HARMONISK ANALYSE
OG
POTENTIALTEORI

Forelæsninger efteråret 1973
ved
Christian Berg og Gunnar Forst

Forelæsninger føråret 1974
ved Christian Berg.
Indhold.

KAPITEL I. Indledning
§1. Den Brownske semigruppe på $\mathbb{R}^3$ 1
§2. Foldningssemidigrupper 7

KAPITEL II. Harmonisk analyse
§1. Haarmål 14
§2. Foldning 23
§3. Dual gruppe og Fourier transformation 35
§4. Positiv definite funktioner 52
§5. Positiv definite mål. Plancherels sætning 69
§6. Positiv definite funktioner på $\mathbb{R}$ 83
§7. Pontrjaguine’s dualitetssætning 94
§8. Kuotientgrupper og periodicitet 106
§9. Orthogonalitets kon 119

KAPITEL III. Foldningssemidigrupper
§1. Bernouilli konvergens 135
§2. Foldningssemidigrupper 149
§3. Negativ definite funktioner 161
§4. Levy- Khinchine’s formel i det reelle tilfælde 191
§5. Kontraktionssemigrupper 205
§6. Potentialkernen for en foldningssemidigruppe 223

Nogle rettelser og tilføjelser 434 ff
KAPITEL I. INDLEDNING

§1. Den Brownske semigruppe på \( \mathbb{R}^3 \).

I 1827 opdagede den engelske botaniker BROWN, at støvpartikler i vandig opskægning er i stadig og kaotisk bevægelse, og ustændselig skifter bevægelsesretning. Dette fænomen - de Brownske bevægelser - forklares ved, at støvpartiklerne hele tiden er udsat for stød fra molekylerne i den omgivende vandske.

En nærmere matematisk beskrivelse af de Brownske bevægelser blev givet af EINSTEIN og SHOELUCHOWSKI omkring 1905. Lad os betragte en Brownsk partikel, der til tiden \( t_0 \) befinder sig i punktet \( x_0 \in \mathbb{R}^3 \). Vi ønsker at angive sandsynligheden \( P_{t_0}^t(x_0, B) \) for til tiden \( t > t_0 \), at finde partiklen i Borelmængden \( BS \in \mathbb{R}^3 \).

Det partiklens bevægelse skyldes uregelmæssige stød fra væskemolekylerne og disse stød kommer fra alle retninger med "lige stor" sandsynlighed, et det nærliggende (jvf. den centrale grænseværdisætning fra sandsynlighedsregning) at antage, at den søgte sandsynlighed er givet ud fra tætheden for en passende normal fordeling på følgende måde

\[
P_{t_0}^t(x_0, B) = \int_B \left(2\pi \sigma^2\right)^{-\frac{3}{2}} e^{-\frac{||x-x_0||^2}{2\sigma^2}} \, dx. \quad (1)
\]
Variancen $\sigma^2$ kunne Einstein ved teoretiske overvejelser bestemme til en konstant faktor, afhængig af den omgivende værdske gange tidsdifferencen $t-s$. Det blev senere, gennem eksperimenter, udfordret af Perrin, godtgjort, at disse sandsynlighedsudsagn stemmer overens med virkeligheden.

Man kan vise, at de Brownske bevægelser, i sandsynligheds-teoretisk forstand, er entydigt fastlagt ud fra sandsynlighederne (1).

Et resultat af Wiener viser imidlertid, at denne model for de Brownske bevægelser, fra et fysisk synspunkt ikke er ganske dekkende. Wiener kunne nemlig bevise, at en Brownsk partikel, ifølge denne sandsynligheds-teoretiske model, "næsten sikkert" d.v.s. med sandsynlighed 1, bevæger sig ad en infinitets differentiabel kurve, og altså ikke kan tilskrives en hastighed.

Vi vil dog benytte den ovenfor skitserede beskrivelse af de Brownske bevægelser i det følgende, hvor vi skal angive nogle simple egenskaber ved de Brownske bevægelser og se hvorledes disse egenskaber finder udtryk i sandsynlighedene (1). Vi kan uden indskrænkning antage, at værdske konstanten, der indgår i $\sigma^2$, er lig 2, altså at

$$P_{t-s}(x_0, B) = (4\pi (t-s))^{-\frac{3}{2}} \int_B e^{-\frac{|x-x_0|^2}{4(t-s)}} dx. \ (2)$$
For fast \( t > 0 \) vil sandsynligheden \( P_t(x, B) = P_{t,0}(x, B) \) kan afhænge af den indbyrdes placering af \( x \) og \( B \), altså af mångden \( B - x \), og ikke af hvor i \( \mathbb{R}^3 \), \( x \) og \( B \) befinder sig. Dette understrykkes i, at de Browneiske bevægelser er \textit{translators uvariant};

man kan også direkte aflæse i (2), at vi for \( t > 0 \) har

\[
P_t(x, B) = P_t(0, B - x)
\]

for alle \( x \in \mathbb{R}^3 \) og alle Borelmængder \( B \in \mathbb{R}^3 \).

Ved fastsættelsen

\[
\mu_t(B) = P_t(0, B)
\]

for \( t > 0 \) og Borelmængder \( B \in \mathbb{R}^3 \), defineres en familie \( (\mu_t)_{t > 0} \) af sandsynlighedsmæl på \( \mathbb{R}^3 \), og det følger af det ovenfor nævnte, at den Browneiske bevægelse er fastlagt ved henskabet til \( (\mu_t)_{t > 0} \). Disse mål \( (\mu_t)_{t > 0} \) har tætheder m.h.t. Lebesgue-målet på \( \mathbb{R}^3 \), nemlig funktionen

\[
g_t(x) = (4\pi t)^{-\frac{3}{2}} e^{-\frac{|x|^2}{4t}} \quad \text{for} \quad t > 0 \quad \text{og} \quad x \in \mathbb{R}^3.
\]

Intuitivt vil en Browneisk partikel bevæge sig "uden hukommelse", i den forstand, at sandsynligheden for at haftte partiklen i Borelmængden \( B \) til tiden \( t \), når det vides, at den til tiden \( s \) \((0 \leq s < t)\) var i punktet \( x_0 \), er uafhængig af
hvor dan partiklen nåede til $x_0$, altså uafhængig af partiklens opførsel i tidsrummet før $s$. Denne 
manget på hukommelse kan formuleres helt præ-
cist ved hjælp af det sandsynlighedsteoretiske be-
greb, betingede middelværdier.

De Brownske partiklers mangel på hukommelse 
har en vigtig konsekvens for de i (1) (eller (2)) 
opskrevne sandsynligheder. Lad os antage, at vo-
res partikkel til tiden $r>0$ befinder sig i punk-
et $x_0$. Sandsynligheden for at finde partiklen 
i Borelmængden $B$ til tiden $t$ ($t>r$), hvis vi 
ved, at den til det mellemliggende tidspunkt $s$ ($r<s<t$) befinder sig i "rum elementet" dy 
omkring punktet $y$, er da produktet

$$P_{s-t} (x_0, dy) \cdot P_{t-s} (y, B) .$$

Ved at summere bidragene fra alle dy'erne får

$$P_{t-r} (x_0, B) = \int_{y \in \mathbb{R}^3} P_{t-s} (y, B) P_{s-r} (x_0, dy), \quad (5)$$

hvor det drejer sig om integration m.h.t. målet

$$dy \rightarrow P_{s-r} (x_0, dy) .$$

I litteraturen kaldes (5) ofte Chapman-Kolmo-
gorov-ligningen. Ligningen (5) får en særlig sin-
pel form når den formuleres ved hjælp af må-
lene fra (3). For $u,v>0$ har man nemlig ved
at sætte $x_0 = 0$ i (5) at

$$
\mu_{t+\nu}(B) = \mathbb{P}_{t+\nu}(0, B) = \int_{y \in \mathbb{R}^3} \mu_{\nu}(B-y) \, d\nu(y)
$$

for alle Borel-mængder $B \subseteq \mathbb{R}^3$, altså at

$$
\mu_{t+\nu}(B) = \mu_t \ast \mu_\nu(B)
$$

og familien $(\mu_t)_{t \geq 0}$ udgør følgelig en semi-gruppe ved foldning, den Browniske foldningssemi-gruppe på $\mathbb{R}^3$.

Det er nemt at regne efter, at tæthederne (4) for målene $(\mu_t)_{t \geq 0}$ tilfredsstiller ligningen

$$
q_{t+s}(x) = q_t \times q_s(x) \quad \text{for } t,s \geq 0 \text{ og } x \in \mathbb{R}^3.
$$

Lad $C_0(\mathbb{R}^3)$ betegne rummet af kontinuerne funktioner på $\mathbb{R}^3$, der går mod 0 i det uendelige. Udstyret med supremumsnormen

$$
\|f\|_\infty = \sup_{x \in \mathbb{R}^3} |f(x)| \quad \text{for } f \in C_0(\mathbb{R}^3)
$$

er $C_0(\mathbb{R}^3)$ et Banachrum. Det er velkendt, at målene $(\mu_t)_{t \geq 0}$ (eller funktionerne $(g_t)_{t \geq 0}$) ved foldning giver anledning til en stærkt kontinuer kontrahionssemi-gruppe $(P_t)_{t \geq 0}$ af operatorer $P_t$ på $C_0(\mathbb{R}^3)$, nemlig

$$
P_t f = \mu_t \ast f \quad \text{for } t \geq 0 \text{ og } f \in C_0(\mathbb{R}^3).
$$

Som et vigtigt hjælpemiddel i behandlingen af
semigrupper indføres to operatorer $(A, D_A)$ og $(N, D_N)$. Hører $e^{(A, D_A)}$, den infinitesimal frembringer for $(P_t)_{t \to 0}$, defineret ved

$$A f = \lim_{t \to 0} \frac{P_t f - f}{t} \quad \text{for } f \in D_A,$$

hvor

$$D_A = \{ f \in C_0(\mathbb{R}^3) | \lim_{t \to 0} \frac{P_t f - f}{t} \text{ eksisterer i } C_0(\mathbb{R}^3) \}.$$

Videre er $(N, D_N)$, potentioperatoren for $(P_t)_{t \to 0}$, givet ved

$$N f = \lim_{t \to \infty} \int_0^t P_s f \, ds \quad \text{for } f \in D_N,$$

hvor

$$D_N = \{ f \in C_0(\mathbb{R}^3) | \lim_{t \to \infty} \int_0^t P_s f \, ds \text{ eksisterer i } C_0(\mathbb{R}^3) \}.$$

Operatorerne $A$ og $-N$ er indbydes inverse.

Det er nu afgørende, at $A$ og $N$ er "gønne kenderne" i matematikken. Operatoren $A$ er nemlig på et passende underrum af $C_0(\mathbb{R}^3)$, "ikke andet end" Laplace operatoren:

$$\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}.$$

På et passende underrum af $C_0(\mathbb{R}^3)$ er operatoren $N$ bestemt som følgende med Newton-kernen:

$$N f(x) = \frac{1}{4\pi} \int_{\mathbb{R}^3} f(y) \frac{1}{|x-y|} \, dy.$$
Den klassiske potentiale-teori, som løst sagt ej studiet af Laplace-operatoren og Newton-kernen, og teorien for de Brownske bevægelser er således "to sider af samme sag". Denne sammenhæng mellem sandsynlighedstheoretien og potentiale-teorien blev opdaget i 1930'erne af LEVY og er siden blevet uddybet gennem arbejder af bl.a. KAKUTANI, DOOB og HUNT.

En nøjere undersøgelse af denne sammenhæng, el. der hvad der kommer ud på det samme, et nærmere studium af operatorerne A og N, kræver et vist kendskab til den harmoniske analyse. Vi må derfor starte med at give en kort indføring i harmonisk analyse, inden vi kan gå i gang med førelæsningsernes hovedenne, den analytiske behandling af foldningssemitrupper.

62. Foldningssemitrupper.

Det synes rimeligt at betragte den i §1 skitserede situation i en mere generel ramme, hvor den harmoniske analyse er til rådighed og hvor vi kan definere translationsinvarians. Vi vil derfor erstatte det underliggende rum $\mathbb{R}^3$ med en vilkårlig lokalkompakt abelsk gruppe $G$.

Vi skal studere familier $(\mu_t)_{t\geq 0}$ af positive
mål på $G$ med egenskaberne

$$\mu_{t+s} = \mu_t \ast \mu_s \quad \text{for } t, s > 0,$$

$$\int \mu_t \leq 1 \quad \text{for } t > 0,$$

$$\lim_{t \to 0} \mu_t = \delta_0 \quad \text{i den vague topologi},$$

hvor $\delta_0$ er Diracs mål koncentreret i det neutrale element $0$ af $G$. En sådan familie kaldes en vigtig kontinuerlig foldningssemigruppe på $G$; den Brown'ske semigruppe på $\mathbb{R}^3$ er et eksempel på en foldningssemigruppe. Man kan vise, at der er en enestående korrespondance mellem foldningssemigrupper på $G$ og translationsinvariente Hunt-processer (d.v.s. "generaliserede Brown'ske bevegelser") på $G$.

Ved Fourier transformation af målene i en foldningssemigruppe $(\mu_t)_{t>0}$ på $G$, fås en familie $(\hat{\mu}_t)_{t>0}$ af funktioner på den til $G$ duale gruppe $\Gamma$. Dette familie har følgende specielle form

$$\hat{\mu}_t(\gamma) = e^{-t\psi(\gamma)} \quad \text{for } t > 0 \text{ og } \gamma \in \Gamma \quad (1)$$

hvor $\psi$ er en (af $(\mu_t)_{t>0}$ afhængig) kompleks funktion på $\Gamma$. Funktionen $\psi$ er kontinuerlig og negativ definit, hvilket betyder, at det for alle naturlige tal $n$ og alle $n$-sæt af elementer
\( x_1, \ldots, x_n \in \Gamma \) gælder, at matricen
\[
( \psi(x_i) + \psi(x_j) - \psi(x_i - x_j) )_{i,j = 1, \ldots, n}
\]
et positiv semi definit. Omvendt vil det til hver kontinuerlig og negativ definit funktion \( \psi \) på \( \Gamma \), ved ligningen (1) fastlægges en familie \( (\mu_t)_{t > 0} \) af mål på \( G \), og denne familie udgør en foldningssemigruppe på \( G \). Hvis \( (\mu_t)_{t > 0} \) er den Brown-ske semigruppe på \( \mathbb{R}^3 \), finder man
\[
\hat{\mu_t}(y) = e^{-t\|y\|^2} \text{ for } t > 0 \text{ og } y \in \mathbb{R}^3,
\]
(den til \( \mathbb{R}^3 \) duale gruppe er \( \mathbb{R}^3 \)) og funktionen
\[
\mathbb{R}^3 \ni y = (y_1, y_2, y_3) \mapsto y_1^2 + y_2^2 + y_3^2 = \|y\|^2 \in \mathbb{R}
\]
et således negativ definit på \( \mathbb{R}^3 \).

Idet foldningssemigrupper på \( G \) er i entydig korrespondance med kontinuerlige negativ definitte funktioner på \( \Gamma \), er alle foldningssemigrupper på \( G \) "explicit" givet, når man kender
alle kontinuerlige negativ definitte funktioner på \( \Gamma \). Klasse af kontinuerlige negativ definitte funktioner er i princippet bestemt ved hjælp af
en integral formel, den såkaldte Levy-Khinchin formel.

I tilfældet \( \Gamma = \mathbb{R}^3 \) findes det svarende til
en kontinuerlig negativ definit funktion \( \psi \) på \( \Gamma \).
- en positiv konstant $c$
- en lineær form $l$ på $\mathbb{R}^3$

$$l(x) = \sum_{j=1}^{3} b_j x_j \quad (b_j \in \mathbb{R})$$

- en positiv kvadratisk form $q$ på $\mathbb{R}^3$

$$q(x) = \sum_{j,k=1}^{3} a_{jk} x_j x_k \quad (a_{jk} \in \mathbb{R}, \ a_{jk} = a_{kj})$$

- et positivt begrænset mål $\nu$ på $\mathbb{R}^3 \setminus \{0\}$ således at for $x \in \Gamma$

$$\psi(x) = c + i l(x) + q(x)$$

$$+ \int \left( 1 - e^{-i \langle x, y \rangle} - \frac{i \langle x, y \rangle}{1 + \|y\|^2} \right) \frac{1 + \|y\|^2}{\|y\|^2} \, d\nu(y)$$

Omvendt definerer (2) med $c$, $l$, $q$ og $\nu$ som ovenfor en kontinuerligt negativ definit funktion på $\mathbb{R}^3$. Formlen (2) er Levy-Khinchin's formel for $\Gamma = \mathbb{R}^3$. Det er imidlertid vanskeligt at udregne integralen i (2) for konkrete $\nu$.

Den Brownske faldningsseigmuppe svare til at vi i (2) har

$$c = 0 \, , \, l = 0 \, , \, \nu = 0$$

$$q(x) = x_1^2 + x_2^2 + x_3^2 = \|x\|^2.$$  

Lad nu $(\mu_t)_{t>0}$ være en fast valgt faldningsseigmuppe på $G$ og lad $\psi$ være den tilhørende negativ definitte funktion på $\Gamma$. Rummer $C_0(G)$ af kontinuerlige funktioner på $G$, der går mod $0$
i det mundeleg er et Banachrum, når det udstyres med supremum normen. Som i §1 defineres der ved

$$P_t f = \mu_t * f \quad \text{for } t > 0 \text{ og } f \in C_0(G)$$

en stærkt kontinuerligt kontraktions semi gruppe $\{P_t\}_{t>0}$ på $C_0(G)$, og ligesom tidligere har vi dermed den infinitesimale frembringer $(A, D_A)$ og potenti"al operatoren $(N, D_N)$ for $\{P_t\}_{t>0}$.

Hvis det har mening at danne integralet

$$\int_0^\infty \mu_t dt$$

og hvis (3) definerer et mål $\nu$, så det forven tes, at dette mål ved foldning "bestemmer" potenti"al-operatoren. Integralet (3) kan tilføjles en fornuftig betydning i høveldet hvor funktionen $\frac{t}{\phi}$ er lokalt integrabel på $\Gamma$, og i denne situation er $\kappa$ uimpelethten den "Fourier-transformerede" af $\frac{1}{\phi}$.

Videre vil det vise sig, at den infinitesimale frembringer $A$ er den "Fourier-transformerede" af funktionen $\phi$. Levy-Khinchin's formel, der herved kan forfølges som en formel for struktur af $A$ giver, at $A$ er sum af en (højst) anden-ordens differentialoperator (hvis man kan differen"ere på $G$) og en integraloperator.

Disseudsagn må naturligvis pr"eciseres, men
i tilfældet $G = \mathbb{R}^3$ har den infinitesimale frembringer for $(P_t)_{t \geq 0}$ følgende udseende (på tilstrækkeligt differentiable funktioner):

$$A f(x) = c \cdot f(x) + \sum_{j=1}^{3} b_j \frac{\partial f}{\partial x_j}(x) + \sum_{j,k=1}^{3} a_{jk} \frac{\partial^2 f}{\partial x_j \partial x_k}(x)$$

$$+ \int \left[ f(x+y) - f(x) - \sum_{j=1}^{3} \frac{\partial f}{\partial x_j}(x) \cdot \frac{y_j}{1+||y||^2} \right] \frac{1+||y||^2}{||y||^2} \, dy(y)$$

hvor $c, (b_j), (a_{jk})$ og $\gamma$ har samme betydning som ovenfor.

Den tilfældighetsseminigruppen hørende "generaliserede Brownske bevægelse" $X$ kan nærmere karakteriseres ved hjælp af følgende begreber.

Idet man opfatter $X$ som en beskrivelse af en partikel, der bevæger sig tilfældigt på $G$, kaldes $X$ **kontinueret**, hvis partiklen "altid" bevæger sig langs kontinuerlige kurver i $G$. Det er muligt at afgøre om $X$ er kontinueret direkte ud fra den infinitesimale frembringer for $(\mu_t)_{t \geq 0}$ så vel som ud fra den negativ definite funktion $\psi$.

Videre kaldes $X$ **rekurrent**, hvis det om en vilkårlig åben mångde gælder, at partiklen befinder sig i denne mångde vilkårligt ofte og til vilkårligt senere tidspunkter. Hvis $X$ ikke er rekurrent, kaldes $X$ **transient**. I dette tilfælde vil partiklen forlade enhver åben begrenset mångde på et eller andet tidspunkt og ikke
komme tilbage til denne mængde. Det gælder nu, at $X$ er transient, netop hvis realdelen af funktionen $\Phi$ er lokalt integrabel på $\Gamma$. F.eks. er den Brown-
ske bevægelse i rummet $\mathbb{R}^3$ transient, medens den Brown-
ske bevægelse "på linien" $\mathbb{R}$ og "i planen" $\mathbb{R}^2$ er rekurrente.

Dvære egenskaber ved den generaliserede Brown-
ske bevægelse kan opfattes som egenskaber ved den
tilhørende foldningssemigruppe. Resultaterne over-
for en eksempler på hvorledes egenskaber ved foldnigs-
semigruppen kan formuleres ved hjælp af den asso-
cierede negative definitte funktion. Foreløbiggen-
ne skal give de nødvendige redskaber til denne
"oversættelse", samt præsentere en række eksem-
pler herpå.
KAPITEL II. HARMONISK ANALYSE


§1. Haarmål.

En topologisk gruppe $G$ er en gruppe $G$ forsynet med en topologi så kompositionen og inversdannelsen er kontinuerlige. Vi kræver altså, at følgende afbildninger er kontinuerlige:

$$(x, y) \mapsto x \cdot y \quad \text{af } G \times G \text{ ind i } G$$

$x \mapsto x^{-1} \quad \text{af } G \text{ ind i } G$.

Vi vil udelukkende beskæftige os med abelske topologiske grupper hvor topologien er lokalkompakt. Vi taler så om en lokalkompakt abelsk gruppe $G$ (kort: En LCA-gruppe).

I det følgende betegner $G$ en fast LCA-grup.
pe, med komposition + (addition). Det numerale element i $G$ betegnes $0$ og det til $x \in G$ inverse element er $-x$.

For hvert $a \in G$ betegner $\tau_a$ afbildningen $x \mapsto x + a$ af $G$ på sig selv, og $\tau_a$ kaldes translationen bestemt ved $a$. Det er klart, at $\tau_a$ er en homeomorfi af $G$. Betegner $\mathcal{U}(a)$ systemet af omegne af punktet $a \in G$ gælder derfor

$$\mathcal{U}(a) = a + \mathcal{U}(0).$$

En delmængde $B \subseteq G$ kaldes symmetrisk hvis $B = -B$. Invendannelsens kontinuitet giver, at enhver omegn $V$ af $0$ indeholder en symmetrisk omegn (f.eks. $V_0 = V$) af $0$. Da $G$ er lokalkompakt findes således en basis for $\mathcal{U}(0)$ bestående af kompakte, symmetriske mængder.

Additionens kontinuitet sikrer, at der til hvert omegn $W$ af $0$ findes en omegn $V$ af $0$ så

$$V + V \subseteq W.$$ 

For en kompleks funktion $f$ på $G$ og for $a \in G$ betegner $\tau_a f$ funktionen $f$ translateret med $a$, som er defineret ved

$$(\tau_a f)(x) = f(\tau_a x) = f(x - a), \ x \in G.$$
og \( \hat{f} \) beøger den til \( \hat{f} \) spejlede funktion, givet ved

\[
\hat{f}(x) = f(-x), \quad x \in G.
\]

Rummet af kontinuerlige funktioner \( f : G \to \mathbb{C} \)
med kompakt støtte beøges \( K(G) \). For \( f \in K(G) \)
a f \( \hat{f} \in K(G) \) og det gælder

\[
supp(\tau_a f) = a + supp f \quad \text{og} \quad supp(\hat{f}) = -supp f.
\]

En funktion \( f : G \to \mathbb{C} \) kaldes 
ligeligt kontinuer
ligt så fremt:

\[\forall \varepsilon > 0 \exists U \subseteq U(0) \forall x,y \in G : x - y \in U \Rightarrow |f(x) - f(y)| < \varepsilon \]

Enhver funktion \( f \in K(G) \) er ligeligt kontinue
et. (Overvej dette).

De positive linearformer på \( K(G) \) kaldes
som bekendt Radonmål på \( G \). Mere almindeligt
vid vi kalde en linearform

\[
\mu = \mu_1 - \mu_2 + i(\mu_3 - \mu_4)
\]

lærer \( \mu_j \), j = 1,...,4

e positive linearformer på
\( K(G) \), for et mål på \( G \). For et mål \( \mu \) på \( G \)
defineres det spejlede mål \( \hat{\mu} \) ved

\[
\hat{\mu}(f) = \mu(\hat{f}) \quad \text{for} \quad f \in K(G),
\]
og det med \( a(a \in G) \) translaterede mål \( \tau_a \mu \), ved
\[(\tau_\alpha \mu)(f) = \mu(\tau_{-\alpha} f)\]
ellet på integralform
\[\int f(x) d(\tau_\alpha \mu)(x) = \int (\tau_{-\alpha} f)(x) d\mu(x) = \int f(x+\alpha) d\mu(x)\]
for \(f \in \mathcal{K}(G)\).
Et mål \(\mu\) på \(G\) kaldes **translations invariant**, hvis
\[\tau_\alpha \mu = \mu\]
for alle \(\alpha \in G\),
og \(\mu\) kaldes **spejlings invariant**, hvis
\[\mu = \mu^*\]

Ifølge A. HAAR (1933) findes et Radonmål \(\mu \neq 0\) på \(G\) som en translations invariant og translations invariant Radonmål på \(G\) er proportionale. De translations invariant Radonmål på \(G\) kaldes Haarmålne på \(G\). I praksis fikseres et Haarmål \(\mu\) på \(G\), som kaldes **Haarmålet på \(G\)**.
Opløses Haarmålet \(\mu\) som Borelmål gælder
\[\mu(B+\alpha) = \mu(B)\]
for enhver Borelsmængde \(B\) og enhver \(\alpha \in G\).

**Eksempler.** 1) \(G = \mathbb{R}\), Haarmålet er Lebesgue-målet.
2) \(G = \mathbb{Z}\), Haarmålet er "tællemålet". Det kan
skrives \( \mu = \sum \epsilon_n \), hvor \( \epsilon_n \) er Diracmålet i \( \mathbb{R}^n \).
3) \( G = \mathbb{T} \) (cirkel- eller torus-gruppen)

\[
\mathbb{T} = \{ x \in \mathbb{C} \mid |x| = 1 \} \cong \mathbb{R}/\mathbb{Z}
\]

Haarmålet er Lebesgue-målet på \([0, 2\pi]\).
4) Er \( G_1 \) og \( G_2 \) LCA-grupper med Haarmål \( \mu_1 \) og \( \mu_2 \) er produktmålet \( \mu \otimes \mu \) et Haarmål på produktgruppen \( G_1 \times G_2 \).
5) Enhver abelsk gruppe er en LCA-gruppe, når den udstyres med den diskrete topologi. Et Haarmål er igen tællemalet.

Øvelse 1.1 Lad \( G \) være den multiplikative gruppe af positive reelle tal. Find det Haarmål \( \mu \) på \( G \) hvor \( \mu([1, 2]) = 1 \).

I analogi med Lebesgue-målet på \( \mathbb{R}^n \) skrives Haarmålet ofte \( dx \), hvor \( x \) betegner et variabelt punkt i gruppen.

Lemma 1.1 Lad \( \mu \) være et Haarmål på \( G \).
Da \( \text{supp}(\mu) = G \).

Bevis. Vi skal vise, at enhver ikke tom åben mængde \( \emptyset \) har positivt Haarmål \( \mu(\emptyset) \). Antag \( \mu(\emptyset) = 0 \). Så er også \( \mu(K) = 0 \) for enhver kompakt mængde \( K \) og dernæst er \( \mu = 0 \), thi de findes endelig mange punkter \( a_1, \ldots, a_m \in G \) så
\[ K \leq \bigcup_{i=1}^{\hat{\in}} a_i + O, \]

men så er

\[ \mu(K) \leq \sum_{i=1}^{\hat{\in}} \mu(a_i + O) = m \cdot \mu(O) = 0. \]

Lemmaet kan også udtrykkes, at hvis \( f \in \chi(G)_+ \)
\( f \not= 0 \), så er \( \int f d\mu > 0 \).

**Lemma 1.2** Ethenveet Haarmål \( \mu \) på \( G \) er spej-
lingsinvariant.

**Bevis.** For \( f \in \chi(G) \) og \( a \in G \) gælder

\[ T_a (\tilde{f}) = [ T_a f ]^\vee \]

og heraf ses, at hvis \( \mu \) er et Haarmål, så er \( \tilde{\mu} \)
translationsinvariant og dermed et Haarmål. Der
findes altså \( \lambda > 0 \) så \( \tilde{\mu} = \lambda \mu \). Vælges \( f \in \chi(G)_+ \)
\( f \not= 0 \) og sætter vi \( \phi = f + \tilde{f} \) og \( \phi = \check{f} \); altså
fås

\[ \tilde{\mu}(\phi) = \lambda \mu(\phi) = \mu(\check{f}) = \mu(\phi), \]

og heraf slutter at \( \lambda = 1 \).

**Sætning 1.3** Lad \( G \) være en LCA-gruppe med
Haarmål \( \mu \). Så er \( \mu(G) = +\infty \) hvis og kun hvis
\( G \) er kompakt.

**Bevis.** Den ikke-trivielle vej går ud på at vise, at
hvis $G$ ikke er kompakt så er $\mu(G) = \infty$. Antag at $G$ ikke er kompakt og lad $K$ være en kompakt delmængde. Vi viser først at den til hvert $n \in \mathbb{N}$ findes punkter $a_1, \ldots, a_n \in G$ så mængderne $(a_i + K)$ er parvis disjunkt. Antag nemlig at $a_1, \ldots, a_n$ er fundet. Da mængden

$$L = \left[ \bigcup_{i=1}^{n} (a_i + K) \right] - K$$

er kompakt, findes et punkt $a_{n+1} \in G \setminus L$. Mængderne $(a_i + K)$ for $i = 1, \ldots, n, n+1$ er parvis disjunkt. Heraf følger nu at $\mu(G) \geq n \mu(K)$ for alle $n$ og alle kompakte mængder $K$. Altså er $\mu(G) = \infty$. 

\[\boxed{\text{Øvelse 1.2}}\] Gruppen $G$ er diskret hvis og kun hvis $\mu(0) > 0$.

\[\boxed{\text{Øvelse 1.3}}\] En tællelig LCA-gruppe er diskret.

På kompakte grupper $G$ normaliseres Haarmålet som regel så $\mu(G) = 1$ og på diskrete grupper vælges en normalisering så $\mu(0) = 1$. Disse to krav harmonerer ikke for endelige grupper.

Når vi har fixeret et Haarmål $\mu$ på $G$ kan vi danne de sædvanlige Banachrum $L^p(G, \mu)$, $1 \leq p \leq \infty$. Vi skriver kort $L^p(G)$ idet vi underfordrer at det er med henbryn til et Haarmål. Som mængde betraktet er $L^p(G)$ uafhængigt af det valgte
Haarmål, men $p$-normerne svarende til forskellige Haarmål er proportionale.

Sætning 1.4. Lad $1 \leq p < \infty$.

a) For $x \in G$ og $f \in L^p(G)$ er $\tau_x f \in L^p(G)$ og

$$\| \tau_x f \|_p = \| f \|_p.$$ 

b) For fast $f \in L^p(G)$ er afbildningen

$$x \mapsto \tau_x f$$

af $G$ ind i $L^p(G)$ ligeligt kontinuert.

c) Afbildningen $\tau_x$ til $x \in G$ lader svare isometrii $\tau_x$ af $L^p(G)$ er en stærkt kontinuert repræsentation af $G$.

Bevis. a) Følger umiddelbart af Haarmålets translationsinvanian.

b) Da $\| \tau_x f - f \|_p = \| \tau_x f - f \|_p$, er det nok at vise at afbildningen

$$x \mapsto \tau_x f$$

er kontinuert i $0$. 

Antag først at $f \in \mathcal{K}(G)$ og vælg en kompakt omegn $V$ af $0$. Vi sætter $L = \text{supp}(f) + V$. Da $f$ er ligeligt kontinuert findes til $x_0$ en omegn $U$ af $0$ så
\[ |f(x-h) - f(x)| \leq \varepsilon \cdot f_L(x) \text{ for } x \in G, \text{ } h \in U \cup V. \]

Altså

\[ |f(x-h) - f(x)| \leq \varepsilon \cdot f_L(x) \text{ for } x \in G, \text{ } h \in U \cup V. \]

Heraf følger for \( h \in U \cup V, \) at

\[ \| T_h f - f \|_p \leq \int (\varepsilon \cdot f_L(x))^p \, dx = \varepsilon^p \int f \, dx \]

hvilket viser b) for \( f \in X(G). \)

Til vilkårligt \( f \in L^p(G) \) og \( \varepsilon > 0 \) findes \( g \in X(G) \) så \( \| f - g \|_p < \varepsilon. \) Så følger

\[ \| T_h f - f \|_p \leq \| T_h f - T_h g \|_p + \| T_h g - g \|_p + \| g - f \|_p < 3 \varepsilon \]

når \( h \) er så nær ved \( 0 \) at \( \| T_h g - g \|_p < \varepsilon. \)

c) For hvert \( x \) er \( T_x : f \mapsto T_x f \) en isometri af 
\( L^p(G) \) på sig selv og \( T_x \circ T_y = T_{xy} \). Dette viser, at
\( T \) er en homomorfi af \( G \) ind i grupper af isometrier af \( L^p(G) \) på sig selv. Dermed er \( T \) altså
en representation af \( G \) i \( L^p(G). \) Den stærke
kontinuitet betyder at afbildningen

\[ x \mapsto T_x f \]

er kontinuitet for fast \( f \in L^p(G) \), hvilket ufort
er vist i b). \( \square \)
S2. Føldning.

Lad $G$ være en LCA-gruppe med Haarmalet. Ved hjælp af Haarmalet og gruppekompositionen kan vi definere en komposition for visse funktioner og mål på gruppen. Denne komposition kældes føldning og betegnes med $\ast$. Formelt er føldningen af to funktioner $f$ og $g$ på $G$ funktionen

$$f \ast g \ (x) = \int_G f(y)g(x-y) \, dy, \quad x \in G. \quad (1)$$

Da det opskrevne integral ikke altid har mening, udelukker ikke alle funktioner der kan følde.

For at finde $f \ast g \ (x)$ betragter vi alle udbyg af formen $f(p) \cdot g(q)$ hvor $p + q = x$, og disse "integreres sammen over $G$". Dermed er det klart at

$$f \ast g \ (x) = g \ast f \ (x);$$

mere præcist for dette ved hjælp af Haarmalets translations- og spejlingsinvarianse således:

$$f \ast g \ (x) = \int f(y)g(x-y) \, dy = \int f(y+x)g(-y) \, dy$$

$$= \int f(x-y)g(y) \, dy = g \ast f \ (x),$$
gældende for de funktioner $f$ og $g$ for hvilke (1) har mening.

Sætning 2.1 a) Hvis $f, g \in K(G)$ vil $f \ast g \in K(G)$
og \( \text{supp}(f \ast g) \subseteq \text{supp}(f) + \text{supp}(g) \).

b) Hvis \( f, g \in L^1(G) \) er \( f \ast g \) defineret for næsten alle \( x \) (m.h.t. Haarmålet), \( f \ast g \in L^1(G) \) og

\[
\| f \ast g \|_1 \leq \| f \|_1 \| g \|_1 .
\]

Bevis. a) I dette tilfælde er \( f \ast g \) klart vedefineret, og hvis \( x \notin \text{supp}(f) + \text{supp}(g) \) vil funktionen

\[
y \mapsto f(y) g(x-y)
\]

være identisk 0, altså \( f \ast g(x)=0 \), hvilket viser påstanden om støtteren, specielt at \( f \ast g \) har kompakt støtte.

For at se at \( f \ast g \) er kontinuerligt, udfyldes at \( g \) er ligeligt kontinuerlig. Til \( \varepsilon > 0 \) findes derfor en omegn \( U \) af 0 så \( |g(x)-g(y)| \leq \varepsilon \) for \( x-y \in U \). Så fås

\[
|f \ast g(x)-f \ast g(z)| \leq \int |f(y)||g(x-y)-g(z-y)| \, dy
\]

\[
\leq \varepsilon \int |f(y)| \, dy
\]

når \( x-z \in U \), hvilket viser at \( f \ast g \) er (endda ligeligt) kontinuerlig.

b) Hvis \( f, g \in L^1(G) \) kan vi som representative for \( f \ast g \) velge Borelfunktioner. Så er

\[
(x,y) \mapsto f(y) g(x-y)
\]

en Borelfunktion på \( G \times G \). Da
\[
\int_0^1 \int_0^1 |f(y)g(x-y)| \, dx \, dy = \|f\|_1 \|g\|_1 < \infty
\]

følger det af Fubini's sætning at
\[
\phi(x) = \int |f(y)g(x-y)| \, dy
\]
eksisterer for næsten alle \( x \) og at \( \phi \in L^1(G) \). Dermed er \( f \ast g \) defineret næsten overalt og er en funktion i \( L^1(G) \) opfyldende
\[
|f \ast g(x)| \leq \phi(x).
\]

Heraf ses at
\[
\|f \ast g\|_1 \leq \|f\|_1 \|g\|_1.
\]

\[\text{Øvelse 2.1} \quad \text{Hvis } f \in L^p(G) \text{ med } 1 \leq p \leq \infty \text{ og } g \in L^q(G) \text{ hvor } \frac{1}{p} + \frac{1}{q} = 1, \text{ så er } f \ast g \text{ veldefineret og } f \ast g \text{ er en kontinuert begrenset funktion. Videre er } \|f \ast g\|_\infty \leq \|f\|_p \|g\|_q. \text{ Hvis } 1 < p < \infty \text{ vil } f \ast g \text{ gå mod 0 i } \infty.\]

\[\text{Sætning 2.2} \quad \text{Med følgende som multiplikation er } L^1(G) \text{ en kommutativ Banach algebra. Ved fast setælleen } f^*(x) = \overline{f(-x)} \text{ gøres } L^1(G) \text{ til en Banach algebra med involution.} \]

\[\text{Der findes et element i } L^1(G) \text{ hvis } G \text{ er diskret.}\]

\[\text{Bevis. Vi vil indre at } * \text{ er associativ. Lad}\]
så $f, g, h \in L^1(G)$.

$$f \ast (g \ast h)(x) = \int f(y) g \ast h(x-y) \, dy$$

$$= \int \left[ f(y) \int g(z) h(x-y-z) \, dz \right] \, dy$$

$$= \int \left[ f(y) \int g(z-y) h(x-z) \, dz \right] \, dy$$

$$= \int \left[ \left( f(y) g(z-y) \, dy \right) h(x-z) \right] \, dz$$

$$= \int f \ast g(z) h(x-z) \, dz$$

$$= (f \ast g) \ast h(x).$$

Vi har brugt translationsinvariancen og Fubini's sætning.

Hermed er det klart at $L^1(G)$ er en kommutativ Banach-algebra med involution.

Hvis $G$ er diskret er funktionen $\delta: G \to \mathbb{C}$ givet ved

$$\delta(x) = \begin{cases} 1 & \text{for } x = 0 \\ 0 & \text{for } x \neq 0 \end{cases}$$

et element. Bemærk at $f: G \to \mathbb{C}$ i dette tilfælde tilhører $L^1(G)$ præcis hvis familien $(f(x))_{x \in G}$ er absolut summabel og

$$\|f\|_1 = \sum_{x \in G} |f(x)|.$$

At det ikke er et element i $L^1(G)$ når $G$ ikke er
diskret er mindre elementært, men vil blive vest senere. □

Bemærkning. Under 1-normen \( \|f\|_1 = \int |f(x)| \, dx \) er \( K(G) \) en normeret algebra med involution, men den er sædvundigvis ikke fuldstændig. \( L^1(G) \) er en konkret fuldstændiggjordse af \( K(G) \).

Mængden af kontinuerlige funktioner \( f: G \to \mathbb{C} \) der går mod 0 i \( \infty \) betegnes \( C_0(G) \). Forsynet med den ligelige norm

\[
\|f\|_\infty = \sup_{x \in G} |f(x)|
\]

er \( C_0(G) \) et Banachrum.

Det til \( C_0(G) \) norm-duale Banachrum betegnes \( M(G) \) og \( M(G) \) kaldes numret af begrensede mål på \( G \). Lad \( \mu \) være et positivt, endeligt (d.v.s. \( \mu(G) < \infty \)) mål på \( G \). Dette mål er en kontinuerlig linealform på \( K(G) \) når \( K(G) \) udstyres med den ligelige norm, hvis

\[
| \int f(x) \, d\mu(x) | \leq \|f\|_\infty \cdot \mu(G).
\]

Dermed kan \( \mu \) på enhver måde fortsættes til en kontinuerlig linealform på \( C_0(G) \), altså til et begrenselt mål på \( G \) med norm \( \leq \mu(G) \). (Der gælder faktisk at normen er lig \( \mu(G) \). Vis dette!) Hvis omvendt \( \mu \) er et positivt mål på \( G \) således
at μ er en konsistent lineær form på $K(G)$ udbygget med den ligelige norm, da er μ, som man kan set, et endeligt mål og der gælder at $μ(G)$ er mindre end eller lig normen af denne lineær form.

Mængden af positive endelige mål betegnes $M_+(G)$. Linearkombinationerne

$$μ_2 - μ_1 + i(μ_3 - μ_4)$$

hvor $μ_j ∈ M_+(G)$ er også elementer af $M(G)$, og man kan vise, at ethvert element i $M(G)$ kan skrives på formen (2), hvilket begynder at $M(G)$ kaldes rummet af begrænset mål på $G$.

For ethvert $f ∈ L^1(G)$ defineres et element $μ_f ∈ M(G)$ ved

$$μ_f(φ) = \int φ(x) f(x) \, dx, \quad φ ∈ C_0(G),$$

hvor $|μ_f(φ)| ≤ ∥φ∥_∞ ∥f∥_1$ således at der gælder

$$∥μ_f∥ ≤ ∥f∥_1$$

Ved tilordningen $f \mapsto μ_f$ er defineret en kontinuerlig lineær afbeeldning af $L^1(G)$ ind i $M(G)$.

**Lemma 2.3** Afbeeldningen $f \mapsto μ_f$ er en isometri.

**Bevis.** Indet mængden

$$\{ f ∈ L^1(G) \mid ∥f∥_1 = ∥μ_f∥ \}$$


er afsluttet, er det nok at vise påstanden for den tette mængde $Y(G)$. Lad $f \in Y(G)$ og $E > 0$ være givet. Der findes en kompakt mængde $K \subseteq \mathcal{O} = \{ x \in G \mid f(x) > 0 \}$ så Haarmålet af $\mathcal{O} \setminus K$ er mindre end $E$. Vælg nu $\psi \in Y(G)_+, \ 0 \leq \psi \leq 1$ så $\text{supp} \psi \subseteq \mathcal{O}$ og $\psi = 1$ på $K$. Funktionen

$$
\rho(x) = \begin{cases} 
\frac{\psi(x)}{|f(x)|} & \text{for } x \in \mathcal{O} \\
0 & \text{for } x \notin \mathcal{O}
\end{cases}
$$

vilhører $Y(G)$ og $\| \rho \|_\infty = 1$. Derudan er

$$
| \mu_f(\rho) | = \left| \int \rho(x) f(x) \, dx \right| \\
= \left| \int_K \rho(x) f(x) \, dx + \int_{\mathcal{O} \setminus K} \rho(x) f(x) \, dx \right| \\
\geq \int_K |f(x)| \, dx - \| f \|_\infty \cdot E \\
\geq \| f \|_1 - 2 \| f \|_\infty \cdot E.
$$

Heraf følger

$$
\| \mu_f \| \geq \| f \|_1, \ \text{for } f \in Y(G).
$$

For $f \in L^1(G)$ kaldes $\mu_f$ det begrænsede mål med tæthed $f$.

Det foregående viser, at $L^1(G)$ kan opfattes som et afsluttet underrum af $M(G)$, nemlig som de enkelte mål med tæthed.

Man kan udvide foldningsoperationen fra $L^1(G)$
til hele \( M(G) \). Dermed bliver \( M(G) \) en kommutativ Banachalgebra. Involutionen på \( L^1(G) \) kan fortsættes til \( M(G) \), ved til \( \mu \in M(G) \) at knytte \( \mu^* \) defineret ved

\[
\langle f, \mu^* \rangle = \langle f^*, \mu \rangle \quad \text{for} \ f \in C_0(G).
\]

Følgeligien af en funktion \( f \) på \( G \) og et mål \( \mu \) på \( G \) defineres formelt som funktionen

\[
\mu \ast f \ (x) = f \ast \mu \ (x) = \int f(x - y) \, d\mu(y) = \langle \mathcal{T}_x f, \mu \rangle.
\]

For at dette skal have mening må \( f \) og \( \mu \) opfylde visse betingelser.

Sætning 2.4 a) Hvis \( f \in Y(G) \) og hvis \( \mu \) er et positivt mål er \( \mu \ast f \) en veldefineret kontinuerlig funktion. Hvis \( \mu(G) < \infty \) er \( \mu \ast f \in C_0(G) \).

b) Hvis \( f \in L^1(G) \) og hvis \( \mu \in M_+(G) \) er \( \mu \ast f \) defineret næsten overalt og \( \mu \ast f \in L^1(G) \). Endvidere er

\[
\| \mu \ast f \|_1 \leq \mu(G) \| f \|_1.
\]

Bevis. a) Vi vil vise, at \( \mu \ast f \) er kontinuerlig i punktet \( x_0 \in G \). Dertil vælges en kompakt omegn \( V \) af \( x_0 \) og vi sætter \( L = V \setminus \text{supp}(f) \). Lad \( \varepsilon > 0 \) være givet. Da \( f \) er ligebart kontinuerligt findes en omegn \( W \) af \( x_0 \) så

\[
|f(x) - f(y)| \leq \varepsilon \quad \text{for} \ x, y \in W.
\]
Da
\[ |f(x-y) - f(x_0-y)| \leq \varepsilon \cdot \eta(y) \quad \text{for } y \in G \]

når \( x \in (x_0+U) \cap V \), fås
\[ |\mu \times f(x) - \mu \times f(x_0)| \leq \varepsilon \cdot \mu(\xi) \quad \text{for } x \in (x_0+U) \cap V. \]

Antag nu, at \( \mu(G) < \infty \). Til givet \( \varepsilon > 0 \) findes en kompakt mængde \( K \subseteq G \) så \( \mu(G \setminus K) \leq \varepsilon \). For \( x \in K + \text{supp}(f) \) gælder
\[ |\mu \times f(x)| \leq \int_K |f(x-y)| \, d\mu(y) + \int_{G \setminus K} |f(x-y)| \, d\mu(y) \]
\[ \leq \|f\|_{\infty} \mu(G \setminus K) \leq \|f\|_{\infty} \cdot \varepsilon, \]

hvilket viser, at \( \mu \times f \in C_0(G) \);

b) Lad \( f \) være en Borel funktion i \( L^1(G) \) og lad \( \mu \in M_+(G) \). Da
\[ \int (\int |f(x-y)| \, dx) \, d\mu(y) = \|f\|_1 \mu(G) < \infty \]

følger det af Fubini's sætning, at
\[ \mu \times f(x) = \int f(x-y) \, d\mu(y) \]

er defineret næsten overalt, og at \( \mu \times f \in L^1(G) \). Videre fås
\[ \|\mu \times f\|_2 = \sqrt{\int (\int |f(x-y)| \, d\mu(y)) \, dx} \]
\[ \leq \sqrt{\int (\int |f(x-y)| \, d\mu(y)) \, dx} \]
\[
= \int \left( \int |f(x-y)| \, dx \right) \, d\mu(y)
\]

\[
= \|f\|_1 \cdot \mu(G).
\]

**Bemærkning.** Hvis \( f \in L^1(G) \) og \( \mu \in M_+(G) \) er af formen \( \mu = \mu_g \) for \( g \in L^1(G)_+ \), så er

\[
f \ast \mu_g (x) = \int f(x-y) \mu_g (y) \, dy = \int f(x-y) g(y) \, dy = f \ast g(x),
\]

så det er i denne forbindelse ligegyldigt om vi optætter \( g \) som funktion eller som målet med kæledCHK g.

**Øvelse 2.2** Hvis \( f \in L^p(G) \) med \( 1 \leq p \leq \infty \) og \( \mu \in M_+(G) \) så er \( f \ast \mu \in L^p(G) \) og \( \|f \ast \mu\|_p \leq \|f\|_p \cdot \|\mu\|_p \).

Vi kan nu definere foldningen af to måler \( \mu, \nu \in M_+(G) \). For \( f \in K(G) \) er \( f \ast \mu \in C_c(G) \) og dermed er

\[
< f \ast \mu, \nu > = \int \int f(x+y) \, d\mu(y) \, d\nu(x)
\]

veldefineret. Ved afbildningen

\[
f \mapsto < f \ast \mu, \nu >
\]
defineres en positiv lineær form på \( K(G) \), altså et positivt mål på \( G \), som kaldes foldningen \( \mu \ast \nu \) af \( \mu \) og \( \nu \). Der gælder altså

\[
< f, \mu \ast \nu > = < f \ast \mu, \nu > = < f \ast \nu, \mu >,
\]

specielt er foldningen en kommutativ operation.
Det ses let at

\[ \mu \ast v \ast G = \mu \ast G \ast v \ast G \]

så \( \mu \ast v \in M_+ (G) \). Dermed er foldningen defineret på \( M_+ (G) \). Via spørgsmålingen (2) udvides foldningen til hele \( M (G) \) på en tydelig måde, når man kræver at \( \ast \) skal være distributiv m.h.t. addition.

Bemærk, at værdien af et foldningsprodukt \( \mu \ast v \ast f \), i analogi med (3), kan beregnes ved at "flytte" den ene faktor \( \mu \) (eller \( v \)) oven på \( f \) som \( \mu \) (eller \( v \)).

Rummet \( M (G) \) er således en algebra, endda en Banach-algebra idet

\[ \| \mu \ast v \| \leq \| \mu \| \| v \| . \]

Dette vil ikke blive vist. Bemærk dog at for positive \( \mu \) og \( v \) gælder endda \( \| \mu \ast v \| = \| \mu \| \| v \| . \)

Lad \( \mu, v \in M \) og \( f \) være en begrenset kontinuert funktion på \( G \). Integralet

\[ \int f(x) \, d(\mu \ast v)(x) \]

er da velformuleret og endeligt. Ved at reducere til positive \( \mu, v \) og \( f \) ser man at den gælder

\[ \int f(x) \, d(\mu \ast v)(x) = \int \int f(x+y) \, d\mu (x) \, d\nu (y) . \]

Ovelse 2.3 For \( \mu, v \in M (G) \) gælder at

\[ \text{supp } (\mu \ast v) \subseteq \text{supp } \mu + \text{supp } (v) . \]
I almindelighed har man ikke liggede begy i (4).

Foldningen \( \mu \times v \) af målene \( \mu, v \in M_1(G) \) hvor
\( \mu = \mu f \) med \( f \in L^1(G)_+ \), er det begrensete mål med
bewegen for \( f \times v \), altså

\[ \mu f \times v = \mu f \times v. \]

For at indse dette skal vi vise at

\[ \langle \varphi, \mu f \times v \rangle = \int \varphi(y) f \times v(y) dy \]

for alle \( \varphi \in \mathcal{K}(G) \). Nu er

\[ \langle \varphi, \mu f \times v \rangle = \langle \varphi \times \mu f, v \rangle = \langle \varphi \times \mu f, v \rangle \]
\[ = \langle \varphi f, v \rangle \]
\[ = \int \left( \int \varphi(y) f(y-x) dy \right) dv(x) \]
\[ = \int \varphi(y) f \times v(y) dy. \]

Det følger af sætning 2.4 b), at \( L^1(G) \) er et
ideal i algebraen \( M(G) \).

Formler. I det vi med \( \varepsilon_a \) for \( a \in G \) betegner
Dirac målet koncentreret i punktet \( a \), gælder

\[ \varepsilon_a \times \varepsilon_b = \varepsilon_{a+b} \] for \( a, b \in G, \]
\[ \varepsilon_a \times f(x) = f(x-a) = (T_a f)(x) \] for \( a \in G, \]
\[ \varepsilon_a \times \mu = T_a \mu \] for \( a \in G. \]
Sammenfattende kan vi sige at $M(G)$ er en kommutativ $*$-Banach-algebra med involution og et element $E_0$, og $L^1(G)$ er et afsluttet ideal i $M(G)$.

§3. Dual gruppe og Fouriertransform

Lad $G$ være en LCA-gruppe med Haar-mål $d\lambda$.

Definition. En karakter på $G$ er en kontinuerlig homomorphi af $G$ ind i cirkelgruppen $\mathbb{T}$ ($= \{ z \in \mathbb{C} | |z| = 1 \}$).

Andetledes siger en karakter $\chi$ på $G$ en kontinuitet afbildning $\chi: G \to \mathbb{T}$, der definerer

$$\chi(x+y) = \chi(x) \cdot \chi(y) \quad \text{og} \quad |\chi(x)| = 1 \quad \text{for} \quad x, y \in G.$$

Mængden af karakterer på $G$ betegnes $\hat{G}$ og $\hat{G}$ er på naturlig måde en abelsk gruppe, hvis kommutativiteten er punktvis multiplikation

$$(\chi + \chi')(x) = \chi(x) \cdot \chi'(x) \quad , \quad \chi, \chi' \in \hat{G}, \quad x \in G.$$

Nevronalelementet $0$ i $\hat{G}$ er funktionen konstant $1$ på $G$, og det hele karakteren $y$ er inverse element $-y$ i $\hat{G}$ er funktionen

$$x \mapsto \frac{1}{\chi(x)}.$$
Vi vil nu udvide gruppen $G$ med en topologi.

Da $G$ er en delmængde af rummet $C(G, \mathbb{C})$ af

kontinuerlige komplekse funktioner på $G$, kan vi udse

ne $G$ med delrumstopologi en fra den naturlige topo-

logi på $C(G, \mathbb{C})$, nemlig topologi for ligevis konvergens

over kompakte mængder, der er givet ved familien

af seminormer $p_K$, $K$ kompakt delmængde af $G$,

$$p_K(f) = \sup_{x \in K} |f(x)|, \quad f \in C(G, \mathbb{C})$$

Mængderne

$$\{ g \in \hat{G} \mid |g(x) - f(x)| < \varepsilon \forall x \in K \}$$

hvor $K$ en kompakt i $G$ og $\varepsilon > 0$, udgør en basis for

omregne af $f_0$ i $\hat{G}$, specielt vil mængderne

$$U_{\varepsilon}(K, \varepsilon) = \{ g \in \hat{G} \mid |1 - g(x)| < \varepsilon \forall x \in K \}$$

udgøre en basis for omregne af $0$ i $\hat{G}$.

Med denne topologi bliver $G$ en topologisk

gruppe. (Overvej dette).

Man kan også directe vise, at $\hat{G}$ derved bliver

en lokalkompakt gruppe, men benset er ikke held

men, så vi foreslår at på dette resultat som bi-pro-
dukt af de følgende resultater.

Gruppen $\hat{G}$ kaldes den til $G$ duale gruppe.

Lemma 3.1. Aftildningen $(x, y) \mapsto y(x)$ af $G \times \hat{G}$

ind i $T$ er kontinuent.
Bemt. Lad \( x_0 \in G, y_0 \in \hat{G} \), \( \varepsilon > 0 \). Da finder en kompakt omegn \( K \) af \( x_0 \) så \( |y_0(x) - y_0(x_0)| < \varepsilon \) for alle \( x \in K \).

For \( x \in K \) og \( y \in y_0 + U_y(x, \varepsilon) \) gælder da

\[
|y(x) - y_0(x_0)| \leq |y(x) - y_0(x)| + |y_0(x) - y_0(x_0)| < 2\varepsilon.
\]

Jest vi tænker os benist, at den topologiske atelske gruppe \( \hat{G} \) er lokalkompakt, kan vi danne dens duale gruppe \( \hat{\hat{G}} \), som kaldes den til \( G \) tilstande gruppe.

For hvert \( x \in G \) defineres en karakter på \( \hat{\hat{G}} \) ved

\[
y \rightarrow y(x), \quad y \in \hat{\hat{G}}.
\]

Ved \( x \in G \) at lade være karakteren \( y \rightarrow y(x) \) på \( \hat{\hat{G}} \) defineres en afbildning \( j: G \rightarrow \hat{\hat{G}} \) og \( j \) er klar en gruppehomomørfi.

Det vil senere blive benist (Pontriagins dualitetsætning) at \( j \) er en isomørfi af \( G \) på \( \hat{\hat{G}} \), altså at \( j \) er en homeomørfi og en gruppeisomørfi.

Bemærk analogiøen til topologiske vektorrum.

Da \( L^1(G) \) er en kommutativ Banach-algebra, har vi den generelle Gelfand-transformation høv til særlighed. Vi vil nå, at spækket \( \Delta \) for \( L^1(G) \) kan identificeres med den duale gruppe \( \hat{\hat{G}} \).
Sætning 3.2. For hvert \( f \in \mathcal{G} \) defineres ved
\[
L_f(f) = \int_G f(x)g(x)\,dx, \quad f \in L'(G)
\]
een karakter \( L_f \) på algebraen \( L'(G) \). Afbildningen
\[
\varphi : L_f \mapsto L_f
\]
e er en homeomorfisme af \( \mathcal{G} \) på \( \Delta \).

Denne Vi vil nu påvise, at det topologiske dualte rum til \( L'(G) \) kan identificeres med \( L^\infty(G) \).

Mere præcis, hvis \( \varphi \in L^\infty(G) \) defineres en kontinuerlig lineærform \( L_\varphi \) på \( L'(G) \) ved
\[
L_\varphi(f) = \int_G f(x)\varphi(x)\,dx
\]
opgjort afbildningen \( \varphi \mapsto L_\varphi \) er en isometrisk isomorfisme af \( L^\infty(G) \) på \( (L'(G))^\prime \).

Da \( f \in \mathcal{G} \) er en \( L^\infty \)-funktion, ved vi altså at \( L_f \) er en kontinuerlig lineærform på \( L'(G) \). At
\( L_f \) er en karakter ses således:
\[
L_f(f \ast g) = \int f(y)L_f(g(x-y))\,dy \ast g(x)\,dx = \int f(y)\varphi_{x-y}f(x)\,dx\,dy = \int (f(y)\varphi_x f(x)\,dx)\,dy = \int (f(y)\varphi_x f(x)\,dx)\,dy = L_f(f) \cdot L_f(g).
\]

Hvis \( f_1 \) og \( f_2 \) er forskellige karakterer er \( f_1 \neq f_2 \) som elementer af \( L^\infty(G) \), da er Haarvælgets støtte i hele \( G \). Dermed er afbildningen \( L : \mathcal{G} \to \Delta \) givet ved \( \varphi \mapsto L_f \) en injektiv afbildning.
Vi vil nu vise, at \( L \) er surjektiv. Lad \( \delta \in \Delta \). Da \( \delta \in L^1(G) \), findes en \( L^\infty \)-funktion \( \varphi \) på \( G \) så
\[
\delta(f) = \int f(x) \varphi(x) dx
\] (1)
for alle \( f \in L^1(G) \). For vilkårlige \( f, g \in L^1(G) \) gælder
\[
\int \delta(f) \varphi(y) g(y) dy = \int \delta(gf) \varphi(y) dy
\] (2)

Værdien til venstre side er lig med
\[
\delta(f) \delta(g) = \delta(fg) = \int (g(y) \int f(x-y) \varphi(x) dx) dy = \int \delta(gf) \varphi(y) dy.
\]

Af (2) følger at funktionerne \( y \rightarrow \delta(f) \varphi(y) \) og \( y \rightarrow \delta(gf) \) er ens i \( L^\infty(G) \), men den sidste er kontinuert (Settevigt 1.4), så ved at vælge \( f \) så \( \delta(f) \neq 0 \)


Af (2) følger, at \( \varphi \) i \( L^\infty \)-forstand er lig med en kontinuert funktion. I etegnalog til (1) kan vi derfor antage at \( \varphi \) er kontinuert, men så følger at
\[
\delta(f) \varphi(y) = \delta(gf)
\] (3)
for alle \( y \in G \) og for alle \( f \in L^1(G) \). Af (3) følger
\[
\delta(f) \varphi(x+y) = \delta(T_x(gf)) = \delta(\delta_x(gf)) = \delta(gf) \varphi(x) = \delta(f) \varphi(x) \varphi(y),
\]

gen valges \( f \) så \( \delta(f) \neq 0 \) holdes at
\[
\varphi(x+y) = \varphi(x) \varphi(y)
\] (4)

Da \( \varphi \) ikke er identisk 0 følger af (4), at \( \varphi(x) \)

af værdien for 0 for alle \( x \in G \). Da en karakter \( \delta \)

altid har norm \( \|\delta\|_1 \leq 1 \) og \( \|\varphi\|_\infty \leq 1 \), altid.
\[ |p(x)| \leq 1 \text{ for all } x \in G. \]

Af (3) følger, at \( q(-x) = \frac{1}{q(x)} \), altså er \( q \) en opヲ

\[ \left| \frac{1}{q(x)} \right| \leq 1 \]

eller \( |p(x)| = 1 \), så \( |p(x)| = 1 \) for all \( x \in G \), dermed

\[ |p| \in C \text{ og } \delta = Lp. \]

L er kontinuerlig. Du kan komme ud på det, at for fast \( f \in L^1(G) \) er afbildningen af \( G \) ind i

\[ C \] giver ved

\[ y \mapsto L_y(f) = \int_G f(x)p(x)dx \]

kontinuerlig, idet topologien på \( \delta \) er en initialtopologi.

Lad \( f_0 \in \hat{p} \) og \( \varepsilon > 0 \) være givet. Der findes en kompakt mængde \( K \subseteq G \) så

\[ \int_K |f(x)| \, dx < \varepsilon. \]

Før \( f \in f_0 + \mathcal{K}(K, \varepsilon) \) gælder

\[ \left| L_y(f) - L_y(f_0) \right| \leq \int_K |f(x)| \left| p(x) - p_0(x) \right| dx \]

\[ = \int_K |f(x)| \left| p(x) - p_0(x) \right| dx + \int_K |f(x)| \left| p_0(x) \right| dx \leq \varepsilon + \varepsilon \|f\|_1, \]

iværksat nu kontinuiteten.

Vi viser dermed at for fast \( f \in L^1(G) \) er afbildl-

ningen af \( G \times \Delta \rightarrow C \) giver ved

\[ (x, \delta) \mapsto \delta(\tau_x f) \]
en kontinuitet afbildning.
Lad $x_0 \in G$, $\delta_0 \in \Delta$ være fælles og lad $\varepsilon > 0$. Af
setning 1.4 følger, at der findes en omegn $V$ af $x_0$
i $G$ så $\|\tau_x f - \tau_{x_0} f\|_1 < \varepsilon$ for $x \in U$, og ifølge defini-meren af topologien på $\Delta$ findes en omegn $V$ af $\delta_0$, så
de for alle $\delta \in V$ gælder

$$|\delta(\tau_{x_0} f) - \delta_0(\tau_{x_0} f)| < \frac{\varepsilon}{2}.$$  

For $(x, \delta) \in U \times V$ har vi så

$$|\delta(\tau_x f) - \delta_0(\tau_x f)| \leq |\delta(\tau_x f) - \delta(\tau_{x_0} f)| + |\delta(\tau_x f) - \delta_0(\tau_{x_0} f)|$$

$$\leq \|\tau_x f - \tau_{x_0} f\|_1 + |\delta(\tau_{x_0} f) - \delta_0(\tau_{x_0} f)| < \varepsilon.$$

Vi kan nu se at $L^{\cdot} : \Delta \to G$ er kontinuitet.

Af (3) følger at

$$\delta(\tau_{x_0} f) = \delta(f) L^{\cdot} \delta_0(x)$$

for $f \in L(G)$, $\delta \in \Delta$, $x \in G$. Lad $\delta_0 \in \Delta$ og lad $(\delta_i)_{i \in I}$
nevet på $\Delta$ de konvergerer mod $\delta_0$. Lad $K$
være en vilkårlig kompakt delområde af $G$. Vi vælger
$f \in L^1(G)$ så $\delta_i(f) \neq 0$. Af kontinuiteten af $\delta(\tau_x f)$ i
de $\delta$ variable $x$ og $\delta$ følger at

$$\delta_i(\tau_x f) \to \delta_0(\tau_x f)$$
ligeligt for $x \in K$,

eller

$$\delta_i(f) L^{\cdot} \delta_i(x) \to \delta_0(f) L^{\cdot} \delta_0(x)$$
ligeligt for $x \in K$.

Da samtidig $\delta_i(f) \to \delta_0(f) (\neq 0)$, følger heraf at
\[ L^1(\mathbb{G}) = L^1(\mathbb{G}) \text{ for } x \in \mathbb{K}. \]

Det er, at \( L^1(\mathbb{G}) \to L^1(\mathbb{G}) \) er kontinuerligt. 

Det er velkendt fra matematikken, at \( \Delta \) er et lokal kompakt rum, og dermed har vi vist, at den duale gruppe \( \hat{G} \) er en LCA-gruppe. I det væsentligt identificerer \( \hat{G} \) og \( \Delta \) bliver gelfandtransformerings en homomorfisme \( G \) af \( L^1(G) \) ind i algebraen \( C_0(\hat{G}) \) givet ved

\[ Gf(y) = \int_G f(x) y(x) dx \]

Af historiske grunde indfører vi belegnet form

\[ Ff(y) = \hat{f}(y) = \int_G f(x) \overline{y(x)} dx \]

og

\[ \overline{Ff}(y) = \int_G f(x) j(x) dx \]

\( F \) eller \( ^\ast \) kalder \( F \) \( \text{ Fouriertransformerungen} \) medens \( \overline{F} \) kalder \( \text{co-Fouriertransformerungen} \).

Bemærk, at

\[ F(f^\prime) = (Ff)^\prime = \overline{Ff}, \quad F(f^\ast) = \overline{Ff} \]

og den sidste identitet vise, at \( F \) er en * homomorfisme af \( L^1(G) \) ind i \( C_0(\hat{G}) \). Heraf følger at tilskæringen
\[ A(\hat{G}) = \mathcal{F}(L^1(\hat{G})) \]

er en selvadjungerede deltægelse, og ved Stone-Weierstrass' sætning ses, at \( A(\hat{G}) \) er tæt i \( C_0(\hat{G}) \). Vi opsummerer det følgende i en sætning.

\[ \text{Sætning 3.3 Førmtransformations \( F \) der afbildes \( L^1(\hat{G}) \) sid i \( C_0(\hat{G}) \) har egenskaberne} \]
\[ a) \quad F(\alpha f + \beta g) = \alpha F(f) + \beta F(g) \]
\[ b) \quad F(f \ast g) = \overline{F(f)} \cdot F(g) \]
\[ c) \quad \| Ff \|_\infty \leq \| f \|_1 \]
\[ d) \quad F(f^*) = \overline{Ff} \]
\[ e) \quad F(g \circ f)(x) = \overline{Fg(x)} Ff(x) \quad \text{og} \quad F(ff^*) = Ff \]
\[ f) \quad Billedet \( A(\hat{G}) \) er en selvadjungerede deltægelse af \( C_0(\hat{G}) \) eller er tæt i \( C_0(\hat{G}) \).

\[ \text{Bemærkning. Den gælder } A(\hat{G}) = C_0(\hat{G}) \text{ hvis og kun} \]
\[ \text{hvis } G \text{ er en endelig gruppe. I for. C. C. Graham, Procc.} \]
\[ \text{Am. Math. Soc. 38, 2 (1973) p. 365-366.} \]

\[ \text{Sætning 3.4 Lad } G \text{ være en LCA-gruppe med dual} \]
\[ \text{gruppe } \hat{G}. \text{ For enhver kompakt mængde } K \subseteq G \text{ med un-} \]
\[ \text{dre punkter og for } 0 < \varepsilon < 1 \text{ er } \mathcal{U}(K, \varepsilon) \text{ en relativt kompakt} \]
\[ \text{område af } 0 \text{ i } \hat{G}. \]

\[ \text{Bem. Vi velger } f \in \mathcal{L}^1(\hat{G}) \text{ \( \rightarrow \) supp } f \subseteq K \text{ og} \]
\[ \| f \|_1 = 1, \text{ hvilket vi muligvis i forhåndsat, at } K \]
\[ \text{har ikke tæt område. Vi vil tænke at} \]
$$U_G(\kappa, \varepsilon) = \{ f \in \mathbb{C} | \| \hat{f}(\theta) \| > 1 - \varepsilon \}$$

Dette betyder det forskellige, thi da $\hat{f} \in \mathcal{C}(\mathbb{C})$ er

$$\{ f \in \mathbb{C} | \| f(\theta) \| > 1 - \varepsilon \}$$

kompleks.

For $f \in U_G(\kappa, \varepsilon)$ har vi

$$| \hat{f}(\theta) | \leq \text{Re} \hat{f}(\theta) = \int \text{Re} \overline{f}(x) f(x) \, dx = \int \text{Re} \overline{f}(x) \cdot f(x) \, dx \geq (1 - \varepsilon) \int |f(x)|^2 \, dx$$

$$= 1 - \varepsilon,$$

idet $\text{Re} (1 - f(x)) \leq | 1 - f(x) | < \varepsilon$ for $f \in U_G(\kappa, \varepsilon)$ $\forall \varepsilon > 0$.

Sætning 3.5 Hvis $G$ er kompakt (resp. diskret) er $\hat{G}$ diskret (resp. kompakt).

Bemærk: Hvis $G$ er kompakt og karaktererne $\chi \in \hat{G}$ er

bra-dukke integrable, den gør det at fastlige karaktererne

ortogonale. Hvis nemlig $f \in \hat{G}$, $\neq 1$, finder $x_0 \in G$ så

$f(x_0) \neq 1$. Se $f_0$

$$\int f(x) \, dx = \int f(x + x_0) \, dx = f(x) \int f(x) \, dx,$$

og heraf ses at

$$\int f(x) \, dx = 0.$$

Derfor fæl

$$\overline{\int f_1(x) \, dx} = \int f_1 f_2(x) \, dx = \begin{cases} 1 & \text{hvis } f_1 = f_2 \\ 0 & \text{hvis } f_1 \neq f_2. \end{cases}$$

(Vi har normaliseret Hærmelset på $G$ så totalmassen er 1).
For funktionen $f$ konstant lig med $1$ har vi dermed

$$f(x) = \begin{cases} 1 & \text{for } x=0 \\ 0 & \text{for } x \neq 0 \end{cases}$$

men da $f$ er kontinuus på $\mathbb{R}$, kan vi herefter slutte, at $\{0\} = \{x \mid f > 0\}$ er en åben mængde, altså er $\mathbb{R}$ diskret.

Hvis $G$ er diskret har $L^1(G)$ et element og så er $\Delta$ kompakt.

Et mere direkte bevís for at $\hat{\Delta}$ er kompakt, når $\mathbb{R}$ diskret, følger af sætning 3.4 i følge hvilken

$$U_{\mathbb{R}}(\{0\}, \frac{1}{2}) = \hat{\Delta}$$

er relativt kompakt. Altså er $\hat{\Delta}$ kompakt. \]

**Eksempler.**

1) $G = \mathbb{R}$. For hvert $a \in \mathbb{R}$ er funktionen

$$x \mapsto e^{i ax}$$

en karakter på $\mathbb{R}$, og afbildningen af $\mathbb{R}$ ind i $\mathbb{C}$ der til a løber sådan karakteren $(*)$ er injektiv. (Oversigtslæs.)

Omsæt det ene karakter $\gamma \in \hat{\mathbb{R}}$ af denne form med $a \in \mathbb{R}$. For $\delta > 0$ tilfældig vælger vi ved $0$ gælder

$$\int_0^\delta \gamma(t) dt = a \neq 0.$$  

Da $\gamma$ er en karakter finder vi

$$\alpha \gamma(x) = \gamma(x) \int_0^\delta \gamma(t) dt = \int_0^\delta \gamma(x+t) dt = \int_0^\delta \gamma(t) dt.$$  

Nu er det sidste integral en kontinuus differentiable funkt-
tion af $x$ og dermed er $y$ en kontinuerligt differentiabel funktion. Ved at differentiere funktionaligningen for $y$ findes vi

$$y'(t+x) = y'(t) f(x)$$

hvis for $t=0$

$$y'(x) = y(0) f(x) \quad (***)$$

Som løsning til differentiáligningen (***) med begyndelsesbeholdelsen $y(0) = 1$ har vi

$$y(x) = e^{y(0)x}.$$  

Af identiteten $y(t) y(-t) = 1$ følger ved differentiation at $Re (y'(t) y(t)) = 0$, specielt $Re y'(0) = 0$. Vi kan dengang $y'(0) = i\alpha$ for et $\alpha \in \mathbb{R}$.

Den til $\mathbb{R}$ duale gruppe $\hat{\mathbb{R}}$ kan således identificeres med $\mathbb{R}$ ved hjælp af isomorfien

$$\alpha \in \mathbb{R} \iff (x \mapsto e^{i\alpha x}) \in \hat{\mathbb{R}}. \quad (***)$$

**Øvelse 3.1** Et net af karakterer $\{e^{i\alpha} \}$ konvergerer mod karakteren $1^*$ i topologi på $\hat{\mathbb{R}}$ hvis og kun hvis $\{\alpha\}$ konvergerer mod $0$ i $\mathbb{R}$ (Vinkel: Indrebygg 205).

Topologi på $\hat{\mathbb{R}}$ er altså via identifikationen (***) den sædvanlige topologi på $\mathbb{R}$.

2) $G = \mathbb{T}$. Ideet $\mathbb{T} = \mathbb{R}/2\pi \mathbb{Z}$ er karaktererne på $\mathbb{T}$ netop de karakterer på $\mathbb{R}$, som er periodiske med perioden $2\pi$. Den til $\mathbb{T}$ duale gruppe $\hat{\mathbb{T}}$ kan defineres identificeres med $\mathbb{Z}$:
\[
\hat{\chi} \in e^{i\alpha} \iff \alpha \in \mathbb{Z}.
\]
Topologien på \( \hat{\chi} \times \mathbb{Z} \) er den diskrete, jf. §3.5.

For \( f \in L^1(\mathbb{T}) \) er \( (\hat{f}(m))_{m \in \mathbb{Z}} \) Fourierkoefficienterne i \( f \)’s Fourierreelle

\[
f \sim \sum_{m} \hat{f}(m) e^{i m \theta}
\]
og

\[
\hat{f}(m) = \frac{1}{2\pi} \int_{0}^{2\pi} f(\theta) e^{-im\theta} d\theta.
\]

3) \( G = \mathbb{Z} \). Karaktererne på \( \mathbb{Z} \) er endigt bestemt ved deres værdi i punktet 1. Denne værdi kan vi et vilkårligt element i \( \mathbb{T} \), altid et tal af formen \( e^{i\alpha} \), \( \alpha \in [0, 2\pi] \). Karakteren somnes til \( e^{i\alpha} \in \mathbb{T} \) en funktion

\[
f(n) = (e^{i\alpha})^n = e^{in\alpha} \quad \text{for } n \in \mathbb{Z}.
\]

Denne til \( \mathbb{Z} \) duale gruppe \( \hat{\mathbb{Z}} \) kan således identificeres med \( \mathbb{T} \):

\[
\hat{\mathbb{Z}} \ni \chi \iff e^{i\chi} \in \mathbb{T}.
\]

Sætning 3.2. Topologien på \( \hat{\mathbb{Z}} \) er, når \( \hat{\mathbb{Z}} \) identificeres med \( \mathbb{T} \), den sædvanlige topologi på \( \mathbb{T} \).

4) Hvis \( G = G_1 \times \cdots \times G_n \) er et endeligt produkt af LCA-grupper er \( \hat{G} \) isomorf med produkten \( \hat{G}_1 \times \cdots \times \hat{G}_n \). Den til \( (\gamma_1, \ldots, \gamma_n) \in \hat{G}_1 \times \cdots \times \hat{G}_n \) somvende karakter på \( G \) er funktionen

\[
G \ni (x_1, \ldots, x_n) \mapsto \gamma_1(x_1) \cdots \gamma_n(x_n) \in \mathbb{T}.
\]
Specielt kan den til $\mathbb{R}^n$ duale gruppe $\hat{\mathbb{R}^n}$ identificeres med $\mathbb{R}^n$. Til $a \in \mathbb{R}^n$ sænner karakteren

$$x \mapsto i\langle a, x \rangle$$

hvor $\langle a, x \rangle$ er skalarproduktet af $a$ og $x$.

5) Lad $G$ være en endelig cyklistisk gruppe med elementerne $e$, $u$, $u^2$, ..., $u^{n-1}$. En karakter $\chi$ på $G$ er givet ved sin værdi i punktet $u$, $\chi(u) = \chi(u^2) = \cdots = \chi(u^{n-1}) = 1$, er $a$ en $n$-te enhedsrødd. Man ser nemlig, at $G$ er isomorf med gruppen af $n$-te enhedsrødder, altså $G$ er isomorf med $\mathbb{Z}/n\mathbb{Z}$.

Inden endelige endelige abelske grupper er produkter af endelige cyklistiske grupper, er enhver endelig abelsk gruppe isomorf med sin duale gruppe.

**Ovelse 3.3.** Lad $G = (\mathbb{R}_+, \cdot)$ være den lokalkom- parkede gruppe af positive tal med multiplikation som komposion og udskiftet med det Haar-mål, der giver intervalllet $[1, e]$ massen 1.

For en funktion $f \in L^1(G)$ defineres den Mellin-
"transformerede" funktion $Mf : \mathbb{R} \to \mathbb{C}$ ved

$$Mf(y) = \int_0^\infty x^{y-1} f(x) \, dx$$

og afbildningen $f \mapsto Mf$ kalder Mellinkønstransformationen.

(Robert Hjalmar Mellin, finsk matematiker, 1854-1933).

Gør dette for at Mellinkønstransformationen er Fourier-
transformerne af $L^1(G)$, og beskriv derefter explicit karakteriseringen på $G$.

Vi skal nu udvide Fouriertransformerne fra $L^1(G)$ til rummet af begrænsede mål på $G$. Lød $\mu \in M(G)$. Integreret

$$\int f(x) \, d\mu$$

er veldefineret og endeligt for $f \in \hat{G}$, da $f$ er en kontinuerligt begrenset funktion og $\mu$ er en linearkombination af positive endelige mål på $G$. Funktionen

$$\hat{G} \ni \hat{f} \mapsto \mathcal{F}_\mu(f) = \int f(x) \, d\mu(x)$$

kødes den Fouriertransformerede af $\mu$ og betegnes $\hat{\mu}$. Analog defineres den co-Fouriertransformerede af $\mu$ ved

$$\overline{\mathcal{F}_\mu(f)} = \int \overline{f(x)} \, d\mu(x) \quad , \quad f \in \hat{G}.$$  

**Bemærkning.** Af sætninng 3.6 vedtar for mange $\hat{f}$ afbildningen

$$M(G) \ni \mu \mapsto \hat{\mu}(f) \in \hat{G}$$

er en karakter på algebraen $M(G)$, for alle $f \in \hat{G}$; der er således en naturlig indledning af $\hat{G}$ i spektrum $M(G)$ for algebraen $M(G)$. Den Fouriertransformerede af mål $\mu \in M(G)$ kan således opfattes som restikke en af den selskabstransformerede i algebraen $M(G)$ af $\mu$ til "del-

mængden" $\hat{G} \subseteq M(G)$. 
Sætning 3.6 For alle μ ∈ M(G) er funktionen \( \Phi \) lineært kontinuerligt og begrænset, og hvis μ ∈ M(G)_+, gælder
\[
\| \Phi \mu \|_∞ \leq \| \mu \| = \mu(\mathbb{C}).
\]

Fouriertransformen er en *-homomorfisme af algebraen M(G) ind i algebraen af kontinuerlige begrænsede funktioner på \( \mathbb{C} \).

Bemærk. For at vise at \( \Phi \) er lineært kontinuerligt, kan vi antage at μ ∈ M(G)_+. Til et givet δ > 0 findes en kompakt mængde \( K \subseteq \mathbb{C} \) så \( \mu(\mathbb{C} \setminus K) < δ \). For \( f_1, f_2 \in \mathcal{C} \) finder vi
\[
|\Phi f_1(x) - \Phi f_2(x)| = \left| \int_{\mathbb{C}} (f_1(x) - f_2(x)) \, d\mu(x) \right|
\]
\[
= \left| \int_{\mathbb{C}} f_2(x) \left( \frac{f_1(x) - f_2(x)}{1} \right) \, d\mu(x) \right|
\leq \left| \int_{\mathbb{C}} (f_1 - f_2)(x) \, d\mu(x) \right|
\]
\[
\leq \| f_1 - f_2 \|_∞ \mu(K) < δ.
\]

For \( f_1, f_2 \in \mathcal{C} \) opfyldende \( f_1 - f_2 \in \mathcal{C}_0(K, δ) \) gælder da
\[
|\Phi f_1(x) - \Phi f_2(x)| \leq \left( \int_{\mathbb{C}} |f_1 - f_2(x)| \, d\mu(x) \right) + \left( \int_{\mathbb{C} \setminus K} |f_1 - f_2(x)| \, d\mu(x) \right)
\]
\[
\leq δ \mu(K) + 2δ.
\]

Det er klart at \( \| \Phi \|_∞ \leq \mu(\mathbb{C}) \) for μ ∈ M_q(G), og heraf følger at \( \Phi \) er begrænset for alle μ ∈ M(G).

Da Fouriertransformen på M(G) klart er lineær, skal vi blot give at
\[
\Phi(\mu \ast v) = \Phi \mu \cdot \Phi \nu \quad \text{for} \quad \mu, \nu \in M(G)
\]
\[ F \mu^* = \overline{F \mu} \quad \text{for } \mu \in M(G). \]

For \( \mu, \nu \in M(G) \) og \( f \in G \) finder vi
\[
F(\mu*\nu)(f) = \int \overline{\overline{f}(x)} \, d\mu(x) \, d\nu(g)
= \int \overline{f(x+g)} \, d\mu(x) \, d\nu(g)
= \int \overline{f(x)} \, d\mu(x) \int \overline{\overline{f}(g)} \, d\nu(g)
= F\mu(f) \cdot F\nu(f),
\]
og analogt
\[
F\mu^\ast(f) = \int \overline{f(x)} \, d\mu^\ast(x) = \int \overline{\overline{f}(-x)} \, d\mu(x)
= \int \overline{\overline{f}(x)} \, d\mu(x) = \overline{F\mu(f)}.
\]

**Bemærkning.** Hvis vi udregner \( F\mu \) for \( \mu = \delta_0 \), finder vi
\[
F\delta_0(f) = \int \overline{f(x)} \, d\delta_0(x) = \overline{f(0)} = 1 \quad \text{for } f \in G,
\]
og \( F\delta_0 \) vil sikkert være i almindelighed tækkende \( C_0(G) \).

Hvis dernæst \( \mu \) har tæklede \( f \in L^1(G) \), gælder naturligvis at \( F\mu = Ff \), som tæklede \( C_0(G) \).

**Formler.** For \( \mu \in M(G) \), \( x \in G \) og \( f, \overline{f} \in G \) gælder

1. \( F \mu^* = (F\mu)^\ast = \overline{F \mu} \).
2. \( F\delta_x(f) = \overline{f(x)} \) \( \text{ og } \overline{F\delta_x(f)} = \overline{\overline{f}(x)} \).
3. \( F(\delta_x*\mu)(f) = \overline{f(x)} \, F\mu(f) \) \( \text{ og } \overline{F(\delta_x*\mu)(f)} = \overline{f(x)} \, \overline{F \mu(f)} \).
(4) \[ F(y, \mu)(x) = \int \overline{f(x)} \mu(x) \, d\mu(x) = \int (y - f(x)) \, d\mu(x) = \]
\[ = F\mu(x - y) = \frac{d}{dy} F\mu(y) = \delta_y \ast F\mu(y). \]

Formlen \( F_x(x) = p(x) \) alene, altså \( F_x = j(x) \), kan udtrykkes, at den co-Fouriertransformerede af målet \( \varepsilon \)

på \( \hat{G} \) er karakteren \( \varepsilon \) på \( \hat{G} \) (egentlig karakteren \( j(x) \)

som identificeres med \( x \)).

§4. Positiv definite funktioner.

Vi minde om at en \( n \times n \) matrix \( A = (a_{ij}) \) af komplexe tal kaldes \textit{positiv hermite} eller \textit{positiv semi-definit}, hvis den ved \( A \) bestemte operator i Hilbertværelset \( \mathbb{C}^n \) er en \textit{positiv hermite} operatør, altså丧

\[ (A \xi, \xi) \geq 0 \quad \text{for alle } \xi \in \mathbb{C}^n, \quad (1) \]

d.v.s.

\[ \sum_{i,j=1}^n a_{ij} \overline{\xi}_i \xi_j \geq 0 \quad \text{for alle } \xi \in \mathbb{C}^n. \]

Matrixen \( A \) er \textit{positiv hermite} hvis og kun hvis \( A \) er \textit{hermite}, d.v.s. \( a_{ij} = \overline{a_{ij}} \), og \( A \)'s eigenverdier er \( \geq 0 \).

Lemma 4.1. Lad \( A = (a_{ij}) \) og \( J = (j_{ij}) \) være positive hermite matricer. Så er matricen

\[ C = (c_{ij}) \text{ kun } c_{ij} = a_{ij} \cdot j_{ij} \]

positiv hermite.
Bemærk. Den findes en positiv hermitesk matris $P$ så $B = P^*P$. Lad $P = (p_{ij})$ lær vi

$$b_{ij} = \sum_{k=1}^{n} p_{ki} p_{kj},$$

og denmed er

$$\sum_{ij=1}^{n} a_{ij} b_{ij} \overline{c_{i} c_{j}} = \sum_{ij=1}^{n} \left( \sum_{k=1}^{n} a_{ij} (\overline{p_{ki}} c_{i} \overline{p_{kj}} c_{j}) \right) \geq 0.$$  

Lad $G$ være en LCA-gruppe.

**Definition.** En funktion $\varphi : G \to \mathbb{C}$ kaldes **positiv definit**, såfremt det for alle markerede tal $n$ og alle $m$-af hærne over $x_1, \ldots, x_n \in G$ er fulgt, at matricen $(\varphi(x_i-x_j))$ er positiv hermitesk.

Lad $\varphi$ være en positiv definit funktion. Da er matricen $(\varphi(0))$ er positiv hermitesk er $\varphi(0) \geq 0$.

For hvert $x \in G$ er matricen

$$\begin{pmatrix} \varphi(0) & \varphi(-x) \\ \varphi(x) & \varphi(0) \end{pmatrix}$$

positiv hermitesk, altså gælder

$$\begin{align*}
(\mathbf{a}) & \quad \varphi(-x) = \overline{\varphi(x)} \quad \text{(d.v.s.$\varphi^*$=}$\varphi$)} \\
(\mathbf{b}) & \quad |\varphi(x)| \leq \varphi(0)
\end{align*}$$

Særligt er $\varphi$ begrenset og $\sup_{x \in G} |\varphi(x)| = \varphi(0)$.

For alle $x, y \in G$ er matricen

$$\begin{pmatrix} \varphi(0) & \varphi(x-y) \\ \varphi(y-x) & \varphi(0) \end{pmatrix}$$
\[
\begin{pmatrix}
\varphi(0) & \varphi(x) & \varphi(y) \\
\overline{\varphi(x)} & \varphi(0) & \overline{\varphi(x-y)} \\
\overline{\varphi(y)} & \varphi(x-y) & \varphi(0)
\end{pmatrix}
\]

**positiv hermiteske.** Vælges
\[
\zeta = \left(1, \frac{2|\varphi(x)-\varphi(y)|}{\varphi(x) - \varphi(y)}, \frac{-2|\varphi(x)-\varphi(y)|}{\varphi(x) - \varphi(y)}\right)
\]

hvor \( \lambda \in \mathbb{R} \), giver (1)
\[
\varphi(0) (1 + 2\lambda^2) + 2\lambda|\varphi(x)-\varphi(y)| - 2\lambda^2 \text{Re } \varphi(x-y) \geq 0
\]

**Diskriminanten for dette 2. grads polynomium i \( \lambda \) er \( \leq 0 \), altså \( \lambda \) er

\( \leq 0 \), altså
\[
|\varphi(x)-\varphi(y)|^2 \leq 2\varphi(0)|\varphi(0) - \text{Re } \varphi(x-y)|.
\]

**Hvis 3x3 matricen**
\[
\begin{pmatrix}
1 & \lambda & \mu \\
\overline{\lambda} & 1 & \overline{\xi} \\
\overline{\mu} & \overline{\xi} & 1
\end{pmatrix}
\]

er positiv hermiteske, er determinanten (= produktet af eigenvektorer) \( \geq 0 \), altså er
\[
1 + \lambda \overline{\xi} + \mu \overline{\xi} \geq |\mu|^2 + |\xi|^2 + |\lambda|^2
\]

eller
\[
|\overline{\xi} - 2\overline{\mu}|^2 \leq (1-|\lambda|^2)(1-|\mu|^2).
\]

Anvender dette på 3x3 matricen (\( \ast \)), hvor vi har dividert alle elementer med \( \varphi(0) \) for følgende relæt

\[
\text{alle elementer med } \varphi(0) \text{ for } \text{følgende relæt: }
\]
(d) \[ |\frac{\phi(x+y)}{\phi(0)} - \frac{\phi(x)}{\phi(0)} \frac{\phi(y)}{\phi(0)}| \leq (1 - |\phi(x)|^2)(1 - |\phi(y)|^2), \]

eller for positiv definite funktioner når \( \phi(0) = 1 \) under betingelse af (a)

(e) \[ |\phi(x+y) - \phi(x) \phi(y)| \leq (1 - |\phi(x)|^2)(1 - |\phi(y)|^2) \]

**Lemma 4.2.** En positiv definit funktion \( \phi \) på \( G \) er ligeligt kontinuerlig, dvs. \( \text{Re} \phi \) er medad halvkontinuerlig i 0.

Benævng. Han's funktionen \( \text{Re} \phi \) er medad halvkontinuerlig i 0 i de faktiske kontinuitet i 0, thi for \( \varepsilon > 0 \) er

\[ \{ x \in G \mid \text{Re} \phi(x) \in ]\phi(0) - \varepsilon, \phi(0) + \varepsilon [ \} \]

\[ = \{ x \in G \mid \text{Re} \phi(x) > \phi(0) - \varepsilon \} \]

af grund af uligheden \( \text{Re} \phi(x) < |\phi(x)| \leq \phi(0) \). Af uligheden (e) afløses dette, at hvis \( \text{Re} \phi \) er kontinuerlig i 0, så er \( \phi \) ligeligt kontinuerlig. \( \Box \)

Mængden af kontinuerlige positiv definite funktioner på \( G \) betegnes \( P(G) \).

**Sætning 4.3.**

(i) Mængden \( P(G) \) er en konvex kægle.

(ii) For \( \phi, \psi \in P(G) \) er \( \phi \cdot \psi \in P(G) \).

(iii) For \( \phi \in P(G) \) er \( \overline{\phi} \) og \( \text{Re} \phi \in P(G) \).

