Basic Concepts, Identities and Inequalities –
the toolkit of Information Theory

Flemming Topsøe *
The University of Copenhagen

revised version, 27.02.08, previous version 13.09.01

Abstract
Basic concepts and results of that part of Information Theory
which is often referred to as “Shannon Theory” are discussed with
focus mainly on the discrete case. The paper is expository with some
new proofs and extensions of results and concepts.

Keywords. Entropy, divergence, mutual information, concavity, convex-
ity, datareduction.

1 Codes
Though we are not interested in technical coding, the starting point of In-
formation Theory may well be taken there. Consider Table 1. It shows a
codebook pertaining to the first six letters of the alphabet. The code this
defines maps the letters to binary code words. The efficiency is determined
by the code word lengths, respectively 3,4,3,3,1 and 4. If the frequencies of
individual letters are known, say respectively 20,8,15,10, 40 and 7 percent,
efficiency can be related to the average code length, in the example equal to
2.35 measured in bits (binary digits). The shorter the average code length,
the higher the efficiency. Thus average code length may be taken as the key
quantity to worry about. It depends on the distribution \((P) \) of the letters
and on the code \((\kappa) \). Actually, it does not depend on the internal structure
of the code words, only on the associated code word lengths. Therefore, we
take \(\kappa \) to stand for the map providing these lengths \((\kappa(a) = 3, \cdots, \kappa(f) = 4) \).
Then average code length may be written, using bracket notation, as \(\langle \kappa, P \rangle \).

*Research supported by the Danish Natural Science Research Council, by INTAS
(project 00-738) and by IMPAN–BC, the Banach Center, Warsaw.
Clearly, not every map which maps letters to natural numbers is acceptable as one coming from a "sensible" code. We require that the code is prefix-free, i.e. that no codeword in the codebook can be the beginning of another codeword in the codebook. The good sense in this requirement may be realized if we imagine that the binary digits in a codeword corresponding to an initially unknown letter is revealed to us one by one e.g. by a "guru" as replies to a succession of questions: “is the first digit a 1?” , “is the second digit a 1?” etc. The prefix-free property guarantees the "instantaneous" nature of the procedure. By this we mean that once we receive information which is consistent with one of the codewords in the codebook, we are certain which letter is the one we are looking for.

The code shown in Table 1 is compact in the sense that we cannot make it more efficient, i.e. decrease one or more of the code lengths, by simple operations on the code, say by deleting one or more binary digits. With the above background we can now prove the key result needed to get the theory going.

Theorem 1.1 (Kraft's inequality). Let \mathbb{A} be a finite or countably infinite set, the alphabet, and κ any map of \mathbb{A} into $\mathbb{N}_0 = \{0, 1, 2, \ldots \}$. Then the necessary and sufficient condition that there exists a prefix-free code of \mathbb{A} with code lengths as prescribed by κ is that Kraft’s inequality

$$\sum_{i \in \mathbb{A}} 2^{-\kappa(i)} \leq 1 \quad (1.1)$$

holds. Furthermore, Kraft’s equality

$$\sum_{i \in \mathbb{A}} 2^{-\kappa(i)} = 1 \quad (1.2)$$

holds, if and only if there exists no prefix-free code of \mathbb{A} with code word lengths given by a function ρ such that $\rho(i) \leq \kappa(i)$ for all $i \in \mathbb{A}$ and $\rho(i_0) < \kappa(i_0)$ for some $i_0 \in \mathbb{A}$.

<table>
<thead>
<tr>
<th>a</th>
<th>1 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>1 1 1 0</td>
</tr>
<tr>
<td>c</td>
<td>1 0 1</td>
</tr>
<tr>
<td>d</td>
<td>1 1 0</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
</tr>
<tr>
<td>f</td>
<td>1 1 1 1</td>
</tr>
</tbody>
</table>

Table 1: A codebook
Proof. With every binary word we associate a binary interval contained in
the unit interval \([0; 1]\) in the “standard” way. Thus, to the empty codeword,
which has length 0, we associate \([0; 1]\), and if \(J \subseteq [0; 1]\) is the binary interval
associated with \(\varepsilon_1 \cdots \varepsilon_k\), then we associate the left half of \(J\) with \(\varepsilon_1 \cdots \varepsilon_k 0\)
and the right half with \(\varepsilon_1 \cdots \varepsilon_k 1\). To any collection of possible code words
associated with the elements (“letters”) in \(\mathbb{A}\) we can then associate a family of
binary sub-intervals of \([0; 1]\), indexed by the letters in \(\mathbb{A}\) – and vice versa. We
realize that in this way the prefix–free property corresponds to the property
that the associated family of binary intervals consists of pairwise disjoint
sets. A moments reflection shows that all parts of the theorem follow from
this observation.

In the sequel, \(\mathbb{A}\) denotes a finite or countably infinite set, the alphabet.

We are not interested in combinatorial or other details pertaining to ac-
tual coding with binary codewords. For the remainder of this paper we
idealize by allowing arbitrary non–negative numbers as code lengths. Then
we may as well consider \(e\) as a base for the exponentials occuring in Kraft’s
inequality. With this background we define a general code of \(\mathbb{A}\) as a map
\(\kappa : \mathbb{A} \rightarrow [0; \infty]\) such that
\[
\sum_{i \in \mathbb{A}} e^{-\kappa_i} \leq 1,
\] (1.3)
and a compact code as a map \(\kappa : \mathbb{A} \rightarrow [0; \infty]\) such that
\[
\sum_{i \in \mathbb{A}} e^{-\kappa_i} = 1.
\] (1.4)

The set of general codes is denoted \(\sim K(\mathbb{A})\), the set of compact codes \(K(\mathbb{A})\).
The number \(\kappa_i\) above is now preferred to \(\kappa(i)\) and referred to as the code length
associated with \(i\). The compact codes are the most important ones
and, for short, they are referred to simply as codes.

2 Entropy, redundancy and divergence

The set of probability distributions on \(\mathbb{A}\), just called distributions or some-
times sources, is denoted \(M_1^+(\mathbb{A})\) and the set of non–negative measures on \(\mathbb{A}\)
with total mass at most 1, called general distributions, is denoted \(\sim M_1^+(\mathbb{A})\).
Distributions in \(\sim M_1^+(\mathbb{A}) \setminus M_1^+(\mathbb{A})\) are incomplete distributions. For \(P, Q, \cdots\)
in \(\sim M_1^+(\mathbb{A})\) the corresponding point probabilities are denoted by \(p_i, q_i, \cdots\).

There is a natural bijective correspondence between \(\sim M_1^+(\mathbb{A})\) and \(\sim K(\mathbb{A})\),
expressed notationally by writing \(P \leftrightarrow \kappa\) or \(\kappa \leftrightarrow P\), and defined by the
formulas
\[\kappa_i = - \log p_i, \quad p_i = e^{-\kappa_i}. \]

Here, \(\log \) is used for natural logarithms. Note that the values \(\kappa_i = \infty \) and \(p_i = 0 \) correspond to each other. When the above formulas hold, we call \((\kappa, P)\) a matching pair and we say that \(\kappa \) is adapted to \(P \) or that \(P \) is the general distribution which matches \(\kappa \).

As in Section 1, \(\langle \kappa, P \rangle \) denotes average code length. We may now define entropy as minimal average code length:
\[H(P) = \min_{\kappa \in \sim K(\mathcal{A})} \langle \kappa, P \rangle, \tag{2.5} \]

and redundancy \(D(P\|\kappa) \) as actual average code length minus minimal average code length, i.e.
\[D(P\|\kappa) = \langle \kappa, P \rangle - H(P). \tag{2.6} \]

Some comments are in order. In fact (2.6) may lead to the indeterminate form \(\infty - \infty \). Nevertheless, \(D(P\|\kappa) \) may be defined as a definite number in \([0; \infty]\) in all cases. Technically, it is convenient first to define divergence \(D(P\|Q) \) between a probability distribution \(P \) and a, possibly incomplete, distribution \(Q \) by
\[D(P\|Q) = \sum_{i \in \mathcal{A}} p_i \log \frac{p_i}{q_i}. \tag{2.7} \]

Theorem 2.1. Divergence between \(P \in M_1^+(\mathcal{A}) \) and \(Q \in \sim M_1^+(\mathcal{A}) \) as given by (2.7) is a well defined number in \([0; \infty]\) and \(D(P\|Q) = 0 \) if and only if \(P = Q \).

Entropy defined by (2.5) also makes sense and the minimum is attained for the code adapted to \(P \), i.e.
\[H(P) = - \sum_{i \in \mathcal{A}} p_i \log p_i. \tag{2.8} \]

If \(H(P) < \infty \), the minimum is only attained for the code adapted to \(P \).

