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Preface

The topic of these notes is differential geometry. Differential geometry
is the study of geometrical objects using techniques of differential calculus,
in particular differentiation of functions. The objects that will be studied
here are curves and surfaces in two- and three-dimensional space, and they
are primarily studied by means of parametrization. The main properties
of these objects, which will be studied, are notions related to the shape.
We will study tangents of curves and tangent spaces of surfaces, and the
notion of curvature will be introduced. These notions are defined through
differentiation of the parametrization, and they are related to first and second
derivatives, respectively.

The notion of curvature is quite complicated for surfaces, and the study
of this notion will take up a large part of the notes. The culmination is a
famous theorem of Gauss, which shows that the so-called Gauss curvature of
a surface can be calculated directly from quantities which can be measured on
the surface itself, without any reference to the surrounding three dimensional
space. This theorem has played a profound role in the development of more
advanced differential geometry, which was initiated by Riemann.

The theory developed in these notes originates from mathematicians of
the 18th and 19th centuries. Principal contributors were Euler (1707-1783),
Monge (1746-1818) and Gauss (1777-1855), but the topic has much deeper
roots, since it builds on the foundations laid by Euclid (325-265 BC).

In these notes a significant emphasis is placed on the interplay between
intuitive geometry and exact mathematics. Ideas are explained by numerous
illustrations, but they are also given rigorous proofs. It is my hope that the
student of the text will perceive the importance of both viewpoints. The
notes are adapted to an intensive course which runs over 7 weeks, so that
each chapter corresponds approximately to one week of teaching.

The notes were written and used for the first time in 2005. The present
version, intended for 2011, has been improved and corrected thanks to the
suggestions of many students. Undoubtedly there are places where further
revision would be desirable, and I will appreciate all comments and correc-
tions. The drawings are made with Anders Thorup’s program SPLINES,
downloadable from http://www.math.ku.dk/∼thorup/splines/.

Henrik Schlichtkrull

March 2011
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Chapter 1

Parametrized curves and surfaces

In this chapter the basic concepts of curves and surfaces are introduced,
and examples are given. These concepts will be described as subsets of R2 or
R3 with a given parametrization, but also as subsets defined by equations.
The connection from equations to parametrizations is drawn by means of the
implicit function theorems (Theorems 1.5, 1.6 and 1.7).

1.1 Curves

It is well known from elementary geometry that a line in R2 or R3 can be
described by means of a parametrization t 7→ p + tq where q 6= 0 and p are
fixed vectors, and the parameter t runs over the real numbers. Likewise, a
circle in R2 (say with center 0) can be parametrized by t 7→ (r cos t, r sin t)
where t ∈ R. The common nature of these examples is expressed in the
following definition.

Definition 1.1. A parametrized continuous curve in Rn (n = 2, 3, . . . ) is a
continuous map γ: I → Rn, where I ⊂ R is an open interval (of end points
−∞ ≤ a < b ≤ ∞).

a b

γ

x

y

The image set C = γ(I) ⊂ Rn is called the trace of the curve. It is
important to notice that we distinguish the curve and its trace. Physically,
a curve describes the motion of a particle in n-space, and the trace is the
trajectory of the particle. If the particle follows the same trajectory, but
with different speed or direction, the curve is considered to be different.

For example, the positive x-axis is the trace of the parametrized curve
γ(t) = (t, 0) where t ∈ I =]0,∞[, but it is also the trace of γ̃(t) = (et, 0) with
t ∈ R.

Notice also that we do not require the parametrization to be injective. A
point in the trace, which corresponds to more than one parameter value t, is
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called a self-intersection of the curve. For example, in the above parametriza-
tion of the circle, all points are self-intersections because values t+ 2πk cor-
respond to the same point for all k ∈ Z.

In these notes we will mainly be concerned with plane curves (n = 2) and
space curves (n = 3), but in order to treat both cases simultaneously it is
convenient not to specify n. We do not assume n ≤ 3 for the time being,
since it does not lead to any simplifications.

A parametrized continuous curve, for which the map γ: I → Rn is dif-
ferentiable up to all orders, is called a parametrized smooth curve. Recall
that a map f into Rn is differentiable if each of its components f1, . . . , fn
is differentiable. The class of continuous curves is wide and the requirement
of smoothness is a strong limitation. For example, the bizarre Peano curve,
which is defined on [0, 1] and has the entire unit square as trace, is continu-
ous but not smooth. In these notes we will only study smooth curves, and
we therefore adopt the convention that from now on a parametrized curve is
smooth, unless otherwise mentioned.

We have already seen that lines and circles can be parametrized as smooth
curves. Here are some further examples.

Example 1.1.1. The constant curve given by γ(t) = p, t ∈ I, where p ∈ Rn

is fixed and I some open interval, is a parametrized curve.

Example 1.1.2. The map γ(t) = (a cos t, b sin t), where a, b > 0 are con-

stants, parametrizes the ellipse C = {(x, y) | x2

a2 + y2

b2
= 1}.

x

y

Example 1.1.3. Let γ(t) = (a cosh t, b sinh t) where a, b > 0 and (see
Appendix E)

cosh t =
et + e−t

2
, sinh t =

et − e−t

2
.

Using the equation cosh2 t − sinh2 t = 1 we see that γ is a parametrization

of the hyperbola (branch) C = {(x, y) | x2

a2 − y2

b2 = 1, x > 0}.

x

y



Parametrized curves and surfaces 3

Example 1.1.4. The space curve γ(t) = (λt, r cos(ωt), r sin(ωt)), where
r > 0 and λ, ω 6= 0 are constants, is called a helix. It is the spiraling motion
of a point which moves along the x-axis with velocity λ while at the same
time rotating around this axis with radius r and angular velocity ω.

z

y

x

1.2 Surfaces

Definition 1.2. A parametrized continuous surface in R3 is a continuous
map σ:U → R3, where U ⊂ R2 is an open, non-empty set.

u

v

U
p

σ

y

z

x

σ(p)
σ(U)

It will often be convenient to consider the pair (u, v) ∈ U as a set of
coordinates of the point σ(u, v) in the image S = σ(U). However, since σ is
not assumed to be injective, the same point in S may have several pairs of
coordinates.

We call a parametrized continuous surface smooth if the map σ:U → R3

is smooth, that is, if the components σi, i = 1, 2, 3, of

σ(u, v) = (σ1(u, v), σ2(u, v), σ3(u, v))

have continuous partial derivatives with respect to u and v, up to all or-
ders. We adopt the convention that a parametrized surface is smooth, unless
otherwise mentioned.

Example 1.2.1. Plane. Let p, q1, q2 ∈ R3 be fixed vectors and let

σ(u, v) = p+ uq1 + vq2

for (u, v) ∈ U = R2. Then σ is a parametrized surface. If q1, q2 are linearly
independent, the image σ(U) is a plane. Otherwise it is a line or a point.
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Example 1.2.2. Sphere. Let

σ(u, v) = (cosu cos v, cosu sin v, sinu)

where (u, v) ∈ R2. This is a standard parametrization of the unit sphere

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.

The parameters u and v are called latitude and longitude, and together they
are called spherical coordinates.

y

z

x

u

v

σ(u, v)

This parametrization covers the total sphere, but it is not injective. On
the other hand, if we request, for example, that u ∈]− π

2
, π

2
[ and v ∈]−π, π[,

then σ is injective, but it is not surjective, since a half-circle on the ‘back’ of
the sphere will be outside the image of σ.

Example 1.2.3. Cylinder. Let r > 0 and put

σ(u, v) = (r cos v, r sin v, u)

where (u, v) ∈ R2. The image S of σ is the cylinder {(x, y, z) | x2 + y2 = r2}
of radius r.

y

z

x

As before we have to restrict to a smaller set U if we want σ to be injective,
for example by requiring v to belong in a fixed open interval of length 2π.
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Example 1.2.4. Cone. Let λ > 0 and

σ(u, v) = (λu cos v, λu sin v, u)

where (u, v) ∈ R2, then the image of σ is the cone {(x, y, z) | x2+y2 = λ2z2}.

y

z

x

1.3 Graphs

By definition, the graph of a map h:A→ B, where A and B are arbitrary
sets, is the set of all pairs (x, h(x)) ∈ A×B, where x ∈ A.

Let h: I → R be a smooth function, where I ⊂ R is an open interval. The
map t 7→ (t, h(t)) from I to R2 parametrizes the graph and makes it into a
parametrized plane curve. We shall always regard the graph as being this
parametrized curve.

x

y

I

γ(t) = (t, h(t))

Likewise we shall regard the graph of a smooth function h: I → R2 as the
parametrized curve t 7→ (t, h(t)) = (t, h1(t), h2(t)) in R3.

Example 1.3.1. The graph of an affine linear function h(t) = at+b, R → R

(where a, b ∈ R), is the line in R2 parametrized by (t, at+ b). All lines which
are not perpendicular to the x-axis can be parametrized in this fashion.

Similarly the graph of an affine linear function h(t) = at + b, R → R2

(where a = (a1, a2), b = (b1, b2) ∈ R2), is the line in R3 parametrized by
(t, a1t + b1, a2t + b2). All lines of direction not perpendicular to the x-axis
can be parametrized in this fashion.

Example 1.3.2. The helix in Example 1.1.4 with λ = 1 is the 3-dimensional
graph of the map h: R → R2 defined by h(t) = (r cos(ωt), r sin(ωt)).
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We shall also consider surfaces, which are graphs. If h:U → R is a smooth
function defined on an open set U ⊂ R2, then the graph of h is the set

{(u, v, h(u, v)) | (u, v) ∈ U} ⊂ R3.

Equipped with the map

σ(u, v) = (u, v, h(u, v)), (u, v) ∈ U,

the graph is clearly a parametrized smooth surface.

Example 1.3.3. The graph of an affine linear function R2 → R is a plane in
R3. Say h(u, v) = au+bv+c where a, b, c ∈ R, then σ(u, v) = (u, v, au+bv+c).
All planes, except those which are perpendicular to the xy-plane, can be
parametrized in this fashion.

Example 1.3.6. The graph of the function h(u, v) =
√

1 − u2 − v2, defined
on the unit disk U = {(u, v) ∈ R2 | u2 + v2 < 1} is a half-sphere.

1.4 Level sets

Very often a plane curve is described, not by means of a parametrization,
but by an equation. For example, a line is represented by an equation of the
form ax+by = c with a, b, c ∈ R and (a, b) 6= (0, 0), and a circle is represented
by an equation of the form (x− x0)

2 + (y − y0)
2 = r2 with r > 0.

Similarly a surface can be described by an equation. For example, a plane
in R3 is the set of solutions to an equation ax+ by+ cz = d, where (a, b, c) 6=
(0, 0, 0), and a sphere is represented by (x−x0)

2 +(y−y0)2 +(z− z0)2 = r2.
We shall now give a general definition which covers both situations.

Definition 1.4.1. Let Ω ⊂ Rn be open and let f : Ω → R be a continuous
function. The level sets for f are the sets

C = {x ∈ Ω | f(x) = c}

of solutions in Ω to the equation f(x) = c, where c ∈ R is a fixed constant.

In this course the function f will be assumed to be smooth. However, the
smoothness alone does not ensure that the level sets for f can be parametrized
as smooth curves or surfaces (in case n = 2 or 3). For example, a level set for
the trivial function f = 0 on R2, that is, the set of solutions to an equation
0 = c, is either the empty set or the full set R2. Some extra condition will
be needed on f in order that the set is a curve.

Definition 1.4.2. Let f : Ω → R be smooth, where Ω ⊂ Rn is open. A point
p ∈ Ω is called critical if

∂f

∂x1
(p) = · · · =

∂f

∂xn
(p) = 0.
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Let us consider some examples in the plane case n = 2. It will be seen
in all the examples that if we exclude critical points, the level sets can be
parametrized as curves. A precise statement to this effect is given in the
corollary in Section 1.5.

Example 1.4.1. Consider the linear equation ax + by = c whose solutions
comprise a level set for f(x, y) = ax + by. If (a, b) 6= (0, 0) then there
are no critical points. In this case the set of solutions form a line, hence
can be parametrized as a curve. On the other hand, if (a, b) = (0, 0) then
f(x, y) = ax+ by is the trivial function and all points are critical.

Example 1.4.2. Let f(x, y) = x2 + y2, then ∂f
∂x = 2x and ∂f

∂y = 2y, so (0, 0)

is the only critical point. The level sets for c > 0 contain no critical points.
They are circles, hence can be parametrized as smooth curves. The level set
for c = 0 consists only of the critical point (0, 0) and it is exactly in this case
the circles degenerate to a point.

Example 1.4.3. Consider the equation f(x, y) = xy = 0. Here ∂f/∂x = y
and ∂f/∂y = x, and hence the origin (0, 0) is the only critical point. In fact,
the level set given by f(x, y) = 0 is the union of the two axes, which exactly
fails to be a ‘reasonable’ curve at the origin.

1.5 The implicit function theorem, two variables

The implicit function theorem describes conditions under which a given
equation in two variables can be solved to obtain one of the variables as
a function of the other variable. For some simple equations, for example
y2 − 2xy + 1 = 0, explicit solutions are easily obtained by simple algebra,
here y = x +

√
x2 − 1 and y = x −

√
x2 − 1, but for other equations such

explicit solutions cannot be derived. The reason for this need not be lack of
algebraic skill on our side, since a solution may not exist at all. The implicit
function theorem expresses a simple condition which guarantees the existence
of a function h, such that the solution is y = h(x).

Theorem 1.5. Let f : Ω → R be a smooth function, where Ω ⊂ R2 is open.
Let

C = {(x, y) ∈ Ω | f(x, y) = c}

be the set of solutions to the equation f(x, y) = c. Let p = (x0, y0) ∈ C be

given, and assume that ∂f
∂y

6= 0 at p.

Then there exist open intervals I and J around x0 and y0, respectively,
such that the rectangle W = I × J is contained in Ω, and a smooth map
h: I → J such that

C ∩W = {(x, h(x)) | x ∈ I}, (1)

that is, in the neighborhood W of p, C is the graph of h.
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x0

y0
C p

W

Proof. Assume for simplicity that c = 0, and that the value of ∂f
∂y

at p is

positive. These properties can be arranged by a simple replacement of f
which does not affect the set C. Choose δ > 0 such that the neighborhood
{(x, y) | |x−x0| ≤ δ, |y−y0| ≤ δ} of p lies inside Ω, and such that ∂f

∂y
≥ a on

this neighborhood, for some constant a > 0 (continuity of ∂f∂y is used). Then

y 7→ f(x, y) is strictly increasing on the interval [y0 − δ, y0 + δ], for each fixed
x with |x− x0| < δ.

In particular, since p ∈ C we have f(p) = f(x0, y0) = 0, and hence

f(x0, y0 − δ) < 0 and f(x0, y0 + δ) > 0.

By continuity in x0 of each of the maps x 7→ f(x, y0 ± δ), there exists a
positive number η ≤ δ such that f(x, y0 − δ) < 0 and f(x, y0 + δ) > 0 for all
x with |x− x0| < η.

x0

y0

x0+η

y0+δ

x0−η

y0−δ
p

f>0

f<0

f=0

Let I = {x | |x − x0| < η}, and let x ∈ I. Since y 7→ f(x, y) is strictly
increasing and continuous, and since f(x, y0 − δ) < 0 and f(x, y0 + δ) > 0,
there exists a unique y between y0−δ and y0 +δ with f(x, y) = 0. This value
of y is denoted h(x). Then h maps I into J =]y0 − δ, y0 + δ[ and satisfies
f(x, h(x)) = 0. The identity of the sets in (1) follows from the uniqueness of
y. We will complete the proof of the theorem by showing that h is smooth.

We first prove that h is continuous. Fix x ∈ I and let y = h(x), then
f(x, y) = 0. Let ∆x be sufficiently small so that x+∆x ∈ I. Associated to ∆x
we define ∆y such that y+∆y = h(x+∆x), then also f(x+∆x, y+∆y) = 0.

The asserted continuity amounts to the statement that ∆y → 0 when
∆x→ 0. The function

t 7→ ϕ(t) = f(x+ t∆x, y + t∆y)
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is zero both for t = 0 and t = 1. By the mean value theorem (Rolle’s theorem)
there exists a number θ ∈ (0, 1) (depending on ∆x) such that

ϕ′(θ) = 0.

Differentiating ϕ by means of the chain rule we thus obtain

∂f

∂x
(x+ θ∆x, y + θ∆y)∆x+

∂f

∂y
(x+ θ∆x, y + θ∆y)∆y = 0.

Hence

∆y = −
∂f
∂x (x+ θ∆x, y + θ∆y)
∂f
∂y

(x+ θ∆x, y + θ∆y)
∆x,

and since |∂f∂x | is bounded, and ∂f
∂y ≥ a > 0, it follows that ∆y → 0 when

∆x→ 0, as claimed.
Next we prove that h is differentiable, which with the notation from above

amounts to the convergence of ∆y/∆x as ∆x→ 0. In fact, since ∂f
∂x and ∂f

∂y

are continuous, this follows immediately from the equation above. Moreover,
the limit is given by

lim
∆x→0

∆y

∆x
= −

∂f
∂x

(x, y)
∂f
∂y (x, y)

.

Hence h is differentiable and satisfies

h′(x) = −
∂f
∂x

(x, h(x))
∂f
∂y

(x, h(x))
. (2)

Finally, we prove by induction that h is smooth. Assuming that h is r
times differentiable for some natural number r, we see from equation (2) that
so is h′. Hence h is r + 1 times differentiable. �

Corollary 1.5. Let f : Ω → R be a smooth function, where Ω ⊂ R2 is open.
Let

C = {(x, y) ∈ Ω | f(x, y) = c}
and let p = (x0, y0) ∈ C. Assume that p is not a critical point.

Then there exists an open rectangle W ⊂ Ω around p, such that C ∩W
is the graph of a smooth function h, considered either as y = h(x) or as
x = h(y).

In particular, it follows that the level set can be parametrized as a smooth
curve in a neighborhood of each non-critical point.

Proof. By assumption ∂f
∂x and ∂f

∂y are not both zero at p. If ∂f
∂y (p) 6= 0 the

conclusion is already in the previous theorem. Otherwise, we interchange x
and y. �
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Example 1.5.1. Let f : R2 → R be given by f(x, y) = y2 − 2xy + 1, and

consider the level set C = {(x, y) | f(x, y) = 0}. Then ∂f
∂y = 2y−2x, which is

zero if and only if x = y. Inserting y = x in the equation y2−2xy+1 = 0, we
see that the only points in C where ∂f

∂y = 0 are p = (1, 1) and q = (−1,−1).

We can then conclude from the theorem that the level set C can be attained
as a graph of the form y = h(x) in a neighborhood of each of its points, except

possibly p and q (the theorem gives no information in case ∂f
∂y

= 0).

On the other hand, the partial derivative ∂f
∂x = −2y is never zero on C

(since y = 0 in y2 − 2xy + 1 = 0 leads to a contradiction), and thus C has
the form of a graph x = h(y) in a neighborhood of all its points.

In fact, the equation can be easily solved with respect to both x and y:

y = x±
√
x2 − 1, x =

1

2
(y +

1

y
).

The formula on the left gives two expressions, each with y a function of x.
Only one of these is relevant in a neighborhood of a given point (x, y) ∈
C, provided |x| > 1. However, at the points where x = ±1, these two
expressions for y collapse, and neither of them gives a well-defined function
in a neighborhood, because |x| < 1 is not allowed in the square root. Notice

that these are exactly the two points where ∂f
∂y = 0.

The expression for x, on the other hand, is defined and smooth for all
y 6= 0 (and y = 0 never occurs in C).

x

y

p = (1, 1)

q = (−1,−1)

Example 1.5.2. Let f(x, y) = x4 − x2 + y2, and C = {(x, y) | f(x, y) = 0}.
The derivatives

∂f

∂x
= 4x3 − 2x and

∂f

∂y
= 2y

are both zero if and only if (x, y) is one of the three points

(0, 0), (
√

1
2 , 0), (−

√
1
2 , 0).

Only the first one of these belongs to C, and this point is therefore the only
critical point in C.
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The set C is shown in the following figure. It can be shown that C is
the trace of the parametrized curve γ(t) = (cos t, cos t sin t), which has a
self-intersection exactly in the critical point (0, 0).

x

y

1.6 The implicit function theorem, more variables

We will now consider the analogue for surfaces of the theory of the pre-
ceding section. Where the solution set for an equation in two variables was
described as a parametrized curve, the analogous theorem describes the so-
lution set for an equation in three variables as a parametrized surface.

In fact, it is convenient to state the theorem as a theorem treating an
equation in n variables, with arbitrary n ≥ 2. In this fashion the theorem
becomes a generalization rather than an analogue.

In order to compare easily with the previous theorem we denote our vari-
ables in Rn by (x, y) = (x1, . . . , xn−1, y) where x ∈ Rn−1 and y ∈ R. By
definition, an interval in Rn is a product I1 × · · · × In of intervals in R.

Theorem 1.6. Let f : Ω → R be a smooth function, where Ω ⊂ Rn is open.
Let

S = {(x, y) ∈ Ω | f(x, y) = c}

and let p = (x0, y0) ∈ S. Assume that ∂f
∂y 6= 0 at p.

Then there exist open intervals I ⊂ Rn−1 and J ⊂ R around x0 and y0,
respectively, such that the interval W = I×J is contained in Ω, and a smooth
map h: I → J such that

S ∩W = {(x, h(x)) | x ∈ I},

that is, in the neighborhood W of p, S is the graph of h.

Proof. Notice the similarity with Theorem 1.5, the only difference being that
x ∈ R is replaced by (x1, . . . , xn−1) ∈ Rn−1. In fact, the proof is a rather
straightforward generalization of the proof of Theorem 1.5, and it is therefore
omitted. �

Let us take n = 3, and replace the notation (x1, x2, y) by (x, y, z). We
obtain the following result which is analogous to the corollary in Section 1.5.
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Corollary 1.6. Let f : Ω → R be a smooth function, where Ω ⊂ R3 is open.
Let

S = {(x, y, z) ∈ Ω | f(x, y, z) = c}
and let p = (x0, y0, z0) ∈ S. Assume that p is not a critical point.

Then there exist an open interval W ⊂ Ω around p, such that S ∩W is the
graph of a smooth function h, considered either as z = h(x, y), as y = h(x, z)
or as x = h(y, z).

In particular, it follows that the level set can be parametrized as a smooth
surface in a neighborhood of each non-critical point.

Proof. By assumption at least one of the partial derivatives ∂f
∂x

, ∂f
∂y

and ∂f
∂z

is not zero at p. Interchanging z with x or y if necessary, we may assume
that it is ∂f

∂z . The conclusion then follows from the previous theorem. �

Example 1.6.1. The equation for a plane in R3, ax+ by + cz = d, where
(a, b, c) 6= (0, 0, 0), satisfies the assumption of the preceding corollary. If c 6=
0, the plane is the graph z = h(x, y) of the function h(x, y) = (d−ax−by)/c.
If c = 0 the plane is vertical, and we cannot exhibit it as a graph of the
form z = h(x, y), but then we can exhibit it as a graph over one of the other
coordinate planes.

Example 1.6.2. The surfaces introduced in Examples 1.2.2-1.2.4, sphere,
cylinder and cone, are level sets for, respectively, f(x, y, z) = x2 + y2 + z2,
f(x, y, z) = x2 + y2 and f(x, y, z) = x2 + y2 − z2. These functions all satisfy
the assumption of the corollary above, except for the vertex (0, 0, 0) of the
cone.

Example 1.6.3. Let f(x, y, z) = zex + yz and consider the equation
f(x, y, z) = 1 in a neighborhood of the point p = (0, 0, 1) (which solves

the equation). The partial derivative ∂f
∂z

= ex + y is 1 at this point, so by
the implicit function theorem the solution z exists as a function of (x, y)
in a neighborhood of (0, 0, 1). In fact, the equation has the solution z =
1/(ex + y). However, if the equation is replaced by for example f(x, y, z) =
zex + sin(yz) = 1, then it is impossible to write down a solution to the
equation in terms of known functions, but the conclusion from the implicit
function theorem remains the same since we still have ∂f

∂z
= 1 at p.

1.7 The implicit function theorem, more equations

We have seen that an equation f(x, y) = c in R2 defines a plane curve,
and that an equation f(x, y, z) = c in R3 defines a surface (under suitable
circumstances). In order to define a curve in R3 we need two equations. For
example, the x-axis is the set defined by equations y = 0 and z = 0. Consider
two equations of the form

f1(x, y, z) = c1,

f2(x, y, z) = c2,
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where f1, f2 maps an open set Ω ⊂ R3 into R. We say that we have two
equations in three variables. It is actually more convenient to write the
equations in the form

f(x, y, z) = c

where f = (f1, f2) maps Ω into R2, and where c = (c1, c2). We want to
generalize Theorem 1.6 in order to deal with this situation.

In fact, we will generalize even further, to functions f : Ω ⊂ Rn → Rm, that
is, to the case of m equations in n variables, the only condition being that
n > m. For the application to space curves, only n = 3 and m = 2 is needed,
and the reader is encouraged to specialize to this case at first reading.

It is convenient for the comparison with Theorem 1.6 to write elements in
Rn as (x, y) where x = (x1, . . . , xn−m) ∈ Rn−m and y = (y1, . . . , ym) ∈ Rm.
The goal is to obtain y as a function of x.

Theorem 1.7. Let f : Ω → Rm be a smooth function, where Ω ⊂ Rn is
open. Let c ∈ Rm be fixed. Let

C = {(x, y) ∈ Ω | f(x, y) = c}

and let p = (x0, y0) ∈ C. Assume that the determinant of the m×m matrix

A =
∂fi
∂yj

(p),

consisting of the last m columns of the Jacobian Df(p), is non-zero.
Then there exist open intervals I ⊂ Rn−m and J ⊂ Rm around x0 and y0,

respectively, such that W = I × J ⊂ Ω, and a smooth map h: I → J such
that

C ∩W = {(x, h(x)) | x ∈ I},
that is, in the neighborhood W of p, C is the graph of h: Rn−m → Rm.

Proof. The most common technique for solving several equations in several
variables is elimination of variables. That is, we use one of the equations to
express a particular variable in terms of the others, and insert this expression
in the remaining equations. The chosen variable has then been eliminated,
and the number of equations is reduced by one. This will also be our strategy
in the present proof.

We prove the theorem by induction on m. The case m = 1 was already
treated in Theorem 1.6. Thus, we assume thatm ≥ 2 and that the conclusion
of the theorem is valid for functions into Rm−1. We can safely assume that
c = 0, since this can be arranged by subtraction of the constant from f .

Since detA is non-zero, A is invertible. We want to replace f : Rn → Rm

by the function A−1 ◦f : Rn → Rm, obtained by multiplying all image vectors
f(x, y) ∈ Rm with the constant matrix A−1. Since multiplication by A−1
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is a bijection, the equations f(x, y) = 0 and A−1f(x, y) = 0 are equivalent.
The Jacobian of the linear map, multiplication by A−1, is the matrix A−1

itself (see Example B.1), and hence it follows from the chain rule that

D(A−1 ◦ f)(p) = A−1 ·Df(p).

We see that the last m columns of D(A−1 ◦ f)(p) comprise a unit matrix
δkj . By the replacement of f with A−1 ◦ f we thus obtain a function whose
Jacobian matrix at p has a unit matrix in its last m columns, and for which
the solution set C is unaltered. From now on we assume this replacement has
been carried out, that is, we assume ∂fk/∂yj = δkj .

In particular, for the function fm whose derivatives are in the last row
of Df , we have that ∂fm/∂ym(p) = 1. We will apply Theorem 1.6 to the
equation fm(x, y) = 0. The effect of the theorem is that the last variable,
ym, can be written as a smooth function of the remaining variables. We
write the remaining variables as (x, y′) ∈ Rn−1 where y′ = (y1, . . . , ym−1).
More precisely, it then follows that there exists an interval neighborhood
W1 = I1×J1 around p, where I1 ⊂ Rn−1 and J1 ⊂ R, and a smooth function
h: I1 → J1 such that for (x, y) = (x, y′, ym) ∈ W1 we have fm(x, y) = 0 if
and only if

ym = h(x, y′).

Let the function F : I1 ⊂ Rn−1 → Rm−1 be defined by

Fk(x, y
′) = fk(x, y

′, h(x, y′)) (3)

for k = 1, . . . , m − 1, where as before y′ = (y1, . . . , ym−1). The partial
derivatives of Fk are obtained by applying the chain rule to (3):

∂Fk
∂yj

=
∂fk
∂yj

+
∂fk
∂ym

∂h

∂yj
(j = 1, . . . , m− 1),

and at p we thus have ∂Fk

∂yj
= ∂fk

∂yj
= δkj (because ∂fk

∂ym
= 0). The determinant

of this matrix being non-zero, we can apply our induction hypothesis to
F , and we obtain the existence of an interval neighborhood W2 = I2 × J2

around (x0, y0′), where I2 ⊂ Rn−m and J2 ⊂ Rm−1, and a smooth function
g: I2 → J2 such that the solution set for the equation F (x, y′) = 0 in W2 is
the graph of g, that is, F (x, y′) = 0 if and only if y′ = g(x).

Let the interval W ⊂ Rn be defined by

W = W1 ∩ {(x, y) | (x, y′) ∈W2}.

We now see that for (x, y) in this set we have

(x, y) ∈ C
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if and only if
fk(x, y) = 0, k = 1, . . . , m

if and only if

fk(x, y) = 0, k = 1, . . . , m− 1 and ym = h(x, y′)

if and only if
F (x, y′) = 0 and ym = h(x, y′)

if and only if
y′ = g(x) and ym = h(x, y′)

if and only if
y = (g(x), h(x, g(x))).

The function x 7→ (g(x), h(x, g(x))) is thus seen to be the desired function
whose graph is C in a neighborhood of p. �

Corollary 1.7. Let f : Ω → R2 be smooth, where Ω ⊂ R3 is open. Let c ∈ R2

and
p ∈ C = {(x, y, z) ∈ Ω | f(x, y, z) = c}.

Assume the rows of Df(p) (a 2 × 3 matrix) are linearly independent.
Then there exist an open interval W ⊂ Ω around p, such that C ∩W can

be parametrized as a smooth curve in the form of a graph, considered either
as (y, z) = h(x), as (x, z) = h(y) or as (x, y) = h(z).

Proof. At least one of the three 2 × 2 submatrices of Df(p) has non-zero
determinant. With suitable reorganization of variables the theorem can be
applied. �

Example 1.7. The set of equations

x+ xy + z2 = 3 ∧ x3 + 2xz − y2z2 = 2 (4)

has the form f(x, y, z) = c with

f(x, y, z) =

(
x+ xy + z2

x3 + 2xz − y2z2

)
, c =

(
3
2

)
.

The Jacobian matrix is

Df(x, y, z) =

(
1 + y x 2z

3x2 + 2z −2yz2 2x− 2y2z

)
.

In the point (1, 1, 1) the equations (4) are satisfied and the Jacobian is

(
2 1 2
5 −2 0

)
.
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The determinant of the last two columns is detA = 4. Since this determinant
is not zero, the implicit function theorem assures that the equations can
be solved for (y, z) as function of x, in a neighborhood of (1,1,1). In this
neighborhood the set of solutions can thus be parametrized as a smooth curve
in the form of a 3-dimensional graph (t, h(t)) where h(t) = (y(t), z(t)) ∈ R2.

