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Chapter 1

Fourier series

1.1 Periodic functions and their convolution

The group behind Fourier series is the circle group T consisting of the complex
numbers with absolute value 1. This is certainly a compact commutative group
under multiplication. The mapping t — e'* is a continuous homomorphism of the
additive group (R, +) onto (T, -)

T={c"|tel0,2r]} ={e" [t eR}.

Under the mapping ¢ +— €' the normalized Lebesgue measure on [0, 27[ is mapped
onto a probability measure m on (T,B(T)) (any topological space X is considered
as a measurable space equipped with the o-algebra B = B(X) of Borel sets) such
that

1 2T ] 1 a+2m ]
/ F(z)dm(z) = — / F(e®)dt = — F(e")dt, aeR
T 0 27 a

2T

for any continuous function F': T — C. The set of continuous functions F' : T — C
is denoted C(T). It becomes a Banach space under the uniform norm

[ Flloc = sup [F(2)].
z€T

For any function F': T — C, the composed function
f(t) = F(e"), teR (1.1.1)

is a 2m-periodic function, i.e.,

f(t+2mp) = f(1), teR, peZ,



and conversely, to any such function f : R — C, there exists a unique function
F : T — C such that (1.1.1) holds.

Therefore we can identify C(T) with the spaces of continuous 27-periodic func-
tions on R. Similarly, we can identify the Lebesgue spaces £P(T) = LP(T,B(T), m),
1 < p < oo with the space of 2m-periodic Borel functions f : R — C such that

1 2 1/p
i = (5 [ ropa) <o 1<p<os

[flle = ess sup{[f ()| | £ € [0,2n[ } < o0,p = oc.

For 27-periodic Borel functions f,g : R — C we define the convolution f % g as
the function

1 a+2m
v feo@ =5 [ te—nean= 5 [ e, (112

27 J,

defined for those z € R for which

y— flz—y)g(y)

is integrable over [0,27] (and thereby over any interval [a,a + 27] of length 27).
The domain of definition D = D(f x g) is a possibly empty Borel set in R with the

property
re€D=x+2r €D, fxglz+2r)=fx*xg(z).

This can be summarized by saying that fxg is 2r-periodic. Furthermore, D(f*g) =
D(g* f)and f*g(x) =g f(x) for x € D(f % g).
In fact, (z,y) — f(x — y)g(y) is a Borel function on R? as a composition of

the Borel function f ® g(z,y) = f(x)g(y) on R?* with the homeomorphism (x,y)
(r —y,y) of R?.

We also have

D(f g {xeR|/ ~Dllgldy < |

which is a Borel set by Tonelli’s theorem. Using the substitution y = z —¢ (z fixed),
we find

| e =wlawiar= [ lo@=ollsola= [ a0l
0 27 0
showing that x € D(fxg) < x € D(gx f) and fxg(x) = g* f(z) for x € D(f *g).

Theorem 1.1.1 Let f,g : R — C be 2m-periodic Borel functions. The following
assertions hold:



1°. If f, g are continuous then D(f*g) = R and f*g is again continuous satisfying
1S * glloo < 1/ llsollglo- (1.1.3)

2. If1 < p,qg < oo are dual exponents, i.e., %+% = 1, then if f € LP(T),
g € LYT) we have D(f x g) =R and f * g is continuous with

1 * gl < 1 f1pllgllq- (1.1.4)
. If f,g € LYT) then R\ D(f *g) is a Lebesque null set and f*g € LY(T) with
1f =gl < [1f1lxllglls- (1.1.5)

4o If f € LYT), g € LP(T), 1 < p < oo then R\ D(f * g) is a Lebesque null set
and f g € LP(T) with

17 glly < W[ Fllllgllp (1.1.6)

Proof.

1° For each z € R, y — f(x — y)g(y) is continuous and hence integrable over
[0,27] so D(f xg) = R. A continuous periodic function f is uniformly continuous,
so for given € > 0 there exists 0 > 0 such that for all x € R, |h| < ¢

[f(z+h) = flz)] <e.
Using

1

Fralath) = frot) =5 [ (fath=9) =i = ) o) dy

we see that for z € R, |h| <0

1 27
Frgleth)— frgl) < —/ lglloody = & gl
0

~ 27
showing that f * ¢ is (uniformly) continuous. The inequality (1.1.3) is easy.

2° Because of symmetry we can assume 1 < p < oo (If p = oo then ¢ = 1 so
g € LY(T)). For each x € R the function y — f(z — y) is in £LP(T) with

2 1/p
(5 [ 1e—wrar) =11,

independent of x. By Hélder’s inequality y — f(x — y)g(y) is integrable and

£ < 5= [ 1= n)llgl v < Il lal,
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showing that D(f *g) = R and f % g is bounded. To see that f * g is continuous,
we get again by Holder’s inequality

[fxglz+h) = frg@)] < fx+h—y) = Fle=ylplglly =11/ (h —y) = F(=0) bl

which shows the continuity because of the following

Lemma 1.1.2 For1 <p< oo, f € LP(T), h € R define

mf(y) = fly—h), yeR (1.1.7)

Then m,f € LP(T), |7 fll, = | fll, and ||Tnf — fll, = 0 for h — 0.

Proof of Lemma. If f is continuous the result follows by the uniform continuity
of f. To f € L£P(T) and € > 0 there exists ¢ € C(T) such that || f — ¢||, < e. Using
the obvious fact |7, f]|, = || f|l, we then get

Wf=mufllp=If—e+o—me+ (e — )l <2/ f —ollp + ¢ = mmellp

and the result follows.

3° The function (x,y) — f(z —y)g(y) is integrable over [0, 27| x [0, 27| because
of Tonelli’s theorem:

<271r>2 / (/ e —y) g<y>|dx) dy

— o [ (sl [ 15— wlar) dy = gl < o

_%0

By Fubini’s theorem we conclude that y — f(z — y)g(y) is integrable over [0, 27]
for almost all x € [0,27], i.e., f * g(z) exists for almost all x € [0, 27], hence for
almost all € R by periodicity. Furthermore, f * g(z) is integrable over [0, 27], i.e.,
f*g(z) € £LY(T) and

ool < o [ (5 [ 1= nllawldy) do

27 Jo

= o [ (952 [ 1 = wlde) dy = 151lolh

27 Jo

4° The case p = 1 is considered in 3°, and the case p = oo is straightforward
(and it is the special case p = 1 of 2°). We therefore assume 1 < p < oo, and choose
the dual exponent ¢ such that % + % = 1. We shall apply Holder’s inequality to
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y = |f(x—y)|Y7 € £9(T) and y — |f(x—vy)|"?|g(y)|, as the latter belongs to LP(T)
for almost all x by Fubini’s theorem, which is applicable because

(2—71T)2/027r (/027r |f(z —y) Ig(y)|”dy) dx = ||l lgll? < oo.

We obtain
1 27 1 27

1f(x=y)llg(y)dy = |f(@ =) f (@ = )7 |g(y)| dy

2 Jo
1 [ 1/p
1 (55 [ 1= wllaPar)

and upon subsequent integration of the p'* power

(G [ el ds

< ) (/ 1) ()P dy ) da

AP Py P
= Iflly “lglls = [ f1ITllglly < oo.

( : / f (@ =)l l9(y)] dy)” -

2

27 Jo

IN

This shows that

for almost all x, i.e., f * g(z) is defined for almost all z. We obtain finally that
f*g(x) € LP(T) since
1 2 p
Feal < (5 [ 1= nllslay)
T Jo
and therefore
1 2m
o . |f o g(2)[Pdz < || fI[TNgll5,
from which (1.1.6) follows. O
Exercises
E 1.1 For each a € R define e,(x) = €**. Tt is clear that e, : R — T is a

continuous homomorphism of groups, i.e.,

eo(T+y) =en(v)en(y) for z,y€R.

(i) Prove that an arbitrary continuous homomorphism e : R — T has the form
e(x) = e, (x) for a uniquely determined « € R.

Hint: Verify the following steps:



(a) Define

and prove that ¢(0) = ¢ # 0 for suitable § > 0 and that p(z+09) = p(z)+ce(z).
(b) Conclude that e is a C''-function satisfying
d(z+y)=¢(v)e(y), =z yeR,
so e solves the differential equation €'(y) = €'(0)e(y).

(c) Conclude that €'(0) is purely imaginary.

For each n € Z it is clear that ~, : T — T defined by ~,(z) = 2" is a continuous
group homomorphism.

(ii) Prove that an arbitrary continuous group homomorphism v : T — T has the
form v(z) = v,(2) for a uniquely determined n € Z.

Hint: Consider e(t) = v(e'!) and note that e is 2r-periodic.
E 1.2 For n € Z let e,(t) = €™, t € R. Prove that e, * e, = d,me, for

n,m € Z, where ,,,, = 1 if n = m and d,,, = 0 if n # m. (The symbol &, is called
Kronecker’s delta.)

E 1.3 For f € £!(T) consider for 1 < p < oo the mapping
Ty : LX(T) — LX(T), Ty(g) = [f*g.

(1) Show that T is a continuous linear mapping which induces a bounded operator
Ty in the Banach space LP(T) of equivalence classes of functions from £P(T) equal
almost everywhere.

(i) Show that |75 < ||/

(iii) Show that the functions e, (from E 1.2) are eigenfunctions of T (and of T}
properly understood), and find the corresponding eigenvalues.

E 1.4 Let f € £LYT) and g € CY(T), i.e., g is a continuously differentiable
periodic function. Prove that f x g € CY(T) and (f x g)'(z) = f *¢'(x), v € R.
Extend the result to g € CP(T) with p € NU {oo}.

E 1.5 For fixed 1 < p < oo prove that if f,g € £P(T), then f* g € LP(T) and

1+ glly < 1 71pllgllp -



1.2 Pure oscillations and trigonometric series

A real-valued function
x = pcos(wz — ), x € R, (1.2.1)

where p, w, p € R, p >0, w > 0, is called a pure oscillation. It can also be written
as

x +— acos(wz) + bsin(wz), z € R, (1.2.2)

where a, b € R, namely with a = pcosp, b = psinp. Any function of the form
(1.2.2) with a,b € R can be written as (1.2.1) with p = va?+ b? called the
amplitude. If p # 0 we call w/27 the frequency of the pure oscillation, and ¢,
determined modulo 27 is called the phase constant.

In the same way, if a,b € C,w > 0, we will call a complex function
x +— acos(wz) + bsin(wz), z € R, (1.2.3)

a pure oscillation, with frequency w/27. The real and imaginary part of (1.2.3) are
real-valued pure oscillations with frequency w/2mw. Note that (1.2.3) can also be
written as

T ey et el e r e R, (1.2.4)

with c;, c_ € C. The relationship between the coefficients is

1
a=cy+c, c+:§(a—ib)

1
b=1i(cy —c), c_ :§(a+ib).

The last form (1.2.4) turns out to have a considerable advantage compared to (1.2.3).
Herein lies an incentive to work with complex functions, which we will do in the
development of the following theory. Note that a pure oscillation is real-valued
exactly when ¢, and c_ are complex conjugates of each other.

For simplicity we write
ea(r) = z,a € R (1.2.5)
A pure oscillation with frequency w/2m, where w € R, can thereby be written as

Cye,t+cCc_e_y.

The theory of decomposing functions as combinations of pure oscillations is called
harmonic analysis.
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In this section we shall consider periodic functions f : R — C with a given period
7>0,ie f(r+7)=f(z),z €R and hence

flx+pr)=f(x), z€eRpeZ.

A pure oscillation with frequency w/2m = 1/7 is called a fundamental oscillation,
whereas a pure oscillation with frequency nw/2m = n/7, n = 2,3,... is called an
overtone. According to Joseph Fourier (Sur la propagation de la chaleur, manuscript,
Paris 1807), each function with period 7 can be written as the sum of a fundamental
oscillation, overtones and a constant term. Fourier’s statement is however a very
simplified picture of the real situation.

For the sake of simplicity, we choose to consider functions with period 7 = 2.
A series with a constant term, fundamental oscillation and overtones can thereby
be written as

%ao + g(an cosnx + by, sinnzx), (1.2.6)
o+ i(cn et 4 e ), (1.2.7)

or by using (1.2.5) -
co + i(cn en+Cpne_p). (1.2.8)

n=1

Such a series is called a trigonometric series.

For reasons of brevity, one frequently just writes > ¢, €™ or Y>> ¢, e,. We
note the relationships

1

ap, = Cp + C_p, Cn = §(an —iby,), (1.2.9)
1

by, =i(cn — c_p), Cop = 5(% +1ib,,), (1.2.10)

valid for n > 0, and for n = 0 if we set by = 0.

The following results are easy but fundamental:

Theorem 1.2.1 The functions e,(z) = €™, n € Z form an orthonormal system in
the Hilbert space L*(T):

(e e}—i 2ﬂei":”e’immda:— L for n=m, (1.2.11)
o S 1 0 for n#m. o

11



Theorem 1.2.2 [f a function f : R — C with period 21 can be written as a sum of
a uniformly convergent trigonometric series, then there is only one infinite series of
this type and its coefficients are given by

1 [ .
e =(f,en) = 2—/ f(x)e ™™ dr neZ (1.2.12)
™ —T
or in real form
1 (7 1 [ '
ap, = — f(x)cosnxdx, b, = —/ f(x)sinnxdr, n € Ny. (1.2.13)
™ J)_x T J_x

Proof. Let ¢+ > " (¢ €™ + c_,, e7™7) be uniformly convergent for z € R with
sum f(z), which then belongs to C(T). For each n € Z we have

f(z)e ™ = cye™™ 4 Z(cm eitm=nle 4 o ellem=nzy (1.2.14)

m=1

where we again have uniform convergence, since e_,, is a bounded function. We are
then allowed to integrate (1.2.14) term by term to get

/ flx)em™de = CO/ e "dz + Z (Cm/ ei(m”)xdx—i-cm/ ei(m")fdy)

=1
= ¢, 2m.

Exercises

E 2.1 Show the formulas (n =1,2,...)

2n z 2n
My =27 272 2k eR
cos™ x . + I cos(2kx), x )

k=1
and conclude that
1 " —2n 2n — PR
—/ cos2”xcos(2k:x) dr = { 2 (nfk)’ k=0,1,...n
i 0 07 k > 7’1,7

while

1 ™
—/ cos™ xcos((2k + a)dz =0,k =0,1,....
0

™

12



1.3 Fourier series for f € £L}(T) = L(T)

The formula (1.2.12) makes sense for any f € £1(T), so we can associate a trigono-
metric series to f

> . : 1 [T .
co + Z(cnemx+ c_pe” ™) with CnZ%/ flz)e ™ dx, (1.3.1)

n=1

or, written alternatively,

1 o
a0+ ;(an cos nx + by, sin nx) (1.3.2)
with
1 [7 1 [7 )
ap, = — f(z)cosnxdx, n € Ny, b, = —/ f(z)sinnx dx. (1.3.3)
T ) x T ) x

This series is called the Fourier series for f. Strictly speaking, it is the series ¢y +
> (cnen + c_pe_y) one has in mind here. The numbers ¢, a, and b, are called
Fourier coefficients for f. That Eiooo ¢, €™ is the Fourier series for f is sometimes

expressed by writing

o
f~ g ¢, e,
— 00

The symbol~ stresses that we do not know if and how the series converges. A main
point in the theory is to examine if the Fourier series for f converges to f in some
sense.

We can now reformulate Theorem 1.2.2:

Theorem 1.3.1 A uniformly convergent trigonometric series is the Fourier series
for its sum function, which belongs to C(T).

Integration theory and harmonic analysis have developed with close ties. The
work in which Bernhard Riemann develops his notion of integration has the ti-
tle: Uber die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe
(Gottingen 1854). Lebesgue’s integration theory was instantaneously brought into
fruitful application in harmonic analysis and turned out to be the natural framework.

It would have been nice if the Fourier series of any f € C(T) was indeed uniformly
or at least pointwise convergent to f(x), but unfortunately it is not so. Already
Paul du Bois-Reymond gave in 1873 an example of a continuous periodic function
for which the Fourier series diverges at a single point z. This has been extended:

13



For every null set N C|— 7, x| there is a continuous periodic function for which the
Fourier series is divergent in each point of N. See [7, p.55-61].

It was a sensation when Lennart Carleson in 1966 showed that the Fourier series
of a function f € L£*(T) converges for almost all x, thereby proving a conjecture
going back to Lusin from 1913. In 1968 Richard A. Hunt extended the result to
LP(T) for 1 < p < 2, and since L"(T) decreases with larger r one obtains therefore:

For f € £P(T), with 1 < p < oo, the Fourier series converges to f(z) for almost
all x.

Nonetheless, one can find functions f € L£!(T) for which the Fourier series is
divergent everywhere (Andrej Kolmogorov 1926), see [10, Chap. 8|.

It is amazing that there is this difference between p =1 and p > 1.

It can also be mentioned that a trigonometric series can be convergent everywhere
without being a Fourier series for any function f € L(T). A concrete example is
Y Usinnx/log(n + 1); see e.g. [4, p.2] and Example 1.9.4.

It was in connection with studies of the set of points € R, in which a given
trigonometric series converges, that Georg Cantor was led to a closer study of set
theory.

We shall first deal with sufficient conditions for a Fourier series to be convergent
at a particular point x. Afterwards we shall investigate other possibilities for the
Fourier series to represent the function.

1.4 Riemann-Lebesgue’s Lemma
Lemma 1.4.1 (Riemann-Lebesgue’s Lemma) For every function f € L'(R)
/f(:c) e drx—0  for|t| = oco,t €R.
R
In particular

/f(a:)cost:cda:—>0, /f(a:)sint:cdx—)O for t — .
R R

Proof. We use that step functions are dense in £!(R).

1° If f is the characteristic function of a bounded interval ]a, ], the assertion

follows from
b x=b
i 1, 1, . :
/ el dr — |:_ 61t$:| — '_(eltb _ elta)’
a 1t wee 1

14



because we get

for t # 0.

b
/ elt{L’ d.T
a

2° If f is a step function, i.e., f = Y 7 ¢;- 11, where each I; =]a;, b;] is a bounded
interval, we have by 1°

n b
/f(a:) e dr = ch/ e dr —0  for |t| — oo.
R 1 aj

2
=7

t]

3° Finally, we consider the general case f € L!(R). For an arbitrary e € R, we
can find a step function g such that ||f —g||; < 5. As long as |t| is sufficiently large,
we have now according to 2°
/ g(z) ™ dx
R

<5
2

and thereby

/R f(z) et dz

< + <e

/R (f(x) — g(x)) & da

/ g(z) e dx
R

since

/R (f(2) — g()) & du

< [ 17@) = gta)l le"|do = 17 = gl
0
Corollary 1.4.2 For f € LY(T) we have

%/_:f(x)emdxﬁo for |t| = oo, t € R.

In particular, for the Fourier coefficients ay,, b, and c, of f we have

cn — 0 for |n| — oo, a, — 0, b, >0 for n — oo.

Exercises

E 4.1 Let f € LY(T) and n € Z,n # 0. Prove that the n’th Fourier coefficient
¢, of f can be determined by the formula

1 [ .
Cp = ——/ f(z—m/|n])e ™" dx
2w Jo

and deduce that |c,| < 3|1 f — Ta/pnif1-

Use this to give a new proof that ¢, — 0 for |n| — co.

15



1.5 Convergence of Fourier series

Let s,, denote the n’th partial sum of the Fourier series ¢y + > . (cpen + c_pe_y)
for a function f € LY(T), i.e.,

Sp(x) = Z cr e for ne Ny, z€R. (1.5.1)
k=—n
Since
cwe = L [ fy ey = [0 () dy = e f(a)
¥ 27 ). 27 ). ¥ ’
we have
sn:chek:Z(ek*f):f*Zek:f*Dn, (1.5.2)
k=—n k=—n k=—n

where D, = > 7 ey is the n’th partial sum of the series 1+ > (e, +e_,), L.e.,

n

D,(z) = Z err =1+ ZZ cos kx. (1.5.3)
k=1

k=—n

The function D,, is called the n’th Dirichlet kernel. It is an even function, and

1 e

Dy B D, (z)dz = 1. (1.5.4)
For z # 0 (mod 27), we find
) i2n+1)z _ 1 iln+l)z _ —inz
D, (z) =" S S —
e —1 e —1

. 1 . 1 .
61(n+§)a: o 6—1(n+§)a: SlIl(’I’L + %)ZL‘

T 1 Tl - N
ela® — e~ig® sin %x

We note: The n’th partial sum s, of a Fourier series for a function f € L(T)
is equal to f x D, i.e.,

sp(x) = % /_ﬂ flx—y)Dn(y)dy  forn € Ny, x € R. (1.5.5)

This is the key to the study of the convergence of Fourier series. Note that we do
not aim at absolute convergence at this point.

16



Theorem 1.5.1 (Dini’s test (1880)) A sufficient condition for a Fourier series
co+ Y oo (cnen+ copey) for a function f € LY(T) to be convergent in the point
x € R with the sum

o
co + E (Cn T Con e—mx) —3

n=1

is the existence of & > 0 such that

r

Note that the integral is finite for every § > 0, if it is fulfilled just for one value
oo > 0.

fl@+y) + flo—y)—2s
y

dy < oo. (1.5.6)

Proof. Since D,, is an even function, we have

sae) = 5= [ fe-n D i+ - [ e Dy
1 m

= (f(x+y)+ flxr —y)) Duly) dy.

27 Jo

By (1.5.4) we have furthermore

sale) =5 = 5o [ U+ fla =) =29 Do) dy
_ 1 [Tty +fe-y) -2y
= %) y ~Sin%y-sm(n+%)ydy.

Since y/ sin %y is bounded on [0, 7], the last integral assumes the form

1
/g(y) sin(n + é)y dy, with g € L}(R).
R

By Riemann-Lebesgue’s Lemma (Sec. 1.4), it follows that s,(z) —s — 0. O

Application. The condition in Dini’s test is fulfilled, with s = f(z), if the
function f € L£L!(T) is continuous at x as well as differentiable from the right and
left at this point.