Finally, for every \(P \in M_1^+(\mathcal{A}) \) and \(\kappa \in \sim K(\mathcal{A}) \), the following identity holds with \(Q \) the distribution matching \(\kappa \):
\[\langle \kappa, P \rangle = H(P) + D(P\|Q). \tag{2.9} \]

Proof. By the inequality
\[x \log \frac{x}{y} = -x \log \frac{y}{x} \geq x - y \tag{2.10} \]
we realize that the sum of negative terms in (2.7) is bounded below by -1, hence $D(P\|Q)$ is well defined. The same inequality then shows that $D(P\|Q) \geq 0$. The discussion of equality is easy as there is strict inequality in (5.24) in case $x \neq y$.

The validity of (2.9) with $-\sum p_i \log p_i$ in place of $H(P)$ then becomes a triviality and (2.8) follows.

The simple identity (2.9) is important. It connects three basic quantities: entropy, divergence and average code length. We call it the linking identity. Among other things, it shows that in case $H(P) < \infty$, then the definition (2.6) yields the result $D(P\|\kappa) = D(P\|Q)$ with $Q \leftrightarrow \kappa$. We therefore now define redundancy $D(P\|\kappa)$, where $P \in M_1^+(A)$ and $\kappa \in \sim K(A)$ by

$$D(P\|\kappa) = D(P\|Q); \ Q \leftrightarrow \kappa. \quad (2.11)$$

Divergence we think of, primarily, as just a measure of discrimination between P and Q. Often it is more appropriate to think in terms of redundancy as indicated in (2.6). Therefore, we often write the linking identity in the form

$$\langle \kappa, P \rangle = H(P) + D(P\|\kappa). \quad (2.12)$$

3 Some topological considerations

On the set of general distributions $\sim M_1^+(A)$, the natural topology to consider is that of pointwise convergence. When restricted to the space $M_1^+(A)$ of probability distributions this topology coincides with the topology of convergence in total variation (ℓ^1–convergence). To be more specific, denote by $V(P,Q)$ the total variation

$$V(P,Q) = \sum_{i \in A} |p_i - q_i|. \quad (3.13)$$

Then we have

Lemma 3.1. Let $(P_n)_{n \geq 1}$ and P be probability distributions over A and assume that $(P_n)_{n \geq 1}$ converges pointwise to P, i.e. $p_{n,i} \rightarrow p_i$ as $n \rightarrow \infty$ for every $i \in A$. Then P_n converges to P in total variation, i.e. $V(P_n,P) \rightarrow 0$ as $n \rightarrow \infty$.

Proof. The result is known as Scheffé’s lemma (in the discrete case). To prove it, consider $P_n - P$ as a function on A. The negative part $(P_n - P)^-$ converges pointwise to 0 and for all n, $0 \leq (P_n - P)^- \leq P$, hence, e.g. by
Lebesgue’s dominated convergence theorem, $\sum_{i \in A} (P_n - P)^-(i) \to 0$. As, for the positive part, $\sum_{i \in A} (P_n - P)^+(i) = \sum_{i \in A} (P_n - P)^-(i)$, we find that also $\sum_{i \in A} (P_n - P)^+(i)$ converges to 0. As $V(P_n, P) = \sum_{i \in A} |P_n - P|(i)$ and, generally, $|x| = x^+ + x^-$, we now conclude that $V(P_n, P) \to 0$.

We denote convergence in $M_1^+(A)$ by $P_n \overset{V}{\to} P$. As the lemma shows, it is immaterial if we here have the topology of pointwise convergence or the topology of convergence in total variation in mind.

Another topological notion of convergence in $M_1^+(A)$ is expected to come to play a significant role but has only recently been discovered. This is the notion defined as follows: For $(P_n)_{n \geq 1} \subseteq M_1^+(A)$ and $P \in M_1^+(A)$, we say that $(P_n)_{n \geq 1}$ converges in divergence to P, and write $P_n \overset{D}{\to} P$, if $D(P_n \parallel P) \to 0$ as $n \to \infty$. The new and somewhat unexpected observation is that this is indeed a topological notion. In fact, there exists a strongest topology on $M_1^+(A)$, the information topology, such that $P_n \overset{D}{\to} P$ implies that $(P_n)_{n \geq 1}$ converges in the topology to P and for this topology, convergence in divergence and in the topology are equivalent concepts. We stress that this only holds for ordinary sequences and does not extend to generalized sequences or nets. A subset $\mathcal{P} \subseteq M_1^+(A)$ is open in the information topology if and only if, for any sequence $(P_n)_{n \geq 1}$ with $P_n \to P$ and $P \in \mathcal{P}$, one has $P_n \in \mathcal{P}$, eventually. Equivalently, \mathcal{P} is closed if and only if $(P_n)_{n \geq 1} \subseteq \mathcal{P}$, $P_n \overset{D}{\to} P$ implies $P \in \mathcal{P}$.

The quoted facts can either be proved directly or they follow from more general results, cf. [7] or [1]. We shall not enter into this here but refer the reader to [6].

Convergence in divergence is, typically, a much stronger notion than convergence in total variation. This follows from Pinsker’s inequality $D(P \parallel Q) \geq \frac{1}{2} V(P, Q)^2$ which we shall prove in Section 4. In case A is finite, it is easy to see that the convergence $P_n \overset{D}{\to} P$ amounts to usual convergence $P_n \overset{V}{\to} P$ and to the equality $\text{supp}(P_n) = \text{supp}(P)$ for n sufficiently large. Here, “supp” denotes support, i.e. the set of elements in A with positive probability.

We turn to some more standard considerations regarding lower semi–continuity. It is an important fact that entropy and divergence are lower semi–continuous, even with respect to the usual topology. More precisely:

Theorem 3.1. With respect to the usual topology, the following continuity results hold:

(i) The entropy function $H : M_1^+(A) \to [0; \infty]$ is lower semi–continuous and, if A is finite, H is continuous.
(ii) Divergence $D : M_+^1(\mathbb{A}) \times M_+^1(\mathbb{A}) \to [0; \infty]$ is jointly lower semi-continuous.

Proof. Use the fact (see “Cookbook”) that a sum of non-negative real valued lower semi-continuous functions is lower semi-continuous. The statement (i) follows from this fact as $x \sim -x \log x$ is non-negative and continuous on $[0; 1]$. Also (ii) follows from the fact – use the non-negativity and the lower semi-continuity of the map $(x, y) \sim x \ln \frac{x}{y} - (x - y)$ (for further details see “Cookbook”).

In Section 5 we shall investigate further the topological properties of H and D. For now we point out one simple continuity property of divergence which has as point of departure, not so much convergence in the space $M_+^1(\mathbb{A})$, but more so convergence in \mathbb{A} itself. The result we have in mind is only of interest if \mathbb{A} is infinite as it considers approximations of \mathbb{A} with finite subsets. Denote by $P_0(\mathbb{A})$ the set of finite subsets of \mathbb{A}, ordered by inclusion. Then $(P_0(\mathbb{A}), \subseteq)$ is an upward directed set and we can consider convergence along this set, typically denoted by $\lim_{\mathbb{A} \in P_0(\mathbb{A})}$. Theorem 3.2. For any $P, Q \in M_+^1(\mathbb{A})$

$$\lim_{\mathbb{A} \in P_0(\mathbb{A})} D(P|A\|Q) = D(P\|Q),$$

$P|A$ denoting as usual the conditional distribution of P given A.

Proof. First note that the result makes good sense as $P(A) > 0$ if A is large enough. The result follows by writing $D(P|A\|Q)$ in the form

$$D(P|A\|Q) = \log \frac{1}{P(A)} + \frac{1}{P(A)} \sum_{x \in A} P(x) \log \frac{P(x)}{Q(x)}$$

since $\lim_{\mathbb{A} \in P_0(\mathbb{A})} P(A) = 1$ and since

$$\lim_{\mathbb{A} \in P_0(\mathbb{A})} \sum_{x \in A} P(x) \log \frac{P(x)}{Q(x)} = D(P\|Q).$$

4 Datareduction

Let, again, \mathbb{A} be the alphabet and consider a decomposition θ of \mathbb{A}. We shall think of θ as defining a datareduction. We often denote the classes of θ by A_i.

with i ranging over a certain index set which, in pure mathematical terms, is nothing but the quotient space of A w.r.t. θ. We denote this quotient space by ∂A – or, if need be, by $\partial \theta A$ – and call ∂A the derived alphabet (the alphabet derived from the datareduction θ). Thus ∂A is nothing but the set of classes for the decomposition θ.

Now assume that we have also given a source $P \in M_1^+(A)$. By ∂P (or $\partial \theta P$) we denote the derived source, defined as the distribution $\partial P \in M_1^+(\partial A)$ of the quotient map $A \to \partial A$ or, if you prefer, as the image measure of P under the quotient map. Thus, more directly, ∂P is the probability distribution over ∂A given by

$$\partial P(A) = P(A); \quad A \in \partial A.$$

If we choose to index the classes in ∂A we may write $\partial P(A_i) = P(A_i), i \in \partial A$.

