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Chapter 1

Fourier series

1.1 Periodic functions and their convolution

The group behind Fourier series is the circle group T consisting of the complex
numbers with absolute value 1. This is certainly a compact commutative group
under multiplication. The mapping t 7→ eit is a continuous homomorphism of the
additive group (R,+) onto (T, ·)

T =
{
eit | t ∈ [0, 2π[

}
=
{
eit | t ∈ R

}
.

Under the mapping t 7→ eit the normalized Lebesgue measure on [0, 2π[ is mapped
onto a probability measure m on (T,B(T)) (any topological space X is considered
as a measurable space equipped with the σ-algebra B = B(X) of Borel sets) such
that

∫

T

F (z) dm(z) =
1

2π

∫ 2π

0

F (eit) dt =
1

2π

∫ a+2π

a

F (eit) dt, a ∈ R

for any continuous function F : T → C. The set of continuous functions F : T → C
is denoted C(T). It becomes a Banach space under the uniform norm

‖F‖∞ = sup
z∈T

|F (z)|.

For any function F : T → C, the composed function

f(t) = F (eit), t ∈ R (1.1.1)

is a 2π-periodic function, i.e.,

f(t+ 2πp) = f(t), t ∈ R, p ∈ Z,
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and conversely, to any such function f : R → C, there exists a unique function
F : T → C such that (1.1.1) holds.

Therefore we can identify C(T) with the spaces of continuous 2π-periodic func-
tions on R. Similarly, we can identify the Lebesgue spaces Lp(T) = Lp(T,B(T), m),
1 ≤ p ≤ ∞ with the space of 2π-periodic Borel functions f : R → C such that

‖f‖p =

(
1

2π

∫ 2π

0

|f(t)|p dt
)1/p

<∞, 1 ≤ p <∞,

‖f‖∞ = ess sup {|f(t)| | t ∈ [0, 2π[ } <∞, p = ∞.

For 2π-periodic Borel functions f, g : R → C we define the convolution f ∗ g as
the function

x 7→ f ∗ g(x) = 1

2π

∫ 2π

0

f(x− y)g(y) dy =
1

2π

∫ a+2π

a

f(x− y)g(y) dy, (1.1.2)

defined for those x ∈ R for which

y 7→ f(x− y)g(y)

is integrable over [0, 2π] (and thereby over any interval [a, a + 2π] of length 2π).
The domain of definition D = D(f ∗ g) is a possibly empty Borel set in R with the
property

x ∈ D ⇒ x+ 2π ∈ D, f ∗ g(x+ 2π) = f ∗ g(x).

This can be summarized by saying that f ∗g is 2π-periodic. Furthermore, D(f ∗g) =
D(g ∗ f) and f ∗ g(x) = g ∗ f(x) for x ∈ D(f ∗ g).

In fact, (x, y) 7→ f(x − y)g(y) is a Borel function on R2 as a composition of
the Borel function f ⊗ g(x, y) = f(x)g(y) on R2 with the homeomorphism (x, y) 7→
(x− y, y) of R2.

We also have

D(f ∗ g) =
{
x ∈ R |

∫ 2π

0

|f(x− y)| |g(y)| dy <∞
}

which is a Borel set by Tonelli’s theorem. Using the substitution y = x− t (x fixed),
we find
∫ 2π

0

|f(x− y)| |g(y)| dy =
∫ x

x−2π

|g(x− t)| |f(t)| dt =
∫ 2π

0

|g(x− t)| |f(t)| dt,

showing that x ∈ D(f ∗ g) ⇔ x ∈ D(g ∗ f) and f ∗ g(x) = g ∗ f(x) for x ∈ D(f ∗ g).

Theorem 1.1.1 Let f, g : R → C be 2π-periodic Borel functions. The following
assertions hold:
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1◦. If f, g are continuous then D(f ∗g) = R and f ∗g is again continuous satisfying

‖f ∗ g‖∞ ≤ ‖f‖∞‖g‖∞. (1.1.3)

2◦. If 1 ≤ p, q ≤ ∞ are dual exponents, i.e., 1
p
+ 1

q
= 1, then if f ∈ Lp(T),

g ∈ Lq(T) we have D(f ∗ g) = R and f ∗ g is continuous with

‖f ∗ g‖∞ ≤ ‖f‖p‖g‖q. (1.1.4)

3◦. If f, g ∈ L1(T) then R \D(f ∗ g) is a Lebesgue null set and f ∗ g ∈ L1(T) with

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1. (1.1.5)

4◦. If f ∈ L1(T), g ∈ Lp(T), 1 ≤ p ≤ ∞ then R \D(f ∗ g) is a Lebesgue null set
and f ∗ g ∈ Lp(T) with

‖f ∗ g‖p ≤ ‖f‖1‖g‖p. (1.1.6)

Proof.

1◦ For each x ∈ R, y 7→ f(x − y)g(y) is continuous and hence integrable over
[0, 2π] so D(f ∗ g) = R. A continuous periodic function f is uniformly continuous,
so for given ε > 0 there exists δ > 0 such that for all x ∈ R, |h| ≤ δ

|f(x+ h)− f(x)| ≤ ε.

Using

f ∗ g(x+ h)− f ∗ g(x) = 1

2π

∫ 2π

0

(f(x+ h− y)− f(x− y)) g(y) dy

we see that for x ∈ R, |h| ≤ δ

|f ∗ g(x+ h)− f ∗ g(x)| ≤ 1

2π

∫ 2π

0

ε ‖g‖∞ dy = ε ‖g‖∞,

showing that f ∗ g is (uniformly) continuous. The inequality (1.1.3) is easy.

2◦ Because of symmetry we can assume 1 ≤ p < ∞ (If p = ∞ then q = 1 so
g ∈ L1(T)). For each x ∈ R the function y 7→ f(x− y) is in Lp(T) with

(
1

2π

∫ 2π

0

|f(x− y)|p dy
)1/p

= ‖f‖p

independent of x. By Hölder’s inequality y 7→ f(x− y)g(y) is integrable and

|f ∗ g(x)| ≤ 1

2π

∫ 2π

0

|f(x− y)| |g(y)| dy ≤ ‖f‖p‖g‖q
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showing that D(f ∗ g) = R and f ∗ g is bounded. To see that f ∗ g is continuous,
we get again by Hölder’s inequality

|f ∗ g(x+ h)− f ∗ g(x)| ≤ ‖f(x+ h− y)− f(x− y)‖p‖g‖q = ‖f(h− y)− f(−y)‖p‖g‖q

which shows the continuity because of the following

Lemma 1.1.2 For 1 ≤ p <∞, f ∈ Lp(T), h ∈ R define

τhf(y) = f(y − h), y ∈ R. (1.1.7)

Then τhf ∈ Lp(T), ‖τhf‖p = ‖f‖p and ‖τhf − f‖p → 0 for h→ 0.

Proof of Lemma. If f is continuous the result follows by the uniform continuity
of f . To f ∈ Lp(T) and ε > 0 there exists ϕ ∈ C(T) such that ‖f − ϕ‖p ≤ ε. Using
the obvious fact ‖τhf‖p = ‖f‖p we then get

‖f − τhf‖p = ‖f − ϕ+ ϕ− τhϕ+ τh(ϕ− f)‖p ≤ 2‖f − ϕ‖p + ‖ϕ− τhϕ‖p,

and the result follows.

3◦ The function (x, y) 7→ f(x− y)g(y) is integrable over [0, 2π]× [0, 2π] because
of Tonelli’s theorem:

1

(2π)2

∫ 2π

0

(∫ 2π

0

|f(x− y) g(y)|dx
)
dy

=
1

2π

∫ 2π

0

(
|g(y)| 1

2π

∫ 2π

0

|f(x− y)|dx
)
dy = ‖g‖1‖f‖1 <∞.

By Fubini’s theorem we conclude that y 7→ f(x − y)g(y) is integrable over [0, 2π]
for almost all x ∈ [0, 2π], i.e., f ∗ g(x) exists for almost all x ∈ [0, 2π], hence for
almost all x ∈ R by periodicity. Furthermore, f ∗ g(x) is integrable over [0, 2π], i.e.,
f ∗ g(x) ∈ L1(T) and

‖f ∗ g‖1 ≤ 1

2π

∫ 2π

0

(
1

2π

∫ 2π

0

|f(x− y)| |g(y)| dy
)
dx

=
1

2π

∫ 2π

0

(
|g(y)| 1

2π

∫ 2π

0

|f(x− y)| dx
)
dy = ‖f‖1‖g‖1.

4◦ The case p = 1 is considered in 3◦, and the case p = ∞ is straightforward
(and it is the special case p = 1 of 2◦). We therefore assume 1 < p <∞, and choose
the dual exponent q such that 1

p
+ 1

q
= 1. We shall apply Hölder’s inequality to
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y 7→ |f(x−y)|1/q ∈ Lq(T) and y 7→ |f(x−y)|1/p|g(y)|, as the latter belongs to Lp(T)
for almost all x by Fubini’s theorem, which is applicable because

1

(2π)2

∫ 2π

0

(∫ 2π

0

|f(x− y)| |g(y)|p dy
)
dx = ‖f‖1‖g‖pp <∞.

We obtain

1

2π

∫ 2π

0

|f(x− y)| |g(y)| dy =
1

2π

∫ 2π

0

|f(x− y)|1/q |f(x− y)|1/p |g(y)| dy

≤ ‖f‖1/q1

(
1

2π

∫ 2π

0

|f(x− y)| |g(y)|p dy
)1/p

,

and upon subsequent integration of the pth power

1

2π

∫ 2π

0

(
1

2π

∫ 2π

0

|f(x− y)| |g(y)| dy
)p

dx

≤ ‖f‖p/q1

1

(2π)2

∫ 2π

0

(∫ 2π

0

|f(x− y)| |g(y)|p dy
)
dx

= ‖f‖1+
p
q

1 ‖g‖pp = ‖f‖p1‖g‖pp <∞.

This shows that
(

1

2π

∫ 2π

0

|f(x− y)| |g(y)| dy
)p

<∞

for almost all x, i.e., f ∗ g(x) is defined for almost all x. We obtain finally that
f ∗ g(x) ∈ Lp(T) since

|f ∗ g(x)|p ≤
(

1

2π

∫ 2π

0

|f(x− y)| |g(y)| dy
)p

and therefore

1

2π

∫ 2π

0

|f ∗ g(x)|pdx ≤ ‖f‖p1‖g‖pp,

from which (1.1.6) follows. �

Exercises

E 1.1 For each α ∈ R define eα(x) = eiαx. It is clear that eα : R → T is a
continuous homomorphism of groups, i.e.,

eα(x+ y) = eα(x)eα(y) for x, y ∈ R.

(i) Prove that an arbitrary continuous homomorphism e : R → T has the form
e(x) = eα(x) for a uniquely determined α ∈ R.

Hint: Verify the following steps:
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(a) Define

ϕ(x) =

∫ x

0

e(t) dt

and prove that ϕ(δ) = c 6= 0 for suitable δ > 0 and that ϕ(x+δ) = ϕ(x)+ce(x).

(b) Conclude that e is a C1-function satisfying

e′(x+ y) = e′(x)e(y), x, y ∈ R,

so e solves the differential equation e′(y) = e′(0)e(y).

(c) Conclude that e′(0) is purely imaginary.

For each n ∈ Z it is clear that γn : T → T defined by γn(z) = zn is a continuous
group homomorphism.

(ii) Prove that an arbitrary continuous group homomorphism γ : T → T has the
form γ(z) = γn(z) for a uniquely determined n ∈ Z.

Hint: Consider e(t) = γ(eit) and note that e is 2π-periodic.

E 1.2 For n ∈ Z let en(t) = eint, t ∈ R. Prove that en ∗ em = δnmen for
n,m ∈ Z, where δnm = 1 if n = m and δnm = 0 if n 6= m. (The symbol δnm is called
Kronecker’s delta.)

E 1.3 For f ∈ L1(T) consider for 1 ≤ p ≤ ∞ the mapping

Tf : Lp(T) → Lp(T), Tf (g) = f ∗ g.

(i) Show that Tf is a continuous linear mapping which induces a bounded operator
T̃f in the Banach space Lp(T) of equivalence classes of functions from Lp(T) equal
almost everywhere.

(ii) Show that ‖T̃f‖ ≤ ‖f‖1.
(iii) Show that the functions en (from E 1.2) are eigenfunctions of Tf (and of T̃f

properly understood), and find the corresponding eigenvalues.

E 1.4 Let f ∈ L1(T) and g ∈ C1(T), i.e., g is a continuously differentiable
periodic function. Prove that f ∗ g ∈ C1(T) and (f ∗ g)′(x) = f ∗ g′(x), x ∈ R.
Extend the result to g ∈ Cp(T) with p ∈ N ∪ {∞}.

E 1.5 For fixed 1 ≤ p ≤ ∞ prove that if f, g ∈ Lp(T), then f ∗ g ∈ Lp(T) and

‖f ∗ g‖p ≤ ‖f‖p‖g‖p .

9



1.2 Pure oscillations and trigonometric series

A real-valued function

x 7→ ρ cos(ωx− ϕ), x ∈ R, (1.2.1)

where ρ, ω, ϕ ∈ R, ρ ≥ 0, ω ≥ 0, is called a pure oscillation. It can also be written
as

x 7→ a cos(ωx) + b sin(ωx), x ∈ R, (1.2.2)

where a, b ∈ R, namely with a = ρ cosϕ, b = ρ sinϕ. Any function of the form
(1.2.2) with a, b ∈ R can be written as (1.2.1) with ρ =

√
a2 + b2 called the

amplitude. If ρ 6= 0 we call ω/2π the frequency of the pure oscillation, and ϕ,
determined modulo 2π is called the phase constant.

In the same way, if a, b ∈ C, ω ≥ 0, we will call a complex function

x 7→ a cos(ωx) + b sin(ωx), x ∈ R, (1.2.3)

a pure oscillation, with frequency ω/2π. The real and imaginary part of (1.2.3) are
real-valued pure oscillations with frequency ω/2π. Note that (1.2.3) can also be
written as

x 7→ c+ e
iωx + c− e

−iωx, x ∈ R, (1.2.4)

with c+, c− ∈ C. The relationship between the coefficients is

a = c+ + c−, c+ =
1

2
(a− ib)

b = i(c+ − c−), c− =
1

2
(a + ib).

The last form (1.2.4) turns out to have a considerable advantage compared to (1.2.3).
Herein lies an incentive to work with complex functions, which we will do in the
development of the following theory. Note that a pure oscillation is real-valued
exactly when c+ and c− are complex conjugates of each other.

For simplicity we write

eα(x) = eiαx, x, α ∈ R. (1.2.5)

A pure oscillation with frequency ω/2π, where ω ∈ R+, can thereby be written as
c+ eω + c− e−ω.

The theory of decomposing functions as combinations of pure oscillations is called
harmonic analysis.
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In this section we shall consider periodic functions f : R → C with a given period
τ > 0, i.e. f(x+ τ) = f(x), x ∈ R and hence

f(x+ pτ) = f(x), x ∈ R, p ∈ Z.

A pure oscillation with frequency ω/2π = 1/τ is called a fundamental oscillation,
whereas a pure oscillation with frequency nω/2π = n/τ , n = 2, 3, . . . is called an
overtone. According to Joseph Fourier (Sur la propagation de la chaleur, manuscript,
Paris 1807), each function with period τ can be written as the sum of a fundamental
oscillation, overtones and a constant term. Fourier’s statement is however a very
simplified picture of the real situation.

For the sake of simplicity, we choose to consider functions with period τ = 2π.
A series with a constant term, fundamental oscillation and overtones can thereby
be written as

1

2
a0 +

∞∑

n=1

(an cosnx+ bn sinnx), (1.2.6)

c0 +
∞∑

n=1

(cn e
inx + c−ne

−inx), (1.2.7)

or by using (1.2.5)

c0 +
∞∑

n=1

(cn en + c−n e−n). (1.2.8)

Such a series is called a trigonometric series.

For reasons of brevity, one frequently just writes
∑∞

−∞ cn e
inx or

∑∞
−∞ cn en. We

note the relationships

an = cn + c−n, cn =
1

2
(an − ibn), (1.2.9)

bn = i(cn − c−n), c−n =
1

2
(an + ibn), (1.2.10)

valid for n > 0, and for n = 0 if we set b0 = 0.

The following results are easy but fundamental:

Theorem 1.2.1 The functions en(x) = einx, n ∈ Z form an orthonormal system in
the Hilbert space L2(T):

〈en, em〉 =
1

2π

∫ 2π

0

einxe−imx dx =

{
1 for n = m,
0 for n 6= m.

(1.2.11)
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Theorem 1.2.2 If a function f : R → C with period 2π can be written as a sum of
a uniformly convergent trigonometric series, then there is only one infinite series of
this type and its coefficients are given by

cn = 〈f, en〉 =
1

2π

∫ π

−π

f(x) e−inx dx n ∈ Z (1.2.12)

or in real form

an =
1

π

∫ π

−π

f(x) cosnx dx, bn =
1

π

∫ π

−π

f(x) sinnx dx, n ∈ N0. (1.2.13)

Proof. Let c0+
∑∞

1 (cm e
imx+ c−m e

−imx) be uniformly convergent for x ∈ R with
sum f(x), which then belongs to C(T). For each n ∈ Z we have

f(x) e−inx = c0 e
−inx +

∞∑

m=1

(cm e
i(m−n)x + c−m e

i(−m−n)x), (1.2.14)

where we again have uniform convergence, since e−n is a bounded function. We are
then allowed to integrate (1.2.14) term by term to get

∫ π

−π

f(x)e−inxdx = c0

∫ π

−π

e−inxdx+

∞∑

m=1

(
cm

∫ π

−π

ei(m−n)xdx+ c−m

∫ π

−π

ei(−m−n)xdy

)

= cn · 2π.

�

Exercises

E 2.1 Show the formulas (n = 1, 2, . . .)

cos2n x = 2−2n

(
2n

n

)
+ 2−2n+1

n∑

k=1

(
2n

n− k

)
cos(2kx), x ∈ R,

and conclude that

1

π

∫ π

0

cos2n x cos(2kx) dx =

{
2−2n

(
2n
n−k

)
, k = 0, 1, . . . n

0, k > n,

while
1

π

∫ π

0

cos2n x cos((2k + 1)x) dx = 0, k = 0, 1, . . . .
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1.3 Fourier series for f ∈ L1(T) = L(T)
The formula (1.2.12) makes sense for any f ∈ L1(T), so we can associate a trigono-
metric series to f

c0 +

∞∑

n=1

(cn e
inx + c−ne

−inx) with cn =
1

2π

∫ π

−π

f(x) e−inx dx, (1.3.1)

or, written alternatively,

1

2
a0 +

∞∑

n=1

(an cosnx+ bn sin nx) (1.3.2)

with

an =
1

π

∫ π

−π

f(x) cosnx dx, n ∈ N0, bn =
1

π

∫ π

−π

f(x) sinnx dx. (1.3.3)

This series is called the Fourier series for f . Strictly speaking, it is the series c0 +∑∞
n=1(cn en + c−n e−n) one has in mind here. The numbers cn, an and bn are called

Fourier coefficients for f . That
∑∞

−∞ cn e
inx is the Fourier series for f is sometimes

expressed by writing

f ∼
∞∑

−∞

cn e
inx.

The symbol∼ stresses that we do not know if and how the series converges. A main
point in the theory is to examine if the Fourier series for f converges to f in some
sense.

We can now reformulate Theorem 1.2.2:

Theorem 1.3.1 A uniformly convergent trigonometric series is the Fourier series
for its sum function, which belongs to C(T).

Integration theory and harmonic analysis have developed with close ties. The
work in which Bernhard Riemann develops his notion of integration has the ti-
tle: Über die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe
(Göttingen 1854). Lebesgue’s integration theory was instantaneously brought into
fruitful application in harmonic analysis and turned out to be the natural framework.

It would have been nice if the Fourier series of any f ∈ C(T) was indeed uniformly
or at least pointwise convergent to f(x), but unfortunately it is not so. Already
Paul du Bois-Reymond gave in 1873 an example of a continuous periodic function
for which the Fourier series diverges at a single point x. This has been extended:
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For every null set N ⊂ ]−π, π] there is a continuous periodic function for which the
Fourier series is divergent in each point of N . See [7, p.55–61].

It was a sensation when Lennart Carleson in 1966 showed that the Fourier series
of a function f ∈ L2(T) converges for almost all x, thereby proving a conjecture
going back to Lusin from 1913. In 1968 Richard A. Hunt extended the result to
Lp(T) for 1 < p < 2, and since Lr(T) decreases with larger r one obtains therefore:

For f ∈ Lp(T), with 1 < p ≤ ∞, the Fourier series converges to f(x) for almost

all x.

Nonetheless, one can find functions f ∈ L1(T) for which the Fourier series is
divergent everywhere (Andrej Kolmogorov 1926), see [10, Chap. 8].

It is amazing that there is this difference between p = 1 and p > 1.

It can also be mentioned that a trigonometric series can be convergent everywhere
without being a Fourier series for any function f ∈ L(T). A concrete example is∑∞

1 sinnx/ log(n + 1); see e.g. [4, p.2] and Example 1.9.4.

It was in connection with studies of the set of points x ∈ R, in which a given
trigonometric series converges, that Georg Cantor was led to a closer study of set
theory.

We shall first deal with sufficient conditions for a Fourier series to be convergent
at a particular point x. Afterwards we shall investigate other possibilities for the
Fourier series to represent the function.

1.4 Riemann-Lebesgue’s Lemma

Lemma 1.4.1 (Riemann-Lebesgue’s Lemma) For every function f ∈ L1(R)
∫

R

f(x) eitx dx→ 0 for |t| → ∞, t ∈ R.

In particular
∫

R

f(x) cos tx dx → 0,

∫

R

f(x) sin tx dx→ 0 for t→ ∞.

Proof. We use that step functions are dense in L1(R).

1◦ If f is the characteristic function of a bounded interval ]a, b], the assertion
follows from

∫ b

a

eitx dx =

[
1

it
eitx
]x=b

x=a

=
1

it
(eitb − eita),
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because we get
∣∣∣∣
∫ b

a

eitx dx

∣∣∣∣ ≤
2

|t| for t 6= 0.

2◦ If f is a step function, i.e., f =
∑n

1 cj ·1Ij , where each Ij =]aj , bj] is a bounded
interval, we have by 1◦

∫

R

f(x) eitx dx =
n∑

1

cj

∫ bj

aj

eitx dx→ 0 for |t| → ∞.

3◦ Finally, we consider the general case f ∈ L1(R). For an arbitrary ε ∈ R+ we
can find a step function g such that ‖f − g‖1 < ε

2
. As long as |t| is sufficiently large,

we have now according to 2◦

∣∣∣∣
∫

R

g(x) eitx dx

∣∣∣∣ <
ε

2

and thereby
∣∣∣∣
∫

R

f(x) eitx dx

∣∣∣∣ ≤
∣∣∣∣
∫

R

(f(x)− g(x)) eitx dx

∣∣∣∣ +
∣∣∣∣
∫

R

g(x) eitx dx

∣∣∣∣ < ε

since
∣∣∣∣
∫

R

(f(x)− g(x)) eitx dx

∣∣∣∣ ≤
∫

R

|f(x)− g(x)| |eitx| dx = ‖f − g‖1.

�

Corollary 1.4.2 For f ∈ L1(T) we have

1

2π

∫ π

−π

f(x) eitx dx→ 0 for |t| → ∞, t ∈ R.

In particular, for the Fourier coefficients an, bn and cn of f we have

cn → 0 for |n| → ∞, an → 0, bn → 0 for n→ ∞.

Exercises

E 4.1 Let f ∈ L1(T) and n ∈ Z, n 6= 0. Prove that the n’th Fourier coefficient
cn of f can be determined by the formula

cn = − 1

2π

∫ 2π

0

f (x− π/|n|) e−inx dx

and deduce that |cn| ≤ 1
2
‖f − τπ/|n|f‖1.

Use this to give a new proof that cn → 0 for |n| → ∞.

15



1.5 Convergence of Fourier series

Let sn denote the n’th partial sum of the Fourier series c0 +
∑∞

n=1(cn en + c−n e−n)
for a function f ∈ L1(T), i.e.,

sn(x) =

n∑

k=−n

ck e
ikx for n ∈ N0, x ∈ R. (1.5.1)

Since

ck e
ikx = eikx

1

2π

∫ π

−π

f(y) e−iky dy =
1

2π

∫ π

−π

eik(x−y) f(y) dy = ek ∗ f(x),

we have

sn =
n∑

k=−n

ck ek =
n∑

k=−n

(ek ∗ f) = f ∗
n∑

k=−n

ek = f ∗Dn, (1.5.2)

where Dn =
∑n

k=−n ek is the n’th partial sum of the series 1 +
∑∞

n=1(en + e−n), i.e.,

Dn(x) =

n∑

k=−n

eikx = 1 + 2

n∑

k=1

cos kx. (1.5.3)

The function Dn is called the n’th Dirichlet kernel. It is an even function, and

1

2π

∫ π

−π

Dn(x) dx = 1. (1.5.4)

For x 6= 0 (mod 2π), we find

Dn(x) = e−inx e
i(2n+1)x − 1

eix − 1
=

ei(n+1)x − e−inx

eix − 1

=
ei(n+

1

2
)x − e−i(n+ 1

2
)x

ei
1

2
x − e−i 1

2
x

=
sin(n + 1

2
)x

sin 1
2
x

.

We note: The n’th partial sum sn of a Fourier series for a function f ∈ L1(T)
is equal to f ∗Dn, i.e.,

sn(x) =
1

2π

∫ π

−π

f(x− y)Dn(y) dy for n ∈ N0, x ∈ R. (1.5.5)

This is the key to the study of the convergence of Fourier series. Note that we do
not aim at absolute convergence at this point.
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Theorem 1.5.1 (Dini’s test (1880)) A sufficient condition for a Fourier series
c0 +

∑∞
n=1(cn en + c−n e−n) for a function f ∈ L1(T) to be convergent in the point

x ∈ R with the sum

c0 +
∞∑

n=1

(cn e
inx + c−n e

−inx) = s

is the existence of δ > 0 such that

∫ δ

0

∣∣∣∣
f(x+ y) + f(x− y)− 2s

y

∣∣∣∣ dy <∞. (1.5.6)

Note that the integral is finite for every δ > 0, if it is fulfilled just for one value
δ0 > 0.

Proof. Since Dn is an even function, we have

sn(x) =
1

2π

∫ 0

−π

f(x− y)Dn(y) dy +
1

2π

∫ π

0

f(x− y)Dn(y) dy

=
1

2π

∫ π

0

(f(x+ y) + f(x− y))Dn(y) dy.

By (1.5.4) we have furthermore

sn(x)− s =
1

2π

∫ π

0

(f(x+ y) + f(x− y)− 2s)Dn(y) dy

=
1

2π

∫ π

0

f(x+ y) + f(x− y)− 2s

y
· y

sin 1
2
y
· sin(n + 1

2
)y dy.

Since y/ sin 1
2
y is bounded on [0, π], the last integral assumes the form

∫

R

g(y) sin(n +
1

2
)y dy, with g ∈ L1(R).