(i) Lad \( \phi \) være en kontinuerlig funktion og antag af

der finde et med \( \phi_i \in \text{I} \) på \( P(G) \) så \( \phi_i \to \phi \) punktvis.
på $G$. Så er $q \in \mathcal{P}(G)$.

Benævnt er umiddelbart.

**Øvelse 4.1** Lad $q: G \to \mathbb{R}$ være en reel lineær funktion, d.v.s. $q(-x) = q(x)$ for alle $x \in G$. Så er $q$ positiv definit hvis og kun hvis det for alle naturlige tal $m$, alle $m$-set af elementer $x_1, \ldots, x_m \in G$ og alle $m$-set af reelle tal $c_1, \ldots, c_m$ gælder

$$\sum_{i,j=1}^{m} q(x_i - x_j) c_i c_j \geq 0.$$

I overensstemmelse med det er der derfor ikke et $p$-set $c_1, \ldots, c_m$ af hele tal.

**Øvelse 4.2.** 1° Lad $H$ være en ikke tom delmængde af $G$. Der karakteristiske funktion $\chi_H$ for $H$ er positiv definit hvis og kun hvis $H$ er en undergruppe af $G$. (Virk.: Udtjænt (c) eller (e)).

2° Funktionsen $1$ er positiv definit.

3° Lad $H$ være en undergruppe af $G$ og lad $q$ være en positiv definit funktion på $G$. Så er funktionen $\psi$ definieret ved

$$\psi(x) = \begin{cases} q(x) & \text{for } x \in H \\ 0 & \text{for } x \not\in H \end{cases}$$

e en positiv definit funktion på $G$.

4° Se inde - om positiv definit funktion på $\mathbb{R}$
som er en Borelfunktion, men som ikke er kontinuert i nogen punkt.

**Ovelse 4.3.** Lad \( f(x) = \sum_{n=0}^{\infty} a_n x^n \) være en hel homomorf funktion hvis koefficienter \( a_n \) alle er \( \geq 0 \). Som eksempel kan nævnes \( f(x) = \exp(x) \).

For \( \varphi \in P(G) \) og \( f \varphi \in P(G) \).

**Bemærkning.** Indtil nu har vi et udtryk af \( G \) er en \( LCA \)-gruppe og det gælder nu, at \( \varphi \) opstår som en vilkårlig (topologisk) gruppe \( C \), og \( m \varphi \) er en serie af \( x^n y \) og \( x^n y \) af \( \varphi^k \).

**Eksempler.**

(a) For \( f \in L^2(G) \) og \( \varphi = f^* f \) er \( \varphi \) en kontinuerlig positiv definit funktion.

Vi ved (Ovelse 2.1) at \( \varphi \in C_0(G) \). For \( x_1, \ldots, x_n \in G \) og \( c_1, \ldots, c_n \in C \) har vi

\[
\sum_{i,j} c_i c_j \int f(x_i x_j) d\varphi = \sum_{i,j} c_i c_j \left( \int f(x_i) f(x_j) d\varphi \right) = \int \left( \sum_{i} c_i f(x_i) \right)^2 d\varphi \geq 0.
\]

(b) Hver karakter \( \varphi \in \hat{G} \) er positiv definit og definerer en særlig "trigonometrisk polynomium" \( \sum_{m=1}^{\infty} a_m f_m \), hvor \( a_n \geq 0, f_m \in \hat{G} \), positiv definit. Nu er generelt, hvis \( \mu \in M_+(\hat{G}) \), så er

\[
\varphi(x) = \int \overline{f(x)} d\mu(y)
\]

\( \hat{G} \).
en kontinuerlig positiv definit funktion.
At φ er kontinuerlig ses som i sætning 3.6. Vi har nu

\[ \sum_{ij} \phi(x_i - x_j) \overline{c_i} c_j = \int \left( \sum_{ij} \phi(x_i - x_j) \overline{c_i} c_j \right) \, d\mu(y) \]

\[ = \int \left| \sum_{i} \overline{c_i} \phi(x_i) \right|^2 \, d\mu(y) \geq 0 \]

I tilfældet \( G = \mathbb{R} \) er funktionerne \( x \mapsto \exp (ix) \)
almindeligvis positive definerede for alle \( a \in \mathbb{R} \). Ved at tage realkomponenten af disse funktioner ses at \( \cos(ax) \) er positiv definit.

Sætning 4.4 Lad \( \phi \) være en kontinuerlig kompleks funktion på \( G \). Så er følgende betingelser udfordrende:

(i) \( \phi \) er positiv definit.

(ii) \( \phi \) er begrænset og for ethvert \( f \in L^2(G) \) gælder

\[ \langle \phi, f^* f \rangle \geq 0 \]

altså

\[ \int \phi(x-y) f(x) f(y) \, dx \, dy \geq 0. \]

(iii) For ethvert \( f \in K(G) \) gælder

\[ \langle \phi, f^* f \rangle \geq 0 \]

altså

\[ \int \phi(x-y) f(x) f(y) \, dx \, dy \geq 0. \]
J beviser for sætning 4.4, så vi bruger følgende resultat:

**Lemma 4.5.** Lad $X$ være et kompakt rum. For hvert positivt mål $\mu$ på $X$ findes et net $(\mu_x)_{x \in A}$ af positive mål af jævnen,

$$\mu_x = \sum_{i=1}^{m} c_i \epsilon_{x_i}, \quad c_i > 0, \ x_i \in X,$$

så $\mu_x \to \mu$ i den stærke topologi $\sigma(M(X), C(X))$.

**Bem.** Lad $\mathcal{G}$ betegne aflutningen af mængden af måler

$$\left\{ \sum_{i=1}^{m} c_i \epsilon_{x_i} \mid c_i > 0, \ x_i \in X, n \in \mathbb{N} \right\}.$$ 

Så er $\mathcal{G}$ en aflutket konvext kæde i $M_+(X)$ og postulatet er at $\mathcal{G} = M_+(X)$. Antag, vi har fundet $\mu \in M_+(X) \setminus \mathcal{G}$, kan vi ifølge Hahn–Banach's sætning separate $\mu$ og $\mathcal{G}$ med en aflutket hyperplan. Der findes altså en kontinuerlig funktion $f$ på $X$ så

$$\langle f, \mu \rangle > 0 \quad \text{og} \quad \langle f, \nu \rangle \leq 0 \quad \text{for alle} \ \nu \in \mathcal{G}.$$ 

Specielt gælder $f(x) = \langle f, \epsilon_x \rangle > 0$ for alle $x \in X$, men så er $\langle f, \mu \rangle = 0$, hvilket er en modsætning.

**Sætning 4.4.** Lad $X$ være et kompakt rum og lad

$(\mu_x)_{x \in A}$ og $(\nu_x)_{x \in A}$ være net af positive mål på $X$ der konvergerer mod positive mål $\mu$ og $\nu$ i den stærke topologi.

Så vil nettet $(\mu_x \otimes \nu_x)_{x \in A}$ konvergerer svagt mod $\mu \otimes \nu$. 

Bemærk for selvfølgelig. (i) → (iii). Antag altså, at \( \varphi \) er positiv definit og lad \( f \in X(G) \). Funktionen

\[
(x, y) \mapsto \varphi(x - y) f(x) \overline{f(y)}
\]

er en kontinuerlig funktion på \( G \times G \) med støtteindekser \( S \times S \) hvor \( S = \text{supp} f \). Haarmålet restriktion til \( S \) er svag grænseværdi for \( \mu \) med \( \mu(x) \propto f(x) \) af mål af formen

\[
\mu_x = \sum_{i=1}^{\infty} C_i E_{x_i}
\]

hvor \( x \in S \). Heraf følger, at restriktionen af Haarnålet på \( G \times G \) til \( S \times S \) er svag grænseværdi af mål af produktmålet \( (\mu \times \mu) \propto f \). Da

\[
\int \left| \varphi(x - y) f(x) \overline{f(y)} \right| \mu \times \mu (x, y) = \sum_{i,j=1}^{\infty} \varphi(x_i - y_j) f(x_i) \overline{f(y_j)} C_i C_j > 0,
\]

følger, at grænseværdien

\[
\int \left| \varphi(x - y) f(x) \overline{f(y)} \right| dx dy
\]

er

(i) ⇒ (iii). Vi antager altså, at \( \varphi \) er positiv definit. Da
\( \varphi \) er begrænset er mængden

\[
E = \{ f \in L^1(G) \mid \langle \varphi, f \star f \rangle > 0 \}
\]

e en afsluttede mængde af \( L^1(G) \), og da (i) ⇒ (iii) vid \( E \supset X(G) \).
Heraf følger altså \( E = L^1(G) \).

(ii) ⇒ (iii) er trivial.
(iii) ⇒ (i). Lad \( x_1, \ldots, x_n \in \mathbb{R} \) og \( c_1, \ldots, c_n \in \mathbb{R} \) være givne.

Til en omegn \( U \) af \( 0 \) i \( G \) vælges \( \varphi_i \in \mathcal{L}^1(G) \) så

\[ \text{supp } \varphi_i \subseteq \mathbb{R} + U \quad \text{og så} \quad \int \varphi_i(x) \, dx = 1, \quad i = 1, \ldots, m, \]

og vi sætter

\[ f = \sum_{i=1}^m c_i \varphi_i. \]

Så følger

\[ \left\| \varphi(x-y) f(x) \varphi(y) \, dx \, dy \right\| \leq \sum_{ij} \varphi(x_i-y_j) c_i c_j \]

\[ = \sum_{ij} c_i c_j \left\| \left[ \varphi(x-y) - \varphi(x_i-y_j) \right] \varphi_i(x) \varphi_j(y) \, dx \, dy \right\|. \]

Da \( \varphi \) er kontinuerlig kan vi til \( \varepsilon > 0 \) finde en omegn \( V \) af \( 0 \) så den for alle \( i, j = 1, \ldots, m \) og alle \( z \) så \( z \in x_i - x_j + V \) gælder

\[ |\varphi(z) - \varphi(x_i - x_j)| < \varepsilon. \]

Vi vælger dernæst en omegn \( U \) af \( 0 \) så \( U - V \subseteq V \) gælder \( \psi_i \)'s omegn rørende sommer til en rømands \( U \). Der gælder da

\[ \left\| \left[ \varphi(x-y) - \varphi(x_i-y_j) \right] \varphi_i(x) \varphi_j(y) \, dx \, dy \right\| \leq \varepsilon \]

for alle \( i, j = 1, \ldots, m \).

Dette argumenterer vist, at vi kan finde \( f \in \mathcal{L}(G) \) så

\[ \left\| \varphi(x-y) f(x) \varphi(y) \, dx \, dy \right\| \leq \sum_{ij} \varphi(x_i-y_j) c_i c_j \]

er vilkårligt nær ved \( 0 \), men den forsk åbnede er for-
udsæt \( z_0 \), og vi kan altså slutte al
\[ \sum_{i,j} q(x_i - x_j) \tilde{c}_{ij} > 0. \]

Lemma 4.6. Lad \( \mu \in M(\mathbb{R}) \) være et bepræget mål
på \( \mathbb{R} \) og antag at
\[ \int_{\mathbb{R}} f(x) \mu(x) = 0 \quad \text{for alle } x \in \mathbb{R}. \]

Så er \( \mu = 0 \).

Bemær. For \( f \in L^1(\mathbb{R}) \) gælder
\[ \int_{\mathbb{R}} f(y) \mu(y) = \int_{\mathbb{R}} \left( \int_{\mathbb{R}} f(x) dx \right) \mu(y) = \int_{\mathbb{R}} \left( \int_{\mathbb{R}} f(x) \mu(x) \right) dx = 0, \]
\( \mathbb{R} \times \mathbb{R} \) \( \mathbb{R} \times \mathbb{R} \)

Vi kan nu benævne et hovedresultat om positive
definerte funktioner på LCA-grupper, der blev vist af
BOchner for \( G = \mathbb{R} \) i 1933, mens aldrig i 1911 af HER
GRÖTZ i tilfældet \( G = \mathbb{Z} \).

Sætning 4.7 (Bochner's sætning). En kontinuerlig funkti-
kom \( \phi \) på \( G \) er positiv definit hvis og kun hvis den finds
et positivt bepræget mål \( \mu \in M(\mathbb{R}) \) på \( \mathbb{R} \) så
\[ \phi(x) = \int_{\mathbb{R}} f(x) \mu(x) \]
\( \mathbb{R} \)

Målet \( \mu \) er entydigt bestemt ved \( \phi \) og kaldes det til \( \phi \) associe-
rede mål.
Bemærk. I eksempel (6) p. 57 har vi mist, at (2) definerer en kontinuert positiv definit funktion.

Af lemma 4.6 følger at målet μ er entydigt bestemt ved φ.

Lad nu φ være en kontinuert positiv definit funktion. Vi kan uden indførelse angive at φ(0) = 1. Da φ er begrænset giver φ antændring til en kontinuert linjearform Lp på $L^1(\mathbb{R})$ defineret ved

$$L_p(f) = \int f(x) \phi(x) \, dx.$$ 

Ved fastsættelse $\langle f|g \rangle_\phi = \int (g^* f) \, dx$ defineres en sesquilinear form på $L^1(\mathbb{R})$ og af sætning 4.4 følger at den er positiv, i.e.

$$\langle f|f \rangle_\phi \geq 0 \quad \text{for alle } f \in L^1(\mathbb{R}).$$

En timer positiv sesquilinear form opfylder Cauchy-Schwarz' ulighed, der i dette tilfælde bliver

$$\left| \langle f|g \rangle_\phi \right|^2 \leq \langle f|f \rangle_\phi \cdot \langle g|g \rangle_\phi, \quad f, g \in L^1(\mathbb{R}). \quad (3)$$

Vi sætter nu $g = \frac{1}{m(V)} 1_V$, hvor $V$ er en kompakt symmetrisk omegn af $0$ med Haarmål $m(V)$, og dermed har vi

$$\langle f|g \rangle_\phi - L_\phi(f) = \int_G \left[ f(x) \frac{1}{m(V)} \int_V (\phi(x-y) - \phi(x)) \, dy \right] \, dx, \quad (4)$$

$$\langle g|g \rangle_\phi - 1 = \frac{1}{m(V)^2} \int_V \int_V (\phi(x-y) - 1) \, dx \, dy.$$
Da \( \varphi \) i følge lemma 4.2 er tætholdt kontinuerlig, vil disse udvikle sig mod 0 når \( V \) "skrumpes sammen til 0". Af (3) følger følgende udvikling for \( f \in L^1(\mathbb{C}) \):

\[
|L_\varphi(f)|^2 = (f|f_\varphi) = L_\varphi(f^*f).
\]

Vi sætter \( h = f^*f \) og \( h^n = h^{n-1} \cdot h \), \( n=2,3, \ldots \). Da \( \|L_\varphi\| = \|\varphi\|_\infty = 1 \) fag vi ved genlægning anvendelse af (4) med

\[
\begin{align*}
|L_\varphi(f)|^2 & \leq L_\varphi(h) = \left\{L_\varphi(h^n)\right\}^{\frac{1}{2}} \leq \left\{L_\varphi(h^4)\right\}^{\frac{1}{2}} \cdots \leq \left\{L_\varphi(h^2)\right\}^{\frac{1}{2}} \cdots \leq \|h^{2n}\|_1^{\frac{1}{2n}} \\
& \leq \|h\|_1^{n}. 
\end{align*}
\]

For \( n \to \infty \) vil \( \|h^{2n}\|_1^{\frac{1}{2n}} \) konverge mod spektralradius for \( h \)

\[
r(h) = \|h\|_1 = \sup_{f \in E} |\hat{f}(h)|,
\]

og dermed har vi

\[
|L_\varphi(f)|^2 \leq \|h\|_1 = \|f\|_1^2,
\]

altså

\[
|L_\varphi(f)| \leq \|f\|_1 \quad \text{for } f \in L^1(\mathbb{C}).
\]

Hvis \( f_1, f_2 \in L^1(\mathbb{C}) \) opfylder \( \hat{f}_1 = \hat{f}_2 \), giver (5) at

\[
L_\varphi(f_1) = L_\varphi(f_2).
\]

Dermed er \( \hat{f} \mapsto L_\varphi(f) \) en verdifærdig linjærførm på \( A(\hat{\mathbb{C}}) \), og af (5) følger, at den er kontinuerlig med \( A(\hat{\mathbb{C}}) \).
er udelukket med den lineære norm. Da $A(\mathcal{C})$ er et i $C(\mathcal{C})$ kan denne lineærform på entydig måde først sættes til en kontinuerlig lineærform $L$ på $C(\mathcal{C})$. Der gøres således

$$L(f) = \|f\|$$

for $f \in L'(\mathcal{C})$.

Vi påstår nu at $L$ er en positiv lineærform.

Lad $\psi \in C^+(\mathcal{C})$, $\varepsilon > 0$. Vi vil finde $f \in L'(\mathcal{C})$ så

$$\|\psi - |f|^2\|_\infty < \varepsilon,$$

og heraf følger

$$|L(\psi) - L(|f|^2)| = \|\psi - |f|^2\|_\infty \leq \varepsilon,$$

men da

$$L(|f|^2) = L((f^*f)^+) = \|f^*f\| \geq 0,$$

can vi slutte at $L(\psi) \geq 0$.

Da $\psi^{1/2} \in C_0(\mathcal{C})$ findes $L \in L'(\mathcal{C})$ så

$$\|\psi^{1/2} - \tilde{f}\|_\infty \leq \delta,$$

hvor $\delta > 0$ er valgt så $\delta(2\|\psi^{1/2}\|_\infty + \delta)\delta < \varepsilon$. Sættes

$$f = \frac{1}{2}(\psi + \psi^*),$$

og $\tilde{f}$ er en reel funktion. Vi har nu

$$\|\psi - |f|^2\|_\infty = \|\psi^{1/2} + \tilde{f}(\psi^{1/2} - \tilde{f})\|_\infty \leq (\|\psi^{1/2}\|_\infty + \|\tilde{f}\|_\infty)\delta \leq (2\|\psi^{1/2}\|_\infty + \delta)\delta < \varepsilon.$$
Af Reissr' repræsentationsresultat følger at $L$ kan repræsentere ved et positivt begrenset mål $\mu$ på $\hat{G}$. Den gælder altid:

$$L(f) = \int f(y) \, d\mu(y) = \int \left( \int f(x) \overline{y(x)} \, dx \right) \, d\mu(y)$$

$$= \int (f(x) \overline{y(x)}) \, dx = L(y) = \int f(x) \varphi(x) \, dx$$

for alle $f \in L^1(G)$. Heraf sluttes at

$$\varphi(x) = \int \overline{y(x)} \, d\mu(y)$$

(6)

som funktionen i $L^\infty(G)$, men de begge funktioner er kontinuerlige gælder ligheden (6) for alle $x \in G$.

Mæt $\mu$ på $\hat{G}$ opfylder ligheden (2).]

Lad $\varphi$ og $\psi$ være kontinuerlige positive definirede funktioner på $G$ med associerede mål $\mu$ og $\nu$. Vi skriver korte $\varphi \leftrightarrow \mu$, $\psi \leftrightarrow \nu$. Vi observerer medfør de associerede mål til en række kontinuerlige positive definirede funktioner defineret ved fra $\varphi$ og $\psi$:

$$\varphi + \lambda \psi \leftrightarrow \mu + \lambda \nu \quad (\lambda \geq 0)$$

$$\varphi \psi \leftrightarrow \mu \ast \nu$$

$$\overline{\varphi} \leftrightarrow \overline{\mu} \quad (\text{Heraf ses: } \varphi \text{ reel } \leftrightarrow \mu \text{ symmetrisk})$$

$$\text{Re} \varphi \leftrightarrow \frac{1}{2} (\mu + \overline{\mu})$$

$$\varphi \leftrightarrow \varepsilon_\gamma \quad (\gamma \in \hat{G})$$

$$\gamma \varphi \leftrightarrow \varepsilon_\gamma \ast \mu = \overline{\gamma} \mu$$

$$1 \leftrightarrow \varepsilon_0$$. 
**Forside 4.5.** Funktionen $x \mapsto \Gamma(ix)$, hvor $\Gamma$ er gammel-funktionen, er en positiv definit funktion på $\mathbb{C}$ (Vur. Forside 3.3).

**Forside 4.6.** Lad $\varphi$ være en kontinuerlig positiv definit funktion på $\mathbb{C}$ og antag at $|\varphi(x)| = 1$ for alle $x \in \mathbb{C}$. Så er $\varphi$ en karakter på $\mathbb{C}$.

**Forside 4.7.** Lad $\varphi$ være en kontinuerlig positiv definit funktion på $\mathbb{C}$. Så gælder uligheden

$$(\text{Im } \varphi(x))^2 \leq \frac{\varphi(0)}{2} (\varphi(0) - \text{Re } \varphi(2x)), \quad x \in \mathbb{C}$$

hvor $2x = x + x$. (Vur. Hvad når uligheden når $\mathbb{C} = \mathbb{R}$, og når $\varphi$ er en karakter).

Der gælder $\varphi(0) = \mu(\mathbb{C})$ ved betegnelse fra Bochner's sætning.

I sandsynligheds teorien kaldes en kontinuerlig positiv definit funktion $\varphi$ så $\varphi(0) = 1$ den karakteristiske funktion for sandsynlighedsvektø $\mu$ på $\mathbb{C}$ associeret med $\varphi$, på grund af den enestående korespondance Bochners sætning etablerer mellem de kontinuerlige positiv definite funktioner $\varphi$ så $\varphi(0) = 1$ og sandsynlighedsvektø $\mu$ på $\mathbb{C}$.

Mængden af karakteristiske funktioner, altså mængden

$$\mathcal{P}(\mathbb{C}) = \{ \varphi \in \mathcal{P}(\mathbb{C}) \mid \varphi(0) = 1 \},$$

su konveks, og de ekstreme punkter i $\mathcal{P}(\mathbb{C})$ er netop karakter
At \( \mu \) er et ekstremt punkt i \( P'(\mathbb{C}) \) følger af fordele \( \alpha \). At 
ensurt et ekstremt ekstremt punkt i \( P'(\mathbb{C}) \) er
en karakter, følger via Bochnes sætning af at de eksteme
punkter for den konkrete måling af sandynlighedsmæl på
\( \mathbb{C} \) netop er punktmålne \( \delta \), \( \mu \in \mathbb{C} \).

(Noe et sandynlighedsmæl \( \mu \) på \( \mathbb{C} \) er ekstrem punkt
med \( supp(\mu) \) kan reduceret til et enkelt punkt. Husk
nævnt \( f_1, f_2 \) tilfælde \( supp(\mu) \) valges \( \mu \in X_0(\mathbb{C}) \) så
\( \phi(\mu_1) = 1 \), \( \phi(\mu_2) = 0 \). Således \( \mu = f_1 \mu_1 + f_2 \mu_2 \)

\[ \mu = \frac{f_1}{1} \phi_1 \mu + \frac{f_2}{1-2} \phi_2 \mu \]

en sandynlighedsmæl på \( \mathbb{C} \) og \( \mu = \mu_2 \). Dette skifter med
at \( \mu \) er ekstremt).

Man kan nå at mange af ekstreme punkter for
\( P'(\mathbb{C}) \) på \( \mathbb{C} \) uden brug af Bochnes sætning.

Dermed åbnes mulighed for at vi Bochnes sætning
ved hjælp af Krein-Milmanes sætning. Se f.eks. G. Choquet:
deux exemples classiques de représentations intégrales. L'ensei-

**Sætning 4.8** Lad \( \phi \) være en kontinuerligt positiv definit
funktion på \( \mathbb{C} \) med associeret mæl \( \mu \). For hvert \( \mu \in L'(\mathbb{C}) \)
en funktioner \( g \ast f \ast f \) en kontinuerligt positiv definit funktion.
med associeret mål $1/\beta u$.

Deri. Af §3.1.2 følger at $f*f*f$ er en konti-
nuerligt begrensede funktion og i følge sætning 1.4 (ii) er den
positiv definit, idet det for $g \in L^2(\mathbb{C})$ gælder

$$<f*f*f, g*g> = <f, (f*g)^*(f*g)> \geq 0.$$ 

Vedst har vi

$$<f*f*f, f> = \int f(x)f*f(x-y)dy = \int (\int f(x)\overline{f(y)}f(x-y)dy)dy$$

$$= \int \left(\int f(x)f*f(y)dy\right)\overline{f(y)}dy = \int f(x)f*f(y)\overline{f(y)}dy,$$

og dette gør, at det til $f*f*f$ associerte mål er $1/\beta u$. 


Definition. Et mål $\Phi$ på $\mathbb{C}$ kaldes positive definite
sætning

$$<f*f, \Phi> \geq 0$$

for alle $f \in L^2(\mathbb{C})$.

Mengden af positive definite mål udgør en komplet
kompakt talrige med en kardinalitet $\delta = \delta(\mathbb{C})$. Hvis målet $\Phi$ har en kontinuer-
ligt stødt i $\mathbb{C}$ for $f \in L^2(\mathbb{C})$ gælder

$$<f*f, \Phi> \geq 0$$

for $f \in L^2(\mathbb{C})$. Hvis $\Phi$ er et positive definit mål, hvis $g$ er

$\delta$ er en positive definit funktion.
Eksempler

1) Haarmålet $m$ på $G$ er positiv definit. Dette følger af, at funktionen konstant 1 er positiv definit, eller af vurderingen

$$< f^* f, m > = |< f, m >|^2 = |\hat{f}(0)|^2 \geq 0,$$

hvor vi har udnyttet, at 1 er en karakter.

2) For hvert $v \in \mathcal{M}(G)$ er målet $\Phi = v^* v$ positiv definit, idet

$$< f^* f, v^* v > = (\overline{\hat{f} v})^* (\overline{\hat{f} v})(0)$$

$$= \int |\overline{\hat{f} v}|^2 dx = \| \overline{\hat{f} v} \|^2 \geq 0.$$

3) Duoc målet $\varepsilon_0$ på $G$ er positiv definit, hvi $\varepsilon_0 = \varepsilon_0^* \varepsilon_0$. (Jævnligt gælder $< f^* f, \varepsilon_0 > = |\hat{f}(0)|^2 = \| f \|^2 \geq 0$).

Vi vil nu vise følgende generalisation af Bochners sætning:

Sætning 5.1. Lad $\Phi$ være et positiv definit mål på $G$. For hvert $f \in \mathcal{K}(G)$ er $\Phi f^* f$ en kontinuerligt positiv definit funktion. Der findes et og kun et positivt mål $\mu$ på $\hat{G}$, så der for alle $f \in \mathcal{K}(G)$ og $x \in G$ gælder

$$\int |\hat{f}|^2 d\mu < \infty \quad (1)$$

$$\Phi f^* f(x) = \int_G \chi(x) |\hat{f}|^2(y) d\mu(y) \quad (2)$$

Målet $\mu$, kaldes det til $\Phi$ associerede mål.

Bevis. Af sætning 2.4 (a) følger at $\Phi f^* f$ er en
Kontinuerligt funktion. For $g \in L^2(G)$ har vi

$$< \Phi \ast f \ast \Phi, g \ast g> = <(f \ast g)^* \ast (f \ast g), \Phi> \geq 0$$

og dermed er $\Phi \ast f \ast \Phi$ positiv definit ifølge sætning 4.4 (iii). Det til $\Phi \ast f \ast \Phi$ associerede mål, som er et positivt begrenset mål på $\hat{G}$, betegnes $\sigma_f$.

For $f, g \in L^2(G)$ gælder

$$|\hat{f}|^2 \delta_g = |\hat{g}|^2 \delta_f$$

(3)

Herifølge sætning 4.8 er begge disse mål associeret med den kontinuerlige positiv definite funktion $\Phi \ast f \ast \Phi \cdot g \ast g$

Analyse. Det søgte mål $\mu$ skal opfylde

$$\delta_f = |\hat{f}|^2 \mu \quad \text{for alle } f \in L^2(G)$$

altså gælder forment

$$\mu = \frac{\delta_f}{|\hat{f}|^2}$$

For at dette har mening må $\hat{f} \neq 0$, men i almindelighed findes ikke noget $f \in L^2(G)$ så $\hat{f}(\xi) \neq 0$ for alle $\xi \in \hat{G}$. Vi har imidlertid følgende "lokale" resultat:

Til enhver kompakt delmængde $K \subset \hat{G}$ findes $f \in L^2(G)$ så

$$\hat{f}(\xi) \neq 0 \quad \text{for alle } \xi \notin K.$$

Da $L^2(G)$ er tæt i $L^1(G)$ og da $\mathcal{F}(L^1(G))$ er tæt i $C_0(\hat{G})$ og $\mathcal{F}(L^2(G))$ tæt i $C_0(\hat{G})$ er deraf følger påstanden.
For φ ∈ 𝐸(Ĝ) vælges f ∈ 𝐸(Ĝ) så \( \hat{f}(\xi) \neq 0 \) for alle \( \xi \in \text{supp}(\phi) \). Med \( \frac{\phi}{|\hat{f}|^2} \) bekendt vi kort funktionen

\[
\begin{cases}
\frac{\phi}{|\hat{f}|^2} & \text{i punkter hvor } \hat{f}(\xi) \neq 0 \\
0 & \text{i punkter hvor } \hat{f}(\xi) = 0,
\end{cases}
\]

som er en kontinuerlig funktion med kompakt støtte.

Af ligningen \( \delta_\phi = |\hat{f}|^2 \mu \) følger da, at

\[
\mu(\phi) = \int_G \frac{\phi}{|\hat{f}|^2} |\hat{f}|^2 \, d\mu = \int \frac{\phi}{|\hat{f}|^2} \, d\delta_\phi
\]

hvilket viser, at \( \mu \) er en dygtigt beskrevet.

**Konstruktion af \( \mu \).** Den eneste mulighed for at definer- ke \( \mu \) består i til \( \phi \in \mathcal{E}(\hat{G}) \) at vælge \( f \in \mathcal{E}(\hat{G}) \) så \( \hat{f}(\xi) \neq 0 \) for alle \( \xi \in \text{supp}(\phi) \) og dernæst sætte

\[
\mu(\phi) = \int \frac{\phi}{|\hat{f}|^2} \, d\delta_\phi \quad (4)
\]

Tallet \( \mu(\phi) \) er afhængigt af det vælgte \( f \in \mathcal{E}(\hat{G}) \)

med egenskaben \( \hat{f}(\xi) \neq 0 \) for alle \( \xi \in \text{supp}(\phi) \). Er nemlig

ge \( \mathcal{E}(\hat{G}) \) en funktion som opfylder \( \hat{g}(\xi) \neq 0 \) for alle \( \xi \in \text{supp}(g) \) viser (3), at

\[
\int \frac{\phi}{|\hat{f}|^2} \, d\delta_\phi = \int \frac{\phi}{|\hat{g}|^2} \, d\delta_g
\]

Det er nu let at eftervise, at \( \mu \) er en positiv linie-

ar form på \( \mathcal{E}(\hat{G}) \), altså et positivt mål på \( \hat{G} \). (For at

vise, at \( \mu(\phi + \psi) = \mu(\phi) + \mu(\psi) \) vælges \( f \in \mathcal{E}(\hat{G}) \) så \( \hat{f}(\xi) \neq 0 \) for alle \( \xi \in \text{supp}(\phi) \cup \text{supp}(\psi) \)).
Målet \( \mu \) opfylder

\[
\phi_f = \hat{f}^2 \mu
\]

for alle \( f \in \mathcal{K}(G) \). Lad nemlig \( \phi \in \mathcal{K}(\hat{G}) \) og \( g \in \mathcal{K}(G) \), så \( g(x) \neq 0 \) for alle \( x \in \text{supp}(\phi) \). Ifølge (3) gælder da

\[
\mu(\phi|\hat{f}|^2) = \int \frac{\phi|\hat{f}|^2}{|\hat{g}|^2} d\hat{\sigma}_g = \int \frac{\phi}{|\hat{g}|^2} |\hat{g}|^2 d\hat{\sigma}_g = \int \phi d\hat{\sigma}_g.
\]

Da \( \sigma_f \) ifølge Bochner's sætning er et endeligt mål viser (5), at

\[
\int |\hat{f}|^2 d\mu = \sigma_f(\hat{G}) < \infty,
\]

og videre har vi

\[
\phi \times \hat{f}^* \times \hat{f}(x) = \int \phi(x) d\sigma_f(x) = \int \phi(x) |\hat{f}|^2(x) d\mu(x).
\]

Ovelse 5.1: Lad \( \Phi \) være et positiv definitt mål med associeret mål \( \mu \). For alle \( f \in \mathcal{K}(G) \) gælder

\[
\Phi(f^* f) = \int |\hat{f}|^2 d\mu.
\]

Eksempler: 1) Det til Haarmålet \( m \) på \( G \) associerede mål på \( \hat{G} \) er \( \varepsilon_0 \).

2) Lad \( \nu \in \mathcal{M}(G) \). Det til \( \nu = \nu \times \nu \) associerede mål har tæthed \( \nu^2 \) m.h.t. et Haarmål på \( \hat{G} \). Det er en konsekvens af sætning 5.6 nedenfor.

3) Vi vil vise, at det til \( \varepsilon_0 \) associerede mål \( \mu \) er et Haarmål på \( \hat{G} \). Med betegnelserne fra beviset for sætning 5.1 gælder
\[ f^* \ast f(x) = \int g(y) \, d\sigma_f(y), \quad f \in \mathcal{K}(G). \]

Fordi \( \gamma_0 \in \hat{G} \) er \( \gamma_0^* \ast f \) positiv definit og det associerede mål er \( \tau_{\gamma_0} \sigma_f \). På den anden side har vi

\[ \gamma_0(\gamma_0^* \ast f) = (\gamma_0 f)^* \ast (\gamma_0 f) \]

og dermed gælder

\[ \tau_{\gamma_0} \sigma_f = \sigma_{\gamma_0 f} \tag{6} \]

Fordi \( \varphi \in \mathcal{K}(:, \hat{G}) \) og \( \gamma_0 \in \hat{G} \) vælges \( f \in \mathcal{K}(G) \) så \( \hat{f}(\gamma) \neq 0 \) for alle \( \gamma \) i \( \text{supp}(\varphi) \). I det

\[ \tau(\gamma_0 f) = \tau_{\gamma_0} \hat{f} \]

har vi på grund af (6), at

\[ \mu(\tau_{\gamma_0} \varphi) = \int \frac{\tau_{\gamma_0} \varphi}{|\tau(\gamma_0 f)|^2} \, d\sigma_{\gamma_0 f} \]

\[ = \int \frac{\tau_{\gamma_0} \varphi}{|\tau_{\gamma_0} \hat{f}|^2} \, d\tau_{\gamma_0} \sigma_f \]

\[ = \int \frac{\varphi}{|\hat{f}|^2} \, d\sigma_f = \mu(\varphi), \]

hvilket viser, at \( \mu \) er translationsinvariant, altså et Haarmål.

Når vi har fikseret et Haarmål på \( G \) vil vi som Haarmål på \( \hat{G} \) altid benytte det til \( \epsilon_0 \) associerede mål på \( \hat{G} \), som vi betegner \( \hat{\epsilon}_0 \). Vi siger kort at Haarmål-
lune på $G$ og $\hat{G}$ harmoniserer.

Der gælder altså

$$f^* f(x) = \int \gamma(x) \mid \hat{f} \mid^2(y) dy$$

(7)

for alle $f \in \mathcal{X}(G)$, specielt for $x = 0$

$$f^* f(0) = \| f \|_2^2 = \int |f(x)|^2 dx = \int |\hat{f}(y)|^2 dy.$$  

Dette viser, at Fouriertransformationen er en isometrisk afbildning af $\mathcal{X}(G) \subseteq L^2(G)$ ind i $L^2(\hat{G})$.

Sætning 5.2 (Plancherel's sætning) Fouriertransformationen $\mathcal{F}: \mathcal{X}(G) \rightarrow L^2(\hat{G})$ kan på en tydelig måde udvides til en isometrisk isomorf (også kaldet $\mathcal{F}$) af $L^2(G)$ på $L^2(\hat{G})$. Der gælder altså

$$\int_G f(x) \overline{g(x)} dx = \int_{\hat{G}} \mathcal{F} f(y) \overline{\mathcal{F} g(y)} dy$$

for alle $f, g \in L^2(G)$.

Bevis. Da $\mathcal{X}(G)$ er tæt i $L^2(G)$ kan $\mathcal{F}$ på en tydelig måde udvides til en isometri $\tilde{\mathcal{F}}$ af $L^2(G)$ ind i $L^2(\hat{G})$. For at vise, at $\tilde{\mathcal{F}}$ er surjektiv, er det nok at vise at $\mathcal{F}(\mathcal{X}(G))$ er tæt i $L^2(\hat{G})$. Antag at $\psi \in L^2(\hat{G})$ er orthogonal på $\mathcal{F}(\mathcal{X}(G))$, altså

$$\int \hat{\mathcal{F} f}(y) \overline{\psi(y)} dy = 0$$

for alle $f \in \mathcal{X}(G)$.

Erhverves $f$ med $\tau_x f$ for $x \in G$ fiks.
\[ \int \hat{f}(\mathbf{y}) \overline{\hat{\psi}(\mathbf{y})} \varphi(x) \, dy = 0, \]

og lemma 4.6 medfører da at \( L \)-funktionen \( \hat{\psi} \) på \( \hat{G} \) er \( 0 \)-målet på \( \hat{G} \), og derfor er \( \hat{\psi} \) lig \( 0 \) (Lemma 2.3). For enhver kompakt mængde \( K \subseteq \hat{G} \) findes \( \varphi \in \mathcal{K}(\hat{G}) \) så \( \hat{f}(\mathbf{y}) \neq 0 \) for alle \( \mathbf{y} \in K \), og dermed er \( \overline{\hat{\psi}} = 0 \) hølken overalt i \( K \). Heraf følger at

\[ \int \varphi(\mathbf{y}) \overline{\hat{\psi}(\mathbf{y})} \, dy = 0 \]

for alle \( \varphi \in \mathcal{K}(\hat{G}) \), og dermed at \( \psi = 0 \).

Dermed er vist at \( \mathcal{F}(\mathcal{K}(G)) \) er højt i \( L^2(\hat{G}) \).

For \( \varphi \in L^1(G) \cap L^2(G) \) gælder \( \mathcal{F} \varphi = \hat{\varphi} \). Hertil skal vi benytte at vi kan vælge en følge \((\varphi_n)\) nent med \( \varphi_n \in \mathcal{K}(G) \) så \( \varphi_n \to \varphi \) såvel i \( L^1(G) \) som i \( L^2(G) \) (jf. §3.5). Lad \( \varphi \in \mathcal{K}(\hat{G}) \). Da \( \mathcal{F} \varphi_n \to \mathcal{F} \varphi \) ligeligt gælder

\[ \int \mathcal{F} \varphi_n \varphi \, d\mathbf{y} \to \int \mathcal{F} \varphi \varphi \, d\mathbf{y} \]

og da \( \mathcal{F} \varphi_n \to \mathcal{F} \varphi \) i \( L^2(\hat{G}) \) gælder

\[ \int \mathcal{F} \varphi_n \varphi \, d\mathbf{y} \to \int \mathcal{F} \varphi \varphi \, d\mathbf{y} \]

hvoraf det slutter at

\[ \int \mathcal{F} \varphi \varphi \, d\mathbf{y} = \int \hat{\varphi} \varphi \, d\mathbf{y}. \]

Da \( \varphi \in \mathcal{K}(\hat{G}) \) er vilkårlig, følger heraf at

\[ \mathcal{F} \varphi = \hat{\varphi}. \]
Da \( \tilde{F} \) således er en udvidelse af \( F \) fra \( L^1(G) \cap L^2(G) \) til \( L^2(G) \) vil vi ikke længere benytte bebetegnelsen \( \hat{F} \), men kalde udvidelsen \( F \). 

Lad \( G \) være en kompakt abelsk gruppe og lad Haarmålet \( m \) på \( G \) være normaliseret så \( m(\{0\}) = 1 \). Det dermed harmonierende Haarmål \( m' \) på den diskrete gruppe \( \hat{G} \) lægger massen 1 i det ene punkt. For funktionen \( f=1 \) på \( G \) gælder nemlig

\[
\hat{f}(\chi) = \begin{cases} 
1 & \text{for } \chi = 0 \\
0 & \text{for } \chi \neq 0,
\end{cases}
\]

og af Plancherel's sætning følger da

\[
1 = \int_G |f(x)|^2 \, dm(x) = \int_{\hat{G}} |\hat{f}(\chi)|^2 \, dm' (\chi) = m'(\{0\}).
\]

På analog måde følger det, at hvis Haarmålet \( m \) på en diskret gruppe \( G \) er normaliseret så \( m(\{0\}) = 1 \), så er det harmonierende Haarmål på den kompakte gruppe \( \hat{G} \) af totalmasse 1.

**Ovelse 5.2** Lad \( G_1 \) og \( G_2 \) være LCA-grupper med Haarmål \( m_1 \) og \( m_2 \) og lad \( m'_1 \) og \( m'_2 \) være Haarmål på \( \hat{G}_1 \) og \( \hat{G}_2 \) harmonierende med \( m_1 \) og \( m_2 \). Så vil Haarmålet \( m'_1 \otimes m'_2 \) på \( \hat{G}_1 \times \hat{G}_2 \) harmonere med Haarmålet \( m_1 \otimes m_2 \) på \( G_1 \times G_2 \).

**Definition.** Ved en approximativ enhed på \( G \), for
står en familie \((\varphi_v)_{V \in \mathcal{U}(0)}\) i indiceret af omegnsfilkenet af \(0\), af funktioner på \(G\) opfyldende

1. \(\forall V \in \mathcal{U}(0) : \varphi_v \in \mathcal{K}(G)_+\), \(\text{supp}(\varphi_v) \subseteq V\).
2. \(\forall V \in \mathcal{U}(0) : \int \varphi_v \, dx = 1\).

For hvert \(V \in \mathcal{U}(0)\) findes ifølge Urysohn's lemma \(\varphi_v \in \mathcal{K}(G)_+\) så \(\text{supp}(\varphi_v) \subseteq V\) og så \(\varphi_v \not\equiv 0\), men så er \(\int \varphi_v \, dx > 0\). Herved ses eksistensen af approksimerende enheder.

**Lemma 5.3** Lad \(f \in \mathcal{K}(G)\) og lad \(\mu\) være et mål på \(G\). For en approksimatur enhed \((\varphi_v)\) gælder at

\[
\lim \left< f * \varphi_v , \mu \right> = \left< f , \mu \right>
\]

den grænseværdien tages langs den tilhørende mængde \(\mathcal{U}(0)\).

**Bevis.** Det er åbenbart nok at vise påstanden for positive mål \(\mu\). Vi vælger en kompakt omegn \(U_0\) af \(0\) og sætter \(L = \text{supp } f + U_0\). Der f er ligelig kontinueret kan vi til \(\varepsilon > 0\) finde en omegn \(V_0\) af \(0\) så

\[
| f(x) - f(y) | \leq \varepsilon \quad \text{for } x - y \in V_0.
\]

For \(V \in \mathcal{U}(0)\) så \(V \subseteq U_0 \cap V_0\) gælder

\[
\int | f(x) - f(x-y) | \varphi_v(y) \, dy \leq \varepsilon \int_L (x)
\]

alt så
\[ | \langle f, \mu \rangle - \langle f \ast \nu, \mu \rangle | \leq \int ( \int | f(x) - f(x-y) | \varphi(y) \, dy ) \, d\mu(x) \leq \varepsilon \cdot \mu(L), \]

hvilket viser påstanden. \( \square \).

Det følgende lemma viser, at et mål på \( G \) er fastlagt ved sine værdier på funktionerne \( f \ast f \), \( f \in \mathcal{K}(G) \).

Lemma 5.4 Lad \( \mu \) være et mål på \( G \) som opfylder \( \langle f \ast f, \mu \rangle = 0 \) for alle \( f \in \mathcal{K}(G) \). Så er \( \mu = 0 \).

Bevis. Af polariseringsidentiteten (begn efter !)

\[ g^* f = \frac{1}{\sqrt{2}} \sum_{n=0}^{\infty} i^n (f + i^n g)^* (f + i^n g) \]

følger, at \( \langle g^* f, \mu \rangle = 0 \) for alle \( f, g \in \mathcal{K}(G) \), altså

\[ \langle f \ast g, \mu \rangle = 0 \] for alle \( f, g \in \mathcal{K}(G) \).

Ved på \( g \)'s plads at indsætte funktioner fra en approximativ underlæg, følger af lemma 5.3, at

\[ \langle f, \mu \rangle = 0 \]

for alle \( f \in \mathcal{K}(G) \), altså \( \mu = 0 \). \( \square \)

Øvelse 5.3 For \( f \in L^1(G) \cap L^2(G) \) og \( \varepsilon > 0 \) findes \( \varphi \in \mathcal{K}(G) \) så \( \| f - \varphi \|_i < \varepsilon \), \( i = 1, 2 \).

Øvelse 5.4 For \( f, g \in L^2(G) \) er \( F(fg) = F f \ast F g \). Videre er \( A(\hat{G}) = \{ f_1 \ast f_2 \mid f_1 \in L^2(\hat{G}) \} \).
Øvelse 5.5 Et positivt definit mål $\Phi$ opfylder $\Phi = \Phi^*$, altså

$$<f^*, \Phi> = <f, \Phi>$$
for alle $f \in \mathcal{K}(G)$. Et positivt, positivt definit mål $\Phi$ opfylder $\Phi = \Phi^*$.

Den Fouriertransformerede funktion $\hat{f}$ af en funktion $f \in L^1(G)$ er i almindelighed ikke integrabel på $\mathbb{C}$. Hvis imidlertid $f$ er integrabel, kan vi danne funktionen

$$x \mapsto \int_{\hat{G}} \chi(x) \hat{f}(t) \, dy,$$
og det er nu fundamentalt, at vi genfindes funktionen $f$. Når vi har vist Pontriagin's dualitetsætning er overensstemmende funktion den co-Fouriertransformerede af funktionen $\hat{f}$. Der gælder altså, at co-Fouriertransformerede funktion på $\hat{G}$ er den inverse afbildning til Fouriertransformationen på $G$.

Sætning 5.5 (Inversionsætningen) Lad $\mu$ være et begrænset mål på $G$ og antag at $\hat{\mu} \in L^1(\hat{G})$. Så har målet $\mu$ en kontinueret tæthed $\varphi$ mht. Haarmålet $dx$ på $G$, nemlig funktionen

$$\varphi(x) = \int_{\hat{G}} \chi(x) \hat{\mu}(t) \, dy,$$

som altså er en kontinueret $L^1$-funktion på $G$.

Bevis. Ifølge lemma 5.4 er det nok at vise, at mån-
løse μ og φ dx stemmer overens på funktioner af formen $f^*f$, for $f \in \mathcal{K}(G)$. For $f \in \mathcal{K}(G)$ gælder indidential (vur. (7))

$$f^*f(x) = \int_G \hat{\varphi}(\xi) |\hat{f}(\xi)|^2 d\xi,$$

og dermed har vi

$$\int_G f^*f(x) \varphi(x) dx = \int_G (f^*f(x) \int_G \hat{\varphi}(\xi) \hat{\mu}(\xi) d\xi) dx$$

$$= \int_G (\int_G f^*f(x) \overline{\varphi(x)} dx) \hat{\mu}(-\xi) d\xi$$

$$= \int_G |\hat{f}(\xi)|^2 \hat{\mu}(-\xi) d\xi$$

$$= \int_G (|\hat{f}(\xi)|^2 \int_G \varphi(x) d\mu(x)) d\xi$$

$$= \int_G f^*f(x) d\mu(x). \quad \Box$$

Sætning 5.6 Et begrænset mål $\mathcal{B}$ på $G$ er positiv definit hvis og kun hvis $\hat{\mathcal{B}}(\xi) > 0$ for alle $\xi \in \hat{G}$.

Hvis $\mathcal{B}$ er et positiv definit begrænset mål, er det associerede mål på $\hat{G}$ målet $\hat{\mathcal{B}}$. 

Bevis. Lad $\mathcal{B}$ være et begrænset mål på $G$ og lad $f \in \mathcal{K}(G)$. Så er $\mathcal{B} \ast f^*f$ en $L^1$-funktion på $G$ og den Fouriertransformerede $\hat{\mathcal{B}} |\hat{f}|^2$ er en $L^1$-funktion på $\hat{G}$ fordi $\mathcal{B}$ er en begrænset (sætning 3.6) og $f \in L^2(\hat{G})$ ifølge
Plancherels sætning. Af inversionssætningen fås så
\[ \mathcal{F}^{-1} \mathcal{F} f(x) = \int_{\hat{G}} \hat{\phi}(y) \hat{f}(y) \mathcal{F} f(x - y) \, dy. \]

Hvis \( \mathcal{F} \) er positiv definit, viser denne formel, at det til \( \hat{\phi} \) assosierede mål er \( \hat{\phi}(y) \mathcal{F} f(x) \), og da dette mål er positivt, gælder \( \hat{\phi}(y) \geq 0 \) for alle \( y \in \hat{G} \).

Sættes \( x = 0 \) og erstattes \( \mathcal{F} f \) med \( f \) i formlen fås
\[ \langle f^*, f \rangle = \int_{\hat{G}} \hat{\phi}(y) |\mathcal{F} f(y)|^2 \, dy, \]
og heraf ses, at \( \hat{\phi} \) er positiv definit såhenfor \( \hat{\phi} \geq 0 \).

På grund af sætning 5.6 vil vi for et positiv definit mål \( \hat{\phi} \) på \( G \) kalde det til \( \hat{\phi} \) assosierede mål \( \mu \) på \( \hat{G} \) for det Fouriertransformerede til \( \hat{\phi} \), og skrive
\[ \mu = \hat{\phi} \text{ eller } \mu = \mathcal{F} \hat{\phi}. \]

For en kontinuerligt positiv definit funktion \( \phi \) på \( G \) er \( \hat{\phi} = \mathcal{F} \phi \) det assosierede mål \( \mu \) fra Bochner's sætning, der således kan fortolkes som en inversionssætning (hvor vi kender Pontrjagins sætning):
\[ \phi = \mathcal{F} (\mathcal{F} \phi) = \mathcal{F} \mu. \]

Dermed er Fouriertransformationen en afbildning af kæden \( \mathcal{E}(G) \) af positive definitive mål på \( G \) ind i kæden af positive mål på \( \hat{G} \), endda ind i kæden af de positive mål \( \mu \) på \( \hat{G} \) for hvilke

\[ \hat{\phi}(y) \mathcal{F} f(x) \geq 0 \text{ for alle } y \in \hat{G}. \]
\[ \int |\hat{f}|^2 \, dm < \infty \quad \text{for all } f \in \mathcal{F}(G). \]

Det er imidlertid ikke alle sådanne mål der er det Fouriertransformerede af et positiv definit mål. Det er såvidt vides et udløst problem om karakterisere de positive mål på \( \hat{G} \) der er det Fouriertransformerede af et positiv definit mål på \( G \).

Vi bemærker, at særligt 5.1 og lemma 5.4 sikrer, at Fouriertransformereren \( F \) er en injektiv afbillelser af \( \mathcal{E}(G) \) ind i det kælen af positive mål på \( \hat{G} \).

8.6. Positiv definitive funktioner på \( \mathbb{R} \).

Vi vil nu nærmere studere tilfældet \( G = (\mathbb{R}, +) \). Som Haarmål på \( \mathbb{R} \) fikserer vi lebesgue-målet \( \lambda \) (eller \( dx \)) med den sædvanlige normalisering \( \lambda([0,1]) = 1 \).

Karaktererne på \( \mathbb{R} \) er funktionerne

\[ x \mapsto e^{ixy}, \quad y \in \mathbb{R} \]

og dermed identificeres \( \mathbb{R} \) med \( \mathbb{R} \). Det med \( \lambda \) harmoniserende Haarmål på \( \mathbb{R} = (\mathbb{R}, +) \) må være \( k \cdot \lambda \) for et passende \( k > 0 \). Vi skal nu bestemme \( k \).

For funktionen

\[ f(x) = e^{-|x|} \]

finder vi
\[
\hat{f}(y) = \int_{-\infty}^{\infty} e^{-ixy} e^{-lx} \, dx = \frac{2}{1+y^2}, \quad (1)
\]

det \(\hat{f}(y) = 2 \cdot \int_{0}^{\infty} \cos(xy) e^{-x} \, dx\).

Da \(f \in L^1(\mathbb{R})\) og \(\hat{f} \in L^1(\mathbb{R})\) følger det af inversionssætningen, at

\[
1 = f(0) = k \int_{-\infty}^{\infty} \hat{f}(y) \, dy = 4k \int_{0}^{\infty} \frac{\, dy}{1+y^2} = 4k \left[ \arctan y \right]_{0}^{\infty} = 2k \pi
\]

hvoraf \(k = \frac{1}{2 \pi}\).

Det med Lebesguemålet harmonerende Haarmål på \(\mathbb{R}\) er derfor \(\frac{1}{2 \pi}\) gange Lebesguemålet.

Hvis man vil undgå denne usymmetri, kan man f.eks. bruge \(\frac{1}{\sqrt{2\pi}}\) gange Lebesguemålet på begge eksempler af \(\mathbb{R}\). Dette vil vi dog ikke gøre.

Af inversionssætningen anvendt på (1) følger

\[
e^{-lx} = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{iy} \frac{l}{1+y^2} \, dy
\]

**Ovelse 6.1** Den til \(\mathbb{R}\) duale gruppe \(\hat{\mathbb{R}}\) kan identificeres med \(\mathbb{R}\) via isomorfini

\[
\mathbb{R} \ni y \leftrightarrow (x \mapsto e^{2\pi i xy}) \in \hat{\mathbb{R}}
\]

Lebesguemålet på \(\mathbb{R}\) og på \(\hat{\mathbb{R}}\) identificeret med \(\mathbb{R}\) er harmonerende Haarmål. Dette forklarer en ofte anvendt definition af Fouriertransformationen på \(\mathbb{R}\).

For et positivt begrænset mål \(\mu\) er den Fourier-
Transformerede givet som
\[
\hat{\mu}(y) = \int_{\mathbb{R}} e^{-ixy} \, d\mu(x) = \int_{\mathbb{R}} e^{ixy} \, d\hat{\mu}(x)
\]

Af Bochner's sætning følger, at \(\hat{\mu}\) er en kontinuerligt positiv definit funktion på \(\mathbb{R}\) og erfor kontinuerligt positiv definit funktion er den Fourier-transformerede af et positivt begrenset mål.

Vi angiver nu i tabelform en række sandsynligheds-

\[
\begin{array}{|c|c|c|}
\hline
\text{Sandsynlighedsmål } \mu \quad & \quad \hat{\mu} \\
\hline
\text{Udskåret fordeling} & \epsilon_{\lambda_0} & e^{-ix_0y} \\
\hline
\text{Binomialfordeling med} & \sum_{j=0}^{\infty} \left( \begin{array}{c} \infty \\ j \end{array} \right) \rho^j \left( 1 - \rho \right)^{\infty - j} = \left( p\epsilon + q\epsilon \right)^{\infty} \quad \left( q + pe^{-iy} \right)^{\infty} \\
\text{parameter } p \in [0, 1], q = 1 - p \\
\hline
\text{Poisson fordeling med} & \sum_{n=0}^{\infty} e^{-\lambda} \frac{\lambda^n}{n!} \epsilon_n \quad \exp(\lambda(e^{iy} - 1)) \quad \lambda > 0 \\
\text{parameter } \lambda > 0 \\
\hline
\text{Ligeledig fordeling på} & \frac{1}{2a} \left[ -a, a \right] \quad \sin(ay) \quad ay \\
\text{intervallet } [-a, a], a > 0 \\
\hline
\text{Cauchy fordeling med} & \frac{1}{\pi} \frac{1}{x^2 + y^2} \quad dx \quad e^{-t/y1} \\
\text{parameter } t > 0 \\
\hline
\text{Laplace fordeling med} & \frac{1}{2\sigma} \exp \left( - \frac{1}{\sigma} \right) \quad dx \quad \frac{1}{1 + \sigma^2 y^2} \\
\text{parameter } \sigma > 0 \\
\hline
\text{Normal fordeling med} & \frac{1}{\sqrt{4\pi t}} \exp \left( - \frac{x^2}{4t} \right) \quad dx \quad \exp (-ty^2) \\
\text{parameter } t > 0 \\
\hline
\end{array}
\]

Vi har tidligere set, at en positiv definit funktion er ligeligt kontinuerligt blot den er kontinuerligt i 0 (jfr. 4.2). Man kunne derfor foreslå, at en positiv definit funktion måske var differentiable eller endda pænere.

Det findes imidlertid kontinuerlige, positiv definite funktioner som ikke er differentiable i noget punkt. Det klassiske eksempel af Weierstrass (se Weierstrass smil vælker bd. II, p.71) på en kontinuerlig funktion, der ikke er differentiable i noget punkt er netop en positiv definit funktion

\[ W(x) = \sum_{n=0}^{\infty} a^n \cos(b^n x) \]

hvor \(0 < a < 1\), \(b\) ulige heltal \( \geq 3 \) så \( ab > 1 + \frac{3}{2} \pi \), f.eks. \( a = \frac{1}{2}, b = 13 \).

Definition. Lad \( \mu \) være et positivt mål på \( IR \). Hvis det for et positivt, helt tal \( n \) gælder, at funktionen

\[ x \mapsto x^n \]

er \( \mu \)-integrabel, kaldes

\[ M_n = \int x^n \, d\mu(x) \]
det n'ke moment af μ, og vi viser at μ har moment af 1. ordre.
Hvis μ har moment af ordre n, så har μ moment af ordre k = 0, 1, ..., n−1, thi

\[ |x|^k \leq \begin{cases} 
1 & \text{for } |x| \leq 1 \\
|x|^n & \text{for } |x| > 1 
\end{cases} \]

Målet μ er endeligt, præcis hvis μ har moment af 0'te ordre.

Sætning 6.1 Lad μ være et positivt mål på \( \mathbb{R} \) og antag at μ har moment af ordre m. Så er \( F_\mu \) n'gaege kontinuerligt differentiable og

\[ (F_\mu)^{(k)} = (-i)^k F(x^k \mu), \quad k = 0, 1, ..., n. \]

Specielt har vi

\[ (F_\mu)^{(k)}(0) = (-i)^k M_k. \]

Behov. Det er nok at vise sætningen for \( n = 1 \). I det

\[ \frac{1}{h} (F_\mu(y+h) - F_\mu(y)) - \int (-ix) e^{-ixy} d\mu(x) = \]

\[ \int e^{-ixy} \left( \frac{1}{h} (e^{-ixh} - 1) + ix \right) d\mu(x), \]

finder vi

\[ \left| \frac{1}{h} (F_\mu(y+h) - F_\mu(y)) - (-i) F(x\mu)(y) \right| \]

\[ \leq \int \left| \frac{1}{h} (e^{-ixh} - 1) + ix \right| d\mu(x). \]
Hypotesen går mod 0 når $h \to 0$, ifølge Lebesgue's sætning om domineret konvergens, som kan anvendes fordi

$$\frac{1}{h}(e^{-ixh} - 1) + ix = -ix e^{-ix\Theta(x, h)} + ix$$

hvor $|\Theta(x, h)| \leq 1|h|$, altså

$$|\frac{1}{h}(e^{-ixh} - 1) + ix| \leq 2|x|.$$  

Korollar 6.2. For et positivt mål $\mu$ med kompakt støtte $\sigma$ er Fouriertransformerede funktion $F_{\mu}$ en $C^0$-funktion.

Øvelse 6.2. For enhver koefficient, positiv definit funktion $\varphi: \mathbb{R} \to \mathbb{C}$ og ethvert $\varepsilon > 0$ findes en positiv definit $C^\infty$-funktion $\psi: \mathbb{R} \to \mathbb{C}$ så

$$\|\varphi - \psi\|_\infty < \varepsilon.$$

Den næste sætning kan benyttes til at udelukke, at en forelagt funktion $\varphi$ er positiv definit. Vi vidskrænker os til at betragte karakteristiske funktioner, dvs. positive definite funktioner $\varphi$ så $\varphi(0) = 1$. For en sådan vil naturligtvis $1 - \varphi(x)$ gå mod 0 for $x \to 0$, men sætningen uigen at $1 - \varphi(x)$ ikke kan gå særlig hurtigt mod 0.

Sætning 6.3. Lad $\varphi$ være en karakteristisk funktion på $\mathbb{R}$ som opfylder

$$\lim_{x \to 0} \frac{1 - \varphi(x)}{x^2} = 0$$

Så gælder $\varphi \equiv 1$. 
Bevis. Ifølge Bochners sætning findes et sandsynligheds-
mål $\mu$ på $\mathbb{R}$ så

$$
\varphi(x) = \int e^{ixy} \, d\mu(y).
$$

Altså har vi for $x \neq 0$

$$
\frac{2 - \varphi(x) - \varphi(-x)}{x^2} = \int \frac{2 - e^{ixy} - e^{-ixy}}{x^2} \, d\mu(y)
$$

$$
= \int \frac{2 - 2\cos(xy)}{x^2} \, d\mu(y)
$$

$$
= \int \left( \frac{\sin \frac{xy}{2}}{\frac{xy}{2}} \right)^2 y^2 \, d\mu(y).
$$

Jeg det

$$
\lim_{x \to 0} \left( \frac{\sin \frac{xy}{2}}{\frac{xy}{2}} \right)^2 y^2 = y^2 \quad \text{for alle } y \in \mathbb{R},
$$

følger det af Fatou's lemma, at

$$
0 \leq \int y^2 \, d\mu(y) = \int \left[ \lim_{x \to 0} \left( \frac{\sin \frac{xy}{2}}{\frac{xy}{2}} \right)^2 y^2 \right] \, d\mu(y)
$$

$$
\leq \liminf_{x \to 0} \int \left( \frac{\sin \frac{xy}{2}}{\frac{xy}{2}} \right)^2 y^2 \, d\mu(y)
$$

$$
= \liminf_{x \to 0} \frac{2 - \varphi(x) - \varphi(-x)}{x^2} = 0,
$$

ifølge forudsætningen. Altså er

$$
\int y^2 \, d\mu(y) = 0.
$$

For enhver kompakt mængde $K \subseteq \mathbb{R} \setminus [0, \infty)$ findes $\lambda > 0$, så
\[ 1_k \leq \lambda y^2, \text{ og heraf følger at } \mu (K) = 0. \text{ Altså er } \mu = \varepsilon_0 \text{ og dermed } \varphi = \mu = 1. \quad \exists. \]

Eksempel. Funktionen \( \varphi(x) = e^{-x^2} \) er positiv definit, som Fouriertransformeret af en normal fordeling. For denne funktion gælder

\[
\lim_{x \to 0} \frac{1 - \varphi(x)}{x^2} = 1
\]

Funktionerne \( e^{-1|x|^\alpha}, \alpha > 2 \) er ikke karakteristiske funktioner, fordi

\[
\lim_{x \to 0} \frac{1 - e^{-1|x|^\alpha}}{x^2} = 0
\]

Vi vil senere vise, at \( e^{-1|x|^\alpha} \) er en karakteristisk funktion for alle \( \alpha \in [0, 2] \). For \( \alpha = 1 \) fremgår dette af tabellen.

Som opbakket til den næste sætning vil vi indføre en familie \( (\varphi_a)_{a>0} \) af funktioner \( \varphi_a : \mathbb{R} \to \mathbb{R} \) givet ved

\[
\varphi_a(x) = \varphi_a(-x), \quad \varphi_a(x) = \begin{cases} 1 - \frac{x}{a} & \text{for } 0 \leq x \leq a \\ 0 & \text{for } x > a. \end{cases}
\]

Grafen for \( \varphi_a \) har altså udseendet:
Lemma 6.4 Forhved $a > 0$, er $\phi_a$ en karakteristisk funktion.

Bevis. Vi viser, at $\hat{\phi}_a$ er en positiv funktion, og følge 5.6 er $\phi_a$ dermed en positiv definit funktion.

$$\hat{\phi}_a(y) = 2 \int_0^a \cos(xy) \left( 1 - \frac{x}{a} \right) dx$$

$$= \frac{2(1-\cos(ay))}{ay^2} = a \left( \frac{\sin \frac{ay}{2}}{\frac{ay}{2}} \right)^2.$$

Til givne tal $0 = a_0 < a_1 < a_2 < \ldots < a_{n-1} < a_n$ og tal $0 = \mu_n < \mu_{n-1} < \ldots < \mu_2 < \mu_1 < \mu_0 = 1$ med egenskaben at følgende

$$\left( \frac{\mu_k - \mu_{k-1}}{a_k - a_{k-1}} \right)_{k = 1, \ldots, n}$$

er voksende, defineres en funktion $\psi$ på $\mathbb{R}$ ved at $\psi(x) = \psi(x)$, $\psi(0) = 1$, $\psi(x) = 0$ for $x \geq a_n$ og ved at $\psi$'s graf på intervallet $[a_{k-1}, a_k]$ er linjestykket $l_k$ gennem punkterne $(a_{k-1}, \mu_{k-1})$ og $(a_k, \mu_k)$ for $k = 1, \ldots, n$. Vi skitserer grafen af $\psi$ i et eksempel med $n = 4$. 

![Diagram](image)
At følgen \( (k - k_{k-1}) \) et voksende betyder, at hældningen af
liniestykket \( l_k \) er voksende. Dermed er \( \psi \) konveks på inter-
vallet \([0, \infty[\).

Funktionen \( \psi \) kan fremstilles på formen

\[
\psi = \lambda_1 \varphi_1 + \lambda_2 \varphi_2 + \cdots + \lambda_n \varphi_n 
\]

\((*)\)

hvor \( \lambda_i > 0 \) og \( \sum_{i=1}^{n} \lambda_i = 1 \).

Vi vil vise dette ved induktion efter antallet af knæk
\( n \). Hvis \( n = 1 \) er \( \psi = \varphi_1 \) og påstanden er vist. Antag nu
at \((*)\) er vist for funktioner med \((n-1)\) knæk. For den giv-
ne funktion \( \psi \) med \( n \) knæk vil linien bestemt ved linie-
stykket \( l_n \) skære \( y \)-aksen i et punkt \((0, \lambda)\) med \( 0 < \lambda < 1 \),
og denne linie falder på intervallet \([0, a_n]\) sammen
med funktionen \( \lambda \varphi_n \). Funktionen

\[
\psi' = \frac{1}{1-\lambda} \left( \psi - \lambda \varphi_n \right)
\]

er klart af samme type som \( \psi \), men med \((n-1)\) knæk. Iføl-
ge induktionstørdsætningerne har vi

\[
\psi' = \lambda'_1 \varphi_1 + \lambda'_2 \varphi_2 + \cdots + \lambda'_{n-1} \varphi_{n-1}
\]

hvor \( \lambda'_i > 0 \) og \( \sum_{i=1}^{n-1} \lambda'_i = 1 \), men så følger induksionsforudsætningerne.

\[
\psi = (1-\lambda) \lambda_1 \varphi_1 + \cdots + (1-\lambda) \lambda_n \varphi_n + \lambda \varphi_n
\]

og dermed er \((*)\) vist for funktioner med \( n \) knæk.

Af \((*)\) følger at \( \psi \) er en karakteristisk funktion.
Sætning 6.5 (Polya, 1920) Lad \( \phi : \mathbb{R} \to [0, \infty] \) være en kontinuerlig funktion med egenskaberne:

(i) \( \phi(0) = 1 \)

(ii) \( \phi \) er lige, dvs. \( \phi(-x) = \phi(x) \)

(iii) \( \phi \) er aftagende og konveks på intervallet \([0, \infty]\). Så er \( \phi \) en karakteristisk funktion.

Beweis. Grenseverdien \( \alpha = \lim_{x \to \infty} \phi(x) \) eksisterer og \( \alpha < 1 \).
Hvis \( \alpha = 1 \) er \( \phi \) konstant lig 1. Hvis \( \alpha < 1 \) betragtes funktionen

\[
\phi_\alpha(x) = \frac{1}{1-\alpha} (\phi(x) - \alpha)
\]

som også opfylder betingelserne (i) – (iii) og desuden opfylder
\( \lim_{x \to \infty} \phi_\alpha(x) = 0 \). Hvis \( \phi_\alpha \) er en karakteristisk funktion, så er også \( \phi \) en karakteristisk funktion, og dermed er beviset reduceret til tilfælde \( \alpha = 0 \). Vi vil vise, at et sådant \( \phi \) kan approksime-
nos ligeligt med karakteristiske funktioner og dermed er \( \phi \) selv en karakteristisk funktion.

Lad \( \varepsilon \in (0, 1] \) være givet. Da \( \alpha = 0 \) findes et \( x_0 > 0 \)
så \( \phi(x_0) = \varepsilon \). For \( x \in ]0, x_0[ \) gælder \( \phi(x) > \varepsilon \) og for
\( x \in ]x_0, \infty[ \) gælder \( \phi(x) < \varepsilon \). (Tegn !)

Da \( \phi \) er ligeligt kontinuerlig på intervallet \([0, x_0]\)
findes punkter \( a_i \) med \( 0 = a_0 < a_1 < \cdots < a_{n+1} = x_0 \) så

\[
|\phi(x) - \phi(y)| < \varepsilon \quad \text{for} \quad x, y \in [a_{k-1}, a_k], \quad k = 1, \ldots, n+1.
\]

Vi sætter \( \mu_i = \phi(a_i) \), \( i = 0, 1, \ldots, n+1 \) og har da

\[
1 = \mu_0 > \mu_1 > \cdots > \mu_{n+1} \quad (\ast \varepsilon).
\]
Vi betragter den lineære funktion $\psi$ defineret ved at $\psi$'s graf på intervallet $[a_{k-1}, a_k]$ er linjestykket $l_k$ gennem punkterne $(a_{k-1}, \mu_{k-1})$ og $(a_k, \mu_k)$, $k=1, 2, \ldots, n-1$. For at definere $\psi$ på $[a_{n-1}, \infty]$, fortælles linjestykket $l_{n-1}$ til det skærer $x$-aksen i punktet $(a_n, 0)$. På $[a_{n-1}, a_n]$ definerer $\psi$'s graf ved $l_{n-1}$'s fortægelser og på $[a_n, \infty]$ sættes $\psi = 0$.

Konveksiteten af $\phi$ sikrer at funktionen $\psi$ er af den øjeblikkelig type $\phi$, og dermed en karakteristisk funktion, og desuden gælder

$$|\phi(x) - \psi(x)| < \varepsilon \text{ for alle } x \in \mathbb{R}.$$  \[ \square \]

Funktionen $e^{-x^\alpha}$ er konveks på $[0, \infty]$ for $\alpha > 0$, men ikke for $\alpha > 1$. Af Polya's kriterium følger derfor, at $e^{-1|x|^\alpha}$ er positiv definit for $\alpha \in [0, 1]$.

§7. Pontrjagin's dualitetsætning

Lad $G$ være en LCA-gruppe med Haarmål $dx$ og lad $\hat{G}$ være den duale gruppe med Haarmål $dy$ så $dx$ og $dy$ harmonerer.

Vi ved at mængderne

$$H_G(K, \varepsilon) = \{ \phi \in \hat{G} \mid |\phi(x)| < \varepsilon \text{ for } x \in K \}$$

udgør en basis for omegne af $0$ i $\hat{G}$, når $K$ gennemløber de kompakte delmængder af $G$ og $\varepsilon > 0$. 

For en kompakt mængde $C \subseteq \hat{G}$ og $\varepsilon > 0$ sættes

$$N(C, \varepsilon) = \{ x \in G \mid |1 - \gamma(x)| < \varepsilon \text{ for alle } \gamma \in C \}$$

**Lemma 7.1** Mængdemne $N(C, \varepsilon)$, hvor $C$ en kompakt i $\hat{G}$ og $\varepsilon > 0$ udgør en basis for omegnæ til $0$ i $G$.

Bevis. Vi viser først at $N(C, \varepsilon)$ er en omegn af $0$ i $G$. For $\gamma \in C$ findes en omegn $U(\delta)$ af $0$ i $G$ og en omegn $V(\delta)$ af $\delta$ i $\hat{G}$ så

$$|1 - \delta(x)| < \varepsilon \text{ for } x \in U(\delta) \text{ og } \delta \in V(\delta),$$

(jfmfr. Lemma 3.1). Da $C$ en kompakt findes endelig mængde punkter $\gamma_1, \ldots, \gamma_n \in C$ så

$$C \subseteq V(\gamma_1) \cup \ldots \cup V(\gamma_n).$$

Da $U = U(\gamma_1) \cap \ldots \cap U(\gamma_n)$ er en omegn af $0$ i $G$, og da den gælder

$$U \subseteq N(C, \varepsilon),$$

et $N(C, \varepsilon)$ en omegn af $0$ i $G$.

Lad nu $V$ være en omegn af $0$ i $G$. Lad $W$ være en omegn af $0$ så $W - W \subseteq V$ og lad $f \in \mathcal{C}(\hat{G})^+$ være en funktion så $\text{supp}(f) \subseteq W$ og $\int f(x)^2 \, dx = 1$.

Af Plancherel's sætning følger

$$1 = \int_G f(x)^2 \, dx = \int_{\hat{G}} |\hat{f}(\gamma)|^2 \, d\gamma,$$

og der findes derfor en kompakt mængde $C \subseteq \hat{G}$ så
\[
\int_C |\hat{\varphi}(\gamma)|^2 d\gamma > \frac{2}{3},
\]
Vi påstår nu, at \(N(C, \frac{1}{3}) \subseteq V\). For \(x \in N(C, \frac{1}{3})\) og \(y \in C\) 
gælder nemlig

\[
1 - \text{Re} \, \gamma(x) \leq |1 - \varphi(x)| < \frac{1}{3}
\]

altå\( Re \, \gamma(x) > \frac{2}{3} \), og dermed har vi

\[
f^* \ast f(x) = \int_C \varphi(x) |\hat{\varphi}(\gamma)|^2 d\gamma + \int_{\hat{C} \setminus C} \varphi(x) |\hat{\varphi}(\gamma)|^2 d\gamma
\]

\[
= \int_C \text{Re} \, \gamma(x) |\hat{\varphi}(\gamma)|^2 d\gamma + \int_{\hat{C} \setminus C} \text{Re} \, \gamma(x) |\hat{\varphi}(\gamma)|^2 d\gamma
\]

\[
> \frac{4}{9} - \int_{\hat{C} \setminus C} |\hat{\varphi}(\gamma)|^2 d\gamma
\]

\[
> \frac{4}{9} - \frac{1}{3} = \frac{1}{3},
\]

hvilket viser at \(x \in \text{supp}(f^* \ast f) \subseteq W - W \subseteq V\). \(\Box\)

**Korollar 7.2** Punkterne i \(G\) skilles af \(\hat{G}\), d.v.s. hvis \(x, y \in G\) og \(x \neq y\) så findes \(\hat{y} \in \hat{G}\) så \(\hat{\varphi}(\gamma) \neq \hat{\varphi}(\gamma(y))\).

Bevis. Da \(G\) er Hausdorff findes en kompakt mængde \(C \subseteq \hat{G}\) og \(\varepsilon > 0\) så \(x - y \in N(C, \varepsilon)\), og derfor findes \(\hat{y} \in C\) så \(1 - \varphi(x - y) \geq \varepsilon\), altå\( \hat{\varphi}(\gamma(x)) \neq \hat{\varphi}(\gamma(y))\). \(\Box\)

En funktion af formen

\[
f(x) = \sum_{i=1}^{m} a_i \hat{\varphi}_i(x), \quad x \in G \quad og \quad \hat{\varphi}_i \in \hat{G}
\]
kalder et trigonometrisk polynomium på \( G \). Mængden af trigonometriske polynomier på \( G \) er en algebra under punktvis addition og multiplikation. Den er selvadjungerede og skiller punkterne i \( G \). Stone-Weierstrass’s sætning giver der for følgende resultat:

Hvis \( G \) er kompakt udgør de trigonometriske polynomier på \( G \) en tæt delalgebra af \( C(G) \).

Heraf følger, at mængden af trigonometriske polynomier også er tæt i \( L^2(G) \), hvilket medfører, at karaktererne \( \chi \) i \( \hat{G} \) udgør en orthonormal basis for \( L^2(G) \) (vjr. bemærk for 3.5).

Plancherel's sætning 5.2 for kompakte grupper reduceres hermed til Plancherel's sætning vedrørende udviklingen af et element i et Hilbertrum efter en orthonormal basis:

\[
\int_G |f(x)|^2 \, dx = \sum_{\chi \in \hat{G}} |\hat{f}(\chi)|^2, \quad f \in L^2(G),
\]

idet \( \hat{f}(\chi) = (f \, | \chi) \) er det indre produkt af \( f \) og enhedsevken- toren \( \chi \).

Lemma 7.3 For enhver ikke tom åbent mængde \( O \subseteq \hat{G} \) fin- des \( f \in L^1(G) \) så \( \hat{f} \neq 0 \) og så \( \text{supp}(\hat{f}) \subseteq O \).

Bevis. Først vælges \( g \in \mathcal{K}_+(\hat{G}), g \neq 0 \), så \( \text{supp}(g) \subseteq O \) og dernæst vælges en omegn \( V \) af \( O \) så \( \text{supp}(g) + V \subseteq O \). Lad \( h \in \mathcal{K}_+(\hat{G}), h \neq 0 \) være valgt så \( \text{supp}(h) \subseteq V \). Følgende øvelse 5.3 findes en funktion \( f \in L^1(G) \) så \( \hat{f} = g \times h \), og derfor gælder \( \text{supp}(\hat{f}) \subseteq \text{supp}(g) + \text{supp}(h) \subseteq O \).
Lemma 7.4 Lad G være en Hausdorff-topologisk gruppe og lad H være en undergruppe af G som også lokal-kompakt i delnumstologien fra G. Så er H afsluttet.

Beviset for lemma 7.4 bygger på følgende resultater algb:)

a) Lad X være et Hausdorff-rum og lad A være et valgt delmængde af X som er lokal-kompakt i den inducerede topologi. Så er A åben.

Lad $x \in A$ og lad $K$ være en kompakt omgivning af $x \in A$ mod delnumstologien. Der findes en omgivning $U$ af $x$ i $X$ så $K = U \cap A$. Der må nu gælde $U \subseteq K$ og dermed er $A$ en omgivning af $x$, hvilket $U \setminus K \neq \emptyset$ må også $(U \setminus K) \cap A \neq \emptyset$, da den tøtte mængde $A$ har punkter falles med enhver ikke tom åben mængde. At $(U \setminus K) \cap A \neq \emptyset$ strider imidlertid mod $K = A \cap U$. Dermed er $A$ en omgivning af hvert af sine punkter og altså åben.

b) Lad $G$ være en topologisk gruppe og $H$ en åben undergruppe. Så er $H$ også afsluttet.


Beviset for lemmaet forløber nu således:
Afslutningen $\overline{H}$ af $H$ i $G$ er en Hausdorff topologisk gruppe og $H$ er en tødt, lokalkompakt delmængde heraf. Ifølge $\gamma$ er $H$ så en åben undergruppe af $\overline{H}$ og ifølge $\delta$ dermed en afsluttet undergruppe af $\overline{H}$. Da $H$ altså er en afsluttet og en tødt delmængde af $\overline{H}$ er $H = \overline{H}$. 0

Lad nu igen $G$ være en LCA-gruppe med dual gruppe $\hat{G}$ og dual gruppe $\hat{G}$. Vi har tidligere defineret en homomorfi $j: G \to \hat{G}$ ved fastsættelsen

$$ j(x)(\xi) = \xi(x) \text{ for } x \in G \text{ og } \xi \in \hat{G}. $$

Sætning 7.5 (Pontrajagin's dualitetssætning) For enhver lokalkompakt abelsk gruppe $G$ er afbildningen $j: G \to \hat{G}$ en isomorfi af $G$ på $\hat{G}$ som lokal-kompakte abelske grupper. Haarmålet på $G$ afbildes ved $j$ i det Haarmål på $\hat{G}$ der harmoniserer med Haarmålet på $\hat{G}$.

Bevis. At $j$ er injektiv følger af, at $\hat{G}$ skilles punkterne i $G$. I det vi lader $C$ gemenelebe de kompakte delmængder af $\hat{G}$ og $\varepsilon$ de positive tal, udgør mængderne

$$ N(C, \varepsilon) = \{ x \in G \mid |1 - \xi(x)| < \varepsilon \text{ for alle } \xi \in C \} $$

og

$$ U_\varepsilon (C, \varepsilon) = \{ \delta \in \hat{G} \mid |1 - \delta(x)| < \varepsilon \text{ for alle } x \in C \} $$

baset for omegrene af $0$ i henholdsvis $G$ og $\hat{G}$. Da $j$ er en gruppe-isomorfi af $G$ på $j(G)$, og da

$$ j(N(C, \varepsilon)) = j(G) \cap U_\varepsilon (C, \varepsilon), $$
følger det at \( j : G \to \hat{G} \) og \( j^{-1} : \hat{G} \to G \) er kontinuerte i 0, når \( \hat{G} \) udstyres med delrumstopologi fra \( \hat{G} \).

Dermed er \( j \) en homeomorfi af \( G \) på \( \hat{G} \) som følgelig er en lokalkompakt gruppe i delrumstopologi. Af lemma 7.1 følger da, at \( \hat{G} \) er afsluttet i \( \hat{G} \). Hvis \( \hat{G} \) er en ægte del af \( \hat{G} \) giver lemma 7.3 anvendt på gruppen \( \hat{G} \), at der findes en \( f \in L^1(\hat{G}) \) så \( \mathcal{F}_G f \not= 0 \) og \( \text{supp}(\mathcal{F}_G f) \subseteq \hat{G} \setminus j(G) \), altå

\[
\mathcal{F}_G f (\hat{x}(x)) = \int_{\hat{G}} \hat{x}(x) f(y) dy = 0 \quad \text{for alle } x \in G.
\]

Af lemma 4.6 følger imidlertid at \( f = 0 \), men så er \( \mathcal{F}_G f = 0 \) hvilket er en modstrid. Altså er \( j(G) = \hat{G} \).

(Vi bruger gruppen \( G \) som index i betegnelsen for Fouriertransformationen, \( \mathcal{F} = \mathcal{F}_G \), når vi vil fremhæve, at den anvendes på funktioner eller mål på \( G \). Betegnelsen \( \mathcal{F}_G \) bruges analogt.)

Lad \( m \) være et Haarmål på \( G \), \( m' \) det dermed harmonerende Haarmål på \( \hat{G} \) og \( m'' \) det dermed harmonerende Haarmål på \( \hat{G} \). Billedmålet \( j(m) \) af Haarmålet \( m \) på \( G \) er defineret ved

\[
\int_{\hat{G}} f \ d(j(m)) = \int_G f \circ j \ dm \quad \text{for } f \in K(\hat{G}),
\]

og da \( j \) er en isomorfi ses, at \( j(m) \) er et Haarmål på \( \hat{G} \). Vi skal vise, at \( m'' = j(m) \), og da de er proportionale er det nok at vise at

\[
\int_{\hat{G}} f \ d(j(m)) = \int_{\hat{G}} f \ dm''
\]
for en enkelt funktion \( f \neq 0 \) som tilhører \( L^1(\hat{G}, m') \).

Før \( g \in X_+(G) \), \( g \neq 0 \), sæltes \( \varphi = g^* \circ g \). Af inversionsæt-
ningsen følger

\[
\varphi(x) = \varphi(x) = \int G \overline{\varphi(x)} \hat{F}_G \varphi(y) \, dm'(y)
\]

altså

\[
\varphi(x) = \hat{F}_G \hat{F}_G \varphi(j(x)).
\]

For \( f = 1 \hat{F}_G \hat{F}_G \varphi \in L^1(\hat{G}, m') \) gælder da

\[
\int \hat{G} f d(\varphi(m)) = \int \hat{G} f \circ j \, dm = \int \hat{G} |f|^2 \, dm.
\]

Jfølge Plancherel's sætning anvendt først for \( G \) og dernæst
for \( \hat{G} \) gælder

\[
\int G |\varphi|^2 \, dm = \int \hat{G} |\hat{F}_G \varphi|^2 \, dm' = \int \hat{G} |f|^2 \, dm'.
\]

altså

\[
\int \hat{G} f \circ d(\varphi(m)) = \int \hat{G} \circ f \, dm'. \quad \Box
\]

På grund af Pontriagin's dualitetsætning vil vi ident-
ificere \( G \) og \( \hat{G} \) og vi siger kort, at \( G \) er den duale grup-
pe til \( \hat{G} \).

For fremtiden vil vi for \( x \in G \) og \( \xi \in \hat{G} \) ofte skrive

\[
\langle x, \xi \rangle = \varphi(x)
\]

for at lade symmetrien mellem \( G \) og \( \hat{G} \) træde frem.
Afbildningerne \((x \mapsto \langle x, y \rangle)_{y \in \hat{G}}\) er karakterer på \(G\), og afbeeldingen \((x \mapsto \langle x, y \rangle)_{x \in G}\) er karakterer på \(\hat{G}\).

Sætning 7.6 Afbeeldingerne \(\bar{F}_G\) og \(\bar{F}_{\hat{G}}\) er isomorpher af \(L^2(G)\) på \(L^2(\hat{G})\) og de inverse afbeelding er henholdsvis \(\bar{F}_G\) og \(\bar{F}_{\hat{G}}\). Der gælder altså
\[
\bar{F}_G (F_G f) = \bar{F}_{\hat{G}} (\bar{F}_G f) = f
\]
og videre
\[
\bar{F}_{\hat{G}} (F_G f) = f
\]
for alle \(f \in L^2(G)\).

Bevis. Ifølge inversionssætningen gælder
\[
\bar{F}_{\hat{G}} \bar{F}_G (f \ast g) = f \ast g
\]
for alle \(f, g \in K(G)\). Da mængden \(\{f \ast g \mid f, g \in K(G)\}\) er tæt i \(L^2(G)\) (overvej dette) følger ved konvergensen at
\[
\bar{F}_{\hat{G}} \bar{F}_G f = f
\]
for alle \(f \in L^2(G)\). De øvrige identiteter udledes ved hjælp af formlerne p.42 nederst. 

Ved hjælp af den fuldstændige symmetri mellem \(G\) og \(\hat{G}\) kan vi skærpe forskellige resultater fra de foregående paragraffer:

\(\hat{G}\) er kompakt hvis og kun hvis \(G\) er diskret.
(jufr. sætning 3.5)

3) $L^1(G)$ har etelement hvis og kun hvis $G$ er diskret (jufr. sætning 2.2).

Hvis nemlig $L^1(G)$ har etelement, er spektrum $\hat{G}$ kompakt, men så er $G$ diskret.

4) Hvis $\mu \in M(G)$ og hvis $\mathcal{F}\mu(x) = 0$ for alle $x \in \hat{G}$, så er $\mu = 0$.

Dette følger af lemma 4.6

5) $M(G)$ og $L^1(G)$ er semi-simple Banachalgebrer.

At en kommutativ Banach algebrer er semi-simpl er betydet per definition, at Gelfandtransformationen er injektiv. Dermed er $\mu$ en følge af $3$.

For hvert $\mu \in M_+(G)$ er $\mathcal{F}\mu$ en kontinuerligt positiv definit funktion på $\hat{G}$ og enhver sådan har formen $\mathcal{F}\mu$ for præcis et $\mu \in M_+(G)$.

Dette er Bochner's sætning anvendt på $\hat{G}$, idet man samtidig udnytter at

$$\int_G \langle x, x \rangle \, d\mu(x) = \mathcal{F}\mu(\hat{x}).$$

Ovelse 7.1 Lad $\mu$ og $\nu$ være positive begrensete mål på $G$ og antag at $\mu \ast \nu = \delta_0$. Der findes $a \in G$ så $\mu = \delta_a$ og $\nu = \delta_{-a}$.

Vi minde om, at et lokal kompakt rum $X$ kaldes $\sigma$-kompakt eller numerabelt i det uendelige, så fremt der findes en følge $(K_n)_{n \in \mathbb{N}}$ af kompakte mængder $K_n \subseteq X$ så
\[ X = \bigcup_{n \in \mathbb{N}} K_n. \] 

Det findes så også en udtommende følge \( L_n \) af kompakte mængder \( L_n \), d.v.s. en følge med egenskaben, at den til enhver kompakt delmængde \( C \subseteq X \) findes et \( \mathbb{N} \)

\[ C \subseteq L_n \] (jfbr. Mat 6, Top. opg. 35).

### Sætning 7.7
Lad \( G \) være en LCA-gruppe med dual gruppe \( \hat{G} \).

1. \( G \) er metriserbar hvis og kun hvis \( \hat{G} \) er \( \sigma \)-kompakt.
2. \( G \) har en numerabel basis for topologiën hvis og kun hvis \( \hat{G} \) har en numerabel basis for topologiën.

**Bevis.**

1. Hvis \( G \) er metriserbar findes en numerabel basis \( (V_n)_{n \in \mathbb{N}} \) for omeguussysemset af \( o \) bestående af kompakte omegne. Ifølge sætning 3.4 er mængderne \( U_G(V_n, \frac{1}{n}) \) relativt kompakte og der gælder

\[
\hat{G} = \bigcup_{n=1}^{\infty} U_G(V_n, \frac{1}{n}),
\]

hvilket viser at \( \hat{G} \) er \( \sigma \)-kompakt. For at udse \((x)\) bekræftet vi \( x \in \hat{G} \). Mængden

\[
U = \{ x \in G \mid |1 - \chi(x)| < \frac{1}{2} \}
\]

er en omegn af \( o \) i \( G \) og der findes derfor et \( n \in \mathbb{N} \) så \( V_n \subseteq U \), altå

\[
\chi \in U_G(V_n, \frac{1}{2}).
\]

Hvis \( \hat{G} \) er \( \sigma \)-kompakt findes en udtommende følge af kompakte mængder \( K_n \) i \( \hat{G} \). Topologiën for legelig konvergens over kompakte delmængder, på rummet \( C(\hat{G}, C) \),
kan derfor defineres ved numerabelt mange seminormer

\[ p_m(f) = \sup_{x \in K_n} |f(x)|, \]

og derfor er \( C(\hat{G}, C) \) metriserbart. Specielt er \( G \subseteq C(\hat{G}, C) \) metriserbar.

b) Hvis \( G \) har en numerabel basis for topologien set man

let at \( G \) er \( \delta \)-kompakt og så er \( \hat{G} \) metriserbar. Deruden

har \( G \) en numerabel basis for omegnene af 0, og af bevis-

set for \( \delta \) fremgår, at så må \( \hat{G} \) være \( \delta \)-kompakt. Vi

påstår nu, at et \( \delta \)-kompakt og metriserbart rum er se-

parabelt. For at se dette er det nok at vise, at et kompakt

metriserbart rum \( X \) er separabelt. Af kompaktheden føl-

ger nemlig, at der til hvert \( n \in \mathbb{N} \) findes en endelig del-

mængde \( A_n \subseteq X \) så

\[ X = \bigcup_{a \in A_n} B(a, \frac{1}{n}) \]

hvor \( B(a, \frac{1}{n}) \) er den åbne kugle med centrum \( a \) og radi-

us \( \frac{1}{n} \). Det er nu let at se, at

\[ A = \bigcup_{n=1}^{\infty} A_n \]

e er tæt i \( X \).

Da \( \hat{G} \) er \( \delta \)-kompakt og metriserbart er \( \hat{G} \) altså separa-

beltn. Et separabelt metriserbart rum har imidlertid en

numerabel basis. Q.E.D.

