n≥1 defined by Sn =
∑n

k=1 f(Xk, X−k) is a MAP with

H(x0,x1),(y0,y1) = δf(x1,y1)

and transition probabilities for the underlying Markov chain being P ⊗ ←−
P . This

Markov chain has invariant probability measure πP⊗πP . Assuming that the invariant
mean is negative,

µ = πP ⊗ πP (f) =
∑

x,y∈E

f(x, y)πP (x)πP (y) < 0,
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and defining the E2 × E2 matrix Φ(θ) by

Φ(θ)(x0,y0),(x1,y1) = exp(θf(x1, y1))Px0,x1

←−
P y0,y1

with spectral radius ϕ(θ) = spr(Φ(θ)), there is a unique solution θ∗ > 0 to ϕ(θ) = 1.
Likewise, K∗ is the constant defined for this MAP by (2.19) in Theorem 2.4.3.

In addition to Φ1 and Φ2 defined in Section 5.3 (with Q =
←−
P ), we need to introduce

two further Φ-matrices. Define for θ ∈ R

Φ1(θ)(x0,y0,z0),(x1,y1,z1) = exp(θf(x1, y1) + θf(x1, z1))Px0,x1

←−
P y0,y1

←−
P z0,z1

Φ2(θ)(x0,w0,y0),(x1,w1,y1) = exp(θf(x1, y1) + θf(w1, y1))Px0,x1Pw0,w1

←−
P y0,y1

Φ3(θ)(x0,y0,z0),(x1,y1,z1) = exp(θf(x1, y1) + θf(z1, x1))Px0,x1

←−
P y0,y1

←−
P z0,z1

Φ4(θ)(x0,w0,y0),(x1,w1,y1) = exp(θf(x1, y1) + θf(y1, w1))Px0,x1Pw0,w1

←−
P y0,y1 .

Note the subtle difference between Φ1 and Φ3 and between Φ2 and Φ4 respectively.
The change is a permutation of the arguments to the second f , hence if f were
symmetric there would be no difference at all. We don’t want to assume that f
is symmetric, and we need to take all four Φ-matrices into account. Let ϕi(θ) =
spr(Φi(θ)) for i = 1, 2, 3, 4 denote the spectral radii of the Φ-matrices.

Theorem 6.3.1 Assume that µ < 0 and that θ∗ and K∗ are chosen as described
above. Assume, furthermore, that

ϕi

(
3

4
θ∗
)

< 1 (6.4)

for i = 1, 2, 3, 4. Then if we for x ∈ R define

tn,w =
log K∗ + log(n(w − 1) − w(w − 1)/2) + x

θ∗
(6.5)

and xn,w ∈ [0, θ∗) by xn,w = θ∗(tn,w − �tn,w�), it holds that

||D(Cn,w(tn,w)) − Poi(exp(−x + xn,w))|| → 0 (6.6)

for n,w → ∞ such that (log n2)3 = o(w). In particular

P(Mn,w ≤ tn,w) − exp(− exp(−x + xn,w)) → 0 (6.7)

for n,w → ∞.
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Remark 6.3.2 The number of entries in the score matrix fulfilling that n + 1 <
i + j ≤ n + w can be shown to equal n(w − 1) − w(w − 1)/2. If w = n we have that
n(w − 1) − w(w − 1)/2 = n(n − 1)/2 corresponding to (approximately) half of the
score matrix is being used. If we fix w and let n → ∞ we find, on the other hand,
that n(w− 1)−w(w− 1)/2 ∼ n(w− 1). The condition imposed on the simultaneous
growth to ∞ of n and w may seem a little strange. It basically means that w can not
grow arbitrarily slowly compared with n, and in the line of proof presented here, it
turns out that (log n2)3/w → 0 is a sufficient condition. It may very well be improved
slightly, but it seems irrelevant to do so.

6.4 Proofs

We define the index set I0 as follows

I0 =
{

(k, ql) | k ∈ {0, . . . , n}, q ∈ {0, . . . ,
⌊n

l

⌋
}, n + 1 + 3l ≤ k + ql ≤ n + w

}
.

The index set I0 is non-empty if 1+3l ≤ w and one should generally think of w � l.
Below we choose l ∼ (log n2)3, so if (log n2)3 = o(w) for n → ∞ the set I0 is indeed
non-empty for large n. As for alignments we introduce for t > 0 and a = (k, r) ∈ I0

the stochastic variable

Va = Va(t) = 1

(
max

1≤δ≤∆≤l

∆∑
h=δ

f(Xk+h, Yr+h) > t

)
,

which count if there is an excursion exceeding t within the diagonal-within-a-strip
indexed by a. There is a very subtle reason for restricting our attention to indexes
a = (k, r) satisfying n + 1 + 3l ≤ k + r and not just n + 1 ≤ k + r. It corresponds
to simply ignoring a sub-diagonal strip of width 3l in the score matrix. A strip that
is asymptotically negligible for n → ∞ under the conditions that l ∼ (log n2)3 and
(log n2)3 = o(w). The reason is to get rid of some very nasty dependencies close to
the diagonal, which arise due to the folding of the sequence back onto itself.

The neighbourhood of strong dependence also needs to be redefined for this setup.
For a = (k, r) let

B1
a = {k − l, . . . , k + 2l} × {0, l, 2l, . . . ,

⌊n

l

⌋
l} ∩ I0

B2
a = {0, . . . , n} × {r − l, r, r + l} ∩ I0

B3
a = {0, . . . , n} × {n − k + 1 − l, n − k + 1, n − k + 1 + l} ∩ I0

B4
a = {n − r + 1 − l, . . . , n − r + 1 + 2l} × {0, l, 2l, . . . ,

⌊n

l

⌋
l} ∩ I0
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X1Xn

a=(k,r)

X1

Xn

Figure 6.1: An example of
the neighbourhood of strong
dependence for the diagonal-
within-a-strip, a, in the case of
folding a sequence back onto
itself. The neighbourhood be-
comes slightly more compli-
cated in this case compared to
aligning two independent se-
quences, because the reuse of
variables is more intense. Here
we see the case where the win-
dows size w = n.

and put Ba = B1
a ∪ B2

a ∪ B3
a ∪ B4

a. Intersecting with I0 in the definitions above is a
restriction of the four sets to the triangular part of the score matrix we are interested
in. On Figure 6.1 we see an example of the neighbourhood of strong dependence in
the case where w = n.

Lemma 6.4.1 If we, for some x ∈ R, let

l = ln ∼ (log n2)3 and t = tn,w =
log K∗ + log(n(w − 1) − w(w − 1)/2) + x

θ∗

and define xn,w ∈ [0, θ∗) by xn,w = θ∗(tn,w − �tn,w�), then under the assumptions in
Theorem 5.3.1, the conditions in Theorem 5.4.1 are fulfilled with

λn = exp(−x + xn).