This example demonstrates the theoretical power of the implicit function
theorem, since the explicit solving of (4) for y and z as functions of x is
clearly a difficult task.

1.8 Exercises

1 Let γ: I → Rn be a parametrized curve with γ′′(t) = 0 for all t. Show that
it is a line or a constant curve.

2 The following parametrized curve is called the cycloid

γ(t) = (t− sin t, 1 − cos t), (t ∈ R).

It is constructed by a circle of radius 1 rolling without slipping along the
positive x-axis. The curve is the path of a point on the circumference of
the circle. Explain the formula above from this construction.

x

y

3 Determine a parametrized surface with image {(x, y, z) | x+2y−2z = 1}.
4 Consider the equation x3+xy2−2ay2 = 0 in R2, where a > 0 is a constant.

Show that the parametrized curve

γ(t) = (
2at2

1 + t2
,

2at3

1 + t2
),

where t ∈ R, is bijective onto the set of solutions. This curve is called the
cissoid of Diocles. Draw a sketch of it (say for a = 1).

5 Let S ⊂ R3 denote the set of solutions to the equation x2 + y − z2 = 1.

a. Show that the map σ: R2 → R3 given by

σ(u, v) = (u+ v, 1 − 4uv, u− v)

is an injective parametrized surface with image S.

b. Show that S contains no critical points for the function f(x, y, z) =
x2 + y− z2, and determine a parametrization of S as a graph of a smooth
function h.
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6 Consider the equation x3y3 − 3x+ y = −1, which is satisfied by (x, y) =
(1, 1). Show that it is possible to describe the level set as a graph y = h(x)
in a neighborhood of this point.

7 Denote by C the level set in R2 for the equation 4x4 − 5x2y2 + y4 = 0.

a. Show by means of the implicit function theorem that for each point
(x0, y0) ∈ C \ {(0, 0)} there exists a neighborhood in which C can be
described as a graph y = h(x).

b. Solve the equation and determine C explicitly.

8 The condition f ′
y(x0, y0) 6= 0 in Theorem 1.5 is sufficient but not necessary.

That is, if f ′
y(x0, y0) = 0 it may still be possible to describe the level set

as a graph y = h(x) of a smooth function h in a neighborhood of (x0, y0).
Give an example.

9 Let f be as in Theorem 1.5, but assume instead that f ′
y(x0, y0) = 0. Show

that if f ′
x(x0, y0) 6= 0, then it is not possible to describe the level set as a

graph y = h(x), where h is smooth, in any neighborhood of (x0, y0).

10 The equation xy + xz + sin z = 0 is solved by (x, y, z) = (0, 0, 0). Show
that the solution set in a neighborhood of this point allows a description
as a graph. Show that this is the case in a neighborhood of all solutions.

11 Let S = {(x, y, h(x, y))} ⊂ R3 be the graph of the function h(x, y) =
y−xy3. Show that in a neighborhood of each point of S in which 3xy2 6= 1,
it is possible to write S as a graph of the form y = g(x, z) with g smooth.

12 Consider the system of equations in R3

2x2 − x2z2 − y2 = 0 ∧ xyz = 1

to which (1, 1, 1) is a solution. Show that there exists a neighborhood in
which the solution set can be described as a graph of the form (x, y) =
h(z), where x and y both are functions of z.

13 Let f : R3 → R2 and c ∈ R2 be given by

f(x, y, z) = (x2 + y2 + z2, (x− 1

2
)2 + y2), c = (1, a2)

where a ≥ 0. Let L ⊂ R3 denote the set of solutions to the system
f(x, y, z) = c.

a. Explain why L is the intersection of a sphere and a cylinder, and
determine their radii.

b. Determine, in each of the following 6 cases, the set of points in L
for which the rank of Df(p) is < 2, that is, where the rows are linearly
dependent.

a = 0, 0 < a < 1
2 , a = 1

2 ,
1
2 < a < 3

2 , a = 3
2 ,

3
2 < a.

c. What does the implicit function theorem tell about L in each case.
Explain by means of the observation in a.
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Chapter 2

Tangents

We have equipped parametrized curves and surfaces with the standing
assumption that the parametrization is smooth. However, smoothness alone
is not enough to ensure a simple geometric appearance. For example, the
plane curve γ(t) = (t3, t2) is perfectly smooth, but in γ(0) = (0, 0) the
trace of the curve has a sharp fold (a so-called ‘cusp’), which conflicts with
the intuitive notion of smooth. Another striking example will be given in
Example 2.1.4 below.

x

y
γ(t) = (t3, t2)

In this chapter we will define a notion of regularity for parametrized curves
and surfaces, which is motivated by the desire to exclude anomalies as the
one just mentioned. The geometric significance of the regularity condition
will be that it allows us to define notions of tangent lines and tangent planes.

2.1 Regular curves and tangent lines

Let γ: I → Rn be a parametrized curve and let t0 ∈ I be given.

Definition 2.1.1. The curve γ is called regular in t0 if γ′(t0) 6= 0. Otherwise
it is called singular. If γ is regular in all points of I we call it a regular
parametrized curve or just a regular curve.

For example, the plane curve mentioned above is regular for t 6= 0 but it
is singular at t = 0. The standard parametrizations of line and sphere (see
Section 1.1), and the curves described in Examples 1.1.2, 1.1.3 and 1.1.4 are
all regular curves.

Example 2.1.1 A constant curve (Example 1.1.1) is everywhere singular.
Conversely, an everywhere singular parametrized curve is constant, since
γ′ = 0 implies that γ is constant.
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Example 2.1.2 A graph γ(t) = (t, h(t)) (Section 1.3) is a regular curve in
R2, since γ′(t) = (1, h′(t)) 6= (0, 0) (also if h′(t) = 0). Hence, by Corollary
1.5, a level set f(x, y) = c can be parametrized as a regular curve in a
neighborhood of each point which is not critical.

Definition 2.1.2. The vector γ′(t0) is called the tangent vector to γ at t0.
If γ is regular at t0, the line through p = γ(t0) with direction γ′(t0) is called
the tangent line of the curve.

The latter definition is motivated by the following result, which describes
the tangent vector geometrically. The notation ‖v‖ for vectors v ∈ Rn is
defined in Appendix A.

Theorem 2.1. Assume that γ is regular at t0, and let v = γ′(t0)/‖γ′(t0)‖
be the unit vector in the direction of the tangent vector. Then

v = lim
t→t+

0

γ(t) − γ(t0)

‖γ(t) − γ(t0)‖
= lim
t→t−

0

γ(t0) − γ(t)

‖γ(t0) − γ(t)‖ . (1)

In other words, the unit tangent vector v is the limit position of the direction
from γ(t0) to γ(t), as t approaches t0 from above, and the limit position of
the direction from γ(t) to γ(t0), as t approaches t0 from below.

γ(t0)

γ(t)

v

Proof. By definition

γ′(t0) = lim
t→t0

γ(t)− γ(t0)

t− t0
.

In particular, since γ′(t0) 6= 0 it follows that γ(t) 6= γ(t0) for all t ∈ I
sufficiently close to (but different from) t0. Thus the denominator of the
fraction in (1) is not zero. Moreover for t > t0,

γ(t)− γ(t0)

‖γ(t)− γ(t0)‖
=

1

‖γ(t)−γ(t0)
t−t0 ‖

γ(t) − γ(t0)

t− t0
→ 1

‖γ′(t0)‖
γ′(t0),

and similarly for t < t0. �

Example 2.1.3 According to the theorem, regularity of γ is a sufficient
condition for (1) to hold. It is not a necessary condition. For example, the
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curve γ(t) = (t3, 0) which has the x-axis as its trace, is singular at t0 = 0,
but nevertheless both limits in (1) exist and are equal to the unit vector
v = (1, 0).

Example 2.1.4 A sophisticated example of a non-regular point on a smooth
curve can be constructed as follows. Let φ: R → R be the function defined
by

φ(t) =

{
exp(−1

t ) if t > 0

0 otherwise

then it can be shown that φ is smooth (the derivatives up to all orders vanish
at 0). The graph of φ is shown to the left in the figure below.

x

y = φ(x) (x, y) = γ(t)

x

y y

1

1

Define γ(t) = (φ(t), φ(−t)) for t ∈ R. This is a smooth curve whose trace
consists of the line segment from 1 to 0 on the y-axis followed by the line
segment from 0 to 1 on the x-axes. It is not regular at the origin, which is
in accordance with the sharp turn of the curve in that point.

2.2 The tangent line of a level set

We have seen in Example 2.1.2 that the level set given by f(x, y) = c can
be parametrized as a regular curve γ(t) in a neighborhood of each non-critical
point p. We will determine the tangent line of such a parametrization.

Theorem 2.2. Let C ⊂ R2 be a level set of a smooth function f , and let
p = (x0, y0) ∈ C be non-critical. Let γ: I → R2 be any parametrized curve
with trace γ(I) ⊂ C and with γ(t0) = p for some t0 ∈ I, in which γ is regular.
Then the tangent line of γ at t0 is characterized by the equation

∂f

∂x
(p)(x− x0) +

∂f

∂y
(p)(y − y0) = 0.

Proof. We shall be using the following simple fact from plane geometry. The
line with normal vector (a, b) 6= (0, 0) through (x0, y0) is given by the equation

a(x− x0) + b(y − y0) = 0.

We thus have to prove that the tangent line has (∂f∂x (p), ∂f∂y (p)), which is

non-zero by assumption, as a normal vector.
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Write γ(t) in coordinates as γ(t) = (x(t), y(t)). Since γ maps into the
level set we have f(x(t), y(t)) = c for all t. By differentiation with the chain
rule we obtain

x′(t0)
∂f

∂x
(p) + y′(t0)

∂f

∂y
(p) = 0,

which exactly shows that (∂f∂x (p), ∂f∂y (p)) is perpendicular to the tangent vec-

tor γ′(t0) = (x′(t0), y′(t0)). �

Notice that it follows from the theorem that the tangent line depends on
the level set through the function f , but it is independent of the chosen
parametrization γ.

2.3 The tangent plane of a regular surface

Let σ:U → R3 be a parametrized surface with image S = σ(U), and let a
point p = (u0, v0) ∈ U be given.

The notion of regularity for a parametrized surface is somewhat more
complicated than that for a curve, because of the fact that we can differentiate
with respect to both u and v. Let σ = (σ1, σ2, σ3) and put

σ′
u =




∂σ1

∂u
∂σ2

∂u
∂σ3

∂u


 and σ′

v =




∂σ1

∂v
∂σ2

∂v
∂σ3

∂v


 .

These vectors are the columns in the Jacobi matrix

Dσ =




∂σ1

∂u
∂σ1

∂v
∂σ2

∂u
∂σ2

∂v
∂σ3

∂u
∂σ3

∂v


 .

Notice that σ′
u(p) and σ′

v(p) are the tangent vectors at t = 0 to the curves
t 7→ σ(u0 + t, v0) and t 7→ σ(u0, v0 + t), respectively.

u

v

Up

σ

y

z

x

σ′
u

σ′
v σ(U)

Definition 2.3.1. A parametrized surface σ is called regular at p = (u0, v0)
if the partial derivatives σ′

u and σ′
v, evaluated at p, are linearly independent.
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Otherwise it is called singular. If σ is regular in all points of U we call it a
regular parametrized surface or just a regular surface.

Recall (see Appendix C) that for two vectors a = (a1, a2, a3) and b =
(b1, b2, b3) in R3 we define the cross product by

a× b =

(∣∣∣∣
a2 b2
a3 b3

∣∣∣∣ ,−
∣∣∣∣
a1 b1
a3 b3

∣∣∣∣ ,
∣∣∣∣
a1 b1
a2 b2

∣∣∣∣
)
.

Since a and b are linearly independent if and only if a× b 6= 0, the regularity
condition above is equivalent to σ′

u × σ′
v 6= 0.

Example 2.3.1 For the standard spherical coordinates

σ(u, v) = (cosu cos v, cosu sin v, sinu)

we derive

σ′
u =




− sinu cos v
− sinu sin v

cosu


 , σ′

v =




− cosu sin v
cosu cos v

0




and hence

σ′
u × σ′

v = (− cos2 u cos v,− cos2 u sin v,− cosu sinu) = − cosuσ(u, v). (2)

In particular, since σ(u, v) 6= 0 (it has length 1), we see that σ′
u × σ′

v = 0
if and only if cosu = 0, that is u = ±π

2 (up to multiples of 2π). The
points σ(p) on the sphere, where σ is singular at p, are thus the two poles
(0, 0,±1). Notice however that by choosing a different parametrization of
the sphere, we can arrange that these points are in the regular range (at the
cost of some other points becoming singular). For example with (u, v) 7→
(cosu cos v, sinu, cosu sin v), which differs from σ by an interchange of y and
z, the points σ(p) with p singular are (0,±1, 0).

Example 2.3.2 The graph σ(u, v) = (u, v, h(u, v)) (Section 1.3) of a func-
tion of two variables is a regular surface in R3, since

σ′
u = (1, 0,

∂h

∂u
) and σ′

v = (0, 1,
∂h

∂v
)

are linearly independent (also if the partial derivatives of h are 0). Hence, by
Corollary 1.6, a level surface f(x, y, z) = c can be parametrized as a regular
surface in a neighborhood of each point which is not critical.

Definition 2.3.2. The linear subspace of R3 spanned by the partial deriva-
tives σ′

u(p) and σ′
v(p) is called the tangent space of σ at p. It is denoted Tpσ.
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If σ is regular at p = (u0, v0), then the plane through σ(p) and parallel to
Tpσ is called the tangent plane at p.

σ′
u

σ′
v

Notice that the tangent space Tpσ is a two-dimensional linear subspace of
R3 if and only if σ is regular. In this case the pair of vectors σ′

u(p) and σ′
v(p)

form a basis for Tpσ, and the use of the word ‘plane’ for the tangent plane is
justified.

Example 2.3.3 Let σ be the standard parametrization of the unit sphere,
as in the Example 2.3.1. At (u0, v0) = (0, 0) we have σ(0, 0) = (1, 0, 0) and
σ′
u = e3 and σ′

v = e2 (where e1, e2, e3 are the standard basis vectors in R3).
The tangent space at (0, 0) is therefore the span of e2 and e3 (the yz-plane),
and the tangent plane is the plane through (1, 0, 0) parallel to this plane. On
the other hand, if u0 = π

2
(and v0 is arbitrary) so that σ(u0, v0) = (0, 0, 1),

then σ′
u = (− cos v0,− sin v0, 0) and σ′

v = 0, so in this singular case the
tangent space at (u0, v0) is one-dimensional. However, the degeneracy of the
tangent space at this point is caused by the singularity of the parametrization,
and it has no geometric significance for the sphere.

It is convenient to have the notion of tangent space because of its structure
as a linear space. On the other hand the tangent plane is more easy to
visualize, because it passes through the given point on S = σ(U).

For a level set we have the following analogue of Theorem 2.2.

Theorem 2.3. Let S ⊂ R3 be a level set of a smooth function f , and let
p = (x0, y0, z0) ∈ S be non-critical. Let σ:U → R3 be any parametrized
surface with image σ(U) ⊂ S and with σ(u0, v0) = p for some (u0, v0) ∈ U ,
in which σ is regular. Then the tangent plane of σ at (u0, v0) is characterized
by the equation

∂f

∂x
(p)(x− x0) +

∂f

∂y
(p)(y − y0) +

∂f

∂z
(p)(z − z0) = 0.

Proof. Entirely analogous to that of Theorem 2.2. �

As in Section 2.2 we observe that the tangent plane in p of the level set S
depends on f but is independent of the particular parametrization σ.
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2.4 Curves on a surface

We shall now give a geometric characterization of the tangent space based
on the following definition. Let σ:U → R3 be a parametrized surface.

Definition 2.4. A parametrized curve on σ is a parametrized curve written
in the form γ = σ◦µ: I → R3 where µ: I → U is a parametrized plane smooth
curve.

u

v

U

µ

p

µ γ

I
R

σ σ(p)

γ

σ(U)

Notice that µ is not uniquely determined by γ since we have not assumed
σ to be injective. Furthermore, even if σ is injective, so that µ is uniquely
determined by γ, then smoothness of µ is not ensured just by the smoothness
of γ. It is therefore important to emphasize that in the above definition the
smooth curve µ is assumed to be given together with γ.

Formally, a parametrized curve on σ is a pair of smooth curves µ and γ
satisfying γ = σ ◦ µ. The plane curve µ is said to be the coordinate curve of
the pair.

Example 2.4.1 The helix γ(t) = (λt, r cos(ωt), r sin(ωt)) in Example 1.1.4
is realized as a curve σ ◦ µ on the cylinder σ(u, v) = (u, r cos v, r sin v) with
coordinate curve µ(t) = (λt, ωt).

Lemma 2.4. Let γ = σ ◦ µ be a parametrized curve on σ. Then

γ′(t) = u′(t)σ′
u(µ(t)) + v′(t)σ′

v(µ(t)) (3)

where u(t) and v(t) are the coordinates of µ(t) = (u(t), v(t)) ∈ U .

Proof. This follows from the chain rule for D(G◦F ) with G = σ:U → R3 and
F = µ: I → U , see Appendix B, equation (B.2). The 3× 2 matrix DG = Dσ
has columns σ′

u, σ
′
v, and the derivative F ′(t) = µ′(t) has the elements u′(t)

and v′(t). Their product DG(F (t))F ′(t) is exactly the linear combination
u′σ′

u + v′σ′
v, as in (3). �
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Theorem 2.4. The tangent space Tpσ is equal to the set of tangent vectors
γ′(t0) of all parametrized curves γ = σ ◦ µ on σ with µ(t0) = p for some
t0 ∈ I.

Proof. It follows from (3) that γ′(t0) belongs to the span Tpσ of σ′
u and σ′

v

for all parametrized curves on σ with µ(t0) = p.
Conversely, let a linear combination aσ′

u + bσ′
v ∈ Tpσ be given. Let p =

(u0, v0) and define µ(t) = (u(t), v(t)) = (u0 + at, v0 + bt) for t sufficiently
close to 0, so that µ(t) ∈ U . Let γ = σ ◦ µ. Then u′(t) = a and v′(t) = b,
hence it follows from the expression (3) for γ′(t) that γ′(0) = aσ′

u + bσ′
v. �

2.5 Reparametrization of curves

It can often be useful to change the way a given curve is parametrized. For
example, one may prefer to parametrize the unit circle not by (cos t, sin t), but
by (cos(ωt), sin(ωt)) for some angular velocity ω. This concept is formalised
in the following definition.

x

y

β

I
R

γ

J
R

φ

Definition 2.5.1. Let γ: I → Rn be a parametrized curve, and let φ: J →
I be a smooth bijective map with a smooth inverse (I and J being open
intervals in R). The curve β = γ ◦ φ: J → Rn is called a reparametrization
of γ.

For the justification of the condition on φ we recall the following result
from the calculus of functions of one variable.

Theorem 2.5. Let J ⊂ R be an open interval and φ: J → R a smooth map.
Let I = φ(J), then the following conditions are equivalent:

(i) φ′(u) 6= 0 for all u ∈ J ,
(ii) φ: J → I is bijective, I is an open interval, and φ−1: I → J is smooth.

Moreover, if these conditions hold, then

(φ−1)′(t) =
1

φ′(u)
(4)
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for all t ∈ I, where u = φ−1(t).

Notice that if φ′(u) 6= 0 for all u ∈ J then, by continuity, either φ′(u) > 0
for all u or φ′(u) < 0 for all u. Thus φ is either monotonically increasing or
monotonically decreasing.

Let β = γ ◦ φ be a reparametrization. It follows from the chain rule that
the tangent vectors of β are related to those of γ through

β′(u) = φ′(u)γ′(φ(u)). (5)

Since φ′(u) 6= 0 we see that β is regular if and only if γ is regular. Moreover,
if φ′ > 0 the tangent vectors of β and γ have mutual directions, and if
φ′ < 0 they have opposite directions. We say in the former case, where φ is
increasing, that the reparametrization preserves direction and in the latter
case, where φ is decreasing, that the reparametrization reverses direction.

Example 2.5.1 Let p, q ∈ Rn be fixed, q 6= 0. The curve β(u) = p+tan u q,
u ∈] − π

2 ,
π
2 [, is a reparametrization of the line γ(t) = p + tq, t ∈ R. The

transformation between t and u is given by t = φ(u) = tanu. On the other
hand, the curve α(v) = p+v3q is not a reparametrization, since v 7→ v3 does
not have a differentiable inverse (and in fact, α is not regular).

2.6 Reparametrization of surfaces

We will now generalize some of these concepts to surfaces. The situation
is considerably more complicated, because the higher dimensional Euclidean
spaces Rn present some subtleties which do not show up in case n = 1. In
particular, the theorem given above does not generalize directly to Rn, as
will be explained thoroughly later in this chapter (in Section 2.10).

Definition 2.6.1. Let U,W ⊂ Rn be open sets. A map φ:W → U which is
smooth, bijective and has a smooth inverse is called a diffeomorphism.

For example, a linear map L: Rn → Rn is a diffeomorphism if and only if
the n× n matrix A that represents it (with respect to some basis for Rn) is
invertible. If A is invertible, then L is bijective and its inverse is the linear
map represented by A−1, hence this is a smooth map. If A is not invertible,
then L is not bijective.

The expression (4) for the derivative of the inverse of a map J → I, where
I, J ⊂ R, has the following generalization for a diffeomorphism φ:W → U :

D(φ−1)(p) = (Dφ(q))−1

where q = φ−1(p). Here Dφ is the Jacobi matrix of φ, and the inverse on
the right side is that of a matrix. This formula follows by application of the
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chain rule to the identity φ ◦ φ−1 = I. In particular, the Jacobi matrix of a
diffeomorphism is invertible, that is

det(Dφ(q)) 6= 0

for all q ∈W .

Definition 2.6.2. Let σ:U → R3 be a parametrized surface, and let φ:W →
U be a diffeomorphism (U and W being open sets in R2)). The surface
τ = σ ◦ φ:W → R3 is called a reparametrization of σ.

U

φ(q)

W

q

σ τ = σ ◦ φ

φ

σ(U) = τ(W )

2.7 Invariance under reparametrization

A reparametrization of a curve is considered geometrically insignificant
(at least if it is direction-preserving), and geometric properties of curves are
required to be unchanged by such a reparametrization; otherwise they do
not qualify for being ‘geometric’. For example, it follows from (5) that the
tangent vector in u of the reparametrized curve β differs by a multiple from
that of γ in t = φ(u), hence the tangent vector is not ‘geometric’. However,
it also follows from (5) that the tangent line is unchanged, hence qualifies
better as a ‘geometric’ object related to the curve. The corresponding result
for surfaces is as follows.

Theorem 2.7. Let τ = σ ◦φ be a reparametrization of σ. Then the tangent
spaces are identical:

Tqτ = Tφ(q)σ, q ∈W.

Moreover, τ is regular at q, if and only if σ is regular at φ(q).

We say that the tangent space is invariant under reparametrization. It
therefore qualifies as a proper geometric object related to the surface.
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Proof. It follows from the chain rule that the partial derivatives of τ are
related to those of σ through

Dτ(q) = Dσ(φ(q)) ·Dφ(q),

where the dot denotes matrix multiplication.
Let (u, v) denote the coordinates in U and let (s, t) denote the coordinates

in W . Let

Dφ(q) =

(
a c
b d

)
.

Writing out the above matrix product in terms of the columns τ ′s and τ ′t of
Dτ(q) and the columns σ′

u and σ′
v of Dσ(φ(q)), it becomes

τ ′s = aσ′
u + bσ′

v, τ ′t = cσ′
u + dσ′

v. (6)

These identities show that τ ′s and τ ′t are linear combinations of σ′
u and σ′

v,
hence they belong to the tangent space Tφ(q)σ. It follows that Tqτ ⊂ Tφ(q)σ.

Since σ = τ ◦ φ−1 is also a reparametrization, the same argument with
reversed roles of τ and σ shows that Tφ(q)σ ⊂ Tqτ . Thus the equality of the
tangent spaces follows.

Now τ is regular in q if and only if Tqτ is two-dimensional, and σ is
regular in φ(q) if and only if Tφ(q)σ is two-dimensional. The equivalence of
the regularity of σ and τ follows. �

2.8 The unit normal, orientation

Definition 2.8. If σ is regular at p = (u, v), the vector

N = N(p) =
σ′
u × σ′

v

‖σ′
u × σ′

v‖

is called the unit normal of the parametrization in p.

σ(p)

N

Example 2.8.1 It follows from (2) that the unit normal for the unit sphere
with spherical coordinates is

N(u, v) = −σ(u, v),
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which is the unit vector pointing from σ(u, v) towards the center of the sphere.

The unit normal is perpendicular to the tangent plane in p and has unit
length. These properties determine it uniquely up to multiplication with ±1.
Let τ = σ ◦ φ be a reparametrization as in Theorem 2.7. Since σ′

u × σ′
u =

σ′
v × σ′

v = 0 and σ′
v × σ′

u = −σ′
u × σ′

v, it follows from (6) that

τ ′s × τ ′t = (aσ′
u + bσ′

v) × (cσ′
u + dσ′

v)

= (ad− bc) σ′
u × σ′

v,
(7)

where ad− bc = det(Dφ(q)) 6= 0. This equation shows that under reparame-
trisation the unit normal is multiplied with the sign of ad− bc. If ad− bc > 0
we say that the reparametrization preserves the orientation at φ(q), otherwise
it reverses orientation. This notion is analogous to the notion of direction of
a parametrized curve.

Example 2.8.2 Let σ:U → R3 be a parametrized surface, and put W =
{(v, u) ∈ R2 | (u, v) ∈ U}. The map φ:W → U given by φ(v, u) = (u, v)
is a diffeomorphism, and thus τ = σ ◦ φ is a reparametrization. The effect
of this reparametrization is just that it reverses the order of u and v. The

Jacobian of φ is Dφ =
(

0 1

1 0

)
, which has determinant −1. Therefore φ

reverses orientation.

2.9 Regular curves as graphs

We have given three general descriptions of plane curves, namely as para-
metrized curves, as graphs of real functions, and as level sets of two-variable
functions. In Section 1.5 it was seen that away from critical points, a level
set is a graph. Conversely, the graph of a function y = h(x) can be realized
as the level set f(x, y) = 0 of the function f(x, y) = h(x) − y.

As remarked in Example 2.1.2 it is clear that all graphs are regular
parametrized curves. We shall now establish the converse, that a regular
parametrized curve can be reparametrized as a graph in a neighborhood of
each of its points. This will complete the description of interconnections
between these various types of curves, the conclusion being essentially that
they are all the same.

For simplicity we limit our considerations to plane curves, although a
completely similar result holds for curves in R3.

Theorem 2.9. Assume that γ is a plane curve, regular at t0 ∈ I. Then
there exists a neighborhood of t0 in which γ allows a reparametrization as the
graph of a smooth function h, considered either as y = h(x) or as x = h(y).

That is, there exists an open interval I ′ such that t0 ∈ I ′ ⊂ I, an open
interval J and a smooth bijective map φ: J → I ′ with smooth inverse, such
that

γ(φ(u)) = (u, h(u))
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for all u ∈ J , or

γ(φ(u)) = (h(u), u)

for all u ∈ J.

a bt0

I ′

γ

x

y
γ(t0)

J

Proof. Write γ(t) = (x(t), y(t)). The assumption is that (x′(t0), y′(t0)) 6=
(0, 0). We are going to prove that if x′(t0) 6= 0, so that the tangent vector
is not vertical, then the curve allows a reparametrization as a graph of the
form y = h(x). An exchange of x and y then implies that if y′(t0) 6= 0, then
the curve allows a reparametrization as a graph of the form x = h(y).

Assume x′(t0) 6= 0. By continuity, there exists an open interval I ′ around
t0 in which x′(t) 6= 0. Let J = {x(t) | t ∈ I ′}. It follows from Theorem 2.5
that the function t 7→ x(t) from I ′ to J is bijective with a smooth inverse.
When we use this inverse function φ: J → I ′ for reparametrization we obtain
τ(u) = γ(φ(u)) = (x(φ(u)), y(φ(u))) = (u, h(u)) where h(u) = y(φ(u)). �

Example 2.9.1 Let γ(t) = (cos t, sin t) with t ∈ R be the standard para-
metrisation of the circle, then γ′(t) = (− sin t, cos t). On the upper half
circle, where t ∈]0, π[, we have x′(t) 6= 0. Then t 7→ x(t) = cos t is bi-
jective I ′ =]0, π[→] − 1, 1[ and has a smooth inverse cos−1: J → I ′. The
reparametrization of γ is then

γ(φ(u)) = (u, sin(cos−1 u)) = (u,
√

1 − u2), u ∈ J =] − 1, 1[.

The following corollary is readily obtained, because the parametrization
t 7→ (t, h(t)) of a graph is injective.

Corollary 2.9. A regular parametrized curve γ is locally injective, that is,
there exist around each t0 ∈ I a neighborhood such that the restriction of γ
to this neighborhood is injective.

2.10 The inverse function theorem

The following fundamental result from multivariable calculus plays a very
prominent role in differential geometry. We need it to obtain the analog of
Theorem 2.9 for surfaces.



32 Chapter 2

Theorem 2.10. Let F :U → Rm be smooth, where U ⊂ Rm is open, and
let q ∈ U be given. Suppose that det(DF (q)) 6= 0. Then there exist an open
set W ⊂ U containing q and an open set V ⊂ Rm containing F (q) such that
V = F (W ) and such that the restriction of F is a diffeomorphism of W onto
V (see Definition 2.6.1).

y1

y2

U

W
q

x1

x2

V=F (W )
F (q)

F

Proof. It is convenient to distinguish the variables in the source space and
the target space (both being Rm) in the way that we view x = F (y) ∈ Rm

as a function of y ∈ U . The inverse function that we are seeking will then
give y ∈W as a function of x ∈ V .

We shall apply the implicit function theorem with n = 2m to the map
f : Rm × U → Rm given by f(x, y) = −x + F (y) where x ∈ Rm, y ∈ U .
Notice that f(x, y) = 0 if and only if F (y) = x. Therefore, if we can exhibit
the solution set to the equation f(x, y) = 0 as the graph y = h(x) of a
function h, then F (y) = x if and only if y = h(x). This means exactly that
h is inverse to F .

Let y0 ∈ Rm denote the given point q, and let x0 = F (y0). The matrix

A = ∂f
∂y of Theorem 1.7 is exactly DF (q), hence it has a non-vanishing

determinant. Thus, according to the theorem there exist open intervals I
and J around x0 and y0, respectively, and a smooth map h: I → J such that
f(x, y) = 0 if and only if y = h(x), for all (x, y) ∈ I×J . Let W = J∩F−1(I),
then W is open (since F is continuous). It is now seen, as remarked above,
that F :W → I and h: I → W are the inverse maps of each other. Hence F
is a diffeomorphism of W onto V = I. �

Remark The present theorem represents an analogue for functions of sev-
eral variables of Theorem 2.5. There is, however, a fundamental difference
between the two theorems. The theorem we have proved is local, as it only
asserts the existence of an inverse to F in some neighborhood of F (q). Even
if the condition det(DF (q)) 6= 0 holds for all q ∈ U , an inverse of F need
not exist on all of F (U). This is illustrated in the example below, and it
contrasts the situation for n = 1: If F ′(x) 6= 0 on an interval, then F is
monotone on that interval, hence bijective, as also stated in Theorem 2.5.