By Riemann-Lebesgue’s Lemma (Sec. 1.4), it follows that sn(x)− s→ 0. �

Application. The condition in Dini’s test is fulfilled, with s = f(x), if the
function f ∈ L1(T) is continuous at x as well as differentiable from the right and
left at this point.

More generally, the condition is fulfilled, with s = 1
2
(f(x+ 0) + f(x− 0)), if the

function f ∈ L1(T) has the limit f(x+ 0) ∈ C and f(x− 0) ∈ C from the right and
from the left in the point x, and if additionally

f(x+ y)− f(x+ 0)

y
and

f(x− y)− f(x− 0)

−y

17



have limits in C for y → 0+.

Under these assumptions the function

y 7→ f(x+ y) + f(x− y)− 2 · 1
2
(f(x+ 0) + (f(x− 0))

y

is bounded in an interval ]0, δ], so (1.5.6) is satisfied.

We will hereby leave the problem of pointwise convergence of a Fourier series but
nonetheless mention the following theorem which essentially is due to G. Lejeune
Dirichlet (1829). Dirichlet was the first who gave a proper proof of the convergence
of Fourier series.

Theorem 1.5.2 (Dirichlet-Jordan’s test) The Fourier series for a periodic func-
tion f : R → C of bounded variation over [0, 2π] is convergent in every x with the
sum

1

2
(f(x+ 0) + f(x− 0)) .

If f is furthermore continuous on a compact interval [a, b], the convergence is uni-
form in [a, b].

We recall that the variation V[a,b](f) of a function f : [a, b] → C is defined as the
supremum of the numbers

VD(f) =

n∑

j=1

|f(xj)− f(xj−1)| , (1.5.7)

where a = x0 < x1 < . . . < xn−1 < xn = b is an arbitrary partition D of the interval.
We say that f is of bounded variation over [a, b] if V[a,b](f) < ∞. The set of such
functions is a complex vector space V ([a, b]).

Every monotone function is of bounded variation.

If for example f is increasing in [a, b], we can write (1.5.7) as

n∑

j=1

(f(xj)− f(xj−1)) = f(b)− f(a),

thus V[a,b](f) = f(b)− f(a).

It holds furthermore that

f ∈ V ([a, b]) ⇔ Re(f), Im(f) ∈ V ([a, b]),

18



thus every function of the form

f = f1 − f2 + i(f3 − f4), (1.5.8)

where f1, . . . , f4 are increasing on [a, b], is of bounded variation. This terminology
was introduced by C. Jordan in 1881. He showed furthermore that every function
f ∈ V ([a, b]) has a representation of the form (1.5.8), cf. E 5.2 below.

Since an increasing function f : [a, b] → R has a limit from the right and from
the left in every x ∈ [a, b] (albeit for x = a only from the right and for x = b only
from the left), namely

f(x+ 0) = inf {f(y)|x < y} , f(x− 0) = sup {f(y)|y < x} ,
(and of course f(x− 0) ≤ f(x) ≤ f(x+ 0)), we can note the following consequence
of Jordan’s result:

Every function f ∈ V ([a, b]) has a limit from the left and from the right in every

point of the interval [a, b].

This result is of course a prerequisite for the statement of the Dirichlet-Jordan’s
test to be meaningful. Dirichlet proved the test for continuous functions that are
piecewise monotone. The representation (1.5.8) of f ∈ V ([a, b]) shows that the
extension to the class V ([a, b]) is not particularly deep. We will prove Theorem 1.5.2
in Sec. 1.6.

Exercises

E 5.1 Show that C1([a, b]) ⊆ V ([a, b]) and that V[a,b](f) ≤ (b− a)||f ′||∞.

E 5.2 For a function f : [a, b] → R, we introduce the positive and negative
variation over [a, b]

P[a,b](f) = sup

{
PD(f) =

n∑

j=1

(f(xj)− f(xj−1))
+

}
,

N[a,b](f) = sup

{
ND(f) =

n∑

j=1

(f(xj)− f(xj−1))
−

}
,

where the supremum is taken over all partitions D : a = x0 < x1 < . . . < xn−1 <
xn = b, and as usual α+ = max(α, 0), α− = max(−α, 0) for α ∈ R. Show that

V[a,b](f) = P[a,b](f) +N[a,b](f).

(Hint. Exploit that ifD′ is a further partitioning ofD, then VD(f) ≤ VD′(f), PD(f) ≤
PD′(f), ND(f) ≤ ND′(f).)

Show that if V[a,b](f) < ∞, then P[a,x](f) and N[a,x](f) are increasing functions
for x ∈ [a, b] and

f(x) = f(a) + P[a,x](f)−N[a,x](f),

19



thus f is the difference of two increasing functions.

E 5.3 Show that every increasing function f : [a, b] → R is a Borel function and
conclude that V ([a, b]) ⊆ L∞([a, b]).

E 5.4 Find the Fourier series for f ∈ L1(T) given by

f(x) =





π
4

for 0 < x < π
−π

4
for π < x < 2π

0 for x = 0, x = π,

and show that it converges pointwise to f(x) for all x ∈ R.

Prove Leibniz’ formula

π

4
= 1− 1

3
+

1

5
−+ · · · .

1.6 Summability

A sequence s0, s1, . . . of elements in a vector space V with seminorm ‖ · ‖ is said to
be limitable with limit s ∈ V if ‖σn − s‖ → 0 for n→ ∞, where

σn =
1

n+ 1

n∑

k=0

sk. (1.6.1)

Lemma 1.6.1 (Cauchy) A convergent sequence s0, s1, . . . with limit s is also lim-
itable with the same limit.

Proof. For arbitrary ε ∈ R+, we can choose an M ∈ N such that

‖sk − s‖ < ε

2
for k > M.

For every n > M we have now

‖σn − s‖ = ‖ 1

n+ 1

n∑

k=0

(sk − s)‖ ≤ 1

n+ 1
‖

M∑

k=0

(sk − s)‖+ 1

n + 1

n∑

k=M+1

‖(sk − s)‖

<
1

n+ 1
‖

M∑

k=0

(sk − s)‖+ ε

2
.

Since 1
n+1

‖∑M
k=0(sk − s)‖ → 0 for n → ∞, we can therefore find an N ≥ M such

that

‖σn − s‖ < ε for n > N.
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A sequence can of course be limitable without being convergent. An example is
2s, 0, 2s, 0, 2s, . . . which is limitable with limit s, but it is not convergent if s 6= 0.

A infinite series
∑∞

0 an with elements belonging to a vector space V with semi-
norm is said to be summable with sum s ∈ V if the sequence of partial sums
sn =

∑n
k=0 ak, n = 0, 1, . . ., ist limitable with limit s.

An example is 2s− 2s + 2s− 2s + 2s− . . . which is summable with sum s, but
convergent only if ||s|| = 0.

The arithmetic means σn = 1
n+1

∑n
k=0 sk of the partial sums of a series

∑∞
0 an

can be expressed directly in terms of the elements an

σn =

n∑

k=0

(1− k

n+ 1
)ak. (1.6.2)

In fact, writing

s0 = a0
s1 = a0 + a1
...

...
...

sn = a0 + a1 + . . . + an

we obtain

(n+ 1)σn = (n + 1)a0 + na1 + . . .+ 2an−1 + an =

n∑

k=0

(n + 1− k)ak.

We shall see that the theory of summability of a Fourier series c0 +
∑∞

n=1(cn en +
c−n e−n) for a function f ∈ L1(T) is very elegant.

Since we found that the n’th partial sum of the Fourier series is given as sn =
f ∗Dn (Sec. 1.5), we have for the arithmetic means

σn =
1

n + 1

n∑

k=0

sk =
1

n + 1

n∑

k=0

(f ∗Dk) = f ∗
(

1

n + 1

n∑

k=0

Dk

)
= f ∗ Fn, (1.6.3)

where Fn = 1
n+1

∑n
k=0Dk is called the n’th Fejér kernel.

Since Dn =
∑n

k=−n ek is the n’th partial sum of the series 1 +
∑∞

n=1(en + e−n),
Fn is by (1.6.2) given as

Fn(x) =

n∑

k=−n

(1− |k|
n + 1

)eikx = 1 + 2

n∑

k=1

(1− k

n + 1
) cos kx. (1.6.4)

Note that Fn is an even function, and that

1

2π

∫ π

−π

Fn(x)dx = 1.
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The advantage in considering summability of a Fourier series rather than con-
vergence lies in the fact that the sequence F0, F1, . . . has better properties than
D0, D1, . . .. The essential point is as we shall see: Fn(x) ≥ 0 while this is not true
for Dn(x).

n + 1

Fn

π

Figure 1.1: Graph of Fn and π2/(n+ 1)x2

For x 6= 0 (mod 2π), we have (see Sec. 1.5)

Dk(x) =
sin(k + 1

2
)x

sin 1
2
x

=
2 sin(k + 1

2
)x sin 1

2
x

2 sin2 1
2
x

=
cos kx− cos(k + 1)x

2 sin2 1
2
x

and thereby

Fn(x) =
1

n + 1

n∑

k=0

Dk(x) =
1

n+ 1

1− cos(n+ 1)x

2 sin2 1
2
x

=
1

n+ 1

(
sin 1

2
(n + 1)x

sin 1
2
x

)2

,

showing that Fn ≥ 0.

Since

sin
1

2
x ≥ 1

π
x for 0 ≤ x ≤ π, (1.6.5)

because sin(x/2) is concave, cf. Figure 1.2, it can be concluded additionally that

Fn(x) ≤
1

n + 1

π2

x2
for 0 < x ≤ π, n ∈ N0. (1.6.6)

This estimate shows that

Fn(x) → 0 for n→ ∞
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sin
1

2
x

1

πx

1

π
x

Figure 1.2: Graph of sin x/2 and x/π

when 0 < |x| ≤ π, and that the convergence is uniform for δ ≤ |x| ≤ π, when
0 < δ < π. In particular we have

∫

δ≤|x|≤π

Fn(x)dx→ 0 for n→ ∞.

We note that (Fn) is a Dirac sequence according to the following definition:

Definition 1.6.2 A sequence kn ∈ L1(T) is called a Dirac sequence for T if it has
the following properties:

(a) kn ≥ 0

(b)
1

2π

∫ π

−π

kn(t) dt = 1

(c) For each δ such that 0 < δ < π

∫

δ≤|t|≤π

kn(t) dt→ 0 for n→ ∞.

Due to (b), we can replace (c) by

(c’) limn→∞
1
2π

∫ δ

−δ
kn(t) dt = 1 for each δ ∈ ]0, π[.

We can express (a) and (b) by saying that 1
2π
kn(x) is a probability density on

[−π, π], and (c’) states that the mass of this density is concentrated closer and
closer around zero for increasing n. A Dirac sequence is a mathematically correct
formulation of Dirac’s delta function δ as a “function” which is ∞ for x = 0 and
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0 for x 6= 0 and fulfills
∫
δ(x) dx = 1. From a mathematical point of view such a

function does not exist.

A Dirac sequence is an approximate unit with respect to convolution in the fol-
lowing sense: The Banach algebras C(T) and L1(T) do not have a unit (i.e. a neutral
element with respect to convolution) – this is shown later – but the elements kn in
a Dirac sequence satisfy

Theorem 1.6.3 For f ∈ C(T) (resp. f ∈ Lp(T), 1 ≤ p <∞)

lim
n→∞

‖f ∗ kn − f‖∞ = 0 (resp. lim
n→∞

‖f ∗ kn − f‖p = 0).

Proof. Assume first f ∈ C(T). For ε > 0 we can find 0 < δ < π according to
uniform continuity such that

|f(x− t)− f(x)| ≤ ε when x ∈ R, |t| ≤ δ.

Therefore

f ∗ kn(x)− f(x) =
1

2π

∫ π

−π

(f(x− t)− f(x)) kn(t) dt,

hence

|f ∗ kn(x)− f(x)| ≤ ε
1

2π

∫ δ

−δ

kn(t) dt+
‖f‖∞
π

∫

δ≤|t|≤π

kn(t) dt.

Since the right-hand side is independent of x we get

‖f ∗ kn − f‖∞ ≤ ε+
‖f‖∞
π

∫

δ≤|t|≤π

kn(t) dt,

but the last term tends to 0 for n→ ∞ according to (c), and we can therefore find
an N ∈ N such that ‖f ∗ kn − f‖∞ ≤ 2ε for n ≥ N .

As ‖f‖p ≤ ‖f‖∞ when f ∈ C(T), the second assertion follows for these f . In
order to show the second assertion for arbitrary f ∈ Lp(T), we use that for ε > 0
we can find g ∈ C(T) such that ‖f − g‖p ≤ ε. This leads to

‖f ∗ kn − f‖p ≤ ‖(f − g) ∗ kn‖p + ‖g ∗ kn − g‖p + ‖g − f‖p
≤ 2‖f − g‖p + ‖g ∗ kn − g‖p

which is < 3ε for sufficiently large n. �

Remembering that the n’th average σn of the partial sums of a Fourier series for
a function f ∈ L1(T) is equal to f ∗ Fn, and the Féjer kernels (Fn) form a Dirac
sequence, we get by Theorem 1.6.3:
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Theorem 1.6.4 (Fejér) The Fourier series for f ∈ C(T) is uniformly summable
with sum f .

The assertion here is that ‖σn − f‖∞ → 0 for n → ∞. This follows from
σn = f ∗ Fn using Theorem 1.6.3.

Corollary 1.6.5 (The Uniqueness Theorem) If f, g ∈ L1(T) have the same
Fourier series, i.e., the same Fourier coefficients, then f = g almost everywhere.

By assumption we have f ∗Fn = g ∗Fn which approaches f as well as g in L1(T),
hence f = g in L1(T).

Theorem 1.6.6 The Fourier series for an arbitrary f ∈ Lp(T), 1 ≤ p < ∞, is
summable in Lp(T) with sum f .

Corollary 1.6.7 (Weierstrass’ approximation theorem for periodic functions)
For every continuous function f : R → C with period 2π and every ε > 0 one can
find a trigonometric polynomial p such that

∀ x ∈ R : |f(x)− p(x)| < ε.

For p one can use the n’th average σn of the partial sums of the Fourier series for f
for suitably large n.

It was the Hungarian mathematician Leopold Fejér, (1880 – 1959), who first
applied summability theory to Fourier series. (Untersuchungen über Fouriersche
Reihen, Mathematische Annalen 58 (1904), p. 51–69). This paper was preceded by
a paper in Hungarian from 1900, when he was 20 years old. Fejér also proved the
following:

Theorem 1.6.8 If f ∈ L1(T) is continuous in a point x ∈ R, then the Fourier
series for f is summable in this point with sum f(x), i.e.,

σn(x) = f ∗ Fn(x) → f(x) for n→ ∞.

As in the proof of Theorem 1.6.3, we find

|f ∗ Fn(x)− f(x)| ≤ 1

2π

∫ π

−π

|f(x− y)− f(x)|Fn(y) dy,

hence for 0 < δ < π

|f ∗ Fn(x)− f(x)| ≤ 1

2π

∫ δ

−δ

|f(x− y)− f(x)|Fn(y) dy+

1

2π

∫

δ<|y|<π

|f(x− y)|Fn(y) dy +
1

2π

∫

δ<|y|<π

|f(x)|Fn(y) dy.
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The first term can be made smaller than a given ε > 0 by chosing δ small–this is
possible by the continuity of f at x. Once δ > 0 is chosen, the third term tends
to zero for n → ∞ by property (c) of a Dirac sequence. Finally, using (1.6.6) the
middle term can be majorized by

sup{Fn(y) | δ < |y| < π}‖f‖1 ≤
π2

(n+ 1)δ2
‖f‖1,

which tends to 0 for n→ ∞. �

Inspired by Fejér’s results, Henri Lebesgue (Sur la convergence des séries de
Fourier, Mathematische Annalen 61 (1905), p. 271–77) showed:

Theorem 1.6.9 (Fejér–Lebesgue’s theorem) The Fourier series for f ∈ L1(T)
is summable with sum f(x) for almost all x, i.e.,

σn(x) = f ∗ Fn(x) −−−→
n→∞

f(x)

for all x ∈ R with the exception of a Lebesgue null set.

The proof depends on Lebesgue’s theorem on differentiation. For a locally inte-
grable function f : R → C, we define the set L(f) of Lebesgue points as those x ∈ R
for which

lim
δ→0

1

2δ

∫ δ

−δ

|f(x− t)− f(x)| dt = 0. (1.6.7)

Lebesgue proved that R \ L(f) is a null set, i.e., that almost all x are Lebesgue
points. We will not prove this result, but use it to prove the following result:

Lemma 1.6.10 For a locally integrable function f and any a ∈ R, the definite
integral

F (x) =

∫ x

a

f(t) dt (1.6.8)

is differentiable with F ′(x) = f(x) for all x ∈ L(f).

Proof. We find

F (x+ δ)− F (x)

δ
− f(x) =

1

δ

∫ x+δ

x

(f(t)− f(x)) dt,

so the right-hand side is majorized by

1

δ

∫ 0

−δ

|f(x− t)− f(x)| dt,
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and similarly

∣∣∣∣
F (x)− F (x− δ)

δ
− f(x)

∣∣∣∣ ≤
1

δ

∫ δ

0

|f(x− t)− f(x)| dt,

both of which approach 0 for δ → 0 by (1.6.7). A proof of Lebesgue’s result can be
found in [9, Chap. 7]. �

We will now make use of Lemma 1.6.10 to give a proof of the Fejér-Lebesgue
theorem by showing

f ∗ Fn(x) → f(x) for x ∈ L(f).

We have

f ∗ Fn(x)− f(x) =
1

2π

∫ π

0

(f(x+ t) + f(x− t)− 2f(x))Fn(t) dt,

and we next split the interval of integration at t = 1
n
. From the expression

Fn(x) = 1 + 2
n∑

k=1

(
1− k

n + 1

)
cos(kx)

we see immediately that Fn(x) ≤ Fn(0) = n + 1, and using (1.6.6) we obtain with
g(t) = f(x+ t) + f(x− t)− 2f(x)

|f ∗ Fn(x)− f(x)| ≤ n + 1

2π

∫ 1

n

0

|g(t)| dt+ π

2(n+ 1)

∫ π

1

n

|g(t)|
t2

dt. (1.6.9)

Introducing the continuous function

G(u) =

∫ u

0

|g(t)| dt,

we have for u > 0
G(u)

2u
≤ 1

2u

∫ u

−u

|f(x− t)− f(x)| dt,

which tends to zero by (1.6.7). We can evaluate the second term in (1.6.9) by partial
integration, so the right-hand side of (1.6.9) can be written

n+ 1

2π
G

(
1

n

)
+

π

2(n+ 1)

[
G(t)

t2

]π
1

n

+
π

n+ 1

∫ π

1

n

G(t)

t3
dt.

Since

0 ≤ nG

(
1

n

)
≤ n

∫ 1

n

− 1

n

|f(x− t)− f(x)| dt→ 0
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by (1.6.7), we only need to show that

lim
n→∞

1

n+ 1

∫ π

1

n

G(t)

t3
dt = 0.

For a given ε > 0 it is possible by (1.6.7) to determine δ > 0 such that

0 ≤ G(t) ≤ t ε for 0 < t ≤ δ.

For n ≥ 1
δ
we therefore have

1

n + 1

∫ π

1

n

G(t)

t3
dt ≤ 1

n+ 1

∫ δ

1

n

εt

t3
dt+

1

n+ 1

∫ π

δ

G(t)

t3
dt

=
ε

n+ 1

(
n− 1

δ

)
+

1

n+ 1

∫ π

δ

G(t)

t3
dt ≤ ε+

1

n + 1

∫ π

δ

G(t)

t3
dt,

which is < 2ε for n sufficiently large. �

We shall now apply the theory of summability to prove Dirichlet–Jordan’s test.
The proof depends on a “Tauberian theorem”, i.e., a theorem of the form

∑
an is summable with sum s

+ condition on an

}
⇒
∑

an is convergent with sum s.

The first example of this type of theorem is due to Alfred Tauber (1866 – 1942
?).

Theorem 1.6.11 (Hardy’s Tauberian Theorem (1909)) If a series
∑∞

0 an is
summable with sum s and the sequence of numbers (n an) is bounded, then the series
is convergent with sum s.

Proof. We assume that lim
n→∞

σn = s and |n an| ≤ A and shall show that lim
n→∞

sn = s.

Recall that sn = a0 + . . .+ an and (n+ 1)σn = s0 + s1 + . . .+ sn.

For ε > 0, there is an N such that |s− σn| ≤ ε for n ≥ N . For n ≥ N + 1 and
p ≥ 1 it holds that

(n+ p)σn+p−1 − nσn−1 = sn + sn+1 + . . .+ sn+p−1,

therefore

(n+ p)(σn+p−1 − s)− n(σn−1 − s) = p(sn − s) +R, (1.6.10)
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where

R = (sn+1 − sn) + (sn+2 − sn) + . . .+ (sn+p−1 − sn)

= an+1 + (an+1 + an+2) + . . .+ (an+1 + an+2 + . . .+ an+p−1).

The terms aj above are all numerically smaller than or equal to A/j ≤ A/n and
their number is 1

2
p(p− 1). Consequently,

|R| ≤ Ap(p− 1)

2n
,

so from (1.6.10) we obtain

p|sn − s| ≤ (n+ p) |σn+p−1 − s|+ n |σn−1 − s|+ |R| (1.6.11)

≤ (2n+ p) ε+
Ap(p− 1)

2n
or

|sn − s| ≤
(
2n

p
+ 1

)
ε+

A(p− 1)

2n
for n ≥ N + 1, p ≥ 1. (1.6.12)

We would like the right-hand side to be small, so we choose p such that it becomes
as small as possible. The function

ϕ(p) =
α

p
+ βp+ γ, where α, β > 0,

has a minimum in ]0,∞[ for p =
√

α
β
. We shall therefore choose p = 2n

√
ε
A
, but

since p shall be an integer, we choose the integer p such that

2n

√
ε

A
≤ p < 2n

√
ε

A
+ 1.

With this value of p, (1.6.12) yields

|sn − s| ≤
(√

A

ε
+ 1

)
ε+ A

√
ε

A
= ε+ 2

√
Aε for n ≥ N + 1, (1.6.13)

and since ε+ 2
√
Aε→ 0 for ε→ 0, it follows that sn → s for n→ ∞. �

Proof of Dirichlet-Jordan’s test (p. 18).

We note first that the Fourier series is summable with sum 1
2
(f(x+0)+f(x−0))

for all x. To see this, we evaluate as previously:

σn(x)−
1

2
(f(x+ 0) + f(x− 0))

=
1

2π

∫ π

0

(f(x+ y) + f(x− y))Fn(y) dy −
1

2
(f(x+ 0) + f(x− 0))

=
1

2π

∫ δ

0

+

∫ π

δ

[f(x+ y)− f(x+ 0) + f(x− y)− f(x− 0)]Fn(y) dy.
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For a given ε > 0, we choose first a δ > 0 such that

|f(x± y)− f(x± 0)| ≤ ε for 0 < y ≤ δ,

and with this δ > 0, the absolute value of the integral over [0, δ] can be majorized
by ε. A function of bounded variation is in particular bounded, so we obtain

|σn(x)−
1

2
(f(x+ 0) + f(x− 0))| ≤ ε+

4‖f‖∞
2π

∫ π

δ

Fn(y) dy,

and the claim becomes evident.

To apply Hardy’s Tauberian Theorem, it is sufficient to show that the sequence
of numbers

n(cne
inx + c−ne

−inx)

is bounded for every x. It is even uniformly bounded in x, since we show

|n cn| ≤
V

2
,

where V = V[0,2π](f).

For n 6= 0, we set h = π/|n| and evaluate 2πcn in the following way:

2πcn =

∫ h

0

+

∫ 2h

h

+ . . .+

∫ 2π

2π−h

f(x) e−inx dx

=

∫ h

0

[
f(x) e−inx + f(x+ h) e−in(x+h) + . . .+ f(x+ (2|n| − 1)h) e−in(x+(2|n|−1)h)

]
dx

=

∫ h

0

[f(x)− f(x+ h) + f(x+ 2h)−+ . . .− f(x+ (2|n| − 1)h)] e−inx dx,

hence

2π|cn| ≤
∫ h

0




|n|−1∑

j=0

|f(x+ 2jh)− f(x+ (2j + 1)h)|


 dx ≤ V h,

since the integrand is ≤ V for x ∈ [0, h]. We therefore obtain |cn| ≤ V
2|n|

.

We note finally that if f in addition is continuous in [a, b], then

|σn(x)− f(x)| → 0 uniformly for x ∈ [a, b].

This follows by examination of the proof of Theorem 1.6.8. Since the boundedness
condition in Hardy’s Tauberian Theorem holds uniformly for x ∈ R, it follows from
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(1.6.13) that sn(x) → f(x) uniformly for x ∈ [a, b], i.e., the Fourier series converges
uniformly in [a, b]. �

Exercises

E 6.1 Consider Definition 1.6.2. Show that if (a) and (b) are fulfilled for (kn)
and (c’) holds for a δ1 ∈ ]0, π[, then (c’) holds for every δ2 ∈ ]δ1, π[. It is therefore
sufficient to know (c’) for arbitrarily small delta.

E 6.2 Let f be a periodic function of bounded variation over [0, 2π]. Show that
|sn(x)| ≤ ‖f‖∞ + V[0,2π](f) for all n ∈ N, x ∈ R, i.e., the partial sums of the Fourier
series are uniformly bounded.

Hint: |σn(x)| ≤ ‖f‖∞ and find an estimate of sn(x)− σn(x).

E 6.3 Show that if f is periodic and of bounded variation over [0, 2π], then the
Fourier series is strongly convergent in L1(T), i.e., ‖f − sn‖1 → 0.

E 6.4 For f ∈ L1(T) consider the operator T̃f from Exercise E 1.3 as an operator
on the Banach space L1(T). Prove that the operator norm ‖T̃f‖ is equal to ‖f‖1.

1.7 L2-theory and Parseval’s identity

The theory is probably known from an introductory course on Hilbert spaces, and
we shall therefore treat it summarily and restrict ourselves to emphasizing some
important points.

It is crucial that L2(T) is a Hilbert space and that
{
en(x) = einx |n ∈ Z

}
is an

orthonormal basis herein. While it is elementary that {en | n ∈ Z} is an orthonormal
system, being an orthonormal basis means in addition that if f ∈ L2(T) is orthogonal
to all the vectors en then f = 0, or equivalently that the space span {en | n ∈ Z} of
trigonometric polynomials is dense in L2(T). That this is true is non-trivial, and it
follows from Weierstrass’ approximation theorem, cf. Corollary 1.6.7.

The n’th partial sum sn(x) for f ∈ L2(T) is the orthogonal projection on the
2n + 1 dimensional subspace En = span

{
eikx | − n ≤ k ≤ n

}
. The Pythagorian

Theorem entails that

‖f‖22 = ‖f − sn‖22 + ‖sn‖22 = ‖f − sn‖22 +
n∑

k=−n

|ck|2. (1.7.1)

From this equation it is completely elementary that

lim
n→∞

‖f − sn‖2 = 0 ⇔ ‖f‖22 =
∞∑

−∞

|ck|2, (1.7.2)
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i.e.,

Parseval’s identity ‖f‖22 =
∑∞

−∞ |ck|2 holds if and only if the Fourier series
converges in L2(T).