**Bemærknings**. Der gelder følgende generelle resultat:
taler:
1) En Hausdorff-topologisk gruppe er metriserbar hvis og kun hvis den finder en numerabel basis for omegrene af 0.
2) Et lokalkompakt rum har en numerabel basis for topologien hvis og kun hvis det er ω-compact og metriserbart.
Under anvendelse af 2) er 1) en triviell følge af 2).

§ 8. Quotientgrupper og periodicitet.

Lad G være en abelsk gruppe og H en undergruppe af G. Ved fastsættelsen

\[ x \sim y \iff x - y \in H \]

definerer en ækvivalensrelation \( \sim \) i G. Aeqvivalensklasserne er af formen \( x + H \), \( x \in G \), og mængden af ækvivalensklasser udgør en abelsk gruppe \( G/H \) under kompositionen

\[ (x + H) + (y + H) = (x + y) + H. \]

Gruppen \( G/H \) kalder kquotientgruppen af G modulo H.
Afbeeldingen \( \pi : G \to G/H \), der til \( x \in G \) knytter ækvivalensklasse \( \pi(x) = x + H \) indeholdende \( x \), er en surjektiv homomorfisme, kaldet den kanoniske homomorfisme.

Vi antager nu, at G er en topologisk abelsk gruppe, og udstyres \( G/H \) med finaltopologi bestemt ved \( \pi \). En delmængde \( O \subseteq G/H \) er åben i \( G/H \) netop hvis \( \pi^{-1}(O) \)

er åben i G.


Lad $G$ være en LCA-gruppe. En kontinuerligt funktion $f: G \to \mathbb{C}$ kaldes periodisk med periode $a \in G$ så fremt

$$\tau_a f = \varepsilon_a \ast f = f,$$

altså så fremt

$$f(x-a) = f(x)$$

for alle $x \in G$.

Mængden af perioder $P_f$ for en kontinuerligt funktion $f: G \to \mathbb{C}$ er en afsluttet undergruppe af $G$. Hvis nemlig $a, b \in P_f$ gælder

$$\varepsilon_{a+b} \ast f = \varepsilon_a \ast \varepsilon_b \ast f = \varepsilon_a \ast f = f$$

$$\varepsilon_{-a} \ast f = \varepsilon_a \ast \varepsilon_{-a} \ast f = \varepsilon_0 \ast f = f$$

og hvis $(a_i)_{i \in I}$ er et net på $P_f$ så $\lim_{i \in I} a_i = a$, gælder

$$\varepsilon_a \ast f(x) = f(x-a) = \lim_{i \in I} f(x-a_i) = f(x)$$

fordi $f$ er kontinuerligt, altså $a \in P_f$. 
Lad $H$ være en afsluttet undergruppe af $G$. Hvis det om en kontinuerlig funktion $f: G \to C$ gælder at $P_f \subseteq H$, så findes der precis en funktion $\hat{f}: G/H \to C$ så

$$f(x) = \hat{f}(\pi(x))$$ for $x \in G$.

altså så følgende diagram kommer i række:

$$\begin{array}{ccc}
G & \xrightarrow{\pi} & G/H \\
\downarrow f & & \downarrow \hat{f} \\
C & & C
\end{array}$$

Da $G/H$ er udstyret med en final topologi er $\hat{f}$ kontinuerlig. Vi viser, at funktionen $\hat{f}$ faktoriserer $f$ på $G/H$.

Lad $X$ være et lokalkompakt rum og $Y$ en afsluttet delmængde. For $f \in \mathcal{C}(X)$ er restriktionen $f_Y$ af $f$ til $Y$ en kontinuerlig funktion med kompakt støtte på $Y$.

Er $\mu$ et positivt Radonmål på $Y$, definerer

$$f \mapsto \langle f_Y, \mu \rangle$$ for $f \in \mathcal{C}(X)$,

et positivt Radonmål på $X$, som betegnes $\check{j}(\mu)$. Hermed defineres en afbildning $j$ af de positive Radonmål på $Y$ ind i de positive Radonmål på $X$. Afbildningen $j$ er injektiv, som man let ser ved hjælp af Tietze's udvidelsessætning, og vi vil derfor identificere $\mu$ og $\check{j}(\mu)$. Vi kan således opfatte ethvert positivt mål på $Y$ som
et positivt mål på $X$, og dermed også ethvert mål på $Y$

som et mål $X$.

Lad $G$ være en LCA-gruppe og $H$ en afsluttet undergruppe. Det er let at se, at $H$ er lokalkompakt. Lad $w_H$ være et Haar-mål på $H$. Ifølge bemærkningerne oven for opfatter vi $w_H$ som et mål på $G$. For $f \in \mathcal{K}(G)$ er funktionen $\bar{f} = w_H \ast f$, altså

$$\bar{f}(x) = w_H \ast f(x) = \int f(x - y) \, dw_H(y) = \int f(x + y) \, dw_H(y),$$

ifølge sætning 2.4 $g)$, en kontinuerlig funktion på $G$.

Funktionen $\bar{f}$ er periodisk med alle he H som periode. Hvis for he H gælder

$$\mathbb{E}_h \ast \bar{f} = \mathbb{E}_h \ast w_H \ast f = w_H \ast f = \bar{f},$$

fordi $\mathbb{E}_h \ast w_H = T_h \ast w_H = w_H$ for alle $h \in H$.

Funktionen $\bar{f}$ kan derfor faktoriseres i en funktion $\tilde{f}$ på kvotientgruppen $G/H$ så følgende diagram kommunen:

$$\begin{array}{ccc}
G & \xrightarrow{\pi} & G/H \\
\downarrow{\bar{f}} & & \uparrow{\tilde{f}} \\
C & & \\
\end{array}$$

Der gælder $\mathrm{supp} (\tilde{f}) \subseteq \pi (\mathrm{supp} (f))$, og dermed $\bar{f} \in \mathcal{K}(G/H)$.

Hvis nemlig $\tilde{f}(\pi(x)) = 0$, altså $\bar{f}(x) = 0$, så findes he $H$ med $f(x + h) = 0$, altså $x + h \in \mathrm{supp} (f)$, hvorfra
Lemma 8.2. Afbildningen \( \sigma : K(G) \to K(G/H) \) defineres ved
\[
\sigma(f) = f^t
\]
en en enkeltvirkende lineære afbildung. Der gælder endda, at der til hvert \( h \in K(G/H) \) findes \( f \in K(G) \) så \( \sigma(f) = h \). For \( a \in G \) findes
\[
\sigma(\tau_a f) = \tau_a \sigma(f).
\]

Bem. Det er klart at \( \sigma \) er en positiv lineære afbildung.
Vi udtalte først, at der til en vilkårlig kompakt mængde \( C \subseteq G/H \) findes en kompakt mængde \( K \subseteq G \) så \( \pi(K) = C \).

Lad nemlig \( U \) være en kompakt mængde af \( 0 \) i \( G \). Da er \( \pi(U) \) en kompakt mængde af \( 0 \) i \( G/H \), og så findes endelig mængde punkter \( x_1, \ldots, x_n \in G \) så
\[
\bigcup_{i=1}^{n} \pi(x_i) + \pi(U) = C.
\]

Mængden
\[
K = \left( \bigcup_{i=1}^{n} x_i + U \right) \cap \pi^{-1}(C)
\]
 er kompakt, og der gælder \( \pi(K) = C \). For \( \pi(x) \in C \) findes nemlig et \( x_i \) så \( \pi(x) \in \pi(x_i) + \pi(U) \), og dermed findes et \( h \in H \) så \( x + h \in x_i + U \). Punktedet \( y = x + h \)
tilhører \( K \) og \( \pi(x) = \pi(x) \).

Lad dernæst \( h \in K_+(G) \) og lad \( K \) være en kompakt mængde i \( G \) så \( \pi(K) = \text{supp}(h) \). Vi vælger \( \phi \in K_+(G) \) så \( \phi(x) = 1 \) for alle \( x \in K \).

Funktionen

\[
 f(x) = \begin{cases} 
 \frac{\phi(x) - \pi(x)}{\phi^*(x)} & \text{for } \phi^*(x) \neq 0 \\
 0 & \text{for } \phi^*(x) = 0 
\end{cases}
\]

tilhører \( K_+(G) \).

For at se at \( f \) er kontinuert bemærkes, at hvis \( \phi^*(x) = 0 \), så er \( \pi(x) \notin \text{supp}(h) \), specielt \( h(x+x) = 0 \). Derudover nemlig

\[ \phi(x+h) = 0 \] for alle \( h \in H \)

altså

\[ x+h \notin K \] for alle \( h \in H \),

men så er \( \pi(x) \notin \pi(K) = \text{supp}(h) \).

For et punkt \( x \) så \( \phi^*(x) = 0 \) er \( \pi^{-1}(\text{supp}(h)) \) en åben omegn af \( x \) hvor \( f \) er identisk 0, og dette viser at \( f \) er kontinuert i \( x \).

Om den således definerede funktion \( f \in K_+(G) \)
gælder

\[
 f(x+h) = \begin{cases} 
 \frac{\phi(x+h) - \pi(x)}{\phi^*(x)} & \text{for } \phi^*(x) \neq 0 \\
 0 & \text{for } \phi^*(x) = 0 
\end{cases}
\]

for alle \( h \in H \), idet \( \phi^*(x) = \phi^*(x+h) \). Altså har vi
\[ f^4(x) = \begin{cases} 
 h(x), & \text{for } \varphi^4(x) \neq 0 
 0, & \text{for } \varphi^4(x) = 0.
\end{cases} \]

Jeg er for \( h(x) = 0 \) når \( \varphi^4(x) = 0 \), f.eks.

\[ f^4(x) = h(x(x)) \] for alle \( x \in G \),

eller \( \sigma(f) = f^4 = h \).

For \( f \in \mathcal{K}(G) \), \( a \in G \) har vi

\[ \tau_a \sigma(f)(x) = \sigma(f)(x) - \pi(a) = \sigma(f)(x-a) = f^4(x-a) =
\]

\[ = \varepsilon_a \ast f^4(x) = \varepsilon_a \ast (f \times \omega_h)^4(x) = (\tau_a f)^4 = \sigma(\tau_a f)(x) \]

hvilket nedstår

\[ \tau_a \sigma(f) = \sigma(\tau_a f). \]

Et vektor \( \mu \in \mathcal{H} \) kaldes periodisk med periode \( a \in G \) så fremt

\[ \tau_a \mu = \varepsilon_a \mu = \mu. \]

Mengden af perioder \( \mathcal{P} \mu \) for \( \mu \) udgør en afsluttede undergruppe af \( G \) (Overvej dette).

Hvis \( \mu \) er et positivt vektor på \( \mathcal{H} \) defineres ved

\[ f \mapsto \langle \sigma(f), \mu \rangle = \langle f^4, \mu \rangle \]

en positiv lineærform på \( \mathcal{K}(G) \), altså et positivt vektor på \( G \), som beskæftiger \( \sigma^*(\mu) \). Rådet \( \sigma^*(\mu) \) er periodisk med alle \( h \in H \) som periode, thi følge lemma 5.2.
har vi for \( x \in H, \ f \in \mathcal{K}(G) \) at

\[
\sigma(\tau^x f) = \tau_x \sigma(f) = \sigma(\tau_x f)
\]

altså

\[
(f, \tau_x \sigma^*(\mu)) = \langle \tau_x f, \sigma^*(\mu) \rangle = \langle \sigma(\tau_x f), \mu \rangle
\]

= \langle \sigma(f), \mu \rangle = \langle f, \sigma^*(\mu) \rangle,

hvilket viser, at

\[
\tau_x \sigma^*(\mu) = \sigma^*(\mu).
\]

**Bemærkning.** Man kan vise at \( \sigma : \mathcal{K}(G) \rightarrow \mathcal{K}(G/H) \)

er kontinuitet, men denne nuværende udstyre med de nu

valgte topologier. Dermed er \( \sigma^* \) den komponerede af-

bildning af \( \mathcal{K}(G/H) \)'s bid i \( \mathcal{K}(G) \)', altså af Radonmå-

lennene på \( G/H \)育儿 i Radonmålene på \( G \). For \( \mu \in \mathcal{K}(G/H) \),

altså \( \sigma^*(\mu) \) er periodisk Radonmål på \( G \). Vi kan opleve

uden at ændre at se til at behagke \( \sigma^* \)'s restriktion til de

positive mål på \( G/H \).

For et Haarmål \( \omega_{G/H} \) på \( G/H \) er \( \sigma^*(\omega_{G/H}) \) et

Haarmål på \( G \), thi for alle \( a \in G, \ f \in \mathcal{K}(G) \) har vi

\[
(f, \sigma^*(\omega_{G/H})) = \langle \tau_a f, \sigma^*(\omega_{G/H}) \rangle = \langle \sigma(\tau_a f), \omega_{G/H} \rangle
\]

= \langle f, \sigma^*(\omega_{G/H}) \rangle,

hvilket viser, at \( \sigma^*(\omega_{G/H}) \) er translationsinvariant.

Dermed har vi nu et fuldstændig resultat:
Sætning 8.3. Lad $G$ være en LCA-gruppe, $H$ en afsluttet undergruppe. Det er muligt at vælge Haar-målene $\omega_G$, $\omega_H$ og $\omega_{G/H}$ på $G$, $H$ og $G/H$ sådan at for $f \in L(G)$ gælder

$$
\int_G f \, d\omega_G = \int_{G/H} f^H \, d\omega_{G/H} = \int_{G/H} f^0 \, d\omega_{G/H},
$$

hvor det for $x \in G$ gælder

$$
f^H(x) = f^H(x) = f \ast \omega_H(x) = \int_H f(x+K) \, d\omega_H(K).
$$

I det følgende tænker vi os Haar-målene på $G$, $H$ og $G/H$ valgt så (1) og (2) gælder, hvilket vi symbolisk skriver

$$
\omega_{G/H} = \frac{\omega_G}{\omega_H}.
$$

Operationen $\ast$ afbildningerene $\sigma \ast \sigma^*$ afhænger af Haar-målet på $H$. Herdette vi vælger en Haar-målene $\omega_G$ og $\omega_{G/H}$ forbundet af forment $\sigma^*(\omega_{G/H}) = \omega_G$.

**Sætning 8.1.** Lad $G$ være en kompakt abelisk gruppe, $H$ en afsluttet undergruppe. Hvis vi som Haar-mål på de kompakte grupper $G$, $H$ og $G/H$ vælger $\omega_G$, $\omega_H$ og $\omega_{G/H}$ alle med totalmasse 1, gælder

$$
\omega_{G/H} = \frac{\omega_G}{\omega_H}.
$$

**Sætning 8.2.** Lad $G$ være en diskret abelisk gruppe,
H en undergruppe. Hvis n, som Haarvægt på den diskrete
gruppe $G, H \not\subset G/H$ bruger $w, w_H$ og $w_{G/H}$, alle nor-
maliseret så på tilsvarende har masse 1, gælder

$$w_{G/H} = \frac{w_G}{w_H}.$$ 

Sætning 8.4. Afbildningen $\sigma$ er en bijektiv
afbildning af mængden af positive væg på $G/H$ på
mængden af de positive væg på $G$, der har alle elemen-
ter i $H$ som periode. Med andre ord: For hvert posi-
tivt væl $\mu$ på $G$ så $\mu \in H$ findes et $\tilde{g}$ kun et posi-
tivt væl $\tilde{\mu}$ på $G/H$, så

$$\sigma(\mu) = \tilde{\mu},$$

altså så

$$\int f \, d\mu = \int f \tilde{g} \, d\tilde{\mu},$$

for alle $f \in \mathcal{K}(G)$.

Bem. I følge lemma 8.2 er $\sigma$ surjektiv, men
så er $\sigma^*$ injektiv.

Lad nu $\mu$ være et positivt væl på $G$ så $\mu \in H$.
For $f \in \mathcal{K}(G/H)$ findes $f \in \mathcal{K}(G)$ så $f \tilde{h} = f$.
Da $\tilde{g}$ er positiv væl må $f$ må derfor opfylde

$$\int f \, d\mu = \int f \tilde{h} \, d\tilde{\mu},$$

hvilket fastlægger $f$ uniktigt. For at vise at $f$ kan
definieres ved (3) må vi eftervise, at hvis $f_1, f_2 \in \mathcal{K}(G)$
afylder $f_1^* = f_2^*$, så er

$$\int f_1 \, d\mu = \int f_2 \, d\mu .$$

Vi viser først, at det for vilkårligt $\phi \in L(G)$ gælder

$$< f_1 \ast \phi, \mu > = < f_2 \ast \phi, \mu > .$$

For $f \in L(G)$ finder vi

$$< f \ast \phi, \mu > = < f, \phi^* \mu > = \int f \cdot (\phi \ast \mu) \, d\omega_{\mu}$$

$$= \int \sigma [f \cdot (\phi \ast \mu)] \, d\omega_{\mu} .$$

Jæv $\phi \ast \mu$ opz. er periodisk med alle $\lambda \in \Lambda$ som perioder har vi

$$[f \cdot (\phi \ast \mu)]^* = f^* \cdot (\phi \ast \mu) ,$$

altså

$$\sigma [f \cdot (\phi \ast \mu)] = \sigma(f)(\phi \ast \mu) ,$$

og derned har vi

$$< f \ast \phi, \mu > = \int \sigma(f)(\phi \ast \mu)^* \, d\omega_{\mu} .$$

Da $\sigma(f_1) = \sigma(f_2)$ følger (4). Lader vi i (4) gør
nærmelige en approximativ enhed følger af lemma 5.3 at

$$\int f_1 \, d\mu = \int f_2 \, d\mu .$$

Defineeres $\mu$ ved (3) driller klart, at $\mu$ er en positiv
linearform på $K(G/H)$, altså et primal mal på $G/H$, og dermed er sætningen vist. 

Lad $\mu$ være et positivt mal på $G$ så $\mu \geq H$. Vi 


definerer $f^*\mu$ at $\mu$ faktoriseres i det enkeltvist bestemte mal $\mu$ 

på $G/H$ så 

$$f_0 \, f^*\mu \, f = f \, f^*\mu \, f.$$ 

Afbeeldingen $\mu \mapsto f^*\mu$ er den inverse til $\sigma^*$. 

**Bemærkning.** Sætning 8.4 kan generalises så 

læses: Afbildningen $\sigma^*_{\mu}$ er en bijektiv linear af- 

bildning af vektorer af Radonmål på $G/H$ på vekto- 

ren af Radonmål $\mu$ på $G$, for hvilke $\mu \geq H$. Tæv. 

bemærkningerne på 113.

**Sætning 8.3.** Lad $f$ være et positivt kontinuer- 

ligt funktion på $G$ så $P \geq H$. Rådet med $f$ som faktor 

med henvis til Haarvægt på $G$ betegnes $\mu = f 4_H$. Så 

$\mu_P = P f \mu 4_H$. 

**Sætning 8.5.** Lad $\mu$ være et positivt mal på $G$ 

så $\mu \geq H$. For hvert $a \in G$ vil $P_a \mu = P_{\mu \sigma(\mu)}$ 

$$(P_a \mu)^* = P_{\mu \sigma(\mu)}.$$ 

Specielt er $\mu$ periodisk med $a$ som periode hvis $4_H$ 

hvis $\mu$ er periodisk med $\sigma(\mu)$ som periode.
Bemerk. For \( h \in P_{\mu} \) vil
\[ T_{\lambda} \mu \cdot e_h = e_{\lambda \mu} \cdot e_h = e_{\lambda} \mu = T_{\lambda} \mu \]
altså \( h \in P_{T_{\lambda} \mu} \). Dermed har vi \( P_{\mu} \subseteq P_{T_{\lambda} \mu} \), derfor
\[ P_{\mu} \cap P_{T_{\lambda} \mu} = P_{\mu} \]
altså \( P_{\mu} = P_{T_{\lambda} \mu} \).

For \( f \in \mathcal{K}(G) \) gælder
\[
\langle \sigma(\lambda f), (T_{\lambda} \mu) \rangle = \langle f, T_{\lambda} \mu \rangle = \langle \lambda f, \mu \rangle
\]
\[
= \langle \sigma(\lambda f), \mu \rangle = \langle \lambda f, \sigma(\lambda f), \mu \rangle = \langle \sigma(\lambda f), (T_{\lambda} \mu) \rangle,
\]
krævede vi, at
\[
(T_{\lambda} \mu)^{\ast} = T_{\lambda} (\mu^{\ast}).
\]

Hvis \( \alpha \in P_{\mu} \) er \( T_{\lambda} \mu = \mu \) og dermed
\[
(T_{\lambda} \mu)^{\ast} = T_{\lambda} (\mu^{\ast}) = \mu^{\ast},
\]
krævede vi at \( \pi(\alpha) = \mu^{\ast} \). Hvis anden \( \pi(\alpha) \in P_{\mu}, \)
\[
\pi(\alpha)^{\ast} = (T_{\lambda} \mu)^{\ast} = \mu^{\ast},
\]
og da "" er injectiv er \( T_{\lambda} \mu = \mu \).

**Corollar 8.6.** Lad \( \mu \) være et positivt væl på \( G \).
Det til \( \mu \) faktoriserede væl \( \mu \) på \( G/P \) har kun den trivielle periode 0.

**Sætning 8.7.** For en funktion \( f \in \mathcal{K}(G), f \neq 0, \) er gruppen af perioden \( P_{\mu} \) kompakt. For et væl \( \mu \in \mathcal{M}(G), \mu \neq 0, \) er gruppen \( P_{\mu} \) af perioden kompakt. 

Beklæd x₀ være et punkt så \(|f(x₀)| = \|f\|\). Mågen
den
\[ \{ x \in G \mid |f(x)| \geq \|f\| \} \]
eu kompakt og den indeholder \( x₀ + \mathbb{Z} \), altså er \( x₀ + \mathbb{Z} \)
kompakt. Dermed er \( \mathbb{Z} \) kompakt.

Idet \( \mu \neq 0 \) findes \( g \in \mathcal{K}(G) \) så \( f = \mu \cdot g \cdot 0 \). Da \( f \in \mathcal{C}_0(G) \)
går \( \mathbb{Z} \) gør, følger af første del af beviset, at \( \mathbb{Z} \) er
kompakt. \\


Lad \( G \) være en LCA-gruppe med dual gruppe \( \hat{G} \).
Den til \( G \) duale gruppe er identificeret med \( G \).

Definition. Ved det ortogonale til en delruang
\( \mathcal{M} \subseteq G \) foret delruangen \( \mathcal{M}^\perp \subseteq \hat{G} \) defineret ved
\[ \mathcal{M}^\perp = \{ \hat{y} \in \hat{G} \mid \langle \hat{x}, \hat{y} \rangle = 1 \text{ for alle } x \in \mathcal{M} \}. \]
Delruangen \( \mathcal{M}^\perp \) kaldes \( \mathcal{M}^\perp \) anomihiloren for \( \mathcal{M} \).

Der gælder \( \mathcal{M}^\perp = \hat{G} \), \( G^\perp = \{ 0 \} \), og hvis \( \mathcal{M}_1 \subseteq \mathcal{M}_2 \) vil
\( \mathcal{M}_1^\perp \supseteq \mathcal{M}_2^\perp \). Idet
\[ \mathcal{M}^\perp = \bigcap_{x \in \mathcal{M}} \{ x \}^\perp \]
e er det klar, at \( \mathcal{M}^\perp \) er en afslutningsomfattede undergruppe af \( \hat{G} \).

For en familie af ruanger \( \{ \mathcal{M}_i \}_{i \in I} \) gælder
\[ ( \bigcup_{i \in I} \mathcal{M}_i )^\perp = \bigcap_{i \in I} \mathcal{M}_i^\perp. \]

Bemærk. Den afbræktede underruppe $H$ frembragt af $M$ i jældemængden af alle afbræktede underrupper af $G$ der indeholder $M$, altså den mindste sådan a. Idet den længere galder $M \leq M^{++}$, lar vi altså $H \leq M^{++}$.

Lad $\pi$ være den kanoniske afbeeldning af $G$ på $G/H$. For $x \in G \setminus H$ er $\pi(x) + 0$ i $G/H$ og derfor finder en karaktér $\chi$ på $G/H$ så $\chi(\pi(x)) + 1$ (Korollar 7.2). Så er $\chi \neq 0$ en karaktér på $G$ som er 1 på $H$, specielt $\chi \in M^+$, men da $\chi(x) + 1$ må den galde $x \in M^{++}$. Dette unit af $H = M^{++}$. Hencf følger $H^+ = (M^+)^{++} = M^+$.

Korollar 9.2. Afbeeldingen $H \to H^+$ definerer en bijektiv forbindelse mellem de afbræktede underrupper af $G$ og de afbræktede underrupper af $G$.

Lad $G_1$ og $G_2$ være LCA-grupper og lad $\phi : G_1 \to G_2$ være en kontinuerlig homomorphi. For hver karaktér $\chi$ på $G_2$ er $\phi(\chi)$ en karaktér på $G_1$. Afbeeldingen $\phi$ beskriver en afbeeldning af $\hat{G}_2 \to \hat{G}_1$. Set $\phi$ kun at $\chi$ er en homomorphi, og den er kontinuitet, idet den for enkel kompakt mængde $K$ i $G_1$ og $\epsilon > 0$ galde 
$$\hat{\phi}(G_2(\phi(K), \epsilon)) \subseteq G_1(K, \epsilon).$$
Definition. Ved den duale afbildning til en kontinuerlig homomorfi $\varphi : G_1 \to G_2$ førstår den kontinuerlig homomorfi $\hat{\varphi} : \hat{G}_2 \to \hat{G}_1$ defineret ved $\hat{\varphi}(\hat{y}) = \varphi(y)$ for $y \in G_2$, eller

$$\langle x, \hat{\varphi}(\hat{y}) \rangle = \langle \varphi(x), y \rangle, \quad x \in G_1, \; y \in G_2.$$

Betegn $j_i : G_i \to \hat{G}_i$ den kanoniske isomorfi af $G_i$ på den dualde gruppe $\hat{G}_i$, $i = 1, 2$, så man af følgende diagram kan vinde:

$$\begin{array}{ccc}
G_1 & \xrightarrow{\varphi} & G_2 \\
\downarrow{j_1} & & \downarrow{j_2} \\
\hat{G}_1 & \xrightarrow{\hat{\varphi}} & \hat{G}_2
\end{array} \quad : \quad j_2 \varphi = \hat{\varphi} \circ j_1.$$

Når man identificerer $G$ med $\hat{G}$ for LCA-grupper, identificeres $\varphi$ og $\hat{\varphi}$.

Hvis $\varphi : G \to G$ er den identiske afbildning er $\hat{\varphi} : \hat{G} \to \hat{G}$ den identiske afbildning, $\hat{\varphi}$ hvis $\varphi : G_1 \to G_2$, og $\psi : G_2 \to G_3$ en kontinuerlig homomorfi er

$$(\psi \circ \varphi)^\wedge = \hat{\psi} \circ \hat{\varphi}.$$

Heraf følger, at hvis $\varphi : G_1 \to G_2$ er en topologisk isomorfi af $G_1$ på $G_2$, så er $\hat{\varphi} : \hat{G}_2 \to \hat{G}_1$ en topologisk isomorfi af $\hat{G}_2$ på $\hat{G}_1$.

Sætning 9.3. Lad $\varphi : G_1 \to G_2$ være en kontinuerlig homomorfi med dual homomorfi $\hat{\varphi} : \hat{G}_2 \to \hat{G}_1$. Så er

$${\ker \hat{\varphi}} = (\text{Im} \varphi)^\perp.$$
Spezielt er φ e injektiv, hvis og kun hvis φ har tot
bildede.

Bemærk. Formlen følger umiddelbart af definitionsligningen

\[ \langle x, \phi(y) \rangle = \langle \phi(x), y \rangle, \quad x \in G, \; y \in \hat{G}. \]

For enhver tot mængde \( M \subseteq G \) er \( M^+ = \{ \phi \in \hat{G} : \phi(M) = 1 \} \) af
altså er φ injektiv, hvis \( \text{Im} \phi = \{ 1 \} \).

Hvis φ er injektiv er \( (\text{Im} \phi)^\perp = \{ 1 \} \) og så er
\( (\text{Im} \phi)^{\perp \perp} = \hat{G} \).

Afsætning 9.1 følger, at undergruppen
\( \text{Im} \phi \) er tot i \( \hat{G} \).

\[ \text{Afsætning 9.4:} \text{ Lad } H \text{ være en afsluttet undergruppe af } G, \text{ og lad } \pi : G \to G/H \text{ være den kanoniske afbildning. Den duale afbildning } \hat{\pi} : \hat{G/H} \to \hat{G} \text{ er en topologisk isomorfi af } \hat{G/H} \text{ på den til } H \text{ ortogonale undergruppe } H^+ \text{ af } \hat{G}. \]

Bemærk. For \( \delta \in \hat{G/H} \) er \( \hat{\pi}(\delta) = 0 \) om en karakter på G

den er 1 på H, altså \( \hat{\pi}(\delta) \in H^+ \). For \( y \in H^+ \) gælder, at y

er periodisk med alle elementer i H som perioder. Funktionen \( \tilde{y} \) er en karakter på \( G/H \) og den gælder \( \hat{\pi}(\tilde{y}) = y \), altså

bliver vi, at \( \hat{\pi}(\tilde{y}) = H^+ \). Hølge afsætning 9.3 er \( \hat{\pi} \) injekti-

værlig, og dermed har vi at \( \hat{\pi} \) er en kontinuerlig algebraisk

isomorfi af \( \hat{G/H} \) på \( H^+ \).

Lad \( C \) være en kompakt delmængde af \( G/H \). Hølge
første del af beviset for lemma 8.2 findes en kompakt
mængde \( K \subseteq \mathbb{S} \) så \( \pi(K) = C \). Heraf følger
\[
\hat{\pi}(U_{\alpha_0}(C, \varepsilon)) = H^+ \cap U_{\varepsilon}(K, \varepsilon),
\]
hvilket minner ad \( \hat{\pi} \) er kontinuerligt som afbeelding af
\( H^+ \) på \( \hat{\mathbb{A}} \). Da en homomorfik er kontinuerligt blot den
er kontinuerligt i 0, er \( \hat{\pi}^{-1} \) kontinuerligt. []

**Bemærkning.** På grund af sætnin 9.4 identificerer
vi \( \hat{\mathbb{A}} \) af \( H^+ \), dvs. tilhører \( \hat{\mathbb{A}} \) som den duale gruppe til
\( \mathbb{A} \). Et element \( \xi \in H^+ \) er identificeret med karakteren
\[
\hat{\pi}^{-1}(\xi) = \Phi \in \mathbb{A}, \quad \Phi(\xi) = \langle \xi, \cdot \rangle,
\]
identisk repræsenteret for sideklasse \( \xi \),
altfor \( \pi(\xi) = \xi \).

For et give adjoint \( \mu \in \mathbb{A} \) er den Fouriertransformerende
\( \mathbb{A} \)-funktion \( \hat{\mu} \) en funktion på \( H^+ \) givet ved
\[
\hat{\mu}(\xi) = \int_{\mathbb{A}} \langle \xi, \cdot \rangle \, d\mu(\xi).
\]

Lad \( i : H \to G \) være den kanoniske indføjning af
\( H \subseteq G \). Den duale afbildning \( \hat{i} : \hat{G} \to \hat{H} \) afbilder \( g \in \hat{G} \)
i restriktionen af \( g \) til \( H \). Derved er sek \( \hat{i} = H^+ \), og
følgelig kan \( \hat{i} \) faktoriseres i en kontinuerligt homomorfi
\[
\hat{i} (= \hat{i}^+): \hat{\mathbb{A}} \to \hat{H},
\]
se диаграммет kovenker:
Her er \( \pi \) den kanoniske afbildning af \( \hat{G} \) på \( \hat{G}/H^+ \). Et element \( \xi \in \hat{G}/H^+ \) er en aktivineutklasse af karakterer på \( \hat{G} \), der stemmer overens på \( H \). Ved \( \pi \) overføres \( \xi \) til dets karakterisatis med restriktion til \( H \), altså

\[ \pi(\xi) = \xi|_H, \quad \hom \chi(y) = \xi. \]

Sætnings 9.4: Afbildningen \( \pi : \hat{G}/H^+ \to \hat{H} \) er en topologisk isomorfi. Enhver karakter på \( \hat{H} \) kan udvides til en karakter på \( \hat{G} \).

Bemærk: Ifølge sætning 9.4 er der til \( \pi \) duale homomorfi \( \hat{\pi} \) en topologisk isomorfi af \( \hat{G}/H^+ \) på \( H^{++} = H \). Den anvendte afbildning

\[ \hat{\pi} : H \to \hat{G}/H^+ \]

er ifølge sætning 9.4 givet ved, at for \( h \in H \) er \( \hat{\pi}(h) \) den karakter på \( \hat{G}/H^+ \), der til en aktivineutklasse \( \xi \in \hat{G}/H^+ \) hænger til hæk < \( h, y \) >, her \( y \) er en representant for \( \xi \), altså

\[ < \xi, \hat{\pi}(h) > = < h, y >, \quad \hom \chi(y) = \xi. \]

Vi vil nu vise at afbildningen

\[ \pi : \hat{G}/H^+ \to \hat{H} \]

\[ \hat{\pi} : H \to \hat{G}/H^+ \]
er hinandens dualt. Da \( \hat{F} \) er en topologisk isomorfi, kan vi henføre stikkene, at \( \hat{T} \) er en topologisk isomorfi.

For \( h \in H \), \( \xi \in \hat{G} \), har vi

\[
\langle \xi, \hat{T}(h) \rangle = \langle \hat{T}(\xi), h \rangle = \langle h, \xi \rangle,
\]

hvor \( \pi(f) = \xi \), altså er \( \hat{\xi} = \hat{F} \).

Vi ved nu specielt, at \( \hat{T} : \hat{G} \to \hat{H} \) er surjektiv, men dette vil netop sige, at enhver karakter på \( \hat{H} \) er repræsentation af en karakter på \( G \).

**Bemærkning.** På grund af sætning 9.5 identificerer vi \( \hat{\xi} \) med \( \hat{G}_H \), \( \hat{\xi} \) kan der på \( \hat{G}_H \) som dual gruppe til \( H \).

Et element \( \xi \in \hat{G}_H \) er identificeret med karakteren \( \hat{T}(\xi) \) på \( H \), der afbildes \( h \in H \) i tallet \( \langle h, \xi \rangle \), idet \( \xi \) er en repræsentant for \( \xi \).

For et begrænset mængde på \( H \) er den Fouriertransformerede \( \hat{F} \mu \) en funktion på \( \hat{G}_H \) givet ved

\[
\hat{F} \mu(\xi) = \int_{H} \langle h, \xi \rangle \, d\mu(h), \text{ hvor } \pi(f) = \xi. \tag{2}
\]

**Sætning 9.6.** Lad \( G \) være en LCA-gruppe. Hvis \( H \) er en åben resp. kompakt undergruppe af \( G \), er \( H^\perp \) en kompakt resp. åben undergruppe af \( \hat{G} \).

**Beweis.** Hvis \( H \) er åben i \( H \) på afbladdret og krotien-gruppen \( \hat{G}_H \) er diskret. Denne er den dual gruppe \( \hat{G}_H \) kompakt, men \( \hat{H} \) kompakt ifølge sætning 9.4.
Hvis $H$ er kompakt og $\hat{G}$ diskret, altså $\hat{G}/H$ diskret ifølge sætning 9.5, men så må $H^\perp$ være åben i $\hat{G}$. 

Sætning 9.7. Lad $\mu \in \mathcal{M}(G)$ være et begrænset mal på $G$ og lad $H$ være den afsluttede undergruppe fremkaldt af $\text{supp}(\mu)$. 

Så er 

$$\frac{\hat{G}}{H} \mu = (\text{supp} \mu)^\perp = H^\perp,$$

og den gælder 

$$\hat{G}/H \mu = \frac{\hat{G}}{G} \mu,$$

idet $\frac{\hat{G}}{G} \mu$ er funktionen på $\hat{\mathcal{G}} = \hat{G}/H$ der er givet ved at faktorisere den periodiske funktion $\frac{\hat{G}}{G} \mu$ på $\hat{\mathcal{G}}$ med periodegruppe $H^\perp$. Påstanden kan også udgydes ved det konstruktive diagram:

$$
\begin{array}{ccc}
\hat{G}/H^\perp & \xrightarrow{\frac{\hat{G}}{G} \mu} & \hat{G}/H \\
\pi & \xrightarrow{\text{id}} & \hat{G}/H \\
\end{array}
$$
Beweis. For \( y \in \hat{G} \) en
\[
\hat{y} * \hat{F}_G \mu = \hat{F}(y \mu),
\]
og derfor har vi i grund af unitariteten af \( \hat{F} \) at
\[
y \in \mathcal{P} \quad \Longleftrightarrow \quad \hat{y} \mu = \mu,
\]
men det sidste er uansvarligt med \( y(x) = 1 \) for alle \( x \in \text{supp}(\mu) \), altså at \( y \in \text{supp}(\mu) \), jf. Bourbaki: Integra- tion, kap. III 32 p. 70.

Idet \( \text{supp}(\mu) \subseteq \hat{H} \) kan vi opsætte \( \mu \) som et begrens- et mal på \( H \). Idet \( \pi : \hat{G} \to \hat{G}/H \) er den kanoniske afbildning kan vi i stedse
\[
\int_{\hat{H}} \langle \hat{y}, \hat{x} \rangle \, d\mu(h) = \int_{\hat{G}} \langle \hat{y}, \hat{x} \rangle \, d\mu(h),
\]
og desuden er
\[
\hat{F}_G \mu (y\hat{y}) = \hat{F}_G \mu (\hat{y}) = \int_{\hat{G}} \langle \hat{y}, \hat{x} \rangle \, d\mu(x) = \int_{\hat{H}} \langle \hat{y}, \hat{x} \rangle \, d\mu(h),
\]
altså \( \hat{F}_G \mu = \hat{F}_H \mu \otimes \chi \) eller \( \hat{F}_G \mu = \hat{F}_H \mu \). \( \Box \)

**Sætning 9.3.** For et begrens et mal \( \mu \in M(\hat{G}) \) er
\[
\hat{F}_G \mu (y\hat{y}) = (\text{supp}(\hat{y}))^\perp.
\]

**Sætning 9.8.** For en kontinuerlig prehe definet funktion \( \varphi \) på \( \hat{G} \) en
\[
P_\varphi = \{ x \in \hat{G} \mid \varphi(x) = \varphi(0) \}
\]
og om det hel \( \varphi \) associerede Euler \( \mu \) på \( \hat{G} \) gælder, at
\[ \text{supp}(\mu) \subseteq \mathbb{P}^1_{\mathbb{P}} \quad \text{og} \quad \mathbb{P}^1_{\mathbb{P}} \quad \text{er den afsluttede undergruppe frem-
braegt af supp}(\mu). \]

Bemærk. For \( x \in \mathbb{P} \) gælder \( \phi(x+y) = \phi(y) \) for alle \( y \in G \), specielt har vi \( \phi(x) = \phi(0) \).

Hvis anvendt \( \phi(x) = \phi(0) \) følger af ukligheden \((d)\) p. 54 at
\[
\frac{\phi(x+y)}{\phi(0)} = \frac{\phi(y)}{\phi(0)} \quad \text{for alle} \quad y \in G
\]
eller
\[ \phi(x+y) = \phi(y) \quad \text{for alle} \quad y \in G, \]
hvilket nu er at \( x \in \mathbb{P} \).

Af relation \( 9.7 \) følger at
\[
\mathbb{P} = \mathbb{P}^1_{\mathbb{P}} = \text{supp}(\mu)^\perp = \left[\text{supp}(\mu)^\perp\right]^\perp = \text{supp}(\mu)^\perp,
\]
efter
\[ \mathbb{P}^1_{\mathbb{P}} = \text{supp}(\mu)^\perp, \]
hvilket netop er den af \( \text{supp}(\mu) \) fremstillede afsluttede undergruppe.


**Sektion 9.9.** Lad \( G \) være en LCA-gruppe, Hen afslut-
tet undergruppe og lad \( \omega, \omega_H \) og \( \omega_H^\perp \) være Haarvælg på
\( G, H \) og \( \omega_H^\perp \), så \( \omega_H = \frac{\omega}{\omega_H} \).

Haarvælg \( \omega_H \) på \( H \) er det positivt definit mål på \( G \)
og det Fouriertransformerede mål \( \hat{\omega_H} \) er et Haarvælg på \( H^\perp \).
Jest \( H^\perp \) en den duale grupp til \( \mathbb{P}^1_H \) og \( \omega_H^\perp \) der harmoni-
Sehr Haarmod.

# Bevis

Für $f \in \mathcal{K}(G)$ haben wir

$$\langle f \ast f, \varpi_H \rangle = \langle f, \overline{f} \ast \varpi_H \rangle = \langle f, \overline{f} \rangle = \langle f, \overline{f} \rangle.$$  

Jetzt $\left( f, \overline{f} \right)^2 = \left| f \right|^2$, folgt aus Satzung 8.3 (1) at

$$\langle f, \overline{f} \rangle = \int_{G/H} \left| f \right|^2 \, d\varpi_H,$$

beweist nun, dass $\langle f \ast f, \varpi_H \rangle \geq 0$, also ist $\varpi_H$ ein positiv definit.

Den Fouriertransformierten $\hat{f}^{\varphi}$ auf $f^{\varphi}$ erhält man durch

$$\hat{f}^{\varphi}(g) = \int_{G/H} \overline{\varphi(x)} \, \hat{f}(x) \, d\varpi_H(x), \quad g \in G.$$

Für $g \in G$ ist $\sigma(gf) = \overline{g}^{\varphi}$, und folgt aus Satzung 8.3 für $f$ genannt

$$\hat{f}^{\varphi}(g) = \int_{G/H} \sigma(gf) \, d\varpi_H = \int \left| x \right|^2 \, d\varpi_H(x) = \hat{f}(g).$$ (3)

Lad $\hat{\omega}_H$ von der Haarmodul $\mathcal{K}(G)$ der Hausmann $H$ auf den dualen gruppe $G/H$ Vi

für $f \in \mathcal{K}(G), x \in G$ haben wir

$$\hat{\omega}_H \ast \hat{f} \ast \overline{f}(x) = f \ast f^{\varphi}(x) = \int g \left( \overline{g} \right) f^{\varphi}(x+g) \, d\varpi_H(g).$$

Jetzt
\[
\sigma(\overline{\chi \cdot x \cdot (f^b)}) = \overline{\sigma(f^b) \cdot x \cdot \sigma(f)} = \overline{\chi \cdot x \cdot \sigma(f^b)}.
\]

Fjern i af sætning 2.3 at

\[
\omega_H \ast f^\ast \ast f(x) = \int \chi_{-x} \ast f^b. \overline{f^b} \, d\omega_H.
\]

Udnyttes Planckes sætning for jævn \(G_H \in \mathbb{H}^+\) til

\[
\int \chi_{-x} \ast f^b \overline{f^b} \, d\omega_H,
\]

men da ifølge e) på 43

\[
\chi_{-x} \ast f^b \overline{f^b} (y) = \langle x, y \rangle \overline{\chi_{-x} \ast f^b (y)} = \langle x, y \rangle \overline{f^b (y)},
\]

gør af (3) at

\[
\omega_H \ast f^\ast \ast f (x) = \int \langle x, y \rangle \overline{|f^b(y)|^2} \, d\omega_H (y).
\]

Hvilket vedrører mig at \(\omega_H = \overline{\omega_H}\). ∎

Af (4) følger for \(x = 0\)

\[
\int f^\ast \ast f \, d\omega_H = \int |f^b|^2 \, d\omega_H
\]

eller

\[
\int g \, d\omega_H = \int \overline{\chi f^b} \, d\omega_H
\]

hvor \(g = f^\ast \ast f\), \(f \in \mathcal{F}(G)\). Formel (6) gælder for en spæn.
klasse af funktions g. end vi har freist her. Det er
imidlertid vanskeligt at praecise for slibe g jaen
b) er gyldig. Formel (b) kaldes Poissons summations-
formel. Bemærk at (b) som et specialtilfælde, nemlig
H = 103, indeholder Blancharde's sætnings.

Lad H være en åben og danner afslutet under-
gruppe af G. For et Haarwal α på G er restriktionen
μ af α til H et mål på H som opfylder

\[ \int_H \mu = \mu \text{ for alle } \mu \in H. \]

Da H er åben og μ(H) = \( \omega_0(H) > 0 \), er μ > 0, og
altså er μ et Haarwal på H. I øvrigt er μ = \( \frac{1}{H} \omega_0 \) og
\( \omega_0 \) er en kontinent funktion.

**Vigtigt 9.4.** Lad B ⊆ G være en Borelmængde så
at \( 0 < \omega_0(B) < \infty \), har \( \omega_0 \) et Haarwal på B. Så er
3-3 en megn af 0. (Vigt: Se på f = \( \frac{1}{8} \).)

Lad H være en afslutet undergruppe af G med
egenskaben

\[ \sup \{ \omega_0(K) \mid K \text{ kompakt, } K \subseteq H \} > 0. \]

Så er H en åben undergruppe.

C) Lad G være en \( \sigma \)-kompakt LCA-gruppe og lad
\( \omega_0 \) være et Haarwal på G. Om en afslutet undergruppe
H ⊆ G gælder

\[ H \text{ åben } \iff \omega_0(H) > 0. \]

D) Der findes (i alte \( \sigma \)-kompakte) LCA-grupper G for
hvilke der findes en afskilt undergruppe $H$ med egenskaberne: $H$ ikke åben, $\omega _G(H) = \infty$.

Sætning 9.10. Lad $K$ være en kompakt undergruppe af $G$ og lad $\omega _K$ være det normaliserede Haarmål på $K$. Så er

$$\hat{\omega }_K = 1_{K^+}.$$

Bemærk. Det er klar at $\hat{\omega }_K(y) = 1$ for $y \in K^+$. For $y \in G \setminus K^+$ finder vi $x_0 \in K$ så $y(x_0) \neq 1$, og dernæst har vi

$$\hat{\omega }_K(y) = \int_{\hat{G}} \hat{\omega }_K(x) = \int_{y(x_0) \hat{G}} \hat{\omega }_K(x) = \hat{\omega }_K(y),$$

hvoraf følger at $\hat{\omega }_K(y) = 0$. \[\]

Da den Fouriertransformerede af $1_{K^+}$ er kontinuerligt $K^+$-ægte, er den videre allerede vist fra sætning 9.6. Af sætning 9.9 følger at $1_{K^+}$ og $1_{K^+}$ Haarmåler på $K^+$, indenfor harmoniserede med bemærkninger ovenfor om at Haarmålet på en åben undergruppe er restringering af Haarmålet på hele gruppen.

Eksempel. Lad $R$ være jordet med Lebesgue-måler $\omega _R$ og den duale gruppe $\hat{R} = R$ med det harmoniserende Haarmåler $\omega _R$. Den til $Z$ etfogomte undergruppe er

$$Z^+ = \{ y \in R \mid e^{ixy} = 1 \text{ for alle } x \in Z \}$$

altså.
\[ Z^\perp = 2\pi \mathbb{Z} = \{ 2\pi m \mid n \in \mathbb{Z} \}. \]

Vi udskår den diskrete gruppe \( \mathbb{Z} \) med Haarmålet
\[ \omega_\mathbb{Z} = \sum_{n \in \mathbb{Z}} \varepsilon_n. \]

Korresponden \( R/\mathbb{Z} \) identificeres med \( T \) gennem kanoniske afbildning \( \pi : R \to T \) er så \( \pi(x) = e \).

For funktionen \( f \in \mathcal{R}(R) \) giver red
\[ f(x) = \begin{cases} 1 - |x| & \text{for } |x| \leq 1 \\ 0 & \text{for } |x| > 1 \end{cases} \]

her vi.

\[ f^\perp(x) = 1 \quad \text{for alle } x \in R, \]

altså \( f^\perp = 1 \) på \( T \). Heraf følger at Haarmålet \( \omega_T \) på \( T \) så \( \omega_T = \frac{\omega_R}{\omega_\mathbb{Z}} \) har totalværdi 1. Af sætnin 9.7 følger at Haarmålet på \( \mathbb{Z}^\perp \)
\[ \omega_{\mathbb{Z}^\perp} = \sum_{n \in \mathbb{Z}} \varepsilon_{2\pi n} \]

er det Fouriertransformerede af \( \omega_\mathbb{Z} \) : \( F(\omega_\mathbb{Z}) = \omega_{\mathbb{Z}^\perp} \).

Poissonssummationstællere i dette hæftele
\[ \sum_{n \in \mathbb{Z}} g(n) = \sum_{n \in \mathbb{Z}} Fg(2\pi n), \quad (17) \]

gyldig for \( g = f^* f \), \( f \in \mathcal{R}(R) \).

Funktionen \( g(x) = \cos(2\pi x) \) er en kontinuerligt prækkedefinert funktion på \( R \) med associeret mål \( \mu = \frac{1}{2\pi} (\varepsilon + \varepsilon_{-2\pi}) \)

på \( R \). Periodegruppen \( \mathbb{P} \) for \( g \) er lig med \( \mathbb{Z} \).
Størken for vejr på et \( \theta - 2\pi, 2\pi \) som fremkræver den
helt ortogonale undergruppe \( \mathbb{Z}^* = 2\pi \mathbb{Z} \).

**Øvelse 7.5.** Ved hjælp af funktionsen \( f_2 \) på p. 90 skal
man vinke, at
\[
\frac{a^3}{2-3a} \frac{\pi^4}{6} = \sum_{n=1}^{\infty} \frac{\sin^4(\alpha n)}{n^4}, \quad 0 < a \leq 2
\]

math opis at finde summen af vejr for \( \frac{1}{2} < a \leq 1 \).
KAPITEL III. FOLDNINGSSEMIGRUPPER.

Litteratur:

§ 1. Bernoulli konvergenc.

Lad $X$ være et lokalkompakt rum. Vi skal indføre
topologie på forskellige rum af mål på $X$.

Den **vage topologi** på rummet $RM(X)$ af samtlige
mål på $X$ er den lokalkompakte topologi på $RM(X)$ bestemt
ved familien $f_\mu$, $\mu \in K(X)$, af seminormer

$$f_\mu (\mu) = |\langle \phi, \mu \rangle| = \int \phi \, d\mu , \; \mu \in RM(X).$$

Et med $(\mu_x)_{x \in A}$ på $RM(X)$ konvergerer vagt mod
$\mu \in RM(X)$, hvis og kun hvis det for alle $\phi \in K(X)$
gælder at

$$\lim_{A} \langle \phi, \mu_x \rangle = \langle \phi, \mu \rangle .$$

Det er klart, at den vage topologi er en Hausdorff
topologi og at rummet $RM^+(X)$ af positive mål er en
vagt afsluttet delrumaf $RM(X)$.
Den vage topologi er imidlertid ofte for grov, da du ved vag grænsevægning kan fremkøre "massetæb", idet den formieder masse ud i det uendelige. I tilfældet $X = \mathbb{R}$ vil f.eks. $E_n \to 0$ vagt fra $n \to \infty$.

Topologien for Bernoulli konvergens (eller Bernoulli topologien, kort: $B$-topologien) på rummet $M(X)$ af begrænsede mål på $X$ er den lokalcompacte topologi på $M(X)$ bestemt ved familjen $\mathcal{B}$ af seminormer

$$B_f(\mu) = | \langle f, \mu \rangle | = |\int f d\mu|,$$

hos $f$ gennemløben rummet $C_b(X)$ af kontinuerlige begrænsede funktioner på $X$.

Et net $\{\mu_x \mid x \in X\}$ på $M(X)$ konvergerer i Bernoulli-topologien mod $\mu \in M(X)$ med $\mu$

$$\lim_{x \to X} \langle f, \mu_x \rangle = \langle f, \mu \rangle$$

for alle $f \in C_b(X)$.

Ia $X(X) \subseteq C_b(X)$ er Bernoulli topologien på $M(X)$ feiner end delmænstopologien af den vage topologi på $M(X)$, og med mindre $X$ er kompakt er de to topologier forskellige.

Reglen $M_p(X)$ af primitiv begrænsede mål på $X$ er afsluttet i $B$-topologien.

Lad $g : X \to [0, \infty]$ være en nedad halvkontinuerlig funktion. Afbildningen
\[ RM_+(X) \ni \mu \mapsto \int g \, d\mu \in [0, \infty] \]

er nedad halvkontinuitet, maa \( RM_+(X) \) udskives med den vage topologi, thi den gælder for \( \mu \in RM_+(X) \) at

\[ \int g \, d\mu = \sup \{ \int f \, d\mu \mid f \in \mathcal{X}(X), 0 \leq f \leq g \}. \]

Så meget demner vi afbildningen

\[ M_+(X) \ni \mu \mapsto \int g \, d\mu \in [0, \infty] \]

nedad halvkontinuitet, maa \( M_+(X) \) er forsynet med \( B\)-topologien.

Specielt har vi for en åben mængde \( O \subseteq X \), at

\[ \mu \mapsto \mu(O) \]

er nedad halvkontinuitet på \( RM_+(X) \) med den vage topologi \( \gamma \) på \( M_+(X) \) med \( B\)-topologien.

\[ \text{Sætning 1.1. Lad } (\mu_x)_{x \in A} \text{ være en net af positive} \]

begrensete mål på \( X \) og lad \( \mu \in M_+(X) \). Nettet \( (\mu_x)_{x \in A} \)

konvergerer mod \( \mu \) i Borelmeasures topologi, thi og kun

hen \( (\mu_x)_{x \in A} \) konvergerer vage mod \( \mu \) og tillige

\[ \lim_{A} \mu_x(X) = \mu(X). \]

Bem. De \( \mathcal{C}_o(X) \subseteq \mathcal{C}(X) \) og da \( f \in \mathcal{C}_o(X) \) er "kom-

krævede" klar.

Lad \( f \in \mathcal{C}_o(X) \) og \( \varepsilon > 0 \) være givet.

Der findes en kompakt mængde \( K \subseteq X \) sa

\[ \mu(X \setminus K) < \varepsilon. \]
Derfor er $\omega(q)$ konvergent med et grænsepunkt som betegnes $2(q)$. Man ser her af abildningen

$$X(q) \ni q \mapsto \omega(q) \in C$$

er en positiv lineærform på $X$, altså et positivt mål $\theta$ på $X$. Det er klart at $\mu = \lambda$ i den vague-topologi.

Derfor er alle $\phi \in X$ med $0 < \phi < 1$ alle $\mu \in M$ gelder at $\mu(\phi) \leq C$, men $\mu \geq \lambda(\phi) \\geq C$, altså

$$\lambda(X) = \sup \{ \lambda(\phi) \mid \phi \in X, 0 < \phi < 1 \} \leq C,$$

og så er $\lambda \in M$. $\Box$

**Definition.** En delmængde $H \subseteq M_f(X)$ siger at tilfredsstillende Prohorov's betingelse erforsket

i) \exists \varepsilon > 0 : \sup_{\mu \in H} \mu(X) \leq \varepsilon

ii) \forall \varepsilon > 0 \exists K_\varepsilon \subseteq X kompakt \forall \mu \in H:

$$\mu(X \setminus K_\varepsilon) < \varepsilon.$$

**Sætning 1.3.** En delmængde $H \subseteq M_f(X)$ er relativt kompakt i Fernoniti-topologi, hvis og kun hvis den tilfredsstillende Prohorov's betingelse.

Bem. Antag først at $H$ opfylder Prohorov's betingelse, og lad $(\mu_k)_{k \in \mathbb{N}}$ være et sæt på $H$. Vi skal se, at der
Lad \( \psi \in \mathcal{X}(X) \) være mindst \( \geq 0 \) og \( \psi = 1 \) på \( \mu \circ X. \)

Jedst ifølge forudsætningerne
\[
\lim_{x \to \infty} \int (1-\psi) \, d\mu_x = \int (1-\psi) \, d\mu \leq \mu(X \setminus K) < \varepsilon
\]
og
\[
\lim_{x \to \infty} \int f \psi \, d\mu_x = \int f \psi \, d\mu,
\]
findes \( x_0 \in A \) så der for \( x \geq x_0 \) gælder
\[
\int (1-\psi) \, d\mu_x < \varepsilon, \quad \left| \int f \psi \, d\mu_x - \int f \psi \, d\mu_x \right| < \varepsilon,
\]
og derfor findes \( x \) for \( x \geq x_0 \) at
\[
\left| \int f \psi \, d\mu_x \right| \leq \left| \int f \psi \, d\mu_x - \int f \psi \, d\mu_x \right| + \left| \int f(1-\psi) \, d\mu_x \right|
\]
\[
+ \left| \int f(1-\psi) \, d\mu_x \right| \leq \varepsilon (1 + 2 \|f\|_\infty),
\]
ili helst, at \( \lim_{x \to \infty} \int f \psi \, d\mu_x = \int f \psi \, d\mu \).

**Bemærkning.** På mængden af sandsynlighedsvalg på \( X \) stemmer den vage topologi og Borelli-Bairetopologi ofte ens.

**Sætning 1.2.** For hvert \( \varepsilon > 0 \) er mængden
\[
\mathcal{H}_\varepsilon = \{ \mu \in \mathcal{M}_+(X) \mid \mu(X) \leq \varepsilon \}
\]

vage kompakt.

**Bevis.** Lad \( \tilde{\mathcal{U}} \) være et ultrafiltrer på \( \mathcal{H}_\varepsilon \). For hvert \( \phi \in \mathcal{X}(X) \) er
\[
\tilde{\mathcal{U}}(\phi) = \{ \mu(\phi) \mid \mu \in \mathcal{F}_3 \mid \mathcal{F} \in \tilde{\mathcal{U}} \}
\]
een ultrafiltrerens på den kompakte mængde
\[
\{ z \in \mathbb{C} \mid |z| \leq \|\phi\|_\infty C \}.
\]
findes et deltæt \((\mu_\beta)_{\beta \in B}\) og et mål \(\mu \in M_+(X)\) så

\[
\lim_{\beta \to \beta} \mu_\beta = \mu \quad \text{i Bernoullis topologi,}
\]

Idet specielt \(\mu_\beta(x) \leq C\) for alle \(x \in \Omega\), kan vi ifølge

fælind 1.2 finde et deltæt \((\mu_\beta)_{\beta \in B}\) af \((\mu_\beta)_{\beta \in B}\) og et mål

\(\mu \in M_+(X)\) så

\[
\lim_{\beta \to \beta} \mu_\beta = \mu \quad \text{i den vage topologi,}
\]

Vi vil se, at det faktisk gælder

\[
\lim_{\beta \to \beta} \mu_\beta = \mu \quad \text{i Bernoullis topologi,}
\]

og det vil vi det ifølge sætning 1.1 nok at vi vil at

\[
\lim_{\beta \to \beta} \mu_\beta(X) = \mu(X).
\]

Da afbildningen \(\lambda \mapsto \lambda(X)\) som kendt er nedad

halvkontinueret på \(RM_+(X)\) udsted med den vage topologi, har vi

\[
\mu(X) = \liminf_{\beta \to \beta} \mu_\beta(X).
\]

Til \(\varepsilon > 0\) findes ifølge vi en kompakt mængde \(K_\varepsilon \subseteq X\)

sa

\[
\lambda(X \setminus K_\varepsilon) < \varepsilon \quad \text{for alle } \lambda \in H.
\]

Vi valger \(\psi \in \mathcal{K}(X)\) så \(0 \leq \psi \leq 1\), \(\psi = 1\) på \(K_\varepsilon\). Altså er

\(1 - \psi \leq 1\setminus K_\varepsilon\) og dermed har vi

\[
\lambda(1 - \psi) < \varepsilon \quad \text{for alle } \lambda \in H,
\]

specielt
\[ \mu_\beta(x) < \varepsilon + \mu_\beta(x) \quad \text{for } \beta \in \mathcal{B}. \]

Heraf følger

\[ \limsup_{\beta} \mu_\beta(x) \leq \varepsilon + \liminf_{\beta} \mu_\beta(x) = \varepsilon + \mu(x) \leq \varepsilon + \mu(x), \]

og da \( \varepsilon > 0 \) var vilkårlig, har vi

\[ \limsup_{\beta} \mu_\beta(x) \leq \mu(x). \]

Antag nu anvendt at \( H \) er relativt kompakt. Så er \( \overline{H} \) kompakt og dermed is afbildningen

\[ M_+(X) \ni \mu \mapsto \mu(x) \]

tegnelse \( \mu \in \overline{H} \), hvilket betyder i)

Lad \( \varepsilon > 0 \). Til hvert \( \mu \in \overline{H} \) findes en kompakt mengde \( K_\mu \subset X \) så

\[ \mu(x \setminus K_\mu) < \varepsilon. \]

Lad \( \mu \) være en åben, relativt kompakt mengde af \( K_\mu \).

Ved funktionsmin

\[ M_+(X) \ni \lambda \mapsto \lambda(x \setminus K_\mu) \]

for fast \( \mu \) er opad holomorf i \( B \)-topologien på \( M_+(X) \)
e nævneværdige

\[ \nu_\mu = \{ \lambda \in \overline{H} \mid \lambda(x \setminus K_\mu) < \varepsilon \} \]

en åben mengde af \( \mu \) i den inducerede topologi på \( \overline{H} \).

Der findes desuden endeligt mange funktioner \( \mu_1, \ldots, \mu_m \in \overline{H} \) så

\[ \overline{H} = \nu_{\mu_1} \cup \cdots \cup \nu_{\mu_m}. \]
Derved gælder for mangeleden

$$k_\varepsilon = \bigcup_{i=1}^n U_{i\varepsilon}$$

at $k_\varepsilon$ er kompakt og videre at

$$\mu(X \setminus k_\varepsilon) < \varepsilon$$

for $\mu \in \mathcal{M}(\mathbb{R})$.

Altér at betegnelse i) er opfyldt.

**Øvelse 11.** Lad $\mu$ være vekst grænsepunkt for et
met $(\mu_x)_{x \in \mathcal{X}}$ af positive etpunkturale $\mu^0 x$. Da finder
$x \in X$ og $k \geq 0$ så $\mu = k \varepsilon_x$.

**Øvelse 1.2.** Mangeleden af punktuer $\{\varepsilon_x | x \in X\}$ er et
afhængigt delmangele af $M_+(X)$ i $B$-topologi. Og afbildnin-
gen $x \mapsto \varepsilon_x$ af $X$ på $\{\varepsilon_x | x \in X\}$ er en homeomorfi.

**Øvelse 1.3.** Lad $G$ være en LCA-gruppe.

9) Foldsningen $*: M_+(G) \times M_+(G) \rightarrow M_+(G)$ er kontinuer-
net, med $M_+(G)$ indbygget med Bernoullis topologi.

4) Foldsningen $*: M_+(G) \times M_+(G) \rightarrow M_+(G)$ er ikke kon-
tinueret, med $M_+(G)$ har den vage topologi, med anden $G$

5) $\varepsilon$ kompakt.

C) Foldsningen $*: (M_+(G), B) \times (M_+(G), \varepsilon) \rightarrow (M_+(G), \varepsilon)$

er ikke kontinueret med anden $G$ er kompakt. Hvis topologien
$(M_+(G), B)$ resp. $(M_+(G), \varepsilon)$ at $M_+(G)$ er indbygget med $B$-topologi
resp. den vage topologi.
Lad $G$ være en $LCA$-gruppe og lad $\Gamma$ være den til $G$ duale gruppe med Haarmålestyrke.

Sætning 1.4. Lad $(\mu_x)_{x \in \Gamma}$ være et nedm. på $M_+(G)$ der konvergerer mod $\mu \in M_+(G)$ i Bernselli-topologi. Da gælder

$$\hat{\mu}_x(y) \rightarrow \hat{\mu}(y)$$

ligeligt over kompakte delmængder af $\Gamma$.

Bem. Det er klart at

$$\lim_{x \rightarrow x_0} \hat{\mu}_x(y) = \hat{\mu}(y) \quad \text{for alle } y \in \Gamma.$$

Vi viser først, at der til $\varepsilon > 0$ findes $V \in \mathfrak{V}(0)$ og $x_0 \in \Gamma$ så det for alle $x \in \Gamma$ med $x \geq x_0$ og alle $s, t \in G$ med $s^{-1}t \in V$ gælder

$$|\hat{\mu}_x(s) - \hat{\mu}_x(t)| \leq \varepsilon.$$

Lad $\delta > 0$ være valgt så $\delta(3 + \mu(G)) \leq \varepsilon$. Der finder $x'$ så

$$\mu_x(G) \leq \mu(G) + \delta$$

for $x \geq x'$.

Vi markerer $\varrho \in K(G)$ med $0 \leq \varrho \leq 1$ så $\int (1 - \varrho) d\mu < \delta$.

Vi satser

$$V = \mathfrak{U}(\text{supp} \varrho, \delta).$$

Der findes $x'' \in \Gamma$ så

$$\int (1 - \varrho) d\mu_x < \delta$$

for $x \geq x''$.

Hvis $x_0 \in \Gamma$ er valgt så $x_0 \geq x'$ og $x_0 \geq x''$ gælder for alle
\[ \alpha \geq \alpha_0 \quad \forall \alpha : \beta_1, \beta_2 \in \beta \quad \text{med} \quad \gamma - \delta_2 \in \gamma \quad \text{at} \]

\[ |\hat{\mu}_\alpha (y_1) - \hat{\mu}_\alpha (y_2)| \leq \]

\[ \int |\overline{f}_1 (x) - \overline{f}_2 (x)| \phi (x) \, d\mu (x) + \int |\overline{f}_1 (x) - \overline{f}_2 (x)| (1 - \phi (x)) \, d\mu (x) \]

\[ \in \delta \mu (\text{supp} \phi) + 2 \int (1 - \phi (x)) \, d\mu (x) \leq \delta (\mu (\phi) + 1) + 2 \delta \leq \varepsilon. \]

Vi kan nu se, at de to funktionsværdier

\[ |\hat{\mu}_\alpha (y_1) - \hat{\mu}_\alpha (y_2)| \leq \frac{\varepsilon}{3} \quad \text{for} \quad \gamma - \delta_2 \in \gamma. \]

Ved grænseoversættelse for \( \alpha \in \beta \) finder vi at

\[ |\hat{\mu} (y_1) - \hat{\mu} (y_2)| \leq \frac{\varepsilon}{3} \quad \text{for} \quad \gamma - \delta_2 \in \gamma. \]

Kompaktheden af \( \beta \) giver, at de funiverger

\[ \gamma \in \bigcup_{i=1}^{m} (y_i + \gamma). \]

Da \( \hat{\mu} \rightarrow \hat{\mu} \) punktvis funivergerer \( \alpha \in \beta \), \( i=1 \ldots n \) så

\[ |\hat{\mu}_\alpha (y_i) - \hat{\mu} (y_i)| \leq \frac{\varepsilon}{3} \quad \text{for} \quad \gamma - \delta_2 \in \gamma, \quad i=1 \ldots n. \]

Valges \( \alpha^* \in \beta \) med \( \alpha^* \geq \alpha_i \), \( i=0,1 \ldots n \) så

\[ \gamma \in \bigcup_{i=1}^{m} (y_i + \gamma), \quad \gamma \text{dermed har vi for} \quad \gamma - \delta_2 \in \gamma, \quad \text{at} \]

\[ |\hat{\mu}_\alpha (y) - \hat{\mu} (y)| \leq \]

\[ |\hat{\mu}_\alpha (y) - \hat{\mu}_\alpha (y_i)| + |\hat{\mu}_\alpha (y_i) - \hat{\mu} (y_i)| + |\hat{\mu} (y_i) - \hat{\mu} (y)| \leq \varepsilon. \]
Korollar 1.5. Fouriertransformations $F$ er en homeomorfie af leglen $M_+(G)$ af positive begrensdte

mod på $G$ integreret med Bernoulli topologi, på leglen $P(\Gamma)$ af kontinuerte positive definite funktioner på $\Gamma$ integreret med topologi for ligeligt konvergente komplekte deleintegrationer af $\Gamma$.

Beweis. Det følger af Bochners sætning og sætning 1.4 at $F : M_+(G) \to P(\Gamma)$ er en biæquivariant kontinuerlig

afbildning. Lad $(\psi_x)_{x \in \mathcal{A}}$ være et net på $P(\Gamma)$ der konvergerer mod $\psi \in P(\Gamma)$ ligeligt over kompatible deleintegrationer af $\Gamma$. Lad $\mu_x$ og $\mu$ være de positive begrensdte mod på $G$ så $F\mu_x = \psi_x$, $F\mu = \psi$. Vi skal vise at


\[ \lim_{x \to \mu} \mu_x = \mu \quad \text{vagt}, \]

idet vi har


\[ \lim_{x \to \mu} \mu_x (G) = \lim_{x \to \mu} \psi_x (0) = \psi (0) = \mu (G). \]

Lad altid $\phi \in K(G)$. Til $\varepsilon > 0$ findes $f \in K(\Gamma)$ så $\| \phi - f \|_\infty < \varepsilon$, og dermed har vi


\[ |\mu_x (\phi) - \mu (\phi)| \leq |\mu_x (\phi - f)| + |\mu_x (f) - \mu (f)| + |\mu (f - \phi)| \]

\[ \leq \varepsilon (\mu_x (G) + \mu (G)) + |\mu_x (f) - \mu (f)|. \]

Her kan andet side betegnes ved Fatou's sætning.
\[ |\mu_n(\phi) - \phi(\phi)| = \left| \int \phi_n(y) f(y) \, dy - \int \phi(y) f(y) \, dy \right| = \int |\phi_n(y) - \phi(y)| \, |f(y)| \, dy, \]

som går mod 0 da \( \phi_n \rightarrow \phi \) ligeligt over den kompakte mængde \( \text{supp}(\phi) \).

Sætning 1.6 (Lévy's Kontinuitetsætning). Lad \( \mu_n \) være en følge af positive begrænsede måler på \( G \) og lad \( \psi : \Gamma \rightarrow \mathbb{C} \) være en funktion på \( \Gamma \), der er kontinuerligt i 0. Hvis

\[ \lim_{n \to \infty} \mu_n(\psi) = \psi(\phi) \quad \text{for alle } \phi \in \Gamma, \]

så findes et positivt begrænset mål \( \mu \) på \( G \) så \( \lim_{n \to \infty} \mu_n = \mu \) i B-topologien. (Dermed gælder endda \( \mu_n \rightarrow \mu = \psi \) ligeligt over kompakte delmængder af \( \Gamma \)).

Tæn, at \( \psi \) er en punktvis grænsemæning af \( \psi \) på \( \Gamma \), så \( \psi \) er kontinuerligt berflfunktionen er \( \psi \) positiv definit, og da endvidere \( \psi \) er kontinuerligt i 0, er \( \psi \) kontinuerligt (Lemma 1.6), altså er \( \psi \in \mathcal{F}(\Gamma) \). Lad \( \mu \in M_2(G) \) så \( \mu = \psi \). Der gælder

\[ \mu_n(\sigma) = \psi_n(\sigma) \rightarrow \psi(\sigma) = \mu(\sigma), \]

så for at vise sætningen, skal vi blot godtgøre at

\[ \lim_{n \to \infty} \mu_n = \mu \text{ vægt}. \]

Sæt det fastslående nummer for korollar 1.5. Lad \( \varphi \in \mathcal{K}(G) \) og \( \varepsilon > 0 \) være givet. Vi ved at \( \varphi \in \mathcal{K}(G) \)

\[ \| \varphi - \varphi \|_\infty < \varepsilon \]  

før da

\[ |\mu_n(\varphi) - \mu(\varphi)| \leq \varepsilon (\mu_n(\varphi) + \mu(\varphi)) + |\mu_n(\varphi) - \mu(\varphi)|. \]
Der findes en konstant $K$ så

$$\mu_n(x) + \mu(x) \leq K$$

for alle $n$, og da med findes $n$

$$|\mu_n(x) - \mu(x)| \leq \varepsilon K + \int |\hat{\mu}_n(y) - \psi(y)| |f(y)| dy.$$ 

Integranden

$$|\hat{\mu}_n(y) - \psi(y)| |f(y)|$$

går punktvis mod 0, og har den inteğrtale majorant $K |f(y)|$, og af sætning 12 majoriserer konveergens følgende, at

$$\lim_{n \to \infty} \int |\hat{\mu}_n(y) - \psi(y)| |f(y)| dy = 0.$$

Altså findes $N$ så der for $n \geq N$ gælder

$$|\mu_n(x) - \mu(x)| \leq (K+1) \varepsilon.$$ 

**Bemærkning.** Man kunne måske lide, at sætning 16 kunne skrives til med i stedet for følgende, selv om teoretisk ikke fremgår, da sætning 12 majoriserer konveergens i stedet for met. Dette er imidlertid ikke tilfældet som følgende eksempel viser.

**Eksempel.** Lad $G$ betegne produktgruppen $\prod_{R}$ af cikelgrupper $\mathbb{T}$ med sig selv "$R$-gange". Gruppen $G$ er altså sænzunden af afbildningen af $R$ ved i $\mathbb{T}$ og komponenten i $G$ er punktvis multiplikation. Topologien på $G$ er produkttopologien, altså initialtopologien for projik-
afbildning \( \varphi : R \to G \), der defineres ved
\[
\varphi(x) = (e^{-itx})_{t \in R}
\]
defineres en afbildning \( \varphi : R \to G \), som defineres er en
kontinuerlig og injectiv homomorfisme.

Afbildningen \( \varphi \) er ikke en homeomorfisme af \( R \) på
\( \varphi(R) \), thi i så fald er \( \varphi(R) \) en lokal-kompakt under-
gruppe i \( G \) og dermed afsluttede (lemma II, 7.1) og endelig
kompakt, men så er \( R \) homeomorf med den kompakte
undergruppe \( \varphi(R) \), hvilket er umuligt.

Da \( \varphi \) således ikke er en homeomorfisme af \( R \) på
\( \varphi(R) \) findes det ved \( (y_k)_{k \in A} \) i \( \varphi(R) \) og et \( y \in \varphi(R) \)
så
\[
\lim_{A} y_k = y \quad \text{i} \quad \varphi(R),
\]
og således at melket \( (x_k)_{k \in A} \) på \( R \) hvor \( x_k = \varphi^{-1}(y_k) \) ikke
konvergerer mod \( x = \varphi^{-1}(y) \).

Vi definerer nu et melket \( (\mu_k)_{k \in A} \) på \( M^+(R) \) ved
\[
\mu_k = \xi_{x_k}.
\]
Så gælder
\[
\int (t) = e^{-itx_k} = \pi_x(\varphi(x_k)) = \pi_x(y_k) = \pi_x(y) = \pi_x(\varphi(x))
\]
\[
= e^{-itx} = \xi_{x}(t).
\]
Vi har dermed et melket \( (\mu_k)_{k \in A} \) på \( M^+(R) \) så
melket \( (\mu_k)_{k \in A} \) konvergerer punktvis mod den kontinu-
erele funktion \( \xi_x \), men melket \( (\mu_k)_{k \in A} \) konverger
ikke i $M_+(R)$ med Bernoulli-topologi, thi det eneste mulige grænsepunkt ville være $\mu = \delta_x$, men så måtte også $x_0 \rightarrow x$, jfr. Øvelse 1.2.

§ 2. Foldningsseminigrupper

Lad $G$ være en LCA-gruppe med dual gruppe $\Gamma$ og indbyrdes harmoniserende Haarvæg $\omega$ på $G$ og $\Gamma$.

Definition. Et positivt begrænset mål $\mu \neq 0$ på $G$ kaldes idempotent, så femt

$$\mu \ast \mu = \mu.$$ 

Et idempotent mål $\mu$ har totalmassse 1 ($\mu(G) = 1$), og det er klart, at det normaliserede Haarvæg $\omega_K$ for en kompakt undergruppe $K$ af $G$ (opfattet som mål på $G$) er idempotent.

Sætning 2.1. Lad $\mu$ være et idempotent mål på $G$. Der findes en kompakt undergruppe $K$ af $G$ så $\mu = \omega_K$, hvor $\omega_K$ er det Haarvæg på $K$ så $\omega_K(K) = 1$.

Bevis. Den Fourier-transformerede $\hat{\mu} : \Gamma \rightarrow C$, af $\mu$ opfylder $$(\hat{\mu})^2 = \hat{\mu},$$ og $\hat{\mu}$ antager altid kun værdierne 0 og 1. Mængden

$$\Gamma_1 = \{ \xi \in \Gamma \mid \hat{\mu}(\xi) = 1 \}$$

er ikke tom ($0 \in \Gamma_1$) og da $\hat{\mu} = 1_{\Gamma_1}$ er en positiv definit
funktion på \( \Gamma \), ved vi at \( \Gamma \) er en undergruppe af \( \Gamma \) (Ævelse II, 4.2), som er både åben og afsluttet fordi \( \mu \) er kontinuerligt.

Underskriver \( K = \Gamma \backslash \Gamma \) af \( G \) er kompakt og det normaliserende Haarnål \( \omega_K \) på \( K \) har \( 1_{\Gamma} = \mu \) som Fouriertransform (Sætning II.9.10), altså \( \mu = \omega_K \).

Vi skal nu studere familien \( (\mu_t)_{t \geq 0} \) af positive, begrenzede mål \( \mu_t \) på \( G \) der opfylder "foldnings ligninger"

\[
\mu_t \ast \mu_s = \mu_{t+s} \quad \text{for alle } t, s \geq 0 \tag{1}
\]

For målet \( \mu_0 \), giver (1), at

\[
\mu_0 \ast \mu_0 = \mu_0,
\]

og da findes derfor i folge Sætning 2.1 en kompakt undergruppe \( K \) af \( G \) så \( \mu_0 = \omega_K \). Vi har således for alle \( t \geq 0 \), at

\[
\mu_t \ast \omega_K = \mu_t
\]

og heraf følger, at \( \mu_t \) er periodisk med alle \( k \in K \) som perioder, thi

\[
\delta_k \ast \mu_t = \delta_k \ast \omega_K \ast \mu_t = \omega_K \ast \mu_t = \mu_t.
\]

Familien \( (\mu_t)_{t \geq 0} \) kan derfor faktoriseres i en familie \( (\mu_t)_{t \geq 0} \) af positive begrenzede mål på \( G/K \), og Lemma 2.2 nedenfor viser, at denne familie opfylder.
\[
\dot{\mu}_t \ast \dot{\mu}_s = \dot{\mu}_{t+s} \quad \text{for alle } t, s \geq 0
\]
og
\[
\dot{\mu}_0 = \varepsilon_0 \quad (\text{på } G/K).
\]
Vi vil derfor i det følgende indskrænke os til at betragte familier \((\mu_t)_{t \geq 0}\) af positive begrenrede mål på \(G\), der tilfredsstilte betingelse \((1)\) og endvidere opfylder
\[
\mu_0 = \varepsilon_0.
\]

\[\text{(2)}\]

**Lemma 2.2.** Lad \(K\) være en kompakt undergruppe af \(G\) og lad \(\mu, \nu \in M^+(G)\) opfyde \(P_\mu \geq K\) og \(P_\nu \geq K\). Da er \(P_{\mu \ast \nu} \geq K\) og de fæktionserede mål \(\dot{\mu}, \dot{\nu}\) og \((\mu \ast \nu)^*\) på \(G/K\) opfylder
\[
(\mu \ast \nu)^* = \dot{\mu} \ast \dot{\nu}.
\]

**Bevis.** Vi bemærker først, at den kanoniske afbildning
\[
\pi : G \rightarrow G/K
\]
er egentlig, d.v.s. at \(\pi^{-1}(C)\) er kompakt i \(G\) for enhver kompakt delmængde \(C \subseteq G/K\). Der findes nemlig en kompakt mængde \(D \subseteq G\) så \(\pi(D) = C\) (p.110) og man ser let, at den afsluttede mængde \(\pi^{-1}(C)\) er indeholdt i den kompakte mængde \(D + K\).

For \(f \in K(G/K)\) er \(f = h \circ \pi\) derfor en funktion i \(K(G)\) og \(P_f \geq K\). Derfor er \(f^* = f\) (dette fundersåelte, at vi som Haar-mål på \(K\) benytter det normaliserede Haarmål \(\omega_K\) med \(\omega_K(K) = 1\), og \(\pi^* = h\). Heraf følger, at hvis \(\mu\) er et mål på \(G\) med \(P_\mu \geq K\), så er

\[
\mu + K \subseteq G/K
\]
\[ \mu \text{ leg med billedmålet } \Pi(\mu), \text{ hvilket med betegnelserne ovenfor har vi } \]

\[ \int_{G/K} h \, d\Pi(\mu) = \int_G h \circ \Pi \, d\mu = \int_G f \, d\mu = \int_{G/K} f \, d\mu. \]

Da \( \Pi : G \to G/K \) er en homomorphi, er det let at vise formlen i lemmaet. For \( \chi(\Gamma_r(G/K)) \) har vi nemlig:

\[ \int_{G/K} h \, d\Pi(\mu \star \nu) = \int_G \int_G h(\Pi(x) \star \Pi(y)) \, d\mu(x) \, d\nu(y) \]

\[ = \int_G \left( \int_{G/K} \tau - \Pi(y) \, h(\Pi(x)) \, d\mu(x) \right) \, d\nu(y) \]

\[ = \int_G \left( \int_{G/K} h(\xi + \Pi(y)) \, d\Pi(\mu)(\xi) \right) \, d\nu(y) \]

\[ = \int_{G/K} \left( \int_G \tau - \xi \, h(\Pi(y)) \, d\nu(y) \right) \, d\Pi(\mu)(\xi) \]

\[ = \int_{G/K} \left( \int_{G/K} \tau - \xi \, h(\eta) \, d\Pi(\nu)(\eta) \right) \, d\Pi(\mu)(\xi) \]

\[ = \int_{G/K} h \, d[\Pi(\mu) \star \Pi(\nu)] \cdot \square \]

**Definition.** En familie \( (\mu_t)_{t > 0} \) af positive mål på \( G \) med egenskaberne

i) \( \int d\mu_t = \mu_t(G) \leq 1 \) for \( t > 0 \)
ii) \( \mu_t \cdot \mu_s = \mu_{t+s} \) for \( t, s > 0 \)

iii) \( \lim_{t \to 0} \mu_t = \varepsilon_0 \) i den vague topologi på \( M_+(G) \).

kaldes en (vægt kontinuerligt) foldningssemigruppe på \( G \).

Lad \( (\mu_t)_{t \geq 0} \) være en foldningssemigruppe på \( G \). Vi kan (og vil) altid tænke os \( (\mu_t)_{t \geq 0} \) "fortsat" til en familie \( (\tilde{\mu}_t)_{t \geq 0} \) hvor

\[
\tilde{\mu}_t = \begin{cases} 
\mu_t & \text{for } t > 0 \\
\varepsilon_0 & \text{for } t = 0.
\end{cases}
\]

Dermed vil familien \( (\tilde{\mu}_t)_{t \geq 0} \) opfylde (1) og (2) ovenfor.

Når man i praksis skal eftervise, at en forelagt familie \( (\mu_t)_{t \geq 0} \) udgør en foldningssemigruppe i Fouriertransformationen ofte et nyttigt hjælpemiddel.

Betingelse ii) er nemlig eusbetydelende med at

\[
\hat{\mu}_t \cdot \hat{\mu}_s = \hat{\mu}_{t+s} \text{ for } t, s > 0,
\]

og for at vise iii) er det tilstrækkeligt at godtgøre, at der for enhver følge \( (t_n)_{n \in \mathbb{N}} \) af positive tal så \( t_n \to 0 \) og for alle \( x \in \Gamma \) gælder

\[
\lim_{n \to \infty} \hat{\mu}_{t_n}(x) = 1
\]

\( \mu \)-st. Levy's kontinuitetssætning 1.6.

Eksempel. Lad \( G = \mathbb{R}^m \). Ved den Brown'ske (eller
Gaussiske) følgerens semigruppe på $\mathbb{R}^n$ forstås familien $(\mu_t)_{t \geq 0}$, hvor $\mu_t$ for $t > 0$ har tæthed

$$
\mu_t(x) = (4\pi t)^{-\frac{n}{2}} \exp \left(-\frac{\|x\|^2}{4t}\right).
$$

Den Fourier-transfonnerede af $\mu_t$ udregnes ved at Fourier-transfonner i hver koordinat for sig under udnyttelse af formelen på 85:

$$
\hat{\mu}_t(y) = \int_{\mathbb{R}^n} e^{-ix \cdot y} (4\pi t)^{-\frac{n}{2}} \exp \left(-\frac{\|x\|^2}{4t}\right) dx
$$

$$
= \prod_{k=1}^{n} \int_{\mathbb{R}} e^{-ix_k \cdot y_k} (4\pi t)^{-\frac{1}{2}} \exp \left(-\frac{x_k^2}{4t}\right) dx_k
$$

$$
= \prod_{k=1}^{n} \exp \left(-ty_k^2\right)
$$

$$
= \exp \left(-t \|y\|^2\right)
$$

Da $\hat{\mu}_t(0) = 1$ er $\mu_t$ tæthed for et sandsynlighedsområde.

Af udregninger oven for følger klart, at

$$
\hat{\mu}_t \cdot \hat{\mu}_s = \hat{\mu}_{t+s} \quad \text{for} \quad t, s > 0
$$

og

$$
\lim_{t \to 0} \hat{\mu}_t(y) = 1 \quad \text{for alle} \quad y \in \mathbb{R}^n.
$$

Övelse 2.1 G = $\mathbb{R}$, Familien $(\Pi_t)_{t > 0}$ af mål på $\mathbb{R}$, hvor
\[ \Pi_t = \sum_{k=0}^{\infty} e^{-t} \frac{t^k}{k!} \varepsilon_k \quad \text{for } t > 0, \]

udgør en foldningsseminigruppe, den **Poisson'ske foldningssemigruppe** på \( \mathbb{R} \).

**Øvelse 2.2**. \( G = \mathbb{R} \). Familien \( (\nu_t)_{t>0} \) af mål på \( \mathbb{R} \), hvor \( \nu_t \) for \( t > 0 \) har tæthed:

\[ f_t(x) = \frac{t}{\pi} \frac{1}{t^2 + x^2} \quad \text{for } x \in \mathbb{R} \]

m.h.t. Lebesgue-målet, udgør en foldningsseminigruppe, den **Cauchy'ske foldningsseminigruppe** på \( \mathbb{R} \).

**Øvelse 2.3**. Lad \( x : \mathbb{R} \to G \) være en kontinuerlig afbildning, der tilfredsstiller ligningen

\[ x(t+s) = x(t) + x(s) \quad \text{for } t, s > 0. \]

Ved \( \mu_t = \varepsilon_{x(t)} \) for \( t > 0 \) defineres en foldningsseminigruppe \( (\mu_t)_{t>0} \) af "**translationer" på \( G \).

**Sætning 2.3**. For en foldningsseminigruppe \( (\mu_t)_{t>0} \) af afbildninger

\[ \mathbb{R} \to G \quad \text{af } t \mapsto \mu_t \in M_+(G) \]

kontinuerligt, når \( M_+(G) \) udstyres med B-topologi.

**Bevis**: Vi viser først at

\[ \lim_{t \to 0} \mu_t(G) = 1 \quad \text{(3)}. \]
Lad $\varphi \in K(G)$ med $0 \leq \varphi \leq 1$ og $\varphi(0) = 1$. Dermed er

$$t = \varphi(0) = \lim_{t \to 0} \mu_t(\varphi) \leq \liminf_{t \to 0} \mu_t(G) \leq \limsup_{t \to 0} \mu_t(G) = 1,$$

hvor den sidste vurdering følger af betingelse i), og dette viser (3).

Af sætning 1.1 følger da, at

$$\lim_{t \to 0} \mu_t = \varepsilon_0 \quad i \ B-\text{topologi?}$$

Dette medfører, at

$$\mu_t \ast \varphi \to \varphi \quad \text{uniformt for} \ t \to 0 \quad (4)$$

for hvert fast $\varphi \in K(G)$. Lad nemlig $\varphi \in K(G)$ og $\varepsilon > 0$. Den legelige kontinuitet af $\varphi$ giver, at der findes $V \in U(0)$ så

$$x - y \in V \implies |\varphi(x) - \varphi(y)| < \varepsilon.$$  

Lad $\psi \in K(G)$ være valgt så $0 \leq \psi \leq 1$ og $\text{supp} \psi \subset V$ og så $\psi(0) = 1$. For alle $x \in V$

$$|\varphi(x) - \mu_t \ast \varphi(x)| \leq |\varphi(x) - \varphi(x) \cdot \mu_t(G)| + \left| \int (\varphi(x) - \varphi(x-y)) d\mu_t(y) \right|$$

$$\leq \|\varphi\|_{\infty} |1 - \mu_t(G)| + \left| \int |\varphi(x) - \varphi(x-y)| \psi(y) d\mu_t(y) \right|$$

$$+ \left| \int |\varphi(x) - \varphi(x-y)| (1 - \psi(y)) d\mu_t(y) \right|$$

$$\leq \|\varphi\|_{\infty} (1 - \mu_t(G)) + \varepsilon + 2 \|\varphi\|_{\infty} \int (1 - \psi(y)) d\mu_t(y)$$

hvilket viser (4), da første og sidste led går mod 0 for $t \to 0$. 
Vi kan nu vise, at afbildningen

$$t \mapsto \mu_t$$

er vagt konvinent. Lad $\phi \in \mathcal{K}(G)$, $t_0 > 0$ og $\varepsilon > 0$ være givet.

For $t > t_0$ finder vi

$$|\mu_t(\phi) - \mu_{t_0}(\phi)| = |\mu_{t_0} \ast (\mu_{t-t_0} - \varepsilon) \ast \phi(0)|$$

$$\leq \| (\mu_{t-t_0} - \varepsilon) \ast \phi \|_\infty$$

da $\mu_{t_0}(G) \leq 1$, og analogt for $t \in [0, t_0[$

$$|\mu_{t_0}(\phi) - \mu_t(\phi)| = |\mu_t \ast (\mu_{t_0-t} - \varepsilon) \ast \phi(0)|$$

$$\leq \| (\mu_{t_0-t} - \varepsilon) \ast \phi \|_\infty$$

hvilket viser, at $\mu_t(\phi) \rightarrow \mu_{t_0}(\phi)$ for $t \rightarrow t_0$, da begge siderne går mod $0$ for $t \rightarrow t_0$ ifølge (4).

For $t, t_0 > 0$ viser udviklingen

$$|\mu_{t_0}(G) - \mu_t(G)| = |(\mu_{t_0-t}(G) - 1) \mu_t(G)| \leq |\mu_{t_0-t}(G) - 1|$$

for $t < t_0$, og

$$|\mu_{t_0}(G) - \mu_t(G)| = |(\mu_{t-t_0}(G) - 1) \mu_{t_0}(G)| \leq |\mu_{t-t_0}(G) - 1|$$

for $t_0 < t$, ifølge (3), at afbildningen

$$t \mapsto \mu_t(G)$$

er konvinent, hvilket sammen med den vage konvinitet af (5), ifølge Sætning 1.1 giver at (5) er B-konvinent. $\square$
Korollar 2.4 Lad \( f : G \to \mathbb{C} \) være en ligelig kontinuer-
leget funktion. Da gælder at

\[
\mu_t \ast f \to f \quad \text{ligelig på } G
\]

for \( t \to 0 \).

Bevis. Dette følgs på samme måde som (4) i beviset for
sætning 2.3.