Remark. Let A_0 be a basic alphabet, e.g. $A_0 = \{0, 1\}$ and consider natural numbers s and t with $s < t$. If we take A to be the set of words $x_1 \cdots x_t$ of length t from the alphabet A_0, i.e. $A = A_0^t$, and θ to be the decomposition induced by the projection of A onto A_0^s, then the quotient space ∂A_0^t can be identified with the set A_0^s. The class corresponding to $x_1 \cdots x_s \in A_0^s$ consists of all strings $y_1 \cdots y_t \in A_0^t$ with $x_1 \cdots x_s$ as prefix.

In this example, we may conveniently think of $x_1 \cdots x_s$ as representing the past (or the known history) and $x_{s+1} \cdots x_t$ to represent the future. Then $x_1 \cdots x_t$ represents past + future. \(\square\)

Often, we think of a datareduction as modelling either conditioning or given information. Imagine, for example, that we want to observe a random element $x \in A$ which is governed by a distribution P, and that direct observation is impossible (for practical reasons or because the planned observation involves what will happen at some time in the future, cf. Example ??). Instead, partial information about x is revealed to us via θ, i.e. we are told which class $A_i \in \partial A$ the element x belongs to. Thus “$x \in A_i$” is a piece of information (or a condition) which partially determines x.

Considerations as above lie behind two important definitions: By the **conditional entropy of P given θ** we understand the quantity

$$H^\theta(P) = \sum_{i \in \partial A} P(A_i) H(P|A_i).$$

(4.14)

As usual, $P|A_i$ denotes the conditional distribution of P given A_i (when well defined). Note that when $P|A_i$ is undefined, the corresponding term in (4.14) is, nevertheless, well defined (and = 0).

Note that the conditional entropy is really the average uncertainty (entropy) that remains after the information about θ has been revealed.
Similarly, the *conditional divergence* between P and Q given θ is defined by the equation

$$D^\theta(P\|Q) = \sum_{i \in \partial A} P(A_i) D(P|A_i\|Q|A_i). \quad (4.15)$$

There is one technical comment we have to add to this definition: It is possible that for some i, $P(A_i) > 0$ whereas $Q(A_i) = 0$. In such cases $P|A_i$ is welldefined whereas $Q|A_i$ is not. We agree that in such cases, $D^\theta(P\|Q) = \infty$. This corresponds to an extension of the basic definition of divergence by agreeing that the divergence between a (well defined) distribution and some undefined distribution is infinite.

In analogy with the interpretation regarding entropy, note that, really, $D^\theta(P\|Q)$ is the average divergence after information about θ has been revealed.

We also note that $D^\theta(P\|Q)$ does not depend on the full distribution Q but only on the family $(Q|A_i)$ of conditional distributions (with i ranging over indices with $P(A_i) > 0$). Thinking about it, this is also quite natural: If Q is conceived as a predictor then, if we know that information about θ will be revealed to us, the only thing we need to predict is the conditional distributions given the various A_i's.

Whenever convenient we will write $H(P|\theta)$ in place of $H^\theta(P)$ whereas a similar notation for divergence appears awkward and will not be used.

From the defining relations (4.14) and (4.15) it is easy to identify circumstances under which $H^\theta(P)$ or $D^\theta(P\|Q)$ vanish. For this we need two new notions: We say that P is *deterministic modulo θ*, and write $P = 1 \pmod{\theta}$, provided the conditional distribution $P|A_i$ is deterministic for every i with $P(A_i) > 0$. And we say that Q *equals P modulo θ*, and write $Q = P \pmod{\theta}$, provided $Q|A_i = P|A_i$ for every i with $P(A_i) > 0$. This condition is to be understood in the sense that if $P(A_i) > 0$, the conditional distribution $Q|A_i$ must be well defined (i.e. $Q(A_i) > 0$) and coincide with $P|A_i$. The new notions may be expressed in a slightly different way as follows:

$$P = 1 \pmod{\theta} \iff \forall i \exists x \in A_i : P(A_i \setminus \{x\}) = 0$$

and

$$Q = P \pmod{\theta} \iff \forall P(A_i) > 0 \exists c > 0 \forall x \in A_i : Q(x) = c \cdot P(x).$$

It should be noted that the relation “equality mod θ” is not symmetric: The two statements $Q = P \pmod{\theta}$ and $P = Q \pmod{\theta}$ are only equivalent if, for every i, $P(A_i) = 0$ if and only if $Q(A_i) = 0$.

We leave the simple proof of the following result to the reader:
Theorem 4.1. (i) $H^\theta(P) \geq 0$, and a necessary and sufficient condition that $H^\theta(P) = 0$ is that P be deterministic modulo θ.

(ii) $D^\theta(P\|Q) \geq 0$, and a necessary and sufficient condition that $D^\theta(P\|Q) = 0$, is that Q be equal to P modulo θ.

Intuitively, it is to be expected that entropy and divergence decrease under data reduction: $H(P) \geq H(\partial P)$ and $D(P\|Q) \geq D(\partial P\|\partial Q)$. Indeed, this is so and we can even identify the amount of the decrease in information theoretical terms:

Theorem 4.2 (data reduction identities). Let P and Q be distributions over A and let θ denote a data reduction. Then the following two identities hold:

\[
H(P) = H(\partial P) + H^\theta(P), \\
D(P\|Q) = D(\partial P\|\partial Q) + D^\theta(P\|Q).
\]

The identity (4.16) is called Shannon’s identity (most often given in a notation involving random variables, cf. Section 7).

Proof. Below, sums are over i with $P(A_i) > 0$. For the right hand side of (4.16) we find the expression

\[- \sum_i P(A_i) \log P(A_i) - \sum_i P(A_i) \sum_{x \in A_i} P(x) \frac{P(x)}{P(A_i)} \log \frac{P(x)}{P(A_i)}\]

which can be rewritten as

\[- \sum_i \sum_{x \in A_i} P(x) \log P(A_i) - \sum_i \sum_{x \in A_i} P(x) \log \frac{P(x)}{P(A_i)},\]

easily recognizable as the entropy $H(P)$.

For the right hand side of (4.17) we find the expression

\[\sum_i P(A_i) \log \frac{P(A_i)}{Q(A_i)} + \sum_i P(A_i) \sum_{x \in A_i} P(x) \frac{P(x)}{P(A_i)} \log \left(\frac{P(x)}{P(A_i)} / \frac{Q(x)}{Q(A_i)} \right)\]

which can be rewritten as

\[\sum_i \sum_{x \in A_i} P(x) \log \frac{P(A_i)}{Q(A_i)} + \sum_i \sum_{x \in A_i} P(x) \log \left(\frac{P(x)Q(A_i)}{Q(x)P(A_i)} \right),\]

easily recognizable as the divergence $D(P\|Q)$.

Of course, these basic identities can, more systematically, be written as $H(P) = H(\partial P) + H^\theta(P)$ and similarly for (4.17). An important corollary to Theorems 4.1 and 4.2 is the following
Corollary 4.1 (datareduction inequalities). With notation as above the following results hold:

(i). \(H(P) \geq H(\partial P) \) and, in case \(H(P) < \infty \), equality holds if and only if \(P \) is deterministic modulo \(\theta \).

(ii). \(D(P\|Q) \geq D(\partial P\|\partial Q) \) and, in case \(D(P\|Q) < \infty \), equality holds if and only if \(Q \) equals \(P \) modulo \(\theta \).

Another important corollary is obtained by emphasizing conditioning instead of datareduction in Theorem 4.2:

Corollary 4.2 (inequalities under conditioning). With notation as above, the following results hold:

(i). (Shannon’s inequality for conditional entropy). \(H(P) \geq H^\theta(P) \) and, in case \(H(P) < \infty \), equality holds if and only if the support of \(P \) is contained in one of the classes \(A_i \) defined by \(\theta \).

(ii). \(D(P\|Q) \geq D^\theta(P\|Q) \) and, in case \(D(P\|Q) < \infty \), equality holds if and only if \(\partial P = \partial Q \), i.e. if and only if, for all classes \(A_i \) defined by \(\theta \), \(P(A_i) = Q(A_i) \) holds.

We end this section with an important inequality mentioned in Section 3:

Corollary 4.3 (Pinsker’s inequality). For any two probability distributions,

\[D(P\|Q) \geq \frac{1}{2} V(P, Q)^2. \]
(4.18)

Proof. Put \(A^+ = \{ i \in \mathbb{A} \mid p_i \geq q_i \} \) and \(A^- = \{ i \in \mathbb{A} \mid p_i < q_i \} \). By Corollary 4.1, \(D(P\|Q) \geq D(\partial P\|\partial Q) \) where \(\partial P \) and \(\partial Q \) refer to the datareduction defined by the decomposition \(\mathbb{A} = A^+ \cup A^- \). Put \(p = P(A^+) \) and \(q = P(A^-) \). Keep \(p \) fixed and assume that \(0 \leq q \leq p \). Then

\[D(\partial P\|\partial Q) - \frac{1}{2} V(P, Q)^2 = p \log \frac{p}{q} + (1 - p) \log \frac{1 - p}{1 - q} - 2(p - q)^2 \]

and elementary considerations via differentiation w.r.t. \(q \) (two times!) show that this expression is non-negative for \(0 \leq q \leq p \). The result follows.

