Mathematics 3 GE

This is a 4 hour written exam. All usual resources are allowed. There are a total of 12 questions distributed on 4 problems. Each question carries approximately the same weight but emphasis is also placed on the overall impression. A Danish version follows after the English. Solutions may be written in English or in Danish.

Problem 1

Let f and g be C^{∞} functions from \mathbb{R}^{2} to \mathbb{R}. Consider the surfaces

$$
S_{f}=\left\{(x, y, f(x, y)) \mid(x, y) \in \mathbb{R}^{2}\right\}
$$

and

$$
S_{g}=\left\{(u, g(u, v), v) \mid(u, v) \in \mathbb{R}^{2}\right\} .
$$

1° : Prove that S_{f} and S_{g} are diffeomorphic.
2° : Prove that if $g=f+c_{1}$ or if $g=-f+c_{2}$, with constants $c_{1}, c_{2} \in \mathbb{R}$, then S_{f} and S_{g} are isometric.
3° : Show by an example that also other functions g than those mentioned in 2° may define surfaces S_{g} that are isometric to S_{f}.
4° : Suppose now that g only depends on u, in other words: $g(u, v)=\phi(u)$ for all $(u, v) \in \mathbb{R}^{2}$. The corresponding surface S_{g} is now called S_{ϕ}. Construct an isometry of S_{ϕ} onto \mathbb{R}^{2}. (Consider possibly first a reparametrization to arc length of the curve $u \mapsto(u, \phi(u))$.)

Problem 2

Two regular oriented surfaces S_{1} and S_{2} with Gauss maps N_{1} and N_{2}, respectively, intersect each other along a curve C in such a manner that they are never tangent to each other. It is assumed that $C=S_{1} \cap S_{2}$ is the trace of a regular curve β, parametrized by arc length. Hence, the assumptions imply among other things that in each point $\beta(s)$ on the curve, $\left\{\beta^{\prime}(s), N_{1}(\beta(s)), N_{2}(\beta(s))\right\}$ constitutes a basis for \mathbb{R}^{3} (consisting of 3 unit vectors).
1° : Prove that if C is a geodesic on both S_{1} and S_{2}, then C is a line segment.
2° : Prove that if C is an asymptotic curve on both S_{1} and S_{2}, then C is a line segment.

Problem 3

Let (X, U) be an orthogonal parametrization of a regular surface S and consider on $X(U)$ the vector fields X_{u} and X_{v}.
1° : Compute the covariant derivative

$$
\left(D_{X_{v}(p)} X_{u}\right)(p)=\left(\nabla_{X_{v}(p)} X_{u}\right)(p)
$$

of X_{u} relative to $X_{v}(p)$ in an arbitrary point p. The result should be expressed in the basis $\left\{X_{u}(q), X_{v}(q)\right\}$, with $p=X(q)$, by means of E and G together with derivatives of these.
2° : State necessary and sufficient conditions on E and G for X_{u} to be a parallel field along all coordinate curves (i.e. both the curves corresponding to u constant as well as those corresponding to v constant).

Problem 4

Let S be a regular oriented surface and let (X, U) be a local parametrization of S, compatible with the orientation, and such that

$$
U=\{(u, v) \mid u>0 \text { and } v>0\} .
$$

Assume furthermore that the coefficients of the first fundamental form with respect to this parametrization are given by

$$
E(u, v)=\frac{1}{2}, F(u, v)=0, \text { and } G(u, v)=\frac{u^{2}}{8 \cdot v^{2}} \text { for }(u, v) \in U
$$

1° : Consider the curve α on $X(U)$ given by $\alpha(t)=X\left(t, \frac{t^{2}}{4}\right)$ (with $t>0$). Determine the angle of intersection between α and the coordinate curve corresponding to $u=1$.
2° : Prove that the sum of angles in any geodesic triangle T contained in $X(U)$ is equal to π.
3° : Prove that the vector field $w(t)$ along α given by

$$
(3 \sqrt{2} \cos (\ln t)) X_{u}\left(t, \frac{t^{2}}{4}\right)+\left(\frac{-3 \cdot t}{\sqrt{2}} \sin (\ln t)\right) X_{v}\left(t, \frac{t^{2}}{4}\right)
$$

is parallel along α.
4° : Determine the geodesic curvature (up to sign) of α in the point $\alpha(t)$ corresponding to $t=e^{\frac{\pi}{2}}$ (it is maybe of use to observe that the angle between the tangent to the curve and X_{u} is constant).