Example 2.10.1 Let F :U → R2 be given by

F (x, y) = (x2 − y2, 2xy),
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where U = R2 \ {(0, 0)}. The Jacobian of F ,

DF (x, y) =

(
2x −2y
2y 2x

)

has non-zero determinant for all q = (x, y) 6= (0, 0), hence the inverse func-
tion theorem implies that for each q ∈ U , the restriction of F to a suitable
neighborhood of q is invertible. However, since F (−q) = F (q) for all q, F
itself is not injective.

Corollary 2.10. Let F :U → Rm be smooth, where U ⊂ Rm is open, and
suppose that det(DF (q)) 6= 0 for each q ∈ U . Then F (U) is open. If in
addition F is injective, then F is a diffeomorphism of U onto F (U).

Proof. Let p ∈ F (U) be given, and write p = F (q). According to the theorem
above there exists an open set W ⊂ U around q such that F (W ) open. This
open set F (W ) is then an open neighborhood of p in F (U), hence F (U) is
open.

If F is injective, it has an inverse map F−1:F (U) → U . According to the
theorem, F−1 is smooth in a neighborhood p. Since p was arbitrary, F−1 is
smooth. �

2.11 Regular surfaces as graphs

In this section we prove the following analogue for surfaces of Theorem 2.9.
Let σ:U → R3 be a parametrized surface.

Theorem 2.11. Assume that σ is regular at p ∈ U . Then there exists a
neighborhood of p in which σ allows a reparametrization such that it becomes
the graph of a smooth function ψ, considered either as z = ψ(x, y), y =
ψ(x, z) or as x = ψ(y, z).

As a consequence of this, together with Theorem 1.6, we see, as we saw
for curves in Section 2.9, that there are simple connections between reg-
ular parametrized surfaces, graphs of two-variable functions and level sets
of three-variable functions, away from critical points. Essentially these are
different descriptions of the same kind of objects.

Proof. Write
σ(u, v) = (f(u, v), g(u, v), h(u, v)).

Since σ is regular at p the columns of the Jacobian

Dσ =




f ′
u f ′

v

g′u g′v
h′u h′v




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are linearly independent at p. By changing the order of the coordinates on R3

if necessary, we may arrange that the two first rows ofDσ(p) are independent.
Let π: R3 → R2 denote the projection (x, y, z) 7→ (x, y) and put

F = π ◦ σ:U → R2.

Then F (u, v) = (f(u, v), g(u, v)) and

DF =

(
f ′
u f ′

v

g′u g′v

)
.

It follows that detDF (p) 6= 0. By the inverse function theorem there exists
an open neighborhood W of p in U such that F is a diffeomorphism of W
onto the open set V = F (W ) = π(σ(W )) ⊂ R2.

Let φ = F−1:V → W , then π ◦ σ ◦ φ = F ◦ φ is the identity map on V ,
that is, the first two coordinates of σ(φ(s, t)) are exactly s and t. We define
the function ψ(s, t) as the third coordinate of σ(φ(s, t)), then σ(φ(s, t)) =
(s, t, ψ(s, t)) as desired. �

Corollary 2.11. A regular parametrized surface σ is locally injective, that is,
there exist around each point p ∈ U a neighborhood such that the restriction
of σ to this neighborhood is injective.

2.12 Exercises

1 The following curve is called the cardioid (because of its heart-like shape):

γ(t) = (2 cos t+ cos 2t, 2 sin t+ sin 2t).

For which values of t is it regular? Find the point where t is singular in
the figure below. The curve is constructed by a circle of radius 1 rolling
without slipping on the outside of a fixed circle also of radius 1. The curve
is the trace of a point on the circumference of the rolling circle.

x

y
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2 Let γ(t) be a parametrized curve which does not pass through the origin,
and let γ(t0) be a point of the trace which is closest to the origin. Show
that the position vector γ(t0) is orthogonal to the tangent vector γ′(t0).

3 Let γ: I → R3 be a parametrized curve in the xz-plane, that is γ(u) =
(f(u), 0, g(u)), and assume that f(u) > 0 for all u ∈ I. This curve, called
the profile curve, is rotated around the z-axis. The result is a so-called
surface of revolution :

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)),

y

z

x

a. Explain how the parameter v describes the rotation around the z-axis.

b. Examples: γ(u) = (1, 0, u) and γ(u) = (u, 0, u) (the last case requires
u > 0). Describe the corresponding surfaces of revolution.

c. Describe a sphere, minus two poles, as a surface of revolution. Which
is the profile curve, and which coordinates on the sphere are obtained?

d. Assume that γ is a regular parametrized curve. Show that σ is a
regular parametrized surface.

4 Let σ(u, v) = (cosu cos v, cosu sin v, sinu), the standard spherical coordi-
nates.

a. Show that the tangent space of σ at p = (0, π) is Tpσ = Span(e2, e3).
Determine also the tangent space at p = (π4 , 0).

c. Let w = (1, 1,−1). Show that w ∈ Tpσ where p = (π4 , 0), and determine
a curve on σ through p and with w as its tangent vector.

5 Consider the surface σ(u, v) = (u3, v3, uv), (u, v) ∈ R2.

a. For which points p = (u, v) is it regular?

b. Determine the tangent space Tpσ ⊂ R3 for each of the points p1 =
(1, 0), p2 = (1, 1) and p3 = (0, 0). Determine also the tangent plane in p1

and p2. Why not in p3?

c. Show that σ is a bijection of R2 onto S = {(x, y, z) | xy − z3 = 0}.
d. Use Theorem 2.3 to determine the tangent plane in p1.

e. The vector v = (3, 6, 3) belongs to Tpσ where p = p2. Find a curve γ
on σ with γ(t0) = σ(p) and γ′(t0) = v (it exists by Theorem 2.4).
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6 Let σ(u, v) be as in Exercise 5. In each of the following cases, determine
whether γ can be realized as a parametrized curve on σ.
a) γ(t) = (t3, t3, t2), b) γ(t) = (t3, t3, t3), c) γ(t) = (t, t2, t).

7 Let

γ(t) =
( 1 − t2

1 + t2
,

2t

1 + t2

)
, t ∈ R.

Which curve is obtained through the reparametrization β = γ ◦ φ, where
φ(u) = tan u

2 for u ∈] − π, π[?

8 Let σ(u, v) = (u, v, h(u, v)) be the graph of a function h: R2 → R. Show
that the unit normal is given by

N(u, v) =
(−h′u,−h′v, 1)√

1 + (h′u)
2 + (h′v)

2
.

9 Let σ(u, v), (u, v) ∈ R2 be a smooth surface and put τ(s, t) = σ(−t, s).
Show that τ is obtained from σ by a reparametrization. Does it preserve
or reverse orientations?

10 Let σ(u, v) = (u, uv, 1
2
v2), (u, v) ∈ R2. Determine σ′

u, σ
′
v and σ′

u×σ′
v. For

which (u, v) is σ regular? Determine the unit normal N at (u, v) = (4, 2).

11 Let σ(u, v) = (u, uv, 1
2v

2) for (u, v) ∈ U = {(u, v) ∈ R2 | u 6= 0}. Show
that (u, v) 7→ (u, uv) is a diffeomorphism U → U , and determine the
inverse map φ:U → U . Show that the reparametrization σ ◦φ:U → R3 of
σ is a graph of the form z = h(x, y), (x, y) ∈ U .

12 Let again σ(u, v) = (u, uv, 1
2
v2). Find two open sets U,W ⊂ R2 (non-

empty), and a diffeomorphism φ:W → U , such that the reparametrization
σ ◦ φ of σ|U is a graph of the form x = h(y, z), where (y, z) ∈ W .

13 Let U = {(u, v) ∈ R2 | u > v} and σ(u, v) = ( 1
2 (u+ v), 1

2(u2 + v2), uv) for
(u, v) ∈ U . Let p = (2, 0).

a. Show that σ is regular at p, and determine Tpσ.

b. Let W = {(s, t) ∈ R2 | s2 > t} and define φ:W → R2 by

φ(s, t) = (s+
√
s2 − t, s−

√
s2 − t).

Show that φ is a diffeomorphism of W onto U , and determine whether it
preserves or reverses orientation.

c. The surface τ = σ ◦ φ is the graph of a function. Which?

d. Find q ∈W such that φ(q) = p, and determine then τ(q) and Tqτ .
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14 In this exercise we identify the set M2,2 of 2× 2 real matrices with R4 by
numbering the entries in some (arbitrary) fashion. Let F :M2,2 = R4 →
M2,2 = R4 denote the map A 7→ A2 where the square is computed by
matrix multiplication. Determine the 4× 4 matrix DF (I), where I is the
identity matrix in M2,2. Show that every matrix sufficiently close to I has
a square root, which is unique if it is required to be sufficiently close to I.

15 Let σ:U → R3 be an injective and regular parametrized surface, and
assume that its image σ(U) is contained in the xy-plane. Show that the
set V = {(s, t) | (s, t, 0) ∈ σ(U)} is open in R2, and that the plane surface
τ(s, t) = (s, t, 0), (s, t) ∈ V , can be achieved as a reparametrization of σ
(hint: apply Corollary 2.10 to F = π ◦ σ in the proof of Theorem 2.11).
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Chapter 3

The first fundamental form

We shall introduce notions that allow us to treat metric questions on
curves and surfaces, for example the determination of the length of a curve
and the area of a subset of a surface. The notion of distance along a curve
will be closely associated with the standard notion of the length of a vector in
Euclidean space R2 or R3. The Euclidean notion of length is used on tangent
vectors, and it can be viewed as a means to define the distance of very close
points (‘infinitesimal distances’). The (‘global’) distance between two points
along the curve is then obtained by integration of these local distances.

Areas are defined similarly by multiple integrals. Certain topics in con-
nection with the latter will be dealt with on a more intuitive level, because
they are most efficiently treated by means of the Lebesgue measure, which
we do not assume the reader to be acquainted with. The notion of area will
only be used sporadically in the following chapters, but it is an important
concept in the geometry of surfaces.

3.1 Arc length

Let γ: I → Rn be a smooth curve. The speed of γ at t ∈ I is defined to
be the length ‖γ′(t)‖ of the derivative γ′(t) ∈ Rn, in accordance with the
physical interpretation of γ as describing the motion of a particle in n-space.
In this interpretation γ′(t) is the velocity vector for the particle at time t.

The vector from γ(t) to γ(t + ∆t) is approximately γ′(t)∆t, according
to the first order (linear) approximation of γ, hence the distance between
these points on the curve is approximately ‖γ′(t)‖∆t. Adding up all these
distances and taking the limit ∆t → 0, we are lead to the following formula
for the distance along γ between γ(t1) and γ(t2):

∫ t2

t1

‖γ′(t)‖ dt. (1)

The derivation we gave for this formula is not a rigorous proof. Rather than
carrying out such a proof we will take the formula as a definition, and regard
the derivation as motivation.

Definition 3.1. Let γ: I → Rn be a smooth curve. The arc-length of γ from

t1 ∈ I to t2 ∈ I is
∫ t2
t1

‖γ′(t)‖ dt.
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An arc-length function for γ is a primitive of t 7→ ‖γ′(t)‖, that is, a differ-
entiable function ℓ: I → R with ℓ′(t) = ‖γ′(t)‖. The arc-length from t1 to t2
is then ℓ(t2) − ℓ(t1). Notice that we do not require t1 ≤ t2. If t2 < t1, then
the arc-length is negative.

Example 3.1.1 Let γ(t) = p+ tq be a straight line (where q 6= 0). The arc
length along γ from p+ t1q to p+ t2q is

∫ t2

t1

‖q‖ dt = ‖q‖(t2 − t1) = ‖γ(t2) − γ(t1)‖

if t1 < t2.

Example 3.1.2 A circle of radius r is parametrized by γ(t) = (r cos t, r sin t),
for which the speed ‖γ′(t)‖ = ‖(−r sin t, r cos t)‖ = r is constant. Hence the
arc-length from 0 to t is ∫ t

0

‖γ′(t)‖ dt = rt.

Example 3.1.3 For the helix given by γ(t) = (λt, r cos(ωt), r sin(ωt)) (see
Example 1.1.4) we have γ′(t) = (λ,−rω sin(ωt), rω cos(ωt)) and the speed

‖γ′(t)‖ =
√
λ2 + r2ω2 is again constant. Hence the arc-length measured

from 0 is this constant times t.

As explained in Section 2.7, reasonable geometric notions are invariant un-
der reparametrizations that do not reverse orientation. The following result
shows that arc length has this property.

Theorem 3.1. Let γ: I → Rn be a parametrized curve, and let β = γ◦φ: J →
Rn be a reparamatrization. Let u1, u2 ∈ J and let ti = φ(ui) for i = 1, 2.

If φ preserves the direction then the arc-length of β from u1 to u2 equals
the arc-length of γ from t1 to t2. If φ reverses direction the arc-lengths are
of the same absolute size but have opposite signs.

x

y

β

t1 t2
R

γ

u1 u2
R

φ
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Proof. By the chain rule β′(u) = γ′(φ(u))φ′(u). Hence

∫ u2

u1

‖β′(u)‖ du =

∫ u2

u1

‖γ′(φ(u))‖|φ′(u)| du = ±
∫ t2

t1

‖γ′(t)‖ dt

where in the last step we have used the substitution t = φ(u). The sign in
front is positive if φ′ is positive, and otherwise negative. �

3.2 Lines as shortest curves

Let P1, P2 ∈ Rn. The linear curve from P1 to P2 is parametrized by
t 7→ P1 + t(P2 − P1) where t ∈ [0; 1]. It has length ‖P2 − P1‖ (see Example
3.1.1). Its trace, the line segment from P1 to P2, is denoted by [P1, P2].

The geometric interpretation of the following theorem is that the linear
curve is shortest from P1 to P2. Notice however that because of the possibility
of reparametrization, the linear curve is not unique in this respect.

Theorem 3.2. Let γ: I → Rn be a parametrized curve. Let t1 < t2 in I and
let L denote the arc length of γ from t1 to t2. Then

L ≥ ‖γ(t2) − γ(t1)‖. (2)

x

y

γ(t1)
γ(t2)L

‖γ(t2) − γ(t1)‖

Proof. Let P1 = γ(t1), P2 = γ(t2) and w = P2−P1, and consider the function

ϕ(t) = γ(t) · w.

We have ϕ(t2) − ϕ(t1) = (P2 − P1) · w = ‖w‖2, hence by the fundamental
theorem of calculus

‖w‖2 =

∫ t2

t1

ϕ′(t) dt.

It is easily seen that ϕ′(t) = γ′(t) · w, hence

ϕ′(t) ≤ |ϕ′(t)| ≤ ‖γ′(t)‖ ‖w‖.

We conclude

‖w‖2 ≤
∫ t2

t1

‖γ′(t)‖ ‖w‖ dt = L‖w‖

from which (2) follows. �
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3.3 Unit speed parametrization

A parametrized curve γ is said to have unit speed if ‖γ′(t)‖ = 1 at all
points. It is common practice to replace the symbol for the variable by s in
this case. For a curve with unit speed, the determination of arc-lengths is
particularly simple, because by (1) the arc-length from s1 to s2 is equal to the
difference of the parameters s2 − s1. We say that the curve is parametrized
by arc-length.

Theorem 3.3. A regular parametrized curve γ allows a direction-preserving
reparametrization with unit speed.

Proof. Let ℓ(t) be an arbitrary arc-length function for γ, that is, a primitive
of the speed function t 7→ ‖γ′(t)‖. The speed function is smooth since γ′(t) is
smooth and never zero. Hence ℓ is smooth. Notice that ℓ′(t) = ‖γ′(t)‖ > 0.

We apply Theorem 2.5 to the function ℓ. It follows that ℓ is bijective
onto its image. Furthermore, the inverse function φ = ℓ−1 is smooth, and its
derivative is given by

φ′(s) =
1

ℓ′(t)
=

1

‖γ′(t)‖ > 0

where s = ℓ(t). We use the function φ for the reparametrization. Then

(γ ◦ φ)′(s) = γ′(φ(s))φ′(s) =
γ′(t)

‖γ′(t)‖

where t = φ(s). Hence γ ◦ φ has unit speed. �

Example 3.3.1 For a curve γ with constant speed c 6= 0, the function
ℓ(t) = ct is a primitive of the speed function. The inverse of the map t 7→ ct
is φ(s) = s

c , hence a unit speed reparametrization is obtained by inserting
t = s

c in the expression for γ. For example a unit speed reparametrization of
the circle γ(t) = (r cos t, r sin t) (see Example 3.1.2) is

β(s) = γ(
s

r
) = (r cos

s

r
, r sin

s

r
),

and the helix in Example 3.1.3 is reparametrized with unit speed in

β(s) = (λ
s

c
, r cos(ω

s

c
), r sin(ω

s

c
))

where c =
√
λ2 + r2ω2.
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3.4 The first fundamental form

Let σ:U → R3 be a parametrized surface. We define the following three
functions on U , associated with σ:

E(p) = ‖σ′
u(p)‖2, F (p) = σ′

u(p) · σ′
v(p), G(p) = ‖σ′

v(p)‖2,

where p ∈ U . These functions together should be seen as the analogue for
surfaces of the speed ‖γ′(t)‖ of a curve (or rather, of ‖γ′(t)‖2).

The functions E, F and G are useful for the computation of lengths of
tangent vectors. If a vector w ∈ Tpσ has coordinates a, b with respect to the
basis σ′

u(p), σ
′
v(p), that is w = aσ′

u + bσ′
v, then its length is given by

‖w‖2 = (aσ′
u + bσ′

v) · (aσ′
u + bσ′

v) = Ea2 + 2Fab+Gb2.

σ′
u

σ′
v w =

aσ′
u + bσ′

v

Definition 3.4. The map Ip:Tpσ → R that associates to a tangent vector
at p the square of its length,

w 7→ Ip(w) = ‖w‖2 = E(p)a2 + 2F (p)ab+G(p)b2,

is called the first fundamental form of σ in p. The coefficients E, F and G
are called the component functions.

The component functions E, F and G are conveniently arranged as the
entries of a symmetric matrix

(
E F
F G

)
.

By noting that σ′
u and σ′

v are the columns of the Jacobian matrix Dσ, we
see that the definition of E, F and G amounts to the matrix identity

(
E F
F G

)
= (Dσ)tDσ (3)

where t denotes transposition. The formula for the first fundamental form
can also be put in matrix form

Ip(w) =

(
a
b

)t(
E(p) F (p)
F (p) G(p)

)(
a
b

)
.
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By definition, a quadratic form on a two dimensional real vector space V
with basis vectors v1, v2 is a map Q:V → R, which has the form

w = av1 + bv2 7→ Q(w) = ea2 + 2fab+ gb2

for some numbers e, f, g ∈ R. The first fundamental form Ip is a quadratic
form on Tpσ, for each p ∈ U .

Example 3.4.1 For the plane parametrized by σ(u, v) = p + uq1 + vq2,
where q1, q2 are linearly independent vectors in R3, we have σ′

u = q1 and
σ′
v = q2. It follows that the component functions are constant:

E = ‖q1‖2, F = q1 · q2, G = ‖q2‖2.

In particular, if q1, q2 is an orthonormal pair, we have E = G = 1, F = 0.

Example 3.4.2 For the parametrization σ(u, v) = (r cos v, r sin v, u) of the
cylinder, we obtain σ′

u = (0, 0, 1) and σ′
v = (−r sin v, r cos v, 0), so that

E = 1, F = 0, G = r2.

As before, the component functions are constant.

Example 3.4.3 For the unit sphere with spherical coordinates we deter-
mined σ′

u and σ′
v in Example 2.3.1. An easy computation shows that

E = 1, F = 0, G = cos2 u.

Notice that in this case the component function G(p) is not constant.

The following theorem illustrates how the first fundamental form enters in
the computation of arc lengths on surfaces. Recall from Section 2.4 that γ(t)
is called a parametrized curve on σ if it has the form γ(t) = σ(u(t), v(t)) for
a pair of smooth functions with (u(t), v(t)) ∈ U , and that in this case (see
Lemma 2.4)

γ′ = u′ σ′
u + v′ σ′

v. (4)

Theorem 3.4. The arc length of a parametrized curve γ(t) = σ(u(t), v(t))
on σ is given with respect to the coordinates (u(t), v(t)) as follows:

∫ t2

t1

(Eu′ 2 + 2Fu′v′ +Gv′ 2)1/2 dt

where the component functions E, F,G are evaluated in (u(t), v(t)) and the
derivatives u′, v′ are evaluated in t.

Proof. This is immediate from Definition 3.1, since by (4)

‖γ′(t)‖2 = Ip(γ
′(t)) = Eu′(t)2 + 2Fu′(t)v′(t) +Gv′(t)2. �
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Example 3.4.4 On the unit sphere consider the circle γ(t) = σ(u, t) with a
fixed latitude u. Since u is constant, we have u′ = 0, and since v(t) = t, we
have v′ = 1.

y

z

x

γ

u

t

σ(u, t)

With the values of E, F and G from Example 3.4.3 we obtain the total length
of γ:

∫ 2π

0

(Eu′ 2 + 2Fu′v′ +Gv′ 2)1/2 dt =

∫ 2π

0

cosu dt = 2π cosu.

The first fundamental form can also be used to determine the angle be-
tween (non-zero) tangent vectors, say between

w = aσ′
u(p) + bσ′

v(p) and w̃ = ãσ′
u(p) + b̃σ′

v(p)

in Tpσ. If the angle is θ ∈ [0, π], then it is well-known from Euclidean
geometry (see Appendix A) that cos θ = w·w̃

‖w‖ ‖w̃‖ , from which we obtain

cos θ =
Eaã+ F (ab̃+ bã) +Gbb̃

(Ea2 + 2Fab+Gb2)1/2(Eã2 + 2F ãb̃+Gb̃2)1/2
. (5)

Although not particularly simple this formula allows the computation of θ
from knowledge of the coordinates a, b, ã and b̃. In particular, the angle
between σ′

u and σ′
v is given by

cos θ =
F√
EG

.

A parametrized surface σ(u, v) is called orthogonal, if F (p) = 0 for all
p ∈ U , or equivalently, if σ′

u(p) and σ′
v(p) are perpendicular for all p.

Example 3.4.5 Let γ(t) be a curve on the unit sphere, which in spherical
coordinates is described by γ(t) = σ(u(t), v(t)). We will determine the angle
θ between the tangent vector γ′(t) and the direction (North) of the meridians.



46 Chapter 3

y

z

x

γ θ

The coordinates of γ′(t) with respect to (σ′
u, σ

′
v) are determined from (4).

They are a = u′(t) and b = v′(t). The meridians are characterized by having
a fixed longitude v, hence the tangent vector of a meridian has direction
σ′
u (with coordinates ã = 1, b̃ = 0). With the values of E, F and G from

Example 3.4.3 inserted in (5) we obtain

cos θ =
u′

((u′)2 + cos2 u(v′)2)1/2
.

3.5 Introduction to areas and plane integrals

In this section we will give a short introduction to the theory of plane
integrals of continuous functions. Not all proofs will be given.

Consider a plane set D ⊆ R2. If D = [a, b]× [c, d], where a ≤ b, c ≤ d, we
call it a rectangle, and we define that it has the area A(D) = (b− a)(d− c).
Moreover, in this case if f :D → R is continuous we define the integral of f
over D by ∫

D

f dA =

∫ b

a

∫ d

c

f(u, v) dv du. (6)

It can be shown that the inner integral,
∫ d
c
f(u, v) dv, depends continuously

on u, so that the outer integral makes sense. One can also prove that we
have as well ∫

D

f dA =

∫ d

c

∫ b

a

f(u, v) du dv,

that is, the order of the integrations can be interchanged.
If D is not a rectangle, it is more complicated to define its area, and to

define integrals over it. By a block-set we will understand a set K which is
a finite union of closed rectangles. Notice that by decomposing further the
rectangles used, such a set K can always be written as a finite union of closed
rectangles, which only overlap on the boundaries. Such a decomposition will
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be called a partition of the block set. In general, the same block-set may
have several different partitions, as in the following figure.

The area A(K) is defined as the sum of the areas of the rectangles in a
chosen partition, and the integral

∫
K
f dA of a continuous function f over K

is defined as the sum of the integrals over these rectangles. Since the partition
of K is not unique, a proper treatment would require that it is verified that
these notions are independent of the choice of partition. Intuitively this is
quite clear, and we are not going to verify it here. Notice that it follows from
these definitions that the area of K is the integral over K of the constant
function 1, and that in general

|
∫

K

f dA | ≤ A(K) sup
p∈K

|f(p)|,

since this inequality holds for each of the subrectangles in K. Moreover, if
K1, K2 are block sets which only overlap on their boundaries, then

∫

K1∪K2

f dA =

∫

K1

f dA+

∫

K2

f dA.

We will now consider more general sets D ⊂ R2. In the following defi-
nition, we consider smooth curves defined on closed intervals. That is,
γ: [a, b] → R2, where −∞ < a < b < ∞. This means that γ is smooth
on (a, b) and that γ and all its derivatives have continuous extensions to
[a, b] (that is, they have limits for t → a from the right and for t → b from
the left).

Definition 3.5.1. A set D ⊂ R2 is called an elementary domain if it is
closed and bounded, and if its boundary ∂D is a finite union of (the trace
of) smooth curves defined on closed intervals, as above.

x

y

D

∂D

An elementary domain
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In particular a block-set is an elementary domain, since its boundary is a
union of line segments.

Definition 3.5.2. Let D ⊂ R2 be an elementary domain. The area of D is
defined by

A(D) = sup
K⊂D

A(K),

where the supremum is taken over all block-sets K ⊂ D. The integral of a
continuous function f :D → R with f(p) ≥ 0 for all p, is defined by

∫

D

f dA = sup
K⊂D

∫

K

f dA.

It should be noticed that the supremums are finite. Since D is bounded,
it is contained in a square of sufficiently large side length, say N . Hence the
area A(K) of any block-set K inside D is bounded above by the area N2

of the square, and hence the same bound is valid for the supremum of the
A(K). The integral

∫
K
f dA is bounded by A(K) supp∈K f(p), which in turn

is bounded by A(D) supp∈D f(p), which is finite since f is continuous. The
same bound is then valid for the supremum in the definition of the integral.

The assumption f ≥ 0 is now removed. Let f :U → R be continuous, and
put

f+(x) = max{0, f(x)} and f−(x) = max{0,−f(x)},
so that f+ ≥ 0, f− ≥ 0, and f = f+ − f−. We define

∫

D

f dA =

∫

D

f+ dA−
∫

D

f− dA.

It is easily seen that if D is already a block set, these definitions of area
and integral amount to the same as was already defined. Moreover, plane
integrals share the following familiar properties of ordinary integrals (with
obvious notation), of which we shall give no proof:

∫

D

f + g dA =

∫

D

f dA+

∫

D

g dA

∫

D

cf dA = c

∫

D

f dA

|
∫

D

f dA | ≤
∫

D

|f | dA
∫

D1∪D2

f dA =

∫

D1

f dA+

∫

D2

f dA,

where in the last line D1 and D2 are assumed to intersect only with their
boundaries.



The first fundamental form 49

3.6 Null sets

In this section we will prove a theorem which serves as motivation for the
preceding definitions of area and integrals over an elementary domain D. In
that definition we only considered block sets which were inside D, and the
legitimate question is whether we ‘miss’ a substantial part of D by this. The
theorem below shows that this is not the case, and thus the definitions are
reasonable.

We say that a closed bounded set D is a null set if for each ǫ > 0 there
exists a block-set K of area < ǫ such that D ⊂ K.

As an example, consider a smooth curve γ: [a, b] → R2, where −∞ < a <
b < ∞. This means that γ is smooth on (a, b) and that all derivatives have
a continuous extension to [a, b].

Lemma 3.6. Let γ: [a, b] → R2 be smooth. The trace γ([a, b]) is a null set.

Proof. Using the continuous arc-length function s(t), we can divide γ in N
pieces of equal length ℓ/N , where ℓ is the total length. Each piece is contained
in the disk of radius ℓ/2N centered in the mid-point of the piece (this follows
from Theorem 3.2). Hence the piece is also contained in the square of side
length ℓ/N with the same center.

The union of these N squares has area at most N(ℓ/N)2 = ℓ2/N , which is
≤ ǫ for N sufficiently large. �

Since a finite union of null sets is a null set, it follows from the preceding
lemma that the boundary of an elementary domain is a null set.

Theorem 3.6. Let U ⊂ R2 be an open set, and let f :U → [0,∞[ be a
continuous function. Let D ⊂ U be an elementary domain. Then

∫

D

f dA = inf
D⊂K⊂U

∫

K

f dA (7)

where the infimum is taken over block-sets K.

Proof. We first observe that there exist block sets K such that D ⊂ K ⊂ U .
The proof of this depends on the fact, that D is closed and bounded and U
is open (details are omitted). Thus the infimum on the right is not vacuous.
For later use, we choose a fixed block set K0 with D ⊂ K0 ⊂ U .



50 Chapter 3

k ⊂ D D ⊂ K ⊂ U

If k ⊂ D and K ⊃ D are block-sets, then k ⊂ K and hence
∫
k
f dA ≤∫

K
f dA. It then follows from Definition 3.5.2 that

∫
D
f dA ≤

∫
K
f dA, and

hence the inequality ≤ holds in (7).
Let ǫ > 0 be given. The boundary ∂D is a null set, according to Lemma

3.6. Hence there exists a block-set L around ∂D with area A(L) ≤ ǫ.

L

We may assume that L ⊂ K0 (otherwise we replace L by its intersection
with K0). Let K denote the union D ∪ L and let k be the difference D \ L
together with its boundary. Then k and K are block-sets with k ⊂ D ⊂ K ⊂
K0, and since

∫
k
f dA ≤

∫
D
f dA ≤

∫
K
f dA we obtain

0 ≤
∫

K

f dA−
∫

D

f dA ≤
∫

K

f dA−
∫

k

f dA =

∫

L

f dA ≤ ǫM

where M = supK0
f . Since ǫ was arbitrary, (7) follows. �

Thus for functions f as above the integral over D, which was defined by
an approximation from the inside of D, can be approximated as well from
the outside.

3.7 Double integrals

In the preceding section we have defined the notion of a plane integral
over an elementary domain. In the simplest case when the elementary do-
main happens to be a rectangle, the integral was defined by two consecutive
integrals (see equation (6)). In fact a similar formula can be given for a much
larger class of elementary domains.

Let φ, ψ: [a, b] → R be smooth functions with φ(u) < ψ(u) for u ∈ (a, b).
The set

D = {(u, v) | a ≤ u ≤ b, φ(u) ≤ v ≤ ψ(u)}



The first fundamental form 51

of points between the graphs of φ and ψ,

u

v

a b

D

v = ψ(u)

v = φ(u)

is an elementary domain.

Theorem 3.7. The set D has the area

A(D) =

∫ b

a

[ψ(u) − φ(u)] du,

and the plane integral of a continuous function f over D is

∫

D

f dA =

∫ b

a

∫ ψ(u)

φ(u)

f(u, v) dv du

We will not prove this. The formula for the area is well known from
elementary calculus. When it comes to computation of plane integrals in
practice, it is this formula which is used (not the definition given earlier).
More complicated sets are treated by means of a disjoint division into subsets
of this form (possibly with u and v interchanged).