To see that these properties are fulfilled, we proceed as follows:

The n’th average of the partial sums

σn =
n∑

k=−n

(
1− |k|

n + 1

)
ck e

ikθ

belongs to En as well as sn, but since sn is the best approximation of f from En, we
have

‖f − sn‖2 ≤ ‖f − σn‖2.

The last term approaches 0 by Theorem 1.6.6 for p = 2, and thus also ‖f−sn‖2 → 0.

Parseval’s identity goes back to 1799, but Parseval did not give a proper proof.
The theory obtained a decisive rounding-off with the Lebesgue integral which made
it possible to prove that L2(T) is complete, cf. Fischer’s completeness theorem. A
closely related result is

Theorem 1.7.1 (Riesz-Fischer’s Theorem (1909)) To a sequence (cn)n∈Z of
complex numbers satisfying

∑∞
−∞ |cn|2 < ∞ there exists a function f ∈ L2(T) with

Fourier series

f ∼
∞∑

k=−∞

ck e
ikθ,

and such a function is uniquely determined almost everywhere.

The proof is simple: The sequence sn =
∑n

k=−n ck e
ikθ is a Cauchy sequence in

L2(T) because

‖sn+p − sn‖22 =
n+p∑

k=n+1

(
|ck|2 + |c−k|2

)
,

and since L2(T) is complete, sn → f for some f ∈ L2(T), which can easily be seen
to have the Fourier coefficients (cn). �

Exercises

E 7.1 Find the Fourier series for f ∈ L1(T) given by

f(x) =

{
x for − π < x < π
0 for x = π,
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and show that it converges pointwise to f(x) for all x ∈ R.

Prove that
∞∑

n=1

1

n2
=
π2

6
.

E 7.2 For n ∈ N0 let

Sn(t) =

n∑

k=−n

cke
ikt

be a trigonometric polynomial of degree ≤ n.

1◦. Show that ‖S ′
n‖2 ≤ n‖Sn‖2.

2◦. Find all the trigonometric polynomials of degree ≤ n for which there is
equality in the inequality in 1◦.

1.8 The Fourier coefficients considered as a map-

ping

Considering the Fourier coefficients (cn) = (cn(f)) for f ∈ L1(T), we have a mapping
C : L1(T) → C0(Z) given by

C(f)(n) = cn(f) =
1

2π

∫ 2π

0

f(x) e−inx dx, n ∈ Z. (1.8.1)

Here C0(Z) denotes the set of sequences (cn)n∈Z of complex numbers satisfying
cn → 0 for n → ±∞. (We can also view Z as a metric space with the discrete
metric. Then Z becomes a locally compact Hausdorff space where each subset
of Z is open and closed. We can thereby view C0(Z) as the space of continuous
functions C : Z → C vanishing at infinity). Since two functions which are equal
almost everywhere have the same Fourier coefficient, we can consider C as a mapping
C : L1(T) → C0(Z).

Theorem 1.8.1 If f , g ∈ L1(T) possess the Fourier series

f ∼
∑

cn e
inx, g ∼

∑
dn e

inx,

then we have

(i) f + g ∼∑(cn + dn)e
inx,

(ii) λf ∼∑λcne
inx, λ ∈ C,
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(iii) f ∗ g ∼∑ cn dn e
inx.

Stated differently: C : L1(T) → C0(Z) is an algebra homomorphism.

Proof. Only (iii) is non-trivial. By Fubini’s theorem we obtain

cn(f ∗ g) =
1

2π

∫ 2π

0

f ∗ g(x) e−inx dx =
1

2π

∫ 2π

0

(
1

2π

∫ 2π

0

f(x− y) g(y) dy e−inx)dx

=
1

2π

∫ 2π

0

(
1

2π

∫ 2π

0

f(x− y) e−in(x−y) dx) g(y) e−inydy

=
1

2π

∫ 2π

0

cn(f) g(y) e
−iny dy = cn(f) cn(g).

�

Remarks 1.8.2 1) Introducing an involution ∼ in L1(T) by f̃(x) = f(−x), we
can see that

f̃ ∼
∑

cn e
inθ, (1.8.2)

since

cn(f̃) =
1

2π

∫ 2π

0

f(−x) e−inx dx =
1

2π

∫ 2π

0

f(x) e−inx dx = cn(f).

Complex conjugation is an involution in the algebra C0(Z), and (1.8.2) can be
expressed that C respects the involution.

2) The Uniqueness Theorem (Theorem 1.6.5) can be expressed that C is injective.

3) Since sup
n

|cn(f)| ≤ ‖f‖1, we have that C is norm diminishing as a mapping

of the Banach space L1(T) into the Banach space C0(Z). We can add that
‖C‖ ≤ 1.

4) Riesz–Fischer’s and Parseval’s theorems can be expressed that C maps L2(T) ⊆
L1(T) bijectively onto ℓ2(Z) ⊆ C0(Z), and that the restriction of C to L2(T)
is an isometric isomorphism onto ℓ2(Z).

5) C maps the trigonometric polynomials onto those sequences c ∈ C0(Z) which
only are 6= 0 for finitely many n. This subspace of C0(Z) can be understood
as the continuous functions on Z with compact support.

It can be shown that ‖C‖ = 1 in 3) above, see E 8.1.

From 5) follows that C(L1(T)) is a dense subspace of C0(Z). It is obvious to ask
if C is surjective. We shall see that it is not, cf. Remark 1.8.5. This gives rise to the
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question if one can say something about how quickly cn → 0 when (cn) are Fourier
coefficients for an integrable function. Here the answer is that there are Fourier
coefficients which approach 0 arbitrarily slowly for n→ ±∞. The consensus among
specialists is that it is impossible to give a descriptive characterization of C(L1(T))
as a subset of C0(Z).

The following sufficient condition for a sequence c = (cn) to belong to C(L1(T))
is often useful.

Theorem 1.8.3 Let c ∈ C0(Z) be a sequence with the properties

(i) cn ≥ 0, n ∈ Z,

(ii) c−n = cn, n ∈ Z (c is an even function on Z),

(iii) 2cn ≤ cn−1 + cn+1 for n ≥ 1 (c is convex on Z+).

Then there is an f ∈ L1
+(T) with cn(f) = cn, n ∈ Z.

Proof. Condition (iii) gives cn − cn+1 ≤ cn−1 − cn, i.e., (cn − cn+1), n ≥ 0 is
decreasing and approaches 0, the latter because cn → 0. It follows that cn−cn+1 ≥ 0
for n ≥ 0.
For ε > 0 we choose an N such that cn ≤ ε/2 for n ≥ N . For p ≥ 1 we obtain now

cN − cN+p = (cN − cN+1) + (cN+1 − cN+2) + . . .+ (cN+p−1 − cN+p)

≥ p(cN+p−1 − cN+p),

or when p ≥ N

(N + p− 1)(cN+p−1 − cN+p) ≤
N + p− 1

p
(cN − cN+p) ≤

2p− 1

p
cN ≤ ε.

We thus have

k(ck − ck+1) ≤ ε for k ≥ 2N − 1,

which shows that lim
n→∞

n(cn − cn+1) = 0. It follows that

n∑

k=1

k(ck−1 + ck+1 − 2ck) =

n∑

k=1

(k(ck−1 − ck) + ck)− ((k + 1)(ck − ck+1) + ck+1)

= c0 − cn − n(cn − cn+1)

converges to c0 for n→ ∞. Notice that the sum above is telescoping.
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Consider now the infinite series
∞∑

n=1

n(cn−1 + cn+1 − 2cn)Fn−1(x), (1.8.3)

where Fn is Fejér’s kernel. The terms are non-negative continuous functions, and
therefore the sum f(x) is a non-negative Borel function, possibly infinite at certain
points. (As the limit of an increasing sequence of non-negative continuous functions,
f is actually lower semi-continuous.) By the monotone convergence theorem

1

2π

∫ 2π

0

f(x) dx =

∞∑

n=1

n(cn−1 + cn+1 − 2cn)
1

2π

∫ 2π

0

Fn−1(x) dx

=

∞∑

n=1

n(cn−1 + cn+1 − 2cn) = c0,

so f ∈ L1
+(T). The partial sums sn of (1.8.3) converge to f in L1(T) by Lebesgue’s

theorem about dominated convergence.

The j’th Fourier coefficient for sn is

cj(sn) =
n∑

k=1

k(ck−1 + ck+1 − 2ck)
1

2π

∫ π

−π

Fk−1(x) e
−ijx dx,

and

1

2π

∫ π

−π

Fk−1(x) e
−ijx dx =





1− |j|
k

for |j| ≤ k − 1

0 for |j| ≥ k.

For n ≥ |j|+ 1 we therefore obtain

cj(sn) =
n∑

k=|j|+1

k(ck−1 + ck+1 − 2ck)

(
1− |j|

k

)

=
n∑

k=|j|+1

k(ck−1 + ck+1 − 2ck)− |j|
n∑

k=|j|+1

((ck−1 − ck)− (ck − ck+1))

=
n∑

k=|j|+1

(k(ck−1 − ck) + ck)− ((k + 1)(ck − ck+1) + ck+1)

−|j|
n∑

k=|j|+1

((ck−1 − ck)− (ck − ck+1))

=
(
(|j|+ 1)(c|j| − c|j|+1) + c|j|+1

)
− ((n + 1)(cn − cn+1) + cn+1)

−|j|
(
(c|j| − c|j|+1)− (cn − cn+1)

)

= c|j| + |j|(cn − cn+1)− n(cn − cn+1)− cn
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by employing telescopic sums. For n → ∞ this expression converges to c|j|. Since
sn → f in L1(T) we get cj(sn) → cj(f) for n→ ∞ because

|cj(f)− cj(sn)| ≤ ‖f − sn‖1.

This gives cj(f) = c|j| = cj for j ∈ Z. �

Example 1.8.4 If ϕ : [0,∞[ → ]0,∞] is a decreasing convex function tending to
zero at infinity, then cn = ϕ(|n|) will fulfill the conditions in Theorem 1.8.3. The
theorem can be applied to

a) ϕ(x) =
1

(x+ 1)α
, α > 0

b) ϕ(x) =
1

log(a+ x)
for a > 1.

If ϕ is only defined on the open interval ]0,∞[, like ϕ(x) = 1/ log(1+x), but still has
the same properties, we can put cn = ϕ(|n|) for n 6= 0, and we then have to choose
c0 ≥ 0 such that c0+ c2 ≥ 2c1. In particular, we obtain that the trigonometric series
with

c−n = cn =
1

log(n+ 1)
, n ≥ 1, c0 ≥

2

log 2
− 1

log 3
(= 1.97...),

i.e.,

c0 + 2
∞∑

n=1

cos(nx)

log(n + 1)
(1.8.4)

is a Fourier series for a function f ∈ L1
+(T). Since

∑
c2n = ∞, we know furthermore

that f /∈ L2(T). The series (1.8.4) is clearly divergent for x = 0 and convergent
(alternating series) for x = π. We shall see later that the function f is continuous
on ]0, 2π[, cf. Sec. 1.9.

What can we say about the corresponding sine-series?

∞∑

n=1

sin(nx)

log(n + 1)
. (1.8.5)

We shall see later (Sec. 1.9) that (1.8.5) converges for all x and the sum function
is continuous on ]0, 2π[, but it is not integrable over [0, 2π]. This follows from

Theorem 1.9.3 below because
∞∑

n=1

1

n log(n+ 1)
= ∞ (cf. the integral criterion).
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Remark 1.8.5 The properties of the function (1.8.5) show that the sequence

cn =





0, n = 0

sgn(n)

log(n+ 1)
, n 6= 0

belongs to C0(Z) \ C(L1(T)), i.e., C is not surjective.

Exercises

E 8.1 Show that C : L1(T) → C0(Z) has norm ‖C‖ = 1, cf. Remarks 1.8.2 no.
3).

E 8.2 Show that ϕ(x) = 1/ log◦n(an + x) is a positive, decreasing and convex
function on [0,∞[ with ϕ(x) → 0 for x → ∞, provided an > exp◦n(0). Here is
log◦ 2(x) = log(log x), and in general log◦n(x) = log(log◦ (n−1)(x)). Correspondingly,
exp◦n(x) = exp(exp◦ (n−1)(x)). [In this way, we can construct decreasing convex
functions which approach 0 very slowly, and by Theorem 1.8.3 this yields functions
in L1(T) for which the Fourier coefficients approach 0 very slowly].

1.9 Some simple trigonometric series

We shall consider pointwise convergence of a trigonometric series of the form

∞∑

n=1

λn e
inx, (1.9.1)

where (λn)n≥1 is a decreasing sequence of positive numbers approaching 0. This is
equivalent to considering the two real-valued series

∞∑

n=1

λn cos(nx),
∞∑

n=1

λn sin(nx).

Theorem 1.9.1 Let (λn) be a decreasing sequence of positive numbers satisfying
limλn = 0. Then the trigonometric series (1.9.1) converges for x 6= 2pπ, and it
converges uniformly on [δ, 2π − δ] for every 0 < δ < π.

Proof. Defining

An(x) =
n∑

k=1

eikx =
einx − 1

1− e−ix
, x 6= 2pπ,
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we have

|An(x)| ≤
2

|1− e−ix| =
1

sin x
2

≤ 1

sin δ
2

for x ∈ [δ, 2π − δ].

We next use a technique for infinite series which is analogous to integration by
parts:

n+p∑

k=n+1

λk e
ikx = einx

(
λn+1A1(x) +

p∑

k=2

λn+k(Ak(x)−Ak−1(x))

)

= einx

(
p−1∑

k=1

Ak(x)(λn+k − λn+k+1) + λn+pAp(x)

)
,

therefore for x ∈ [δ, 2π − δ]
∣∣∣∣∣

n+p∑

k=n+1

λk e
ikx

∣∣∣∣∣ ≤
1

sin x
2

(
p−1∑

k=1

(λn+k − λn+k+1) + λn+p

)
=
λn+1

sin x
2

, (1.9.2)

where we have used that λn+p ≥ 0, λn+k−λn+k+1 ≥ 0. From this estimate it follows
that the series is uniformly convergent in the interval [δ, 2π − δ]. �

The theorem shows that the sum of (1.9.1)

f(x) =
∞∑

n=1

λn e
inx (1.9.3)

is a continuous function on R \ 2πZ. The real part
∞∑

n=1

λn cos(nx)

converges for x = 2pπ precisely when
∑∞

1 λn <∞, but the imaginary part

∞∑

n=1

λn sin(nx)

converges trivially with sum 0 for x = 2pπ.

We shall now give a sufficient condition on the sequence (λn) which ensures that
the function (1.9.3) is integrable.

Theorem 1.9.2 Let (λn) be a decreasing sequence of positive numbers with limλn =

0. If

∞∑

1

λn/n <∞ , then f defined by (1.9.3) belongs to L1(T) and

‖f‖1 ≤ 2

∞∑

n=1

λn
n
. (1.9.4)

The Fourier series of f is
∑∞

n=1 λne
inx.
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Proof. Since f(−x) = f(x), it is sufficient to estimate
∫ π

0
|f(x)| dx. We let

Λk = λ1 + . . .+ λk and find

∞∑

k=1

Λk

k(k + 1)
=

∞∑

k=1

1

k(k + 1)

k∑

n=1

λn =
∞∑

n=1

λn

∞∑

k=n

(
1

k
− 1

k + 1

)
=

∞∑

n=1

λn
n
.

For π
k+1

≤ x < π
k
, k = 1, 2, . . ., we have

f(x) =

k∑

n=1

λn e
inx +

∞∑

n=k+1

λn e
inx,

hence by (1.9.2) (since we can let p→ ∞)

|f(x)| ≤ Λk +
1

sin x
2

λk+1.

Using sin x
2
≥ x

π
for x ∈ [0, π], see (1.6.5), we get the estimate

|f(x)| ≤ Λk +
π

x
λk+1 ≤ Λk + λk+1(k + 1),

where the last inequality is because x ≥ π
k+1

. We finally get

∫ π

0

|f(x)| dx =
∞∑

k=1

∫ π/k

π/(k+1)

|f(x)| dx ≤
∞∑

k=1

π

(
1

k
− 1

k + 1

)
(Λk + λk+1(k + 1))

= π
∞∑

k=1

Λk

k(k + 1)
+ π

∞∑

k=1

λk+1

k
≤ 2π

∞∑

n=1

λn
n
.

To show the last assertion, it is enough to prove that sn(x) =
∑n

k=1 λke
ikx converges

to f in L1(T). We find

‖f − sn‖1 = ‖
∞∑

k=n+1

λke
ikx‖1

= ‖
∞∑

j=1

λn+je
ijx‖1 ≤ 2

∞∑

j=1

λn+j

j

by (1.9.4) applied to the sequence λn+j, j = 1, 2, . . .. We claim that

∞∑

j=1

λn+j

j
→ 0 for n→ ∞

because of dominated convergence for sequences. In fact, λn+j/j → 0 for n → ∞
and λn+j/j ≤ λj/j. �

Theorem 1.9.2 has a partial converse concerning sine-series.
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Theorem 1.9.3 Let (λn)n≥1 be a decreasing sequence of positive numbers such that
limλn = 0. Then the sine series

∞∑

n=1

λn sin(nx) (1.9.5)

converges to a function S ∈ L1(T) if and only if

∞∑

n=1

λn
n
<∞. (1.9.6)

If (1.9.6) holds, then (1.9.5) is the Fourier series of S.

Proof. We know that S is the imaginary part of the function f from Theo-
rem 1.9.2, hence integrable if (1.9.6) holds, and (1.9.5) is the Fourier series of S.

Assume next that the sum S of the series (1.9.5) is integrable. Since S is an odd
function, its Fourier series is a sine-series.

For fixed m ∈ N the series
∑∞

n=1 λn sin(nx) sin(mx) converges uniformly to
S(x) sin(mx) for 0 < x < π. In fact, for any n, p ∈ N and 0 < x < π we find

|
n+p∑

k=n+1

λk sin(kx) sin(mx)| ≤ | sin(mx)| |Im
(

n+p∑

k=n+1

λke
ikx

)
|

≤ mx
λn+1

sin(x/2)
≤ λn+1mπ,

where we have used (1.9.2) and (1.6.5). From the uniform convergence we get

2

π

∫ π

0

S(x) sin(mx) dx =

∞∑

n=1

λn
2

π

∫ π

0

sin(nx) sin(mx) dx = λm,

which shows that (1.9.5) is the Fourier series of S.

The definite integral F (x) =
∫ x

0
S(t) dt is continuous, and it is periodic because

F (x+ 2π)− F (x) =

∫ x+2π

x

S(t) dt =

∫ π

−π

S(t) dt = 0.

It is also easy to see that F is even, so its Fourier series is a cosine series

F (x) ∼ a0
2

+
∞∑

n=1

an cos(nx).

41



For n > 0 we find by Fubini’s theorem

an =
2

π

∫ π

0

(

∫ x

0

S(t) dt) cos(nx) dx =
2

π

∫ π

0

(

∫ π

t

cos(nx) dx)S(t) dt

= −2

π

∫ π

0

S(t) sin(nt)/n dt = −λn
n
.

According to Fejér’s theorem 1.6.8, the Fourier series for F is summable for t = 0
with sum 0, but since |nan| = λn is bounded (it approaches 0 for n → ∞), Hardy’s
theorem 1.6.11 shows that the series

a0
2

+
∞∑

n=1

an

is convergent with sum 0. In particular,

0 ≤
∞∑

n=1

λn
n

=
a0
2

=
1

π

∫ π

0

F (x) dx <∞.

�

Example 1.9.4 λn =
1

log(n+ 1)
, n ≥ 1.

The function

f(x) =
∞∑

n=1

einx

log(n + 1)
(1.9.7)

is continuous on R \ 2πZ; it is not integrable because Im(f) /∈ L1(T) by Theo-
rem 1.9.3, but Re(f)(x) is integrable, see (1.8.4).

Example 1.9.5 λn =
1

nα
, α > 0.

The function

f(x) =

∞∑

n=1

einx

nα
(1.9.8)

is continuous on R \ 2πZ and belongs to L1(T), since
∑

1
n1+α < ∞. The series is

not absolutely convergent for 0 < α ≤ 1.

Example 1.9.6

∞∑

n=1

sin(nx)

n
=

1

2
(π − x), 0 < x < 2π (1.9.9)

∞∑

n=1

cos(nx)

n
= − ln

(
2 sin

x

2

)
, 0 ≤ x ≤ 2π. (1.9.10)
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To see these formulas we use the principal logarithm Log which is holomorphic
in the cut plane C\]−∞, 0] and we know that

−Log(1− z) =
∞∑

n=1

zn

n
, |z| < 1.

Setting z = reiθ, 0 < r < 1, we have

−Log
(
1− reiθ

)
=

∞∑

n=1

rn

n
eiθ,

and this series converges uniformly in θ when r < 1. In particular,

−1

2
ln(1 + r2 − 2r cos θ) =

∞∑

n=1

rn

n
cos(nθ),

−Arg
(
1− reiθ

)
=

∞∑

n=1

rn

n
sin(nθ),

where Arg is the principle argument taking values in ]− π, π[. For r → 1− we find

−1

2
ln(1 + r2 − 2r cos θ) → − ln(2 sin

θ

2
), −Arg

(
1− reiθ

)
→ 1

2
(π − θ),

both for 0 < θ < 2π. In addition to pointwise convergence, we have convergence
in L1(T). This follows from Lebesgue’s theorem on dominated convergence, and
thereby 1

2
(π − x) and − ln(2 sin x

2
) have the given Fourier series.

Exercises

E 9.1 Show that the dominated convergence theorem can be used above.

1.10 Absolutely convergent Fourier series

If f ∈ L1(T) has an absolutely convergent Fourier series, i.e., if
∑ |cn| < ∞, then

the series
∑
cn e

inx converges uniformly for θ ∈ R to a continuous periodic function
g by Weierstrass’ M-test. Moreover, cn(g) = cn(f) for all n, thus by the Uniqueness
Theorem 1.6.5 we have f = g a. e. We can therefore say that f is equal to a
continuous function a. e., or, in other words, we can change f on a null set such
that it becomes continuous.

We define now

A(T) =
{
f ∈ C(T)

∣∣∣
∑

|cn(f)| <∞
}
, (1.10.1)
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which clearly is a subspace of C(T), stable under complex conjugation. Furthermore,
A(T) contains all trigonometric polynomials. We see below in Corollary 1.10.4 that
C1(T) ⊂ A(T).

We can also write

A(T) =
{
f ∈ L1(T) |C(f) ∈ ℓ1(Z)

}
.

We note now that ℓ1(Z) has a convolution structure. If a, b ∈ ℓ1(Z), i.e., if∑ |an| <∞,
∑ |bn| <∞, then

cn =
∑

k∈Z

an−k bk, n ∈ Z (1.10.2)

defines a new sequence in ℓ1(Z). In fact, the series (1.10.2) is absolutely convergent
for every n because

∑

k∈Z

|an−k bk| ≤ (sup
n∈Z

|an|)
∑

k∈Z

|bk| = ‖a‖∞‖b‖1 <∞,

and

∑

n∈Z

|cn| ≤
∑

n∈Z

(∑

k∈Z

|an−k bk|
)

=
∑

k∈Z

|bk|
∑

n∈Z

|an−k| =
∑

k∈Z

|bk|
∑

n∈Z

|an| = ‖b‖1‖a‖1 <∞.

In other words: (1.10.2) defines a composition rule ∗ which is called a convolution
in ℓ1(Z), and it holds that

(a ∗ b)n =
∑

k∈Z

an−k bk. (1.10.3)

We leave to the reader to verify that ℓ1(Z) is a commutative Banach algebra.

Note the analogy to L1(T) with respect to convolution. The crucial aspect for
the construction is the group structure on Z resp. T and the translation invariant
measure on Z and T, namely the counting measure and Lebesgue measure. The
special sequence δ0 given by (δ0)n = 1 for n = 0 and = 0 for n 6= 0 is a unit element
with respect to ∗.

Theorem 1.10.1 For f, g ∈ A(T), we have fg ∈ A(T) and C(fg) = C(f) ∗ C(g).

Proof. We calculate

∑

n∈Z

(C(f) ∗ C(g))n einx =
∑

n∈Z

(∑

k∈Z

cn−k(f) ck(g) e
inx

)

=
∑

k∈Z

(∑

n∈Z

cn−k(f) e
i(n−k)x

)
eikxck(g) =

∑

k∈Z

f(x) ck(g) e
ikx = f(x)g(x).

�
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Remark 1.10.2 There exist functions f ∈ C(T) such that f /∈ A(T), since there
are f ∈ C(T) for which the Fourier series is divergent in certain points, cf. Theo-
rem 1.11.3.

Lemma 1.10.3 If f is periodic and differentiable with f ′ ∈ L1(T), then cn(f
′) =

in cn(f), i.e., the Fourier series for f ′ is found by termwise differentiation of the
Fourier series for f .

Proof. This is a simple consequence of partial integration because

cn(f
′) =

1

2π

∫ 2π

0

f ′(t) e−int dt =
1

2π

[
f(t) e−int

]2π
0

− 1

2π

∫ 2π

0

f(t) (−in) e−int dt

= in cn(f).

�

Corollary 1.10.4 If f is periodic and differentiable with f ′ ∈ L2(T), then f ∈
A(T). In particular, C1(T) ⊂ A(T).

Proof. Since L2(T) ⊂ L1(T), we know by Lemma 1.10.3 that cn(f
′) = in cn(f),

so by Parseval’s equation we find

‖f ′‖22 =
∞∑

−∞

|in cn(f)|2 <∞.

An application of the Cauchy-Schwarz inequality yields

∑

n 6=0

|cn| =
∑

n 6=0

|ncn|
1

|n| ≤
(∑

n 6=0

n2|cn|2
)1/2(∑

n 6=0

1

n2

)1/2

<∞.

�

Another consequence of Lemma 1.10.3 is that if f ∈ C∞(T), then cn(f
(k)) =

(in)kcn(f) and hence by the Riemann–Lebesgue lemma

nk cn(f) → 0 for |n| → ∞ for all k ∈ N. (1.10.4)

The Fourier coefficients for f ∈ C∞(T) therefore approach 0 faster for |n| → ∞
than n−k for every k. Sequences with the property (1.10.4) are called rapidly
decaying sequences. They are the discrete counterpart to the Schwartz functions,
which will be discussed in Chapter 2. Conversely, we shall now see that these
sequences are precisely the Fourier coefficients for functions in C∞(T).
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Theorem 1.10.5 Every rapidly decaying sequence (cn)n∈Z is the Fourier cofficients
of a function f ∈ C∞(T).