More generally, the condition is fulfilled, with s = (f(z + 0) + f(z — 0)), if the

function f € £!(T) has the limit f(z +0) € C and f(xz —0) € C from the right and
from the left in the point x, and if additionally

flx+y)— flz+0) and flx—y)— fx—-0)
y —y

17



have limits in C for y — 0,..

Under these assumptions the function

@)+ fe—y) =2 H(f @+ 0) + (fz —0)
Y

is bounded in an interval |0, d], so (1.5.6) is satisfied.

We will hereby leave the problem of pointwise convergence of a Fourier series but
nonetheless mention the following theorem which essentially is due to G. Lejeune
Dirichlet (1829). Dirichlet was the first who gave a proper proof of the convergence
of Fourier series.

Theorem 1.5.2 (Dirichlet-Jordan’s test) The Fourier series for a periodic func-
tion f : R — C of bounded variation over [0,27| is convergent in every x with the
sum

(f(z+0)+ f(z—0)).

| —

If [ is furthermore continuous on a compact interval [a,b], the convergence is uni-
form in |a, b].

We recall that the variation Vi, (f) of a function f : [a,b] — C is defined as the
supremum of the numbers

Vo(f) = 3_1f(w;) = fzs)l, (15.7)

where a = g < 71 < ... < x,_1 < x, = bis an arbitrary partition D of the interval.
We say that f is of bounded variation over [a,b] if V] 4(f) < oo. The set of such
functions is a complex vector space V ([a, b]).

Every monotone function is of bounded variation.

If for example f is increasing in [a, b], we can write (1.5.7) as

n

> (f(@) = flwm1) = f(b) = fla),

j=1

thus Via ) (f) = f(b) — f(a).
It holds furthermore that

feV([a, b)) & Re(f), Im(f) € V([a, b)),

18



thus every function of the form

f=hHh—Ff+ilfs = f4), (1.5.8)

where f1,..., fi are increasing on [a, b], is of bounded variation. This terminology
was introduced by C. Jordan in 1881. He showed furthermore that every function
f € V(la,b]) has a representation of the form (1.5.8), cf. E 5.2 below.

Since an increasing function f : [a,b] — R has a limit from the right and from
the left in every = € [a,b] (albeit for = a only from the right and for z = b only
from the left), namely

flx+0)=inf{f(y)|lr <y},  flz—0)=sup{f(y)ly <=z},

(and of course f(z —0) < f(x) < f(z+0)), we can note the following consequence
of Jordan’s result:

Every function f € V([a,b]) has a limit from the left and from the right in every
point of the interval [a, b].

This result is of course a prerequisite for the statement of the Dirichlet-Jordan’s
test to be meaningful. Dirichlet proved the test for continuous functions that are
piecewise monotone. The representation (1.5.8) of f € V([a,b]) shows that the
extension to the class V([a, b]) is not particularly deep. We will prove Theorem 1.5.2
in Sec. 1.6.

Exercises
E 5.1 Show that C"([a,b]) C V([a,b]) and that Viey(f) < (b — a)||f||c-

E 5.2 For a function f : [a,b] — R, we introduce the positive and negative
variation over [a, b]

Pay(f) = SUP{PD(f):Z(f<xj)_f<xj1))+}7

j=1

Na(f) = sup{Np(f)=Z(f(afj)—f(afj_1))‘},

j=1
where the supremum is taken over all partitions D :a =2p < 21 < ... < 2,1 <
z, = b, and as usual ot = max(«,0), = = max(—a,0) for & € R. Show that

‘/[mb](f) = P[a,b}(f) + N[a,b}(f)'

(Hint. Exploit that if D’ is a further partitioning of D, then Vp(f) < Vo (f), Pp(f) <
Pp(f), No(f) < Np:(f).)

Show that if Vi, 4(f) < oo, then P, 4 (f) and Ny, 4(f) are increasing functions
for x € [a, b] and

f(z) = f(a) + Paw)(f) = Ny (f),
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thus f is the difference of two increasing functions.

E 5.3 Show that every increasing function f : [a,b] — R is a Borel function and

conclude that V([a,b]) C L>([a, b]).

E 5.4 Find the Fourier series for f € £L}(T) given by

fw=1{ "
0

for O<zxz<m
for m<x <27
for x =0, =,

and show that it converges pointwise to f(z) for all z € R.

Prove Leibniz’ formula

T_q 1 n 1 4
4 35
1.6 Summability
A sequence s, s1, . .. of elements in a vector space V with seminorm || - || is said to

be limitable with limit s € V if ||o,, — s|| = 0 for n — oo, where

Oy —

Lemma 1.6.1 (Cauchy) A convergent sequence sg, S1, . . .

itable with the same limit.

1 n

(1.6.1)

with limit s s also lim-

Proof. For arbitrary € € R, we can choose an M € N such that

£
low = sl < 5

For every n > M we have now

n

1
Jow = sl = == sk =) <
k=0
<
Since e
that

lon = sl <e

for k > M.

JR— 1 &
n+1”Z<Sk_S)H+n—+1 Z (s — s)|l
k=0 k=M+1
1 M €
e DICEDIRS

L Z,ﬁio(sk — s)|| = 0 for n — oo, we can therefore find an N > M such

for n > N.
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A sequence can of course be limitable without being convergent. An example is
2s,0,2s,0,2s, ... which is limitable with limit s, but it is not convergent if s # 0.

A infinite series ), a, with elements belonging to a vector space V with semi-
norm is said to be summable with sum s € V if the sequence of partial sums

Sn =D peo @k, 1 =0,1,..., ist limitable with limit s.
An example is 2s — 2s + 2s — 25 + 2s — ... which is summable with sum s, but
convergent only if ||s|| = 0.

The arithmetic means o,, = n+r1 ZZZO sk of the partial sums of a series ZSO an,
can be expressed directly in terms of the elements a,

on = (1- h ). (1.6.2)

prd n+1
In fact, writing
Sop = Qo
s1 = a + a
S, = ay + ai + ... + an

we obtain

n

(n+1)o, =(n+ Dag+na; + ...+ 20,1+ a, = Z(n—l—l — k)ay.
k=0

We shall see that the theory of summability of a Fourier series ¢y + > - (¢, e, +
c_pe_p) for a function f € LY(T) is very elegant.

Since we found that the n’th partial sum of the Fourier series is given as s, =
f * D, (Sec. 1.5), we have for the arithmetic means

n

1 <« 1 1 —
o n+1§%% — 2 (F*Dy) f*(n+1;;k> [ Fuy (1.6.3)

where F,, = #1 > po Dr is called the n’th Fejér kernel.

Since D,, = > 7_ ey is the n’th partial sum of the series 1 + > 7 (e, + e_p),
F, is by (1.6.2) given as

- LRy - k
F,(r)= 1l————)e™ =142 1-— kx. 1.6.4
0= Y- T =123 ek (164)
Note that F;, is an even function, and that
1 ™
— F.(z)dz = 1.
2 J_.
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The advantage in considering summability of a Fourier series rather than con-

vergence lies in the fact that the sequence Fy, Fi,... has better properties than
Dg, Dy, .... The essential point is as we shall see: F,,(x) > 0 while this is not true
for D, (z).
n+1 l l
E,
™

Figure 1.1: Graph of F,, and 7?/(n + 1)

For z # 0 (mod 27), we have (see Sec. 1.5)

sin(k 4 3)x  2sin(k+ §)z singz  coskr — cos(k + 1)z
sin %x B 2sin” %x B 2 sin” %:1:

and thereby

Fo(2) 1 ZDk()_ I 1—cos(n+1)z 1 (sin§(n+1)x)’

= €r) = 21 = 1
n+1k:0 n+1 2 sin 5T n+1 sin g

showing that F,, > 0.

Since

o1 1
sin ax > —x for0 <ax <m, (1.6.5)
T

because sin(z/2) is concave, cf. Figure 1.2, it can be concluded additionally that

1
— for 0 <x <7, néeNp. (1.6.6)

F.(z) <
n+1lx

This estimate shows that

F.(x) =0 for n — oo
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xr ™

Figure 1.2: Graph of sinz/2 and z /7

when 0 < |z| < 7, and that the convergence is uniform for § < |z| < 7, when
0 < < 7. In particular we have

/ F,(x)dx — 0 for n — oo.
o<|z|<m

We note that (F,) is a Dirac sequence according to the following definition:

Definition 1.6.2 A sequence k,, € L}(T) is called a Dirac sequence for T if it has
the following properties:

(a) k, >0
(b) %/:kn(t)dtzl

(¢) For each 6 such that 0 < <

/ kn(t)dt — 0 for n — oo.
o<|t|<m

Due to (b), we can replace (c) by
(¢") limy o0 5 f En( =1 for each § € ]0, 7].

We can express (a) and (b) by saying that %k}n(:p) is a probability density on
[—7, 7], and (¢’) states that the mass of this density is concentrated closer and
closer around zero for increasing n. A Dirac sequence is a mathematically correct
formulation of Dirac’s delta function ¢ as a “function” which is co for x = 0 and
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0 for z # 0 and fulfills [ §(z)dz = 1. From a mathematical point of view such a
function does not exist.

A Dirac sequence is an approximate unit with respect to convolution in the fol-
lowing sense: The Banach algebras C'(T) and L'(T) do not have a unit (i.e. a neutral
element with respect to convolution) — this is shown later — but the elements £, in
a Dirac sequence satisfy

Theorem 1.6.3 For f € C(T) (resp. f € LP(T), 1 <p< o)

lim [|f *k, — flloc =0 (resp. lim ||f xk, — f||, = 0).
n—o0 n—oo

Proof. Assume first f € C(T). For ¢ > 0 we can find 0 < § < 7 according to
uniform continuity such that

|f(x —t)— f(z)] <e  whenz eR, [t| <6

Therefore
1 T
f*@@»—ﬂw=§;[xﬂx—w—fm»mama
hence
RSN Ny W le
1 * ko) = f( )|§527T/5k:n(t)dt+ . /K'tgwkn(t)dt.

Since the right-hand side is independent of z we get

W*M—Mméﬁwmw/ a(t) dt,
T Jes<lt<n

but the last term tends to 0 for n — oo according to (c), and we can therefore find
an N € N such that ||f * k, — f]leo < 2¢ for n > N.

As ||fll, < || fllc when f € C(T), the second assertion follows for these f. In
order to show the second assertion for arbitrary f € LP(T), we use that for ¢ > 0
we can find g € C(T) such that || f — g||, < e. This leads to

1f k= fllp < 0 = 9) % knllp +1lg % kn — gllpy + [lg = I,
< 20F = gllp + llg * kn = gllp
which is < 3¢ for sufficiently large n. O

Remembering that the n’th average o, of the partial sums of a Fourier series for
a function f € LY(T) is equal to f * F),, and the Féjer kernels (F,) form a Dirac
sequence, we get by Theorem 1.6.3:
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Theorem 1.6.4 (Fejér) The Fourier series for f € C(T) is uniformly summable
with sum f.

The assertion here is that [|o, — f|looc — O for n — oo. This follows from
on, = f x I, using Theorem 1.6.3.

Corollary 1.6.5 (The Uniqueness Theorem) If f,g € LYT) have the same
Fourier series, i.e., the same Fourier coefficients, then f = g almost everywhere.

By assumption we have f* F,, = g* F,, which approaches f as well as g in £!(T),
hence f = g in L}(T).

Theorem 1.6.6 The Fourier series for an arbitrary f € LP(T), 1 < p < oo, is
summable in LP(T) with sum f.

Corollary 1.6.7 (Weierstrass’ approximation theorem for periodic functions)
For every continuous function f : R — C with period 2 and every ¢ > 0 one can
find a trigonometric polynomial p such that

VeeR:|f(x)—plx)| <e.

For p one can use the n’th average o,, of the partial sums of the Fourier series for f
for suitably large n.

It was the Hungarian mathematician Leopold Fejér, (1880 — 1959), who first
applied summability theory to Fourier series. (Untersuchungen iiber Fouriersche
Reihen, Mathematische Annalen 58 (1904), p. 51-69). This paper was preceded by
a paper in Hungarian from 1900, when he was 20 years old. Fejér also proved the
following:

Theorem 1.6.8 If f € LYT) is continuous in a point v € R, then the Fourier
series for f is summable in this point with sum f(x), i.e.,

on(x) = fx Fy(z) = f(x) for n — oo.

As in the proof of Theorem 1.6.3, we find

£ Fua) = @) < 5= [ 1@ =) = )] Fulo) dy

hence for 0 < d < 7

[fo Fal@) = f@)] < —/ f(z —y) = f(2)| Fuly) dy+
1 1
L B L i
27 6<‘y|<ﬂ|f($ y)| Fnly) y+2ﬂ 5<‘y|<7r|f(:t)|F (y) dy
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The first term can be made smaller than a given € > 0 by chosing § small-this is
possible by the continuity of f at . Once § > 0 is chosen, the third term tends
to zero for n — oo by property (c) of a Dirac sequence. Finally, using (1.6.6) the
middle term can be majorized by

2
T
sup(F,(3)]0 < Iyl < w1 < o=
which tends to 0 for n — oco. [

Inspired by Fejér’s results, Henri Lebesgue (Sur la convergence des séries de
Fourier, Mathematische Annalen 61 (1905), p. 271-77) showed:

Theorem 1.6.9 (Fejér—Lebesgue’s theorem) The Fourier series for f € L(T)
is summable with sum f(x) for almost all z, i.e.,

o) = [ * Fulw) — ()
for all x € R with the exception of a Lebesgue null set.

The proof depends on Lebesgue’s theorem on differentiation. For a locally inte-
grable function f : R — C, we define the set L(f) of Lebesgue points as those = € R
for which

4
lim 2%/_5 f (= 1) — f(x)] dt = 0. (16.7)

Lebesgue proved that R \ L(f) is a null set, i.e., that almost all  are Lebesgue
points. We will not prove this result, but use it to prove the following result:

Lemma 1.6.10 For a locally integrable function f and any a € R, the definite
integral

Fa) = / ")t (16.8)
is differentiable with F'(z) = f(x) for all x € L(f).

Proof. We find

. B " 49
Fa+d) FT>_ﬂ@:§1:<ﬂw—ﬂwmu

so the right-hand side is majorized by

1 0
5 [ e =0 fla
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and similarly

F(z)—F(zx -9
4]

Vot <5 [0 fala

both of which approach 0 for 6 — 0 by (1.6.7). A proof of Lebesgue’s result can be
found in [9, Chap. 7]. O

We will now make use of Lemma 1.6.10 to give a proof of the Fejér-Lebesgue
theorem by showing

f*Fy(x) — f() for x € L(f).

We have
1

T o

[ Fole) - f(z) / (et t) + Fe— t) — 2f(x)) Fu(t) dt,

and we next split the interval of integration at ¢t = % From the expression

Fu(z) = 1+2§; (1 - nil) cos (k)

we see immediately that F,(z) < F,,(0) = n + 1, and using (1.6.6) we obtain with
g(t) = fle+1) + f(x —t) = 2f(x)

2T 2

1
ntl [= m " lg@)]
x F,(x) — < t)| dt + / dt. 1.6.9
2B = f@) < 5 [Tl 5 (169)
Introducing the continuous function

Glu) = / o) dt,

we have for u > 0

A <o [0 - sl

2u ~ 2u —u

which tends to zero by (1.6.7). We can evaluate the second term in (1.6.9) by partial
integration, so the right-hand side of (1.6.9) can be written

n+1 1 s Gt)]" T T G(t)
27 G(n)+2(n+1){t2 ]l+n+1/ t3 d.

1
n

Since

ognc;(l) gn/_%l|f(:c—t)—f(:c)|dt—>0

n
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by (1.6.7), we only need to show that

lim 1 / G(t) dt = 0.
t3

For a given € > 0 it is possible by (1.6.7) to determine § > 0 such that

0<G(t)<te for 0 <t <é.

For n > % we therefore have

1 TGt 1 0 et 1 TGt
/ <)dt§ Sat+ / ) 4
n+1 /1 3 n+1 /)1 t3 n+1J)s 3

£ 1 1 T G(t) 1 T G(t)
= — dt < dt
n+1<n 5)+n+1/5 t3 _E+n+1/5 B3

which is < 2¢ for n sufficiently large. O

We shall now apply the theory of summability to prove Dirichlet—Jordan’s test.
The proof depends on a “Tauberian theorem”, i.e., a theorem of the form

> a, is summable with sum s

. = Z a, is convergent with sum s.
+ condition on a,,

The first example of this type of theorem is due to Alfred Tauber (1866 — 1942
7).

Theorem 1.6.11 (Hardy’s Tauberian Theorem (1909)) If a series Y " a, is
summable with sum s and the sequence of numbers (n a,,) is bounded, then the series
s convergent with sum s.

Proof. We assume that lim o, = s and |na,| < A and shall show that lim s, = s.
n—o0 n—oo

Recall that s, = a9+ ...+ a, and (n+ 1)o, = so+ $1 + ... + sp.

For ¢ > 0, there is an N such that |s — 0,| < e forn > N. Forn > N + 1 and
p > 1 it holds that

(N +P)0nip-1—N0On1 = Sn+ Sng1 + -+ + Snyp-1,

therefore
(0 +p)(Onip-1 = 8) = n(0n-1 — 8) = p(s, — 5) + R, (1.6.10)
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where
R = (Sn41—8n) + (Snt2 = 8n) + . + (Sngp-1 — Sn)
= nt1 + (Qng1 + Gny2) + oo (Qpp1 + Ao + oo F Angp1)-

The terms a; above are all numerically smaller than or equal to A/j < A/n and
their number is %p(p —1). Consequently,

Ap(p—1
IR| < M’
2n
so from (1.6.10) we obtain
plsn —s| < (n+p)|opip-1 —s| +nlon_1 —s|+ |R| (1.6.11)
Ap(p—1
s A=

or

2 Alp—1
\sn—s\g(?n—i-l)e—i—% for n>N+1,p>1.  (1.6.12)

We would like the right-hand side to be small, so we choose p such that it becomes
as small as possible. The function

(0%
cp(p) = E + Bp+77 where Q, /8 > 07

has a minimum in ]0, oo for p = \/% . We shall therefore choose p = 2n,/5, but

since p shall be an integer, we choose the integer p such that

27”/ <p<2n1/ + 1.

With this value of p, (1.6.12) yields

A
|sn — s] < <\/€+1>8+A1/%:8+2\/A8 for n>N+1, (1.6.13)

and since € + 2v/ Ae — 0 for € — 0, it follows that s, — s for n — co. [

Proof of Dirichlet-Jordan’s test (p. 18).

We note first that the Fourier series is summable with sum £(f(z+0)+ f(z—0))
for all x. To see this, we evaluate as previously:

S +0)+ fr—0))
= o [ Ut 4 I —y) By dy — (7@ +0) + [z~ 0))

0

_ /+/ (2 +y) = fl@+0)+ f(z—y) — f(x = 0)] Fuly) dy.

on(x) —
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For a given € > 0, we choose first a 6 > 0 such that
flaty)— fa£0)|<e  for 0<y<a,

and with this § > 0, the absolute value of the integral over [0, d] can be majorized
by . A function of bounded variation is in particular bounded, so we obtain

o) = 3G+ 0+ fo - o)l <+ = [ R ) ay

and the claim becomes evident.

To apply Hardy’s Tauberian Theorem, it is sufficient to show that the sequence
of numbers

n(cnem:v 4 c,neﬂm)
is bounded for every z. It is even uniformly bounded in x, since we show

v
2 )

Inc,| <

where V = V[O,Qﬂ(f).

For n # 0, we set h = 7/|n| and evaluate 2mc¢, in the following way:
2h 2 )
27Tcn:/ + +...+/ f(x)e ™ dx
2m—h

0
/h
0

h
= /0 [f(z) = fx+h)+ f(z+2h) —+...— f(z + (2]n] — 1)h)] e """ du,

h
h
[f(ZL‘) efinm + f(l‘+ h) efin(erh) 4+ f(ZL‘ + (2|TL| . 1)h) e*in(m+(2\n|71)h)] dx

hence

In|—1

h
27| ¢y | S/O Z |f(z+2jh) — f(z+ (2§ + 1)h)|| de < Vh,
=0

since the integrand is <V for x € [0, h]. We therefore obtain |¢,| < %

We note finally that if f in addition is continuous in [a, b], then
lon(x) — f(z)] = 0  uniformly for z € [a, b].

This follows by examination of the proof of Theorem 1.6.8. Since the boundedness
condition in Hardy’s Tauberian Theorem holds uniformly for z € R, it follows from
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(1.6.13) that s,(z) — f(z) uniformly for = € [a, b], i.e., the Fourier series converges
uniformly in [a, b]. O

Exercises

E 6.1 Consider Definition 1.6.2. Show that if (a) and (b) are fulfilled for (k)
and (c¢’) holds for a §; €]0, 7], then (¢’) holds for every dy € |01, 7[. It is therefore
sufficient to know (c’) for arbitrarily small delta.

E 6.2 Let f be a periodic function of bounded variation over [0, 27]. Show that
|50 (2)] < || flloo + Vio,2m(f) for all n € N, x € R, i.e., the partial sums of the Fourier
series are uniformly bounded.

Hint: |o,(x)] < [|f]l and find an estimate of s,(x) — o, (x).

E 6.3 Show that if f is periodic and of bounded variation over [0, 27|, then the
Fourier series is strongly convergent in £!(T), i.e., || f — sn|l1 — 0.

E 6.4 For f € L1(T) consider the operator Tf from Exercise E 1.3 as an operator
on the Banach space L*(T). Prove that the operator norm |7y is equal to || f|1.

1.7 L’-theory and Parseval’s identity

The theory is probably known from an introductory course on Hilbert spaces, and
we shall therefore treat it summarily and restrict ourselves to emphasizing some
important points.

It is crucial that L*(T) is a Hilbert space and that {e,(z) =€ |n € Z} is an
orthonormal basis herein. While it is elementary that {e,, | n € Z} is an orthonormal
system, being an orthonormal basis means in addition that if f € £2(T) is orthogonal
to all the vectors e, then f = 0, or equivalently that the space span{e, | n € Z} of
trigonometric polynomials is dense in £?(T). That this is true is non-trivial, and it
follows from Weierstrass’ approximation theorem, cf. Corollary 1.6.7.

