MATEMATIK 211.

Ingen hjælpemidler må medbringes.

Opgave nr. 1.

 Lad L være et legeme, og lad $f = x^n + a_1 x^{n-1} + \ldots + a_m, x + a_m$ være et normeret polynomium i $L[X]$ af grad $n \geq 1$. Vis, at $L[X]$ er et hovedidealområde. Vis, at f er et produkt af irreducibel polynomium. Vis, at hovedidealitetsprincippet af et irreducibelt polynomium i $L[X]$ er et maksimalideal. Vis, at der findes et legeme K og n elementer $\alpha_1, \ldots, \alpha_m \in K$ og en indlysende $l: L \rightarrow K$, så at der i $K[X]$ gælder:

$$f = (X - \alpha_1) \cdots (X - \alpha_m).$$

Opgave nr. 2.

 Lad a være givet en kommutativ semigruppe (H, \cdot). Beskriv, hvordan man i denne situation konstruerer frikroppen $(H[H^{-1}], \cdot)$ og den kanoniske homomorfi $h: H \rightarrow H[H^{-1}]$, og bevis en udvidelsesætning, den gælder for denne konstruktion. Vis, at konstruktionen kan anvendes til at konstruere de hele tal som ud fra de naturlige tal, og gør rede for hvordan de hele tal ordnes. [En disposition kan f.eks. indeholde nogle af følgende punkter: 1. Komposition og Ækvivalensrelation i $H \times H$. 2. Definition af $H[H^{-1}]$. 3. Homomorfi $H \rightarrow H[H^{-1}]$. 4. Udvidelsesætning. 5. Forkortingsreglen. 6. Definition af $(\mathbb{R}, +)$. 7. Indlyseningen $\mathbb{N} \rightarrow \mathbb{Z}$. 8. Ordning i \mathbb{Z}.]

Der lægges vægt på udførelsen af besvarelserne, herunder om der varer overblide. Alle angivne påstande beror oven ikke nødvendigvis at bevises.

Korrekt besvarelse af en opgave giver højeste karakter.