Proof. We note first that (nk cn) ∈ ℓ1(Z) for every k ∈ N0. In fact, since
nk+2 cn → 0 for |n| → ∞ it is bounded and therefore |nk cn| ≤ A/n2 for n 6= 0
and some A > 0. We can therefore find fk ∈ A(T) such that

fk(x) =
∑

n∈Z

(in)k cn e
inx, x ∈ R, k ∈ N0,

and each of these series are uniformly convergent on R. By a well-known result of
analysis, we see that each fk is a C1-function with f ′

k = fk+1, but this shows that
f = f0 ∈ C∞(T).

�

Let us now consider a function f ∈ C∞(T) which can be extended to a holomorphic
function in a band

S = SR =
{
z = x+ iy

∣∣∣ |y| < R
}

around the real axis. The functions einx, n ∈ Z are examples of this. They can even
be extended to the entire C.

We note first that f : S → C becomes periodic in S, i.e.,

f(z + 2π) = f(z) for z ∈ S, (1.10.5)

since the function f(z+2π)−f(z) is holomorphic in S and identically 0 on R, hence
identically 0 in S. For every y0 ∈ R with |y0| < R the function x 7→ f(x + iy0) is
therefore a periodic C∞ function. We will find its Fourier series. We apply Cauchy’s
integral theorem to a rectangle R with sides y = 0, y = y0, x = 0, x = 2π.

0 2π

S

R

2π + iy0iy0

Figure 1.3: The figure shows y0 > 0, but it is possible that −R < y0 < 0
.
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We obtain
∫

∂R

f(z) e−inz dz = 0,

or
∫ 2π

0

f(x) e−inx dx+ i

∫ y0

0

f(2π + it) e−in(2π+it) dt

=

∫ 2π

0

f(x+ iy0) e
−in(x+iy0) dx+ i

∫ y0

0

f(it) e−in(it) dt.

From (1.10.5) it follows that two of the terms are equal, and we find

cn (f(x)) = eny0 cn (f(x+ iy0)) . (1.10.6)

This shows that

f(x+ iy0) =
∞∑

n=−∞

cn(f) e
−ny0 einx =

∞∑

n=−∞

cn(f) e
in(x+iy0),

i.e., the Fourier series for f(x + iy0) can be derived from the Fourier series of f by
formally replacing x by x+ iy0. We have now

Theorem 1.10.6 Let f : S → C be holomorphic in the band S and periodic with
period 2π. Then the series

f(z) =
∞∑

n=−∞

cn e
inz, cn = cn(f) (1.10.7)

converges uniformly over compact subsets of S and for every r, 0 < r < R, there
exists a constant Kr such that

|cn| ≤ Kr e
−r|n|, n ∈ Z. (1.10.8)

Proof. For an arbitrary compact set L ⊆ S, there exist 0 < r < R and ℓ > π

such that L ⊆ L̃ :=
{
x+ iy

∣∣∣ |x| ≤ ℓ, |y| ≤ r
}
. From (1.10.6) we obtain for n > 0

|cn| = e−nr |cn (f(x− ir)) | ≤ e−nr max
z∈L̃

|f(z)|,

|c−n| = e−nr |cn (f(x+ ir)) | ≤ e−nr max
z∈L̃

|f(z)|,

which shows (1.10.8). If we choose ε > 0 so small that r+ ε < R, we have for z ∈ L

|cn einz| ≤ |cn| e|n| |y| ≤ e−|n|ε |cn| e|n|(r+ε) ≤ e−|n|εKr+ε,
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and this shows that Weiersstrass’ M-test can be applied to (1.10.7). �

Exercises

E 10.1 For c = (cn) ∈ ℓ1(Z) define c̃n = c−n for n ∈ Z. Show that c→ c̃ makes
ℓ1(Z) to a Banach algebra with involution.

E 10.2 Show that if f, g ∈ L2(T), then f ∗ g ∈ A(T).

E 10.3 Let (cn)n∈Z be a sequence such that

|cn| ≤ K e−R|n|, n ∈ Z,

for appropriate K, R > 0. Show that there exists a holomorphic periodic function f

in the band SR =
{
x+ iy

∣∣∣ |y| < R
}
such that the restriction of f to R has Fourier

coefficients (cn)n∈Z.

E 10.4 Show that the convergence in (1.10.7) is uniform over all subbands Sr of
S = SR when 0 < r < R.

1.11 Divergence of Fourier series

We begin by considering the L1-norm of Dirichlet’s kernel Dn.

Lemma 1.11.1 The 1-norm of the Dirichlet kernel tends to infinity with n because
of the estimate

‖Dn‖1 =
1

2π

∫ π

−π

|Dn(t)| dt ≥
4

π2

n∑

k=1

1

k
.

Proof. For x > 0 we have sin x
2
< x

2
, hence

‖Dn‖1 =
1

2π

∫ π

−π

|Dn(t)| dt =
1

π

∫ π

0

∣∣∣∣
sin(n+ 1

2
)t

sin t
2

∣∣∣∣ dt >
2

π

∫ π

0

| sin(n+ 1
2
)t|

t
dt

=
2

π

∫ (n+ 1

2
)π

0

| sinu|
u

du >
2

π

n∑

k=1

∫ kπ

(k−1)π

| sin u|
kπ

du =
2

π

n∑

k=1

2

kπ
.

�

Lemma 1.11.2 For every g ∈ C(T) let Lg : C(T) → C be defined by

Lg(f) =
1

2π

∫ 2π

0

f(t) g(t) dt, f ∈ C(T). (1.11.1)

Then Lg is a continuous linear functional with norm ‖Lg‖ = ‖g‖1.
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Proof. It is clear that Lg is a linear functional and since

|Lg(f)| ≤
1

2π

∫ 2π

0

|f(t)||g(t)| dt ≤ ‖f‖∞‖g‖1,

we get

‖Lg‖ := sup
{
|Lg(f)|

∣∣∣‖f‖∞ ≤ 1
}
≤ ‖g‖1.

That the inequality sign holds can be seen as follows: For ε > 0 we set fε(t) =
g(t)/(|g(t)|+ ε) which is continuous and ‖fε‖∞ < 1. Therefore

‖Lg‖ ≥ Lg(fε) =
1

2π

∫ 2π

0

|g(t)|2
|g(t)|+ ε

dt >
1

2π

∫ 2π

0

|g(t)|2 − ε2

|g(t)|+ ε
dt

=
1

2π

∫ 2π

0

(|g(t)| − ε) dt = ‖g‖1 − ε.

�

Theorem 1.11.3 For every x0 ∈ R there exists f ∈ C(T) for which the sequence
of partial sums (sn(f)(x0)) of the Fourier series at x0 is unbounded.

In particular the Fourier series of f is divergent in the point x0.

Proof. The proof is given by contradiction. Supposing the assertion of the theo-
rem to be false, there exists x0 such that for all f ∈ C(T) the sequence (sn(f)(x0))
is bounded. Remember that

sn(f)(x0) =
1

2π

∫ 2π

0

f(x0 − t)Dn(t) dt.

Since we obviously have

{
t→ f(x0 − t)

∣∣∣ f ∈ C(T)
}
= C(T),

it follows that the sequence

Ln(f) =
1

2π

∫ 2π

0

f(t)Dn(t) dt

is bounded for all f ∈ C(T). This means that we have a sequence Ln = LDn
of

continuous linear functionals on C(T) which is pointwise bounded, i.e., (Ln(f)) is
bounded for each f , but ‖Ln‖ = ‖Dn‖1 is unbounded and this is in contradiction
with a general result from functional analysis called the Banach–Steinhaus theorem
or the uniform boundedness principle:
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Theorem 1.11.4 (Banach-Steinhaus) Let E be a Banach space and Ln : E → C
a sequence of continuous linear functionals which is assumed to be pointwise bounded,
i.e., for every x ∈ E, (Ln(x)) is bounded. Then ‖Ln‖ is bounded.

Proof. For every p ∈ N we consider

Fp =

{
x ∈ E

∣∣∣ sup
n

|Ln(x)| ≤ p

}
.

Since Fp is the intersection of the closed sets

{
x ∈ E

∣∣∣ |Ln(x)| ≤ p
}
= L−1

n

({
z ∈ C

∣∣∣ |z| ≤ p
})

, n ∈ N,

Fp is also closed. We have furthermore F1 ⊆ F2 ⊆ . . ., and since sup
n

|Ln(x)| < ∞
for every x ∈ E, we necessarily have

F1 ∪ F2 ∪ . . . = E. (1.11.2)

We conclude now (according to an idea of R. Baire) that there can be found a p
such that Fp has interior points. We prove this by contradiction. If none of the sets
Fp have interior points, we come to a contradiction in the following way:

Since F1 has no interior points, we have necessarily F1 6= E, so we can choose
x1 ∈ E \ F1. Since F1 is closed, there exists a closed ball

B(x1, ρ1) =
{
x ∈ E

∣∣∣ ‖x− x1‖ ≤ ρ1

}

disjoint with F1. Since F2 cannot contain B(x1,
1
2
ρ1), there is an x2 ∈ B(x1,

1
2
ρ1)\F2,

and thereby (since F2 is closed) there exists a closed ball B(x2, ρ2) disjoint with F2.
Here we can of course choose ρ2 ≤ 1

2
ρ1, whereby we obtain B(x2, ρ2) ⊆ B(x1, ρ1). By

continuing in this way, we find a sequence of closed balls B(xp, ρp) with ρp+1 ≤ 1
2
ρp

and B(xp, ρp) ∩ Fp = ∅ together with B(xp, ρp) ⊇ B(xp+1, ρp+1). Clearly ρp → 0,
and since xp+1, xp+2, . . . ∈ B(xp, ρp) we see that (xp) is a Cauchy sequence. Since E

is by assumption complete, the limit lim
p→∞

xp = x exists. We have x ∈
∞⋂

p=1

B(xp, ρp)

and therefore x /∈
∞⋃

p=1

Fp, in contradiction with (1.11.2).

We have now shown that there exists a p0 and a ball B(x0, ρ0) ⊆ Fp0. For all y
in this ball we have |Ln(y)| ≤ p0 for every n by definition of Fp0. For every x ∈ E
with ‖x‖ ≤ 1 we have x0 ± ρ0x ∈ B(x0, ρ0), i.e.,

|Ln(x0 + ρ0x)| ≤ p0, |Ln(x0 − ρ0x)| ≤ p0, n ∈ N.
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By subtraction we obtain from this for all n ∈ N

|2ρ0Ln(x)| = |Ln(x0 + ρ0x)− Ln(x0 − ρ0x)| ≤ 2p0

or |Ln(x)| ≤ p0/ρ0. This proves that ‖Ln‖ ≤ p0/ρ0, i.e., that ‖Ln‖ is bounded. �

Exercises

E 11.1 Let X be a topological space. Show that the following two conditions
are equivalent

(i) For any sequence (Gn) of open dense sets, their intersection ∩Gn is dense in
X .

(ii) For any sequence (Fn) of closed sets with empty interior, their union ∪Fn

has empty interior.

A topological space X is called a Baire space if (i) and (ii) are satisfied.

E 11.2 1◦ Prove that a complete metric space is a Baire space.

2◦ Prove that a locally compact Hausdorff space is a Baire space.

René Baire (1874-1932) proved that X = R is a Baire space.

1.12 Fourier coefficients for measures on T

LetM+(T) denote the set of positive finite measures µ defined on the Borel σ-algebra
B(T) for T, i.e., µ is a countably additive function from B(T) to [0,∞[. (Note that
the condition µ(∅) = 0 is a consequence of µ(∅) + µ(∅) = µ(∅) when µ(∅) <∞).

For µ ∈ M+(T), we introduce the Fourier coefficients C(µ) : Z → C as

C(µ)(n) =

∫

T

z−n dµ(z), n ∈ Z. (1.12.1)

(If T is parametrized by z = eiθ, θ ∈ [0, 2π[, then z−n = e−inθ). The Fourier
coefficients C(µ) form a bounded sequence with

sup
n∈Z

|C(µ)(n)| = µ(T) <∞, (1.12.2)

since

|C(µ)(n)| ≤
∫

T

|z−n| dµ(z) =
∫

T

1 dµ(z) = µ(T) = C(µ)(0).

Example 1.12.1 For µ = εeiθ (the point measure in eiθ), we have C(µ)(n) = e−inθ

for all n. In particular, C(ε1)(n) = 1, C(ε−1)(n) = (−1)n.
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Example 1.12.2 For µ = f(z) dm(z), with f ∈ L1
+(T), andm being the normalized

Lebesgue measure on T, we have

C(µ)(n) = C(f)(n) =

∫

T

z−n f(z) dm(z) =
1

2π

∫ 2π

0

f(eit) e−int dt.

Lemma 1.12.3 (The uniqueness theorem) Suppose that µ, ν ∈ M+(T) satisfy
C(µ) = C(ν), then µ = ν.

Proof. If C(µ) = C(ν), we obtain directly
∫
p(t) dµ(t) =

∫
p(t) dν(t) for all

trigonometric polynomials. Since those are uniformly dense in C(T), we have∫
f(t) dµ(t) =

∫
f(t) dν(t) for all f ∈ C(T). From this follows easily that µ = ν

by the usual technique: For a closed arc B ⊆ T, there exists a decreasing sequence
fn ∈ C(T) such that fn → 1B pointwise. Therefore µ(B) = ν(B), and since the set
of closed arcs generates B(T) and is stable under intersection, we can conclude µ = ν.
(The uniqueness is also part of the Riesz representation theorem for measures.) �

For µ, ν ∈ M+(T), we introduce a convolution µ ∗ ν ∈ M+(T) as the image
measure p(µ ⊗ ν) of µ ⊗ ν under the mapping p : T2 → T given by p(z, w) = zw
(the multiplication in the group T). Thus, we have for E ∈ B(T)

µ ∗ ν(E) = µ⊗ ν
(
p−1(E)

)
= µ⊗ ν

({
(z, w) ∈ T2

∣∣∣ zw ∈ E
})

, (1.12.3)

and we see immediately that µ ∗ ν(T) = µ ⊗ ν(T2) = µ(T)ν(T) and µ ∗ ν = ν ∗ µ.
Moreover, µ ∗ ε1 = µ for all µ ∈ M+(T).

Lemma 1.12.4 Assume µ, ν ∈ M+(T) and f ∈ C(T). Then

∫

T

f dµ ∗ ν =

∫

T

(

∫

T

f(zw) dµ(z)) dν(w). (1.12.4)

The equation holds also for positive Borel functions f : T → [0,∞] and for f ∈
L1(µ ∗ ν).

Proof. If f = 1E for E ∈ B(T), (1.12.4) follows directly from (1.12.3). Thereby,
(1.12.4) holds also for positive simple functions. By the monotone convergence
theorem we see that (1.12.4) holds for an arbitrary positive Borel function f , since
there exists an increasing sequence (sn) of simple positive Borel functions sn ↑ f .
A real-valued function f ∈ L1(µ ∗ ν) can be written as a difference of two non-
negative Borel functions. Therefore, the result follows for integrable f , in particular
for arbitrary f ∈ C(T). �

Theorem 1.12.5 C(µ ∗ ν) = C(µ)C(ν).
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Proof.

C(µ ∗ ν)(n) =
∫
z−n dµ ∗ ν(z) =

∫
(

∫
(zw)−n dµ(z)) dν(w)

=

∫
(w−n

∫
z−n dµ(z)) dν(w) = C(µ)(n)C(ν)(n), n ∈ Z.

�

If µ = f dm, ν = g dm, then µ ∗ ν = (f ∗ g) dm, since for ϕ ∈ C(T)
∫
ϕdµ ∗ ν =

∫

T

(

∫

T

ϕ(zw) f(z) dm(z)) g(w) dm(w)

=

∫

T

(

∫

T

ϕ(z) f(zw−1) dm(z)) g(w) dm(w)

=

∫

T

(

∫

T

f(zw−1) g(w) dm(w))ϕ(z) dm(z)

=

∫

T

f ∗ g(z)ϕ(z) dm(z).

Note that

f ∗ g(z) =
∫

T

f(zw−1) g(w) dm(w) (1.12.5)

is the same as

f ∗ g(eiθ) = 1

2π

∫ 2π

0

f(ei(θ−t)) g(eit) dt. (1.12.6)

In the first equation, we “convolute” on the group T, in the second, we consider
functions on T as periodic functions on R by replacing f : T → C by f(eit).

Thus, the convolution in M+(T) extends the convolution of functions, when
we consider a function f as the measure f dm. Thereby, we can also say that
Theorem 1.12.5 extends Theorem 1.8.1(iii).

We shall give a characterization of the set of sequences C : Z → C which are
Fourier coefficients for measures µ ∈ M+(T). By substituting the measure µ by the
reflected measure µ̌ given by

µ̌(E) = µ(E−1) = µ

({
1

z

∣∣∣ z ∈ E

})
, E ∈ B(T),

we see that

C(µ̌)(n) =

∫

T

zn dµ(z), n ∈ Z,

so the problem is the same as to characterize moment sequences of measures on T.

We need an integral representation of the holomorphic functions f in the unit

disc D =
{
z ∈ C

∣∣∣ |z| < 1
}
satisfying Ref ≥ 0.
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Theorem 1.12.6 (G. Herglotz, F. Riesz 1911) The formula

f(z) = iβ +

∫

T

s+ z

s− z
dµ(s), z ∈ D, (1.12.7)

gives a bijective correspondence between the set H of holomorphic functions f : D →
C with Ref ≥ 0 and the set of pairs (β, µ) ∈ R×M+(T). For f ∈ H

β = Imf(0), µ = lim
r→1

Ref(rs) dm(s) weakly. (1.12.8)

Insertion on the weak topology on M+(T).

Given a sequence (µn) from M+(T), we say that µn → µ ∈ M+(T) weakly if

lim
n→∞

∫
f dµn =

∫
f dµ for all f ∈ C(T).

This corresponds to convergence in the coarsest topology on M+(T) for which
the mappings µ 7→

∫
f dµ are continuous, when f is an arbitrary element in C(T).

For µ ∈ M+(T), we define a linear functional Lµ : C(T) → C by Lµ(f) =∫
f dµ. It is positive in the sense that f ≥ 0 ⇒ Lµ(f) ≥ 0. The content of

Riesz’ respresentation theorem (for T) is that every positive linear functional L :
C(T) → C has the form L = Lµ for precisely one µ ∈ M+(T) (F. Riesz 1909). Since
Lµ is continuous with ‖Lµ‖ = µ(T), we can therefore consider M+(T) as a subset
of the dual space C(T)∗, and the weak topology on M+(T) is the restriction of the
topology σ(C(T)∗, C(T)) to M+(T).

According to Alaoglu–Bourbaki’s theorem, the unit sphere in C(T)∗ is weakly
compact. This gives the following key result on compactness of measures, frequently
called Helly’s theorem:

Theorem 1.12.7 For every α > 0, the set
{
µ ∈ M+(T)

∣∣∣µ(T) ≤ α
}
is weakly com-

pact, i.e., for every sequence µn ∈M+(T) with µn(T) ≤ α, there exists a µ ∈ M+(T)
and a subsequence (µnp

) such that lim
p→∞

µnp
= µ weakly.

Note that since 1 ∈ C(T), it follows that if µn(T) = α for all n, then the
accumulation point µ also has mass µ(T) = α.

We shall now give the proof of Herglotz-Riesz’ theorem.

Proof. As our starting point, we take the power series for f ∈ H

f(z) =
∞∑

n=0

an z
n, z ∈ D,
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which converges uniformly over compact subsets of D. Let g = Ref and a0 = α+iβ.
For z = reiθ ∈ D, we have

g(reiθ) = α+
1

2

∞∑

n=1

(
an r

neinθ + an r
ne−inθ

)
,

which is the Fourier series for the periodic C∞ function g(reiθ), i.e.,

α =
1

2π

∫ 2π

0

g(reiθ) dθ,
1

2
an r

n =
1

2π

∫ 2π

0

g(reiθ) e−inθ dθ, n ≥ 1.

Using these formulas, we find for z ∈ D, 0 < r < 1

f(rz) =
∞∑

n=0

an r
nzn =

1

2π

∫ 2π

0

g(reiθ) dθ + iβ + 2
∞∑

n=1

zn

2π

∫ 2π

0

g(reiθ)e−inθ dθ,

and interchanging
∑

and
∫
, which is allowed since the series

1 + 2
∞∑

n=1

e−inθ zn =
eiθ + z

eiθ − z
(1.12.9)

converges uniformly in θ, we obtain

f(rz) = iβ +
1

2π

∫ 2π

0

eiθ + z

eiθ − z
g(reiθ) dθ = iβ +

∫

T

s+ z

s− z
g(rs) dm(s). (1.12.10)

By assumption, we have g ≥ 0, so σr = g(rs) dm(s), 0 < r < 1 is a family of
measures in M+(T) with density and they all have the same total mass (put z = 0
in (1.12.10))

α = Re f(0) =

∫

T

g(rs) dm(s) = σr(T).

From Helly’s theorem 1.12.7 there exists µ ∈ M+(T) with µ(T) = α and a
sequence rn → 1 such that σrn → µ weakly, and thereby (1.12.10) gives

f(z) = iβ +

∫
s+ z

s− z
dµ(s), z ∈ D.

We shall finally see that every function of the form (1.12.7) belongs to H. It is
holomorphic according to Morera’s theorem from complex analysis, and taking the
real part, we find

Re f(z) =

∫
P (s, z) dµ(s) ≥ 0,
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where

P (s, z) = Re
s+ z

s− z
=

1− |z|2
|s− z|2 > 0 for s ∈ T, z ∈ D. (1.12.11)

From (1.12.7) we also obtain β = Im f(0), so to finish the proof, we shall prove that

lim
r→1

Re f(rs) dm(s) = µ weakly.

We study in this context the function (1.12.11) a bit closer. It is called Poisson’s
kernel. We are therefore dealing with the function P : T × D → R given by (cf.
(1.12.9))

P (s, z) =
1− |z|2
|s− z|2 , P (eiθ, reiϕ) =

1− r2

1 + r2 − 2r cos(θ − ϕ)
= 1 + 2

∞∑

n=1

rn cosn(θ − ϕ),

which arises from the Fourier series for the periodic function

Pr(θ) =
1− r2

1 + r2 − 2r cos θ
= 1 + 2

∞∑

n=1

rn cos(nθ) =
∑

n∈Z

r|n|einθ, 0 ≤ r < 1 (1.12.12)

by substituting θ by θ − ϕ.

Poisson’s kernel has the following properties:

(i) P (s, z) > 0 for s ∈ T, z ∈ D

(ii)

∫

T

P (s, z) dm(s) = 1 for z ∈ D

(iii) For δ > 0, s0 ∈ T: lim
z→s0

∫

|s−s0|≥δ

P (s, z) dm(s) = 0

or equivalently

(i’) Pr(θ) > 0

(ii’)
1

2π

∫ π

−π

Pr(θ) dθ = 1

(iii’) For δ > 0: lim
r→1

1

2π

∫

δ≤|θ|≤π

Pr(θ) dθ = 0.
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We can summarize these conditions by saying that (Prn) is a Dirac sequence for
any sequence (rn) from ]0, 1[ with rn → 1, cf. Definition 1.6.2.

The properties (i’) and (ii’) are straightforward from (1.12.12) and (iii’) follows
from the inequality

Pr(θ) ≤ Pr(δ) when δ ≤ |θ| ≤ π,

thus

1

2π

∫

δ≤|θ|≤π

Pr(θ) dθ ≤
π − δ

π

1− r2

1 + r2 − 2r cos δ
→ 0 for r → 1.

For z ∈ D, we consider the harmonic measure µz ∈ M+(T) defined by

µz = P (s, z) dm(s).

This is a probability measure on T due to (i) and (ii). Condition (iii) implies

(iii”) lim
z→s0

µz = εs0 weakly.

If in fact h ∈ C(T) and ε > 0 are given, then there exists δ > 0 such that
|h(s)− h(s0)| ≤ ε for |s− s0| ≤ δ. From this we obtain

∣∣∣∣h(s0)−
∫
h dµz

∣∣∣∣ ≤
∫

|s−s0|<δ

|h(s0)− h(s)| dµz(s) +

∫

|s−s0|≥δ

|h(s0)− h(s)| dµz(s)

≤ ε+ 2 ‖h‖∞
∫

|s−s0|≥δ

P (s, z) dm(s),

which is < 2ε according to (iii) for |z − s0| sufficiently small.

If f is holomorphic in D, then g = Ref is harmonic in D, i.e., ∆g = 0 in D.
Conversely, if g is harmonic in D, then g is the real part of a holomorphic function
f and f + iβ, β ∈ R describes all holomorphic functions with real part equal to g.

We have thereby solved Dirichlet’s problem for D:

For h ∈ C(T), the expression

H(z) =





h(s) for z = s ∈ T
∫
h dµz =

∫
h(s)P (s, z) dm(s) for z ∈ D

(1.12.13)

defines a continuous extension of h to D which is harmonic in D. Equation (1.12.13)
can for z = reiϕ be written as

H(reiϕ) =
1

2π

∫ 2π

0

P (eiθ, reiϕ) h(eiθ) dθ = Pr ∗ h(eiϕ),
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i.e., we find the solution to the Dirichlet problem on the circle reiϕ by convoluting
the periodic functions Pr and h.

The following theorem is completely equivalent to the Riesz-Herglotz Theo-
rem 1.12.6

Theorem 1.12.8 The formula

g(z) =

∫

T

P (s, z) dµ(s), z ∈ D (1.12.14)

gives a bijective correspondence between the set of positive harmonic functions g in
D and the set of µ ∈ M+(T). For g in (1.12.14), we have

µ = lim
r→1

g(rs) dm(s) weakly. (1.12.15)

For the completion of the proof for Theorem 1.12.6 and Theorem 1.12.8, we shall
show (1.12.15). For this we note that

P (s, rt) = P (t, rs) for s, t ∈ T, 0 ≤ r ≤ 1, (1.12.16)

which follows from

P (s, z) =
1− |z|2
|s− z|2 , s ∈ T, z ∈ D,

since |s− rt| = |t− rs|, see Figure 1.4.

0 rt
t

s

rs

Figure 1.4: The unit disc

For h ∈ C(T), we obtain from (1.12.14) and (1.12.16)
∫

T

h(s) g(rs) dm(s) =

∫

T

h(s)

∫

T

P (t, rs) dµ(t) dm(s)

=

∫

T

(

∫
P (s, rt) h(s) dm(s)) dµ(t),
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and the inner integral is the solution H(rt) to the Dirichlet problem with boundary
values h. For r → 1, this converges to h(t) uniformly, and therefore the integral
converges to

∫
T
h(t) dµ(t), which proves (1.12.15).

Theorem 1.12.9 (Herglotz 1911) For a sequence (cn)n∈Z of complex numbers
the following two conditions are equivalent:

(i) There exists µ ∈ M+(T) such that

cn =

∫

T

z−n dµ(z), n ∈ Z.

(ii) For every n ≥ 0, the matrices

Tn = (cj−k)0≤j,k≤n

are positive semidefinite, i.e.,

n∑

j,k=0

cj−k αj αk ≥ 0 ∀ (α0, α1, . . . , αn) ∈ Cn+1.

Proof. (i) ⇒ (ii) is simple because

n∑

j,k=0

cj−k αj αk =

∫

T

n∑

j,k=0

zk−j αj αk dµ(z) =

∫

T

∣∣∣∣∣
n∑

j=0

αj z
−j

∣∣∣∣∣

2

dµ(z) ≥ 0,

since z = z−1 when z ∈ T.