The n’th partial sum s,(z) for f € £*(T) is the orthogonal projection on the
2n + 1 dimensional subspace F, = span {eik"” | —n<k< n} The Pythagorian
Theorem entails that

I3 = 11F = sall3 + Nsalls = ILf = sall3 + D lewl. (1.7.1)

k=—n

From this equation it is completely elementary that
. _ _ 2 _ 2
T [[f = sala=0 & [fE=lal (1.7.2)
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i.e.,

Parseval’s identity ||f]|3 = Y. |ck|* holds if and only if the Fourier series
converges in L*(T).

To see that these properties are fulfilled, we proceed as follows:

The n’th average of the partial sums
- || ik
n= > (1=
e ( Y e

belongs to F, as well as s, but since s,, is the best approximation of f from FE,,, we
have

1 = snllz < [If = onll2-

The last term approaches 0 by Theorem 1.6.6 for p = 2, and thus also || f —s,||2 — O.

Parseval’s identity goes back to 1799, but Parseval did not give a proper proof.
The theory obtained a decisive rounding-off with the Lebesgue integral which made
it possible to prove that £2(T) is complete, cf. Fischer’s completeness theorem. A
closely related result is

Theorem 1.7.1 (Riesz-Fischer’s Theorem (1909)) To a sequence (¢p)nez of
complex numbers satisfying > . |cn|* < oo there exists a function f € L*(T) with
Fourier series

and such a function is uniquely determined almost everywhere.

The proof is simple: The sequence s, = >.,__ ¢ e is a Cauchy sequence in

L?(T) because )

n-+p

lsnip = snlls = D (lexl® + lesl?)

k=n+1

and since £%(T) is complete, s, — f for some f € £L2(T), which can easily be seen
to have the Fourier coefficients (c,). O

Exercises

E 7.1 Find the Fourier series for f € £L}(T) given by

fz) =

x for —m<z<m
0 for z=m,
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and show that it converges pointwise to f(z) for all x € R.

Prove that

E 7.2 For n € Ny let

be a trigonometric polynomial of degree < n.

1°. Show that ||.S]||2 < nl||Sy||2-

2°. Find all the trigonometric polynomials of degree < n for which there is
equality in the inequality in 1°.

1.8 The Fourier coefficients considered as a map-
ping

Considering the Fourier coefficients (c,) = (c,(f)) for f € L(T), we have a mapping

C : LYT) — Co(Z) given by

C(f)(n) = en(f) = %/O @) dr,  nel (1.8.1)

Here Cy(Z) denotes the set of sequences (¢,)nez of complex numbers satisfying
¢n — 0 for n — foo. (We can also view Z as a metric space with the discrete
metric. Then Z becomes a locally compact Hausdorff space where each subset
of Z is open and closed. We can thereby view Cy(Z) as the space of continuous
functions C' : Z — C vanishing at infinity). Since two functions which are equal

almost everywhere have the same Fourier coefficient, we can consider C' as a mapping
C: LYT) — Cy(Z).

Theorem 1.8.1 If f, g € LY(T) possess the Fourier series

f ~ E e ema:7 g~ E dn emﬂc7

then we have

(i) [+g~ 3 (cn+dy)e™,
(ii) Af ~ > Acpe™, A eC,
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(iii) fxg~> c,d,e™

Stated differently: C': L'(T) — Cy(Z) is an algebra homomorphism.

Proof. Only (iii) is non-trivial. By Fubini’s theorem we obtain

en(frg) = i/zﬂf*g«c wedn= oL [T [T i o dye s

- /%/ Flz = y) e da) g(y) e vy

~ 21, Cn(f)g(y) e ™ dy = cu(f) cul9)-

g

Remarks 1.8.2 1) Introducing an involution ~ in £}(T) by f(z) = f(—z), we

can see that
fr > Ee (1.8.2)

since

i =g [ T = [ e man =60

Complex conjugation is an involution in the algebra Cy(Z), and (1.8.2) can be
expressed that C' respects the involution.

2) The Uniqueness Theorem (Theorem 1.6.5) can be expressed that C' is injective.

3) Since sup |c,(f)| < ||f]l1, we have that C' is norm diminishing as a mapping

of the Banach space L'(T) into the Banach space Cy(Z). We can add that
1]l < 1.

4) Riesz-Fischer’s and Parseval’s theorems can be expressed that C' maps L?*(T) C
LY(T) bijectively onto ¢*(Z) C Cy(Z), and that the restriction of C to L*(T)
is an isometric isomorphism onto (?(Z).

5) C maps the trigonometric polynomials onto those sequences ¢ € Cy(Z) which
only are # 0 for finitely many n. This subspace of Cy(Z) can be understood
as the continuous functions on Z with compact support.

It can be shown that [|C|| =1 in 3) above, see E 8.1.

From 5) follows that C(L'(T)) is a dense subspace of Cy(Z). It is obvious to ask
if C' is surjective. We shall see that it is not, c¢f. Remark 1.8.5. This gives rise to the
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question if one can say something about how quickly ¢, — 0 when (¢,) are Fourier
coefficients for an integrable function. Here the answer is that there are Fourier
coefficients which approach 0 arbitrarily slowly for n — 4-co. The consensus among
specialists is that it is impossible to give a descriptive characterization of C(L'(T))
as a subset of Cy(Z).

The following sufficient condition for a sequence ¢ = (¢,) to belong to C'(L'(T))
is often useful.

Theorem 1.8.3 Let ¢ € Cy(Z) be a sequence with the properties

(i) ¢, >0, neZ,
(ii) c_y =Cn, mnEZ (cisan even function on Z),

(111) 2¢, < ¢p1+ Cpy1 forn > 1 (¢ is convex on Z. ).

Then there is an f € LL(T) with ¢,(f) = ¢,, n € Z.

Proof. Condition (iii) gives ¢, — ¢py1 < Cpo1 — Cp, 1€, (¢ — Cpy1), n > 018
decreasing and approaches 0, the latter because ¢,, — 0. It follows that ¢,, —c,11 > 0
for n > 0.

For £ > 0 we choose an N such that ¢, <e/2 for n > N. For p > 1 we obtain now

cn —cnyp = (env —eny1) +(envyr —eng2) + o+ (Evipo1 — Cnap)
> p<CN+p71 - CN+p)7
or when p > N

N+p-1 2p—1
(N4 = Doy = eey) € = —(en —ewey) < =

CN >

We thus have
k(cy — cry1) < e for k>2N —1,

which shows that lim n(c, — ¢,41) = 0. It follows that
n—o0

n

D k(cror + errr —2c) = Y (k(ckor — ) +cx) = ((k+ 1) (ck — o) + crp1)
k=1 k=1
= co— ¢ —n(c, — Cua1)

converges to ¢g for n — oo. Notice that the sum above is telescoping.
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Consider now the infinite series

Z n(cn_1 + cny1 — 2¢,) Frq(2), (1.8.3)

n=1

where F), is Fejér’'s kernel. The terms are non-negative continuous functions, and
therefore the sum f(x) is a non-negative Borel function, possibly infinite at certain
points. (As the limit of an increasing sequence of non-negative continuous functions,
f is actually lower semi-continuous.) By the monotone convergence theorem

1 2w

2m Jo T

n=1

o0 1 2
f(x)de = Zn Cn-1+ Cnt1 —20n)2—/0 F,_1(x)dx

(
= Z n(cn_1 + Cpy1 — 2¢,) = co,

n=1
so f € L1 (T). The partial sums s, of (1.8.3) converge to f in £!(T) by Lebesgue’s
theorem about dominated convergence.

The j’th Fourier coefficient for s,, is

Cj(Sn) = Z k(ckfl _'_ Ck+1 - 261{))%/ Fk71<x> e*l_]:L' d:L’,
k=1 o
and
) 17|
— | Fia(x)e " dr = k
o 0 for |j| > k.

for |j|<k-1

For n > |j| + 1 we therefore obtain

cj(sn) = i k(ch_1 + crp1 — 2ci) (1 _ %)

e
= Y keea e —20) = il D (1 — ) = (e — x1))
S p Bl 41
= D (ke — ) + ) = ((k+ 1)(cx = car) + i)
K=l
—5l D ((er1 = ex) = (ex — cain))
k741

= (71 4+ D) (e = eyer) + i) = (0 +1)(en = Cngr) + Cnga)
—1] ((Clj\ - C\j|+1) —(cn — Cn+1))
= ¢+ |jl(en — 1) = nlcn — coy1) — can

36



by employing telescopic sums. For n — oo this expression converges to cj;. Since
sp — [ in LY(T) we get ¢;(s,) — ¢;(f) for n — oo because

¢ (f) = ¢i(sn)l < |IF = snllr-
This gives ¢;(f) =cjjj=c¢;for jeZ. O
Example 1.8.4 If ¢ : [0,00] — |0, 00] is a decreasing convex function tending to

zero at infinity, then ¢, = ¢(|n|) will fulfill the conditions in Theorem 1.8.3. The
theorem can be applied to

a) @(x):ﬁ, a>0
b) @(x):m for a > 1.

If ¢ is only defined on the open interval |0, oo[, like p(x) = 1/log(1+z), but still has
the same properties, we can put ¢, = ¢(|n|) for n # 0, and we then have to choose
co > 0 such that ¢y +co > 2¢q. In particular, we obtain that the trigonometric series
with

1 2
= >1, > . —1.97..),
¢ ¢ log(n + 1) "= “ log2 log3 ( )
ie.,
co+ 2 i _cos(nz) (1.8.4)
0 — log(n + 1) e

is a Fourier series for a function f € £} (T). Since )" ¢2 = 0o, we know furthermore
that f ¢ L*(T). The series (1.8.4) is clearly divergent for z = 0 and convergent
(alternating series) for x = m. We shall see later that the function f is continuous
on |0, 27[, cf. Sec. 1.9.

What can we say about the corresponding sine-series?

Z 1 sin(nz) (1.8.5)

We shall see later (Sec. 1.9) that (1.8.5) converges for all  and the sum function

is continuous on ]0,2x[, but it is not integrable over [0,2x]. This follows from
C 1

Theorem 1.9.3 below because Z

> m = oo (cf. the integral criterion).
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Remark 1.8.5 The properties of the function (1.8.5) show that the sequence

0, n=>0
Cp =
sgn(n) R

log(n + 1)

belongs to Co(Z) \ C(LY(T)), i.e., C is not surjective.

Exercises

E 8.1 Show that C': £Y(T) — Cy(Z) has norm ||C|| = 1, cf. Remarks 1.8.2 no.
3).

E 8.2 Show that ¢(x) = 1/log’"(a, + ) is a positive, decreasing and convex
function on [0, co[ with ¢(z) — 0 for z — oo, provided a,, > exp°”(0). Here is
log®?(x) = log(log ), and in general log®"(z) = log(log® "~ (z)). Correspondingly,
exp®”(z) = exp(exp®™ Y(x)). [In this way, we can construct decreasing convex
functions which approach 0 very slowly, and by Theorem 1.8.3 this yields functions
in £1(T) for which the Fourier coefficients approach 0 very slowly].

1.9 Some simple trigonometric series

We shall consider pointwise convergence of a trigonometric series of the form

i)\n e (1.9.1)
n=1

where (A,)n>1 is a decreasing sequence of positive numbers approaching 0. This is
equivalent to considering the two real-valued series

Z An cos(nz), Z A sin(nz).
n=1 n=1

Theorem 1.9.1 Let (\,) be a decreasing sequence of positive numbers satisfying
lim A\, = 0. Then the trigonometric series (1.9.1) converges for x # 2pr, and it
converges uniformly on [0, 2w — 0] for every 0 < § < 7.

Proof. Defining
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we have
2 1 1
— = — < -
|1 —e |  sin§ ~ sin

|A,(z)] < for = € [0,2m — 4.

5
2

We next use a technique for infinite series which is analogous to integration by
parts:

n+p p
Z A et = elne (Anﬂz‘h(ﬂf) + Z Atk (A () — Ak1<x))>
k=n+1 k=2

p—1
— i (Z Ak($)()\n+k — )\n+l{;+1) + )\n—f—pAp(fL')) )
k=1

therefore for x € [§, 21 — ¢]

E ikx 2 : _ And
)\k € S sin & ( ()\nJrk - )\n+k+1> + )\ner) = Sin—z’ (192)
k=n+1 2 \k=1 2

where we have used that A\, 1, > 0, \y1x — Apir1 > 0. From this estimate it follows
that the series is uniformly convergent in the interval [0, 27 — 4]. U

The theorem shows that the sum of (1.9.1)
fla) =" Aem (1.9.3)
n=1
is a continuous function on R \ 27Z. The real part
Z An cos(nx)
n=1
converges for = 2pm precisely when > " A, < oo, but the imaginary part

Z A sin(nx)
n=1

converges trivially with sum 0 for z = 2pm.

We shall now give a sufficient condition on the sequence (\,) which ensures that
the function (1.9.3) is integrable.

Theorem 1.9.2 Let (\,) be a decreasing sequence of positive numbers with lim \,, =

0. ]fZ)\n/n < oo, then f defined by (1.9.3) belongs to LY(T) and
1

o0 )\n
<2 —. 1.94
Inh <237 (19.4)
The Fourier series of f is Y oo | A\,em™™.
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Proof. Since f(—x) = f(z), it is sufficient to estimate [; |f(z)|dx.
A, =M +...+ )\ and find

k 00
f(.ﬁl]) _ Z A, einm + Z A, ein:v
n=1

n=k+1

hence by (1.9.2) (since we can let p — 00)

At
2

1
lf(z)| < A+ =
sin

Using sin § > £ for x € [0, 7], see (1.6.5), we get the estimate

2
T
|f(z)] < Ap+ —)\k+1 < Ap + X (kB + 1),

where the last inequality is because x > 7. We finally get

+1

We let

[ =3 [ i (“m) e Al L)

P w/(k+1)
- T Y i <o)
— k(k+1) P -
To show the last assertion, it is enough to prove that s, (z) = > ;_, Ae'™ converges

to f in L£Y(T). We find

oo
If =salli =1 > Me®™lh

k=n-+1

oo oo L
= 1D Awge <2y =H

j=1 -/

by (1.9.4) applied to the sequence A,4;,7 =1,2,.... We claim that

o0

An
Z ﬂ—)O for n—

=1 7

because of dominated convergence for sequences. In fact, A\,;;/j — 0 for n — oo

and \,4;/7 < A;/7.

Theorem 1.9.2 has a partial converse concerning sine-series.
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Theorem 1.9.3 Let (\,)n>1 be a decreasing sequence of positive numbers such that
lim A, = 0. Then the sine series

Z A sin(nz) (1.9.5)
n=1
converges to a function S € LY(T) if and only if

i Moo (1.9.6)

n
n=1

If (1.9.6) holds, then (1.9.5) is the Fourier series of S.

Proof. We know that S is the imaginary part of the function f from Theo-
rem 1.9.2, hence integrable if (1.9.6) holds, and (1.9.5) is the Fourier series of S.

Assume next that the sum S of the series (1.9.5) is integrable. Since S is an odd
function, its Fourier series is a sine-series.

For fixed m € N the series Y ° | A, sin(nx)sin(ma) converges uniformly to
S(z)sin(mx) for 0 < x < m. In fact, for any n,p € N and 0 < z < 7 we find

n+p n+p
| Z A sin(kz) sin(ma)| < |sin(mz)| |[Im ( Z Ape® )
k=n+1 k=n+1
mxA < Appimm
sin(z/2) = "

where we have used (1.9.2) and (1.6.5). From the uniform convergence we get

2 [T N
= / S(z) sin(mx) de = Z An— / sin(nx) sin(mz) de = Ay,
0 n=1 TJo

™

which shows that (1.9.5) is the Fourier series of S.

The definite integral F(x fo t) dt is continuous, and it is periodic because
27T s
F(x+27m) — F(x) :/ S(t)dt:/ S(t) dt = 0.
It is also easy to see that F'is even, so its Fourier series is a cosine series

o

% + ; a, cos(nx).
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For n > 0 we find by Fubini’s theorem

a, = ;/OW(/: S(t) dt) cos(nz) de = %/OW(/: cos(nx)dx) S(t) dt
= —% /07T S(t)sin(nt)/ndt = —%.

According to Fejér’s theorem 1.6.8, the Fourier series for F' is summable for t = 0
with sum 0, but since |na,| = A, is bounded (it approaches 0 for n — oo), Hardy’s
theorem 1.6.11 shows that the series

PRI

is convergent with sum 0. In particular,

oo)\n QAo 1 T
0< —=—=— [ F(z)dr < 0.
_;n 5 7T/o (x)dxr < oo

O
E le 1.9.4 )\ 1 > 1
ample 1.9. =
The function
0 ein:v
= _ 1.9.7
f(z) ; log(n + 1) ( )

is continuous on R\ 27Z; it is not integrable because Im(f) ¢ L(T) by Theo-
rem 1.9.3, but Re(f)(x) is integrable, see (1.8.4).

1
Example 1.9.5 )\, =—, a>0.
nCM

The function

flo)=>Y_ enzw (1.9.8)

n=1

is continuous on R\ 27Z and belongs to £!(T), since > == < co. The series is
not absolutely convergent for 0 < o < 1.

Example 1.9.6

o . 1
3 sinz) - Lo 0<az<on (1.9.9)
~ n 2
3 costna) - _y, (2 sin g) . 0<a<om (1.9.10)
n

=1

3
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To see these formulas we use the principal logarithm Log which is holomorphic
in the cut plane C\] — 00, 0] and we know that

o Zn
—Log(l —z2) = — <1
w1-2=3 " I
Setting z = rel?, 0 < r < 1, we have
. i rv .
I 1 — 0 — S U
og( re ) ; —e,
and this series converges uniformly in § when r < 1. In particular,
L in(1 472 = 2 cosh) irn (nf)
——1In r“ — 2rcos = — cos(n
2 “n ’
. > rh
—Arg (1 —re?) = — sin(nf
rg (1 —re") ; - sin(nd),
where Arg is the principle argument taking values in | — 7, 7[. For r — 1~ we find

1 0 ; 1
—5 In(1+ 7% — 2rcosf) — —In(2sin 5), —Arg (1 —re’) — 5(7r —0),

both for 0 < # < 27. In addition to pointwise convergence, we have convergence
in £Y(T). This follows from Lebesgue’s theorem on dominated convergence, and
thereby 1(7 — z) and —In(2sin £) have the given Fourier series.

Exercises

E 9.1 Show that the dominated convergence theorem can be used above.

1.10 Absolutely convergent Fourier series

If f € £Y(T) has an absolutely convergent Fourier series, i.e., if Y |¢,| < oo, then
the series > ¢, €™® converges uniformly for § € R to a continuous periodic function
g by Weierstrass’ M-test. Moreover, ¢,(g) = ¢,(f) for all n, thus by the Uniqueness
Theorem 1.6.5 we have f = g a. e. We can therefore say that f is equal to a
continuous function a. e., or, in other words, we can change f on a null set such
that it becomes continuous.

We define now
A(T) = {f e O(T) ] S el )l < oo} , (1.10.1)
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which clearly is a subspace of C'(T), stable under complex conjugation. Furthermore,
A(T) contains all trigonometric polynomials. We see below in Corollary 1.10.4 that
CH(T) c A(T).

We can also write
{fE[,l |C()€€1(Z)}.

We note now that ¢'(Z) has a convolution structure. If a,b € (*(Z), ie., if
> lan] < 00, > |by| < 00, then

= by, nELZ (1.10.2)

defines a new sequence in ¢'(Z). In fact, the series (1.10.2) is absolutely convergent
for every n because

> len-sbil < (suplaul) 3 Il = llallc bl < oo,

kEZ kEZ
and
Sl <Y (z s bk\) S S el = 3 bl S el — s < o
nez nez keZ keZ nez keZ nez

In other words: (1.10.2) defines a composition rule % which is called a convolution
in ¢}(Z), and it holds that

(a*b)y =Y an il (1.10.3)

kEZ

We leave to the reader to verify that ¢1(Z) is a commutative Banach algebra.

Note the analogy to L'(T) with respect to convolution. The crucial aspect for
the construction is the group structure on Z resp. T and the translation invariant
measure on Z and T, namely the counting measure and Lebesgue measure. The
special sequence dy given by (dg), = 1 for n = 0 and = 0 for n # 0 is a unit element
with respect to x.

Theorem 1.10.1 For f,g € A(T), we have fg € A(T) and C(fg) = C(f) * C(g).

Proof. We calculate

2 (CU)* Clon, e =2, (Z cas(f) cilg) )

neZ neZ kEZ
=Y <Z Cnie(f) 61(""“””) e*en(g) =Y fla)er(g) €M = f(a)g(x)
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Remark 1.10.2 There exist functions f € C(T) such that f ¢ A(T), since there
are f € C(T) for which the Fourier series is divergent in certain points, cf. Theo-
rem 1.11.3.

Lemma 1.10.3 If f is periodic and differentiable with ' € LY(T), then c,(f") =
inc,(f), i.e., the Fourier series for f' is found by termwise differentiation of the
Fourier series for f.

Proof. This is a simple consequence of partial integration because

an(f) = / fl(t)ye ™ dt = {f() —in] / f(t) (—in) e ™ dt

= inc,(f

t

Corollary 1.10.4 If [ is periodic and differentiable with ' € L*(T), then f €
A(T). In particular, C*(T) C A(T).

Proof. Since £*(T) C £L(T), we know by Lemma 1.10.3 that ¢, (f") = inc,(f),
so by Parseval’s equation we find

[e.9]

1F13 = linea(£)” < 0.

—00

An application of the Cauchy-Schwarz inequality yields

> ea| = Z|ncn| (Zn2|cn|2> ; (Z ;)1/2 < 0.

n#0 n#0 n#£0
]

Another consequence of Lemma 1.10.3 is that if f € C(T), then ¢,(f®)) =
(in)*c,(f) and hence by the Riemann-Lebesgue lemma

n*c,(f) =0 for |n| — oo for all ke N. (1.10.4)

The Fourier coefficients for f € C*°(T) therefore approach 0 faster for |n| — oo
than n=* for every k. Sequences with the property (1.10.4) are called rapidly
decaying sequences. They are the discrete counterpart to the Schwartz functions,
which will be discussed in Chapter 2. Conversely, we shall now see that these
sequences are precisely the Fourier coefficients for functions in C*(T).
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Theorem 1.10.5 Every rapidly decaying sequence (¢, )nez 1S the Fourier cofficients
of a function f € C(T).