Øvelse 2.4. Forudsætningen om ligelig kontinuitet af
\( f \) i korollar 2.4 kan ikke undværes, hvilket ses ved ek-
semplet på \( G = \mathbb{R} \). Man kan benytte foldningssemi-
gruppen \( (\mu_t)_{t>0} \), hvor \( \mu_t = \delta_t \) for \( t>0 \). Sml. Øvelse 2.3.

Sætning 2.5. Lad \( (\mu_t)_{t>0} \) være en foldningsseminigruppe
på \( G \). Den mindste afsluttede undergruppe \( G_0 \) af \( G \),
der indeholder \( \text{supp}(\mu_t) \) for alle \( t>0 \), er \( \delta \)-kompakt.

Vi viser først nogle hjælperesultater.

Lemma 2.6. Lad \( A \subseteq G \) være en \( \delta \)-kompakt delmæng.
de af \( G \). Da er \( A \) \( \delta \)-kompakt.

Bevis. Lad \( (K_m)_{m \in \mathbb{N}} \) være en følge af kompakte
delmængder af \( G \) så

\[
A = \bigcup_{m=1}^{\infty} K_m
\]

og vælg en kompakt, symmetrisk omegn \( K \) af \( 0 \). Da er

\[
\overline{A} \subseteq \bigcup_{m=1}^{\infty} (K_m + K),
\]
thi for $x \in \tilde{A}$ gælder $(x + K) \cap A \neq \emptyset$, og der findes derfor $n \in \mathbb{N}$ så

$$(x + K) \cap K_n \neq \emptyset$$

altså $x \in K_n + K$. Vi har dermed

$$\bar{A} = \bigcup_{n=1}^{\infty} (\bar{A} \cap (K_n + K))$$

hvor $\bar{A} \cap (K_n + K)$ er kompakt for alle $n \in \mathbb{N}$. $\Box$

Lemma 2.7. Den mindste afsluttede undergruppe $G_A$ af $G$, der indeholder en $\xi$-kompakt delmængde $A \subseteq G$, u $\xi$-kompakt.

Bemærk. Lad $(K_n)_{n \in \mathbb{N}}$ være en voksende følge af kompakte mængder så

$$A = \bigcup_{n=1}^{\infty} K_n .$$

Dermed er mængderne

$$L_n = K_n \cup \{0\} \cup (-K_n)$$

kompakte, og videre er

$$L_n^p = L_n + \ldots + L_n \quad (p \text{ addeder})$$

kompakt for alle $n, p \in \mathbb{N}$. Foreningsmængden

$$G_A^\xi = \bigcup_{n, p=1}^{\infty} L_n^p$$

er en $\xi$-kompakt undergruppe af $G$, nemlig den mindste undergruppe af $G$, der indeholder $A$. 
Afslutningen \( G_A = \overline{G_A} \) af \( G_A \) er dermed den mindste afsluttede undergruppe af \( G \) der indeholder \( A \), og ifølge 2.6 er \( G_A \) \( \sigma \)-kompakt. □

**Lemma 2.8** Lad \( \mu \) være et positivt begrenset mål på \( G \). Da er \( \text{supp}(\mu) \) \( \sigma \)-kompakt.

**Bevis.** For hvert \( n \in \mathbb{N} \) findes en kompakt mængde \( K_n \subseteq G \) så
\[
\mu(G \setminus K_n) < \frac{1}{n}.
\]

Mængden
\[
A = \bigcup_{n=1}^{\infty} K_n
\]

er \( \sigma \)-kompakt, og der gælder
\[
\text{supp}(\mu) \subseteq \overline{A}.
\]

Om den åbne mængde \( G \setminus \overline{A} \) gælder nemlig for alle \( n \in \mathbb{N} \)
\[
\mu(G \setminus \overline{A}) \leq \mu(G \setminus K_n) < \frac{1}{n}
\]
altså \( \mu(G \setminus \overline{A}) = 0 \). Dermed er
\[
\text{supp}(\mu) = \text{supp}(\mu) \cap \overline{A} \subseteq \sigma \text{-kompakt}, \text{ da } \overline{A} \text{ er } \sigma \text{-kompakt ifølge 2.6. □}
\]

**Bevis for sætning 2.5:** For \( t \in \mathbb{R}^+ \) sætter vi
\[
A_t = \text{supp}(\mu_t).
\]
Ifølge Lemma 2.8 er $A_t$ $c$-kompakt og endvidere gælder

$$\bigcup_{t \in \mathbb{R}^+} A_t = \bigcup_{q \in \mathbb{Q}^+} A_q.$$ 

Lad nu ligge $U \subseteq G$ være en åben mængde så

$$U \subseteq \bigcap_{q \in \mathbb{Q}^+} A_q.$$ 

Da er $U \cap A_t = \emptyset$ for alle $t \in \mathbb{R}^+$. For enhver funktion $q \in \mathbb{K}(G)$ med $\text{supp}(q) \subseteq U$ gælder $\mu_t(q) = 0$ for $t \in \mathbb{R}^+$, idet funktionen $t \mapsto \mu_t(q)$ er kontinuerlig og leg 0 for alle $t \in \mathbb{Q}^+$.

Derved er mængden

$$\bigcup_{t \in \mathbb{R}^+} A_t$$

$c$-kompakt, og Lemma 2.7 giver, at den mindste af slutte-
de undergruppe $G_0$ af $G$, der indeholder $\text{supp}(\mu_t)$ for alle $t \in \mathbb{R}^+$, er $c$-kompakt. $\square$

5.3. Negativ defnite funktioner.

Lad $\Gamma$ være en LCA-gruppe.

Definition. En kontinuerlig funktion $\psi : \Gamma \rightarrow \mathbb{C}$, kaldes negativ definit, så fremst det for alle naturlige tal $n$ og alle $n$-set af elementer $k_1, \ldots, k_n \in \Gamma$ gælder at matricen

$$\left( \psi(k_i) + \overline{\psi(k_j)} - \psi(k_i - k_j) \right)_{i,j = 1, \ldots, n}.$$
er positiv hermitesk, altså dersom

\[ \sum_{i,j}^n (\psi(y_i) + \overline{\psi(z_j)} - \psi(z_i - y_j)) \rho_i \overline{\rho_j} \geq 0 \]  (4)

for alle n-tæt \( \rho_1, \ldots, \rho_n \in \mathbb{C} \).

**Øvelse 3.1**  En kontinuerligt reel funktion \( \psi : \Gamma \to \mathbb{R} \), der opfylder \( \psi(x) = \psi(-x) \) for alle \( x \in \Gamma \), er negativ definit hvis blot (4) gælder for alle \( \xi_1, \ldots, \xi_m \in \Gamma \) og alle \( \rho_1, \ldots, \rho_m \in \mathbb{R} \) (det er uddragt hvis (4) er opfyldt for alle \( \rho_1, \ldots, \rho_m \in \mathbb{Z} \)).

Lad \( \psi \) være negativ definit. Da 1\times1 matricen

\[ (\psi(0) + \overline{\psi(0)} - \psi(0 - 0)) = (\overline{\psi(0)}) \]

er positiv hermitesk, gælder

\[ \psi(0) \geq 0. \]  (5)

Endvidere er for hvert \( x \in \Gamma \), 2\times2 matricen

\[ \begin{pmatrix}
\psi(x) + \overline{\psi(x)} - \psi(0) & \psi(x) + \overline{\psi(0)} - \psi(x) \\
\psi(0) + \overline{\psi(x)} - \psi(-x) & \psi(0) + \overline{\psi(0)} - \psi(0)
\end{pmatrix} \]

positiv hermitesk, hvoraf

\[ \psi(-x) = \overline{\psi(x)} \quad (\ast: \psi = \psi^*) \]  (6)

og videre da denne matrix har ikke-negativ determinant, at

\[ \text{Re} \psi(x) \geq \psi(0). \]  (7)
Med $N(\Gamma)$ belegnes mængden af negativ definite funktioner på $\Gamma$.

Sætning 3.1 Mængden $N(\Gamma)$ er en konveks kægle. Hvis en kontinuerligt funktion $\psi$ er grønsefunktion for et punktvis konvergent net af negativ definire funktioner, så er $\psi$ negativ definit. Specielt er $N(\Gamma)$ afsluttet i rummet af kontinuerlige funktioner på $\Gamma$ forudset med topologien for ligelig konvergens over kompakte delmængder. Eudvides $\psi$ $\in N(\Gamma)$ stabil overfor kompleks konjugering. Specielt er realdelens af en negativ definit funktion på $\Gamma$, negativ definit. De ikke-negative konstante funktioner på $\Gamma$ tilhører $N(\Gamma)$.

Bewist er umiddelbart.

Lemma 3.2 Lad $\psi \in N(\Gamma)$ være reel og antag at $\psi(0) = 0$. Da er funktionerne $\sqrt{\psi}$ ubadditiv, i.e.

$$\sqrt{\psi(x+\delta)} \leq \sqrt{\psi(x)} + \sqrt{\psi(\delta)}$$

for alle $x, \delta \in \Gamma$.

Bewis. Af (3) følger at $\psi \geq 0$. For $x, \delta \in \Gamma$ liner matricen

$$\begin{pmatrix}
2 \psi(x) & \psi(\delta) + \psi(x) - \psi(x+\delta) \\
\psi(x) + \psi(\delta) - \psi(x+\delta) & 2 \psi(\delta)
\end{pmatrix}$$

ikke-negative determinant, hvorfra idet $\psi = \psi^*$

$$[\psi(x) + \psi(\delta) - \psi(x+\delta)]^2 \leq 4 \psi(x) \psi(\delta)$$
altfør

\[ \psi(x + \delta) \leq \psi(x) + 2\sqrt{\psi(\delta)} \sqrt{\psi(\delta)} + \psi(\delta) = (\sqrt{\psi(\delta)} + \sqrt{\psi(\delta)})^2. \]

**Bemærkning.** Kontinuiteten af \( \psi \) blev ikke benyttet i beviset for 3.2.

Dette lemma sætter os i stand til at vurdere "væksten" af funktioner i \( N(\Gamma) \).

**Sætning 3.3.** Lad \( \psi \in N(\mathbb{R}^m) \) være reel og antag \( \psi(0) = 0 \). Da findes \( C > 0 \) så

\[ \psi(x) \leq C \cdot \|x\|^2 \quad \text{for} \quad \|x\| \geq 1, \]

altfør \( \psi \in O(\|x\|^2) \).

**Bevis.** Et følge af Lemma 3.2 har vi for alle \( n \in \mathbb{N} \) og \( y \in \mathbb{R}^m \) at

\[ \sqrt{\psi(ny)} \leq n \sqrt{\psi(y)} \]

altfør

\[ \psi(x) \leq n^2 \psi \left( \frac{x}{n} \right) \quad \text{for} \quad n \in \mathbb{N} \text{ og } x \in \mathbb{R}^m. \]

Lad \( C = \sup \psi(z) \). For \( x \in \mathbb{R}^m \) med \( \|x\| \geq 1 \) vælges \( n \in \mathbb{N} \) så \( \|x\| \in [n, n+1[ \), og dernæst gælder

\[ \psi(x) \leq n^2 \psi \left( \frac{x}{n} \right) \leq \|x\|^2 \cdot C. \]

**Lemma 3.4.** Hvis \( \psi \in N(\Gamma) \) så er \( [\psi - \psi(0)] \in N(\Gamma) \).
Beweis. Lad \( \psi_1, \ldots, \psi_n \in \Gamma \) og \( \rho_1, \ldots, \rho_n \in \mathbb{C} \). Vi behøver at sætte
\[ p_k := \rho_k, \quad \text{og} \quad \rho^* = -\sum_{k=1}^{n} \rho_k \] og findes
\[ 0 \leq \psi(0) \left| p^* \right|^2 + \sum_{j=1}^{n} (\psi(0) + \overline{\psi(x_j)} - \psi(x_j)) \rho^* \overline{\rho_j} \]
\[ + \sum_{i=1}^{n} (\psi(x_i) + \overline{\psi(0)} - \psi(x_i)) \rho_i \overline{\rho^*} \]
\[ + \sum_{i,j=1, i \neq j}^{n} (\psi(x_i) + \overline{\psi(x_j)} - \psi(x_i - x_j)) \rho_i \overline{\rho_j} \]
\[ = -\psi(0) \left| p^* \right|^2 + \sum_{i,j=1}^{n} (\psi(x_i) + \overline{\psi(x_j)} - \psi(x_i - x_j)) \rho_i \overline{\rho_j} \]
\[ = \sum_{i,j=1}^{n} \left[ \psi(x_i) + \overline{\psi(x_j)} - \psi(x_i - x_j) - \psi(0) \right] \rho_i \overline{\rho_j}. \]

**Lemma 3.5.** En kontinuerlig funktion \( \psi : \Gamma \rightarrow \mathbb{C} \) er

**Lemma 3.5.** En kontinuerlig funktion \( \psi : \Gamma \rightarrow \mathbb{C} \) er negativ definit hvis og kun hvis følgende betingelser er opfyldt:

a) \( \psi(0) \geq 0 \)
b) \( \psi^* = \psi \)
c) \( \forall n \in \mathbb{N}, \forall \psi_1, \ldots, \psi_n \in \Gamma \). \( \forall \rho_1, \ldots, \rho_n \in \mathbb{C} : \)
\[ \sum_{i=1}^{n} \rho_i = 0 \quad \Rightarrow \quad \sum_{i,j=1}^{n} (\psi(x_i) - \psi(x_j)) \rho_i \overline{\rho_j} \leq 0. \]

**Beweis.** Autog følger al \( \psi \in N(\Gamma) \). Betingelserne a) og b) er da klart opfyldte og for \( \forall n \in \mathbb{N}, \psi_1, \ldots, \psi_n \in \Gamma \) og \( \rho_1, \ldots, \rho_n \in \mathbb{C} \) med \( \sum_{i=1}^{n} \rho_i = 0 \) finder vi
\[ 0 \leq \sum_{i,j=1}^{n} (\psi(x_i) + \overline{\psi(x_j)} - \psi(x_i - x_j)) \rho_i \overline{\rho_j}. \]
\[
\begin{align*}
= & \sum_{i,j=1}^{n} \psi(x_i)\overline{p_i}p_j + \sum_{i,j=1}^{n} \overline{\psi(x_j)}p_i\overline{p_j} - \sum_{i,j=1}^{n} \psi(x_i - x_j)\overline{p_i}p_j \\
= & \sum_{j=1}^{n} \overline{p_j} \sum_{i=1}^{n} \psi(x_i)p_i + \sum_{i=1}^{n} p_i \sum_{j=1}^{n} \overline{\psi(x_j)}p_j - \sum_{i,j=1}^{n} \psi(x_i - x_j)\overline{p_i}p_j \\
= & -\sum_{i,j=1}^{n} \psi(x_i - x_j)\overline{p_i}p_j .
\end{align*}
\]

Lad \( \psi : \Gamma \to \mathbb{C} \) opfyldte \( a \), \( b \) og \( c \) og

lad \( \delta_1, \ldots, \nu_n \in \Gamma \) og \( p_1, \ldots, p_n \in \mathbb{C} \) være givet. Vi behøver

ter \((n+1)-\) sættere \( \theta, \bar{\theta}, \ldots, \bar{\nu}_n \in \Gamma \) og \( \bar{\psi}, \bar{p}_1, \ldots, \bar{p}_n \in \mathbb{C} \) hvor

\( \bar{\psi} = -\sum_{i=1}^{n} \bar{p}_i \). Jævnt med vi da

\[ \psi(0) |\psi^*|^2 + \sum_{i=1}^{n} \psi(x_i)\overline{p_i}p_i^* + \sum_{j=1}^{n} \bar{\psi}(x_j)p_j^* + \sum_{i,j=1}^{n} \psi(x_i - x_j)\overline{p_i}p_j \leq 0 \]

hvoraf under udnyttelse af \( a \) og \( b \)

\[ -\sum_{i=1}^{n} \psi(x_i)p_i \left( -\sum_{j=1}^{n} \overline{p_j} \right) - \sum_{j=1}^{n} \overline{\psi(x_j)}\left( -\sum_{i=1}^{n} \overline{p_i} \right) \overline{p_j} \]

\[ = \sum_{i,j=1}^{n} \psi(x_i - x_j)p_i\overline{p_j} \geq \psi(0) |\psi^*|^2 \geq 0 \]

altså

\[ \sum_{i,j=1}^{n} \left[ \psi(x_i) + \overline{\psi(x_j)} - \psi(x_i - x_j) \right] \overline{p_i}p_j \geq 0 . \quad \Box \]

Sætning 3.6. Hvis \( \varphi \) er kontinuerligt og positiv definit

på \( \Gamma \), så er funktionen \( x \mapsto \varphi(0) - \varphi(x) \) negativ definit.

Bevis. Lad \( x_1, \ldots, x_n \in \Gamma \) og \( p_1, \ldots, p_n \in \mathbb{C} \) med \( \sum_{i=1}^{n} p_i = 0 \).

Da \( \varphi \in \mathcal{P}(\Gamma) \) finder vi
\[
\sum_{i,j=1}^{n} \left[ \varphi(x_i - x_j) \right] \overline{\varphi_i \varphi_j} = - \sum_{i,j=1}^{n} \varphi(x_i - x_j) \overline{\varphi_i \varphi_j} \leq 0
\]
og da \( \varphi \) både opfylder \( a \) og \( b \) fra Lemma 3.5, er \( \varphi \) negativ definit. \( \Box \)

Vi kommer nu til den vigtige sætning om negativ definit funktioner. Ved hjælp af denne sætning etableres forbindelsen til foldningssemlaggrupper.

Sætning 3.7. (Schoenberg) Lad \( \varphi : \Gamma \to \mathbb{C} \). Da \( \varphi \) negativ definit hvis og kun hvis \( \varphi(0) \geq 0 \) og funktionen \( e^{-t\varphi} \) er kontinuitet og positiv definit for alle \( t > 0 \).

Bevis. Lad først \( \varphi \in N(\Gamma) \). Det er klart at \( \varphi(0) \geq 0 \) og at \( x \mapsto e^{-t\varphi(x)} \) er kontinuitet. Det følger af Lemma II,4,1 (Smul. Øvelse II,4,3), at for en positiv hermiteske \( n \times n \) matrix \( (a_{ij})_{i,j=1}^{n} \) så er

\[
\begin{pmatrix}
\exp(a_{ij})
\end{pmatrix}_{i,j=1}^{n}
\]

en positiv hermiteske matrix. For \( x_1, \ldots, x_n \in \Gamma \) findes

\[
\begin{pmatrix}
\exp \left( \varphi(x_i) + \varphi(x_j) - \varphi(x_i - x_j) \right)
\end{pmatrix}_{i,j=1}^{n}
\]

desfor positiv hermitesk. For \( \varphi_1, \ldots, \varphi_n \in \mathbb{C} \) finder vi

\[
\sum_{i,j=1}^{n} \exp \left( -\varphi(x_i - x_j) \right) \overline{\varphi_i \varphi_j}
\]

\[
= \sum_{i,j=1}^{n} \exp \left( -\varphi(x_i - x_j) + \varphi(x_i) + \overline{\varphi(x_j)} \right) \exp \left( -\varphi(x_i) \right) \exp \left( -\overline{\varphi(x_j)} \right) \overline{\varphi_i \varphi_j},
\]
\[
\sum_{i,j=1}^{n} \exp[\psi(x_i) + \overline{\psi(y_j)} - \psi(x_i - y_j)] c_i \overline{c_j} \geq 0
\]

hvor vi havde sat \( c_i = \rho_i \exp(-\psi(x_i)) \in \mathbb{C} \). Heraf ses at \( \exp(-\psi) \) er positiv definit, og dette giver det ønskede, da \( t \psi \) er negativ definit for alle \( t > 0 \).

Lad nu omvendt \( \psi : \Gamma \to \mathbb{C} \) opfylde

1. \( \psi(0) \geq 0 \)
2. \( \forall t > 0 : \ x \mapsto \exp(-t \psi(x)) \) er kontinuert og positiv definit.

Lemma 3.8 nedenfor giver at \( \psi \) er kontinuert, og idet \( \psi(0) \geq 0 \) har vi at \( \exp(-\psi(0)) \leq 1 \) for alle \( t > 0 \). Dermed er funktionen (seøjse sætning 3.1 og sætning 3.6)

\[
x \mapsto \frac{1 - \exp(-t \psi(x))}{t}
\]

negativ definit for alle \( t > 0 \). For \( t \to 0 \) gælder imidlertid

\[
\frac{1 - \exp(-t \psi(x))}{t} \to \psi(x)
\]

punkteret på \( \Gamma \), og vi konkluderer via sætning 3.1 i.

Lemma 3.8 Lad \( \psi : \Gamma \to \mathbb{C} \) være en funktion med egenskaber, at \( x \mapsto \exp(-t \psi(x)) \) er kontinuert for alle \( t > 0 \). Da er \( \psi \) kontinuert.

I beviset skal vi benytte nogle generelle resultater.
Lad $G$ vær en LCA-gruppe med dual gruppe $\hat{G}$ og lad $\hat{G}_d$ betegne $\hat{G}$ forsynet med den diskrete topologi. Det er klart at $\hat{G}_d$ er en LCA-gruppe, og den identiske afbildning

$$\text{id}: \hat{G}_d \rightarrow \hat{G}$$

er en kontinuerlig, bijektiv homomorfisme. Den til id duale homomorfisme betegnes $i$ og opfattes som en afbildning

$$i: G \rightarrow (\hat{G}_d)^\wedge.$$ 

Herved bliver $i$ en kontinuerlig, injektiv homomorfisme med tæt billede af $G$ ind i den kompakte LCA-gruppe $(\hat{G}_d)^\wedge$ (Sætning II.9.3). Denne kompakte gruppe $(\hat{G}_d)^\wedge$ betegnes også $\beta(G)$ og kaldes Bohrgruppen for $G$. "Delrumstopologien" af $\beta(G)$ på $G$ (væ "ud- 

lægningen" $i$) kaldes Bohrtopologien på $G$.

Øvelse 3.2. Bohrgruppen $\beta(G)$ for $G$ har følgende "universelle egenskab". For hver kompakt LCA-gruppe $K$ og enhver kontinuerlig homomorfisme $\varphi: G \rightarrow K$ findes netop en kontinuerlig homomorfisme $\varphi_\beta: \beta(G) \rightarrow K$ så diagrammet

$$\begin{array}{c}
G \xrightarrow{\varphi} K \\
i \downarrow \quad \downarrow \varphi_\beta \\
\beta(G)
\end{array}$$

kommuterer (her betegnes $i: G \rightarrow \beta(G)= (\hat{G}_d)^\wedge$ den ovenfor definerede indlægning).
Bohrgruppen for $G$ kan beskrives på en anden måde:

Produktgruppen $H = \prod_{\hat{G}} \mathbb{T}$ af $\mathbb{T}$ med sig selv $\hat{G}$ "gauge", er en kompakt LCA-gruppe, og vi har den kontinuente, injektive homomorfi $\hat{j}: G \rightarrow H$ givet ved

$$j(x) = (\gamma(x))_{\gamma \in \hat{G}} \in H$$

for $x \in G$.

Afslutningen $\overline{j(G)}$ af $j(G)$ i $H$ er en afsluttet (altså kompakt) undergruppe i $H$.

Grupperne $\beta(G)$ og $\overline{j(G)}$ er ens.

Begge grupper består af afbildninger $\hat{G} \rightarrow \mathbb{T}$, og for $x \in G$ er $i(x)$ og $j(x)$ samme afbildning $\hat{G} \rightarrow \mathbb{T}$, nemlig

$$\hat{G} \ni \gamma \mapsto \gamma(x) \in \mathbb{T}.$$

I det mængden

$$\bigcap_{x \in \hat{G}} \{ f \in H \mid f(x \cdot x') = f(x) \cdot f(x') \},$$

er en afsluttet delmængde af $H$, der omfatter $j(G)$, består $\overline{j(G)}$ af homomorfer $\hat{G} \rightarrow \mathbb{T}$, altså elementer af $\beta(G)$.

Dermed er

$$i(G) = j(G) \subseteq \overline{j(G)} \subseteq \beta(G)$$

hvorfra $\overline{j(G)} = \beta(G)$, da $i(G)$ er tæt i $\beta(G)$ og datalel forskellen på $\beta(G)$ opfattet som delmængde af $H$ netop er $\beta(G)$'s topologi, nemlig topologi for punktvis konvergens af funktioner $\hat{G} \rightarrow \mathbb{T}$.
Udstyres $G$ med Bolutsregularitet bliver $j$ en homeomorfi af $G$ på $j(G)$ og specielt gælder for $x \in G$, at

$$R = T_x \circ j : G \to T,$$

hvor $T_x : H \to T$ betegner projektionen af $H$ på den "$x$-te" koordinat i $H$. Heraf ses, at enhver karakter på $G$ er kontinuerlig i Bolutsregulariteten på $G$.


Lemma 3.10. Lad $A$ være en ubegrenset delmængde af $\mathbb{R}$. Til hvert $\epsilon > 0$ findes et $t \in \mathbb{R}$ og en ubegrenset følge $(a_n)_{n \in \mathbb{N}}$ af punkter fra $A$ med egenskaben

$$Re (a_n) \leq 0 \text{ for } n \in \mathbb{N} \quad (**).$$

Bevis. Først vælges $a_0 \in A$ med $|a_0| > 1$ og således at $|a_0| \frac{\pi}{\epsilon} > 2\pi$. Så er mængden $\{ ta, t \in \mathbb{R} | t \in [\frac{\pi}{\epsilon}, \epsilon]\}$ et in-
Her er der fundet et ikke tom delinterval \([x_1, x_2] \) af \([\xi, \bar{\xi}]\) så
\[
\text{Re } e^{it_1 x} \leq 0 \quad \text{for } t \in [x_1, x_2].
\]

Dernæst velges \(q_2 \in A\) med \(|a_2| > 2\pi\), og således at
\(|a_2| (\beta_1 - \alpha_1) > 2\pi\), og et ikke tom delinterval \([x_2, \beta_2]\)
af \([\alpha_1, \beta_1]\) således at
\[
\text{Re } e^{it_2 x} \leq 0 \quad \text{for } t \in [x_2, \beta_2].
\]

Således fortøsttes; herved bestemmes (mindst) et
\(t \in (\alpha_n, \beta_n)\) og en ubegrænset følge \((a_n)_{n \in \mathbb{N}}\)
på \(\mathbb{A}\) så betingelsen \((\star)\) er opfyldt. \(\Box\)

Bevis for sætnings 3.9: Antag at \(A\) er ubegrænset.
Til \(\varepsilon = 1\) findes ifølge 3.10 et \(t_2 \in ]0, 1]\) og en ubegræn-
set punktfølge \((a_n)_{n \in \mathbb{N}}\) på \(\mathbb{A}\) så
\[
\text{Re } e^{it_2 x} \leq 0 \quad \text{for alle } n \in \mathbb{N}.
\]

Til \(\varepsilon = \frac{1}{2}\) findes ifølge 3.10 et \(t_2 \in ]0, \frac{1}{2}\] og en ubegræn-
set delfølge \((a_n)_{n \in \mathbb{N}}\) af \((a_n)_{n \in \mathbb{N}}\) så
\[
\text{Re } e^{it_2 x} \leq 0 \quad \text{for alle } n \in \mathbb{N}.
\]

Således fortsættes og vi finder dermed en følge
\((t_n)_{n \in \mathbb{N}}\) af tal \(t_n \in ]0, \frac{1}{n}\] og sucesive udhynderinger
\((a^{(n)}_{(p)})_{n \in \mathbb{N}}\) af \((a^{(n)}_n)_{n \in \mathbb{N}}\), således at
\[
\text{Re } e^{it_2 x} \leq 0 \quad \text{for alle } n, p \in \mathbb{N}.
\]
Vi betragter nu mængdene

\[ O_m = \{ x \in \mathbb{R} \mid \text{Re } e^{it_n x} > 0 \} \]

som er åbne i Bohr-topologien på \( \mathbb{R} \). Endvidere er

\[ \mathbb{R} = \bigcup_{n=1}^{\infty} O_n, \]

idet vi til hvilket \( x \in \mathbb{R} \), kan finde \( n \in \mathbb{N} \) så \( |t_n x| < \frac{\pi}{2} \).

Da \( A \) er kompakt i Bohr-topologien findes \( n_1 < \ldots < n_p \) så

\[ A \subseteq \bigcup_{i=1}^{p} O_{n_i}. \]

Følgende \( (a^{(n_p)})_{n \in \mathbb{N}} \) ligger i \( A \), men ikke i \( O_{n_1} \cup \ldots \cup O_{n_p} \), hvilket er en modstrid. \( \Box \)

**Lemma 3.11.** Lad \( f : K \to \mathbb{R} \) være en funktion på et kompakt rum \( K \), således at funktionen

\[ f_t : K \to \mathbb{T} \]

givet ved \( f_t(x) = e^{itf(x)} \) for \( x \in K \), er kontinuert for alle \( t \in \mathbb{R} \). Så er \( f \) kontinuert.

**Bevis.** Lad \( j \) betegne indføjningen af \( \mathbb{R} \) i Bolougruppen

\[ \mathbb{T}^\mathbb{R} \]

for \( \mathbb{R} \), altså afbildningen

\[ j(x) = (\exp(itx))_{t \in \mathbb{R}} \]

for \( x \in \mathbb{R} \).

Ifølge forudsetning er \( jof : K \to \mathbb{T}^\mathbb{R} \) kontinuert. Dermed er \( jof(K) \) en kompakt delmængde af Bolougruppen for \( \mathbb{R} \), og derfor er \( f(K) \) ifølge sætning
3.9 en kompakt delmængde af \( \mathbb{R} \). Der findes altså \( n_0 \in \mathbb{N} \) så
\[
f(K) \subseteq [-n_0, n_0]
\]
og for et passende lille \( t_0 \in \mathbb{R}^+ \) gælder at
\[
(t_0 f)(K) \subseteq \left[ -\frac{\pi}{4}, \frac{\pi}{4} \right]
\]
Dermed har vi, idet log betegner en kontinuert gref af logartimefunktionen (f.eks. defineret i den højre halvplan), at
\[
it_0 f = \log (\exp (i t_0 f))
\]
e en kontinuert funktion. Altså er \( f \) kontinuerl. \( \Box \).

Bevis for Lemma 3.8. Lad \( \psi : \Gamma \to \mathbb{C} \) have egenskaber, at funktionen
\[
x \mapsto \exp (-t \psi(x))
\]
e kontinuert for alle \( t > 0 \). Så er den numeriske værdi
\[
|\exp (-t \psi(x))| = \exp (-t \text{Re } \psi(x))
\]
e en kontinuert funktion af \( x \) for alle \( t > 0 \). For \( t = 1 \) har vi dermed, at
\[
\text{Re } \psi(x) = - \log (\exp (-\text{Re } \psi(x)))
\]
e en kontinuert funktion af \( x \). Endvidere gælder, at
\[
\exp (-ti \text{Im } \psi(x)) = \exp (-t \psi(x)) \exp (t \text{Re } \psi(x))
\]
e en kontinuert funktion af \( x \) for alle \( t > 0 \), og derfor for
alle \( t \in \mathbb{R} \). Ifølge Lemma 3.11 gælder så, at restriktionen af \( J u \phi \) til en vilkårlig kompakt delmængde \( K \subseteq \Gamma \) er kontinent. Men så er \( J u \phi : \Gamma \rightarrow \mathbb{R} \) kontinent, og demmed er også

\[ \psi = Re \psi + i Im \psi \]

kontinent. D.

**Bemærkning.** Der findes topologiske rum \( X \) og afbildninger \( f : X \rightarrow \mathbb{R} \) således at \( e^{-itf} \) er kontinent for alle \( t > 0 \) og så \( f \) ikke er kontinent. Just. eksemplet p. 147-49.

Vi kan nu etablere forbindelsen mellem foldingsseminer på LCA-gruppen \( G \) og negativ defnite funktioner på den duale gruppe \( \Gamma \).

**Sætning 3.12.** Der består en én-étime korrespondance mellem foldingsseminer \( (\mu_t)_{t \geq 0} \) på \( G \) og negativ defnite funktioner \( \psi \) på \( \Gamma \). Mere præcis: Til \( (\mu_t)_{t \geq 0} \) findes netop én funktion \( \psi \in N(\Gamma) \) så

\[ \hat{\mu}_t(\chi) = \exp(-t\psi(\chi)) \text{ for } \chi \in \Gamma \text{ og } t > 0. \quad (+) \]

Omdrej med dem for \( \psi \in N(\Gamma) \) ved (+) bestemmes en foldningssemi-gruppe \( (\mu_t)_{t \geq 0} \) på \( G \).

**Bevis.** Lad først \( (\mu_t)_{t \geq 0} \) være en foldningssemigruppe på \( G \). For livet fast \( \chi \in \Gamma \) bekræfter vi funk-
tonen \( t \rightarrow \hat{\mu}_t(x) \). Herved bestemmes en kontinuerlig
funktion (Sætning 2.3) \( \Phi : \mathbb{R}_+ \rightarrow \mathbb{C} \) med egenskabene
\[
\Phi_t(s+t) = \Phi_t(s) \cdot \Phi_t(t), \quad \text{lim}_{t \to 0} \Phi_t(t) = 1,
\]
og der findes følgelig netop ét tal \( \psi(s) \in \mathbb{R} \) så
\[
\Phi_t(s) = \exp(-s \psi(s)) \quad \text{for alle } s \in \mathbb{R}_+.
\]
Afbeeldingen
\[
\Gamma \ni x \mapsto \psi(x) \in \mathbb{R}
\]
opfylder
\[
\psi(0) = 0 \quad \text{det } \mu_t(G) \in [0, 1]
\]
og
\[
\gamma \mapsto \exp(-t \psi(\gamma)) = \hat{\mu}_t(\gamma)
\]
enskontinuerlig og positiv defnit for alle \( t \in \mathbb{R}_+ \).
Ifølge Schoenberg's sætning er \( \psi \) altså negativ defnit.
Endvidere er \( \psi \) entydigt bestemt ud fra \( \mu_t \) ved ligningen (\( \times \)), thi burde \( \psi_1, \psi_2 : \Gamma \rightarrow \mathbb{R} \) opfylder
\[
\exp(-t \psi_1(\gamma)) = \exp(-t \psi_2(\gamma)) \quad \text{for } t > 0 \quad \text{og } \gamma \in \Gamma,
\]
så gælder \( \psi_1 \equiv \psi_2 \).

Lad nu omvendt \( \psi \in \mathbb{N}(\Gamma) \). For hvert \( t > 0 \) er \( \exp(-t \psi) \)
enskontinuerlig, positiv defnit funktion på \( \Gamma \), og ifølge Bochner's sætning findes netop et positivt begrænsat mål
\( \mu_t \) på \( G \) så: \( \hat{\mu}_t = \exp(-t \psi) \).
Da $\psi(0) \geq 0$ har vi

$$\mu_t(G) = \hat{\mu}_t(0) = e^{-t\psi(0)} \leq 1,$$

og idet

$$\hat{\mu}_{t+s} = e^{-(t+s)\psi} = e^{-t\psi} \cdot e^{-s\psi} = \hat{\mu}_t \cdot \hat{\mu}_s = \hat{\mu}_t \hat{\mu}_s,$$

har vi på grund af Fouriertransformationens injektivitet, at

$$\mu_{t+s} = \mu_t \ast \mu_s \quad \text{for alle } t,s \geq 0.$$

 Sluttedig er det klart, at

$$\hat{\mu}_t(x) = e^{-t\psi(x)} \to 1 \quad \text{for } t \to 0,$$

ligeligt over kompakte delmængder af $\Gamma$, hvoraf specielt

$$\lim_{t \to 0} \mu_t = \delta_0 \quad \text{vægt} \cdot 0.$$

Hvis foldningssemigruppen $(\mu_t)_{t \geq 0}$ på $G$ og den negativ definite funktion $\psi$ på $\Gamma$ skræret til hinanden via korrespondansen i 3.12, siger $(\mu_t)_{t \geq 0}$ og $\psi$ at være assoziere.

Korollar 3.13. Lad $(\mu_t)_{t \geq 0}$ være en foldningssemigruppe på $G$ med associeret negativ definit funktion $\psi: \Gamma \to \mathbb{C}$. Med $\lambda_0 = \psi(0)$ gælder, at totalmasserne for målene $\mu_t$ er givet ved

$$\mu_t(G) = e^{-\lambda_0 t}.$$

Specielt er alle målene $\mu_t$ sandsynlighedsområder på $G$ når $\psi(0) = 0$.

Øvelse 3.3. For hvilket $a \geq 0$ er den konstante funktion
\(\psi : \mathbb{R} \rightarrow \mathbb{C}\) negativ definit. Find den til \(\psi\) assosierede foldningssemigruppe på \(\hat{\mathbb{R}} = \mathbb{R}\).

Sætning 3.14: Lad \(f : \Gamma \rightarrow \mathbb{R}\) være en kontinuerlig homomorfism af LCA-grupper \(\Gamma\) mod i LCA-gruppen \((\mathbb{R}, +)\). Den funktion \(\psi : \Gamma \rightarrow \mathbb{C}\) defineret ved \(\psi(x) = if(x)\), negativ definit.

Bevis: Lad \(t > 0\). Afbildningen

\[x \mapsto \exp(-it\psi(x))\]

er en karakter på \(\Gamma\), altid specielt positiv definit. Da endvidere \(\psi(0) = 0\), er \(\psi\) ifølge Schoenberg's sætning negativ definit. \(\Box\)

Øvelse 3.4: For hvert \(\lambda \in \mathbb{R}\) er funktionen \(\psi : \mathbb{R} \rightarrow \mathbb{C}\) defineret ved \(\psi(x) = i\lambda x\) en negativ definit funktion på \(\mathbb{R}\). Find den til \(\psi\) assosierede foldningssemigruppe på \(\hat{\mathbb{R}} = \mathbb{R}\).

Sætning 3.15: Lad \(\psi : \Gamma \rightarrow \mathbb{C}\) være en rent imaginær, negativ definit funktion på \(\Gamma\). Da er \(\psi\) af formen

\[if\]

hvor \(f : \Gamma \rightarrow \mathbb{R}\) er en homomorfism af \(\Gamma\) mod i \(\mathbb{R}\).

Bevis: Lad \(f : \Gamma \rightarrow \mathbb{R}\) være den kontinuerlige funktion på \(\Gamma\) så \(\psi = if\). Vi skal vise at

\[f(\delta + \eta) = f(\delta) + f(\eta)\]

for alle \(\delta, \eta \in \Gamma\). For alle \(t > 0\) er funktionen

\[x \mapsto \exp(-t\psi(x))\]
en kontinuerlig positiv definit funktion på $\Gamma$ med numerisk værdi lig $1$, altså en karakter på $\Gamma$ (Ovelse II, 4.6).

Heraf følger for alle $t > 0$

$$\exp(-it f(\delta + \eta)) = \exp(-it (f(\delta) + f(\eta))),$$

hvilket medfører at $f(\delta + \eta) = f(\delta) + f(\eta)$. $\square$

Ovelse 3.5. Lad $\psi_0, \psi_1 : \Gamma \rightarrow \mathbb{C}$ være negativ definitive funktioner på $\Gamma$. For hvert $\alpha \in [0,1]$ er funktionen

$$\psi_\alpha = (1-\alpha) \psi_0 + \alpha \psi_1 : \Gamma \rightarrow \mathbb{C}$$

negativ definit. Den til $\psi_\alpha$ associerede foldningssemi-
gruppe $(\mu_t^\alpha)_{t \geq 0}$ kan udtrykkes på simpel måde ved fold-
ningssemi-grupperne $(\mu_t^0)_{t \geq 0}$ og $(\mu_t^1)_{t \geq 0}$ assiciert med

$\psi_0$ og $\psi_1$.

Definition. En kontinuerlig funktion $\varphi : \Gamma \rightarrow \mathbb{R}$ kalder en kvadratisk form, dersom det for alle $x,y \in \Gamma$ gælder, at

$$2 \varphi(x) + 2 \varphi(y) = \varphi(x+y) + \varphi(x-y).$$

En kvadratisk form $\varphi$ opfylder:

$$\varphi(0) = 0,$$
$$\varphi(x) = \varphi(-x)$$
$$\varphi(2x) = 4 \varphi(x).$$

Sætning 3.16. En ikke-negativ kvadratisk form $\varphi$ på $\Gamma$ er negativ definit.

Bemærk. For $x,y \in \Gamma$ sætter vi

$$B(x,y) = \varphi(x) + \varphi(y) - \varphi(x-y),$$
og afbildningen $B : \Gamma \times \Gamma \to \mathbb{R}$ er en "positiv symmetrisk bilinearform":

1. $\forall x, y, z \in \Gamma : B(x+y, z) = B(x, z) + B(y, z)$
2. $\forall x, y, z \in \Gamma : B(x, y+z) = B(x, y) + B(x, z)$
3. $\forall x, y \in \Gamma : B(x, y) = B(y, x)$
4. $\forall x \in \Gamma : B(x, x) \geq 0$

For at indse 1 udregner vi

\[
\phi(x) + \phi(z) = \phi(x-z) + \phi(y) + \phi(z) - \phi(y-z)
\]
\[
= \phi(x) + \phi(y) + 2\phi(z) - \frac{1}{2} \left[ \phi(x-z+y-z) + \phi(x-y) \right]
\]
\[
= \phi(x) + \phi(y) + 2\phi(z) - \frac{1}{2} \left[ 2\phi(x+y-z)+2\phi(z)-\phi(x+y) \right]
\]
\[
= \frac{1}{2} \phi(x+y) + 2\phi(z) - \phi(x+y-z) - \phi(z) + \frac{1}{2} \phi(x+y)
\]
\[
= \phi(x+y) + \phi(z) - \phi(x+y-z)
\]

Egenskaberne 3) og 4) er oplagte og 2) følger af 1) og 3).

3). For $x_1, \ldots, x_m \in \Gamma$ og $p_1, \ldots, p_m \in \mathbb{Z}$ finder vi

\[
\sum_{i=1}^{m} B(x_i, x_j) p_i p_j = \sum_{i=1}^{m} B(x_i, x_j) p_i p_j
\]

følge 4). Af øvelse 3.1 følger da, at $\phi$ er negativ definit.

**Øvelse 3.6.** For $a \geq 0$, $b \in \mathbb{R}$ og $c \geq 0$ er funktionen

$\psi : \mathbb{R} \to \mathbb{C}$ givet ved

$\psi(x) = a x^2 + i bx + c$,

en negativ definit funktion. Find den til $\psi$ associeret-
de foldningssemingruppe på $\mathbb{R} = \mathbb{R}$.

**Øvelse 3.7.** Lad $\Gamma_1, \Gamma_2$ være LCA-grupper og lad $\psi_i : \Gamma_i \to \mathbb{C}$, $i = 1, 2$, være negativ definitive funktioner. Funktionen $\psi : \Gamma_1 \times \Gamma_2 \to \mathbb{C}$ defineret ved

$$\psi(x_1, x_2) = \psi_1(x_1) + \psi_2(x_2) \quad \text{for} \quad (x_1, x_2) \in \Gamma_1 \times \Gamma_2,$$

er negativ definit på $\Gamma_1 \times \Gamma_2$. Den til $\psi$ associerede foldningssemingruppe på $(\Gamma_1 \times \Gamma_2)^\wedge$ kan udtrykkes på simpel måde ved foldningssemingrupperne på $(\Gamma_i)^\wedge$ associeret med $\psi_i$.

**Sætning 3.17.** Lad $\psi : \Gamma \to \mathbb{C}$ være negativ definit og antag at $\psi(0) > 0$. Da er $\frac{1}{\psi}$ kontinuerligt og positiv definit.

**Bevis.** Ifølge Schoenberg's sætning er

$$x \mapsto e^{-t\psi(x)}$$

positiv definit for alle $t > 0$. Endvidere husk vi

$$|e^{-t\psi(x)}| = e^{-t \Re \psi(x)} \leq e^{-t\psi(0)}$$

for alle $t > 0$ og alle $x \in \Gamma$, og for fast $x \in \Gamma$ er funktionen

$$t \mapsto e^{-t\psi(x)}$$

derfor integrabel på $[0, \infty]$. Dermed er

$$\frac{1}{\psi(x)} = \int_0^\infty e^{-t\psi(x)} \, dt$$

poster definit som funktion af $x$. Slutteleg er $\frac{1}{\psi}$ konti-
nuet, idet \( \psi(\mathbf{r}) \neq 0 \) for alle \( \mathbf{r} \in \Gamma \). A

Sædning 3.18. Lad \( \psi : \Gamma \to \mathbb{C} \) være negativ definit. Da
en periodegruppen \( P_\psi \) for \( \psi \) givet ved

\[
P_\psi = \{ \mathbf{r} \in \Gamma \mid \psi(\mathbf{r}) = \psi(\mathbf{0}) \},
\]

og \( \mathbf{P}_\psi^+ \) er den mindste afsluttede undergruppe af \( G = \hat{\Gamma} \),
der indholder \( \text{supp}(\mu_t) \) for alle \( t > 0 \), hvor \( (\mu_t)_{t>0} \) er den
bil \( \psi \) assosierede foldningssemigruppe på \( G \).

Bemærk. For \( t > 0 \) stætter vi

\[
A_t = \{ \mathbf{r} \in \Gamma \mid e^{-t\psi(\mathbf{r})} = e^{-t\psi(\mathbf{0})} \}
\]
og ifølge sædning II.9.7 og II.9.8 gælder

\[
A_t = \mathbf{P}_\mu^+ = \left[ \text{supp}(\mu_t) \right]^+ .
\]

Videre sættes

\[
A = \{ \mathbf{r} \in \Gamma \mid \psi(\mathbf{r}) = \psi(\mathbf{0}) \} .
\]

\( \subseteq \) er

\[
A = \bigcap_{t>0} A_t \quad \text{og} \quad P_\psi = \bigcap_{t>0} P_\mu^+ , \text{hvoraf}
\]

\[
A = P_\psi = \bigcap_{t>0} \left[ \text{supp}(\mu_t) \right]^+ = \left[ \bigcup_{t>0} \text{supp}(\mu_t) \right]^+ .
\]
og dernæst er

\[
P_\psi^+ = \left[ \bigcup_{t>0} \text{supp}(\mu_t) \right]^{++},
\]

hvilket nelop er påstanden (jvf. sædning II.9.1). A
Det næste resultat kan opfattes som en almindelig generalisering af sætning 3.19.

Sætning 3.19. Lad \( \psi : \Gamma \to \mathbb{C} \) være negativ definit. Hvis

de finder en omegn af \( 0 \) i \( \Gamma \) så \( \frac{1}{\psi} \) er integrabel over denne omegn, så er \( \frac{1}{\psi} \) lokalt integrabel på \( \Gamma \), og målet \( \frac{1}{\psi} \, d\gamma \) (hvor \( d\gamma \) er et Haarmål på \( \Gamma \)) er et positiv definit mål på \( \Gamma \).

Beweis. Hvis \( \psi(0) > 0 \) er \( \frac{1}{\psi} \) en kontinuitets, positiv definit funktion på \( \Gamma \); specielt er \( \frac{1}{\psi} \) lokalt integrabel og målet

\( \frac{1}{\psi} \, d\gamma \) er positiv definit (Sætning II, 4.4).

Lad \( K \subseteq \Gamma \) være kompakt. Hvis \( \psi(x) \neq 0 \) for alle \( x \in K \), klar vi klart at

\[
\int_K \left| \frac{1}{\psi(x)} \right| \, d\gamma < +\infty
\]

Ellers betragtes mångden

\[
K_0 = \{ x \in K \mid \psi(x) = 0 \}
\]

som er en kompakt delmængde af \( \Gamma \). Lad \( V \) være en åben omegn af \( 0 \) i \( \Gamma \) så

\[
\int_V \left| \frac{1}{\psi(x)} \right| \, d\gamma < +\infty
\]

Der findes \( x_1, \ldots, x_n \in K_0 \) så

\[
K_0 \subseteq \bigcup_{i=1}^n (x_i + V)
\]

Dermed er
\[ F = K \setminus \bigcup_{\nu \in \mathbb{Z}} (\nu + V) \]

en kompakt delmængde af \( \Gamma \) så \( \psi (\xi) \equiv 0 \) for alle \( \xi \in F \).

Vi har derfor
\[
\int_{F} |\psi(\xi)| d\xi \leq \int_{F} |\frac{1}{\psi(\xi)}| d\xi + \int_{\bigcup_{\nu \in \mathbb{Z}} (\nu + V)} |\frac{1}{\psi(\xi)}| d\xi
\]
\[
\leq \int_{F} |\frac{1}{\psi(\xi)}| d\xi + m \int_{V} |\frac{1}{\psi(\xi)}| d\xi < + \infty
\]

hvor vi har benyttet at \( \psi \) og derfor også \( |\frac{1}{\psi}| \) er periodisk med \( \mathbb{R} \psi \geq \mathbb{K}_0 \).

Lad \( \varphi \in X(\Gamma) \). For alle \( n \in \mathbb{N} \) har vi
\[
\int F \varphi \varphi^*(\xi) \frac{1}{\psi(\xi) + \frac{1}{n}} d\xi \geq 0
\]
fordi \( (\psi(\xi) + \frac{1}{n})^{-1} \) er kontinent og positiv definit. Endvidere gælder

\[
\varphi \varphi^*(\xi) \frac{1}{\psi(\xi) + \frac{1}{n}} \rightarrow \varphi \varphi^*(\xi) \frac{1}{\psi(\xi)}
\]
punktvis for \( n \to \infty \), og for alle \( n \in \mathbb{N} \) er funktionen

\[
| \varphi \varphi^*(\xi) \frac{1}{\psi(\xi)} |
\]

en integrabel majorant for

\[
| \varphi \varphi^*(\xi) \frac{1}{\psi(\xi) + \frac{1}{n}} |
\]

iderat
\[
|\psi + \frac{1}{n}| = \left[ \left( \frac{1}{n} + \text{Re} \psi \right)^2 + (\text{Im} \psi)^2 \right]^{\frac{1}{2}} \geq [ (\text{Re} \psi)^2 + (\text{Im} \psi)^2 ]^{\frac{1}{2}} = |\psi|
\]

fordi \( \text{Re} \psi \geq 0 \).
Af sædning 3.2, lad \( \psi: \Gamma \to \mathbb{C} \) være negativ definit. Da finde en følge \( (\psi_n)_n \in \mathbb{N} \) af negativ definitive funktioner \( \psi_n: \Gamma \to \mathbb{C} \) af formen

\[
\psi_n = C + \psi_n(0) - \psi_n
\]

hvor \( C \geq 0 \) og \( \psi_n: \Gamma \to \mathbb{C} \) er kontinuer og positiv definit, således at

\[
\psi_n \to \psi
\]

ligeligt over kompakte delmængder af \( \Gamma \).

Bevis. For \( n \in \mathbb{N} \) sætter vi

\[
\psi_n(x) = n \exp \left( -\frac{1}{n} (\psi(x) - \psi(0)) \right)
\]

som ifølge Schoenberg's sædning er kontinuer og positiv definit. For funktionerne

\[
\psi_n(x) = \psi(0) + \psi_n(0) - \psi_n(x)
\]

\[
= \psi(0) + n \left[ 1 - \exp \left( -\frac{1}{n} (\psi(x) - \psi(0)) \right) \right]
\]

gælder at

\[
\lim_{n \to \infty} \psi_n(x) = \psi(x) \quad \text{punktvis på } \Gamma.
\]

Indføjes vekleudviklingen for \( \exp \) til vi
\[ \psi_n(x) - \psi(x) = -\frac{4}{n} \left( \frac{\psi(x) - \psi(0)}{2} \right)^2 - \frac{\psi(x) - \psi(0)}{n \cdot 3!} + \frac{\psi(x) - \psi(0)}{n^2 \cdot 4!} \ldots \]

Hvorfølgende vurdering
\[ |\psi_n(x) - \psi(x)| \leq \frac{1}{n} \exp \left( |\psi(x) - \psi(0)| \right). \]

Da \( \psi \) er kontinuert en \( \exp (|\psi(x) - \psi(0)|) \) begrænset for \( x \) tilhørende en kompakt mængde, og dens ud \( \psi_n \rightarrow \psi \) legeligt over kompakte delmængder af \( \mathbb{R} \). 

Sætning 3.21. Lad \( \psi : \mathbb{R} \rightarrow [0, \infty] \) være en kontinuert funktion med egenskaberne:
1. \( \psi \) er ligeværdig: \( \psi(x) = \psi(-x) \) for \( x \in \mathbb{R} \).
2. \( \psi \) er voksende og konvex på \([0, \infty] \).

Da er \( \psi \) negativ definit.

Bevis. For hvert \( n \in \mathbb{N} \) er
\[ \psi_n = \inf \left( \psi, n \right) \]
en kontinuert, legel funktion på \( \mathbb{R} \), som er voksende og konvex på \([0, \infty] \). Men så er \( n - \psi_n \) en kontinuert, legel, ikke-negativ funktion på \( \mathbb{R} \), som er afstängende og konvex på \([0, \infty] \). Ifølge Polya's sætning (II.6.5) er
\[ x \mapsto n - \psi_n(x) \]
en kontinuert, positiv definit funktion på \( \mathbb{R} \), og sætning 3.6 giver så, at
\[ x \mapsto [n \psi_n(x)] - [n - \psi_n(x)] = \psi_n(x) - \psi_n(0) \]
eu negativ definit. Dermed er \( \psi_n \) negativ definit, og
idet
\[
\lim_{m \to \infty} \psi_n(x) = \psi(x) \quad \text{punktlige på } \mathbb{R},
\]
og \(\psi\) er kontinuitet, en \(\psi\) altid negativ definit. 

Eksempel. For hvert \(\alpha \in [0,1]\) en funktionen
\[
\mathbb{R} \ni x \mapsto 1x^\alpha
\]

Sætning 3.22. Lad \(\psi: \Gamma \to \mathbb{R}\) være en reel negativ definit funktion. For alle \(\alpha \in [0,1]\) en funktionen
\[
\Gamma \ni x \mapsto (\psi(x))^\alpha
\]
negativ definit på \(\Gamma\).

Bevis. Vi tager vort udgangspunkt i definitionens formulæ for Gamma-funktionen
\[
\Gamma(\beta) = \int_0^\infty e^{-t} t^{\beta-1} \, dt \quad \text{for } \beta > 0.
\]
Substituering \(t = sx\) for fast \(x > 0\), fås
\[
\frac{1}{x^\beta} = \frac{1}{\Gamma(\beta)} \int_0^\infty e^{-sx} s^{\beta-1} \, ds \quad \text{for } x > 0 \text{ og } \beta > 0.
\]
Med \(\beta = 1 - \alpha\) for \(\alpha \in [0,1]\) fås heraf
\[
x^{\alpha - 1} = \frac{1}{\Gamma(1-\alpha)} \int_0^\infty e^{-sx} s^{-\alpha} \, ds \quad \text{for } x > 0 \text{ og } 0 < \alpha < 1.
\]
og integreres begge sider efter $x$ over intervallet $[\varepsilon, u]$ hvor $0 < \varepsilon < u$ finder vi:

$$\frac{u^\alpha - e^{-\varepsilon}}{\alpha} = \frac{1}{\Gamma(1-\alpha)} \int_0^u \frac{e^{-s\varepsilon} - e^{-su}}{s} s^{-\alpha} ds.$$ 

Sætning om monoton konvergens af integraler giver ved at lade $\varepsilon > 0$, at

$$u^\alpha = \frac{\alpha}{\Gamma(1-\alpha)} \int_0^u \frac{1 - e^{-su}}{s} s^{-\alpha} ds \tag{1}$$

gældende for alle $u > 0$ og $\alpha \in ]0,1[.$

Bemærk at funktionen

$$s \mapsto \frac{1 - e^{-su}}{s} s^{-\alpha}$$

faktisk er integrabel over $]0,\infty[$, hvis ved $0 < \alpha < 1$ er funktionen $\sim m s^{-\alpha}$ og i $\infty$ er funktionen $\sim \frac{1}{s^{\alpha+1}}$. Endvidere gælder (1) også for $u = 0$.

Hvis $\psi$ er en reel, negativ definit funktion på $\Gamma$, så er $\psi(\tau) \geq 0$ for alle $\tau \in \Gamma$ og ved at indsette $m = \psi(\tau)$ i (1) finder vi

$$[\psi(\tau)]^\alpha = \frac{\alpha}{\Gamma(1-\alpha)} \int_0^\infty \frac{1 - e^{-s\psi(\tau)}}{s} s^{-\alpha} ds.$$ 

Af Schoenberg's sætning (3.7) og sætningsne 3.1 og 3.6 følger imidlertid at funktionen

$$\gamma \mapsto \frac{1 - e^{-s\psi(\tau)}}{s} s^{-\alpha}$$
et negativ definit for alle \( s > 0 \) og \( x \in [0, 1] \), og dermed
\( \psi^x \) negativ definit.

Lad \( \psi : \mathbb{R} \rightarrow \mathbb{R} \) være negativ definit og lad \( (\mu_t)_{t \geq 0} \)
 være den til \( \psi \) associerede foldningssemigruppe på \( \mathbb{R} \).
For hvert \( x \in [0, 1] \) findes en entydigt bestemt foldningssemigruppe \( (\mu_t^x)_{t \geq 0} \) på \( \mathbb{R} \), så
\[
\mu_t^x = e^{-t \psi^x} \quad \text{for} \quad t > 0.
\]

Eksempel. På \( \mathbb{R}^n \) er funktionen \( \psi(x) = \|x\|^2 \) en
veel, negativ definit funktion, og følgelig er
\[
x \mapsto \|x\|^\beta
\]
negativ definit for alle \( \beta \in [0, 2] \). Men så er
\[
x \mapsto e^{-\|x\|^\beta}
\]
positiv definit for \( 0 < \beta \leq 2 \), og specielt er funktionen \( e^{-\|x\|^\beta} \) positiv definit på \( \mathbb{R}^n \) for \( \beta \in [0, 2] \),
svarende p. 90.

Foldningssemigruppeerne på \( \mathbb{R}^n \), der er associeret med
de negativ definite funktioner
\[
x \mapsto \|x\|^\alpha \quad \text{for} \quad \alpha \in [0, 2]
\]
kaldes de stabile semi-grupper af orden \( \alpha \).

Lad \( n = 1 \). For \( \alpha \in [0, 2] \) betegner vi med \( (\mu_t^\alpha)_{t \geq 0} \)
den stabile semigruppe af orden $\alpha$ på $\mathbb{R}$, altså den foldingsemigruppe $(\mu^\alpha_t)_{t \geq 0}$, der tilfredsstiller

$$\hat{\mu}^\alpha_t(x) = e^{-\alpha t|\mathbf{x}|^\alpha} \quad \text{for } t > 0 \text{ og } x \in \mathbb{R}.$$ 

Idet denne Fourier-transformerede er integrabel for $t > 0$ og $\alpha \in [0, 2]$ giver inversionssætningen, at

$$\mu^\alpha_t = \int_{\mathbb{R}} \hat{\mu}^\alpha_t(x) \, dx$$

lærer

$$\hat{\mu}^\alpha_t(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{ixy} e^{-\alpha |\mathbf{y}|^\alpha} \, dy$$

e en funktion tilhørende $C_0^\infty(\mathbb{R})$.

For $\alpha = 1$ og 2 følger tætheden for den Cauchyske og den Brown'ske semigruppe. For de øvrige $\alpha \in [0, 2]$ kender man ikke eksplisite formler for $\hat{\mu}^\alpha_t$; der findes dog nogle udviklinger. Se f.eks. Feller: An introduction to probability theory and its applications. Vol II, p 581.

\[\text{Ovelse 3.8. Lad } \psi \in \mathcal{N}(\mathcal{M}). \text{ For alle } \alpha > 0 \text{ og } \beta > 0 \text{ er funktionen}

$$\gamma \mapsto \frac{\psi(\gamma)}{\alpha + \beta \psi(\gamma)}$$

negativ definit.

\[\text{Ovelse 3.9. Lad } \mu \in \mathcal{M}^+(\mathbb{G}) \text{ og lad } \alpha \in [\mu(\mathbb{G}), +\infty]. \text{ For hvert } t > 0 \text{ defineres et mål } \mu_t \text{ på } \mathbb{G} \text{ ved}

$$\mu_t = e^{-\alpha t} \exp(t \mu) = e^{-\alpha t} \sum_{m=0}^{\infty} \frac{t^m}{m!} \mu^m$$


(her betegnes $\mu^n$ målet $\mu_1 \times \mu_2 \times \ldots \times \mu_n$ (n-faktorer)) og $(\mu_t)_{t \geq 0}$ er en foldningssemingruppe på $G$. Find den med $(\mu_t)_{t \geq 0}$ associerede negativ definite funktion på $\Gamma$. (Sammenlign Øvelse 2.1).

Nedenfor er angivet en række foldningssemingrupper $(\mu_t)_{t \geq 0}$ på $\mathbb{R}$ og de associerede negativ definite funktioner $\psi$ på $\mathbb{R} = \mathbb{R}$.

<table>
<thead>
<tr>
<th>Foldningssemingruppe $(\mu_t)_{t \geq 0}$</th>
<th>$\psi \mapsto \psi(\mu)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semigruppe af translatationer med hastighed $a \in \mathbb{R}$</td>
<td>$\mu_t = e^{ta}$</td>
</tr>
<tr>
<td>Brown'ske semigruppe</td>
<td>$\mu_t = (4\pi t)^{-\frac{d}{2}} e^{-\frac{x^2}{2t}} dx$</td>
</tr>
<tr>
<td>Poisson'ske semigruppe</td>
<td>$\mu_t = \sum_{k=0}^{\infty} e^{-t} t^k / k! \delta_k$</td>
</tr>
<tr>
<td>Cauchy'ske semigruppe</td>
<td>$\mu_t = \frac{t}{\pi} \frac{dx}{t^2 + x^2}$</td>
</tr>
<tr>
<td>Odaikel semigruppe</td>
<td>$\mu_t = e^{-at} \delta_{x_0}, a &gt; 0$</td>
</tr>
<tr>
<td>Den stabile semigruppe af orden $x$</td>
<td>$\delta_{x \in [0,2]}$</td>
</tr>
</tbody>
</table>

§4. Levy-Khinchine's formel i det reelle tilfælde.

Lad $G$ være en LCA-gruppe med dual gruppe $\Gamma$, og lad $dx$ og $dy$ være Haarmål på $G$ og $\Gamma$. 
Det er nærliggende at prøve at finde en integral fremstilling af samtlige negativ definite funktioner på $\Gamma$ i analogi med Bodner's integral fremstilling af samtlige kontinuerte, positiv definite funktioner på $\Gamma$. En sådan integral fremstilling blev i tilfællet $\Gamma = \mathbb{R}$ fundet af P. Levy (1934) og uafhængigt heraf af A.J. Khinchine (1937). Dette integral fremstilling kaldes Levy-Khinchine's formel. En helt tilfredsstillende formel er endnu ikke fundet i det generelle tilfælde, selvom der er skrevet en lang række arbejder herom.


Vi skal senere, i tilfællet $G = \Gamma = \mathbb{R}^n$, give en mere eksplisit version af Levy-Khinchine's formel.

Sætning 4.1. Lad $\mu$ være et positivt mål på det lokalkompakte rum $G\setminus\partial G$ som er "symmetrisk" på $G\setminus\partial G$ d.v.s. $\mu(\phi) = \mu(\varphi)$ for alle $\phi \in \mathcal{K}(G)$ med $\text{supp}\varphi = G\setminus\partial G$. Antag at integralet

$$\int_{G\setminus\partial G} (1 - \text{Re}\, \psi(x)) \, d\mu(x)$$

ei endeligt for alle $x \in G$. Da $\psi$ funktionen $\psi: \Gamma \to \mathbb{R}$

$$\psi(x) = \int_{G\setminus\partial G} (1 - \text{Re}\, \psi(x)) \, d\mu(x) \quad \text{for } x \in \Gamma,$$
negativ definit på \( \Gamma \).

Bevis. Det er klart at \( \psi(0) = 0 \) og \( \psi(-x) = \psi(x) \). Jælket \( x \mapsto \text{Re} \psi(x) \) er kontinuerligt og positiv definit for alle \( x \in \Gamma \), en funktionen

\[ y \mapsto (1 - \text{Re} \psi(x)) \]

negativ definit for alle \( x \in \Gamma \) (Sætning 3.6). For \( \xi_1, \ldots, \xi_n \in \Gamma \) og \( \varphi_1, \ldots, \varphi_n \in \mathbb{C} \) sa \( \sum_{i=1}^{n} \varphi_i = 0 \) finder vi:

\[ \sum_{i,j=1}^{n} \psi(x_i - x_j) \varphi_i \overline{\varphi_j} = \int_{G \setminus \Om} \left[ \sum_{i,j=1}^{n} (1 - \text{Re}(\xi_i - \xi_j)(x)) \varphi_i \overline{\varphi_j} \right] d\mu(x) < 0, \]

og vi mangler nu blot at vise, at \( \psi \) er kontinuerligt. På sædvanlig måde ser man (gjort efter 4.1), at \( \psi \) er nedad halvkontinuerlig. Dermed er mængdene

\[ A_n = \{ x \in \Gamma \mid \psi(x) \leq m \} \]

afsluttede delmængder af \( \Gamma \). Da \( \psi \) er endelig overalt på \( \Gamma \) har vi

\[ \Gamma = \bigcup_{n=1}^{\infty} A_n \]

og ifølge Baire's sætning findes et \( n_0 \in \mathbb{N} \) og et \( x_0 \in A_{n_0} \) sa \( x_0 \) er indre punkt i \( A_{n_0} \). Lad \( V \) være et område af \( x_0 \) sa \( V \subseteq A_{n_0} \). Ifølge det allerede viste og lemma 3.2 er funktionen \( \sqrt{\psi} \) subadditiv (gjort. bemærkninger til 3.2), hvorfra for \( x \in V - x_0 \)

\[ \sqrt{\psi(x)} = \sqrt{\psi(x + x_0 + (-x_0))} \leq \sqrt{\psi(x + x_0)} + \sqrt{\psi(x_0)} \leq 2\sqrt{n_0} \]
hvor vi benytter at $\psi(\delta) = \psi(-\delta)$.

Dermed er $\psi$ lokalt begrenset. Lad nemlig $K \subseteq \Gamma$ være en kompakt delmængde. I det vi sætter $V_0 = V - x_0$ findes $y_1, \ldots, y_n \in \Gamma$ så

$$K \subseteq \bigcup_{i=2}^n (y_i + V_0).$$

Lad $y \in K$. Så findes $j \in \{1, \ldots, n\}$ så $y \in y_j + V_0$, og dermed

$$\sqrt{\psi(y)} \leq \sqrt{\psi(y-y_j)} + \sqrt{\psi(y_j)}$$

$$\leq 2\sqrt{\psi(x_0)} + \max \{\sqrt{\psi(y_1)}, \ldots, \sqrt{\psi(y_n)}\} < +\infty$$

idet $\psi$ er endelig.

Da funktionen $\psi$ er nedad halvkontinuert og lokalt begrenset er den lokalt integrabel, og for alle $\varphi \in \mathcal{K}(\Gamma)^+$ med $\varphi = \hat{\varphi}$ og $\int \varphi(x) \, d\mu(x) = 1$ finder vi

$$\psi \ast \varphi(x) = \int_{\Gamma} \varphi(x-\eta) \left[ \int_{G \setminus \{0\}} (1 - \Re \eta(x)) \, d\mu(x) \right] \, d\eta$$

$$= \int_{G \setminus \{0\}} \left( \int_{\Gamma} \left[ \varphi(x-\eta) - \varphi(x-\eta) \Re \eta(x) \right] \, d\eta \right) \, d\mu(x)$$

$$= \int_{G \setminus \{0\}} \left(1 - \int_{\Gamma} \varphi(x-\eta) \frac{\eta(x) + \overline{\eta(x)}}{2} \, d\eta \right) \, d\mu(x)$$

$$= \int_{G \setminus \{0\}} \left(1 - \frac{1}{2} \int_{\Gamma} (\eta(x) \, \varphi(\eta) + \overline{\eta(x)} \, \varphi(\eta)) \, d\eta \right) \, d\mu(x)$$

$$= \int_{G \setminus \{0\}} (1 - \Re \varphi(x) \cdot \hat{\varphi}(x)) \, d\mu(x)$$
\[\int \left(1 - \text{Re} \varphi(x)\right) d\mu(x) + \int \text{Re} \varphi(x) \left(1 - \hat{\varphi}(x)\right) d\mu(x)\]

\[= \varphi(x) + \int \text{Re} \varphi(x) \left(1 - \hat{\varphi}(x)\right) d\mu(x),\]

specielt for \(\gamma = 0:\)

\[\varphi \ast \varphi(0) = \int \left(1 - \hat{\varphi}(x)\right) d\mu(x)\]

og \(\left(1 - \hat{\varphi}(x)\right) d\mu(x)\) er altså et positivt, begrænset mål på \(G \setminus \{0\}\), og kan dermed opfattes som et positivt begrænset mål \(\tau\) på \(G\) defineret ved

\[\int f(x) d\mu(x) = \int G \setminus \{0\} f(x) \left(1 - \hat{\varphi}(x)\right) d\mu(x)\]

for \(f \in L^1(G)\).

Denne formel gælder for alle kontinuerte, begrænsete funktioner på \(G\). Denne er funktionen

\[\gamma \mapsto \int \text{Re} \varphi(x) d\tau(x) = \int \text{Re} \varphi(x) \left(1 - \hat{\varphi}(x)\right) d\mu(x)\]

vælدلem af den Fouriertransformerede af det positive, begrænsete mål \(\tau\), specielt kontinuert.

Da

\[\varphi(x) = \varphi \ast \varphi(x) - \int G \setminus \{0\} \text{Re} \varphi(x) \left(1 - \hat{\varphi}(x)\right) d\mu(x)\]

er \(\varphi\) altså kontinueret, idet \(\varphi\) er differens af to kontinuerede funktioner. Se For. II. 2.4. II.

**Ovelse 4.1** Lad \(X, Y\) være lokalkompakte rum og \(G\): \(X \times Y \rightarrow [0, \infty]\) en nedad halvkontinueret funktion.
For enhver positivt mål \( \mu \) på \( Y \) er funktionen

\[
X \ni x \mapsto G \mu(x) = \int G(x,y) \, d\mu(y) \in [0,\infty]
\]

nedad halvkontinueret. (Vink: For \( G \in \mathcal{K}^+(X \times Y) \) er 
\( x \mapsto G \mu(x) \) kontinueret)

**Lemma 4.2.** Lad \( \mu \in \mathcal{M}(G) \) og \( \delta \in \mathcal{M}(\Gamma) \). Da \( \delta \cdot \mu \in \mathcal{M}(G) \) og \( \delta \cdot \mu \) er en kontinueret begrænset funktion på \( \Gamma \), og det gælder

\[
(\delta \cdot \mu)^\wedge = \delta \cdot \mu^\wedge.
\]

**Bevis.** For \( \delta \in \Gamma \) har vi

\[
(\delta \cdot \mu)^\wedge(\delta) = \int \overline{\delta(x)} \, \delta(x) \, d\mu(x)
\]

\[
= \int \overline{\delta(x)} \left[ \int \overline{\delta(y)} \, d\delta(y) \right] \, d\mu(x)
\]

\[
= \int \int \overline{(x+y)} \, d\mu(x) \, d\delta(y)
\]

\[
= \int \mu(x+y) \, d\delta(y)
\]

\[
= \delta \cdot \mu^\wedge(\delta). \quad \Box.
\]

Hvis \( \delta \) er symmetrisk gælder altså : \( (\delta \cdot \mu)^\wedge = \delta \cdot \mu^\wedge \).

Lad \( \delta \) betegne mængden af positive, begrensete, symmetriske mål på \( \Gamma \), med totalmasse 1 og kompakt støtte.

**Sætning 4.3.** Følgende betingelser for en funktion \( \psi : \Gamma \to \mathbb{R} \) er ønskende:

\( \psi \) er negativ definit.
3) $\psi \sigma - \psi$ er kontinuerligt og positiv definit for alle $\sigma \in \mathcal{S}$.
4) Der findes en konstant $\alpha \geq 0$, en ikke-egentlig kvadratisk form $\alpha : \Gamma \to \mathbb{R}$ og et positivt "symmetrisk" mål $\mu$ på $G \setminus \{0\}$ med egenskaben at integralet

$$\int (1 - \Re \psi(x)) \, d\mu(x)$$

e er endeligt for alle $x \in \Gamma$, således at

$$\psi(x) = \alpha + \alpha(x) + \int (1 - \Re \psi(x)) \, d\mu(x) \quad \text{for } x \in \Gamma.$$ 

Bew. 1) $\Rightarrow$ 2). Ifølge sætning 3.20 er det tilstrækkeligt at vise, at

$$g = (c - \varphi) \sigma - (c - \varphi)$$

er positiv definit for alle $\sigma \in \mathcal{S}$, $\varphi \in \mathcal{P}(\Gamma)$ og $c \geq \varphi(0)$. Lad $\mu$ være det positive begrænset mål på $G$ så $\hat{\mu} = \varphi$.

Af Lemma 4.2 får da

$$g = \varphi - \varphi \sigma = \varphi \ast (\varepsilon_0 - \sigma)$$

$$= \hat{\mu} \ast (\varepsilon_0 - \sigma) = [\hat{(1 - \hat{\sigma})\mu}]^\wedge,$$

hvor målet $(1 - \hat{\sigma})\mu$ er positivt, da $\sigma$ er real og $\leq 1$.

Heraf følger, at $g$ er positiv definit.

2) $\Rightarrow$ 3). Lad først $\psi(0) = 0$. For hvilket $\sigma \in \mathcal{S}$ befinder vi med $\mu$ det eventuelt bestemte, positive, begrænset mål på $G$ så

$$\psi \sigma - \psi = \hat{\mu}.$$
Bemærk at \( \mu_\delta \) er symmetrisk, og derfor gælder

\[
\psi \times \delta(x) - \psi(x) = \int \Re \phi(x) \, d\mu_\delta(x)
\]

Ifølge Lemma 3.2 har \( \psi \) for alle \( \delta, \delta' \in \mathcal{S} \), at

\[
\psi \times \delta \times \delta' - \psi \times \delta' = \left[ \hat{\delta} \mu_\delta \right]^*.
\]

Endvidere gælder

\[
(1 - \delta) \mu_\delta = (1 - \hat{\delta}) \mu_\delta,
\]

hvor begge mål har funktionen \( \psi \times \delta + \psi \times \delta' - \psi \times \delta \times \delta' - \psi \) som Fourier-tranformere. Dette viser at kvotienken

\[
\frac{1}{1 - \delta} \mu_\delta
\]

er "uafhængig" af \( \delta \in \mathcal{S} \), eller mere præcist: For alle \( \phi \in \mathcal{K}(\mathcal{S}) \) med \( \text{supp} \phi \subseteq \{ x \in G \mid \hat{\delta}(x) \neq 1 \text{ og } \hat{\delta'}(x) \neq 1 \} \) gælder

\[
\int \phi(x) \frac{1}{1 - \delta(x)} \, d\mu_\delta(x) = \int \phi(x) \frac{1}{1 - \hat{\delta}(x)} \, d\mu_\delta(x).
\]

Dette skal benyttet til at definere et mål \( \mu \) på \( G \setminus \{0\} \), ved at "stykke" målene \( (1 - \delta) \mu_\delta \) sammen (se bemærkning for sætning II.5.1). Hertil følger en bemærkning.

Til hvert kompakt delmængde \( K \) af \( G \setminus \{0\} \) findes et mål \( \delta \in \mathcal{S} \) så \( \hat{\delta} \neq 1 \) på \( K \).

Ifølge II.7.2 findes nemlig til hvert \( x \in K \) en karakter \( \chi \in \Gamma \) så \( \chi(x) = \chi(0) (1) \). Men så er \( \chi(y) \neq 1 \) for \( y \) tilhørende en omegn \( V_x \) af \( x \). Dermed findes \( x_1, \ldots, x_n \in K \) så
\[ K \leq \bigcup_{i=1}^{n} V_{x_i} \]

og målet
\[ \sigma = \frac{1}{2n} \sum_{i=1}^{n} (\varepsilon_{x_i} + \varepsilon_{-x_i}) \]
tilhører \( G \) og opfylder
\[ \hat{\sigma}(x) = \frac{1}{2n} \sum_{i=1}^{n} 2 \Re \varepsilon_{x_i}(x) < 1 \quad \text{for alle } x \in K. \]

Vi kan nu definere et positivt mål \( \mu \) på \( G \setminus \{0\} \), på følgende måde. For \( \varphi \in \mathcal{X}(G \setminus \{0\}) \) vælges \( \delta \in \mathcal{G} \) så \( \delta + 1 \) på \( \text{supp } \varphi \), og dernæst sætter vi
\[ \mu(\varphi) = \int \frac{\varphi(x)}{1 - \hat{\sigma}(x)} \, d\mu_{\delta}(x) \]

hvor \( \frac{\varphi(x)}{1 - \hat{\sigma}(x)} \) er en kort skrivemåde for funktionen
\[ \begin{cases} \frac{\varphi(x)}{1 - \hat{\sigma}(x)} & \text{for } x \in \{x \in G \mid \hat{\sigma}(x) \neq 1\} \\ 0 & \text{for } x \in \{x \in G \mid \hat{\sigma}(x) = 1\} \end{cases} \]

Ifølge det ovenfor sagte vi tidligere \( \mu(\varphi) \) uafhængigt af det benyttede \( \delta \), og det er klart at afbildningen
\[ \varphi \mapsto \mu(\varphi) \]

er en positiv linearform på \( \mathcal{X}(G \setminus \{0\}) \), altid et positivt mål på \( G \setminus \{0\} \), som det ses at være "symmetrisk".

For \( \delta \in \mathcal{G} \) gælder klart, at
\[ 1_{G \setminus \{0\}} \mu_{\delta} = (1 - \hat{\delta}) \mu \quad \text{(som mål på } G \setminus \{0\}), \]
spejlt \( (1 - \hat{\delta}) \mu \) et begrænset mål på \( G \setminus \{0\} \), og der-
med et begrænset mål på $G$ (Overvej dette!)

Før $\theta = \frac{1}{2} (\psi_\xi + \psi_{\bar{\xi}})$ med $\xi \in \Gamma$, finder vi heraf at

$$(1 - \text{Re} \xi(x)) d\mu(x)$$

e et begrænset mål på $G$.

Ved anvendelse af (1) følger

$$\psi \ast \delta(x) - \psi(x) = \int_G \text{Re} \xi(x) \, d\mu_\delta(x)$$

$$(2)$$

$$= \mu_\delta(\{0\}) + \int_{G \setminus \{0\}} \text{Re} \xi(x) (1 - \hat{\delta}(x)) \, d\mu(x)$$

hvorfor for $\gamma = 0$ (ident $\psi(0) = 0$)

$$\int \psi \, d\delta = \int_G d\mu_\delta = \mu_\delta(\{0\}) + \int_{G \setminus \{0\}} (1 - \hat{\delta}(x)) \, d\mu(x)$$

$$(3)$$

Lad $\xi \in \Gamma$. Ved at benytte $\theta = \frac{1}{2} (\xi + \bar{\xi})$ i (3) følger

$$\psi(\xi) = \alpha(\xi) + \int_{G \setminus \{0\}} (1 - \text{Re} \xi(x)) \, d\mu(x)$$

$$(4)$$

hvor vi klar sat

$$\alpha(\xi) = \mu_\delta(\{0\}) = \mu_{\frac{1}{2}(\xi + \bar{\xi})}(\{0\})$$

af sædvanlig 4.1 følger at $\xi \mapsto \alpha(\xi)$ er kontinuerligt, som

differeres mellem to kontinuerlige funktioner. Desuden er

$\alpha(\xi) \geq 0$.

Vi skal nu blot vise, at $\alpha$ er en kvadratisk form.

Trækkes formel (2) fra formel (3) følger for $\theta \in \Phi$

$$\int \psi \, d\delta + \psi(x) - \psi \ast \delta(x) = \int_{G \setminus \{0\}} (1 - \text{Re} \xi(x)) (1 - \hat{\delta}(x)) \, d\mu(x).$$

$$(5)$$
Ved at vælge \( \delta = \frac{1}{2} (E_\xi + E_{\bar{\xi}}) \) for \( \xi \in \Gamma \) i (3) følger
\[
\psi(\xi) + \psi(\bar{\xi}) - \frac{1}{2} \psi(\xi - \bar{\xi}) - \frac{1}{2} \psi(\xi + \bar{\xi})
\]

\[= \int_{G \setminus \{0\}} (1 - \text{Re} \xi(x))(1 - \text{Re} \bar{\xi}(x)) \, d\mu(x) \]

Judsættes (4) (og de analoge former) kan findes vi
\[
\alpha(\xi) + \alpha(\bar{\xi}) - \frac{1}{2} \alpha(\xi - \bar{\xi}) - \frac{1}{2} \alpha(\xi + \bar{\xi}) = 0
\]

fordi
\[
(1 - \text{Re} \xi(x)) + (1 - \text{Re} \bar{\xi}(x)) - \frac{1}{2} (1 - \text{Re} (\xi - \bar{\xi})(x)) + \frac{1}{2} (1 - \text{Re} (\xi + \bar{\xi})(x))
\]

\[= (1 - \text{Re} \xi(x))(1 - \text{Re} \bar{\xi}(x)) \]

hvilket kommer ud på at

\[2 \text{Re} \xi(x) \text{Re} \bar{\xi}(x) = \text{Re} (\xi - \bar{\xi})(x) + \text{Re} (\xi + \bar{\xi})(x) \]

som en ekvivalent med formlen

\[2 \cos p \cdot \cos q = \cos (p - q) + \cos (p + q). \]

Lad \( \psi(0) \) være vilkårlig. Da er \( \psi'(\xi) = \psi(\bar{\xi}) - \psi(0) \)

en funktion med egenskaben 3). Altså findes en kvadratisk form \( \alpha \) og et positivt "symmetrisk" mål \( \mu \) på \( G \setminus \{0\} \) (så \( \alpha \) er ikke-negativ og så \( \int (1 - \text{Re} \xi(x)) \, d\mu(x) < +\infty \) for alle \( \xi \in \Gamma \) således at

\[\psi'(\xi) = \alpha(\xi) + \int_{G \setminus \{0\}} (1 - \text{Re} \xi(x)) \, d\mu(x) \quad \text{for} \quad \xi \in \Gamma, \]

hvorpå

\[\psi(\xi) = \psi(0) + \alpha(\bar{\xi}) + \int_{G \setminus \{0\}} (1 - \text{Re} \xi(x)) \, d\mu(x) \quad \text{for} \quad \xi \in \Gamma. \]
Sætning 4.4. Lad $\psi: \Gamma \to \mathbb{R}$ være en reel, negativ definit funktion på $\Gamma$. Da findes netop ét sæt $(a_\alpha, \psi, \mu)$, hvor $a_\alpha > 0$, $\alpha$ er en ikke-negativ kvadratisk form på $\Gamma$ og $\mu$ er et positivt, "symmetrisk" mål på $G \setminus \{0\}$ så

$$\int_{G \setminus \{0\}} (1 - \Re \psi(x)) \, d\mu(x) < +\infty \quad \text{for alle } x \in \Gamma,$$

og således at

$$\psi(x) = a + \alpha(x) + \int_{G \setminus \{0\}} (1 - \Re \psi(x)) \, d\mu(x) \quad \text{for } x \in \Gamma. \quad (*)$$

Den kvadratisk form $\alpha$ er bestemt ved

$$\alpha(x) = \lim_{m \to \infty} \frac{\psi(mx)}{m^2} \quad \text{for } x \in \Gamma.$$

Bevis. Eksistensen følger af sætning 4.3. I opspaltungen $(*)$ er $a = \psi(0)$, og den kvadratisk form $\alpha$ er bestemt ved

$$\alpha(x) = \lim_{m \to \infty} \frac{\psi(mx)}{m^2}. \quad (6)$$

For at indse (6) bemærkes, at for $x \in \Gamma$ og $n \in \mathbb{N}$ gælder ifølge (4) at

$$\alpha(x) = \alpha(n \cdot x) \frac{1}{n^2} = \frac{\psi(nx)}{n^2} - \int_{G \setminus \{0\}} \frac{1 - \Re \psi(nx)}{n^2} \, d\mu(x) \quad (7)$$

Her konvergerer integranden punktvis mod 0 for $n \to \infty$, og der findes en integrabel, absolut majorant. For hvert fast $x \in G$ og $x \in \Gamma$ gælder nemlig for et passende
\[ \theta \in [-\pi, \pi] \text{ at } \psi(x) = e^{i\theta} \text{ and defined } (m^* \psi)(x) = e^{i\theta}, \text{ accordingly (here } \theta \neq 0) \]

\[ \frac{1 - \text{Re } (m^* \psi)(x)}{m^2} = \frac{1 - \cos n\theta}{m^2} \]

\[ = \frac{2 \sin^2 \frac{n\theta}{2}}{n^2} \cdot \frac{2 \sin^2 \frac{\theta}{2}}{2 \sin^2 \frac{\theta}{2}} \cdot \left( \frac{\theta}{2} \right)^2 \]

\[ = \left( \frac{\sin \frac{n\theta}{2}}{\frac{n\theta}{2}} \right)^2 \left( \frac{\theta}{\sin \frac{\theta}{2}} \right)^2 \left( 1 - \cos \theta \right) \]

og idet den gælder \[ \left| \frac{\sin y}{y} \right| \leq 1 \text{ for } y \neq 0, \text{ samt } \]

\[ \left| \frac{\sin y}{y} \right| \geq \frac{1}{c} \text{ for } y \in [-\frac{\pi}{2}, \frac{\pi}{2}] \setminus \{0\} \text{ hvor } c > 0, \]

heraf at

\[ \frac{1 - \text{Re } (m^* \psi)(x)}{m^2} \leq c^2 \left( 1 - \text{Re } \psi(x) \right) \]

Sætningen om majoriseret konvergens af integraller giver, at integralet i (7) konvergerer mod 0 for \( n \to \infty \), hvilket viser (6).

Vi mångler nu blot at vise at funktionen

\[ x \mapsto \int_{G \setminus \{0\}} \left( 1 - \text{Re } \psi(x) \right) d\mu(x) \]

fastlægger målet \( \mu \) på \( G \setminus \{0\} \).

Lad \( \delta \in \Theta \). For \( \delta \in \Theta \) gælder

\[ \phi \ast \delta(x) - \phi(x) = \int_{G \setminus \{0\}} \left[ \int_{G \setminus \{0\}} \left( 1 - \text{Re } (x - \delta)(x) \right) d\mu(x) \right] d\delta(\delta) \]

\[ - \int (1 - \text{Re } \psi(x)) d\mu(x) \]
\[
\begin{align*}
&= \left( \int (1 - \Re(y - \delta(x))d\sigma(\delta) - 1 + \Re(y(x))\right)d\mu(x) \\
&= \int \Re(y(x))(1 - \delta(x))d\mu(x) = \int \overline{y(x)}(1 - \delta(x))d\mu(x),
\end{align*}
\]

hvilket viser at målet \((1 - \delta)\mu\) har den positiv definitive funktion \(\phi \ast \sigma - \phi\) som Fouriertransformeret. Alle målene \((1 - \delta)\mu\), \(\sigma \in \mathcal{F}\), er altså endvidt bestemt ved \(\phi\), hvortil ses at \(\mu\) er endvidt bestemt ved \(\phi\) (gjæ. bemærkningen p. 198 nedst.).

\begin{proof}
Lad \(\phi\) være en kontinuerlig reel
positiv definit funktion på \(\mathbb{R}\) og lad \(k \geq \phi(0)\).
Find det endvidt bestemte triplet \((a, x, \mu)\) i Lévy-
Khinchines formel for den reelle negativ definitive
funktion \(\phi = k - \phi\).
\end{proof}

\begin{proof}
Lad \(\psi\) være en reel negativ definit
funktion på \(\mathbb{R}\), \((\mu_t)_{t \geq 0}\) den
associerede fordøjningsre-
migruppe på \(G\) og \(\mu\) der repræsenterede mål på \(G\setminus \{0\}\)
i Lévy-Khinchines formel. For alle \(\sigma \in \mathcal{F}\) gælder
\[
\lim_{t \to 0} \frac{1}{t}(1 - \delta)\mu_t = (1 - \delta)\mu \quad i \text{Bernoullito-
pologien},
\]
\[
\lim_{t \to 0} \frac{1}{G \setminus \{0\}} \frac{1}{t}\mu_t = \mu \quad \text{vagt som mål på } G \setminus \{0\}.
\end{proof}

\begin{proof}
FIND det endvidt bestemte triplet
\((a, x, \mu)\) for det negativ definitive funktion \(x \mapsto x \cdot x^2\) på \(\mathbb{R}^n\).
\end{proof}
Theorem 4.5. In Lyapunov-Chirikov's formula for the negative definite function $x \mapsto \|x\|^\alpha$, $0 < \alpha < 2$ on $\mathbb{R}^n$, a constant added and the characteristic form $C$, and the associated mass $\mu$ has the form

$$
\mu(x) = C \frac{1}{\|x\|^{2+n}} dx
$$

for a suitable constant $C > 0$. (It can be shown that $C$ is given by

$$
C = \frac{\alpha 2^{\alpha-1} \Gamma\left(\frac{\alpha+n}{2}\right)}{\pi^{\frac{n}{2}} \Gamma\left(1-\frac{n}{2}\right)}
$$

§5. Kontakthomseminigruppe.

We will in this paragraph see how an infinitesimal semigroup, a LCA group $G$, serves as a semigroup of contact homomorphisms $G$.

We start by summarizing some results on contact homomorphisms, and when we need specific reference, it will be found in C. Berg: Udvalgte emner fra potentialteori I, forelæsningerne juli-august 1971, i det fulde for NATF (NED).

Let $E$ be a Banach space over $C$ and let $\mu$ be a positive Radon measure on a locally compact space $X$. 
Sætning 5.1 (OEP p. 43-47). En kontinuerligt funktion $f : X \to E$ for hvilken

$$\int \|f(x)\| \, d\mu(x) < \infty,$$

er integrebel i den faste, at der findes precis et $a \in E$ med egenskaberne

$$\langle a, \varphi \rangle = \int \langle f(x), \varphi \rangle \, d\mu(x) \quad \forall \varphi \in E'.$$

Vi skriver

$$a = \int f \, d\mu = \int f(x) \, d\mu(x),$$

og den gælder

$$\|\int f(x) \, d\mu(x)\| \leq \int \|f(x)\| \, d\mu(x).$$

Hvis $F$ er et Banachrum og $T : E \to F$ en kontinuerlig lineær afbeeldning gælder

$$T(\int f(x) \, d\mu(x)) = \int T(f(x)) \, d\mu(x).$$

Definer, ved en kontraktable semigruppe på $F$, fastes en familie $(P_t)_{t \geq 0}$ af begrænsede operatorer på $E$ opfyldende

$$(1) \quad P_t P_s = P_{s+t}, \quad s, t \geq 0, \quad P_0 = I \ (identitetsen),$$

$$(2) \quad \|P_t\| \leq 1, \quad t \geq 0.$$

Lad $E_0$ bekræfte mængden

$$\{ f \in E \mid P_t f \to f \ for \ t \to 0 \}.$$
Lemma 5.2. $E_0$ er et afsluttet underrum af $E$ gør $f \in E_0$ u afbilledningen

$[0, \infty]$ at $t \mapsto P_t f \in E$

kontinuerligt.