(ii) ⇒ (i). In general, a positive semidefinite matrix (ajk) satisfies ajj ≥ 0,
ajk = akj and |ajk|2 ≤ ajj akk. In fact, from

n∑

j,k=1

ajk αj αk ≥ 0 for all α = (α1, . . . , αn) ∈ Cn,

we get ajj ≥ 0 for α = ej ∈ Cn. With α = ej + t ek, j < k, we obtain

ajj + |t|2 akk + t ajk + t akj ≥ 0 for all t ∈ C. (1.12.17)

For t = 1 and t = i we get in particular

ajj + akk + ajk + akj ≥ 0, ajj + akk + i(−ajk + akj) ≥ 0,

and using ajj, akk ≥ 0, we find ajk+akj, i(−ajk+akj) ∈ R, hence ajk = akj. Writing
ajk = eiθ|ajk| and specializing (1.12.17) to t = xeiθ with x ∈ R we find

x2akk + 2x|ajk|+ ajj ≥ 0 for all x ∈ R,

so the discriminant of this second degree polynomial is ≤ 0, hence |ajk|2 ≤ ajjakk.

In our case, where ajk = cj−k, we find:
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1) c0 ≥ 0

2) c−n = cn

3) |cn| ≤ c0.

We now define

F (z) = c0 + 2

∞∑

n=1

cn z
n, z ∈ D,

and note that the series converges for z ∈ D since |cn| ≤ c0. Thereby, F is holomor-
phic in D. From c−n = cn, n ≥ 1 and c0 ≥ 0 we obtain

ReF (z) =

∞∑

n=0

cn z
n +

∞∑

n=1

c−n (z)
n, z ∈ D.

Multiplying this by the simple identity

(1− |z|2)−1 =
∞∑

n=0

zn(z)n, z ∈ D,

we obtain

ReF (z)

1 − |z|2 =

∞∑

n=0

cnz
n

∞∑

k=0

zkzk +

∞∑

n=1

c−nz
n

∞∑

j=0

zjzj .

In the first sum let j = n+ k so that j ≥ k and in the second sum let k = n + j so
that k ≥ j + 1. We then get for z ∈ D

ReF (z)

1 − |z|2 =
∑

j≥k≥0

cj−k z
j(z)k +

∑

j≥0,j+1≤k

cj−k z
j(z)k

=
∑

j,k≥0

cj−k z
j(z)k,

and the right-hand side is ≥ 0 since the partial sums
∑n

j,k=0 cj−k z
j(z)k are ≥ 0 by

(ii).

From the Herglotz-Riesz Theorem 1.12.6 we know that

F (z) = iβ +

∫

T

s+ z

s− z
dµ(s)

and

c0 =
1

2π

∫ 2π

0

g(reiθ) dθ, cn r
n =

1

2π

∫ 2π

0

g(reiθ) e−inθ dθ,
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where g = ReF . As σr = g(rs) dm(s) → µ weakly for r → 1, we obtain

cn =

∫

T

z−n dµ(z), n ≥ 0,

and since c−n = cn we get that cn =
∫
T
z−n dµ(z), n ∈ Z. �

Remark 1.12.10 Matrices Tn = (ci−j)0≤i,j≤n, where the ij’th element depends only
on the difference i− j, are called Toeplitz matrices after Otto Toeplitz (1881–1940).

Since every complex measure µ on T can be written as

µ = µ1 − µ2 + i(µ3 − µ4),

with µj ∈ M+(T), we can define the Fourier coefficients for a complex measure µ as

C(µ) = C(µ1)− C(µ2) + i(C(µ3)− C(µ4)).

Thus, it is clear that C(µ) is a bounded sequence of complex numbers. We mention
without proof that there exists bounded sequences of numbers c : Z → C which
cannot be written C(µ) for a complex measure µ.

A sequence c : Z → C is called positive definite if the equivalent conditions
from Theorem 1.12.9 are fulfilled. Such a sequence is automatically bounded, and
it fulfills c−n = cn, |cn| ≤ c0 for n ∈ Z.

There exist bounded sequences c : Z → C which cannot be written as linear
combinations of positive definite sequences.

Concluding remarks about Abel summability.

We have previously mentioned summability of an infinite series. This is the
simplest way to ascribe a “sum” to particular divergent series. The idea is to consider
the arithmetic means σn of the partial sum (sn) for the infinite series

∑∞
0 an.

This notion is called Cesàro summability of 1. order, also denoted (C, 1)-
summability.

One can define Cesàro summability of higher order k ∈ N by taking the arith-
metic means of σn; if those converge to s, the series is said to be summable (C, 2),
etc. The higher k, the more divergent series can be given a sum.

There exist other summability theories, e.g., Nørlund summability, named after
the Danish mathematician Niels Erik Nørlund (1885 – 1981), and Abel summability,
which we shall briefly consider. The English mathematician Hardy has written a
book: Divergent series, which discusses all those theories.

Definition 1.12.11 An infinite series

∞∑

0

an is called summable (A) or Abel summable

with sum s if
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1) The power series
∞∑

0

an x
n converges for −1 < x < 1, with a sum f(x).

2) lim
x→1−

f(x) = s.

It follows by 1) that the series

∞∑

0

an x
n has a radius of convergence ρ ≥ 1, i.e.,

lim sup
n→∞

n
√
|an| ≤ 1.

Example 1.12.12 From the power series

1

1 + x
=

∞∑

0

(−1)n xn,
1

(1 + x)2
=

∞∑

0

(−1)n (n+ 1) xn,

we see that the divergent series
∑

(−1)n,
∑

(−1)n(n + 1) are summable (A) with
sum 1

2
respectively 1

4
. The first is summable (C, 1) with sum 1

2
, the second is not

summable (C, 1), but summable (C, 2) with sum 1
4
.

The name Abel summability is motivated by the following theorem:

Theorem 1.12.13 (Abel) If
∑
an is convergent with sum s, then it is summable

(A) with sum s.

Abel’s summability method is stronger than Cesàro summability of any order in
the sense that if a series is summable (C, k) with sum s for some k, then it is also
summable (A) with sum s.

We shall only prove the result for k = 1. At the same time we also obtain Abel’s
theorem because of Lemma 1.6.1 of Cauchy.

Theorem 1.12.14 Assume that the series

∞∑

0

an is summable (C, 1) with sum s.

Then the series is summable (A) with sum s.

Proof. It is clearly enough to prove the result for real series. Since lim
n→∞

σn = s,

there exists K such that |σn| ≤ K, thus

|sn| = |(n+ 1) σn − nσn−1| ≤ (2n+ 1)K,
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and ultimately |an| = |sn − sn−1| ≤ 4nK. This shows that the power series f(x) =∑∞
n=0 an x

n converges for |x| < 1. We claim that

f(x) = (1− x)

∞∑

n=0

sn x
n = (1− x)2

∞∑

n=0

(n+ 1) σn x
n, −1 < x < 1.

We have

N∑

n=0

an x
n = s0 + (s1 − s0)x+ (s2 − s1)x

2 + . . .+ (sN − sN−1)x
N

= (1− x)
{
s0 + s1x+ . . .+ sN−1 x

N−1
}
+ sN x

N ,

and for |x| < 1, N → ∞, we obtain f(x) = (1 − x)
∞∑

0

sn x
n because |sN xN | ≤

(2N + 1)K|x|N → 0 for N → ∞.

Furthermore, we obtain

N∑

n=0

sn x
n = s0 + (2σ1 − σ0)x+ (3σ2 − 2σ1)x

2 + . . . ((N + 1) σN −N σN−1)x
N

= (1− x)
{
σ0 + 2σ1 x+ 3σ2 x

2 + . . .+N σN−1 x
N−1

}
+ (N + 1) σN x

N ,

so that the other equation follows as well.

We shall make use of

(1− x)−2 =

∞∑

n=0

(n + 1) xn, |x| < 1.

For ε > 0, there exists N such that for n > N

σn ∈ [s− ε, s+ ε],

so for 0 < x < 1:

∞∑

n=0

(n + 1) σn x
n ≥

N∑

n=0

(n+ 1) σn x
n +

∞∑

n=N+1

(n+ 1) (s− ε) xn

=
s− ε

(1− x)2
+

N∑

n=0

(n+ 1) σn x
n − (s− ε)

N∑

n=0

(n+ 1) xn,

hence

f(x) ≥ s− ε+ (1− x)2
N∑

n=0

(n+ 1) xn{σn − (s− ε)}.
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The second term on the right-hand side approaches 0 for x → 1−, so there exists
r1 < 1 such that f(x) ≥ s − 2 ε for r1 ≤ x < 1. Correspondingly, we find f(x) ≤
s+ 2 ε for r2 ≤ x < 1. �

Note that for f ∈ L1(T) with Fourier series f ∼∑ cn e
inθ, we have

f ∗ Pr(θ) = c0 +

∞∑

n=1

rn(cn e
inθ + c−n e

−inθ),

so the question about the limit of f ∗ Pr(θ) for r → 1− is precisely if the Fourier
series is summable (A).

For any sequence rn → 1− we know that Prn(θ) is a Dirac sequence for T. From
Theorem 1.6.3 we therefore get:

Theorem 1.12.15 Let f belong to one of the spaces C(T), f ∈ Lp(T), 1 ≤ p <∞.
Then Pr ∗ f belongs to the same space and Pr ∗ f → f for r → 1− in the norm of
the space.

Theorem 1.12.14 can be combined with Fejér-Lebesgue’s Theorem (Theorem 1.6.9)
and we have:

Theorem 1.12.16 Let f ∈ L1(T). Then f ∗ Pr(θ) → f(θ) when r → 1− in all
Lebesgue points θ for f , in particular for almost all θ.

Remark 1.12.17 The result of the previous theorem tell us that the solution H(z)
to the Dirichlet problem (cf. (1.12.13)) for the unit disc with h ∈ L1(T) as boundary
values converges radially to h almost everywhere, i.e.,

H(reiθ)) → h(eiθ) for r → 1−

for almost all θ.

Exercises

E 12.1 Let c : Z → [0,∞[ fulfill

(i) c−n = cn, n ∈ Z,

(ii) 2cn ≤ cn−1 + cn+1, n ≥ 1,

(iii) cn ≥ cn+1, n ≥ 0.
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Show that c is positive definite, and that there exists α ≥ 0 and f ∈ L1
+(T) such

that C(α δ0 + f dm) = c.

E 12.2 (For this exercise, it is necessary to know some distribution theory). Let
D(T) = C∞(T) be the set of periodic C∞-functions, and consider the norms

pN(f) = max
0≤j≤N

sup
θ∈R

|f (j)(θ)|, N = 0, 1, 2, . . . .

We provide D(T) with the topology determined by the family (pN)N≥0 of norms. A
distribution on T is a linear functional T : C∞(T) → C which is continuous in this
topology, i.e., there exists K > 0 and N ≥ 0 such that |T (f)| ≤ K pN(f) for all
f ∈ C∞(T) (K and N depend on T ). The set of distributions is denoted D′(T).

For a distribution T on T let T ′ denote its derivative, defined by T ′(f) = −T (f ′)
for f ∈ D(T).

For a distribution T on T, we define the Fourier coefficients C(T ) : Z → C by

C(T )(n) = T (e−inθ), n ∈ Z.

Show that

1◦ T1 = T2 ⇔ C(T1) = C(T2),

2◦ If T ∈ D′(T) then C(T ) has polynomial growth, i.e.,
∃K, ∃N : |C(T )(n)| ≤ K|n|N for n ∈ Z,

3◦ C(T ′)(n) = inC(T )(n).

4◦ Show that if c : Z → C has polynomial growth, then there exists T ∈ D′(T)
with C(T ) = c.

E 12.3 For a > 0 consider the sequence cn = exp(−an2), n ∈ Z. Show that (cn)
is a positive definite sequence.

(Hint: Show that the matrix (exp(2ajk))nj,k=0 is positive semidefinite for all n ≥ 0
when a > 0, e.g. by using the power series for the exponential function.)

Let µa denote the positive measure on T with C(µa)(n) = cn. Show that there
exists a function fa ∈ C∞(T) such that µa = fadm and that

fa(t) =

∞∑

n=−∞

e−an2

eint.

E 12.4 1◦. Let a be a complex number of absolute value 1. Show that the
sequence cn = an n ∈ Z is positive definite by verifying condition (ii) in Herglotz’
theorem. Find also the measure µ such that C(µ)(n) = an.
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2◦. Prove that the sequence c0 = 1, cn = 0, n 6= 0 is positive definite and find
the corresponding measure from Herglotz’ theorem.

E 12.5 Let P denote the set of positive definite sequences c = (cn).

1◦. Show that if c, d ∈ P and λ is a non-negative number, then λc+ d, cd ∈ P.

2◦. Let cp, p = 1, 2, . . . be a sequence from P, which converges termwise to a
sequence c : Z → C, i.e., limp→∞ cp(n) = c(n) for each n ∈ Z. Show that c ∈ P and
if µp, µ ∈ M+(T) are such that C(µp) = cp, C(µ) = c, then µp → µ weakly.

3◦. Let f(z) =
∑∞

k=0 akz
k be a power series with radius of convergence ρ > 0

and assume that ak ≥ 0 for all k. Show that if c ∈ P satisfies c0 < ρ, then f(c) ∈ P,
where f(c) denotes the sequence n→ f(cn), n ∈ Z.

4◦. Show that exp(c) ∈ P for c ∈ P.

E 12.6 Let c : Z → C be a sequence with the property that for all N = 0, 1, . . .

fN (t) =
N∑

k=−N

cke
ikt ≥ 0 for all t ∈ R.

Prove that there exists µ ∈ M+(T) such that C(µ) = c, i.e., c ∈ P.

(Hint: Define FN ∈ C(T) by FN(e
it) = fN(t) and consider the measures µN =

FN dm ∈ M+(T).)

66



Chapter 2

Fourier integrals

2.1 Introduction

This chapter is largely based on lecture notes by Tage Gutmann Madsen to the
second year analysis course around 1980. The notion of a Dirac sequence and a
Dirac family, see Definition 2.6.2, is due to him.

The group behind Fourier integrals is the real line R with addition as group
operation, and it is a locally compact abelian group. Lebesgue measure m on R is
the uniquely determined translation invariant Borel measure normalized such that
m([0, 1]) = 1. Instead of writing dm(x) we just write dx.

In the theory of Fourier series a given periodic function f : R → C is repre-
sented as the sum of a series with a constant term, a fundamental oscillation and
its overtones, see Section 1.2

If we consider a function f : R → C without any periodicity, it is natural to try
to represent it, not by an infinite series, but by an integral

f(x) ∼
∫ ∞

0

(
c(t) ei2πtx + c(−t) e−i2πtx

)
dt (2.1.1)

involving all frequencies t > 0. Roughly speaking, (2.1.1) can be realized by defining

c(t) =

∫ ∞

−∞

f(x) e−i2πxt dx, t ∈ R. (2.1.2)

The function c(t) is called the Fourier transform of f . Of course we need some
assumptions for (2.1.2) to make sense, and next we have to examine in which sense
the representation (2.1.1) holds.

In the following we shall use the Lebesgue spaces Lp(R), 1 ≤ p < ∞, of Borel
functions f : R → C satisfying

‖f‖p =
(∫ ∞

−∞

|f(x)|p dx
)1/p

<∞, 1 ≤ p <∞ (2.1.3)
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and

‖f‖∞ = ess sup
{
|f(x)|

∣∣∣x ∈ R
}
<∞, p = ∞. (2.1.4)

Note that if f is continuous, then the essential supremum is the same as the
ordinary supremum.

It is well-known that ‖·‖p is a semi-norm on Lp(R), and if functions are identified
if they are equal a. e., then we get the Banach spaces Lp(R) of equivalence classes
of Borel functions.

In contrast to the spaces Lp(T), which decrease in size with increasing p, there
are no inclusions between the spaces Lp(R), see E 1.1 below.

For f ∈ L1(R) we can rigorously define the Fourier transform as the function

Ff(t) =
∫ ∞

−∞

f(x) e−i2πxt dx, t ∈ R (2.1.5)

because x 7→ f(x) e−i2πxt is integrable, since it has the same absolute value as f(x).

Remark 2.1.1 In some books about Fourier transformation you will see Ff(t)
defined as

Ff(t) = f̂(t) =

∫ ∞

−∞

f(x) e−ixt dx, t ∈ R (2.1.6)

and the formerly defined Fourier transform is just the latter composed with the
scaling t→ 2πt. Sometimes the integral in (2.1.6) is divided by

√
2π. We shall later

give more explanation about this difference in notation.

Theorem 2.1.2 The Fourier transform Ff of f ∈ L1(R) is a continuous function
Ff : R → C vanishing at infinity, i.e.,

Ff(t) → 0 for |t| → ∞. (2.1.7)

Furthermore, ‖Ff‖∞ ≤ ‖f‖1.

Proof. For tn → t0 we have

f(x) e−i2πxtn → f(x) e−i2πxt0

for each x ∈ R, and since |f(x)| is an integrable majorant, it follows by Lebesgue’s
theorem on dominated convergence that Ff(tn) → Ff(t0), i.e., Ff is a continuous
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function. Clearly |Ff(t)| ≤ ‖f‖1 and (2.1.7) holds by Riemann-Lebesgue’s lemma
from Section 1.4. �

The expression for Ff can be written

Ff(t) =
∫ ∞

−∞

f(x) cos(2πxt) dx− i

∫ ∞

−∞

f(x) sin(2πxt) dx, t ∈ R.

For an even function (f(−x) = f(x)) the second term vanishes, so Ff is again
an even function. If f is odd (f(−x) = −f(x)), then the first term vanishes and Ff
is also odd.

A function g ∈ L1([0,∞[) can be extended to an even function f : R → C and
we find

1

2
Ff(t) =

∫ ∞

0

g(x) cos(2πxt) dx, t ∈ R,

called the cosine transform of g.

A function g ∈ L1(]0,∞[) can also be extended to an odd function f : R → C,
(we define f(0) = 0), and we then find

i

2
Ff(t) =

∫ ∞

0

g(x) sin(2πxt) dx, t ∈ R,

called the sine transform of g.

Exercises

E 1.1 Prove that fp(x) = (1 + |x|)−p belongs to L1(R) if and only if p > 1, and
that

gp(x) =

{
x−p for 0 < x < 1
0 for x ≤ 0 and x ≥ 1

belongs to L1(R) if and only if p < 1.

Let 1 ≤ p1 < p2 ≤ ∞. Construct functions in Lp1(R) \ Lp2(R) and in Lp2(R) \
Lp1(R).

E 1.2 For f ∈ L1(R) and a > 0 let fa denote the function equal to f on ]− a, a]
and extended to a periodic function on R with period 2a.

Show that the Fourier series of fa can be written as

fa(x) ∼
∞∑

n=−∞

ca,ne
in

π
a
x, where ca,n =

1

2a

∫ a

−a

f(x)e−in
π
a
x dx
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and as

fa(x) ∼
∞∑

n=−∞

1

2a
ga(

n

2a
)ein

π
a
x, where ga(y) =

∫ a

−a

f(x)e−i2πxy dx. (2.1.8)

Show that ga(y) → Ff(y) for a→ ∞ for each y ∈ R.

Show that the sum in (2.1.8) can be considered as an infinite Riemann sum and
explain that formally it approaches

∫ ∞

−∞

Ff(y)ei2πxy dy,

so one is tempted to claim that this integral equals f(x), i.e. that

f(x) =

∫ ∞

−∞

Ff(y)ei2πxy dy. (2.1.9)

A lot of research for 200 years has been undertaken trying to make this rigorous.

Explain that one can write the formula (2.1.9) in the following equivalent forms

f(x) =
1

2π

∫ ∞

−∞

f̂(y)eixy dy, where f̂(y) =

∫ ∞

−∞

f(x)e−ixy dx,

and

f(x) =
1√
2π

∫ ∞

−∞

f̂(y)eixy dy, where f̂(y) =
1√
2π

∫ ∞

−∞

f(x)e−ixy dx.

E 1.3 Let f ∈ L1(R) and assume that f(x) ≥ 0 for almost all x and
∫
f(x) dx =

1. (In other words f is density for a probability measure). Prove that |Ff(t)| < 1
for all t 6= 0. (Of course Ff(0) = 1.)

2.2 Improper integrals

Let g : ]0,∞[→ C be a Borel function such that
∫ u

0
|g(t)| dt <∞ for each u > 0.

If g ∈ L1(R+), then
∫ ∞

0

g(t) dt =

∫

R+

g(t) dt = lim
u→∞

∫ u

0

g(t) dt,

because for every sequence u1, u2, . . . in R+ with un → ∞, we have
∫ un

0

g(t) dt =

∫

R+

g · 1]0,un] dm −−−→
n→∞

∫

R+

g dm
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according to Lebesgue’s theorem on dominated convergence. In fact, |g| ∈ L1(R+)
is a majorant for the sequence of functions |g · 1]0,un]|.

However,
∫ u

0
g(t) dt can have a limit c ∈ C for u → ∞, even if the condition

g ∈ L1(R+) does not hold, cf. Example 2.2.1 below. We still write c =
∫∞

0
g(t) dt,

possibly mentioning that the integral is improper.

In analogy with the usual convention for infinite series, one writes the symbol∫∞

0
g(t) dt without knowing in advance whether the integral

∫ u

0
g(t) dt has a limit

c ∈ C for u→ ∞. If the limit exists, we say that the integral
∫∞

0
g(t) dt is convergent

with value c.

One can furthermore encounter the use of language that the integral
∫∞

0
g(t) dt

is absolutely convergent. Hereby is meant that
∫∞

0
|g(t)| dt converges. However, this

is equivalent to integrability of g i.e., g ∈ L1(R+). In fact,

g ∈ L1(R+) ⇔ |g| ∈ L1(R+) ⇔
∫

R+

|g| dm = lim
u→∞

∫

R+

|g| · 1]0,u] dm <∞,

where Lebesgue’s monotonicity theorem is used.

The reader should notice the analogy with convergent and absolutely convergent
series.

Example 2.2.1 The integral

∫ ∞

0

sin t

t
dt is convergent with value π

2
, i.e.,

∫ u

0

sin t

t
dt→ π

2
for u→ ∞,

but the integrand does not belong to L1(R+).

Proof. That t→ sin t

t
, t ∈ R+, does not belong to L1(R+) follows from

∫ pπ

(p−1)π

| sin t|
t

dt >

∫ (p− 1

6
)π

(p− 5

6
)π

1/2

pπ
dt =

1

3p
,

whereby

∫ ∞

0

∣∣∣∣
sin t

t

∣∣∣∣ dt =
∞∑

p=1

∫ pπ

(p−1)π

| sin t|
t

dt ≥ 1

3

∞∑

p=1

1

p
= ∞.

That the integral

∫ ∞

0

sin t

t
dt converges can be seen in the following way: Since

the sign of the integrand changes in π, 2π, . . .,

∞∑

p=1

∫ pπ

(p−1)π

sin t

t
dt
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is an alternating series. The numerical value of the terms decreases to 0 because

∫ pπ

(p−1)π

| sin t|
t

dt ≥
∫ pπ

(p−1)π

| sin t|
t+ π

dt =

∫ (p+1)π

pπ

| sin t|
t

dt,

and
∫ (p+1)π

pπ

| sin t|
t

dt <
1

p
.

Consequently, the infinite series converges, i.e.,

∫ nπ

0

sin t

t
dt =

n∑

p=1

∫ pπ

(p−1)π

sin t

t
dt

has a limit c for n→ ∞. But from this, it follows that

s(u) =

∫ u

0

sin t

t
dt→ c for u→ ∞,

since s(u) lies between s(nπ) and s((n+ 1)π) for nπ ≤ u ≤ (n + 1)π.

We find the value c of the integral

∫ ∞

0

sin t

t
dt as lim

n
s((n+ 1

2
)π), where

s((n + 1
2
)π) =

∫ (n+ 1

2
)π

0

sin t

t
dt =

∫ π

0

sin(n + 1
2
)t

(n + 1
2
)t

(n+ 1
2
) dt =

∫ π

0

sin(n+ 1
2
)t

t
dt.

We use that
1

2π

∫ π

−π

Dn(t) dt = 1, where Dn is the Dirichlet kernel, see 1.5.3

Dn(t) =
n∑

k=−n

eikt =
sin(n + 1

2
)t

sin 1
2
t

for t 6= 0 (mod 2π).

The difference

π

2
− s((n+ 1

2
)π) =

∫ π

0

1

2
Dn(t) dt− s((n+ 1

2
)π)

can be written
∫ π

0

(
1

2 sin 1
2
t
− 1

t

)
sin(n+ 1

2
)t dt =

∫ π/2

0

(
1

sin t
− 1

t

)
sin((2n+ 1)t)dt,

which converges to 0 for t→ ∞ according to Riemann-Lebesgue’s lemma, cf. Section
1.4, since

t→ 1

sin t
− 1

t
, 0 < t ≤ π

2
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is integrable (the function is continuous in [0, π
2
], when we assign the value 0 for

t = 0). �

We end this section with some comments about summability of an integral∫∞

0
g(t) dt.

We assume as previously that g : ]0,∞[→ C is a Borel function, such that∫ u

0
|g(t)| dt <∞ for each u ∈ R+, and put

s(u) =

∫ u

0

g(t) dt, u ≥ 0. (2.2.1)

Since s : [0,∞[ is continuous, we can define the mean values

σ(v) =
1

v

∫ v

0

s(u) du, v > 0. (2.2.2)

The integral
∫∞

0
g(t) dt is said to be summable with the value c if σ(v) → c for

v → ∞.

Lemma 2.2.2 A convergent integral
∫∞

0
g(t) dt with value c is also summable with

the same value.

Proof. For arbitrary ε ∈ R+ there exists an H ∈ R+ such that

|s(u)− c| < ε

2
for u > H.

For each v > H we now get

|σ(v)− c| =

∣∣∣∣
1

v

∫ v

0

(s(u)− c) du

∣∣∣∣

≤ 1

v

∣∣∣∣
∫ H

0

(s(u)− c) du

∣∣∣∣+
1

v

∫ v

H

|s(u)− c| du

≤ 1

v

∣∣∣∣
∫ H

0

(s(u)− c) du

∣∣∣∣+
ε

2
.

Since 1
v

∣∣∣
∫ H

0
(s(u)− c) du

∣∣∣→ 0 for v → ∞, there exists a K ≥ H such that

|σ(v)− c| < ε for v > K.

Exercises

E 2.1 Show that the integral
∫∞

0
cos t dt is not convergent, but that it is summable

with value 0.
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2.3 Convolution of functions on R

The real line R is an abelian group under addition. For h ∈ R we let τh : R → R
denote the translation by h, i.e., τh(x) = x + h. Lebesgue measure m on R is
translation invariant, i.e., m(B + h) = m(B) for h ∈ R, B ∈ B(R). We let τh act on
functions f : E → C, where E ⊆ R, by the following rule

τhf(x) = f(x− h) for x ∈ τh(E) = E + h.