5 Approximation with finite partition

In order to reduce certain investigations to cases which only involve a finite alphabet and in order to extend the definition of divergence to general Borel spaces, we need a technical result on approximation with respect to finer and finer partitions.
We leave the usual discrete setting and take an arbitrary Borel space \((\mathbb{A}, \mathcal{A})\) as our basis. Thus \(\mathbb{A}\) is a set, possibly uncountable, and \(\mathcal{A}\) a Borel structure (the same as a \(\sigma\)-algebra) on \(\mathbb{A}\). By \(\Pi_\sigma(\mathbb{A}, \mathcal{A})\) we denote the set of countable decompositions of \(\mathbb{A}\) in measurable sets (sets in \(\mathcal{A}\)), ordered by subdivision. We use \(\prec\) to denote this ordering, i.e. for \(\pi, \rho \in \Pi_\sigma(\mathbb{A}, \mathcal{A})\), \(\pi \prec \rho\) means that every class in \(\pi\) is a union of classes in \(\rho\). By \(\pi \vee \rho\) we denote the coarsest decomposition which is finer than both \(\pi\) and \(\rho\), i.e. \(\pi \vee \rho\) consists of all non-empty sets of the form \(A \cap B\) with \(A \in \pi, B \in \rho\).

Clearly, \(\Pi_\sigma(\mathbb{A}, \mathcal{A})\) is an upward directed set, hence we may consider limits based on this set for which we use natural notation such as \(\lim_\pi\), \(\liminf_\pi\) etc.

By \(\Pi_0(\mathbb{A}, \mathcal{A})\) we denote the set of finite decompositions in \(\Pi_\sigma(\mathbb{A}, \mathcal{A})\) with the ordering inherited from \(\Pi_\sigma(\mathbb{A}, \mathcal{A})\). Clearly, \(\Pi_0(\mathbb{A}, \mathcal{A})\) is also an upward directed set.

By \(M_{14}(\mathbb{A}, \mathcal{A})\) we denote the set of probability measures on \((\mathbb{A}, \mathcal{A})\). For \(P \in M_{14}(\mathbb{A}, \mathcal{A})\) and \(\pi \in \Pi_\sigma(\mathbb{A}, \mathcal{A})\), \(\partial_\pi P\) denotes the derived distributions defined in consistency with the definitions of the previous section. If \(\mathcal{A}_\pi\) denotes the \(\sigma\)-algebra generated by \(\pi\), \(\partial_\pi P\) may be conceived as a measure in \(M_{14}(\mathbb{A}, \mathcal{A}_\pi)\) given by the measures of the atoms of \(\mathcal{A}_\pi\) : \(\partial_\pi P(A) = P(A)\) for \(A \in \pi\). Thus

\[
H(\partial_\pi P) = -\sum_{A \in \pi} P(A) \log P(A),
\]

\[
D(\partial_\pi P \| \partial_\pi Q) = \sum_{A \in \pi} P(A) \log \frac{P(A)}{Q(A)}.
\]

In the result below, we use \(\Pi_0\) to denote the set \(\Pi_0(\mathbb{A}, \mathcal{A})\).

Theorem 5.1 (continuity along finite decompositions). Let \((\mathbb{A}, \mathcal{A})\) be a Borel space and let \(\tau \in \Pi_\sigma(\mathbb{A}, \mathcal{A})\).

(i) For any \(P \in M_{14}(\mathbb{A}, \mathcal{A})\),

\[
H(\partial_\tau P) = \lim_{\pi \in \Pi_0, \pi \prec \tau} H(\partial_\pi P) = \sup_{\pi \in \Pi_0, \pi \prec \tau} H(\partial_\pi P). \tag{5.19}
\]

(ii) For \(P, Q \in M_{14}(\mathbb{A}, \mathcal{A})\),

\[
D(\partial_\tau P \| \partial_\tau Q) = \lim_{\pi \in \Pi_0, \pi \prec \tau} D(\partial_\pi P \| \partial_\pi Q) = \sup_{\pi \in \Pi_0, \pi \prec \tau} D(\partial_\pi P \| \partial_\pi Q). \tag{5.20}
\]

Proof. We realize that we may assume that \((\mathbb{A}, \mathcal{A})\) is the discrete Borel structure \(\mathbb{N}\) and that \(\tau\) is the decomposition of \(\mathbb{N}\) consisting of all singletons \(\{n\}; n \in \mathbb{N}\).
For any non-empty subset \(A \) of \(\mathbb{N} \), denote by \(x_A \) the first element of \(A \), and, for \(P \in M_1^+(\mathbb{A}, A) \) and \(\pi \in \Pi_0 \), we put

\[
P_\pi = \sum_{A \in \pi} P(A)\delta_{x_A}
\]

with \(\delta_x \) denoting a unit mass at \(x \). Then \(P_\pi \xrightarrow{V} P \) along the directed set \(\Pi_0 \)

Combining lower semi-continuity and the datareduction inequality (i) of Corollary 4.1, we find that

\[
H(P) \leq \liminf_{\pi \in \Pi_0} H(P_\pi) = \liminf_{\pi \in \Pi_0} H(\partial_{x_\pi} P) \leq \limsup_{\pi \in \Pi_0} H(\partial_{x_\pi} P)
\]

\[
\leq \sup_{\pi \in \Pi_0} H(\partial_{x_\pi} P) \leq H(P),
\]

and (i) follows. The proof of (ii) is similar and may be summarized as follows:

\[
D(P||Q) \leq \liminf_{\pi \in \Pi_0} D(P_\pi||Q_\pi) = \liminf_{\pi \in \Pi_0} D(\partial_{x_\pi} P||\partial_{x_\pi} Q)
\]

\[
\leq \limsup_{\pi \in \Pi_0} D(\partial_{x_\pi} P||\partial_{x_\pi} Q) \leq \sup_{\pi \in \Pi_0} D(\partial_{x_\pi} P||\partial_{x_\pi} Q) \leq D(P||Q).
\]

As the sequences in (5.19) and in (5.20) are weakly increasing, we may express the results more economically by using the sign “\(\uparrow \)” in a standard way:

\[
H(\partial_{x_\pi} P) \uparrow H(\partial_{x_\tau} P) \text{ as } \pi \in \Pi_0, \pi \prec \tau,
\]

\[
D(\partial_{x_\pi} P||\partial_{x_\pi} Q) \uparrow D(\partial_{x_\tau} P||\partial_{x_\tau} Q) \text{ as } \pi \in \Pi_0, \pi \prec \tau.
\]

The type of convergence established also points to martingale-type of considerations, cf. [8] ¹

Motivated by the above results, we now extend the definition of divergence to cover probability distributions on arbitrary Borel spaces. For \(P, Q \in M_1^+(\mathbb{A}, A) \) we simply define \(D(P||Q) \) by

\[
D(P||Q) = \sup_{\pi \in \Pi_0} D(\partial_{x_\pi} P||\partial_{x_\pi} Q). \tag{5.21}
\]

¹the author had access to an unpublished manuscript by Andrew R. Barron: Information Theory and Martingales, presented at the 1991 International Symposium on Information Theory in Budapest where this theme is pursued.
By Theorem 5.1 we have
\[D(P\|Q) = \sup_{\pi \in \Pi_{\sigma}} D(\partial_{\pi}P\|\partial_{\pi}Q) \quad (5.22) \]
with \(\Pi_{\sigma} = \Pi_{\sigma}(A, A) \). The definition given is found to be the most informative when one recalls the separate definition given earlier for the discrete case, cf. (2.6) and (2.7). However, it is also important to note the following result which most authors use as definition. It gives a direct analytical expression for divergence which can be used in the discrete as well as in the general case.

Theorem 5.2 (divergence in analytic form). Let \((A, \mathcal{A})\) be a Borel space and let \(P, Q \in M^1_+(A, \mathcal{A})\). Then
\[D(P\|Q) = \int_A \log \frac{dP}{dQ} dP \quad (5.23) \]
where \(\frac{dP}{dQ}\) denotes a version of the Radon–Nikodym derivative of \(P\) w.r.t. \(Q\). If this derivative does not exist, i.e. if \(P\) is not absolutely continuous w.r.t. \(Q\), then (5.23) is to be interpreted as giving the result \(D(P\|Q) = \infty\).