Bemærk. Set $u$ kaldt af $E_0$ ved underrum. Lad $f \in E_0$, $\varepsilon > 0$ vælges givet. Så findes $g \in E_0$, så

$\|f - g\| \leq \varepsilon$ dumde et $\delta > 0$ så

$\|P_t g - g\| \leq \varepsilon$ for $t \leq \delta$.

For $t \leq \delta$ gælder

$\|P_t f - f\| \leq \|P_t f - P_t g\| + \|P_t g - g\| + \|g - f\| \leq 3\varepsilon$,

jævne $\|P_t f\| \leq 1$ for alle $t \geq 0$, altår $f \in E_0$.

For $f \in E_0$ være overvurderingerne

$\|P_{t+k} f - P_t f\| = \|P_t (P_k f - f)\| \leq \|P_k f - f\|$, $t \geq 0$, $k > 0$,

$\|P_t f - P_{t-k} f\| = \|P_{t-k} (P_k f - f)\| \leq \|P_k f - f\|$, $t \geq 0$, $k \leq t$.

al afbildningen $t \mapsto P_t f$ er (endda ligelig) kontinuerligt. 

Definicion. En kontraktionsemigruppe $(P_t)_{t \geq 0}$ kalder

$\underline{stærkt kontinuerligt}$ såremt $E = E_0$.

Lemma 5.2 viser, at begrebet kommer ud på
al afbildningen $t \mapsto P_t f$ er kontinuerligt for hvert fast
$f \in E$, altår al afbildningen $t \mapsto P_t f$ af $[0, \infty]$ ude
$\mathcal{L}(E,E)$ er stærkt kontinuerligt.
For at vise at en kontinuerlig sammenhængende (P)\((t_0)\) er støft kontinuerlig, er det nødvendigt at 
\[ Pf \to f \quad \text{for } t \to 0 \]
for f tilhører en total delmængde af \( E \).

I det følgende betegner \((P)\((t_0)\) en støft kontinuerlig kontinuerlig sammenhængende \( P\)\((t)\) på \( E \), og for en sådan defineres følgende operationer:

**Den infinitesimale frembringer** (\( A, D(A) \))

\[ D(A) = \{ f \in E \mid \lim_{t \to 0} \frac{1}{t} (P_t f - f) \text{ eksisterer} \} \]

\[ Af = \lim_{t \to 0} \frac{1}{t} (P_t f - f) \quad \text{for } f \in D(A). \]

**Potentialoperatoren** (\( N, D(N) \))

\[ D(N) = \{ f \in E \mid \lim_{t \to \infty} \int_0^t P_s f ds \text{ eksisterer} \} \]

\[ Nf = \lim_{t \to \infty} \int_0^t P_s f ds \quad \text{for } f \in D(N). \]

Det er klart at \( D(A) \) og \( D(N) \) er undermængde af \( E \), og at afbildningerne \( A : D(A) \to E \), \( N : D(N) \to E \) er lineære.

**Sætning 5.3.** Den infinitesimale frembringer (\( A, D(A) \)) er en total defineret og afsluttet operator.

Bem. UEP p. 50-51.

Derimod behøver \((N, D(N))\) ikke være total defineret.
Vi vil gøre en modstandsrig tilskærelse, og de

Som sædvanlig betegnes tilægsmængden fra en gæ

Sætnin 5.4. Om potentialeœ superfine gælden
a) \( P_t (D(N)) \subseteq D(N) \) og \( N P_t f = P_t N f \) for \( f \in D(N) \), \( t \geq 0 \).

b) \( P_t (Nf) - Nf = -\int_0^t P_s f ds \) for \( f \in D(N) \), \( t \geq 0 \).

c) \( \overline{R(N)} = D(N) \).

d) \( \lim_{t \to \infty} P_t f = 0 \) for alle \( f \in \overline{R(N)} \).

e) \( N \) er injektiv og afbildr \( D(N) \) ind i \( D(A) \) og de

\[
A(Nf) = -f, \quad f \in D(N).
\]

Bem. 9. For \( f \in D(N) \) vil \( \int_0^a P_t f ds \to Nf \) for \( a \to \infty \).

Hæft for at
\[
\int_0^a P_t (P_t f) ds = P_t \left( \int_0^a P_t f ds \right) = P_t (N f) \quad \text{for } a \to \infty, \quad t \geq 0,
\]

hvilket nul, at \( P_t f \in D(N) \) og \( N(P_t f) = P_t (N f) \).

e) Fra b) har vi
\[
P_t (N f) = \lim_{a \to \infty} \int_0^a P_t + f ds = \lim_{a \to \infty} \int_0^a P_t f ds = \lim_{a \to \infty} \left( \int_0^a P_t f ds - \int_0^t P_s f ds \right) = Nf - \int_0^t P_s f ds.
\]

c) For \( f \in D(N) \), \( t > 0 \), føjer af a) og e) at
\[
N \left( \frac{1}{t} (f - P_t f) \right) = \frac{1}{t} \int_0^t P_s f ds.
\]
og heraf følger at

$$\lim_{t \to 0} N \left( \frac{t}{2} (f - Pf) \right) = \frac{1}{2} \int_0^t P_s f ds - f \quad \text{for} \quad t \to 0,$$

men dette nie at \( f \in D(N) \) er grænsevektori for elementer i \( R(N) \), altså \( D(N) \subseteq R(N) \).

1) Af 2) følger umiddelbart at \( \lim_{t \to 0} P_t f = 0 \), altså

\[ R(N) = \{ f \in E \mid \lim_{t \to 0} P_t f = 0 \} . \]

Man ser at den i øvrigt is dennem vi klarem er et afsluttet underrum (jfr. benævnt for at \( E_0 \) er afsluttet p.207), og dermed følger d).

2) Af 4) følger at

$$\frac{t}{2} (P_t (Nf) - Nf) = -\frac{t}{2} \int_0^t P_s f ds - f \quad \text{for} \quad t \to 0,$$

altså \( Nf \in D(A) \) og \( A(Nf) = -f \). Denne formel nie at

\[ N \text{ er invektiv}. \]

**Lemma 5.5**. For \( f \in D(N) \) og \( a > 0 \) gælder

$$\int_0^a P_s f ds \in D(N).$$

**Bem.** Vi sætter \( f^x = \int_0^x P_s f ds \) og skel nie, at

$$\int_0^t P_s f^x ds \text{ har en grænsevektori for} \ t \to \infty. \text{ Vi finder}

\begin{align*}
\int_0^t P_s f^x ds &= \int_0^t \int_0^s P_{t-s} f ds \, ds = \int_0^t \left[ \int_0^s P_{t-s} f ds \right] \, ds = \int_0^t \left[ \int_0^{s+t} P_s f du \right] \, ds = \int_0^a \left[ \int_0^{s+t} P_s f du \right] \, ds = \int_0^a \left[ \int_0^{s+t} P_s f du \right] \, ds = \int_0^a \left[ \int_0^{s+t} f^x ds \right] \, ds = \int_0^a \left[ \int_0^{s+t} f^x ds \right] \, ds = \int_0^a \left[ \int_0^{s+t} f^x ds \right] \, ds = \int_0^a \left[ \int_0^{s+t} f^x ds \right] \, ds.
\end{align*}$$
Vi vil nu vise at
\[ \lim_{t \to \infty} \int_0^a f(s+t) \, ds = a Nf. \]

Lad \( \varepsilon > 0 \) være givet. Der findes \( K > 0 \) så da for \( t \geq K \) gælder
\[ \| Nf - f_t \| = \int_0^a \left| (f(x) - Nf(x)) \right| \, dx \leq \frac{\varepsilon}{a} \to \infty \]

For \( t \geq K \) har vi så
\[ \| \int_0^a f(s+t) \, ds - a Nf \| = \int_0^a \left| (f(x) - Nf(x)) \right| \, dx \leq \frac{\varepsilon}{a} \to \infty. \]

Sætning 5.6. Følgende betingelser er erstatningsdele:

(i) \( D(N) \) er tæt.
(ii) \( R(N) \) er tæt.
(iii) \( \lim_{t \to \infty} f_t = 0 \) for alle \( f \in E \).

Hvis (i) -(iii) er opfyldt er \( N \) tæt definit og afbildet.

Fremstillingen \((A, D(A))\) er injectiv og \( N = A^{-1}, A = -N^{-1}. \)

Bemærk. Implikationerne (i) \( \Rightarrow \) (ii) \( \Rightarrow \) (iii) følger af sætning 5.4 (c) og (d). Anvend nu af (iii) er opfyldt.

For \( f \in D(A) \) gælder
\[ \int_0^t \mathbb{P}_s(\mathcal{A}f) \, ds = \mathbb{P}_t f - f. \] (UEP Corollary 3.8), og af (iii) følger så:
\[ \lim_{t \to \infty} \int_0^t \mathbb{P}_s(\mathcal{A}f) \, ds = -f \tag{(*)} \]
alle, \( \mathcal{A}f \in D(N) \) og \( N(\mathcal{A}f) = -f. \) Dette viser at \( \mathcal{A} \) afbildes \( D(A) \) injectivt og i \( D(N) \) i kombination med 5.4 (c) følger, at \( A = -N^{-1}, N = -A^{-1}. \) Da \( A \) er afbildet ikke \( N \)
afslutket. For at se at $D(N)$ er ret bemærket at (*) vist, at $-\lambda$ er grænseværdi af heltier, der i tæt lemmata
5.5 ligger i $D(N)$. Nu (iii) er opfyldt gælder alle $D(A) \subseteq D(N)$, hvilket viste at $D(N)$ er ret, jf. sætnig
5.3. 

Lad $(P_t)^{(2)}$ være en stæt konsistent kontinuerlig fællessemigruppe med frembringer $(A, D(A))$ og poten-
haloperamet $(N, D(N))$. For hvert $t > 0$ defineres en stæt kontinuerlig kontinuerlig fællessemigruppe $(P_t^\lambda)^{(2)}$ ved
$$P_t^\lambda f = e^{-\lambda t} P_t f, \quad f \in E, \quad t > 0.$$ 

Dens frembringer betegnes $A_\lambda$ og dens potenhaloperamet $V_\lambda$.

Sætnig 5.7 For alle $\lambda > 0$ gælder:

(a) $D(A_\lambda) = D(A)$, $A_\lambda = A - \lambda I$

(b) $D(V_\lambda) = E$ og $V_\lambda$ er en begrenset operator på $E$

af norm $\|V_\lambda\| \leq \frac{1}{\lambda}$ giver ved

$$V_\lambda f = \int_0^\infty e^{-\lambda t} P_t f \, dt.$$ 

(c) $P_t^\lambda f \to 0$ for $t \to \infty$ for alle $f \in E$.

Bens. VEP lemma 3.12.

Egenskaber (c) viste at $V_\lambda = -A_\lambda^{-1} = (\lambda I - A)^{-1}$

Restriktionen $\varphi(A)$ for operatoren $A$ er holdbar.
altså intervallet \( [0, \infty] \) og \( \nu \) er (restriktionen til \( [0, \infty] \) af) A's resolvent med modsat jaktør. Derfor gælder følgende resolventligning
\[
\lambda - \nu = (\lambda - \lambda) \nu \mu \quad \lambda \nu = \nu \lambda \quad \lambda, \mu > 0.
\]

Familien \((\nu_\lambda)_{\lambda > 0}\) kaldes resolventen for semigruppen.

Lad \( X \) være et lokalkompakt rum, \( \mathbb{F} = C_0(X) \) Banachrummet af kontinuerlige komplekse funktioner \( f : X \to \mathbb{C} \) der går mod 0 i \( \infty \), udsmykt med den ligelige norm
\[
\|f\| = \sup_{x \in X} |f(x)| .
\]

**Definition.** En started kontinuerlig lokalkompakte semigruppe \((\mu_t)_{t \geq 0}\) på \( \mathbb{F} = C_0(X) \) kaldes en Feller semigruppe, såfremt alle operatoren \( \mu_t \) er positive:
\[
\forall f \in C_0(X) \forall t > 0 (f \geq 0 \Rightarrow \mu_t f \geq 0).
\]

Lad \( G \) være en LCA-gruppe og lad \((\mu_t)_{t \geq 0}\) være en jordningssemigruppe på \( G \). Ved fastselektum
\[
\mu_t f = \mu_t * f , \quad f \in C_0(G), \quad t > 0
\]
defineres en Feller semigruppe.

Kun dem, der er kontinuiter, bliver en Feller.

Af (4) p. 156 følger af
\[
\lim_{t \to 0} \mu_t f = f \quad i \quad C_0(G),
\]
for alle \( f \in \mathcal{K}(G) \), men da \( \mathcal{K}(G) \) er tæt i \( C_0(G) \) er kom-
dskattionsseminigruppen \( (P_t)_{t \geq 0} \) stærkt kontinuerlig.

Operatorene \( P_t \) kommunicerer med Translationerne, i.e.
\[ \tau_x (P_t f) = P_t (\tau_x f) \quad \text{for alle } x \in G, f \in C_0(G), \]

hvor
\[ \tau_x (P_t f) = e^{-it} \hat{\mu}_x * f = \hat{\mu}_x * (e^{it} f) = P_t (\tau_x f). \]

Vi viser at \( (P_t)_{t \geq 0} \) er en translationsevivariant Fuller-
seminigruppe, og at \( (P_t)_{t \geq 0} \) er indhevet af foldningsseminigrup-
pen \( (\mu_t)_{t \geq 0} \).

Den følgende sætning viser, at alle translationsevarian-
t Fuller seminigrupper fæl på denne måde.

Sætning 5.8. Lad \( (P_t)_{t \geq 0} \) være en translationsevivariant
Feller seminigruppe på \( C_0(G) \). Så findes precis en foldningssemi-
gruppe \( (\mu_t)_{t \geq 0} \) så
\[ P_t f = \mu_t * f \quad \text{for } f \in C_0(G), t \geq 0. \quad (***) \]

Bemærk. Her er (***) skal vælge opfyldt have man
\[ P_t (f) (0) = \int f \mu_t \quad \text{for } f \in C_0(G), t \geq 0, \]

hvor det fastlægger foldningsseminigruppen \( (\mu_t)_{t \geq 0} \) entydigt.

Her er \( (P_t)_{t \geq 0} \) en translationsevivariant Fuller semi-
gruppe, når der for hvert \( t \geq 0 \) defines en positiv lineær-
form på \( C_0(G) \) ved
\[ f \mapsto P_t (f) (0), \]

og da
\[ \|P_t (f) (0)\| \leq \|P_t (f)\| \leq \|f\| = \|f\|. \]
gjordes et positivt begrænset mål μ på G så

\[ \int f \, d\mu = \mathbb{P}_x(\mathcal{F}(F)(0). \]

For \( f \in C_c(G), x \in G \) har vi da

\[ \mathbb{P}_x(F)(0) = \mathbb{P}_x(\mathcal{F}(f))(0) = \mathbb{P}_x(\mathcal{F}(FF))(0) \mathcal{F}( FF)(0) = \mu_x \star f(x). \]

Det er nu let at se at familien \( \{ \mu_x \}_{x \in G} \) er en

vægt kontinuerligt fordiingssemigruppe. 1

Effekter positivt begrænset mål μ på G inducerer en

begrænset operator \( F_\mu \) på \( L^p(G) \), \( 1 \leq p \leq \infty \), ved fastsatser

\[ F_\mu f = \mu \star f, \quad f \in L^p(G). \]

jfr. §6.1.2. Operatoren \( F_\mu \) har norm \( \mu(G) \) og kaldes en

fjerningsoperator. I tilfælde \( p = 2 \) er operatoren unitær akti-

vældt med multiplikationsoperatoren \( \mathcal{F}_\mu \) på \( L^2(G) \) defi-

neret ved

\[ \mathcal{F}_\mu g = \mu \star g, \quad g \in L^2(G). \]

Fouriertransformatoren \( \mathcal{F}_\mu \) er nemlig etførle Hei-

 dzieńns sætning en isomeeri af \( L^2(G) \) på \( L^2(G) \) der gælder

\[ \mathcal{F}_\mu (F_\mu f) = \mathcal{F}_\mu (\mathcal{F}(f)), \quad f \in L^2(G), \]

kriskcer med at følgende diagram kører over:

\[
\begin{array}{ccc}
L^2(G) & \xrightarrow{F_\mu} & L^2(G) \\
\downarrow F & & \downarrow F \\
L^2(G) & \xrightarrow{\mathcal{F}_\mu} & L^2(G)
\end{array}
\]
Visse 51. Lad \( \mu \) være et positivt begrænset mål på \( G \), \( \mu \) den inducerede fødsningsoperatør på \( L^2(G) \). Find \( \mu^* \) og bestem \( \mu \) for hvilke \( G \) er unierer. Vis at \( \sigma(\mu^*) = \mu((\Omega)) \).

En fødsningsseminigruppe \((\mu_t)_{t \geq 0}\) på \( G \) inducerer en kontraktionseminigruppe \((\mu_t)_{t \geq 0}\) på \( L^p(G) \), \( 1 < p < \infty \), ved fastsatelsen

\[
\mu_t f = \mu_t^* f, \quad f \in L^p(G).
\]

Seminigruppen \((\mu_t)_{t \geq 0}\) er stræbt konvergent for \( t \to \infty \).

Ved genet herfor kan vi uden undskyldning antage at alle målere \( \mu \) har masse 1. (Overvej dette.)

For \( f \in L^p(G) \) har vi så i følge Hölders ulighed

\[
\| \mu_t f - f \|_p^p = \int |(\mu_t f - f)(x)|^p \mu_t(x) \, dx
\]

\[
\leq \int |(\mu_t f - f)(x)|^p \mu_t(x) \, dx = \int |(\mu_t f - f)(x)|^p \mu_t(x) \, dx
\]

I følge sætning 2.1.4 er \( g \mapsto \| \mu_t g - g \|_p \) en kontinuitet begrænset funktion, og af sætning 2.3 følger

\[
\lim_{t \to 0} \| \mu_t f - f \|_p = 0.
\]

I det følgende vil vi indstrække \( \mu \) til tilfældet \( p=2 \), hvorefter simplicerer af at kontraktionseminigruppen \( \mu_t f = \mu_t^* f \) på \( L^2(G) \) er unitær ekvivalent med semigruppen \( \mu_t g = e^{-t \mu} g \) på \( L^2(\Omega) \). Her betegner \( \mu \) den til \((\mu_t)_{t \geq 0}\) assosierede negativt-definite funktion.
Vi vil i de næste sætninger undersøge frembringeren $(A, D(A))$ og potentiал-operatøren $(N, D(N))$ for semigrupper $\beta \in \mathbb{R}$ på $L^2(G)$.

Sætning 5.2. Frembringeren $(A, D(A))$ er givet ved

$$D(A) = \left\{ f \in L^2(G) \mid \check{\psi} \hat{f} \in L^2(H) \right\}$$

$$\hat{A}f = -\psi \hat{f} \quad \text{for} \quad f \in D(A).$$

Benis. For $f \in D(A)$ har vi

$$\lim_{\beta \to 0} \frac{1}{\beta} (e^{-i\beta \hat{f}} - f) = Af \quad \text{i} \quad L^2(G).$$

Af Plancherels sætning følger så

$$\lim_{\beta \to 0} \frac{1}{\beta} (e^{-\beta \hat{f}} - 1) \hat{f} = \hat{A}f.$$  

Fra integralteorin findes, at hvis $h_m \to h$ i $L^2$, så findes en delfølge $h_{m_p}$ så $h_{m_p} \to h$ masken overalt. De findes altid en følge $t_m \to 0$ så

$$\frac{1}{t_m} (e^{-t_m \hat{f}} - 1) \to \hat{A}f \quad \text{dy} - \text{pp.},$$

men for alle $f \in G$ vil

$$\frac{1}{t_m} (e^{-t_m \hat{f}} - 1) \to -\psi(f),$$

alteværet

$$-\psi \hat{f} = \hat{A}f \quad \text{dy} - \text{pp.},$$

hvoraf $\psi \hat{f} \in L^2(H)$ og $\hat{A}f = -\psi \hat{f}$.

Antag dermed at $f \in L^2(G)$ og $\psi \hat{f} \in L^2(H)$. Derved

$$\frac{1}{\beta} (e^{-\beta \hat{f}} - 1) \to -\psi \hat{f} \quad \text{punktvis},$$
sikre sletninger om majorisør konvergere af

\[ \lim_{t \to 0} F \left( \frac{\psi f - f}{t} \right) = -\psi f \quad \text{i} \quad L^2(\mathbb{R}) \]

afhængigt vi har en medvirkning af formen

\[ \left| \frac{1}{t} (e^{-t\psi f} - 1) \right| \leq |\psi f|, \quad f \in L^2, \quad t > 0, \]

gjør Plancherel's sætning gir da at

\[ \lim_{t \to 0} \frac{1}{t} (\psi f - f) \text{ eksisterer i} \quad L^2(\mathbb{R}), \]

altså \( f \in \mathcal{D}(\mathcal{A}) \).

Vurderingen ovenfor er en konsekvens af følgende

ulighed:

\[ \left| \frac{1}{t} (e^{-t^2} - 1) \right| \leq |21|, \quad t > 0, \quad 2 = a + ib \in \mathbb{C}, \quad a \geq 0. \]

Der gælder nemlig

\[ |e^{-t^2} - 1|^2 = (e^{-ta \cos(t \theta)} - 1)^2 + (e^{-ta \sin(t \theta)})^2 = e^{-2ta \cos(t \theta) - 1} + e^{-2ta \cos(t \theta)} = e^{-2ta \cos(t \theta)} + (1 - e^{-2ta})^2, \]

altså

\[ \left| \frac{1}{t} (e^{-t^2} - 1) \right|^2 = e^{-ta} \left( \frac{\sin(t \theta)}{t} \right)^2 \leq 1 \leq 2, \quad a^2 + b^2 = |21|^2. \]

For at vinde uligheden \( \frac{1 - e^{-2ta}}{t} \leq a \) kan man f.eks. udnytte middelværdiesætningen. \( \square \)

**Bemærkning.** Sætning 5.5 kan formuleres at \( (A, \mathcal{D}(\mathcal{A})) \)

er unitet ækvivalent med multiplication operator \( T_\psi \)

på \( L^2(\mathbb{R}) \) via Fouriertransformerne:
\[ D(T_p) = \{ g \in L^2(\Gamma) \mid -\psi g \in L^2(\Gamma) \} \]

\[ T_p g = -\psi g \quad , \quad g \in D(T_p). \]

Indsæt nu lokale mulleænde. Lad \( X \) være et lokalkompakt rum og \( \mu \) et positivt Radonmål på \( X \). Betragt nu \( \mu^* \) er definert for en vilkårlig mængde \( B \subseteq X \) ved

\[ \mu^*(B) = \inf \{ \mu(C) \mid \text{\( C \) åben}, \text{\( C \supseteq B \)} \}. \]

En mængde \( A \subseteq X \) kaldes en lokal \( \mu \)-mulleænde, såfremt \( \mu^*(A \cap K) = 0 \) for enhver kompakt mængde \( K \subseteq X \), altså såfremt \( A \cap K \) er en \( \mu \)-mulleænde for alle slette \( K \). En \( \mu \) et \( \sigma \)-endeligt mæl er \( \mu \)-mulleænder og lokale \( \mu \)-mulleænere de samme. At et prædicat \( P(x) \) er \( \sigma \)-endeligt mæl er \( \mu \)-mulleænde, at mængden

\[ \{ x \in X \mid P(x) \text{ falsk} \} \]

e er en lokal \( \mu \)-mulleænde.

Sætning 5.2. Frembringeren \( A \) er injektiv hvis og kun hvis \( \psi \neq 0 \) lokal mælen overalt u.h.t. Haarmålet på \( \Gamma \).

Sætning 5.10. Potentiælenoperatoren \((N, D(N))\) er tæt definereet hvis og kun hvis \( \Re \psi > 0 \) lokal mælen overalt u.h.t. Haarmålet på \( \Gamma \). I det afgørende fald er \( \frac{1}{\psi} \) definere-
et lokal mælen overalt og \((N, D(N))\) er givet ved
\[ D(N) = \{ f \in L^2(G) \mid \hat{f} \in L^2(\Gamma) \} \]

\[ \hat{N}f = \hat{f} \quad , \quad f \in D(N) . \]

Bemærk. For \( f \in L^2(G) \) er \( \hat{f} \) definieret lokalt normalt og, behørigvis, \( \hat{f} \in L^2(\Gamma) \) betyder, at der findes \( g \in L^2(\Gamma) \) så \( \hat{f} = g \) lokalt normalt.

Et sørger var en endigendt bestemt, thi hvis \( g \in L^2(\Gamma) \) er lokalt normalt, er \( \overline{g} \) normalt \( f \) alle \( \varphi \in \mathbb{K}(\Gamma) \), altså \( \langle g, \varphi \rangle = 0 \) for alle \( \varphi \in \mathbb{K}(\Gamma) \), altså \( g = 0 \).

Lad \( \mathbb{R} \) betegne mængden
\[ \{ \varphi \in \mathbb{R} \mid \Re \psi(\varphi) = 0 \} . \]

I tilfælde kan vi antage \( \psi(0) = 0 \), thi hvis \( \psi(0) > 0 \) er \( \Gamma = \emptyset \),

og da \( \| P_f \| \leq \mu_k(G) = e^{-t\psi(0)} \) har vi for \( f \in L^2(G) \)

\[ \int_0^\infty \| P_f \| dt \leq \| f \| \int_0^\infty e^{-t\psi(0)} dt = \frac{\| f \|}{\psi(0)} . \]

Dermed skriver vi kontinuitet
\[ \int_0^\infty P_f\varphi dt \quad \text{for alle} \quad f \in L^2(G) , \]
og man ser, at
\[ \lim_{t \to \infty} \int_0^t P_f ds = \int_0^\infty P_f df . \]

Dermed er \( N \) en normalt definit og begrenset operator på \( L^2(G) \).

Vi antager nu at \( \psi(0) = 0 \), og så er \( \Gamma \) en absolutt
undergruppe af \( \Gamma \). For \( g \in \mathbb{K}(\Gamma) \) har vi

\[ E \varphi(P_g(P_\Gamma g)) = e^{-t\psi} \varphi \]

Antages at \( \Gamma \) er en lokal normalt begrenset, følger af Lebesjes
Sætning om majorisert konvergens af

\[ \lim_{t \to \infty} \| P_t f(t) \|_2^2 = \lim_{t \to \infty} \int (e^{-t \text{Re} \varphi(y}) |\varphi(y)|^2 \, dy = 0. \]

Dette nul, at \( \lim_{t \to \infty} P_t f = 0 \) for alle f tilhørende den fulde
mængde

\[ \{ \tilde{\varphi}, \varphi \in \mathcal{L}(\mathbb{G}) \} \]

af \( \mathcal{L}(\mathbb{G}) \), og dermed er betingelse (iii) i sætning 5.6 opfyldt, så \( D(N) \) er nat.

Hvis \( \tau_0 \) ikke er en lokalnullpunkt, findes en kompakt
mængde \( K \supset \tau_0 \) så \( K \cap \tau_0 \) har positiv Haar-måler. Af første
II.9.4 følger da, at \( \tau_0 \) er åben.

Mælene \( \frac{1}{2} = \mu_0 * \mu_0 \) har den Fouriertransformerede

\[ \hat{\frac{1}{2}}(y) = e^{-2t \text{Re} \varphi(y)} \]

så \( \hat{\frac{1}{2}}(y) = 1 \) for alle \( y \in \tau_0 \). Af sætning II.9.8 følger da at
supp \( \frac{1}{2} \subseteq \tau_0 \), som en en kompakt undergruppe af \( G \). Lad
\( f \in \mathcal{L}(\mathbb{G}) \) være valgt så \( f * \frac{1}{2} \geq 1 \) på \( \tau_0 \). For \( t > 0 \) har vi da

\[ 1 \leq \langle \mu_0 * \mu_0, f * \frac{1}{2} \rangle = \int (\mu_0 * f)^2 \, dx = N_2 f \frac{2}{2}, \]

og dermed er betingelse (iii) i sætning 5.6 ikke opfyldt, men
så er \( D(N) \) ikke nat i \( \mathcal{L}(\mathbb{G}) \).

Vi antager nu at \( D(N) \) er nat, og ned så at \( N = N^t \).
For \( f \in D(N) \) vil \( Nf \in D(A) \), altså vil

\[ (A(Nf))^\wedge = -\hat{f} = -\psi \hat{Nf}, \]

hvaaf

\[ \hat{Nf} = \frac{\hat{f}}{\psi} \] lokaliserer overalt.
Antag nu endt at $f \in L^2(\mathbb{C})$ opfylder, at der findes $g \in L^2(\mathbb{C})$ så $\hat{f} = g$ hølde masken omalt. Lad $h \in L^2(\mathbb{C})$ være valgt så $\hat{h} = g$. Så gælder $\hat{f} = \hat{h}$ hølde masken omalt. Da $\hat{f}$ er kontinuerlig følger læng, at $\hat{h}$ faktisk er i $L^2(\mathbb{C})$, da grund af følgende resonement:

$$\int |\hat{f}|^2 \, dy = \sup \int |\psi|^2 |\hat{f}|^2 \, dy = \sup \int |\psi|^2 \, dy \leq |\hat{f}|^2 \, dy < \infty,$$

hvor supremum tages over mangelen af $g \in L^2(\mathbb{C})$ opfylder $0 \leq g \leq 1$.

Af sætning 5.9 følger så at $h \in D(A)$ at

$$A\hat{h} = -\psi \hat{h} = -\hat{f},$$

altså

$$-Ah = f \in R(A) = D(N).$$

Bemærkning. Sistnævnte del af sætning 5.10 kan for- andres at $(N, D(N))$ er unitært ekvivalent med multiplikationsoperatoren $T_\psi$ på $L^2(\mathbb{C})$ via Fouriertransformation.

Korollar 5.11. Lad $(\mu_t)_{t \geq 0}$ være en foldingssemigroup på $R^n$, $(P_t)_{t \geq 0}$ den inducerede konvektionssemigroup på $L^2(R^n)$. Potentialeoperatoren $(N, D(N))$ er tæt definert

Basis. Lad $\psi$ være den negative defineret funktion på $R^n$ så

$$\hat{\psi}(x) = e^{-2\pi |x|^2}.$$
Det fremgår af bivst. for sætning 5.10, at hvis
\[ \mathcal{P}_0 = \{ x \in \mathbb{R}^n | Re \psi(x) = 0 \} \]

ikke er en lokal mulimugde m.h.t. Lettequivalens, så er \( \mathcal{P}_0 \) en åben undergruppe af \( \mathbb{R}^n \). Da en åben undergruppe er abelisk, og da \( \mathbb{R}^n \) er sammenhængende, kan vi slutte at \( \mathcal{P}_0 = \mathbb{R}^n \). Dette vurder at \( \psi \) er reel imaginære og dermed af formen \( \psi = i \varphi \), hvor \( f : \mathbb{R}^n \to \mathbb{R} \) er en kontinuerligt kontinuerlige (sætning 3.15). Der findes altid et \( a \in \mathbb{R}^n \) så \( f(x) = \langle a, x \rangle \), og dermed er \( \mu_t = \mathcal{P}_t \).

Lad dernæst \( \mathcal{P}_t f = \mathcal{P}_t \ast f \), \( t \geq 0 \), for \( t \in \mathbb{R}^n \).

\[ \| P_t f \|_2 = \| f \|_2 \quad \text{for } t \geq 0, \quad f \in L^2(\mathbb{R}^n), \]
og dermed er betingelsen (iii) i sætning 5.6 ikke opfyldt.\[ \]

**Øvelse 5.3.** For konsistenserede grupperne \( \mathcal{P}_t f = \mathcal{P}_t \ast f \), \( t \geq 0 \), \( f \in L^2(\mathbb{R}^n), a \in \mathbb{R}^n \), er \( D(N) = \{0\} \).

**Øvelse 5.4.** Lad \( \mu_t \), \( t \geq 0 \), være en foldningsgruppe på \( \mathbb{R}^n \), \( (\mathcal{P}_t)_{t \geq 0} \) den inducerede kontinuerlige gruppe på \( L^2(\mathbb{R}^n) \). Frembringem en injektivundtagen i det udadende tilfælde \( \mu_t = \mathcal{P}_0 \), \( t \geq 0 \). (Brug Øvelse 5.2).

5.6. Potentialkernen for en foldningsgruppe.

Lad \( G \) være en LCA-gruppe. Ved en kontinuerlig

kern på \( G \) førstes en positiv lineær afbildning \( N \) af
$K(G)$ er i summet $\mathcal{C}(G)$ af kontinuerlige funktioner på $G$, jf. UEP p. 30.

En kontinuerlig kern $N$ kaldes **tauslatinscivarient**, således

$$\tau_x(Nf) = N(\tau_x f)$$

for alle $x \in G$, $f \in K(G)$.

**Sætnin 6.1.** Der er en enestående korespondance mellem de **tauslatinscivarient** kontinuerlige kerner $N$ på $G$ og de positive Radonmål $\mu$ på $G$ erablest ved

$$Nf = \mu \ast f$$

for $f \in K(G)$.

**Bem.** Hvis $\mu$ er et **positivt** Radonmål definerer

$$f \mapsto Nf = \mu \ast f$$

en **tauslatinscivarient** kontinuerlig kern $N$, jf. Sætning II 2.4, og der gælder

$$N\hat{f}(0) = \int f \, dp.$$  

Denne er at tilordningen $\mu \mapsto N$ er **ejeklædt**.

Hvis $N$ er en **tauslatinscivarient** kontinuerlig kern, er afdelningen $f \mapsto N\hat{f}(0)$ en **positiv** linæarform på $K(G)$,  altså et **positivt** Radonmål $\mu$ så

$$\int f \, dp = N\hat{f}(0).$$

Heraf følger

$$Nf(x) = \tau_x(Nf)(0) = N(\tau_x f)(0) = \int(\tau_x f) \, dp = \mu \ast f(x).$$

Den til et **positivt** radon $\mu$ **bestemte** tauslatinscivariente kontinuerlige kern $N\mu = \mu \ast f$ kaldes **kern** en **jordningskern**.
Lemma 6.2. Lad μ være et positivt mål på \( G \). 

Følgende betingelser er enstabeldende:

1) For enhver kompakt mængde \( K \subseteq G \) vil funktionen \( x \mapsto \mu(x + K) \) gå mod 0 i \( \infty \) (resp. være begrenset).

2) For funktion \( \varphi \in \mathcal{L}(G) \) vil \( \mu * \varphi \) gå mod 0 i \( \infty \) (resp. være begrenset).

Bemærk. Til enhver kompakt mængde \( K \subseteq G \) finder \( \varphi \in \mathcal{L}(G) \) så \( 1 \leq \varphi \), men \( \varphi \) er

\[ \mu * \varphi(x) \leq \mu(x + K), \]

og deraf følger "2) \( \Rightarrow \) 1)".

Tilsvarende følger "2) \( \Rightarrow \) 1)" af at for \( \varphi \in \mathcal{L}(G) \) vil

\[ \varphi \leq \max \varphi \mathcal{K} \],

hvor \( \mathcal{K} = \text{supp}(\varphi) \), og dermed

\[ \mu * \varphi(x) \leq \max \varphi \mathcal{K} \varphi \mathcal{K} + x. \]

\[ \square \]

Definition. Et positivt mål \( \mu \) på \( G \) siger at gå mod 0 i \( \infty \) (resp. at være translationsbegrenset), hvis de ekvivalente betingelser 1) og 2) fra lemma 6.2 er opfylt.

Målet \( \mu \) går mod 0 i \( \infty \) metop hvis den tilhørende jordmængske \( \varphi \) går mod 0 i \( \infty \) følge definitionen i. UEP p.33.

Ettersvagt positivt begrenset mål \( \mu \) på \( G \) går mod 0 i \( \infty \) (seleming E.2.4).

Advarsel: Lad \( f \) være en positiv integrabel funktion på \( G \). Det begrensete mål \( \mu = \int f \) går mod 0 i \( \infty \),
men $f$ behøver ikke gælde $0 \leq f \leq 1$ som funktion.

Hvis et positivt valg $\mu$ gælder $\mu \amod \infty$ er det translationsbegrenset.

Der er kompakt gruppe til alle positive valg $\gtrsim \infty$.

Haarvægt og på en vilkårlig LCA-gruppe er translationsbegrenset. Hvis $\gtrsim \infty$ metop hvis $G$ er kompakt.

Men allmindeligt gælder:

Setning 6.3. Ethvert positivt, positiv definit valg $\mu$ på $G$ er translationsbegrenset.

Bevis. Lad $g \in \mathcal{X}^+(G)$. Vi skal nie at $\mu * g$ er en begrenset funktion. Vi vælgte $f \in \mathcal{X}^+(G)$ se $g \leq f * f$, og følgende

$$\mu * g \leq \mu * f * f,$$

men $\mu * f * f$ er en kontinuerligt positiv definit funktion og dermed begrenset. (Hvis $f \in \mathcal{X}^+(G)$ er $> 0$ på $(K-K)\mathbb{1}$, hvor $K = \text{supp} \ g$ er $f * f > 0$ på $K$, og dermed er $\mathcal{L}(f * f) \geq g$ blot $\mathbb{1}$ iif $f * f \geq \text{supp} \ g$.)

Sætning 6.1. Lad $G$ være en LCA-gruppe, $H$ en afgekanted ikke-kompakt undergruppe. Et positivt valg $\mu$ se $\text{supp} \ \mu \in H$ gælde $\mu \amod 0 \leq \infty$ afgekanted som valg på $H$, hvis $g$ hun hvis det gælder $0 \leq \infty$ som valg på $G$. Eksempel: Haarvægt $\psi$ på $H$ gælde ikke $\mu \amod 0 \leq \infty$ på $G$. 
Vi vil studere den af en føldefysisseminigruppe \((\mu_t)_{t \geq 0}\) inducerede Feller semigruppe \((\psi_t)_{t \geq 0}\) på \(C_0(G)\).

For \(\lambda > 0\) defineres et positivt maal \(\rho_\lambda\) på \(G\) ved

\[
\rho_\lambda(f) = \int_0^\infty e^{-\lambda t} \mu_t(f) \, dt , \quad f \in L^1(G) ,
\]

og denne ligning gælder for enhver positiv nedad halv kontinuerlig funktion (anvend UEP lemma 2.3), hvoraf specielt

\[
\rho_\lambda(G) = \int_0^\infty e^{-\lambda t} \mu_t(G) \, dt = \int_0^\infty e^{-\lambda t} e^{-\psi(t)} \, dt = \frac{1}{\lambda + \psi(0)} .
\]

Heraf følger at \(\lambda \rho_\lambda(G) \equiv 1\), og at \(\rho_\lambda\) er et sannsynlighedsmaal vedtopp ved føldefysisseminigruppen bestående af sannsynlighedsmaaler. Da \(\rho_\lambda\) er et begrænset maal gælder (1) også for enhver kontinuerlig begrænset funktion, specielt for \(f, g \in \Gamma\), hvoraf følger

\[
\hat{\rho}_\lambda(f) = \int_0^\infty e^{-\lambda t} \hat{f}(t_\lambda) \, dt = \frac{1}{\psi(\lambda) + \lambda} .
\]

Resolventen \((V_{\lambda})_{\lambda \geq 0}\) for Feller semigruppen \((\psi_t)_{t \geq 0}\) er givet ved

\[
V_{\lambda}f = \rho_\lambda \ast f , \quad f \in C_0(G) ,
\]

hvor anvendes den kontinuerlige lineære funktion \(e_x \in C_0(G)^{\prime}\), \(x \in G\), på rettvinkelset

\[
V_{\lambda}f = \int_0^\infty e^{-\lambda t} \mu_t(f) \, dt ,
\]

hvorunder anvendelse af sætning 5.1 at

\[
V_{\lambda}f(x) = \int_0^\infty e^{-\lambda t} \mu_t f(x) \, dt , \quad x \in G ,
\]

altså...
\[
\frac{1}{\lambda} f(x) = \int_0^\infty e^{-\lambda t} \mu_x(t) dt = \mathcal{P}_\lambda(f) = \mathcal{P}_\lambda * f(x).
\]

For hvert \( f \in \mathcal{L}_1(0) \) følger af (1) at
\[
\lambda \mapsto \mathcal{P}_\lambda(f) = \int_0^\infty e^{-\lambda t} \mu_x(t) dt
\]

er en aftagende funktion på \([0, \infty]\), og af særligheden om monoton konvergencen af integralet følger
\[
\lim_{\lambda \to 0} \mathcal{P}_\lambda(f) = \int_0^\infty \mu_x(t) dt < \infty \quad (4)
\]

Hvis dette tal er endeligt for alle \( f \in \mathcal{L}_1(0) \), gælder (4) endda for alle \( f \in \mathcal{L}(0) \). Ved faststillet
\[
\mathcal{K}(f) = \lim_{\lambda \to 0} \mathcal{P}_\lambda(f) = \int_0^\infty \mu_x(t) dt, \quad f \in \mathcal{L}(0), \quad (5)
\]
defines et positivt Radonmål \( \mathcal{K} \) på \( 0 \), der \( \mathcal{K} \) er altid vag grænseværdi for målene \( \mathcal{P}_\lambda \) når \( \lambda \to 0 \).

**Definition.** Feldningssejrngrupper \( \mu_y \) \( \tau \to 0 \) kaldes

kunstig afhængig

\[
\lim_{\lambda \to 0} \mathcal{P}_\lambda(f) = \int_0^\infty \mu_x(t) dt < \infty \quad \text{for alle} \quad f \in \mathcal{L}_1(0).
\]

Målset \( \mathcal{K} \) defineret ved (5) kaldes *potentielt kungrunden* for \( \mu_y \) \( \tau \to 0 \).

Hvis \( \mu_y \) \( \tau \to 0 \) ikke er kunstig kaldes den *rekurrent*.

Hvis \( \mu_y \) \( \tau \to 0 \) er kunstig gælder for alle positive ned-
ad halvkontinuerlige funktioner \( f : G \to [0, \infty] \)
\[
\mathcal{K}(f) = \lim_{\lambda \to 0} \mathcal{P}_\lambda(f) = \sup_{\tau \in \mathbb{R}} \mathcal{P}_\lambda(f) = \int_0^\infty \mu_x(t) dt. \quad (5')
\]
Da \( \lambda \mapsto p_\lambda (f) \) er en aftagende funktion, følger

\[
\lim_{\lambda \to 0} p_\lambda (f) = \sup_{\lambda > 0} p_\lambda (f),
\]

der fælger \( A = \{ \varphi \in \mathbb{R}_+(0) \mid g \geq f \} \), følger af Lemma 2.3 ERP

\[
\kappa (f) = \sup_{\varphi \in A} \kappa (\varphi) = \sup_{\varphi \in A} (\sup_{\lambda > 0} p_\lambda (\varphi)) = \sup_{\lambda > 0} (\sup_{\varphi \in A} p_\lambda (\varphi)) = \sup_{\lambda > 0} p_\lambda (f) - a.
\]

\[
\kappa (f) = \sup_{\varphi \in A} \int_0^\infty \mu_\varphi (q) \, dq = \int_0^\infty \sup_{\varphi \in A} \mu_\varphi (q) \, dq = \int_0^\infty \mu_f (f) \, dq.
\]

Hvis \( \psi (0) > 0 \) og \( (\psi t)_{t \geq 0} \) udmærket af \( \kappa \) er endeligt, er \( \kappa \) en endeligt udmærket moderat, med \( \psi (t) \rightarrow 1 \) som \( t \rightarrow 0 \), hvis \( \psi (t) \rightarrow 0 \) som \( t \rightarrow \infty \).

For en kompakt gruppe \( G \) er \( (\psi t)_{t \geq 0} \) udmærket.

Hvis \( \psi (0) > 0 \), thi \( \text{hvis} \ (\psi t)_{t \geq 0} \) udmærket er

\[
\int_0^\infty \mu_f (t) \, dt < \infty , \text{ rindet } t \in \mathbb{R}_+(0).
\]

Derimod \( \psi (0) < 0 \).

Hvis \( (\psi t)_{t \geq 0} \) endeligt udmærket og \( \psi (t) = 0 \), der potentiale-

kernen \( \kappa \) endeligt udmærket, f. eks. ifølge (5).

Eksempler: 1) Den Brown'ske semigruppe i \( \mathbb{R}^n \),

udlønget for \( n \geq 3 \), og fekund for \( n = 1, 2 \).

Den Brown'ske semigruppe er givet ved tætheden

\[
\eta (x) = (4\pi t)^{-\frac{n}{2}} \exp \left( -\frac{\|x\|^2}{4t} \right).
\]

En simpel regning viser, at der gælder følgende

\[
\int_0^\infty \eta (x) \, dx = \begin{cases} \sum_{n=1}^\infty \frac{1}{n^{\frac{n}{2}+2}}, & n \geq 3, x > 0 \\ \infty, & n = 3, x = 0 \\ \infty, & n = 1, 2, \text{ alle } x,
\end{cases}
\]

trykt.
jfr. ODE p.63, lige 

\( k_m = \frac{\Gamma(n)}{2\pi^{n/2}(n-1)} \), og heraf følger

påstanden med Fabini's satning.

Potentiálkernen i tilfældet \( n \geq 3 \) er målet

\[ \kappa_n = k_m \frac{1}{\|x\|^{n-2}} \, dx \]

som kaldes Newtonkernen. Målet \( \kappa_n \) går mod 0 i \( \infty \), idet

\[ \lim_{x \to \infty} \int_{|y| = 1} 2\pi^{-n} \, dy = 0, \]

for enhver kompakt mængde \( K \subset \mathbb{R}^n \).

6) Den Poisson'ske semigruppe på \( \mathbb{R} \) er konsistent.

For \( f \in X_p(\mathbb{R}) \) har vi

\[ \mu_t(f) = \sum_{k=0}^{\infty} e^{-t} \frac{t^k}{k!} f(k) = \sum_{k=0}^{N} e^{-t} \frac{t^k}{k!} f(k) \]

hvor \( N = \text{max} \text{ supp}(f) \), og dermed finder vi

\[ \int_0^\infty \mu_t(f) \, dt = \sum_{k=0}^{N} f(k) \int_0^\infty e^{-t} \frac{t^k}{k!} \, dt = \sum_{k=0}^{N} f(k) = \sum_{k=0}^{\infty} f(k) < \infty. \]

Dette viste, at semigruppen er konsistent, og potentiálker-

nen er givet ved

\[ \kappa = \sum_{k=0}^{\infty} \epsilon_k, \]

som ikke går mod 0 i \( \infty \), idet f.eks. \( \kappa(x + \epsilon_0, y) \geq 1 \) for

alle \( x \geq 0. \)

**Ovelse 6.2.** Den Cauchy'ske semigruppe er rekurrent.

**Ovelse 6.3.** Translatationssemigruppen \( \mu_t = \epsilon_a, a \in \mathbb{R}^n, \)

er rekurrent for \( a \neq 0 \), rekurrent for \( a = 0 \). For \( a \neq 0 \) er po-
Sætnings 6.4. Lad \( (f, \bar{f}) \leq 0 \) være en harmonisk fold-
ningensemiguppe med potentialkræven \( \psi \). Så er \( \frac{1}{2} (\psi + \bar{\psi}) \)
e positiv definit værdi og \( \psi \) er kanalstalmedium.

Endvidere er \( \psi \neq 0 \) lokalt maksimum værdi og \( \Re \frac{1}{\psi} \in \mathbb{C} \).

Beweis. Vi sætte \( \gamma_A = \frac{1}{2} (f + \bar{f}) \) og fæl på, at følgel (2)

\[
\gamma_A (f) = \Re \frac{1}{\psi(f) + \lambda} = \frac{\Re \psi(f) + \lambda}{(\Re \psi(f) + \lambda)^2 + (\Im \psi(f))^2}
\]

Da krympen altid \( \lambda < 0 \) er værdi \( \gamma_A \) positiv definit,

(I.5.6). I det

\( \lim_{\lambda \to 0} \gamma_A = \frac{1}{2} (\psi + \bar{\psi}) \) værdi,

er også \( \frac{1}{2} (\psi + \bar{\psi}) \) et positiv definit værdi, og derned
kanalstalstalmedium ifølge sætning 6.3. Så må også \( \psi \) være
canalstalmedium, idet du for \( f \in X_+ (\delta) \) gælder

\( \psi * f \leq (\psi + \bar{\psi}) * f \).

I resten af teksten vil vi antage \( \psi (0) = 0 \). I hvert fald
\( \psi (0) > 0 \) er resten af sætninger nemlig trivielt, idet \( \Re \frac{1}{\psi} \)
så er en kanalstalmedium begrænset funktion.

Mængden \( \Gamma_0 = \{ f \in \Gamma | \psi(f) = 0 \} \) er en opfattet under-
gruppe. Hvis \( \Gamma_0 \) ikke er en lokal mulimængde i \( \Gamma \)
hen (se en I.9.3), men så er \( \Gamma_0 \) kompakt og supphold
\( \psi \) i \( \Gamma_0 \) for alle \( t \geq 0 \). For en funktion \( f \in X_+ (\delta) \) se \( f = 1 \)
på \( \Gamma_0 \), har vi så \( \mu (f) = 1 \) for alle \( t \geq 0 \) og alle
\[
\int_0^\infty \psi^*_f(t) \, dt = \infty,
\]

men det skider mod at \( (\psi^*_f)_+ \) er transiente.

Da \( \Gamma_0 \) er en lokal multigange er \( \frac{1}{\psi} \) og \( \psi^*_f \) definert lokalt maks umuligt, og \( \psi^*_f \) er det naturligt at tilægge \( \psi^*_f \) værdien \( \infty \) i punktene af \( \Gamma_0 \).

Af (6) følger for \( f \in K_+ (\mathbb{R}) \)
\[
\int \frac{|\mathcal{F}(\psi)|^2 \, \Re \left( \frac{1}{\psi^*_f(\tau)} \right) }{\psi^*_f(\tau)} \, d\tau = \nu \left( f^* f \right),
\]
og af Fator's lemma følger
\[
\liminf_{\lambda \to 0} \int \frac{|\mathcal{F}(\psi)|^2 \, \Re \left( \frac{1}{\psi^*_f(\tau)} \right) }{\psi^*_f(\tau)} \, d\tau \leq \liminf_{\lambda \to 0} \nu \left( f^* f \right) = \frac{\nu}{2} \nu (\mathbb{R}) \langle \psi^*_f \rangle
\]

altså
\[
\int \frac{\Re \left( \frac{1}{\psi^*_f(\tau)} \right) }{\psi^*_f(\tau)} |\mathcal{F}(\psi)|^2 \, d\tau < \infty
\]

for alle \( f \in K_+ (\mathbb{R}) \). For hvert \( \nu \in \Gamma \) finder \( f \in K_+ (\mathbb{R}) \) så
\[
\mathcal{F}(\psi) \neq 0, \text{ men så er } \mathcal{F}(f^* f)(\nu) = |\mathcal{F}(\psi)|^2 > 0.
\]
Hearf ses, at du til enhver kompakt mængde \( K \subseteq \Gamma \) finder \( f \in K_+ (\mathbb{R}) \) så \( |\mathcal{F}(\psi)| = 1 \) for alle \( \nu \in K \), men så følger
\[
\int \frac{\Re \left( \frac{1}{\psi(\tau)} \right) }{\psi(\tau)} \, d\tau < \infty
\]

for enhver kompakt mængde \( K \subseteq \Gamma \), altså \( \Re \left( \frac{1}{\psi} \right) \in L^1 (\mathbb{R}) \).

Det er nu nødvendigt at forsøge at finde den
Fouriertransformerede af det positiv definitiæ med \( \nu (\mathbb{R}) \).
Hertil vil vi få brug for et gemet resultat om Fourier-
transformerede af positiv definite væl.
Vi minder om at $\mathfrak{E}(G)$ betegner krybben af positive, definite mål på $G$. Med $\mathfrak{E}_+(G)$ betegner vi delkrybben af de positive, positive, definite mål på $G$.

**Lemma 6.5.** For $\mu \in \mathfrak{E}(G)$ er det Fouriertransformerede $\mathcal{F}_\mu$ et positivt mål på $\mathfrak{E}$, der er entydigt fastlagt ved ligningen

$$\int_{\mathfrak{E}} f^* \mathcal{F}\mu = \int_{\mathfrak{E}} |\mathcal{F}_\mu f|^2 \mathcal{F}_\mu \quad \forall f \in \mathfrak{E}(G).$$

Bem. Vi ved at $\mathcal{F}_\mu$ er fastlagt ved at det for $f \in \mathfrak{E}(G)$, $x \in G$ gælder

$$\mu \ast f^* \mathcal{F}_\mu(x) = \int_{\mathfrak{E}} f(y) |\mathcal{F}_\mu f(y)|^2 \mathcal{F}_\mu(y).$$

Erstatte $f$ med $\mathcal{F}_f$ sættes $x = 0$ for behjælpelse i len,

ved polarisering af identiteten i lænmærket fås på den anden side

$$\int f^* g \mathcal{F}_\mu = \int \overline{\mathcal{F}_\mu} f^* g \mathcal{F}_\mu \quad \forall f, g \in \mathfrak{E}(G).$$

Erstatte $f$ med $\mathcal{F}_f$ og $g$ med $\mathcal{F}_g$ får (1).

**Lemma 6.6.** For $\mu \in \mathfrak{E}(G)$ og for $\varphi \in \mathfrak{E}_+(G)$ og $|\mathcal{F}_\mu \varphi|^2 \mu$

$i \mathfrak{E}(G)$ og

$$\mathcal{F}_\mu (|\mathcal{F}_\mu \varphi|^2 \mu) = \mathcal{F}_\mu \varphi \ast \mathcal{F}_\mu \mu.$$ 

Bem. For $f \in \mathfrak{E}(G)$ har vi
\[ \int_G \left( \int_G (f^* \varphi(x) f^* \varphi(x))^2 \, d\mu(x) \right) \, d\nu(x) = \int_G \left( \int_G (f^* \varphi(x) f^* \varphi(y) \, d\mu(x) \right) \, d\nu(x) \]

\[ = \int_G \int_G (f^* \varphi(y) f^* \varphi(x) \, d\mu(x) \right) \, d\nu(x) \]

Jævne af lemma 6.5
\[ \int_G f^* g(x) \, d\mu(x) = \int_G g(x) \, d\mu(x) = \int_G |f| g \, d\mu \]

\[ = \int_G f^* (f^* f) \, d\mu \]

og dermed alt i alt
\[ \int_G (f^* \varphi(x))^2 \, d\mu(x) = \int_G \varphi^* \varphi \, d\mu \]

Da \( \varphi \) er positiv, er \( \int_G |f| \, d\mu \) positiv definit, og
\[ \int_G (|f| \, d\mu) = \varphi^* \varphi \, d\mu \]

Sætning 6.7. Formelementerne \( F \) er en bijektiv afbildning af \( \mathbb{R} \) på \( \mathbb{R} \), og den inverse afbildning er \( F^{-1} \).

Bemærk, at \( F \) og \( F^{-1} \) er ens på \( \mathbb{R} \), da er de i \( \mathbb{R} \) en symmetriske.

Lad \( \varphi \) være en positiv, kontinuerlig positiv definit funktion.

Så er \( \varphi = \varphi^* \) og der associerede mål \( \mu = F \varphi \) gælder
\[ F \mu = \varphi = \varphi^* \varphi \] Af sætning 6.6 følger så, at \( \mu \) er et positiv definit mål på \( \mathbb{R} \).
Lad \((\varphi, \psi)\) være en approximativ entled \(\varphi \in \mathcal{C}^0\).

Så vil

\[ (\varphi, \psi) \equiv 1, \] ligeligt over kompakte mængder af \(\Gamma\).

Lad \(\epsilon \equiv 0\) og en kompakt mængde \(K \subset \Gamma\).

Så er \(\varphi \in (K, \epsilon)\) en omegn af \(0\) i \(\mathcal{E}\) og for \(V \equiv \psi (K, \epsilon)\), følger vi

\[ 1 - \varphi \psi (x) = \int (1 - \varphi(x)) \psi (x) dx, \]

alka

\[ |1 - \varphi \psi (x)| = \int |1 - \varphi(x)| \psi (x) dx = \epsilon > 0. \]

Lad \(\mu \in \mathcal{E}_+(\Gamma)\). Vi vil nu at \(\varphi \mu \in \mathcal{E}_+(\Gamma)\).

Vi kan nu

\[ \mu \psi = \mu \ast \varphi \psi \]

se en positiv, kontinuerlig positiv definert funktion, og den liniertransformerede

\[ \varphi \mu = \int \varphi \psi \ast \varphi \psi \mu \]

tilhører altså \(\mathcal{E}_+(\Gamma)\) og følger følgende skridt i henvis.

Lad \(g \in \mathcal{E}(\Gamma)\) være givet. Vi ønsker nu at

\[ \int g \ast g \psi \mu > 0. \]

Vi velger \(\varrho \equiv (\varphi \mu)_{\ast} \leq 1 \) i \(\operatorname{supp}(g \ast g)\). For

\(\mu \ast \varphi \psi \equiv 0\) der

\[ |g \ast g| (1 - \varphi \psi) \leq 2 |g \ast g| (1 - \varphi \psi) \leq 2 |g \ast g| (1 - \varphi \psi) \leq \varrho \]

må blot \(V\) er en tilskærelig lille omegn af \(0\). Altså har
\[ \left| \int g^* g^* |F_0|^2 |dF_\mu - \int g^* g^* dF_\mu \right| \leq \varepsilon \int g^* dF_\mu. \]

Da
\[ \int g^* g^* |F_0|^2 |dF_\mu = 0 \]
for alle \( V \in \hat{\text{U}}(0) \), men
\[ \int g^* g^* dF_\mu = 0, \]
altså \( F_\mu \in \hat{\text{U}}(\mu) \).

Af lemma 6.6 følger, at
\[ F_\mu (F_\mu) = F_\mu (|F_0|^2 F_\mu) = \varphi_0^* \varphi_0^* F_\mu (F_\mu), \]
men da \( \mu_0 \in \mathfrak{F}(\mathcal{G}) \) og \( F_\mu (F_\mu) = \mu_0 = \varphi_0^* \varphi_0^* \mu_0 \), altså
\[ \mu_0 \varphi_0^* \varphi_0^* = F_\mu (F_\mu)^* \varphi_0^* \varphi_0^*, \]
\( V \in \hat{\text{U}}(0) \).

Når "\( V \to 10^3 \)" kan vi heraf slutte at \( \mu = F_\mu (F_\mu) \), jfr. lemma II 5.3, idet \( \varphi_0 (\mu_0 \varphi_0^* \varphi_0^*) \) er en approximativ enhed. Til \( \mu \in \hat{\text{U}}(0) \) følger \( V \in \hat{\text{U}}(0) \) så \( V - V \in \mathfrak{U} \) ved \( \mu \) associerer funktione \( \varphi_0^* \varphi_0^* \), der kan integral 1 \( g \) stikke underfor \( \mu \).

Hermed er vist, at \( F_\mu \) afbildes \( \mathfrak{E}(\mathcal{G}) \) ind i \( \mathfrak{E}(\mathcal{G}) \) og at \( F_\mu (F_\mu) = \mu \). Vi vurder dernæst at \( F_\mu \) er kontinuerligt.
Ensattes \( G \) med \( F \) følger heraf at \( F_\mu \) er \( \mathfrak{C}(\mathcal{G}) \) og understemt \( g = F_\mu (F_\mu) = \mu \) for \( \mu \in \mathfrak{E}(\mathcal{G}) \), men så er \( F_\mu \) en homeomorfisme af \( \mathfrak{E} = F_\mu \).
Lad \( g(G) \) være summert af kontinuerlige funktioner \( f \) i \( G \) med topologi, for der er konvergens over kompaktkæder. Lad \( \mu \in g(G) \) og lad \( \mu \times \lambda \) være et metrisk \( g(G) \)-vi.

\[ \lim_{\lambda \to \infty} \mu = \mu \text{ reg}. \]

Heraf følger, jfr. følg. 6.4, at der for alle \( f \in X(G) \) gælder

\[ \mu \ast f \to \mu \ast f \quad i \ G, \]

særligt for \( f \in X(G) : \)

\[ \mu \ast f \ast f \rightarrow \mu \ast f \ast f \quad i \ G. \]

Af Korollar 1.5 følger, at

\[ F_{\mu} (\mu \ast f \ast f) \rightarrow F_{\mu} (\mu \ast f \ast f) \quad i \ Bernoulli-topologi\]

altså

\[ |F_{\mu} f|^{2} F_{\mu} \rightarrow |F_{\mu} f|^{2} F_{\mu} \quad i \ Bernoulli-topologi\]

For \( \varphi \in X(G) \) valges \( f \in X(G) \) så \( |F_{\mu} f| > 0 \) på \( \text{supp } \varphi \).

Funktoren

\[ \lambda(y) = \begin{cases} \frac{q(y)}{|F_{\mu} f(y)|^{2}} & \text{, når } F_{\mu} f(y) \neq 0 \\ 0 & \text{ellers}, \end{cases} \]

tilkømmer \( X(G) \) og definerer

\[ \langle \lambda, |F_{\mu} f|^{2} F_{\mu} \rangle \rightarrow \langle \lambda, |F_{\mu} f|^{2} F_{\mu} \rangle, \]

altså

\[ \langle \varphi, F_{\mu} \rangle \rightarrow \langle \varphi, F_{\mu} \rangle, \]

hvilket vi bruger \( F_{\mu} \rightarrow \varphi \text{ reg}. \]

Følg. 6.4. Afbildningen \( (x, \mu) \rightarrow \varphi_{\mu} \) af \( G \times R_{q}^{+}(G) \) ind i \( R_{q}^{+}(G) \)

er kontinuitet, men mangler \( R_{q}^{+}(G) \) af positive radiumal på \( G \).
er adskilt med den vaste kategori. 

Lad \( f \in X(c) \). Afbildningen \( \mu \mapsto \mu \otimes f \) af \( \mathbb{R}^+ \) ind i \( C(c) \) er kontinuerlig, idet \( C(c) \) har topologiien for ligelig konvergens over kompakte mængder.

**Sætning 6.8.** Lad \( (\psi, \tau)_0 \) være en kvadreret fjeld-

ningssemigrupe med potentielle \( \phi \). Den Førslevhans-

fremmede af det positiv definite mal \( \nu = \frac{1}{2} (\phi + \bar{\phi}) \) er 
givet ved

\[
\frac{d\phi}{\nu} = \omega + \text{Re} \frac{i}{\psi} \, d\psi,
\]

hvor \( \omega \) er et translatationsinvariant poikold mal på den 
oflatterede undergruppe \( \Gamma' = \{ \psi \in \Gamma \mid \psi(0) = 0 \} \), enhverdel med-

ned.

Potentialbegrænset vâl går mod 0 i \( \infty \) hvis og kun hvis 
\( \omega = 0 \). 

**Bem.** Hvis \( \psi(0) > 0 \) er \( \nu \) begrænset med, \( \nu \)
funderat.

\[
\frac{d\phi}{\nu} = \int_0^\infty e^{i\psi} \, dt = \int_0^\infty e^{-i\psi} \, dt = \frac{1}{\nu(\psi)},
\]

altså \( \frac{d\phi}{\psi} = \text{Re} \frac{i}{\psi(\tau)} \). Dermed er formulør just \( \omega = 0 \), og da 
\( \nu \) er et begrenset mal går det mod 0 i \( \infty \).

Vi antager nu at \( \psi(0) = 0 \), og sætter \( \frac{1}{\nu} = \frac{1}{2} (\phi + \bar{\phi}) \).

I det tilfælde \( \nu = \nu \) vâgt, fjer vi af sætning 6.7 at

\[
\lim_{\tau \to 0} \frac{1}{\nu} \int_0^\infty \frac{d\psi}{\nu} = \int_0^\infty \frac{d\psi}{\nu} \text{ vâgt},
\]

altså følger (6)

\[
\lim_{\tau \to 0} \text{Re} \frac{i}{\psi(\tau)} \, d\psi = \int_0^\infty \text{Re} \frac{i}{\psi} \, d\psi.
\]
Den mindste afblattede undergruppe $G_0$ af $G$ som indeholder $U \supseteq \mu$ er $\sigma$-kompakt (setning 2.5), og derved er den duale gruppe $\hat{G}_0$ metriserbar. Nu er $\hat{G}_0$ isomorf med $\Gamma_0^1 = \{ \mu \in \Gamma \mid \psi(\mu) = 0 \}$, så $\Gamma_0^1$ er metriserbar. Lad $(k_m)_{m \in \mathbb{N}}$ være en talede følge af åbne relativt kompakte mange af $0$ i $\Gamma_0^1$, som udgør en basis for mugensystemet af $0$, og lad $\pi: \Gamma \to \Gamma_0^1$ være den kanoniske afbeeldning.

For $m \in \mathbb{N}$, $\lambda > 0$ og $f \in L^1(\Gamma)$ har vi

$$\int_{\Gamma} \frac{\text{Re} \frac{1}{\mu + \lambda}}{\psi(\mu)} d\mu = \int_{\Gamma \setminus k_m} \frac{\text{Re} \frac{1}{\mu + \lambda}}{\psi(\mu)} d\mu + \int_{\Gamma \setminus \pi(k_m)} \frac{\text{Re} \frac{1}{\mu + \lambda}}{\psi(\mu)} d\mu .$$

For $\lambda \to 0$ vil raunchiden gå mod $F_\psi(f)$ ifølge (6), og andet led på højre side går mod

$$\int_{\Gamma \setminus \pi(k_m)} \frac{\text{Re} \frac{1}{\mu}}{\psi(\mu)} d\mu ,$$

idet $\pi(k_m)$ er en afblattet delmængde af $\Gamma$ disjunkt med $\Gamma_0^1$. Første led på højre side konvergerer altså opgå for $\lambda \to 0$, og idet grænseværdi betegnes $\omega_n(f)$, er det klart at $\omega_n$ er et positivt Radonmål på $\Gamma$. For $f \in L^1(\Gamma)$ er $\omega_n(f)$ en aftagende følge af tal $\geq 0$, og derfor eksisterer

$$\omega(f) = \lim_{n \to \infty} \omega_n(f) \quad \text{for alle } f \in L^1(\Gamma) .$$

Dermed eksisterer grænseværdi $\omega(f) = \lim_{n \to \infty} \omega_n(f)$ jækleisk for alle $f \in L(\Gamma)$, og $\omega$ er et positivt Radonmål på $\Gamma$. 
For \( m \in \mathbb{N}, f \in \mathcal{H}(\Gamma) \) har vi altså

\[
\mathcal{F}_\nu(f) = \omega_m(f) + \int_{\mathbb{R}} f \Re \frac{1}{y} \, dy.
\]

Ifølge sætnings 6.4 er \( \nu \)'en lokal muligvis og \( \Re \frac{1}{y} \) er lokal integrabel. Sætningen om monoton konvergens af integraler give derfor for \( f \in \mathcal{H}(\Gamma) \) at

\[
\lim_{m \to \infty} \int_{\mathbb{R}} f \Re \frac{1}{y} \, dy = \int_{\mathbb{R}} f \Re \frac{1}{y} \, dy = \int_{\mathbb{R}} f \Re \frac{1}{y} \, dy,
\]
og dermed kan vi for alle \( f \in \mathcal{H}(\Gamma) \)

\[
\mathcal{F}_\nu(f) = \omega(f) + \int_{\mathbb{R}} f \Re \frac{1}{y} \, dy,
\]  

(19)

Arkhet er den forskede formel.

Vi videre dernæst at \( \text{supp}(\omega) \subseteq \Gamma_0 \).

Hvis nu bygger \( f \in \mathcal{H}(\Gamma) \) hav støtte, der er disjoint med \( \Gamma_0 \), findes et \( \mathfrak{m}_0 \in \mathbb{N} \) så

\[
\mathcal{H}(\mathfrak{m}_0) \cap \text{supp}(f) = \emptyset \quad \text{for} \quad m \neq m_0,
\]

fordi \( \bigcap_{m=1}^{\infty} \mathcal{H}(\mathfrak{m}_0) = \Gamma_0 \). Altså har vi for \( m \neq m_0, \mathfrak{m}_0, \) at

\[
\int_{\mathcal{H}(\mathfrak{m}_0)} f \Re \frac{1}{y} \, dy = 0,
\]

men så er \( \omega_m(f) = 0 \) for \( m \neq m_0 \) og endelig er \( \omega_m(f) = 0 \).

Da \( \psi \) er periodisk med alle \( \psi \in \mathcal{F}_\nu \) som perioder har

\[
\Re \frac{1}{y+\lambda} \quad \text{og} \quad \Re \frac{1}{y} \quad \text{og} \quad \psi \text{ alle } \psi \in \mathcal{F}_\nu \text{ som perioder.}
\]

Af (10) følger, at også \( \mathcal{F}_\nu \) har alle \( \psi \in \mathcal{F}_\nu \) som perioder, men
sa. Vi opg. W hare alle f ∈ \( \mathbb{G} \) som periodiske (følge (f)). Da \( \omega \) er et positivt reelt \( \mu \)-molde \( \mathbb{G} \), som har alle f ∈ \( \mathbb{G} \) som periodiske, er W enten rummeligt eller et Haar-mål \( \mu \). Da

\[
F_G \omega = \omega + \text{Re} \frac{i}{\mu} dG
\]

har vi for alle \( f \in \mathcal{K}(G) \) at

\[
F_G (\omega * f * f) = |F_G|^2 \omega + \text{Re} \frac{i}{\mu} dG,
\]

altså \( |F_G|^2 \omega + \text{Re} \frac{i}{\mu} dG \) er det positive begrænsede mulig på \( \mathbb{G} \), hvis (G)-Fouriertransformerede er den positive definerer

funktion \( \omega * f * f \). Specielt er \( |F_G|^2 \omega + \text{Re} \frac{i}{\mu} dG \) er begrenset mulig, så funktionen

\[
|F_G|^2 \omega + \text{Re} \frac{i}{\mu} dG
\]

er integrabel for alle \( f \in \mathcal{K}(G) \).

Vedre er

\[
|F_G|^2 \omega = F_G (\omega * f * f)
\]

gjør \( F_G \omega \) rummeligt eller et Haar-mål på \( \mathbb{G} = \mathbb{G} \).

Vi har dermed for alle \( f \in \mathcal{K}(G) \), \( x \in \mathbb{G} \), at

\[
\omega * f * f (x) = F_G \omega * f * f (x) + \int \overline{f} (y) |F_G|^2 (y) \text{Re} \frac{i}{\mu} dG.
\]

Andet led på højre side går mod 0 for \( x \to \infty \), fordi det er den Fouriertransformerede af en integrabel funktion. Hvis \( \omega = 0 \)

følger deraf at

\[
\lim_{x \to \infty} \omega * f * f (x) = 0
\]

for alle \( f \in \mathcal{K}(G) \),

så der enten funktion \( \omega \in \mathcal{K}(G) \) er majoriseret af en
funktion af formen $f^* * f$ for $f \in L^1(\mathbb{R})$, jfr. benægt for
satning 6.3, følger, at $V$ gælser mod $0$ i $\infty$.

Hvis anvendt $V$ gælser mod $0$ i $\infty$, kan vi af (60) skelne at

$$\lim_{x \to \infty} F^* * f^* (x) = 0$$

for alle $f \in L^1(\mathbb{R})$. Da $G_0$ ikke er kompakt (fodi (44) i 20 er transient), vil et Haarmal på $G_0$ ikke gælser mod $0$ i $\infty$, jfr. formule 6.1, men så må $F^* \omega = 0$, altfor $\omega = 0$. 

**Bemærkning.** Hvis $V$ gælser mod $0$ i $\infty$ er $F^* V = \Re \phi \omega$, og så er $\Re \phi \omega$ et positiv definit valg på $\Gamma$ i følge satning 6.7.

**Eksempler. a)** For den Brown'ske semigruppe i $\mathbb{R}^n$, $n \geq 3$, er

$$V = \mathcal{N} = \int_{\mathbb{R}^n} \frac{1}{|x|^2} dx$$

og $V$ gælser mod $0$ i $\infty$. Idet den tilføjende negativ definit
nede funktion er $|y|^2$, faar vi

$$F \left( \int_{\mathbb{R}^n} \frac{1}{|x|^2} dx \right) = \int_{\mathbb{R}^n} \frac{1}{|y|^2} dy,$$

da det harmoniske Haarval på $\mathbb{R}^n \times \mathbb{R}^n$ er $(\frac{1}{2\pi})^m$.

**b)** For den Poisson'ske semigruppe $E$ er

$$V = \frac{1}{2} \left( E_0 + \sum_{m \in \mathbb{Z}} E_m \right).$$

Af eksemplet p. 133 følger at
\[ F_2 \psi = \frac{1}{2} \sum_{m \in \mathbb{Z}} \varepsilon_{2m} + \frac{1}{2} d \psi. \]

Den negativ definite funktion \( \Phi(y) = 1 - e^{-y} \), og derud er \( \mathfrak{G}_0 \) undergruppe \( \mathbb{R} \mathbb{Z} \). For \( y \notin \mathfrak{G}_0 \) finder vi

\[ \text{Re} \frac{\Phi(y)}{1 - \cos y} = \frac{1}{2}. \]

Målet \( \omega \) er et Hvælself på \( 2 \pi \mathbb{Z} \), nemlig \( \frac{1}{2} \sum_{m \in \mathbb{Z}} \varepsilon_{2m} \).

Den mindste undergruppe \( G_0 \), der er afstået af samt indeholder sup\( \text{p} \), t\( \varphi \), er \( \mathbb{Z} \).

Bemærk, at \( \text{Re} \frac{\Phi(y)}{1 - \cos y} \) er et punkt definit værdi i dette tilfælde mellem \( 0 \) og \( \pi \).

**Odecke 6.5.** Find \( \omega \) og \( \text{Re} \frac{\Phi(y)}{1 - \cos y} \) i tilfældet \( \mu = \varepsilon_{2r} \mathbb{R}^n \), \( \text{kr} \) at 0.

**Sætning 6.9.** Lad \( \mu \) være en fordelingsemigruppe på \( \mathbb{G} \) med en minuskel negativ definit funktion \( \Phi: \mathfrak{G} \rightarrow \mathbb{C} \).

Semigruppen er beslået hvis og kun hvis \( \text{Re} \frac{\Phi(y)}{1 - \cos y} \) er.

**Bemærkning.** Det ses som i sætning 3.19, at \( \text{Re} \frac{\Phi(y)}{1 - \cos y} \) er et fuldt integreret belv, \( \text{Re} \text{Re} \frac{\Phi(y)}{1 - \cos y} \) er et integral af en qvæl af 0.

Af sætning 6.9 mangle vi at \\( \mu \), at \( \text{Re} \frac{\Phi(y)}{1 - \cos y} \) \( \mathbb{G} \), \( \eta \) er \( \Phi(y) = 1 \) konstant. Vi vil tilbage give senere her. \text{Se} S.C. PORT og C.F. STONE (Se Ann. Inst. Fourier XXI, 4 (1971) p. 179-265), og bygge på foriem for Raczek karlde.

For de specielle grupper \( \mathbb{Z}^m \), \( \mathbb{R}^m \) der sætningerne mist af F. SPITZER (1963) og D. ORNSTEIN (1969).
Lad \((P_t)_{t \geq 0}\) være en faltmigssemigruppe på \(G\), \((P_t)_{t \geq 0}\) den inducerede Feller semigruppe på \(C_0(G)\). Vi vil nu se, at det er en sætning om potentialelementer \((N, \mathcal{D}(N))\) for Feller semigrupper \((P_t)_{t \geq 0}\), der er analog til sætning 5.10.

**Sætning 6.10.** Potentialelementer \((N, \mathcal{D}(N))\) er det defineret hvis og kun hvis \(\text{Re } \psi > 0\) lokalst markerer mål. Haar målet \(\mu \neq 0\).

**Bem.** Vi kan antage at \(\psi(0) = 0\), thi hvis \(\psi(0) > 0\) er sætningen direkte rigtig på grund af uklarhedne

\[
\|P_t\| \leq e^{-t\psi(0)}, \quad \text{Re } \psi(y) \geq \psi(0).
\]

Navn \(\psi(0) = 0\) og \(\mathcal{P}_0 = \{ f \in \mathcal{L} \mid \text{Re } \psi(f) = 0 \}\) en afhængig undergruppe af \(\mathcal{L}\). Hvis \(\mathcal{P}_0\) er en lokal mulmangede, følger sætningen om domineret harmonisk, at det for \(\phi \in \mathcal{L}(\mathcal{P})\) gælder

\[
\lim_{t \to 0^+} \int |\phi(t) e^{-t\psi(t)}| \, dt = 0,
\]

altså \(\lim_{t \to 0^+} \phi e^{-t\psi} = 0\) i \(\mathcal{L}(\mathcal{P})\), mens så har vi

\[
\lim_{t \to 0^+} \mathcal{P}_0 f (\phi e^{-t\psi}) = \lim_{t \to 0^+} \mathcal{P}_0 f \phi e^{-t\psi} = 0\] i \(C_0(G)\).

Da \(\{f \mid f \in \mathcal{P}(\mathcal{P})\}\) er tes i \(C_0(G)\) en behørlige (iii) i sætning 5.6 opfylder, se \(\mathcal{P}(N)\) er tes i \(C_0(G)\).

Hvis \(\mathcal{P}_0\) ikke er en lokal mulmangede er \(\mathcal{P}_0\) åben, gjældende \(\mathcal{P}_0\). Hvis \(\phi\) er en domineret harmonisk, følger sætning 5.6, at det for

\[
\text{Re } \psi = \psi > 0\] i \(\mathcal{P}(\mathcal{P})\), følger at
\[
1 = \langle \eta, f \rangle = \langle \eta, \mu_t \ast f \rangle = \| \mu_t \ast f \| = \| \mu \| \]

Korollar 6.11. Lad \( C = \mathbb{R}^m \). Potentialoperatoren \( \mu \) er defineret andetgange for den lastningsseminigruppe \( \mu_t = \xi_{ta} \), \( a \in \mathbb{R}^m \), hvor \( D(N) = 103 \).

Beweis. For \( \dot{\mu} = \xi_{ta} \ast f \) er

\[
\| \dot{\mu} \| = \sup_{x \in \mathbb{R}^m} | f(x) | = \sup_{y \in \mathbb{R}^m} | f(y) | = \| f \|.
\]

Gelder følgende sætnings 5.4 at

\[
\lim_{t \to 0^+} \mu_t(\eta f) = 0,
\]

så at \( \mu_t(\eta f) \) er konvergent for alle \( t \to 0 \) med \( f = 0 \). Da \( N \)

er indefinit med \( f = 0 \).

Hvis \( (\mu_t)_{t \geq 0} \) er en foldningsseminigruppe for hjulet \( N \), da er \( \mu_0 = \mathbb{R}^m \). For et defineret \( \mu_0 = \{ y \in \mathbb{R}^m | \Re \eta_y(x) = 0 \} \) er altså undergruppe, altså \( \mu_0 = \mathbb{R}^m \). Som i korollar 5.11

set, at \( \mu_0 = \xi_{ta} \) for \( a \in \mathbb{R}^m \).

Lad \( X \) være et lokal compact rum. For en Feller

seminigruppe \( (\mu_t)_{t \geq 0} \) på \( C(X) \) indfører følgende begreb:

Definition: Fellerseminigruppen kaldes integrabel, såfremt

definitionsmædet \( D(N) \) for potentialoperatoren opfattes rum-

met \( X(X) \) af kontinuerlige funktioner med kompaktdomæne.

For en integrabel Fellerseminigruppe \( (\mu_t)_{t \geq 0} \) er \( N \) spe-
cellet ket defineret, og defin er \( P_f \to 0 \) for \( t \to \infty \) for alle \( f \in C_0(G) \).

**Sætnin g 6.12.** Lad \( (P_t)_{t \geq 0} \) være en faldningssemigroup 

4 på \( G \), \( (P_t)_{t \geq 0} \) den inducerede Fellre semigroup på \( C_0(G) \). 

Fellre semigroupen er integabler, hvis \( g \) er hvis \( (P_t)_{t \geq 0} \) er 

4 hævendt og potentielt kan se gæ m o i \( \infty \).

I faldende fald gælder 

\[
N_f(x) = x \ast f(x)
\]

for alle \( f \in L(G) \), \( x \in G \).

Bemærk. Vi har først, at denne generelt gælder at \( \tau_x(D(N)) \)

\( \subseteq D(N) \) og \( N(\tau_x f) = \tau_x(N f) \) for \( f \in D(N) \), \( x \in G \). Da \( \tau_x \) er 

4 en kontinuerlig lineær afledning af \( C_0(G) \) mod \( C_0(G) 

4 gælder nemlig for \( f \in D(N) \) at 

\[
\int_0^t \tau_s(\tau_x f) ds = \int_0^t \tau_s(P_s f) ds = \tau_x \left( \int_0^t P_s f ds \right)
\]

og når den konvergerer mod \( \tau_x(N f) \). Altså må \( \tau_x f \in D(N) \)

\( \) og \( N(\tau_x f) = \tau_x(N f) \). Antages nu at \( K(G) \subseteq D(N) \) til \( N \) 's 

4 restriktion til \( K(G) \) definerer en konsultationsvarekt 

4 kontinuerlig kerne, du gæ med 0 o i \( \infty \), og ifølge sætnin g 6.1 

\( \) finder et prækvt med \( x \) på \( G \) da gæ med 0 o i \( \infty \) sa 

\[
N_f(x) = x \ast f \quad \text{for} \quad f \in L(G) , \quad x \in G.
\]

For \( f \in X^+(G) \), \( x \in G \), følger af sætninger om monoton kon 

4 vergers af integratorer, at 

\[
N_f(x) = \lim_{t \to \infty} \int_0^t P_s f(x) ds = \int_0^\infty P_s f(x) ds ,
\]
\[ \mathcal{K}(f) = N f'(0) = \int_0^\infty \mathcal{P}_x f'(0) \, ds = \int_0^\infty \mathcal{P}_x (f) \, ds. \]

Dette mærker, at \((\mathcal{K}f)_{t=0}\) er konstant og at \(\mathcal{K}\) er potentiale.

Antag nu, at \((\mathcal{K}f)_{t=0}\) er konstant og at potentiale\(\mathcal{K}\) er gælende mod 0 i \(\infty\).

For \(f \in \mathcal{L}_1(\mathcal{G})\), \(t > 0\), vil funktionsen
\[ f^t = \int_0^t \mathcal{P}_x f \, ds \]
afhænger \(C^2(\mathcal{G})\) og \(f^t \leq f^2\) for \(t \leq 2\). Af væksten af
monotone korregeres af integreret sæt
\[ \lim_{t \to 0} f^t(x) = \lim_{t \to 0} \int_0^t \mathcal{P}_x (\mathcal{P}_x f) \, ds = \int_0^\infty \mathcal{P}_x (\mathcal{P}_x f) \, ds = \mathcal{K}^2 f(x). \]

Vi skal nu at \(f^t\) faktisk konvergerer uniformt mod \(\mathcal{K}^2 f\) når \(t \to 0\). Da \(\mathcal{K}^2 f \in C^0(\mathcal{G})\) finder vi \(\varepsilon > 0\) en
kompakt vængte \(L\) så \(\mathcal{K}^2 f(x) \leq \varepsilon\) for alle \(x \in \mathcal{G} \setminus L\). 

Fölge Dini's sætning vil \(f^t \to \mathcal{K}^2 f\) uniformt over \(L\), 

\[ |\mathcal{K}^2 f(x) - f^t(x)| \leq \varepsilon \quad \text{for } x \in L, \ t \geq t_0, \]

men da
\[ 0 \leq f^t(x) \leq \mathcal{K}^2 f(x) \leq \varepsilon \quad \text{for } x \in \mathcal{G} \setminus L, \ t \text{ vilkårligt}, \]

får
\[ \| \mathcal{K}^2 f - f^t \| \leq \varepsilon \quad \text{for } t \geq t_0. \]

Dette mærker at \(f \in \mathcal{D}(N)\) og at \(Nf = \mathcal{K}^2 f\) for vilkårligt \(f \in \mathcal{L}_1(\mathcal{G})\), men så \(\mathcal{K}(\mathcal{G}) \subset \mathcal{D}(N)\) og \(\mathcal{P}_x f \leq t_20\) er uikkevist. \(\blacksquare\)
Eksempler. a) Den Brownse semigruppe er integrabel for $m^2$, fordi den er konsistent og potentielle kurerne går mod $0$ i $\infty$.

b) Den Poissonske semigruppe er ikke integrabel. Semigruppen er konsistent, men potentielle kurerne går i tæt mod $0$ i $\infty$.

Vi vil nu sete et kriterium for integrabilitet af en Feller semigruppe. Det bygger på følgende generelle resultat:

Sætning 6.13. Lad $\phi$ være en lokal integrabel funktion på $G$, så det derud bestemte mål $\mu = \phi d\nu$ er positiv definit. Det Fouriertransformerede mål $\hat{\phi}(\xi)$ er et positivt mål, der går mod $0$ i $\infty$.

Beweis. Fölge Lemma 6.5 gælder for $f \in K(G)$ at

$$\int_{G} \hat{f}^* \hat{f}(\xi) \hat{\phi}(\theta) d\theta = \int_{\mathbb{F}} |\hat{f}(\xi)|^2 d\mu(\xi).$$

Erløser $f \in K(G)$ for hver $\varphi \in \mathbb{F}$ af $\hat{f} \in K(G)$ defineret ved $\hat{f}(\xi) = \varphi(\xi) f(\xi)$, findes vi underhøjere af formen

$$\hat{f}^* \hat{f}(\xi) = \varphi^* \varphi f^* f(\xi), \quad \hat{f} \hat{f}(\xi) = \varphi \varphi^* f^* f(\xi - \xi'),$$

at

$$\int_{\mathbb{F}} \varphi^* \varphi f^* f(\xi) d\xi = \int_{\mathbb{F}} |\hat{f}(\xi)|^2 d\mu(\xi).$$

Dette viser, at $\int_{G} \hat{f}^* \hat{f}(\xi) d\xi$ er den Fouriertransformerede af den integrable funktion $(f^* f)(\xi)$. Det forudser, at $\int_{G} |\hat{f}(\xi)|^2 d\mu(\xi) = \infty$ med $0$ i $\infty$. For hver $\varphi \in K(G)$ findes $f \in K(G)$ så
\[ \phi = \left| \mathcal{F}_f \right|^2, \]

men så mål om \( \mu \ast \phi \) går mod 0 i \( \infty \). \( \Box \)

**Sætning 6.14.** Hvis \( \frac{1}{\psi} \) er lokalt integrabel i Fellens semigroupen integrabel. Potentiælkkernen \( \tilde{\kappa} \) er givet ved

\[ \tilde{\kappa} = \mathcal{F}_\mu \left( \frac{1}{\psi} \right). \]

Bem. Fra sætning 3.13 finder vi, at målene \( \frac{1}{\psi} d\mu \) og \( \frac{1}{\psi} d\nu \) er positivt definite.

Den homogene transformerede \( \hat{\tilde{\kappa}} = \mathcal{F}_\mu \left( \frac{1}{\psi} \right) \) er i følge

sætning 6.13 et positivt mål \( \mu^0 \), der går mod 0 i \( \infty \). For alle \( f \in K(\Gamma) \) gælder

\[ \int_G \left| \mathcal{F}_f \right|^2 d\tilde{\kappa} = \int \hat{f} \ast f \frac{1}{\psi} d\nu, \]

og

\[ \int_G \left| \mathcal{F}_f \right|^2 d\mu_\lambda = \int \hat{f} \ast f \frac{1}{\psi + \lambda} d\nu, \]

og af sætningen om majoriseret konvergens, jfr. betegn for

sætning 3.13, følger

\[ \lim_{\lambda \to 0} \int \hat{f} \ast f \frac{1}{\psi + \lambda} d\nu = \int \hat{f} \ast f \frac{1}{\psi} d\nu, \]

altså

\[ \lim_{\lambda \to 0} \int_G \left| \mathcal{F}_f \right|^2 d\mu_\lambda = \int_G \left| \mathcal{F}_f \right|^2 d\tilde{\kappa} . \]

For hvert \( \phi \in K_+(\Gamma) \) finder \( f \in K(\Gamma) \) så \( \phi = \left| \mathcal{F}_f \right|^2 \), hører
\[ \lim_{\lambda \to 0} \rho_{\lambda}(\varphi) = \lim_{\lambda \to 0} \int |f_{\lambda}f|^2 \, df_{\lambda} = \int |f|^2 \, df \leq \infty. \]

Dette viser at semigruppen \((\mu_t)_{t \geq 0}\) er konsistent. Kalt

des poincaré-konververne som sædvanlig for \(K\), har vi for alle
\(f \in K(\mathbb{R})\) følgende formel (5') at

\[ K(|f|^2) = \lim_{\lambda \to 0} \rho_{\lambda}(|f|^2) = \tilde{K}(\tilde{|f}|^2) = \int f^* f \, \frac{1}{\varphi} \, df. \]

Dette viser at både \(K\) og \(\tilde{K}\) opfylder de ligninger,

den følge lemma 6.5 karakteriserer den Formueraudfør-

ende af det primær definitc mad \(\frac{1}{\varphi} \, df\). Aller, er \(K = \tilde{K}\), g

setning 6.12 viser, at Feller semigruppen "\(\mu_t = \mu_t^*\) er inpek-

bel. \]

**Bemærkning.** Den findes integrable Feller semigruppen

for høje \(\frac{1}{\varphi}\) ikke er behøft integrabel.

**Definition.** En Fellersemigruppe \((\mu_t)_{t \geq 0}\) kaldes sym-

metrisk, hvis alle målere \(\mu_t\) er symmetriske.

Enstakende bemærke, at den associerte negativ

definite funktin er reel. (Se p. 66).

For en symmetrisk semi-gruppe \((\mu_t)_{t \geq 0}\) er alle må-

lere \(\mu_t\) positiv definit. Det følger f.eks. af at

\[ \mu_t(\varphi) = e^{-t\psi(\varphi)} \geq 0, \]

da \(\varphi(\varphi)\) er reel, men op af at \(\mu_t = \mu_t^* \mu_t = \mu_t^* \mu_t^{1/2}.\)
Sætning 6.15. Lad \((\mu_t)_{t \geq 0}\) være en symmetrisk fordøjelsessemigruppe. Så er følgende behøvede udfoldelser:

a) \((\mu_t)_{t \geq 0}\) er trænsent.

b) Den inducerede Feller semigruppe er integrabel.

c) \(\frac{1}{t}\) er beholdt integrabel på \(\mathbb{R}^+\).

Bemærk, at vi i bewirk ikke kan tanglet den uved mis

af sætning 6.9. "

Eksempel. Den stabile semigruppe \((\lambda_t)_{t \geq 0}\) af הגו

\(x, 0 < x < \infty\), på \(\mathbb{R}^+\) er fastlagt ved at den assosierede neger-

for definerede funktion \(\psi\) er \(\psi(y) = y|x|^x\).

Ved hjælp af sætning 6.15 kan vi afsgore, hvilke af

de stabile semigrupper der er trænsent.