Proof. We note first that (n*c,) € (*(Z) for every k € Ny. In fact, since
n**2¢, — 0 for |n| — oo it is bounded and therefore [n*c,| < A/n* for n # 0
and some A > 0. We can therefore find f; € A(T) such that

fr(x) = Z(in)kcn e r € R, k €Ny,

nel

and each of these series are uniformly convergent on R. By a well-known result of
analysis, we see that each f; is a C''-function with f] = fr.1, but this shows that

f=foeC=(T).
U

Let us now consider a function f € C'°°(T) which can be extended to a holomorphic
function in a band

S:SR:{z:x+iy’|y|<R}

around the real axis. The functions e, n € Z are examples of this. They can even
be extended to the entire C.

We note first that f : S — C becomes periodic in S, i.e.,

fz+2m) = f(2) for z € S, (1.10.5)

since the function f(z+2m)— f(z) is holomorphic in S and identically 0 on R, hence
identically 0 in S. For every yo € R with |yo| < R the function x — f(z + iyo) is
therefore a periodic C'** function. We will find its Fourier series. We apply Cauchy’s
integral theorem to a rectangle R with sides y =0, y = yo, x = 0, © = 27.

1Yo < 2m + 1y
\4 R N
> .
0 - o

Figure 1.3: The figure shows gy, > 0, but it is possible that —R < 4y < 0
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We obtain

/ f(z)e ™ dz =0,
OR

or
2T . % | |
/ flz)e™ do + i/ F2r +it) e @Y gy
0 0
27 . . " N
- / fl +iyo) e da + / F(it) e g,
‘ 0

From (1.10.5) it follows that two of the terms are equal, and we find

cn (f(x)) = €™ e (f(z +iyo)) - (1.10.6)
This shows that
flz+iyo) = Z cn(f) e o e = Z cn(f) enetivo)

i.e., the Fourier series for f(z + iyo) can be derived from the Fourier series of f by
formally replacing x by x + iyy. We have now

Theorem 1.10.6 Let f : S — C be holomorphic in the band S and periodic with
pertod 2m. Then the series

o0

)= ee™ e =calf) (1.10.7)

n=—oo

converges uniformly over compact subsets of S and for every r, 0 < r < R, there
exists a constant K, such that

len] < Ky e, n € 7. (1.10.8)

Proof. For an arbitrary compact set L C S, there exist 0 < r < Rand ¢ > 7
such that L C L := {:c +iy ’ lz| <2, |yl < 7’}. From (1.10.6) we obtain for n > 0

el = e len (fla = i) < e max|f(2)],
eoal = € e (Fla+ i) | < € max | £(2)]

which shows (1.10.8). If we choose € > 0 so small that r +¢ < R, we have for z € L

e €7%] < |ep| el < emIPle e | el He) < eInle f¢ L
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and this shows that Weiersstrass’ M-test can be applied to (1.10.7). U
Exercises

E 10.1 For ¢ = (¢,) € (*(Z) define ¢, = ¢, for n € Z. Show that ¢ — ¢ makes
(*(Z) to a Banach algebra with involution.

E 10.2 Show that if f,g € £3(T), then f* g € A(T).
E 10.3 Let (¢,)nez be a sequence such that
lep| < K e Binl n € Z,

for appropriate K, R > 0. Show that there exists a holomorphic periodic function f
in the band Sk = {x + iy ’ ly| < R} such that the restriction of f to R has Fourier

coefficients (¢, )nez.-

E 10.4 Show that the convergence in (1.10.7) is uniform over all subbands S, of
S =Sk when 0 <r < R.

1.11 Divergence of Fourier series

We begin by considering the £!-norm of Dirichlet’s kernel D,,.

Lemma 1.11.1 The 1-norm of the Dirichlet kernel tends to infinity with n because
of the estimate

1 [7 4
IDulli= 5= [ 1Dutolat= 53" 1

2 J_.

Proof. For > 0 we have sin § < 3, hence

1 ™ 1 ™ : 1 t 2 T . 1 +
MMM=%/'|<nﬁ / %@ijwﬁ>_/lﬂﬁiguﬁ
. O

! m t
2 [ta)m |smu| |smu| 2 <~ 2
-2 SO0 NS

S1n 5

Lemma 1.11.2 For every g € C(T) let L, : C(T) — C be defined by

1 2m
Ly(f) = g/ f)g(t)ydt,  feC(T). (1.11.1)
0
Then Ly is a continuous linear functional with norm || Ly|| = ||g]}:.
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Proof. It is clear that L, is a linear functional and since

|mm<ilﬂmmmw§mmwh

~ 27
we get

2yl = sup {ILo (NI 1710 < 1} < llgl

That the inequality sign holds can be seen as follows: For ¢ > 0 we set f.(t) =

g(t)/(lg(t)| + €) which is continuous and || f.||«c < 1. Therefore

1 27 gt 2 1 2T g t 2—52
HMQ%%F—J‘LﬁLﬁy— lg@)* - &
or Jo g +e T 2m )y lg(®)] +e

1 2w
~ o ), (lg(@)[ =€) dt = ||g[ls — .

t

Theorem 1.11.3 For every xy € R there exists f € C(T) for which the sequence
of partial sums (s,(f)(xo)) of the Fourier series al xo is unbounded.

In particular the Fourier series of f is divergent in the point xy.

Proof. The proof is given by contradiction. Supposing the assertion of the theo-
rem to be false, there exists x such that for all f € C(T) the sequence (s, (f)(zo))
is bounded. Remember that

1 2m
Sn(f) (o) = 2—/ f(xog —t)D,(t) dt.
T Jo
Since we obviously have

{t= flao -] fecm}=cm),

it follows that the sequence

Lif) =5 [ 50D

is bounded for all f € C(T). This means that we have a sequence L, = Lp, of
continuous linear functionals on C(T) which is pointwise bounded, i.e., (L,(f)) is
bounded for each f, but ||L,|| = ||D,||: is unbounded and this is in contradiction
with a general result from functional analysis called the Banach—Steinhaus theorem
or the uniform boundedness principle:
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Theorem 1.11.4 (Banach-Steinhaus) Let E be a Banach space and L,, : E — C
a sequence of continuous linear functionals which is assumed to be pointwise bounded,
i.e., for every x € E, (L,(x)) is bounded. Then ||L,| is bounded.

Proof. For every p € N we consider

F, = {ZL‘ € E‘ sup | Ly (z)| < p} .
Since F), is the intersection of the closed sets

{er‘|Ln(:c)|gp}:Lgl({zeC‘Mgp}), neN,

F, is also closed. We have furthermore F} C F, C ..., and since sup |L,(z)| < oo

for every x € E, we necessarily have
FLUKU...=FE. (1.11.2)

We conclude now (according to an idea of R. Baire) that there can be found a p
such that F}, has interior points. We prove this by contradiction. If none of the sets
F,, have interior points, we come to a contradiction in the following way:

Since F7 has no interior points, we have necessarily F; # FE, so we can choose
x1 € E\ Fy. Since F} is closed, there exists a closed ball

Bler,pr) = {w € B| o =] < pi

disjoint with Fj. Since Fy cannot contain B(xy, %pl), there is an 25 € B(xy, %pl)\Fg,
and thereby (since F; is closed) there exists a closed ball B(zs, p2) disjoint with Fs.
Here we can of course choose py < £p;, whereby we obtain B(xs, p2) € B(21, p1). By
continuing in this way, we find a sequence of closed balls B(z,, p,) with p,41 < % Pp
and B(z,, py) N F, = 0 together with B(z,, p,) 2 B(xpi1, ppi1). Clearly p, — 0,
and since Tpi1, Tpyio, ... € B(x,, pp) we see that (z,) is a Cauchy sequence. Since £
is by assumption complete, the limit lim x, = x exists. We have x € ﬂ B(zy, pp)
pP—00
p=1
and therefore = ¢ U F,, in contradiction with (1.11.2).
p=1

We have now shown that there exists a py and a ball B(xzg, pg) C F,,,. For all y
in this ball we have |L,,(y)| < po for every n by definition of F},. For every x € E
with ||z|| < 1 we have zq + pox € B(zo, po), i.e.,

| Ly (20 + poz)| < po, | Ly (0 — po)| < po, neN.
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By subtraction we obtain from this for all n € N
2p0Ln(x)| = |Ln(x0 + po) — Ln(xo — pox)| < 2po

or |L,(x)| < po/po. This proves that ||L,| < po/po, i-e., that ||L,| is bounded. O
Exercises

E 11.1 Let X be a topological space. Show that the following two conditions
are equivalent

(i) For any sequence (G,) of open dense sets, their intersection NG, is dense in
X.

(ii) For any sequence (F,) of closed sets with empty interior, their union UF,
has empty interior.

A topological space X is called a Baire space if (i) and (ii) are satisfied.

E 11.2 1° Prove that a complete metric space is a Baire space.
2° Prove that a locally compact Hausdorff space is a Baire space.

René Baire (1874-1932) proved that X = R is a Baire space.

1.12 Fourier coeflicients for measures on T

Let M (T) denote the set of positive finite measures p defined on the Borel o-algebra
B(T) for T, i.e., p is a countably additive function from B(T) to [0, 00[. (Note that
the condition p(@) = 0 is a consequence of u(B) + p(0) = p(B) when p(@) < o).

For 1 € M4 (T), we introduce the Fourier coefficients C'(u) : Z — C as
C(p)(n) = / 27" dp(z), n € 7. (1.12.1)
T

(If T is parametrized by z = € 0 € [0,27[, then 27" = e¢~"%). The Fourier
coefficients C'(i) form a bounded sequence with

sup |C (1) (n)] = u(T) < o, (112.2)

ne”

since

C () (n)] S/T\Z”IdM(Z)I/Tldu(Z)IM(T)ZC(u)(O)-

Example 1.12.1 For p = €. (the point measure in €), we have C'(u)(n) = e~
for all n. In particular, C(e1)(n) =1, C(e_1)(n) = (—1)™.
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Example 1.12.2 For y = f(z)dm(z), with f € £1(T), and m being the normalized
Lebesgue measure on T, we have

C()(n) = C(f)(n) = / S f ) dm(z) = / " f(ety e dt.

Lemma 1.12.3 (The uniqueness theorem) Suppose that p,v € M (T) satisfy
C(pn) =C(v), then p=v.

Proof. If C(n) = C(v), we obtain directly [p(t)du(t) = [p(t) ) for all
trigonometric polynomials Since those are uniformly dense in C(T ), we have
[ f@)du(t) = [ f(t) ) for all f € C(T). From this follows easily that u = v

by the usual technlque For a closed arc B C T, there exists a decreasing sequence
fn € C(T) such that f, — 1p pointwise. Therefore u(B) = v(B), and since the set
of closed arcs generates B(T) and is stable under intersection, we can conclude 1 = v.
(The uniqueness is also part of the Riesz representation theorem for measures.) O

For u,v € M (T), we introduce a convolution p * v € M, (T) as the image
measure p(pu @ v) of yu ® v under the mapping p : T? — T given by p(z,w) = zw
(the multiplication in the group T). Thus, we have for £ € B(T)

prv(E)=pov(p ™ (E) =pov ({(z,w) € T? ‘ 2w € E}) : (1.12.3)

and we see immediately that p* v(T) = p @ v(T?) = p(T)v(T) and p* v = v * p.
Moreover, p* ey = p for all p € M (T).

Lemma 1.12.4 Assume p,v € M (T) and f € C(T). Then

/fd,u*l/—/ /fzw dp(z)) dv(w). (1.12.4)

The equation holds also for positive Borel functions f : T — [0,00] and for f €
LYp*v).

Proof. If f = 1p for E € B(T), (1.12.4) follows directly from (1.12.3). Thereby,
(1.12.4) holds also for positive simple functions. By the monotone convergence
theorem we see that (1.12.4) holds for an arbitrary positive Borel function f, since
there exists an increasing sequence (s,) of simple positive Borel functions s, 1 f.
A real-valued function f € L'(u * v) can be written as a difference of two non-
negative Borel functions. Therefore, the result follows for integrable f, in particular

for arbitrary f € C(T). O

Theorem 1.12.5 C(u*v) = C(un) C(v).
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Proof.

Clpxv)(n) = /z‘" du* v(z) = /(/(zw)_" du(2)) dv(w)
- / (w™ / 2" dp(2)) dv(w) = C(u)(n) Cw)(n),  neZ.

If 4 = fdm, v = gdm, then yu* v = (f % g) dm, since for ¢ € C(T)
[edusv= [([ o) 1) dm) gtw) dmw)
= [ ([ #02 sew) dm() g(w) dinf)
= [ ([ £y gtw) dm(w) p(e) dm(z)

T JT

= /. fxg(2) p(2) dm(z).

Note that
frgz) = / f(zw™) g(w) dm(w) (1.12.5)

is the same as

fxg(e?) = %/0 ' F(D) g(et) dt. (1.12.6)

In the first equation, we “convolute” on the group T, in the second, we consider
functions on T as periodic functions on R by replacing f : T — C by f(el').

Thus, the convolution in M (T) extends the convolution of functions, when
we consider a function f as the measure fdm. Thereby, we can also say that
Theorem 1.12.5 extends Theorem 1.8.1(iii).

We shall give a characterization of the set of sequences C' : Z — C which are
Fourier coefficients for measures p € M, (T). By substituting the measure p by the
reflected measure i given by

uE) = (e = ({2

zEE}), E € B(T),
we see that

C(j1)(n) = / (),  nel

T

so the problem is the same as to characterize moment sequences of measures on T.

We need an integral representation of the holomorphic functions f in the unit
disc D = {2 eCl|z| < 1} satisfying Ref > 0.
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Theorem 1.12.6 (G. Herglotz, F. Riesz 1911) The formula

f(2) :iﬁJr/TS_Zd,u(s), zeD, (1.12.7)

gives a bijective correspondence between the set H of holomorphic functions f: 1D —
C with Ref > 0 and the set of pairs (B, pn) € R x M (T). For f € H

p =1Imf(0), = liir% Ref(rs) dm(s) weakly. (1.12.8)

Insertion on the weak topology on M, (T).

Given a sequence (u,) from M (T), we say that p, — p € M, (T) weakly if
lim [ fdu, = /fdu for all f € C(T).
n—o0

This corresponds to convergence in the coarsest topology on M (T) for which
the mappings p — [ fdu are continuous, when f is an arbitrary element in C(T).

For pn € M, (T), we define a linear functional L, : C(T) — C by L,(f) =
[ fdu. Tt is positive in the sense that f > 0 = L,(f) > 0. The content of
Riesz’ respresentation theorem (for T) is that every positive linear functional L :
C(T) — C has the form L = L, for precisely one u € M, (T) (F. Riesz 1909). Since
L, is continuous with ||L,|| = u(T), we can therefore consider M (T) as a subset
of the dual space C(T)*, and the weak topology on M, (T) is the restriction of the
topology o(C(T)*, C(T)) to M (T).

According to Alaoglu—Bourbaki’s theorem, the unit sphere in C(T)* is weakly
compact. This gives the following key result on compactness of measures, frequently
called Helly’s theorem:

Theorem 1.12.7 For every a > 0, the set {u e M (T) ‘ pu(T) < a} is weakly com-

pact, i.e., for every sequence p, € M (T) with p,(T) < «, there exists a p € M (T)
and a subsequence (fin,) such that Um p, = p weakly.
p—00

Note that since 1 € C(T), it follows that if u,(T) = « for all n, then the
accumulation point p also has mass p(T) = .

We shall now give the proof of Herglotz-Riesz’ theorem.

Proof. As our starting point, we take the power series for f € H

f(z):ianz", zeD,

n=0
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which converges uniformly over compact subsets of D. Let ¢ = Ref and ap = a+ip.
For z = re? € D, we have

[
E 6 —_— —inf
g( a, ,r,nem + a, rie=in ) ’

wl»—‘

which is the Fourier series for the periodic C* function g(re'?), i.e.,

_1 . i0 1 n 1 o 0\ —inf
o= g(re”) do, San T = g(re?)e do, n > 1.

Using these formulas, we find for z € D, 0 <r <1

© 1 2w ) 00 n 2t . .
- Z an 12" = o= g(re?’)do +iB + 2 Z c / g(re®)e " dp,
n=0 2 0 n=1 2m 0

and interchanging > and [, which is allowed since the series

6
1+2Z 0 = € +2 (1.12.9)
—Z

converges uniformly in 6, we obtain

2 el?

f(rz) = lﬁ+i/we?6jz g(re )d9—16+/8+—2g(7’5)dm( ). (1.12.10)

By assumption, we have g > 0, so 0, = g(rs)dm(s), 0 < r < 1 is a family of
measures in M (T) with density and they all have the same total mass (put z =0
n (1.12.10))

a=Ref(0)= /Tg('r’s) dm(s) = o,.(T).

From Helly’s theorem 1.12.7 there exists p € M, (T) with u(T) = a and a
sequence 1, — 1 such that o,, — p weakly, and thereby (1.12.10) gives

f(z) =i+ (s), z € D.

We shall finally see that every function of the form (1.12.7) belongs to #H. It is
holomorphic according to Morera’s theorem from complex analysis, and taking the
real part, we find

Re f(2) = / P(s, ) dpu(s) > 0,
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where

s+z  1—|z
s—z |s—z|?

P(s,z) = Re

>0 for se T, 2 eD. (1.12.11)

From (1.12.7) we also obtain § = Im f(0), so to finish the proof, we shall prove that

lin} Re f(rs)dm(s) = p weakly.
r—

We study in this context the function (1.12.11) a bit closer. It is called Poisson’s
kernel. We are therefore dealing with the function P : T x D — R given by (cf.
(1.12.9))

1—1r2

_ 1oz _
1472 —2rcos( — )

s =2

= 1+22T"005n(9—<p),

n=1

P(s,z) P(eie,rei“")

which arises from the Fourier series for the periodic function

1—72

P.(0) =
(9) 1472 —2rcosf

=142 r"cos(nf) = riMe™ 0 <r<1(1.12.12)
n=1

ne”L
by substituting 6 by 6 — .

Poisson’s kernel has the following properties:
(i) P(s,2) >0 for s€T,zeD

(ii) /TP(S, z)dm(s) =1 for z e D

(iii) For 6 >0, sp € T: lim P(s,z)dm(s) =0

zZ—rS0 |S—80|26

or equivalently
(i) P.(6) >0

(i) 2i /W Po(6)d6 =1

T —T

r—1 27T

1
(iii") For 6 > 0: lim —/ P.(0)do = 0.
5<l6|<n
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We can summarize these conditions by saying that (P, ) is a Dirac sequence for
any sequence (r,) from |0, 1[ with r, — 1, cf. Definition 1.6.2.

The properties (i’) and (ii’) are straightforward from (1.12.12) and (iii’) follows
from the inequality

P.(0) < P.(0) when § < 0| <,

thus

1 T—20 1—7?

— — 0 fi — 1.
21 Js<joj<n — 7w 1+47r2—2rcosé o

For z € D, we consider the harmonic measure p, € M (T) defined by

p, = P(s,z)dm(s).

This is a probability measure on T due to (i) and (ii). Condition (iii) implies

(iii”) lim p, = e, weakly.
Z—S0

If in fact h € C(T) and € > 0 are given, then there exists § > 0 such that
|h(s) — h(so)] < e for |s — so| < 4. From this we obtain

) = [ na.

h(sg) — h(s)| du,(s h(sg) — h(s)| du,(s
S/;m@‘<> (s)] u<>+/;%ﬂ|<> ()] dpa(s)
< 6—1—2HhHOO/I_ \>6P<872) dm(s),

which is < 2¢ according to (iii) for |z — so| sufficiently small.

If f is holomorphic in D, then ¢ = Ref is harmonic in D, i.e., Ag = 0 in D.
Conversely, if g is harmonic in D), then g is the real part of a holomorphic function
fand f+1i3, B € R describes all holomorphic functions with real part equal to g.

We have thereby solved Dirichlet’s problem for D:
For h € C(T), the expression

h(s) for z=5€T

H(z) = (1.12.13)
/hd,uz = /h(s) P(s,z)dm(s) for z €D

defines a continuous extension of 4 to D which is harmonic in D. Equation (1.12.13)
can for z = re'¥ be written as

1

H(re'?) = By
7T

2T
/ P(e? 7€) h(e?) df = P, * h(e"¥),
0
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i.e., we find the solution to the Dirichlet problem on the circle re!¥ by convoluting
the periodic functions P, and h.

The following theorem is completely equivalent to the Riesz-Herglotz Theo-
rem 1.12.6

Theorem 1.12.8 The formula

g(2) = /EP(S,Z) du(s), zeD (1.12.14)

gives a bijective correspondence between the set of positive harmonic functions g in
D and the set of u € M (T). For g in (1.12.14), we have

= lin% g(rs)dm(s) weakly. (1.12.15)
r—
For the completion of the proof for Theorem 1.12.6 and Theorem 1.12.8, we shall
show (1.12.15). For this we note that
P(s,rt) = P(t,rs) for s,t € T,0<r <1, (1.12.16)
which follows from

1— |2

s = 2>

P(s,z) =

seT, zeD,

since |s — rt| = |t — rs|, see Figure 1.4.

)

Figure 1.4: The unit disc

For h € C(T), we obtain from (1.12.14) and (1.12.16)
/Th(s)g(rs) dm(s) = /Th(s)/TP(t,rs) du(t) dm(s)
= [(] Plsroynis) ams) du)
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and the inner integral is the solution H(rt) to the Dirichlet problem with boundary
values h. For r — 1, this converges to h(t) uniformly, and therefore the integral
converges to [ h( du( ), which proves (1.12.15).

Theorem 1.12.9 (Herglotz 1911) For a sequence (¢y)nez of complex numbers
the following two conditions are equivalent:

(i) There exists yp € M, (T) such that
Cp = /z_" du(z), n € Z.
T

(ii) For every n > 0, the matrices
Ty = (¢j-r)ojksn

are positive semidefinite, i.e.,

n

ZCj_kajO[_kZO \V/(Ozo,Ozl,...,Oén) GCn—H.