That is ∣∣∣∣∣
∣∣∣∣∣D
(∑

a∈I0

Va

)
− Poi(exp(−x + xn,w))

∣∣∣∣∣
∣∣∣∣∣→ 0.

Proof: The proof is to some extend a copy of the proof of Lemma 5.5.11. There are,
however, some details that need to be handle carefully.
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X

Y

j i+l i+Ti i+T+l

j

0

0

Figure 6.2: In the fold-back setup there are, in addition to the two different cases
from the ordinary alignment setup, also two essentially different cases where the
overlapping part is turned around before realignment. Either as shown here the
overlap is in the X-sequence, or the overlap is in the Y -sequence (which is the
X-sequence reversed, but there is a difference).

First of all observe that due to the assumption that (log n2)3/w → 0 for n,w → ∞
it holds that |I0| ∼ (n(w − 1) − w(w − 1)/2)l−1. And since

P(Va > tn) = P(Va > tn − xn/θ
∗) ∼ (n(w − 1) − w(w − 1)/2)−1l exp(−x + xn)

as follows from Lemma 2.4.6 (the convergence is uniform in a), we have that∑
a∈I0

E(Va) ∼ |I0|(n(w − 1) − w(w − 1)/2)−1l exp(−x + xn) ∼ exp(−x + xn),

or, since exp(−x + xn) is bounded,
∣∣∑

a∈I0
E(Va) − exp(−x + xn)

∣∣→ 0

Furthermore, E(Va)E(Vb) ∼ (n(w − 1) − w(w − 1)/2)−2l2 exp(−2(x + xn)) and
maxa |Ba| = O(n) = o(|I0|), so∑

a∈I,b∈Ba

E(Va)E(Vb) ≤ K|I0|max
a

|Ba|(n(w − 1) − w(w − 1)/2)−2l2 → 0

for n,w → ∞.

To verify that condition (5.17) in Theorem 5.4.1 holds, we divide the neighbourhood
of strong dependence Ba into five disjoint sets;

Ca = B1
a ∩ B2

a, D1
a = B1

a\Ca, and D2
a = B2

a\Ca

together with B3
a and B4

a. By exactly the same arguments as in the proof of Lemma
5.5.11, it follows that ∑

a∈I0,b∈Ca

E(VaVb) → 0 and∑
a∈I0,b∈Di

a

E(VaVb) → 0
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for i = 1, 2 using for the second limit that ϕi(3/4θ
∗) < 1 for i = 1, 2. To take care

of a ∈ I0 and b ∈ Bi
a for i = 3, 4 we need the conclusion from Lemma 5.5.3 but for

the overlap as depicted in Figure 6.2. The result is easily verified by a proof similar
to that of Lemma 5.5.3. Thus due to the assumption ϕi(3/4θ

∗) < 1 for i = 3, 4 we
can obtain, for some ε > 0, the estimate

E(VaVb) ≤ Kl4 exp(−3/2θ∗(1 + ε)t)

for a ∈ I0 and b ∈ Bi
a for i = 3, 4. And therefore∑

a∈I0,b∈Bi
a

E(VaVb) ≤ Kl4(n(w − 1) − w(w − 1)/2)−3/2(1+ε)
∑
a∈I0

|Bi
a|

≤ Kl4(n(w − 1) − w(w − 1)/2)−3/2(1+ε)

×K1(n(w − 1) − w(w − 1)/2)3/2 → 0.

Finally, we need to verify condition (5.18). For this, we embed (Xk)k≥1 into a doubly
infinite, stationary Markov chain (Xk)k∈Z, which is exponentially β-mixing, thus

β(k) = E sup
A∈F[k,∞)

|P(A|F(−∞,0]) − P(A)|,≤ K1 exp(−K2k).

For a = (k, r) we let m = n − r + 1 + 3l ≤ k and define I1 = (−∞,m − l],
I2 = [m+1,m+ l], I3 = [m+2l+1, k− l], I4 = [k+1, k+ l] and I5 = [k+2l+1,∞).
With I = I1 ∪ I3 ∪ I5 and J = I2 ∪ I4 we clearly have that Fa ⊆ FI = σ(Xn | n ∈ I)
and Va is FJ measurable. Hence from Lemma 2.6.2 and Theorem 2.6.4 we obtain
that

E|E(Va|Fa) − E(Va)| ≤ 7α(FI ,FJ) ≤ 7β(l + 1) ≤ K exp(−K2l).

This implies that∑
a∈I0

E|E(Va|Fa) − E(Va)| ≤ K(n(w − 1) − w(w − 1)/2)2 exp(−K2(log n2)3) → 0

for n,w → ∞. �
Proof of Theorem 6.3.1 The idea is again to show that

P

(∑
a∈I0

Va(tn,w) �= C(tn,w)

)
→ 0,

and the technique is the same as in the proof of Theorem 5.3.1. That is, we can
show that all the excursions in En,w exceeding t occur with probability tending to
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1 in such a way that they each and every one of them are counted exactly once by∑
a∈I0

Va(tn,w).

The only difference where one has to be a little careful is what happens close to the
boundary and with the sub-diagonal strip that we ignored in I0. The probability of
any excursion exceeding t occurring in these regions can, however, as in the proof of
Theorem 5.3.1 be seen to be bounded by Knl exp(−θ∗t) → 0 for n,w → ∞ – using
again that l/w = (log n2)3/w → 0. �

6.5 Discussion

Though the result is very similar to that of Chapter 5, it is a genuinely new result –
even if we consider a sequence of iid variables – and it seems to be a novel idea to take
this approach to search for local structures in sequences. It should be emphasised
that we look specifically for local stem-loop structures, and this is what makes the
theory very similar to that of local alignments.

If the reader is confused by the introduction of a window, it may be beneficial to first
think of w = n, which corresponds to no window. Introducing a window effectively
means to restrict our attention to a part of the score matrix. It is then no surprise
that the Poisson approximation is still valid with a mean that is suitably modified.
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7

Searching for Small Folding
Structures

7.1 Introduction

The development of the results in Chapter 6 was inspired by some recent discoveries
in biology. Certain small RNA-molecules were found to play a role in the regulation
of gene expression. It was observed that RNA can interfere with the translation
of messenger RNA (mRNA) by complementary binding to the mRNA and thereby
preventing translation or directing degradation of the mRNA (C. Lee & Ambros
2001, Lau et al. 2001, Lagos-Quintana et al. 2001). It was also found that RNA-
molecules with this function were transcribed from the cells own DNA, and such
RNA-molecules were, due to their size of approximately 21-22 nucleotides, named
micro RNA (miRNA). A characteristic feature of miRNA is that the molecule is
transcribed into a so-called precurser of size approximately 100 nucleic acids pos-
sessing a stem-loop structure. This structure seems to be important for the way
the molecule is afterwards ‘prepared’ by cutting out the actual miRNA from the
precurser.