Proof. First assume that \(P\) is not absolutely continuous w.r.t. \(Q\). Then \(P(A) > 0\) and \(Q(A) = 0\) for some \(A \in \mathcal{A}\) and we see that \(D(\partial_{\pi}P\|\partial_{\pi}Q) = \infty\) for the decomposition \(\pi = \{A, \overline{A}\}\). By (5.21), \(D(P\|Q) = \infty\) follows.

Then assume that \(P\) is absolutely continuous w.r.t. \(Q\) and put \(f = \frac{dP}{dQ}\). Furthermore, put \(I = \int \log f dP\). Then \(I\) can also be written as \(\int \varphi(f) dQ\) with \(\varphi(x) = x \log x\). As \(\varphi\) is convex, \(\frac{1}{Q(A)} \int_A \varphi(f) dQ \geq \varphi\left(\frac{P(A)}{Q(A)}\right)\) for every \(A \in \mathcal{A}\). It is then easy to show that \(I \geq D(\partial_{\pi}P\|\partial_{\pi}Q)\) for every \(\pi \in \Pi_{\sigma}\), thus \(I \geq D(P\|Q)\).

In order to prove the reverse inequality, let \(t < I\) be given and choose \(s > t\) such that \(I - \log s > t\). As \(P(\{f = 0\}) = 0\), we find that
\[I = \sum_{n=-\infty}^{\infty} \int_{A_n} \log f dP \]
with
\[A_n = \{ s^n \leq f < s^{n+1} \}; \quad n \in \mathbb{Z}. \]
Then, from the right-hand inequality of the double inequality
\[S^n Q(A_n) \leq P(A_n) \leq s^{n+1} Q(A_n); \quad n \in \mathbb{Z}, \quad (5.24) \]
we find that
\[I \leq \sum_{n=-\infty}^{\infty} \log s^{n+1} \cdot P(A_n) \]
and, using also the left–hand inequality of (5.24), it follows that

$$I \leq \log s + D(\partial_\pi P \| \partial_\pi Q)$$

with $$\pi = \{A_n | n \in \mathbb{Z} \} \cup \{f = 0\}$$. It follows that $$D(\partial_\pi P \| \partial_\pi Q) \geq t$$. As $$\pi \in \Pi_\sigma$$, and as $$t < I$$ was arbitrary, it follows from (5.22) that $$D(P \| Q) \leq I$$. }

For the above discussion and results concerning divergence $$D(P \| Q)$$ between measures on arbitrary Borel spaces we only had the case of probability distributions in mind. However, it is easy to extend the discussion to cover also the case when $$Q$$ is allowed to be an incomplete distribution. Details are left to the reader.

It does not make sense to extend the basic notion of entropy to distributions on general measure spaces as the natural quantity to consider, $$\sup_\pi H(\partial_\pi P)$$ with $$\pi$$ ranging over $$\Pi_0$$ or $$\Pi_\sigma$$ can only yield a finite quantity if $$P$$ is essentially discrete.

6 Mixing, convexity properties

Convexity properties are of great significance in Information Theory. Here we develop the most important of these properties by showing that the entropy function is concave whereas divergence is convex.

The setting is, again, a discrete alphabet $$\mathbb{A}$$. On $$\mathbb{A}$$ we study various probability distributions. If $$(P_\nu)_{\nu \geq 1}$$ is a sequence of such distributions, then a mixture of these distributions is any distribution $$P_0$$ of the form

$$P_0 = \sum_{\nu=1}^{\infty} \alpha_\nu P_\nu$$

(6.25)

with $$\alpha = (\alpha_\nu)_{\nu \geq 1}$$ any probability vector ($$\alpha_\nu \geq 0$$ for $$\nu \geq 1$$, $$\sum_{\nu=1}^{\infty} \alpha_\nu = 1$$). In case $$\alpha_\nu = 0$$, eventually, (6.25) defines a normal convex combination of the $$P_\nu$$’s. The general case covered by (6.25) may be called an $$\omega$$-convex combination.

As usual, a non-negative function $$f : M_1^+(\mathbb{A}) \to [0, \infty]$$ is convex (concave) if $$f(\sum \alpha_\nu P_\nu) \leq \sum \alpha_\nu f(P_\nu)$$ ($$f(\sum \alpha_\nu P_\nu) \geq \sum \alpha_\nu f(P_\nu)$$) for every convex combination $$\sum \alpha_\nu P_\nu$$. If we, instead, extend this by allowing $$\omega$$-convex combinations, we obtain the notions we shall call $$\omega$$-convexity, respectively $$\omega$$-concavity. And $$f$$ is said to be strictly $$\omega$$-convex if $$f$$ is $$\omega$$-convex and if, provided $$f(\sum \alpha_\nu P_\nu) < \infty$$, equality only holds in $$f(\sum \alpha_\nu P_\nu) \leq \sum \alpha_\nu f(P_\nu)$$ if all the $$P_\nu$$ with $$\alpha_\nu > 0$$ are identical. Finally, $$f$$ is strictly $$\omega$$-concave if

$$f(\sum \alpha_\nu P_\nu) \geq \sum \alpha_\nu f(P_\nu)$$

(6.26)

is only satisfied if $$\forall \nu$$, $$\alpha_\nu = 0$$.
f is \(\omega\)-concave and if, provided \(\sum \alpha_\nu f(P_\nu) < \infty\), equality only holds in
\[f(\sum \alpha_\nu P_\nu) \geq \sum \alpha_\nu f(P_\nu) \] if all the \(P_\nu\) with \(\alpha_\nu > 0\) are identical.

It is an important feature of the convexity (concavity) properties which we shall establish, that the inequalities involved can be deduced from identities which must then be considered to be the more basic properties.

Theorem 6.1 (identities for mixtures). Let \(P_0 = \sum_1^{\infty} \alpha_\nu P_\nu\) be a mixture of distributions \(P_\nu \in M^+_1(\mathfrak{A}); \nu \geq 1\). Then

\[
H\left(\sum_{\nu=1}^{\infty} \alpha_\nu P_\nu\right) = \sum_{\nu=1}^{\infty} \alpha_\nu H(P_\nu) + \sum_{\nu=1}^{\infty} \alpha_\nu D(P_\nu \| P_0). \tag{6.26}
\]

And, if a further distribution \(Q \in M^+_1(\mathfrak{A})\) is given,

\[
\sum_{\nu=1}^{\infty} \alpha_\nu D(P_\nu \| Q) = D\left(\sum_{\nu=1}^{\infty} \alpha_\nu P_\nu \| Q\right) + \sum_{\nu=1}^{\infty} \alpha_\nu D(P_\nu \| P_0). \tag{6.27}
\]

Proof. By the linking identity, the right hand side of (6.26) equals

\[
\sum_{\nu=1}^{\infty} \alpha_\nu \langle \kappa_0, P_\nu \rangle
\]

where \(\kappa_0\) is the code adapted to \(P_0\), and this may be rewritten as

\[
\langle \kappa_0, \sum_{\nu=1}^{\infty} \alpha_\nu P_\nu \rangle,
\]

i.e. as \(\langle \kappa_0, P_0 \rangle\), which is nothing but the entropy of \(P_0\). This proves (6.26).

Now add the term \(\sum \alpha_\nu D(P_\nu \| Q)\) to each side of (6.26) and you get the following identity:

\[
H(P_0) + \sum_{\nu=1}^{\infty} \alpha_\nu D(P_\nu \| Q) = \sum_{\nu=1}^{\infty} \alpha_\nu (H(P_\nu) + D(P_\nu \| Q)) + \sum_{\nu=1}^{\infty} \alpha_\nu D(P_\nu \| P_0).
\]

Conclude from this, once more using the linking identity, that

\[
H(P_0) + \sum_{\nu=1}^{\infty} \alpha_\nu D(P_\nu \| Q) = \sum_{\nu=1}^{\infty} \alpha_\nu \langle \kappa, P_\nu \rangle + \sum_{\nu=1}^{\infty} \alpha_\nu D(P_\nu \| P_0),
\]

this time with \(\kappa\) adapted to \(Q\). As \(\sum \alpha_\nu \langle \kappa, P_\nu \rangle = \langle \kappa, P_0 \rangle = H(P_0) + D(P_0 \| Q)\), we then see upon subtracting the term \(H(P_0)\), that (6.27) holds provided \(H(P_0) < \infty\). The general validity of (6.27) is then deduced by a routine approximation argument, appealing to Theorem 5.1. \(\square\)
Theorem 6.2 (basic convexity/concavity properties). The function $P \mapsto H(P)$ of $M^+_1(\mathbb{A})$ into $[0,\infty]$ is strictly ω-concave and, for any fixed $Q \in M^+_1(\mathbb{A})$, the function $P \mapsto D(P\|Q)$ of $M^+_1(\mathbb{A})$ into $[0,\infty]$ is strictly ω-convex.

