Københavns universitet.
Naturvidenskabelig embedseksamen vinteren 1971-72.

MATEMATIK 1.
Skriftlig prøve 1.
Alle hjælpemidler kan medbringes.

Opgave nr. 1.

1° Bestem de C^1-funktioner $\varphi : \mathbb{R} \to \mathbb{R}$, for hvilke differentialformen

$$[2x + y \varphi(y)] \, dx + [3 y^2 + 2x(\varphi(y) + y^3)] \, dy$$

er eksakt.

2° Bestem for hvem af de fundne funktioner φ en stamfunktion til differentialformen.

Opgave nr. 2.

Givet matricen

$$A = \begin{pmatrix}
\frac{1}{3} & \frac{2}{3} & \frac{3}{3} \\
\frac{3}{3} & \frac{2}{3} & \frac{3}{3} \\
\frac{3}{3} & \frac{1}{3} & \frac{1}{3} \\
\end{pmatrix} \in M_{3,3}(\mathbb{R})$$

1° Hvad kan man sige om A's karakteristiske rødder

på grundlag af, at

a) A er symmetrisk,

b) A er ortogonal,

c) $\text{tr} \, A = 1$.

Angiv A's karakteristiske rødder og de tilhørende rodmultipliciteter, og bestem det A.

(Opgaven fortsættes side 2)
2° Bestem en ortogonal matrix $S \in O_3(\mathbb{R})$, således at
SA S^{-1} er en diagonalmatrix.

3° Beskriv geometrisk en endomorfi af et 3-dimensional
euklidisk rum, som m.h.t. enortonormal basis har
avbildningsmatricen A.

Opgave nr. 3.

1° Indet $a \in]0,1[$, betragtes den ved
$f(t) = \arccos (a \cosh t)$
definerede funktion på intervallet $J = \{ t \in \mathbb{R} \mid a \cosh t < 1 \}$.

Vis, at funktionen er konkav.

2° Vis, at billedet af mængden $\{ t + i f(t) \mid t \in J \}$
ved afbildningen $\exp : \mathbb{C} \to \mathbb{C}$ er halvcirklen
$\{ z = x + iy \mid (x - \frac{1}{a})^2 + y^2 = \frac{1}{a^2} - 1, y > 0 \}$.

Opgave nr. 4.

Lad (V, \mathbb{R}) være et n-dimensionalt euklidisk rum,
og lad f være en endomorfi af V.

1° For $v \in V \setminus \{0\}$ sættes
$\phi(v) = \frac{v \cdot f(v)}{v \cdot v}$.

Vis, at hvis v er en egenvektor for f, så er den
tilhørende egenværdi lig med $\phi(v)$.

(Opgaven fortsættes side 3)
2. Vis, at afbildningen \(q : V \setminus \{0\} \rightarrow \mathbb{R} \)
har en mindste værdi. (Vog f. eks. en ortonormal
basis \((e_1, \ldots, e_n)\) for \(V\), så er \(\gamma(x_1, \ldots, x_m) \)
\(= q(x_1 e_1 + \cdots + x_m e_m) \) for \((x_1, \ldots, x_m) \in \mathbb{R}^n \setminus \{0\}\),
gør rede for, at \(\gamma : \mathbb{R}^n \setminus \{0\} \) \(\rightarrow \mathbb{R} \), er
kontinuerligt, og begrund, at \(\gamma \) har en mindste værdi
på mångden \(S \) af de punkter \((x_1, \ldots, x_m) \in \mathbb{R}^n \)
for hvilke \(\sqrt{x_1^2 + \cdots + x_m^2} = 1 \).)

3. Lad \(u \) være en vektor i \(V \setminus \{0\} \), således at
\(q \)'s mindste værdi anuges i \(u \). Lad \(v \) være en
vilkårlig vektor i \(V \). For hvert \(t \in \mathbb{R} \) med
\(u + tv \neq 0 \) sættes
\[T_v(t) = q(u + tv). \]
Gør rede for, at \(T_v \) er differentiabel i ethvert
punkt \(t \) af sin definitionsmængde. Gør rede for,
at \(t = 0 \) tilhører definitionsmængden, og begrund,
at \(T_v'(0) = 0 \).

Vis, at
\[T_v'(0) = \frac{1}{u \cdot u} \left(v \cdot f(u) + u \cdot f(v) - 2 \phi(u)(v, u) \right). \]

4. Vis ved benyttelse af 3.°, at hvis \(f \) er selvadjungeret,
så er \(u \) en egenvektor for \(f \).