Our interest in miRNA is as an example of RNA-genes or non-coding, functional
RNA. By RNA-genes we mean chromosomal DNA that is transcribed into RNA and
show some function in the cell other than ‘just’ being messenger RNA. A classical
example is transfer RNA (tRNA) that assists the ribosome (which also contains
RNA-parts) in the translation of mRNA into protein. We are interested in the finding
of such RNA-genes in the DNA by computational methods, and the main idea
presented here is to search for small sequence parts that posses a stem-loop structure.
The stem-loop is a characteristic feature for miRNA that seems to be appropriate for
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distinguishing miRNA, but for other kinds of RNA-genes other (structural) features
might be more important.

The main points treated in this chapter are how the miRNA stem-loop structure
can be modelled and used to find miRNA-like RNA in large DNA-sequences, and
how we can evaluate, improve and optimise the search technique based on the theory
developed in Chapter 6 (and some extrapolation). In this setup we also discuss, using
simulations, the applicability of the extreme value theory developed.

7.2 Modelling miRNA

We present a dataset consisting of 59 miRNAs from the worm C. elegans for which
we fit relevant models. Null-models are fitted using the C. elegans genome, and we
construct score functions by the approach in Chapter 4. The dataset contains 59
sequences from the alphabet

E = {a,c,g,u}

each consisting of between 72 and 110 letters. This dataset was kindly extracted
in 2002 by Morten Lindow, University of Copenhagen, from the Rfam database
(Griffiths-Jones et al. 2003). Today, the number of miRNAs found in C. elegans has
increased in the database, but we strick to the original dataset for this analysis.
Together with the sequence of letters comes a predicted structure, which is found by
computational methods. Using predicted structures for the estimation of a model
may seem as a problem, but we argue that this is not so. The point is that we want
to fit a model for the sequence of letters for a given structure, which we believe to be
a stem-loop. The structure prediction programs predict structure from the sequence
as the minimal energy structure under a specific choice of energy function – or one
may prefer to say that the predicted structure is the most likely such structure
under a corresponding Gibbs measure. In all cases the predicted structure turns out
to be a stem-loop for the dataset considered. Hopefully, this transformation of the
sequence, which we use to fit a model, captures some of the essential features of
the letter composition in the miRNA. We can view the use of predicted structures
as a missing data problem, which we solve by imputation. Though this may not be
optimal, we will not pursue a discussion of alternative methods.

In Figure 7.1 we see an example of a miRNA from C. elegans called mir-1. The
figure shows the characteristic stem-loop structure of the precurser for miRNA. We
see the hairpin loop at the right and a few internal loops and bulges along the stem.
Most of the letters form canonical Watson-Crick pairs, that is au and cg-pairs.
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5′−gug ua ag c gc auc
accg ccg c ugcauacuuc uuacau cca ua cuau a
uggu ggc g[auguaugaag aaugua ggu]au ggua u

3′−uga gg aa a a a aa

Figure 7.1: The miRNA mir-1 (5′ − uggaauguaaagaaguaugua − 3′ in square
brackets) in the surrounding precurser, which form a (predicted) stem-loop structure.

Together with gu pairs, which also occur a few times in the structure, we refer from
hereon to such pairs as canonical pairs. Pairs different form the canonical pairs are
not found in the structure. For instance, around the middle of the stem we find a
lonely c on the upper strand opposing a lonely a on the lower, but they are not
regarded as forming a pair - on the contrary, they form an small internal loop. If
we only allow for canonical pairs we end up with a model and a score function
that prohibits all other pairs in a structure. Thus the stem structure for the mir-1
precurser would essentially be broken up into six contiguous parts formed by allowed
pairs only. Without a finite gap penalty function for the internal loops, the score
function would not be able to ‘connect’ these six parts together. This is of course
undesirable. We could just allow for a finite gap penalty function, but we want
to make an analysis first without introducing gaps to be able to apply the theory
developed. A solution is to regard the symmetric internal loops as if they also form
pairs. We therefore basically include all the symmetric loops, which pari up in an
obvious way, into the structure and then fit a model to the data. The internal loops
are short and rather rare compared to the number of canonical pairs, but with the
inclusion of these non-canonical pairs we obtain a non-degenerate model and thus
a score function allowing for all pairs to occur. Moreover, since the non-canonical
pairs are rather unlikely, they receive a negative score as we show below.

With this approach of preparing the data we obtain, using maximum likelihood
estimation, the estimate ν̂ specifying the alternative hypotheses under the iid model.
Using chromosome 1 (one of the strands) from C. elegans we obtain an estimate λ̂
specifying the null hypothesis. There are 2220 pairs in the miRNA dataset used to
fit ν and roughly 15 million letters in chromosome 1 used to fit λ.

ν̂ λ̂
a c g u

a 0.01 0.01 0.01 0.20
c 0.01 0.01 0.21 0.01
g 0.01 0.18 0.01 0.05
u 0.21 0.01 0.05 0.01

0.32
0.18
0.18
0.32

Observe that had we used the complementary strand in chromosome 1 for the es-
timation of λ, we would for these data obtain the same estimate. These estimates
result in a log-likelihood ratio score function f being:
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a c g u
a −2.30 −1.59 −2.07 0.64
c −1.35 −1.62 1.89 −2.08
g −1.71 1.74 −1.55 −0.19
u 0.70 −1.63 −0.10 −1.94

Note the some of the asymmetry appearing in f compared to ν̂ is a result of using
a higher precision of ν̂ in the computation of f than the two digits given above.
As discussed in Chapter 1, we typically use an integer version of the score function,
thus consider1 instead of f the score function f1 = I4(f):

a c g u
a −9 −6 −8 3
c −5 −6 8 −8
g −7 7 −6 −1
u 3 −7 0 −8

We can make a few interesting observations about this score function. First of all,
the positive entries are not located on the diagonal but instead (with the ordering
of the letters used here) on the ‘anti’-diagonal. This is different from the score
functions used for alignment, and of course it just reflects that the preferred pairs
in a structure are pairs between different letters (canonical pairs) whereas preferred
pairs in an alignment are pairs between equal letters. Secondly, the score function
is derived from ν̂ with marginals clearly differing from λ̂. Thus the score function
actually detects a combination of potential structural pairing and letter composition
bias. This results for instance in that cg pairs score more than twice as much as
au pairs even though the two kinds of pairs are almost equally likely under the
ν̂-measure. This phenomenon is sometimes referred to as a cg-bias, but perhaps it
is more correct to say that it is the genome that shows an au-bias. It is of relevance
to investigate whether the score function just detects cg-bias or whether there is
more to it. We continue this discussion in the next section.