This follows from Theorem 6.1.

The second part of the result studies $D(P\|Q)$ as a function of the first argument P. It is natural also to look into divergence as a function of its second argument. To that end we introduce the geometric mixture of the probability distributions $Q_\nu, \nu \geq 1$ w.r.t. the weights $\alpha_\nu \geq 1$ (as usual, $\alpha_\nu \geq 0$ for $\nu \geq 1$ and $\sum \alpha_\nu = 1$). By definition, this is the incomplete probability distribution Q^g_0, notationally denoted $\sum \alpha_\nu Q_\nu$, which is defined by

$$Q^g_0(x) = \exp\left(\sum_{\nu=1}^{\infty} \alpha_\nu \log Q_\nu(x)\right) \quad x \in \mathbb{A}. \quad (6.28)$$

In other words, the point probabilities $Q^g_0(x)$ are the geometric averages of the corresponding point probabilities $Q_\nu(x)$; $\nu \geq 1$ w.r.t. the weights α_ν; $\nu \geq 1$.

That Q^g_0 is indeed an incomplete distribution follows from the standard inequality connecting geometric and arithmetic mean. According to that inequality, $Q^g_0 \leq Q^a_0$, where Q^a_0 denotes the usual arithmetic mixture:

$$Q^a_0 = \sum_{\nu=1}^{\infty} \alpha_\nu Q_\nu. \quad (6.29)$$

To distinguish this distribution from Q^g_0, we may write it as $\sum \alpha_\nu Q_\nu$.

If we change the point of view by considering instead the adapted codes: $\kappa_\nu \leftrightarrow Q_\nu, \nu \geq 1$ and $\kappa_0 \leftrightarrow Q^g_0$, then, corresponding to (6.28), we find that

$$\kappa_0 = \sum_{\nu=1}^{\infty} \alpha_\nu \kappa_\nu,$$

which is the usual arithmetic average of the codes κ_ν. We can now prove:

Theorem 6.3 (2nd convexity identity for divergence). Let P and $Q_\nu; \nu \geq 1$ be probability distributions over \mathbb{A} and let $(\alpha_\nu)_{\nu \geq 1}$ be a sequence of weights. Then the identity

$$\sum_{\nu=1}^{\infty} \alpha_\nu D(P\|Q_\nu) = D(P\|\sum_{\nu=1}^{\infty} \alpha_\nu P_\nu) \quad (6.29)$$

holds.
Proof. Assume first that \(H(P) < \infty \). Then, from the linking identity, we get (using notation as above):

\[
\sum_{\nu=1}^{\infty} \alpha_{\nu} D(P \parallel Q_{\nu}) = \sum_{\nu=1}^{\infty} \alpha_{\nu} (\langle \kappa_{\nu}, P \rangle - H(P))
\]

\[
= \langle \sum_{\nu=1}^{\infty} \alpha_{\nu} \kappa_{\nu}, P \rangle - H(P)
\]

\[
= \langle \kappa_{0}, P \rangle - H(P)
\]

\[
= D(P \parallel Q_{0}^g),
\]

so that (6.29) holds in this case.

In order to establish the general validity of (6.29) we first approximate \(P \) with the conditional distributions \(P|A; A \in \mathcal{P}_{0}(\mathcal{A}) \) (which all have finite entropy). Recalling Theorem 3.2, and using the result established in the first part of this proof, we get:

\[
\sum_{\nu=1}^{\infty} \alpha_{\nu} D(P \parallel Q_{\nu}) = \sum_{\nu=1}^{\infty} \alpha_{\nu} \lim_{A \in \mathcal{P}_{0}(\mathcal{A})} D(P|A \parallel Q_{\nu})
\]

\[
\leq \lim_{A \in \mathcal{P}_{0}(\mathcal{A})} \sum_{\nu=1}^{\infty} \alpha_{\nu} D(P|A \parallel Q_{\nu})
\]

\[
= \lim_{A \in \mathcal{P}_{0}(\mathcal{A})} D(P|A \parallel Q_{0}^g)
\]

\[
= D(P \parallel Q_{0}^g).
\]

This shows that the inequality “\(\leq \)” in (6.29) holds, quite generally. But we can see more from the considerations above since the only inequality appearing (obtained by an application of Fatou’s lemma, if you wish) can be replaced by equality in case \(\alpha_{\nu} = 0 \), eventually (so that the \(\alpha \)'s really determine a finite probability vector). This shows that (6.29) holds in case \(\alpha_{\nu} = 0 \), eventually.

For the final step of the proof, we introduce, for each \(n \), the approximating finite probability vector \((\alpha_{n1}, \alpha_{n2}, \ldots, \alpha_{nn}, 0, 0, \ldots) \) with

\[
\alpha_{n\nu} = \frac{\alpha_{\nu}}{\alpha_{1} + \alpha_{2} + \cdots + \alpha_{n}}; \quad \nu = 1, 2, \ldots, n.
\]

Now put

\[
Q_{n0}^{g} = \sum_{\nu=1}^{\infty} \alpha_{n\nu} Q_{\nu} = \sum_{\nu=1}^{n} \alpha_{n\nu} Q_{\nu}.
\]
It is easy to see that $Q_{n_0}^g \to Q_0^g$ as $n \to \infty$. By the results obtained so far and by lower semi-continuity of D we then have:

$$D(P\|Q_0^g) = D(P\|\lim_{n \to \infty} Q_{n_0}^g)$$

$$\leq \lim_{n \to \infty} D(P\|Q_{n_0}^g)$$

$$= \lim_{n \to \infty} \sum_{\nu=1}^{n} \alpha_{n\nu} D(P\|Q_{\nu})$$

$$= \sum_{\nu=1}^{\infty} \alpha_{\nu} D(P\|Q_{\nu}),$$

hereby establishing the missing inequality “\geq” in (6.29). □

Corollary 6.1. For a distribution $P \in M_1^+(\mathbb{A})$ and any ω-convex combination

$$Q_0^g = \sum_{\nu=1}^{\infty} \alpha_{\nu}Q_{\nu}$$

of distributions $Q_{\nu} \in M_1^+(\mathbb{A}); \nu \geq 1$, the identity

$$\sum_{\nu=1}^{\infty} \alpha_{\nu} D(P\|Q) = D(P\|\sum_{\nu=1}^{\infty} \alpha_{\nu}Q_{\nu}) + \sum_{x \in \mathbb{A}} P(x) \log \frac{Q_0^g(x)}{Q_0^g(x)}$$

holds with Q_0^g denoting the geometric mixture $\sum_{\nu}^{g} \alpha_{\nu}Q_{\nu}$.

This is nothing but a convenient reformulation of Theorem 6.3. By the usual inequality connecting geometric and arithmetic mean – and by the result concerning situations with equality in this inequality – we find as a further corollary that the following convexity result holds:

Corollary 6.2 (Convexity of D in the second argument). For each fixed $P \in M_1^+(\mathbb{A})$, the function $Q \mapsto D(P\|Q)$ defined on $M_1^+(\mathbb{A})$ is strictly ω-convex.

It lies nearby to investigate joint convexity of $D(\cdot\|\cdot)$ with both first and second argument varying.

Theorem 6.3 (joint convexity divergence). $D(\cdot\|\cdot)$ is jointly ω-convex, i.e. for any sequence $(P_n)_{n \geq 1} \subseteq M_1^+(\mathbb{A})$, for any sequence $(Q_n)_{n \geq 1} \subseteq M_1^+(\mathbb{A})$ and any sequence $(\alpha_n)_{n \geq 1}$ of weights $(\alpha_n \geq 0; n \geq 1, \sum \alpha_n = 1)$, the following inequality holds

$$D\left(\sum_{n=1}^{\infty} \alpha_n P_n \| \sum_{n=1}^{\infty} \alpha_n Q_n\right) \leq \sum_{n=1}^{\infty} \alpha_n D(P_n\|Q_n). \quad (6.30)$$

In case the left–hand side in (6.30) is finite, equality holds in (6.30) if and only if either there exists P and Q such that $P_n = P$ and $Q_n = Q$ for all n with $\alpha_n > 0$, or else, $P_n = Q_n$ for all n with $\alpha_n > 0$. (6.30)
Proof. We have
\[
\sum_{n=1}^{\infty} \alpha_n D(P_n\|Q_n) = \sum_{n=1}^{\infty} \sum_{i \in A} \alpha_n p_{n,i} \log \frac{p_{n,i}}{q_{n,i}} \\
= \sum_{i \in A} \sum_{n=1}^{\infty} \alpha_n p_{n,i} \log \frac{p_{n,i}}{q_{n,i}} \\
\geq \sum_{i \in A} \left(\sum_{n=1}^{\infty} \alpha_n p_{n,i} \right) \log \frac{\sum_{n=1}^{\infty} \alpha_n p_{n,i}}{\sum_{n=1}^{\infty} \alpha_n q_{n,i}} \\
= D \left(\sum_{n=1}^{\infty} \alpha_n P_n \bigg\| \sum_{n=1}^{\infty} \alpha_n Q_n \right).
\]