Funktionen \(\frac{1}{y|x|^x}\) er beholdt integrabel på \(\mathbb{R}^+\) hvis og kun

hvis

\[\int_{\frac{1}{y|x|^x}} dy < \infty.\]

\(n=1.\) Der gælder

\[\int_{\frac{1}{y|x|^x}} dy < \infty\] hvis og kun hvis \(x < 1.\)

\(n=2.\) Indfører polære koordinater \(y = \rho e^{i\theta}\) for, idet

dy = \rho d\rho d\theta, at

\[\int_{\frac{1}{y|x|^x}} dy = \int_0^{2\pi} \left(\int_0^\infty \rho d\rho\right) d\theta = 2\pi \int_0^\infty \frac{1}{\rho^{n-1}} d\rho < \infty\]

\(\|y\| \leq 1\)
hvis og kun hvis $\alpha < 2$.

\[ m = 3. \] Vi indfører polære koordinater $r = \| \xi \|$, her

\[ \| \xi \| = 1. \] Hvis $\xi$ befinder sig på en enhedsskrue $\Sigma_m = \{ \xi \in \mathbb{R}^m \mid \| \xi \| = 1 \}$ har vi $d\xi = r^{m-1} dr d\xi$. Den
totale masse af $\Sigma_m$ beklages $\omega_m$. Vi finder da

\[ \int_{\| \xi \| = 1} \frac{1}{\| y \|^\alpha} dy = \int_{\Sigma_m} \left( \int_0^1 \frac{1}{r^\alpha} r^{m-1} dr \right) d\xi = \omega_m \int_0^1 \frac{1}{r^{\alpha+1-m}} dr < \infty \]

hvis og kun hvis $\alpha + 1 - m < 1$, altså $\alpha < m$, men samtidig

bekræftes vi jo kun $\alpha > 0 \land 0 < \alpha \leq 2$. Dermed er alle
de stabile semigrupper særlige for $m = 3$.

Vi aufsætter endnu en is potentiel kernen i de kæmpe

tbeløbe, $0 < \alpha < \inf (n, 2)$, $\alpha = 2$ for $m = 3$:

\[ r^\alpha = \frac{\Gamma \left( \frac{n-\alpha}{2} \right)}{2^n \pi^{\frac{n}{2}} \Gamma \left( \frac{\alpha}{2} \right)} \frac{1}{\| y \|^{n-\alpha}} dy. \]
HARMONISK ANALYSE
og
POTENTIALTEORI

Forslagninga forøkt 1974
ved Christian Berg.
§7. Potentialekoration for en faldningsrumgruppe.

Ved tidligere, p. 32-33, defineret faldning af begrænset mål på en LCA-gruppe. Såvevri uubegrænset mål kan holdes, og det får vi brug for i det følgende.

Indhud om produktmål. Lad \( X \) og \( Y \) være lokale kompakte rum, og lad \( \mu \) og \( \nu \) være positive mål på hinkoldnings \( X \) og \( Y \). Det kan vises, at for en funktion \( f \in L(X \times Y) \) er funktionerne

\[
x \mapsto \int \! f(x, y) \, d\nu(y)
\]

og

\[
y \mapsto \int \! f(x, y) \, d\mu(x)
\]

kontinuerlige med kompakt støtte, således at integrærene

\[
\int \left( \int \! f(x, y) \, d\nu(y) \right) \, d\mu(x)
\]

og

\[
\int \left( \int \! f(x, y) \, d\mu(x) \right) \, d\nu(y)
\]

ekisterer. Videre kan man visel:
\[
\forall \varphi \in \mathcal{K}(X \times Y):
\]
\[
\left( \int \varphi(x, y) \, d\mu(x) \right) \, d\nu(y) = \int \left( \int \varphi(x, y) \, d\nu(y) \right) \, d\mu(x).
\]

Afhældningen, der tilhører \( \varphi \in \mathcal{K}(X \times Y) \) krydser den fælles værdi af dobbeltintegralerne, er åbenbart linear og positiv, selv om det posive mål på \( X \times Y \) det holdes produkt-målet af \( \mu \) og \( \nu \) afhænger af \( \mu \otimes \nu \).

For par \((\mu, \nu)\) \( \in \mathcal{A} \) og \((\nu, \mu)\) \( \in \mathcal{A} \) af positive mål, der konvergerer særlig mod positive mål \( \mu \) og \( \nu \), gælder, at målet \((\mu, \otimes \nu)\) \( \in \mathcal{A} \) konvergerer særlig mod \( \mu \otimes \nu \).

Lad nu \( G \) være en LCA-gruppe.

**Lemma 7.1.** For vektorlige positive mål \( \mu \) og \( \nu \) på \( G \) gælder for alle \( \varphi \in \mathcal{K}(G) \), at
\[
\int \varphi(x+y) \, d\mu \otimes \nu (x, y) =
\]
\[
\left( \int \varphi(x+y) \, d\mu(x) \right) \, d\nu(y) = \int \left( \int \varphi(x+y) \, d\nu(y) \right) \, d\mu(x),
\]
og dette tal er \( \geq 0 \), evt. \( = +\infty \).

**Beweis:** Lad \( g \) være funktionen på \( G \times G \) defineret
\[ g(x, y) = f(x + y) \quad \text{for all } x, y \in G \]

Da \( g \) er kontinuerlig, \( \forall g \geq 0 \), gælder: \( g = \sup A \), hvor \( A \) er
\[ \{ q \in \mathbb{X}_+(G \times G) \mid q \leq g \} , \]

jvfr. Mat 6, Tref. opg. 36. Da \( A \) er opad filterende, gælder for hvert \( y \in G \), at

\[ \sup_{q \in A} \int q(x, y) \, d\mu(x) = \int \sup_{q \in A} q(x, y) \, d\mu(x) = \int g(x, y) \, d\mu(x) , \]

jvfr. Mat. 6, llæg. sætning 3.4, p. 11. Da mængden
\[ \{ \int q(x, y) \, d\mu(x) \mid q \in A \} \]
hvile og er opad filterende \( \tau \), jf. llæg. samme sætning:

\[ \sup_{q \in A} \int (\int q(x, y) \, d\mu(x)) \, d\nu(y) = \int (\sup_{q \in A} \int q(x, y) \, d\mu(x)) \, d\nu(y) , \]

Vi har da: \( \int g \cdot d(\mu \otimes \nu) = \sup_{q \in A} \int q \cdot d(\mu \otimes \nu) = \quad \sup_{q \in A} \int (\int q(x, y) \, d\mu(x)) \, d\nu(y) = \int (\sup_{q \in A} \int q(x, y) \, d\mu(x)) \, d\nu(y) = \int (\int q(x, y) \, d\mu(x)) \, d\nu(y) , \)
På henvendelse måde viser, at:

\[ g \cdot d(\mu \otimes \nu) = \int (\int g(x,y) \, d\nu(y)) \, d\mu(x). \]

**Definition:** Lad \( \mu \) og \( \nu \) være positive mål på \( G \). Vi siger, at \( \mu \) og \( \nu \) kan følde, eller at føldningen \( \mu \ast \nu \) eksisterer, såfremt:

\[ \forall \, f \in L^+(G) : \int \int f(x,y) \, d(\mu \otimes \nu)(x,y) < +\infty \]

Dette betyder, at føldningen er en afbildning, der til \( f \in L^+(G) \) lader være:

\[ \int \int f(x,y) \, d(\mu \otimes \nu)(x,y) \]

additiv og positiv homogem, og har derfor en uendelig udvidelse til en positiv, lineær funktionale på \( L^0(G) \), akkurat som et positivt mål på \( G \). Dette mål kaldes føldningen af \( \mu \ast \nu \) og betegnes \( \mu \ast \nu \). Bemærk, at der iflg. Lemma 7.4. gælder:

\[ \int f(z) \, d(\mu \ast \nu)(z) = \int \int f(x,y) \, d(\mu \otimes \nu)(x,y) = \]

\[ (\int \int f(x,y) \, d\mu(x)) \, d\nu(y) = \int (\int f(x,y) \, d\nu(y)) \, d\mu(x), \]

eller med den kortere skrivemåde:

\[ < f, \mu \ast \nu > = < f \ast \mu, \nu > = < f \ast \nu, \mu > \]
for alle \( f \in \mathcal{X}_+(\mathcal{K}) \) og dermed vid linearitet for alle \( f \in \mathcal{K}(\mathcal{K}) \). For begrensete mål stemmer foldningen altid overens med den tidligere definerede foldning.

**Bemærkninger.** Af definitionen fremgår klart, at foldningen er kommutativ i den forskellige, at \( \mu \ast \nu \) eksisterer, hvis og kun hvis \( \nu \ast \mu \) eksisterer, og i behørende fald har man

\[
\mu \ast \nu = \nu \ast \mu.
\]

Foldningen behøver derimod ikke at være assosiativ, se lemma 7.3, og det efterfølgende eksempel.

**Lemma 7.2.** Lad \( \mu \) være et fra mulmålet forskelligt positivt mål på \( \mathcal{K} \). Der gælder da:

a) Til hver kompakt mangede \( \mathcal{K} \subseteq \mathcal{K} \) finde en funktion \( f \in \mathcal{X}_+(\mathcal{K}) \), så \( \mu \ast f \geq 1_\mathcal{K} \).

b) Til hver funktion \( f \in \mathcal{X}_+(\mathcal{K}) \) finde en funktion \( g \in \mathcal{X}_+(\mathcal{K}) \), så \( \mu \ast g \geq f \).

**Bemærk:** Ad. a) Da \( \mu \neq 0 \) findes \( g \in \mathcal{X}_+(\mathcal{K}) \) så \( \langle g, \mu \rangle > 0 \). For hvirv \( \mathcal{K} \subseteq \mathcal{K} \) gælder om funktionen \( \mu \ast (\mathcal{T}_x \hat{g}) \), at

\[
\mu \ast (\mathcal{T}_x \hat{g})(x) = \int (\mathcal{T}_x \hat{g})(x-y) \, d\mu (y) = \int \hat{g}(-y) \, d\mu (y) = \langle g, \mu \rangle > 0.
\]
Da \( \mu \times (T_x \tilde{g}) \) er kontinuerligt, nåbning i 2.4. a. findes omegn \( \delta_x \) af \( x \), så:

\[
\forall y \in \delta_x : \mu \times (T_x \tilde{g})(y) > 0.
\]

Da \( K \) er kompakt findes endeligt mange punkter \( x_1, x_2, \ldots, x_p \in K \), så

\[
K \subseteq \bigcup_{j=1}^{p} \delta_{x_j}.
\]

Sætter nu \( h = \sum_{j=1}^{p} T_{x_j} \tilde{g} \in H_+(E) \) gælder derfor

\[
\mu \times h(y) = \sum_{j=1}^{p} \mu \times (T_{x_j} \tilde{g})(y) > 0,
\]

for alle \( y \in K \). For et passende \( \lambda > 0 \) gælder derfor

\[
\mu \times (\lambda h)(y) > 1 \quad \text{for alle } y \in K.
\]

Idet vi sætter \( \lambda h = f \), har vi \( \mu \times f \geq 1_K \).

Ad. b). Hvis a) findes \( h \in H_+(E) \) med \( \mu \times h \geq 1_K \), hvor \( K = \text{supp}(f) \). Da er

\[
\mu \times \left( \left( \sup_{x \in E} f(x) \right) \cdot h \right) \geq \left( \sup_{x \in E} f(x) \right) \cdot 1_K \geq f. \quad \square
\]

**Lemma 7.3.** Lad \( \mu, \nu \) og \( \tau \) være positive mål på \( E \), og lad \( \mu \) være forskelligt fra nullmålet. Hvis
følgende

\( (\mu \ast \nu) \ast \tau\)

og

\( (\mu \ast (\nu \ast \tau))\),

og der gælder

\[ (\mu \ast \nu) \ast \tau = \mu \ast (\nu \ast \tau). \]

Bemærk: Vi viste først, at \( \nu \ast \tau \) kan følges.

Lad \( f \in \mathcal{K}_+ (\mathbb{R}) \). Da \( \nu \ast \tau \) findes iflg. lemma 7.2.6,

er funktionen \( g \in \mathcal{K}_+ (\mathbb{R}) \) med \( f \leq \nu \ast g \). Heraf følger vi:

\[ \int \left( \int f(x+y) \, d\nu(x) \right) \, d\tau(y) \leq \int \left( \int \mu \ast g(x+y) \, d\nu(x) \right) \, d\tau(y) = \]

\[ \int \left( \int g(x+y+z) \, d\mu(z) \right) \, d\nu(x) \, d\tau(y) = \]

\[ \int \left( \int g(x+y) \, d(\mu \ast \nu)(x) \right) \, d\tau(y) < \infty, \]

før f. \( \mu \ast \nu \) og \( \tau \) kan følges. Altså eksisterer \( \nu \ast \tau \).

Videre eksisterer \( \mu \ast (\nu \ast \tau) \), og der gælder

\[ \mu \ast (\nu \ast \tau) = (\mu \ast \nu) \ast \tau, \]

for alle \( f \in \mathcal{K}_+ (\mathbb{R}) \).

\[ \int \left( \int f(x+y) \, d\mu(x) \right) \, d(\nu \ast \tau)(y) = \]

\[ \int \left( \int f(x+z+y) \, d\mu(x) \right) \, d\nu(z) \, d\tau(y) = \]

\[ \int \left( \int f((x+z)+y) \, d\mu(x) \right) \, d\nu(z) \, d\tau(y) = \]

\[ \int f(w+z+y) \, d(\mu \ast \nu)(w) \, d\tau(y) = \]
\[ \int f \, d \left( [ \mu \ast \nu ] \ast \tau \right) < \infty, \]

fordi fældningen \([ \mu \ast \nu ] \ast \tau\) eksisterer.

**Ejempel.** Lad \(G = \mathbb{R}\) og \(\mu = 0\), \(\nu = \tau\) = Lebesgue-
målet på \(\mathbb{R}\). Fældningerne \(\mu \ast \nu\) og \([\mu \ast \nu] \ast \tau\) exi-
terer, og \(\mu \ast \nu = 0\), \([\mu \ast \nu] \ast \tau = 0\); men som man
lægger at se, kan \(\nu\) og \(\tau\) ikke følges. Forudsætningen \(\mu \neq 0\) i ovanstående sætning er altid væsentlig.

Der gælder, at et positivt mål \(\mu\) altid kan følges med et positivt mål \(\nu\) med kompakt
størrelse, thi for \(f \in K_c(\mathbb{R})\) er \(\nu \ast f \in K_c(\mathbb{R})\), idet
\[ \text{supp} (\nu \ast f) \subseteq \text{supp} f - \text{supp} \nu, \]
og dermed er \(\langle \mu, \nu \ast f \rangle < \infty\).

**Sætning 7.4.** Lad \(\mu\) være et positivt begrænset
mål og \(\nu\) et positivt translationsbegrenset mål.
Da kan \(\mu \ast \nu \) følges.

Bem. Da \(\nu\) er translationsbegrenset, se p. 235
er også \(\nu\) translationsbegrenset; altid er \(\nu \ast f\) en
kontinuerligt begrenset funktion for hvert \(f \in K_c(\mathbb{R})\),
og da er kontinuerligt begrenset funktion er inte-
gravel m. h. t. et begrenset mål, følger:

\[ \langle \mu, \tilde{w} \star f \rangle \leq \infty. \]

\[ \text{Exempel. Et positivt, positivt definit, mål er transformationsbegrebet.} \]
\[ \text{Sætning 6.3, p. 226, og kan} \]
\[ \text{dvs. at det følges med et begrenset positivt mål} \mu, \text{og} \]
\[ \tilde{w} \star \mu = \mu \circ \tilde{w}, \]

\[ \text{for} \ f \in D(A), \text{har man} \]

\[ \langle f, \tilde{w} \star \mu \rangle = \langle f \circ \tilde{w}, \mu \rangle = \int f \circ \tilde{w} \circ A \, d\mu(x) = \]
\[ \int \int f(x+y) \, d\tilde{w} \circ A \, d\mu(x) = \]
\[ \int \int f(y) \, d\tilde{w} \circ A \, d\mu(x) = \mu(A) \int f \, d\tilde{w}. \]

De efterfølgende sætninger udtales sig om sam-

menhængen mellem følding og vagt grænseovergang.

Betræt positivt mål \( \mu \) og \( \nu \), som kan føldes og

met \( (\mu_x)_{x \in A} \) og \( (\nu_x)_{x \in A} \) af positive mål, således at \( \mu_x \star \nu_x \) eksisterer for hvert \( x \in A \). Anfæg at

\[ \mu_x \rightarrow \mu \text{ vagt og } \nu_x \rightarrow \nu \text{ vagt.} \]

Ellen bemærker, at det ikke behøver at gælde:

\[ \mu_x \star \nu_x \rightarrow \mu \star \nu. \]
Læsning 7.5. Lad \( \mu, \nu \) og \( \tau \) være positive mål, og lad \((\mu_d)_{d \in A}, (\nu_d)_{d \in A}\) og \((\tau_d)_{d \in A}\) være net af positive mål, som konvergerer vigtigt mod henholdsvis \( \mu, \nu \) og \( \tau \). Hvis dette for hvert \( d \in A \) gælder, at \( \mu_d \) og \( \nu_d \) kan følges, og at \( \mu_d \times \nu_d \leq \tau_d \), så kan \( \mu \) og \( \nu \) følges, og \( \mu \times \nu \leq \tau \).

Bevis: Lad \( f \in \mathbb{R}_+(A) \). For en vilkårlig funktion \( g \in \mathbb{R}_+(A \times A) \), der opfylder \( g(x, y) \leq f(x + y) \), gælder:

\[
\int g(x, y) \, d (\mu_d \times \nu_d)(x, y) \leq \\
\int f(x + y) \, d (\mu_d \times \nu_d)(x, y) = \\
\int f \, d (\mu_d \times \nu_d) \leq \int f \, d \tau_d.
\]

Idet \( \mu_d \times \nu_d \rightarrow \mu \otimes \nu \), juster indsekret om produktmål p. 254, og \( \tau_d \rightarrow \tau \) vigtigt, så husk hvordan, at

\[
\int g(x, y) \, d (\mu \otimes \nu)(x, y) \leq \int f \, d \tau.
\]

Da \( f(x + y) = \)
\[ \sup \{ q(x, y) \mid q \in X^+(\mathcal{G} \times \mathcal{G}) \text{ og } \forall z, v \in \mathcal{G} : q(z, v) \leq q(x, y) \} \]

fås
\[ \int q(x+y) \, d(\mu \otimes \nu)(x, y) = \sup \int q(x, y) \, d(\mu \otimes \nu)(x, y) \leq \int q \, d\tau < \infty, \]

altså, at \( \mu \) og \( \nu \) kan foldes, og at \( \mu \otimes \nu \leq \tau \).

Sætning 7.6. Lød \( \mu \) og \( \nu \) være positive mål, og lad \( (\mu_\alpha)_{\alpha \in \Lambda} \) og \( (\nu_\alpha)_{\alpha \in \Lambda} \) være monotont voksende mængde af positive mål, som konvergerer vakt mod henholdsvis \( \mu \) og \( \nu \). Hvis det først \( \alpha \in \Lambda \) gælder at \( \mu_\alpha \) og \( \nu_\alpha \) kan foldes, og hvis det findes et positivt mål \( \lambda \), så
\[ \forall \alpha \in \Lambda : \mu_\alpha \otimes \nu_\alpha \leq \lambda, \]

da kan \( \mu \) og \( \nu \) foldes, og man har, at mængden \( (\mu_\alpha \otimes \nu_\alpha)_{\alpha \in \Lambda} \) konvergerer vakt mod \( \mu \otimes \nu \).

Bemærk: For hvert \( \varphi \in X^+(\mathcal{G}) \) er mængden
\[ (\langle \varphi, \mu_\alpha \otimes \nu_\alpha \rangle)_{\alpha \in \Lambda} \]
voksende og begrænsset af \( \langle \varphi, \lambda \rangle \); det har altså en grænseværdi \( \lambda_0(\varphi) \). Afbildningen
\[ \varphi \mapsto \lambda_0(\varphi) \]
udvides ved linearkit til en positiv linearkit $\lambda_0$ på $\mathcal{H}(\alpha)$. Der gælder

$$\mu_\alpha \times \nu_\alpha \rightarrow \lambda_0$$

iflg. definitionen på $\lambda_0$. For hvert $x \in A$ er almindent

$$\mu_\alpha \times \nu_\alpha \leq \lambda_0.$$  

Sætning 7.5. giver da, at $\mu$ og $\nu$ kan holdes, og at

$$\mu \times \nu \leq \lambda_0.$$  

Da $\mu_\alpha \leq \mu$ og $\nu_\alpha \leq \nu$ for alle $x \in A$ er $\mu_\alpha \times \nu_\alpha \leq \mu \times \nu$ for alle $x \in A$. Ved nøg

grænseovergang får vi da, at

$$\lambda_0 \leq \mu \times \nu,$$

og vi har derfor $\lambda_0 = \mu \times \nu$, og dermed som brukt

$$\mu_\alpha \times \nu_\alpha \rightarrow \mu \times \nu$$

$$\square$$

Sætning 7.1. Lad $(\mu_\alpha)_{\alpha \in A}$ og $(\nu_\alpha)_{\alpha \in A}$ være

detonont afgørende met af positive mål og antag, at

$$\mu_\alpha \times \nu_\alpha$$

existere for alle $\alpha \in A$. Så existerer de nøg

grænseværdier

$$\mu = \lim \mu_\alpha \quad \text{og} \quad \nu = \lim \nu_\alpha,$$

og $\mu$ og $\nu$ kan holdes. Der gælder individuere

$$\mu \times \nu = \lim (\mu_\alpha \times \nu_\alpha).$$

Sætning 7.2. Lad $(\mu_\alpha)_{\alpha \in A}$ og $(\nu_\alpha)_{\alpha \in A}$ være

konvergerende met af positive mål med grænse-
værdier $\mu$ og $\nu$. Hvis der findes en kompakt mængde $K$, så

$$\forall x \in A: \text{upp } \nu_x \subseteq K$$

kan $\mu_x$ og $\nu_x$ følde for alle $x \in A$, og man har dem nogle grænseværdi

$$\lim_{x \in A} (\mu_x * \nu_x) = \mu * \nu.$$  

Sætning 7.7. Lad $\lambda$ og $\nu$ være positive mål og $\lambda$ forskellig fra null-målet. Lad $(\mu_x)_{x \in A}$ være et net af positive mål, der konvergerer vægt mod målet $\mu$. Antag, at for ethvert $x \in A$ kan $\mu_x$ følde med $\lambda$ og

$$\mu_x * \lambda \leq \nu.$$  

Lad individuet $\sigma$ være et positivt mål, der kan følde med $\lambda$. Så eksisterer følgendeerne $\mu_x * \sigma$ og $\mu * \sigma$, og man har dem nogle grænseværdi

$$\lim_{x \in A} (\mu_x * \sigma) = \mu * \sigma.$$  

Beweis: Da $\mu_x * \lambda \leq \nu$, og da $\nu$ og $\sigma$ kan følde, er det klart, at også $(\mu_x * \lambda) * \sigma$ eksisterer. Da $\lambda * 0$, følger af lemma 7.2., at $\mu_x * \sigma$ eksisterer. Af sætning 7.4. følger, at $\mu * \sigma$ eksisterer, og at $\mu * \lambda \leq \nu$. Herved ses, at $\mu * \sigma$ eksisterer. Lad nu $\eta \in K_+ (\mathbb{C})$. For ethvert $y \in K_+ (\mathbb{G})$, så $\gamma \leq \gamma * \eta$ for man så:
\[<\mu_\alpha, \varphi> = \lim_{\alpha \in A} <\mu_\alpha, \varphi> = \lim \inf_{\alpha \in A} <\mu_\alpha, \varphi> \]

og heraf følger

\[<\mu \ast \varphi, \varphi> \leq \lim \inf_{\alpha \in A} <\mu_\alpha \ast \varphi, \varphi>\,.

Vi skal nu indte uligheden

\[\lim_{\alpha \in A} \sup_{\varphi} <\mu_\alpha \ast \varphi, \varphi> \leq <\mu \ast \varphi, \varphi>\,.

Af lemma 7.2. følger, at vi kan vælge \( h \in K_+(G) \), så \( \varphi \leq \lambda \ast h \).

Lad nu \( K \) være en kompakt delmængde af \( G \), og lad \( f_K \) betegne restriktionen af \( f \) til \( K \). Vi betragter nu

\[f_K' = f - f_K\,.

Man ser, at når \( K \) roterer mod \( G \), vil mættet \((f_K')_K\) aftage monotont, og det vil gå vægt mod \( 0 \).

Af lemma 7.2. følger, at mættet \((\nu \ast f_K')_K\) går vægt mod \( 0 \).

Lad nu \( \varepsilon > 0 \) være givet. Der findes da en
komprakt mangele $K \subseteq G$, så

$$< \nu * \rho', \lambda \nu > \leq \varepsilon,$$

og derfor er

$$\limsup_{x \in A} < \mu_x * \rho, \varphi > \leq$$

$$\limsup_{x \in A} < \mu_x * \rho, \varphi > + \limsup_{x \in A} < \mu_x * \rho', \lambda * \lambda > \leq$$

$$< \mu * \rho_K, \varphi > + < \nu * \rho'_K, \lambda > \leq$$

$$< \mu * \rho_K, \varphi > + \varepsilon \leq < \mu * \rho, \varphi > + \varepsilon,$$

og da $\varepsilon > 0$ er vilkårligt valgt, får vi

$$\limsup_{x \in A} < \mu_x * \rho, \varphi > \leq < \mu * \rho, \varphi >.$$

\[ \square \]

**Lemma 7.8.** Lad $A$ være en mål af positivt
Radonmål på $G$. Da er følgende to behersker
unbekjendte:

i) $A$ er någet begrænset.

ii) $A$ er relativt kompakt i den någe topologi.

**Beweis:** ii) $\Rightarrow$ i) blot.
\( i) \Rightarrow ii) \). Den vage afldning af \( A \) er også vigtig begrænset. Vi har derfor

\[
\forall f \in \mathcal{L}(G) : \sup_{\mu \in \Lambda} |<\mu, f>| = a_f < \infty.
\]

Lad nu \( F \) være et ultrafilter på \( \Lambda \), og lad afbildningen \( \pi F \) være defineret ved

\[
\pi F : \mu \mapsto <\mu, f>.
\]

Vi har da, at \( \pi F (F) \) er en ultrafilterbasis på den kompakte mængde

\[
A_f = \{ z \in C \mid |z| \leq a_f \},
\]

og da er \( \pi F (F) \) konvængent. Vi sætter

\[
\lim \pi F (F) = \lambda_0(f),
\]

og man ser, at \( \lambda_0 \) er en positiv lineærform på \( \mathcal{L}(G) \), altså et positivt Radianmål. Vi har da

\[
F \to \lambda_0 \text{ vigtig},
\]

og dermed er \( A \) relativt kompakt i den vage topologi. \( \Box \)
Sætning 7.9. Lad $(\mu_x)_x \in A$ være en familie af positivt mål på $G$, og antag, at der findes et positivt mål $\Lambda$, med $\Lambda > 0$, så $\Lambda \mu_x$ eksisterer for alle $x \in A$.

Hvis familien $(\Lambda \mu_x)_x \in A$ er vigtig begrenset er også familien $(\mu_x)_x \in A$ vigtig begrenset.

Bewiø: Lad $f \in K_+(G)$. Vi skal vise, at

$$\sup_{x \in A} < \mu_x, f > < \infty.$$ 

Da $\Lambda > 0$, findes $g \in K_+(G)$, så $f \leq \frac{1}{\Lambda} g$, ve lemme 7.2.6). Dertil følger forudsetningen er

$$\sup_{x \in A} < \Lambda \mu_x, g > < \infty.$$ 

Vi har da: $< \mu_x, f > \leq < \mu_x, \frac{1}{\Lambda} g > = < \Lambda \mu_x, g > < \sup_{x \in A} < \Lambda \mu_x, g > < \infty,$

hvoraf

$$\sup_{x \in A} < \mu_x, f > < \infty.$$ 

For et positivt mål $\mu$ på $G$ indføres detegne

$$D^+(\mu) = \{ \mu \in RM_+(G) \mid \mu \mu \text{ eksisterer} \}.$$
Man ser, at \( D^+(\mathcal{U}) \) er en komveks høgle. Hvis \( \mu \in D^+(\mathcal{U}) \), og hvis \( \nu \) er et positivt mål, så \( \nu \leq \mu \), vil også \( \nu \in D^+(\mathcal{U}) \).

**Definition.** Lad \( \mathcal{X} \) være et positivt mål på \( \mathcal{E} \). Lad der være givet et \( \mu \in D^+(\mathcal{X}) \) og en åben mængde \( \omega \subseteq \mathcal{E} \).
Vi siger, at et positivt mål \( \mu^\omega \in D^+(\mathcal{X}) \) er et "\( \omega \)-fjide" mål af \( \mu \) på \( \omega \), såfremt:

1. \( \text{supp } \mu^\omega = \omega \)
2. \( \mathcal{X} \ast \mu^\omega \leq \mathcal{X} \ast \mu \)
3. \( \mathcal{X} \ast \mu^\omega \mid \omega = \mathcal{X} \ast \mu \mid \omega \).

Mængden af "\( \omega \)-fjide" mål af \( \mu \) på \( \omega \) betegnes \( F_\omega(\omega, \mu) \), eller underholdt blot \( F(\omega, \mu) \).

Man har, at \( F_\omega(\omega, \mu) \) er en komveks delmængde af \( D^+(\mathcal{X}) \). Det kan hænkes, at \( F_\omega(\omega, \mu) = \emptyset \) før nul \( \omega \) og \( \mu \).

Lad \( M^+(\mathcal{X}) \) betegne mængden af de positive mål med kompakt støtte på \( \mathcal{E} \).

Vi siger, at \( \mathcal{X} \) opfylder fjerdingsprincippet, hvis der for enhver åben relativt kompakt mængde \( \omega \subseteq \mathcal{E} \) og
Ved etig nøg at opfylde fejningsprincipippet for enhver åben mængde, såfremt den for enhver åben mængde $W$ og etig $\mu \in D^+(W)$ findes et $\mathfrak{r}$-fjedt mål af $\nu$ på $W$, altid såfremt $F_\infty(W,\mu) + \emptyset$.

Eller det, at den sidste egenskaat medfører den første.

**Sæt 7.3.** Lad $\mathfrak{r}$ være et positivt mål, som ikke er nulmælt. For enhver åben relativt kompakt mængde $W$ og etig $\mu \in D^+(W)$ er $F_\infty(W,\mu)$ en kompakt konveks mængde i den vage topologi.

Vi skelner mod at vide, at potentialkernen for en foldningssemigruppe opfylde fejningsprincipippet for enhver åben mængde. For at vide dette, vil vi studere en speciel type foldningssemigrupper.

Lad $\mu$ være et positivt mål på LCA-gruppen $G$, med totalmass $\mu(G) < 1$. Vi har tidligere definert en foldningssemigruppe $(\mu_t)_{t>0}$ ud fra $\mu$ ved:

\[
(1) \quad \mu_t = e^{-t} \exp(t \mu) = e^{-t} \sum_{n=0}^{\infty} \frac{t^n \mu^n}{n!}, \quad t > 0,
\]
se bet. III 3.9. Den tilhørende negative definition funktion er

\[ \psi(y) = 1 - \mu(y), \quad y \in \mathbb{R}, \]

og derfor

\[ \mu_t(y) = \exp(-t \mu(y)) = e^{-t(1 - \mu(y))} = e^{-t \psi(y)}. \]

Resolventmålene \((s_\lambda)_{\lambda > 0}\) er definere ved "

\[ s_\lambda = \int_0^\infty e^{-\lambda t} \mu_t \, dt. \]

For \(\lambda \in \mathbb{R}^+\) får vi:

\[ p_\lambda(y) = \int_0^\infty e^{-\lambda t} \mu_t(y) \, dt = \int_0^\infty e^{-\lambda t} e^{-t} \sum_{n=0}^\infty \frac{t^n}{n!} \mu(y) \, dt = \sum_{n=0}^\infty \left( \int_0^\infty e^{-(\lambda+1) t} \frac{t^n}{n!} \, dt \right) \mu(y) = \sum_{n=0}^\infty \left( \frac{1}{\lambda + 1} \right)^{n+1} \mu(y), \]

og vi har derfor

\[ s_\lambda = \frac{1}{\lambda + 1} \sum_{n=0}^\infty \frac{1}{(\lambda + 1)^n} \mu_n. \]
For hvert $f \in X^+_c (G)$ har vi:

$$
\lim_{n \to \infty} S_n(f) = \sum_{m=0}^{\infty} \mu^m(f),
$$

og heraf see, at semigruppen $(\mu_t)_{t \geq 0}$ er transient, hvis og kun hvis den endelige række

$$
\sum_{m=0}^{\infty} \mu^m
$$

er vægt harmonisk, og i bekræftende fald er den potentiallerne for semigruppen $(\mu_t)_{t \geq 0}$.

**Definition.** Vid en elementær herne forstå

potentiallerne

$$
\sum_{m=0}^{\infty} \mu^m
$$

for en transient foldnings-semigruppe af typen

$$
\mu_t = e^{-t} \exp (t \mu),
$$

hvor $\mu$ er et positivt mål, med totalmæng $\mu(G) < 1$.

Lad nu $(\mu_t)_{t \geq 0}$ være en transient foldnings-

semigruppe med potentiallerne

$$
\mu = \int_0^{\infty} \mu_t \, dt.
$$
Den tilhørende negative definite funktion betegnes \( \psi \), og matrincmåle med \( \lambda > 0 \).

Læring 7.10. For 

\[
\lambda \mu + \delta_0
\]

en elementær kerne, idet der gælder

\[
\lambda \mu + \delta_0 = \sum_{m=0}^{\infty} (\lambda \lambda')^m (\mu_\lambda)^{m+1}.
\]

Beweis: For hver \( \lambda' \in \mathbb{N} \), har vi

\[
(2) \quad \psi_{\lambda'} = \sum_{m=0}^{\infty} (\lambda - \lambda')^m (\mu_\lambda)^{m+1}
\]

thi und Fouriertransformation afsømmer man:

\[
\mathcal{F} \left( \sum_{m=0}^{\infty} (\lambda - \lambda')^m (\mu_\lambda)^{m+1} \right) = \sum_{m=0}^{\infty} (\lambda - \lambda')^m \frac{1}{(\psi + \lambda)^{m+1}} = \frac{1}{\psi + \lambda} \frac{\lambda}{\lambda - \lambda'} = \frac{\lambda'}{\psi + \lambda'} = \mathcal{F} \psi_{\lambda'}.
\]

Lader vi nu \( \lambda' \rightarrow 0 \) i formel (2), får vi

\[
\mu = \sum_{m=0}^{\infty} \lambda^m (\mu_\lambda)^{m+1}
\]
Indhold.

Kapitel III. Foldningsrumigruppe.

§ 7. Potentialekori for en foldningsrumigruppe. 253

§ 8. Assosierede hornur. 335


Rekturer og Høføjere. 434
§7. Potentialteori for en foldningsgruppe.

Vi har tidligere (p. 32-33) defineret foldning af begrænset mål på en LCA-gruppe. Derved viser ikkegrænse mål kan foldes, og det får vi brug for i det følgende.

Indskud om produktmål. Lad $X$ og $Y$ være lokalkompakte rum, og lad $\mu$ og $\nu$ være positive mål på henholdsvis $X$ og $Y$. Det kan vise, at for en funktion $f \in X(X \times Y)$ er funktionerne

$$x \to \int f(x, y) \, d\nu(y)$$

og

$$y \to \int f(x, y) \, d\mu(x)$$

kontinuerlige med kompakt støtte, således at integralerne

$$\int \left( \int f(x, y) \, d\nu(y) \right) \, d\mu(x)$$

og

$$\int \left( \int f(x, y) \, d\mu(x) \right) \, d\nu(y)$$

er grænseværdier. Videre kan vise:
\( \forall f \in \mathcal{K}(X \times Y): \)
\[
\int \left( \int f(x, y) \, d\mu(x) \right) \, d\nu(y) = \int \left( \int f(x, y) \, d\nu(y) \right) \, d\mu(x).
\]

Afbildningen, der til \( f \in \mathcal{K}(X \times Y) \) hentyder den fælles værdi af dobbeltintegralkom, er åbenbart linear og positiv, altså et positivt mål på \( X \times Y \); dit kaldes produktmålet af \( \mu \) og \( \nu \) og betegnes \( \mu \otimes \nu \).

**For nit \( (\mu_\alpha)_{\alpha \in A} \) og \( (\nu_\alpha)_{\alpha \in A} \) af positive mål, der konvergerer vigtig mod positive mål \( \mu \) og \( \nu \), gælder, at mætet \( (\mu_\alpha \otimes \nu_\alpha)_{\alpha \in A} \) konvergerer vigtig mod \( \mu \otimes \nu \).**

Lad nu \( G \) være en LCA-gruppe.

**Lemma 7.1** For vilkårlige positive mål \( \mu \) og \( \nu \) på \( G \) gælder for alle \( f \in \mathcal{K}(G) \), at
\[
\int \int f(x+y) \, d(\mu \otimes \nu)(x, y) =
\]
\[
\left( \int \int f(x+y) \, d\mu(x) \right) \, d\nu(y) = \left( \int \int f(x+y) \, d\nu(y) \right) \, d\mu(x)
\]
og hvert tal \( \geq 0 \), evt. \( = +\infty \).

**Bevis:** Lad \( g \) være funktionen på \( G \times G \) defineret med
\[
g(x, y) = f(x+y) \quad \text{for alle} \quad x, y \in G.
\]
Da $g$ er kontinuerligt og $g > 0$, gælder $g = \sup_{\varphi \in A}$, hvor $A$ er mængden
$\{ \varphi \in K_+ (\mathbb{R} \times \mathbb{R}) \mid \varphi \leq g \}$
(jfr. Mat 6, Top. opg. 36). Da $A$ er opad føl-
lerende, gælder for hvert $y \in A$, at
$\sup_{\varphi \in A} \int \varphi (x, y) \, d\mu(x) = \int \sup_{\varphi \in A} \varphi (x, y) \, d\mu(x) = \int g(x, y) \, d\mu(x)$
(jfr. Mat 6, Mål. s. 3, p. 11).
Da $\{ \int \varphi (x, y) \, d\mu(x) \mid \varphi \in A \}$ fulgte er opad føl-
lerende, er (jfr. samme sætning):
$\sup_{\varphi \in A} \int (\int \varphi (x, y) \, d\mu(x)) \, d\nu(y) = \int (\sup_{\varphi \in A} \int \varphi (x, y) \, d\mu(x)) \, d\nu(y)$.

J alt f æ s:
$\int g \, d(\mu \circ \nu) = \sup_{\varphi \in A} \int \varphi \, d(\mu \circ \nu)$
$= \sup_{\varphi \in A} \int (\int \varphi (x, y) \, d\mu(x)) \, d\nu(y)$
$= \int (\sup_{\varphi \in A} \int \varphi (x, y) \, d\mu(x)) \, d\nu(y)$
$= \int (\int g(x, y) \, d\mu(x)) \, d\nu(y)$
På tilsvarende måde viser
\[ \int g \cdot d(\mu \otimes \nu) = \left( \int g(x, y) \, d\nu(y) \right) d\mu(x). \]

**Definition.** Lad \( \mu \) og \( \nu \) være positive mål på \( \mathcal{A} \). Vi siger, at \( \mu \) og \( \nu \) kan foldes, eller at

\( \mu \otimes \nu \) eksisterer, såfremt:

\[ \forall \Phi \in \mathcal{K}^+(\mathcal{A}): \int \Phi(x+y) \, d(\mu \otimes \nu)(x, y) < \infty. \]

\( \mathcal{A} \times \mathcal{A} \)

I behagelige fald er afbildningen, der til \( \Phi \in \mathcal{K}^+(\mathcal{A}) \) lader være

\[ \int \Phi(x+y) \, d(\mu \otimes \nu)(x, y) \]

\( \mathcal{A} \times \mathcal{A} \)

additiv, positiv og homogen, og har derfor en entydig udvidelse til en positiv, linear funktionell på \( \mathcal{K}(\mathcal{A}) \), altså et positivt mål på \( \mathcal{A} \). Dette mål kaldes foldningen af \( \mu \) og \( \nu \) og betegnes \( \mu \otimes \nu \).

**Bemærk,** at der iflg. lemma 7.1 gælder

\[ \int \Phi(z) \, d(\mu \otimes \nu)(z) = \int \Phi(x+y) \, d(\mu \otimes \nu)(x, y) = \]

\[ \left( \int \Phi(x+y) \, d\mu(x) \right) \nu(y) = \left( \int \Phi(x+y) \, d\nu(y) \right) d\mu(x), \]

eller med en kortere skrivemåde

\[ \langle \Phi, \mu \otimes \nu \rangle = \langle \Phi * \mu, \nu \rangle = \langle \Phi \otimes \nu, \mu \rangle \]
for alle \( f \in K_+(\mathbb{A}) \) og dernæst ved linearitet for alle \( f \in K(\mathbb{A}) \). For uniprime mål stemmer følgende altid overens med den tidligere definierede følgnings.

**Bemærkninger.** 1) Af definitionen fremgår umiddelbart, at følgnings er kommutativ i den følgende, at \( \mu \ast \nu \) eksisterer, hvis og kun hvis \( \nu \ast \mu \) eksisterer, og i behørigende fald har vi: 
\[
\mu \ast \nu = \nu \ast \mu.
\]

2) Følgnings behøver derimod ikke at være assosiativ (se lemma 7.3. og dit efterfølgende eksempel).

**Lemma 7.2.** Lad \( \mu \) være et fra nullvældt forskelligt positivt mål på \( \mathbb{A} \). Der gælder:

a) Til hver kompakt mængde \( K \subseteq \mathbb{A} \) findes en funktion \( f \in K_+(\mathbb{A}) \) så \( \mu \ast f \geq \chi_K \).

b) Til hver funktion \( f \in K_+(\mathbb{A}) \) findes en funktion \( g \in K_+(\mathbb{A}) \) så \( \mu \ast g \geq f \).

**Beweis:** Da \( \mu \neq 0 \) findes \( g \in K_+(\mathbb{A}) \) så \( \langle g, \mu \rangle > 0 \). For hver \( x \in \mathbb{A} \) gælder om funktionen
\[
\mu \ast (\nu \ast g),
\]

\[
\mu \ast (\nu \ast g)(x) = \int (\nu \ast g)(x-y) \, d\mu(y) = \\
\int \nu(y) \, d\mu(y) = \langle g, \mu \rangle > 0.
\]
Da \( \mu \ast (T_x \vec{y}) \) er kontinuerligt (væl. I 2.4 a) fin-
des in omgiv \( \delta_x \) om \( y \) så:

\[ \forall y \in \delta_x : \mu \ast (T_x \vec{y})(y) > 0. \]

Da \( K \) er kompakt findes endelig mange
punkter \( x_1, x_2, \ldots, x_p \in K \), så

\[ K \subseteq \bigcup_{i=1}^{p} \delta_{x_i}. \]

Sætter nu \( h = \sum_{i=1}^{p} T_{x_i} \vec{y} \in K + (G) \) galder
derfor

\[ \mu \ast h(y) = \sum_{i=1}^{p} \mu \ast (T_{x_i} \vec{y})(y) > 0 \]

for alle \( y \in K \). For et passende \( \lambda > 0 \) galder

derfor

\[ \mu \ast (\lambda h)(y) > 0 \quad \text{for alle } y \in K. \]

I det vi rækker \( f = \lambda h \), har vi \( \mu \ast f \geq 1_K. \)
Herved er a) vist.

b) Iflg. a) findes \( h \in K + (G) \) med

\[ \mu \ast h \geq 1_K, \quad \text{hvor } K = \text{supp} (f). \]

Da er

\[ \mu \ast (\sup_{x \in K} f(x) \cdot h) \geq (\sup_{x \in K} f(x)) \cdot 1_K \geq f. \]

\[ \square \]

Lemma 7.3. Lad \( \mu, \nu \) og \( \xi \) være positive
mål på G og lad \( \mu \) være forskelligt fra muli-
målet. Hvis foldningerne $\mu \ast v$ og $(\mu \ast v) \ast T$
existere, så existerer også $v \ast T$ og $\mu \ast (v \ast T)$, og der gælder

$$(\mu \ast v) \ast T = \mu \ast (v \ast T).$$

Beweis: Vi viser først at $v$ og $T$ kan foldes. Lad $f \in X_+(\mathbb{G})$. Da $\mu \ast v$ findes iflg. lemma 7.2. d. en funktion $g \in X_+(\mathbb{G})$ med

$f \leq \mu \ast g$. Hvoraf får vi da:

$$\int \left( \int f(x+y) \, d\nu(x) \right) \, d\tau(y) \leq \int \left( \int \mu \ast g(x+y) \, d\nu(x) \right) \, d\tau(y)$$

$$= \int \left[ \int g(x+y+z) \, d\mu(z) \right] \, d\nu(x) \, d\tau(y)$$

$$= \int \left[ \int g(v+y) \, d(\mu \ast v)(v) \right] \, d\tau(y) < \infty,$$

for $\mu \ast v$ og $T$ kan foldes. Altså existere $v \ast T$. Videre existere $\mu \ast (v \ast T)$, og der gælder

$$\mu \ast (v \ast T) = (\mu \ast v) \ast T,$$

for $\forall f \in X_+(\mathbb{G})$ er

$$\int \int f(x+y) \, d\mu(x) \, d(v \ast T)(y) =$$

$$\int \int \int f(x + [z + v]) \, d\mu(x) \, d\nu(z) \, d\tau(v) =$$

$$\int \int \int f([x + z] + v) \, d\mu(x) \, d\nu(z) \, d\tau(v) =$$

$$\int \int \int f(x + [z + v]) \, d\mu(x) \, d\nu(z) \, d\tau(v) =$$

$$\int \int \int f([x + z] + v) \, d\mu(x) \, d\nu(z) \, d\tau(v) =$$
\[
\int \int \mathcal{P}(w + v) \, d(\mu \ast \tau)(w) \, d\tau(v) = \\
\int \mathcal{P} \, d([\mu \ast \nu] \ast \tau) < \infty,
\]

fordi foldningen \((\mu \ast \nu) \ast \tau\) eksisterer.

**Eksempel.** Lad \(G = \mathbb{R}\) og \(\mu = 0, \nu = \tau\) Lebesgue-målet på \(\mathbb{R}\). Foldningerne \(\mu \ast \nu\) og \((\mu \ast \nu) \ast \tau\) eksisterer; \(\mu \ast \nu = 0\) og \((\mu \ast \nu) \ast \tau = 0\), men som man ser, kan \(\nu\) og \(\tau\) ikke foldes. Forudsætningen \(\mu \neq 0\) i omskærende sætning er altså nødvendig.

Der gælder, at et positivt mål \(\mu\) aldrig kan foldes med et positivt mål \(\nu\) med kompakt støtte, thi for \(f \in \mathcal{K}_+(G)\) er \(\nu \ast f \in \mathcal{K}_+(G)\), idet \(\text{supp}(\nu \ast f) \subseteq \text{supp}\nu - \text{supp}f\), og dermed \(\nu < \mu, \nu \ast f > < \infty\).

**Sætning 7.4.** Lad \(\mu\) være et positivt begrænset mål og \(\nu\) et positivt translationsbegrænset mål. Da kan \(\mu\) og \(\nu\) foldes.

**Bemærk:** Da \(\nu\) er translationsbegrænset (se p. 225) er også \(\nu \ast f\) translationsbegrænset; altså er \(\nu \ast f\) en kontinuerlig begrænset funktion for hvert \(f \in \mathcal{K}_+(G)\), og da en kontinuerlig be-
granet funktion er integrabel m. h. t. at
begranet mål pås
\[ < \mu, \nu * f > < \infty. \]

**Exempel.** Et positivt, positiv definit mål er translationsbegranet (s. 6.3, p. 226) og kan derfor foldes med et begranet positivt mål. Specielt kan Haarmålet \( \omega_\alpha \) på \( G \) foldes med ethvert begranet positivt mål \( \mu \), og \( \omega_\alpha * \mu = \mu (G) \omega_\alpha \), fordi der for alle \( f \in K_+(G) \)
gælder:

\[
< f, \omega_\alpha * \mu > = < f * \omega_\alpha, \mu > = \\
\int f * \omega_\alpha (x) \, d\mu (x) = \\
\int \int f (x + y) \, d\omega_\alpha (y) \, d\mu (x) = \\
\int [ \int f (y) \, d\omega_\alpha (y) ] \, d\mu (x) = \mu (G) \int f \, d\omega_\alpha.
\]

De følgende satninger udtales sig om sammenhængen mellem foldning og vagt grænse-
øvergang. Betragt positive mål \( \mu \) og \( \nu \) som
kan foldes og met \( (\mu_x)_{x \in A} \) og \( (\omega_\alpha)_x \in A \) af
positive mål), således at \( \mu_x * \nu_x \) er konverger for
hvert \( x \in A \). Antag at

\[
\mu_x \rightarrow \mu \text{ vagt og } \omega_\alpha \rightarrow \nu \text{ vagt.}
\]
Bemærk, at der ikke behøver at gælde
\[ \mu \alpha \ast \nu \alpha \rightarrow \mu \ast \nu. \]

Se f. eks. på: \( G = \mathbb{R}, A = \mathbb{N}, \mu = \delta_0, \nu = \delta_1 \).


**Sætning 7.5.** Lad \( \mu, \nu \) og \( \tau \) være positive mål, og lad \((\mu \alpha, \nu \alpha)_{\alpha \in A}\), \((\tau \alpha)_{\alpha \in A}\) være net af positive mål, som konvergerer vigtigt mod henholdsvis \( \mu, \nu \) og \( \tau \). Husk det for hvert \( \alpha \in A \) gælder, at \( \mu \alpha \) og \( \nu \alpha \) kan følges, og at \( \mu \alpha \ast \nu \alpha \leq \tau \alpha \), så kan \( \mu \ast \nu \) følges og \( \mu \ast \nu \leq \tau \).

**Bevis:** Lad \( \phi \in K_+ (A) \). For en vilkårlig funktion \( \phi \in K_+ (A \times A) \) opfyldende \( \phi (x, y) \leq \phi (x + y) \), gælder:

\[
\int \phi (x, y) \, d (\mu \alpha \circ \nu \alpha) (x, y) \leq \int \phi (x + y) \, d (\mu \alpha \circ \nu \alpha) (x, y) = \int \phi \, d (\mu \circ \nu) \leq \int \phi \, d \tau. \]

Idet \( \mu \alpha \circ \nu \alpha \rightarrow \mu \circ \nu \) (jf. indskud om produktmål p. 254) og \( \tau \alpha \rightarrow \tau \) vigtigt

sluttes heraf, at

\[
\int \phi (x, y) \, d (\mu \circ \nu) (x, y) \leq \int \phi \, d \tau. \]
Da \( f(x+y) = \sup \{ f(x, y) \mid x, y \in \mathbb{R} \times \mathbb{R}, \forall z \in \mathbb{R} : f(z, y) \leq f(z+y) \} \), så

\[
\int f(x+y) \, d(\mu \otimes \nu)(x, y) =
\]

\[
\sup \int f(x, y) \, d(\mu \otimes \nu)(x, y) \leq \int \psi \, d\tau < \infty,
\]

altså, at \( \mu \) og \( \nu \) kan foldes, og at \( \mu \otimes \nu \leq \tau \). II

\textbf{Læsning 7.6.} Lad \( \mu \) og \( \nu \) være positive mål, og lad \( (\mu_x)_{x \in A} \) og \( (\nu_x)_{x \in A} \) være monotone voksende mit af positive mål, som konvergerer vigtigt mod henholdsvis \( \mu \) og \( \nu \). Hviø det for hvert \( x \in A \) gælder, at \( \mu_x \) og \( \nu_x \) kan foldes, og hviø det findes et positivt mål \( \lambda \), så \( \mu_x \otimes \nu_x \leq \lambda \) for alle \( x \in A \), da kan \( \mu \) og \( \nu \) foldes, og mhtet \( (\mu_x \otimes \nu_x) \) konvergerer vigtigt mod \( \mu \otimes \nu \).

Bemærk: For hvert \( f \in K^+(A) \) er mhtet \( (\langle f, \mu_x \otimes \nu_x \rangle)_{x \in A} \) voksende og begrænset af \( \langle f, \lambda \rangle \); det er altid en grammovde \( \lambda_0(f) \). Afbildningen

\[
f \rightarrow \lambda_0(f)
\]
udvides ved linearkitet til en positiv lineær form $\lambda_0$ på $K(\mathcal{A})$. Der gælder
\[\mu_0 \ast v_0 \rightarrow \lambda_0\]
vigt iflg. definitionerne på $\lambda_0$. For hver $\alpha \in \mathcal{A}$ er åbenbart $\mu_0 \ast v_0 \leq \lambda_0$. Sætning 7.5 giver da, at $\mu$ og $v$ kan følde, og at $\mu \ast v \leq \lambda_0$.
Da $\mu_0 \leq \mu$ og $v_0 \leq v$ for alle $\alpha \in \mathcal{A}$ er $\mu_0 \ast v_0 \leq \mu \ast v$ for alle $\alpha \in \mathcal{A}$. Derfor følger udtag grænseværdi, at $\lambda_0 \leq \mu \ast v$. Talt vi opnået $\lambda_0 = \mu \ast v$, og derved som konsekvens
\[\mu_0 \ast v_0 \rightarrow \mu \ast v\]
\[\Box\]

Sætning 7.1. Lad $(\mu_\alpha)_{\alpha \in \mathcal{A}}$ og $(v_\alpha)_{\alpha \in \mathcal{A}}$ være monotont aftagende mæt af positive mål, og antag, at $\mu_\alpha \ast v_\alpha$ vekse for alle $\alpha \in \mathcal{A}$.
Så vekse der vage grænseværdier
\[\mu = \lim_{\alpha \in \mathcal{A}} \mu_\alpha \text{ og } v = \lim_{\alpha \in \mathcal{A}} v_\alpha\]
og $\mu$ og $v$ kan følde. Der gælder videre
\[\mu \ast v = \lim_{\alpha \in \mathcal{A}} (\mu_\alpha \ast v_\alpha)\]

Sætning 7.2. Lad $(\mu_\alpha)_{\alpha \in \mathcal{A}}$ og $(v_\alpha)_{\alpha \in \mathcal{A}}$

være konvergente mæt af positive mål med
grænseværdier \( \mu \) og \( \nu \). Hvis der findes en kom-
pakt mængde \( K \), så

\[
supp \nu_0 \subseteq K \text{ for alle } \alpha \in A
\]

kan \( \mu_\alpha \) og \( \nu_0 \) følde for alle \( \alpha \in A \) og

\[
\lim_{\alpha \in A} (\mu_\alpha \ast \nu_0) = \mu \ast \nu \text{ vigt.}
\]

\section*{Sætning 7.7}
Lad \( \lambda \) og \( \nu \) være positive mål,
og \( \lambda \) forskellig fra nulmålet. Lad \( (\mu_\alpha)_{\alpha \in A} \)
ne et sæt af positive mål, der konverger
vagt mod målet \( \mu \). Antag, at for ethvert
\( \alpha \in A \) kan \( \mu_\alpha \) følde med \( \lambda \) og

\[
\mu_\alpha \ast \lambda \leq \nu.
\]

Lad endvidere \( \rho \) være et positivt mål, der
kan følde med \( \nu \). Så eksisterer følgende\(\mu_\alpha \ast \rho \) og \( \mu \ast \rho \), og man har

\[
\lim_{\alpha \in A} \mu_\alpha \ast \rho = \mu \ast \rho \text{ vigt.}
\]

\textbf{Beweis:}\ Dac \( \mu_\alpha \ast \lambda \leq \nu \), og da \( \lambda \) og \( \rho \) kan
følde, er det klart, at også \( (\mu_\alpha \ast \lambda) \ast \rho \) ex-
xisterer. Da \( \lambda \neq 0 \), følger af Lemma 7.2, at

\( \mu_\alpha \ast \rho \) existerer.

Af sætning 7.4 følger, at \( \mu \ast \lambda \) exis-
terer og \( \mu \ast \lambda \leq \nu \). Hvoraf ses, at \( \mu \ast \rho \) existerer.
Lad nu $\varphi \in X_+(A)$. For hvert $\psi \in X_+(A)$, så $\psi \leq \delta \ast \psi$ følger:

\[
<\mu, \psi > = \lim_{\alpha \in A} <\mu_\alpha, \psi > \\
\leq \liminf_{\alpha \in A} <\mu_\alpha, \delta \ast \psi > \\
= \liminf_{\alpha \in A} <\mu_\alpha \ast \delta, \psi >,
\]
og heraf følger

\[
<\mu \ast \delta, \psi > \leq \liminf_{\alpha \in A} <\mu_\alpha \ast \delta, \psi >.
\]

Vi skal nu indebære udbredelsen

\[
\limsup_{\alpha \in A} <\mu_\alpha \ast \delta, \psi > \leq <\mu \ast \delta, \psi >.
\]

Af lemma 7.2. følger, at vi kan vælge

$\psi \in X_+(A)$, så $\psi \leq \delta \ast \psi$.

Lad nu $K$ være en kompakt delmængde af $A$, og lad $P_K$ betyde restriktionen af $\delta$ til $K$. Betragt nu $\delta_K = \delta - P_K$. Man ser, at når $K$ er hører mod $A$, vil nettet $(P_K)_K$ afgage monotont og gå vigt mod 0.

Af øvne 7.2. følger, at nettet $(\nu \ast P_K)_K$ går vigt mod 0.

Lad nu $\varepsilon > 0$ være givet. Der findes da

nu kompakt mængde $K \subseteq A$, så
og derfor er
\[ \limsup_{\alpha \in A} \langle \mu_{\alpha} \ast \varphi, \varphi \rangle \leq \]
\[ \limsup_{\alpha \in A} \langle \mu_{\alpha} \ast \varphi_{K}, \varphi \rangle + \limsup_{\alpha \in A} \langle \mu_{\alpha} \ast \varphi_{K}^{1}, \varphi \rangle \leq \]
\[ \langle \mu \ast \varphi_{K}, \varphi \rangle + \limsup_{\alpha \in A} \langle \mu_{\alpha} \ast \varphi_{K}^{1}, \varphi \rangle \leq \]
\[ \langle \mu \ast \varphi_{K}, \varphi \rangle + \langle \varphi_{K}^{1}, \varphi \rangle \leq \]
\[ \langle \mu \ast \varphi_{K}, \varphi \rangle + \varepsilon \leq \langle \mu \ast \varphi, \varphi \rangle + \varepsilon, \]
og da \( \varepsilon \) er vilkårlig, følger:
\[ \limsup_{\alpha \in A} \langle \mu_{\alpha} \ast \varphi, \varphi \rangle \leq \langle \mu \ast \varphi, \varphi \rangle. \]

**Lemma 7.8** Lad \( A \) være en mængde af positive Radonmål på \( G \). Da er følgende betingelser ensbetydende:

i) \( A \) er vigtig begrænset.

ii) \( A \) er relativt kompakt i den vage topologi.

**Bevis:** ii) \( \Rightarrow \) i) klart.
Den vage afslutning af $A$ er også vigtigt begraved, altså:

$$ \forall \psi \in B(G): \sup_{\mu \in \Lambda} |\langle \psi, \mu \rangle| = a_{\psi} < \infty. $$

Lad nu $\Phi$ være et ultrafilter på $\Lambda$ og $\pi_{\Phi}$ afbildningen:

$$ \pi_{\Phi}: \mu \mapsto \langle \mu, \psi \rangle, $$

da er $\pi_{\Phi}(\Phi)$ en ultrafilterbarier på mængden

$$ \Lambda_{\Phi} = \{ z \in \mathbb{C} | |z| \leq a_{\psi} \} $$

og derfor konvergent. Vi siger

$$ \lambda_{0}(\psi) = \lim \pi_{\Phi}(\Phi). $$

Man ser, at $\lambda_{0}$ er en positiv lineærform på $B(G)$, altså et positivt Radonmål. Vi har da

$$ \Phi \mapsto \lambda_{0}(\Phi) $$

og dermed er $A$ relativt kompakt i den vage topologi.

Sætning 7.9 Lad $(\mu_{\alpha})_{\alpha \in A}$ være en familie af positive mål på $G$, og antag, at der findes et positivt mål $\lambda \neq 0$, så $\lambda \mu_{\alpha}$ existerer for alle $\alpha \in A$. 

\[ \Box \]
Hvis familien \((\lambda \cdot \mu_\alpha)_{\alpha \in A}\) er vågt begrænset, er også familien \((\mu_\alpha)_{\alpha \in A}\) vågt begrænset.

Bemærk: Lad \(f \in K^+(G)\). Vi skal vise, at

\[\sup_{\alpha \in A} \langle \mu_\alpha, f \rangle < \infty\]

Da \(\lambda \neq 0\), findes \(g \in K^+(G)\), så \(f \leq \lambda \cdot g\). (se lemma 7.2. (b)). Derved kan udtrykkelsen

\[\sup_{\alpha \in A} \langle \lambda \cdot \mu_\alpha, g \rangle < \infty\]

Vi har da:

\[\langle \mu_\alpha, f \rangle \leq \langle \mu_\alpha, \lambda \cdot g \rangle = \langle \lambda \cdot \mu_\alpha, g \rangle < \sup_{\alpha \in A} \langle \lambda \cdot \mu_\alpha, g \rangle < \infty\]

hvoraf vi

\[\sup_{\alpha \in A} \langle \mu_\alpha, f \rangle < \infty\].

\[\square\]

For et positivt mål \(\eta\) på \(G\) indeholder

\(\text{det} \quad D^+(\eta) = \{ \mu \in RM^+(G) \mid \eta \cdot \mu\text{ existere}\}\).

Så er \(D^+(\eta)\) en kompaktkegle. Hvis \(\mu \in D^+(\eta)\), og hvis \(\nu\) er et positivt mål, så \(\nu \leq \mu\), vil også \(\nu \in D^+(\eta)\).
**Definition.** Lad $x$ være et positivt mål på $G$. Lad det være givet et $\mu \in D^+(x)$ og en jævn mængde $\omega \subseteq G$.

Vi siger, at et positivt mål $\mu^\omega \in D^+(x)$ er et $x$-fyldt mål af $\mu$ på $\omega$, såfremt:

1° $\mbox{supp} \, \mu^\omega = \omega$.

2° $x \cdot \mu^\omega \leq x \cdot \mu$.

3° Restriktionen af $x \cdot \mu^\omega$ og $x \cdot \mu$ til $\omega$ er ens.

Mængden af $x$-fyldte mål af $\mu$ på $\omega$ betegnes $F_x(\omega, \mu)$, eller undertiden blot $F(\omega, \mu)$.

Mængden $F_x(\omega, \mu)$ er en kompaks delmængde af $D^+(x)$. Det kan stødesk, at $F_x(\omega, \mu) = \emptyset$ for visse $\omega$ og $\mu$.

Lad $M^+_x(G)$ betegne de positive mål med kompakt støtte på $G$.

Vi siger, at $x$ opfylder **fyldningsprincippet**, hvis der for enhver åben relativt kompakt mængde $\omega \subseteq G$ og enhver $\mu \in M^+_x(G)$ finder et $x$-fyldt mål af $\mu$ på $\omega$, altså såfremt $F_x(\omega, \mu) \neq \emptyset$.

Videre siger $x$ at opfylder **fyldningsprincippet** for enhver åben mængde, såfremt det
for enhver åben mångde \( \omega \) og enhvert \( \mu \in D^+(\Omega) \) findes et \( \varepsilon \)-fjøset mål af \( \mu \) på \( \omega \), således at \( F_\varepsilon (\omega, \mu) > 0 \).

Man ser, at den sidste egenskab median

**Sætning 7.3.** Lad \( \varepsilon > 0 \) være et positivt
mål forskelligt fra nulmålet. For enhver
åben relativt kompakt mångde og for et-
hurt \( \mu \in D^+(\Omega) \) er \( F_\varepsilon (\omega, \mu) \) en kompakt
komvirket mångde i din væge topologi.

Vi stiler mod, at vi vil et potentiakker-
men for en foldningsrammegruppe opfylden
fjerningsprincippet for enhver åben mångde.

For at vi vil et, vi vil studere en
speciel type foldningsrammegrupper.

Lad \( \mu \) være et positivt mål på LCA-
gruppen \( G \) med totalmass \( \mu (G) < 1 \). Vi har
derligere defineret en foldningsrammegruppe ved
fra \( \mu \) ved:

\[
\mu_t = e^{-t} \exp (t \mu) = e^{-t} \sum_{m=0}^{\infty} \frac{t^m \mu^m}{m!} = \\
= e^{-t} (\varepsilon_0 + t \mu + \frac{t^2 \mu^2}{2} + \ldots ), \quad t > 0 \quad (1)
\]

(se b. III 3.9). Den her konstruerede negative
definite funktion er
\[ \psi(y) = 1 - \hat{\mu}(y) \quad , \quad y \in \mathbb{T}, \]

\[ \hat{\mu}(y) = e^{-t} \exp(t \hat{\mu}(y)) = e^{-t + t \hat{\mu}(y)} = e^{-t(1 - \hat{\mu}(y))} = e^{-t \psi(y)}. \]

Resolventmålene \( (S_{\lambda})_{\lambda > 0} \) er defineret ved
\[ S_{\lambda} = \int_{0}^{\infty} e^{-\lambda t} \mu_t \, dt. \]

For \( f \in \mathcal{H}(G) \) får vi:
\[ S_{\lambda}(f) = \int_{0}^{\infty} e^{-\lambda t} \mu_t(f) \, dt = \int_{0}^{\infty} e^{-\lambda t} e^{-t} \left( \sum_{n=0}^{\infty} \frac{t^n}{n!} \mu^n(f) \right) \, dt = \sum_{n=0}^{\infty} \left( \int_{0}^{\infty} e^{-(\lambda+1)t} \frac{t^n}{n!} \, dt \right) \mu^n(f) = \sum_{n=0}^{\infty} \left( \frac{1}{\lambda+1} \right)^{n+1} \mu^n(f), \]

og vi har derfor
\[ S_{\lambda} = \frac{1}{1 + \lambda} \sum_{n=0}^{\infty} \frac{1}{(1 + \lambda)^n} \mu^n. \]
For hvert \( f \in X_+(G) \) har vi:

\[
\lim_{\lambda \to 0} s_{\lambda}(f) = \sum_{n=0}^{\infty} \mu^n(f),
\]

og heraf ses, at semigruppen \((\mu_t)_{t \geq 0}\) er transient, hvis og kun hvis den uendelige række

\[
\sum_{n=0}^{\infty} \mu^n
\]

er tot konvergent, og i betragtede fald er den potentialkerne for semigruppen \((\mu_t)_{t \geq 0}\).

**Definition.** Ved en *elementær* kjerne for

\[
\sum_{n=0}^{\infty} \mu^n
\]

for en transient semigruppe af typen

\[
\mu_t = e^{-t} \exp(t \mu)
\]

hvor \( \mu \) er et positivt mål, med \( \mu(G) \leq 1 \).

Lad nu \((\mu_t)_{t \geq 0}\) være en transient følgende semigruppe med potentialkerne

\[
x = \int_0^\infty \mu_t \, dt.
\]
Den tilhørende negative definit funktion befinder sig og indtægtsmålne \((\beta_\lambda)_{\lambda > 0}\).

_Sætning 7.10._ For hvert \(\lambda > 0\) er

\[
\lambda x + \varepsilon_0
\]

en elementær stamme, idet praktisk siger,

\[
\lambda x + \varepsilon_0 = \sum_{n=0}^{\infty} (\lambda \beta_\lambda)^n.
\]

_Bevís:_ For hvert \(\lambda' \in [0, \lambda]\) har vi

\[
\beta_{\lambda'} = \sum_{n=0}^{\infty} (\lambda - \lambda')^n (\beta_\lambda)^{n+1},
\]

hvilket med Fouriertransformation har vi

\[
\mathcal{F} \left( \sum_{n=0}^{\infty} (\lambda - \lambda')^n (\beta_\lambda)^{n+1} \right) =
\]

\[
\sum_{n=0}^{\infty} (\lambda - \lambda')^n \frac{1}{(\xi + \lambda)^{n+1}} = \frac{1}{\xi + \lambda} \frac{1}{1 - \frac{\lambda - \lambda'}{\xi + \lambda}} =
\]

\[
\frac{1}{\xi + \lambda'} = \mathcal{F} \beta_{\lambda'}.
\]

_Lad vi nu \(\lambda' \to 0\) i formel (2) fås:

\[
x = \sum_{n=0}^{\infty} \lambda^n \beta_\lambda^{n+1},
\]
$$\sum_{m=0}^{\infty} (A \xi_m)^m$$

**Definition.** Lad $$(\mu_t)_{t \geq 0}$$ være en fremt **foldsningsemiguppe**. Et positivt mål $$\xi$$ på $$\mathcal{E}$$ kal- des **separabel** (resp. **invariant**) m. h. v. $$(\mu_t)_{t \geq 0}$$, så- fnint $$\xi \in D^+(\mu_t)$$ og $$(\mu_t \star \xi) = \xi$$ (resp. $$\mu_t \star \xi = \xi$$) for alle $$t > 0$$.

**Sætning 7.11.** 1) Mængden $$\mathcal{E}$$ af **separabel**

mål udgør en konvex kugle, som er vagt af

sluttet, **infimumstabil** og som indeholder

**Harmålet** $$\omega_\mathcal{E}$$.

2) For hvert $$\xi \in \mathcal{E}$$ er afbildningen

$$t \mapsto \mu_t \star \xi$$

afstigende og

$$\lim_{t \to 0} \mu_t \star \xi = \xi$$ vagt.

3) For hvert $$\sigma \in D^+(\mathcal{E})$$ er $$\xi = \mathcal{E} \star \sigma$$ et **sepa-

reret** mål, som kaldes $$\mathcal{E}$$-**potentalitet** frem-

bragt af $$\sigma$$.

**Bevis:** 1) Lad $$(\xi_l)_{l \geq 1}$$ være et net på $$\mathcal{E}$$,

der konvergerer vagt mod det positive mål $$\xi$$. 
Af sætnings 7.5 følger, at $\xi \in \mathcal{E}$, så $\mathcal{E}$ er vagt afslutlet.

Hvis $(\xi_i)_{i \in J}$ er en familie af vektorer, vil

$$\xi_0 = \inf_{i \in J} \xi_i$$

gælde $\xi_0 \leq \xi_i$ for alle $i \in J$, og derfor har vi

$$\xi_0 \in D^+(\mu_t) \quad \text{for} \quad t > 0$$

og

$$\mu_t \ast \xi_0 \leq \mu_t \ast \xi_i \leq \xi_i.$$

Dette viser, at $\mu_t \ast \xi_0$ er en minorant for familien $(\xi_i)_{i \in J}$ og følgelig er

$$\mu_t \ast \xi_0 \leq \xi_0,$$

så $\xi_0$ er den stærkest minorant.

Af sætning 7.7 følger, at $\mathcal{E} \in D^+(\mu_t)$ og videre

$$\mu_t \ast \mathcal{E} = \mu_t (G) \mathcal{E} \leq \mathcal{E},$$

då $\mu_t (G) \leq 1$ for alle $t > 0$.

Det er det, at $\mathcal{E}$ udgør en harmonisk hegle.

2) For $\xi \in \mathcal{E}$ og $s, t > 0$ gælder

$$\mu_{ts} \ast \xi = \mu_t \ast \mu_s \ast \xi \leq \mu_t \ast \xi$$

så afbildningen $t \mapsto \mu_t \ast \xi$ er aftagende.
Lad \( \phi \in L^+(\mathbb{R}) \) og \( A \) er mængden

\[
A = \{ \phi \in L^+(\mathbb{R}) \mid \phi \leq \xi * \phi \}.
\]

For \( \phi \in A \) er

\[
< \mu_t, \phi > = < \mu_t, \xi * \phi > = < \mu_t * \xi, \phi >,
\]

så for \( t \to 0 \) har man

\[
\phi(0) = < \xi_0, \phi > \leq \lim _{t \to 0} < \mu_t * \xi, \phi >,
\]

for \( \phi(0) \leq \lim _{t \to 0} < \mu_t * \xi, \phi > \) vokser for \( t \to 0 \), så \( \lim _{t \to 0} < \mu_t * \xi, \phi > \)

vokser, og ved at tage supremum over \( A \) fås

\[
< \xi, \phi > = \xi * \phi(0) = \sup _{\phi(0) \leq \lim _{t \to 0} < \mu_t * \xi, \phi >} \phi(0) < \lim _{t \to 0} < \mu_t * \xi, \phi >.
\]

På den anden side er

\[
< \mu_t * \xi, \phi > \leq < \xi, \phi > \quad \text{for alle} \ t > 0
\]

så

\[
\mu_t * \xi \to \xi \quad \text{vagt for} \ t \to 0.
\]

3) Lad \( \sigma \in D^+(\mathbb{R}) \) og sat \( \xi = x * \delta \). Bolens

thekorren \( x \) er translationsbegrænset iflg. sæt-

ning 6.4, og derfor kan \( x \) og \( \mu_t \) foldes og

\[
\mu_t * x = \int _t ^\infty \mu_u \, dx \leq \int _0 ^\infty \mu_u \, dx = x
\]

så \( x \) er excentret (udragnet for \( \sigma = \xi_0 \)).
Af sannhaftens $\mu_+ \times \nu = \mu$, følger at $\mu_+ \times \nu \leq \mu_+ \times \nu$.

Vurder $\mu_+ \neq 0$, så $(\mu_+ \times \nu) \times \delta = \mu_+ \times (\nu \times \delta)$ ifølge lemma 7.3, specielt $\nu \times \delta \in D^+ | \mu_+ \rangle$ og dermed er $\nu \times \delta$ erudiment.

\[ \mu_+ \times \nu = \int_{\mathbb{R}} \mu_+ \, ds. \]

For $f \in X^+(\nu_0)$ gælder

\[ \nu \times f = \int_{\mathbb{R}} \nu_0 \times f(x) \, ds, \]

så vi har

\[ <\mu_+, \nu \times f> = \int_{\mathbb{R}} \left( \int_{\mathbb{R}} \nu_0 \times f(x) \, ds \right) \, d\mu_+(x) \]

\[ = \int_{\mathbb{R}} <\mu_+, \nu_0 \times f> \, ds, \]

hvorfra

\[ <\mu_+ \times \nu, f> = \int_{\mathbb{R}} <\mu_+ \times \nu_0, f> \, ds \]

\[ = \int_{\mathbb{R}} <\nu_0, f> \, ds. \]

\[ \text{Sætning 7.12. Et positivt mål } \nu \text{ er erudiment (resp. invariant) hvis og kun hvis} \]
\[ \xi \in D^+(\rho A) \text{ og } \lambda \rho A \ast \xi = \xi \]
(mvp. \( \lambda \rho A \ast \xi = \xi \)) for alle \( \lambda > 0 \).

Bemærk: Husvis \( \xi \in D^+(\mu_t) \) og \( \mu_t \ast \xi = \xi \) (mvp. \( \mu_t \ast \xi = \xi \)) for alle \( t > 0 \), har vi

\[ \lambda \rho A \ast \xi = \int_0^\infty \lambda e^{-\lambda t} \mu_t \ast \xi \, dt < \int_0^\infty \lambda e^{-\lambda t} \xi \, dt = \xi \]
(mvp. \( \lambda \rho A \ast \xi = \xi \)) for alle \( \lambda > 0 \).

For \( t > 0 \) og \( \lambda > 0 \) definerer vi

\[ \mu_t^A = e^{-\lambda t} \exp(\lambda t^2 \rho A) \]
og for fast \( \lambda > 0 \) er \( \mu_t^A \) for t > 0 en foldnings-
unimogruppe (jfr. bøjle 3.9, p. 190). Der gælder

\[ \mu_t^A(\gamma) = e^{-\lambda t} \exp(\lambda t^2 \rho A(\gamma)) \]

\[ = \exp\left( -\lambda t + \frac{\lambda t^2}{\gamma + \lambda} \right) \]

\[ = \exp\left( -t \frac{\lambda \gamma(\gamma)}{\gamma + \lambda} \right) , \gamma \in T , \]

så den tilhørende negativ definite funktion er

\[ \psi^A = \frac{\lambda \gamma}{\gamma + \lambda} ; \quad \mu_t^A(\gamma) = e^{-t \psi^A(\gamma)} \]

hvor \( \gamma \) er den til \( \mu_t \) for t > 0 hørende negativ definie-
ke funktion.
I den forkølleske delmængde af \( T \) følger af sætning 1.4. p. 143, corollar 1.5. p. 145, at
\[
\mu^\lambda_t \rightarrow \mu^\lambda_t
\]
i Bernoulli-topologien for \( \lambda \rightarrow \infty \), for fast \( t \).
Semigruppen \( (\mu^\lambda_t)^{t>0} \) approximerer altid semi-gruppen \( (\mu^\lambda_t)^{t>0} \).

Anlag nu, at \( \xi \in D^+(\rho^\lambda) \), og at \( \lambda^\lambda \rho^\lambda \ast \xi \leq \xi \) for
\( \lambda > 0 \). Hvoraf ser vi at
\[
(\lambda^\lambda \rho^\lambda)^n \ast \xi \leq \xi \quad \text{for} \quad n \in \mathbb{N},
\]
altå
\[
e^{-\lambda t} \sum_{n=0}^{\infty} \frac{(t \lambda)^n}{n!} (\lambda^\lambda \rho^\lambda)^n \ast \xi \leq 
\]
\[
e^{-\lambda t} \sum_{n=0}^{\infty} \frac{(t \lambda)^n}{n!} \xi = \xi.
\]
Dette viser, at \( \xi \in D^+(\mu^\lambda_t) \) for alle \( t > 0 \) og \( \lambda > 0 \),
og at
\[
\mu^\lambda_t \ast \xi \leq \xi.
\]
Af sætning 7.5 følger, at \( \mu^\lambda_t \ast \xi \) lekere og
at \( \mu^\lambda_t \ast \xi \leq \xi \), altå er \( \xi \) er evæsentet.
Antag dernæst at $\xi \in D^+(\rho_2)$ og at $\lambda \rho_2 \ast \xi = \xi$
for alle $\lambda > 0$. Af det lige vilde følge, at $\xi$ er recession, altså $\mu_t \ast \xi \leq \xi$ for alle $t > 0$. 

Hvis der findes $t_0 > 0$, så $\mu_{t_0} \ast \xi \leq \xi$ så findes $\varphi \in K_+(G)$ så

$$< \mu_{t_0} \ast \xi, \varphi > < \xi, \varphi >.$$

Da afbildningen $t \mapsto \mu_t \ast \xi$ er afhængende iflg. sætning 7.11.2), har man

$$< \mu_t \ast \xi, \varphi > < \xi, \varphi > \text{ for } t \geq t_0$$

hvoraf

$$< \xi_1 \ast \xi, \varphi > = \int_0^\infty e^{-t} < \mu_t \ast \xi, \varphi > \, dt$$

$$= \int_0^\infty e^{-t} < \xi, \varphi > \, dt$$

$$= < \xi, \varphi >$$

i modsætning med $\rho_1 \ast \xi = \xi$. Altså må der gælde $\mu_t \ast \xi = \xi$

for alle $t > 0$, så $\xi$ er invariant.

\[\Box\]

### Sætning 7.4
Lad $\xi$ være et recession mål.

Der gælder da:

i) Afbeeldingen $t \mapsto \lambda \rho_2 \ast \xi$ er voksende.
og
\lim_{\lambda \to \infty} \lambda \beta \ast \xi = \frac{1}{2} \text{ vekt.}

ii) Hvis der findes \( t_0 > 0 \), så \( \mu_{t_0} \ast \xi = \xi \),
eller der findes \( \lambda_0 > 0 \) så \( \lambda_0 \beta_{\lambda_0} \ast \xi = \xi \), så er
\( \xi \) invariant.

Lad \( \mu \) være et positivt mål på \( \mathcal{E} \), så \( \mu(\mathcal{E}) \leq 1 \).

**Definition.** Et positivt mål \( \xi \in D^+(\mu) \) kaldes
\( \mu \)-superharmonisk (resp. \( \mu \)-harmonisk) når
\( \mu \ast \xi \leq \xi \) (resp. \( \mu \ast \xi = \xi \)).

Lad os nu betragte tødlingsseminigruppen af
*den specielle type*

\[ \mu_t = e^{-t} \exp(t\mu), \quad t > 0 \]

 associative med \( \mu \). Hvis \( (\mu_t)_{t>0} \) er transient er
potentialkernen af givet ved

\[ \kappa = \sum_{n=0}^{\infty} \mu^n. \]

**Sætning 7.13** Et positivt mål \( \xi \) er særskilt
*resp. invariant)* m.h.t. semigruppen

\[ \mu_t = e^{-t} \exp(t\mu) \]

hvis og kun hvis \( \xi \) er \( \mu \)-superharmonisk (resp.
\( \mu \)-harmonisk).
Beklæ: Hvis $\xi \in D^+(\mu)$ og $\mu * \frac{\xi}{\xi} \leq \mu$ for

$$\mu^{m * \frac{\xi}{\xi}} \leq \frac{\xi}{\xi} \text{ for } m \in \mathbb{N}$$

da

$$e^{-t} \sum_{m=0}^{\infty} \frac{t^{m}}{m!} \mu^{m} * \frac{\xi}{\xi} = e^{-t} \sum_{m=0}^{\infty} \frac{t^{m}}{m!} \frac{\xi}{\xi} = \frac{\xi}{\xi}$$

hvorfor $\mu * \frac{\xi}{\xi}$, og $\mu * \frac{\xi}{\xi} \leq \frac{\xi}{\xi}$ for $t > 0$, og analogt for $\mu * \frac{\xi}{\xi} = \frac{\xi}{\xi}$, hvor $\mu * \frac{\xi}{\xi} = \frac{\xi}{\xi}$.

Anlag $m_{n}$, at $\xi$ er lebesugt. Da

$$\mu_{n} = e^{-t} (e^{t} + \mu + \ldots + \frac{t^{m}}{m!} + \ldots) \geq \frac{e^{-t}}{m!} \mu^{m} \text{ for } m \in \mathbb{N},$$

og da $\frac{\xi}{\xi} \in D^+(\mu_{n})$, vil også $\frac{\xi}{\xi} \in D^+(\mu_{m})$ for $m \in \mathbb{N}$, specielt er $\frac{\xi}{\xi} \in D^+(\mu)$. Videre har vi

$$e^{t} \mu * \frac{\xi}{\xi} = \frac{\xi}{\xi} + \frac{t^{2}}{2!} \mu^{2} * \frac{\xi}{\xi} + \ldots$$

altså

$$\sigma_{t} = \frac{e^{t} \mu * \frac{\xi}{\xi} - \frac{\xi}{\xi}}{t} = \mu * \frac{\xi}{\xi} + \frac{t}{2!} \mu^{2} * \frac{\xi}{\xi} + \ldots$$

så

$$\sigma_{t} \geq 0 \text{ og lim } \sigma_{t} = \mu * \frac{\xi}{\xi} \text{ vigt.}$$

Bemærk, at vi

$$\sigma_{t} = \frac{e^{t} \mu * \frac{\xi}{\xi} - \frac{\xi}{\xi}}{t} \leq \frac{e^{t} - 1}{t} \frac{\xi}{\xi}$$
Snart følger

$$\mu * \delta \leq \lim_{t \to 0} \frac{e^t - 1}{t} \delta = \delta.$$  

Hvis $\delta$ er invariant er

$$\delta = \frac{e^t - 1}{t} \delta,$$

hvorfor $t \to 0$

$$\mu * \delta = \delta.$$  

Lad $(\mu_t)_{t>0}$ være en transient fældnings-
semigruppe med potentialkerne $\mu_t$. For hvert $\xi \in D^+(\mu)$ og for hvert invariant mål $\eta$, er

$$\mu * \xi + \eta \tag{3}$$

et exsivitv mål på $G$. Vi ønsker nu at vide, at ethvert exsivitv mål $\xi$ kan forstilles på formen (3). Dette resultat kaldes Riesz' 

decompositionsætning efter F. Riesz.

Vi begynder med at vise (3) for de specielle

semigrupper

$$\mu_t = e^{-t} \exp(t \mu), \quad t > 0.$$  

Sætning 7.14. Lad $\mu_t = e^{-t} \exp(t \mu)$ være

en transient fældningssemigruppe med elementar-
kerne $\mu$. Ethvert exsivitv mål $\xi$ kan for-

stilles på formen

$$\xi = \mu * \delta + \eta,$$
hvor \( \sigma \in \mathbb{D}^+(\mathbb{H}) \), og hvor \( \eta \) er invariant.

Formuleringen er indlysende, idet

\[
\sigma = \frac{1}{2} - \mu \times \frac{1}{2} \quad \text{og} \quad \eta = \lim_{n \to \infty} \mu^n \times \frac{1}{2}. \tag{4}
\]

Bemærk: Antag, at det excessive mål \( \xi \) har en formulering af den ønskede form. Hvis \( \sigma = 0 \), er \( \eta = \frac{1}{2} \), og \( \xi \) er altid invariant og formlene (4) passer.

Vi antager nu, at \( \sigma \neq 0 \). Da \( \mu \) og \( \xi \) kanholdes, kan \( \mu \) også holdes med \( \mu \times \xi \) og \( \eta \), og vi finder

\[
\mu \times \frac{1}{2} = \mu \times (\mu \times \xi) + \mu \times \eta.
\]

Da \( \sigma \neq 0 \) er

\[
\mu \times (\mu \times \xi) = (\mu \times \mu) \times \xi,
\]

men

\[
\mu \times \mu = \mu + \mu^2 + \ldots = \mathbb{H} - \mathbb{E}_0,
\]

så

\[
\mu \times (\mu \times \xi) = (\mathbb{H} - \mathbb{E}_0) \times \xi = \mathbb{H} \times \xi - \xi
\]

Herved fører

\[
\mu \times \frac{1}{2} = \mathbb{H} \times \xi - \xi + \eta = \frac{1}{2} - \sigma,
\]

hvoraf

\[
\sigma = \frac{1}{2} - \mu \times \frac{1}{2}.
\]
For $m \in \mathbb{N}$ gælder

$$
\mu^m \ast \xi = \mu^m \ast (\mu \ast \xi) + \mu^m \ast \eta
= (\mu^m \ast \mu) \ast \xi + \eta
= (\mu^m + \mu^{m+1} + \ldots) \ast \xi + \eta.
$$

Sættes $\nu_m = \mu^m + \mu^{m+1} + \ldots$, er $\nu_m$ en aftagende følge, der går vægt mod 0. Dette fremgår af, at $(\mu^k)_{k \geq 0}$ er transient. Hvilket vil nøjagtigt

$$
\nu_m \ast \xi \to 0 \text{ (vægt)},
$$

altså

$$
\eta = \lim_{m \to \infty} \mu^m \ast \xi \text{ (vægt)}.
$$

Vi har herved vist fremstillingens enkliged.

Lad nu $\xi$ være et særligt mål og sæt

$$
\sigma = \xi - \mu \ast \xi,
$$

som er et positivt mål. Da

$$
\xi > \mu \ast \xi > \mu^2 \ast \xi > \ldots,
$$

existere den voge grænseværdi

$$
\eta = \lim_{m \to \infty} \mu^m \ast \xi,
$$

og herved defineres et positivt mål, som er
inværende, thi iflg. korre F. 1. har vi

\[ \mu \ast \eta = \lim_{n \to \infty} \mu^m \ast \frac{\xi}{m} = \eta. \]

Vi har

\[ \mu^m \ast \xi = \mu^m \ast \xi - \mu^{m+1} \ast \xi \]

for \( m \in \mathbb{N}_0 \), hvoraf

\[ \left( \sum_{n=0}^{N} \mu^m \right) \ast \xi = \xi - \mu^{N+1} \ast \xi \leq \xi. \]

Vi sætter nu

\[ \chi_N = \sum_{n=0}^{N} \mu^m, \]

og følger \( \chi_N \) er en ubounded følge. Vi har

\[ \chi_N \to \xi \text{ vægt}. \]

Af v. 7.6 får da før \( N \to \infty \)

\[ \xi \ast \xi = \frac{\xi}{\xi} \eta, \]

[hænder for, at \( 0 \in D^* \)] eller

\[ \xi = \xi \ast \xi + \eta. \]

Vi har hermed viit forskellingsens ledings. 2
\[ \mathcal{H} \ast \mu = \mathcal{H} - \varepsilon_0, \]
hvoraf man finder:
\[ \varepsilon_0 = \mathcal{H} - \mathcal{H} \ast \mu = \mathcal{H} \ast (\varepsilon_0 - \mu). \]
Vi har nåede fundet, at målet \((\varepsilon_0 - \mu)\) er det "neiprobale" til potentialkernen \(\mathcal{H}\), og man kunne præcis til at skrive
\[ \varepsilon = \frac{1}{\varepsilon_0 - \mu}. \]

Lemma 7.15. Lad \((\mu_t)_{t \geq 0}\) være en transient gældningsfunksjon og med potentialkerne \(\mathcal{H}\). Der gælder da:
a) For ethvert mål \(\xi\), der er er særdeles m. t. \((\mu_t)_{t \geq 0}\) er afbildningen
\[ t \mapsto \mu_t \ast \xi : [0, \infty) \to RM(G) \]
vaagt kontinuerligt fra højre i ethvert punkt \(t_0 \in [0, \infty)\).
b) For ethvert mål \(\xi \in D^+(\mathcal{H})\) eksisterer \(\mu_t \ast \xi\) for alle \(t \in [0, \infty)\), og afbildningen

\[ t \mapsto \mu_t \ast \delta : [0, \infty) \to \mathcal{M}(G) \]
ne vigt kontinuert.

Bemærk: a) Målmet \( \mu_0 \ast \xi \) er eerer, thi
\[ \mu_s \ast (\mu_0 \ast \xi) = \mu_0 \ast (\mu_s \ast \xi) \leq \mu_0 \ast \xi \]
for alle \( s > 0 \). Anvender man sætning 7.11.2) p. 275 på målmet \( \mu_0 \ast \xi \), får man:
\[ \mu_s \ast (\mu_0 \ast \xi) \to \mu_0 \ast \xi \text{ vigt for } s \to 0, \]
alka
\[ \mu_0 \ast \xi \to \mu_0 \ast \xi \text{ vigt for } t \to t_0 \text{ fra højre}. \]

b) I bevist før sætning 7.11.3) viste vi på p. 277, at \( \mu \ast \xi \) er eerer, alka
\[ \mu_t \ast \xi \leq \xi \text{ for alle } t > 0, \]
for \( t = 0 \) når der blad \( \delta \ast \xi \leq \xi \). Da \( \varepsilon \neq 0 \), og da \( \varepsilon \ast \varepsilon \) eksisterer, giver sætning 7.7 p. 265, at \( \mu_t \ast \varepsilon \) eksisterer for alle \( t > 0 \), og at
\[ \mu_t \ast \varepsilon \to \mu_0 \ast \varepsilon \text{ vigt for } t \to t_0. \]

I det følgende vil vi afle uden kommentar
lænke følgende vækkelte af lemma 7.3. p. 258:
For positive mål $\mu$, $\nu$ og $\lambda$ for hvilke $\mu \ast \nu$ og $(\mu \ast \nu) \ast \lambda$ samt $\nu \ast \lambda$ eksisterer, vil også $\mu \ast (\nu \ast \lambda)$ eksister, og der gælder:

$$(\mu \ast \nu) \ast \lambda = \mu \ast (\nu \ast \lambda).$$

For $\mu \neq 0$ følger dette af lemma 7.3, og for $\mu = 0$ er det klart, at $\mu \ast (\nu \ast \lambda) = 0 \ast (\nu \ast \lambda)$ eksisterer, og ligningen indgør blot, at $0 = 0$.