Furthermore, one can observe that the score function is slightly asymmetric, but
this author is not convinced that this is really important. Asymmetry can, however,
not be ruled out as a reasonable phenomenon. The asymmetry of the cg- versus the
gc-pair estimated for ν̂ corresponds to a (small) preference of the c to be in the
3′-strand of the stem-loop.

1we choose to keep the score function of moderate size to be able to apply the computational
methods discussed in Chapter 2 for computing K∗, hence the moderate multiplication by 4
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A corresponding estimation is carried out using the Markov model. A problem occurs
due to the limited dataset and the many parameters in the transition matrix R
specifying the alternative hypotheses under the Markov model. Roughly half of the
transitions between non-canonical pairs don’t occur in the dataset even though we
include the symmetric internal loops as pairs in the structures. This is undesirable
as it will again lead to a score function that prohibits certain transitions. We make
an ad hoc solution and add a pseudo-count to all entries in the matrix of transition
counts, that is, we simply add one to all the entries. This results in the matrix, R̂,
of estimated transition probabilities based on 1972 transitions:

aa ca ga ua ac cc gc uc ag cg gg ug au cu gu uu
aa 0.05 0.08 0.05 0.10 0.03 0.05 0.15 0.03 0.05 0.15 0.03 0.03 0.10 0.03 0.05 0.03
ca 0.02 0.04 0.02 0.10 0.06 0.02 0.12 0.04 0.04 0.18 0.02 0.10 0.12 0.02 0.06 0.02
ga 0.05 0.05 0.05 0.10 0.03 0.03 0.10 0.05 0.03 0.18 0.03 0.05 0.13 0.03 0.03 0.08
ua 0.01 0.02 0.01 0.21 0.00 0.01 0.19 0.00 0.00 0.20 0.02 0.04 0.19 0.02 0.05 0.01
ac 0.02 0.02 0.02 0.14 0.02 0.02 0.19 0.02 0.02 0.12 0.05 0.02 0.19 0.02 0.05 0.05
cc 0.03 0.03 0.03 0.20 0.03 0.03 0.13 0.03 0.03 0.17 0.03 0.03 0.10 0.03 0.03 0.03
gc 0.01 0.02 0.01 0.27 0.02 0.01 0.14 0.01 0.01 0.16 0.00 0.07 0.19 0.01 0.05 0.02
uc 0.02 0.05 0.02 0.14 0.02 0.02 0.12 0.02 0.02 0.19 0.02 0.02 0.19 0.02 0.05 0.05
ag 0.06 0.06 0.12 0.06 0.09 0.03 0.06 0.03 0.03 0.09 0.03 0.09 0.12 0.03 0.03 0.03
cg 0.01 0.01 0.02 0.22 0.02 0.01 0.15 0.03 0.01 0.21 0.01 0.03 0.20 0.01 0.05 0.02
gg 0.03 0.03 0.03 0.19 0.03 0.03 0.13 0.03 0.03 0.06 0.03 0.10 0.13 0.03 0.06 0.03
ug 0.01 0.02 0.01 0.19 0.03 0.03 0.18 0.03 0.01 0.20 0.02 0.04 0.17 0.02 0.04 0.02
au 0.02 0.01 0.01 0.12 0.01 0.01 0.26 0.01 0.01 0.21 0.01 0.06 0.19 0.01 0.05 0.01
cu 0.03 0.03 0.03 0.06 0.03 0.03 0.22 0.03 0.03 0.19 0.03 0.03 0.09 0.03 0.03 0.09
gu 0.01 0.04 0.02 0.17 0.02 0.02 0.15 0.03 0.01 0.25 0.02 0.09 0.08 0.02 0.06 0.03
uu 0.02 0.04 0.02 0.16 0.06 0.04 0.10 0.06 0.06 0.12 0.02 0.04 0.14 0.02 0.02 0.06

The transition probabilities P (and
←−̂
P ) under the null hypothesis are estimated

again using chromosome 1 from C. elegans with roughly 15 million transitions:

P̂
←−̂
P

a c g u
a 0.42 0.15 0.16 0.27
c 0.34 0.19 0.19 0.28
g 0.35 0.19 0.19 0.26
u 0.19 0.20 0.19 0.42

a c g u
a 0.42 0.19 0.20 0.19
c 0.26 0.19 0.19 0.35
g 0.28 0.19 0.19 0.34
u 0.27 0.16 0.15 0.42

Observe that for the permutation σ = (au)(cg) we apparently have that

←−̂
P σ(x),σ(y) = P̂x,y.

There is no particular reason that this should be the case since, in general, for an
arbitrary P

←−
P σ(x),σ(y) =

πσ(y)Pσ(y),σ(x)

πσ(x)

.
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The transition probabilities given by
←−̂
P σ(x),σ(y) are the transition probabilities for

the complementary strand of the strand we used for estimating P̂ . It is interesting,
like for the iid case, that there is no apparent difference between the Markov chains
modelling the two strands.

The corresponding integer version, f2 = I4(f), of the score function becomes:

aa ca ga ua ac cc gc uc ag cg gg ug au cu gu uu

aa −5 0 −2 1 −4 3 7 0 −1 7 −1 −1 0 −3 0 −3
ca −7 −3 −6 −2 2 −1 6 −1 0 7 −2 2 2 −4 1 −6
ga −3 −2 −2 −1 −2 0 5 0 −2 7 −1 0 2 −3 −3 −1
ua −9 −4 −7 1 −9 −5 9 −10 −9 8 −1 −2 4 −4 1 −9
ac −7 −4 −4 3 −5 −2 6 −2 −5 5 1 −2 2 −3 −1 0
cc −4 −3 −3 2 −2 0 5 −3 −2 6 0 −3 1 −2 −2 −4
gc −9 −5 −7 3 −4 −6 5 −6 −6 6 −10 0 4 −6 0 −6
uc −5 0 −3 0 −3 −1 6 −5 −3 7 −1 −5 4 −2 1 −4
ag −4 0 2 0 1 −1 2 −1 −4 4 −1 4 0 −2 −2 −2
cg −7 −8 −5 2 −4 −6 6 −3 −6 7 −6 −3 4 −8 0 −7
gg −5 −3 −3 2 −2 0 5 −3 −2 2 −1 2 2 −2 1 −4
ug −10 −5 −7 1 −3 0 7 −5 −7 8 −2 −3 3 −4 0 −8
au −5 −4 −4 5 −10 −6 8 −7 −7 7 −4 2 0 −8 −2 −7
cu −2 −1 −1 0 −2 −1 7 −3 −2 7 −1 −3 −1 −4 −4 −2
gu −7 0 −3 4 −4 −3 5 −4 −7 8 −3 1 −2 −6 −1 −7
uu −4 1 −1 3 1 1 5 −1 1 6 −1 −3 1 −5 −4 −4