Here we used the well-known “log–sum inequality”:
\[
\sum x_\nu \log \frac{x_\nu}{y_\nu} \geq \left(\sum x_\nu \right) \log \frac{\sum x_\nu}{\sum y_\nu}.
\]

As equality holds in this inequality if and only if \((x_\nu)\) and \((y_\nu)\) are proportional we see that, under the finiteness condition stated, equality holds in (6.30) if and only if, for each \(i \in A\) there exists a constant \(c_i\) such that \(q_{n,i} = c_i p_{n,i}\) for all \(n\). From this observation, the stated result can be deduced.

\[\square\]

7 The language of the probabilist

Previously, we expressed all definitions and results via probability distributions. Though these are certainly important in probability theory and statistics, it is often more suggestive to work with random variables or, more generally – for objects that do not assume real values – with random elements. Recall, that a random element is nothing but a measurable map defined on a probability space, say \(X : \Omega \to S\) where \((\Omega, \mathcal{F}, P)\) is a probability space and \((S, \mathcal{S})\) a Borel space. As we shall work in the discrete setting, \(S\) will be a discrete set and we will then take \(S = \mathcal{P}(S)\) as the basic \(\sigma\)-algebra on \(S\). Thus a discrete random element is a map \(X : \Omega \to S\) where \(\Omega = (\Omega, \mathcal{F}, P)\) is a probability space and \(S\) a discrete set. As we are accustomed to, there is often no need to mention explicitly the “underlying” probability measure. If misunderstanding is unlikely, “\(P\)” is used as the generic letter for “probability of”. By \(P_X\) we denote the distribution of \(X\):
\[
P_X(E) = P(X \in E); \quad E \subseteq S.
\]
If several random elements are considered at the same time, it is understood that the underlying probability space \((\Omega, \mathcal{F}, P)\) is the same for all random elements considered, whereas the discrete sets where the random elements take their values may, in general, vary.

The **entropy** of a random element \(X\) is defined to be the entropy of its distribution: \(H(X) = H(P_X)\). The **conditional entropy** \(H(X|B)\) **given an event** \(B\) with \(P(B) > 0\) then readily makes sense as the entropy of the conditional distribution of \(X\) given \(B\). If \(Y\) is another random element, the **joint entropy** \(H(X,Y)\) also makes sense, simply as the entropy of the random element \((X,Y) : \omega \mapsto (X(\omega), Y(\omega))\). Another central and natural definition is the **conditional entropy** \(H(X|Y)\) of \(X\) **given the random element** \(Y\) which is defined as

\[
H(X|Y) = \sum_y P(Y = y) H(X|Y = y). \tag{7.31}
\]

Here it is understood that summation extends over all possible values of \(Y\). We see that \(H(X|Y)\) can be interpreted as the average entropy of \(X\) that remains after observation of \(Y\). Note that

\[
H(X|Y) = H(X,Y|Y). \tag{7.32}
\]

If \(X\) and \(X'\) are random elements which take values in the same set, \(D(X\|X')\) is another notation for the divergence \(D(P_X\|P_{X'})\) between the associated distributions.

Certain extreme situations may occur, e.g. if \(X\) and \(Y\) are independent random elements or, a possible scenario in the “opposite” extreme, if \(X\) is a **consequence of** \(Y\), by which we mean that, for every \(y\) with \(P(Y = y)\) positive, the conditional distribution of \(X\) given \(Y = y\) is deterministic.

Often we try to economize with the notation without running a risk of misunderstanding, cf. Table 2 below

<table>
<thead>
<tr>
<th>short notation</th>
<th>full notation or definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(x)), (P(y)), (P(x,y))</td>
<td>(P(X = x), P(Y = y), P((X,Y) = (x,y)))</td>
</tr>
<tr>
<td>(P(x</td>
<td>y)), (P(y</td>
</tr>
<tr>
<td>(X</td>
<td>y)</td>
</tr>
<tr>
<td>(Y</td>
<td>x)</td>
</tr>
</tbody>
</table>

Table 2
For instance, (7.31) may be written
\[H(X|Y) = \sum_y P(y)H(X|y). \]

Let us collect some results formulated in the language of random elements which follow from results of the previous sections.

Theorem 7.1. Consider discrete random elements \(X, Y, \ldots\). The following results hold:

(i) \(0 \leq H(X) \leq \infty\) and a necessary and sufficient condition that \(H(X) = 0\) is, that \(X\) be deterministic.

(ii) \(H(X|Y) \geq 0\) and a necessary and sufficient condition that \(H(X|Y) = 0\) is, that \(X\) be a consequence of \(Y\).

(iii) (Shannon’s identity):
\[H(X, Y) = H(X) + H(Y|X) = H(Y) + H(X|Y). \quad (7.33) \]

(iv) \(H(X) \leq H(X, Y)\) and, in case \(H(X) < \infty\), a necessary and sufficient condition that \(H(X) = H(X, Y)\) is, that \(Y\) be a consequence of \(X\).

(v) \[H(X) = H(X|Y) + \sum_y P(y) \cdot D(X|y||X). \quad (7.34) \]

(vi) (Shannon’s inequality):
\[H(X|Y) \leq H(X) \quad (7.35) \]

and, in case \(H(X|Y) < \infty\), a necessary and sufficient condition that \(H(X|Y) = H(X)\) is, that \(X\) and \(Y\) be independent.

Proof. (i) is trivial.

(ii): This inequality, as well as the discussion of equality, follows by (i) and the defining relation (7.31).

(iii) is really equivalent to (4.16), but also follows from a simple direct calculation which we shall leave to the reader.

(iv) follows from (ii) and (iii).

(v): Clearly, the distribution of \(X\) is nothing but the mixture of the conditional distributions of \(X\) given \(Y = y\) w.r.t. the weights \(P(y)\). Having
noted this, the identity follows directly from the identity for mixtures, (6.26) of Theorem 6.1.

(vi) follows directly from (v) (since independence of X and Y is equivalent to coincidence of all conditional distributions of X given $Y = y$ whenever $P(y)$ is positive). □

8 Mutual information

The important concept of mutual information is best introduced using the language of random elements. The question we ask ourselves is this one: Let X and Y be random elements. How much information about X is revealed by Y? In more suggestive terms: We are interested in the value of X but cannot observe this value directly. However, we do have access to an auxiliary random element Y which can be observed directly. How much information about X is contained in an observation of Y?

Let us suggest two different approaches to a sensible answer. Firstly, we suggest the following general principle:

\[
\text{Information gained} = \text{decrease in uncertainty}
\]

There are two states involved in an observation: START where nothing has been observed and END where Y has been observed. In the start position, the uncertainty about X is measured by the entropy $H(X)$. In the end position, the uncertainty about X is measured by the conditional entropy $H(X|Y)$. The decrease in uncertainty is thus measured by the difference

\[
H(X) - H(X|Y)
\]

which then, according to our general principle, is the sought quantity “information about X contained in Y”.

Now, let us take another viewpoint and suggest the following general principle, closer to coding:

\[
\text{Information gained} = \text{saving in coding effort}
\]

When we receive the information that Y has the value, say y, this enables us to use a more efficient code than was available to us from the outset since we will then know that the distribution of X should be replaced by the conditional distribution of X given y. The saving realized we measure by the divergence $D(X|y||X)$. We then find it natural to measure the overall saving
in coding effort by the average of this divergence, hence now we suggest to use the quantity

$$\sum_y P(y) D(X|y\parallel X)$$ \hspace{1cm} (8.37)

as the sought measure for the “information about X contained in Y”. Luckily, the two approaches lead to the same quantity, at least when $H(X|Y)$ is finite. This follows by (7.34) of Theorem 7.1. From the same theorem, now appealing to (7.33), we discover that, at least when $H(X|Y)$ and $H(Y|X)$ are finite, then “the information about X contained in Y” is the same as “the information about Y contained in X”. Because of this symmetry, we choose to use a more “symmetric” terminology rather than the directional “information about X contained in Y”. Finally, we declare a preference for the “saving in coding effort-definition” simply because it is quite general as opposed to the “decrease in uncertainty-definition” which leads to (8.36) that could result in the indeterminate form $\infty - \infty$.