Theorem 2.3.1 For f ∈ Lp(R), 1 ≤ p ≤ ∞ and h ∈ R we have τhf ∈ Lp(R) and
‖τhf‖p = ‖f‖p.

Furthermore, if 1 ≤ p <∞ and f ∈ Lp(R) we have

‖τhf − f‖p =
(∫ ∞

−∞

|f(x− h)− f(x)|p dx
)1/p

→ 0 for h→ 0. (2.3.1)

Proof. The first part of the theorem is a direct consequence of the translation
invariance of Lebesgue measure. For the property (2.3.1) it is important that 1 ≤
p < ∞. To establish it we first consider f ∈ Cc(R), where the latter denotes the
continuous functions with compact support. A function f ∈ Cc(R) is uniformly
continuous, i.e., to ε > 0 there exists 0 < δ such that

|f(x− h)− f(x)| ≤ ε for |h| < δ, x ∈ R,

hence |τhf − f | ≤ ε for |h| < δ. By assumption supp(f) ⊆ [−R,R] for suitable
R > 0, and by assuming δ < 1 we then have

|τhf − f | ≤ ε 1[−R−1,R+1],

hence

‖τhf − f‖pp ≤ εp (2R + 2),

which shows (2.3.1). To prove this equation for an arbitrary f ∈ Lp(R) we use that
Cc(R) is dense in Lp(R), a property which does not hold for p = ∞.

To f ∈ Lp(R) and ε > 0 we first choose g ∈ Cc(R) such that ‖f − g‖p < ε
3
. For

h ∈ R we then have

‖τhf − f‖p ≤ ‖τhf − τhg‖p + ‖τhg − g‖p + ‖g − f‖p <
2ε

3
+ ‖τhg − g‖p,

but by the first part of the proof we have ‖τhg − g‖p < ε
3
if |h| < δ for δ > 0

sufficiently small, hence

‖τhf − f‖p < ε for |h| < δ.
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By the convolution f ∗ g of two complex-valued Borel functions f and g defined
on R we understand the function

x 7→
∫

R

f(x− y) g(y) dy, (2.3.2)

defined on the set D(f ∗ g) of those x ∈ R for which y 7→ f(x− y) g(y) is Lebesgue
integrable on R.

x

Sf τxSff

Figure 2.1: Illustration of the reflected and translated function

Denoting by Sf the function reflected in the origin, i.e., Sf(y) = f(−y), we have
(τxSf)(y) = Sf(y − x) = f(x− y). The convolution f ∗ g is thus defined by

f ∗ g(x) =
∫

R

(τxSf) g dm, (2.3.3)

for

x ∈ D(f ∗ g) = {x ∈ R | (τxSf)g ∈ L1(R)}. (2.3.4)

Note that

D(f ∗ g) = {x ∈ R |
∫

|f(x− y)g(y)| dy <∞}. (2.3.5)

The set of definition D = D(f ∗ g) can be empty. This is true if f = g = 1.

Convolution is commutative like for periodic functions:

The functions f ∗ g and g ∗ f are equal on D(f ∗ g) = D(g ∗ f).
In fact, for x ∈ R we have
∫

R

|f(x− y) g(y)| dy =
∫

R

|f(x+ y) g(−y)| dy =
∫

R

|f(y) g(x− y)| dy,

which shows that x ∈ D(f ∗g) ⇔ x ∈ D(g∗f). For x in this common set of definition
all three integrals are finite and the equations above hold without absolute value,
i.e., f ∗ g(x) = g ∗ f(x). We have used that Lebesgue measure on R is invariant
under reflection and translations.

Note also that if f or g is changed on a null set, this will not change the function
f ∗ g.
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Proposition 2.3.2 Let f, g be complex-valued Borel functions on R. The following
assertions hold:

1◦ The convolution f ∗ g is a Borel function and D(f ∗ g) is a Borel set.

2◦ Let c ∈ C. If x ∈ D(f ∗ g) then x ∈ D(f ∗ (c g)) and

(f ∗ (c g))(x) = c (f ∗ g)(x).

3◦ If x ∈ D(f ∗ g) ∩D(f ∗ h) then x ∈ D(f ∗ (g + h)) and

(f ∗ (g + h))(x) = (f ∗ g)(x) + (f ∗ h)(x).

4◦ If f(x) = 0 for x /∈ A ⊆ R and g(x) = 0 for x /∈ B ⊆ R, then f ∗ g(x) is

defined and equal to 0 for x 6∈ A+B =
{
a+ b

∣∣∣ a ∈ A, b ∈ B
}
.

Proof.

1◦ Since f ⊗ g, i.e., the function (x, y) 7→ f(x) g(y) is a Borel function on R2,
this holds also for the function obtained by composition with (x, y) 7→ (x − y, y),
which is the function

(x, y) 7→ f(x− y) g(y), x, y ∈ R.

It follows from the proof of Fubini’s Theorem that the set of points x for which
y → f(x − y)g(y) is integrable is a Borel set, i.e., D(f ∗ g) is a Borel set, and the
integral with respect to y is a Borel function of x, i.e., f ∗ g is a Borel function.

2◦, 3◦ The assertions follow because an integrable function multiplied by a con-
stant and the sum of two integrable functions are again integrable. Moreover, the
integral is a linear functional.

4◦ In fact,

f(x− y) g(y) 6= 0 ⇒ x− y ∈ A, y ∈ B ⇒ x = (x− y) + y ∈ A +B.

For x 6∈ A+B we conclude that the function y 7→ f(x−y) g(y) is identically 0. �

Theorem 2.3.3 Let f, g : R → C be Borel functions. The following assertions
hold:

1◦. If f, g ∈ Cc(R), the continuous functions with compact support, then f ∗ g ∈
Cc(R) and supp(f ∗ g) ⊆ supp(f) + supp(g).
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2◦. If 1 ≤ p, q ≤ ∞ are dual exponents, i.e., 1
p
+ 1

q
= 1, then if f ∈ Lp(R),

g ∈ Lq(R), we have D(f ∗ g) = R and f ∗ g is uniformly continuous and
bounded with

‖f ∗ g‖∞ ≤ ‖f‖p‖g‖q. (2.3.6)

3◦. If f, g ∈ L1(R) then R \D(f ∗ g) is a Lebesgue null set and f ∗ g ∈ L1(R) with

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1. (2.3.7)

4◦. If f ∈ L1(R), g ∈ Lp(R), 1 ≤ p ≤ ∞ then R \D(f ∗ g) is a Lebesgue null set
and f ∗ g ∈ Lp(R) with

‖f ∗ g‖p ≤ ‖f‖1‖g‖p. (2.3.8)

Proof. 1◦ Since f(x) = 0 for x /∈ supp(f) and similarly with g it follows by
Proposition 2.3.2 4◦ that f∗g(x) = 0 for x outside the compact set supp(f)+supp(g).
This shows the assertion about the supports. The continuity of f ∗ g is an easy
consequence of the uniform continuity of f , but using that Cc(R) ⊂ Lp(R) for any
p ∈ [1,∞] the continuity is also a consequence of 2◦.

2◦ By the invariance properties of Lebesgue measure we know that τxSf ∈ Lp(R),
so by Hölder’s inequality we get (τxSf) g ∈ L1(R) for each x ∈ R, hence D(f ∗g) = R
and

|f ∗ g(x)| =
∣∣∣∣
∫

R

(τxSf) g dm

∣∣∣∣ ≤ ‖τxSf‖p‖g‖q = ‖f‖p‖g‖q,

which shows (2.3.6).

That f ∗ g is uniformly continuous can be seen from the estimate

|f ∗ g(x+ h)− f ∗ g(x)| =

∣∣∣∣
∫

R

(τx+hSf − τxSf) g dm

∣∣∣∣
≤ ‖τx+hSf − τxSf‖p‖g‖q = ‖τhSf − Sf‖p‖g‖q,

because ‖τhSf − Sf‖p → 0 for h → 0 by (2.3.1), provided 1 ≤ p < ∞. For p = ∞
we have q = 1 and we consider g ∗ f instead.

3◦ From the proof of Proposition 2.3.2 1◦ we know that

(x, y) 7→ f(x− y) g(y), x, y ∈ R.

is a Borel function, and it belongs to L1(R2) because by Tonelli’s theorem and the
translation invariance of Lebesgue measure in R (m2 denotes Lebesgue measure on
R2):
∫

R2

|f(x− y) g(y)| dm2(x, y) = =

∫

R

(
|g(y)|

∫

R

|f(x− y)| dx
)
dy

=

∫

R

(
|g(y)|

∫

R

|f(x)| dx
)
dy = ‖f‖1‖g‖1 <∞.
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From Fubini’s theorem it now follows that y 7→ f(x−y) g(y) is integrable for almost
all x ∈ R, and the almost everywhere defined function

x 7→
∫

R

f(x− y) g(y) dy,

which is precisely f ∗ g, belongs to L1(R). Since

|f ∗ g(x)| ≤
∫

R

|f(x− y) g(y)| dy,

we finally find

‖f ∗ g‖1 ≤
∫

R

∫

R

|f(x− y) g(y)| dy dx =

∫

R2

|f(x− y) g(y)| dm2(x, y) = ‖f‖1‖g‖1,

which proves (2.3.7).

4◦ The cases p = ∞ and p = 1 are treated in 2◦ and 3◦ respectively, so we
assume that 1 < p < ∞ and determine q such that 1

p
+ 1

q
= 1. The proof is

exactly as the proof of Theorem 1.1.1 4◦, but we give it a little twist by proving
D(|g|p ∗ |f |) ⊆ D(g ∗ f). By 3◦ we know that R \ D(|g|p ∗ |f |) is a null set and
therefore g ∗ f = f ∗ g is defined for almost all x.

The inclusion follows by Hölder’s inequality:
∫

R

|g(x− y) f(y)| dy =
∫

R

|g(x− y)| |f(y)|1/p |f(y)|1/q dy

≤
(∫

R

|g(x− y)|p |f(y)| dy
)1/p(∫

R

|f(y)| dy
)1/q

,

which is finite for x ∈ D(|g|p ∗ |f |).
For x ∈ D(g ∗ f) we have

|g ∗ f(x)| ≤
∫

R

|g(x− y) f(y)| dy,

hence

|g ∗ f(x)|p ≤
∫

R

|g(x− y)|p |f(y)| dy
(∫

R

|f(y)| dy
)p/q

= |g|p ∗ |f |(x) ‖f‖p−1
1 .

By 3◦ we know that |g|p ∗ |f | belongs to L1(R) with

∫

R

|g|p ∗ |f | dm = ‖ |g|p ∗ |f | ‖1 ≤ ‖ |g|p‖1‖f‖1 = ‖f‖1‖g‖pp,
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and we conclude that
∫

R

|g ∗ f |p dm ≤ ‖f‖p1‖g‖pp <∞,

i.e., g ∗ f belongs to Lp(R) and

‖f ∗ g‖p ≤ ‖f‖1‖g‖p,

which proves (2.3.8). �

One should note that in particular the convolution of a function f ∈ L1(R) with
a continuous and bounded function g is again a continuous and bounded function.

Roughly speaking one can say that the convolution of two functions is always
as “nice” as the “nicest” of the given functions. The following theorem is another
illustration of this philosophy.

Theorem 2.3.4 Let f ∈ L1(R). Is g : R → C bounded and differentiable with a
bounded derivative, then the same holds for f ∗ g, and

(f ∗ g)′ = f ∗ g′.

Proof. The convolution f ∗g = g∗f is defined by an integral, where the integrand
depends on a real-valued parameter x,

g ∗ f(x) =
∫

R

g(x− y) f(y) dy.

For fixed x ∈ R, the integrand is (τxSg) f ∈ L1(R), and for fixed y, the integrand
is a differentiable function of x, and

∣∣∣∣
∂g(x− y) f(y)

∂x

∣∣∣∣ = |g′(x− y)f(y)| ≤ ‖g′‖∞|f(y)|,

so ‖g′‖∞|f | is an integrable majorant independent of x. It follows by a theorem
about differentiation under the integral sign that f ∗ g is differentiable with

(f ∗ g)′(x) =
∫

R

∂g(x− y) f(y)

∂x
dy =

∫

R

g′(x− y) f(y) dy = f ∗ g′(x).

Both f ∗ g and (f ∗ g)′ = f ∗ g′ are bounded and uniformly continuous, since
g, g′ ∈ L∞(R). That g′ is a Borel function follows from (τ−hn

g− g)/hn → g′ for any
sequence hn tending to zero. �
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Exercises

E 3.1 Let f ∈ L1(R) and h ∈ R. Prove that

F(f(x)e2πihx)(t) = F(f)(t− h), F(τhf)(t) = F(f)(t)e−2πiht

E 3.2 From complex analysis it is known that

1√
2π

∫ ∞

−∞

eitxe−
1
2
x2

dx = e−
1
2
t2 , t ∈ R.

Show that e−πx2

is a fixed point for F .

E 3.3 Define f(x) = 1/ cosh(πx), x ∈ R.

1◦. Prove that
∫∞

−∞
f(x) dx = 1.

2◦. Prove that

f ∗ f(x) = 2x

sinh(πx)
,

where the right-hand side for x = 0 is to be understood as the limit for x→ 0.

3◦. Prove that F(f)(t) = 1/ cosh(πt), t ∈ R, i.e., that f(x) = 1/ cosh(πx) is a
fixed point for F (or an eigenvector for F corresponding to the eigenvalue 1 e.g. in
the space S to be introduced in section 8).

Hint: Use the residue theorem for the function

F (z) =
e−2πitz

cosh(πz)
,

which is meromorphic in C. Integrate F along the sides of the rectangle with vertices
±R,±R + i, where R > 0 is fixed and let R → ∞.

2.4 Convergence of Fourier integrals

The Fourier transform Ff of a function f ∈ L1(R) does not belong in general to
L1(R), (f = 1[−1,1], Ff(x) = sin 2πx

πx
). Therefore, we consider the Fourier integral

∫ ∞

0

(
Ff(t) e2πitx + Ff(−t) e−2πitx

)
dt

for f ∈ L1(R) as an improper integral, i.e., we investigate the partial Fourier inte-
grals

su(x) =

∫ u

0

(
Ff(t) e2πitx + Ff(−t) e−2πitx

)
dt =

∫ u

−u

Ff(t) e2πitx dt

80



for u → ∞. It turns out that the conditions of convergence correspond exactly to
those known from Fourier series.

For the sake of brevity, we frequently write the Fourier integral as
∫∞

−∞
Ff(t) e2πitx dt.

The partial Fourier integral su(x) can be expressed

su(x) =

∫ u

−u

Ff(t) e2πitx dt =

∫ u

−u

(
e2πitx

∫

R

f(y) e−2πity dy

)
dt

=

∫ u

−u

∫

R

f(y) e2πit(x−y) dy dt.

Since f⊗1[−u,u] belongs to L1(R×R), and (y, t) 7→ e2πit(x−y) is a bounded continuous
function,

(y, t) 7→ f(y) e2πit(x−y), y ∈ R, −u ≤ t ≤ u

belongs to L1(R× [−u, u]). We can therefore apply Fubini’s theorem and get

su(x) =

∫

R

∫ u

−u

f(y) e2πit(x−y) dt dy =

∫

R

f(y)

∫ u

−u

e2πit(x−y) dt dy,

which is summarized in

The partial Fourier integral for a function f ∈ L1(R) is given by

su(x) = f ∗ Du(x), u > 0, (2.4.1)

where Du(x) =
∫ u

−u
e2πitx dt is the partial Fourier integral of

∫∞

0
(e2πitx + e−2πitx) dt.

The functions Du play an analogous role in the theory of Fourier integrals to
Dirichlet’s kernel Dn(x) in the theory of Fourier series, see (1.5.5).

For x 6= 0, we find

Du(x) =
sin(2πux)

πx
= uD1(u x). (2.4.2)

The functionDu is even. It does not belong to L1(R), but the integral
∫∞

−∞
Du(x) dx =

2
∫∞

0
Du(x) dx is convergent with the value 1.

The last assertion follows trivially from the results on

∫ ∞

0

sin x

x
dx in Sec. 2.2.

Note incidentally that Du is a Fourier transform, namely of the indicator function
1[−u,u].

We now formulate a result about pointwise convergence of the Fourier integral.
It is analogous to Theorem 1.5.1.
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Theorem 2.4.1 (Dini’s test) A sufficient condition for the Fourier integral of a
function f ∈ L1(R) to converge to s in the point x ∈ R, i.e.,

∫ ∞

−∞

Ff(t) e2πitx dt = s,

is that
∫ δ

0

∣∣∣∣
f(x+ y) + f(x− y)− 2s

y

∣∣∣∣ dy <∞ for a δ > 0. (2.4.3)

Note that the condition is fulfilled for each δ > 0 if it is fulfilled just for one
value δ0 > 0.

Proof. Since Du is an even function, we have

su(x) =

∫

R

f(x− y)Du(y) dy =

∫ ∞

0

(f(x+ y) + f(x− y))Du(y) dy.

The last integral is split as
∫ 1

0
+
∫∞

1
and for the last of these we obtain

1

π

∫ ∞

1

f(x+ y) + f(x− y)

y
sin(2πuy) dy → 0 for u→ ∞,

by the Riemann-Lebesgue lemma because

y →
{ f(x+y)+f(x−y)

y
for y ≥ 1

0 for y < 1

belongs to L1(R). The first integral can be written

1

π

∫ 1

0

f(x+ y) + f(x− y)− 2s

y
sin(2πuy) dy +

2s

π

∫ 1

0

sin(2πuy)

y
dy,

and the first term tends to 0 for u → ∞–now we use the assumption (2.4.3) with
δ = 1– while for the last term, we find

2s

π

∫ 2πu

0

sin y

y
dy → s for u→ ∞.

�

Application. The condition in Dini’s test is fulfilled, with s = f(x), if the
function f ∈ L1(R) is continuous at x as well as differentiable from the right and
left at this point.

More generally, the condition is fulfilled, with s = 1
2
(f(x+ 0) + f(x− 0)), if the

function f ∈ L1(R) has the limit f(x+0) ∈ C and f(x− 0) ∈ C from the right and
from the left in the point x, and if additionally

f(x+ y)− f(x+ 0)

y
and

f(x− y)− f(x− 0)

−y
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have limits in C for y → 0+.

Under these assumptions the function

y 7→ f(x+ y) + f(x− y)− 2 · 1
2
(f(x+ 0) + (f(x− 0))

y

is bounded in an interval ]0, δ], so (2.4.3) is satisfied.

Example 2.4.2 For f = 1[−1,1] we find Ff(t) = D1(t). Dini’s test can be applied
and we get

∫ ∞

0

D1(t)
(
ei2πtx + e−i2πtx

)
dt =

2

π

∫ ∞

0

sin(2πt)

t
cos(2πtx) dt

=
2

π

∫ ∞

0

sin t

t
cos(tx) dt =





1 for |x| < 1
1
2

for |x| = 1

0 for |x| > 1.

2.5 The group algebra L1(R)

By Theorem 2.3.3 1◦ it follows that convolution is a composition law in Cc(R), and
it is easy to see that Cc(R) equipped with the compositions +, ∗ becomes a commu-
tative ring. Because of the structure as a vector space it is in fact a commutative
algebra. However, this space does not have a norm which makes it complete, so we
should rather take the completion under the norm ‖ · ‖1 leading to L1(R). This lat-
ter space is also stable under convolution but with a little defect: The convolution
of two functions from L1(R) is only defined almost everywhere, but if we extend
it to the null set R \ D(f ∗ g) by the value 0, or by any other values making it a
Borel function, it belongs to L1(R), and its norm depends only on the values on the
set D(f ∗ g). This small inconvenience will disappear when we go to the Banach
space L1(R) of equivalence classes of functions defined almost everywhere and equal
almost everywhere.

Although it is not surprising, we prove that convolution in L1(R) satisfies the
associative law.

Proposition 2.5.1 If f, g, h ∈ L1(R), then

f ∗ (g ∗ h) = (f ∗ g) ∗ h

almost everywhere in R.
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Proof. For x ∈ D(f ∗ (g ∗ h)) we have

(f ∗ (g ∗ h))(x) =

∫

R

f(x− y) · (g ∗ h)(y) dy

=

∫

D(g∗h)

(
f(x− y)

∫

R

g(y − z) h(z) dz

)
dy

=

∫

D(g∗h)

∫

R

f(x− y) g(y − z) h(z) dz dy.

In the same manner, for x ∈ D((f ∗ g) ∗ h) we have

((f ∗ g) ∗ h)(x) =

∫

R

(f ∗ g)(x− z) · h(z) dz

=

∫

x−D(f∗g)

(f ∗ g)(x− z) · h(z) dz

=

∫

x−D(f∗g)

(∫

R

f(x− z − y) g(y) dy · h(z)
)
dz

=

∫

x−D(f∗g)

(∫

R

f(x− y) g(y − z) dy · h(z)
)
dz

=

∫

x−D(f∗g)

∫

R

f(x− y) g(y − z) h(z) dy dz.

Note that R \D(g ∗ h) and R \ (x−D(f ∗ g)) have Lebesgue measure 0.

Therefore, by Fubini’s theorem,

(f ∗ (g ∗ h))(x) = ((f ∗ g) ∗ h)(x) =
∫

R2

f(x− y) g(y − z) h(z) d(y, z),

for each x ∈ D(f ∗ (g ∗ h)) ∩D((f ∗ g) ∗ h) for which
∫

R2

|f(x− y) g(y − z) h(z)| d(y, z) <∞,

i.e., for almost all x ∈ R, since by Tonelli’s theorem

∫

R

∫

R2

|f(x− y) g(y − z) h(z)| d(y, z) dx

=

∫

R2

∫

R

|f(x− y) g(y − z) h(z)| dx d(y, z)

=

∫

R2

(
|g(y − z) h(z)|

∫

R

|f(x− y)| dx
)
d(y, z)

= ‖f‖1
∫

R2

|g(y − z) h(z)| d(y, z) = ‖f‖1‖g‖1‖h‖1 <∞.
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We have used that

(x, y, z) 7→ f(x− y) g(y − z) h(z)

is a Borel function and the following simple assertion: If Dn is a finite or countable
family of Borel sets such that Nn = R \Dn are null sets then R \⋂Dn is a null set.
(We use it in fact for a family of 3 sets). �

Let us summarize what we have obtained:

Theorem 2.5.2 The Banach space L1(R) equipped with convolution is a commuta-
tive Banach algebra called the group algebra for R.

Let us point out that this Banach algebra does not have a unit element. In
fact, assume that e ∈ L1(R) is a representative of a unit element in L1(R), then
f ∗ e = f almost everywhere for any function f ∈ L1(R). If we take f to be the
characteristic function of the interval [0, 1], the convolution f ∗ e will be continuous
by Theorem 2.3.3 2◦ because f is bounded, but f cannot be equal to a continuous
function almost everywhere, and we get a contradiction.

2.6 Approximate units in L1(R)

If A is a commutative Banach algebra without a unit element, like L1(R), it is useful
to consider what is called an approximate unit.

Definition 2.6.1 Let A be a commutative Banach algebra with multiplication ·. A
sequence of elements (kn) (resp. a family of elements (kt)t>0) from A is called an
approximate unit for A if

lim
n→∞

‖f · kn − f‖ = 0 (resp. lim
t→∞

‖f · kt − f‖ = 0)

for all elements f ∈ A.

Definition 2.6.2 A sequence of functions (kn) on R is called a Dirac sequence, if
it has the following properties

(i) ∀n ∈ N : kn ≥ 0,

(ii) ∀n ∈ N :

∫

R

kn(x) dx = 1,

(iii) ∀ δ > 0 :

∫

|x|>δ

kn(x) dx→ 0 for n→ ∞
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A family of functions (kt)t>0 is called a Dirac family if it has the analogous properties
where n is replaced by t and n→ ∞ by t→ ∞.

Example 2.6.3 Let k ∈ L1(R) satisfy k ≥ 0 and

∫

R

k(x) dx = 1. Then the sequence

(kn) defined by kn(x) = n k(nx) is a Dirac sequence. To see (iii) let δ > 0 be given.
Then

∫

|x|>δ

k(nx)n dx =

∫

|x|>nδ

k(x) dx,

and k · 1{x | |x|>nδ} → 0 for n→ ∞, majorized by |k| ∈ L1(R), so Lebesgue’s theorem
can be applied.

The same reasoning shows that (kt)t>0, with kt(x) = tk(tx) is a Dirac family.

Theorem 2.6.4 Every Dirac sequence (kn) and every Dirac family (kt)t>0 is an
approximate unit for L1(R).

Proof. Let f ∈ L1(R) be given. In each point x ∈ D(f ∗ kn), i.e., for almost all
x, we have

f ∗ kn(x)− f(x) =

∫

R

f(x− y) kn(y) dy − f(x)

∫

R

kn(y) dy

=

∫

R

(f(x− y)− f(x)) kn(y) dy,

and thereby

|f ∗ kn(x)− f(x)| ≤
∫

R

|f(x− y)− f(x)| kn(y) dy.

Since (x, y) 7→ |f(x−y)−f(x)| kn(y) is a Borel function in R2, we find using Tonelli’s
theorem

‖f ∗ kn − f‖1 ≤
∫

R

∫

R

|f(x− y)− f(x)| kn(y) dy dx

=

∫

R

∫

R

|f(x− y)− f(x)| kn(y) dx dy

=

∫

R

kn(y)‖τyf − f‖1 dy.

We next use Theorem 2.3.1. To ε > 0 there exists δ > 0 such that

‖τyf − f‖1 <
ε

2
for |y| ≤ δ.
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For every n we then have
∫

|y|≤δ

kn(y) ‖τyf − f‖1 dy ≤
∫

|y|≤δ

ε

2
kn(y) dy ≤

ε

2∫

|y|>δ

kn(y) ‖τyf − f‖1 dy ≤
∫

|y|>δ

2 ‖f‖1 kn(y) dy.

Choosing now N ∈ N such that the last integral is less than ε
2
for n > N , we have

‖f ∗ kn − f‖1 < ε for n > N.

The proof for Dirac families is similar. �

Theorem 2.6.4 can be extended:

Theorem 2.6.5 Let (kn) be a Dirac sequence on R and let 1 ≤ p <∞. Then

∀ f ∈ Lp(R) : ‖f ∗ kn − f‖p → 0 for n→ ∞.

Proof. The case p = 1 has already been proved, so we can assume 1 < p < ∞.
Let q be determined by 1

p
+ 1

q
= 1. Note that f ∗ kn ∈ Lp(R) by Theorem 2.3.3 4◦

In each point x ∈ D(f ∗ kn), i.e., for almost all x we have

|f ∗ kn(x)− f(x)| =

∣∣∣∣
∫

R

(f(x− y)− f(x)) kn(y) dy

∣∣∣∣

=

∣∣∣∣
∫

R

(f(x− y)− f(x)) (kn(y))
1/p · (kn(y))1/q dy

∣∣∣∣

≤
(∫

R

|f(x− y)− f(x)|p kn(y) dy
)1/p(∫

R

kn(y) dy

)1/q

,

where the last inequality follows from Hölder’s inequality. The last factor is 1, and
we therefore get by integration with respect to x and using Tonelli’s theorem

∫

R

|f ∗ kn(x)− f(x)|p dx ≤
∫

R

(∫

R

|f(x− y)− f(x)|p kn(y) dy
)
dx

=

∫

R

∫

R

|f(x− y)− f(x)|p kn(y) dx dy

=

∫

R

kn(y) ‖τyf − f‖pp dy.

