Matematik 3GE

Written exam, 4 hours. All course material is allowed during the exam (alle sædvanlige hjælpemidler er tilladt).
There are 3 problems divided into 11 questions. All questions are given approximately the same weight.

Problem 1

(a) Find the regular points of the curve

$$
\gamma(t)=\left(\frac{1}{2} t^{2}, t^{3}, \frac{1}{2} t^{4}\right)
$$

(b) Find the curvature and torsion of γ in its regular points.

Problem 2

Let S denote the surface of revolution given by rotating the parabola $y=x^{2}-4$ around the X -axis.
(a) Find the part $S_{\text {reg }}$ of S which consists of regular points.
(b) Find the principal curvatures and the principal directions at the point $(0,4,0)$.
(c) Give a set of local parametrisations of $S_{\text {reg }}$ which cover the whole surface.
(d) Find the first and the second fundamental form of $S_{\text {reg }}$ in terms of the chosen parametrisation.
(e) Prove that $S_{\text {reg }}$ is diffeomorphic but not isometric to an open subset of the plane $\{(x, y, 0) \mid x, y \in \mathbb{R}\}$.

Problem 3

let \mathcal{O} be an oriented simple region on a sphere of radius 1 . We denote the boundary of \mathcal{O} by \mathcal{G} and give it the induced orientation. We assume that \mathcal{G} is a simple (no selfintersections) piecewise smooth closed curve formed by joining n distinct points by geodesic arcs.
(a) Find the supremum of possible sums of the internal angles of \mathcal{G}
(b) Suppose that \mathcal{G}^{\prime} is another simple piecewise smooth closed curve obtained by joining by geodesic intervals n distinct points of the sphere. We assume that \mathcal{G}^{\prime} is entirely contained in \mathcal{O}.
Prove that the sum of internal angles of \mathcal{G}^{\prime} is smaller than the one for \mathcal{G}.
(c) Give a best lower bound on the sum of internal angles of \mathcal{G}.
(d) Prove that the lowest bound is never attained.