Example 3.7.1 The triangle D = {(u, v) | 0 ≤ u, 0 ≤ v, 2u + v ≤ 2}, has
the form as above with inequalities

0 ≤ u ≤ 1, 0 ≤ v ≤ 2 − 2u.

u

v

v = 2 − 2u

1

2

D

The set D is bounded above and below by the graphs of ψ(u) = 2 − 2u and
φ(u) = 0. The area is then

A(D) =

∫ 1

0

(2 − 2u) du = 1.
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Furthermore, with f(u, v) = v, then

∫

D

v dA =

∫ 1

0

∫ 2−2u

0

v dv du =

∫ 1

0

1

2
(2 − 2u)2 du =

2

3
.

Notice that D can also be regarded as a set of the form as before, but with
the inequalities

0 ≤ v ≤ 2, 0 ≤ u ≤ 1 − 1

2
v

(that is, with interchanged roles of u and v).

v

u

u = 1 − 1
2v

2

1

D

Of course, the corresponding formulas for the area and the integral lead
to the same results as above,

A(D) =

∫ 2

0

(1 − 1

2
v) dv = 1

and ∫

D

v dA =

∫ 2

0

∫ 1− 1
2
v

0

v du dv =

∫ 2

0

v(1 − 1

2
v) dv =

2

3
.

3.8 Transformation of integrals

We shall need the important theorem of transformation of plane integrals,
which is a generalization of the formula for substitution of variables in or-
dinary integrals. Let φ:W → U be a diffeomorphism (see Definition 2.6.1),
where U,W ⊂ R2 are open.

Theorem 3.8. Assume that D ⊂ R2 is closed and bounded and contained
in W . If D is an elementary domain, then so is its image φ(D) ⊂ U .
Moreover, ∫

φ(D)

f dA =

∫

D

(f ◦ φ) | det(Dφ)| dA

for f :U → R continuous.

We shall not prove this theorem here. In particular, with f = 1 we obtain
the following formula for the area

A(φ(D)) =

∫

D

| det(Dφ)| dA.



The first fundamental form 53

3.9 Surface area

Let σ:U → R3 be a parametrized surface, and let D ⊂ R2 be an elemen-
tary domain, which is contained in U .

u

v

U

D
σ

S = σ(U)

σ(D)

Definition 3.9. The area of the surface σ over D is

A(σ,D) =

∫

D

‖σ′
u × σ′

v‖ dA. (8)

Recall that σ′
u × σ′

v is a normal vector to the tangent plane. Its length
can be expressed by means of the first fundamental form as follows

‖σ′
u × σ′

v‖ = (EG− F 2)1/2. (9)

This identity is an immediate consequence of the following general rule of
vector calculus:

‖a× b‖2 = ‖a‖2‖b‖2 − (a · b)2,

(see Appendix C).
We often denote the area by A(σ(D)), although this is not quite legitimate,

because in general the area depends on both σ and D, and not just their
image σ(D), unless some injectivity is assumed of σ.

Notice that if we consider the (x, y)-plane as the surface parametrized by
σ(u, v) = (u, v, 0), then E = G = 1 and F = 0 (see Example 3.4.1) and hence
(8) reads

A(σ,D) =

∫

D

1 dA,

by which we see that the new notion of area coincides with the previous one
for plane sets.

The definition of area can be motivated by the following geometrical con-
sideration, which is analogous to the motivation that was given for the defi-
nition of arc length. Consider a small rectangle in D with (u, v) as its lower
left corner and with sides of length ∆u and ∆v. This rectangle is mapped
approximately to the parallelogram in R3 placed at σ(u, v) and with the
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vectors ∆uσ′
u and ∆v σ′

v as its sides, according to the first order (linear)
approximation of σ.

u

v

U

D

∆v
∆u

σ

σ(U)

σ(D)

σ′
u

σ′
v

The area of this parallelogram is

‖∆uσ′
u × ∆v σ′

v‖ = ‖σ′
u × σ′

v‖∆u∆v.

Adding up all these areas and taking the limit (∆u,∆v) → (0, 0) leads to
the formula (8).

Further justification that our definition of surface area is reasonable can
be found in the following theorem, which is analogous to Theorem 3.1.

Theorem 3.9. Surface area is invariant under reparametrization.

Proof. Let τ = σ ◦ φ:W → R3 be a reparametrization (see Section 2.5),
and let E ⊂ U be an elementary domain. Then D = φ−1(E) ⊂ W is an
elementary domain. The statement of the theorem amounts to the identity
A(τ,D) = A(σ,E).

Since τ = σ ◦ φ we have τ(D) = σ(E), and the statement that these
sets have the same area thus appears to be a tautology. However, as we
noted earlier, in the definition (8) of the area, reference is made to both the
parametrization and the domain, not just their image. For the area of τ(D),
we have

A(τ,D) =

∫

D

‖τ ′s × τ ′t‖ dA.

The claim is that this equals

A(σ,E) =

∫

E

‖σ′
u × σ′

v‖ dA.

We have from equation (7) in Section 2.8 that for q ∈W

τ ′s(q) × τ ′t(q) = det(Dφ)(q) σ′
u(φ(q)) × σ′

v(φ(q)).

Inserting this expression in the formula for A(τ(D)) and using the substitu-
tion of variables in Theorem 3.8, we see that A(τ,D) = A(σ,E). �
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Example 3.9.1 As an illustration, let us compute the surface area of the
sphere with radius 1. It is, as usual, parametrized by the spherical coordi-
nates σ(u, v) (see Example 1.2.2), where (u, v) ∈ U = R2. Let D be the
rectangle where −π

2 ≤ u ≤ π
2 and −π ≤ v ≤ π, then σ is injective on the

interior of D. We found in Example 3.4.3 that the first fundamental form is
given by E = 1, F = 0 and G = cos2 u, so that (EG− F 2)1/2 = cosu. We
therefore obtain the area∫ π

−π

∫ π
2

− π
2

cosu du dv = 4π.

3.10 Exercises

1 Let γ(t) = (3t, 3t2, 2t3). Show that the speed of the curve is ‖γ′(t)‖ =
3(1 + 2t2), and determine the arc length of γ from t = 0 to t.

2 Let γ(t) = (t, 4
3 t

3/2, t2) for t > 0. Determine that value t0 for which the

length of γ from t = t0 to t = 1 is equal to the length from t = 1 to t = 3
2 .

3 Let γ(t) = (t cos t, t sin t), t ∈ R. The section of the curve where t ≥ 0
(drawn below) is called the spiral of Archimedes, because it was described
in a book by Archimedes. Determine the arc length of the curve, measured
from t = 0. The following formula can be used∫ √

1 + x2 dx =
x

2

√
1 + x2 +

1

2
ln(x+

√
1 + x2) + c.

4 The parametrized curve γ(t) = (ect cos t, ect sin t), t ∈ R, where c > 0 is a
constant, is called a logarithmic spiral. Determine an arc length function
s(t) for γ, and show that s(t) has a limit s0 for t → −∞. Show that
s(t) − s0, which can be interpreted as the arc length from γ(−∞) =
(0, 0) to γ(t), is proportional to ‖γ(t)‖. This curve appears in nature, for
example in the shape of snail shells. The natural appearance is explained
by proportionality in the growth of the diameter of the shell and the length
of the snail.

x

y

spiral of Archimedes

y

logarithmic spiral
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5 Determine a unit speed parametrization of the line through (0, 1,−3) and
(3, 3, 3).

6 Show that the curve γ(t) = (cos t sin t, sin2 t, 3
4 t) has constant speed, and

determine a constant k for which the reparametrization t 7→ γ(kt) has unit
speed.

7 Let γ(t) = ( 2
3 cos3 t, 2

3 sin3 t) for t ∈ R. For which values of t is γ regular?
Determine a direction preserving reparametrization with unit speed of the
segment where 0 < t < π

2 . (Use the formula
∫

cosx sinx dx = 1
2 sin2 x+c.)

8 Let γ(t) = (et cos t, et sin t), t ∈ R, be the logarithmic spiral with c = 1
(see exercise 4). Determine a reparametrization β(s), s > 0, with unit
speed such that β(s) → (0, 0) for s → 0 (the solution explains the name
of the curve).

9 Let β = γ ◦ φ: J → Rn be a direction preserving reparametrization of
γ: I → Rn, where I and J are open intervals, and assume that both curves
γ and β have unit speed. Show that there exists a constant c such that
φ(s) = s + c for all s ∈ J . If I =]a, b[, then what is J? State and prove
similar statements for a direction reversing reparametrization.

10 The surface σ(u, v) = (u cos v, u sin v, av), (u, v) ∈ R2, with a 6= 0 con-
stant, is called a helicoid. It resembles a (double) spiral staircase. The
following figure shows one winding of the surface (u from −1 to 1, v from
0 to 2π)

Show that σ is regular at all (u, v) ∈ R2, and that the coefficients of the
first fundamental form are E = 1, F = 0 and G = a2 + u2.

11 Consider a parametrized surface σ: R2 → R3 for which E = 1, F = 0,
G = 1+u2. Determine the arc length of the curve t 7→ σ( 3

4 ,
4
5 t) from t = 0

to t = 1. Determine also the angle between the tangent vector at t = 0 of
this curve and the tangent vector at t = 0 of the curve t 7→ σ( 3

4 + t, 4
5 t).
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12 Show that the coefficients E, F and G for the surface of revolution (see
page 35) σ(u, v) = (f(u) cos v, f(u) sin v, g(u)) are given by

E = f ′(u)2 + g′(u)2, F = 0, G = f(u)2

a. The curve t 7→ σ(u0, t) on σ, where u0 is constant, is called a parallel
curve. Show that it has constant speed.

b. The curve t 7→ σ(t, v0) on σ, where v0 is constant, is called a meridian.
Show that it has unit speed if the profile curve has unit speed.

13 Let σ(u, v) = (
√

1 − u2 cos v,
√

1 − u2 sin v, u) for (u, v) ∈ U =] − 1, 1[×R.
Show that σ is a regular parametrization of the unit sphere, minus the
two poles. A map of the Earth based on this parametrization is called a
cylinder projection. Explain! Determine E, F and G, and show that σ
is area preserving, that is, the area A(σ,D) equals the area of D for all
elementary domains D ⊂] − 1, 1[×[−π, π].

14 Draw the following sets in R2 and verify that they are elementary domains:
a. D = [1, 2]× [0, 1].
b. D = {(u, v) | 1 ≤ u ≤ 2, 0 ≤ v ≤ u− 1}.
c. D = {(u, v) | 0 ≤ v ≤ 1, v + 1 ≤ u ≤ 2}.
d. D = {(u, v) | 1 ≤ u ≤ 2, 0 ≤ v ≤ 2 − u}.
Compute in each case the integral

∫
D
u dA. Repeat the computations but

with the opposite order of the integrations with respect to u and v.

15 Let γ(t) = (3t, 4t, 5
√

1 − t2) for t ∈] − 1, 1[.

a. Determine a reparametrization of γ with unit speed. (Use the formula∫
(1− t2)−1/2 dt = sin−1 t+c, where sin−1: ]−1, 1[→]− π

2
, π

2
[ is the inverse

function of sin: ] − π
2 ,

π
2 [→] − 1, 1[.)

b. Let

σ(u, v) = (3u, 4u, 5
√

1 − v2),

for u ∈ R and −1 < v < 1. Verify that γ can be realized as a parametrized
curve on σ, and determine the coefficients of the tangent vector γ′(t) with
respect to the basis (σ′

u, σ
′
v) for Tµ(t)σ when v 6= 0.

c. Determine E, F and G for σ, and write down a formula for the area
A(σ,D) where D is the rectangle D = [0, 1]× [0, 1

2
].

16 Let σ be a surface of revolution (see Exercise 12). Let

D = {(u, v) | a ≤ u ≤ b,−π ≤ v ≤ π}

and assume that [a, b] is contained in the interval on which the profile
curve is defined.
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Verify that the area of σ over D is given by

2π

∫ b

a

(f ′(u)2 + g′(u)2)1/2f(u) du.

Determine the area of the belt on a sphere of radius 1, where the latitude
satisfies |u| ≤ π

4
. Determine also the area of the cap, where π

4
≤ u ≤ π

2
.

17 Let σ denote the graph of a smooth function z = h(x, y), and let D ⊂ R2

be an elementary domain. Verify the formula

A(σ,D) =

∫

D

√
1 + (h′x)

2 + (h′y)
2 dA

(assuming that D is contained in the open set where h is defined).
Write down an integral formula for the area of that part of a sphere of
radius 1 and centered at the origin, where |x| and |y| both are ≤ 1√

2
(dis-

regard the assumption above about D). The computation of the integral
is not quite simple. Instead the area can be determined from area of the
cap (see Exercise 16) by a simple geometric consideration. How?

18 The torus is the surface of revolution whose profile curve is the circle
in the xz-plane with radius r and center (R, 0, 0), where R > r). It is
parametrized by

σ(u, v) = ((R+ r cosu) cos v, (R+ r cosu) sin v, r sinu).

Determine its total area.
z

x

19 Let σ(u, v) = (u cos v, u sin v, v) (the helicoid, see Exercise 10). Determine
the area of σ over D = {(u, v) | 0 ≤ v ≤ 1, v ≤ u ≤ 1}.
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Curvature

In this chapter we introduce and study a quantity, called curvature, which
describes the shape of a curve in a given point. More precisely, it is a mea-
sure of the rate at which the curve is turning in the point. The number is
associated with the second derivative γ′′(t) of a parametrization.

We shall also discuss the curvature of curves on a given surface. In par-
ticular, we introduce the so-called geodesic curvature, which describes the
turning of a curve relative to the given surface containing the curve.

4.1 Curvature of plane curves

Let γ: I → R2 be a regular parametrized curve.

Definition 4.1. The real number

κ(t) =
det[γ′(t) γ′′(t)]

‖γ′(t)‖3
(1)

is called the curvature of γ at t. Here [γ′(t) γ′′(t)] denotes the 2 × 2 matrix
with columns γ′(t) and γ′′(t).

γ′(t)

γ′′(t)

The idea behind the definition is that the turning at t is described by the
position and size of the vector γ′′(t) relative to γ′(t). This relative position of
the two vectors is described through their determinant, which measures the
area of the parallelogram that they span. For example, if γ′′(t) has the same
direction as γ′(t), then the curve is not turning at all, and the determinant is
zero. The power 3 in the denominator will be explained shortly by our desire
to have a quantity independent of reparametrization (see Theorem 4.1).

Example 4.1.1 For a straight line with arbitrary parametrization, the vec-
tors γ′ and γ′′ will both have the same direction as the line, hence their
determinant is zero. Thus κ = 0 for a line.
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Example 4.1.2 For a circle of radius r with counter clockwise parametriza-
tion γ(t) = (r cos t, r sin t) we have

γ′(t) = (−r sin t, r cos t), γ′′(t) = (−r cos t,−r sin t)

and

κ(t) =
det[γ′(t) γ′′(t)]

‖γ′(t)‖3
=

1

r
.

Similar computations show that the circle with the clockwise parametrization
γ(t) = (r cos t,−r sin t) has curvature κ = −1

r
.

Example 4.1.3 For an ellipse

γ(t) = (a cos t, b sin t)

we have

γ′(t) = (−a sin t, b cos t), γ′′(t) = (−a cos t,−b sin t)

and

κ(t) =
ab

(a2 sin2 t+ b2 cos2 t)3/2
.

Say for example that a > b. Then κ attains its maximal value a
b2

when
sin t = 0 (where the denominator is minimal), and it attains its minimal
value b

a2 when cos t = 0 (where the denominator is maximal).

x

y κ minimal

κ maximal

Example 4.1.4 Let γ(t) = (t, h(t)) be the graph of a smooth function h,
defined on an open interval I ⊂ R. Then γ′(t) = (1, h′(t)) and γ′′(t) =
(0, h′′(t)), and we obtain

κ(t) =
h′′(t)

(1 + h′(t)2)3/2
.

In particular if h′(t) = 0 then κ(t) = h′′(t).
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Theorem 4.1. The curvature of a plane curve is unchanged under a direc-
tion-preserving reparametrisation, and it is multiplied by −1 under a direc-
tion-reversing reparametrization.

Proof. Let β(u) = γ(φ(u)) denote the reparametrization, and let ǫ = ±1
denote the sign of φ′. Then

β′(u) = φ′(u)γ′(φ(u)) (2)

and
β′′(u) = φ′′(u)γ′(φ(u)) + φ′(u)2γ′′(φ(u)). (3)

Hence
det[β′(u) β′′(u)] = φ′(u)3 det[γ′(φ(u)) γ′′(φ(u))]

and
‖β′(u)‖ = |φ′(u)| ‖γ′(φ(u))‖.

By insertion in the definition (1), applied to the curve β, we see that the
curvature of β at u is ǫκ(φ(u)). �

Notice that the power 3 in the denominator of (1) was crucial in the
preceding proof.

4.2 Curvature of unit speed curves

For a unit speed curve the expression (1) for the curvature becomes sim-
pler. Notice that unit speed is not a serious limitation because of Theorems
3.3 and 4.1.

Let γ: I → R2 be a unit speed curve. As usual, the variable is then denoted

by s. Let γ̂′(s) denote the normal vector of γ′(s) (see Appendix C), which is
the unit vector perpendicular to γ′(s) and pointing to the left.

Theorem 4.2. For a curve with unit speed

γ′′ = κγ̂′. (4)

In particular, it follows that κ = ±‖γ′′‖, where the sign is + if γ′′ and γ̂′

have the same direction, and − if they have opposite directions.

Proof. According to the lemma below γ′′(s) is perpendicular to γ′(s), hence

a scalar multiple of γ̂′(s). The scalar is given by

γ̂′ · γ′′ = det[γ′ γ′′] = κ.

This proves (4). �
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Notice that if κ > 0 then γ′′ and γ̂′ have the same direction and the curve
turns towards the left, and if κ < 0 they have opposite direction and the
curve turns to the right.

γ′(s)

γ′′(s)

γ′(s)
γ′′(s)

κ positive κ negative

Lemma 4.2. Let F (t) ∈ Rn be a smooth function of t ∈ I ⊂ R with ‖F (t)‖ =
1 for all t. Then F (t) · F ′(t) = 0 for all t.

Proof. We shall differentiate the expression

F (t) · F (t) = 1.

Observe that the ordinary rule for differentiation of products also holds for
the differentiation of a dot product, that is, if f and g are differentiable maps
I → Rn, then

(f · g)′ = f ′ · g + f · g′.

Applying this rule we obtain F ′ · F + F · F ′ = 0 and hence F · F ′ = 0 as
claimed. �

Notice that Theorem 4.2 suggests a way to determine a plane unit speed
curve from its curvature function κ(s). With γ(s) = (x(s), y(s)), equation
(4) is equivalent with the system of differential equations x′′ = −κy′ and
y′′ = κx′. By solving this system we can determine x′ and y′ (up to some
constants), and after an integration we obtain x and y (up to further con-
stants). A simple example of this procedure is given in the following proof.

Corollary 4.2. A regular parametrized curve is part of a line if and only if
its curvature is zero everywhere.

Proof. We may assume that the curve has unit speed. Assume that κ(s) = 0
for all s, then γ′′(s) = 0 by (4). Integrating twice we obtain γ(s) = p + sq
where p and q are constant vectors.

The statement ‘only if’ was seen in Example 4.1.1. �
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4.3 The tangent angle

Any unit vector w ∈ R2 can be written in the form w = (cos θ, sin θ),
where the angle θ ∈ R is determined up to addition of integral multiples of
2π. In particular, if w is the tangent direction γ′(t)/‖γ′(t)‖ of a regular plane
curve, we call θ a tangent angle at t. Viewed as a function of t, we call θ a
tangent angle function.

Example 4.3.1 The parametrized circle γ(t) = (r cos t, r sin t) has tangent
angle function θ(t) = t+ π

2
, because

γ′(t)/‖γ′(t)‖ = (− sin t, cos t) = (cos(t+
π

2
), sin(t+

π

2
)).

Example 4.3.2 Consider the curve γ(t) = (t, t2), where t ∈ R. It has the
tangent vector γ′(t) = (1, 2t). Since the first coordinate is positive, we can
determine a tangent angle as θ(t) = tan−1(2t).

Because of the ambiguity in the choice of θ, it is not obvious that a tangent
angle can be chosen which depends smoothly on t. The following lemma,
when applied to w(t) = γ′(t)/‖γ′(t)‖, shows that this is the case.

Lemma 4.3. Let w(t) be a unit vector in R2 depending smoothly on a pa-
rameter t in an open interval I ⊂ R. There exists a smooth map θ: I → R

such that
w(t) = (cos θ(t), sin θ(t)) (5)

for all t ∈ I.

Proof. Write w(t) = (u(t), v(t)) and notice for motivation that if (5) is valid
for some function θ, then (u′, v′) = (−θ′ sin θ, θ′ cos θ) and hence uv′ − vu′ =
θ′(cos2 θ + sin2 θ) = θ′.

Choose an arbitrary initial value t0 ∈ I, and an angle θ0 such that w(t0) =
(cos θ0, sin θ0). Define a smooth function by

θ(t) = θ0 +

∫ t

t0

uv′ − vu′ dt,

then θ(t0) = θ0 and θ′ = uv′ − vu′. We claim that this function satisfies
(5). In order to show this identity of unit vectors in R2, it suffices to show
that w · (cos θ, sin θ) = 1, since otherwise the dot product would be strictly
smaller (see (A.1)).

From the identity u2 + v2 = 1 we obtain uu′ + vv′ = 0. By simple
computations we then derive

(u cos θ)′ = u′ cos θ − u sin θ(uv′ − vu′) = u′ cos θ − v′ sin θ

(v sin θ)′ = v′ sin θ + v cos θ(uv′ − vu′) = v′ sin θ − u′ cos θ.

It follows that (u cos θ + v sin θ)′ = 0, hence the expression in the bracket is
constant. At t = t0 its value is 1. Hence w · (cos θ, sin θ) = 1 as desired. �
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Theorem 4.3. Assume that θ(s) is a smooth tangent angle for a plane curve
γ(s) with unit speed. Then the curvature of γ at s is given by

κ(s) = θ′(s).

Proof. From γ′(s) = (cos θ(s), sin θ(s)) we derive

γ′′(s) = (−θ′(s) sin θ(s), θ′(s) cos θ(s))

and κ(s) = det[γ′(s) γ′′(s)] = θ′(s). �

Thus the curvature is the rate of change of the tangent angle. In Example
4.3.1 with r = 1 (so that there is unit speed), we have θ′(t) = 1, which
matches with the curvature 1 of the circle.

4.4 Curvature of space curves

Let γ: I → R3 be a regular parametrized curve.

Definition 4.4. The non-negative number

κ(t) =
‖γ′(t) × γ′′(t)‖

‖γ′(t)‖3

is called the curvature of γ at t. For a unit speed curve it is

κ(s) = ‖γ′′(s)‖. (6)

The simpler expression for a curve with unit speed is derived from the fact
that in this case γ′′(s) is perpendicular to the unit vector γ′(s) (by Lemma
4.2) and hence

‖γ′ × γ′′‖ = ‖γ′′‖.

Note that ‖γ′(t) × γ′′(t)‖ is easily computed by means of Appendix C (iii).
The motivation is similar to the one given in Section 4.1 for plane curves.

It will be shown below that the curvature κ is unchanged by reparametri-
sation. For a unit speed curve (6) shows that κ describes the rate of change
of the direction of the curve. Notice that the conclusions of Example 4.1.1
and Corollary 4.2 are valid for space curves as well, with similar proofs.

Notice however that in contrast with the situation for plane curves in
Section 4.1, the curvature of a space curve is always ≥ 0. This is related to
the fact that the curvature for a space curve does not contain information
about the direction to which the curve is turning. For a plane curve there
are only two possibilities, left and right, which can be determined by the sign
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of the curvature, but for a space curve there are infinitely many possibilities,
and it would be impossible to distinguish them just by a sign.

In connection with this, it should be remarked that if we apply the present
definition to a plane curve, viewed as a space curve in the xy-plane, we obtain
the absolute value of the previous definition. Indeed, if γ(t) = (x(t), y(t), 0)
then

γ′ × γ′′ = (x′, y′, 0) × (x′′, y′′, 0) = (0, 0, det

(
x′ x′′

y′ y′′

)
)

and hence ‖γ′ × γ′′‖ =

∣∣∣∣det

(
x′ x′′

y′ y′′

)∣∣∣∣ .
The notion of curvature for space curves is thus more primitive than that

for plane curves. This is also reflected when the following theorem is com-
pared with Theorem 4.1.

Theorem 4.4. The curvature of a space curve is unchanged under repara-
metrisation.

Proof. We use the notation in the proof of Theorem 4.1 (but now applied to
a space curve). It follows from (2) and (3) that

β′(u) × β′′(u) = φ′(u)3 γ′(φ(u)) × γ′′(φ(u)). (7)

This equation together with (2) implies the theorem. �

Example 4.4.1 Let

γ(t) = (λt, r cos(ωt), r sin(ωt))

be a helix, as in Example 3.1.3. We find

γ′(t) = (λ,−rω sin(ωt), rω cos(ωt))

γ′′(t) = (0,−rω2 cos(ωt),−rω2 sin(ωt))

with ‖γ′(t)‖ =
√
λ2 + r2ω2. Furthermore

γ′(t) × γ′′(t) = (r2ω3, λrω2 sin(ωt),−λrω2 cos(ωt))

with ‖γ′(t) × γ′′(t)‖ = rω2
√
r2ω2 + λ2. Hence

κ(t) =
rω2

r2ω2 + λ2
.

Notice that the curvature is constant, which is reasonable from a geometric
point of view, because the helix has the same shape everywhere.



66 Chapter 4

4.5 Torsion

For space curves with non-zero curvature it is possible to define a ‘higher
curvature’ called torsion, which is associated with the third derivative γ′′′. It
describes the ‘twisting’ of the curve. For a plane curve, regarded as a curve
in R3, the torsion is 0.

Let γ: I → R3 be a regular parametrized curve with curvature κ(t).

Definition 4.5. Let t ∈ I and assume that κ(t) 6= 0. The number

τ(t) =
det[γ′(t) γ′′(t) γ′′′(t)]

‖γ′(t) × γ′′(t)‖2

is called the torsion of γ at t.

Notice the resemblance of this formula with (1). The denominator is
κ(t)2‖γ′(t)‖6, which is non-zero by assumption. Motivation for the definition
will be given in the following section.

Example 4.5.1 For a curve which is contained in a fixed plane in R3, the
three vectors γ′(t), γ′′(t) and γ′′′(t) will all be parallel to this plane. Hence
they are linearly dependent and their determinant is zero. Therefore τ = 0
(if it is defined).

Example 4.5.2 For the helix of Example 4.4.1 we find

γ′′′(t) = (0, rω3 sin(ωt),−rω3 cos(ωt))

and hence the determinant det[γ′ γ′′ γ′′′] is

det




λ 0 0

−rω sin(ωt) −rω2 cos(ωt) rω3 sin(ωt)
rω cos(ωt) −rω2 sin(ωt) −rω3 cos(ωt)



 = λr2ω5.

Hence

τ =
λω

r2ω2 + λ2
.

Again we obtain a constant, which is reasonable by the same argument as in
Example 4.4.1.

Theorem 4.5. The torsion of a space curve is unchanged under a repara-
metrisation.

Proof. It follows by differentiation of equation (3) in the proof of Theorem
4.1 that

β′′′(u) = φ′′′(u)γ′(φ(u)) + 3φ′′(u)φ′(u)γ′′(φ(u)) + φ′(u)3γ′′′(φ(u)). (8)
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From (2), (3) and (8) we see that

det[β′(u) β′′(u) β′′′(u)] = φ′(u)6 det[γ′(φ(u)) γ′′(φ(u)) γ′′′(φ(u))].

The theorem follows from this, combined with (7). �

Notice that the torsion of a curve is unchanged also when the direction
of the curve is reversed. The sign of the torsion allows us to separate space
curves with non-zero curvature and torsion in two kinds, ‘right’ and ‘left’.
For example, a helix for which λ and ω have the same sign is called a right
helix (compare the thread of a conventional screw) and a helix for which they
have opposite signs is called a left helix.

4.6 The osculating plane and the binormal vector

The geometric significance of the torsion will now be explained. As be-
fore, let γ: I → R3 be a regular parametrized curve with non-zero curvature
κ(t). Then γ′(t) and γ′′(t) are linearly independent vectors in R3. The plane
through γ(t) with directions spanned by these two vectors is called the oscu-
lating plane. It can be viewed as the plane in R3 to which the curve comes
closest in the vicinity of γ(t) (osculare in Latin means to kiss), because of
the Taylor approximation of order two

γ(t+ ∆t) ≃ γ(t) + ∆tγ′(t) +
1

2
(∆t)2γ′′(t),

where the right hand side belongs to the osculating plane for all ∆t. We will
show that the torsion describes the rate of change of the osculating plane.

It follows from equations (2) and (3) that the osculating plane is unchanged
if the curve is reparametrized. Because of Theorem 4.5, we may therefore
assume that the given curve has unit speed. We introduce the notation t(s) =
γ′(s) for the unit tangent vector. Keeping the assumption that κ(s) 6= 0, let

n(s) =
γ′′(s)

‖γ′′(s)‖ .

This unit vector, called the principal normal, is orthogonal to t(s) by Lemma
4.2. The unit vector

b(s) = t(s) × n(s),

which is called the binormal of the curve, is orthogonal to t(s) as well.
Notice that the vectors t(s) and n(s) span the directions of the osculating

plane, and that the binormal b(s) is normal to the osculating plane. It
follows that the rate of change of the osculating plane is expressed by the
size of the derivative b′(s). The following result shows that this is exactly
what the torsion τ measures.
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Theorem 4.6. For a curve in R3 with unit speed and non-zero curvature
we have

b′ = −τn.

In particular, τ = ±‖b′‖.

Proof. We first show that b′ is proportional to n. For this it suffices to show
that it is orthogonal to t and b. That b′ ⊥ b is immediate from Lemma 4.2.
By differentiation of the equation b · t = 0 we obtain that b′ · t + b · t′ = 0.
Hence b′ ⊥ t if and only if b ⊥ t′. By the definition of n we have t′ = κn,
hence b ⊥ t′ follows from b ⊥ n.

We thus conclude that b′ = cn for some constant c, which we now claim
is −τ . Since γ′′ = κn we have γ′′′ = (κn)′ = κ′n + κn′. Then

det[γ′ γ′′ γ′′′] = (γ′ × γ′′) · γ′′′ = (t× κn) · (κ′n + κn′) = κ2(t× n) · n′.

It follows that

τ = (t × n) · n′ = b · n′. (9)

From b · n = 0 we obtain by differentiation that b′ · n + b · n′ = 0, hence
b · n′ = −b′ · n = −cn · n = −c, and the proof is finished. �

We read from Theorem 4.6 that the absolute size of τ(s) measures the
rate of change of the osculating plane. Moreover, the sign determines the
direction to which the osculating plane is turning, according to the following
rule. Follow the curve with your right hand such that the index finger is in
the tangent direction t and the thumb is in the normal direction n, then if
τ > 0, the hand will be turning as a right screw (the middle finger, pointing
in direction −b, turns towards the thumb n).

Corollary 4.6. A regular space curve with κ 6= 0 is contained in a fixed
plane if and only if τ = 0 everywhere.