The proof is completed similarly to the case p = 1. �

Clearly, a similar result holds for Dirac families.

Theorem 2.6.5 cannot be extended to p = ∞. Instead, we have:
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Theorem 2.6.6 Let (kn) be a Dirac sequence for R. If f : R → C is bounded and
uniformly continuous, then

‖f ∗ kn − f‖∞ → 0 for n→ ∞.

Note that f ∗ kn in the theorem is uniformly continuous and bounded so the
norm ‖f ∗ kn − f‖∞ is the same as the uniform norm. The same result holds for
Dirac families and the proof of the theorem is left as Exercise E 6.1.

Exercises

E 6.1 Prove Theorem 2.6.6.

2.7 Summability of Fourier integrals

The partial Fourier integral

su(x) =

∫ u

−u

Ff(t) e2πitx dt

for a function f ∈ L1(R), is given by the convolution

su(x) = f ∗ Du(x) =

∫

R

f(x− y)Du(y) dy, (2.7.1)

with

Du(y) =

∫ u

−u

e2πity dt =

∫ u

0

2 cos(2πty) dt, (2.7.2)

cf. (2.4.1). The mean value of the partial Fourier integrals is defined by

σv(x) =
1

v

∫ v

0

su(x) du =
1

v

∫ v

0

∫

R

f(x− y)Du(y) dy du. (2.7.3)

For fixed x, (y, u) 7→ f(x − y)Du(y) is integrable over R× ]0, v], as the product of
the integrable function (τxSf) ⊗ 1]0,v] and Du(y) = uD1(u y), which is continuous
and bounded in R× ]0, v] because

D1(z) =

{
sin(2πz)

πz
for z 6= 0

2 for z = 0.

By Fubini’s theorem we then get

σv(x) =
1

v

∫

R

∫ v

0

f(x− y)Du(y) du dy =

∫

R

(
f(x− y) · 1

v

∫ v

0

Du(y) du

)
dy,
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which is summarized in

The mean value of the partial Fourier integrals for a function f ∈ L1(R) is given
by

σv(x) = f ∗ Fv(x), x ∈ R, v > 0, (2.7.4)

where

Fv(y) =
1

v

∫ v

0

Du(y) du (2.7.5)

is the mean value of the integrals

∫ u

0

(
e2πity + e−2πity

)
dt.

The functions Fv play a role in the theory of Fourier integrals which corresponds
to the role of Fejér’s kernels in the theory of Fourier series.

The advantage in considering the summability of Fourier integrals instead of
the convergence lies in the fact that the family (Fv)v>0 has nicer properties than
(Du)u>0.

Proposition 2.7.1 The family (Fv)v>0 given by (2.7.5) is a Dirac family in the
sense of Definition 2.6.2.

Proof. Using (2.4.2) we find

Fv(y) =
1

v

∫ v

0

Du(y) du =
1

v

1− cos(2πvy)

2π2y2
,

i.e., Fv(y) = v F (vy) with

F (y) = F1(y) =
1− cos(2πy)

2π2y2
.

Note that y = 0 is a removable singularity for F and limy→0 F (y) = 1. Clearly,
F ≥ 0 and F ∈ L1(R), so all we need in order to apply the result of Example 2.6.3
is to prove that the integral of F is 1.

For 0 < w, we obtain by partial integration
∫ w

0

F (y) dy =

∫ w

0

1− cos(2πy)

2π2
· 1

y2
dy

=

[
1− cos(2πy)

2π2
·
(
−1

y

)]y=w

y=0

−
∫ w

0

sin(2πy)

π
·
(
−1

y

)
dy.

This yields
∫ w

0

F (y) dy = −1− cos(2πw)

2π2w
+

1

π

∫ w

0

sin(2πy)

y
dy,
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hence for w → ∞
∫ ∞

0

F (y) dy = 0 + lim
w→∞

1

π

∫ 2πw

0

sin t

t
dt =

1

2

by Example 2.2.1. Since F is even we see that F has integral 1. �

Theorem 2.7.2 For every function f ∈ L1(R), the Fourier integral

∫ ∞

0

(
Ff(t) e2πitx + Ff(−t) e−2πitx

)
dt

is summable in L1(R) with value f .

Proof. The claim is that ‖σv − f‖1 → 0 for v → ∞, where σv is the mean value
of the truncated Fourier integral. This follows from σv = f ∗ Fv, because (Fv)v∈R+

is a Dirac family for R, see Theorem 2.6.4. �

Corollary 2.7.3 (Uniqueness theorem) If f, g ∈ L1(R) have the same Fourier
transform, Ff = Fg, then f = g almost everywhere.

Proof. We know that f ∗ Fv = g ∗ Fv for all v > 0 because it is the mean value
of the partial Fourier integrals of the same function Ff = Fg. By the previous
theorem f ∗ Fv converges to f in L1(R) and similarly with g, hence f = g almost
everywhere. �

Corollary 2.7.4 (Inversion theorem) If the Fourier transform Ff of a function

f ∈ L1(R) again belongs to L1(R), i.e., if

∫

R

|Ff(t)| dt <∞, then

f(x) =

∫

R

Ff(t) e2πitx dt

for almost all x. The equation holds for all x, if in addition f is continuous.

Proof. If Ff ∈ L1(R), then the Fourier integral for f is convergent by Section
2.2 for each x ∈ R with sum

∫

R

Ff(t) e2πitx dt = FFf(−x).

Being convergent, the Fourier integral is also summable with the same value, but
we also know that ‖σv − f‖1 → 0. We now use the following result from measure
theory: If a sequence gn of integrable functions converge to an integrable function
g in 1-norm, then a suitable subsequence of gn converges to g almost everywhere.

90



There exists therefore a sequence vn → ∞ such that σvn(x) → f(x) for almost all
x, hence

f(x) = FFf(−x)

for almost all x. The right-hand side is continuous and if f is also continuous, then
the set of points where they disagree is an open null set, hence empty. �

Example 2.7.5 The following formulas hold:

f(x) = e−|x|, Ff(t) = 2

1 + 4π2t2
∈ L1(R),

hence

e−|x| =

∫ ∞

−∞

2

1 + 4π2t2
e2πitx dt,

or equivalently

1

π

∫ ∞

−∞

1

1 + x2
e−iux dx = e−|u|.

Proof. From
∫ ∞

0

e−xz dx =
1

z
for Re z > 0,

we obtain
∫ ∞

−∞

e−|x| e−2πixt dx = 2

∫ ∞

0

e−x cos(2πxt) dx = 2Re

∫ ∞

0

e−x(1−2πit) dx =
2

1 + 4π2t2
.

Exercises

E 7.1 Let f ∈ L1(R) ∩ L∞(R).

(i) Show that the Fourier integral (FI) for f is summable in x with value f(x) if
f is continuous in x.

(ii) Show that if f is continuous for all x in the interval [a, b], then the FI is
uniformly summable on [a, b] with value f(x), i.e.,

sup
x∈[a,b]

|σv(x)− f(x)| → 0 for v → ∞.

(iii) Show that if f is uniformly continuous on all of R, then the FI is uniformly
summable on R with value f(x), i.e.,

‖σv − f‖∞ → 0 for v → ∞.
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E 7.2 Prove that for v > 0

∫ v

−v

(
1− |x|

v

)
e−2πixt dx = Fv(t) =

1

v

1− cos(2πvt)

2π2t2
= v

(
sin(πvt)

πvt

)2

,

i.e., that Fv is the Fourier transform of the “triangle function” in Figure 2.2, and
that

σv(x) = f ∗ Fv(x) =

∫ v

−v

(
1− |t|

v

)
Ff(t)e2πixt dt

for f ∈ L1(R).

0 v−v

Figure 2.2: The triangle function, which is symmetric and linear from (0, 1) to (v, 0)

2.8 Fourier transformation

The Fourier transformation F , which transforms a function f ∈ L1(R) into its
Fourier transform Ff , is a mapping into the set C0(R) of continuous functions
g : R → C with g(t) → 0 for |t| → ∞, cf. Theorem 2.1.2. Note that C0(R) is a
Banach space under the uniform norm ‖g‖∞. Under pointwise product it is also a
commutative Banach algebra.

Theorem 2.8.1 The Fourier transformation F : L1(R) → C0(R) is linear, and

‖Ff‖∞ = sup
t

|Ff(t)| ≤ ‖f‖1 for f ∈ L1(R).

More interestingly,

F(f ∗ g) = Ff · Fg for f, g ∈ L1(R). (2.8.1)

Proof. Only (2.8.1) requires a proof. We have

F(f ∗ g)(t) =
∫

R

f ∗ g(x) e−2πixt dx =

∫

R

∫

R

f(x− y) g(y) e−2πixt dy dx.
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For fixed t, (x, y) 7→ f(x−y) g(y) e−2πixt is integrable over R×R because f(x−y) g(y)
is so and e−2πixt is continuous and bounded. By Fubini’s theorem we then have

F(f ∗ g)(t) =
∫

R

∫

R

f(x− y) g(y) e−2πixt dx dy.

In the innermost integration, we substitute x by x+ y and obtain

F(f ∗ g)(t) =
∫

R

(
g(y) e−2πiyt

∫

R

f(x) e−2πixt dx

)
dy = Ff(t) · Fg(t).

�

Since Ff = Fg when f = g almost everywhere, we see that F : L1(R) → C0(R)
gives rise to a mapping L1(R) → C0(R), which is also denoted F . In other words,
if [f ] ∈ L1(R) denotes the equivalence class containing f ∈ L1(R), we define F [f ] =
Ff .

The Fourier transformation F : L1(R) → C0(R) is injective by the uniqueness
theorem 2.7.3. The result of Theorem 2.8.1 can therefore be stated that F is an
algebra isomorphism of the group algebra L1(R) onto a subalgebra A of C0(R).

We stress in particular that convolution of functions is transformed into ordinary
product of funtions.

The Fourier transformation diminishes norm and distance:

‖F(f)‖∞ ≤ ‖f‖1, ‖F(f)− F(g)‖∞ ≤ ‖f − g‖1 for f, g ∈ L1(R).

Similar to Fourier series, we have ‖F‖ = 1, because there exists f ∈ L1(R) with
‖f‖1 = 1, ‖Ff‖∞ = 1, namely f = (1/2)1[−1,1].

At the end of Section 2.5 we have already pointed out that L1(R) does not have
a unit element. We can also see this using Fourier transformation. In fact, if we
assume that there exists an element e ∈ L1(R) such that e ∗ f = f for all f , we get
FeFf = Ff , and using f(x) = e−|x| from Example 2.7.5, we see that Fe(x) = 1 for
all x ∈ R because Ff does not vanish. On the other hand we know that Fe tends
to zero at infinity, and we get a contradiction.

The algebra A = F(L1(R)) is dense in C0(R). This is a consequence of a version
of the Stone-Weierstrass theorem, but we will not give any details of proof, because
we see later that the Schwartz space S is contained in A. Like for Fourier series,
A 6= C0(R), and there are functions in A which tend to zero at infinity arbitrarily
slowly.

It does not seem to be possible to find a descriptive characterization of A as a
subset of C0(R).

Defining f̃(x) = f(−x) for f ∈ L1(R), we see that ˜ is an involution in L1(R)
and F(f̃) = Ff . This can be expressed that the Fourier transformation respects
(or commutes with) the involutions in L1(R) and C0(R).
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2.8.1 Fourier transformation and differentiation

Roughly speaking, the behaviour of f ∈ L1(R) at infinity is reflected in differentia-
bility properties of the Fourier transform Ff : The quicker f tends to zero at infinity
(meaning ±∞) the smoother is Ff . This is made precise in the next result.

Theorem 2.8.2 Let n ∈ N and suppose that f : R → C and x 7→ xn f(x) belongs
to L1(R). Then Ff ∈ Cn(R), i.e., Ff is n times differentiable with continuous n’th
derivative Dn(Ff), and

Dj(Ff)(t) = (−2πi)j
∫

R

xj f(x) e−2πixt dx, (2.8.2)

i.e.,

Dj(Ff) = (−2πi)jF(xjf(x)), j = 1, . . . , n. (2.8.3)

Proof. If f : R → C and x 7→ x f(x) belongs to L1(R), then the Fourier transform
Ff is differentiable with

D(Ff)(t) = −2πi

∫

R

x f(x) e−2πixt dx = −2πi F(xf(x))(t)

because

|Dt

(
f(x)e−2πixt

)
| ≤ 2π|xf(x)|,

so we can apply a theorem about differentiation under the integral sign. The deriva-
tive D(Ff) is continuous according to Theorem 2.1.2.

We next remark that x → xjf(x) is integrable for each j = 0, 1, . . . , n because
|xjf(x)| ≤ (1 + |x|n)|f(x)|, so we can differentiate the integral n times. �

Theorem 2.8.3 Let F be an indefinite integral of a function f ∈ L1(R) and assume
that also F is Lebesgue integrable. Then

Ff(t) = 2πitFF (t), t ∈ R.

Proof. By assumption

F (x) = c+

∫ x

a

f(y) dy,

hence for x → ∞

F (x)− F (0) =

∫ x

0

f(y) dy →
∫

R+

f(y) dy.
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This shows that F (x) has a limit for x→ ∞, and it has to be 0, since lim
x→∞

|F (x)| > 0

will imply that
∫∞

0
|F (x)| dx = ∞ in contradiction with the integrability of F .

Similarly, we have F (x) → 0 for x→ −∞.

By partial integration

∫ b

a

f(x) e−2πixt dx =
[
F (x) e−2πixt

]x=b

x=a
−
∫ b

a

F (x)
(
−2πit e−2πixt

)
dx,

so for a→ −∞, b→ ∞ we get

Ff(t) = 2πitFF (t).

�

Theorem 2.8.4 Let n ∈ N and assume that f ∈ Cn(R) and f,Df, . . . , Dnf all
belong to L1(R). Then

F(Djf)(t) = (2πi t)j Ff(t), j = 1, . . . , n.

Proof. We note that Dn−1f is an integrable indefinite integral of Dnf , hence

F(Dnf)(t) = 2πi tF(Dn−1f)(t),

and by repeated application of this we get the formula above. �

2.8.2 The Fourier transformation in the Schwartz space

For the sake of brevity, we will say about a function ϕ : R → C that ϕ(x) tends
rapidly to 0 for |x| → ∞ if

∀m ∈ N : xm ϕ(x) → 0 for |x| → ∞.

The Schwartz space S = S(R) is defined as the set of functions ϕ ∈ C∞(R)
where

∀n ∈ N0 ∀m ∈ N : xmDnϕ(x) → 0 for |x| → ∞.

The condition can be rephrased that ϕ as well as all its derivatives tend rapidly to
0.

The function space S is named after the French mathematician Laurent Schwartz
(1915-2002), the creator of the theory of distributions. (Not to be mixed up with
H.A. Schwarz (1843-1921) from the Cauchy-Schwarz inequality.)
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For example, x 7→ e−x2

, x ∈ R, will belong to S, as well as x 7→ p(x) e−x2

, where
p is a polynomial.

It is evident that S(R) ⊆ Lp(R) for every p, 1 ≤ p <∞, since already x2 ϕ(x) →
0 for |x| → ∞ implies that (x2)p|ϕ(x)|p is bounded, i.e., |ϕ(x)|p ≤ M(x2)−p ≤ M x−2

for |x| ≥ 1.

It is also clear that S(R) ⊆ C0(R) ⊆ L∞(R).

We leave as an exercise to prove that S is a vector space and an algebra with
respect to ordinary multiplication and with respect to convolution, see E 8.2.

We note: If ϕ ∈ S, then Dϕ as well as xϕ(x) belong again to S.
In fact,Dn(Dϕ) = Dn+1ϕ andDn(xϕ(x)) = xDnϕ(x)+nDn−1ϕ(x) tend rapidly

to 0.

Using this and the results about differentiation and Fourier transformation we
find the following key result:

Theorem 2.8.5 The Fourier transform Fϕ of a function ϕ ∈ S belongs again to
the Schwartz space S.

Proof.

1◦ Since x 7→ xn ϕ(x) belongs to S and thereby to L1(R) for n = 0, 1, 2, . . ., we
conclude from Theorem 2.8.2 that ψ = Fϕ belongs to C∞(R) with

Dnψ(t) = (−2πi)n
∫

R

xn ϕ(x) e−2πixt dx, n = 0, 1, 2, . . . .

In particular, we have Dnψ ∈ F(S), namely Dnψ = Fϕn with

ϕn(x) = (−2πi)n xn ϕ(x).

2◦ Since ϕ and thereby Dϕ, D2ϕ, . . . belong to S, i.e., in particular ϕ ∈ C∞ and
ϕ, Dϕ, D2ϕ, . . . ∈ L1(R), we conclude by Theorem 2.8.4 that

(2πi)m tmFϕ(t) = FDmϕ(t), m = 0, 1, 2, . . . .

In particular, t 7→ tm Fϕ(t) ∈ F(S).

3◦ For arbitrary n, m, we obtain by application of 2◦ on ϕn instead of ϕ that
tmDnψ(t) belongs to F(S) and thereby to F(L1). Thus, by the Riemann-Lebesgue
Lemma

tmDnψ(t) → 0 for |t| → ∞,
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but this is precisely the requirement for ψ = Fϕ to belong to the Schwartz space. �

In addition to the Fourier transformation F : L1(R) → C0(R) it is convenient to
work with the co-Fourier transformation F∗, defined for f ∈ L1(R) by

F∗f(t) =

∫

R

f(x) e2πixt dx, t ∈ R. (2.8.4)

Using the reflection Sf(x) = f(−x), we clearly have

S(Ff) = F∗f = F(Sf).

Theorem 2.8.6 The restriction of the Fourier transformation F : L1(R) → C0(R)
to the Schwartz space S is a bijective mapping onto S. The inverse mapping is the
restriction of the co-Fourier transformation F∗ to S.

Proof. According to Theorem 2.8.5 both restrictions are mappings into S. We
shall show that they are inverse of each other, i.e., that

F∗(Fϕ) = ϕ and F(F∗ϕ) = ϕ for ϕ ∈ S.

The first equation is a direct application of the Inversion Theorem 2.7.4, and the
second is obtained from the first, since

F(F∗ϕ) = F(S(Fϕ)) = F∗(Fϕ).

�

Since S ⊆ L2(R), we have in the Schwartz space S the usual scalar product and
norm inherited from L2

〈ϕ, ψ〉 =
∫

R

ϕ(x)ψ(x) dx, ‖ϕ‖2 = 〈ϕ, ϕ〉1/2 =
(∫

R

|ϕ(x)|2 dx
)1/2

.

Theorem 2.8.7 The Fourier transformation F : S → S is a unitary mapping, i.e.,
linear and bijective with

〈Fϕ,Fψ〉 = 〈ϕ, ψ〉 for ϕ, ψ ∈ S, (2.8.5)

in particular,

‖Fϕ‖2 = ‖ϕ‖2 for ϕ ∈ S. (2.8.6)

Furthermore,

〈Fϕ, ψ〉 = 〈ϕ,F∗ψ〉 for ϕ, ψ ∈ S. (2.8.7)
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The identity (2.8.6) is sometimes also called Parseval’s identity because of the
analogy to Parseval’s identity for Fourier series:

1

2π

∫ 2π

0

|ϕ(t)|2 dt =
∞∑

−∞

|cn|2

Proof. We begin with the last equation:

〈Fϕ, ψ〉 =
∫

R

Fϕ(t)ψ(t) dt =
∫

R

∫

R

ϕ(x)ψ(t) e−2πixt dx dt.

Since ϕ⊗ ψ and thereby (x, t) 7→ ϕ(x)ψ(t) e−2πixt belong to L1(R× R), we have

〈Fϕ, ψ〉 =
∫

R

∫

R

ϕ(x)ψ(t) e2πixt dt dx =

∫

R

ϕ(x)F∗ ψ(x) dx = 〈ϕ,F∗ψ〉.

Using this we find

〈Fϕ,Fψ〉 = 〈ϕ,F∗Fψ〉 = 〈ϕ, ψ〉.
�

We note that F∗ : S(R) → S(R) is of course also unitary.

2.8.3 The Fourier-Plancherel transformation

For f ∈ L1(R) the Fourier transform Ff is given by

Ff(t) =
∫

R

f(x) e−2πixt dx, t ∈ R.

For f ∈ L2(R), this definition cannot be applied in general, since L2(R) 6⊆ L1(R).
We shall introduce a Fourier transformation on L2(R), also called the Fourier-
Plancherel transformation, and which is an extension of the ordinary Fourier trans-
formation defined on L1(R)∩L2(R). The Fourier transformation will be an isometry
of the Hilbert space L2(R). This result is due to Michel Plancherel, a Swiss mathe-
matician (1885 – 1967) (Rendiconti del Circolo Matematico di Palermo 30 (1910)).

We build on the results in Subsection 2.8.2 since we will introduce the Fourier-
Plancherel transformation by extending the Fourier transformation in the Schwartz
space by continuity.

First, some general lemmas.

Lemma 2.8.8 A linear mapping T of a (semi)normed vector space V into a (semi)-
normed vector space W is continuous, if and only if there exists a constant M > 0
such that

‖T x‖ ≤M ‖x‖ for all x ∈ V (2.8.8)
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Proof. It is evident that the condition even implies uniform continuity, since

‖Tx− Ty‖ = ‖T (x− y)‖ ≤M ‖x− y‖.

Conversely, if T is continuous at 0, then for ε = 1 there exists a δ > 0 such that

‖Tx− 0‖ ≤ 1 for ‖x‖ < δ.

We claim that (2.8.8) holds for M = 1/δ. In fact, for any x ∈ V and any n ∈ N we
have

‖(δ/(‖x‖+ 1/n))x‖ =
‖x‖

‖x‖+ 1/n
δ < δ,

hence ∥∥∥∥T
(

δ

‖x‖+ 1/n
x

)∥∥∥∥ ≤ 1,

or

‖Tx‖ ≤ ‖x‖ + 1/n

δ
.

Letting n→ ∞ we get the result. �

Lemma 2.8.9 Let V be a (semi)normed vector space, and let S : U → W be a
continuous, linear mapping of a subspace U ⊆ V, that is dense in V, into a Banach
space W. Then there exists one and only one extension of S to a continuous mapping
T : V → W, and it is linear.

Proof. There is at most one extension of S to a continuous mapping T : V → W,
because for each x ∈ V there exists a sequence u1, u2, . . . from U with un → x, and
thus necessarily Tx = lim

n
Tun = lim

n
Sun.

We split the proof of the existence into a series of steps.

1◦ If u1, u2, . . . ∈ U converges in V, then Su1, Su2, . . . converges in W.

In fact, by Lemma 2.8.8 applied to S the exists a constant M such that

‖Sun − Sum‖ ≤M‖un − um‖

showing that Su1, Su2, . . . is a Cauchy sequence, hence convergent because W is
assumed to be complete.

2◦ If u1, u2, . . . ∈ U and v1, v2, . . . ∈ U converge to the same element x ∈ V, then
lim
n
Sun = lim

n
Svn.

In fact, according to 1◦, the mixed sequence Su1, Sv1, Su2, Sv2, . . . is convergent
and therefore the subsequences (Sun) and (Svn) have the same limit.
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3◦ The mapping T : V → W is well-defined by

Tx = lim
n
Sun if u1, u2, . . .→ x, x ∈ V, un ∈ U .

Here we used that U is dense in V, so for any x ∈ V we can choose a sequence
(un) from U converging to x, and then Tx = limn Sun is independent of the choice
of (un).

4◦ T is an extension of S.

In fact, with un = u ∈ U , we have Tu = lim
n
Sun = Su.

5◦ T is linear.

To show for example that T (x+y) = Tx+Ty for x, y ∈ V, we choose un, vn ∈ U
such that un → x and vn → y. Then un + vn → x+ y, and consequently

T (x+ y) = lim
n
S(un + vn) = lim

n
(Sun + Svn) = Tx+ Ty.

6◦ T is continuous.

For this, we use Lemma 2.8.8. If

‖Su‖ ≤M ‖u‖ for u ∈ U ,

then

‖Tx‖ ≤M ‖x‖ for x ∈ V;

because if un → x, un ∈ U , we have Tx = lim
n
Sun and finally

‖Tx‖ = lim
n

‖Sun‖ ≤ lim
n
M ‖un‖ =M ‖x‖,

where we have used the continuity of the (semi)norm. �

The Schwartz space S(R) is dense in L2(R), since already the functions ϕ ∈
C∞(R) with compact support are dense in Lp(R) for every p, 1 ≤ p <∞.

We now apply Lemma 2.8.9 to the “Fourier transformation” f → [Ff ] defined
on the dense subspace S of L2(R) with values in the Hilbert space L2(R), where [Ff ]
denotes the equivalence class containing the Schwartz function Ff . This mapping
is continuous by (2.8.6).

The continuous linear extension FP : L2(R) → L2(R) is called the
Fourier-Plancherel transformation. By continuity of the norm, it is an isometry like
F :

‖FPf‖2 = ‖f‖2, for f ∈ L2(R).
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In particular FPf = FPg if f, g ∈ L2(R) satisfy ‖f − g‖2 = 0. Therefore FP :
L2(R) → L2(R) gives rise to a mapping L2(R) → L2(R), which is also called the
Fourier-Plancherel transformation and denoted FP . We thus have FP [f ] = FPf .

The co-Fourier-Plancherel transformation F∗
P is defined in a corresponding way

based on F∗ : S → L2(R).

Theorem 2.8.10 (The Fourier-Plancherel transformation) The Fourier-Plan-
cherel transformation FP : L2(R) → L2(R) is a unitary mapping of L2(R) onto itself,
i.e., it is linear, bijective and preserves the scalar product,

〈FPf,FP g〉 = 〈f, g〉 for f, g ∈ L2(R). (2.8.9)

In particular, Plancherel’s equation holds:

‖FPf‖2 = ‖f‖2 for f ∈ L2(R). (2.8.10)

The inverse mapping is the co-Fourier-Plancherel transformation

F∗
P : L2(R) → L2(R).

Proof. Let us verify (2.8.9). If ϕn → f and ψn → g in 2-mean, ϕn, ψn ∈ S, we
have

[Fϕn] → FPf, [Fψn] → FPg in L2(R),

and thereby

〈FPf,FPg〉 = lim 〈Fϕn,Fψn〉 = lim 〈ϕn, ψn〉 = 〈f, g〉.

The mappings FP : L2(R) → L2(R) and F∗
P : L2(R) → L2(R) are the inverse of

each other, i.e.,

F∗
PFPf = f and FPF∗

Pf = f for f ∈ L2(R).