Sætning 7.16 Lad $(\mu_+, t) \geq 0$ være en fremvist fældningsunimigruppe med motvintmål $(\nu_0) t \geq 0$ og potentialerne $\nu_0$. Lad $\xi$ være et eravecivt mål m. h. t. $(\mu_+, t) \geq 0$. Så eksisterer for et fast valgt $\lambda_0 \in 0, \infty$ de vage grænseværdier:

$$\eta_1 = \lim_{n \to \infty} (\lambda_0 \nu_0) \ast \xi,$$

$$\eta_2 = \lim_{t \to \infty} \mu_+ \ast \xi,$$

$$\eta_3 = \lim_{\lambda \to 0} (\lambda \nu_0) \ast \xi,$$

og der gælder: $\eta_1 = \eta_2 = \eta_3$. Eller lyt $\eta = \eta_1 = \eta_2 = \eta_3$ er invariant og holder den invariant del af $\xi$.

Bemærk: Vi har først eksisteren af de vage grænseværdier $\eta_1$, $\eta_2$ og $\eta_3$. Derfor ser vi, at de er


**Existens af $\eta_1$:** Da $\xi$ er excisivt, får vi ved gentagen anvendelse af sætning 7.12 på p. 278:

$$\xi \geq \lambda_0 \delta_0 \ast \xi \geq (\lambda_0 \delta_0)^2 \ast \xi \geq \ldots$$

$$(\lambda_0 \delta_0)^m \ast \xi \geq \ldots$$

Derfor existerer den vage grænseværdi

$$\eta_1 = \lim_{n \to \infty} (\lambda_0 \delta_0)^n \ast \xi,$$

altå gælder det

$$(\lambda_0 \delta_0)^n \ast \xi \downarrow \eta_1 \text{ for } n \uparrow \infty.$$  

Hvert af målene $(\lambda_0 \delta_0)^n \ast \xi$ er excisivt, thi for alle $t > 0$ er:

$$\mu_t \ast \left[ (\lambda_0 \delta_0)^n \ast \xi \right] = (\lambda_0 \delta_0)^n \ast (\mu_t \ast \xi)$$

$$\leq (\lambda_0 \delta_0)^n \ast \xi.$$

At sætning 7.11, 1) på p. 275 følger da, at også

$$\eta_1 = \inf_{n \in \mathbb{N}} (\lambda_0 \delta_0)^n \ast \xi$$

er excisivt. Det er endda invariant, iflg. sætning 7.4, ii) på p. 282, thi
\[
(\lambda_0 S_{\lambda_0}) \ast \eta_1 = \lim_{n \to \infty} \left( (\lambda_0 S_{\lambda_0}) \ast (\lambda_0 S_{\lambda_0})^n \ast \tilde{\xi} \right)
\]

\[
= \lim_{n \to \infty} (\lambda_0 S_{\lambda_0})^{n+1} \ast \tilde{\xi} = \eta_1.
\]

Existenz af \( \eta_2 \): Vi ved fra sætning 7.17 p. 275, at afbildningen
\[
t \mapsto \mu_t \ast \tilde{\xi}
\]

er afhængig, og derfor existerer den nøgle grænseværdi
\[
\eta_2 = \lim_{t \to \infty} \mu_t \ast \tilde{\xi}
\]
og vi har altså
\[
\mu_t \ast \tilde{\xi} \downarrow \eta_2 \quad \text{for } t \uparrow \infty.
\]

Da \( \eta_2 \leq \tilde{\xi} \), kan \( \eta_2 \) følges med \( \mu_s \) for alle \( s > 0 \), og af ovelse 7.1. p. 264 for man
\[
\mu_s \ast \eta_2 = \lim_{t \to \infty} \left( \mu_s \ast (\mu_t \ast \tilde{\xi}) \right)
\]

\[
= \lim_{t \to \infty} (\mu_{s+t} \ast \tilde{\xi}) = \eta_2
\]

Målet \( \eta_2 \) er således invariant.
Existensen af \( \eta_3 \). Af §24 i) p. 284 får, at afbildningen

\[
\lambda \mapsto \lambda \eta \ast \lambda
\]

er uoverkendt. Vi har da, at den vigtige grænseværdi

\[
\eta_3 = \lim_{\lambda \to 0} \lambda \eta \ast \lambda
\]

existere, og der gælder alligevel

\[
\lambda \eta \ast \lambda \downarrow \eta_3 \quad \text{for} \quad \lambda \downarrow 0.
\]

Vi vise nu, at målet \( \eta_3 \) er invariant.

For \( \lambda, \lambda' > 0 \) har vi nemlig resolventligningen

\[
\eta \ast \lambda = \eta \ast \lambda + (\lambda - \lambda') \eta \ast \lambda' \ast \eta
\]

vi ved Fouriertransformation får:

\[
\mathcal{F} (\eta \ast \lambda + (\lambda - \lambda') \eta \ast \lambda' \ast \eta) = \mathcal{F} \eta \ast \lambda + (\lambda - \lambda') \mathcal{F} \eta \ast \lambda' \ast \mathcal{F} \eta =
\]

\[
\frac{1}{\gamma + \lambda} + \frac{\lambda - \lambda'}{(\gamma + \lambda')(\gamma + \lambda)} = \frac{1}{\gamma + \lambda'} = \mathcal{F} \eta \ast \lambda'
\]

idet \( \gamma \) er den til \( (\mu_x)_+ > 0 \) hørende negative definit funktion. Ved brug af resolventligningen før vi nu:
\[ \lambda' \rho_{A'}^* (\lambda \rho_{A}^* \xi) = (\lambda' \rho_{A'}^* \lambda \rho_{A})^* \xi \]
\[ = \frac{\lambda' \lambda}{\lambda - \lambda'} (\rho_{A'} - \rho_{A})^* \xi \]
\[ = \frac{\lambda' \lambda}{\lambda - \lambda'} \rho_{A'}^* \xi - \frac{\lambda'}{\lambda - \lambda'} (\lambda \rho_{A}^* \xi) \]

for \( A^* \lambda \). For hvirv \( \lambda' > 0 \) gælder altså, med brug af (ube 7.1):

\[ \lambda' \rho_{A'}^* \eta_3 = \lim_{\lambda \to 0} (\lambda' \rho_{A'}^* (\lambda \rho_{A}^* \xi)) \]
\[ = \lim_{\lambda \to 0} \left( \frac{\lambda' \lambda}{\lambda - \lambda'} \rho_{A'}^* \xi - \frac{\lambda'}{\lambda - \lambda'} (\lambda \rho_{A}^* \xi) \right) \]
\[ = 0 - (-\eta_3) = \eta_3 \]

hvoraf man ser, at \( \eta_3 \) er invariant.

Vi skal nu indhe, at \( \eta_1 = \eta_2 = \eta_3 \). Da \( \eta_1 \) er invariant, gælder for alle \( t > 0 \), at

\[ \eta_1 = \mu_t^* \eta_1 \leq \mu_t^* \xi, \]

hvoraf \( \eta_1 \leq \lim_{t \to \infty} \mu_t^* \xi = \eta_2 \).

Da \( \eta_2 \) er invariant, følger vi gentagen brug af (ube 7.12), at

\[ \eta_2 \leq \lim_{m \to \infty} (\lambda_0 \beta_{A'}^m \xi) = \eta_1, \]
almdeles \( \eta_1 = \eta_2 \).

Da \( \eta_2 \) er invariant, følger af sætning 7.12, at
\[
\eta_2 = (\lambda r_A) \ast \eta_2 \leq (\lambda r_A) \ast \xi
\]
for alle \( \lambda > 0 \), hvoraf
\[
\eta_2 \leq \lim_{\lambda \to 0} ((\lambda r_A) \ast \xi) = \eta_3.
\]

Da \( \eta_3 \) er invariant, gælder for alle \( t > 0 \), at
\[
\eta_3 = \mu_t \ast \eta_3 \leq \mu_t \ast \xi
\]
heraf
\[
\eta_3 \leq \lim_{t \to \infty} (\mu_t \ast \xi) = \eta_2,
\]
almdeles \( \eta_2 = \eta_3 \).

Sætning 7.17 (Riesz' dekompositionsætning).

Lad \( (\mu_t)_{t>0} \) være en transient foldegruppe, med potentielle \( \mathcal{H} \). Efterfuld mål \( \xi \), der er nulle
ændligt \( m. \mathcal{H} \), så \( (\mu_t)_{t>0} \) kan fremstilles på formen
\[
\xi = \mu \ast \xi + \eta,
\]

hvor \( \xi \in \mathcal{D}^+(\mathcal{H}) \) og \( \eta \) er invariant. Fremstillingen
er endelig, idet \( \eta \) er den invariante del af \( \xi \), og
6 er bestemt ved

\[ \sigma = \lim_{t \to 0} \frac{1}{t} (\xi - \mu_t \ast \xi). \]

Bemærk: Antag først, at \( \xi = x \ast \sigma + \eta \), hvor \( \sigma \in D^+(H) \) og \( \eta \) er invariant. Vi skal nu, at

\[ \sigma = \lim_{t \to 0} \frac{1}{t} (\xi - \mu_t \ast \xi), \]

og

\[ \eta = \lim_{t \to \infty} \mu_t \ast \xi, \]

altså, at \( \eta \) er den invariant del af \( \xi \).

For alle \( t > 0 \) gælder, idet

\[ \mu_t \ast (x \ast \sigma) = (\mu_t \ast x) \ast \sigma, \]

og

\[ \mu_t \ast \eta = \eta, \]

at

\[ \xi - \mu_t \ast \xi = (x \ast \sigma) + \eta - (\mu_t \ast (x \ast \sigma) + \mu_t \ast \eta) \]

\[ = (x - \mu_t \ast x) \ast \sigma \]

\[ = (\int_0^\infty \mu_s \, ds - \int_0^t \mu_s \, ds) \ast \sigma \]

\[ = \int_0^t \mu_s \ast \sigma \, ds, \]

hvorfra man nu fjer:
\[ \frac{1}{t} (\xi - \mu_t * \xi) = \frac{1}{t} \int_0^t \mu_s * 6 \, ds \to \xi * 6 \]

for \( t \to 0 \), ifgl. lemma 7.15; altså er
\[ \xi = \lim_{t \to 0} \frac{1}{t} (\xi - \mu_t * \xi) . \]

For alle \( t > 0 \) er
\[ \eta = \mu_t * \xi = \mu_t * \xi - \mu_t * (\xi * 6) \]
\[ = \mu_t * \xi - (\mu_t * \xi) * 6 \]
\[ = \mu_t * \xi - \int_0^\infty \mu_s * 6 \, ds . \]

Født
\[ \int_0^\infty \mu_s * 6 \, ds \to 0 \text{ for } t \to \infty \]

(råbningen om monotone grænseværgang for integraler), følgers heraf:
\[ \eta = \lim_{t \to \infty} (\mu_t * \xi) , \]
oeg dermed er \( \eta \) den invariante del af \( \xi \).
Herved er primstillingens entydighed vist.

Lad nu \( \xi \) være et exsævligt mål, og lad \( \eta \) betegne den invariante del af \( \xi \) (se råbning 7.16.). For hvert \( t > 0 \) indgør det positive mål
\[ c_t = \frac{1}{t} \left( \xi - \mu_t \ast \xi \right) \]

Videre udvides for hvert \( m \in \mathbb{N} \):

\[ x_m = \int_0^m \mu_s \, ds \]

Vi bemærker, at \( x_m \ast \xi \) er uklar for alle \( m \in \mathbb{N} \), thi

\[ x_m \ast \xi - \int_0^m \mu_s \ast \xi \, ds \leq \int_0^m \xi \, ds = m \xi \]

og at \( x_m \uparrow x \) for \( m \uparrow \infty \).

Da \( x_m \leq x \) og \( c_t \leq \frac{1}{t} \xi \), er \( x_m \ast \xi \) uklar for alle \( m \in \mathbb{N} \) og alle \( t > 0 \), følger det fra følgende: \( x_m \ast c_t \),
og for \( m > t \) er:

\[ x_m \ast c_t = \frac{1}{t} \left( x_m \ast \xi - x_m \ast (\mu_t \ast \xi) \right) \]

\[ = \frac{1}{t} \left( \int_0^m \mu_s \ast \xi \, ds - \int_0^m \mu_s \ast (\mu_t \ast \xi) \, ds \right) \]

\[ = \frac{1}{t} \left( \int_0^m \mu_s \ast \xi \, ds - \int_0^{m+t} \mu_s \ast \xi \, ds \right) \]

\[ = \frac{1}{t} \left( \int_t^m \mu_s \ast \xi \, ds - \int_{m+t}^{m+t} \mu_s \ast \xi \, ds \right) \]
$$\text{Fast } \eta \leq \mu \ast \xi \leq \xi \text{ for alle } s > 0, \text{ så for } n > t :$$

$$u_n \ast \xi_t \leq \frac{1}{t} \int_0^t \xi_s \, ds - \frac{1}{t} \int_m^{m+t} \eta \, ds \leq \xi - \eta.$$ 

Af sætning 7.6 p. 263 får vi da, at $$u \ast e_t$$ eksisterer for alle $$t > 0$$, og at $$u \ast e_t \leq \xi - \eta$$ for alle $$t > 0$$.

Familien $$(u \ast e_t)_{t>0}$$ er altid begrenset, men så er også familien $$(e_t)_{t>0}$$ vigt begrenset. 

Igl. sætning 7.9 p. 268, og af lemma 7.8 p. 267 slutter vi da, at mængden

$$\{e_t \mid t > 0\}$$

er relativt kompakt. Netop $$(e_t)_{t>0}$$ har da et konvergent delnet. Der findes altså et positivt mål $$\sigma$$ og et net $$(t_i)_{i\in J}$$ af positive tal med $$t_i \to 0$$, således at

$$e_{t_i} \to e$$ vigt.

Vi vil nu vise, at det fundne $$\sigma$$ kan bruges, altså at $$e \in D^+(\mu),$$ og $$\xi = u \ast e + \eta.$$ Lad os betragte et fast $$n \in N.$$ Da

$$u_m \ast e_{t_i} \leq \xi - \eta \text{ for alle } i \in J,$$
og da $x_n \ast (\xi - \eta)$ vinderer, fordi $x_n \ast \xi$ vinderer, følger det af sætning 7.7 p. 265, at $x_n \ast \xi$ vinderer og

\[ x_n \ast \xi_i \rightarrow x_n \ast \xi \quad \text{vægt.} \]

På den anden side følger af udtrykket for $x_n \ast \xi_i$ og af lemma 7.15, at

\[ x_n \ast \xi_i = \frac{1}{\xi_i} \int_0^{\xi_i} \mu_n \ast \xi \, ds - \frac{1}{\xi_i} \int_{\xi_n}^{\xi_i} \mu_n \ast \xi \, ds \]

\[ \rightarrow \xi - \mu_n \ast \xi \quad \text{vægt.} \]

Ved at sammenligne de to udtryk for

\[ \lim_{i \rightarrow \infty} x_n \ast \xi_i \]

finder vi:

\[ x_n \ast \xi = \xi - \mu_n \ast \xi \]

Dette gælder for ethvert $n \in \mathbb{N}$. Ædet

\[ x_n \ast \xi = \xi - \mu_n \ast \xi \leq \xi - \eta \quad \text{for alle } n \in \mathbb{N} \]

skubbes af sætning 7.6, at $x \ast \xi$ vinderer, aktår at $\xi \in E(D^+(x))$, og at

\[ x_n \ast \xi \rightarrow x \ast \xi \]
På den anden side gælder, at

$$\eta = \lim_{n \to \infty} \mu_n \ast \xi$$

(see sætning 7.16). Vi får altså

$$\eta \ast \xi = \lim_{n \to \infty} \eta_n \ast \xi = \lim_{n \to \infty} (\xi - \mu_n \ast \xi) =$$

$$\xi - \eta,$$

avoved formuleringen udtalt er vist.

\[ \square \]

**Corollar 7.18.** Potentialkernen $\varphi$ opfylder

principippet om massens indydighed, hvilket betyder

$$\forall \sigma_1, \sigma_2 \in \Delta^+(\mu) : \mu \ast \sigma_1 = \mu \ast \sigma_2 \Rightarrow \sigma_1 = \sigma_2.$$  

**Bemærk:** Løbet $\mu \ast \sigma_1 = \mu \ast \sigma_2$ er uanset, se

sætning 7.11.3) p. 275. Da $\mu$

$$\mu \ast \sigma_1 - \theta = \mu \ast \sigma_2 - \theta$$

sluttes af indydighedsdelen af Riesz' dekompositions-

sætning, at

$$\sigma_1 = \sigma_2.$$  

\[ \square \]
Corollary 7.19. Lad $\xi$ være et recessivt mål, så
\[ \xi \leq \mu \ast \delta \]
for et mål $\delta \in D^+(\mathcal{X})$. Da er $\xi$ et $\mu$-potential, altså af formen
\[ \xi = \mu \ast \tau, \]
herfor $\tau \in D^+(\mathcal{X})$.

Bemærk: Af Riesz’ dekompositionssætning får, at $\xi$ på enhver måde kan skrives som sum af et $\mu$-potential og et invariant mål $\eta$:
\[ \xi = \mu \ast \tau + \eta, \]
herfor $\tau \in D^+(\mathcal{X})$. Endvidere gælder
\[ 0 \leq \eta = \lim_{t \to \infty} \mu_t \ast \xi \leq \lim_{t \to \infty} \mu_t \ast (\mu \ast \delta) = \hat{\eta}, \]
herfor $\hat{\eta}$ er den invariant del af $\mu \ast \delta$. Da $\mu \ast \delta$ er et $\mu$-potential, slutter vi at $\eta$ er nulmålet ud fra enhedsheden af Riesz’ dekompositionen. Derfor så er $\eta$ nulmålet, og vi har
\[ \xi = \mu \ast \tau. \]

Sats 7.5. Lad $\xi$ være et recessivt mål, og
lad

\[ \xi = \mu t + \eta \]

være Ricci-dekompositionen af \( \xi \). Vi o at

\[ \delta = \lim_{\lambda \to 0} \lambda (\xi - \lambda P \xi) \]

**Sætning 7.20** Lad \( \mu_t \to 0 \) være en trænings-

folding primgruppe med potentielle krone \( \mu \). Hvis

\( (\xi_i)_{i \in I} \) er et vigtig konvergent net af \( \mu \)-poten-

sialer og \( \xi \) er et \( \mu \)-potentiale, så

\[ \xi_i \leq \xi \quad \forall i \in I \]

da er

\[ \xi = \lim_{i \in I} \xi_i \]

et \( \mu \)-potentiale. Netitit \( (\xi_i)_{i \in I} \) hvor

\[ \xi_i = \mu \xi_i \quad i \in I \]

er konvergent, og \( \xi \) er etop \( \mu \)-potentiale

pbt træagt af

\[ \delta = \lim_{i \in I} \xi_i \]
Beweis: Som grænsepunkt for et konvergent mit af ergodiske måler, er $\xi$ et ergodisk mål, og da

$$\xi_i \leq \xi \quad \text{for alle } i \in I,$$

må også

$$\xi = \lim_{i \in I} \xi_i \leq \xi.$$

Af corollære 7.19 slutter vi, at $\xi$ er et potentiele, der findes altså mitop til $\sigma \in D^+(\mathcal{H})$ så

$$\xi = \mu \ast \sigma,$$

För vilkårlige $\lambda, \mu \in \mathbb{R}^+$ gælder resolventligningen:

$$\sigma_{\lambda} = \sigma_{\mu} + (\mu - \lambda) \sigma_{\lambda} \ast \sigma_{\mu},$$

se p. 293. Lad nu $\mu > 0$ være fast. Da

$$\sigma_{\lambda} \to \sigma \quad \text{for } \lambda \to 0,$$

gælder der (jf. pr. satning 7.7):

$$\sigma = \lim_{\lambda \to 0} \sigma_{\lambda} = \sigma_{\mu} + \lim_{\lambda \to 0} (\mu - \lambda) \sigma_{\lambda} \ast \sigma_{\mu}$$

$$= \sigma_{\mu} + \mu \sigma \ast \sigma_{\mu}.$$

Vi har dermed opnået følgende:
\[ \xi_i = x_i \cdot b_i = \mu \cdot b_i + \mu (\mu \cdot b_i) \cdot b_i = \mu \cdot b_i + \mu (\mu \cdot b_i) \cdot \mu = \mu \cdot b_i + \mu \xi_i \cdot \mu \]

for alt \( i \in I \). Nu er imidlertid \( \xi = \lim_{i \in I} \xi_i \), så

\[ \xi \cdot \mu = \lim_{i \in I} (\xi_i \cdot \mu) \]

hos \( \xi \) er et eksisteret mål, der kan foldes med \( \mu \), se sætning 7.12, og som majoriserer mettet \( (\xi_i)_{i \in I} \). Da

\[ \mu \cdot b_i = \xi_i - \mu \xi_i \cdot \mu \quad \forall i \in I \]

vil mettet \( (\mu \cdot b_i)_{i \in I} \) være vægt komurgent mod

\[ \lim_{i \in I} (\mu \cdot b_i) = \lim_{i \in I} \xi_i - \lim_{i \in I} \mu (\xi_i \cdot \mu) = \xi - \mu (\xi \cdot \mu) \]

vi ser da, at mettet \( (\mu \cdot b_i)_{i \in I} \) er vægt
begrenset, men ifølge satning 7.9 er også mængden \((b_i)_{i \in I}\) sigt
begrenset. Af lemma 7.8, før vi da, at mængden

\[ S = \{ b_i \mid i \in I \} \]

er relative kompakt i den vague topologi. Til et
sigt fortakningspunkt \(b'\) for \(S\) findes et del-
mæng \((b_x)_{x \in A}\) af \((b_i)_{i \in I}\) så

\[ b' = \lim_{x \in A} b_x. \]

För hvert \(x \in A\) gælder nu:

\[ \sigma \mu \times b_x \leq \mu \times b_x = \sigma_x \leq \sigma, \]

og da \(\sigma\) kan følges med \(\sigma\), har vi:

\[ \sigma \mu \times b_x \rightarrow \sigma \mu \times b''. \]

Dette \((\sigma \mu \times b_x)_{x \in A}\) er som delnet af \((\sigma \mu \times b_i)_{i \in I}\)
hæmmet med grænsepunktet \(\sigma \mu \times b'\). Da
den vague topologi er Hausdorff opnår herved at

\[ \sigma \mu \times b'' = \sigma \mu \times b'. \]
Denne identitet gælder for alle $\mu \in \mathbb{R}^+$. Vi har indvieder

$$H = \lim_{\mu \to 0} \left( \mu \right),$$

så

$$\mu \cdot 6 \leq 2 \cdot 6,$$

hvis $\mu \uparrow 2$ for $\mu \to 0$. Og der gælder

$$\mu \cdot 6 \to 2 \cdot 6 \quad \text{for } \mu \to 0.$$  

På samme måde induerer:

$$\mu \cdot 6' \to 2 \cdot 6' \quad \text{for } \mu \to 0.$$  

Af principippet om marins indydighed, se corollar 7.18, får vi da:

$$6' = 6.'$$

Da $6$ var et vilkårligt vigtigt forståelsespunkt for den relative kompakthej mangde $I$, skifter vi

$$6 = \lim_{\varepsilon \to 0} 6.'$$

Lemma 7.21 En elementær form

$$H = \sum_{\nu=0}^{\infty} \mu \nu.$$
oppfører fiiningsprincipippet for enhver åben mångde.

Bemærk: Lad $b \in E D^+(w)$, og lad $w$ være en åben demangde af $LCA$-gruppen $G$. Med $A$ betegnes
mangden af de excessive mål $\delta$, for hvilke
$\delta \geq x \times b$ i $w$.

Selvom $\delta_0 = \inf A$ er excessive iflg. sætning
7.11. og
$\delta_0 \geq x \times b$ i $w$.

Da $x \times b \in A$, må der også gælde
$\delta_0 \leq x \times b$,

således at $\delta_0$ er et x€-potentielt iflg. corollar
7.19. Lad $b \in E D^+(w)$ være valgt så
$\delta_0 = x \times b \in w$.

Dermed gælder, at

$x \times b \in w \leq x \times b$

og

$x \times b \in w = x \times b$ i $w$.

Målet $b \in w$ er således et x€-fjinet mål af $b$ på
$w$, hvis der blant gælder

$\supp b \in w \leq \bar{w}$.
For at afklare dette, og derud gøde gøre at det
opfylder figningsprincippet for enhver alen
mængde, skriver vi \( b^w \) på formen
\[
b^w = b_1^w + b_2^w,
\]
hvor \( b_1^w \) betegner restriktionen af \( b^w \) til \( w \) og
\( b_2^w \) er restriktionen til \( G \setminus w \). Da
\[
m \times x < x,
\]
kan \( b_2^w \) følde med \( m \times x \), thi \( b_2^w \) kan følde
med \( x \), og da \( x \not= 0 \) vil
\[
b_2^w \times (m \times x) = (b_2^w \times m) \times x
\]
afv. lemma 7.3. Im malt
\[
\alpha = b_1^w + m \times b_2^w
\]
gælder derfor at
\[
x \times \alpha = x \times b_1^w + x \times (m \times b_2^w)
\]
\[
= x \times b_1^w + (x \times m) \times b_2^w
\]
\[
= x \times b_1^w + (x - x) \times b_2^w
\]
\[
= x \times b_1^w + x \times b_2^w - b_2^w
\]
\[
= x \times b_1^w - b_2^w.
\]
Desuden har vi
\[ \mathcal{H} \times \mathcal{H} = \mathcal{H} \times \mathcal{H}^0 = \mathcal{H} \times \mathcal{H}^0 \quad \forall \mathcal{H}, \]
\[ \text{thi} \quad \mathcal{H}^0 (\mathcal{H}) = 0. \]
\[ \text{Uansægt så vil } \mathcal{H} \times \mathcal{H} \subseteq \mathcal{H}, \quad \text{så} \]
\[ \mathcal{H} \times \mathcal{H}^0 = \text{inf } \mathcal{H} \subseteq \mathcal{H} \times \mathcal{H} = \]
\[ \mathcal{H} \times \mathcal{H}^0 \subseteq \mathcal{H}^0. \]

Denne vurdering giver, at \( \mathcal{H}^0 \leq 0 \), men da \( \mathcal{H}^0 \) er et positivt mål, har vi \( \mathcal{H}^0 = 0 \). Følgelig
\[ \text{supp } \mathcal{H}^0 = \text{supp } \mathcal{H}^0 \subseteq \mathcal{H}. \]

\[ \square \]

**Sætning 7.22.** Potentialhæmmer \( \mathcal{H} \) for en

transient foldningsrumgruppe opfylder fejningsprincippet for enhver åben mængde.

**Bemærk:** Lad \( \mathcal{H} \) være en åben relativ

kompakt delmængde af \( \mathcal{H} \), og lad \( \mathcal{H} \in \mathcal{H}^+(\mathcal{H}) \).

For hver \( \lambda > 0 \) er tægl. sætning 7.10
\[ \lambda \mathcal{H} + \mathcal{E}_0 \]

en elementær hæmne, så der findes et
\[ (\lambda \mathcal{H} + \mathcal{E}_0) \)-fjyet mål \( \mathcal{H}^0 \) af \( \mathcal{H} \) på \( \mathcal{H} \) tægl. lemme
7.21. Dette mål \( \mathcal{H}^0 \) opfylder altid ulighedens
\( c^\omega_{\lambda} (\lambda x + y) \leq c^\omega (\lambda x + y) \).

Ved multiplication med \( \frac{1}{\lambda} \) får vi:

\[
\mathcal{N} \times c^\omega_{\lambda} + \frac{1}{\lambda} c^\omega_{\lambda} \leq \mathcal{N} \times c + \frac{1}{\lambda} c^\omega. \tag{*}
\]

For \( \lambda > 1 \) gælder videre, at

\[
\mathcal{N} \times c^\omega_{\lambda} \leq \mathcal{N} \times c^\omega_{\lambda} + \frac{1}{\lambda} c^\omega_{\lambda}
\leq \mathcal{N} \times c + \frac{1}{\lambda} c^\omega
\]

således at mængden \( \{ c^\omega_{\lambda} \mid \lambda > 1 \} \) er vigtig begrenset. Da er

\[\{ c^\omega_{\lambda} \mid \lambda > 1 \}\]

relativt kompakt i den vige topologi. Lad nu

\[(\lambda_i)_{i \in J} \text{ være et } \* \text{-mængde af } \lambda_i > 1, \text{ så}
\]

\[
\lambda_i \rightarrow +\infty \quad \text{for } i \in J
\]

og lad \( c^\omega \) være et positivt mål, således at

\[c^{\omega}_{\lambda_i} \rightarrow c^\omega \quad \text{for } \lambda_i \rightarrow +\infty.
\]

Da er nupp \( c^\omega \in \overline{\mathcal{N}} \), efterom \( c_{\lambda_i}^\omega \) som
$(\alpha_i \times \varepsilon_i)\)-fyjet mål af $\varepsilon$ på $\omega$, har sup $\varepsilon_i \omega \subseteq \overline{\omega}$.

Vi har fundet, at $\overline{\omega}$ er kompaktt. Af

af $\alpha_i \geq 2$, slutter vi, at

$$\alpha_i \times \varepsilon_i \omega + \frac{1}{\alpha_i} \varepsilon_i \omega \rightarrow \alpha_i \times \varepsilon_i \omega + 0 \text{ for } \alpha_i \rightarrow \infty$$

og

$$\alpha_i \times \varepsilon_i + \frac{1}{\alpha_i} \varepsilon_i \rightarrow \alpha_i \times \varepsilon_i + 0 \text{ for } \alpha_i \rightarrow \infty$$

Unglædning (*) gælder for alle $\alpha_i$, $i \in J$, så

ved grænseovergangen $\alpha_i \rightarrow \infty$ opnår man

$$\alpha_i \times \varepsilon_i \omega \leq \alpha_i \times \varepsilon_i.$$

Imedlemhed er lighedsrelation i (*) opfyldt i $\omega$,

hvis $\varepsilon_i \omega$ er et $(\alpha_i \varepsilon_i + \varepsilon_i)\)-fyjet mål af $\varepsilon$ på $\omega$.

Derved må vi have:

$$\alpha_i \times \varepsilon_i \omega = \alpha_i \times \varepsilon_i \omega \times \omega,$$

og målet $\varepsilon_i \omega$ er altså et $\alpha_i\)-fyjet mål af $\varepsilon$ på $\omega$

den relativt kompakte mængde $\omega$.

Lad $\omega_0$ være en vilkårlig åben delmængde

af $\varepsilon$, og lad $\varepsilon \in D^+(\alpha_i)$. Med $\alpha_i$-teksten

updtæt af åben relativt kompakt delmængde

er, hvor $\omega \subseteq \omega_0$. Til enhver $\omega \in \Omega$ finder

af, at foregangende et $\alpha_i\)-fyjet mål $\varepsilon_i \omega$ af
\( \ast \) På \( \ast \) Spesielt er
\[
\ast \ast \ast \leq \ast \ast \ast \text{ for alle } \ast \in \Omega,
\]
og da \( \Omega \) udskrevet med indklemmelsesningen
er opad fuldkomne, er nullet
\[
(\ast \ast \ast \ast \ast) \in \Omega
\]
altå vigtig begravet. Da er mængden
\[
\{ \ast \ast \ast \ast \mid \ast \in \Omega \}
\]
relativt kompakt iflg. lemma 7.8. Lad
\[
(\ast \ast \ast \ast \ast \ast) \in \Omega
\]
øve et konvergent dæknings af \( (\ast \ast \ast \ast \ast) \in \Omega \).
Da dette net består af \( \ast \)-potentiale, der alle
er majoriseret af potentiale \( \ast \ast \ast \ast \), vil dette
punkt, iflg. sætning 7.20, selv være et
\( \ast \)-potential og hvis
\[
\ast \ast \ast \ast \ast \ast = \lim_{i \in \Omega} \ast \ast \ast \ast \ast \ast \ast
\]
med
\[
\ast \ast \ast \ast \ast \ast = \lim_{i \in \Omega} \ast \ast \ast \ast \ast \ast
\]
Vi vil vinne, at \( \ast \ast \ast \ast \ast \) faktisk er et \( \ast \)-fyret
mål af \( \ast \) på \( \ast \ast \ast \ast \ast \). Derfor bemærkes, at da
supp 6·w_i = \bar{w}_i \subseteq \bar{w}_o \quad \forall i \in I,

må

supp 6·w_o = \bar{w}_o.

Da det er oplyst, at

H * 6·w_o \subseteq H * 6.

har vi blot tilfælde at vi er, at

H * 6·w_o = H * 6 \quad i \cdot w_o.

Lad \phi \in \mathcal{H}(G), således at supp \phi \subseteq w_o. Ellers-
den

\omega' = G \setminus \phi^{-1}(0)

er åben og rel ativ kompakt, altså \omega' \in \Omega. Vi velger nu i_0 \in I, så

\omega' \subseteq \omega_i \quad \forall i \geq i_0.

Da gælder det for alle i \geq i_0:

\langle H * 6·w_i, \phi \rangle = \langle H * 6, \phi \rangle,

så 6·w_i er et H-fjedet mål af 6 på w_i og
\omega_i = \omega'. På den anden side vil dermed

\langle H * 6·w_i, \phi \rangle \geq i_0.
af nytet

\[(< x \times \delta_z >, \phi) \] i \mathcal{L}

konvergerer mod \(< x \times \delta_0 >, \phi\), hvorfor

\(< x \times \delta_0 >, \phi\) = \(< x \times \delta >, \phi\).

\[\Box\]

Sætning 7.23: Potentialekernen \(\mu\) for en kompakt foldnings-semigruppe \((\mu_t)_{t \geq 0}\) opfylder ligevægtsprincippet, idet det til enhver åben relative kompakt delmængde \(W \subset G\) findes et positivt mål \(\mu \in D^+(\mu)\) med egenskaberne:

i) \(\text{supp} \mu \subseteq \overline{W}\)

ii) \(x \times \mu \leq \mu_\delta\)

iii) \(x \times \mu = \mu_\delta \text{ i } W\),

hvor \(\mu_\delta\) er Haarmålet på \(G\). Et sådant mål \(\mu\) kaldes en \(x\)-ligevægtsfordeling på \(W\).

BemÆ: Valg \(\phi \in X^+_c(G)\), så

\[x \times \phi \geq 1 \text{ på } W\).

Derved er \(x \times \phi \mu_\delta \geq \mu_\delta\text{ på } W\), så for det positive mål

\[\xi = \inf \{ x \times \phi \mu_\delta, \mu_\delta \}\]
vil § ≤ wₐ og § = wₐ i w. Som minimum af
mange af discrete mål er § et discrete
mål, og de § domineres af potentiale. x § wₐ,
er § et potentiale (se sætning 7.11 og 7.20).
Lad T ∈ D⁺(w), så

§ = x T.

Vgl. sætning 7.22 existerer der et x-fjint mål
6 af T på w, et sådant mål opfylder klart
betingelse i). Endvidere er

6 x H ≤ T x H = § ≤ wₐ,

så 6 opfylder betingelse ii). Endelig gælder de

6 x H = T x H = § = wₐ i w,

så 6 opfylder også betingelse iii).

Corollae 7.24 Lad w være en åben rel ativ
kompakt mængde. For enhver kompakt omegn
V af 0 i G findes φ ∈ K₊(G), så

sup φ ≤ w + V

og x φ ≤ 1, samt x φ = 1 i w.
Bevis: Lad $f \in X_f(G)$, så $\text{supp } f \subseteq V_0$.

$$\int f(x) \, dx = 1.$$  

Vi valger nu en ligvægtsførdeling $\sigma$ på den åbne, relativ kompakte mængde $w-V$ i henhold til sætning 4.23.

For ethvert $x \in G$ gælder

$$(w \ast \sigma) \ast f(x) \leq w_0 \ast f(x) =$$

$$\int f(x-y) \, dy = 1.$$  

For $x \in w$ er

$$(w \ast \sigma) \ast f(x) = \int f(x-y) \, d (w \ast \sigma)(y)$$

$$= \int f(x-y) \, d (w \ast \sigma)(y) \quad w-V$$

Da $\sigma$ er en ligvægtsførdeling på $w-V$ udgør betingelse iii) i sætning 4.23, at det sidst opstillede integral er lig med

$$\int f(x-y) \, d w_0(y).$$

$$w-V$$

Dermed er:

$$(w \ast \sigma) \ast f(x) = \int f(x-y) \, d w_0(y) =$$

$$w-V$$
$$\int f(x-y) \, d\omega_c(y) = 1.$$ 

Funktionen $f = 6 \times f$ er kontinuerlig, og da $\text{supp } f = \text{supp } (6 \times f) \subseteq \text{supp } 6 + \text{supp } f$ ligger $f$ i $\omega + V$, 

har $f$ de ønskede egenskaber. 

**Definition.** Lad $\omega$ være et positivt mål. 
Vi siger, at $\omega$-føjning formindsker den totale 
måle, såfremt det for ethvert mål $\omega \in D^+(\omega)$, 

forhver åben mængde $w \subseteq G$ og ethvert $\omega$-fjilet 
mål $\omega$ af $\omega$ på $w$ gælder at 

$$\omega(w) \leq \omega(G).$$

**Corollæar 7.35** I m. potentialthermen $\tau$ før 

for transekt føjningsemigruppe $(\mu_t)_{t \geq 0}$, 
gælder, at $\omega$-føjning formindsker den totale 
måle.

**Beweis:** Det spjælde mål $\omega$ er potentialthermen for den transekte føjningsemigruppe 

$(\mu_t)_{t \geq 0}$. Lad $\omega \in D^+(\omega)$, og lad $w$ være en 
åben delmængde af $G$, og $\omega$ et $\omega$-fjilet mål 
af $\omega$ på $w$. 
Til en vilkårlig åben, rel ativ kompakt delmængde \( \omega \) af \( G \) findes ifølge sætning 7.24. en funktion \( q \in \mathcal{K}(G) \) så
\[
\forall x \in G
\]
og
\[
\forall x \in G, \ x \ast q = 1 \ in \ G.
\]

Dermed gælder, at
\[
\mathcal{C}(\omega, \omega_1) = \mathcal{C}(\omega, \omega_1) \leq \mathcal{C}(\omega_1, \omega) = \mathcal{C}(\omega_1, \omega)
\]
\[
\mathcal{C}(\omega_1, \omega) = \mathcal{C}(\omega_1, \omega) \leq \mathcal{C}(\omega, \omega) = \mathcal{C}(\omega, \omega)
\]
\[
\mathcal{C}(\omega, \omega) = \mathcal{C}(\omega, \omega) = \mathcal{C}(\omega, \omega)
\]
\[
\mathcal{C}(\omega, \omega) = \mathcal{C}(\omega, \omega) = \mathcal{C}(\omega, \omega)
\]
\[
\mathcal{C}(\omega, \omega) = \mathcal{C}(\omega, \omega) = \mathcal{C}(\omega, \omega)
\]
\[
\mathcal{C}(\omega, \omega) = \mathcal{C}(\omega, \omega) = \mathcal{C}(\omega, \omega)
\]
\[
\mathcal{C}(\omega, \omega) = \mathcal{C}(\omega, \omega) = \mathcal{C}(\omega, \omega)
\]
\[
\mathcal{C}(\omega, \omega) = \mathcal{C}(\omega, \omega) = \mathcal{C}(\omega, \omega)
\]
\[
\mathcal{C}(\omega, \omega) = \mathcal{C}(\omega, \omega) = \mathcal{C}(\omega, \omega)
\]
\[
\mathcal{C}(\omega, \omega) = \mathcal{C}(\omega, \omega) = \mathcal{C}(\omega, \omega)
\]
\[
\mathcal{C}(\omega, \omega) = \mathcal{C}(\omega, \omega) = \mathcal{C}(\omega, \omega)
\]

Beklager nu \( H \) systemet af alle åbne, relativ kompakte delmængder af \( G \), følger endelig;

\[
\mathcal{C}(G) = \sup \mathcal{C}(\omega, \omega_1) \leq \mathcal{C}(G).
\]

\( \omega \in H \)

For at bekende 7.7. Lad \( \mu \) og \( \nu \) være positive mål på \( R \), og antag, at der findes tal \( \alpha, \beta \in R \), så
Vis, at μ og ν da har følde.

**Ovebr 7.8.** Lad x være potentialhverne for en tranient fældningsrumgruppe. Så opfylder x principippet om maxiumum princippet, hvilket betyder:

\[ \forall \eta, \tau \in D^+(U) : \eta \cdot \tau \leq \eta \cdot \tau \Rightarrow \eta(C) \leq \tau(C). \]

Dette midtfor, at x-fjiring formindsker den totale mængde.

**Ovebr 7.9.** Lad G være en kompakt gruppe, og lad x være potentialhverne for en tranient fældningsrumgruppe på G. Vis, at de er mæ-
måltet det eneste invariantte mål.

**Tænking 7.26.** Potentialhverne x for en

tranient fældningsrumgruppe opfylder det fuld-
stenlige maximumprincipp, hvilket betyder:

\[ \forall a \geq 0 \forall \eta, \xi \in K_+(G) : \eta \cdot \xi(x) \leq \eta \cdot \xi(x) + a \]

for alle \( x \in \text{supp} \eta \Rightarrow \eta \cdot \xi \leq \eta \cdot \xi + a. \]
Bemærk: Lad \( f, g \in X_+(A) \) og \( a > 0 \). Anfægt, at for alle \( x \in \text{supp}(f) \) gælder det:

\[ h \times f(x) \leq h \times g(x) + a. \]

Før vilkårligt \( x \in A \) betegner \( \varepsilon_x^w \) et \( \varepsilon_x \)-fjernet mål af \( \varepsilon_x \) på den åbne, relative kompakte mængde

\[ \omega = \{ \varepsilon > 0 \}. \]

Da har vi:

\[ h \times f(x) = \langle h \times f, \varepsilon_x^w \rangle \]

\[ = \langle \varepsilon_x^w \times \varepsilon_x, f \rangle \]

\[ A = \langle \varepsilon_x^w \times \varepsilon_x, f \rangle \]

\[ = \langle \varepsilon_x^w, h \times f \rangle \]

\[ B \leq \langle \varepsilon_x^w, h \times g + a \rangle \]

\[ C \leq \langle \varepsilon_x^w, g \rangle + a \]

\[ D \leq \langle h \times \varepsilon_x, g \rangle + a \]

\[ = h \times g(x) + a, \]

idet vi bemærker:

Ved \( A \) : \( \varepsilon_x^w = \varepsilon_x \) i \( \omega = \{ \varepsilon > 0 \}. \)

Ved \( B \) : Den give målighed på

\[ \text{supp}(f) = \bar{\omega} = \text{supp} \varepsilon_x^w. \]
Ved C: \( \varepsilon_X^n (g) \leq \varepsilon_X (g) = 1. \)

Ved D: \( \forall \varepsilon \varepsilon_X^{cd} \leq \varepsilon \varepsilon_X. \)

**Bemærkning.** For potentialkernen \( \varepsilon \) for en træmønt fældningssemigruppe gælder derimod:

\[
\forall f \in X^+ (G): \sup x \ast f(x) = \sup x \ast f(x) < \infty, \quad \text{for } x \in G. \quad \text{supp}(f)
\]

Hier er det sat

\[ a = \sup x \ast f(x) < \infty. \quad \text{for } x \in \text{supp}(f) \]

Vi har da \( x \ast f(x) \leq a \) for \( x \in \text{supp}(f) \), så specielt er \( x \ast \) træmønt og begrenset.

Som anvendelse af den forårende trivi vil vi nu for en vilkårlig fældningssemigruppe \( (\mu_t)_{t \geq 0} \)

den kan være træmønt eller rekurrenc, betragte den inducerede Feller semigruppe \( (P_t)_{t \geq 0} \) på \( C_c (G) \):

\[ P_t f = \mu_t \ast f, \quad f \in C_c (G) \]

og vis, at definitionsmæssigt \( D(A) \) for sumstrukturen \( (A, D(A)) \) indeholder mange funktioner

fra \( X(G) \). Den samme metode kan anvendes.
Så at vi omsætter resultater om den inducerede 
semingruppe på \( L^p(G) \) for \( 1 < p < \infty \):

\[
P_t \psi = \mu_t * \psi; \quad \psi \in L^p(G).
\]

**Læring 7.27. (Gunnar Forst).**

i) \( \forall \psi \in \mathcal{K}_+(G) \forall \varepsilon > 0 \forall U \subseteq \hat{G}(0) \exists \psi \in \mathcal{K}_+(G) \cap D(A): \)

\[
||\psi - \psi||_\infty < \varepsilon \land \operatorname{supp} \psi \subseteq \operatorname{supp} \psi + U
\]

Funktionen \( \psi \) har formen

\[
\psi = \phi_1 * (\phi - g);
\]

hvor \( \phi \in \mathcal{K}_+(G) \) og \( g \in C_0^+(G) \cap L^1(G) \).

ii) For ethvert par \( (K, \Omega) \) bestående af en 
kompakt mængde \( K \subseteq G \) og en åben mængde \( \Omega \subseteq G \), så \( K \subseteq \Omega \) findes der en funktion

\[
\kappa \in \mathcal{K}(G) \cap D(A),
\]

så

\[
1_K \leq \kappa \leq 1_\Omega.
\]

**Beweis:** i) Restvirkområdet

\[
s_1 = \int_0^\infty e^{-t} \mu_t \, dt
\]

er potentialerne for den træmte faldnings-
Umgruppe \((e^{-t} \mu_t}) \geq 0\) og derfor opfylder \(s_1\) fæl-
ningsprincippet for enhver åben mængde. For
enhver kompakt omegn \(U\) af 0 kan vi så finde at \(s_1\)-fejte mål \(s_1\) af \(E_0\) på \(CV\). Der gel-
der altså:

\[ s_1 \times \sigma_V \leq s_1 \]

og

\[ s_1 \times \sigma_V = s_1 \quad \text{i} \quad (U) \]

og derfor er

\[ s_1 - s_1 \times \sigma_V = s_1 \times (\varepsilon_0 - \sigma_V) \]

et positivt mål med kompakt støtte; denne
støtte er en delmængde af omegnen \(V\). Da \(s_1\)
opgå opfylder princippet om mærens unytighed,
er

\[ s_1 \times (\varepsilon_0 - \sigma_V) \neq 0, \]

hvi i modsat fald måtte vi have \(\varepsilon_0 = \sigma_V\),
hvilket strider mod, at

\[ \supp \sigma_V \subseteq (V). \]

Lad \(a_V = (\varepsilon_0 - s_1 \times \sigma_V)(\sigma_V) < \infty\), så er målet:

\[ \alpha_V = \frac{1}{a_V} \left( s_1 - s_1 \times \sigma_V \right) = \frac{1}{a_V} \left( \varepsilon_0 - \sigma_V \right) \times s_1 \]
et sandynlighedsmaal, og

\[ \mu \leq \alpha \in \mathcal{M}. \]

Lad \( \varphi \in X_+(\mathcal{G}) \), \( \varepsilon > 0 \) og \( U \in \mathcal{U}(0) \) være givet.
Da \( \varphi \) er ligelig kontinuerligt, findes der en kompakt omgivning \( \mathcal{V} \) af 0, så \( \mathcal{V} \subseteq U \), og

\[ |\varphi(x-y) - \varphi(x)| \leq \varepsilon \text{ for } x \in \mathcal{G} \text{ og } y \in \mathcal{V}, \]

og dermed gælder for alle \( x \in \mathcal{G} \):

\[ |\varphi \ast \alpha_{\mathcal{V}}(x) - \varphi(x)| \leq \varepsilon. \]

\[ \int |\varphi(x-y) - \varphi(x)| \, d\alpha_{\mathcal{V}}(y) \leq \varepsilon. \]

Funktionen \( \psi = \varphi \ast \alpha_{\mathcal{V}} \) opfylder de ønskede betingelser. Hvad angår formen af \( \psi \), har man:

\[ \psi = \varphi \ast \alpha_{\mathcal{V}} = \frac{1}{a_{\mathcal{V}}} \varphi_1 \ast (\mathcal{E}_\mathcal{V} - \sigma_{\mathcal{V}}) \ast \varphi = \varphi_1 \ast (\psi - \varphi), \]

hvoraf følger

\[ \varphi = \frac{1}{a_{\mathcal{V}}} \varphi_1 \in X_+(\mathcal{G}) \]

og

\[ g = \frac{1}{a_{\mathcal{V}}} \sigma_{\mathcal{V}} \ast \varphi \in C_0^+(\mathcal{G}) \cap L^1(\mathcal{G}). \]
Før operatoren \( V_1 \) givet ved:

\[
V_1 \psi = s_1 \ast \psi,
\]

har man

\[
V_1 : C_0(G) \rightarrow D(A)
\]

så skrives,

og da

\[
\psi = \frac{1}{a_N} s_1 \ast (\varphi - \varphi \ast \delta_N),
\]

har vi \( \psi \in D(A) \), thi \( \varphi - \varphi \ast \delta_N \in C_0(G) \). Det her følger af, at \( \delta_N \in G \leq 1 \), fordi \( s_1 \)-fejning formindsker den totale mængde. Vi har hereved vist den første del af sætningen.

ii) Lad \( W \) være en kompakt omegn af \( 0 \), så \( W + W = \emptyset \), og lad \( V \) være en kompakt symmetrisk omegn af \( 0 \), så

\[
V + V + V + V = W.
\]

Så har

\[
K + V = K + V + V,
\]

og \( K + V \) er kompakt, \( K + V + \emptyset \) er åben. Iflg.

Lemma findes \( \varphi \in K_+(G) \) så

\[
\varphi = 2 \text{ på } K + V, \text{ og } \supp \varphi \subseteq K + V + \emptyset.
\]
Afsl. raadjings første del findes en funktion 
\[ \psi \in K_+(G) \cap D(A), \]

så \( \psi = s_1 \ast (f - g) \), opfylder

\[ \| \varphi - \psi \|_\infty \leq 1 \] og \( \text{supp} \ \psi \subseteq K + V + V + V, \]

hvor \( f \in K_+(G) \) og \( g \in C_c(G) \cap L^1(G) \).

Da \( \psi \geq 1 \) på \( K + V \), er funktionen

\[ h = \inf \{ \psi, 1 \} = \inf \{ s_1 \ast f - s_1 \ast g, 1 \} = \]

\[ \inf \{ s_1 \ast f, 1 + s_1 \ast g \} - s_1 \ast g \]

en funktion tilhørende \( K_+(G) \), og

\[ h = 1 \] på \( K + V \) og \( \text{supp} \ \psi \subseteq K + V + V + V. \)

Funktionen \( \inf \{ s_1 \ast f, 1 + s_1 \ast g \} \) er salthed for et ekstraivt mål \( m \), t. h. t. \( (e^{-t\mu_G})_{t>0} \) og dette mål er dominert af potentiølt

\[ s_1 \ast (f \ast g). \]

Dette fremgår t. c. af følgende regninge:
\[ \inf \{ s_1 + q, 1 + s_1 \cdot g \} \omega_a = \]
\[ \inf \{ (s_1 \cdot q) \omega_a, \omega_a + (s_1 \cdot g) \omega_a \} = \]
\[ \inf \{ s_1 \cdot (q \omega_a), \omega_a + s_1 \cdot (g \omega_a) \} , \]

men dette mål er udefineret m. h. t. \( (e^{-t \mu_g}) \cdot \omega > 0 \),
og \( \alpha \)-dominert \( \gamma \)-potentielt \( s_1 \cdot (q \omega_a) \). Vi
har da, at det selve er et potential. Altså fin-
des der et punktlikt mål \( \sigma \) med
\[ \sigma(\mathcal{G}) \leq \int \phi(x) \, dx < \infty \]
så
\[ s_1 \cdot \sigma = \inf \{ s_1 \cdot q, 1 + s_1 \cdot g \} . \]

Vi har altså, at
\[ \phi = s_1 \cdot (\sigma - (g \omega_a)) . \]

Lad \( \nu \) være en funktion fra \( K(\mathcal{G}) \), så
\[ \int \nu(x) \, dx = 1 \ og \ \text{supp} \nu \subseteq V . \]

Da gælder, at funktionen
\[ \nu = \nu \times \nu = s_1 \cdot (\sigma \times \nu) - s_1 \cdot (g \times \nu) . \]
er en funktion i \( \mathcal{K}(G) \), og dauden har man
\[ k(x) = 1 \quad \forall x \in \mathcal{K}, \]
og
\[ \text{supp } k \subseteq \text{supp } k + V \subseteq \mathcal{K} + W = \emptyset, \]
og da \( \mathcal{E} \) og \( (g \omega_a) \) er begrænsete mål, er funktionen
\[ l = \mathcal{E} * \mathcal{I} - (g \omega_a) * \mathcal{I} \]
en funktion i \( \mathcal{C}_0(G) \). Vi har altså, at
\[ k = f_1 * l \]
med \( l \in \mathcal{C}_0(G) \), men heraf følger, at \( k \in \mathcal{D}(A) \).

**Bemærkning.** Af i) følger, at \( \mathcal{K}(G) \cap \mathcal{D}(A) \)
er tæt i \( \mathcal{K}(G) \), når \( \mathcal{K}(G) \) er forsynet med
den sædvanlige induktive normtopologi, og at \( \mathcal{K}(G) \cap \mathcal{D}(A) \)
er tæt i \( \mathcal{C}_0(G) \).

**Excurs 7.10.** Lad \( (A_p, \mathcal{D}(A_p)) \) betegne frem-
bringeren for den på \( L^p(G) \) inducerede kontak-
tionsomgruppe, \( 1 \leq p < \infty \). Vi o i) og ii) i sæt-
ning 7.27., idet \( (A, \mathcal{D}(A)) \) erstattes af \( (A_p, \mathcal{D}(A_p)) \).
Definition. Lad \((\mu_t)_{t \geq 0}\) være en transitiv feltningsemigruppe. En positiv kontinuerlig funktion på \(G\) holdt kontinuerlig \textit{excisiv} (resp. kontinuerligt \textit{invariant}), hvis målet \(\mu_t\) er excisiv (resp. invariant).

Funktionen \(f\) holdt et kontinuerligt \textit{potential}, hvis målet \(\mu_t\) er et potential.

Man ser umiddelbart, at \(f\) er kontinuerligt \textit{excisiv} (resp. kontinuerligt \textit{invariant}), hvis og kun hvis der gælder:

\[\forall t \in \mathbb{R}^+: \mu_t * f \leq f,\]

resp.

\[\forall t \in \mathbb{R}^+: \mu_t * f = f.\]

Der gælder, individuet: Hvis \(f\) og \(g\) er kontinuerligt \textit{excisive} funktioner, så er funktionen

\[h = \inf \{ f, g \}\]

en kontinuerligt \textit{excissive} funktion, thi for \(x \in G\) og \(t \in \mathbb{R}^+\) har vi:

\[\mu_t * h(x) = \int h(x-y) \, d\mu_t(y)\]

\[\leq \begin{cases} 
\int f(x-y) \, d\mu_t(y) = \mu_t * f(x) \leq f(x), \\
\int g(x-y) \, d\mu_t(y) = \mu_t * g(x) \leq g(x),
\end{cases}\]
hvoraf følger:

\[ \mu_0 \ast h(x) \leq \inf \left\{ \frac{f(x) \cdot g(x)}{h(x)} \right\} = h(x). \]

Sætning 7.28. Lad \((\mu_0)_{x > 0}\) være en trivi-
ent fællesrumsgreffe. Til enhver kontinuer-
telær funktion

\[ f : G \rightarrow [0, \infty] \]

findes et monotont voksende met \((f_w)_{w \in \Omega}\) af
kontinuerlige potentiatorer, så der for enhver \(x \in G\)
gælder:

\[ f(x) = \lim_{w \to \Omega} f_w(x) = \sup_{w \in \Omega} f_w(x). \]

At \(f_w\) er et kontinuerligt potential. Medvirker altså,
at

\[ f_w \cdot g = h \ast \delta, \]

hvor \(h\) er potentiatsætningen for \((\mu_0)_{x > 0}\) og \(\delta \in D^2(G)\).

Bevis: Vi antager først, at \(G\) er kompakt. Vi
er straks færdige, idet Riesz’ dekompositionsat-
nings og ovelse 7.9. viser, at enhver kontinuer-
telær fælles funktion er et kontinuerligt potential.

Vi antager nu, at \(G\) ikke er kompakt. Da
\[ \omega = \{ \omega \in G \mid \omega \text{ åben, ikke tom og relativt kompakt} \}. \]

Vi vælger \( q \in X^+ (G) \), \( q \neq 0 \). For hvert \( \omega \in \Omega \) dannet vi funktionen

\[ \psi_\omega = \omega \cdot (\omega | \omega)^* q. \]

Da \( \psi_\omega \in X^+ (G) \), og medlet \( (\psi_\omega) \cdot \omega \in \Omega \) er monoton voksende, eller så er medlet

\[ (\psi_\omega) \cdot \omega \in \Omega \]

et monoton voksende met af kontinuerlige polinomier, og for hvert \( x \in G \) gælder det:

\[ \lim_{\omega \in \Omega} \psi_\omega (x) = \infty. \]

Lad nu \( x \in G \) og \( N \in \mathbb{N} \) være givet. Da \( \phi \neq 0 \) og \( \phi \neq 0 \) er funktionen

\[ \psi_\omega (x) \cdot \psi_\omega (x) \neq 0. \]

Der finder altså en kompakt mængde \( K \subseteq G \) og \( \alpha \in \mathbb{R}^+ \), så
\[ y \times \phi \times \varepsilon_x (K) = \alpha. \]

Vælg \( w_0 \in \Omega \) så

\[ K = w_0 \text{ og } w_0 (w_0) \geq \frac{N}{\alpha}. \]

For \( w \in \Omega \), så \( w \supset w_0 \), gælder da:

\[ y \times \phi_w (X) = w_0 (w) < y \times (w_0 \mid_\Omega \times \phi), \varepsilon_x > \]
\[ = w_0 (w) < w_0 \mid_\Omega \times \varepsilon_x > \]
\[ \geq \frac{N}{\alpha} \cdot \alpha = N. \]

Set nu, for\( w \in \Omega \)

\[ \phi_w = \inf \{ y \times \phi_w, \phi \}. \]

Da \( \phi_w \) kontinuerligt recessiv og domineret af \( y \times \phi_w \), er \( w \) et kontinuerligt potential. Af korollar 7.19. følger da, at \( \phi_w \) er et kontinuerligt potential, og iflg. (*) gælder

\[ \phi(X) = \lim_{w \in \Omega} \phi_w (X) \]

for enhver \( x \in G \).

Da mættet \( (\phi_w)_{w \in \Omega} \) er monotoner voksende, har vi også for enhver \( x \in G \):

\[ \phi(x) = \sup_{w \in \Omega} \phi_w (X). \]
Løsning 7.29 Lad $x_0$ være et positivt mål på $G$. Der findes højst en transient foldnings-
semigruppe $(\mu_+)_t \geq 0$, da har $x_0$ som potenti-
herne.

Bemærk: Lad $(\mu_+)_t \geq 0$ og $(\mu'_+)_t \geq 0$ være transient foldningssemigrupper så

\[ x = \int_0^\infty \mu_+ dt = \int_0^\infty \mu'_+ dt. \]

Idet $(\varphi_1)_t \geq 0$ og $(\varphi'_1)_t \geq 0$ betegner de til-
hørende resolventmål, gælder iflg. løsning 7.10

\[ x + \delta_0 = \sum_{n=0}^{\infty} (\varphi_1)_n = \sum_{n=0}^{\infty} (\varphi'_1)_n, \]

hvoraf

\[ x = \varphi_1 \ast (x + \delta_0) = \varphi'_1 \ast (x + \delta_0). \]

Da $x + \delta_0$ er en elementar hirne, følger af
princippet om massens inklydighed, se corollar
7.18, at

\[ \delta_1 = \delta'_1. \]

Beklager, men $\gamma$ og $\gamma'$ de sid $(\mu_+)\geq 0$ og $(\mu'_+)\geq 0$-
hørende negative definitive funktioner, har vi
dermed, jf. p. 227.
\[ \frac{A}{\psi + 1} = \frac{\Lambda}{\psi' + 1} = \hat{\delta}_1 = \hat{\delta}'_1, \]

hvoraf man får:

\[ \psi = \psi', \]

og hvoraf sluttes endelig

\[ \forall t \in \mathbb{R}_+: \mu_t = \mu'_t. \]

\[ \square \]

§ 8. Associerte kerner.

Lad \textbf{G} være en LCA-gruppe og lad \textbf{\mu} være et positivt mål på \textbf{G}.

**Definition.** Ved en fundamental familie \\
for \textbf{\mu} forelå et net

\[ (\sigma_V)_{V \in \hat{\mathcal{V}}(0)} \]

af positive mål på \textbf{G}. Indenmængden \( \hat{\mathcal{V}}(0) \) er \n
en basis for suspendet af kompakte omegne \naf 0 i \textbf{G}, sådan at der før alle \( V \in \hat{\mathcal{V}}(0) \) \ngælder følgende lyngelære:
i) \( \sigma \in D^+(\mathfrak{n}) \), \( \sigma \ast \mathfrak{n} \leq \mathfrak{n} \), \( \sigma \ast \mathfrak{n} = \mathfrak{n} \).

ii) Restriktionerne af \( \sigma \ast \mathfrak{n} \) og \( \mathfrak{n} \) heldt (\( \mathfrak{V} \) er ens).

iii) \( \lim_{n \to \infty} \sigma^n \ast \mathfrak{n} = 0 \) vagt.

iv) \( \sigma \mathfrak{V}(G) \leq 1 \).

Hvis der findes en fundamentale familie

for \( \mathfrak{v} \), holdes \( \mathfrak{n} \) en assosieret kerne, og vi viser,

at \( \mathfrak{n} \) er assosieret med den fundamentale

familie \( (\sigma)_{\mathfrak{V}} \mathfrak{V} \mathfrak{V}(0) \).

Bemærkning. Hvis \( (\sigma)_{\mathfrak{V}} \mathfrak{V} \mathfrak{V}(0) \) er en funda-

mental familie for \( \mathfrak{v} \), og

\( \mathfrak{W}(0) \subseteq \mathfrak{V}(0) \)

er en basis for systemet af kompakte omegne

af \( 0 \) i \( G \), så er delnødent

\( (\sigma)_{\mathfrak{V}} \mathfrak{W}(0) \)

også en fundamentale familie for \( \mathfrak{v} \). En as-

sociert kerne kan altså være assosieret med

 forskellige fundamentale familier.
Vi viser nedenfor, at en associeret krumfunktion faktisk har en fundamentalfamilie, der er induceret af upræget $K(0)$ af alle kompatible omgivelser af $0$ i $G$.

**Eksempel.** Lad $\mu$ være et positivt mål med $\mu(G) \leq 1$. Antag, at

$$\mu = \sum_{n=0}^{\infty} \mu^n$$

er en irreducibel. Så er det konstante met $(\mu)^{\hat{K}(0)}$ en fundamentalfamilie for $\mu$:

1. $\mu \ast \mathcal{H} = \sum_{n=1}^{\infty} \mu^n = \mathcal{H} - \mathcal{E}_0 + \mathcal{H}$.

2. $\mu \ast \mathcal{H} \mid_{C^V} = \mathcal{H} \mid_{C^V}$, thi $\mathcal{E}_0 \mid_{C^V} = 0$.

3. $\mu^n \ast \mathcal{H} = \sum_{k=n}^{\infty} \mu^k \to 0$ for $n \to \infty$.


**Sætning 8.1.** Potentiálterminen $\mathcal{H}$ for en

transient tøflingsafgruppe $(\mu^n)_n \geq 0$ er en

associeret krumfunktion, og idet $\mathcal{E}_0$ for $V \in \hat{K}(0)

beskriver et $\mu^n$-fjort mål af $\mathcal{E}_0$ på $C^V$ er

$\mathcal{H}$'s fundamentalfamilie.
for \( x \).

**Bem.:** Lad \( V \in \mathcal{K}(0) \). Da \( u \) opfylder fjerningsprincippet for enhver åben mængde, u. satning 7.22, findes \( \sigma_v \in D^+(u) \) så:

a) \( \sigma_v \ast u \leq u \).

b) \( \sigma_v \ast u \big|_{\overline{V}} = u \big|_{\overline{V}} \).

c) \( \text{supp } \sigma_v \subseteq \overline{V} \).

Af c) følger, da \( V \) er en smug af 0, at
\( \sigma_v \ast \varepsilon_0 \), og af princippet om masses entydighed, corollar 7.13. sluttes vi, at
\( \sigma_v \ast u \neq u \ast \varepsilon_0 \),

dar sammenholdt med a) og b) giver igen-skalerne i) og ii). Da \( u \)-fjerning formindsker den totale masse, corollar 7.25, har vi:
\( \sigma_v(G) \leq \varepsilon_0(G) = 1 \),

så iii) er opfyldt. Vi mangler nu blot at godtgøre iii).

Ved gentagne anvendelse af a) finder man, at
\( \sigma_v^m \ast u \)

er en udløsende følge af \( u \)-potentiale, altså
\[
\xi = \lim_{n \to \infty} \sigma_v^n \ast \mu.
\]

Hvis \(\xi\) er recessivt, setning 7.11., og \(\sigma_v\) dominerer af potentialel \(\mu\), og er derfor selv et potentialel, derved finder vi altid \(\sigma \in D^+(\mu)\), da

\[
\xi = \mu \ast \sigma,
\]

og da

\[
\xi \leq \sigma_v^n \ast \mu \leq \mu, \quad \forall n \in \mathbb{N},
\]

findes vi

\[
\xi \ast \sigma = \lim_{n \to \infty} \left( (\sigma_v^n \ast \mu) \ast \sigma \right)
\]

\[
= \lim_{n \to \infty} \left( \sigma_v^n \ast (\mu \ast \sigma) \right)
\]

\[
= \lim_{n \to \infty} \sigma_v^n \ast \xi
\]

\[
= \xi.
\]

Altså er

\[
(\mu - \xi) \ast \sigma = \mu \ast \sigma - \xi \ast \sigma
\]

\[
= \xi - \xi = 0
\]

og da

\[
(\mu - \xi) \geq \mu - \mu \ast \sigma_v \geq 0
\]

er \(\mu - \xi\) et positivt mål, der ikke er 0, men
så er $\sigma = 0$ og dermed også
$$\varepsilon = x \times \sigma = 0.$$  \[\Box\]

**Exempel.** Lad $G = \mathbb{R}^m$ og $m \geq 3$, og lad $x$ være potentielt høvning for den Browniske semi-

gruppe. Altå er $x$ Newtonskern, se p. 229-230:
$$u = k_m \frac{1}{\|x\|^{m-2}} \, dx.$$  

Lad os som basis for de kompakke omgivelser

af 0 i $\mathbb{R}^m$ vælge de sphericale kugler

$$V_r = \{ x \in \mathbb{R}^m \ | \ \|x\| \leq r \}, \quad r \in \mathbb{R}^+$$

og lad for hvert $r > 0$ $\sigma_r$ tilhøre den jævn

fordeling på randen $\partial V_r$ af $V_r$ med totalmasse

1, altså det normaliserede overflade-mål på

røren

$$S_r = \{ x \in \mathbb{R}^m \ | \ \|x\| = r \}.$$  

Da er $\sigma_r$ et $x$-frijt mål af $\sigma_0$ på $(V_r)$, thi

udregnning finder man (jfr. C. Berg, UEP

1971 p. 22-24):

$$\sigma_r \times \frac{1}{\|x\|^{m-2}} = \begin{cases} \frac{1}{\|x\|^{m-2}} & \text{for } \|x\| > r \\
\frac{1}{r^{m-2}} & \text{for } \|x\| \leq r \end{cases}.$$
Bemærk, at målet \( \sigma \) ikke blot har sin støtte inden for \( CV \), men at \( \sigma \) endda har sin støtte på randen af \( CV \).

Pgl. sætning 8.1. er mættet \((\sigma_x)_{x \in \mathbb{R}^+}\) en fundamental familie for Newtonkernen.

**Eksempel.** Lad \( G = \mathbb{R} \) og lad \((\mu_t)_{t>0}\) være translationsinvarianterne \((\varepsilon_t)_{t>0}\), som er træningsmættet med potentialekernen

\[
\mu = \int_{0, \infty} dx.
\]

Et positivt mæt \( \mu \) kan foldes med \( x \) hvis og kun hvis

\[ \forall a \in \mathbb{R} \left( \mu([-\infty, a]) < \infty \right), \]

og i behøftende fald er

\[
\mu \ast \chi = \mu([-\infty, \chi]) dx.
\]
For \( f \in X^+(\mathbb{R}) \) gælder nemlig

\[
\check{\mathcal{C}} \ast f(x) = \int_0^\infty f(x+y) \, dy
= \int_x^\infty f(y) \, dy,
\]

og hvis

\[
\alpha = \inf \text{ supp } f
\]
og

\[
\beta = \sup \text{ supp } f
\]

har \( \check{\mathcal{C}} \ast f \) følgende udseende:

\[
\int f(y) \, dy
\]

\[
\alpha \quad \beta
\]

Hvis \( \mu \) har følges med \( x \), finder vi:

\[
\langle \check{\mathcal{C}} \ast \mu, f \rangle = \langle \mu, \check{\mathcal{C}} \ast f \rangle
= \int (\int_x^\infty f(y) \, dy) \, d\mu(x)
= \int (\int f(y) \cdot 1_{[x,\infty)}(y) \, dy) \, d\mu(x)
\]
$$\begin{align*}
&= \int f(y) \left( \int_{-\infty}^{y} \mu_x(x) \, dx \right) \, dy \\
&= \int f(y) \mu_y([-\infty, y]) \, dy.
\end{align*}$$

Altå har $x * \mu$ fastholdt $x \mapsto \mu([-\infty, x])$ m. h. t. Lebesgue-målet $dx$ på $\mathbb{R}$.

For $r > 0$ sætter vi

$$V_r = \{ x \in \mathbb{R} \mid |x| \leq r \}$$
og

$$\delta_r = \varepsilon_r.$$

Ved direkte udregning finder man, at

$$\varepsilon_x * \mu = \int_{-\infty}^{\infty} \mu(x+r) \, dx = \varepsilon_{r+x},$$
og

$$(\varepsilon_x)^n * \mu = \varepsilon_{x^n} * \mu = \int_{-\infty}^{\infty} \mu(x^n) \, dx,$$

hvoraf man umiddelbart ser, at netop $(\delta_x)_{x \in \mathbb{R}_+}$ er en fundamental familie for $\mu$.

Bemærk, at $\varepsilon_x$ er et $x$-fijet mål af $\varepsilon_0$ på $C_{V_x}$ og at $\varepsilon_x$ har sin støtte på randen af $C_{V_x}$.

**Ovelse 8.1.** Find et fijet mål af $\varepsilon_1$ på henholdsvis $[-\infty, 0]$ og $[2, \infty]$ m. h. t.

$$x = \int_{0, \infty} dx.$$
Efter at have godtjort, at potentialhverven for en transient fældningrumigruppe er i associeret form, vil vi nu anvende nisv, at enhver assiciert form kommer som potentialhverven for en transient fældningrumigruppe. Denne fældningrumigruppe vil ifølge sætning 7.29, være indlydigt bestemt.

Lad nu vi være et positivt mål, \( \nu(0) \) en tæte for de kompakte omgivelser af \( 0 \) i \( A \) og individet \( (\delta \nu)_{\nu \in \nu(0)} \) et net af positive mål, således at belingelserne i) - iv) på p. 336 er opfyldt.

Af i) og iv) følger, at

\[
\nu - \delta \nu \ast \nu
\]

er et positivt mål, der ikke er nullmålet, og med støtte inden for \( \nu \). Settes derfor for \( \nu \in \nu(0) \)

\[
\frac{1}{\nu} = (\nu - \delta \nu \ast \nu)(G) < \infty
\]

og

\[
\eta \nu = \nu \ast (\nu - \delta \nu \ast \nu) = \nu \ast (\delta \nu - \delta \nu)
\]

bliver \( \eta \nu \) et sandynlighedsmål med

\[\eta \nu \in \nu.\]
Der gælder

\[
\left( \sum_{n=0}^{N} \delta_{v}^{n} \right) \times (\varepsilon - \delta_{v} \times \varepsilon) = \\
\sum_{n=0}^{N} (\delta_{v}^{n} \times \varepsilon - \delta_{v}^{n+1} \times \varepsilon) = \varepsilon - \delta_{v}^{N+1} \times \varepsilon
\]

hvoraf

\[
\left( \frac{A}{a_{v}} \sum_{n=0}^{N} \delta_{v}^{n} \right) \times \eta_{v} = \varepsilon - \delta_{v}^{N+1} \times \varepsilon \leq \varepsilon .
\]

Da \( \eta_{v} \neq 0 \) følger heraf og af sætning 7.9, at følgen

\[
\left( \frac{1}{a_{v}} \sum_{n=0}^{N} \delta_{v}^{n} \right) \in \mathbb{N}
\]

er svagt opad begrænset og dermed konvergent mod grænsværdien

\[
\eta_{v} = \frac{1}{a_{v}} \sum_{n=0}^{\infty} \delta_{v}^{n} .
\]

Vi har \( \delta_{v}(\varepsilon) \leq 1 \) så målet

\[
a_{v} \eta_{v}
\]

er et elementær kernel, og dermed potential-kernel for en træmånt følningseminigruppe; specielt er denne kernel translationse begrænset.
Bemærk nu sætnings 7.6. (eller sætnings 7.3) på (*) følger ved grænsevægten, da

\[ \sigma_{N+1} * \psi \rightarrow 0 \]

\[ N \rightarrow \infty \]

iflg. iii), at

\[ \psi_N * \eta_N = \psi \]

**Lemma 8.2.** En associert kjerne \( \psi \) er translationsbegrænset.

**Beweis:** Lad \( \psi \in \mathcal{K}_{+}(G) \). Med definitionerne fra ovevstående gælder

\[ \eta_N * \psi \in \mathcal{K}_{+}(G) \]

da også \( \eta_N \) har kompakt støtte. Da \( \psi_N \) er translationsbegrænset, før vi:

\[ \psi * \psi = \psi_N * (\eta_N * \psi) \in \mathcal{C} \mathcal{B}(G) \]

altå er \( \psi \) translationsbegrænset.

**Sætnings 8.3.** (Demy.) Lad \( \psi \) være en associert kjerne og

\[ (\sigma_N) \in \mathcal{V}(0) \]

en fundamental familie. Der findes da en og
hvun en trivielle foldningsunimargruppe $(\mu_k)_{k \geq 0}$, der har $k$ som potentiálhume.

**Bevis:** For $V \in \tilde{\mathcal{V}}(0)$ gælder:

$$a_V, \eta_V \star (\varepsilon_0 - \delta_V) = a_V, a_V \widetilde{\eta} \star (\varepsilon_0 - \delta_V) \star (\varepsilon_0 - \delta_V)$$

$$= a_V, \eta_{V}', \star (\varepsilon_0 - \delta_V).$$

**Fouriertransformeret** denne ligning får man:

$$a_V, \eta_V \big(1 - \delta_{V}'\big) = a_V, \eta_{V}' \big(1 - \delta_{V}\big) \quad \quad \quad (\xi)$$

 hvoraf

$$a_V \big(1 - \delta_{V}\big) = \frac{\eta_{V}' \big(1 - \delta_{V}'\big)}{\eta_{V}'.} \quad \quad \quad (\star \star)$$

for alle $\gamma \in \Gamma$ med $\eta(\gamma) \neq 0$ og $\eta_{V}', (\gamma) \neq 0$.

Det er imidlertid således, at for alle $\gamma \in \Gamma$

findes $V \in \tilde{\mathcal{V}}(0)$, så $\eta_V (\gamma) \neq 0$, thi det verificeres det, at for $V \to \{0\}$ gælder

$$\lim_{V \to \tilde{\mathcal{V}}(0)} \eta_V = \varepsilon_0 \quad \text{i Bernoulli-topologiën},$$

hvoraf ifølge sætning 1.4.

$$\eta \to 1, \text{ ligbligt over kompakte del}-$$

mængder af $\Gamma$. 
Speciel gælder:

\[ \forall \omega \in \mathcal{V}, \omega \text{ åben relativt kompakt } \exists V \in \mathcal{V}(0) \forall \gamma \in \omega: \hat{\eta}_V(\gamma) \neq 0. \]

Altå \[ \frac{a_V(1-\delta_V(\gamma))}{\hat{\eta}_V(\gamma)} \] er veldefinieret på \( \omega \).

Vi kan nu definere en funktion \( \psi: \mathcal{V} \to \mathbb{C} \) ved for \( \gamma \in \mathcal{V} \)

\[ \psi(\gamma) = \frac{a_V(1-\delta_V(\gamma))}{\hat{\eta}_V(\gamma)}, \text{ hvor } \hat{\eta}_V(\gamma) \neq 0. \]

Af (\( \ast \ast \)) fremgår, at \( \psi \) er veldefinieret.

Da \( \psi \) på enhver åben, relativt kompakt mængde er vektorielt af kontinuerlige funktioner

\[ \psi \text{ kontinuerl.} \]

Af definitionen på \( \psi \) følger

\[ \forall \gamma \in \mathcal{V} \forall V \in \mathcal{V}(0): \hat{\eta}_V(\gamma) \psi(\gamma) = a_V(1-\delta_V(\gamma)), \]

thi umiddelbart gælder dette for \( \hat{\eta}_V(\gamma) \neq 0 \), men

for \( \hat{\eta}_V(\gamma) = 0 \) se af (\( \delta \)) ved at velge \( V \) så

\[ \hat{\eta}_V(\gamma) \neq 0, \text{ at } \delta_V(\gamma) = 1. \]

Funktionen \( \psi \) er en kontinuerligt negative definit funktion, thi \( \delta_V \) er positiv definit, og
iflg. sætning 3.6 gælder da, at
\[ a_N ((1 - \delta_N (0)) + (\delta_N (0) - \delta_N )) = \eta_N \psi \]
er negativt definit. Bemærk \( \delta_N (0) = \delta_N (0) \leq 1 \).

Af ovenstående ses imidlertid, at
\[ \lim_{N \to \infty} \eta_N \psi = \psi \text{ ligeligt over kompakte mængder,} \]
svortfor \( \psi \) er negativ definit.

Til en kontinuerigt negativ definit funktion
findes en foldningsgruppe \((\mu_t)_{t \geq 0}\) så
\[ \forall t \in \mathbb{R}_+: \mu_t = e^{-t} \psi. \]

For de tilhørende molventmål \((\beta_t)_{t \geq 0}\) gælder
\[ \beta_t = \frac{1}{\psi + \lambda}. \]

Man har, at der gælder følgende formel
\[ \forall N \in \mathbb{N}(0) \forall \lambda > 0: \eta_N - a_N \beta (\delta_0 - \delta_N ) = \lambda \beta \eta_N \]

Denne formel verificeres ved Fouriertransformation:
\[ \eta_N - a_N \beta (1 - \delta_N ) = \eta_N - a_N \frac{1}{\psi + \lambda} (1 - \delta_N ) = \]

\[
\frac{\psi \hat{\eta}_V^{\lambda} + \lambda \hat{\eta}_V^{\lambda} - a_V(1-\hat{\eta}_V^{\lambda})}{\psi + \lambda} = \frac{\lambda \hat{\eta}_V^{\lambda}}{\psi + \lambda} = (\lambda f_\lambda \ast \eta_V)^{\lambda}
\]

da \ \psi \hat{\eta}_V^{\lambda} - a_V(1-\hat{\eta}_V^{\lambda}) = 0.

Da de i formlen indgående mål er begrenset, kan man iflg. sætning 7.4. følge med det transformationsbegrænsede mål \(\chi\), lemma 8.2, hvorved

\[
\chi \ast \eta_V - f_\lambda \ast \eta_V = \lambda f_\lambda \ast \chi \ast \eta_V.
\]

Vi ved fra tidligere, se p. 344, at

\[
\forall V \in \hat{V}(0): \text{supp } \eta_V \subseteq V.
\]

For et fast valgt \(V_0 \in \hat{V}(0)\) gælder derfor

\[
\forall V \in \hat{V}(0): V \subseteq V_0 \Rightarrow \text{supp } \eta_V \subseteq V_0.
\]

Vi har dermed, at når \(V \to \{0\}\), vil målene \(\eta_V\) fra et vigtigt have stoffe i en fast kompakt mængde. Vi udnyttet nu overle 7.2, og at

\[
\eta_V \to \varepsilon_0 \text{ \ vagt.}
\]

og før da:

\[
\chi \ast \eta_V \to \chi \text{ \ og } f_\lambda \ast \eta_V \to f_\lambda \text{ \ vagt.}
\]
hvoraf man ser:
\[ x - s_\lambda = \lambda s_\lambda \times x \geq 0. \]

Altså hav vi
\[ \forall \lambda > 0 : s_\lambda \leq x. \]

Før \( \lambda \to 0 \) er \((s_\lambda)_{\lambda > 0}\) et vokende net, som åbenbart er begrænset, hvorfor
\[ \lim_{\lambda \to 0} s_\lambda \text{ eksisterer,} \]
og dermed er foldningsrumgruppen \((\mu_t)_{t > 0}\) trådigt. Sådan vi nu
\[ s_0 = \lim_{\lambda \to 0} s_\lambda \]

er \( s_0 \) potentialkerne for foldningsrumgruppen, og der gælder klart
\[ s_0 \leq x. \]

Vi skal derfor til slut blot vise, at der må gælde \( s_0 = x \), hvormed \( x \) er potentialkerne for en trådigt foldningsrumgruppe, nemlig den fundne \((\mu_t)_{t > 0}\). Lader vi nu \( \lambda \to 0 \) i (*) fås
\[ \eta \cdot a \cdot s_0 + a \cdot s_0 \times \sigma \cdot v = 0 \],
Idet sætning 7.6 tillader os at gå til grænse, når $\sigma_\lambda$ er et monotont voksende net og

\[ \sigma_\lambda \times \xi \leq \lambda \times \xi \leq \lambda. \]

Indfører vi nu definitionen på $\eta_V$, får vi:

\[ a_V \lambda \times (\xi \circ \sigma_\lambda) - a_V \rho_0 \times (\xi \circ \sigma_\lambda) = 0 \Rightarrow \]

\[ (\lambda - \rho_0) \times (\xi \circ \sigma_\lambda) = 0 \Rightarrow \]

\[ \sigma_\lambda \times (\lambda - \rho_0) = \lambda - \rho_0, \]

hvoraf udgøres vigtigt anvendelse:

\[ 0 \leq \lambda - \rho_0 = (\lambda - \rho_0) \times \sigma_\lambda^\infty \leq \lambda \times \sigma_\lambda^\infty \rightarrow 0 \text{ for } n \rightarrow \infty, \]

således at

\[ \lambda = \rho_0. \]

Bemærkning. Hvis $\lambda$ er et mål associeret med den fundamenale familie $(\sigma_\lambda)_\lambda \in \Lambda(0)$, er $\lambda$

altså potentialkerne for en transient fældnings-

enkugle $(\mu_t)_{t>0}$ og dermed associeret med
den fundamenale familie.
$$( \xi \in C^0 )_{\xi \in \mathcal{K}(0) }$$

hvor $\xi \in C^0$ er et $\mathcal{K}$-fjælt mål af $\xi$ på $C^0$, jf. sætnin 8.1. Specielt er enhver associeret herne-
assosieret med et net indceriet ved mængden
$\mathcal{K}(0)$ af alle kompakte omregre af 0 i G.

Vi minder om, at $\mu$ er givet et positivt
mål $\mu$ med $\mu (G) \leq 1$, kaldes et mål $\xi \in D^+(\mathcal{K})$
$\mu$-superharmonisk, hvis
$$\mu * \xi \leq \xi,$$
og analogt kaldes $\xi \in D^+(\mathcal{K})$ $\mu$-harmonisk
rampen
$$\mu * \xi = \xi.$$

**Definition.** Lad $\mathcal{K}$ være en associeret herne,
der er associeret med den fundamentale fami-
lie $\{ \mathcal{K}(0) \}_{\mathcal{K}(0) \in \mathcal{K}(0)}$. Et positivt mål $\xi$ kaldes
$\mathcal{K}(0)$-superharmonisk (npr. $\mathcal{K}(0)$-harmonisk),
rampen $\xi \in D^+(\mathcal{K}(0))$ for alle $\mathcal{K}(0) \in \mathcal{K}(0)$ og

$$\forall \mathcal{K}(0) : \mathcal{K}(0) * \xi \leq \xi$$

npr.

$$\forall \mathcal{K}(0) : \mathcal{K}(0) * \xi = \xi.$$
Sætning 8.4. Lad \( \{ \theta_v \}_{v \in \Lambda(0)} \) være en fundamental familie. Lad individet \( (\mu^\xi_t)_{t \geq 0} \) være din enestående fulde foruden som potentialekurren. Et positivt mæl \( \xi \) på \( \theta_v \)-superharmonisk (resp. \( \theta_v \)-harmonisk) hvis og kun hvis \( \xi \) er recessivt (resp. invariant) m. h. t. \( (\mu^\xi_t)_{t \geq 0} \).

Beweis: Betraguerne er som i forårsige sætning. Vi går frem i en række skridt:

1. \( \xi \) \( \theta_v \)-superharmonisk \( \Rightarrow \xi \) recessiv.

For hvert \( v \in \Lambda(0) \) definerer en foldningssemigruppe ved

\[
\mu^\xi_t = e^{-ta_v \exp (ta_v \theta_v)} = e^{-ta_v \sum_{n=0}^{\infty} \frac{1}{n!} (ta_v \theta_v)^n}.
\]

just både 3.9. Nu gælder

\[
(ta_v \theta_v)^n \theta_v \xi = ta_v^n \theta_v \theta_v \theta_v \xi \leq ta_v^n \theta_v \xi,
\]

hvoraf

\[
e^{-ta_v \sum_{n=0}^{N} \frac{1}{n!} (ta_v \theta_v)^n \theta_v \xi} \leq \xi,
\]

\[
e^{-ta_v \sum_{n=0}^{N} \frac{1}{n!} (ta_v)^n \theta_v \xi} \leq \xi.
\]
og dermed
\[ \mu_t \ast \xi \leq \xi. \]

Altid er $\xi$ excessivt m.h.t. foldningsremigrer-

sen $\mu^V_t \ast 0$. Enhver jagt har man:

\[ \lim_{\nu \to \nu(0)} \mu^V_t \ast \mu_t \text{ i Bernoulli-topologien,} \]

vi ved Fourier-transformation fås:

\[ \hat{\mu}^V_t = e^{-ta \nu (1-\hat{\delta}_\nu)} = e^{-t\hat{\theta}_\nu} \psi \to e^{-t\psi} \]

ligeligt over kompatible mængder. Specielt

gælder

\[ \mu^V_t \to \mu_t \text{ vagt}, \]

og da vi har

\[ \forall \nu \in \nu(0): \mu^V_t \ast \xi \leq \xi \]

fås af sætning 7.5, at for alle $t > 0$ gælder det:

\[ \mu_t \ast \xi \leq \xi. \]

Vi har hermed vist, at $\xi$ er excessivt m.h.t.

foldningsremigrergruppen $\mu^V_t \ast 0$. 
2° Hvis \( \xi \in D^+(H) \) har man, at \( \eta \cdot \xi \)

\( \eta \) \( \xi \)-superharmonisk.

Dette følger af 2) p. 336, idet

\( \sigma \eta \cdot (\xi \cdot \xi) = (\sigma \eta \cdot \xi) \cdot \xi \leq \xi \cdot \xi \).

3° \( \xi \) \( \xi \)-superharmonisk.

Lad \( \psi \in V(0) \). Det skal vise, at \( \sigma \eta \cdot \xi \leq \xi \). Vi

setninger \( \varphi \in K_+(G) \). Da

\[
\mu \sigma \cdot (\xi \sigma \cdot \varphi) = (\mu \sigma \cdot \xi) \cdot \varphi \leq \xi \cdot \varphi
\]

\( \mu \sigma \cdot \xi \) er kontinuerligt \( \xi \)-superharmonisk funktion, og

af densering 7.28 finder vi, at det nødvendige net

af kontinuerlige potentiokrater \( \{ p_\omega \}_{\omega \in \Omega} \) så

\[
\sup_{\omega \in \Omega} p_\omega = \xi \cdot \varphi
\]

Diver gelser nu

\[
\langle \sigma \eta \cdot \xi \rangle \varphi = \langle \sigma \eta \cdot \xi \rangle \varphi = \langle \sigma \eta \rangle \langle \xi \rangle \varphi
\]

\[
\langle \sigma \eta \cdot \sup_{\omega \in \Omega} p_\omega \rangle = \sup_{\omega \in \Omega} \langle \sigma \eta \cdot p_\omega \rangle
\]

\[
\sup_{\omega \in \Omega} \langle \xi \rangle \langle \sigma \eta \cdot p_\omega \rangle \leq \sup_{\omega \in \Omega} \langle \xi \rangle \langle \sigma_0 \cdot p_\omega \rangle
\]
\[ \langle \mathcal{E}_0, \sup \rho \omega \rangle = \langle \mathcal{E}_0, \xi \ast \psi \rangle = \omega \in \Omega \]

\[ \langle \xi, \psi \rangle, \]

hvor ulighedsognet følger af, at de kontinuerlige potentialer \( \rho \omega \) under \( \mathcal{E}_0 \) er vist at være \( \delta \)-superharmoniske.

\[ 4^0 \xi \delta \text{-harmonisk} \Rightarrow \xi \text{ invariant.} \]

Målet \( \xi \) er specielt \( \delta \)-superharmonisk, og iflg. 1.° derfor recessivt. Ifgl. Ring's dekompositionsatzning kan \( \xi \) skrives

\[ \xi = \mathcal{H} \ast \delta' + \eta, \]

hvor \( \delta' \in D^+(\mathcal{H}) \) og \( \eta \) er den invariente del af \( \xi \).

Følger vi nu med \( \delta \)-fasc, idet \( \eta \) specielt er recessivt og derfor \( \delta \)-superharmonisk:

\[ \xi = \delta \ast \xi = \delta \ast (\mathcal{H} \ast \delta' + \delta \ast \eta) \leq \mathcal{H} \ast \delta' + \eta = \xi. \]

Der må altid gælde lighedsognet overalt. Specielt gælder, at

\[ \delta \ast \mathcal{H} \ast \delta' = \mathcal{H} \ast \delta'. \]
eller \[ \eta \ast \beta = 0. \]

Da imidlertid

\[ \eta \rightarrow \epsilon \] i Bernoulli-topologiën,

må der gælde \( \beta = 0 \). Altså har man

\[ \xi = \eta, \]

og derfor er \( \xi \) invariant.

5° \( \xi \) invariant \( \Rightarrow \xi \) \( \beta \)-harmonisk.