It is hard to make an intelligent summary of the content of these 256 numbers. The
Watson-Crick canonical pairs have been framed to make the reading of the table
easier – it is after all most important how these pairs score. Scrutinising the table
might reveal interesting observations. For instance, the ‘alternating’ transition ua to
au scores higher than ua to ua. This can be explained by observing that transitions
under the null hypothesis from a to a are twice as likely as transitions from a to
u. And likewise for u to u transitions. On the other hand, under the alternative
hypothesis, the alternating transition ua to au are almost as likely as the non-
alternating transition ua to ua, which makes ‘alternation’ a distinguishing feature
of the letter composition in miRNA. Otherwise, one should observe that transitions
to the canonical pairs in general receive a positive score whereas transitions to non-
canonical pairs receive a negative score. Moreover, the cg-bias phenomenon can also
be observed for this score function.
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7.3 Detecting miRNA

With the score functions found in the preceding section we can try to detect miRNA-
precursers within long sequences of DNA. For a given sequence x from E of length n
the method is simply to construct the score matrix T = (Tij)0≤i,j≤n given by (6.1) –
using x as a realisation of the stochastic process (Xn)n≥1 – and then search for high
scoring excursions. If we fix the window size w prior to computing T , we can save
some computations. Realistic choices of n and w could be n = 15×106 and w = 200.
This would roughly correspond to searching a single C. elegans chromosome using a
window of size 200. We choose 200 as a window size sufficiently large for capturing
all the miRNAs in the dataset.

Then fixing a threshold s0, cf. the discussion in Section 4.4, we can classify the excur-
sions with a maximum exceeding s0 as stem-loop structures and hence as potential
miRNAs. We want to use Theorem 6.3.1, given that the conditions imposed for the
theorem to hold are actually fulfilled, to approximate the specificity

1 − α(s0) = Pλ0 (Mn,w ≤ s0) .

It follows from Theorem 6.3.1 that the distribution of

M∗
n,w = θ∗Mn,w − log K∗

asymptotically doesn’t depend on λ0 nor on the score function f . This is a highly
useful observation and this normalisation of the maximal score will serve to make
the performance of different score functions comparable. With

α∗(s0) = α((s0 + log K∗)/θ∗),

Theorem 6.3.1 implies that

1 − α∗(s0) � exp(−(n(w − 1) − w(w − 1)/2) exp(−s0 + sn,w)) (7.1)

with sn,w ∈ [0, θ∗). Furthermore, the distribution of C∗
n,w(s0) = Cn,w((s0+log K∗)/θ∗),

the number of normalised excursion maxima exceeding s0, can be approximated by
a Poisson distribution with mean

ξn,w(s0) = (n(w − 1) − w(w − 1)/2) exp(−s0 + sn,w). (7.2)

Fixing w, it follows from (7.2) that if ξn,w(s0) is to be kept fixed, the threshold scales
approximately like log n. That is to say, changing n we should change the threshold
s0 roughly like log n to keep the mean ξn,w(s0) fixed. The asymptotic approximations
are of course in principle only valid for n and w tending to infinity and ξn,w(s0) having
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a non-zero limit. Nevertheless, the approximation is often quite good for reasonable
choices of n, w and s0 of practical interest, cf. Section 7.4 below.

Having established the approximation (7.1) we have an idea about how the speci-
ficity depends on the threshold. We will use the dataset to establish an empirical
approximation of the sensitivity as discussed in Section 4.4. Choosing a score func-
tion and a null model we can, for each of the 59 sequences in the miRNA dataset,
compute the score matrix and the corresponding normalised maximal score. This
result in a set of 59 normalised scores, s∗1, . . . , s

∗
59, and a corresponding empirical

sensitivity

β∗
ε (s0) =

1

59

59∑
k=1

1(s∗k > s0).

Thus β∗
ε (s0) is the fraction of miRNAs in the dataset that would be found using

the threshold s0. It is of interest to understand the covariation of the specificity and
sensitivity as we change s0. In this setup, the (asymptotic) specificity is a monotonely
increasing function of s0 (depending on n and w), and the function s0 �→ β∗

ε (s0)
therefore contains all the information we need. Moreover, it is independent of n and
w and due to the normalisation it is also independent of the model parameters as
well as the score function. The behaviour of the function s0 �→ β∗

ε (s0) is therefore
suitable for comparing different models and different score functions.

Assume, for example, that we want to search for potential miRNAs using the inde-
pendence model. That is, we choose the score function f1, and we need to compute
the θ∗ and K∗ parameters under the relevant null hypothesis. Under the indepen-
dence model we assume that the sequence is a sequence of iid variables with distri-
bution λ̂. The average score using f1 under λ̂ is found to be µ = −3.45. We may,
however, also be interested in other null hypothesis, e.g. a Markov chain or another
iid model, to investigate the performance of the score function f1 in more details.
First of all, if we believe that the Markov chain given by P̂ is a better description
of random sequences than the iid model, it might be more appropriate to evaluate
the performance of f1 using the Markov chain as null hypothesis. Under the Markov
chain null hypothesis the average score is still −3.45 due to the fact that the invariant
measure of P̂ is λ̂. Secondly, as discussed in the preceding section, it is also of inter-
est to investigate whether the score function f1 simply detects cg-bias. To do so we
consider the, relatively to λ̂, cg-rich uniform distribution λu = (0.25, 0.25, 0.25, 0.25)
(which is also close to the marginals of ν̂). This results in an average score being
µu = −3.13 compared with the average −3.45 under λ̂. The fact that the average is
still negative and rather close to the average under λ̂ show that the score function
detects more than just cg-bias. We compute in these three cases the following values
of the constants θ∗ and K∗:
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Figure 7.2: The empiri-
cal sensitivity as a func-
tion of the normalised
threshold gives, for the
score function f1, a com-
parable picture of the
performance under vari-
ous null hypothesis. Here
we compare the iid null
hypothesis λ̂ with the
Markov chain null hy-
pothesis given by P̂ and
the iid null hypothesis λu

corresponding to a cg-
bias.

θ∗ K∗

λ̂ 0.232 0.201

P̂ 0.224 0.193
λu 0.182 0.179

One also verifies that the ϕi(3/4θ
∗) < 1 condition for i = 1, 2, 3, 4 is fulfilled in all

three cases, and it is trivial to check that the rest of the conditions for Theorem
6.3.1 to hold are fulfilled too.

