Matematik 3GE

Written exam, 4 hours. All course material is allowed during the exam (alle sædvanlige hjælpemidler er tilladt).

There are 3 problems divided into 11 questions. All questions are given approximately the same weight.

Problem 1

(a) **Find** the regular points of the curve

$$\gamma(t) = (\frac{1}{2}t^2, t^3, \frac{1}{2}t^4)$$

(b) Find the curvature and torsion of γ in its regular points.

Problem 2

Let S denote the surface of revolution given by rotating the parabola $y = x^2 - 4$ around the X-axis.

- (a) **Find** the part S_{reg} of S which consists of regular points.
- (b) Find the principal curvatures and the principal directions at the point (0, 4, 0).
- (c) **Give** a set of local parametrisations of S_{reg} which cover the whole surface.
- (d) Find the first and the second fundamental form of S_{reg} in terms of the chosen parametrisation.
- (e) **Prove** that S_{reg} is diffeomorphic but not isometric to an open subset of the plane $\{(x, y, 0) \mid x, y \in \mathbb{R}\}.$

Problem 3

let \mathcal{O} be an oriented simple region on a sphere of radius 1. We denote the boundary of \mathcal{O} by \mathcal{G} and give it the induced orientation. We assume that \mathcal{G} is a simple (no selfintersections) piecewise smooth closed curve formed by joining n distinct points by geodesic arcs.

- (a) Find the supremum of possible sums of the internal angles of \mathcal{G}
- (b) Suppose that \mathcal{G}' is another simple piecewise smooth closed curve obtained by joining by geodesic intervals n distinct points of the sphere. We assume that \mathcal{G}' is entirely contained in \mathcal{O} .

Prove that the sum of internal angles of \mathcal{G}' is smaller than the one for \mathcal{G} .

- (c) Give a best lower bound on the sum of internal angles of \mathcal{G} .
- (d) **Prove** that the lowest bound is never attained.