7,k=0

Proof. (i) = (ii) is simple because

Zc] ROy O = /sz Ja]akd,u

J,k=0 7,k=0

E —J
a; z

d,u >0,

since Z = 27! when z € T.
(i) = (i). In general, a positive semidefinite matrix (a;;,) satisfies a;; > 0,
ajr, = ag; and |ajp|* < aj; ag. In fact, from
Z ajpa;a >0 foral a=(n,...,0,) €C",
j k=1
we get a;; > 0 for a = e; € C". With a =e; +teg, j < k, we obtain
Ajj + ‘t|2 agr + fajk + takj Z 0 forall ¢teC. (11217)
For t =1 and t =i we get in particular
ajj + agr + ajp +ag; > 0, aj;+ ag, +i(—az +agg) >0,

and using a;;, ap, > 0, we find a;, + agj, i(—ajr+ax;) € R, hence a;, = a;. Writing
ajr. = €?|ajx| and specializing (1.12.17) to t = ze!’ with 2 € R we find

2agy + 27laj,| +aj; >0 forall z €R,

so the discriminant of this second degree polynomial is < 0, hence \ajk\z < a;;akk-

In our case, where a;; = ¢j_j, we find:
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We now define
z):co+220nz”, zeD,

and note that the series converges for z € D since |¢,,| < ¢. Thereby, F is holomor-
phic in D. From ¢_,, =¢,, n > 1 and ¢y > 0 we obtain

Re F(z chz +ZC, z € D.

Multiplying this by the simple identity

[e.e]

L—12)"=>_2"®)", zeD,

n=0

we obtain

ReF|’z‘2 ch szzk—%Zc,nz Zz]zj

In the first sum let j = n + k so that 7 > k and in the second sum let Kk =n + j so
that £ > 7+ 1. We then get for z € D

I;Le—ili? = > @ Y gaAEr

j>k>0 5>0,j+1<k

and the right-hand side is > 0 since the partial sums ZZk:o cj_x 2 (Z)* are > 0 by
(ii).
From the Herglotz-Riesz Theorem 1.12.6 we know that

F(Z):i6+AS+Zdu(S)

S —Zz

and
1 27 1 27

cozﬁ i g('r’ew)dﬁ, cn " =5 i g('f’ew) e "% qp,
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where g = Re F. As 0, = g(rs) dm(s) — pu weakly for r — 1, we obtain
Cp = / 2" du(z), n >0,
T
and since c_,, = ¢, we get that ¢, = fT z7"du(z), n € Z. O

Remark 1.12.10 Matrices T}, = (¢;—j)o<i,j<n, Where the 75’th element depends only
on the difference i — j, are called Toeplitz matrices after Otto Toeplitz (1881-1940).

Since every complex measure y on T can be written as

po= iy — pio +i(ps — pa),

with p; € M (T), we can define the Fourier coefficients for a complex measure p as

C(p) = C(pr) = Cp2) +1(C(p3) — Cpa))-

Thus, it is clear that C'(u) is a bounded sequence of complex numbers. We mention
without proof that there exists bounded sequences of numbers ¢ : Z — C which
cannot be written C'(u) for a complex measure p.

A sequence ¢ : Z — C is called positive definite if the equivalent conditions
from Theorem 1.12.9 are fulfilled. Such a sequence is automatically bounded, and
it fulfills c_,, =@, |ca| < ¢o for n € Z.

There exist bounded sequences ¢ : Z — C which cannot be written as linear
combinations of positive definite sequences.

Concluding remarks about Abel summability.

We have previously mentioned summability of an infinite series. This is the
simplest way to ascribe a “sum” to particular divergent series. The idea is to consider
the arithmetic means o,, of the partial sum (s,) for the infinite series Yo" ay,.

This notion is called Cesaro summability of 1. order, also denoted (C,1)-
summability.

One can define Cesaro summability of higher order £ € N by taking the arith-
metic means of o,; if those converge to s, the series is said to be summable (C, 2),
etc. The higher k, the more divergent series can be given a sum.

There exist other summability theories, e.g., Ngrlund summability, named after
the Danish mathematician Niels Erik Ngrlund (1885 — 1981), and Abel summability,
which we shall briefly consider. The English mathematician Hardy has written a
book: Divergent series, which discusses all those theories.

Definition 1.12.11 An infinite series Z a, is called summable (A) or Abel summable
0

with sum s if
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1) The power series Z a, x" converges for —1 < x < 1, with a sum f(x).
0

2) lim f(z)=s.

z—1-

It follows by 1) that the series Z a, " has a radius of convergence p > 1, i.e.,
0

limsup {/]a,| < 1.

n—o0

Example 1.12.12 From the power series

o0

SN s D e,

- 2
1+ 1+ x) -

we see that the divergent series > (—1)", > (—1)"(n + 1) are summable (A) with

sum % respectively i. The first is summable (C, 1) with sum %, the second is not

summable (C, 1), but summable (C,2) with sum ;.

The name Abel summability is motivated by the following theorem:

Theorem 1.12.13 (Abel) If > a, is convergent with sum s, then it is summable
(A) with sum s.

Abel’s summability method is stronger than Cesaro summability of any order in
the sense that if a series is summable (C, k) with sum s for some k, then it is also
summable (A) with sum s.

We shall only prove the result for £ = 1. At the same time we also obtain Abel’s
theorem because of Lemma 1.6.1 of Cauchy.

o0

Theorem 1.12.14 Assume that the series Zan is summable (C,1) with sum s.

Then the series is summable (A) with sum s.

Proof. It is clearly enough to prove the result for real series. Since lim o, = s,
n—oo
there exists K such that |o,| < K, thus

sl = |(n+1) 00 —nona| < (2n+1) K,
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and ultimately |a,| = |s, — s,—1| < 4n K. This shows that the power series f(x) =
Yoo ganx™ converges for |z| < 1. We claim that

fle)=>1-2x anx—l—x2i -l<zx <l
n=0

We have

Zanx" = S0+ (51— 80)x+ (59— s1)2% + ...+ (sy —sy_1)a

- (1—:U){50+31x+...+sN,1xN’1}+5N:cN,

and for |z| < 1, N — oo, we obtain f(z) = (1 — x)anx" because |sy 2| <
0
(2N + 1)K|z|N — 0 for N — oo.

Furthermore, we obtain

N
Z $p 0" = 50+ (201 — 0¢)x + (309 — 20)2* + .. . (N +1)oxy — Noy_y) 2"
n=0
=(1—-1x) {00+201x+302x2+...+N0N_1xN_1} + (N +1)on2™,

so that the other equation follows as well.

We shall make use of

[e.9]

1-2)2=> (n+1)2", |z[<L.

n=0

For € > 0, there exists N such that for n > N
on € [s—¢,8+¢],

sofor0 <z < 1:

00 N oo
Z(nJrl)crnx" > Z(n+1)anx"+ Z (n+1)(s—e)a"
n=0 n=0 n=N+1

N
= ﬁvLanL opx" —(s—¢ Zn—i—l
n=0

hence
N
flz)>s—e+( 1—:1022 n+1)x"{o, — (s —¢)}.
n=0
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The second term on the right-hand side approaches 0 for x — 17, so there exists
r1 < 1 such that f(z) > s —2¢ for r; <z < 1. Correspondingly, we find f(x) <
s+2ecforry <z <1. ]

Note that for f € £!(T) with Fourier series f ~ > ¢, €™, we have
f*P.(0)=co+ Zr"(cn e 4, ey,
n=1

so the question about the limit of f % P.(f) for r — 1~ is precisely if the Fourier
series is summable (A).

For any sequence r, — 1~ we know that P, (6) is a Dirac sequence for T. From
Theorem 1.6.3 we therefore get:

Theorem 1.12.15 Let f belong to one of the spaces C(T), f € LP(T), 1 < p < 0.
Then P, x f belongs to the same space and P, x f — f for r — 17 in the norm of
the space.

Theorem 1.12.14 can be combined with Fejér-Lebesgue’s Theorem (Theorem 1.6.9)
and we have:

Theorem 1.12.16 Let f € LYT). Then f * P.(0) — f(0) when r — 17 in all
Lebesgue points 6 for f, in particular for almost all 6.

Remark 1.12.17 The result of the previous theorem tell us that the solution H(z)
to the Dirichlet problem (cf. (1.12.13)) for the unit disc with A € £!(T) as boundary
values converges radially to h almost everywhere, i.e.,

H(ré?) — h(e’) for r— 1"
for almost all 6.

Exercises

E 12.1 Let ¢: Z — [0, oo fulfill

(i) c—p = Cn, n e Z,
(11) 2Cn S Cp—1+ Cn+1, n Z 17
(iil) ¢, > ey, n > 0.
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Show that c is positive definite, and that there exists @ > 0 and f € L!(T) such
that C(ady + fdm) = c.

E 12.2 (For this exercise, it is necessary to know some distribution theory). Let
D(T) = C*°(T) be the set of periodic C*°-functions, and consider the norms
= U)o N=0,1,2,....
pylf) = max sup | f7(6)], 0,1,2,
We provide D(T) with the topology determined by the family (px)n>o of norms. A
distribution on T is a linear functional T : C*°(T) — C which is continuous in this

topology, i.e., there exists K > 0 and N > 0 such that |T'(f)| < Kpy(f) for all
f € C>®(T) (K and N depend on T'). The set of distributions is denoted D'(T).

For a distribution 7" on T let 7" denote its derivative, defined by T7"(f) = —=T'(f)
for f € D(T).

For a distribution 7" on T, we define the Fourier coefficients C(T') : Z — C by

C(T)(n) = T(e™™?), n € Z.

Show that

1°T =1, & C<T1> = C<T2>7

2° If T € D'(T) then C(T) has polynomial growth, i.e.,
3K, 3N : |C(T)(n)| < K|n|Y for n € Z,

3° C(T")(n) =inC(T)(n).

4° Show that if ¢ : Z — C has polynomial growth, then there exists T' € D'(T)
with C(T') = c.

E 12.3 For a > 0 consider the sequence ¢, = exp(—an?), n € Z. Show that (c,)
is a positive definite sequence.

(Hint: Show that the matrix (exp(2ajk))} ,— is positive semidefinite for all n > 0
when a > 0, e.g. by using the power series for the exponential function.)

Let pu, denote the positive measure on T with C'(u,)(n) = ¢,. Show that there
exists a function f, € C°°(T) such that u, = f,dm and that

E 12.4 1°. Let a be a complex number of absolute value 1. Show that the
sequence ¢, = a" n € 7 is positive definite by verifying condition (ii) in Herglotz’
theorem. Find also the measure u such that C'(u)(n) = a™.
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2°. Prove that the sequence ¢y = 1, ¢, = 0, n # 0 is positive definite and find
the corresponding measure from Herglotz’ theorem.

E 12.5 Let P denote the set of positive definite sequences ¢ = (¢,).

1°. Show that if ¢,d € P and A is a non-negative number, then Ac + d, cd € P.

2°. Let cp,p = 1,2,... be a sequence from P, which converges termwise to a
sequence ¢ : Z — C, i.e., lim, o ¢y(n) = ¢(n) for each n € Z. Show that ¢ € P and
if p,, pp € M4 (T) are such that C(u,) = ¢,, C(u) = ¢, then p, — p weakly.

3°. Let f(z) = Y 2, axz"™ be a power series with radius of convergence p > 0
and assume that ay > 0 for all k. Show that if ¢ € P satisfies ¢y < p, then f(c) € P,
where f(c) denotes the sequence n — f(c,), n € Z.

4°. Show that exp(c) € P for c € P.
E 12.6 Let ¢ : Z — C be a sequence with the property that for all N =0,1,...
N
fn) =Y ce* >0 forall teR.
k=—N

Prove that there exists yu € M (T) such that C(u) = ¢, i.e., c € P.

(Hint: Define Fyy € C(T) by Fy(e) = fn(t) and consider the measures uy =
Fydm € M (T).)
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Chapter 2

Fourier integrals

2.1 Introduction

This chapter is largely based on lecture notes by Tage Gutmann Madsen to the
second year analysis course around 1980. The notion of a Dirac sequence and a
Dirac family, see Definition 2.6.2, is due to him.

The group behind Fourier integrals is the real line R with addition as group
operation, and it is a locally compact abelian group. Lebesgue measure m on R is
the uniquely determined translation invariant Borel measure normalized such that
m([0,1]) = 1. Instead of writing dm(z) we just write dz.

In the theory of Fourier series a given periodic function f : R — C is repre-
sented as the sum of a series with a constant term, a fundamental oscillation and
its overtones, see Section 1.2

If we consider a function f : R — C without any periodicity, it is natural to try
to represent it, not by an infinite series, but by an integral

f(z) ~ / (c(t) €™ + c(—t) e ™) dt (2.1.1)

0
involving all frequencies ¢ > 0. Roughly speaking, (2.1.1) can be realized by defining
c(t) = / f(z)e 2™ d, teR. (2.1.2)

The function ¢(t) is called the Fourier transform of f. Of course we need some
assumptions for (2.1.2) to make sense, and next we have to examine in which sense
the representation (2.1.1) holds.

In the following we shall use the Lebesgue spaces LP(R), 1 < p < oo, of Borel
functions f : R — C satisfying

0o 1/p
||f||p=</ |f<x>|pdas) coo, 1<p<s (2.1.3)

—00
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and

| flloo = ess sup{\f(a:)\’xeR} < 00, p = 00. (2.1.4)

Note that if f is continuous, then the essential supremum is the same as the
ordinary supremum.

It is well-known that |- ||, is a semi-norm on £P(R), and if functions are identified
if they are equal a. e., then we get the Banach spaces LP(R) of equivalence classes
of Borel functions.

In contrast to the spaces £P(T), which decrease in size with increasing p, there
are no inclusions between the spaces L£P(R), see E 1.1 below.

For f € £L(R) we can rigorously define the Fourier transform as the function

Ff(t) = / f(z) e 2™ d, telR (2.1.5)
because z — f(z) e7?™! is integrable, since it has the same absolute value as f(z).

Remark 2.1.1 In some books about Fourier transformation you will see Ff(t)
defined as

Fft) = f(t) = /OO fl@)eT™dz, teR (2.1.6)

and the formerly defined Fourier transform is just the latter composed with the
scaling ¢t — 27t. Sometimes the integral in (2.1.6) is divided by v/27. We shall later
give more explanation about this difference in notation.

Theorem 2.1.2 The Fourier transform Ff of f € LY(R) is a continuous function
Ff:R — C vanishing at infinity, i.e.,

Ff(t)—0 for |t| = oo. (2.1.7)

Furthermore, ||F fl|loo < || f]l1-

Proof. For t,, — ty; we have
f(SL’) e—i27rxtn N f(:z:) e—iQm;to

for each x € R, and since |f(z)| is an integrable majorant, it follows by Lebesgue’s
theorem on dominated convergence that F f(t,) — F f(to), i.e., F f is a continuous
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function. Clearly |Ff(t)| < ||f]|: and (2.1.7) holds by Riemann-Lebesgue’s lemma
from Section 1.4. O

The expression for F f can be written
Ff(t)= / f(z) cos(2mat) doe — i/ f(z) sin(2mzxt) de, teR.

For an even function (f(—x) = f(z)) the second term vanishes, so Ff is again
an even function. If f is odd (f(—x) = —f(x)), then the first term vanishes and F f
is also odd.

A function g € £1([0, 00[) can be extended to an even function f : R — C and
we find

%]—“f(t) = /Ooog(x) cos(2mxt) dx, teR,

called the cosine transform of g.

A function g € £1(]0, 00[) can also be extended to an odd function f: R — C,
(we define f(0) =0), and we then find

%]-‘f(t) = /Ooog(x) sin(2mat) dx, t eR,

called the sine transform of g.

Exercises
E 1.1 Prove that f,(z) = (1 + |x|)"? belongs to £L}(R) if and only if p > 1, and
that

(z) = x? for O<z <1
Ip\ =9 0 for x <0andx >1
belongs to £}(R) if and only if p < 1.

Let 1 < p; < po < oo. Construct functions in £P*(R) \ £P?(R) and in £P*(R) \
L (R).

E 1.2 For f € L}(R) and a > 0 let f, denote the function equal to f on ] — a,a]
and extended to a periodic function on R with period 2a.

Show that the Fourier series of f, can be written as

> s 1 [ LT
. ~ n lnam’ h an: _ 7lna$d
fo(z) Zc,e where ¢, 2@/_@]’"(:0)6 x

n=—oo
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and as

fa(z) ~ Z %ga(%)eingx, where ga(y):/_ f(z)e 2™ dg, (2.1.8)

n=—oo

Show that g,(y) — F f(y) for a — oo for each y € R.

Show that the sum in (2.1.8) can be considered as an infinite Riemann sum and
explain that formally it approaches

/ FFy)e™™ dy,

so one is tempted to claim that this integral equals f(x), i.e. that
f(z) = / Ffy)e® " dy. (2.1.9)

A lot of research for 200 years has been undertaken trying to make this rigorous.

Explain that one can write the formula (2.1.9) in the following equivalent forms

flz) = %/ f(y)eimy dy, where f(y) :/ f(l,)e—imy dz,

and

f(z) = \/%_ﬂ/ f(y)eimy dy, where f(y) = \/%_ﬂ/ f(l,)e—imy dr.

E 1.3 Let f € £L*(R) and assume that f(z) > 0 for almost all z and [ f(z)dz =
1. (In other words f is density for a probability measure). Prove that |Ff(t)] <1
for all ¢ # 0. (Of course Ff(0) =1.)

2.2 Improper integrals

Let g : ]0,00[ — C be a Borel function such that [ |g(t)| dt < oo for each u > 0.
If g € LY(R,), then

U—00 0

/OOO g(t)dt :/R g(t)dt = lim ug(t) dt,

because for every sequence uy, us, ... in R, with u,, — co, we have

/ g(t)dt = / g - Loy, dm —— gdm
0 R,

n—o0 R+
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according to Lebesgue’s theorem on dominated convergence. In fact, |g| € £L(R})
is a majorant for the sequence of functions |g - 1j0.4,|-

However, fo t)dt can have a limit ¢ € C for u — oo, even if the condition
g € L'(R,) does not hold, cf. Example 2.2.1 below. We still write ¢ = [ g(t) dt,
possibly mentioning that the integral is improper.

In analogy with the usual convention for infinite series, one writes the symbol
fo t) dt without knowing in advance whether the integral f g t)dt has a limit
s C for u — 00. If the limit exists, we say that the integral fo dt is convergent
with value c.

One can furthermore encounter the use of language that the integral fooo g(t)dt
is absolutely convergent. Hereby is meant that [;* [g(¢)| dt converges. However, this
is equivalent to integrability of g i.e., g € L}(R,). In fact,

geL'R,) & gl € LYR,) & lg| dm = lim 9] - Lj0,u) dm < 00,

.
Ry U= JR,
where Lebesgue’s monotonicity theorem is used.

The reader should notice the analogy with convergent and absolutely convergent
series.
_ > sint _ . .
Example 2.2.1 The integral / — dt is convergent with value 5, i.e.,
sin t
/ for u — oo,

but the integrand does not belong to El(]R+).

int
Proof. That ¢ — lt t € Ry, does not belong to L'(R, ) follows from

T | sint =57 1/2 1
p-nr w-pr PT 3P

whereby
t t =1
/ sm g — Z/ |sm| Z—Z—:OO-
0 - 3 p=1 p
That the integral ST dt converges can be seen in the following way: Since

0
the sign of the integrand changes in =, 27, .. .,
00 pr "
Z / sin gt
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is an alternating series. The numerical value of the terms decreases to 0 because

/p7r | sin ¢| dt>/p7r | sin ¢| dt:/(p“)”|sint| gt
p-vr b Jepe T pr t

p
(D7 | gint 1
/ [sintl L
p t p

Consequently, the infinite series converges, i.e.,

nT i ¢ n p int
/ sin g — Z / sin gt
o 1 (p-1)r U

p=1

and

has a limit ¢ for n — oo. But from this, it follows that

“sint
s(u):/ Tdt—>c for u — oo,
0

since s(u) lies between s(nm) and s((n + 1)) for nr < wu < (n + 1)7.

We find the value ¢ of the integral / % dt as lim s((n + 1)), where
0 n

(27 gin ¢ ™ sin(n + 1)t ™ sin(n + )t
e )= [0 S [P e par [T

1 s
We use that Py / D, (t)dt = 1, where D,, is the Dirichlet kernel, see 1.5.3
™ —T

= sin(n + 1)t
Dn<t) = E € Rt — T%f for ¢ 7£ 0 (mod 271')
k=—n

The difference

5 sl bm = [ Du0de = s+ hm

can be written

| (5o — 7 ) sintn+ by /”/2 L D) sin((2n + Dty
— — | Ssin(n 5 = — — — | S1n n
o \2singt t 2 o \sint ¢ ’

which converges to 0 for t — co according to Riemann-Lebesgue’s lemma, cf. Section

1.4, since
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™

is integrable (the function is continuous in [0, 7], when we assign the value 0 for
t=0). O

We end this section with some comments about summability of an integral
Jo g(t)dt

We assume as previously that g : |0,00[— C is a Borel function, such that
Jo 19(t)] dt < oo for each u € Ry, and put

s(u) = /Oug(t) dt, u > 0. (2.2.1)

Since s : [0, 00| is continuous, we can define the mean values

1 v
o(v) = —/ s(u) du, v > 0. (2.2.2)
vJo
The integral fo t)dt is said to be summable with the value ¢ if o(v) — ¢ for

vV — Q.

Lemma 2.2.2 A convergent integral fooog(t) dt with value c is also summable with
the same value.

Proof. For arbitrary € € R, there exists an H € R, such that
€
|s(u)—c\<§ for uw> H.

For each v > H we now get

o) = = |y [ st =)
< %/OH(S(U o) dul + /| ) — | du
< [ 6w -am|+s

Since 2 ’fOH(s(u) —¢) du’ — 0 for v — oo, there exists a K > H such that
lo(v) —c] <e  for v> K.