Computing the empirical scores of the miRNAs using f1 and normalising using either
of the null hypotheses give, as shown in Figure 7.2, three different empirical sensi-
tivity functions. Due to the normalisation they are comparable. We observe that the
difference between the iid null hypothesis λ̂ and the Markov null hypothesis P̂ is
negligible. The picture is a little different when comparing with the uniform null hy-
pothesis. The difference between the two empirical sensitivity functions, comparing
the two iid hypothesis λ̂ and λu, quantifies in some sense the information contained
in the score function due to the cg-bias in miRNA. For example, assume that we
want to search a sequence of length 100,000 using a window of size 200, and that
we want the sensitivity to be approximately 80%. On Figure 7.2 we read of that to
reach the desired sensitivity the normalised threshold s0 should be approximately
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Figure 7.3: The asymp-
totic extreme value the-
ory predicts that the
(normalised) maximal lo-
cal structure score should
grow roughly like log n
for fixed w. This fig-
ure shows under the iid
model the median of the
simulated maximal score
as a function of log n for
w = 200 and n ranging
from 400 to 15 millions
together with the asymp-
totic theoretical median.

13 under λ̂ and 11 under λu. By (7.2) we find that under the cg-rich null hypothesis
λu there will be roughly exp(2) � 7.4 times as many randomly occurring stem-loops
exceeding the threshold as under λ̂. In numbers, fixing the sensitivity to be 80% we
have that ξn,w(s0) � 45 under λ̂ and ξn,w(s0) � 334 under λu. Thus in a cg-rich
sequence (as modelled by λu) the score function f1 clearly looses some of it ability
to distinguish true stem-loops from random stem-loops compared to an ‘average’ se-
quence as modelled by λ̂. The difference is, however, not alarming, and the cg-bias
is definitely not the only feature of miRNAs that f1 captures.

7.4 A simulation study

To test the validity of the extreme value theory we conducted a simulation study. For
relevant applications, as discussed above, the window size w is usually much smaller
than the length n of the sequence in which we search for local stem-loop structures.
We fix a rather small window size w = 200 and compare the theoretical results
with simulations for n ranging from 400 to 15 millions. We use the score functions
computed above and carry out two studies – one where we simulate under the iid
model and use the corresponding iid score function and one where we simulate
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Figure 7.4: By the asymptotic extreme value theory, the normalised maximal local
structure score should follow a Gumbel distribution. The figure shows under the iid
model the QQ-plots of the normalised empirical scores versus the theoretical Gumbel
distribution for w = 200 and n ranging from 8000 to 15 millions.

under the Markov model and use the corresponding Markov score function. In both
simulation studies we simulate, for each n, 200 sequences of length n under the null
hypothesis and compute the maximal local structure score using the relevant score
function. As discussed, the normalised score

M∗
n,w = θ∗Mn,w − log K∗

has an asymptotically parameter independent distribution. We compare the nor-
malised simulated scores with the relevant Gumbel distribution. We investigate the
following two issues; (i) does the normalised score grow roughly like log n as indi-
cated by the theory – even if w is fixed and much smaller than n, and (ii) does the
asymptotic Gumbel distribution fit the simulated scores?
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Figure 7.5: This figure
shows under the Markov
model the median of the
simulated maximal score
as a function of log n for
w = 200 and n ranging
from 400 to 15 millions
together with the asymp-
totic theoretical median.

We have summarised the results of the iid simulation study in Figure 7.3 and Figure
7.4, which show the normalised empirical and theoretical medians as a function
of log n and the QQ-plots of the empirical versus the theoretical quantiles. The
empirical scores are in a surprisingly good agreement with the theoretical results.
On Figure 7.3 we see that the median of the maximal score indeed seems to grow
roughly like log n and that it falls close to the theoretical median in the whole range.
There is, however, a slight tendency that the theory overestimates the median for
large n. This is not surprising and can be explained as an effect of the fixed window
size. As n → ∞ and w = 200 is fixed, the size of the local structure that is needed
to reach the theoretically predicted maximal local score comes in conflict with the
limitations imposed by the window. In fact, the size of the local structures that can
be found is bounded due to the fixed window size and there is an upper limit on the
size of the maximal score that can be achieved. As n → ∞ and w is fixed the maximal
local structure score will thus converge to a fixed finite value almost surely. Despite of
this, the theory still fits well in the wide range of n’s considered here. Moreover, the
QQ-plots clearly show that the Gumbel distribution is an adequate approximation of
the fluctuations of the maximal score. There is a lattice effect which can be observed
on the QQ-plot as a vertical clumping of the empirical scores. Despite of the lattice
effect, the Gumbel distribution seems to fit the empirical scores well.
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Figure 7.6: The figure shows under the Markov model the QQ-plots of the normalised
empirical scores versus the theoretical Gumbel distribution for w = 200 and n
ranging from 8000 to 15 millions.

Figure 7.5 and 7.6 show the corresponding results for the Markov chain simulation
study. The conclusion is the same. The theory seems to fit the simulated data well
in the wide range of n’s from 400 to 15 millions keeping w = 200 fixed. The same
tendency of the theory to slightly overestimate the maximal score is still observed
for large n and for the same reasons.

7.5 Gaps and optimisation

It is natural to try to improve our search technique even further by introducing a
finite internal gap penalty function. In that case we have no theory to support us. It is
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Figure 7.7: As we change the gap penalty parameter α, the (estimated) normalisation
constants changes. Computing for each choice of the gap penalty parameter the
normalised optimal score for each of the 59 miRNAs in the dataset results in a set
of comparable distributions. Here we compare the boxplots using the iid model and
iid scoring as well as the Markov model and Markov scoring. At the right hand side
on each of the graphs we have the boxplot for the gapless empirical distribution,
which corresponds to α = ∞.

commonly believed for local alignments that the asymptotic Poisson approximation,
and hence the asymptotic extreme value approximation, is still valid for certain
finite gap penalty functions (Altschul et al. 1997). At least if the gap penalties are
sufficiently large, cf. the discussion in Section 4.2.2. We believe that this is true for
local structures also. In that case, even allowing for a finite internal gap penalty
function, there exist constants θ∗ and K∗ such that we can normalise the maximal
score to have a distribution that is asymptotically independent of the score function
and the null hypothesis. Clearly, we don’t have any analytic representations of these
constants as we don’t have any theory to support their existence. Nevertheless, it has
been proposed (Altschul et al. 2001) that they can be estimated from simulations.