This is clear because if two continuous mappings agree on a dense set they are
identical. �

In the definition of the Fourier-Plancherel transformation FP : L2(R) → L2(R),
we required only agreement,

FPf = [Ff ],

with the Fourier transformation F : L1(R) → C0(R) for functions f belonging to
the Schwartz space. However, we shall see that the equation is fulfilled merely when
both sides have a meaning, i.e., for every function f ∈ L1(R) ∩ L2(R).
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Theorem 2.8.11 For every function f ∈ L1(R) ∩ L2(R), we have FPf = [Ff ].

Proof.

1◦ First, we consider functions f ∈ L2(R) with compact support, i.e., where the

closure of
{
x
∣∣∣ f(x) 6= 0

}
is compact.

Let (kn) be a Dirac sequence for R of functions kn ∈ C∞(R) with compact
support. We can for example take kn(x) = n k(nx), where k ≥ 0 is a function
belonging to C∞(R), with compact support and

∫
R
k(x) dx = 1.

Then f ∗ kn will belong to C∞(R) by Theorem 2.3.4 and will have compact
support, cf. Proposition 2.3.2 4◦. In particular, f ∗ kn ∈ S(R) and thereby

FP (f ∗ kn) = [F(f ∗ kn)].

However, by Theorem 2.6.5 for p = 1 we have ‖f ∗ kn − f‖1 → 0, and thereby

‖F(f ∗ kn)− Ff‖∞ → 0.

On the other hand by Theorem 2.6.5 for p = 2 we have ‖f ∗ kn − f‖2 → 0, hence

‖FP (f ∗ kn)− FPf‖2 → 0.

If g is a representative for FPf , then F(f ∗ kn) will thus converge pointwise
(even uniformly) to Ff and in the 2-mean to g. From this follows g = Ff almost
everywhere, i.e., FPf = [g] = [Ff ].

2◦ For arbitrary f ∈ L1(R) ∩ L2(R), we set fn = f · 1[−n,n]. Since fn → f ,
numerically majorized by |f |, we have ‖fn − f‖1 → 0 as well as ‖fn − f‖2 → 0, and
thereby

‖Ffn −Ff‖∞ → 0 and ‖FPfn − FPf‖2 → 0.

By 1◦ we have FPfn = [Ffn]. If g is a representative for FPf , then Ffn will
converge pointwise to Ff and in the 2-mean to g, and it follows that g = Ff almost
everywhere, i.e., FPf = [Ff ]. �

Remark 2.8.12 As a byproduct of the proof we can give a more explicit charac-
terization of FPf for f ∈ L2(R), namely

FPf = lim
n

[Ffn] in L2(R),

where fn = f · 1[−n,n], i.e.,

Ffn(t) =
∫ n

−n

f(x) e−2πitx dx,

which belongs to C0(R) because fn is integrable. By the isometric property we have

‖FPf − [Ffn] ‖2 = ‖FPf − FPfn‖2 = ‖f − fn‖2 → 0.
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Exercises

E 8.1 Prove that the Schwartz space S is a vector space stable under product
and convolution.

E 8.2 Let f ∈ L2(R) and a > 0. Show that
∫ a

−a

f(x+ y) dy =

∫ ∞

−∞

Ff(t) e2πitx sin(2πta)
πt

dt, x ∈ R.

E 8.3 Prove the following theorem about metric spaces, where we denote the
metric of a space X by dX , i.e., dX(a, b) is the distance between a, b ∈ X .

Theorem.Let f : A → (Y, dY ) be a mapping of a subset A of a metric space
(X, dX) and assume that (Y, dY ) is complete and that f is uniformly continuous on
the subspace (A, dX). Then f can be uniquely extended to a continuous mapping
f̃ : A→ (Y, dY ), and the extension f̃ is again uniformly continuous.

2.9 Fourier transformation of measures

In the following, we will go back to the definition of the Fourier transform via the
formula

f̂(t) =

∫ ∞

−∞

f(x) e−ixt dx, for f ∈ L1(R), (2.9.1)

cf. Remark 2.1.1. With this definition the inversion theorem and Plancherel’s the-
orem can be formulated

f(x) =
1

2π

∫ ∞

−∞

f̂(t) eitx dt, if f̂ ∈ L1(R) (2.9.2)

∫ ∞

−∞

|f(x)|2 dx =
1

2π

∫ ∞

−∞

|f̂(t)|2 dt if f ∈ L2(R). (2.9.3)

By M+(R) we understand the set of positive Radon measures on R. We recall
that a positive Borel measure µ on R, i.e., a positive measure on the Borel sigma-
algebra B(R) is called a Radon measure if it is finite on compact sets or equivalently
finite on bounded Borel subsets of R. Lebesgue measure is a Radon measure, but
the measure µ = |x|−1 dx is a Borel measure, which is not a Radon measure, because
µ([−1, 1]) = ∞.

By Mb
+(R), we understand the set of positive Borel measures µ of finite total

mass. Such measures µ are in particular finite on bounded sets, hence Radon mea-
sures. In formulas:

Mb
+(R) ⊂ M+(R).
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For µ ∈ Mb
+(R) we introduce the Fourier transform µ̂ : R → C by the formula

µ̂(t) =

∫
e−ixt dµ(x), (2.9.4)

(note that this formula requires µ to be of finite total mass) and we see that µ̂ is a
uniformly continuous bounded function with

|µ̂(t)| ≤ µ̂(0) = µ(R), t ∈ R. (2.9.5)

Concerning uniform continuity:

µ̂(t+ h)− µ̂(t) =

∫
e−ixt

(
e−ixh − 1

)
dµ(x),

hence

|µ̂(t + h)− µ̂(t)| ≤
∫ ∣∣e−ihx − 1

∣∣ dµ(x),

which approaches 0 for h→ 0 by Lebesgue’s theorem on dominated convergence.

The function µ̂ is also called the Fourier-Stieltjes transform of µ or (in particular
in probability theory) the characteristic function of µ.

Example 2.9.1 a) For µ = εa we find µ̂(t) = e−ita.

b) For µ = f(x) dx, where f ∈ L1
+(R), we have µ̂(t) = f̂(t), using definition

(2.9.1).

Theorem 2.9.2 (Uniqueness Theorem) If two measures µ, ν ∈ Mb
+(R) have the

same Fourier-Stieltjes transform µ̂(t) = ν̂(t) for t ∈ R, then µ = ν.

Proof. For f ∈ S, we have by the inversion theorem
∫
f(x) dµ(x) =

∫ (
1

2π

∫
f̂(t) eitx dt

)
dµ(x) =

1

2π

∫
f̂(t) µ̂(t) dt

=
1

2π

∫
f̂(t) ν̂(t) dt =

∫
f(x) dν(x),

and then it is easy to see that µ = ν. For example, for an interval [a, b], we can
find a sequence (fn) ∈ S with compact support such that fn ց 1[a,b], whence
µ([a, b]) = ν([a, b]), cf. Figure 2.3.

For µ, ν ∈ Mb
+(R), we introduce the convolution µ ∗ ν ∈ Mb

+(R) as the image
measure p(µ⊗ ν) of µ⊗ ν under p : R× R → R given by p(x, y) = x+ y. We have

µ ∗ ν(E) = µ⊗ ν
({

(x, y) ∈ R2
∣∣∣ x+ y ∈ E

})
. (2.9.6)
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a b

fn

Figure 2.3: Approximation of 1[a,b] by C
∞-functions with compact support

We see immediately that µ ∗ ν(R) = µ(R) ν(R) and µ ∗ ν = ν ∗ µ.The measure
ε0 is a neutral element with respect to convolution: µ ∗ ε0 = µ.

From a theorem about integration with respect to an image measure, we obtain
∫

R

f dµ ∗ ν =

∫

R

∫

R

f(x+ y) dµ(x) dν(y) (2.9.7)

for positive Borel functions and functions f ∈ L1(µ ∗ ν).
Applied to f(x) = e−itx, we obtain

µ̂ ∗ ν (t) = µ̂(t) ν̂(t), (2.9.8)

i.e., under Fourier transformation, convolution is transformed into a product.

If µ = f(x) dx, ν = g(x) dx, f, g ∈ L1
+(R), then µ ∗ ν = f ∗ g(x) dx, by the same

argument as for convolution on the unit circle, i.e., for ϕ ∈ Cc(R), we have
∫
ϕdµ ∗ ν =

∫ (∫
ϕ(x+ y) f(x) dx

)
g(y) dy =

∫ (∫
ϕ(x) f(x− y) dx

)
g(y) dy

=

∫ (
ϕ(x)

∫
f(x− y) g(y) dy

)
dx =

∫
ϕ(x) f ∗ g(x) dx.

Insertion on the vague and weak topologies on M+(R) and Mb
+(R).

Definition 2.9.3 We say that (µn) from M+(R) converges vaguely to µ ∈ M+(R)
if

lim
n→∞

∫
f dµn =

∫
f dµ for all f ∈ Cc(R),

where Cc(R) denotes the set of continuous functions f : R → C with compact
support.

We say that (µn) from Mb
+(R) converges weakly to µ ∈ Mb

+(R) if

lim
n→∞

∫
f dµn =

∫
f dµ for all f ∈ Cb(R),

where Cb(R) denotes the set of bounded continuous functions f : R → C.
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Vague convergence corresponds to the initial topology on M+(R) for the family
of mappings µ 7→

∫
f dµ, where f is arbitrary in Cc(R), i.e., the coarsest topology

in which all these mappings are continuous.

Weak convergence corresponds to the initial topology on Mb
+(R) for the family

of mappings µ 7→
∫
f dµ, where f is arbitrary in Cb(R), i.e., the coarsest topology

in which all these mappings are continuous.

On the set Mb
+(R) we can also consider the restriction of the vague topology.

Since the vague topology on Mb
+(R) is the coarsest topology making the mappings

µ →
∫
f dµ continuous for f ∈ Cc(R) and these mappings are automatically contin-

uous in the weak topology, we clearly have that the vague topology is coarser than
the weak topology, or with other words the more obvious statement:

If µn ∈ Mb
+(R) converges weakly to µ ∈ Mb

+(R) then it automatically converges
vaguely to µ.

We recall that C0(R) denotes the set of all continuous functions f : R → C
vanishing at infinity, i.e.,

∀ε > 0 ∃A > 0 : |f(x)| < ε for all x ∈ R \ [−A,A].

Lemma 2.9.4 Let α > 0 and let (µn) be a sequence fromM b
+(R) converging vaguely

to µ ∈M+(R). If µn(R) ≤ α for all n then µ(R) ≤ α and

lim
n→∞

∫
f dµn =

∫
f dµ for all f ∈ C0(R). (2.9.9)

Proof. For any A > 0 we can choose ϕ ∈ Cc(R) with 0 ≤ ϕ ≤ 1 and ϕ = 1 on
[−A,A], and we then get

µ([−A,A]) ≤
∫
ϕdµ = lim

∫
ϕdµn ≤ lim sup µn(R) ≤ α,

and letting A→ ∞ we get µ(R) ≤ α.

Let now f ∈ C0(R) and ε > 0 be given. By definition there exists A > 0 such
that |f(x)| ≤ ε for |x| ≥ A and let ϕ be as above in relation to [−A,A]. Since
fϕ ∈ Cc(R) we have ∣∣∣∣

∫
fϕ dµn −

∫
fϕ dµ

∣∣∣∣ ≤ ε

for n ≥ N where N is suitably large. For n ≥ N we then get
∣∣∣∣
∫
f dµn −

∫
f dµ

∣∣∣∣ ≤

≤
∣∣∣∣
∫
f dµn −

∫
fϕ dµn

∣∣∣∣+
∣∣∣∣
∫
fϕ dµn −

∫
fϕ dµ

∣∣∣∣+
∣∣∣∣
∫
fϕ dµ−

∫
f dµ

∣∣∣∣

≤
∫

|f(1− ϕ)| dµn + ε+

∫
|f(1− ϕ)| dµ ≤ (2α+ 1)ε,

106



because |f(x)(1 − ϕ(x))| ≤ ε for all x ∈ R. Since ε is independent of α, we have
proved (2.9.9). �

If µn → µ vaguely and lim µn(R) = α, we can in general only conclude that
µ(R) ≤ α, and it can happen that µ(R) < α.

Concerning the inequality, we have µn(R) ≤ α+ ε for n sufficiently large, hence
µ(R) ≤ α+ε by Lemma 2.9.4. Since ε can be arbitrarily small, we get the assertion.

That we can have µ(R) < α is easy: µn = εn have all total mass 1 and lim
n→∞

εn = 0

vaguely, but the limit has mass 0.

The following important result holds:

Lemma 2.9.5 For a sequence (µn) and a measure µ from Mb
+(R) the following

conditions are equivalent:

(i) lim
n→∞

µn = µ weakly

(ii) lim
n→∞

µn = µ vaguely and lim
n→∞

µn(R) = µ(R).

Proof. (i) ⇒ (ii) is evident.

(ii) ⇒ (i). Let h ∈ Cb(R) be given.

For ε > 0 there exists A > 0 such that µ(R \ [−A,A]) < ε. Let ϕ ∈ Cc(R) fulfill
0 ≤ ϕ ≤ 1, ϕ = 1 on [−A,A]. By assumption (ii)

lim
n→∞

∫
(1− ϕ) dµn =

∫
(1− ϕ)dµ ≤ µ(R \ [−A,A]) < ε,

and

lim
n→∞

∫
hϕ dµn =

∫
hϕ dµ.

There exists thus an N such that for n ≥ N
∫

(1− ϕ) dµn < ε,

∣∣∣∣
∫
hϕ dµ−

∫
hϕ dµn

∣∣∣∣ < ε.

Using this we find for n ≥ N
∣∣∣∣
∫
h dµ−

∫
h dµn

∣∣∣∣ ≤
∣∣∣∣
∫
h dµ−

∫
hϕ dµ

∣∣∣∣+
∣∣∣∣
∫
hϕ dµ−

∫
hϕ dµn

∣∣∣∣

+

∣∣∣∣
∫
hϕ dµn −

∫
h dµn

∣∣∣∣

≤ ‖h‖∞
∫

(1− ϕ) dµ+ ε+ ‖h‖∞
∫

(1− ϕ) dµn

≤ ε (1 + 2 ‖h‖∞),
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which proves the claim.
�

To µ ∈ Mb
+(R) we can define a positive linear functional Lµ : C0(R) → C by

Lµ(f) =
∫
f dµ.

It is easy to see that Lµ is a bounded linear functional on the Banach space
C0(R) with ‖Lµ‖ = µ(R). The Riesz representation theorem for finite positive Borel
measures on R says that every bounded positive linear functional L on C0(R) has
the form L = Lµ for precisely one µ ∈ Mb

+(R).

We can therefore consider Mb
+(R) as a subset in the dual space C0(R)∗. Alaoglu–

Bourbaki’s theorem states that the unit ball in C0(R)∗ is compact in the topology
σ(C0(R)∗, C0(R)) and this gives the following version of Helly’s theorem, cf. Theo-
rem 1.12.7.

Theorem 2.9.6 For every α > 0 the set
{
µ ∈ Mb

+(R)
∣∣∣µ(R) ≤ α

}
is vaguely com-

pact, i.e., for every sequence µn ∈ Mb
+(R) with µn(R) ≤ α, there exist µ ∈ Mb

+(R)
and a subsequence (µnp

) such that lim
p→∞

µnp
= µ vaguely.

Remark 2.9.7 Every bounded linear functional L ∈ C0(R)∗ can be split as L =
L1 −L2 + i(L3 −L4), where Lj , j = 1, . . . , 4 are bounded positive linear functionals.
Thereby, L can be represented by a complex measure µ of the form µ1−µ2+i(µ3−µ4).
It can be shown that ‖L‖ = ‖µ‖, where ‖µ‖ is the total variation of µ.

We shall now prove a counterpart to Herglotz’ Theorem 1.12.9. In 1923, M.
Mathias (Math. Zeitschrift 16, 103–125, 1923) introduced the following definition
which corresponds to condition (ii) in Herglotz’ Theorem.

A function f : R → C is called positive definite if for every choice of a finite set
of real numbers x1, . . . , xn, the matrix

(f(xj − xk))1≤j,k≤n

is positive semidefinite, i.e.,
n∑

j,k=1

f(xj − xk)αj αk ≥ 0 ∀α = (α1, . . . , αn) ∈ Cn. (2.9.10)

We note immediately that f = µ̂, µ ∈ Mb
+(R) is positive definite since

n∑

j,k=1

µ̂(xj − xk)αj αk =

∫ ( n∑

j,k=1

e−i(xj−xk)x αj αk

)
dµ(x)

=

∫ ∣∣∣∣∣
n∑

j=1

e−ixjx αj

∣∣∣∣∣

2

dµ(x) ≥ 0,

and have thereby the easier half of
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Theorem 2.9.8 (Bochner’s theorem (1932).) For a function f : R → C the
following conditions are equivalent:

(i) There exists µ ∈ Mb
+(R) such that f(t) = µ̂(t) =

∫
e−itx dµ(x).

(ii) f is continuous and positive definite.

(Salomon Bochner (1899 – 1982), Polish–American mathematician).

Before proving Bochner’s theorem, we need the following:

Lemma 2.9.9 Let f : R → C be positive definite. Then

(i) f(−t) = f(t), t ∈ R,

(ii) |f(t)| ≤ f(0), t ∈ R,

(iii) |f(t)− f(s)| ≤ 2 f(0) (f(0)− Re f(s− t)) , s, t ∈ R.

Proof. Choosing x1 = t, x2 = 0, we see that

(
f(0) f(t)
f(−t) f(0)

)
is positive

semi-definite, i.e., f(0) ≥ 0, f(t) = f(−t) together with f(t) f(−t) ≤ f(0)2 or
|f(t)|2 ≤ f(0)2. Thereby, we have proved (i) and (ii).

Choosing x1 = 0, x2 = s, x3 = t, the matrix




f(0) f(−s) f(−t)
f(s) f(0) f(s− t)

f(t) f(t− s) f(0)


 =




f(0) f(s) f(t)

f(s) f(0) f(s− t)

f(t) f(s− t) f(0)




is positive semi-definite. Since in the proof of (iii), we can assume f(t) 6= f(s), it
makes sense for λ ∈ R to define

α1 = 1, α2 =
λ |f(s)− f(t)|
f(s)− f(t)

, α3 = −α2,

whereby the sum (2.9.10) becomes

f(0) (1 + 2λ2) + 2 λ |f(s)− f(t)| − 2 λ2Re f(s− t) ≥ 0, λ ∈ R.

The discriminant of this polynomial in λ of degree 2 is thus ≤ 0, i.e.,

|f(s)− f(t)|2 ≤ 2 f(0) (f(0)− Re f(s− t)) ,

which gives (iii). �
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A positive definite function is thus bounded, and from (iii) it follows that if just
Re f is continuous at 0, then f is uniformly continuous. A positive definite function
need not be continuous, cf. E 9.1.

Proof of Bochner’s theorem. Let f be continuous and positive definite. From the
lemma it follows that it is uniformly continuous and bounded. Let now α : R → C
be a continuous integrable function. The continuous analogue of (2.9.10) is

I :=

∫ ∫
f(x− y)α(x)α(y)dx dy ≥ 0. (2.9.11)

The double integral is meaningful since f is continuous and bounded, and by
Lebesgue’s theorem on dominated convergence, it is sufficient to show for every
A > 0 that

IA =

∫ A

−A

∫ A

−A

f(x− y)α(x)α(y)dx dy ≥ 0,

but this integral is the limit for N → ∞ of the sums

N−1∑

j,k=−N

f
(
jA−kA

N

)
α
(
jA
N

)
α
(
kA
N

)
A2

N2 ,

which are ≥ 0 by (2.9.10).

We evaluate in particular (2.9.11) for α(x) = e−2εx2

eitx, where ε > 0, t ∈ R are
parameters, which gives

∫ ∫
f(x− y) e−2εx2

e−2εy2 eitx e−ity dx dy ≥ 0. (2.9.12)

Introduce now the coordinate transformation u = x− y, v = x+ y from R2 onto
itself, i.e., x = 1

2
(u+ v), y = 1

2
(v − u). The Jacobi determinant is

det

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
= det

( 1
2

1
2

−1
2

1
2

)
=

1

2
,

and using 2 x2 + 2 y2 = u2 + v2, (2.9.12) becomes

1

2

∫ ∫
f(u) e−εu2

e−εv2 eitu du dv ≥ 0,

or

1

2

∫
e−εv2 dv

∫
f(u) e−εu2

eitu du ≥ 0.
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We have thus

ϕε(t) =
1

2π

∫
f(u) e−εu2

eitu du ≥ 0 for t ∈ R, ε > 0. (2.9.13)

For ε > 0 consider the positive measure µε with density ϕε with respect to
Lebesgue measure. It is finite with

µε(R) =

∫
ϕε(t) dt ≤ f(0). (2.9.14)

To see this we need that the density

gδ(x) =
1√
4πδ

e−
x2

4δ , δ > 0

for a normal distribution (
∫
gδ(x) dx = 1) has the Fourier transform

ĝδ(t) = e−δt2 ,

see E 3.2.

Thus, we find for δ > 0 by the inversion formula

0 ≤
∫
ϕε(t) e

−δt2 dt =

∫
ϕε(t) ĝδ(t) dt =

1

2π

∫ ∫
f(u) e−εu2

eitu du ĝδ(t) dt

=

∫
f(u) e−εu2

gδ(u) du ≤
∫

|f(u)| e−εu2

gδ(u) du

≤ f(0)

∫
gδ(u) du = f(0).

Letting subsequently δ → 0, the monotone convergence theorem gives (2.9.14).

By Helly’s theorem there exists µ ∈ Mb
+(R) with µ(R) ≤ f(0) such that µεn

converges vaguely to µ for an appropriate sequence εn → 0.

Using the inversion theorem for the integrable function 1
2π
f(u) e−εu2

which has
an integrable Fourier transform according to (2.9.14), we obtain

f(u) e−εu2

=

∫
ϕε(t) e

−itu dt = µ̂ε(u), (2.9.15)

in particular µ̂ε(0) = µε(R) = f(0) for all ε > 0. The limit measure µ for µεn has
the mass µ(R) ≤ f(0), and it cannot be excluded in advance that µ(R) < f(0). We
shall now see that µ(R) = f(0), and thereby Lemma 2.9.5 shows that

lim
n→∞

∫
h(x) dµεn(x) =

∫
h(x) dµ(x),
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for all bounded continuous functions h : R → C, in particular for h(x) = e−ixu,
where u ∈ R is fixed but arbitrary, hence µ̂εn(u) → µ̂(u) for u ∈ R. From (2.9.15)
we therefore get

f(u) =

∫
e−itu dµ(t), u ∈ R,

which was to be proved.

To see that µ(R) = f(0), we integrate (2.9.15) from −a to a and divide by 2a:

1

2a

∫ a

−a

f(u) e−εu2

du =

∫
ϕε(t)

sin(at)

at
dt =

∫
sin(at)

at
dµε(t).

Putting ε = εn and letting n→ ∞ we obtain

1

2a

∫ a

−a

f(u) du =

∫
sin(at)

at
dµ(t).

Here we have used that sin(at)/at ∈ C0(R) and next we applied Lemma 2.9.4.

Subsequently we let a → 0: The left-hand side gives f(0) since f is continuous,
and the right-hand side gives µ(R) by Lebesgue’s theorem on dominated conver-
gence, i.e., µ(R) = f(0). �

Theorem 2.9.10 (Lévy’s continuity theorem) Assume that a sequence (µn) from
Mb

+(R) has the properties

(i) lim
n→∞

µ̂n(t) = ϕ(t) exists for all t ∈ R.

(ii) ϕ is continuous for t = 0.

Then there exists µ ∈ Mb
+(R), with µ̂ = ϕ and lim

n→∞
µn = µ weakly.

Proof. We note first that if ϕn : R → C is a sequence of positive definite functions
which converges pointwise to ϕ : R → C, then ϕ is positive definite. In fact, for
x1, . . . , xp ∈ R, α1, . . . , αp ∈ C, the inequality

p∑

j,k=1

ϕn(xj − xk)αj αk ≥ 0

is conserved in the limit because only finitely many points are involved. Combined
with (ii) and Lemma 2.9.9 we see that ϕ is continuous. By Bochner’s theorem,
ϕ = µ̂ for µ ∈ Mb

+(R), and since µ̂n(t) → µ̂(t) pointwise, we have in particular
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µn(R) = µ̂n(0) → µ̂(0) = µ(R). By Lemma 2.9.5 we thus only have to prove that
µn → µ vaguely.

Let f ∈ Cc(R) and ε > 0 be given. Since F(L1(R)) is dense in C0(R), cf. the
discussion after Theorem 2.8.1, there is a g ∈ L1(R) such that ‖ĝ − f‖∞ ≤ ε. We
thus have

∣∣∣∣
∫
f dµn −

∫
f du

∣∣∣∣ ≤
∫

|f − ĝ| dµn +

∣∣∣∣
∫
ĝ dµn −

∫
ĝ dµ

∣∣∣∣+
∫

|ĝ − f | dµ

≤ ε (µn(R) + µ(R)) +

∣∣∣∣
∫

(µ̂n(x)− µ̂(x)) g(x) dx

∣∣∣∣ .

The first term tends to 2εµ(R), and the second term tends to 0 by Lebesgue’s
theorem on dominated convergence, and the desired conclusion follows. �

Corollary 2.9.11 Given µ and a sequence (µn) from Mb
+(R). Then

µn → µ weakly ⇐⇒ µ̂n → µ̂ pointwise.

Exercises

E 9.1 Show that 1Q (i.e., the function = 1 for x ∈ Q, 0 for x ∈ R \Q) is positive
definite.

Hint: Use that Q is a subgroup of R.

E 9.2 Let (µn) be a sequence and µ a measure fromMb
+(R). Show that if µn → µ

weakly, then µ̂n → µ̂ uniformly over compact subsets of R.

E 9.3

1◦ Show that a matrix A = (ajk) is positive semidefinite if and only if it can be
written in the form A = PP ∗, where P ∗ is the conjugate transpose of P , i.e.,
if P = (pjk) and P

∗ = (p∗jk), then p
∗
jk = pkj.

2◦ Show that if A = (ajk) and B = (bjk) are positive semidefinite matrices, then
C = (ajk bjk) is positive semidefinite (Schur).

3◦ Show that if f, g : R → C are positive definite functions, then fg is positive
definite.

4◦ Let F (z) =
∞∑

0

an z
n be holomorphic in |z| < R, with an ≥ 0. Let f : R → C

be positive definite, with f(0) < R. Show that F ◦ f is positive definite.
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E 9.4 Let f ∈ L2(R), f̃(x) = f(−x). Show that

f ∗ f̃(x) = 1

2π

∫
eitx |f̂(t)|2 dt,

and conclude that f ∗ f̃ is continuous and positive definite. What is the associated
measure from Bochner’s theorem?

E 9.5 Let f : R → C be continuous and positive definite as well as integrable.
Show that f̂(t) ≥ 0 for all t. Show furthermore that f̂ ∈ L1(R), and thereby that

f(x) =
1

2π

∫
eitx f̂(t) dt.

Identify the measure belonging to f from Bochner’s theorem.
(Hint: Show that the measure µ from Bochner’s theorem fulfills

∫
g(x) dµ(x) =

1

2π

∫
g(x) f̂(−x) dx

for every Schwartz function g).
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