Exercises

E 2.1 Show that the integral [ OOO cos t dt is not convergent, but that it is summable
with value 0.
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2.3 Convolution of functions on R

The real line R is an abelian group under addition. For h € R we let 7, : R — R
denote the translation by h, ie., 7,(z) = x + h. Lebesgue measure m on R is
translation invariant, i.e., m(B 4+ h) = m(B) for h € R, B € B(R). We let 73, act on
functions f : E — C, where £ C R, by the following rule

mf(z) = f(x —h) for x € m,(E) = E + h.

Theorem 2.3.1 For f € LP(R), 1 < p < oo and h € R we have 1, f € LP(R) and
I fllp = 171l
Furthermore, if 1 <p < oo and f € LP(R) we have

o] 1/p
Imnf — fllp = </ |f(z —h)— f(x)|P d:p) —0 for h — 0. (2.3.1)

[e.e]

Proof. The first part of the theorem is a direct consequence of the translation
invariance of Lebesgue measure. For the property (2.3.1) it is important that 1 <
p < oo. To establish it we first consider f € C.(R), where the latter denotes the
continuous functions with compact support. A function f € C.(R) is uniformly
continuous, i.e., to € > 0 there exists 0 < ¢ such that

|f(x —h)— f(z)|<e for |h| <9, z € R,
hence |7, f — f| < e for |h| < 6. By assumption supp(f) C [—R, R] for suitable
R > 0, and by assuming 0 < 1 we then have
‘Thf - f‘ <e 1[—R—1,R+1}7
hence

Imnf = FlI; <" (2R +2),

which shows (2.3.1). To prove this equation for an arbitrary f € £P(R) we use that
C.(R) is dense in LP(R), a property which does not hold for p = cc.

To f € LP(R) and € > 0 we first choose g € C,(R) such that ||f — g||, < §. For
h € R we then have

2e

=+ 7 — gl

I f = Fllp < 70 f = gllp + lImng = gllp + llg = fllp <

but by the first part of the proof we have (7,9 — gl[, < § if [h] < 0 for 6 > 0
sufficiently small, hence

|70 f — fll, <& for [h] <4
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By the convolution f * g of two complex-valued Borel functions f and ¢ defined
on R we understand the function

x — / flz — y) dy, (2.3.2)

defined on the set D(f  g) of those z € R for which y — f(x — y) g(y) is Lebesgue
integrable on R.

Figure 2.1: Hlustration of the reflected and translated function

Denoting by S'f the function reflected in the origin, i.e., Sf(y) = f(—y), we have
(1:Sf)(y) =Sf(y — z) = f(xr — y). The convolution f * g is thus defined by

Frat@) = [ (mSHgdm. (2:33)
for
r€D(fxg)={zeR|(1,5f)g € L'(R)}. (2.3.4)
Note that
D(fxg)={z e R| [ 17~ lw)]dy < 0} (2.3.5)

The set of definition D = D(f * g) can be empty. This is true if f = g = 1.
Convolution is commutative like for periodic functions:
The functions f * g and g * f are equal on D(f xg) = D(g* f).

In fact, for z € R we have

[ 15 =ngwlds= [ 15+ nanlay= [ 1#6)9t - vy

which shows that © € D(fxg) < x € D(g*f). For z in this common set of definition
all three integrals are finite and the equations above hold without absolute value,
ie, f*xg(x) = g=* f(xr). We have used that Lebesgue measure on R is invariant
under reflection and translations.

Note also that if f or g is changed on a null set, this will not change the function

I *g.
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Proposition 2.3.2 Let f, g be complex-valued Borel functions on R. The following
assertions hold:

1° The convolution f * g is a Borel function and D(f  g) is a Borel set.

2° Letce C. If v € D(f xg) thenx € D(f % (cg)) and

(f * (cg))(x) = c(f * g)(x).

3°Ifr € D(fxg)ND(f*h) thenx € D(f*(g+h)) and

(f * (g +h)(@) = (f xg)(x) + (f * h)(z).

4° If f(x) =0 forx ¢ A CR and g(x) = 0 forx ¢ B C R, then [« g(x) is
defined and equal to Oforxng—i-B:{a—l—b’aeA,beB}.

Proof.

1° Since f ® g, i.e., the function (z,y) — f(z)g(y) is a Borel function on R?
this holds also for the function obtained by composition with (x,y) — (z — y,y),
which is the function

(z,y) = flx—y)gly), =, yecR

It follows from the proof of Fubini’s Theorem that the set of points x for which
y — f(x —y)g(y) is integrable is a Borel set, i.e., D(f x g) is a Borel set, and the
integral with respect to y is a Borel function of z, i.e., f % ¢ is a Borel function.

2°,3° The assertions follow because an integrable function multiplied by a con-
stant and the sum of two integrable functions are again integrable. Moreover, the
integral is a linear functional.

4° In fact,
fle—9)gly) #0 = z—y€e A, yeB = xz=(r—y)+yc A+ B.

For x ¢ A+ B we conclude that the function y — f(z —y) g(y) is identically 0. O

Theorem 2.3.3 Let f,g : R — C be Borel functions. The following assertions
hold:

1°. If f,9 € C.(R), the continuous functions with compact support, then f * g €
Ce(R) and supp(f * g) S supp(f) + supp(g)-
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2. If1 < p,g < oo are dual exponents, i.e., iJr% = 1, then if f € LP(R),
g € LYR), we have D(f x g) = R and f % g is uniformly continuous and
bounded with

1S * glloe < 1115119 llq- (2.3.6)
. If f,g € LYR) then R\ D(f % g) is a Lebesque null set and f g € LY(R) with
1f =gl < [/ lllglls- (2.3.7)

2. If fe LY(R), g€ LP(R), 1 <p < oo then R\ D(f % g) is a Lebesque null set
and f* g € LP(R) with

17 glly < W[ Fllllgllp (2.3.8)

Proof. 1° Since f(x) = 0 for z ¢ supp(f) and similarly with ¢ it follows by
Proposition 2.3.2 4° that fxg(z) = 0 for z outside the compact set supp(f)+supp(g).
This shows the assertion about the supports. The continuity of f % g is an easy
consequence of the uniform continuity of f, but using that C.(R) C £LP(R) for any
p € [1, 00] the continuity is also a consequence of 2°.

2° By the invariance properties of Lebesgue measure we know that 7,5 f € LP(R),
so by Holder’s inequality we get (7,Sf) g € L1(R) for each x € R, hence D(f*g) = R
and

|/ g(x)] =
which shows (2.3.6).
That f x ¢ is uniformly continuous can be seen from the estimate
£rgt )= frg@] = | [ (eSS =S gdm
R

< N7mernSS =S Flpllglly = IS f = SFlpllglla,

because ||7,Sf — Sf||, = 0 for h — 0 by (2.3.1), provided 1 < p < co. For p = 00
we have ¢ = 1 and we consider g * f instead.

/ (Tme)gdm' < 7S Flpllglla = 171l

3° From the proof of Proposition 2.3.2 1° we know that
(z,y) = fle—y)gly), =z yeR

is a Borel function, and it belongs to £!(R?) because by Tonelli’s theorem and the
translation invariance of Lebesgue measure in R (ms denotes Lebesgue measure on

R?):
Aglf(x—y)g(y)ldmz(w,y): - 4<Ig(y)|4|f(x—y)|dx) dy

= /R<|g(y)|/R|f(x)|dx) dy = | f1llgll: < oo.
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From Fubini’s theorem it now follows that y — f(z —y) g(y) is integrable for almost
all x € R, and the almost everywhere defined function

x»—>/fx— y) dy,

which is precisely f * g, belongs to £!(R). Since

f*g(a) < / @) 9(y)] dy,

we finally find

Hf*glhﬁ//\fx— |dydw—/ F@ =) 9w)] dma(e, y) = IF 1l

which proves (2.3.7).

4° The cases p = oo and p = 1 are treated in 2° and 3° respectively, so we
assume that 1 < p < oo and determine ¢ such that % + % = 1. The proof is
exactly as the proof of Theorem 1.1.1 4°, but we give it a little twist by proving

D(|g|P = | f]) € D(g * f). By 3° we know that R\ D(|g|P * |f|) is a null set and
therefore g x f = f % ¢ is defined for almost all x.

The inclusion follows by Holder’s inequality:

/|gx— |dy—/|gx— 1 @) | F ()] e dy

< ([1ate = w1 |dy) ([ st \dy) ,

which is finite for z € D(|g|? = | f]).
For x € D(g * f) we have

g% f(a |</\gx— y)| dy,

hence

p/q
g F@)P < [ lote =P 1)l dy ( / |f(y)|dy) — gl * 1 1(2) [

By 3° we know that |g|? * | f| belongs to £(R) with

/ng\p* [fldm = 1gl”+ [ {lx < Fgl"ll2l[ 1l = [1Flllgl5,
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and we conclude that

[lg= g dm < 151219l < o
R
i.e., g * f belongs to LP(R) and

1F*gllp < [F gl

which proves (2.3.8). O
One should note that in particular the convolution of a function f € £'(R) with
a continuous and bounded function ¢ is again a continuous and bounded function.

Roughly speaking one can say that the convolution of two functions is always
as ‘“nice” as the “nicest” of the given functions. The following theorem is another
illustration of this philosophy.

Theorem 2.3.4 Let f € LYR). Is g : R — C bounded and differentiable with a
bounded derivative, then the same holds for f * g, and

(f*g) =[xg"

Proof. The convolution fxg = gx*f is defined by an integral, where the integrand
depends on a real-valued parameter x,

g% f(z) = / o(z — y) £ (y) dy.

For fixed z € R, the integrand is (7,5¢) f € L}(R), and for fixed y, the integrand
is a differentiable function of z, and

‘&q(x —&f) f(y)‘ =19 =) FW)] < 19 lcl F W],

30 ||¢'||so| f| is an integrable majorant independent of z. It follows by a theorem
about differentiation under the integral sign that f x g is differentiable with

(gt = [ FEZDIO gy [ gy f)dy = £ oo/ ).

Both fx g and (f * g) = f % ¢’ are bounded and uniformly continuous, since
g, ¢ € L2(R). That ¢’ is a Borel function follows from (7_,,9 — g)/h, — ¢ for any
sequence h, tending to zero. [J
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Exercises

E 3.1 Let f € LY(R) and h € R. Prove that
F(f(x)e™™ ) (t) = F(f)(t —h), F(rf)(t) = F(f)(t)e >

E 3.2 From complex analysis it is known that
1

1 > it L2 _Llp
— e 2" dr=e"2", teR.
\/277/00

Show that e~™" is a fixed point for F.

E 3.3 Define f(z) = 1/ cosh(nzx), = € R.

1°. Prove that [7_ f(z)dz = 1.
2°. Prove that 5
x
[ flx) = Snh(rz)’

where the right-hand side for x = 0 is to be understood as the limit for z — 0.

3°. Prove that F(f)(t) = 1/cosh(nt), t € R, i.e., that f(z) = 1/cosh(mz) is a
fixed point for F (or an eigenvector for F corresponding to the eigenvalue 1 e.g. in
the space S to be introduced in section 8).

Hint: Use the residue theorem for the function

e—27r1tz

Flz) = cosh(mz)’

which is meromorphic in C. Integrate F' along the sides of the rectangle with vertices
+R,+R + 7, where R > 0 is fixed and let R — oo.

2.4 Convergence of Fourier integrals

The Fourier transform Ff of a function f € L£L}(R) does not belong in general to
LYR), (f = 1j_1), Ff(z) = #2272) Therefore, we consider the Fourier integral

/OO (ff(t) 627r'1tac + f'f(_t) 6—27r'1tx) dt
0

for f € £L'(R) as an improper integral, i.e., we investigate the partial Fourier inte-
grals

Su(ZL') — /Ou (.Ff(t) eZﬂ'itJ} +.Ff(—t) 6—27rita:) dt = /u J—_'f(t) 627ritar dt
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for u — oo. It turns out that the conditions of convergence correspond exactly to
those known from Fourier series.

For the sake of brevity, we frequently write the Fourier integral as [ F f(t) e*™** dt.

The partial Fourier integral s,(x) can be expressed
Su(x) = Fft)e™ ™ dt = / (62”””3 / f(y)e 2™t dy) dt
—u R

_ / / F(y) 279 gy .
—u JR

Since f®1(_y.,) belongs to L1 (RxR), and (y,t) — e*™ =) is a bounded continuous
function,

(y,0) = f(y) ™9 yeR, —u<t<u

belongs to LR x [—u,u]). We can therefore apply Fubini’s theorem and get

)= [ [ s Dady= [ g [ ey,

which is summarized in

The partial Fourier integral for a function f € L*(R) is given by
su(x) = fxDy(x), u >0, (2.4.1)

where D, (x) = [ e*™ dt is the partial Fourier integral of [~ (e*™ 4 ¢=2m4) .

The functions D, play an analogous role in the theory of Fourier integrals to
Dirichlet’s kernel D,,(z) in the theory of Fourier series, see (1.5.5).

For z # 0, we find

in(2
Dy () = ST p ), (2.4.2)
T
The function D, is even. It does not belong to £!(R), but the integral [~ D, () dz =
2 [° Du(x) dx is convergent with the value 1.
. . Csinz |
The last assertion follows trivially from the results on / ——dx in Sec. 2.2.
0 T

Note incidentally that D, is a Fourier transform, namely of the indicator function
1[_u7u}.

We now formulate a result about pointwise convergence of the Fourier integral.
It is analogous to Theorem 1.5.1.
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Theorem 2.4.1 (Dini’s test) A sufficient condition for the Fourier integral of a
function f € LY(R) to converge to s in the point x € R, i.e.,

/ Ff(t)e*™ dt = s,

1s that

flx+y)+ flx—y)—2s
y

5

J

Note that the condition is fulfilled for each 6 > 0 if it is fulfilled just for one
value 6y > 0.

‘ dy < o0 fora o> 0. (2.4.3)

Proof. Since D, is an even function, we have
sale) = [ S =) Du)dy= [ (F+9) + Flo =) Duly) dy.
R 0

The last integral is split as fol + /7 and for the last of these we obtain

1/wﬂw+w+f@—w
T J1 Y

by the Riemann-Lebesgue lemma because

[ty t/E=y)  for 4> 1
y— v B
{ for y <1

sin(2ruy) dy — 0 for u — oo,

belongs to L'(R). The first integral can be written

1 o 1
1 / fle+y)+ flxr—y) —2s sin(2muy) dy + 2s [ sin(2ruy)
T Jo Y T Jo Y

and the first term tends to 0 for u — co-now we use the assumption (2.4.3) with
0 = 1- while for the last term, we find

dy,

25 (™ siny

™ Jo Yy

dy — s for u — oo.

t

Application. The condition in Dini’s test is fulfilled, with s = f(z), if the
function f € L£L1(R) is continuous at z as well as differentiable from the right and
left at this point.

More generally, the condition is fulfilled, with s = (f(z +0) + f(z — 0)), if the
function f € £(R) has the limit f(z+0) € C and f(z —0) € C from the right and
from the left in the point x, and if additionally

flx+y)— flz+0) and flx—y)— f(x—=0)
y —y
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have limits in C for y — 0.
Under these assumptions the function

faty) +fla—y) —2-3(fz+0)+ (f(z - 0)
y

Y

is bounded in an interval |0, d], so (2.4.3) is satisfied.

Example 2.4.2 For f = 1j_1 we find Ff(t) = D;(t). Dini’s test can be applied
and we get

o : : 2 [ sin(2nt
/ Dl (t) (6127rt1' _'_ e*l?ﬁtm) dt — / w COS(QWt.T) dt
0 0

T
for |z| <1

for |z|=1

2 [ sint
= —/ e cos(tx) dt =
0 t

1
1
T 2
0

for |z| > 1.

2.5 The group algebra L'(R)

By Theorem 2.3.3 1° it follows that convolution is a composition law in C.(R), and
it is easy to see that C.(R) equipped with the compositions +, * becomes a commu-
tative ring. Because of the structure as a vector space it is in fact a commutative
algebra. However, this space does not have a norm which makes it complete, so we
should rather take the completion under the norm || - ||; leading to £*(R). This lat-
ter space is also stable under convolution but with a little defect: The convolution
of two functions from £'(R) is only defined almost everywhere, but if we extend
it to the null set R\ D(f * g) by the value 0, or by any other values making it a
Borel function, it belongs to £!(R), and its norm depends only on the values on the
set D(f % g). This small inconvenience will disappear when we go to the Banach
space L'(R) of equivalence classes of functions defined almost everywhere and equal
almost everywhere.

Although it is not surprising, we prove that convolution in £!(R) satisfies the
associative law.

Proposition 2.5.1 If f, g, h € LY(R), then

fr(gxh)=(f*g)*h
almost everywhere in R.
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Proof. For x € D(f % (g * h)) we have

(f * (g * W))(x) = /fx— (g h)(y

= /D(g*h (f(x—y)/g(y—Z)h( )d2> dy
_ /D(gh)/fx— y— 2) h(z) dz dy.

In the same manner, for x € D((f * g) * h) we have

((f % g) % h)(z) = /R<f*g)(:r—z)~h(2)dz
= [ rela-ane) i

[ (e o)
:/ fg(/f:c— (y—2)dy- h())d
:/ f*g/fx— y — 2) h(z) dy d-.

Note that R\ D(g* h) and R\ (z — D(f * g)) have Lebesgue measure 0.

Therefore, by Fubini’s theorem,
(f* (gxh))(x) = ((f * g) x h)(z) = g f(z—y) gy — 2) h(z) d(y, 2),

for each € D(f * (g * h)) N D((f * g)  h) for which
. [f (@ —y) g(y — 2) h(2)] d(y, 2) < o0,

i.e., for almost all x € R, since by Tonelli’s theorem

/R R2|f(l’— y) 9(y — 2) h(2)| d(y, z) dx

/R2/|fx_ y—2)h(2)|dzd(y, )
:/( y=2) Z|/|f~”"—y)\dx)d(y,z)

=171 [ loty = 2) b dlw.2) = 171 lgllils < .

84



We have used that

(z,y,2) = flz —y)gly — 2) h(z)

is a Borel function and the following simple assertion: If D, is a finite or countable
family of Borel sets such that N,, = R\ D,, are null sets then R\ (] D,, is a null set.
(We use it in fact for a family of 3 sets). [

Let us summarize what we have obtained:

Theorem 2.5.2 The Banach space L'(R) equipped with convolution is a commuta-
tive Banach algebra called the group algebra for R.

Let us point out that this Banach algebra does not have a unit element. In
fact, assume that e € L}(R) is a representative of a unit element in L'(R), then
f *e = f almost everywhere for any function f € LY(R). If we take f to be the
characteristic function of the interval [0, 1], the convolution f % e will be continuous
by Theorem 2.3.3 2° because f is bounded, but f cannot be equal to a continuous
function almost everywhere, and we get a contradiction.

2.6 Approximate units in L'(R)

If A is a commutative Banach algebra without a unit element, like L!(IR), it is useful
to consider what is called an approximate unit.

Definition 2.6.1 Let A be a commutative Banach algebra with multiplication -. A
sequence of elements (k,) (resp. a family of elements (k;);~¢) from A is called an
approximate unit for A if

lim ||f-k,— f]|=0 (resp. lim | f-k — f]| =0)
n—o00 t—o0

for all elements f € A.

Definition 2.6.2 A sequence of functions (k,) on R is called a Dirac sequence, if
it has the following properties

(i) VneN:k, >0,

(ii) VnEN:/kn(x)dle,

R

(iii) Vo >0 / kn(z)dx — 0 for n — o0

lz|>8
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A family of functions (k;);~¢ is called a Dirac family if it has the analogous properties
where n is replaced by ¢t and n — oo by t — oo.

Example 2.6.3 Let k € L}(R) satisfy & > 0 and / k(x)dxz = 1. Then the sequence
R
(k) defined by k,(z) = nk(nzx) is a Dirac sequence. To see (iii) let § > 0 be given.

Then

/ k(nz)ndr = / k(x)dx,
|z| >4 |z|>nd

and k- 1, ||z)>nsy — 0 for n — oo, majorized by |k| € L!(R), so Lebesgue’s theorem
can be applied.

The same reasoning shows that (k;);~o, with k;(z) = tk(tz) is a Dirac family.

Theorem 2.6.4 FEvery Dirac sequence (k,) and every Dirac family (ki)i>o is an
approzimate unit for L'(R).

Proof. Let f € LY(R) be given. In each point x € D(f * k,), i.e., for almost all
x, we have

Feha@) = f@) = [ £k dy - 1) [ k) dy
= [ G=9) = re) o) do
and thereby
ko) = F@)| < [ 17 =)= F@)] (o) dy

Since (z,y) — |f(z—y)— f(x)| k.(y) is a Borel function in R?, we find using Tonelli’s
theorem

Vf ko — b < //If:c— — (@) Faly) dy

= [ [ 1= = @)k dedy

- / k)l = fl1 dy.
R
We next use Theorem 2.3.1. To € > 0 there exists § > 0 such that

19
Imyf = flh <5 for [yl <o
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For every n we then have

3 €
k — d k d —
[ s =y < [ Sk

y\Séé
/ k) 7 f — Flidy < / 211l kuly) dy.
ly|>d ly|>d

Choosing now N € N such that the last integral is less than § for n > N, we have

|f*kn—fll1<e for n > N.

The proof for Dirac families is similar. [

Theorem 2.6.4 can be extended:

Theorem 2.6.5 Let (k,) be a Dirac sequence on R and let 1 < p < co. Then
Ve lP(R):||fxk,— fl, >0 for n — oo.

Proof. The case p = 1 has already been proved, so we can assume 1 < p < oo.
Let ¢ be determined by % + % = 1. Note that f * k, € LP(R) by Theorem 2.3.3 4°

In each point z € D(f * k), i.e., for almost all x we have

| k() = f(2)] =

[Ga=9 - 1) k) dy}
[ = )= 1) (a0 () dy\

< (1= - rrnma) " (/50 dy)l/q,

where the last inequality follows from Hélder’s inequality. The last factor is 1, and
we therefore get by integration with respect to x and using Tonelli’s theorem

/R (/R £ =) = F@) k() dy) o

= [ [ e =9 = @l bt dedy
~ [ k) It = Tl

IA

/R 1 % k() — f()Pda

The proof is completed similarly to the case p=1. 0O
Clearly, a similar result holds for Dirac families.