It will take us to far away from the main track of this thesis to go into a detailed (em-
pirical) investigation of whether such an extrapolation of the theory is valid. There
are also many interesting aspects related to the actual estimation of the parameters
θ∗ and K∗ that we will not discuss. We refer to Altschul et al. (2001) and the refer-
ence therein for more details on these issues. Instead, we will try to give a hint about
how much better we can actually do by allowing gaps. It is clear that the lower the
gap cost is the higher the score achieved for the miRNAs will be. However, lowering
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Figure 7.8: Choosing the
gap penalty to be 13
gives for both iid and
Markov scoring the max-
imal specificity with a
50% empirical sensitiv-
ity. Here we compare
the empirical sensitivity
as a function of the
normalised threshold for
gapped and ungapped
scoring using either the
iid or the Markov scor-
ing.

the gap cost will also increase the maximal score in random sequences modelled by
the null hypothesis. It seems plausible that the best performance is achieved for
some ‘intermediate’ gap penalty function. What we will do is to introduce a linear
internal gap penalty function gI(n) = αn and investigate for different choices of α
the effect of gaps on the normalised empirical scores for the miRNAs. We normalise
by estimating θ∗(α) and K∗(α) for each α using the approach described by Altschul
et al. (2001). We let α be integer valued and running from 5 to 29. In Figure 7.7 we
show, for both the iid and Markov case, the distributions of the normalised scores
represented as boxplots for each value of the gap penalty parameter. Due to the
normalisation these distributions are directly comparable. We observe that as α in-
creases from 5 to around 10-13 the majority of the scores increase and thereafter
gradually decrease again. For α → ∞ we get a distribution comparable with that of
not allowing for gaps, as it is also shown in Figure 7.7. Depending of what we want
to optimise, different gap penalties may be optimal. The boxplots show that there
is little to gain by changing the threshold if we want the sensitivity to be close to
100%. On the other hand, if we want to optimise the median, which corresponds to
obtaining the best specificity with a 50% empirical sensitivity, the figure shows that
in both cases α = 13 is optimal. If we want to optimise the 25% quantile, which
corresponds to obtaining the best specificity with a 75% empirical sensitivity, we
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find that for the iid case α = 11 is optimal and for the Markov case α = 12 is
optimal. The difference between α = 11, 12 and 13 is, however, negligible.

Figure 7.8 shows the empirical sensitivity function with no gaps and with α = 13
for both the iid case and the Markov case. With or without gaps we see a slight
improvement in going from the iid to the Markov scoring2. There is a larger effect in
allowing for gaps and the best curve corresponds to the Markov scoring with gaps. It
should be remarked that we haven’t taken into account the optimism in the empirical
sensitivity function. By optimism we mean the overestimation of the sensitivity
β∗

κ(s0) by β∗
ε (s0) due to the fact that the score function has been constructed from

the same dataset of miRNAs as the empirical sensitivity is computed from. This
optimism might be larger for the Markov scoring than for the iid and this point is
definitely worth investigating in more details.

7.6 Discussion

The purpose of this chapter was to illustrate how the theoretical results obtained can
be applied and to what extend the asymptotic theory holds for finite n and w. By
the simulation study we have illustrated that the theoretical results can indeed be
applied for realistic choices of n and w. Moreover, we have illustrated the usefulness
of the asymptotic theory by the ability to normalise the maximal scores in a way
that make their distribution independent of the score function as well as the null
hypothesis. In this way we can directly compare the performance of different score
functions, say. This could also be done without the theory by using e.g. simulations,
but this is very time consuming for large n, and it will always give results depending
on a concrete choice of n and w. The theory provides us with a picture that is
independent of n and w.

To turn the procedure presented here into a really useful search procedure for finding
miRNA might require some more work. Indeed, applying for instance the Markov
score function and a linear gap penalty function with α = 13 and with a threshold
chosen to be 18 we obtain an empirical sensitivity of 81%, thus we would locate 4
out of 5 miRNAs from the dataset. The (extrapolated) theory predicts, however,
that searching a single chromosome of C. elegans with roughly 15 millions letters
would still result in on average 45 random stem-loop structures with a normalised
score exceeding 18. Actually running a search on a C. elegans chromosome results
in many more findings due to at least the following two reasons; (i) other stem-loop
structures that are present for other reasons, and (ii) repetitive patterns that by

2It is not entirely fair to make this comparison directly as we change score function as well as
null hypothesis. In Section 7.3 we saw, however, that changing the null hypothesis and keeping the
iid score function didn’t really have an effect.
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accident can form stem-loops. The first findings might be interesting in themselves
whereas the second findings should somehow be filtered out.

There are several possibilities of improving the search by including e.g. evolutionary
conservation of miRNA between species, or one could take advantage of the way
that miRNA works by being complementary to parts of the mRNA. Such issues will
hopefully be investigated in future research projects.

7.7 Notes

The miRNAs of C. elegans have been investigated thoroughly during the last years,
and a detailed study employing some computational search procedures similar to the
one presented here has been reported in Lim et al. (2003). The novel idea presented
here is to apply the theoretical results for normalisation, which provides a means
for comparing different search techniques. This method (or at least some further
extension of the method) should be valuable for searching for other types of noncoding
RNA as well, which possess other types of distinguishing structural features. As
mentioned, miRNAs work by interfering with the translation of messenger RNA.
An excellent and easily accessible review of the research in RNA interference and
miRNAs can be found in the Scientific American paper “Censors of the Genome” by
Lau & Bartel (2003).
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Appendix

A.1 Computations with Laplace transforms

In this thesis – in particular in Chapter 5 – computations with and assumptions
about the spectral radii of ‘Φ-matrices’ play a very important role. Most of these
computations are easier to understand and come out much cleaner in the setup of
comparing iid variables instead of Markov chains. In the iid setup, the spectral radii
computations boil down to computations with Laplace transforms, which may be
of independent interest. In addition, these computations allow us to comment on
the conditions imposed by Siegmund & Yakir (2003) for a Poisson approximation to
hold. By the arguments presented here, their condition can easily be generalised a
little.

We consider two stochastic variables X and Y taking values in a set E, and we
assume that f : E ×E → R is a given function. Let the distribution of X be π1 and
the distribution of Y be π2 and let π = π1 ⊗ π2. We will not assume that E is finite,
but that the Laplace transform

ϕ(θ) = E(exp(θf(X,Y ))) =

∫
exp(θf(x, y))π(dx, dy) (A.1)

of the distribution of f(X,Y ) exists (is < ∞) for all θ > 0, that µ = E(f(X,Y )) < 0
and, furthermore, that f(X,Y ) takes positive values with positive probability. In
this case, ϕ(θ) → ∞ for θ → ∞, and since ∂θϕ(0) = µ < 0 there is a unique solution
θ∗ > 0 to ϕ(θ) = 1 due to convexity of ϕ. We define the measure π∗ by

dπ∗

dπ
(x, y) = exp(θ∗f(x, y)).

We let π∗
1 and π∗

2 denote the marginals of π∗.