With the above discussion in mind we are now prepared to define $I(X;Y)$, the mutual information of X and Y by

$$I(X;Y) = \sum_y P(y) D(X|y\parallel X).$$ \hspace{1cm} (8.38)

As we saw above, mutual information is symmetric in case $H(X|Y)$ and $H(Y|X)$ are finite. However, symmetry holds in general as we shall now see. Let us collect these and other basic results in one theorem:

Theorem 8.1. Let X and Y be discrete random elements with distributions P_X, respectively P_Y and let $P_{X,Y}$ denote the joint distribution of (X,Y). Then the following holds:

$$I(X;Y) = D(P_{X,Y}\parallel P_X \otimes P_Y),$$ \hspace{1cm} (8.39)

$$I(X;Y) = I(Y;X),$$ \hspace{1cm} (8.40)

$$H(X) = H(X|Y) + I(X;Y),$$ \hspace{1cm} (8.41)

$$H(X,Y) + I(X;Y) = H(X) + H(Y),$$ \hspace{1cm} (8.42)

$$I(X;Y) = 0 \iff X \text{ and } Y \text{ are independent},$$ \hspace{1cm} (8.43)

$$I(X;Y) \leq H(X),$$ \hspace{1cm} (8.44)

$$I(X;Y) = H(X) \iff I(X;Y) = \infty \lor X \text{ is a consequence of } Y.$$ \hspace{1cm} (8.45)
Proof. We find that
\[I(X; Y) = \sum_y P(y) \sum_x P(x|y) \log \frac{P(x|y)}{P(x)} \]
\[= \sum_{x,y} P(x, y) \log \frac{P(x, y)}{P(x)P(y)} \]
\[= D(P_{X,Y} \parallel P_X \otimes P_Y) \]
and (8.39) follows. (8.40) and (8.43) are easy corollaries – (8.43) also follows
directly from the defining relation (8.38).

Really, (8.41) is the identity (6.26) in disguise. The identity (8.42) follows
by (8.41) and Shannon’s identity (7.33). The two remaining results, (8.44)
and (8.45) follow by (8.41) and (ii) of Theorem (7.1).

It is instructive to derive the somewhat surprising identity (8.40) di-
rectly from the more natural datareduction identity (4.17). To this end,
let \(X : \Omega \rightarrow \mathbb{A} \) and \(Y : \Omega \rightarrow \mathbb{B} \) be the random variables concerned, denote
their distributions by \(P_1 \), respectively \(P_2 \), and let \(P_{12} \) denote their joint dis-
tribution. Further, let \(\pi : \mathbb{A} \times \mathbb{B} \rightarrow \mathbb{A} \) be the natural projection. By (4.17)
it then follows that
\[D(P_{12} \parallel P_1 \otimes P_2) = D(\partial_x P_{12}\parallel \partial_x(P_1 \otimes P_2)) + D^{\pi}(P_{12}\parallel P_1 \otimes P_2) \]
\[= D(P_1 \parallel P_1) + \sum_{x \in \mathbb{A}} P_{12}(\pi^{-1}(x))D(P_{12|\pi^{-1}(x)} \parallel P_1 \otimes P_2 | \pi^{-1}(x)) \]
\[= 0 + \sum_{x \in \mathbb{A}} P_1(x)D(Y|\pi^{-1}(x) \parallel Y) \]
\[= I(Y; X). \]

By symmetry, e.g. by considering the natural projection \(\mathbb{A} \times \mathbb{B} \rightarrow \mathbb{B} \) instead,
we then see that \(I(X; Y) = I(Y; X) \).

9 Information Transmission

An important aspect of many branches of mathematics is that to a smaller or
larger extent one is free to choose/design/optimize the system under study.
For key problems of information theory this freedom lies in the choice of a
distribution or, equivalently, a code. In this and in the next section we look at
two models which are typical for optimization problems of information theory.
A detailed study has to wait until later chapters. For now we only introduce
some basic concepts and develop their most fundamental properties.
Our first object of study is a very simple model of a communication system given in terms of a discrete Markov kernel \((A, \mathbb{P}, B)\). This is a triple with \(A\) and \(B\) discrete sets, referred to respectively, as the input alphabet and the output alphabet. And the kernel \(\mathbb{P}\) itself is a map \((x, y) \sim \mathbb{P}(y|x)\) of \(A \times B\) into \([0, 1]\) such that, for each fixed \(x \in A\), \(y \sim \mathbb{P}(y|x)\) defines a probability distribution over \(B\). In suggestive terms, if the letter \(x\) is “sent”, then \(\mathbb{P}(\cdot|x)\) is the (conditional) distribution of the letter “received”. For this distribution we also use the notation \(\mathbb{P}_x\). A distribution \(P \in M^+_1(A)\) is also referred to as an input distribution. It is this distribution which we imagine we have a certain freedom to choose.

An input distribution \(P\) induces the output distribution \(Q\) defined as the mixture

\[
Q = \sum_x P(x)\mathbb{P}_x.
\]

Here, and below, we continue to use simple notation with \(x\) as the generic element in \(A\) and with \(y\) the generic element in \(B\).

When \(P\) induces \(Q\), we also express this notationally by \(P \sim Q\).

If \(P\) is the actual input distribution, this defines in the usual manner a random element \((X, Y)\) taking values in \(A \times B\) and with a distribution determined by the point probabilities \(P(x)\mathbb{P}(y|x); (x, y) \in A \times B\). In this way, \(X\) takes values in \(A\) and its distribution is \(P\), whereas \(Y\) takes values in \(B\) and has the induced distribution \(Q\).

A key quantity to consider is the information transmission rate, defined to be the mutual information \(I(X; Y)\), thought of as the information about the sent letter \((X)\) contained in the received letter \((Y)\). As the freedom to choose the input distribution is essential, we leave the language expressed in terms of random elements and focus explicitly on the distributions involved. Therefore, in more detail, the information transmission rate with \(P\) as input distribution is denoted \(I(P)\) and defined by

\[
I(P) = \sum_x P(x)D(\mathbb{P}_x||Q)
\] (9.46)

where \(P \sim Q\). In taking this expression as the defining quantity, we have already made use of the fact that mutual information is symmetric (cf. (8.40)). In fact, the immediate interpretation of (9.46) really concerns information about what was received given information about what was sent rather than the other way round.

The first result we want to point out is a trivial translation of the identity (6.27) of Theorem 6.1:
Theorem 9.1 (The compensation identity). Let P be an input distribution and Q the induced output distribution. Then, for any output distribution Q^*,

$$
\sum_x P(x) D(\mathbb{P}_x \| Q^*) = I(P) + D(Q \| Q^*). \quad (9.47)
$$

The reason for the name given to this identity is the following: Assume that we commit an error when computing $I(P)$ by using the distribution Q^* in (9.46) instead of the induced distribution Q. We still get $I(P)$ as result if only we “compensate” for the error by adding the term $D(Q \| Q^*)$.

The identity holds in a number of cases, e.g. with D replaced by squared Euclidean distance, with so-called Bregman divergencies or with divergencies as they are defined in the quantum setting (then the identity is known as “Donald’s identity”). Possibly, the first instance of the identity appeared in [9].

In the next result we investigate the behaviour of the information transmission rate under mixtures.

Theorem 9.2 (information transmission under mixtures). Let $(P_\nu)_{\nu \geq 1}$ be a sequence of input distributions and denote by $(Q_\nu)_{\nu \geq 1}$ the corresponding sequence of induced output distributions. Furthermore, consider an ω-convex combination $P_0 = \sum_{\nu=1}^\infty s_\nu P_\nu$ of the given input distributions and let Q_0 be the induced output distribution: $P_0 \Rightarrow Q_0$. Then:

$$
I \left(\sum_{\nu=1}^\infty s_\nu P_\nu \right) = \sum_{\nu=1}^\infty s_\nu I(P_\nu) + \sum_{\nu=1}^\infty s_\nu D(Q_\nu \| Q_0). \quad (9.48)
$$

Proof. By (9.47) we find that, for each $\nu \geq 1$,

$$
\sum_x P_\nu(x) D(\mathbb{P}_x \| Q_0) = I(P_\nu) + D(Q_\nu \| Q_0).
$$

Taking the proper mixture, we then get

$$
\sum_\nu s_\nu \sum_x P_\nu(x) D(\mathbb{P}_x \| Q_0) = \sum_\nu s_\nu I(P_\nu) + \sum_\nu s_\nu D(Q_\nu \| Q_0).
$$

As the left hand side here can be written as

$$
\sum_x P_0(x) D(\mathbb{P}_x \| Q_0),
$$

which equals $I(P_0)$, (9.48) follows. \qed
Corollary 9.1 (concavity of information transmission rate). The information transmission rate $P \rightsquigarrow I(P)$ is a concave function on $M_1^+(A)$. For a given ω-convex mixture $P_0 = \sum s_\nu P_\nu$ for which $\sum s_\nu I(P_\nu)$ is finite, equality holds in the inequality $I(\sum s_\nu P_\nu) \geq \sum s_\nu I(P_\nu)$ if and only if all P_ν with $s_\nu > 0$ induce the same distribution.

Acknowledgments

Most results and proofs have been discussed with Peter Harremoës. This concerns also the findings involving the information topology. More complete coverage of these aspects will be published by Peter Harremoës, cf. [6].

References