Theorem 2.6.5 cannot be extended to p = co. Instead, we have:
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Theorem 2.6.6 Let (k,) be a Dirac sequence for R. If f : R — C is bounded and
uniformly continuous, then

N f*kn— fllo—=0 for n — oc.

Note that f % k, in the theorem is uniformly continuous and bounded so the
norm || f % k, — f|le is the same as the uniform norm. The same result holds for
Dirac families and the proof of the theorem is left as Exercise E 6.1.

Exercises

E 6.1 Prove Theorem 2.6.6.

2.7 Summability of Fourier integrals
The partial Fourier integral

sulz) = / " F ) e gy
for a function f € £}(R), is given by the convolution

su(a) = £+ Do) = [ flo =) Duly) (2.11)
with
D.(y) = /“ P qt = /u 2 cos(2nty) dt, (2.7.2)
—u 0
cf. (2.4.1). The mean value of the partial Fourier integrals is defined by

na) =3 [s@au= [ [ ra-noumayan (2.73)

v

For fixed z, (y,u) — f(z —y) D,(y) is integrable over R x ]0,v], as the product of
the integrable function (7,Sf) ® 1jg,) and D,(y) = uD;(uy), which is continuous
and bounded in R x |0, v] because

{ 7Sin§r2:z) for z+#0

Di(z) =
1(2) 2 for z=0.

By Fubini’s theorem we then get

oo =1 [ [ 1@ woiudy= [ (sa=n-; [ Du)du) an
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which i1s summarized in

The mean value of the partial Fourier integrals for a function f € L}(R) is given
by

ou(x) = f* Fy(x), reR, v>0, (2.7.4)

= %/Ov D.(y) du (2.7.5)

is the mean value of the integrals / (emty + ef%ity) dt.
0

where

The functions F;, play a role in the theory of Fourier integrals which corresponds
to the role of Fejér’s kernels in the theory of Fourier series.

The advantage in considering the summability of Fourier integrals instead of
the convergence lies in the fact that the family (F},),~o has nicer properties than

(Du)u>0-

Proposition 2.7.1 The family (F,),~0 given by (2.7.5) is a Dirac family in the
sense of Definition 2.6.2.

Proof. Using (2.4.2) we find

/ Do _ 11— cos(2mvy)
v 2m2y?

9

ie., F,(y) = v F(vy) with

F) = Fily) =+

Note that y = 0 is a removable singularity for ' and lim, ,o F'(y) = 1. Clearly,
F>0and F € LY(R), so all we need in order to apply the result of Example 2.6.3
is to prove that the integral of F'is 1.

For 0 < w, we obtain by partial integration

v 1—cos(2ry) 1
Fly)dy = / — dy
/0 ) 0 2m? ?/

_ |1 —cos 1 —cos(2my) sm(27ry) 1 .
o2 @ Y

v 1 — cos(2mw 1 [Ysin(2my
/ F(y)dyz——< )+—/ sin(2ry) )dy,
0 0

22w ™ Y

This yields
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hence for w — oo

o 1 2w : t 1
/ F(y)dy:0+lim—/ ST gt = -
0 0

w—o0 Tr t 2

by Example 2.2.1. Since F' is even we see that F' has integral 1. [J

Theorem 2.7.2 For every function f € LY(R), the Fourier integral
/OOO (FF(t) Xt 4 Ff(—t) e2mt) dt

is summable in L*(R) with value f.

Proof. The claim is that ||o, — f|l; — 0 for v — oo, where o, is the mean value
of the truncated Fourier integral. This follows from o, = f * F),, because (F},)ycr,
is a Dirac family for R, see Theorem 2.6.4. [

Corollary 2.7.3 (Uniqueness theorem) If f, g € L}(R) have the same Fourier
transform, F f = Fg, then f = g almost everywhere.

Proof. We know that f x I}, = g x I, for all v > 0 because it is the mean value
of the partial Fourier integrals of the same function Ff = Fg. By the previous
theorem f x F, converges to f in £!(R) and similarly with g, hence f = g almost
everywhere. [

Corollary 2.7.4 (Inversion theorem) If the Fourier transform F f of a function

f € LY(R) again belongs to L} (R), i.e., zf/ |Ff(t)|dt < oo, then
R

fla) = / FF#) e gy
R
for almost all x. The equation holds for all xz, if in addition f is continuous.

Proof. If 7f € L£L!(R), then the Fourier integral for f is convergent by Section
2.2 for each x € R with sum

/ Fft)e*™ ™ dt = FFf(—x).

Being convergent, the Fourier integral is also summable with the same value, but
we also know that ||o, — f]l1 — 0. We now use the following result from measure
theory: If a sequence g, of integrable functions converge to an integrable function
g in I-norm, then a suitable subsequence of g, converges to g almost everywhere.
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There exists therefore a sequence v, — oo such that o, () — f(z) for almost all
x, hence

fz) = FFf(-x)

for almost all . The right-hand side is continuous and if f is also continuous, then
the set of points where they disagree is an open null set, hence empty. [

Example 2.7.5 The following formulas hold:

2

_ 1
1+ 422 € L(R),

fl@)y=e Ff)

hence

—l=| _ 2mitx dt
¢ / Tt anz ’

or equivalently

1 [ 1 .
- / e U gy = eIl
m ) 1+ 22

o0

Proof. From

> 1
/ e Pdr=— for Rez > 0,
0 z

we obtain
/ e~ lel p=2miat .. 2/ e * COS<27TSL’t) de =2 Re/ ALl [ —
— 00 0 0 1 + 47T2t2
Exercises

E 7.1 Let f € LY(R) N L>®(R).

(i) Show that the Fourier integral (FI) for f is summable in z with value f(x) if
f is continuous in x.

(ii) Show that if f is continuous for all x in the interval [a,b], then the FI is
uniformly summable on [a, b] with value f(z), i.e.,

sup |oy(x) — f(z)| = 0 for v — oo.
z€[a,b]

(iii) Show that if f is uniformly continuous on all of R, then the FI is uniformly
summable on R with value f(x), i.e.,

low = flleo = 0 for v — oc.
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E 7.2 Prove that for v > 0

/v <1 ) @) o-tmist gy _ oy — 115 cos(2mot) _ <sin(7rvt))2’

- v v 2m2t? ot

i.e., that F), is the Fourier transform of the “triangle function” in Figure 2.2, and
that

g

o,(z) = f* Fy(x) = /v (1 - —) Ff(t)e™ dt

v v

for f € LY(R).

Figure 2.2: The triangle function, which is symmetric and linear from (0, 1) to (v, 0)

2.8 Fourier transformation

The Fourier transformation F, which transforms a function f € £'(R) into its
Fourier transform Ff, is a mapping into the set Cy(R) of continuous functions
g : R — C with g(t) — 0 for |t| — oo, cf. Theorem 2.1.2. Note that Cy(R) is a
Banach space under the uniform norm ||g||.. Under pointwise product it is also a
commutative Banach algebra.

Theorem 2.8.1 The Fourier transformation F : LY(R) — Cy(R) is linear, and

1 flloe = sup [FF@ < [Ifls - for f € L'(R).
More interestingly,

F(fxg)=Ff -Fg for f, g € LYR). (2.8.1)
Proof. Only (2.8.1) requires a proof. We have

Fifxa)®) = [ frg@edn= [ [ @ geayds
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For fixed t, (z,y) — f(x—y) g(y) e 2™ is integrable over R xR because f(x—vy) g(y)
is so and 2™t is continuous and bounded. By Fubini’s theorem we then have

F(f#g)(t) = / / f(x— ) gly) e du dy.

In the innermost integration, we substitute x by x + y and obtain

Faw = [

R

(g<y> e [ la)eim dx) dy = FF(1) - Folt).

g

Since Ff = Fg when f = g almost everywhere, we see that F : L}(R) — Cy(R)
gives rise to a mapping L'(R) — Cy(R), which is also denoted F. In other words,
if [f] € L'(R) denotes the equivalence class containing f € £L}(R), we define F[f] =
Ff.

The Fourier transformation F : L'(R) — Cy(R) is injective by the uniqueness
theorem 2.7.3. The result of Theorem 2.8.1 can therefore be stated that F is an
algebra isomorphism of the group algebra L!(R) onto a subalgebra A of Cy(R).

We stress in particular that convolution of functions is transformed into ordinary
product of funtions.

The Fourier transformation diminishes norm and distance:
IF( oo < Ifl1: 1FS) = Fl@lloo < If —glly for f,g € L'(R).

Similar to Fourier series, we have ||F|| = 1, because there exists f € £!(R) with
/1y =1, [[Fflle = 1, namely f = (1/2)1f-1,1.

At the end of Section 2.5 we have already pointed out that L!(R) does not have
a unit element. We can also see this using Fourier transformation. In fact, if we
assume that there exists an element e € £!(R) such that e x f = f for all f, we get
FeFf = Ff,and using f(x) = e~ *l from Example 2.7.5, we see that Fe(z) = 1 for
all x € R because F f does not vanish. On the other hand we know that Fe tends
to zero at infinity, and we get a contradiction.

The algebra A = F(L'(R)) is dense in Cy(R). This is a consequence of a version
of the Stone-Weierstrass theorem, but we will not give any details of proof, because
we see later that the Schwartz space S is contained in A. Like for Fourier series,
A # Cy(R), and there are functions in A which tend to zero at infinity arbitrarily
slowly.

It does not seem to be possible to find a descriptive characterization of A as a
subset of Cy(R).

Defining f(_x) = f(—=z) for f € LY(R), we see that ~ is an involution in £!(R)
and F(f) = Ff. This can be expressed that the Fourier transformation respects
(or commutes with) the involutions in L!'(R) and Cy(R).
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2.8.1 Fourier transformation and differentiation

Roughly speaking, the behaviour of f € £L}(R) at infinity is reflected in differentia-
bility properties of the Fourier transform F f: The quicker f tends to zero at infinity
(meaning +00) the smoother is F f. This is made precise in the next result.

Theorem 2.8.2 Let n € N and suppose that f : R — C and z — z™ f(z) belongs
to LY(R). Then Ff € C™(R), i.e., F f is n times differentiable with continuous n’th
derivative D"(F f), and

DI(Ff)(t) = (—2mi)? /ij f(z) e ™ dx, (2.8.2)

DI(Ff) = (=2ri)F(2a'f(x)), j=1,....,n. (2.8.3)

Proof. If f : R — C and x — x f(z) belongs to £!(R), then the Fourier transform
F f is differentiable with

D(Ff)(t) = —QFi/RZL‘f(l‘) e Mt dy = 21 F(af(z))(t)

because .
|Di (f(x)e®™) | < 2wz f(z)],

so we can apply a theorem about differentiation under the integral sign. The deriva-
tive D(F f) is continuous according to Theorem 2.1.2.

We next remark that x — 27 f(z) is integrable for each j = 0,1,...,n because
|27 f(z)] < (1+ |z|™)|f(x)], so we can differentiate the integral n times. O

Theorem 2.8.3 Let F be an indefinite integral of a function f € LY(R) and assume
that also F' is Lebesque integrable. Then

Ff(t)=2nmit FF(t), teR.

D=ct [

/f ) dy — f()y-

Proof. By assumption

hence for z — oo
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This shows that F'(z) has a limit for x — oo, and it has to be 0, since lim |[F(z)| > 0
T—00

will imply that [;°|F(z)|dz = oo in contradiction with the integrability of F.
Similarly, we have F(xz) — 0 for + — —o0.

By partial integration

b b
/ f(@)e ™ dy = [F(z) e ] ZZ — / F(z) (=2wit e7*™) du,
so for a — —o0, b — 00 we get
Ff(t) =2mit FF(t).

t

Theorem 2.8.4 Let n € N and assume that f € C™"(R) and f,Df,...,D"f all
belong to L' (R). Then

F(DIf)(t) = 2rit)y Ff(t), j=1,...,n.
Proof. We note that D"~!f is an integrable indefinite integral of D" f, hence

F(D"f)(t) = 2mit F(D" 1 f)(1),

and by repeated application of this we get the formula above. [

2.8.2 The Fourier transformation in the Schwartz space

For the sake of brevity, we will say about a function ¢ : R — C that ¢(x) tends
rapidly to 0 for |z| — oo if

VmeN: a2™p(z) =0 for |z| — oo.

The Schwartz space S = S(R) is defined as the set of functions ¢ € C*(R)
where

VneNy VmeN: z™D"(x) =0 for |z| — oo.

The condition can be rephrased that ¢ as well as all its derivatives tend rapidly to

0.

The function space S is named after the French mathematician Laurent Schwartz
(1915-2002), the creator of the theory of distributions. (Not to be mixed up with
H.A. Schwarz (1843-1921) from the Cauchy-Schwarz inequality.)
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For example, x — e~ 2, x € R, will belong to S, as well as x — p(z) e~ 2, where

p is a polynomial.

It is evident that S(R) C LP(R) for every p, 1 < p < oo, since already =2 p(x) —
0 for || — oo implies that (22)?|¢()|? is bounded, i.e., |¢(z)|P < M(z*)™? < M z72
for |z| > 1.

It is also clear that S(R) C Cp(R) C L>®(R).

We leave as an exercise to prove that & is a vector space and an algebra with
respect to ordinary multiplication and with respect to convolution, see E 8.2.

We note: If ¢ € S, then Dy as well as x ¢(x) belong again to S.

In fact, D"(Dy) = D" and D" (z ¢(z)) =  D"p(z)+n D" Lp(x) tend rapidly
to 0.

Using this and the results about differentiation and Fourier transformation we
find the following key result:

Theorem 2.8.5 The Fourier transform Fo of a function ¢ € S belongs again to
the Schwartz space S.

Proof.

1° Since x — 2" ¢(z) belongs to S and thereby to L!(R) for n = 0,1,2,..., we
conclude from Theorem 2.8.2 that ¢ = F¢ belongs to C*°(R) with

D™(t) = (=2mi)" / " p(r)e ™ dy, n=0,1,2,....

R
In particular, we have D™) € F(S), namely D" = Fp,, with
ul) = (—270)" 2" p(x).

2° Since ¢ and thereby Dy, D?p, ... belong to S, i.e., in particular ¢ € C* and

@, Do, D?*p, ... € LY(R), we conclude by Theorem 2.8.4 that
(2m1)"t" Fo(t) = FD™p(t), m=0,1,2,....

In particular, ¢ — t"™ Fo(t) € F(S).

3° For arbitrary n, m, we obtain by application of 2° on ¢, instead of ¢ that

t™ D™ (t) belongs to F(S) and thereby to F(L!). Thus, by the Riemann-Lebesgue
Lemma

t" D Y(t) — 0 for |t| — oo,
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but this is precisely the requirement for ¢» = F¢ to belong to the Schwartz space. [

In addition to the Fourier transformation F : £}(R) — Cy(R) it is convenient to
work with the co-Fourier transformation F*, defined for f € £L}(R) by

Frf(t) = /Rf(:p) e dy, t € R. (2.8.4)

Using the reflection Sf(x) = f(—=x), we clearly have
S(Ff)=Ff=F(S))

Theorem 2.8.6 The restriction of the Fourier transformation F : L'(R) — Cy(R)
to the Schwartz space S is a bijective mapping onto S. The inverse mapping is the
restriction of the co-Fourier transformation F* to S.

Proof. According to Theorem 2.8.5 both restrictions are mappings into S. We
shall show that they are inverse of each other, i.e., that

F(Fp)=¢ and F(Frp) =y for p € S.

The first equation is a direct application of the Inversion Theorem 2.7.4, and the
second is obtained from the first, since

F(Frp) = F(S(Fp)) = F(Fe).

0

Since S C L%(R), we have in the Schwartz space S the usual scalar product and
norm inherited from £2

(o) = [ o@ V@ dz, el = () = ( / |so<x>|2dx) "

Theorem 2.8.7 The Fourier transformation F : S — S is a unitary mapping, i.e.,
linear and bijective with

(Fo, Fy) = (p,¥)  for o, ¥ €S, (2.8.5)

in particular,
IFelle = llella for v 8. (2.8.6)

Furthermore,
(Fo, ) = (o, F0)  for o, €S. (2.8.7)
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The identity (2.8.6) is sometimes also called Parseval’s identity because of the
analogy to Parseval’s identity for Fourier series:

1 27 o
= t)|* dt = ol
), 1POF =3 e

Proof. We begin with the last equation:

(For ) = / Fot) D00 dt = / / D) e d

Since ¢ ® v and thereby (z,t) — o(z) 1 (t) e?™* belong to L1(R x R), we have

Feo) = [ [ e i@ deds = [ o) F ol de = (0,70
Using this we find

(Fo, F) = (@, F*Fb) = (o, ¥).
U
We note that F* : S(R) — S(R) is of course also unitary.

2.8.3 The Fourier-Plancherel transformation

For f € L(R) the Fourier transform Ff is given by
= / f(z) e ?™ dy, teR.
R

For f € L*(R), this definition cannot be applied in general, since L*(R) € L!(R).
We shall introduce a Fourier transformation on L£*(R), also called the Fourier-
Plancherel transformation, and which is an extension of the ordinary Fourier trans-
formation defined on £!(R)NL?(R). The Fourier transformation will be an isometry
of the Hilbert space L*(R). This result is due to Michel Plancherel, a Swiss mathe-
matician (1885 — 1967) (Rendiconti del Circolo Matematico di Palermo 30 (1910)).

We build on the results in Subsection 2.8.2 since we will introduce the Fourier-
Plancherel transformation by extending the Fourier transformation in the Schwartz
space by continuity:.

First, some general lemmas.

Lemma 2.8.8 A linear mapping T' of a (semi)normed vector space V into a (semi)-
normed vector space W is continuous, if and only if there exists a constant M > 0
such that

T x| < M ||z|| for allx € V (2.8.8)
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Proof. It is evident that the condition even implies uniform continuity, since
ITe — Tyl = 1Tz — )] < M |z — |
Conversely, if T' is continuous at 0, then for € = 1 there exists a § > 0 such that
|Tz—0|| <1 for ||z|| < o.

We claim that (2.8.8) holds for M = 1/¢. In fact, for any 2 € V and any n € N we
have

=l
[(6/(llz] +1/n))z| = el + 1/ 1/n5 <9,
hence
I () <1
2] +1/n -
or
ol + 1/n.

Tx|| <
Tz < 02

Letting n — oo we get the result. [

Lemma 2.8.9 Let V be a (semi)normed vector space, and let S : U — W be a
continuous, linear mapping of a subspace U C V), that is dense in V), into a Banach
space W. Then there exists one and only one extension of S to a continuous mapping
T:V — W, and it is linear.

Proof. There is at most one extension of S to a continuous mapping 7" : V — W,
because for each x € V there exists a sequence uq, us, ... from U with w,, — x, and
thus necessarily Tx = lim Tu,, = lim Su,,.

n n

We split the proof of the existence into a series of steps.

1° If uy, ug, ... € U converges in V', then Suqi, Sus, ... converges in VY.
In fact, by Lemma 2.8.8 applied to S the exists a constant M such that
[Sun — S| < M|un — U]

showing that Swuj, Sus, ... is a Cauchy sequence, hence convergent because W is
assumed to be complete.

2° If uy,ug, ... €U and vy, vy, ... €U converge to the same element x € V, then
lim Su,, = lim Sv,,.

In fact, according to 1°, the mixed sequence Swuq, Svi, Sus, Sva, ... is convergent
and therefore the subsequences (Su,) and (Sv,) have the same limit.
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3° The mapping T : V — W is well-defined by

Tx =lim Su, if uy,ug,...—>2x, €V, u, €U.
n

Here we used that U is dense in V), so for any x € V we can choose a sequence
(uy,) from U converging to z, and then T'x = lim,, Su, is independent of the choice
of ().

4° T s an extension of S.

In fact, with u,, = u € U, we have Tu = lim Su,, = Su.

5° T is linear.

To show for example that T'(x+vy) = T+ Ty for x, y € V, we choose u,,, v, €U
such that v, — x and v,, — y. Then u, + v, = x + y, and consequently

T(x +y) = lim S(u, + v,) = lim (Su, + Sv,) = Tx + Ty.

6° T is continuous.
For this, we use Lemma 2.8.8. If
|Sul| < M ||ul| for weld,
then
| Tz|| < M ||z|] for x € V;

because if u, — =, u, € U, we have T'x = lim Su,, and finally
| = tim || Su, || < lim M [Ju,| = M Jz]]

where we have used the continuity of the (semi)norm. [

The Schwartz space S(R) is dense in £2(R), since already the functions ¢ €
C*(R) with compact support are dense in LP(R) for every p, 1 < p < oo.

We now apply Lemma 2.8.9 to the “Fourier transformation” f — [F f] defined
on the dense subspace S of £L*(R) with values in the Hilbert space L?(R), where [F f]
denotes the equivalence class containing the Schwartz function F f. This mapping
is continuous by (2.8.6).

The continuous linear extension Fp : L2(R) — L*(R) is called the
Fourier-Plancherel transformation. By continuity of the norm, it is an isometry like

F:

1Fpfll2 = [I£ll2; for f € L*(R).
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In particular Fpf = Fpg if f, g € L2(R) satisfy ||f — g||2 = 0. Therefore Fp :
L?(R) — L*(R) gives rise to a mapping L?(R) — L*(R), which is also called the
Fourier-Plancherel transformation and denoted Fp. We thus have Fp[f] = Fpf.

The co-Fourier-Plancherel transformation F} is defined in a corresponding way

based on F*: S — L*(R).

Theorem 2.8.10 (The Fourier-Plancherel transformation) The Fourier-Plan-
cherel transformation Fp : L*(R) — L*(R) is a unitary mapping of L*(R) onto itself,
i.€., it is linear, bijective and preserves the scalar product,

(Frf,Frg)=(f.9)  for [, g€ L*(R). (2.8.9)
In particular, Plancherel’s equation holds:
|Feflz= Il for fe€L*R). (2.8.10)
The inverse mapping is the co-Fourier-Plancherel transformation
Fp o L*(R) — L*(R).