133
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A.1.1 Mean value inequalities

Under π∗, the mean

µ∗ =

∫
f(x, y)π∗(dx, dy) =

∫
f(x, y) exp(θ∗f(x, y))π(dx, dy)

is positive, and we ask how this mean relates to the mean of f under π∗
1 ⊗π∗

2 as well
as under π∗

1 ⊗ π2 or π1 ⊗ π∗
2.

Introducing the Laplace transform1

ϕ∗
∞(θ) =

∫
exp(θ(f(x, z) + f(w, y) − f(x, y) − f(w, z)))π∗ ⊗ π∗(dx, dy, dw, dz),

we see that ϕ∗
∞(0) = ϕ∗

∞(θ∗) = 1, and with

µ∗
∞ =

∫
f(x, y)π∗

1 ⊗ π∗
2(dx, dy)

we obtain ∂ϕ∗
∞(0) = 2µ∗

∞ − 2µ∗. Hence if just

P(f(X,Z) + f(W,Y ) �= f(X,Y ) + f(W,Z)) > 0 (A.2)

with D(X,Y,W,Z) = π ⊗ π, the Laplace transform ϕ∗
∞ is strictly convex implying

that µ∗
∞ < µ∗. Compare this result with Lemma 5.5.8.

We observe that if E is finite and π1(x) > 0 and π2(x) > 0 for all x ∈ E, (A.2) is
equivalent to the existence of x, y, z, w ∈ E such that

f(x, z) + f(w, y) �= f(x, y) + f(w, z). (A.3)

If this is not the case we can fix some w0, z0 ∈ E such that for all x, y ∈ E

f(x, y) = f(x, z0) − f(w0, z0) + f(w0, y) = f1(x) + f2(y)

with e.g. f1(x) = f(x, z0) − f(w0, z0) and f2(y) = f(w0, y). On the other hand, if
f(x, y) = f1(x) + f2(y) for some f1 and f2 then (A.2) clearly doesn’t hold.

Likewise, we can consider the Laplace transform

ϕ̃∗(θ) =

∫
exp(θ(f(x, z) − f(x, y)))π∗ ⊗ π2(dx, dy, dz),

for which ϕ̃∗(0) = ϕ̃∗(θ∗) = 1, and with

µ̃∗ =

∫
f(x, y)π∗

1 ⊗ π2(dx, dy)

1with notation ϕ∗
∞ chosen so that it is comparable with the notation in Section 5.5.4
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we have that ∂ϕ̃∗(0) = µ̃∗ − µ∗ . So if

P(f(X,Z) �= f(X,Y )) > 0

with D(X,Y, Z) = π⊗π2, the Laplace transform ϕ̃∗ is strictly convex, hence µ̃∗ < µ∗.
Compare with Lemma 5.5.7. In the iid setup there is no result corresponding to
Lemma 5.5.9.

A.1.2 Two-dimensional Laplace transforms

The idea to consider the Laplace transforms of the previous section actually comes
from a two-dimensional Laplace transform point of view. A two-dimensional point
of view that is closely related to Condition 5.9. With

ϕ1(θ, η) =

∫
exp(θf(x, y) + ηf(x, z))π ⊗ π2(dx, dy, dz),

we observe that ϕ1(θ, 0) = ϕ1(0, θ) = ϕ(θ). Thus in particular,

ϕ1(0, 0) = ϕ1(θ
∗, 0) = ϕ1(0, θ

∗) = 1. (A.4)

The ϕ1-spectral radius appearing in Condition (5.9) corresponds to ϕ1(θ, θ) in this
setup. Differentiation yields that

∇ϕ1(0, θ
∗) = (µ̃∗, µ∗),

and since ∇ϕ1(0, θ
∗) is orthogonal to the tangent at (0, θ∗) of the convex contour

curve given by ϕ1(θ, η) = 1, we get from (A.4) that µ̃∗ ≤ µ∗. To get a sharp
inequality, one needs to know whether ϕ1 is strictly convex. This two-dimensional,
geometric argument has been boiled down to a one-dimensional Laplace transform
argument using ϕ̃∗ above. In fact, ϕ̃∗ is equal to ϕ1 evaluated on the line given by
η = θ∗ − θ.

A corresponding two-dimensional point of view for discovering ϕ∗
∞ is of course pos-

sible. We skip the details and instead work out more consequences of the two-
dimensional Laplace transform ϕ1.

With e a unit vector in [0,∞)2 (in the 1-norm) we let γ∗
e > 0 be the solution of

ϕ1(γe) = 1 (assuming that there is such a solution). We observe that for e = (0, 1)
and e = (1, 0) we have γ∗

e = θ∗. Moreover, due to convexity of the contour curve
given by ϕ1(θ, η) = 1, we have that γ∗

e ≥ θ∗ for all e. In particular, for e = (1/2, 1/2)
we see that γ∗

e ≥ θ∗ corresponding to ϕ1(θ
∗/2, θ∗/2) ≤ 1. Compare with Condition

(5.9).
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Let (Xn)n≥1, (Yn)n≥1 and (Zn)n≥1 be independent sequences of iid variables such
that the X’s have distribution π1 and the Y ’s and Z’s have distribution π2, and
define

S1 =
n∑

k=1

f(Xn, Yn) and

S2 =
n∑

k=1

f(Xn, Zn).

For any s ≥ 0 and any unit vector e it follows by an exponential change of measure
that

P(S1 ≥ s, S2 ≥ s) ≤ exp(−sγ∗
e ).

Due to convexity (again) and symmetry, the maximal γ∗
e is found for e = (1/2, 1/2).

Thus using this exponential change of measure technique we obtain the best possible
two-dimensional, exponential inequality by considering ϕ1 on the diagonal (θ, θ).
This is the rational behind the assumption made in Condition (5.9) – we can not do
better by making other, non-symmetric exponential changes of measure. We also see
in the light of the exponential inequality above, that (5.9) really is an assumption
about the simultaneous excess of a level s when comparing two sequences, one by
one, with a third using f .

Finally, one should relate the derivations presented here with Theorem 3 in Sieg-
mund & Yakir (2003) and their condition for a Poisson approximation to hold.
Without referring to the two-dimensional Laplace transform setup presented here,
they choose to consider a not necessarily optimal exponential change of measure.
They assume that ϕ(θ∗, η) = 1 has a solution η∗ > 0 and choose to consider the
direction e ∝ (θ∗, η∗). Furthermore, they essentially assume (in the case n = m
in their notation) that η∗ > θ∗/2, which implies by a convexity argument that
ϕ1(3/4θ

∗, 3/4θ∗) < 1. Their results are actually valid under the more general as-
sumption that ϕ1(3/4θ

∗, 3/4θ∗) < 1 holds (if n = m).
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