Proof. Assume τ = 0. From the preceding theorem we have b′(s) = 0, hence
b is a constant vector. Since t(s) ⊥ b we have γ′(s) · b = 0 for all s. Since
(γ · b)′ = γ′ · b we conclude that γ · b is a constant c. Hence γ(s) belongs to
the plane {ξ ∈ R3 | ξ · b = c} for all s. The converse implication was seen in
Example 4.5.1. �

4.7 The Frenet formulas

The three vectors t(s),n(s),b(s) constitute a positively ordered orthonor-
mal basis for R3 (depending on s), which is called the moving frame of Frenet
for the curve. We have seen that t′ = κn and b′ = −τn. It is of interest also
to determine n′. We collect all three formulas in a single theorem.
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Theorem 4.7. For a curve with unit speed and non-zero curvature

t′ = κn

n′ = −κt + τb

b′ = −τn

Proof. Since t,n,b is an orthonormal basis for R3 we have

n′ = (n′ · t) t + (n′ · n)n + (n′ · b)b.

By Lemma 4.2, n′ · n = 0, and in (9) we saw that b · n′ = τ . Finally, from
n · t = 0 we derive by differentiation that

n′ · t = −n · t′ = −n · κn = −κ. �

The formulas in this theorem are called the formulas of Frenet (or of
Frenet-Serret). Since each of the functions t, n and b have three coordinates,
this is essentially a linear system of 9 first order differential equations in these
coordinates. By solving this system one can (at least in principle) determine
a curve from its curvature κ(s) and torsion τ(s), up to integration constants.

4.8 Curvature of curves on a surface

We will now study some refined notions of curvature for curves which are
contained in a given surface. Let σ:U → R3 be a parametrized surface, and
let γ: I → R3 be a parametrized curve on σ. This means (see Section 2.4)
that γ = σ ◦ µ where µ: I → U is a plane curve. Assume that γ is regular
and that σ is regular at µ(t) for all t ∈ I. We denote by

N =
σ′
u × σ′

v

‖σ′
u × σ′

v‖

the unit normal vector of σ (see Section 2.8), and put

m(t) = N(µ(t)),

the unit normal vector of σ along γ.

Definition 4.8. The numbers

κg(t) =
det[γ′(t) γ′′(t)m(t)]

‖γ′(t)‖3
and κn(t) =

γ′′(t) · m(t)

‖γ′(t)‖2
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are called, respectively, the geodesic (or tangential) curvature and the normal
curvature of γ at t with respect to σ. For a unit speed curve, they are

κg(s) = γ′′(s) · u(s) and κn(s) = γ′′(s) · m(s), (10)

where u(s) = m(s) × t(s) with t(s) = γ′(s). The vector u(s) is called the
tangent normal of γ with respect to σ.

The formulas (10) for unit speed curves are easily obtained from the gen-
eral definitions. For a unit speed curve on σ, the three vectors

t(s),u(s),m(s)

again consitute a positively ordered orthonormal basis for R3, this is called
the moving frame of Darboux. The first two basis vectors span the tangent
space Tµ(s)σ. Since in this case γ′′(s) is orthogonal to t(s) = γ′(s), it follows
from (10) that the decomposition of γ′′(s) according to this basis reads

γ′′(s) = κg(s)u(s) + κn(s)m(s). (11)

m = N

t

u

γ

σ(U)

γ′′ = κgu + κnm

Since κg(s)u(s) ∈ Tµ(s)σ and κn(s)m(s) ⊥ Tµ(s)σ, this explains the reason
behind the terms ‘tangential’ and ‘normal’ curvature for κg and κn.

Theorem 4.8. The geodesic curvature κg is unchanged under a direction-
preserving reparametrisation of γ, and multiplied by −1 under a direction-
reversing reparametrization. The normal curvature κn is unchanged in both
cases.

Both κg and κn are unchanged under orientation-preserving reparametri-
sations of σ, and multiplied by −1 under orientation-reversing reparametriza-
tions.

Proof. The statements concerning reparametrization of γ are easily seen
from (2) and (3), and the statements concerning reparametrization of σ are
straightforward, since σ is only represented in the definitions through the
presence of N (see Section 2.8 for the notion of orientation). �
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Corollary 4.8. The curvature, the geodesic curvature and the normal cur-
vature of γ satisfy

κ2 = κ2
g + κ2

n. (12)

Proof. We may assume the curve has unit speed by the preceding theorem.
The equation then follows from (11) by the theorem of Pythagoras. �

Example 4.8.1 A plane curve regarded as a space curve γ(t) = (x(t), y(t), 0)
(as in Section 4.3) is a curve on the surface σ(u, v) = (u, v, 0) (the xy-plane).
The normal vector of this surface is N = (0, 0, 1). It is easily seen that
the definition of κg in this case is identical with the original definition of
curvature of plane curves in Section 4.1, and κn = 0.

Example 4.8.2 We will compute the curvatures κg and κn of a circle on
a sphere of radius 1. Such a curve is the intersection of the sphere and a
plane. It is called a great circle if the plane passes through the center of the
sphere, otherwise a small circle. For simplicity we assume that the plane is
horizontal (this is not a serious restriction, as it can be arranged by a spatial
rotation around the center of the sphere).

y

z

x

γ

u

t

σ(u, t)

With standard spherical coordinates the circle can be parametrized by

t 7→ γ(t) = σ(u, t) = (cosu cos t, cosu sin t, sinu)

with a fixed latitude u. The radius of the circle is cosu, hence it has curvature
κ = 1

cos u (see Example 4.1.2). We find

γ′(t) = (− cosu sin t, cosu cos t, 0), γ′′(t) = (− cosu cos t,− cosu sin t, 0),

and from Example 2.8.1 we have

m(t) = −σ(u, t).
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Hence

det[γ′(t) γ′′(t)m(t)]

= det




− cos u sin t − cosu cos t − cosu cos t
cosu cos t − cosu sin t − cosu sin t

0 0 − sinu


 = − cos2 u sinu

and
γ′′(t) · m(t) = cos2 u.

We conclude that

κg(t) = − tanu and κn(t) = 1.

We can verify κ2 = κ2
g + κ2

n by the formula 1
cos2 u = tan2 u+ 1.

4.9 Interpretation of normal curvature

A curve which is required to be on a given surface has to follow the shape
of the surface, and is therefore forced to some amount of curvature. The
interpretation of the normal curvature κn is exactly, that it is this part of κ
(in the decomposition (12)) which the curve is forced to have by being on σ.
This interpretation is supported by the following theorem.

Theorem 4.9. Given a point p = (u0, v0) ∈ U and a non-zero vector w0 ∈
Tpσ. All parametrized curves γ = σ ◦ µ on σ with µ(t0) = p and γ′(t0) = w0

have the same normal curvature κn(t0).

Notice that by (12) this common value of κn is then a lower bound for the
curvature κ for all such curves.

Part of the proof of the theorem is separated in the following lemma.

Lemma 4.9. Let γ = σ ◦ µ be a parametrized curve on σ and let m(t) =
N(µ(t)) for t ∈ I. Let t ∈ I be given, and let p = µ(t) ∈ U and (a, b) =
µ′(t) ∈ R2. Then

γ′(t) = aσ′
u(p) + bσ′

v(p) (13)

m′(t) = aN′
u(p) + bN′

v(p). (14)

Proof of the lemma. Equation (13) was established by means of the chain rule
in Lemma 2.4, and Equation (14) is obtained in exactly the same manner. �

Proof of the theorem. Since γ′(t) belongs to the tangent space at µ(t), we
have γ′(t)·m(t) = 0 for all t. By differentiation γ′′(t)·m(t)+γ′(t)·m′(t) = 0,
from which it follows that

κn(t) =
γ′′(t) ·m(t)

‖γ′(t)‖2
= −γ

′(t) · m′(t)

‖γ′(t)‖2
. (15)
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From (13) we see that the coordinates a and b are the same for all curves
with tangent vector γ′(t0) = w0, and from (14) we then see that m′(t0) is the
same for all such curves. It then follows from (15) that κn(t0) is the same
for all such curves. �

Example 4.9.1 For circles on the unit sphere we found in Example 4.8.2
that κn = 1. Since every tangent direction w0 in every point is the tangent
direction of some circle on the sphere (in fact, of a unique great circle), we
conclude from the preceding theorem that κn = 1 at all points on all curves
on the sphere.

It follows from Theorem 4.9 that the normal curvature is a property of the
surface rather than of the curve γ, and the following definition makes sense.

Definition 4.9. Let p and w0 be as in Theorem 4.9. The normal curvature
of σ in p with direction w0 is the normal curvature κn(t0) of any parametrized
curve γ = σ ◦ µ on σ with µ(t0) = p and γ′(t0) = w0.

It follows from Theorem 4.8 that the normal curvature of σ is unchanged
under reparametrizations, except for the sign which changes if orientation is
reversed.

4.10 Geodesics

Definition 4.10. A geodesic on a surface is a regular parametrized curve on
the surface whose geodesic curvature is identically zero.

Thus by (12) together with Theorem 4.9, a geodesic on a surface is a
curve which in each point is as straight as possible, in the sense that it has
the least possible curvature of a curve on the surface in that point and with
that direction. For this reason (among others) we regard geodesics on a
surface as the analogues of straight lines on a plane.

The property of being a geodesic is unchanged under reparametrizations
of γ as well as σ, also those which revert direction or orientation (since κg = 0
if and only if −κg = 0).

Example 4.10.1 It follows from Examples 4.8.1 and Corollary 4.2 that the
geodesics on the xy-plane are the straight lines contained in the plane.

Example 4.10.2 It follows from Example 4.8.2 that great circles on the
unit sphere S = S2 are geodesics, and that small circles are not. In fact, the
great circles are the only geodesics on the sphere (up to reparametrization
and restriction to subsets). This can be verified as follows. Assume γ(s) is a
unit speed geodesic on S. From Example 2.8.1 we have m(s) = −γ(s). Since
κg = 0 for a geodesic and κn = 1 for all curves on a sphere (see Example
4.9.1) we conclude from (11) that γ′′(s) = −γ(s) for all s. Hence γ′′′ = −γ′
and it follows that det[γ′ γ′′ γ′′′] = 0. Hence the torsion τ is zero, and by
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Corollary 4.6 the curve is contained in a fixed plane. Being in the intersection
of a plane and the sphere, the curve is contained in a great circle or a small
circle. However, the latter possibility was already excluded.

Theorem 4.10. Let γ = σ ◦ µ be a regular parametrized curve on σ. Then
γ is a geodesic and has constant speed if and only if γ′′(t) is normal to Tµ(t)σ
for all t.

Proof. If γ has constant speed, a unit speed reparametrization is obtained
by multiplying t with a constant. The second derivative of γ is proportional
to the second derivative of the reparametrized curve. Hence if the curve is a
geodesic, it follows from (11) that γ′′(t) is normal to the surface.

Conversely, if γ′′(t) is normal to Tµ(t)σ for all t, then γ′′(t) · γ′(t) = 0, and

hence d
dt‖γ′(t)‖2 = 0, from which we conclude there is constant speed. After

reparametrization to unit speed we conclude from (11) that κg = 0. �

According to this theorem, a particle which moves on the surface with
no acceleration in the tangent directions of the surface, follows a geodesic.
The only acceleration is that which is necessary to keep the particle on the
surface, and it is normal to the surface.

4.11 Exercises

1 Determine the curvature of the following curves in R2:
a. γ(t) = (2t, t2), b. γ(t) = (et cos t, et sin t), (see page 55).

2 Let γ(s) be a unit speed curve in R2, about which it is assumed that the
curvature κ is a non-zero constant. Prove that the curve β defined by

β(s) = γ(s) +
1

κ
γ̂′(s)

is a constant curve, that is, a point p. Conclude that the trace of γ is
contained in a circle centered in p.

3 Let γ(s) be a unit speed curve in R2, and assume that the curvature κ is
non-zero at s = 0. Let k = κ(0) and put

C = γ(0) +
1

k
γ̂′(0).

Prove that the circle parametrized by

β(s) = C +
1

k
(− cos(ks)γ̂′(0) + sin(ks)γ′(0)),

satisfies β(0) = γ(0), β′(0) = γ′(0), β′′(0) = γ′′(0). Its trace, which has
radius 1/|k|, is called the osculating circle. The center C is called the
center of curvature of γ at t = 0. See the following figure.
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γ′(0)γ(0)

C

4 Let γ: I → R2 be a regular parametrized curve, and assume that ‖γ(t)‖ has
a local maximum in a given value t0 ∈ I. Prove that |κ(t0)| ≥ 1/‖γ(t0)‖.
Hint: Assume unit speed. The condition on γ implies that the second
derivative of t 7→ ‖γ(t)‖2 is ≤ 0 at t0. Conclude that γ(t0) · γ′′(t0) ≤ −1
and employ the Cauchy-Schwarz inequality (see Appendix A)

5 Let γ(s) = (sinh−1(s),
√

1 + s2). Determine γ′(s) and show that the curve
has unit speed. Determine γ′′(s) and the curvature κ(s). Determine a
tangent angle θ(s), and verify Theorem 4.3 for this curve.
The following formula for the inverse function sinh−1: R → R can be used

d

dy
sinh−1 y =

1√
1 + y2

.

6 Let α: I → R2 and β: I → R2 be two unit speed curves with a common
interval of definition I, and with smooth tangent angles θ: I → R and
ϕ: I → R. Assume that they have equal curvature κ(s) for all s ∈ I,
and that there exists some value s0 ∈ I for which α(s0) = β(s0) and
α′(s0) = β′(s0). Prove that then α(s) = β(s) for all s ∈ I.

7 Determine the arc length s(t), the curvature κ(t) and the torsion τ(t) for
the curve γ(t) = (3t, 3t2, 2t3).

8 The curve γ(t) = (t, cosh t, sinh t) is called a hyperbolic helix. Determine
its curvature and torsion.

9 Let γ(s) = (3 sin s
5 , 4 sin s

5 , 5 cos s5 ). Find t, n and b for this curve. Find
also the curvature and torsion, and show that the curve is contained in a
fixed plane. Give a normal vector for this plane.

10 Let γ: I → R3 be a regular parametrized curve on a regular parametrized
surface σ:U → R3. Assume the image of γ is a (segment of) a straight
line. Prove that γ is a geodesic on σ.

11 Let σ denote the cylinder σ(u, v) = (cos v, sin v, u) where (u, v) ∈ R2.

a. Let γ(t) = σ(a cos t, t) for t ∈ R, where a ∈ R is constant. Determine
κn and κg for γ. For which value of a is this a geodesic?

b. Instead, let γ(t) = σ(at + b, ωt) for t ∈ R, where a, b and ω are
constants. Describe the curve and show it is a geodesic on σ.
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c. Determine two geodesic curves on σ which both have end points (1, 0, 0)
and (1, 0, 1), but which have different trace in between these two points.
Are there other geodesics between the same two points?

12 Let σ(u, v) = (f(u) cos v, f(u) sinv, g(u)) be a surface of revolution (see
pages 35 and 57).

a. Show that the meridians t 7→ σ(t, v) are geodesics.

b. Verify that for the parallel curve t 7→ σ(u, t)

κg(t) =
f ′(u)

f(u)(f ′(u)2 + g′(u)2)1/2
, κn(t) =

g′(u)

f(u)(f ′(u)2 + g′(u)2)1/2
.

Give a necessary and sufficient condition for it to be a geodesic.

13 Let γ = σ ◦ µ: I → R3 be a regular parametrized curve on a regular
parametrized surface σ. Assume that there exists a fixed plane Π in R3

containing the image of γ. If for some t0 ∈ I the plane Π is orthogonal
to the tangent plane Tµ(t0)σ of σ at µ(t0), we call γ a normal section of σ

at this point (two planes in R3 are orthogonal if their normal vectors are
orthogonal). For example, a great circle on a sphere is a normal section at
each of its points, because it belongs to a plane that intersects orthogonally
with the tangent spaces.

a. Show that a normal section at t0 has κg(t0) = 0.

b. Use part a to verify Exercise 12a, that the meridians of a surface of
revolution are geodesics. Verify also the geodesics found in Exercise 12b.

14 Let γ: I → R3 be a unit speed curve with curvature κ(t) 6= 0 for all t. Let
b(t) be the binormal of the curve at t. Put σ(u, v) = γ(v) + ub(v) for
(u, v) ∈ R × I.

a. Show that σ is a regular parametrized surface. It is called the binormal
surface of the curve.

b. Show that γ is a geodesic on the binormal surface.

15 Consider a cone σ(u, v) = (u cos v, u sin v, au), with u > 0 and with a > 0
a fixed number. A sphere of radius 1 is inserted in the cone such that it
exactly touches (like a scoop of ice cream in a cone).

a. Determine the center of the sphere, and parametrize the intersection
of the surfaces as a smooth curve.

b. Give an argument, showing that this curve has the same geodesic
curvature κg and the same normal curvature κn with respect to the two
surfaces (the sphere is assumed oriented with its normal pointing towards
the center). Determine |κg| and κn.



Chapter 5

The second fundamental form

We shall now extend the notion of curvature from curves to surfaces.
However the description is considerably more complicated, and the curvature
of a surface in a given point p will not be completely described by a single
number. The description of curvature will be based on the concept of normal
curvature (see Definition 4.9), which associates infinitely many numbers to
each point p, namely one for each unit tangent vector at p, describing the
curvature of the surface in that direction. One of the central goals of this
chapter will be to organize these numbers in an efficient way.

5.1 The shape operator

In order to treat the notion of curvature efficiently, we will use some con-
cepts from linear algebra. The main object that describes the curvature at
p will be a linear map W from the tangent space at p to itself. The map W
is called the shape operator, or the Weingarten map. It will be explained in
Section 5.2 how W relates to the normal curvature of Definition 4.9.

For a plane unit speed curve the description of its curvature is embodied
in the formula t′ = κt̂ (see Theorem 4.2), which expresses that the curvature
is given by the rate of change of the direction t of the tangent line. For
surfaces we will take a similar view, and our definition of W at p will reflect
the rate of change of the tangent space at p.

Let σ:U → R3 be a regular parametrized surface, and let p = (u0, v0) ∈
U be given. The position of the tangent space Tpσ in R3 is completely
determined by the unit normal vector

N =
σ′
u × σ′

v

‖σ′
u × σ′

v‖

at p. We will regard the derivative of N as a measure for the curvature of
the surface.

In fact, it will be more convenient to use the negative of the derivative of
N. That this is actually in accordance with the description of the curvature
of a plane curve will be explained below in Example 5.1.3.

However, since N is a function of the two variables u and v, both partial
derivatives −N′

u and −N′
v have to be taken into account. This could be

done by considering the Jacobian matrix for −N:U → R3, whose columns
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are exactly the two vectors −N′
u and −N′

v, but for reasons to be explained,
we prefer to proceed somewhat differently.

Observe that it follows from Lemma 4.2 that −N′
u and −N′

v are perpen-
dicular to N, hence they both belong to the tangent space Tpσ.

Definition 5.1. Let p = (u0, v0) ∈ U . The linear map

W = Wp: Tpσ → Tpσ,

defined by W (σ′
u) = −N′

u and W (σ′
v) = −N′

v, and hence

W (aσ′
u + bσ′

v) = −aN′
u − bN′

v (1)

for all a, b ∈ R, is called the shape operator of the surface at p (the derivatives
σ′
u, σ

′
v, N′

u and N′
v are all evaluated in p).

It follows from the fact that the pair (σ′
u, σ

′
v) is a basis for Tpσ, that W

is a well defined linear map Tpσ → Tpσ. The motivation for studying this
map rather than just the vectors N′

u,N
′
v is to obtain a notion which behaves

nicely under reparametrizations. The idea is that a reparametrization will
change N′

u and N′
v, but also σ′

u and σ′
v, and it turns out that these changes

are always so related that the map remains essentially the same. This will be
seen in the theorem below, and the conclusion is that the shape operator is
more directly related to a geometric property of the surface than the vectors
N′
u and N′

v.

Example 5.1.1 Let σ(u, v) = p+uq1 +vq2 be the plane through p spanned
by two linearly independent vectors q1, q2 ∈ R3. Then N = q1×q2

‖q1×q2‖ is con-

stant, and the shape operator W is the zero operator.

Example 5.1.2 For the unit sphere with standard spherical coordinates
σ(u, v) we have seen in Example 2.8.1 that N(u, v) = −σ(u, v). Hence N′

u =
−σ′

u and N′
v = −σ′

v, and it follows that the shape operator Wp is the identity
operator on Tpσ for all p.

Example 5.1.3 Let γ: I → R2 be a plane curve with unit speed and tangent

vector t(s) = γ′(s). Since (t̂)′ = t̂′ it follows from Theorem 4.2 that

(t̂)′ = t̂′ = κ̂t̂ = κˆ̂t = −κt,

where we used that ˆ̂
t = −t. Thus it is the negative of the derivative of the

normal vector t̂ which describes the curvature κ.
If we view N and t̂ as analogues of each other, the derivatives of N are

analogous to (t̂)′. The analogue of the map W defined by (1) is therefore the
linear map aγ′ 7→ −a(t̂)′ (where a ∈ R is arbitrary) of the 1-dimensional tan-
gent space to itself. By the equation found above this map is multiplication
by κ. In this sense W is a higher dimensional version of κ.

Recall from Section 2.4 that a parametrized curve γ on σ by definition is
a curve of the form γ = σ ◦ µ where µ: I → U is a parametrized plane curve.
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Lemma 5.1. Let γ = σ ◦ µ be a parametrized curve on σ with µ(t0) = p.
Then

W (γ′(t0)) = −m′(t0) (2)

where m = N ◦ µ is the surface normal along the curve.

Proof. Immediate from (1) and the two expressions in Lemma 4.9. �

In other words, the shape operator associates to a tangent vector w the
derivative of −N along any curve on the surface which has w as its tangent.

Theorem 5.1. The shape operator W is unchanged under reparametriza-
tions which preserve orientation, and it changes to −W under reparametriza-
tions which reverse orientation.

Proof. Let τ = σ ◦ φ:V → R3 denote a reparametrization with diffeomor-
phism φ:V → U . We denote the shape operator of σ by W σ, and the
corresponding map for τ by W τ . The claim is that W τ = ±W σ.

According to Theorem 2.4 each tangent vector w ∈ Tpσ is of the form
w = γ′(t0) for some parametrized curve γ = σ ◦µ on σ. We can then use the
formula (2) to determine W σ:

W σ(γ′(t0)) = −(Nσ ◦ µ)′(t0).

The curve γ = σ◦µ can also be written as γ = τ ◦ν, where ν = φ−1◦µ: I →
V (see the figure below). Hence γ may be considered as a parametrized curve
on τ as well.

U
µ

V

ν

γ
Nσ

σ τ

φ

Hence we can use (2) to determine also W τ :

W τ (γ′(t0)) = −(Nτ ◦ ν)′(t0).
The unit normals for σ and τ are related by Nτ = ±Nσ ◦φ:V → R3 with

sign + if and only if φ preserves orientation (see Section 2.8). Hence

−(Nτ ◦ ν)′(t0) = −(±(Nσ ◦ φ) ◦ (φ−1 ◦ µ))′(t0) = ±(−Nσ ◦ µ)′(t0).

The theorem follows immediately. �
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5.2 The second fundamental form

We shall now introduce another fundamental object through which we
wish to describe the curvature of a surface in a given point. It is closely
related to the shape operator W , and it serves to relate this map to the
normal curvature which was defined in Section 4.9. Let σ:U → R3 be a
regular parametrized surface, and let p ∈ U be given.

Definition 5.2. The map w ∈ Tpσ 7→ IIp(w) = w ·W (w) ∈ R is called the
second fundamental form of σ in p.

It follows from Theorem 5.1 that the second fundamental form does not
change under reparametrizations, except by a sign if the orientation is re-
versed.

Let a tangent vector w0 ∈ Tpσ be given. Recall from Definition 4.9 that
the normal curvature κn of σ in p with direction w0 is the normal curvature
of any curve on σ through p with that tangent vector.

Theorem 5.2. The normal curvature in direction w0, is

κn =
IIp(w0)

‖w0‖2
(3)

Proof. Let γ = σ ◦ µ be a curve on σ with µ(t0) = p and γ′(t0) = w0. It
follows from Section 4.9, equation (15), that κn = −γ′(t0) ·m′(t0)/‖γ′(t0)‖2.
Hence κn = w0 ·Wp(w0)/‖w0‖2 follows from (2). �

Thus, if we assume ‖w0‖ = 1, then IIp(w0) is the normal curvature at p of
any curve on σ, which has the tangent vector w0 in this point. The relation
(3) describes the geometric content of the second fundamental form.

5.3 Coordinate expressions for the second fundamental form.

In the following theorem we give an explicit expression by which the second
fundamental form can be computed for a given parametrization.

Theorem 5.3. The second fundamental form is given by

IIp(aσ
′
u + bσ′

v) = La2 + 2Mab+Nb2, a, b ∈ R, (4)

with respect to the basis σ′
u, σ

′
v. Here

L = N · σ′′
uu =

det[σ′
u σ

′
v σ

′′
uu]

‖σ′
u × σ′

v‖

M = N · σ′′
uv =

det[σ′
u σ

′
v σ

′′
uv]

‖σ′
u × σ′

v‖

N = N · σ′′
vv =

det[σ′
u σ

′
v σ

′′
vv]

‖σ′
u × σ′

v‖
,

(5)
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where all the terms are evaluated in the given point p ∈ U .

Recall the analogous expression Ip(aσ
′
u + bσ′

v) = Ea2 + 2Fab + Gb2 for
the first fundamental form. The two fundamental forms are quadratic forms
on the tangent space (see page 44)

Proof. We shall derive the following expression for all a, b, ã, b̃ ∈ R,

(aσ′
u + bσ′

v) ·W (ãσ′
u + b̃σ′

v) = Laã+M(ab̃+ bã) +Nbb̃. (6)

Taking a = ã, b = b̃ we then obtain (4).
By linearity of W the left side of (6) equals

aã σ′
u ·W (σ′

u) + ab̃ σ′
u ·W (σ′

v) + bã σ′
v ·W (σ′

u) + bb̃ σ′
v ·W (σ′

v).

The expression (6) follows if we prove

σ′
u ·W (σ′

u) = L, σ′
u ·W (σ′

v) = M,

σ′
v ·W (σ′

u) = M, σ′
v ·W (σ′

v) = N,
(7)

with L, M and N defined by (5). By definition of W (see (1)),

σ′
u ·W (σ′

u) = −σ′
u · N′

u, σ′
u ·W (σ′

v) = −σ′
u ·N′

v,

σ′
v ·W (σ′

u) = −σ′
v · N′

u, σ′
v ·W (σ′

v) = −σ′
v · N′

v.
(8)

From σ′
u · N = 0 we derive by differentiation with respect to u and v that

σ′′
uu · N + σ′

u ·N′
u = 0 and σ′′

uv · N + σ′
u · N′

v = 0, (9)

and from σ′
v · N = 0 we derive similarly that

σ′′
vu · N + σ′

v ·N′
u = 0 and σ′′

vv · N + σ′
v · N′

v = 0. (10)

The expressions in (7) then follow from (8) and (5) (since σ′′
uv = σ′′

vu). �

The coefficients L, M and N are conveniently arranged as the entries of
a symmetric matrix (

L M
M N

)
,

so that the formula for the second fundamental form can be put in matrix
form

IIp(aσ
′
u + bσ′

v) =

(
a
b

)t(
L M
M N

)(
a
b

)
.

Example 5.3 Let σ(u, v) = (r cosu cos v, r cosu sin v, r sinu) be the stan-
dard parametrization of a sphere with radius r > 0. A straightforward
computation shows that the first fundamental form has coefficients E = r2,
F = 0 and G = r2 cos2 u. Moreover, N = −(cosu cos v, cosu sin v, sinu) and

L = N · σ′′
uu = r, M = N · σ′′

uv = 0, N = N · σ′′
vv = r cos2 u.

Hence the second fundamental form at p = (u, v) is the map

aσ′
u + bσ′

v 7→ r(a2 + b2 cos2 u).



82 Chapter 5

5.4 A formula for the shape operator

With the aid of the coefficients L, M and N we can establish a formula
by which the shape operator can be computed in a given parametrization.

Theorem 5.4. The matrix for the shape operator Wp:Tpσ → Tpσ with re-
spect to the basis (σ′

u, σ
′
v) is

(
E F
F G

)−1 (
L M
M N

)
.

Recall that for a 2 × 2 matrix,

(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

Proof. We express W (σ′
u) and W (σ′

v) as linear combinations

W (σ′
u) = hσ′

u + jσ′
v, W (σ′

v) = iσ′
u + kσ′

v

with coefficients i, j, k, l to be determined. The matrix for Wp will then be
(
h i
j k

)
.

From (7) we obtain
(
L M
M N

)
=

(
σ′
u · (hσ′

u + jσ′
v) σ′

u · (iσ′
u + kσ′

v)
σ′
v · (hσ′

u + jσ′
v) σ′

v · (iσ′
u + kσ′

v)

)

=

(
Eh+ Fj Ei+ Fk
Fh+Gj Fi+Gk

)

=

(
E F
F G

)(
h i
j k

)
.

Hence (
h i
j k

)
=

(
E F
F G

)−1 (
L M
M N

)
. �

Notice that it does not follow that Wp is represented by a symmetric
matrix (the product of two symmetric matrices need not be symmetric). In
fact, this will not be the case in general.

Example 5.4 For the sphere with radius r we obtain from Example 5.3
that the matrix for W with respect to σ′

u and σ′
v is

(
r2 0
0 r2 cos2 u

)−1 (
r 0
0 r cos2 u

)
=

(
1/r 0
0 1/r

)
.
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5.5 Diagonalization of the second fundamental form

We shall now introduce a general method by which one can deduce from
the operator W (and its matrix expression) some detailed information about
the shape of a surface. The information is obtained through diagonalization
of W (see Appendix D).

Definition 5.5. An eigenvector for the shape operator Wp is called a princi-
pal vector in Tpσ, and the corresponding eigenvalue is called the correspond-
ing principal curvature at p.

Notice that if w ∈ Tpσ is a principal vector with unit length and corre-
sponding principal curvature λ, then by Theorem 5.2 the normal curvature
at p in direction w is

κn = IIp(w) = w ·Wp(w) = w · λw = λ.

This explains why λ is called a ‘curvature’.
It follows from Theorem 5.1 that the notion of a principal vector is un-

changed under a reparametrization, and that the corresponding principal
curvatures are unchanged in absolute value, but with the opposite sign if the
orientation is reversed.

We see from (6) that the shape operator W :Tpσ → Tpσ is symmetric with
respect to the dot product, that is

w1 ·W (w2) = W (w1) · w2 (11)

for all w1, w2 ∈ Tpσ.

Theorem 5.5. There exists for each p ∈ U an orthonormal basis w1, w2 for
Tpσ consisting of principal vectors with corresponding principal curvatures
κ1, κ2 ∈ R.

With respect to this basis the second fundamental form is given by

IIp(aw1 + bw2) = κ1a
2 + κ2b

2 (12)

for all a, b ∈ R.

Proof. The first statement follows immediately from Corollary D.1 in Ap-
pendix D with U = Tpσ ⊂ R3.

The expression (12) now follows by evaluation of w · W (w) with w =
aw1 + bw2. �

Corollary 5.5.1. Let w1, w2 and κ1, κ2 be as above, and let θ ∈ R. The
normal curvature in direction

w0 = cos θw1 + sin θw2
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is
κn = κ1 cos2 θ + κ2 sin2 θ. (13)

In particular, κn belongs to the interval between κ1 and κ2, which are the
extremal values of κn.

