Københavns Universitet

Eksamen ved Det naturvidenskabelige Fakultet vinter 1999-2000

Matematik 3 GE

Written exam, 4 hours. All course material is allowed during the exam (alle sædvanlige hjælpemidler er tilladt).
There are 4 problems weighted approximately evenly (De fire problemer tillæges ens vægt).

Problem 1

1. Let S_{1} and S_{2} be two nonsingular surfaces in \mathbb{R}^{3} and Φ an isometry from S_{1} to S_{2}. Show that, if

$$
\gamma:[0,1] \rightarrow S_{1}
$$

is a geodesic curve, then so is

$$
\Phi \circ \gamma:[0,1] \rightarrow S_{2} .
$$

2. Prove that every geodesic curve on a two-sphere S in \mathbb{R}^{3} is an arc with the center coinciding with the center of the sphere.
3. Show that, given an isometry \mathcal{O} of the two-sphere

$$
S=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\} \subset \mathbb{R}^{3}
$$

there exists a linear orthogonal transformation $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that \mathcal{O} is the restriction of A to S.
HINT: Assume first that \mathcal{O} has one fixpoint, f.ex. $\mathcal{O}((1,0,0))=(1,0,0)$.

Problem 2

Let \mathcal{C} denote the cylinder in \mathbb{R}^{3} given by

$$
\mathcal{C}=\left\{(x, y, z) \mid x^{2}+y^{2}=1\right\}
$$

1. Determine the first and second fundamental form of \mathcal{C}.
2. Prove that $\mathcal{C} \backslash\{(x, y, z) \mid x=0\}$ is isometric to an open subset of \mathbb{R}^{2} with its standard metric.
3. Find all geodesics on \mathcal{C} passing through the point $(1,0,1)$.

Problem 3

Let \mathcal{H} denote the hyperboloid

$$
\mathcal{H}=\left\{(x, y, z) \mid x^{2}+y^{2}-z^{2}=1\right\}
$$

1. Find the geodesic curvature of the curves (circles)

$$
\gamma_{z}: \theta \rightarrow\left(\left(1+z^{2}\right)^{\frac{1}{2}} \cos \theta,\left(1+z^{2}\right)^{\frac{1}{2}} \sin \theta, z\right)
$$

at the point $\theta=0$.
2. Show that the geodesic curvature $k_{g}\left(\gamma_{z}\right)$ of γ_{z} and the Gauss curvature K of \mathcal{H} at any point (x, y, z) depends only on z.
3. Let $b>0$ be a fixed number. Use 1. and 2. in the Gauss-Bonnet theorem for the strip

$$
A_{b}=\{(x, y, z) \in \mathcal{H} \mid 0<z<b\}
$$

to obtain an equation in which the only unknown quantity is the Gauss curvature K.
4. Find the Gauss curvature K of \mathcal{H} by differentiating with respect to b the equation found in 3 ..

Problem 4

1. Let

$$
F=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}<1 \text { and } z=f(x, y)\right\}
$$

where f is a smooth function which satisfies

$$
\forall(x, y): 0<x^{2}+y^{2}<1 \Longrightarrow f(x, y)<f(0,0)
$$

(i.e. f attains local maximum at the origin). Show that $(0,0, f(0,0))$ is an elliptic point of F.
2. Let S be a closed (compact, without boundary) regular surface in \mathbb{R}^{3}. Show that S has at least two points with strictly positive curvature.
HINT: For example look at two points P and Q on S which satisfy

$$
\|P-Q\|=\sup _{p, q \in S}\|p-q\|
$$

where $\|x\|$ stands for the length of a vector x in \mathbb{R}^{3}

