Copenhagen University, Institute of mathematics.

Naturvidenskabelig Embedseksamen, Matematik 3NA, Numerisk Analyse.
September 1993. Open book exam. All 10 questions are weighted evenly (10%). A grade is given only after all programming assignments have been turned in and accepted.

Problem 1: Systems of nonlinear equations and matrixnorms.

a) Starting from $x^{(1)}$, perform a Newton iteration on the system of equations $F(x)=$ 0 (that is find $x^{(2)}$) where

$$
x, x^{(1)}, x^{(2)} \in \mathcal{R}^{2}, \quad F(x)=\binom{x_{1}^{3}-x_{2}}{x_{2}^{2}}, \quad x^{(1)}=\binom{1}{1} .
$$

b) Determine the condition number in the norm $\|\cdot\|_{\infty}$ for the Jacobi-matrix for the vector function F in the point $x^{(1)}$ with the notation given in (a).
c) The following three errors are given

$$
e_{1}=\left\|x^{(1)}-x^{*}\right\|_{2}=1.41, \quad e_{2}=\left\|x^{(2)}-x^{*}\right\|_{2}=0.55, \quad e_{3}=\left\|x^{(3)}-x^{*}\right\|_{2}=0.10
$$

They represent the standard Euclidian norm of the error in three steps in a Newton iteration, x^{*} being the exact solution of $F(x)=0$. Determine the order of convergence of the iteration based on these numbers.

Problem 2: Systems of linear equations.

a) Determine a Doolittle $L U$-decomposition for the matrix

$$
A=\left(\begin{array}{ccc}
2 & 2 & 2 \\
2 & 6 & 7 \\
0 & 12 & 18
\end{array}\right)
$$

b) Solve using $L U$-decomposition and a forward and a backward substitution the equation

$$
A x=\left(\begin{array}{c}
0 \\
5 \\
18
\end{array}\right)
$$

for $x \in \mathcal{R}^{3}$, and with A given in (a).

Problem 3: Interpolation.

A third degree polynomium $y=f(x)$ takes the following values: $f(0)=15, f(3)=$ $f(5)=0, f(4)=-13$.
a) Determine by polynomial interpolation the function value in $1, f(1)$.
b) Determine the function expression in the subinterval $[0,3]$ for the natural cubic spline interpolation S of the given data: $S(0)=15, S(3)=S(5)=0, S(4)=-13$.
c) Determine by interpolation with the natural cubic spline an approximation of the function value in $1, f(1)$, and explain why this number is different from the number from (a).

Problem 4: Numerical integration

a) Compute with the composite trapezoidal rule with two equally large subintervals (3 nodalpoints) an approximation to

$$
\int_{0}^{1} x^{4} d x, \text { hvor } x \in \mathcal{R}
$$

b) How many equally large subintervals were necessary in (a) for the absolute value of the error to be guaranteed less than 0.01 ?