Proof. It follows from Theorem 5.2 that κn = IIp(w0). Then (13) is obtained
from (12). Furthermore, if for example κ1 ≤ κ2, then from (13)

κn = κ1 cos2 θ + κ2 sin2 θ ≤ κ2 cos2 θ + κ2 sin2 θ = κ2

and similarly κn ≥ κ1. �

The principal curvatures and directions can be explicitly determined by
means of the matrix for W . We summarize the conclusion:

Corollary 5.5.2. The principal curvatures κ1, κ2 are the roots κ of the equa-
tion

det

((
E F
F G

)−1 (
L M
M N

)
− κ

(
1 0
0 1

))
= 0.

The corresponding principal vectors are aσ′
u+bσ′

v where
( a
b

)
is non-zero and

solves (
E F
F G

)−1 (
L M
M N

)(
a
b

)
= κi

(
a
b

)
.

Proof. This follows from the fact that the shape operator is represented by

the matrix

(
E F
F G

)−1 (
L M
M N

)
according to Theorem 5.4. �

Example 5.5.1 Let σ(u, v) = (cos v, sin v, u), then σ parametrizes a cylinder
(Example 1.2.3). We will determine the principal curvatures and principal
vectors at the point σ(u, v). We find

σ′
u = (0, 0, 1), σ′

v = (− sin v, cos v, 0)

and hence E = G = 1, F = 0, and N = (− cos v,− sin v, 0). Furthermore

σ′′
uu = σ′′

uv = 0, σ′′
vv = (− cos v,− sin v, 0)

and hence
L = M = 0, N = 1.

The matrix of the shape operator with respect to σ′
u, σ

′
v is therefore

(
1 0
0 1

)−1(
0 0
0 1

)
=

(
0 0
0 1

)
.

The principal curvatures are the eigenvalues of this matrix, κ1 = 0 and
κ2 = 1. Principal vectors are σ′

u and σ′
v since the matrix is already diago-

nal. The normal curvature in direction σ′
u (vertical) is zero, and the normal

curvature in direction σ′
v (horizontal) is 1.
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5.6 The graph of a quadratic form

In order to illustrate the theory of the previous section, we will study the
surface formed by the graph of a particularly simple function.

A quadratic form on R2 is a function q: R2 → R of the form

q(x, y) = ax2 + 2bxy + cy2 (14)

for some constants a, b, c ∈ R. It is convenient to write the formula for q in
matrix form

q(x, y) =

(
x
y

)t(
a b
b c

)(
x
y

)
, (15)

where t denotes transposition. As in the previous section, the key to the
analysis is the diagonalization known from linear algebra. Recall that every
symmetric matrix A is orthogonally diagonalizable, that is, there exists an
orthogonal 2 × 2 matrix C such that

D = C−1AC

is a diagonal matrix with real entries (see Appendix D).
We apply the diagonalization to the matrix A of our quadratic form (15).

As explained in Appendix D, the columns of C are chosen as an orthonormal

basis of eigenvectors for A. Let w =
(
x

y

)
∈ R2 be given. The coordinates of

w, with respect to the basis given by the columns of C, are denoted
(
x′

y′

)
.

Then

w = C

(
x′

y′

)
.

Write w′ =
(
x′

y′

)
, then w = Cw′ and we obtain from (15) that

q(w) = wtAw = (Cw′)tA(Cw′) = w′tCtACw′ = w′tDw′

since Ct = C−1 and C−1AC = D. Let λ1, λ2 be the eigenvalues in the
diagonal of D. It follows from the preceding calculation that

q(w) = λ1x
′2 + λ2y

′2.

Thus the change of variables from (x, y) to (x′, y′) results in a simplification
of the expression for q, where the product term xy disappears.

Notice that detC = ±1, and by changing the sign on one of the columns,
if necessary, we can arrange that detC = 1 (the columns will still be an
orthonormal set of eigenvectors). Then C has the form

C =

(
cos θ − sin θ
sin θ cos θ

)
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for some θ ∈ R, and it corresponds to a counterclockwise rotation by the angle
θ. The basis vectors in the columns of C are obtained from the standard basis
vectors ei exactly by this rotation, and the new coordinates x′ and y′ are the
coordinates of w with respect to the rotated basis.

x

y

x′
y′

θ

w
(
x′

y′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)

We have established the following theorem.

Theorem 5.6. Let q(w) = wtAw be a quadratic form on R2 with symmetric
2 × 2 matrix A. There exists a rotation of R2 such that in the rotated x′y′-
coordinates

q(w) = λ1x
′2 + λ2y

′2,

where λ1, λ2 are the eigenvalues of A.

In these rotated coordinates we can easily describe the graph of q. Notice
that the vertical cross section of the graph, obtained by taking the intersec-
tion with one of the two vertical coordinate planes (x′z-plane and y′z-plane

respectively), is a parabola (z = λ1x
′2 and z = λ2y

′2, respectively). There-
fore the surface is called a paraboloid.

The shape of the horizontal cross sections of the graph depend very much
on the eigenvalues λ1 and λ2. If the eigenvalues are both positive or both
negative, then each horizontal cross section of the graph is an ellipse, and
the graph is called an elliptic paraboloid. The graph is shown below in the
positive case (the negative case is similar, but upside down).

elliptic paraboloid

If λ1 and λ2 are both non-zero but have different signs, then the graph
is called a hyperbolic paraboloid, because each horizontal cross section of the
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graph is a hyperbola. In this case the graph has the shape of a ‘saddle’, see
below.

hyperbolic paraboloid

If one of the eigenvalues is zero, but not the other one, then the graph
is called a parabolic cylinder (it is a ‘cylinder’ in which the cross section is
a parabola instead of a circle). Finally, if λ1 = λ2 = 0 then q is the zero
function and the graph is a plane.

parabolic cylinder

The relation to the theory in Section 5.5 is as follows. In the rotated
coordinates we obtain a graph of the form σ(u, v) = (u, v, λ1u

2 + λ2v
2). A

simple calculation shows that at (u, v) = (0, 0) we have
(
E F
F G

)
=

(
1 0
0 1

)
,

(
L M
M N

)
=

(
2λ1 0
0 2λ2

)
.

We see that the rotation of coordinates exactly has the effect that the shape
operator is diagonalized. The principal curvatures are 2λ1 and 2λ2, and
principal vectors are along the two horizontal axes.

Example 5.6.1 To the quadratic form q(x, y) = x2 + xy + y2 corresponds
the symmetric matrix (

1 1
2

1
2 1

)

which is diagonalized in Example D.1. The diagonalized matrix is

D = C−1AC =

(
1
2 0

0 3
2

)

where

C =

(
1√
2

1√
2

− 1√
2

1√
2

)
.
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The quadratic form x2 + xy + y2 thus becomes 1
2x

′2 + 3
2y

′2 in rotated coor-
dinates. The graph is an elliptic paraboloid. Its axes are rotated from the x
and y axes by the angle θ determined from cos θ = 1√

2
, sin θ = − 1√

2
, that is,

clockwise by 45 degrees.

5.7 The type of a surface

The principal curvatures and vectors can be explained geometrically as fol-
lows. For simplicity we assume that the given point σ(p) on the surface is the
origin, and that the tangent plane in this point is exactly the xy-coordinate
plane. This can always be arranged by a suitable translation followed by a
suitable rotation of R3, and it can be shown that such a transformation does
not alter κ1 and κ2. Furthermore, it follows from Theorem 2.11 (and its
proof) that σ allows an orientation preserving reparametrization as a graph
over the xy-plane. Observe that the principal curvatures are unchanged also
by such a reparametrization. We therefore assume that σ is already of this
form, that is

σ(u, v) = (u, v, h(u, v))

where h(u, v) is smooth.
Since σ(p) = (0, 0, 0) we have p = (0, 0) and h(0, 0) = 0. Now

σ′
u = (1, 0, h′u), σ′

v = (0, 1, h′v)

and since Tpσ is the xy-plane we conclude that h′u(0, 0) = h′v(0, 0) = 0. In
particular, we see that the first fundamental form has

E = G = 1, F = 0

in p. The unit normal vector is N = (0, 0, 1), and since

σ′′
uu = (0, 0, h′′uu), σ′′

uv = (0, 0, h′′uv), σ′′
vv = (0, 0, h′′vv)

we obtain from Theorem 5.3 that at p

L = h′′uu(0, 0), M = h′′uv(0, 0), N = h′′vv(0, 0).

The Taylor expansion to order two of σ now reads (see Appendix B)

σ(u, v) ≃ σ(0, 0) + uσ′
u(0, 0) + vσ′

v(0, 0)

+ 1
2(u2σ′′

uu(0, 0) + 2uvσ′′
uv + v2σ′′

vv(0, 0))

= (u, v, 1
2 (u2L+ 2uvM + v2N)) = (u, v, 1

2IIp(uσ
′
u + vσ′

v)).

We thus see that σ is approximated near p by the graph of 1
2IIp, and we can

read off the shape of σ from the shape of this graph. Since IIp is a quadratic
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form, its shape was described in Section 5.6. The conclusion is that after a
suitable rotation of the xy-plane, which brings the principal vectors in the
direction of the axes, the surface will have an appearance like one of the
figures in Section 5.6, depending on the signatures of the numbers κ1, κ2.

Definition 5.7. The type of a point p ∈ U is defined as follows. It is called
an elliptic point of the surface if the principal curvatures κ1, κ2 at p are non-
zero and have the same sign, and a hyperbolic point if they are non-zero with
opposite signs. If one of the principal curvatures is zero, but the other not,
the point is called parabolic, and finally if κ1 = κ2 = 0 the point is called
planar.

Notice that the type of a point does not change by reparametrization,
since the principal curvatures are either unchanged or both change sign.

5.8 Exercises

1 Let σ denote the helicoid σ(u, v) = (u cos v, u sin v, v).

a. Determine κg and κn for the helix γ(t) = (a cos t, a sin t, t) on σ. Here
a ∈ R is a constant (in the degenerate case a = 0, the helix is a line).

b. Determine W (γ′(t)), where W is the shape operator for σ at p = (a, t).

c. Answer the same questions for the curve β(t) = (t cos b, t sin b, b) on σ,
with b ∈ R a constant.

d. Which of the mentioned curves are geodesics on the helicoid?

2 For the helicoid σ(u, v) = (u cos v, u sin v, av), where a 6= 0 is a constant,
the first fundamental form was determined in Exercise 10, page 56. De-
termine the coefficients L, M and N of the second fundamental form.

3 For a surface of revolution σ(u, v) = (f(u) cos v, f(u) sin v, g(u)) the first
fundamental form was determined in Exercise 12, page 57. Verify the
following expressions for the second fundamental form:

L =
f ′g′′ − f ′′g′√
(f ′)2 + (g′)2

, M = 0, N =
fg′√

(f ′)2 + (g′)2

4 Let σ:U → R3 be a regular parametrized surface. Show that if σ(U) is
contained in a fixed plane {x ∈ R3 | n · x = c}, where n ∈ R3 is a unit
vector and c ∈ R, then L = M = N = 0.
Prove also the following converse. Assume that U is a rectangle ]a, b[×]c, d[
and that the second fundamental form is identically 0. Then σ(U) is
contained in a plane. (Hint: Use (9)-(10) to prove that N is constant.
Prove next that N · σ is constant).
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5 Let σ be a regular parametrized surface for which the image is contained
in a fixed sphere {x ∈ R3 | ‖x − a‖ = r} where a ∈ R3 and r > 0.
Show that then ±rN(u, v) = σ(u, v) − a for all (u, v), and prove that the
fundamental forms are proportional: ∓(rL, rM, rN) = (E, F,G).
Prove also the following converse. Assume that U is a rectangle ]a, b[×]c, d[
and that there exists a constant r 6= 0 such that (rL, rM, rN) = (E, F,G).
Then a = σ + rN is constant and σ(U) is contained in the sphere with
this center and radius |r|.

6 Consider the parametrized surface σ(u, v) = (u − v, u + v, u2 + v2) for
(u, v) ∈ R2.

a. Determine the coefficients E, F and G.

b. Let p = ( 1
2 ,

1
2). Show that the vectors e1 = (1, 0, 0) and e2 + e3 =

(0, 1, 1) belong to Tpσ, and determine their coordinates with respect to
σ′
u(p), σ

′
v(p).

c. Determine L, M and N at p = ( 1
2 ,

1
2 ).

d. Show that e1 and e2 + e3 are principal vectors at p = ( 1
2 ,

1
2 ), and

determine the corresponding principal curvatures κ1 and κ2.

e. Let γ(t) = ( 1√
2
(cos t− sin t), 1√

2
(cos t + sin t), 1

2) for t ∈ R. Show that

γ can be realized as a curve on σ, and determine the curvatures κn and
κg at t = π

4 . One of them coincides with κ1. Explain why.

7 Let σ(u, v) = (u, v, uv) for (u, v) ∈ R2 and consider the point p = (1, 0).
Compute E, F , G, L, M and N for σ at p, and determine the normal
curvature of σ in the direction w0 = ( 1

3 ,
2
3 ,

2
3) ∈ Tpσ.

Determine the principal curvatures and principal vectors for σ at p.

8 Let σ(u, v) be a regular parametrized surface. Assume at a given point
(u0, v0) that F (u0, v0) = M(u0, v0) = 0. Show that then σ′

u and σ′
v are

principal vectors at this point, with corresponding principal curvatures
κ1 = L

E
and κ2 = N

G
.

In the converse direction, show also that if σ′
u(u0, v0) and σ′

v(u0, v0) are
principal vectors with corresponding curvatures κ1, κ2, which are different,
then F = M = 0 at this point. Give finally an example which shows that
this converse conclusion cannot be reached if κ1 = κ2.

9 Let F : R3 → R3 be a map of the form F (x) = Ax + b, where A is an
orthogonal 3 × 3-matrix with detA = 1, and b ∈ R3 a constant vector
(such a map is called a rigid motion).
Prove that if σ:U → R3 is a regular parametrized surface, then so is
τ = F ◦ σ (use Exercise C2 in Appendix C). Verify furthermore that the
coefficients E, F,G, L,M,N are equal for σ and τ . Verify that if w ∈ R3

is a principal vector for σ, then Aw is a principal vector for τ with the
same principal curvature κ.
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10 Let q(x, y) = 2x2 + 4xy + 5y2. Determine a rotation of R2 which brings
q in the form of Theorem 5.6. Of which type is the graph of q? Describe
the level set q(x, y) = 1?

Answer the same questions for q(x, y) = ax2 + 24xy + (a + 7)y2, for all
possible values of a ∈ R.

11 Suppose a quadratic form q(x, y) = ax2 +3xy+ by2 can be brought to the
form 4(x′)2 − (y′)2 by a rotation of R2. Determine the possible values of
a and b.

12 Consider the graph of h(u, v) = uv − cosu − cos v, where u, v ∈] − π, π[.
Show that each point (u, v) 6= (0, 0) is hyperbolic, and that (u, v) = (0, 0)
is parabolic.

13 The graph of h(u, v) = u3 − 3uv2 is called the monkey saddle because the
point (0, 0, 0) is a saddle point with slopes for both two legs and a tail.

Determine E, F , G and L, M , N at (u, v) = (0, 0). Determine also the
principal curvatures κ1, κ2 in this point. Which is the type of the point
(0, 0, 0) on the monkey saddle?

14 Let σ(u, v) = (u + v, v, 1
2u

2 + uv + 2v2). Compute E, F,G, L,M,N and
the principal curvatures κ1, κ2 at (u, v) = (0, 0). Determine also the cor-
responding principal vectors and the type of the point.

15 Find a function h(u, v) of the form h(u, v) = au+ bv + cu2 + duv + ev2,
for which the graph has

E = 5/4, F = 1/2, G = 2, L = 3/4, M = −3/2, N = 3

at (u, v) = (0, 0). Determine the principal curvatures, corresponding prin-
cipal vectors, and the type of the point (0, 0, 0) on the graph.
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16 Let σ:U → R3 be a regular parametrized surface. Let γ = σ◦µ: I → R3 be
a regular parametrized curve on σ, and assume the image of γ is contained
in a straight line. Let κ1 and κ2 be the principal curvatures for σ at some
point on the curve, say µ(t0) ∈ U where t0 ∈ I. Prove that κ1 ≤ 0 ≤ κ2

or κ2 ≤ 0 ≤ κ1.



Chapter 6

Teorema egregium

In the investigation of the geometry of surfaces one of the central issues
is to determine which geometric quantities of the surface can be determined
solely on the basis of computations involving measurements of arc lengths on
the surface. Such a quantity is called intrinsic. The point of the notion is
that an intrinsic quantity is an ‘internal’ property of the surface, independent
of the surrounding space. For example, the distance between two opposite
poles on a sphere of radius 1 is 2, but the shortest distance that can be
measured on the surface is π, along a great circle. The distance measured
through the surrounding space is not intrinsic.

In this chapter we will investigate some of the geometric notions we have
introduced from this perspective. Most importantly, we shall prove a famous
theorem of Gauss, which asserts that a particular measure for the curvature,
called the Gaussian curvature, is intrinsic.

6.1 The Gaussian curvature

In the preceding chapter we have described the curvature of a surface in
a given point either by means of a linear map or by means of a quadratic
form, both being rather complicated objects. It would be tempting to try to
reduce to a description by means of a single number. One such number is
the following measure of curvature, which was introduced by Gauss.

Recall, that if U ⊂ Rn is an m-dimensional linear space and L:U → U
a linear map, the determinant of L, denoted by detL, is defined as the
determinant of the m×m matrix that represents L in some basis for U . It is
a theorem of linear algebra that the determinant is independent of the chosen
basis (the matrix will be different in another basis, but the determinant will
remain the same).

Definition 6.1. The Gaussian curvature (or total curvature) K(p) of σ at
p is the determinant of the map W . That is (compare Theorem 5.4)

K(p) = det

((
E F
F G

)−1 (
L M
M N

))
=
LN −M2

EG− F 2
.

Notice that the determinant K(p) does not depend on the use of the basis
(σ′
u, σ

′
v) for Tpσ, which is used in the above expression. It follows thatK(p) is
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unchanged by reparametrizations, since by Theorem 5.1 the shape operator
W is unchanged or changes to −W (the latter change does not alter the
determinant).

It will be seen in the examples below that there exist surfaces with quite
different shapes, which have the same Gaussian curvature everywhere. There-
fore, the Gaussian curvature does not hold complete information about the
shape of the surface.

Example 6.1.1 For the plane we saw in Example 5.1.1 that W is the zero
operator. Hence its Gaussian curvature is K = 0. For the unit sphere
we determined W to be the identity operator (see Example 5.1.2), and we
conclude that the Gaussian curvature is K = 1. More generally, it follows
from Example 5.4 that the Gaussian curvature of a sphere of radius r is
K = 1/r2.

Example 6.1.2 Consider again the cylinder σ(u, v) = (cos v, sin v, u) from
Example 5.5.1. We will determine the Gauss curvature in the point σ(u, v).
We saw that E = G = 1, F = 0, and L = M = 0, N = 1. It follows that the
Gaussian curvature is K = 0. Notice that the cylinder and the plane thus
have the same Gaussian curvature, although they have different shapes.

The sign of the Gaussian curvature has a particular geometric significance,
which is explained in the following result.

Theorem 6.1. The Gauss curvature of σ at p is the product

K(p) = κ1κ2.

In particular, σ is elliptic at p if and only if K(p) > 0, it is hyperbolic at
p if and only if K(p) < 0, and it is parabolic or planar at p if and only if
K(p) = 0.

Proof. With respect to a basis of eigenvectors, the matrix of W is diagonal
with κ1, κ2 in the diagonal. The determinant is then the product of these
entries. �

We see that although the Gauss curvature K(p) does not give the com-
plete picture, it holds sufficient information to determine the type of the
surface, except that it does not permit distinction between parabolic and
planar points.

6.2 Intrinsic geometry

We shall now make the considerations in the introduction to this chapter
more precise.

We can determine lengths of tangent vectors as follows. Let a tangent
vector w ∈ Tpσ be given. Choose a curve γ(t) on σ with w as tangent vector
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γ′(t0) = w. Let ℓ(t) denote the arc length of γ from t0 to t, then this function
is determined by measurements of arc lengths. Since

‖w‖ = ℓ′(t0)

we conclude that the length of w is intrinsic.
In particular, the coefficients E = ‖σ′

u‖2 and G = ‖σ′
v‖2 of the first

fundamental form can thus be determined by measuring the arc lengths of
the curves t 7→ σ(t, v) and t 7→ σ(u, t), to which σ′

u and σ′
v are the tangent

vectors. By measuring arc lengths along t 7→ σ(t, t), whose tangent vector is
σ′
u+σ′

v, we can determine ‖σ′
u+σ′

v‖, and since ‖σ′
u+σ′

v‖2 = E+G+2F we
can thus determine F as well. Therefore, any quantity that can be expressed
in terms of E, F and G, can also be expressed in terms of lengths of curves.
Conversely, the arc length of a parametrized curve on σ was expressed by
means of E, F and G, in Theorem 3.4. The property of being expressible
in terms of arc lengths is therefore equivalent with the property of being
expressible in terms of the first fundamental form.

The following definition is a more concise version of what was explained
above.

Definition 6.2. A quantity or property of a parametrized surface σ, which
can be expressed purely in terms of the coefficient functions E, F and G
of the first fundamental form for σ, is called intrinsic. If in addition it is
invariant under reparametrizations of σ, it is called intrinsic invariant.

As discussed above, the arc length of a parametrized curve on σ is intrinsic
invariant. Other examples are the angle between tangent vectors (see Section
3.4, eq. (5)) and the area of a subset (see Definition 3.9).

The coefficients E, F and G are intrinsic but not invariant, because they
change when the surface is reparametrized. On the other hand, the coordi-
nates in R3 of σ(u, v) are not intrinsic since they cannot be determined from
E, F and G alone. To see this, it suffices to notice that a translation of the
surface will change these coordinates without changing E, F and G.

The coefficients L, M and N of the second fundamental form are not
intrinsic either. For example, we have seen that the plane and the cylinder
can both be parametrized such that E = G = 1 and F = 0, but the second
fundamental forms do not agree.

The shape operatorW and the principal curvatures κ1 and κ2 are invariant
under reparametrization (up to ±), but the same example of the plane and
the cylinder shows that they are not intrinsic.

We thus see that being intrinsic invariant is a quite rare property for the
quantities we have introduced to describe surfaces. This is not surprising,
if we compare with the analogue for curves. The corresponding definition
of ‘intrinsic invariant’ for a quantity related to a curve, say in R2, requires
that the quantity can be determined only from the measurement of lengths
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along the curve. However, we know from Theorem 2.5 that all curves can
be reparametrized to unit arc length, and hence no curves at all can be
distinguished from each other by means of intrinsic invariants. Remarkably,
we shall see in the following sections that the situation is less hopeless for
surfaces.

6.3 Christoffel symbols

We have earlier mentioned that the coefficient functions E, F and G are
the analogs for a parametrized surface of the function t 7→ ‖γ′(t)‖2 for a
parametrized curve. From the latter function one can easily determine the
dot product γ′′(t) · γ′(t), since

γ′′(t) · γ′(t) =
1

2

d

dt
γ′(t) · γ′(t) =

1

2

d

dt
‖γ′(t)‖2. (1)

We will now derive the analog for surfaces of this observation.
In order to express coefficients in an efficient way, it is convenient to change

notation and use indices. We number the coordinates u and v by 1 and 2,
thus

σ′
1 = σ′

u, σ′
2 = σ′

v

and
σ′′

11 = σ′′
uu, σ′′

12 = σ′′
uv, etc.

The matrices of components of the two fundamental forms are denoted

(
g11 g12
g21 g22

)
=

(
E F
F G

)
,

(
b11 b12
b21 b22

)
=

(
L M
M N

)
,

that is,
gij = σ′

i · σ′
j , bij = σ′′

ij · N. (2)

The analog of (1) is

Lemma 6.3. The expression σ′′
ij · σ′

k is intrinsic. It can be determined from
the coefficients of the first fundamental form by means of the following for-
mulas

σ′′
ij · σ′

k =
1

2

(
∂gik
∂uj

+
∂gjk
∂ui

− ∂gij
∂uk

)
, (i, j, k = 1, 2). (3)

Proof. By differentiation of gik = σ′
i · σ′

k we obtain

∂gik
∂uj

= σ′′
ij · σ′

k + σ′′
kj · σ′

i.
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We insert this expression in the right side of (3), with proper permutations
of the symbols. The equality with the left side of (3) is obtained by simplifi-
cation with the symmetry rule σ′′

ij = σ′′
ji. �

In the following it will be convenient to work with some quantities which
are closely related to the σ′′

ij ·σ′
k. These are the so-called Christoffel symbols.

Definition 6.3. The Christoffel symbols associated with σ are the functions
Γkij :U → R defined for i, j, k = 1, 2 by

(
Γ1
ij

Γ2
ij

)
=

(
g11 g12

g21 g22

)−1(σ′′
ij · σ′

1

σ′′
ij · σ′

2

)
. (4)

At any given point p ∈ U the three vectors

σ′
u, σ

′
v, N (5)

constitute a basis for R3, which can be seen as analogous to the moving frame
(t,n,b) of a curve (see Section 4.7), although in general (5) is not orthonor-
mal. The motivation for the symbols Γkij is that together with the coefficients
bij of the second fundamental form they appear in the representation of σ′′

ij

with respect to the basis (5).

Theorem 6.3. Let coefficients Γkij for i, j, k = 1, 2 be defined as above. Then

σ′′
ij = Γ1

ijσ
′
1 + Γ2

ijσ
′
2 + bijN. (6)

Proof. It follows from definition (4) that

g11Γ
1
ij + g12Γ

2
ij = σ′′

ij · σ′
1

g21Γ
1
ij + g22Γ

2
ij = σ′′

ij · σ′
2.

Since σ′
l · σ′

k = glk we then obtain

(
Γ1
ijσ

′
1 + Γ2

ijσ
′
2 + bijN

)
· σ′

k = gk1Γ
1
ij + gk2Γ

2
ij = σ′′

ij · σ′
k.

On the other hand since N is a unit vector

(
Γ1
ijσ

′
1 + Γ2

ijσ
′
2 + bijN

)
· N = bij = σ′′

ij ·N

Thus the vectors on each side of (6) have equal dot products with all elements
of a basis. This implies that they are equal. �

The following corollary expresses that the Christoffel symbols can be de-
termined from E, F and G. However, they are not intrinsic invariants, since
in general they change when the surface is reparametrized (see Example
6.3.2).
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Corollary 6.3. The Christoffel symbols Γkij are intrinsic. They can be ex-
pressed by a formula which involves only the coefficients of the first funda-
mental form and their (first order) derivatives with respect to u and v.

Proof. Immediate from (3) and (4). �

The actual formula for Γkij is somewhat complicated, and the fact that
it exists is more important than its detailed appearance. Let the inverse
matrix of gij be denoted by gij, with superscript indices, then it follows from
equations (3) and (4) that

Γkij =
1

2

∑

l

gkl
(
∂gil
∂uj

+
∂gjl
∂ui

− ∂gij
∂ul

)
. (7)

If we insert this formula (7) into (6), we obtain an expression for σ′′
ij which

is called the formula of Gauss.

Consider in particular the case where we have an orthogonal parametriza-
tion, that is, where F = 0. In this case the formulas (3) and (7) become
considerably simpler and can be expressed in our original notation of E, F
and G as follows:

σ′′
11 · σ′

1 =
1

2
E′
u, σ′′

12 · σ′
1 =

1

2
E′
v, σ′′

22 · σ′
1 = −1

2
G′
u,

σ′′
11 · σ′

2 = −1

2
E′
v, σ′′

12 · σ′
2 =

1

2
G′
u, σ′′

22 · σ′
2 =

1

2
G′
v,

and

Γ1
11 =

1

2E
E′
u, Γ1

12 = Γ1
21 =

1

2E
E′
v, Γ1

22 = − 1

2E
G′
u,

Γ2
11 = − 1

2G
E′
v, Γ2

12 = Γ2
21 =

1

2G
G′
u, Γ2

22 =
1

2G
G′
v.

Example 6.3.1 It follows from the definition in (4) that the Christoffel
symbols for a plane σ(u, v) = p+ uq1 + vq2 are all zero, since all the second
derivatives σ′′

ij vanish. This can be seen as well from the formulas above,
since E = G = 1 and F = 0 in this case.

Example 6.3.2 Consider the xy-plane with polar coordinates σ(u, v) =
(u cos v, u sin v, 0). Here σ′

u = (cos v, sin v, 0) and σ′
v = (−u sin v, u cos v, 0),

and hence E = 1, F = 0 and G = u2. By insertion in the formulas above we
see that the Christoffel symbols are Γ1

11 = Γ1
12 = Γ2

11 = Γ2
22 = 0, Γ1

22 = −u
and Γ2

12 = 1
u . In particular, they differ from those of the preceding example.
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6.4 The remarkable theorem of Gauss

The following theorem was found by Gauss in 1827, who described it (in
latin) as ‘egregium’, most remarkable. Since then it has become customary
to call it ‘teorema egregium’.

Theorem 6.4. The Gauss curvature K is intrinsic, that is, there exists a
general formula expressing K by means of the component functions E, F and
G of the first fundamental form.

Proof. More precisely, we will show that a formula can be given, which ex-
presses the value of K in a given point by means of the values of E, F and
G and their derivatives (with respect to u and v) up to order 2 in this point.
Since we have already seen (below Definition 6.1) that K is invariant under
reparametrization, the theorem then follows.

We use the notation from the preceding section. Since

K =
det(bij)

det(gij)
(8)

it suffices to show that the determinant of the matrix (bij) can be expressed
in terms of the component functions gij and their derivatives.

From the expression (see Theorem 6.3)

σ′′
ij =

2∑

m=1

Γmijσ
′
m + bijN

we obtain by differentiation with respect to uk

σ′′′
ijk =

2∑

m=1

(
∂Γmij
∂uk

σ′
m + Γmijσ

′′
mk) +

∂bij
∂uk

N + bijN
′
k.

It follows that

σ′′′
ijk · σ′

l =

2∑

m=1

(
∂Γmij
∂uk

gml + Γmij σ
′′
mk · σ′

l) + bijN
′
k · σ′

l,

and since
N′
k · σ′

l = −N · σ′′
lk = −blk

(see Section 5.3, (9)-(10)) we obtain

σ′′′
ijk · σ′

l =

2∑

m=1

(
∂Γmij
∂uk

gml + Γmij σ
′′
mk · σ′

l) − bijblk.



100 Chapter 6

We introduce the abbreviation Rjkil, called the Riemann symbol, for the
difference

Rjkil =
2∑

m=1

(
∂Γmij
∂uk

gml + Γmij σ
′′
mk · σ′

l) −
2∑

m=1

(
∂Γmik
∂uj

gml + Γmik σ
′′
mj · σ′

l), (9)

where the two sums only differ by j and k being interchanged.
Then since σ′′′

ijk = σ′′′
ikj we conclude that

Rjkil − bijblk + bikblj = σ′′′
ijk · σ′

l − σ′′′
ikj · σ′

l = 0,

hence
Rjkil = bijblk − bikblj .