Proof. Let us verify (2.8.9). If ¢, — f and v¢,, — ¢ in 2-mean, ¢,, ¥, € S, we
have

[(Fon = Fpf, [Fin] = Fpg in L*(R),

and thereby

The mappings Fp : L*(R) — L*(R) and Fp : L*(R) — L*(R) are the inverse of
each other, i.e.,

FpFpf=f and FpFpf=1Ff for f € L*(R).

This is clear because if two continuous mappings agree on a dense set they are
identical. [

In the definition of the Fourier-Plancherel transformation Fp : Lo(R) — Lo(R),
we required only agreement,

-FPf:[ff]a

with the Fourier transformation F : £'(R) — Cy(R) for functions f belonging to
the Schwartz space. However, we shall see that the equation is fulfilled merely when
both sides have a meaning, i.e., for every function f € £L(R) N £L*(R).
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Theorem 2.8.11 For every function f € L'(R) N L3(R), we have Fpf = [Ff].

Proof.

1° First, we consider functions f € £L2(R) with compact support, i.e., where the
closure of {:c ‘ f(z) # O} is compact.

Let (k,) be a Dirac sequence for R of functions k, € C*°(R) with compact
support. We can for example take k,(z) = nk(nz), where £ > 0 is a function
belonging to C*°(R), with compact support and [, k(x) dz = 1.

Then f * k, will belong to C*°(R) by Theorem 2.3.4 and will have compact
support, cf. Proposition 2.3.2 4°. In particular, f x k, € S(R) and thereby

Fp(f * kn) = [F(f * k)]

However, by Theorem 2.6.5 for p = 1 we have ||f x k, — f||1 — 0, and thereby
|FCf k) = Fflloo = 0.

On the other hand by Theorem 2.6.5 for p = 2 we have ||f x k, — f|l2 — 0, hence
I Fp(f % kn) = Fpfll2 = 0.

If g is a representative for Fpf, then F(f * k,) will thus converge pointwise
(even uniformly) to Ff and in the 2-mean to g. From this follows g = F f almost
everywhere, i.e., Fpf = [g] = [Ff].

2° For arbitrary f € L'(R) N L*(R), we set f, = f - 1pnyu. Since f, — f,
numerically majorized by |f|, we have ||f,, — f|li — 0 as well as ||f,, — f|l2 = 0, and
thereby

|Ffn—Fflloo—=0 and |\ Fpfn— Fpfllza — 0.

By 1° we have Fpf, = [Ff.]. If g is a representative for Fpf, then Ff, will
converge pointwise to F f and in the 2-mean to g, and it follows that g = F f almost
everywhere, i.e., Fpf = [Ff]. O

Remark 2.8.12 As a byproduct of the proof we can give a more explicit charac-
terization of Fpf for f € L*(R), namely

Fpf=lm[Ff, in L*(R),
where f, = f - 1_nn), i€,
Ffa(t) = / f(x) e 2mt qg

which belongs to Cy(R) because f, is integrable. By the isometric property we have
|Fpf = [Ffalllz = 1Fpf = Fefullz = If = fall2 = 0.
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Exercises

E 8.1 Prove that the Schwartz space S is a vector space stable under product
and convolution.

E 8.2 Let f € L*(R) and a > 0. Show that

sin(27ta)

dt, rz e R.
Tt

fatyydy= [ Free

E 8.3 Prove the following theorem about metric spaces, where we denote the
metric of a space X by dy, i.e., dx(a,b) is the distance between a,b € X.

Theorem. Let f : A — (Y,dy) be a mapping of a subset A of a metric space
(X, dx) and assume that (Y, dy) is complete and that f is uniformly continuous on
the subspace (A,dx). Then f can be uniquely extended to a continuous mapping
f : A — (Y,dy), and the extension f s again uniformly continuous.

2.9 Fourier transformation of measures

In the following, we will go back to the definition of the Fourier transform via the
formula

f(t):/w fl@)e ™ dzs,  for fe LY(R), (2.9.1)

cf. Remark 2.1.1. With this definition the inversion theorem and Plancherel’s the-
orem can be formulated

f(z) = % / h Fye=at, if fe£'(R) (2.9.2)

/Z|f(x)|2dx - %/Z|f(t)|2dt if feL(R). (2.9.3)

By M4 (R) we understand the set of positive Radon measures on R. We recall
that a positive Borel measure p on R, i.e., a positive measure on the Borel sigma-
algebra B(R) is called a Radon measure if it is finite on compact sets or equivalently
finite on bounded Borel subsets of R. Lebesgue measure is a Radon measure, but
the measure p = |z|~! dz is a Borel measure, which is not a Radon measure, because

u([~1,1]) = oc.
By M (R), we understand the set of positive Borel measures p of finite total

mass. Such measures p are in particular finite on bounded sets, hence Radon mea-
sures. In formulas:

M’ (R) C M, (R).
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For 11 € MY (R) we introduce the Fourier transform fi : R — C by the formula

p(t) = /e_i“”t du(x), (2.9.4)

(note that this formula requires p to be of finite total mass) and we see that ji is a
uniformly continuous bounded function with

(1)) < p(0) = w(R),  teR (2.9.5)
Concerning uniform continuity:
At + 1) = i) = [ e (e~ 1) du(o)
hence
e +1) = ate)) < [ Je = 1] dutz),

which approaches 0 for h — 0 by Lebesgue’s theorem on dominated convergence.

The function f is also called the Fourier-Stieltjes transform of u or (in particular
in probability theory) the characteristic function of .

—ita

Example 2.9.1 a) For u = ¢, we find u(t) =e

~

b) For pn = f(z)dx, where f € L1 (R), we have fi(t) = f(¢), using definition
(2.9.1).

Theorem 2.9.2 (Uniqueness Theorem) If two measures u, v € MY (R) have the
same Fourier-Stieltjes transform [i(t) = v(t) fort € R, then p = v.

Proof. For f € §, we have by the inversion theorem

f@ydu) = [ (o= [ Feyeat) dute) = — [ Fioy 7o) at
/ /(27?/ ) 27
— o [ FoF0d = [ 1@ o)

and then it is easy to see that u = v. For example, for an interval [a,b], we can
find a sequence (f,) € S with compact support such that f, \, 1j.3, whence
u([a, b)) = v([a,b]), cf. Figure 2.3.

For p, v € MY (R), we introduce the convolution p % v € M’ (R) as the image
measure p(u ® v) of 4 ® v under p: R x R — R given by p(z,y) = = + y. We have

M*I/(E):M®V<{(l‘,y)ER2 x+yEE}>. (2.9.6)
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Figure 2.3: Approximation of 1j, by C*°-functions with compact support

We see immediately that p* v(R) = u(R)v(R) and p * v = v % p. The measure
€p is a neutral element with respect to convolution: p * g9 = p.

From a theorem about integration with respect to an image measure, we obtain

/R fdusv= / [ fa ) dutz) dviy) (2.9.7)

for positive Borel functions and functions f € £ (u x v).

Applied to f(z) = e ' we obtain

pxo(t) = At) o(t), (2.9.8)
i.e., under Fourier transformation, convolution is transformed into a product.

If p= f(z)de, v =yg(x)dz, f, g € LL(R), then pu*v = f*g(zx)dz, by the same
argument as for convolution on the unit circle, i.e., for ¢ € C.(R), we have

/s@dﬂ*VZ/(/w(x+y)f($)daf)g(y)dy=/(/s@(af)f(x—y)dx) 9(y) dy
=/<<p(x)/f(x—y)g(y) dy) dw:/w(x)f*g(x) d.

Insertion on the vague and weak topologies on M, (R) and M, (R).

Definition 2.9.3 We say that (u,) from M, (R) converges vaguely to u € M (R)
if

lim [ fdu, = /fdu for all f € C.(R),

where C.(R) denotes the set of continuous functions f : R — C with compact
support.

We say that (u,) from MY (R) converges weakly to u € MY (R) if
lim [ fdu, = /fdu for all f € Cy(R),
n—o0
where C,(R) denotes the set of bounded continuous functions f: R — C.
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Vague convergence corresponds to the initial topology on M, (R) for the family
of mappings p +— [ fdu, where f is arbitrary in C.(R), i.e., the coarsest topology
in which all these mappings are continuous.

Weak convergence corresponds to the initial topology on MY, (R) for the family
of mappings p +— [ fdu, where f is arbitrary in Cy(R), i.e., the coarsest topology
in which all these mappings are continuous.

On the set MY (R) we can also consider the restriction of the vague topology.
Since the vague topology on MY (R) is the coarsest topology making the mappings
p — [ f du continuous for f € C.(R) and these mappings are automatically contin-
uous in the weak topology, we clearly have that the vague topology is coarser than
the weak topology, or with other words the more obvious statement:

If pn, € ME(R) converges weakly to p € ME(R) then it automatically converges
vaguely to .

We recall that Cy(R) denotes the set of all continuous functions f : R — C
vanishing at infinity, i.e.,

Ve>0 3A>0 :|f(x)] <e forall z € R\ [—A, A

Lemma 2.9.4 Let o > 0 and let (ju,) be a sequence from M3 (R) converging vaguely
top € My(R). If u,(R) < « for all n then pu(R) < o and

nhﬂrrolo fdu, = /f du for all f € Cy(R). (2.9.9)

Proof. For any A > 0 we can choose ¢ € C.(R) with 0 < ¢ <1 and ¢ =1 on
[—A, A], and we then get

n([=4,4)) < /@du:hm/wdun < limsup u,(R) < o,

and letting A — oo we get u(R) < a.

Let now f € Cy(R) and € > 0 be given. By definition there exists A > 0 such
that |[f(z)] < e for |x|] > A and let ¢ be as above in relation to [—A, A]. Since

fo € C.(R) we have
‘/fwdﬂn—/fwdu' <e

for n > N where N is suitably large. For n > N we then get

[ rin - [ ra <
< ’/fdun—/fwdun +’/f@dun—/fwdu'+'/f90du—/fdu’

< [1a =9l dpn+e+ [170 -9 du < a1
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because |f(z)(1 — ¢(x))| < € for all z € R. Since ¢ is independent of «, we have
proved (2.9.9). O

If g, — p vaguely and lim u,(R) = «, we can in general only conclude that
1(R) < «, and it can happen that u(R) < a.

Concerning the inequality, we have pu,(R) < a + € for n sufficiently large, hence
1(R) < a+e by Lemma 2.9.4. Since ¢ can be arbitrarily small, we get the assertion.

That we can have p(R) < «is easy: p, = €, have all total mass 1 and lim ¢, =0
n—o0

vaguely, but the limit has mass 0.

The following important result holds:

Lemma 2.9.5 For a sequence (u,) and a measure p from M (R) the following
conditions are equivalent:

(i) lim p, = p weakly
n—o0
(1) lim p, = p vaguely and lim p,(R) = u(R).
n— o0 n—oo
Proof. (i) = (ii) is evident.

(i) = (i). Let h € Cy(R) be given.

For € > 0 there exists A > 0 such that u(R\ [-A, A]) <e. Let p € C.(R) fulfill
0<¢<1 ¢p=1o0n[-A,A]l. By assumption (ii)

im (1 ) dpun = / (1— @)dp < u(R\ [-A, A]) < ¢

n—oo

and

lim hgod,un:/iupdu.

n—oo

There exists thus an N such that for n > N

/(1—90)dﬂn<8, ‘/hwdu—/hs@dun

Using this we find for n > N

’/hdu—/hdun < ’/hdu—/hg@du’+’/h(pdu—/hgod,un
+'/hg0d,un—/hdun

Ilhlloo/<1—so>du+e+ HhHoo/(l—w)dun

< (14 2]|hllso),

<e.

IN
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which proves the claim.

U

To p € MY (R) we can define a positive linear functional L, : Co(R) — C by
Lu(f) = [ fdp.

It is easy to see that L, is a bounded linear functional on the Banach space
Co(R) with ||L,|| = u(R). The Riesz representation theorem for finite positive Borel
measures on R says that every bounded positive linear functional L on Cy(R) has
the form L = L, for precisely one u € MY (R).

We can therefore consider MY (R) as a subset in the dual space Cp(R)*. Alaoglu-
Bourbaki’s theorem states that the unit ball in Cy(R)* is compact in the topology
a(Co(R)*, Cp(R)) and this gives the following version of Helly’s theorem, cf. Theo-
rem 1.12.7.

Theorem 2.9.6 For every o > 0 the set {,u € M’ (R) )u(R) < oz} is vaguely com-

pact, i.e., for every sequence i, € MY (R) with u,(R) < «, there exist yn € MY (R)
and a subsequence (ji,,) such that lim p, = p vaguely.
pP—00

Remark 2.9.7 Every bounded linear functional L € Cy(R)* can be split as L =
Ly — Ly+i(Ls— Ly), where L;,j =1,...,4 are bounded positive linear functionals.
Thereby, L can be represented by a complex measure p of the form piq —po+i(pz—pus).
It can be shown that ||L| = |||, where ||u|| is the total variation of u.

We shall now prove a counterpart to Herglotz” Theorem 1.12.9. In 1923, M.
Mathias (Math. Zeitschrift 16, 103-125, 1923) introduced the following definition
which corresponds to condition (ii) in Herglotz” Theorem.

A function f: R — C is called positive definite if for every choice of a finite set
of real numbers z, ..., z,, the matrix

(f(z; — xk))gj,kgn

is positive semidefinite, i.e.,

Z flej—zp)a;ja, >0 Va=(ag,...,a,) € C". (2.9.10)

jk=1

We note immediately that f = i, p € MY (R) is positive definite since

Z (z; — ) oy o = / <Z i o a_k> du(x)

J:k=1 j,k=1

]

and have thereby the easier half of

2
dp(x) = 0,

n

—izjx .
E (& Q;

J=1
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Theorem 2.9.8 (Bochner’s theorem (1932).) For a function f : R — C the
following conditions are equivalent:

i) There exists i € MY (R) such that f(t) = 1(t) = [ e " du(x).
Jr
(i1) f is continuous and positive definite.

(Salomon Bochner (1899 — 1982), Polish-American mathematician).

Before proving Bochner’s theorem, we need the following:

Lemma 2.9.9 Let f: R — C be positive definite. Then

(i) f(-=)=[f{t), teR,
(i) [f(D)] < f(0),  teR,
(i) |f(t) = f(s)] <2f(0) (f(0) =Re f(s =1)), s, t€R.

t)
f(=t) f(0)
semi-definite, i.e., f(0) > 0, f(t) = f(—t) together with f(¢) f(—t) < f(0)? or

|f(t)]? < f(0)2. Thereby, we have proved (i) and (ii).

Proof. Choosing 1 = ¢, zo = 0, we see that ( 10) ) is positive

Choosing x1 = 0, o = s, x3 = t, the matrix

fO)  f(=s)  f(=1) fQ)  f(s) f
fls)fO) fls=t) | =| fls) f(O) [fls—1)
f@) flt—s)  f(0) f@) fs=1t)  f(0)
(

(
is positive semi-definite. Since in the proof of (iii), we can assume f(t) # f(s), it
makes sense for A € R to define

_AA(9) — (1)
)~ J0)

ap =1, Qg 3 = —Qo,

whereby the sum (2.9.10) becomes
FO) (X 4+2X2) + 2 |f(s) — f(t)] —2X*Re f(s—t) >0, AER.
The discriminant of this polynomial in A of degree 2 is thus < 0, i.e.,

[f(s) = F(O)IF <2£(0) (£(0) = Re f(s — 1)),
which gives (iii). O
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A positive definite function is thus bounded, and from (iii) it follows that if just
Re f is continuous at 0, then f is uniformly continuous. A positive definite function
need not be continuous, cf. E 9.1.

Proof of Bochner’s theorem. Let f be continuous and positive definite. From the
lemma it follows that it is uniformly continuous and bounded. Let now a: R — C
be a continuous integrable function. The continuous analogue of (2.9.10) is

I:= //f(:p—y)a(x)@dxdy > 0. (2.9.11)

The double integral is meaningful since f is continuous and bounded, and by

Lebesgue’s theorem on dominated convergence, it is sufficient to show for every
A > 0 that

u=[" [ se-pewatiaa o

but this integral is the limit for N — oo of the sums

N-—1
> ) a(R) o () 4=
jk=—N

which are > 0 by (2.9.10).

We evaluate in particular (2.9.11) for a(z) = e 2*" ¢ where ¢ > 0, t € R are
parameters, which gives

//f(:z: — ) e A Y () (2.9.12)

Introduce now the coordinate transformation u = z —y, v = x + vy from R? onto
itself, i.e., # = 1(u+v), y = 3(v — u). The Jacobi determinant is

oz o 1
ou v _ 2
det oy oy | T det < _l
ou  Ov 2

and using 222 + 2% = u? + v?, (2.9.12) becomes

N[—= N[

1 2 2
5//f(u) e e e dudv > 0,

or

1 .
B /€€U2 dv/f(u) e~ e du > 0.
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We have thus

1 .
e (t) = 5 / Flu) e é™ du >0 for t € R, e > 0. (2.9.13)
7r

For ¢ > 0 consider the positive measure p. with density ¢. with respect to
Lebesgue measure. It is finite with

1e(R) = / o.(t) dt < £(0). (2.9.14)
To see this we need that the density
I 2
gs(z) = ew, >0

VA
for a normal distribution ( | gs(x) dz = 1) has the Fourier transform

~

Gs(t) = e,
see E 3.2.

Thus, we find for 6 > 0 by the inversion formula

0< [otye s di- /Mw =—//f e i g Gyt dit
:/f(u)e du</|f () du

Sﬂ@/%(ﬂuzﬂ

Letting subsequently § — 0, the monotone convergence theorem gives (2.9.14).

By Helly’s theorem there exists p € M’ (R) with u(R) < f(0) such that s,
converges vaguely to u for an appropriate sequence &, — 0.

Using the inversion theorem for the integrable function 5= f(u)e —<v* which has
an integrable Fourier transform according to (2.9.14), we obtain

flu)e= = / o (t) e M dt = i (u), (2.9.15)

= pue(R) = f(0) for all € > 0. The limit measure p for p., has
(0), and it cannot be excluded in advance that u(R) < f(0). We
t u(R) = f(0), and thereby Lemma 2.9.5 shows that

in particular fi.(0)
the mass u(R) < f
shall now see that

n—oo

lim [ h(z)dpe,(z) = /h(az) du(z),
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for all bounded continuous functions h : R — C, in particular for h(z) = e,
where u € R is fixed but arbitrary, hence ji, (u) — fi(u) for u € R. From (2.9.15)
we therefore get

fw = [, uek

which was to be proved.

To see that u(R) = f(0), we integrate (2.9.15) from —a to a and divide by 2a:

ia /_Z flu) e du = /%(t) smcftat) dt = / w dpe(t).

a

Putting € = ¢,, and letting n — oo we obtain

3 [ swau= [ g

Here we have used that sin(at)/at € Cy(R) and next we applied Lemma 2.9.4.

Subsequently we let @ — 0: The left-hand side gives f(0) since f is continuous,
and the right-hand side gives p(R) by Lebesgue’s theorem on dominated conver-
gence, i.e., u(R) = f(0). O

Theorem 2.9.10 (Lévy’s continuity theorem) Assume that a sequence (u,,) from
M (R) has the properties

(1) lim [, (t) = p(t) exists for all t € R.
n—o0
(i1) ¢ is continuous for t = 0.

Then there exists p € MY (R), with i = ¢ and nh~>I£lo fn = j1 weakly.

Proof. We note first that if ¢,, : R — C is a sequence of positive definite functions
which converges pointwise to ¢ : R — C, then ¢ is positive definite. In fact, for
x1,...,2, € R, ay,...,a, € C, the inequality

ngn xj — ) o ag > 0
7,k=1

is conserved in the limit because only finitely many points are involved. Combined
with (ii) and Lemma 2.9.9 we see that ¢ is continuous. By Bochner’s theorem,
¢ = i for p € M’ (R), and since ji,(t) — [(t) pointwise, we have in particular
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pn(R) = 1,(0) = 1(0) = p(R). By Lemma 2.9.5 we thus only have to prove that
[y — i vaguely.

Let f € C.(R) and € > 0 be given. Since F(L!(R)) is dense in Cy(R), cf. the
discussion after Theorem 2.8.1, there is a g € L}(R) such that ||[§ — [l < & We

thus have
S/|f—§\dun+Vﬁdun—/ﬁdﬂ‘Jr/@—f\du

oo 1o

< & (un(R) + u(R)) + \ [ i) = ) ooy .

The first term tends to 2eu(R), and the second term tends to 0 by Lebesgue’s
theorem on dominated convergence, and the desired conclusion follows. 0

Corollary 2.9.11 Given p and a sequence (p,) from MY (R). Then

fn — p weakly <= [, — [ pointwise.

Exercises

E 9.1 Show that 1g (i.e., the function = 1 for 2 € Q, 0 for x € R\ Q) is positive
definite.

Hint: Use that Q is a subgroup of R.

E 9.2 Let (11,) be a sequence and p a measure from MY (R). Show that if p1,, — p
weakly, then 7, — i uniformly over compact subsets of R.

E 9.3

1° Show that a matrix A = (a,j) is positive semidefinite if and only if it can be
written in the form A = PP*, where P* is the conjugate transpose of P, i.e.,
if P = (pjx) and P* = (p;k), then p% = D

2° Show that if A = (a;;) and B = (b;;) are positive semidefinite matrices, then
C = (a1, bj) is positive semidefinite (Schur).

3° Show that if f, g : R — C are positive definite functions, then fg is positive
definite.

4° Let F(z) = Z a, 2" be holomorphic in |z| < R, with a,, > 0. Let f: R — C

0
be positive definite, with f(0) < R. Show that F o f is positive definite.
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E 9.4 Let f € £L2(R), f(z) = f(—x). Show that

Frfa) = o [ IfoP

and conclude that f * f is continuous and positive definite. What is the associated
measure from Bochner’s theorem?

E 9.5 Let f : R — C be continuous and positive definite as well as integrable.
Show that f(¢) > 0 for all ¢. Show furthermore that f € £!(R), and thereby that

1

flr) = o / et 7t dt.

Identify the measure belonging to f from Bochner’s theorem.
(Hint: Show that the measure p from Bochner’s theorem fulfills

[o@ dute) = 5 [ 9() Fis) d

for every Schwartz function g).
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