Lad os betragte et fast \( V \in \mathcal{V}(0) \). Allerede \( \xi \)
rå spesielt exisitter og derfor \( \beta \)-supiharmonisk, altså

\[ \beta \ast \xi \leq \xi \]

Ved gentagning anvendelse hvert fæl., at

\[ (\beta \ast \xi)^m \quad m \in \mathbb{N} \]

er en afhængig følge, hvorfor

\[ \xi_0 = \lim_{m \to \infty} \beta \ast \xi \]

existrer. Som det positive mål \( \xi_0 \) gælder:
\[ \xi_0 \text{ er } \delta_\nu \text{- harmonisk, thi} \]
\[ \delta_\nu \star \xi_0 = \lim_{m \to \infty} \delta_\nu^{m+1} \star \xi = \xi_0. \]

\[ \xi_0 \text{ er invariant, thi} \]
\[ \forall t > 0: \mu_t \star \delta_\nu \star \xi = \delta_\nu \star \xi, \]
og ved grænseovergang får man da
\[ \forall t > 0: \mu_t \star \xi_0 = \xi_0. \]

Da \( \xi \) er \( \delta_\nu \)-superharmonisk, ses som under 1\(^0 \) at \( \xi \) er univ. m. h. t. den trampinske foldningsgruppe
\[ (e^{-t \exp (t \delta_\nu)})_{t>0}, \]

hvis potentialeerne er den elementære kerne
\[ a_\nu \kappa_\nu = \sum_{m=0}^{\infty} \delta_\nu^m. \]

Vi kan derfor betragte Riesz-dekompositionen af \( \xi \) m. h. t. denne foldningsgruppe. Vi får
\[ \xi = a_\nu \kappa_\nu \star \delta + \xi_0, \]

hvor \( \delta \in D^+(\kappa_\nu) \), idet det af sætning 7.14 ser, at den invariant del af \( \xi \) meldef er
\[ \xi_0 = \lim_{n \to \infty} e^{-\nu} \xi. \]

Nu skal det selvfølgelig blot vises, at \( \sigma = 0 \), når \( \xi = \xi_0 \), således at

\[ \xi_0 \star e_\nu = \xi. \]

Følger vi dekompositionen med \( \eta_\nu \) får vi:

\[ \xi_0 \star \eta_\nu = a_\nu \eta_\nu \star \sigma \star \eta_\nu + \xi_0 \star \eta_\nu = a_\nu \eta_\nu \star \sigma + \xi_0 \star \eta_\nu, \]

idet \( \eta_\nu \star \eta_\nu = \eta_\nu \). Følger vi dernæst med \( \mu_\tau \) under lighedshenvis, at \( \eta_\nu \) er invariant, og \( \xi_0 \) og \( \xi_0 \star \xi_0 \) er invarianté på:

\[ \xi_0 \star \eta_\nu = (\mu_\tau \star \xi_0) \star \eta_\nu = a \tau (\mu_\tau \star \xi_0) \star \sigma + (\mu_\tau \star \xi_0) \star \eta_\nu \leq a \tau \eta_\nu \star \sigma + \xi_0 \star \eta_\nu = \xi_0 \star \eta_\nu. \]

Der må derfor gælde lighedshenvis, altid har vi:

\[ \eta_\nu \star \sigma = (\mu_\tau \star \eta_\nu) \star \sigma \]

eller

\[ (\int_0^t \mu_\tau \, do) \star \sigma' = (\eta_\nu - \mu_\tau \star \eta_\nu) \star \sigma' = 0, \]

men da \( \int_0^t \mu_\tau \, do = 0 \), har vi \( \sigma' = 0 \).
Bemærkning. På baggrund af sætnings 8.4 ser man, at definitionen på, at et positivt mål \( \xi \) er \( \phi \)-superharmonisk (resp. \( \phi \)-harmonisk) ikke afgører af den fundamenhal familie \( (\phi_Y)_Y \in \mathcal{Y}(\mathfrak{C}) \) hvormed potentiálkernen \( \mathfrak{C} \) er associeret.

Lad nu \( G = \mathbb{R}^m \), \( m \geq 3 \) og \( (\mu_t)_{t \geq 0} \) den Browniske semigruppe på \( G \). Denne er da transfient med potentiálkernen

\[
\mathfrak{C} = \kappa_m \frac{1}{\| x \|^{m-2}} \, dx,
\]

hvor

\[
\kappa_m = \frac{1}{(m-2) \omega_m} \quad \text{og} \quad \omega_m = \frac{2\pi^{\frac{m}{2}}}{\Gamma \left( \frac{m}{2} \right)}.
\]

Størrelsen \( \omega_m \) er "overfladearealet" af enhedssfæren i \( \mathbb{R}^m \). Lad \( \mathfrak{C}_x \) være den jævne fordeling på

\[
S_x = \{ x \in \mathbb{R}^m \mid \| x \| = \xi \}.
\]

I eksempel p. 340 er det vist, at \( (\mathfrak{C}_x)_{x > 0} \) er en fundamental familie for potentiálkernen \( \mathfrak{C} \). På baggrund af sætnings 8.4 og bemærkning- en ovenfor, ser vi, at det for et positivt mål \( \xi \) gælder:
De unike invariante mål $m$. h. t. den Brownske rumgruppe på $\mathbb{R}^n$, $n \geq 3$ er Lebesguemålet og de middele proportionale mål.

Bevis: 1. Vi vil først vise, at hvis $\varphi : \mathbb{R}^n \rightarrow [0, \infty]$ er en kontinuerlig funktion, og hvis man har $\forall x > 0 : 6_r \ast \varphi = \varphi$, da er $\varphi$ konstant. Lad

$$B(x, R) = \{ y \in \mathbb{R}^n | \| x - y \| \leq R \}.$$
Vi indfører polare koordinater. For \( y \in \mathbb{R}^n \) har vi så:

\[
y = r \xi , \quad r = \|y\| \quad \text{og} \quad \xi = \frac{y}{r}.
\]

Der gælder følgende for Lebesguemalet \( dy \):

\[
dy = \alpha_n r^{n-1} dr \, d\sigma_1(\xi),
\]

og derfor har vi for en funktion \( f \in L^1(\mathbb{R}^n) \)

\[
\int f(y) \, dy = \int_0^\infty \left[ \alpha_n \int_{\|\xi\| = 1} f(x, \xi) \, d\sigma_1(\xi) \right] r^{n-1} \, dr.
\]

\[
= \int_{\|\xi\| = 1} \left( \int_0^\infty \alpha_n f(x, \xi) \, r^{n-1} \, dr \right) \, d\sigma_1(\xi).
\]

Lad nu \( f \) være en kontinuerlig funktion:

\[
f : \mathbb{R}^n \rightarrow [0, \infty],
\]

vi har da følgende formel:

\[
(\ast) \quad \int_{B(x, R)} f(y) \, dy = \int_0^R \left[ \alpha_n \int_{\|\xi\| = 1} f(x + r\xi) \, d\sigma_1(\xi) \right] r^{n-1} \, dr.
\]
Angående integration i polare koordinater henviser vi til C. Berg UEP p. 11 - p. 16.

Vi har nu tilfælde:

\[
\begin{align*}
\delta_n \ast f(x) &= \int f(x-y) \, d\delta_n(y) = \\
&= \int f(x-\eta) \, d\delta_1(\xi) = \\
&= \int f(x+\eta) \, d\delta_1(\xi) = f(x).
\end{align*}
\]

Ved brug af (*) får vi:

\[
\int_B f(y) \, dy = \int_0^R \alpha_m r^{m-1} f(x) \, dr = \frac{\alpha_m R^m}{m} f(x)
\]

\[
= m \left( B(x,R) \right) f(x),
\]

hvor \( m \) er Lebesguemålet på \( \mathbb{R}^n \). Lad nu \( x_1, x_2 \in \mathbb{R}^n \) være to vilkårlige punkter. Der er

\[
B(x_1, R) \subseteq B(x_2, R + \|x_1 - x_2\|)
\]

og vi får dermed:

\[
\frac{\alpha_m R^m}{m} f(x_1) = \int_{B(x_1, R)} f(y) \, dy \leq \int_{B(x_1, R)} f(y) \, dy
\]
\[ \int f(y) \, dy = \frac{\alpha_m \,(R+\|x_1-x_2\|)^n}{m} \, f(x_2) \]

B(x_2, R + \|x_1-x_2\|)

hvoraf vi følger:

\[ \forall R > 0 : \quad f(x_1) \leq \left( \frac{R + \|x_1-x_2\|}{R} \right)^n f(x_2) \]

og for \( R \to \infty \) følger derfor:

\[ f(x_1) \leq f(x_2). \]

Vi har dermed vist, at \( f \) er konstant.

2°. Lad \( \xi \) være et invariant mål og \( (\varphi_e)_{e>0} \)

en approximerende enhed. Vi husker

\[ \text{supp} \varphi_e \subseteq \{ x \mid \|x\| \leq \varepsilon \}. \]

Funktionen \( \xi \ast \varphi_e \) er da en kontinuerlig positiv funktion, der er invariant. Vi har altså

\[ \forall x \in \mathbb{R}^n \forall \varepsilon > 0 : \quad \xi \ast \varphi_e = \xi \ast \varphi_e \]

og hermed

\[ (\xi \ast \varphi_e) \ast (\varphi_e \, dx) = \xi \ast (\varphi_e \, dx). \]

Vi har imidlertid:

\[ \varphi_e \, dx \to \delta_0 \quad \text{vagt} \]

\( e \to 0 \)
og heraf følger:
\[ \varepsilon_x \ast \xi = \frac{\varepsilon_x}{x} \]
og dernæst er \( \xi \) et Haarmål på \( \mathbb{R}^n \).

**Definition** En funktion
\[ f : \mathbb{R}^n \rightarrow ]-\infty, \infty[ \]
kalder **superharmonisk**, dersom

1) \( f \) er midad halvkontinuitet.
2) \( \forall x > 0 : \varepsilon_x \ast f \leq f \).
3) \( f \equiv \infty \).

**Lemma 8.6.** En superharmonisk funktion er lokal', integrabel, og der gælder

\[
\lim_{r \to 0} \frac{1}{m(B(x, r))} \int_{B(x, r)} f(y) \, dy = f(x).
\]

**Bevis:** Som i buvist for sætning 8.5 følger:
\[ \forall x \in \mathbb{R}^n \forall r > 0 : \int_{B(x, r)} f(y) \, dy \leq m(B(x, r)) f(x). \]
Hjgl. 3) Findes \( x_0 \in \mathbb{R}^n \), så \( \varphi(x_0) < \infty \), og vi har derfor

\[ \forall r > 0 : \int_{B(x_0, r)} \varphi(y) dy < \infty. \]

Lad nu \( K \) være en kompakt delmængde af \( \mathbb{R}^n \). Der findes da et \( r > 0 \) så

\[ K \subseteq B(x_0, r), \]

og der gælder derfor:

\[ \int_{K} \varphi(y) dy < \infty. \]

Da \( \varphi \) er nedad til begrenset, gælder det

\[ \int_{K} \varphi(y) dy > -\infty, \]

og vi har dermed vist, at \( \varphi \in L^1_{\text{loc}}(\mathbb{R}^n) \).

Da \( \varphi \) er nedad halvkontinuert i \( x \in \mathbb{R}^n \) har vi

\[ \forall \varepsilon > 0 \exists U \in U(x) \forall y \in U : \varphi(y) > \varphi(x) - \varepsilon. \]

Vi vælger nu \( r_0 > 0 \) så lille, at \( B(x, r_0) \subseteq U \),
og får derfor for $x < x_0$:

$$\varphi(x) = \frac{1}{m(B(x,r))} \int_{B(x,r)} \varphi(y) \, dy,$$

$$\geq \frac{1}{m(B(x,r))} \left[ \varphi(x) - \varepsilon \right] \, dy = \varphi(x) - \varepsilon,$$

hvoraf det ønskede fremgår.

**Corollar 8.7.** Hvis to superharmoniske funktioner er insvært overalt er de identiske.

**Bevis:** Klart.

**Sætning 8.8.** Ethvert ecessivt mål m. h. t. din Browniske semigruppe på $\mathbb{R}^m$, $m \geq 3$ har en og kun en superharmonisk laktud m. h. t. Lebesgue-målet $\mathbb{E}$ på $\mathbb{R}^m$. Hvis $\varphi$ er en positiv superharmonisk funktion, så er målet $\mathbb{E} = \varphi \, dx$ et ecessivt mål.

**Bevis:** Lad $\varphi$ være superharmonisk. Ved $\mathbb{E} = \varphi \, dx$ defineres et positivt, da $\varphi$ er dekadt integrabel. Målet $\mathbb{E}$ er ecessivt, thi af 2) i definitionen får
\[ \sigma(x) (f dx) = (\sigma \ast f) dx \leq f dx. \]

Lad nu \( \xi \) være et exsisterende mål. Iflg. Riesz' diskompositionstænkning findes der et mål \( \zeta \in \mathcal{D}^+(\mathcal{M}) \) og et invariant mål \( \eta \), så

\[ \xi = \zeta \ast \sigma + \eta. \tag{**} \]

Da \( \eta \) er invariant, har vi iflg. sætning 8.5:

\[ \exists k \geq 0 : \eta = k dx. \]

Vi definerer nu funktionen \( f \) ved

\[ f(x) = \kappa n \int_{\|x-y\|^{n-2}}^{1} \sigma(y) + k, \]

så er \( f \) en subharmonisk funktion, thi:

Ad 1) \( f \) er nedad halvkontinuert, da \( \frac{1}{\|x\|^{n-2}} \) er nedad halvkontinuert.

Ad 2) På p. 340 har vi viet

\[ \sigma \ast \frac{1}{\|x\|^{n-2}} \leq \frac{1}{\|x\|^{n-2}}. \]
Ad. 3) Af (**) følger

\[ \forall \varphi \in X^+(\mathbb{R}^n); \langle \xi, \varphi \rangle = \int f(x) \varphi(x) \, dx, \]

og da dette er endlig, er \( f \in L^1_{\text{loc}}(\mathbb{R}^n) \). Specielt gælder da, at \( f \not\equiv \infty \).

Vi har nu, at \( f \) er superharmonisk, og at

\[ \xi = f \, dx. \]

Lad \( f \) og \( g \) være superharmoniske funktioner så

\[ \xi = f \, dx = g \, dx. \]

Da er \( f = g \) for enhver alle \( x \), og iflg. corollar 8.7. har man da, at \( f = g \). □

corollar 8.9. (Den klassiske Riesz' dekompositionssætning). For enhver positive superharmonisk funktion \( f \) findes \( \sigma \in D^+(\mathbb{R}) \) og en konstant \( k \geq 0 \) så

\[ f(x) = k_m \int \frac{1}{|x-y|^{n-2}} \, d\sigma(y) + k. \]

Enhver funktion \( f \) af denne form er superhar-
Sætning 8.10. Lad $x$ være Newtonhverv, og lad funktionen $h$ være defineret ved

$$h(x) = \begin{cases} 
1 & \text{for } \|x\| \leq 1 \\
\frac{1}{\|x\|^{m-2}} & \text{for } \|x\| > 1.
\end{cases}$$

Dann har da:

$$D^+(x) = \{ \theta \geq 0 \mid \int h_\theta(y) d\sigma(y) < \infty \}.$$ 

Bemærk: 1º. Lad $\theta \in D^+(x)$. Så har $x \neq 0$ en

fælde $m$, d. h. t. Lebesguesæt, og denne fælde

er en lokalt integrabel funktion, nemlig:

$$f(x) = \lambda_m \int \frac{1}{\|x - y\|^{m-2}} d\sigma(y)$$

og iflg. corollar 8.9. er $f$ superharmonisk. Vi

har da:

$$\exists x_0 \in \mathbb{R}^m : \lambda_m \int \frac{1}{\|x_0 - y\|^{m-2}} d\sigma(y) < \infty.$$ 

Endvidere gælder

$$\exists R > 1 \forall y : \|y\| \geq R \Rightarrow \frac{\|x_0 - y\|^{m-2}}{\|y\|^{m-2}} \leq 2.$$
og dermed opnår vi:

\[ \forall y : \| y \| \geq R : h(y) \leq \frac{2}{\| x_0 - y \|^{m-2}}. \]

Vi definerer nu:

\[ \alpha = \inf_{\| y \| \leq R} \frac{1}{\| x_0 - y \|^{m-2}} > 0, \]

og så gælder

\[ h(y) \leq \frac{\max \{ \frac{1}{\alpha}, 2 \}}{\| x_0 - y \|^{m-2}}. \]

og dermed er

\[ \int h(y) \, d\sigma(y) < \infty. \]

2. Vi antager nu, at \[ \int h(y) \, d\sigma(y) < \infty \] og indfører funktionen

\[ \varphi(x) = \begin{cases} \frac{1}{\| x \|^{m-2}} - 1 & \text{for } \| x \| \leq 1 \\ 0 & \text{for } \| x \| > 1 \end{cases}. \]

Eller men, at \( \varphi \) er lokalintegabel, og at \( \varphi \, dx \) har kompakt støtte. Idet
\[ h(x) + \varphi(x) = \frac{1}{\|x\|^{m-2}} \]

har man

\[ h\,dx + \varphi\,dx = \frac{1}{\|x\|^{m-2}}\,dx \]

og dermed

\[ \delta \in D^+(\mathcal{C}) \iff \delta \in D^+(h\,dx). \]

Vi har

\[ \frac{h(x-y)}{h(y)} \to 1 \text{ for } \|y\| \to \infty \]

ligeslået over kompakte delmængder af \( \mathbb{R}^m \).

Dette viser følgende udsagn:

\[ \forall K \subseteq \mathbb{R}^m, K \text{ kompakt } \exists C_K > 0 \forall x \in K \forall y \in \mathbb{R}^m: \]

\[ h(x-y) \leq C_K \, h(y). \]

Hvoraf følger

\[ \forall x \in K: \ h \ast \delta(x) \leq C_K \int h(y) \, d\delta(y) < \infty, \]

og dermed er \( h \ast \delta \in L^1_{loc} (\mathbb{R}^m) \). Vi har nu, at vælge vi \( g \in C_+ (\mathbb{R}^m) \), får vi følgende:
\[ \int g(x) \cdot h(x) \, dx = \int g(x) \cdot \int h(x-y) \, d\delta(y) \, dx = \int g(x) \cdot \int h(x-y) \, dx \cdot d\delta(y) = \int g(x+y) \cdot h(x) \, dx \cdot d\delta(y) = \int g(x) \cdot d\left(\delta(x)\right)(x) < \infty, \]

så \( \delta \in D^+(\mu dx) \).

Vi vender nu tilbage til den generelle teori.
Lad \( (\mu_t)_{t \geq 0} \) være en transient goldningssemi-
gruppe på LCA-gruppen \( G \) med potentialkernen
\[ \kappa = \int_0^\infty \mu_t \, dt. \]

**Definition.** Lad \( \omega \in G \) være en åben mængde,
og lad \( \delta \) være et recessivt mål. Vid det _recessive-
hide mål af \( \delta \) på \( \omega \) forkast
\[ \inf \{ \tau \mid \tau \text{ recessivt og } \tau \geq \delta \text{ på } \omega \}. \]
Dette infimum betegner vi (udlukkende af historiske grunde) med $R^w_\varepsilon$.

Man nu, at $R^w_\varepsilon$ er recession, og at

$$R^w_\varepsilon \leq \varepsilon \text{ og } R^w_\varepsilon = \varepsilon \text{ i } w.$$ 

Vi har, at $R^w_\varepsilon$ er voksende i $w$, hvilket betyder:

$$w_1 \leq w_2 \Rightarrow R^w_{\varepsilon_1} \leq R^w_{\varepsilon_2},$$

så $R^w_{\varepsilon_2}$ er recession og $R^w_{\varepsilon_2} = \varepsilon$ i $w$, og da særligt i $w_1$. Det er altså at

$$\varepsilon_1 \leq \varepsilon_2 \Rightarrow R^w_{\varepsilon_1} \leq R^w_{\varepsilon_2}.$$ 

**Sætning 8.11** Lad $\varepsilon$ være et recession mål og lad $w \leq \mathcal{G}$ være en åben mængde. Lad individet

$$R^w_{\varepsilon} = u \times \varepsilon + \eta$$

være Riesz-dekompositionen af det recession mål $R^w_{\varepsilon}$. 

Så vil nupp $\sigma \subseteq \bar{w}$.

Beweis: Antag at $a \notin \bar{w}$ og lad $W$ være en åben relativt kompakt omgivning af $a$, så

$$\bar{w} \cap \bar{W} = \emptyset.$$ 

Lad $\sigma'$ være restriktionen af $\sigma$ til $W$ og sat

$$\sigma'' = \sigma - \sigma'.$$

Mangden $\bar{w} - \bar{W}$ er differens mellem en afgekadt og en kompakt mængde, og er derfor afgekadt. Da

$$0 \notin \bar{w} - \bar{W},$$

findes en kompakt omgivning $V$ af $0$, så

$$V \cap (\bar{w} - \bar{W}) = \emptyset.$$ 

Lad $\sigma''$ være et $\nu$-fjort mål af $\sigma_0$ på $CV$. Så har man

$$\nu \ast \sigma'' \subseteq \nu$$

og

$$\nu \ast \sigma'' = \nu \in CV$$

hvoraf
\[ \mathbf{u} \times \mathbf{e}_y \times \mathbf{e}' \leq \mathbf{u} \times \mathbf{e}' \]

\[ \mathbf{u} \times \mathbf{e}_y \times \mathbf{e}' = \mathbf{u} \times \mathbf{e}' \quad \text{in } W, \]

\[ \text{the rad } \mathbf{u} \in \mathcal{H}_+(\mathcal{G}) \text{ is supp } \mathbf{u} \subseteq W. \text{ Da har vi } \]

\[ < \mathbf{u} \times \mathbf{e}_y \times \mathbf{e}', \mathbf{f} > = \]
\[ < \mathbf{u} \times \mathbf{e}_y, \mathbf{e}' \times \mathbf{f} > = \]
\[ < \mathbf{u}, \mathbf{e}' \times \mathbf{f} >, \]

\[ \text{idet } \text{supp } (\mathbf{e}' \times \mathbf{f}) \subseteq \text{supp } \mathbf{f} - \text{supp } \mathbf{e}' = W - W \subseteq C \mathcal{V}. \]

\[ \text{Vi har allå } \]
\[ \mathbf{u} \times (\mathbf{e}_y \times \mathbf{e}' + \mathbf{e}''') \leq \mathbf{u} \times \mathbf{e}' \]

\[ \text{og } \]
\[ \mathbf{u} \times (\mathbf{e}_y \times \mathbf{e}' + \mathbf{e}''') = \mathbf{u} \times \mathbf{e}' \quad \text{in } W, \]

\[ \text{og dermed } \]
\[ \mathbf{z} = \mathbf{u} \times (\mathbf{e}_y \times \mathbf{e}' + \mathbf{e}''') + \mathbf{e}' \leq \mathbf{R}^w_{\mathcal{V}} \]

\[ \text{og } \]
\[ \mathbf{z} = \mathbf{u} \times (\mathbf{e}_y \times \mathbf{e}' + \mathbf{e}''') + \mathbf{e}' = \mathbf{R}^w_{\mathcal{V}} \quad \text{in } W. \]
Målet $\zeta$ er i niveau, og da $R^w_\zeta = \zeta \cap w$, har vi

$$\zeta \subseteq \zeta$$

og

$$\zeta = \zeta \cap w,$$

men når ikke $\zeta \geq R^w_\zeta$.

Vi har altid, at

$$\zeta = R^w_\zeta$$

hvorfra

$$\mu \ast (c_0 - c') = \mu \ast c'$$

eller

$$[\mu \ast (c_0 - c')] \triangleq c' = 0.$$ 

Da $\mu \ast (c_0 - c') \geq 0$ og $\neq 0$, slutter vi, at

$$c' = 0.$$ 

Altid er nu trikonomin af $0$ til $W$ mulig målet, og derfor vil

$$W \cap \text{supp } c' = \emptyset,$$

spesielt vil $a \neq \text{supp } c'$. 
Da $a \neq \overline{w}$ var vilkårligt valgt, slutter vi

undelig, at

\[ \mu_{\nu} 0 \leq \overline{w}. \]

**Corollar 8.12.** Lad $w \in G$ være åben og

$\xi \in D^+(w)$. For $\xi = \nu \neq 0$ er

\[ R_{\xi}^\nu = \nu \times \overline{\sigma}, \]

hvor $\overline{\sigma}$ er det af de $\nu$-fyjde mål af $\sigma$ på $w$, der har **mindst potential**.

**Bemt:** Da $R_{\xi}^\nu$ er**, se corollar 7.19.

har vi, at $R_{\xi}^\nu$ er et potential, se corollar 7.19.

Der findes altså et $\overline{\sigma} \in D^+(w)$, så

\[ R_{\xi}^\nu = \nu \times \overline{\sigma}, \]

og af satning 8.11 følger, at $\mu_{\nu} 0 \leq \overline{w}$. Det

er derfor klart, at $\overline{\sigma}$ er et $\nu$-fyjet mål af $\sigma$

på $w$.  

![Image of the page](image_url)
Beklager ø', at vilkårligt \( x \)-fjist mål af \( o \) på \( w \), gælder det
\[
 x \in o' = x \in o = \xi \in w
\]
og derfor er
\[
 x \in o' \Rightarrow R_x^w = x \in o^2.
\]

**Bemærkning.** Af principippet om manum unsynlighed, corollar 7.18, følger, at der højst findes ét \( x \)-fjist mål af \( o \) på \( w \) med mindste potentiale. Altå er \( o \) enhedligt bestemt.

**Definition.** Det af de \( x \)-fjide mål af \( o \) på \( w \), der giver det mindste potentiale, betegnes
\[ o^w \]
og det kaldes det harmoniske \( x \)-fjide mål af \( o \) på \( w \).

**Theorem 8.2.** Vis, at for ethvert \( x \)-fjist mål \( \xi \) og for enhver åben relativt kompakt mængde \( w = G \cup R_\xi^w \) et potentiale.

**Vindh:** Vis først påstanden, når \( \xi \) er en
kontinuerlig lineær funktion.

Corollar 8. 13. Lad $w$ være en sådan relative kompakt delmængde af $G$. Så er $R^w_{w_0}$ et potentiál og

$$R^w_{w_0} = \kappa \ast \lambda,$$

hvori $\lambda$ er en $\nu$-lignægtssfordeling på $w$. For $\lambda$ gælder altid:

$$\supp \lambda \subseteq \bar{w},$$

$$\kappa \ast \lambda \leq w_0,$$

$$\kappa \ast \lambda = w_0 \text{ i } w.$$

Bemærk: Hvis, sætning 7. 23 findes der en $\nu$-lignægtssfordeling $\sigma$ på $w$. Da har vi specielt:

$$\kappa \ast \sigma \leq w_0,$$

og

$$\kappa \ast \sigma = w_0 \text{ i } w.$$
og dermed har man:

\[ u \times \lambda \leq u \varepsilon \]

og

\[ u \times \lambda = u \varepsilon - u \varepsilon. \]

Af sætnings 8.11. følger, at

\[ \text{supp } \lambda \subseteq \overline{w}, \]

og vi har dermed vist, at \( \lambda \) er en \( u \)-ligesagt-
fordeling på \( w \).

\[ \square \]

**Definition.** Ved den kanoniske \( u \)-ligesagt-
fordeling \( \lambda_w \) for en åben relativt kompakt
mængde \( w \) førstættes det mål \( \lambda_w \), for hvilket

\[ u \times \lambda_w = R \lambda_w^w. \]

Vid kapaciteten \( \text{cap } w \) for \( w \) førstættes den
totale mængde af \( \lambda_w \), altså

\[ \text{cap } w = \lambda_w (\lambda) = \lambda_w (\overline{w}). \]

**Bemærkning.** Af princippet om maxima positi-
visit, dvs. 7.8., fremgår, at
\[ \text{cap } \omega = \min \{ \gamma(G) \mid \gamma \text{ er en } \text{a}-\text{ligvægtsførsel på } \omega \}. \]

Vi har i sætning 7.26. p. 320 vist, at potentialtækken \( \eta \) for en brancient feltningsumi-
gruppe \( (\mu_t)_{t>0} \) opfylder det fuldstændige maximums-
princip. Sålæn \( \eta \) har \( a = 0 \) opnås dominations-
princippet:

\[ \forall \phi, g \in X^+(G): \eta \ast \phi(x) \leq \eta \ast g(x) \quad \text{for alle} \]
\[ x \in \text{supp } (\phi) \Rightarrow \eta \ast \phi \leq \eta \ast g. \]

Vi skal i den næste sætning give en variant af dette princip.

Sætning 8.14. (Dominationsprincippet for mål). Lad \( \delta \) være et positivt mål med kom-
pakt støtte og lad \( \xi \) være et excisivt mål. Hvis der findes en åben mængde \( \omega \), så

\[ \text{supp } \delta \subset \omega \quad \text{og} \quad \eta \ast \delta \leq \xi \quad \text{i } \omega \]

gælder det \( \eta \ast \delta \leq \xi \).
Beweis: Vi kan uden indskrænkning antage, at $\omega$ er relativt kompakt. Vi bemærker, at $\sigma \in \mathcal{D}^+(\mathcal{K})$, da $\text{supp} \sigma$ er kompakt.

Vi sætter nu

$$\xi_0 = \inf \left\{ x \in \mathcal{K}, x \leq \xi \right\}.$$  

Da $x$ er $\xi_0$ et potentielt, og af corollar 8.12 får man, at også $R^x_{\xi_0}$ er et potentielt. Der findes allerede et $\tau \in \mathcal{D}^+(\mathcal{K})$, så

$$R^x_{\xi_0} = x + \tau$$

og

$$\text{supp } \tau \subseteq \bar{\omega}.$$  

Lad $V_0$ være en kompakt omgivning af $0$, så

$$\text{supp } \sigma - V_0 \subseteq \omega,$$  

og lad $W_0$ være en kompakt symmetrisk omgivning af $0$, så

$$W_0 + W_0 \subseteq V_0.$$  

Lad individuelt $(q(v))_{v \in V(0)}$ være en approximativ enhed.
Betrægt nu \( V \in \mathcal{V}(0) \), så \( V \subseteq W_0 \). Da har man:

\[
\forall x \in \text{uppr } b - W_0 : u * \tau * \varphi_V (x) = u * b * \varphi_V (x)
\]

og iflg. følger vi at

\[
\begin{align*}
u * \tau &= R_{\xi}^\omega = \xi_0 = u * b * \xi \omega, \\
\text{af} & \quad x \in \text{uppr } b - W_0 \text{ er}
\end{align*}
\]

\[
\begin{align*}
\text{uppr } (\varphi_V * \xi_x) &= \{ x \} - \text{uppr } \varphi_V \\
&\subseteq \text{uppr } b - W_0 - W_0 \\
&\subseteq \text{uppr } b - V_0 \\
&\subseteq \omega,
\end{align*}
\]

så

\[
\begin{align*}
u * \tau * \varphi_V (x) &= < u * \tau, \varphi_V * \xi_x > \\
&= < u * b, \varphi_V * \xi_x > \\
&= u * b * \varphi_V (x)
\end{align*}
\]

Lad nu \( f = b * \varphi_V \) og \( g = \tau * \varphi_V \). Da \( W \) er kompakt og \( \text{uppr } b \) og \( \text{uppr } \tau \) begge kompakte, og så har vi

\[
\varphi, g \in X_+(\mathbb{G}).
\]
Endvidere har vi

\[ \text{supp } f \subseteq \text{supp } b + W_0 \]
\[ = \text{supp } b - W_0 \]

og derfor gælder der:

\[ \forall x \in \text{supp } f : \mathcal{N} * f(x) = \mathcal{N} * g(x). \]

Af det fuldstandsige maksimumsprincip, sætning 7.26, slutter vi, at

\[ \mathcal{N} * f \leq \mathcal{N} * g \]

eller

\[ \mathcal{N} * b * f \leq \mathcal{N} * c * f, \]

Bemærk, at det egentlig er dominationsprincip-

pet, som det er omfattet på p. 383, vi har be-

mættet ovenfor.

For \( \mathcal{N} \rightarrow \{ 0 \} \) får vi

\[ \mathcal{N} * b \leq \mathcal{N} * \tau \]

hvorfor

\[ \mathcal{N} * b \leq \mathcal{N} * \tau = R_{\xi_0}^{\omega} \leq \xi_0 \leq \xi. \]
Læring 8.15. Om kapacitetsafbildningen

\[ w \mapsto \text{cap } w \]

fra de åbne relative kompakke delmængder \( w \) af \( G \) ind i \( R \) gælder følgende:

i) \( \text{cap } w > 0 \) og \( \text{cap } w = 0 \) hvis og kun hvis \( w = \emptyset \).

ii) Hvis \( w_1 \subseteq w_2 \) gælder der \( \text{cap } w_1 \leq \text{cap } w_2 \).

iii) Lad \( (w_x)_{x \in A} \) være et monotont værende

mæt af åbne relative kompakke delmængder af \( G \) og antag, at

\[ w = \bigcup_{x \in A} w_x \]

er relativt kompakt. Så har man

\[ \text{cap } w = \sup_{x \in A} \text{cap } w_x = \lim_{x \in A} \text{cap } w_x. \]

iv) Afbildningen \( w \mapsto \text{cap } w \) er stærkt

additiv, hvilket betyder:

\[ \text{cap } (w_1 \cap w_2) + \text{cap } (w_1 \cup w_2) \leq \text{cap } w_1 + \text{cap } w_2. \]
Bem.: Ad i) Det er klart, at \( \text{cap} \, \emptyset = 0 \). Da
\[
\text{supp} \, \lambda_0 \subseteq \emptyset,
\]
har vi, at \( \text{cap} \, \emptyset = 0 \). Husk nu, \( \text{cap} \, \emptyset = 0 \) er
\[
\lambda_0 (\emptyset) = 0,
\]
altså er \( \lambda_0 \) mul-tæt. Da
\[
\omega_0 = \emptyset \times \lambda_0 = 0 \quad \forall \omega
\]
eller vi, at \( \omega_0 (\omega) = 0 \); men så er \( \omega = \emptyset \), i

Ad ii) Husk \( \omega_1 \subseteq \omega_2 \) er \( R_{\omega_1}^w \leq R_{\omega_2}^w \),
altså
\[
\emptyset \times \lambda_1 \leq \emptyset \times \lambda_2.
\]
Af principippet om masvens positivitet, betragt 7.8., får man:
\[
\text{cap} \, \omega_1 = \lambda_1 (\emptyset) \leq \lambda_2 (\emptyset) = \text{cap} \, \omega_2.
\]

Ad iii) Nøglet \( (R_{\omega_0}^w) \) er et monotont
vokrende med af potentieler, majorisert af \( R_{\omega_0}^w \),

\[
\xi = \lim_{\omega_0 \searrow A} R_{\omega_0}^w \geq \sup_{\omega_0 \searrow A} R_{\omega_0}^w
\]
et lekavist mål, og \( \xi_0 \leq R_{\omega_0} \). Lad \( f \in K(\alpha) \), så

\[ \sup f = \omega. \]

Ved et simpelt kompakthedsargument får vi

\[ \exists \alpha_0 \in A : \sup f = \omega_{\alpha_0} \]

men så er

\[ \langle \xi_0, f \rangle = \langle R_{\omega_0}, f \rangle = \langle \omega_0, f \rangle \]

altså

\[ \xi_0 \geq \omega_0 \text{ i } \omega \]

hvoraf man får:

\[ \xi_0 = R_\omega \]

Vi har derfor \( \xi_0 = R_{\omega_0} \) og dermed

\[ \chi \ast \omega = \lim_{\alpha \in A} \chi \ast \omega_\alpha \]

hvoraf man ved hjælp af sætning 7.20 får, at mælet \( \omega_{\alpha} \) er konvergent og

\[ \omega = \lim_{\alpha \in A} \omega_{\alpha}. \]
Lad nu \( q \in \mathcal{K}^+(\mathfrak{I}) \), så \( q = 1 \) på \( \overline{\omega} \).

Da

\[
\text{supp } \lambda_\omega \subseteq \overline{\omega}
\]

og

\[
\forall \xi \in \mathfrak{I} : \text{supp } \lambda_{\omega_\xi} \subseteq \overline{\omega},
\]

har vi sluttelig:

\[
\text{cap } \omega = \langle \lambda_\omega, q \rangle
\]

\[=
\lim_{\xi \in \mathfrak{I}} \langle \lambda_{\omega_\xi}, q \rangle
\]

\[=
\lim_{\xi \in \mathfrak{I}} \text{cap } \omega_\xi
\]

\[=
\sup_{\xi \in \mathfrak{I}} \text{cap } \omega_\xi.
\]

Det sidste ligheds即可gælder, da \((\text{cap } \omega_\xi)_{\xi \in \mathfrak{I}}\)

er et rørende met, jf. \( \text{iv.} \).

Ad \( \text{iv.} \). Lad \( \omega'_1 \) og \( \omega'_2 \) være åbne relativt kompakte mængder, så:

\[
\overline{\omega'_1} \subseteq \omega_1 \quad \text{og} \quad \overline{\omega'_2} \subseteq \omega_2
\]

Så gælder der følgende udsigted i \( \omega_1 \cup \omega_2 \):

\[\chi \ast \lambda_{\omega'_1 \cap \omega'_2} + \chi \ast \lambda_{\omega'_1 \cup \omega'_2} \leq \chi \ast \lambda_{\omega_1} + \chi \ast \lambda_{\omega_2}\]
Där
\[
\text{supp} (\lambda_{w_1'} \wedge w_2' + \lambda_{w_1'} \vee w_2')
\leq w_2' \vee w_2' \leq w_1' \vee w_2
\] 
folger det af satning 8.14, att
\[
\mu \ast (\lambda_{w_1'} \wedge w_2' + \lambda_{w_1'} \vee w_2') \leq \mu \ast (\lambda_{w_1'} + \lambda_{w_2'}).
\]
Af principippet om massens positivitet, Øvelse 7.8., får vi nu:

\[ \text{cap}(w_1 \cap w_2') + \text{cap}(w_1' \cup w_2) \leq \text{cap} w_1 + \text{cap} w_2. \]

Vi lader nu \( w_1' \) være fastholdt, og lader \( w_2' \) gennemløbe et monotont voksende net af åbne relativ kompakte mængder, der har \( w_2 \) som foreningsmængde, og hvis afslutning er indeholdt i \( w_2 \). Af iii) får vi da:

\[ \text{cap}(w_1 \cap w_2) + \text{cap}(w_1' \cup w_2) \leq \text{cap} w_1 + \text{cap} w_2. \]

Vi lader nu \( w_1' \) gennemløbe et monotont voksende net af åbne relativ kompakte mængder, der har \( w_2 \) som foreningsmængde, og hvis afslutning er indeholdt i \( w_1 \). Vi får derfor nu:

\[ \text{cap}(w_1 \cap w_2') + \text{cap}(w_1' \cup w_2) \leq \text{cap} w_1 + \text{cap} w_2. \]

\[ \Box \]

**Øvelse 8.3.** Lad \( \Omega \) være et excisivt mål og lad \( w \subseteq \Omega \subseteq G \) være åbne mængder. Vis, at der gælder:
\[ R^w_w = R^\omega_\omega = R^w_\xi, \]

og at man for \( \sigma \in D^+(\Omega) \) har

\[ (\sigma \omega)_\Omega = (\sigma \Omega)_w = \sigma \omega, \]

hvor \( \sigma \omega \) betegner det kanoniske \( \sigma \)-fjide mål af \( \sigma \) på \( \Omega \).

**Døgle 8.4.** Lad \( (\omega_\alpha)_{\alpha \in A} \) være et monotont voksende sæt af åbne mængder og lad

\[ w = \bigcup_{\alpha \in A} \omega_\alpha. \]

Vis at der for hvert recessivt mål \( \xi \) gælder

\[ R^w_\xi = \sup_{\alpha \in A} R^{\omega_\alpha}_\xi = \lim_{A} R^{\omega_\alpha}_\xi. \]

Spænder gælder

\[ \xi = R^G_\xi = \sup \{ R^w_\xi | w åben, relativt kompakt \}, \]

for hvert recessivt mål \( \xi \). Hfbl. døgle 8.2 at \( R^w_\xi \)

et potential, og dermed har vi et basis for den version af sætning 7.33, der mislykkedes i første forsøg.
# Øvelse 8.5. Vi viser, at der for enhver åben mængde \( w \subseteq G \) og for alle reelle mål \( \xi_1, \xi_2 \) gælder

\[
R^{w}_{\xi_1 + \xi_2} = R^{w}_{\xi_1} + R^{w}_{\xi_2}.
\]

Vink: For at støtte ulighedens \( \geq \) anvendes ovelse 8.4 og ”dominationsprincippet for mål”, sætning 8.14.


**Definition.** En funktion \( f : [0, \infty] \rightarrow \mathbb{R} \)
kalder fuldstændig monotone, såfremt \( f \) er en \( C^\infty \)-funktion og

\[
\forall \rho \geq 0 : (-1)^{\rho} D^\rho f \geq 0.
\]

Man ser, at en fuldstændig monotone funktion er positiv, aflagende og konveks, og at mængden af fuldstændig monotone funktioner udgør en konveks hældt, der omfatter funktionerne:
\[ f(x) = \frac{a}{1 + x} \]
\[ f(x) = e^{-xs}; \quad s \geq 0. \]

Hvis funktionerne \( f \) og \( g \) er fuldstændig monotone er produktet \( fg \) en fuldstændig monotone funktion, thi ved hjælp af Leibniz' formel:

\[ \forall p \in \mathbb{N}_0: D^p(fg) = \sum_{k=0}^{p} \binom{p}{k} f^{(k)} g^{(p-k)} \]

finder man; at for ethvert \( p \in \mathbb{N}_0 \) gælder der:

\[ (-1)^p D^p(fg) = \sum_{k=0}^{p} \binom{p}{k} (-1)^k f^{(k)} (-1)^{p-k} g^{(p-k)} \geq 0. \]

**Definition.** En funktion \( f: [0, \infty] \to \mathbb{R} \) kaldes en **Bernstein-funktion**, iafint \( f \) er en \( C^\infty \)-funktion, og

\[ f \geq 0; \quad \forall p \geq 1: (-1)^p D^p f \leq 0. \]

En Bernstein-funktion er positiv, voksende...
og konvergerende. Mængden af Bernstein-funktioner udgør en konvektiv højle, der omfatter funktionerne:

\[ f(x) = \frac{k}{x} ; \quad k > 0 \]
\[ f(x) = x^{-\alpha} ; \quad 0 < \alpha \leq 1 \]
\[ f(x) = \log(1 + x) \]

Den afledede af en Bernstein-funktion er fuldstændig monotone.

Lad \( f \) være en Bernstein-funktion. Da eksisterer grænseværdien fra højre:

\[ f(0^+) = \lim_{x \to 0^+} f(x) < \infty \]

og

\[ f - f(0^+) \]

er en Bernstein-funktion.

Lad \( f \) være en fuldstændig monotone funktion. Der gælder da, at

\[ f(0^+) = \lim_{x \to 0^+} f(x) \leq \infty, \]

og så fremt \( f(0^+) < \infty \) er funktionen
\[ f(0^+) - f \]

een Bernstein-funktion. Dermed er også

\[ a + f(0^+) - f, \]

hvor \( a \) er en positiv konstant funktion, en Bernstein-funktion.

\[ \text{Læsning 9.1.} \quad \text{For en funktion } f: ]0, \infty[ \to \mathbb{R} \]

\( se \) følgende to betingelser umbebydende:

i) \( f \) er en Bernstein-funktion.

ii) \( f \geq 0 \) og funktionen \( e^{x}(-t f) \) er fuld-stændig monoton for alle \( t \in \mathbb{R}^+ \).

\[ \text{Beweis: } \quad i) \implies ii). \quad \text{Antag at } f \text{ er en Bernstein-funktion, og lad } t \in \mathbb{R}^+ \text{ være givet. Vi definerer nu funktionen} \]

\[ \varphi : ]-\infty, 0[ \to \mathbb{R} \]

\[ \text{ved} \]

\[ \varphi(x) = -t f(-x), \]

\( \text{og vi ser, at } \varphi \text{ er en } C^\infty \text{-funktion og } \varphi \leq 0. \)
Dervud gælder der:

\[ \forall p \in \mathbb{N} : D^p \varphi(x) = (-1)^p t^p D^p \varphi(-x) \geq 0. \]

Det er da det at se, at funktionen \( g = \exp(\varphi) \) er en \( C^\infty \)-funktion, og at

\[ \forall p \in \mathbb{N}_0 : D^p g \geq 0. \]

Dervud er funktionen

\[ x \mapsto g(-x) = \exp(-t \varphi(x)), \]

der er defineret på den positive halvæg \( [0, \infty[ \), åbentart fuldstændig monoton.

\[ \text{ii)} \Rightarrow \text{i)}. \] Vi antager nu, at funktionen \( \varphi \) opfylder betingelsen \( \text{ii)}. \) Da \( \exp(-t \varphi) \) er en \( C^\infty \)-funktion, er også \( \varphi \) en \( C^\infty \)-funktion, og i rækkeudviklingen

\[ \exp(-t \varphi(x)) = \sum_{n=0}^{\infty} \frac{(-t)^n}{n!} \varphi^n(x), \]

hvor \( t > 0 \) og \( x \in [0, \infty[ \), er det tilladt at dif
funktions udvikling. For \( p \in \mathbb{N}, t > 0 \) og \( x \in [0, \infty) \) gælder derfor:

\[
D^p (e^{-x} f(x)) = \sum_{m=0}^{\infty} (-1)^{m+p} \frac{t^m}{m!} D^p (f^{(m)}(x)) \geq 0
\]

Ved division med \( t > 0 \) opnår vi:

\[
(-1)^{p+t} D^p f(x) + \sum_{m=2}^{\infty} (-1)^{m+p} \frac{t^{m-1}}{m!} D^p (f^{(m)}(x)) \geq 0.
\]

Vi lader nu \( t \to 0 \), og da får vi:

\[
\forall p \in \mathbb{N} \forall x \in [0, \infty]: (-1)^{p+t} D^p f(x) \geq 0,
\]

 hvilket viser, at \( f \) er en Bernstein-funktion. \( \Box \)

**Lemma 9.2.** Lad \( \mu \) være et positivt mål på \( [0, \infty) \) så

\[
\forall x \in [0, \infty]: \int_0^\infty e^{-xs} d\mu(s) < \infty.
\]

Da er funktionen \( f : [0, \infty) \to \mathbb{R}^+ \) definieret ved

\[
f(x) = \int_0^\infty e^{-xs} d\mu(s).
\]
en fuldtståndig monotone funktion.

**Bemærk**: Lad \( x > 0 \) og \( h > 0 \) være givet. Der gælder, at

\[
\frac{A}{h} (\Phi(x+h) - \Phi(x)) = \int_0^\infty A \left( e^{-(x+h)s} - e^{-xs} \right) \, d\mu(s)
\]

\[
= \int_0^\infty e^{-xs} A \left( e^{-hs} - 1 \right) \, d\mu(s).
\]

Da

\[
\lim_{h \to 0^+} A \left( e^{-hs} - 1 \right) = -xs,
\]

og da det for \( x_0 \in ]0, x[ \) gælder, at

\[
\left| e^{-xs} \frac{A}{h} (e^{-hs} - 1) \right| \leq e^{-xs} s
\]

\[
= e^{-x_0 s} \cdot s e^{-(x-x_0) s}
\]

\[
\leq k e^{-x_0 s},
\]

hvor \( k \) er en konstant, så

\[
\forall s \in ]0, \infty[: s e^{-(x-x_0) s} \leq k,
\]

følger af Lebesques sætning om majorivert konvergens.
at
\[
\lim_{h \to 0^+} \int_0^\infty e^{-xs} \frac{1}{h} (e^{-hs} - 1) d\mu(s) = -\int_0^\infty se^{-xs} d\mu(s).
\]

Et tilsvarende argument for \( h < 0 \) viser, at der faktisk gælder
\[
\lim_{h \to 0^+} \frac{1}{h} (\varphi(x+h) - \varphi(x)) = -\int_0^\infty se^{-xs} d\mu(s),
\]
eller at \( \varphi \) er differentiabel i \( x \) med
\[
D\varphi(x) = -\int_0^\infty se^{-xs} d\mu(s).
\]

Snuillet er \( e^{-xs} \) integrabel m. h. t. målet \( s\mu \), og dermed er \( D\varphi \) differentiabel med
\[
D^2\varphi(x) = \int_0^\infty s^2 e^{-xs} d\mu(s).
\]

Ved iteration får vi for etvært \( p \in N_0 \) udtrykket
\[
D^p\varphi(x) = (-1)^p \int_0^\infty s^p e^{-xs} d\mu(s),
\]
 hvilket viser, at funktionen \( \varphi \) er fuldstændig monotonen.
Laplace-transformationen. Lad $\mu$ være et mål på halvaxen $[0, \infty]$. Hvis alle funktionerne

$$f_x : [0, \infty] \to \mathbb{R}, \ x \in \mathbb{R}_+$$

defineret ved

$$f_x : s \mapsto e^{-x s}, \ x \in \mathbb{R}_+$$

er integrable m. h. t. $|\mu|$, definerer integralit

$$L_\mu (x) = \int_0^\infty e^{-x s} \, d\mu(s)$$

for alle $x \in \mathbb{R}_+$. Vi kalder funktionen

$$L_\mu : \mathbb{R}_+ \to \mathbb{C}$$

den Laplace-transformerede af $\mu$, og operatoren $L$, der til $\mu \in \mathcal{RM}(\mathbb{R})$ med nupp $\mu \leq [0, \infty]$ henfører

$L_\mu$ kalder Laplace-transformationen.

Før $z \in \mathbb{C}$ og $s \in \mathbb{R}_+$ har vi, at $|e^{-z s}| = e^{-Re z \cdot s}$, og det er derfor klart, at den Laplace-transformerede kan udvides til en holomorf funktion i den åbne halvplan

$$\{z \in \mathbb{C} \mid Re z > 0\}$$
ved formlen

\[ L_{\mu}(z) = \int_{0}^{\infty} e^{-zs} \, d\mu(s). \]  \hspace{1cm} (1)

Hvis \( \mu \) spesielt er et begrænset mål, kan den Laplace-transformerede snelle udvides til halvplanet

\[ \{ z \in \mathbb{C} \mid \Re z > 0 \} \]

ved hjælp af (1). Denne udvidelse er kontinuert, ifølge Liouville's sætning om majorisere konvergens, og begrænset.

For et hvilket komplet tal \( z = x + iy \), hvor \( x \in \mathbb{R}^+ \) og \( y \in \mathbb{R} \) er

\[ L_{\mu}(x+iy) = \int_{0}^{\infty} e^{-iys} e^{-xs} \, d\mu(s) = \mathcal{F}(e^{-xs} \mu)(y), \]

hvordan vi har sammenhængende Laplacetransformationen og Fouriertransformationen. Dermed er vi i stand til at vide, at Laplacetransformationen er injektiv.

Sætning 4.3. (Enkeldygtighedsætningen for Laplace-transformationen) Låd \( \mu \) og \( \nu \) være måle på \( [0, \infty) \), så

\[ L_{\mu} = L_{\nu}, \text{ for alle } x \in \mathbb{R}^+. \]
Læs $\mu = \nu$.

**Beweis:** De kanoniske udvidelser af de Laplace-
transformerede $L\mu$ og $L\nu$ til halvplanen $Re \geq 0$
givet ved formlen (1), stemmer overens på hele $\mathbb{R}^+$. Da $\mathbb{R}^+$ har et forløbningspunkt, og da udvidelserne
ur holomorfe, må de stemme overens i hele den åbne halvplan $Re > 0$.

Specielt, gælder for $y \in \mathbb{R}$

$$L\mu(1 + iy) = L\nu(1 + iy),$$
og derfor

$$F(e^{-s}\mu)(y) = F(e^{-s}\nu)(y),$$
og da Fouriertransformationen er injektiv, kan vi
slutte, at

$$e^{-s}\mu = e^{-s}\nu,$$

hvoraf følger

$$\mu = \nu.$$  

Hierfra $\mu$ og $\nu$ er mål på $\mathbb{R}$ med

$supp \mu \subseteq [0, \infty]$
og

$supp \nu \subseteq [0, \infty]$  
hører, og

$supp (\mu * \nu) = supp \mu + supp \nu \subseteq [0, \infty].$
Der gælder, at \( L(\mu \times \nu) = L\mu \cdot L\nu \), thi:

\[
L(\mu \times \nu)(\varepsilon) = \int_0^\infty e^{-\varepsilon s} d(\mu \times \nu)(s) = \int_0^\infty (\int_0^\infty e^{-\varepsilon(s+t)} d\mu(s)) d\nu(t)
\]

\[
= L\mu(\varepsilon) \cdot L\nu(\varepsilon),
\]

for \( Re \varepsilon > 0 \).

**Eksempel.** Vi betragter mængden

\[
L^1([0, \infty[, \mathbb{C}) = \{ \varphi \in L^1(\mathbb{R}, \mathbb{C}) \mid \forall x < 0: \varphi(x) = 0 \}.
\]

Da er \( L^1([0, \infty[, \mathbb{C}) \) en afsluttede delalgebra af \( L^1(\mathbb{R}, \mathbb{C}) \).

For \( \varepsilon \in \mathbb{C} \) med \( Re \varepsilon > 0 \) er funktionen

\[
\varphi \mapsto \int_0^\infty e^{-\varepsilon s} \varphi(s) ds
\]

en karakter, og hermed fås alle karakterer. Vi ser her, at Laplace-transformationen kan udføres ud fra den generelle Tylsand-transformationstheori.
**Eksempel.** Vi betræfner målet \( \mu = \sum_{n=1}^{\infty} a_n \cdot e^{\log n} \).

For \( z \in \mathbb{C} \) med \( \text{Re } z > 0 \) er den Laplace-transformerede af \( \mu \) definer:

\[
\mathcal{L} \mu(z) = \int_0^{\infty} e^{-zs} \, d\mu(s) = \sum_{n=1}^{\infty} a_n \cdot e^{-z \cdot \log n} = \sum_{n=1}^{\infty} \frac{a_n}{n^z}.
\]

Denne serie er en **Dirichletserie**.

Lad nu \( f : [0, \infty[ \rightarrow \mathbb{R} \) være en vilkårlig mellemfunktion. For hvert \( b \in \mathbb{R}_+ \) definerer funktionen

\[
\Delta_b f : [0, \infty[ \rightarrow \mathbb{R}
\]

ved

\[
\Delta_b f(x) = f(x+b) - f(x), \quad x \in \mathbb{R}_+.
\]

**Læsning 9.4. (Bernstein).** Lad \( f \) være en mellemfunktion defineret på \( [0, \infty[ \). Da er følgende **tælling**er uregelmessige.
i) Funktionen $f$ er fuldstændig monoton.

ii) $f \geq 0$, og der gælder

$$\forall p \in \mathbb{N}, q_1, \ldots, q_p > 0: (-1)^p \Delta_{q_1} \Delta_{q_2} \cdots \Delta_{q_p} f \geq 0.$$  

iii) Der findes et positivt mål $\mu$ på $[0, \infty]$ så at det for enhver $x \in \mathbb{R}_+$ gælder, at

$$f(x) = \int_0^\infty e^{-xs} d\mu(s).$$

Målet $\mu$ er enhedigt bestemt.

**Corollar 9.5.** Leglen af fuldstændig monotone funktion, og via sætning 9.1. også leglen af Berenstain-funktioner, er afsluttet i topologien for punktvis konvergens.

**Bevis for sætning 9.4:** iii) $\Rightarrow$ i) Dette følger af Lemma 9.2.

i) $\Rightarrow$ ii). Lad $f$ være en fuldstændig monotone funktion, og lad $h > 0$ være givet. Da er funktionen $-\Delta_h f$ fuldstændig monotone, thi for $x \in \mathbb{R}_+$ er

$$(-1)^p D^p (-\Delta_h f) = (-1)^p (D^p f(x + h) - D^p f(x)) =$$
\((-1)^{p+q} D^{p+q} \varphi (x + \delta h) \cdot h > 0 \) for \(p \in \mathbb{N}, q \in \mathbb{N}\)

afg. differentialregningens middelværdeteorem. Ved

iteration føl, at for ethvert \(p \in \mathbb{N}\) og ethvert \(p\)-ret \((h_1, h_2, \ldots, h_p)\) af positive reelle tal er

\((-1)^p \Delta_{h_1} \Delta_{h_2} \cdots \Delta_{h_p} \varphi > 0\)

en fuldstændig monotone funktion. Specielt er

\((-1)^p \Delta_{h_1} \Delta_{h_2} \cdots \Delta_{h_p} \varphi > 0\).

\(\Rightarrow ii) \Rightarrow iii)\) Vi sætter \(C = \{ \varphi : [0, \infty] \to \mathbb{R} | \varphi \) begrænset, \(\varphi\) opfylder \(ii)\}\}.

Lad \(\varphi \in C\) være givet. Da er \(\varphi > 0\), og der gælder

\(\forall x \in [0, \infty] \forall h > 0: -\Delta_h \varphi (x) = \varphi (x) - \varphi (x+h) \geq 0,\)

hvilket udbryder, at \(\varphi\) er afteniende. Emdiendere

gælder

\(\forall h_{1}, h_{2} > 0: \Delta_{h_1} \Delta_{h_2} \varphi (x) = \Delta_{h_2} \varphi (x+h_1) - \Delta_{h_2} \varphi (x) > 0,\)
Hvorvidt $\Delta_2 f$ er en rokende funktion. Det betyder, at for hvert fast $h > 0$ er funktionen

$$x \rightarrow f(x) - f(x + h)$$
aftagende. Vi vil vide, at $f$ er kontinuerligt. Lad derfor $a \in \mathbb{R}^+$ være givet. Da $f$ er aftagende, har $f$ granulardier fra højre og venstre i $a$, og der gælder

$$a = \lim_{x \to a^-} f(x) > f(a) > \lim_{x \to a^+} f(x) = \beta$$

Lad nu $\varepsilon > 0$ være givet. Der findes da et $\delta > 0$, således at

$$\forall x, y \in ]a - \delta, a[ : |f(x) - f(y)| < \varepsilon$$

og

$$\forall x, y \in ]a, a + \delta[ : |f(x) - f(y)| < \varepsilon$$

Lad nu $a_1 \in ]a - \delta, a[$ være valgt og vælg $h > 0$, så $a_1 + h < a$. For $x \geq a_1$ gælder da

$$0 \leq |f(x) - f(x + h)| \leq |f(a_1) - f(a_1 + h)| \leq \varepsilon.$$
hvor vi har bemerkt, at såvel \( f \) som funktionen

\[ x \mapsto f(x) - f(x-h) \]

er afledende. For enhver \( x \in [a, a-h, \infty] \) får vi derfor

\[ f(x) \geq \alpha \geq f(a) \geq \beta \geq f(x+h), \]

og dermed

\[ 0 \leq \alpha - \beta \leq f(x) - f(x+h) \leq \varepsilon, \]

så \( \alpha = \beta \). Dette viker, at \( f \) er kontinuerligt i \( a \).

For \( f \in C \) existerer grænseværdien fra højre:

\[ f(0+) = \lim_{x \to 0^+} f(x), \]

hvor \( f \) er afledende og begrænset. Vi indfører nu mængden

\[ C_1 = \{ f \in C \mid f(0+) \leq 1 \}. \]

Vi bemærker, at både \( C \) og \( C_1 \) er delmængder af
\( PR_{0, \infty} \), der er forsynet med produkttopologien, som er topologien for punktvis konvergens. Mængden

\[ [0, 1]^{0, \infty} \]

er iflg. Tychonoff's sætning kompakt, og da

\[ C_1 \subseteq [0, 1]^{0, \infty}, \]

og afhængig i) bevares ved punktvis grænse-

overgang, er mængden \( C_1 \) kompakt. Endvidere

er \( C_1 \) kompakt.

Vi ønsker at finde de extreme punkter for

\( C_1 \). Lad \( f \) være extrem i \( C_1 \). For hvort \( x_0 > 0 \)

beskrives vi funktionen

\[ u(x) = f(x + x_0) - f(x_0) f(x). \]

Der gælder, at \( f \pm u \in C_1 \), thi man har \( f \pm u \):.

\[ (f + u)(x) = f(x + x_0) + f(x)(1 - f(x_0)) \geq 0 \]

og

\[ (f + u)(0^+) = f(x_0) + f(0^+)(1 - f(x_0)) \leq 1, \]
samt

\[ (-1)^p \Delta_{h_1} \cdots \Delta_{h_p} (\Delta + w) = \]

\[ (-1)^p \Delta_{h_1} \cdots \Delta_{h_p} \varphi(x+x_0) + (-1)^p \Delta_{h_1} \cdots \Delta_{h_p} \varphi(x) (1 - \varphi(x_0)) \geq 0. \]

Endvidere har man \( \varphi = \frac{q}{2} (\varphi + w) + \frac{q}{2} (\varphi - w) \). Da \( \varphi \)

er extrem, har vi, at \( w \equiv 0 \), så \( \varphi \) opfylder

\[ \forall x, x_0 > 0 : \varphi(x+x_0) = \varphi(x) \varphi(x_0). \]

Da \( \varphi \) er kontinuerligt, gælder at enhver er \( \varphi \equiv 0 \) eller

\[ \varphi(x) = e^{-xs} \text{ for } s \in \mathbb{R}, \]

og da \( \varphi \) er begrænset, slutter vi, at \( s \geq 0 \).

Idet vi vakte

\[ \mathcal{A} = \{ 0 \} \cup \{ e^{-xs} | s \geq 0 \}, \]

har vi allerede, at \( \exists \text{ } C_1 \subseteq \mathcal{A} \). Vi skriver nu

\[ E = \mathbb{R} \cup [0, \infty] \]

og betragter afbildningen:

\[ L_h : E \mapsto E \text{ for } h > 0, \]

som er givet ved:
\[ L_h \phi(x) = \phi(hx). \]

Man ser, at \( L_h \) er bijektiv, og at

\[ L_{1/h} = L_{h^{-1}} = L^{-1}, \]

så \( L_h \) er en topologisk vektorrumisomorfi af \( E \) på \( E \). Vi kan derfor slutte, at

\[ L_h(C_1) = C_1, \]

og at \( L_h \) afbildet ekstremt punkt på ekstremt punkt, så

\[ L_h(\text{Ext } C_1) = \text{Ext } C_1. \]

Da det iflg. Krin-Willmans sætning er fire ekstreme punkter end blot \( \phi \equiv 0 \) og \( \phi \equiv 1 \), fremkommer ved passende valg af \( h > 0 \) alle funktioner

\[ e^{-xs}, \quad s > 0 \]

som ekstreme punkter, thi \( L_h e^{-xs} = e^{-xhs} \).

Vi kan altså, at \( \text{Ext } C_1 = 0 \). Da \( C_1 \) er kompakt,
giver Klein-Bohmans sætnings, at

$$C_q = \text{conv } A_l.$$  

Vi indfører nu funktionen $$g : [0, \infty] \rightarrow A$$ ved

$$g(s) = e^{-xs}.$$  

Vi ser, at $$g$$ er injektiv og kontinuerlig. Hvis vi nu definerer $$g(\infty) = 0$$, kan vi udvide $$g$$ til

$$g : [0, \infty] \rightarrow A,$$

hvorfør $$[0, \infty]$$ er et punktkompaktifikation, Alexandroff-kompaktifikationen, af $$[0, \infty]$$. Da bliver $$g$$ kontinuerlig og bijektiv og inddaer en homomorfism af $$[0, \infty]$$ på $$A$$. Vi har da, at $$A$$ er kompakt og dermed apletlet.

Før givet $$q \in C_q$$ findes et met $$\{f_\iota\}_{\iota \in J}$$ med

$$f_\iota = \sum_{k=1}^{m_\iota} \lambda_k^{(\iota)} a_k^{(\iota)},$$

hvorfør $$\lambda_k^{(\iota)} \geq 0$$, $$\sum_{k=1}^{m_\iota} \lambda_k^{(\iota)} = 1$$ og $$a_k^{(\iota)} = g(a_k^{(\iota)}) \in A_l.$$
For varemængde \( v^{(i)}_{k} \in [0, \infty] \), så

\[ f_{i} \rightarrow f \text{ punktvis.} \]

For hvert \( i \in J \) skal \( \mu_{i} \) betyde det mål på \([0, \infty]\), der er givet ved

\[ \mu_{i} = \sum_{k=1}^{n(i)} \lambda_{k}^{(i)} e_{\lambda_{k}^{(i)}}^{(i)}. \]

Man ser umiddelbart, at målene \( \mu_{i} \) alle er sandsynlighedsmål, thi

\[ \mu_{i}([0, \infty]) = \sum_{k=1}^{n(i)} \lambda_{k}^{(i)} = 1. \]

Mht (\( \mu_{i} \))\( i \in J \) er altid vigtigstegnet. Der findes derfor et mål \( \mu \) på \([0, \infty]\), så \( \mu([0, \infty]) \leq 1 \), og et vigtig konvergent delmængde (\( \mu_{i} \))\( i \in J \), så

\[ \mu_{i} \rightarrow \mu \text{ vigt.} \]

For \( x > 0 \) bekræfter vi individuelt afbildningen.
\[ \pi_x : E \rightarrow \mathbb{R}, \]
givet ved
\[ \pi_x (f) = f(x). \]

Man ser, at \( \pi_x \) er en kontinuerlig lineærform, og derfor er den sammensatte afbildning
\[ \pi_x \circ g : [0, \infty) \rightarrow \mathbb{R} \]
kontinuerlig. Der gælder nu:

\[ \langle \mu, \pi_x \circ g \rangle = \lim_{j \in \mathbb{P}} \langle \mu_{ij}, \pi_x \circ g \rangle \]

\[ = \lim_{j \in \mathbb{P}} \int_{[0, \infty]} e^{-xs} d\mu_{ij}(s) \]

\[ = \int_{[0, \infty]} e^{-xs} d\mu(s), \]

og da
\[ f_{ij} (x) = \int_{[0, \infty]} e^{-xs} d\mu_{ij}(s) \]

\[ = \sum_{k=1}^{\text{min}(i,j)} \lambda^{(ij)}_k e^{-xs_{ij}} \]
her vi, at

\[ f(x) = \int_{0, \infty} e^{-xs} d\mu(s), \]

Målet \( \mu \) kan skrives på formen

\[ \mu = \mu([\infty)) \cdot \delta_\infty + \nu, \]

hvor \( \nu = \mu |_{0, \infty}. \) Da \( \pi x \circ g(\infty) = 0 \), får vi for \( x > 0 \), at

\[ f(x) = \int_{0, \infty} e^{-xs} d\nu(s). \]

Herved er den ønskede frembringelse opnået for \( f \in C_1 \)
og dermed for \( f \in C \).

Lad nu \( f \) være en vilkårlig funktion, der opfylder ii). For hvart \( h > 0 \) ser vi på funktionen

\[ x \mapsto T_h f(x) = f(x + h). \]

Vi har, at \( T_h f \in C \), og iflg. det forgående
findes der da et indlignet mål μₙ på [0, ∞], så

$$\tau_n \phi(x) = \int_0^\infty e^{-xs} \mu_n(s) \, ds.$$  

For h > 0 får man:

$$\phi(x + h + k) = \int_0^\infty e^{-xs} e^{-ks} d\mu_n(s)$$

= \int_0^\infty e^{-xs} d\mu_{n+h}(s),$$  

hvoraf følger, at

$$e^{-ks} \mu_n = \mu_{n+h}$$  

da Laplace-transformationen er injektiv.

Udgift μ⁺ = e⁺hs μₙ⁺ er uafhængigt af h > 0, thi for h < k, så h = h₀ + a, har vi:

$$e^{hs} \mu_n = e^{hs} e^{-as} \mu_{n+h₀} = e^{hs} \mu_{n+h₀+a} = e^{hs} \mu_n.$$

For x > 0 gælder da, idet h > 0 vælges så h < x:
\[ f(x) = f((x-a) + b) = \int_0^\infty e^{-(x-a)s} d\mu(s) \]
\[ = \int_0^\infty e^{-xs} e^{bs} d\mu(s) \]
\[ = \int_0^\infty e^{-xs} d\mu(s). \]

**Bemærkning.** Lad \( f \) være en fuldstændig monotone funktion og lad \( \mu \) være det tilhørende positive mål på \([0, \infty[\). Da \( f \) er aftagende, har vi:

\[ \lim_{x \to 0^+} f(x) = \mu([0, \infty[) \leq \infty. \]

Vi har derfor, at \( \lim_{x \to 0^+} f(x) < \infty \), hvis og kun hvis \( \mu \) er et begrænset mål. Laplace-transformations


**Sætning 9.6.** En funktion \( f : [0, \infty[ \to \mathbb{R} \)


er en Bernoulli-funktion hvis og kun hvis der findes konstanter \( a \geq 0 \) og \( b \geq 0 \) samt et...
positivt mål μ på \([0, \infty] \) med

\[
\int_0^\infty \frac{1}{1+s} \, d\mu(s) < \infty, \quad (\star)
\]

således at

\[
f(x) = a + bx + \int_0^\infty (1 - e^{-xs}) \, d\mu(s). \quad (\star\star)
\]

Triplet \((a, b, \mu)\) er indirekte indirekt.

Bemærk: Betingelsen \((\star)\) er helt analogt med betingelsen

\[
\int_0^1 s \, d\mu(s) < \infty \quad \text{og} \quad \int_0^\infty d\mu(s) < \infty \quad (\star)
\]

Vi antager først, at μ er et positivt mål på \([0, \infty] \), som tilførselsfunktion \((\star)\). For alle \(x > 0\) og alle \(s > 0\) har vi

\[1 - e^{-xs} \leq xs \quad \text{og} \quad 1 - e^{-xs} \leq 2.\]

Ifølge \((\star)\) har vi derfor, at integralen

\[g(x) = \int_0^\infty (1 - e^{-xs}) \, d\mu(s)\]
er indeligt for $x > 0$. For $h \in \mathbb{R} \setminus \{0\}$ og $x > 0$ har vi:

$$
\frac{1}{h} (g(x+h) - g(x)) = \int_{0}^{\infty} e^{-xs} (1 - e^{-hs}) d\mu(s) \\
= \int_{0}^{\infty} se^{-xs} e^{-hs} \frac{e^{-hs} - 1}{-hs} d\mu(s),
$$

og ved hjælp af satningen om monotone homogene finde vi

$$
\lim_{h \to 0} \frac{1}{h} (g(x+h) - g(x)) = \int_{0}^{\infty} se^{-xs} d\mu(s).
$$

Herved er $g$ differentiabel med

$$
Dg(x) = \int_{0}^{\infty} se^{-xs} d\mu(s).
$$

Af satning 9.3. følger, at $Dg$ er fuldstændig monotonen, og dermed er $g$ en Bernštejn-funktion. Så er også funktionen

$$
f(x) = a + bx + g(x),
$$

hvor $a > 0$ og $b > 0$ er Bernštejn-funktion.
Vi antager nu, at \( f \) er en Bernštejn-funktion.
Så er \( Df \) fuldtåndig monotone og iflg. sætning 9.3. findes der et positivt mål \( \nu \) på \([0, \infty]\) således, at

\[
Df(x) = \int_0^\infty e^{-xs} d\nu(s),
\]

målet \( \nu \) kan skrives på formen

\[
\nu = t \varepsilon_0 + T,
\]

hvor \( t = \nu([0, \infty)) \geq 0 \) og \( T \) er restriktionen af \( \nu \)

til \([0, \infty]\). Vi har da

\[
Df(x) = t + \int_0^\infty e^{-xs} d\tau(s),
\]

og idet vi saller \( a = \lim_{x \to 0^+} f(x) \), finder vi

\[
f(x) = a + \int_0^x Df(u) du
\]

\[
= a + bx + \int_0^\infty \frac{1 - e^{-xs}}{s} d\tau(s).
\]

Særligt har vi:
\[ \Phi(1) \geq \int_{1}^{\infty} \frac{1-e^{-s}}{s} \, d\tau(s) \geq \left( \int_{1}^{\infty} \frac{1}{s} \, d\tau(s) \right) (1-e^{-1}), \]

vil det vise, at

\[ \int_{1}^{\infty} \frac{1}{s} \, d\tau(s) < \infty. \]

Altåret \( \mu \) på \([0, \infty]\) defineres ved \( \mu = \frac{1}{s} d\tau(s) \) bil-

fradstillinger klart betingelserne (*) og dernæst (**). Hermed har vi fundet den ønskede framstilling.

\[ \Phi(x) \] af en Bernstein-funk-

tion er kontinuerlige og er uendligt diskret.

\[ a = \lim_{x \to 0^+} \Phi(x) \quad \text{og} \quad b = \lim_{x \to \infty} \left( \frac{\Phi(x)}{x} \right), \]

og da

\[ D \Phi(x) = b + \int_{0}^{\infty} s e^{-sx} \, d\mu(s) \]

er målet \( b + \int_{0}^{\infty} s e^{-sx} \, d\mu(s) \)

er uendligt uendigt, iflg. sæt-

ning 9.3. Heraf følger, at \( \mu \) er uendligt diskret.

\[ \square \]
Bemærkninger. Da en fuldstændig monoton funktion er den Laplacetransformerede af et mål på $[0, \infty]$ kan den udvides holomorfisk til den åbne halbplan

$$\{ z \in \mathbb{C} \mid \Re z > 0 \}.$$  

Den kan ved kontinuitet udvides til haloplanen

$$\{ z \in \mathbb{C} \mid \Re z \geq 0 \}$$  

netop hvis $f(0^+) < \infty$, jf. p. 402-403.

Lad $f$ være en Bernikkin-funktion. Da kan vi benytte integralformuleringen for $f$ til at definere en analytisk fortsættelse af $f$.

For $s > 0$ og $z \in \mathbb{C}$ med $\Re z \geq 0$ har vi ulighederne:

$$|1 - e^{-z^2s}| \leq s |z| \quad \text{og} \quad |1 - e^{-z^2s}| \leq 2,$$

som sammen med (*) viser, at $\int_0^\infty (1 - e^{-z^2s}) \, d\mu(s)$ er nedliminert for $\Re z \geq 0$. For $\Re z > 0$ ser man, at funktionen

$$z \mapsto a + b z + \int_0^\infty (1 - e^{-z^2s}) \, d\mu(s)$$
er kontinuert, og at den er holomorf for $R \in \mathbb{R}^+$. I begge ommunhuds tilfælde taler vi om de harmoniske udvidelser.

**Sætning 9.7.** Der er en bijektiv korrespondance mellem fældningssemigruppen $(\eta_t)_{t \geq 0}$ på $\mathbb{R}$, hvor

$$\forall t > 0: \text{upp} \eta_t \subseteq [0, \infty],$$

og Burnikin-funktionerne $f : [0, \infty] \rightarrow \mathbb{R}$. Denne korrespondance er givet ved

$$L\eta_t(x) = e^{-tx}f(x) \quad \text{for } x > 0 \text{ og } t > 0.$$

Bemærk: Vi antager først, at $(\eta_t)_{t > 0}$ er en fældningssemigruppe, så

$$\forall t > 0: \text{upp} \eta_t \subseteq [0, \infty].$$

For hvert $x > 0$ betrægter vi funktionen

$$\phi_x : [0, \infty] \rightarrow \mathbb{R}$$

defineret ved

$$\phi_x(t) = L\eta_t(x).$$
La'er $\varphi_x(t) > 0$ for alle $t > 0$. For $s, t > 0$ hav vi:

$$
\varphi_x(s+t) = \mathcal{L} \eta_{s+t}(x)
= \mathcal{L} (\eta_s \ast \eta_t)(x)
= \mathcal{L} \eta_s(x) \cdot \mathcal{L} \eta_t(x)
= \varphi_x(s) \cdot \varphi_x(t).
$$

Endvidere er $\varphi_x$ en kontinuerlig funktion, thi

$$
\eta_t \rightarrow \eta_{t_0} \text{ i Bernoulli-topologien,}
$$

$$
t \rightarrow t_0.
$$

og dermed har vi

$$
\mathcal{L} \eta_t(x) = \int_0^\infty e^{-xs} d\eta_t(s) \rightarrow \int_0^\infty e^{-xs} d\eta_{t_0}(s) = \mathcal{L} \eta_{t_0}(x),
$$

aldrig $\varphi_x(t) \rightarrow \varphi_x(t_0)$ for $t \rightarrow t_0$.

For $x > 0$ finder der derfor et indbyggt bestemt rent tal $\alpha(x)$, så
\[
q_x(t) = \mathbb{L} \eta_t(x) = e^{-t \eta(x)} \quad \text{for } t > 0.
\]

Da \( q_x(t) \leq 1 \) for alle \( x > 0 \) og alle \( t > 0 \), har vi, at \( \eta(x) \geq 0 \) for alle \( x > 0 \), og det følger af sætning 9.1., at \( \eta \) er en Bernoulli-funktion.

Lad nu \( \eta \) være en Bernoulli-funktion. Af sætning 9.1. følger, at funktionen
\[
x \mapsto e^{-t \eta(x)}
\]

er fuldstændig monotone for alle \( t > 0 \), og at
\[
\lim_{x \to 0^+} (e^{-t \eta(x)}) \leq 1,
\]

hvis \( \eta(x) > 0 \). Der findes derfor iflg. sætning 9.3. et enkelt, positivt mål \( \eta_t \) på \([0, \infty)\), så
\[
\eta_t([0, \infty)) \leq 1
\]
og
\[(\forall) \quad \mathbb{L} \eta_t(x) = e^{-t \eta(x)} \quad \text{for } x > 0, t > 0.
\]

På grund af enkeltheden af de kanoniske holomorfe udvidelser gælder formlen \((\forall)\) i den øjeblik
halvplanet

\{ z \in \mathbb{C} \mid \text{Re} z > 0 \},

Vid udvidelse med kontinuitet gælder formlen i hele halvplanet

\{ z \in \mathbb{C} \mid \text{Re} z \geq 0 \}.

Fra p. 403 ved vi, at for \( x \geq 0 \), \( y \in \mathbb{R} \) og et begrænset mål \( \mu \) på \([0, \infty[\), gælder der

\[ L \mu (x + iy) = \mathcal{F}(e^{-x\mu})(y), \]

og heraf finder man

\[ \mathcal{F}_{\eta_t} (y) = L \eta_t (iy) = e^{-ty}(iy). \]

Af satning II 3.7. får, at funktionen \( y \mapsto \eta_t(iy) \)

er kontinuerligt og negativt definit. Heraf slutter vi, at \( \eta_t(t > 0) \) er en foldningssemiigruppe, og at

\( y \mapsto \eta_t(iy) \)

er den associerede negativt definitive funktion.

\[ \blacksquare \]

Bemærkning. Formlen (v) gælder for \( \text{Re} z \geq 0 \).
speciel for vi for alle $t > 0$:

$$\eta_t ([0, \infty]) = \mathbb{L}_{\eta_t} (0) = e^{-tf(0)}.$$  

Målene $\eta_t$ er sandsynlighedsemål, hvis og kun hvis $f(0) = 0$.

**Løsning 9.8.** Lad $(\eta_t)_{t > 0}$ være en føldningssemigruppe på $\mathbb{R}$ med

$$\forall t > 0: \text{uppe } \eta_t \subseteq [0, \infty),$$

og lad $f$ være den tilhørende Bernoulli-funktion.

Enten er $f \equiv 0$, og så gælder

$$\forall t > 0: \eta_t = \emptyset,$$

eller $f(x) > 0$ for alle $x > 0$; i dette tilfælde er føldningssemigruppen $(\eta_t)_{t > 0}$ transient, og før potentiichernen $v$ gælder

$$L.v(x) = \frac{1}{f(x)}.$$  

**Bemærk:** Om Bernoulli-funktion er svag og

konkav, og derfor er $f \equiv 0$, hvis der findes et
$x > 0$ med $\eta_t (x) = 0$. Der gælder da klart, at $\eta_t = \xi_0$ for alle $t > 0$.

Vi antager nu, at $\eta_t (x) > 0$ for alle $x > 0$. Så har man for $x > 0$:

$$
\int_0^\infty L \eta_t (x) \, dt = \int_0^\infty e^{-s} \eta_t (x) \, dt = \frac{1}{\eta_t (x)}.
$$

For $\eta \in H_+ (\mathbb{R})$ findes en konstant $c > 0$ så

$$
\forall s \geq 0 : \eta_t (s) \leq c e^{-s}.
$$

Heraf følger

$$
\int_0^\infty \eta_t (s) \, dt \leq \int_0^\infty c e^{-s} \, dt
$$

$$
= c \int_0^\infty L \eta_t (1) \, dt
$$

$$
= c \frac{1}{\eta_t (1)} < \infty,
$$

hvilket viser, at foldningsgruppen $(\eta_t)_{t > 0}$ er transient. Lad vi lave potentiálkernen for $(\eta_t)_{t > 0}$. Vi har da

$$
L \eta_t (x) = \int_0^\infty \eta_t (s) e^{-sx} \, ds = \int_0^\infty L \eta_t (x) \, dt = \frac{1}{\eta_t (x)}.
$$
Lad \((\mu_t)_{t \geq 0}\) være en fuldningssemigruppe på en 
LCA-gruppe \(G\) med tilhørende negative definit funkt-
tion \(\psi: T \rightarrow \mathbb{C}\), og lad \((\eta_t)_{t \geq 0}\) være en fuld-
ningssemigruppe på \(R\), så

\[ \forall t > 0: \ \eta_t \in [0, \infty). \]

Den tilhørende Bernštejn-funktion \(\tau\) har en kan-
monisk udvidelse til \(\{z \in C \mid Re z > 0\}\). Da

\[ \forall \gamma \in \Gamma: Re \psi(\gamma) > 0 \]

kan funktionerne \(\psi\) og \(\psi\) sammensætte, og vi
har

\[ \chi(\psi(\gamma)) = a + b\psi(\gamma) + \int_0^\infty (1 - e^{-s\psi(\gamma)}) d\mu(s). \]

Denne formel viser, at \(\chi \circ \psi\) er en kontinuer-
lig negative definit funktion. Den tilhørende fuld-
ningssemigruppe på \(G\) betegnes vi \((\mu_t^\psi)_{t \geq 0}\). Den
kan udvides ved hjælp af fuldningssemigramuprene
\((\mu_t)_{t \geq 0} \) og \((\eta_t)_{t \geq 0}\) på følgende måde:

Sætning 9.9. Lad funktionerne \(\chi\) og \(\psi\) samt
foldningssemigruppen \((\eta_t)_{t>0}\) og \((\mu_t)_{t>0}\) være som normeret. Foldningssemigruppen \((\mu_t^\phi)_{t>0}\) med tilhørende kontinuerligt negativ definit funktion \(\phi\) og \(\psi\) er givet ved det vage integral:

\[
\mu_t^\phi = \int_0^\infty \mu_s \, d\eta_t^\phi(s).
\]

Dette skal foreløbiges nåledes: Valg \(\varphi \in H(G)\); for hvert \(t > 0\) har man da

\[
<\mu_t^\phi, \varphi> = \int_0^\infty <\mu_s, \varphi> \, d\eta_t^\phi(s).
\]

Bemærk: For \(\varphi \in H(G)\) er afbildningen

\[
\varphi \mapsto \int_0^\infty <\mu_s, \varphi> \, d\eta_t^\phi(s)
\]

en positiv lineærform på \(H(G)\), og der findes derfor et positivt mål \(\nu_t\) på \(G\), så

\[
<\nu_t, \varphi> = \int_0^\infty <\mu_s, \varphi> \, d\eta_t(s)
\]

eller

\[
\nu_t = \int_0^\infty \mu_s \, d\eta_t^\phi(s).
\]
Dette mål er begrænset, og for den Fourier-transformerede gælder:

\[ \mathcal{F} \varphi_t(y) = \int \overline{\varphi(x)} \, d\psi_t(x) \]

\[ = \int_0^\infty \left( \int \overline{\varphi(x)} \, d\mu(x) \right) \, d\eta_t(s) \]

\[ = \int_0^\infty \mathcal{F}\mu_s(y) \, d\eta_t(s) \]

\[ = \int_0^\infty e^{-s\varphi(y)} \, d\eta_t(s) \]

\[ = \mathcal{L} \eta_t(\varphi(\cdot)) \]

\[ = e^{-t\varphi(y)} = \mathcal{F} \mu_t^f(y). \]

Vi får heraf, at \( \psi_t = \mu_t^f \) for alle \( t > 0 \).
Nogle rettelser og tilføjelser.

p. 11, 6.°: "\( \psi \)" til "\(-\psi\)"

p. 55, 1.°: "\( |i| \leq |1| \ldots 1 \leq |\)" til "\( |1| \ldots 1^2 \leq |\)"

p. 67, 1.°: "\( x \mapsto \Gamma(i \cdot x) \)" til "\( x \mapsto \Gamma(a+i \cdot x) \) for \( a>0 \)"

p. 71, 2.°: "et heraf" til "og heraf"

p. 76, nedenfor: Nemmere at sige \( \mathbb{F} \mathcal{F}_m \rightarrow \mathbb{F} \mathcal{F} \) ligeligt og \( \mathbb{F} \mathcal{F}_m \rightarrow \mathbb{F} \mathcal{F} \) i \( L^2 \). Der findes en delfølge \( \mathbb{F} \mathcal{F}_{m p} \rightarrow \mathbb{F} \mathcal{F} \) p.p., altså \( \mathbb{F} \mathcal{F} = \mathbb{F} \mathcal{F} \) p.p.

p. 88, 8.°: tilføj "kontinuitet" efter "vis.

p. 90, 2.°: Skal være: og dermed \( \varphi = (\hat{h})^* = \hat{\mu} = 1 \).

p. 90, 3.°: mangler brøkstreg.

p. 96, 1.°: "og" til "hvor \( a \in \mathbb{C} \) og"

p. 97, 2.°: "5.3" til "5.4"

p. 103, 6.°: "positivt begrænset mål" til "sandværdi-

ledsmål"

p. 121, 7.°: "\( \hat{G}_c \)" til "\( \hat{G}_c \)"

p. 125, 7.°: "\( \langle h, \chi \rangle \)" til "\( \langle \hat{h}, \chi \rangle \)"

p. 126, 6.°: Med \( h \) betegnes elementet \( \chi + \ldots + \chi \) (n-ad-
dendede) af \( \hat{G} \), altså funktionen \( G \rightarrow T \) givet ved

\[ (h \chi)(x) = (\chi + \ldots + \chi)(x) = (\chi(x))^n. \]

p. 128, 6.°: "p. 54" til "p. 55"

p. 139, 6.°: Tilføjelse: Da afbilledingen

\[ M_+ (X) \ni \mu \mapsto \mu (X) \]

er kontinuitet i \( \mathbb{B} \)-topologi, og da afbilledingen

\[ M_+ (X) \ni \mu \mapsto \mu (X \setminus K), \quad K \subseteq X \text{ kompakt} \]
er nedad halvkontinueret i B-topologi, vil en delmængde $H \in M_+(X)$ tilføjes til Prohorovs betingelse netop hvis afsluttningen $\overline{H}$ (i B-topologi) af H opfylder Prohorovs betingelse.

p. 139, 2°: tilføj efter H: "er en B-afsluttet delmængde af $M_+(X)$, som "

p. 150, 1-2: tilføj efter Ovelse II.4.2: "eller Sætning I.9.8".

p. 150, 13-16: skal være: "og $\mu_0$ er altså enken mulmålet i vilket tilfælde alle målere $\mu_t$ er leg mur eller også frides (i følge Sætning 2.1) en kompakt undergruppe $K$ af $G$ så $\mu_0 = \omega_k$. I vist nævnte tilfælde har vi således for alle $t \geq 0$, at"

p. 163: Lemma 3.2 kan skræpes til: "For $\eta \in N(\Gamma)$ med $\eta(0) = 0$ er funktionen

$$\chi \mapsto \sqrt{1/\psi(\chi)}$$

subadditiv. Beviset er analogt.

p. 168, 10: "exp(−$\psi(0)$)" til "exp(−$t\psi(0)$)"

p. 180, 5: "B(y, z)" til "B(y, x)"

p. 185, 3°: tilføj: 

"$\psi \in N(\Gamma)$ og"

p. 190, 8: mangle brøkstreg

p. 197, 1: Betingelse 2° skal være:

3° $\psi$ er kontinueret, symmetrisk og $\psi(0) \geq 0$, samt $\psi \circ \sigma = \psi$ er kontinueret og positiv definit for alle $\sigma \in S$.

p. 198, 3: "3.2" til "4.2"
p. 202, 1: "3.13" til "3.16"

p. 202, 5: "(y)" til "(x)"

p. 202: ligning (7) skal være
\[
\alpha(y) = \frac{\alpha(n \pi)}{n^2} = \frac{\psi(n \pi)}{n^2} - \frac{a}{n^2} - \int \frac{(1 - R \eta n \pi y(x))}{n^2} d\mu(x)
\]

p. 203, 7: tilføj efter (6): da \( \frac{a}{n^2} \rightarrow 0 \) for \( n \rightarrow \infty \)

p. 204, 6: "(1 - \delta)\mu" til "\mu_0"

Kan suppleres.
Rettelser og tilføjelser.

283. 1. f. o.: \( \mu \cdot \frac{1}{2} < \mu \) skal rettes til \( \mu \cdot \frac{3}{2} < \frac{3}{2} \).

303. 4. f. o.: \( \sigma = \lim_{\lambda \to 0} \lambda \left( \frac{3}{2} - 2 \lambda \mu \cdot \frac{1}{2} \right) \) skal rettes til
\[ \sigma = \lim_{\lambda \to \infty} \lambda \left( \frac{3}{2} - 2 \lambda \mu \cdot \frac{1}{2} \right) . \]

311. 6. f. o.: Der tilføjes: \( \leq \mu \cdot \sigma + \sigma \).

313. 2. f. m. - 315. 4. f. o.: I bevist for sætning 7.22 er der opstået forvirring i betegnelserne. Alle stkder, hvor der står \( b_{\omega} \), skal der stå \( b_{0} \), og på p. 315. 4. f. o. tilføjes: Vi har nu virt, at \( b_{0} \) er et \( \nu \)-fjist mål af \( \sigma \) på \( w_{0} \), og man kan derfor skrive \( b_{0} = 6 \cdot w_{0} \).

328. 5. f. m.: \( b = \rho_{1} \cdot (\sigma - (q w_{\sigma})) \) skal rettes til
\[ h_{w_{\sigma}} = \rho_{1} \cdot (\sigma - (q w_{\sigma})) . \]

347. 6. f. m.: \( \eta(\gamma) > 0 \) skal rettes til \( \eta_{V}(\gamma) > 0 \).

347. 2. f. m.: \( \eta_{V} \to \gamma \) skal rettes til \( \eta_{V} \to 1 \).
368. 2. f. o.: \[ f(x) = \frac{1}{m(B(x, r))} \int_{B(x, r)} f(y) \, dy \quad \text{let nethe blit} \]

\[ f(x) \geq \frac{1}{m(B(x, r))} \int_{B(x, r)} f(y) \, dy . \]

368. 2. f. n.: jow tivi, nethe blit: jow tivi mål.

378. 8. f. o.: \[ h \times (6v - 6') = h \times 6' \quad \text{let nethe blit:} \]

\[ h \times (6v \times 6') = h \times 6' . \]

390. 3. f. n.: \[ w_1 \leq w_1 \quad \text{og} \quad w_2 \leq w_2 , \]

\[ w_1' \leq w_1 \quad \text{og} \quad w_2' \leq w_2 . \]

399. 3 f. o.: \[ D^p(e^{-t f(x)}) = \sum_{n=0}^{\infty} (-1)^{n+p} \frac{t^n}{n!} D^p(f^n)(x) \geq 0 \quad \text{let nethe blit:} \]

\[ (-1)^p D^p(e^{-t f(x)}) = \]

\[ \sum_{n=0}^{\infty} (-1)^{n+p} \frac{t^n}{n!} D^p(f^n)(x) \geq 0 . \]