In particular,
R1212 = det(bij). (10)

The Riemann symbol R was introduced as an abbreviation for an ex-
pression involving the quantities Γmij , gij and σ′′

ij · σ′
k (with various indices

i, j, k,m). Hence it follows from Lemma 6.3 and Corollary 6.3 that R can
be expressed by means of the gij . An inspection shows that derivatives up
to order 2 are involved. According to (10) this implies the statement of the
theorem. �

From the equation (10) one can derive an explicit, but quite complicated,
expression for the Gauss curvature in terms of the coefficients of the first
fundamental form. If F = 0 it becomes considerably simpler, and reads

K = − 1

2
√
EG

((
G′
u√
EG

)′

u

+

(
E′
v√
EG

)′

v

)
. (11)

The verification of this formula is a long but straightforward computation
based on (8), (9), (10) and the formulas given in the end of Section 6.3.

6.5 Isometries

A useful interpretation of the notion of intrinsic geometry is obtained
from the concept of isometries of surfaces. Basically, an isometry from one
surface to another is a distance-preserving map. The definition is simplest
for parametrized surfaces that have a common domain U , so we shall start
by considering this situation.

Definition 6.5.1. Let σ:U → R3 and ρ:U → R3 be parametrized surfaces
defined on a common open set U ⊂ R2. Then σ and ρ are said to be isometric
if their first fundamental forms are equal, that is if

Eσ = Eρ, Fσ = Fρ, Gσ = Gρ.
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In order to provide some intuition assume temporarily that σ is injective.
In this case we can define a map

Ψ: σ(U) → ρ(V ), Ψ(σ(p)) = ρ(p), (p ∈ U).

When the surfaces are isometric, this map is said to be a bending of one sur-
face to the other, because the deformation (without stretching) for example
of a piece of paper, provides an example.

Example 6.5.1 Let σ(u, v) = (u, v, 0) and ρ(u, v) = (cos v, sin v, u) be the
plane and the cylinder, both defined on U = R2. Then σ and ρ both have
E = G = 1, F = 0, hence they are isometric. In this case the bending
Ψ: σ(U) → ρ(U) corresponds to the folding of a cylinder from a plane piece
of paper.

We now turn to the general situation of parametrized surfaces defined
on different domains, say σ:U → R3 and ρ:V → R3. We assume that a
diffeomorphism ψ:U → V is given. Then ρ◦ψ:U → R3 is a reparametrization
of ρ (see Section 2.6) with the same domain U as σ.

u

v

U V

σ ρ ◦ ψ ρ

ψ

Definition 6.5.2. The diffeomorphism ψ:U → V is said to induce an isom-
etry from σ to ρ, if σ and ρ ◦ ψ are isometric, that is, if

Eσ = Eρ◦ψ, Fσ = Fρ◦ψ, Gσ = Gρ◦ψ. (12)

It is important to stress that the condition expressed in (12) is that σ
should have the same first fundamental form as ρ, but after the reparametri-
zation by ψ.
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Note that a reparametrization of a surface is a trivial case of an isometry.
More precisely, if σ = ρ ◦ ψ is a reparametrization of ρ, then ψ induces an
isometry from σ to ρ, since obviously σ is isometric to itself. The purpose of
the more involved Definition 6.5.2, compared to the previous one, is exactly to
get a notion of isometry that takes possible reparametrizations into account.

If in Definition 6.5.2 we assume that σ is injective, then

Ψ: σ(U) → ρ(V ), Ψ(σ(p)) = ρ(ψ(p)), (p ∈ U)

is well-defined. Intuitively it is this bending, called the lift of ψ, which is the
isometry induced by ψ. It takes place between the images of the parameter
sets. However, if σ is not injective, then the construction of Ψ may not
be possible. Different elements p and q in U may have σ(p) = σ(q) but
ρ(ψ(p)) 6= ρ(ψ(q)), so that Ψ is not well defined. For example, the ‘unfolding’
from cylinder to plane, which is ‘inverse’ to the bending in Example 6.5.1, is
really only a well-defined map on the level of the parameter sets, since the
same point on the cylinder corresponds to more than one point in the plane.

Notice that by Corollary 2.11, a regular parametrized surface is injective
in some neighborhood of each parameter point p ∈ U , so that the ‘lifting’
can be done in that neighborhood.

Example 6.5.2 Let σ and ρ both denote the sphere of radius 1, both
parametrized by spherical coordinates as in Example 1.2.2, with domains

U = {(u, v) | −π/2 < u < π/2, −π < v < π}
for σ and

V = {(s, t) | −π/2 < s < π/2, −π + α < t < π + α}
for ρ. Here α ∈ R is some constant. The map U → V defined by ψ(u, v) =
(u, v + α) induces an isometry from σ to ρ. This follows from the fact that
E, F and G are independent of v (see Example 3.4.3). The corresponding
lift is the rotation of the sphere around the z-axis by the angle α.

It can be shown (see Exercise 8), that if ψ induces an isometry from σ to ρ,
then ψ−1 induces an isometry from ρ to σ. Moreover, if in addition a third
parametrized surface τ :W → R3 is given, together with a diffeomorphism
φ:V →W inducing an isometry from ρ to τ , then φ ◦ψ induces an isometry
from σ to τ .

The most important observation in connection with the concept of isom-
etry is that the agreement of the first fundamental forms, as expressed by
(12), ensures that all intrinsic quantities are preserved. In particular, this
explains the term ‘isometry’, since length is intrinsic. The fact that length
is preserved is expressed more precisely in the following lemma.

Let γ = σ ◦ µ: I → R3 be a parametrized curve on σ, and assume ψ
induces isometry from σ to ρ, as above. By δ = ρ ◦ ψ ◦ µ: I → R3 we define
a parametrized curve on ρ, said to be the image of γ by ψ (see the figure
below).
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Lemma 6.5. When ψ induces an isometry the arc lengths of γ and δ are
equal. That is, let t1, t2 ∈ I then the arc length of γ from t1 to t2 is equal to
the arc length of δ from t1 to t2.

Proof. Let µ(t) = (u(t), v(t)) denote the coordinates of γ(t) in the parametri-
zation γ = σ ◦µ by means of σ. The arc length of γ is expressed in Theorem
3.4 by means of the functions u(t) and v(t) together with Eσ, Fσ, Gσ.

u

v

U
µ

V

ψ ◦ µ

γ
δ

σ ρ

ψ

R
I

µ

Writing δ = (ρ ◦ ψ) ◦ µ we can regard δ as a parametrized curve on ρ ◦ ψ.
When we regard δ in this fashion, its coordinates (u(t), v(t)) are those of
µ(t), that is, they are the same as before. Applying Theorem 3.4 once more,
but this time to δ on ρ ◦ ψ, we obtain an expression for the arc length of δ
by means of u(t) and v(t) together with the coefficients Eρ◦ψ, Fρ◦ψ, Gρ◦ψ
of the first fundamental form of ρ ◦ ψ. Hence if ψ induces an isometry, the
expression is exactly the same as before, and the arc lengths on γ and δ
agree. �

Theorem 6.5. Assume that ψ:U → V induces an isometry from σ to ρ.
Then the Gauss curvature of σ in p is equal to the Gauss curvature of ρ in
ψ(p), for all p ∈ U .

We say that the Gauss curvature is invariant under isometries.

Proof. By Theorem 6.4 the Gauss curvature in p can be expressed by means
of the functions E, F and G and their derivatives in p. Hence the Gauss
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curvatures Kσ and Kρ◦ψ for σ and ρ ◦ ψ are identical functions on U ,

Kσ(p) = Kρ◦ψ(p), p ∈ U.

It was observed in Section 6.1 that the Gauss curvature is unchanged by
reparametrizations, hence

Kρ◦ψ(p) = Kρ(ψ(p)). �

Example 6.5.3 Let σ:U = {(u, v) | u > 0} → R3 be the parametrization

σ(u, v) = (u cos v, u sin v, λu)

of a cone (see Example 1.2.4) and let ρ:V = {(r, θ) | r > 0} → R3 be the
parametrization by polar coordinates

ρ(r, θ) = (r cos θ, r sin θ, 0)

of the xy-plane (without (0, 0, 0)).
For each constant k > 0 the map ψ(u, v) = (ku, v/k) is a diffeomorphism

of U to V , since it is smooth and bijective with the smooth inverse (r, θ) 7→
(u, v) = (r/k, kθ).

The component functions of the first fundamental form for σ are E =
1 + λ2, F = 0 and G = u2. The reparametrization

ρ ◦ ψ(u, v) = (ku cos(v/k), ku sin(v/k), 0)

of ρ has components Ẽ = k2, F̃ = 0 and G̃ = u2. Therefore, ψ induces an
isometry of σ to ρ if and only if k2 = 1 + λ2.

The conclusion from the theorem above is then that if k2 = 1+λ2 then the
cone and the plane have the same Gaussian curvature in points σ(u, v) and
ρ(ku, v/k) (in fact, both Gaussian curvatures are zero, as we knew already).

Ψ
2π/k

σ ρ

ψu

v

π

−π

r

π/k

−π/k

θ
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Notice that the comparison of component functions took place between
those of σ and those of ρ ◦ ψ, whereas those of ρ itself played no role.

The map ψ: (u, v) 7→ (r, θ) = (ku, v/k) between parameter values is ‘lifted’
to the map

Ψ: σ(u, v) 7→ ρ(ku, v/k)

from cone to plane. However, Ψ is well defined only if we restrict v to an
open interval of length ≤ 2π, since we have σ(u, v + 2π) = σ(u, v) but in
general ρ(ψ(u, v + 2π)) 6= ρ(ψ(u, v)). The map Ψ can be described as the
‘unfolding’ of the cone.

Example 6.5.4 Since the sphere has Gauss curvature different from zero
in all points, we can conclude from the Gauss theorem that no portion of
a sphere can be mapped isometrically into a plane. In other words, it is
impossible to draw a map of a portion of the globe, which preserves all
lengths (in appropriate units). Such a map is called an ideal map, and its
non-existence is a theorem originally due to Euler.

Example 6.5.5 Let σ(u, v) = (a coshu cos v, a coshu sin v, au) for (u, v) ∈
U = R2, where a > 0 is a constant. This surface is called a catenoid (it is a
surface of revolution, see page 35).

y

z

x

For the second surface let ρ(s, t) = (s cos t, s sin t, at) where (s, t) ∈ V = R2.
This surface is called a helicoid (see page 56). We shall verify that the map
ψ(u, v) = (a sinhu, v) induces an isometry from σ to ρ. It is a diffeomorphism
since sinh: R → R is bijective with a smooth inverse (by Theorem 2.5). An
elementary computation shows that the first fundamental forms for σ and
for ρ ◦ψ are given by E = G = a2 cosh2 u and F = 0 in both cases. Hence ψ
induces an isometry.

Notice that the catenoid is not injective. If we restrict to the subset
{(u, v) | −π < v < π} of U , then σ is injective. The image by ψ of this set
corresponds to one winding of the helicoid.
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6.6 Exercises

1 Verify the following formula for the Gauss curvature of a surface of revo-
lution

K =
(f ′g′′ − f ′′g′)g′

(f ′2 + g′2)2f
.

Show that if the profile curve has unit speed, then K = −f ′′

f .

2 The plane curve γ(t) = (sin t, cos t + ln tan t
2), where 0 < t < π is called

the tractrix.

x

y

t = 0

t = π

t = π
2

Show that the curve is regular for t 6= π
2 . The surface of revolution

y

z

x

σ(u, v) = (sinu cos v, sinu sin v, cosu+ ln tan
u

2
), 0 < u < π, v ∈ R

is called a pseudosphere. Verify thatK = −1 everywhere, except at u = π
2 ,

(so that σ resembles a sphere of radius 1, which has constant K = 1).

3 Compute the coefficients L, M and N for the surfaces σ and ρ in Example
6.5.5 (see also Exercises 2 and 3, page 89), and use these to determine
their Gauss curvatures. Verify the Teorema Egregium for these surfaces.
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4 Show that the surface of revolution τ(s, t) = (s cos t, s sin t, a ln t), where
(s, t) ∈ U = {(s, t) | t > 0} and a > 0 is constant, has the same Gauss
curvature K(s, t) as the helicoid ρ in Exercise 3, restricted to U . Never-
theless, the first fundamental form of τ is different. Does this contradict
the Teorema Egregium?

5 a. Let three numbers e, f, g ∈ R with eg > f2 and e, g > 0 be given.
Prove that there exists a regular parametrized surface σ: R2 → R3, the
image of which is the xy-plane, such that E(u, v) = e, F (u, v) = f and
G(u, v) = g for all (u, v) ∈ R2. Hint: Try a linear map σ : R2 → R3.

b. Let next σ:U → R3 be an arbitrary regular parametrized surface for
which E, F and G are constant. Prove that there exists a diffeomorphism
which induces an isometry from σ to a parametrized surface of which the
image is contained in the xy-plane.

6 a. Let 0 < a < 1 and let

f(s) = a cos s and g(s) =

∫ s

0

√
1 − a2 sin2 r dr.

Verify that the curve γ(s) = (f(s), g(s)) has unit speed.

b. Let ρ(s, t) = (f(s) cos t, f(s) sin t, g(s)), be the surface of revolution
with profile curve γ, where

(s, t) ∈ V = {(s, t) | −π
2
< s <

π

2
,−π < t < π}.

Furthermore, let σ(u, v) denote the part of a unit sphere with standard
spherical coordinates (Example 1.2.2), for which the domain of definition
is reduced to U = {(u, v) | −π

2
< u < π

2
,−aπ < v < aπ}, that is, a

segment on the back has been removed.

y

z

x

σ(u, v)

y

z

x

ρ(s, t)

Show that the map ψ:U → V given by ψ(u, v) = (u, v/a) induces an
isometry (for a = 1

2 one can visualize ψ by the bending of a half sphere,
for example the peel of half an orange). What can one conclude about the
curvature of ρ?
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7 Let ψ(u, v) = (u, v + c
u ) for (u, v) ∈ U = {(u, v) ∈ R2 | u > 0}, where

c ∈ R is a constant.

a. Let σ:U → R3 be a parametrized smooth surface, and let τ = σ ◦ ψ.
Verify

τ ′u(u, v) = σ′
u(ψ(u, v))− c

u2
σ′
v(ψ(u, v)),

and determine a similar expression for τ ′v(u, v).

b. Assume that the first fundamental form for σ is given by

E = 1 + v2, F = uv, G = u2

for (u, v) ∈ U . Show that ψ induces an isometry from σ to itself (that is,
take V = U and ρ = σ in Definition 6.5.2).

c. Without explicitly computing the Gauss curvature K(u, v) of σ, show
that it does not depend on v (hint: use that c was arbitrary).

8 Prove the following statements (see page 102) by applying the chain rule
and the identity (3) in Section 3.4:

a. If ψ induces an isometry from σ to ρ, then ψ−1 induces an isometry
from ρ to σ.

b. If in addition a third parametrized surface τ :W → R3 is given, together
with a diffeomorphism φ:V →W inducing an isometry from ρ to τ , then
φ ◦ ψ induces an isometry from σ to τ .
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Geodesics

In this final chapter we investigate some properties of geodesics. Recall
from Definition 4.10, that a geodesic on a surface is a curve with zero geodesic
curvature. We shall see that the property of a curve, that it is geodesic, is
intrinsic. Furthermore we introduce the notion of geodesic coordinates on a
surface, and we use these to give a geometric interpretation of the theorem of
Gauss. Some of the results presented in this chapter require more advanced
analytic tools than we have presupposed in the rest of the notes, and we shall
be content with stating them without proof.

7.1 The geodesic equations

We aim to show that the absolute value |κg(t)| of geodesic curvature is an
intrinsic property of a curve on a surface. It is invariant under reparametriza-
tions by Theorem 4.8 (but notice the necessity of taking the absolute value).

Theorem 7.1. Let γ = σ ◦ µ be a regular parametrized curve on σ. The
geodesic curvature κg(t) satisfies

κg = ‖γ′‖−3 det(gij)
1/2
(
(u1)

′Λ2 − (u2)
′Λ1

)

where gij is the first fundamental form of σ at µ(t), u1, u2 are the coordinates
of µ(t) and (u1)

′, (u2)
′ are their derivatives with respect to t, and where Λi

denotes the function

Λi(t) = (ui)
′′(t) +

2∑

j,k=1

Γijk(µ(t)) (uj)
′(t)(uk)

′(t), i = 1, 2,

for i = 1, 2, in terms of the Christoffel symbols Γijk.

In view of Corollary 6.3, we see that the expressions Λi can be determined
from E, F and G. Hence it follows from the equation above for κg, that it too
can be determined. Hence the absolute value |κg| is intrinsic. In particular,
it follows that the property of being a geodesic curve is intrinsic.

The proof invokes two lemmas, which are stated and proved on the fol-
lowing page.
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Proof. By definition κg = ‖γ′(t)‖−3 det[γ′ γ′′ m]. Recall from Lemma 2.4
that

γ′(t) = u′(t)σ′
u + v′(t)σ′

v. (1)

where the tangent vectors σ′
u and σ′

v are evaluated in (u(t), v(t)). The second
derivative γ′′ is determined in Lemma 7.1.1 below, and the determinant can
then be computed by means of Lemma 7.1.2, where we take w′ = u′1σ

′
1+u′2σ

′
2

and w′′ = Λ1σ
′
1 + Λ2σ

′
2 (since a multiple of m in γ′′ does not contribute to

the determinant). The equation for κg follows. �

Lemma 7.1.1. Let γ and Λ1,Λ2 be as above. Then γ′′ equals Λ1σ
′
1 + Λ2σ

′
2

plus a multiple cm of m.

The factor is c =
∑
bjk(uj)

′(uk)′ but we do not need this formula.

Lemma 7.1.2. Let γ be as above and let two vectors w′, w′′ ∈ Tµ(t) be given.
If w′ = a1σ

′
1 + a2σ

′
2 and w′′ = b1σ

′
1 + b2σ

′
2 then

det[w′w′′ m] = det(gij)
1/2 (a1b2 − b1a2)

Proof of Lemma 7.1.1. In order to determine γ′′(t) we differentiate (1). For
this we need to differentiate σ′

u and σ′
v with respect to t.

We apply the chain rule to the function t 7→ σ′
u(u(t), v(t)). It follows that

d

dt
σ′
u(u(t), v(t)) = u′(t)σ′′

uu + v′(t)σ′′
uv.

Similarly
d

dt
σ′
v(u(t), v(t)) = u′(t)σ′′

vu + v′(t)σ′′
vv.

Hence

γ′′(t) = u′′(t)σ′
u + u′(t)

d

dt
σ′
u + v′′(t)σ′

v + v′(t)
d

dt
σ′
v

= u′′(t)σ′
u + u′(t)(u′(t)σ′′

uu + v′(t)σ′′
uv)

+ v′′(t)σ′
v + v′(t)(u′(t)σ′′

vu + v′(t)σ′′
vv)

=
∑

i

u′′i σ
′
i +
∑

jk

u′ju
′
kσ

′′
jk.

We use the expression (6) from Theorem 6.3 and insert it for σ′′
jk. It follows

that γ′′ =
∑
i Λiσ

′
i + cm for the number c mentioned below the lemma. �

Proof of Lemma 7.1.2. By a straightforward computation

det[w′ w′′ m] = (w′ × w′′) · m = (a1b2 − b1a2) (σ′
1 × σ′

2) ·m.

The lemma follows since by (9) page 53

σ′
1 × σ′

2 = ‖σ′
1 × σ′

2‖m = (EG− F 2)1/2 m. �
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Corollary 7.1. Let γ(s) = σ(u1(s), u2(s)) be a regular parametrized smooth
curve on σ. Then γ is a geodesic and has constant speed if and only if the
coordinate functions u1 and u2 satisfy the following system of second order
differential equations

(ui)
′′ +

2∑

j,k=1

Γijk (uj)
′(uk)

′ = 0, i = 1, 2. (2)

with coefficients Γijk evaluated at µ(t).

Proof. The system of equations (2) is written Λ1 = Λ2 = 0 in the notation
of the preceding theorem. It follows from Lemma 7.1.1 that this condition
holds exactly when γ′′(t) is proportional to m for all t. The corollary now
follows from Theorem 4.10. �

The differential equations (2) are called the geodesic equations. By Corol-
lary 7.1 the determination of the geodesics on a given surface is a matter
of solving these equations. However, for a general surface they are quite
complicated non-linear differential equations which are not easy to solve.

As mentioned, the property of a curve of being a geodesic is intrinsic. It
follows that an isometry will carry geodesic curves to geodesic curves.

Example 7.1.1 Consider again the isometry ψ in Example 6.5.3 from cone
to plane. The geodesics on the plane are the straight line segments, hence
we conclude that a curve on the cone is a geodesic if and only if its image by
ψ is a line segment in V .

For example, the plane unit speed line δ(s) = (1, s, 0) is in polar coordi-
nates ρ(r, θ) = (r cos θ, r sin θ, 0) given by

δ(s) = ρ(r(s), θ(s)) = ρ(
√

1 + s2, tan−1 s)).

The image by ψ−1 is then

γ(s) = σ(ψ−1(r(s), θ(s))) = σ(k−1
√

1 + s2, k tan−1 s).

Recall that σ(u, v) = (u cos v, u sin v, λu). We obtain that

γ(s)

= (k−1
√

1 + s2 cos(k tan−1 s), k−1
√

1 + s2 sin(k tan−1 s), λk−1
√

1 + s2)

is a geodesic on the cone when k2 = 1+λ2. An idea of the shape of the curve
can be obtained by folding a cone out of a piece of paper with a straight line
drawn on it (see the following figure).
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Ψ−1

δ

7.2 Existence of geodesics

A further analysis of geodesics on a surface can be based on the differential
equations (2). This requires the use of the fundamental theorem of existence
and uniqueness of solutions of ordinary differential equations. Without going
into details, we cite the following important consequence.

Theorem 7.2. Through every point of a regular parametrized surface passes
a unique geodesic curve in each direction.

More precisely, let p ∈ U and w ∈ Tpσ \ {0} be given. There exists a
geodesic curve γ = σ ◦ µ: I → R3 on σ with

p = µ(t0) and w = γ′(t0) (3)

for some t0 ∈ I. Moreover, if two unit speed geodesics defined on intervals
I, J both satisfy (3) for some common t0 ∈ I ∩ J , then they agree on I ∩ J .

Proof. Omitted.

This property is of course well known for lines on a plane.

Example 7.2.1 Through every point on a sphere passes a unique great
circle in each direction, namely the great circle obtained as the intersection
of the sphere with the unique plane through the center of the sphere which
contains the given point and the given direction vector.

7.3 Geodesic coordinates

We shall now describe a particularly useful type of parametrization of a
surface.

Definition 7.3. Let γ: J → R3 be a unit speed curve. A regular parame-
trized surface σ:U → R3 is called a geodesic coordinate system transversal to
γ if U = I × J for some interval I and
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(i) there exists u0 ∈ I such that γ(v) = σ(u0, v) for all v, and this curve
is a geodesic on σ,

(ii) all the coordinate curves I ∋ u 7→ σ(u, v) are unit speed geodesics on
σ, which intersect orthogonally with γ (that is, the tangent vector σ′

u(u0, v)
is orthogonal to γ′(v) = σ′

v(u0, v) for all v ∈ J).

Notice that while we are requiring σ(u, v) to be geodesic as a function of
u for all fixed v, we are only requiring it to be geodesic as a function of v for
the fixed value u0 of u, where it produces the original curve γ.

u

v

I
u0

J

U = I × J

σ γ

Example 7.3.1 The standard coordinates (x, y) on the xy-plane are geodesic
coordinates. Perhaps more interestingly, the spherical coordinates σ(u, v) on
the unit sphere is a geodesic coordinate system. Indeed, the curve γ(v) =
σ(0, v), the ‘equator’, is geodesic, and the meridians u 7→ σ(u, v) are geodesics
that intersect orthogonally with γ. Notice that in this case the curves v 7→
σ(u, v) are small circles if u 6= 0, hence not geodesics.

Theorem 7.3(Existence of geodesic coordinates). Let σ:U → R3 be a reg-
ular parametrized surface, and let a point p ∈ U and a unit speed geodesic
γ = σ ◦ µ on σ be given with µ(0) = p. There exists an open rectangle
W = I × J around (0, 0) in R2 and a diffeomorphism φ of W onto an
open neighborhood U ′ ⊂ U of p such that φ(0, 0) = p and such that the
reparametrization

τ(s, t) = σ(φ(s, t))

of σ|U ′ is a geodesic coordinate system transversal to γ|J .

Proof. The proof which relies on Theorem 7.2 is omitted. �

7.4 The first fundamental form of a geodesic coordinate system

Let σ:U → R3 be a regular surface, defined on a set U ⊂ R2 of the form
U = I × J with open intervals I, J ⊂ R. Let u0 ∈ I be fixed, and let
γ: J → R3 denote the curve t 7→ σ(u0, t) on σ.
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Theorem 7.4. The surface σ is a geodesic coordinate system transversal to
γ if and only if the following condition hold.

The coefficients of the first fundamental form satisfy

E(u, v) = 1, F (u, v) = 0

for all (u, v) ∈ U and

G(u0, v) = 1, G′
u(u0, v) = 0

for all v ∈ J .

Proof. The proof is based on the lemma below, from which we conclude that
u 7→ σ(u, v) is geodesic if and only if

E(u, v) = 1 and E′
v(u, v)− 2F ′

u(u, v) = 0 (4)

for all u, and (by interchanging u and v in the lemma) v 7→ σ(u0, v) is
geodesic if and only if

G(u0, v) = 1 and G′
u(u0, v) − 2F ′

v(u0, v) = 0 (5)

for all v.
Assume σ is a geodesic coordinate system. Then (4) and (5) hold for all

(u, v). In particular, E(u, v) = 1 and G(u0, v) = 1.
From E = 1 we conclude that E′

u = E′
v = 0, hence (4) implies that

F ′
u(u, v) = 0, from which we infer that u 7→ F (u, v) is constant for each v.

In fact this constant is 0 because the assumption that the coordinate curves
intersect orthogonally with γ implies that F (u0, v) = 0. Finally, since F = 0
the second condition in (5) implies G′

u(u0, v) = 0.
The statement ‘if’ is seen similarly. �

Lemma 7.4. Let σ:U → R3 be a regular parametrization. The coordinate
curve u 7→ σ(u, v0) is a unit speed geodesic if and only if E = 1 and E′

v −
2F ′

u = 0 in all points of the curve.

Proof. Unit speed is equivalent with E = 1. The second derivative of u 7→
σ(u, v0) is σ′′

11 = σ′′
uu, hence it follows from Theorem 4.10 that the curve is a

geodesic if and only if

σ′′
11 · σ′

k = 0 for k = 1, 2.

By (3) in Lemma 6.3 this condition is equivalent with

2
∂g1k
∂u1

− ∂g11
∂uk

= 0 for k = 1, 2.

For k = 1 this equation reads ∂g11
∂u1

= 0, which is already a consequence of the

unit speed condition E = 1, and for k = 2 it reads 2∂g12
∂u1

− ∂g11
∂u2

= 0, which
is exactly the last condition of the lemma. �
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7.5 Interpretation of the Gauss theorem

Let σ:U → R3 be a geodesic coordinate system transversal to γ = σ ◦ µ.
For simplicity we assume that u0 = 0 so that γ(v) = σ(0, v). It follows from
Theorem 7.4 and the formula (11) in Chapter 6, that Gauss’ formula for K
in terms of the first fundamental form is

K = − 1

2
√
G

(
G′
u√
G

)′

u

.

Since (
√
G)′u =

G′

u

2
√
G

we can rewrite the formula as

K = − 1√
G

(
√
G)′′uu. (6)

We shall now give a geometric interpretation of this formula.
Let p = (0, 0) = µ(0) ∈ U . For ǫ > 0 let Dǫ denote the square

Dǫ = [−ǫ, ǫ] × [−ǫ, ǫ]

about (0, 0) in R2. It has area A(Dǫ) = (2ǫ)2. In the following we assume
that ǫ is sufficiently small so that Dǫ ⊂ U . The set

σ(Dǫ)

is called a square about p on σ. Its area is denoted A(σ,Dǫ) (see Section 3.9).

u

v

U
Dǫ

σ

y

z

x

σ(Dǫ)

σ(U)

Theorem 7.5. Let σ:U → R3 be a geodesic coordinate system around p =
(0, 0) ∈ U . The Gauss curvature K of σ in p is given by

K = −3

2
lim
ǫ→0

ǫ−4(A(σ,Dǫ) − A(Dǫ)). (7)

The interpretation of K(p) is thus that it is a measure for the difference
between the area of a small square about p and the corresponding area of a
plane square. Since areas are intrinsic properties, and since the properties
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that went into the definition of a square (geodesics and right angles) are
also intrinsic, Gauss’ Teorema Egregium is certainly a consequence of this
theorem. However, this serves as a geometric explanation rather than a new
proof of the theorem, since the proof given below of (7) uses Gauss’ formula
for K, of which the Teorema is already an immediate consequence.

In particular we notice the minus in the limit formula for K. Thus, in
an elliptic point, the area of σ(Dǫ) will be smaller than that of Dǫ, for ǫ
sufficiently small, and in a hyperbolic point it will be larger.

Proof. We shall use the Taylor approximation formula for the smooth func-
tion f(u, v) =

√
G(u, v), see Appendix B. With (u0, v0) = (0, 0) it reads

f(u, v) = f(0, 0) + f ′
u(0, 0)u+ f ′

v(0, 0)v

+
1

2
(f ′′
uu(0, 0)u2 + 2f ′′

uv(0, 0)uv + f ′′
vv(0, 0)v2) +R(u, v)

where the remainder R(u, v) satisfies |R(u, v)| ≤ C‖(u, v)‖3 in a neighbor-
hood of (0, 0) for a constant C.

By Theorem 7.4 we have G(0, v) = 1 and G′
u(0, v) = G′

v(0, v) = 0. Hence

f(0, v) = 1 and f ′
u(0, v) = f ′

v(0, v) = 0,

and by differentiation with respect to v,

f ′′
uv(0, v) = f ′′

vv(0, v) = 0.

Finally, by the Gauss formula (6), f ′′
uu(0, 0) = −K. The Taylor formula is

thus √
G(u, v) = 1 − 1

2
Ku2 +R(u, v).

Since EG− F 2 = G, the area of σ(Dǫ) is by definition

A(σ,Dǫ) =

∫

Dǫ

√
GdA

and hence

A(σ,Dǫ) −A(Dǫ) =

∫

Dǫ

√
G(u, v) − 1 dA

=

∫ ǫ

−ǫ

∫ ǫ

−ǫ
−1

2
Ku2 +R(u, v) du dv

= −2

3
ǫ4K +

∫ ǫ

−ǫ

∫ ǫ

−ǫ
R(u, v) du dv.

Since |R(u, v)| is bounded by a constant times ǫ3, its integral over Dǫ is
bounded by a constant times ǫ5. The limit formula for K follows immedi-
ately. �
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7.6 Exercises

1 Let U = {(u, v) | v > 1} and suppose σ:U → R3 is a regular parametrized
surface with E = G = v−2 and F = 0.

a. Determine the Gauss curvature K, as a function of (u, v).

b. Compute the Christoffel symbols for σ.

c. Verify that the curve σ ◦ µ, where

µ(s) = (a, es) or µ(s) = (a+ r tanh s, r
1

cosh s
),

has unit speed, and show that it is a geodesic. Here a ∈ R and r > 0 are
constants, and s is assumed to belong in an interval for which µ(s) ∈ U .
Make a sketch of each curve µ in the (u, v)-plane, say with a = r = 1
(Hint: Notice that tanh2 s+ ( 1

cosh s)
2 = 1).

d. Suppose in addition that the mentioned surface has coefficients M = 0

and N = v−2(v2 − 1)
1
2 in the second fundamental form. Determine L and

the principal curvatures κ1, κ2.

2 Let U = R2, and let σ:U → R3 be a regular parametrized surface for
which E = 1, F = 0 and G = 1 + u2 (see for example Exercise 3.10).

a. Determine the Christoffel symbols.

b. Show that t 7→ σ(t, v) is a geodesic for all v.

c. Find the geodesic curvature of the curve t 7→ σ(u, t) for u ∈ R.

d. Verify that σ is a geodesic coordinate system, and determine the Gauss
curvature by means of equation (6).

3 Let σ:U → R3 be a geodesic coordinate system for which the Gaussian
curvature is constant, K = 0. Show that G = 1 and that σ is isometric
to a part of a plane (Hint: Conclude from (6) that G = (au+ b)2 where a
and b are functions of v. Determine a and b from Theorem 7.4).

4 Let σ:U = I × J → R3 be a geodesic coordinate system transversal to
the curve γ(t) = σ(0, t). Assume that the Gaussian curvature is constant,
K = 1. Show that G = cos2 u and that σ is isometric to a part of the unit
sphere (Hint: Conclude from (6) that G = (a cosu+ b sinu)2 where a and
b are functions of v. Determine a and b from Theorem 7.4).
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Appendices

Appendix A. Euclidean spaces

The set Rn is called Euclidean n-space. It is a vector space with the
standard addition and scalar multiplication. In this appendix we recall some
elementary notions for this space. The dot product of two vectors v, w ∈ Rn

is the number defined by

v · w = v1w1 + · · ·+ vnwn ∈ R.

The norm of v ∈ Rn is given by

‖v‖ = (v · v)1/2 = (v2
1 + · · ·+ v2

n)1/2,

and the Euclidean distance between v, w ∈ Rn is then defined as the norm
‖v − w‖ of their difference. The angle between v and w is defined to be the
number θ ∈ [0, π] for which

cos θ =
v · w

‖v‖ ‖w‖ (A.1)

provided the vectors are non-zero. It follows from the Cauchy-Schwarz in-
equality

|v ·w| ≤ ‖v‖ ‖w‖

that the right hand side of (A.1) belongs to [−1, 1], so that the angle θ is
well defined.

The vectors v and w are said to be orthogonal if v ·w = 0, or equivalently,
if the angle between them is π

2 , and they are said to be orthonormal if in
addition they both have length 1. An orthonormal basis for Rn (or for a
subspace) is a basis whose members are pairwise orthonormal, as for example
the standard basis e1, e2, e3 for R3.

For r > 0 and p ∈ Rn the set

Br(p) = {x | ‖x− p‖ < r}

is called the open ball around p of radius r. A neighborhood of p is a set
U ⊂ Rn which contains the open ball Br(p) for some r > 0. A set U ⊂ Rn

is called open if it is a neighborhood of each of its points, that is, if for every

p ∈ U there exists r > 0 such that all x ∈ Rn with ‖x− p‖ < r belong to U .
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For instance, a set in R2 of the form U =]a, b[×]c, d[, with open intervals
]a, b[ and ]c, d[, is open.

The interior of an arbitrary set A ⊂ Rn is the set of points p ∈ A for
which A is a neighborhood. This set is often denoted A◦, and it is an open
set. It is the largest open set contained in A. In particular, the interior of
an open set is the set itself.

The boundary of A ⊂ Rn is the set of points p ∈ Rn (not necessarily in
A) for which every open ball around p contains at least one point of A and
at least one point of the complement Rn \ A. It is often denoted ∂A. A set
A ⊂ Rn is called closed if ∂A ⊂ A.

For example, the boundary of U =]a, b[×]c, d[ consists of the four line
segments that connect the corners of U .

A set A ⊂ Rn is called bounded if there exists R > 0 such that ‖x‖ ≤ R
for all x ∈ A.

We recall that a function f :A→ R, where A ⊂ Rn, is called continuous if
for each p ∈ A and each ǫ > 0 there exists δ > 0 such that if ‖x−p‖ < δ then
|f(x) − f(p)| < ǫ. A function f :A → Rm is continuous if the components
f1, . . . , fm:A→ R defined by f(x) = (f1(x), . . . , fm(x)), are continuous.

Exercises

A.1 Determine the angle between (1, 1, 1, 1) and (1, 1, 1, 0) in R4.

A.2 Let γ(t) = (3t, 3t2, 2t3). Show that the angle between the tangent vector
of γ and the line given by y = 0, z = x, is a constant.

A.3 Verify that u = ( 2
3
, 2

3
, 1

3
) and v = ( 1

3
,−2

3
, 2

3
) are orthonormal vectors.

Find a third vector w ∈ R3, such that u, v, w is orthonormal basis.
Determine the coordinates for a = (1, 1, 1) with respect to this basis.

A.4 Prove that the set {(u, v) ∈ R2 | u, v > 0} is open in R2, and that
{(u, v) ∈ R2 | u, v ≥ 0} is not open.

A.5 Assume that f : Rn → R is continuous. Prove that {x ∈ Rn | f(x) < c}
is an open set for every constant c ∈ R.

A.6 Verify that the open ball Br(p) really is open.

Appendix B. Differentiable functions of several variables

Differentiability

Let Ω ⊂ Rn be open, and let f : Ω → R. A partial derivative of f is defined
as the derivative of f with respect to one of the variables x1, . . . , xn, the
others being treated as constants. For example the first partial derivative
f ′
x1

= ∂f
∂x1

at a ∈ Ω is the derivative at a1 of

t 7→ f(t, a2, . . . , an).
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The partial derivative at a is defined when this function of t is differentiable at
a1. If this is the case for all i = 1, . . . , n, we say that f has partial derivatives
at a. If f has partial derivatives at all a ∈ Ω, and if these partial derivatives
are continuous functions of a, then we say that f is continuously differentiable
or a C1-function on Ω. The set of such functions on Ω is denoted C1(Ω).

Let F : Ω → Rm be a vector function, and let F1, . . . , Fm: Ω → R denote
the components. The partial derivatives (if they exist) of these components
functions are conveniently arranged in the Jacobi matrix

DF (a) =




∂F1

∂x1
(a) . . . ∂F1

∂xn
(a)

...
...

∂Fm

∂x1
(a) . . . ∂Fm

∂xn
(a)


 .

Notice that DF is a map that associates a matrix to each point a ∈ Ω. If
n = 1 we identify the single column matrix DF (a) with a vector in Rm.
The vector function DF : R → Rm is in this case denoted F ′ and called the
derivative of F . The Jacobi matrix is the analogue for functions of several
variables of this derivative.

Example B.1 A linear map L: Rn → Rm is represented by an m×n matrix
A = (aij) as follows:

L(x) = Ax =



a11 . . . a1n
...

...
am1 . . . amn





x1
...
xn


 =




a11x1 + · · · + a1nxn
...

am1x1 + · · · + amnxn


 .

It is easily seen that the Jacobian of this map is exactly the matrix A, that
is, DL(x) = A for all x ∈ Rn.

We call F continuously differentiable if each coordinate function Fj is con-
tinuously differentiable, or in other words, if each entry in the Jacobi matrix
exists and depends continuously on a. Recall the following fundamental the-
orem, which asserts that x 7→ F (a) +DF (a)(x− a) approximates F near a.

Theorem B.1. Let F : Ω → Rm be continuously differentiable and let a ∈ Ω.
Then

‖F (x) − [F (a) +DF (a)(x− a)]‖
‖x− a‖ → 0 for x→ a, (B.1)

that is, the vector difference F (x) − [F (a) +DF (a)(x− a)] tends to 0 even
after division by ‖x− a‖.

A function F which satisfies (B.1) is called differentiable at a, and the the-
orem simply asserts that ‘continuously differentiable’ implies ‘differentiable’.
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Composition

The differentiation of composed maps is governed by the chain rule. For
functions of one variable it is the well known rule

(g ◦ f)′(a) = g′(f(a))f ′(a),

and for functions of several variables it takes the following form.

Theorem B.2 (Chain rule). Let Ω ⊂ Rn and Ω′ ⊂ Rm be open, and let

F : Ω → Ω′ and G: Ω′ → Rl,

be continuously differentiable. Then

G ◦ F : Ω → Rl

is continuously differentiable and has the Jacobi matrix

D(G ◦ F )(a) = DG(F (a))DF (a)

for all a ∈ Ω, where the product on the right is given by ordinary matrix
multiplication.

In particular, if n = 1 we can write the chain rule in the following form

(G ◦ F )′(a) = DG(F (a))F ′(a). (B.2)

Example B.2 Let F : R → R2 be given by F (t) = (t2, t+1) and let G: R2 →
R be given by G(y1, y2) = y1y

2
2 − y2

1 . Then

F ′(t) =

(
2t
1

)
, and DG(y) = ( y2

2 − 2y1 2y1y2 ) .

Hence G ◦ F : R → R has the derivative

(G ◦ F )′(t) = DG(F (t))F ′(t)

= ( (t+ 1)2 − 2t2 2t2(t+ 1) )

(
2t
1

)

= (−t2 + 2t+ 1)2t+ (2t3 + 2t2)1 = 6t2 + 2t.

Notice that we could also first have determined the expression G ◦F (t) =
t2(t + 1)2 − t4 = 2t3 + t2 and then differentiated (G ◦ F )′ = 6t2 + 2t. For
the purpose of computing (G ◦ F )′, this would clearly be much faster. The
importance of the chain rule is more theoretical, it gives a general expression
for the derivative.

Symmetry of mixed partials

A function f : Ω ⊂ Rn → R is called a C2-function if it is C1 and all the
first order partial derivatives are also C1-functions. The partial derivatives
of the partial derivatives, that is, the functions

∂2f

∂xi∂xj
=
∂ ∂f
∂xj

∂xi

are called higher or mixed partial derivatives.
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Theorem B.3. Let f : Ω → R be C2. Then

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

for all i and j.

Similarly, we can consider derivatives of order higher than 2. If f has
partial derivatives up to order k, and if these are continuous, then f is called
a Ck-function. From the theorem above we can derive similar statements
about symmetry of these higher derivatives, for example

∂3f

∂x2
1∂x2

=
∂3f

∂x1∂x2∂x1
=

∂3f

∂x2∂x
2
1

when f is a C3-function. In short, the conclusion is that differentiations with
respect to x1, . . . , xn commute with each other (when applied to functions
which are continuously differentiable up to sufficient order).

A function which is Ck for all k is called C∞ or smooth. The set of such
functions on Ω is denoted C∞(Ω). This is the class of functions that is mainly
used in differential geometry.

Taylor’s theorem

Taylor’s theorem allows us to approximate a smooth function by a poly-
nomial of any given order, in the vicinity of a given point.

For a smooth function f : Ω → R, where Ω ⊂ R2, it reads to the order one

f(u0 + h, v0 + k) ≃ f(u0, v0) + f ′
u(u0, v0)h+ f ′

v(u0, v0)k

and to the order two

f(u0 + h, v0 + k) ≃ f(u0, v0) + f ′
u(u0, v0)h+ f ′

v(u0, v0)k

+ 1
2
f ′′
uu(u0, v0)h

2 + f ′′
uv(u0, v0)hk + 1

2
f ′′
vv(u0, v0)k

2.

These statements are qualitative, because the ‘approximation’ ≃ is not a well
defined relation.

There are more precise versions, where the remainder, which by definition
is the difference between the two sides of ≃, is estimated. To the order one

f(u0 + h, v0 + k) = f(u0, v0) + f ′
u(u0, v0)h+ f ′

v(u0, v0)k +R1(h, k),

and the estimate, which is valid for a C2-function f : Ω → R, is as follows.
For a given point (u0, v0) ∈ Ω there exist constants ǫ > 0 and C > 0 such
that

|R1(h, k)| ≤ C‖(h, k)‖2



124 Appendix C

for all (h, k) ∈ R2 with ‖(h, k)‖ < ǫ.
Likewise, to the order two,

f(u0 + h,v0 + k) = f(u0, v0) + f ′
u(u0, v0)h+ f ′

v(u0, v0)k

+ 1
2f

′′
uu(u0, v0)h

2 + f ′′
uv(u0, v0)hk + 1

2f
′′
vv(u0, v0)k

2 +R2(h, k).

with the following estimate valid for a C3-function f . For a given point
(u0, v0) ∈ Ω there exist constants ǫ > 0 and C > 0 such that

|R2(h, k)| ≤ C‖(h, k)‖3

for all (h, k) ∈ R2 with ‖(h, k)‖ < ǫ.

Exercises

B.1 Find f ′
u and f ′

v for each of the functions f : R2 → R:
1) f(u, v) = u2 + v2 + 3uv − u− 4v,
2) f(u, v) = e2u−v+1

B.2 Determine the Jacobi matrix at (1, 1) for f : {(u, v) | u, v > 0} → R2,
given by f(u, v) = (u2v, 2

√
uv).

B.3 Let f be a differentiable map R3 → R. Determine the derivative of
t 7→ f(t, t2, et).

B.4 Let g: R2 → R be given by g(x, y) = xy, and let ϕ: R2 → R2 be given
by ϕ(x, y) = (x+y, x−y). Determine the Jacobi matrices for g, ϕ, and
for the inverse map f(u, v) = ϕ−1(u, v). Determine the Jacobi matrix
for g ◦ f in each of the following two ways:

1) By using the chain rule.
2) Through explicit computation of g ◦ f(u, v).

B.5 Let ϕ be an arbitrary differentiable function R → R, and let F (x, y) =
xy − ϕ(y/x) for (x, y) ∈ R2 with x 6= 0. Show that x∂F

∂x
+ y ∂F

∂y
= 2xy.

B.6 Prove the rule
(f · g)′ = f ′ · g + f · g′

for f, g: R → Rn (see page 62).

B.7 Let γ: I → Rn be smooth with γ(t) 6= 0 for all t. Show that t 7→ ‖γ(t)‖
is differentiable and has the derivative

γ′(t) · γ(t)

‖γ(t)‖ .
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Appendix C. Normal vectors and cross products

In this appendix the construction of normal vectors in R2 and cross prod-
ucts in R3 is briefly presented. These notions appear naturally in many
geometrical constructions. For example the geometry of planes in R3 is often
expressed by means of cross products. Cross products also play a prominent
role in mechanics and electromagnetic theory.

The common background for the definitions in this appendix for R2 and
R3 is a choice of orientation, which we will first explain generally for Rn.
For an ordered set of n vectors a1, a2, . . . , an in Rn we denote by [a1a2 . . . an]
the n × n matrix which has a1, a2 etc as its columns (in that order). We
divide the bases for Rn in two classes, depending on whether the determinant
of [a1a2 . . . an] is positive or negative (the determinant is non-zero since the
vectors are linearly independent). An orientation of Rn is a choice of one of
the two classes. The standard choice is the class of bases which have positive
determinant. Such a basis is then called positively ordered.

Having made this standard choice we thus say that two basis vectors a
and b in R2 are positively ordered if det[ab] > 0 and we say that three basis
vectors a, b and c in R3 are positively ordered if det[abc] > 0. For example,
the standard basis vectors e1 = (1, 0) and e2 = (0, 1) for R2 and e1 = (1, 0, 0),
e2 = (0, 1, 0) and e3 = (0, 0, 1) for R3 are positively ordered.

In R2 this choice of orientation means that a, b is a positively ordered basis
if and only if the direction of b can be reached from the direction of a by a
counter clockwise rotation of an angle between 0 and π, and in R3 it means
that a, b, c is positively ordered if and only if the vectors form a right-handed
triple.

Let a = (a1, a2) ∈ R2. We define the normal vector by â = (−a2, a1). It is
the vector obtained by rotating a the angle π

2
in counter clockwise direction

(which is the positive direction according to our chosen orientation). Notice
that

det[ab] = a1b2 − a2b1 = â · b (C.1)

for all b ∈ R2, where the dot denotes the standard dot product (see Appendix
A). The map a 7→ â is linear.

The construction of â is particular for R2. In R3 there is no way to
distinguish a normal vector to a given vector, since there are infinitely many
normal vectors. Instead, the analog of the construction points out a normal
vector to two given vectors.

For two vectors a = (a1, a2, a3) and b = (b1, b2, b3) in R3 we define the
cross product, which is again a vector in R3, by

a× b =

(∣∣∣∣
a2 b2
a3 b3

∣∣∣∣ ,−
∣∣∣∣
a1 b1
a3 b3

∣∣∣∣ ,
∣∣∣∣
a1 b1
a2 b2

∣∣∣∣
)
.
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It follows from the determinant identity

∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
= c1

∣∣∣∣
a2 b2
a3 b3

∣∣∣∣− c2

∣∣∣∣
a1 b1
a3 b3

∣∣∣∣+ c3

∣∣∣∣
a1 b1
a2 b2

∣∣∣∣

that a× b is uniquely characterized by the property that

det[abc] = (a× b) · c (C.2)

for all c ∈ R3. Equation (C.2) is the 3-dimensional analogue of (C.1), the
expression on the right is called the triple product of a, b and c. It follows
from this characterization that a× b depends linearly on both a and b (since
the determinant depends linearly on each of its columns).

The following properties of a× b are easily verified

(i) a× b is perpendicular to both a and b
(ii) b× a = −a × b
(iii) ‖a× b‖2 = ‖a‖2‖b‖2 − (a · b)2
(iv) ‖a× b‖ is the area of the parallelogram spanned by a and b
(v) a and b are linearly independent if and only if a× b 6= 0
(vi) if a× b 6= 0 then a, b, and a× b is a right handed triple.

The last property in this list reflects our chosen orientation of R3. No-
tice that properties (i), (iv) and (vi) together determine a × b uniquely in
geometric terms.

Exercises

C.1 Prove that if three vectors u, v, w ∈ R3 satisfy u + v + w = 0, then
u× v = v × w = w × u.

C.2 Let A be an orthogonal 3 × 3-matrix with detA = 1. Prove

A(w1 × w2) = Aw1 × Aw2

for all w1, w2 ∈ R3 (Hint: Use the characterization by (C.2) of the cross
product, together with the equation (D.1)).

Appendix D. Diagonalization of symmetric matrices

Let A be an n × n matrix. By definition, a diagonalization of A is ac-
complished by an invertible matrix C, if the matrix D = C−1AC is diagonal
(that is, all entries outside the diagonal are 0). Diagonalization plays a very
important role in linear algebra, basically because it is a means to simplify
expressions involving A. It is not possible to diagonalize all matrices A, cer-
tain conditions have to be imposed. The main result of this appendix, which



Appendices 127

is stated in the theorem below, gives one such condition (but not the most
general one).

The theory of diagonalization is closely connected with the theory of eigen-
vectors and eigenvalues. Recall that an eigenvalue for the matrix A is a
number λ for which there exists a non-zero vector w ∈ Rn such that

Aw = λw.

The vector w is called a corresponding eigenvector.
It is a fact known from linear algebra that a number λ is an eigenvalue if

and only if it is a root in the characteristic polynomial

λ 7→ det(A− λI).

The corresponding eigenvectors are the nonzero solutions w to (A−λI)w = 0.
Recall that the matrix A is called symmetric if it equals its transposed

matrix At, that is, if its elements satisfy aij = aji for all i, j. Recall also
that an orthogonal matrix is a square matrix C with real entries for which
the transposed matrix Ct is inverse to C, that is, CtC = I. Equivalently, it
is a matrix whose columns form an orthonormal set.

Theorem D.1. Let A be a symmetric n × n matrix. There exists an or-
thogonal n × n matrix C such that D = C−1AC is a diagonal matrix with
these roots as its entries. The columns of C are eigenvectors for A, and the
eigenvalues are the diagonal elements of D (in the corresponding order).

Proof. For simplicity we shall assume n = 2 in the proof. This is not a serious
restriction for the present notes, where all the applications have n = 2. In
order to pinpoint where the assumption is critically used, we will keep n
arbitrary in the beginning of the proof.

We regard vectors in Rn as matrices with a single column, and note that
the dot product v · w = v1w1 + . . . vnwn can be written by means of matrix
multiplication as v · w = vtw. For any n× n matrix A we have

Av · w = (Av)tw = vtAtw = v ·Atw, (D.1)

and if A is symmetric we thus obtain

Av ·w = v ·Aw (D.2)

for all v, w ∈ Rn.
We first prove that eigenvectors corresponding to different eigenvalues are

orthogonal, that is, if v, w ∈ Rn \ {0} and Av = λv, Aw = µw with λ 6= µ,
then v · w = 0. By (D.2) we have

λv · w = (Av) · w = v · (Aw) = µv · w,
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and since λ 6= µ we must indeed have v · w = 0.
We next observe that if w1, . . . , wn ∈ Rn is an orthonormal set of eigenvec-

tors for A, then the matrix C = [w1 . . .wn] with these columns is orthogonal.
Since the columns of the matrix product AC are obtained by multiplication
of A with the columns of C, we see that

AC = [Aw1 . . .Awn] = [λ1w1 . . . λnwn] = CD,

where D is the diagonal matrix with the eigenvalues λ1, . . . , λn as entries. It
follows that C−1AC = D, so that C diagonalizes A.

It remains to be shown that there exist such an orthonormal set of eigen-
vectors. For this last step we assume n = 2. Let

A =

(
a b
b d

)

We may assume b 6= 0, since otherwise A is already diagonal and we can take
w1 = e1, w2 = e2. The characteristic polynomial is λ2 − (a + d)λ+ ad− b2,
and its roots are given by

λ =
a+ d±

√
(a+ d)2 − 4(ad− b2)

2
=
a+ d±

√
(a− d)2 + 4b2

2
.

Since b 6= 0 the expression inside the square root is positive, and thus there
are two different real roots λ1, λ2. As mentioned above each root in the
characteristic polynomial is an eigenvalue, let w1, w2 ∈ R2 be normalised
eigenvectors. Then w1 ⊥ w2 by what was shown above, and hence they form
an orthonormal set. �

Example D.1 The eigenvalues of the symmetric matrix
(

1 1
2

1
2 1

)

are determined as the roots 1
2 and 3

2 of

det

(
1 − λ 1

2
1
2 1 − λ

)
= λ2 − 2λ+ 3

4
.

An eigenvector corresponding to λ = 1
2 is determined by solution of

(
1 1

2
1
2 1

)(
x
y

)
= 1

2

(
x
y

)

which leads to, for example
(
x
y

)
=

(
1
−1

)
.
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An eigenvector for λ = 3
2 is then found as

(
x
y

)
=

(̂
1
−1

)
=

(
1
1

)
.

The corresponding matrix C has normalisations of these eigenvectors as its
columns

C =

(
1√
2

1√
2

− 1√
2

1√
2

)
,

and the diagonalized matrix is

D =

(
1
2

0

0 3
2

)
.

It is useful to express the preceding theorem as a result about linear maps,
rather than matrices. This is done in the following corollary.

Corollary D.1. Let U ⊂ Rm be a linear subspace, and let L:U → U be a
linear map which is symmetric, that is

L(u1) · u2 = u1 · L(u2), u1, u2 ∈ U. (D.3)

Then there exists an orthonormal basis for U consisting of eigenvectors for L.

Proof. Let η1, . . . , ηn be an arbitrary orthonormal basis for U , and let A
denote the n× n matrix which represents L with respect to this basis, that
is,

Lηj =
n∑

i=1

aijηi, (j = 1, . . . , n). (D.4)

The proof is based on the following two observations, which are well known
from linear algebra. A vector u = x1η1 + · · · + xnηn ∈ U is an eigenvector
for L with eigenvalue λ,

Lu = λu,

if and only if the column of its coordinates

x =



x1
...
xn


 ∈ Rn

is an eigenvector for A,
Ax = λx
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with the same eigenvalue. The second observation is that the dot product of
two vectors u, v ∈ U is computed as the dot product of their coordinates:

(x1η1 + · · · + xnηn) · (y1η1 + · · · + ynηn) = x1y1 + · · · + xnyn.

Since the basis is orthonormal, it follows from (D.4) that

aij = L(ηj) · ηi,

and hence it follows from the symmetry of L, that A is a symmetric matrix.
By Theorem D.1 there exists an orthogonal n× n matrix C whose columns
are eigenvectors for A. Let v1, . . . , vn be the vectors in U whose coordinates
with respect to η1, . . . , ηn are the columns of C, that is

vi = c1iη1 + · · ·+ cniηn ∈ U, (i = 1, . . . , n).

The first observation made above implies that v1, . . . , vn are eigenvectors for
L, and the second observation implies that they form an orthonormal set.
Since the dimension of U is n, they form a basis for U . �

Exercises

D.1 Let w = (3, 4) ∈ R2, and let

A =

(
a 12
12 a+ 7

)
.

Show that w and ŵ are eigenvectors for A, and determine their eigen-
values.

D.2 Let

A =

(
2 2
2 5

)

Determine an orthogonal matrix C and a diagonal matrix D, such that
D = C−1AC. How many pairs of 2 × 2-matrices (C,D) satisfy these
requirements?

D.3 Let A be an n × n-matrix. Show that if there exists an orthogonal
matrix diagonalizing A, then A is symmetric.

Appendix E. Hyperbolic functions

The hyperbolic cosine and hyperbolic sine functions are defined by

cosh t =
et + e−t

2
, sinh t =

et − e−t

2
, (E.1)
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for t ∈ R. The equation

cosh2 t− sinh2 t = 1,

which resembles the well-known cos2 t+sin2 t = 1, is easily derived from (E.1).
It follows that the point (cosh t, sinh t) lies on a hyperbola (see Example
1.1.3), and because of this the functions are viewed as hyperbolic counterparts
to the trigonometric functions cos and sin. The graphs of the two functions
are shown below.

x

y = coshx y = sinh x

x

y y

1

Notice that cosh is even and sinh is odd. In analogy with the definitions of
the tangent and cotangent one defines

tanhx =
sinhx

cosh x
, cothx =

coshx

sinhx
.

It is easily seen that the derivatives of these functions are

d

dx
coshx = sinhx,

d

dx
sinh x = cosh x,

d

dx
tanhx =

1

cosh2 x
,

d

dx
cothx = − 1

sinh2 x
.
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Notational Index

A: area, 53
b(s): binormal, 67
bij : component matrix of IIp, 96
C: level set, 6
D: Jacobi matrix, 121
E: component of Ip, 43
F : component of Ip, 43
G: component of Ip, 43
gij : component matrix of Ip, 96
Ip: first fundamental form, 43
IIp: second fundamental form, 80
K: Gaussian curvature, 93
L: component of IIp, 80
M : component of IIp, 80
m(s): normal along curve, 69
N : component of IIp, 80
N: unit normal, 29
n(s): principal normal, 67
Rjkil: Riemann symbol, 100
S: level set, 11
Tpσ: tangent space, 23
t(s): unit tangent, 67
u(s): tangent normal, 70
Wp: shape operator, 78, 82
Γkij : Christoffel symbol, 97
γ: a parametrized curve, 1
θ(t): tangent angle function, 63
κ: curvature, 59, 64
κg: geodesic curvature, 70
κn: normal curvature, 70
κ1, κ2: principal curvatures, 83
µ(t): plane coordinates of curve, 25
σ: a parametrized surface, 3
σ′
u, σ

′
v: partial derivatives, 22

τ : torsion, 66
φ: a diffeomorphism, 27
Ψ: lift of isometry, 101∫
dA: plane integral, 48

∂: boundary, 120
×: cross product, 125
â: normal vector of a, 125
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angle,
in Euclidean space, 119
on surface, 45

Archimedes’ spiral, 55
arc-length, 39

function, 40
area,

of block-set, 47
of elementary domain, 48
of rectangle, 46
of surface, 53

basis, positively ordered, 125
bending, 101
binormal, 67
block-set, 46
boundary, 120
C1-function, 121
cardioid, 34
catenoid, 105
Cauchy-Schwarz inequality, 119
center of curvature, 74
chain rule, 122
characteristic polynomial, 127
Christoffel symbols, 97
circle, 1

great, on sphere 71
osculating, 74
small, on sphere 71

cissoid, 16
components, 120
component functions, 43
cone, 5
continuous, 120
coordinate curve, 25
coordinates, 3

spherical, 4
cosh, 130
coth, 131
critical point, 6

cross product, 23, 125
curvature,

center of, 74
Gaussian, 93
geodesic, 70
normal, 70, 72
normal, of surface, 73
of plane curve, 59
of space curve, 64
tangential, 70

curve,
constant, 2, 19
on surface, 25
parametrized, 1

by arc-length, 42
regular, 19
singular, 19
smooth, 2

cycloid, 16
cylinder, 4
derivative, partial 120
diagonalization, 126

diffeomorphism, 27
direction, 27
distance, Euclidean, 119
domain, elementary, 47
dot product, 119
eigenvalue, 127
eigenvector, 127
elementary domain, 47
ellipse, 2
elliptic point, 89
Euclidean space, 119
first fundamental form, 43
Frenet formula, 69
form,

first fundamental, 43
quadratic, 44
second fundamental, 80, 80
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Gauss
curvature, 93, 94
formula, 98
theorem, 99
geodesic, 73
coordinates, 112
equations, 111

graph, 5, 20
helicoid, 56

first fundamental form, 56
isometry with catenoid, 105
second fundamental form, 89

helix, 3,
arclength, 40
curvature, 65
hyperbolic, 75
torsion, 66

hyperbola, 2
hyperbolic

functions, 130
helix, 75
point, 89

ideal map, 105
induced isometry, 101
integral,

double, 51
over rectangle, 46
plane, 48
transformation of, 52

interior, 120
intrinsic, 95
invariant, 28
isometric, 100
isometry, 101
Jacobi matrix, 121
latitude, 4
level set, 6
lift, 102
line, 1

segment, 41
logarithmic spiral, 55
longitude, 4

matrix,
orthogonal, 127
symmetric, 127

meridian, 57
motion, rigid, 90

moving frame, 68
neighborhood, 119
norm, 119
normal,

principal, 67
unit, 29
vector, 125

null set, 49
orientation, 30, 125
orthogonal, 119

parametrization, 45
orthonormal, 119
osculating circle, 74

plane, 67
parabolic

cylinder, 87
point, 89

paraboloid, 86
elliptic, 86
hyperbolic, 86

parallel curve, 57
partial derivative, 120
partition, of block-set, 47
Peano’s curve, 2
planar point, 89
plane, 3

osculating, 67
preserve

direction, 27
orientation, 30

principal
curvature, 83, 84
normal, 67
vector, 83, 84

pseudosphere, 106
rectangle, 46
reparametrization, 26, 28
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reverse
direction, 27
orientation, 30

revolution, surface of, 35
first fundamental form, 57
Gauss curvature, 106
geodesics, 76
second fundamental form, 89

Riemann symbol, 100
rigid motion, 90
second fundamental form, 80

coordinate expression, 80
self-intersection, 2
set

bounded, 120
closed, 120
open, 119

shape operator, 78, 82
sinh, 130
smooth function, 123
speed, 39
sphere, 4
spherical coordinates, 4
spiral,

logarithmic, 55
of Archimedes, 55

surface,
of revolution, 35
parametrized, 3
regular, 22
singular, 23

tangent
angle, 63
line, 20
plane, 24
space, 23
vector, 20

tanh, 131
Taylor’s theorem, 123
teorema egregium, 99
theorem,

Gauss, 99
implicit function, 7, 11, 13
inverse function, 26, 32
Taylor, 123

torsion, 66
torus, 58
trace, 1
tractrix, 106
type, of surface, 89
unit

normal, 29
speed, 42

Weingarten map, 77




